Science.gov

Sample records for avian respiratory system

  1. Avian respiratory system disorders

    USGS Publications Warehouse

    Olsen, G.H.

    1989-01-01

    Diagnosing and treating respiratory diseases in avian species requires a basic knowledge about the anatomy and physiology of this system in birds. Differences between mammalian and avian respiratory system function, diagnosis, and treatment are highlighted.

  2. Reassessment of the Evidence for Postcranial Skeletal Pneumaticity in Triassic Archosaurs, and the Early Evolution of the Avian Respiratory System

    PubMed Central

    Butler, Richard J.; Barrett, Paul M.; Gower, David J.

    2012-01-01

    Uniquely among extant vertebrates, birds possess complex respiratory systems characterised by the combination of small, rigid lungs, extensive pulmonary air sacs that possess diverticula that invade (pneumatise) the postcranial skeleton, unidirectional ventilation of the lungs, and efficient crosscurrent gas exchange. Crocodilians, the only other living archosaurs, also possess unidirectional lung ventilation, but lack true air sacs and postcranial skeletal pneumaticity (PSP). PSP can be used to infer the presence of avian-like pulmonary air sacs in several extinct archosaur clades (non-avian theropod dinosaurs, sauropod dinosaurs and pterosaurs). However, the evolution of respiratory systems in other archosaurs, especially in the lineage leading to crocodilians, is poorly documented. Here, we use µCT-scanning to investigate the vertebral anatomy of Triassic archosaur taxa, from both the avian and crocodilian lineages as well as non-archosaurian diapsid outgroups. Our results confirm previous suggestions that unambiguous evidence of PSP (presence of internal pneumatic cavities linked to the exterior by foramina) is found only in bird-line (ornithodiran) archosaurs. We propose that pulmonary air sacs were present in the common ancestor of Ornithodira and may have been subsequently lost or reduced in some members of the clade (notably in ornithischian dinosaurs). The development of these avian-like respiratory features might have been linked to inferred increases in activity levels among ornithodirans. By contrast, no crocodile-line archosaur (pseudosuchian) exhibits evidence for unambiguous PSP, but many of these taxa possess the complex array of vertebral laminae and fossae that always accompany the presence of air sacs in ornithodirans. These laminae and fossae are likely homologous with those in ornithodirans, which suggests the need for further investigation of the hypothesis that a reduced, or non-invasive, system of pulmonary air sacs may be have been present

  3. Implications of an avian-style respiratory system for gigantism in sauropod dinosaurs.

    PubMed

    Perry, Steven F; Christian, Andreas; Breuer, Thomas; Pajor, Nadine; Codd, Jonathan R

    2009-10-01

    In light of evidence for avian-like lungs in saurischian dinosaurs, the physiological implications of cross-current gas exchange and voluminous, highly heterogeneous lungs for sauropod gigantism are critically examined. At 12 ton the predicted body temperature and metabolic rate of a growing sauropod would be similar to that of a bird scaled to the same body weight, but would increase exponentially as body mass increases. Although avian-like lung structure would be consistent with either a tachymetabolic-endothermic or a bradymetabolic-gigantothermic model, increasing body temperature requires adjustments to avoid overheating. We suggest that a unique sauropod structure/function unit facilitated the evolution of gigantism. This unit consisted of (1) a reduction in metabolic rate below that predicted by the body temperature, akin to thermal adaptation as seen in extant squamates, (2) presence of air-filled diverticula in the long neck and in the visceral cavity, and (3) low activity of respiratory muscles coupled with the high efficiency of cross-current gas exchange.

  4. A primary chicken tracheal cell culture system for the study of infection with avian respiratory viruses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A major route of infection of avian influenza virus (AIV) and Newcastle disease virus (NDV) in chickens is through cells of the airway epithelium. Here we describe the development and optimization of conditions for culture of tracheal epithelial cells from chicken embryos as well as their use in st...

  5. Respiratory system

    NASA Technical Reports Server (NTRS)

    Bartlett, R. G., Jr.

    1973-01-01

    The general anatomy and function of the human respiratory system is summarized. Breathing movements, control of breathing, lung volumes and capacities, mechanical relations, and factors relevant to respiratory support and equipment design are discussed.

  6. Molecular survey of avian respiratory pathogens in commercial broiler chicken flocks with respiratory diseases in Jordan.

    PubMed

    Roussan, D A; Haddad, R; Khawaldeh, G

    2008-03-01

    Acute respiratory tract infections are of paramount importance in the poultry industry. Avian influenza virus (AIV), infectious bronchitis virus (IBV), Newcastle disease virus (NDV), avian pneumovirus (APV), and Mycoplasma gallisepticum (MG) have been recognized as the most important pathogens in poultry. In this study, trachea swabs from 115 commercial broiler chicken flocks that suffered from respiratory disease were tested for AIV subtype H9N2, IBV, NDV, and APV by using reverse transcription PCR and for MG by using PCR. The PCR and reverse transcription PCR results showed that 13 and 14.8% of these flocks were infected with NDV and IBV, respectively, whereas 5.2, 6.0, 9.6, 10.4, 11.3, and 15.7% of these flocks were infected with both NDV and MG; MG and APV; IBV and NDV; IBV and MG; NDV and AIV; and IBV and AIV, respectively. Furthermore, 2.6% of these flocks were infected with IBV, NDV, and APV at the same time. On the other hand, 11.3% of these flocks were negative for the above-mentioned respiratory diseases. Our data showed that the above-mentioned respiratory pathogens were the most important causes of respiratory disease in broiler chickens in Jordan. Further studies are necessary to assess circulating strains, economic losses caused by infections and coinfections of these pathogens, and the costs and benefits of countermeasures. Furthermore, farmers need to be educated about the signs and importance of these pathogens.

  7. The respiratory system.

    PubMed

    Zifko, U; Chen, R

    1996-10-01

    Neurological disorders frequently contribute to respiratory failure in critically ill patients. They may be the primary reason for the initiation of mechanical ventilation, or may develop later as a secondary complication. Disorders of the central nervous system leading to respiratory failure include metabolic encephalopathies, acute stroke, lesions of the motor cortex and brain-stem respiratory centres, and their descending pathways. Guillan-Barré syndrome, critical illness polyneuropathy and acute quadriplegic myopathy are the more common neuromuscular causes of respiratory failure. Clinical observations and pulmonary function tests are important in monitoring respiratory function. Respiratory electrophysiological studies are useful in the investigation and monitoring of respiratory failure. Transcortical and cervical magnetic stimulation can assess the central respiratory drive, and may be useful in determining the prognosis in ventilated patients, with cervical cord dysfunction. It is also helpful in the assessment of failure to wean, which is often caused by a combination of central and peripheral nervous system disorders. Phrenic nerve conduction studies and needle electromyography of the diaphragm and chest wall muscles are useful to characterize neuropathies and myopathies affecting the diaphragm. Repetitive phrenic nerve stimulation can assess neuromuscular transmission defects. It is important to identify patients at risk of respiratory failure. They should be carefully monitored and mechanical ventilation should be initiated before the development of severe hypoxaemia.

  8. Efficacy of disinfectants and hand sanitizers against avian respiratory viruses.

    PubMed

    Patnayak, Devi P; Prasad, A Minakshi; Malik, Yashpal S; Ramakrishnan, M A; Goyal, Sagar M

    2008-06-01

    Disinfectants play a major role in the control of animal diseases by decontaminating the farm environment. We evaluated the virucidal efficacy of nine commonly used disinfectants on a nonporous surface contaminated experimentally with avian metapneumovirus (aMPV), avian influenza virus, or Newcastle disease virus (NDV). Phenolic compounds and glutaraldehyde were found to be the most effective against all three viruses. Quaternary ammonium compounds were effective against aMPV but not against the other two viruses. In addition, efficacy of commercially available hand sanitizers was evaluated on human fingers contaminated with aMPV and NDV. All three hand sanitizers tested were found to be effective against both viruses within 1 min of application on fingers.

  9. Serological and molecular detection of avian pneumovirus in chickens with respiratory disease in Jordan.

    PubMed

    Gharaibeh, S M; Algharaibeh, G R

    2007-08-01

    Avian pneumovirus (APV) causes upper respiratory tract infection in chickens and turkeys. There is a serious respiratory disease in chickens, resulting in catastrophic economic losses to chicken farmers in Jordan. The objective of this study was to investigate the role of APV as a factor in the respiratory disease of chickens in Jordan by serological and molecular methods. Thirty-eight chicken flocks were examined by competitive ELISA (23 broilers, 8 layers, and 7 broiler breeders), and 150 chicken flocks were examined by reverse-transcription PCR (133 broiler flocks, 7 layer flocks, and 10 broiler breeder flocks). Avian pneumovirus antibodies were detected in 5 out of 23 broiler flocks (21.7%), 6 out of 8 layer flocks (75%), and 7 out of 7 broiler breeder flocks (100%). Avian pneumovirus nucleic acid was detected in 17 broiler flocks (12.8%) and 3 layer flocks (42.9%). None of the broiler breeder flocks tested by reverse-transcription PCR was positive. All of the 20 detected APV isolates were subtype B. This is the first report of APV infection in Jordan. In conclusion, the Jordanian poultry industry, vaccination programs should be adjusted to include the APV vaccine to aid in the control of this respiratory disease.

  10. Respiratory System Disease.

    PubMed

    Goetz, Danielle M; Singh, Shipra

    2016-08-01

    Respiratory system involvement in cystic fibrosis is the leading cause of morbidity and mortality. Defects in the cystic fibrosis transmembrane regulator (CFTR) gene throughout the sinopulmonary tract result in recurrent infections with a variety of organisms including Pseudomonas aeruginosa, methicillin-resistant Staphylococcus aureus, and nontuberculous mycobacteria. Lung disease occurs earlier in life than once thought and ideal methods of monitoring lung function, decline, or improvement with therapy are debated. Treatment of sinopulmonary disease may include physiotherapy, mucus-modifying and antiinflammatory agents, antimicrobials, and surgery. In the new era of personalized medicine, CFTR correctors and potentiators may change the course of disease. PMID:27469180

  11. Doping and respiratory system.

    PubMed

    Casali, L; Pinchi, G; Puxeddu, E

    2007-03-01

    Historically many different drugs have been used to enhance sporting performances. The magic elixir is still elusive and the drugs are still used despite the heavy adverse effects. The respiratory system is regularly involved in this research probably because of its central location in the body with several connections to the cardiovascular system. Moreover people are aware that O2 consumption and its delivery to mitochondria firstly depend on ventilation and on the respiratory exchanges. The second step consists in the tendency to increase V'O2 max and to prolong its availability with the aim of improving the endurance time and to relieve the fatigue. Many methods and substances had been used in order to gain an artificial success. Additional oxygen, autologous and homologous transfusion and erythropoietin, mainly the synthetic type, have been administered with the aim of increasing the amount of oxygen being delivered to the tissues. Some compounds like stimulants and caffeine are endowed of excitatory activity on the CNS and stimulate pulmonary ventilation. They did not prove to have any real activity in supporting the athletic performances. Beta-adrenergic drugs, particularly clenbuterol, when administered orally or parenterally develop a clear illicit activity on the myosin fibres and on the muscles as a whole. Salbutamol, terbutaline, salmeterol and formoterol are legally admitted when administrated by MDI in the treatment of asthma. The prevalence of asthma and bronchial hyperactivity is higher in athletes than amongst the general population. This implies that clear rules must be provided to set a correct diagnosis of asthma in the athletes and a correct therapy to align with the actual guidelines according to the same rights of the "other" asthmatic patients.

  12. Respiratory transmission of an avian H3N8 influenza virus isolated from a harbour seal

    PubMed Central

    Karlsson, Erik A.; Ip, Hon S.; Hall, Jeffrey S.; Yoon, Sun Woo; Johnson, Jordan; Beck, Melinda A.; Webby, Richard J.; Schultz-Cherry, Stacey

    2016-01-01

    The ongoing human H7N9 influenza infections highlight the threat of emerging avian influenza viruses. In 2011, an avian H3N8 influenza virus isolated from moribund New England harbour seals was shown to have naturally acquired mutations known to increase the transmissibility of highly pathogenic H5N1 influenza viruses. To elucidate the potential human health threat, here we evaluate a panel of avian H3N8 viruses and find that the harbour seal virus displays increased affinity for mammalian receptors, transmits via respiratory droplets in ferrets and replicates in human lung cells. Analysis of a panel of human sera for H3N8 neutralizing antibodies suggests that there is no population-wide immunity to these viruses. The prevalence of H3N8 viruses in birds and multiple mammalian species including recent isolations from pigs and evidence that it was a past human pandemic virus make the need for surveillance and risk analysis of these viruses of public health importance. PMID:25183346

  13. Respiratory transmission of an avian H3N8 influenza virus isolated from a harbour seal

    USGS Publications Warehouse

    Karlsson, Erik A.; Ip, Hon S.; Hall, Jeffrey S.; Yoon, Sun W.; Johnson, Jordan; Beck, Melinda A.; Webby, Richard J.; Schultz-Cherry, Stacey

    2014-01-01

    The ongoing human H7N9 influenza infections highlight the threat of emerging avian influenza viruses. In 2011, an avian H3N8 influenza virus isolated from moribund New England harbour seals was shown to have naturally acquired mutations known to increase the transmissibility of highly pathogenic H5N1 influenza viruses. To elucidate the potential human health threat, here we evaluate a panel of avian H3N8 viruses and find that the harbour seal virus displays increased affinity for mammalian receptors, transmits via respiratory droplets in ferrets and replicates in human lung cells. Analysis of a panel of human sera for H3N8 neutralizing antibodies suggests that there is no population-wide immunity to these viruses. The prevalence of H3N8 viruses in birds and multiple mammalian species including recent isolations from pigs and evidence that it was a past human pandemic virus make the need for surveillance and risk analysis of these viruses of public health importance.

  14. Distribution patterns of influenza virus receptors and viral attachment patterns in the respiratory and intestinal tracts of seven avian species

    PubMed Central

    2012-01-01

    This study assessed the presence of sialic acid α-2,3 and α-2,6 linked glycan receptors in seven avian species. The respiratory and intestinal tracts of the chicken, common quail, red-legged partridge, turkey, golden pheasant, ostrich, and mallard were tested by means of lectin histochemistry, using the lectins Maackia amurensis agglutinin II and Sambucus nigra agglutinin, which show affinity for α-2,3 and α-2,6 receptors, respectively. Additionally, the pattern of virus attachment (PVA) was evaluated with virus histochemistry, using an avian-origin H4N5 virus and a human-origin seasonal H1N1 virus. There was a great variation of receptor distribution among the tissues and avian species studied. Both α-2,3 and α-2,6 receptors were present in the respiratory and intestinal tracts of the chicken, common quail, red-legged partridge, turkey, and golden pheasant. In ostriches, the expression of the receptor was basically restricted to α-2,3 in both the respiratory and intestinal tracts and in mallards the α-2,6 receptors were absent from the intestinal tract. The results obtained with the lectin histochemistry were, in general, in agreement with the PVA. The differential expression and distribution of α-2,3 and α-2,6 receptors among various avian species might reflect a potentially decisive factor in the emergence of new viral strains. PMID:22489675

  15. Distribution patterns of influenza virus receptors and viral attachment patterns in the respiratory and intestinal tracts of seven avian species.

    PubMed

    Costa, Taiana; Chaves, Aida J; Valle, Rosa; Darji, Ayub; van Riel, Debby; Kuiken, Thijs; Majó, Natàlia; Ramis, Antonio

    2012-04-10

    This study assessed the presence of sialic acid α-2,3 and α-2,6 linked glycan receptors in seven avian species. The respiratory and intestinal tracts of the chicken, common quail, red-legged partridge, turkey, golden pheasant, ostrich, and mallard were tested by means of lectin histochemistry, using the lectins Maackia amurensis agglutinin II and Sambucus nigra agglutinin, which show affinity for α-2,3 and α-2,6 receptors, respectively. Additionally, the pattern of virus attachment (PVA) was evaluated with virus histochemistry, using an avian-origin H4N5 virus and a human-origin seasonal H1N1 virus. There was a great variation of receptor distribution among the tissues and avian species studied. Both α-2,3 and α-2,6 receptors were present in the respiratory and intestinal tracts of the chicken, common quail, red-legged partridge, turkey, and golden pheasant. In ostriches, the expression of the receptor was basically restricted to α-2,3 in both the respiratory and intestinal tracts and in mallards the α-2,6 receptors were absent from the intestinal tract. The results obtained with the lectin histochemistry were, in general, in agreement with the PVA. The differential expression and distribution of α-2,3 and α-2,6 receptors among various avian species might reflect a potentially decisive factor in the emergence of new viral strains.

  16. Ornithobacterium rhinotracheale gen. nov., sp. nov., isolated from the avian respiratory tract.

    PubMed

    Vandamme, P; Segers, P; Vancanneyt, M; van Hove, K; Mutters, R; Hommez, J; Dewhirst, F; Paster, B; Kersters, K; Falsen, E

    1994-01-01

    The phylogenetic position and various genotypic, chemotaxonomic, and classical phenotypic characteristics of 21 gram-negative avian isolates were studied. These strains constitute a genotypically homogeneous taxon in rRNA superfamily V, as shown by DNA-rRNA hybridization data. Determination of the 16S rRNA sequence of this taxon revealed its detailed position within the "flavobacter" subgroup of the "flavobacter-bacteroides" phylum as described by Gherna and Woese (R. Gherna and C. R. Woese, Syst. Appl. Microbiol. 15:513-521, 1992). This new taxon is only distantly related to other members of the "flavobacter-bacteroides" phylum and is therefore given separate generic status. The DNA-DNA binding values for members of this taxon, for which we propose the name Ornithobacterium rhinotracheale, confirmed that all of the strains are highly interrelated (DNA-DNA binding values greater than 90% were measured). The G+C contents of members of this taxon are between 37 and 39 mol%. An analysis of the cellular proteins and fatty acids and classical phenotypic characteristics allowed us to distinguish O. rhinotracheale from phenotypically similar taxa, such as Riemerella anatipestifer and Capnocytophaga species. The respiratory quinone content (menaquinone 7) and carbohydrate pattern of O. rhinotracheale conform with the respiratory quinone contents and carbohydrate patterns of other members of rRNA superfamily V. PMID:8123560

  17. China's heath care system and avian influenza preparedness.

    PubMed

    Kaufman, Joan A

    2008-02-15

    The severe acute respiratory syndrome crisis exposed serious deficiencies in China's public health system and willingness to report outbreaks of threats to public health. Consequently, China may be one of the weak links in global preparedness for avian influenza. China's rural health care system has been weakened by 20 years of privatization and fiscal decentralization. China plays a huge role in the global poultry industry, with a poultry population of 14 billion birds, 70%-80% of which are reared in backyard conditions. Although surveillance has been strengthened, obstacles to the timely reporting of disease outbreaks still exist. The weakened health care system prevents many sick people from seeking care at a health care facility, where reporting would originate. Inadequate compensation to farmers for culled birds leads to nonreporting, and local officials may be complicit if they suspect that reporting might lead to economic losses for their communities. At the local level, China's crisis-management ability and multisectoral coordination are weak. The poor quality of infection control in many rural facilities is a serious and well-documented problem. However, traditions of community political mobilization suggest that the potential for providing rural citizens with public health information is possible when mandated from the central government. Addressing these issues now and working on capacity issues, authority structures, accountability, and local reporting and control structures will benefit the control of a potential avian influenza outbreak, as well as inevitable outbreaks of other emerging infectious diseases in China's Pearl River Delta or in other densely populated locations of animal husbandry in China. PMID:18269328

  18. Avians as a Model System of Vascular Development

    PubMed Central

    Bressan, Michael; Mikawa, Takashi

    2015-01-01

    Summary For more then 2000 years philosophers and scientists have turned to the avian embryo with questions of how life begins (Aristotle; Needham, 1959). Then, as now, the unique accessibility of the embryo both in terms of acquisition of eggs from domesticated fowl, and ease at which the embryo can be visualized by simply opening the shell, have made avians an appealing and powerful model system for the study of development. Thus, as the field of embryology has evolved through observational, comparative, and experimental embryology, into its current iteration as the cellular and molecular biology of development, avians have remained a useful and practical system of study. PMID:25468608

  19. A miniaturised respiratory sensor system

    NASA Astrophysics Data System (ADS)

    Hoffmann, U.; Fasoulas, S.; Linnarsson, D.; Paiva, M.; Stoll, R.; Hammer, F.; Stangl, R.; Martinot, Guy

    2005-10-01

    Solid-electrolyte gas sensors, originally designed for residual oxygen detection in low Earth orbit, have provided the basis for developing a multi-function sensor system for respiratory investigations. These sensors allow the detection of oxygen and carbon dioxide partial pressures simultaneously with total flow rates. Moreover, with only minor modifications, other gases of interest in cardio-respiratory testing, such as carbon monoxide and hydrogen, can be detected. The sensors are highly miniaturised and can be positioned in the mainstream of the breath. Thus there is no delay through sample transport. The characteristics of the flow detection are comparable with common sensors used in spirometry. The oxygen and carbon dioxide sensitivities have reached a level that is comparable to or even better than those of mass spectrometers optimised for respiratory analysis. Data from this sensor system allow single-breath or breath-by-breath analysis. Integrated into a portable system, the system provides greater flexibility than other devices, significantly increasing the range of scientific and health-monitoring applications.

  20. Effects of Aging on the Respiratory System.

    ERIC Educational Resources Information Center

    Levitzky, Michael G.

    1984-01-01

    Relates alterations in respiratory system functions occurring with aging to changes in respiratory system structure during the course of life. Main alterations noted include loss of alveolar elastic recoil, alteration in chest wall structure and decreased respiratory muscle strength, and loss of surface area and changes in pulmonary circulation.…

  1. Respiratory system part 1: pulmonary ventilation.

    PubMed

    McLafferty, Ella; Johnstone, Carolyn; Hendry, Charles; Farley, Alistair

    This article, which forms part of the life sciences series and is the first of two articles on the respiratory system, describes the anatomy of the respiratory system and explains the mechanics of respiration. It provides a brief overview of three common respiratory disorders: pneumonia, pulmonary embolism and pulmonary tuberculosis. The second article discusses gaseous exchange and the control of ventilation in more detail.

  2. Respiratory analysis system and method

    NASA Technical Reports Server (NTRS)

    Liu, F. F. (Inventor)

    1973-01-01

    A system is described for monitoring the respiratory process in which the gas flow rate and the frequency of respiration and expiration cycles can be determined on a real time basis. A face mask is provided with one-way inlet and outlet valves where the gas flow is through independent flowmeters and through a mass spectrometer. The opening and closing of a valve operates an electrical switch, and the combination of the two switches produces a low frequency electrical signal of the respiratory inhalation and exhalation cycles. During the time a switch is operated, the corresponsing flowmeter produces electric pulses representative of the flow rate; the electrical pulses being at a higher frequency than that of the breathing cycle and combined with the low frequency signal. The high frequency pulses are supplied to conventional analyzer computer which also receives temperature and pressure inputs and computes mass flow rate and totalized mass flow of gas. From the mass spectrometer, components of the gas are separately computed as to flow rate. The electrical switches cause operation of up-down inputs of a reversible counter. The respective up and down cycles can be individually monitored and combined for various respiratory measurements.

  3. Infections and reinfections with avian pneumovirus subtype A and B on Belgian turkey farms and relation to respiratory problems.

    PubMed

    Van de Zande, S; Nauwynck, H; Cavanagh, D; Pensaert, M

    1998-12-01

    A longitudinal study was performed on six turkey farms in order to determine whether infections with avian pneumovirus (APV) occur and if they are related to outbreaks of respiratory problems in Belgium. Blood was taken at 1-3 week intervals of 20 identified animals during the fattening period. On five farms, the turkeys seroconverted against APV shortly after the appearance of respiratory problems. On two farms, where the animals had not been vaccinated against APV, attempts were made to isolate APV during the outbreaks. Two isolates were obtained: one of subtype A, the other of subtype B. These results indicate that the respiratory problems on five farms were related to an infection with APV. A second increase in APV antibody titres detected on four farms at the end of the fattening period, indicates that reinfections frequently occur. This is, to our knowledge, the first report on the isolation of an APV subtype A on the continent.

  4. Isolation and full genome characterization of avian influenza subtype H9N2 from poultry respiratory disease outbreak in Egypt.

    PubMed

    Shehata, Awad A; Parvin, Rokshana; Sultan, Hesham; Halami, Mohamed Y; Talaat, Shaimaa; Abd Elrazek, Alaa; Ibrahim, Mahmoud; Heenemann, Kristin; Vahlenkamp, Thomas

    2015-06-01

    Low pathogenic avian influenza virus of subtype H9N2 is panzootic in multiple avian species causing respiratory manifestations and severe economic losses. H9N2 co-circulate simultaneously with high pathogenic avian influenza virus subtype H5N1 in Egyptian chicken farms suggesting the possibility of reassortment. The aim of the present study was to isolate and characterize H9N2 from the recent outbreaks in chicken farms. Also the diversity of amantadine-resistant mutants among these isolates was tested by in situ ELISA and sequence analysis. Three influenza H9N2 viruses, designated A/chicken/Egypt/SCU8/2014, A/chicken/Egypt/SCU9/2014 and A/chicken/Egypt/SCU20/2014 were isolated from commercial broiler and broiler breeder chickens in specific pathogen free embryonated chicken eggs. The eight gene segments were amplified by RT-PCR, cloned, and subjected to full length sequencing. Phylogenetic analysis of these viruses revealed a close relationship between Egyptian, Middle Eastern and Israel isolates with an average of 96-99 % nucleotide homology and identified an ancestor relationship to low pathogenic H9N2 Quail/HK/G1/1997 prototype. The internal segments of the currently isolated viruses were derived from the same sub-lineage with no new evidence of reassortment. The three isolates were sensitive to amantadine as suggested by absence of mutations of M2 and confirmed by a phenotypic assay. In conclusion, avian influenza H9N2 virus is circulating in Egyptian chicken farms causing respiratory manifestations. Continuous monitoring of the molecular epidemiology and its impact on the virulence as well as emergence of new strains are necessary.

  5. Avians as a model system of vascular development.

    PubMed

    Bressan, Michael; Mikawa, Takashi

    2015-01-01

    For more than 2,000 years, philosophers and scientists have turned to the avian embryo with questions of how life begins (Aristotle and Peck Generations of Animals. Loeb Classics, vol. XIII. Harvard University Press, Cambridge, 1943; Needham, A history of embryology. Abelard-Schuman, New York, 1959). Then, as now, the unique accessibility of the embryo both in terms of acquisition of eggs from domesticated fowl and ease at which the embryo can be visualized by simply opening the shell has made avians an appealing and powerful model system for the study of development. Thus, as the field of embryology has evolved through observational, comparative, and experimental embryology into its current iteration as the cellular and molecular biology of development, avians have remained a useful and practical system of study.

  6. Auscultation of the respiratory system

    PubMed Central

    Sarkar, Malay; Madabhavi, Irappa; Niranjan, Narasimhalu; Dogra, Megha

    2015-01-01

    Auscultation of the lung is an important part of the respiratory examination and is helpful in diagnosing various respiratory disorders. Auscultation assesses airflow through the trachea-bronchial tree. It is important to distinguish normal respiratory sounds from abnormal ones for example crackles, wheezes, and pleural rub in order to make correct diagnosis. It is necessary to understand the underlying pathophysiology of various lung sounds generation for better understanding of disease processes. Bedside teaching should be strengthened in order to avoid erosion in this age old procedure in the era of technological explosion. PMID:26229557

  7. Respiratory system involvement in Costello syndrome.

    PubMed

    Gomez-Ospina, Natalia; Kuo, Christin; Ananth, Amitha Lakshmi; Myers, Angela; Brennan, Marie-Luise; Stevenson, David A; Bernstein, Jonathan A; Hudgins, Louanne

    2016-07-01

    Costello syndrome (CS) is a multisystem disorder caused by heterozygous germline mutations in the HRAS proto-oncogene. Respiratory system complications have been reported in individuals with CS, but a comprehensive description of the full spectrum and incidence of respiratory symptoms in these patients is not available. Here, we report the clinical course of four CS patients with respiratory complications as a major cause of morbidity. Review of the literature identified 56 CS patients with descriptions of their neonatal course and 17 patients in childhood/adulthood. We found that in the neonatal period, respiratory complications are seen in approximately 78% of patients with transient respiratory distress reported in 45% of neonates. Other more specific respiratory diagnoses were reported in 62% of patients, the majority of which comprised disorders of the upper and lower respiratory tract. Symptoms of upper airway obstruction were reported in CS neonates but were more commonly diagnosed in childhood/adulthood (71%). Analysis of HRAS mutations and their respiratory phenotype revealed that the common p.Gly12Ser mutation is more often associated with transient respiratory distress and other respiratory diagnoses. Respiratory failure and dependence on mechanical ventilation occurs almost exclusively with rare mutations. In cases of prenatally diagnosed CS, the high incidence of respiratory complications in the neonatal period should prompt anticipatory guidance and development of a postnatal management plan. This may be important in cases involving rarer mutations. Furthermore, the high frequency of airway obstruction in CS patients suggests that otorhinolaryngological evaluation and sleep studies should be considered. © 2016 Wiley Periodicals, Inc.

  8. Infectious bronchitis virus in different avian physiological systems-a field study in Brazilian poultry flocks.

    PubMed

    Balestrin, Eder; Fraga, Aline P; Ikuta, Nilo; Canal, Cláudio W; Fonseca, André S K; Lunge, Vagner R

    2014-08-01

    Avian infectious bronchitis is a highly contagious viral disease with economic effects on poultry agribusiness. The disease presents multi-systemic clinical signs (respiratory, renal, enteric, and reproductive) and is caused by one coronavirus (infectious bronchitis virus, IBV). Infectious bronchitis virus is classified into different serotypes and genotypes (vaccine strains and field variants). This study aimed to evaluate the occurrence of IBV in commercial poultry flocks from 3 important producing regions in Brazil and to determine the tropism of the main circulating genotypes to 3 different avian physiological systems (respiratory, digestive, urinary/reproductive). Clinical samples with suggestive signs of IBV infection were collected from 432 different poultry commercial flocks (198 from broilers and 234 from breeders). The total number of biological samples consisted of organ pools from the 3 above physiological systems obtained of farms from 3 important producing regions: midwest, northeast, and south. Infectious bronchitis virus was detected by reverse-transcription, real-time PCR of the 5' untranslated region. The results showed 179 IBV-positive flocks (41.4% of the flocks), with 107 (24.8%) from broilers and 72 (16.8%) from breeders. There were similar frequencies of IBV-positive flocks in farms from different regions of the country, most often in broilers (average 54%) compared with breeders (average 30.8%). reverse-transcription was more frequently detected in the digestive system of breeders (40%), and in the digestive (43.5%) and respiratory (37.7%) systems of broilers. Infectious bronchitis virus genotyping was performed by a reverse-transcription nested PCR and sequencing of the S1 gene from a selection of 79 IBV-positive flocks (45 from broilers and 34 from breeders). The majority of the flocks were infected with Brazilian variant genotype than with Massachusetts vaccine genotype. These results demonstrate the predominance of the Brazilian variant

  9. Investigations of respiratory control systems simulation

    NASA Technical Reports Server (NTRS)

    Gallagher, R. R.

    1973-01-01

    The Grodins' respiratory control model was investigated and it was determined that the following modifications were necessary before the model would be adaptable for current research efforts: (1) the controller equation must be modified to allow for integration of the respiratory system model with other physiological systems; (2) the system must be more closely correlated to the salient physiological functionings; (3) the respiratory frequency and the heart rate should be expanded to illustrate other physiological relationships and dependencies; and (4) the model should be adapted to particular individuals through a better defined set of initial parameter values in addition to relating these parameter values to the desired environmental conditions. Several of Milhorn's respiratory control models were also investigated in hopes of using some of their features as modifications for Grodins' model.

  10. Evaluation of exercise-respiratory system modifications and preliminary respiratory-circulatory system integration scheme

    NASA Technical Reports Server (NTRS)

    Gallagher, R. R.

    1974-01-01

    The respiratory control system, functioning as an independent system, is presented with modifications of the exercise subroutine. These modifications illustrate an improved control of ventilation rates and arterial and compartmental gas tensions. A very elementary approach to describing the interactions of the respiratory and circulatory system is presented.

  11. Improvement in the accuracy of respiratory-gated radiation therapy using a respiratory guiding system

    NASA Astrophysics Data System (ADS)

    Kang, Seong-Hee; Kim, Dong-Su; Kim, Tae-Ho; Suh, Tae-Suk; Yoon, Jai-Woong

    2013-01-01

    The accuracy of respiratory-gated radiation therapy (RGRT) depends on the respiratory regularity because external respiratory signals are used for gating the radiation beam at particular phases. Many studies have applied a respiratory guiding system to improve the respiratory regularity. This study aims to evaluate the effect of an in-house-developed respiratory guiding system to improve the respiratory regularity for RGRT. To verify the effectiveness of this system, we acquired respiratory signals from five volunteers. The improvement in respiratory regularity was analyzed by comparing the standard deviations of the amplitudes and the periods between free and guided breathing. The reduction in residual motion at each phase was analyzed by comparing the standard deviations of sorted data within each corresponding phase bin as obtained from free and guided breathing. The results indicate that the respiratory guiding system improves the respiratory regularity, and that most of the volunteers showed significantly less average residual motion at each phase. The average residual motion measured at phases of 40, 50, and 60%, which showed lower variation than other phases, were, respectively, reduced by 41, 45, and 44% during guided breathing. The results show that the accuracy of RGRT can be improved by using the in-house-developed respiratory guiding system. Furthermore, this system should reduce artifacts caused by respiratory motion in 4D CT imaging.

  12. Novel Avian-Origin Influenza A (H7N9) Virus Attaches to Epithelium in Both Upper and Lower Respiratory Tract of Humans

    PubMed Central

    van Riel, Debby; Leijten, Lonneke M.E.; de Graaf, Miranda; Siegers, Jurre Y.; Short, Kirsty R.; Spronken, Monique I.J.; Schrauwen, Eefje J.A.; Fouchier, Ron A.M.; Osterhaus, Albert D.M.E.; Kuiken, Thijs

    2014-01-01

    Influenza A viruses from animal reservoirs have the capacity to adapt to humans and cause influenza pandemics. The occurrence of an influenza pandemic requires efficient virus transmission among humans, which is associated with virus attachment to the upper respiratory tract. Pandemic severity depends on virus ability to cause pneumonia, which is associated with virus attachment to the lower respiratory tract. Recently, a novel avian-origin H7N9 influenza A virus with unknown pandemic potential emerged in humans. We determined the pattern of attachment of two genetically engineered viruses containing the hemagglutinin of either influenza virus A/Shanghai/1/13 or A/Anhui/1/13 to formalin-fixed human respiratory tract tissues using histochemical analysis. Our results show that the emerging H7N9 virus attached moderately or abundantly to both upper and lower respiratory tract, a pattern not seen before for avian influenza A viruses. With the caveat that virus attachment is only the first step in the virus replication cycle, these results suggest that the emerging H7N9 virus has the potential both to transmit efficiently among humans and to cause severe pneumonia. PMID:24029490

  13. Microgravity and the respiratory system.

    PubMed

    Prisk, G Kim

    2014-05-01

    The structure of the lung, with its delicate network of airspaces and capillaries, means that gravity has a profound influence on its function. Studies of lung function in the absence of gravity provide valuable insight into how, for we Earth-bound individuals, its unavoidable effects shape our lung function. Gravity causes uneven ventilation in the lung through the deformation of lung tissue (the so-called Slinky effect), and uneven perfusion through a combination of the Slinky effect and the zone model of pulmonary perfusion. Both ventilation and perfusion exhibit persisting heterogeneity in microgravity, indicating important other mechanisms. However, gravity serves to maintain a degree of matching of these two processes, so that the ventilation/perfusion ratio, and thus gas exchange, remains efficient. Therefore, while both ventilation and perfusion are more uniform in spaceflight, gas exchange is seemingly no more efficient than on Earth. Despite the changes in lung function when gravity is removed, the lung continues to function well in weightlessness. Unlike many other organ systems, the lung does not appear to undergo structural adaptive changes when gravity is removed, and so there is no apparent degradation in lung function upon return to earth, even after 6 months in space. PMID:24603820

  14. Evolution of the respiratory system in nonavian theropods: evidence from rib and vertebral morphology.

    PubMed

    Schachner, Emma R; Lyson, Tyler R; Dodson, Peter

    2009-09-01

    Recent reports of region-specific vertebral pneumaticity in nonavian theropod dinosaurs have brought attention to the hypothesis that these animals possessed an avian-style respiratory system with flow-through ventilation. This study explores the thoracic rib and vertebral anatomy of Sinraptor, Allosaurus, Tyrannosaurus, and Deinonychus; four nonavian theropods that all show well-preserved thoracic vertebrae and ribs. Comparisons to the osteology and soft tissue anatomy of extant saurians provide new evidence supporting the hypothesis of flow-through ventilation in nonavian theropods. Analyses of diapophyseal and parapophyseal position and thoracic rib morphology suggest that most nonavian theropods possessed lungs that were deeply incised by the adjacent bicapitate thoracic ribs. This functionally constrains the lungs as rigid nonexpansive organs that were likely ventilated by accessory nonvascularized air sacs. The axial anatomy of this group also reveals that a crocodilian-like hepatic-piston lung would be functionally and biomechanically untenable. Taken together with the evidence that avian-like air sacs were present in basal theropods, these data lead us to conclude that an avian-style pulmonary system was likely a universal theropod trait.

  15. A respiratory compensating system: design and performance evaluation.

    PubMed

    Chuang, Ho-Chiao; Huang, Ding-Yang; Tien, Der-Chi; Wu, Ren-Hong; Hsu, Chung-Hsien

    2014-05-08

    This study proposes a respiratory compensating system which is mounted on the top of the treatment couch for reverse motion, opposite from the direction of the targets (diaphragm and hemostatic clip), in order to offset organ displacement generated by respiratory motion. Traditionally, in the treatment of cancer patients, doctors must increase the field size for radiation therapy of tumors because organs move with respiratory motion, which causes radiation-induced inflammation on the normal tissues (organ at risk (OAR)) while killing cancer cells, and thereby reducing the patient's quality of life. This study uses a strain gauge as a respiratory signal capture device to obtain abdomen respiratory signals, a proposed respiratory simulation system (RSS) and respiratory compensating system to experiment how to offset the organ displacement caused by respiratory movement and compensation effect. This study verifies the effect of the respiratory compensating system in offsetting the target displacement using two methods. The first method uses linac (medical linear accelerator) to irradiate a 300 cGy dose on the EBT film (GAFCHROMIC EBT film). The second method uses a strain gauge to capture the patients' respiratory signals, while using fluoroscopy to observe in vivo targets, such as a diaphragm, to enable the respiratory compensating system to offset the displacements of targets in superior-inferior (SI) direction. Testing results show that the RSS position error is approximately 0.45 ~ 1.42 mm, while the respiratory compensating system position error is approximately 0.48 ~ 1.42 mm. From the EBT film profiles based on different input to the RSS, the results suggest that when the input respiratory signals of RSS are sine wave signals, the average dose (%) in the target area is improved by 1.4% ~ 24.4%, and improved in the 95% isodose area by 15.3% ~ 76.9% after compensation. If the respiratory signals input into the RSS respiratory signals are actual human respiratory

  16. [The environment and human respiratory system].

    PubMed

    Nikodemowicz, Marian

    2008-01-01

    The process of gas exchange that is breathing is an important element of any person's relation with the environment. What decides about our health and life are the respiratory systems responsible for the breathing process and the quality of the air we breathe. On an average through a person's life 400 millions liters of air flows which carries pollution in the form of constant gases and liquid particles. Particles of about PM-2.5 size get into the deepest structures of the respiratory system from which they are being spread into the whole organism through circulation exerting thier toxic effect on all tissues and organs. The outdoor pollution diffuses but in certain local circumstances it increases. It was so in big ecological disasters such as in 1930 in the Mozy valley in Belgium, in 1948 in the Donory region in the USA and in 1952 smog pollution in London. On an average any human being spends indoors about 60-80% of his time. The increased concentration of pollution occurs indoors and there is a possibility of exposing oneself to ETS- Environmental Tobacco Smoke. The biggest concentration of inhaled pollution takes place when smoking tobacco. Pollution of air causes diseases of the respiratory system, cardiovascular system, tumours and others. Frequent occurrence of COPD in certain areas correlates with the level of air pollution and it significantly increases in tobacco smokers. The number and frequency of bronchial asthma and the need for hospitalization depends on air pollution. Lung cancer cases were rarely described in literature before the area of industrialization and wide spread custom of tobacco smoking. Now it is the most frequently occurred cancer in the whole world. There is an interdependence of the density of population, of the number of smoked cigarettes and of density of pollution with the number lung cancer cases. It is hoped that in the future, smoking habits will be eliminated, the use of crude oil and coal will be replaced by hydroelectric

  17. [The environment and human respiratory system].

    PubMed

    Nikodemowicz, Marian

    2008-01-01

    The process of gas exchange that is breathing is an important element of any person's relation with the environment. What decides about our health and life are the respiratory systems responsible for the breathing process and the quality of the air we breathe. On an average through a person's life 400 millions liters of air flows which carries pollution in the form of constant gases and liquid particles. Particles of about PM-2.5 size get into the deepest structures of the respiratory system from which they are being spread into the whole organism through circulation exerting thier toxic effect on all tissues and organs. The outdoor pollution diffuses but in certain local circumstances it increases. It was so in big ecological disasters such as in 1930 in the Mozy valley in Belgium, in 1948 in the Donory region in the USA and in 1952 smog pollution in London. On an average any human being spends indoors about 60-80% of his time. The increased concentration of pollution occurs indoors and there is a possibility of exposing oneself to ETS- Environmental Tobacco Smoke. The biggest concentration of inhaled pollution takes place when smoking tobacco. Pollution of air causes diseases of the respiratory system, cardiovascular system, tumours and others. Frequent occurrence of COPD in certain areas correlates with the level of air pollution and it significantly increases in tobacco smokers. The number and frequency of bronchial asthma and the need for hospitalization depends on air pollution. Lung cancer cases were rarely described in literature before the area of industrialization and wide spread custom of tobacco smoking. Now it is the most frequently occurred cancer in the whole world. There is an interdependence of the density of population, of the number of smoked cigarettes and of density of pollution with the number lung cancer cases. It is hoped that in the future, smoking habits will be eliminated, the use of crude oil and coal will be replaced by hydroelectric

  18. Citation classics: Top 50 cited articles in 'respiratory system'.

    PubMed

    Tam, Wilson W S; Wong, Eliza L Y; Wong, Faye C Y; Hui, David S C

    2013-01-01

    Identifying citation classics in the field is one of the key methodologies used to conduct a systematic evaluation of research performance. The objective of this study was to determine the most frequently cited articles published in journals that are placed under the 'respiratory system' subject category (Institute for Scientific Information (ISI) Journal Citation Reports) and to compare them with the most frequently cited respiratory-related articles published in any journal, regardless of subject category. The authors utilized the ISI Journal Citation Reports: Science Edition 2010 database in April 2012 to determine the most frequently cited articles by respiratory system subject category and by respiratory-related keywords. The top 50 most-cited articles were identified in each category and evaluated according to various characteristics. The majority of these papers originated from the United States. The median numbers of citations for the top 50 cited articles stratified by respiratory system subject category and respiratory-related keywords were 841.5 and 2701, respectively. Half of the top 50 cited articles identified by respiratory-related keywords were published in general medical or basic science journals, whereas only three out of these were published in journals under the respiratory system subject category in ISI Journal Citation Reports. In summary, respiratory-related articles published in general medical or science journals attracted more citations than those published in the specific respiratory journals.

  19. Highly pathogenic avian influenza.

    PubMed

    Swayne, D E; Suarez, D L

    2000-08-01

    Highly pathogenic (HP) avian influenza (AI) (HPAI) is an extremely contagious, multi-organ systemic disease of poultry leading to high mortality, and caused by some H5 and H7 subtypes of type A influenza virus, family Orthomyxoviridae. However, most AI virus strains are mildly pathogenic (MP) and produce either subclinical infections or respiratory and/or reproductive diseases in a variety of domestic and wild bird species. Highly pathogenic avian influenza is a List A disease of the Office International des Epizooties, while MPAI is neither a List A nor List B disease. Eighteen outbreaks of HPAI have been documented since the identification of AI virus as the cause of fowl plague in 1955. Mildly pathogenic avian influenza viruses are maintained in wild aquatic bird reservoirs, occasionally crossing over to domestic poultry and causing outbreaks of mild disease. Highly pathogenic avian influenza viruses do not have a recognised wild bird reservoir, but can occasionally be isolated from wild birds during outbreaks in domestic poultry. Highly pathogenic avian influenza viruses have been documented to arise from MPAI viruses through mutations in the haemagglutinin surface protein. Prevention of exposure to the virus and eradication are the accepted methods for dealing with HPAI. Control programmes, which imply allowing a low incidence of infection, are not an acceptable method for managing HPAI, but have been used during some outbreaks of MPAI. The components of a strategy to deal with MPAI or HPAI include surveillance and diagnosis, biosecurity, education, quarantine and depopulation. Vaccination has been used in some control and eradication programmes for AI.

  20. Mutations to PB2 and NP Proteins of an Avian Influenza Virus Combine To Confer Efficient Growth in Primary Human Respiratory Cells

    PubMed Central

    Danzy, Shamika; Studdard, Lydia R.; Manicassamy, Balaji; Solorzano, Alicia; Marshall, Nicolle; García-Sastre, Adolfo; Steel, John

    2014-01-01

    mutation rate that supports their zoonotic potential. Understanding of the adaptation of avian viruses to mammals strengthens public health efforts aimed at controlling influenza. In particular, it is critical to know how readily and through mutation to which functional components avian influenza viruses gain the ability to grow efficiently in humans. Our data show that as few as three mutations, in the PB2 and NP proteins, support robust growth of a low-pathogenic, H1N1 duck isolate in primary human respiratory cells. PMID:25210184

  1. Physical examination of the respiratory system.

    PubMed

    Sharp, Claire R; Rozanski, Elizabeth A

    2013-08-01

    This article reviews the approach to a patient with respiratory distress, with a focus on clues obtained from the physical examination. Respiratory distress is a common reason for presentation of a companion animal to a veterinarian on an emergency basis, and thus the clinician should have a comfort level with the approach to these patients. Our discussion includes a basic review of respiratory pathophysiology and the differential diagnoses for hypoxemia. In the majority of cases, physical examination should allow localization of the cause of the respiratory problem to the upper airways, lower airways, pleural space, or pulmonary parenchyma. Such localization, coupled with signalment and historical clues, guides additional diagnostics and therapeutics based on the most likely differential diagnoses. Although managing a patient with respiratory distress can be challenging, a systematic approach such as the one presented here should ensure appropriate intervention in a timely fashion and maximize the chance of a good outcome.

  2. Respiratory and systemic mycoses: an overview.

    PubMed

    Randhawa, H S

    2000-01-01

    Respiratory and systemic mycoses are globally emerging as a problem of increasing importance in infectious diseases. This is attributed to the growing population of immunocompromised patients due to epidemic outbreak of AIDS or to other factors such as use of immunosuppressive drugs in recipients of organ transplantation. The available evidence has unequivocally established the endemic occurrence of blastomycosis, histoplasmosis and penicilliosis mameffei in India. In fact, pencilliosis marneffei has emerged as a major endemic mycosis of AIDS patients in Southeast Asia. It has manifestations simulating those of histoplasmosis capsulati, and it may spread to other regions with enlarging population of AIDS patients. Comprehensive studies are indicated in order to delineate the endemic areas of the afore-mentioned systemic mycoses. Among the other important systemic mycoses reported from India are aspergillosis, cryptococcosis, candidiasis and zygomycosis. Our current knowledge of the global distribution of systemic mycoses does not depict their true prevalence. It largely reflects the geographic distribution of medical mycologists or other investigators engaged in the study of fungal diseases and their research interests. Invasive aspergillosis has emerged as an important disease in patients with neutropenia and bone narrow transplant recipients, cryptoccosis, penicilliosis marneffei and pneumocystosis in patients with AIDS, fusariosis in patients with leukaemia receiving cytotoxic therapy, zygomycosis in diabetic patients and in patients on defroxamine therapy, and Malasseziafurfur infection in patients on total parenteral nutrition: Opportunistic systemic mycoses due to yeasts and yeast-like fungi have become commoner than those due to filamentous fungi, occupying fourth position in the list of bloodstream pathogens in some centers in USA. Also, their incidence, pattern of clinical presentations and species spectrum have significantly changed, largely due to more

  3. Optimal branching designs in respiratory systems

    NASA Astrophysics Data System (ADS)

    Park, Keunhwan; Kim, Wonjung; Kim, Ho-Young

    2015-11-01

    In nature, the size of the flow channels systematically decreases with multiple generations of branching, and a mother branch is ultimately divided into numerous terminal daughters. One important feature of branching designs is an increase in the total cross-sectional area along with generation, which provide more time and area for mass transfer at the terminal branches. However, the expansion of the total cross-sectional area can be costly due to the maintenance of redundant branches or the additional viscous resistance. Accordingly, we expect to find optimal designs in natural branching systems. Here we present two examples of branching designs in respiratory systems: fish gills and human lung airways. Fish gills consist of filaments with well-ordered lamellar structures. By developing a mathematical model of oxygen transfer rate as a function of the dimensions of fish gills, we demonstrate that the interlamellar distance has been optimized to maximize the oxygen transfer rate. Using the same framework, we examine the diameter reduction ratio in human lung airways, which branch by dichotomy with a systematic reduction of their diameters. Our mathematical model for oxygen transport in the airways enables us to unveil the design principle of human lung airways.

  4. Rice production systems and avian influenza: Interactions between mixed-farming systems, poultry and wild birds

    USGS Publications Warehouse

    Muzaffar, S.B.; Takekawa, J.Y.; Prosser, D.J.; Newman, S.H.; Xiao, X.

    2010-01-01

    Wild waterfowl are the reservoir for avian influenza viruses (AIVs), a family of RNA viruses that may cause mild sickness in waterbirds. Emergence of H5N1, a highly pathogenic avian influenza (HPAI) strain, causing severe disease and mortality in wild birds, poultry and humans, had raised concerns about the role of wild birds in possible transmission of the disease. In this review, the link between rice production systems, poultry production systems, and wild bird ecology is examined to assess the extent to which these interactions could contribute towards the persistence and evolution of HPAI H5N1. The rice (Oryza sativa) and poultry production systems in Asia described, and then migration and movements of wild birds discussed. Mixed farming systems in Asia and wild bird movement and migration patterns create opportunities for the persistence of low pathogenic AIVs in these systems. Nonetheless, there is no evidence of long-term persistence of HPAI viruses (including the H5N1 subtype) in the wild. There are still significant gaps in the understanding of how AIVs circulate in rice systems. A better understanding of persistence of AIVs in rice farms, particularly of poultry origins, is essential in limiting exchange of AIVs between mixed-farming systems, poultry and wild birds.

  5. AVIAN IMMUNOTOXICOLOGY

    EPA Science Inventory

    Methods for studying the avian immune system have matured during the past two decades, with laboratory studies predominating in earlier years and field studies being conducted only in the past decade. One application has been to determine the potential for environmental contamina...

  6. Avian Metapneumovirus Subgroup C Infection in Chickens, China

    PubMed Central

    Wei, Li; Zhu, Shanshan; Yan, Xv; Wang, Jing; Zhang, Chunyan; She, Ruiping; Hu, Fengjiao; Quan, Rong

    2013-01-01

    Avian metapneumovirus causes acute respiratory tract infection and reductions in egg production in various avian species. We isolated and characterized an increasingly prevalent avian metapneumovirus subgroup C strain from meat-type commercial chickens with severe respiratory signs in China. Culling of infected flocks could lead to economic consequences. PMID:23763901

  7. Anatomy and physiology of respiratory system relevant to anaesthesia

    PubMed Central

    Patwa, Apeksh; Shah, Amit

    2015-01-01

    Clinical application of anatomical and physiological knowledge of respiratory system improves patient's safety during anaesthesia. It also optimises patient's ventilatory condition and airway patency. Such knowledge has influence on airway management, lung isolation during anaesthesia, management of cases with respiratory disorders, respiratory endoluminal procedures and optimising ventilator strategies in the perioperative period. Understanding of ventilation, perfusion and their relation with each other is important for understanding respiratory physiology. Ventilation to perfusion ratio alters with anaesthesia, body position and with one-lung anaesthesia. Hypoxic pulmonary vasoconstriction, an important safety mechanism, is inhibited by majority of the anaesthetic drugs. Ventilation perfusion mismatch leads to reduced arterial oxygen concentration mainly because of early closure of airway, thus leading to decreased ventilation and atelectasis during anaesthesia. Various anaesthetic drugs alter neuronal control of the breathing and bronchomotor tone. PMID:26556911

  8. Anatomy and physiology of respiratory system relevant to anaesthesia.

    PubMed

    Patwa, Apeksh; Shah, Amit

    2015-09-01

    Clinical application of anatomical and physiological knowledge of respiratory system improves patient's safety during anaesthesia. It also optimises patient's ventilatory condition and airway patency. Such knowledge has influence on airway management, lung isolation during anaesthesia, management of cases with respiratory disorders, respiratory endoluminal procedures and optimising ventilator strategies in the perioperative period. Understanding of ventilation, perfusion and their relation with each other is important for understanding respiratory physiology. Ventilation to perfusion ratio alters with anaesthesia, body position and with one-lung anaesthesia. Hypoxic pulmonary vasoconstriction, an important safety mechanism, is inhibited by majority of the anaesthetic drugs. Ventilation perfusion mismatch leads to reduced arterial oxygen concentration mainly because of early closure of airway, thus leading to decreased ventilation and atelectasis during anaesthesia. Various anaesthetic drugs alter neuronal control of the breathing and bronchomotor tone.

  9. Late consequences of respiratory system burns.

    PubMed

    Krzywiecki, A; Ziora, D; Niepsuj, G; Jastrzebski, D; Dworniczak, S; Kozielski, J

    2007-11-01

    Burn inhalation has negative effects on pulmonary function and may result in whole airway damage. The consequences of a methane explosion are thermal injury of the respiratory tract, shock wave, and carbon monoxide intoxication. The aim of this study was to determine changes in the pulmonary function tests (PFTs) after six years of follow-up in miners who survived a methane explosion. Two groups were examined: 41 miners who fell victims to a methane explosion and had a documented thermal injury of the respiratory tract and 25 healthy miners who served as controls. Pulmonary function studies were repeated after six months and six years from the time of injury in 33 study subjects and at the same time intervals in 16 control subjects. The study included static and dynamic lung volumes and diffusing capacity for carbon monoxide (DLCO). The mean values of PFTs were within normal ranges in both groups examined six months and six years after the injury. A significant decrease in DLCO was observed in the victims (98.4% vs. 85.4%), but not in the control group, after a six years' observation. The decrease may be one of the reasons for a breathing discomfort emerging in these patients. In the control subjects we observed a significant decrease in FEV1 (96.4% vs. 83.4%)--over a six years' period. This finding is due likely to smoking and heavy pollution of the working environment.

  10. Air pollution and the respiratory system.

    PubMed

    Arbex, Marcos Abdo; Santos, Ubiratan de Paula; Martins, Lourdes Conceição; Saldiva, Paulo Hilário Nascimento; Pereira, Luiz Alberto Amador; Braga, Alfésio Luis Ferreira

    2012-01-01

    Over the past 250 years-since the Industrial Revolution accelerated the process of pollutant emission, which, until then, had been limited to the domestic use of fuels (mineral and vegetal) and intermittent volcanic emissions-air pollution has been present in various scenarios. Today, approximately 50% of the people in the world live in cities and urban areas and are exposed to progressively higher levels of air pollutants. This is a non-systematic review on the different types and sources of air pollutants, as well as on the respiratory effects attributed to exposure to such contaminants. Aggravation of the symptoms of disease, together with increases in the demand for emergency treatment, the number of hospitalizations, and the number of deaths, can be attributed to particulate and gaseous pollutants, emitted by various sources. Chronic exposure to air pollutants not only causes decompensation of pre-existing diseases but also increases the number of new cases of asthma, COPD, and lung cancer, even in rural areas. Air pollutants now rival tobacco smoke as the leading risk factor for these diseases. We hope that we can impress upon pulmonologists and clinicians the relevance of investigating exposure to air pollutants and of recognizing this as a risk factor that should be taken into account in the adoption of best practices for the control of the acute decompensation of respiratory diseases and for maintenance treatment between exacerbations.

  11. A Review on the Respiratory System Toxicity of Carbon Nanoparticles

    PubMed Central

    Pacurari, Maricica; Lowe, Kristine; Tchounwou, Paul B.; Kafoury, Ramzi

    2016-01-01

    The respiratory system represents the main gateway for nanoparticles’ entry into the human body. Although there is a myriad of engineered nanoparticles, carbon nanoparticles/nanotubes (CNPs/CNTs) have received much attention mainly due to their light weight, very high surface area, durability, and their diverse applications. Since their discovery and manufacture over two decades ago, much has been learned about nanoparticles’ interactions with diverse biological system models. In particular, the respiratory system has been of great interest because various natural and man-made fibrous particles are known to be responsible for chronic and debilitating lung diseases. In this review, we present up-to-date the literature regarding the effects of CNTs or carbon nanofibers (CNFs) on the human respiratory system with respect to respiratory toxicity pathways and associated pathologies. This article is intended to emphasize the potentially dangerous effects to the human respiratory system if inadequate measures are used in the manufacture, handling, and preparation and applications of CNP or CNP-based products. PMID:26999172

  12. A Review on the Respiratory System Toxicity of Carbon Nanoparticles.

    PubMed

    Pacurari, Maricica; Lowe, Kristine; Tchounwou, Paul B; Kafoury, Ramzi

    2016-03-15

    The respiratory system represents the main gateway for nanoparticles' entry into the human body. Although there is a myriad of engineered nanoparticles, carbon nanoparticles/nanotubes (CNPs/CNTs) have received much attention mainly due to their light weight, very high surface area, durability, and their diverse applications. Since their discovery and manufacture over two decades ago, much has been learned about nanoparticles' interactions with diverse biological system models. In particular, the respiratory system has been of great interest because various natural and man-made fibrous particles are known to be responsible for chronic and debilitating lung diseases. In this review, we present up-to-date the literature regarding the effects of CNTs or carbon nanofibers (CNFs) on the human respiratory system with respect to respiratory toxicity pathways and associated pathologies. This article is intended to emphasize the potentially dangerous effects to the human respiratory system if inadequate measures are used in the manufacture, handling, and preparation and applications of CNP or CNP-based products.

  13. [A novel respiratory detecting system based on bio-impedance].

    PubMed

    Wang, Jian-bo; Deng, Qin-kai; Guo, Jin-song; Feng, Xue-ji

    2009-03-01

    This paper introduces the design and implementation of a novel respiratory detecting system based on bio-impedance method. By increasing electrodes in space, the system make multi-channel respiratory signals be superpositioned and filtered (SNR); Traditional filter methods by both hardware and software are also used to further increase anti-interference ability. A low consumption and portable instrument is designed based on MSP430 Micro Controller Unit (MCU), The experiment shows a better performance in the reduction of interference noises of heartbeat and blood flow especially the motion artifact. Also the system works stably. PMID:19565791

  14. The live bird market system and low-pathogenic avian influenza prevention in southern California.

    PubMed

    Yee, Karen S; Carpenter, Tim E; Mize, Sarah; Cardona, Carol J

    2008-06-01

    Although live bird markets (LBMs) have been associated with outbreaks of avian influenza (AI), there are some LBM systems where AI outbreaks are extremely rare events. The California LBMs have not had any detected avian influenza viruses (AIVs) since December 2005. Responses to a detailed questionnaire on the practices and characteristics of the participants in the California low-pathogenic (LP) AI control program have been described to characterize possible reasons for the lack of AI outbreaks in LBMs. Compliance with an LPAI control program that contains active surveillance, prevention, and rapid response measures by those involved in the LBM system, rendering services to dispose of carcasses, no wholesalers, and few third-party bird deliveries was associated with the lack of LPAIV circulating in the Southern California LBM system. PMID:18646469

  15. Evolution and diversity in avian vocal system: an Evo-Devo model from the morphological and behavioral perspectives.

    PubMed

    Matsunaga, Eiji; Okanoya, Kazuo

    2009-04-01

    Birds use various vocalizations to mark their territory and attract mates. Three groups of birds (songbirds, parrots, and hummingbirds) learn their vocalizations through imitation. In the brain of such vocal learners, there is a neural network called the song system specialized for vocal learning and production. In contrast, birds such as chickens and pigeons do not have such a neural network and can only produce innate sounds. Since each avian species shows distinct, genetically inherited vocal learning abilities that are related to its morphology, the avian vocal system is a good model for studying the evolution of functional neural circuits. Nevertheless, studies on avian vocalization from an evolutionary developmental-biological (Evo-Devo) perspective are scant. In the present review, we summarize the results of songbird studies and our recent work that used the Evo-Devo approach to understand the evolution of the avian vocal system.

  16. Host Tissue and Glycan Binding Specificities of Avian Viral Attachment Proteins Using Novel Avian Tissue Microarrays

    PubMed Central

    Ambepitiya Wickramasinghe, Iresha N.; de Vries, Robert P.; Eggert, Amber M.; Wandee, Nantaporn; de Haan, Cornelis A. M.; Gröne, Andrea; Verheije, Monique H.

    2015-01-01

    The initial interaction between viral attachment proteins and the host cell is a critical determinant for the susceptibility of a host for a particular virus. To increase our understanding of avian pathogens and the susceptibility of poultry species, we developed novel avian tissue microarrays (TMAs). Tissue binding profiles of avian viral attachment proteins were studied by performing histochemistry on multi-species TMA, comprising of selected tissues from ten avian species, and single-species TMAs, grouping organ systems of each species together. The attachment pattern of the hemagglutinin protein was in line with the reported tropism of influenza virus H5N1, confirming the validity of TMAs in profiling the initial virus-host interaction. The previously believed chicken-specific coronavirus (CoV) M41 spike (S1) protein displayed a broad attachment pattern to respiratory tissues of various avian species, albeit with lower affinity than hemagglutinin, suggesting that other avian species might be susceptible for chicken CoV. When comparing tissue-specific binding patterns of various avian coronaviral S1 proteins on the single-species TMAs, chicken and partridge CoV S1 had predominant affinity for the trachea, while pigeon CoV S1 showed marked preference for lung of their respective hosts. Binding of all coronaviral S1 proteins was dependent on sialic acids; however, while chicken CoV S1 preferred sialic acids type I lactosamine (Gal(1-3)GlcNAc) over type II (Gal(1-4)GlcNAc), the fine glycan specificities of pigeon and partridge CoVs were different, as chicken CoV S1-specific sialylglycopolymers could not block their binding to tissues. Taken together, TMAs provide a novel platform in the field of infectious diseases to allow identification of binding specificities of viral attachment proteins and are helpful to gain insight into the susceptibility of host and organ for avian pathogens. PMID:26035584

  17. Avian-like breathing mechanics in maniraptoran dinosaurs.

    PubMed

    Codd, Jonathan R; Manning, Phillip L; Norell, Mark A; Perry, Steven F

    2008-01-22

    In 1868 Thomas Huxley first proposed that dinosaurs were the direct ancestors of birds and subsequent analyses have identified a suite of 'avian' characteristics in theropod dinosaurs. Ossified uncinate processes are found in most species of extant birds and also occur in extinct non-avian maniraptoran dinosaurs. Their presence in these dinosaurs represents another morphological character linking them to Aves, and further supports the presence of an avian-like air-sac respiratory system in theropod dinosaurs, prior to the evolution of flight. Here we report a phylogenetic analysis of the presence of uncinate processes in Aves and non-avian maniraptoran dinosaurs indicating that these were homologous structures. Furthermore, recent work on Canada geese has demonstrated that uncinate processes are integral to the mechanics of avian ventilation, facilitating both inspiration and expiration. In extant birds, uncinate processes function to increase the mechanical advantage for movements of the ribs and sternum during respiration. Our study presents a mechanism whereby uncinate processes, in conjunction with lateral and ventral movements of the sternum and gastral basket, affected avian-like breathing mechanics in extinct non-avian maniraptoran dinosaurs.

  18. Screening of respiratory pathogens by Respiratory Multi Well System (MWS) r-gene™ assay in hospitalized patients.

    PubMed

    Paba, Pierpaolo; Farchi, Francesca; Mortati, Erika; Ciccozzi, Massimo; Piperno, Micol; Perno, Carlo Federico; Ciotti, Marco

    2014-04-01

    Novel respiratory viruses have been identified as possible agents of upper and lower respiratory tract infections. Multiplex real-time PCRs have been developed to identify clinically relevant respiratory pathogens. In this study, 178 respiratory samples already screened for influenza virus types A and B by Flu A/B ASR real-time PCR kit were retrospectively analyzed with the Respiratory Multi Well System (MWS) r-gene™ real-time PCR kit which detects a wide spectrum of respiratory pathogens. The goal was to demonstrate the importance of a wide spectrum screening compared to a single diagnostic request. The Flu A/B ASR kit detected influenza B virus in 1.7% of the samples (3/178) and no influenza A virus. The MWS r-gene™ kit detected influenza virus in 6.7% (12/178) of samples (0.6% influenza A, and 6.2% influenza B), while the overall detection rate for respiratory pathogens was 54% (96/178). Co-infections were detected in 8/178 (4.5%) samples. Adenovirus was the infectious agent detected most frequently, followed by respiratory syncytial virus. The risk of being infected by respiratory syncytial virus is almost threefold higher in patients older than 65 years compared to the younger age group (OR:2.7, 95% CI: 1.2-6.2). Wide spectrum screening of respiratory pathogens by real-time PCR is an effective means of detecting clinically relevant viral pathogens.

  19. Heat injuries to the respiratory system.

    PubMed

    Brinkmann, B; Püschel, K

    1978-10-01

    A steam-tube of the main boiler exploded on a ship lying in the harbour of Hamburg. The steam temperature was 283 degrees C. Cutaneous and severe inhalational scalding occured in the 27 fatalities, the men dying after different intervals. This paper deals with the pathological findings in the respiratory passages and the lung, describing the topographical extent of direct thermal injury and the temporal course of tissue reactions. In cases of instantaneous death coagulation necrosis of the tracheal and bronchial wall was found to extend to alveolar ducts in central parts of the lung. The lung parenchyma showed marked congestion, alveolar edema and desquamation of alveolar epithelial cells. Death occured due to acute pulmonary dysfunction and shock. Lethal complications following the period of primary shock consisted of fulminant confluent bronchopneumonia, the hyaline membrane syndrome or the onset of desquamative interstitial pneumonia. These changes rendered it difficult to evaluate the effects of the heavy cutaneous scalding on the pathological course of inhalational injuries in those surviving for longer periods.

  20. [Aging of the respiratory system: anatomical changes and physiological consequences].

    PubMed

    Ketata, W; Rekik, W K; Ayadi, H; Kammoun, S

    2012-10-01

    The respiratory system undergoes progressive involution with age, resulting in anatomical and functional changes that are exerted on all levels. The rib cage stiffens and respiratory muscles weaken. Distal bronchioles have reduced diameter and tend to be collapsed. Mobilized lung volumes decrease with age while residual volume increases. Gas exchanges are modified with a linear decrease of PaO(2) up to the age of 70 years and a decreased diffusing capacity of carbon monoxide. Ventilatory responses to hypercapnia, hypoxia and exercise decrease in the elderly. Knowledge of changes in the respiratory system related to advancing age is a medical issue of great importance in order to distinguish the effects of aging from those of diseases.

  1. Evaluation of performance of portable respiratory monitoring system based on micro-electro-mechanical-system for respiratory gated radiotherapy

    NASA Astrophysics Data System (ADS)

    Moon, Sun Young; Sung, Jiwon; Yoon, Myonggeun; Chung, Mijoo; Chung, Weon Kuu; Kim, Dong Wook

    2015-08-01

    In respiratory-gated radiotherapy of patients with lung or liver cancer, the patient's respiratory pattern and repeatability are important factors affecting therapy accuracy; it has been reported that these factors can be controlled if patients undergo respiration training. As such, this study evaluates the feasibility of micro-electro-mechanical-system (MEMS) in radiotherapy by investigating the effect of radiation on a miniature portable respiratory monitoring system based on the MEMS system, which is currently under development. Using a patient respiration simulation phantom, the time-acceleration graph measured by a normal sensor according to the phantom's respiratory movement before irradiation and the change in this graph with accumulated dose were compared using the baseline slope and the change in amplitude and period of the sine wave. The results showed that with a 400Gy accumulated dose in the sensor, a baseline shift occurred and both the amplitude and period changed. As a result, if the MEMS is applied in respiratory-gated radiotherapy, the sensor should be replaced after use with roughly 6-10 patients so as to ensure continued therapy accuracy, based on the characteristics of the sensor itself. In the future, a more diverse range of sensors should be similarly evaluated.

  2. Evaluation of exercise-respiratory system modifications and integration schemes for physiological systems

    NASA Technical Reports Server (NTRS)

    Gallagher, R. R.

    1974-01-01

    Exercise subroutine modifications are implemented in an exercise-respiratory system model yielding improvement of system response to exercise forcings. A more physiologically desirable respiratory ventilation rate in addition to an improved regulation of arterial gas tensions and cerebral blood flow is observed. A respiratory frequency expression is proposed which would be appropriate as an interfacing element of the respiratory-pulsatile cardiovascular system. Presentation of a circulatory-respiratory system integration scheme along with its computer program listing is given. The integrated system responds to exercise stimulation for both nonstressed and stressed physiological states. Other integration possibilities are discussed with respect to the respiratory, pulsatile cardiovascular, thermoregulatory, and the long-term circulatory systems.

  3. Avian Test Battery for the Evaluation of Developmental Abnormalities of Neuro- and Reproductive Systems.

    PubMed

    Kawashima, Takaharu; Ahmed, Walaa M S; Nagino, Koki; Ubuka, Takayoshi; Tsutsui, Kazuyoshi

    2016-01-01

    Most of the currently used toxicity assays for environmental chemicals use acute or chronic systemic or reproductive toxicity endpoints rather than neurobehavioral endpoints. In addition, the current standard approaches to assess reproductive toxicity are time-consuming. Therefore, with increasing numbers of chemicals being developed with potentially harmful neurobehavioral effects in higher vertebrates, including humans, more efficient means of assessing neuro- and reproductive toxicity are required. Here we discuss the use of a Galliformes-based avian test battery in which developmental toxicity is assessed by means of a combination of chemical exposure during early embryonic development using an embryo culture system followed by analyses after hatching of sociosexual behaviors such as aggression and mating and of visual memory via filial imprinting. This Galliformes-based avian test battery shows promise as a sophisticated means not only of assessing chemical toxicity in avian species but also of assessing the risks posed to higher vertebrates, including humans, which are markedly sensitive to nervous or neuroendocrine system dysfunction. PMID:27445667

  4. Avian Test Battery for the Evaluation of Developmental Abnormalities of Neuro- and Reproductive Systems

    PubMed Central

    Kawashima, Takaharu; Ahmed, Walaa M. S.; Nagino, Koki; Ubuka, Takayoshi; Tsutsui, Kazuyoshi

    2016-01-01

    Most of the currently used toxicity assays for environmental chemicals use acute or chronic systemic or reproductive toxicity endpoints rather than neurobehavioral endpoints. In addition, the current standard approaches to assess reproductive toxicity are time-consuming. Therefore, with increasing numbers of chemicals being developed with potentially harmful neurobehavioral effects in higher vertebrates, including humans, more efficient means of assessing neuro- and reproductive toxicity are required. Here we discuss the use of a Galliformes-based avian test battery in which developmental toxicity is assessed by means of a combination of chemical exposure during early embryonic development using an embryo culture system followed by analyses after hatching of sociosexual behaviors such as aggression and mating and of visual memory via filial imprinting. This Galliformes-based avian test battery shows promise as a sophisticated means not only of assessing chemical toxicity in avian species but also of assessing the risks posed to higher vertebrates, including humans, which are markedly sensitive to nervous or neuroendocrine system dysfunction. PMID:27445667

  5. Nanocarriers as pulmonary drug delivery systems to treat and to diagnose respiratory and non respiratory diseases

    PubMed Central

    Smola, Malgorzata; Vandamme, Thierry; Sokolowski, Adam

    2008-01-01

    The purpose of this review is to discuss the impact of nanocarriers administered by pulmonary route to treat and to diagnose respiratory and non respiratory diseases. Indeed, during the past 10 years, the removal of chlorofluorocarbon propellants from industrial and household products intended for the pulmonary route has lead to the developments of new alternative products. Amongst these ones, on one hand, a lot of attention has been focused to improve the bioavailability of marketed drugs intended for respiratory diseases and to develop new concepts for pulmonary administration of drugs and, on the other hand, to use the pulmonary route to administer drugs for systemic diseases. This has led to some marketed products through the last decade. Although the introduction of nanotechnology permitted to step over numerous problems and to improve the bioavailability of drugs, there are, however, unresolved delivery problems to be still addressed. These scientific and industrial innovations and challenges are discussed along this review together with an analysis of the current situation concerning the industrial developments. PMID:18488412

  6. Computational 3-D Model of the Human Respiratory System

    EPA Science Inventory

    We are developing a comprehensive, morphologically-realistic computational model of the human respiratory system that can be used to study the inhalation, deposition, and clearance of contaminants, while being adaptable for age, race, gender, and health/disease status. The model ...

  7. [Modern threats and burden of respiratory system diseases in Poland].

    PubMed

    Płusa, Tadeusz

    2013-11-01

    Polish population according to the National Census of Population and Housing, which was conducted in 2011, was 38 511.8 thousand. The average life expectancy in Poland is 71.0 years for men and 79.7 years for women. The reason for hospitalization in Poland are primarily cardiovascular disease (18%), tumors (11.4%), digestive diseases (10.6%), respiratory (9.3%), trauma (9.1%), infectious diseases (2.3%) and others (39%). Mortality rates determined on the basis of the analyzes and simulations in different disease groups indicates that the predominant causes of death of Polish citizens are strongly cardiovascular disease and cancer. Respiratory diseases occupy fourth place. World analyses clearly show that the number of deaths in 2030 due to lung diseases will be the fourth (COPD), fifth (pneumonia) and sixth (lung cancer) cause of death. As it turns out, the existence of various pathologies affecting the country's economic status. Respiratory allergies are observed more often, including in approximately 20% of Europeans are symptoms of allergic rhinitis (15-20% severe) and in 5-11% are diagnosed with asthma. Malignant tumors are the second most common causes of death in the group with the highest risk of life for the residents of Polish, particularly for men, is lung cancer, because of which in 2001, 20 570 people died. Incurred costs of the social security system are mainly caused by inflammatory diseases of the respiratory system, which corresponds to the number of days of sick leave, especially in the age group 19-28 years, with a decrease in the age group above 59 years of age. Numbers hospitalized for respiratory diseases according to data from the National Health Fund also clearly indicate the cause of inflammation and cancer, and in the population aged 41-60 years, the need for hospital treatment is multiplied. The data indicate the constant threat of respiratory diseases.

  8. Avian Influenza.

    PubMed

    Zeitlin, Gary Adam; Maslow, Melanie Jane

    2005-05-01

    The current epidemic of H5N1 highly pathogenic avian influenza in Southeast Asia raises serious concerns that genetic reassortment will result in the next influenza pandemic. There have been 164 confirmed cases of human infection with avian influenza since 1996. In 2004, there were 45 cases of human H5N1 in Vietnam and Thailand, with a mortality rate more than 70%. In addition to the potential public health hazard, the current zoonotic epidemic has caused severe economic losses. Efforts must be concentrated on early detection of bird outbreaks with aggressive culling, quarantining, and disinfection. To prepare for and prevent an increase in human cases, it is essential to improve detection methods and stockpile effective antivirals. Novel therapeutic modalities, including short-interfering RNAs and new vaccine strategies that use plasmid-based genetic systems, offer promise should a pandemic occur. PMID:15847721

  9. Avian influenza.

    PubMed

    Zeitlin, Gary A; Maslow, Melanie J

    2006-03-01

    The current epidemic of H5N1 highly pathogenic avian influenza in Southeast Asia raises serious concerns that genetic reassortment will result in the next influenza pandemic. There have been 164 confirmed cases of human infection with avian influenza since 1996. In 2004 alone, there were 45 cases of human H5N1 in Vietnam and Thailand, with a mortality rate over 70%. In addition to the potential public health hazard, the current zoonotic epidemic has caused severe economic losses. Efforts must be concentrated on early detection of bird outbreaks with aggressive culling, quarantines, and disinfection. To prepare for and prevent increased human cases, it is essential to improve detection methods and stockpile effective antivirals. Novel therapeutic modalities, including short, interfering RNAs and new vaccine strategies that use plasmid-based genetic systems offer promise, should a pandemic occur. PMID:16566867

  10. A respiratory-gated treatment system for proton therapy

    SciTech Connect

    Lu, H.-M.; Brett, Robert; Sharp, Gregory; Safai, Soiros; Jiang, Steve; Flanz, Jay; Kooy, Hanne

    2007-08-15

    Proton therapy offers the potential for excellent dose conformity and reduction in integral dose. The superior dose distribution is, however, much more sensitive to changes in radiological depths along the beam path than for photon fields. Respiratory motion can cause such changes for treatments sites like lung, liver, and mediastinum and thus affect the proton dose distribution significantly. We have implemented and commissioned a respiratory-gated system for range-modulated treatment fields. The gating system was designed to ensure that each gate always contains complete modulation cycles so that for any beam segment the delivered dose has the planned depth-dose distribution. Measurements have been made to estimate the time delays for the various components of the system. The total delay between the actual motion and the beam on/off control is in the range of 65-195 ms. Time-resolved dose measurements and film tests were also conducted to examine the overall gating effect.

  11. Respiratory protective device design using control system techniques

    NASA Technical Reports Server (NTRS)

    Burgess, W. A.; Yankovich, D.

    1972-01-01

    The feasibility of a control system analysis approach to provide a design base for respiratory protective devices is considered. A system design approach requires that all functions and components of the system be mathematically identified in a model of the RPD. The mathematical notations describe the operation of the components as closely as possible. The individual component mathematical descriptions are then combined to describe the complete RPD. Finally, analysis of the mathematical notation by control system theory is used to derive compensating component values that force the system to operate in a stable and predictable manner.

  12. Inhaled formulations and pulmonary drug delivery systems for respiratory infections.

    PubMed

    Zhou, Qi Tony; Leung, Sharon Shui Yee; Tang, Patricia; Parumasivam, Thaigarajan; Loh, Zhi Hui; Chan, Hak-Kim

    2015-05-01

    Respiratory infections represent a major global health problem. They are often treated by parenteral administrations of antimicrobials. Unfortunately, systemic therapies of high-dose antimicrobials can lead to severe adverse effects and this calls for a need to develop inhaled formulations that enable targeted drug delivery to the airways with minimal systemic drug exposure. Recent technological advances facilitate the development of inhaled anti-microbial therapies. The newer mesh nebulisers have achieved minimal drug residue, higher aerosolisation efficiencies and rapid administration compared to traditional jet nebulisers. Novel particle engineering and intelligent device design also make dry powder inhalers appealing for the delivery of high-dose antibiotics. In view of the fact that no new antibiotic entities against multi-drug resistant bacteria have come close to commercialisation, advanced formulation strategies are in high demand for combating respiratory 'super bugs'.

  13. Severe acute respiratory syndrome and its lesions in digestive system

    PubMed Central

    Zhang, Jian-Zhong

    2003-01-01

    Severe acute respiratory syndrome (SARS) is an infectious atypical pneumonia that has recently been recognized in the patients in 32 countries and regions. This brief review summarizes some of the initial etiologic findings, pathological description, and its lesions of digestive system caused by SARS virus. It is an attempt to draw gastroenterologists and hepatologists' attention to this fatal illness, especially when it manifests itself initially as digestive symptoms. PMID:12800212

  14. Revised Medical Criteria for Evaluating Respiratory System Disorders. Final rule.

    PubMed

    2016-06-01

    We are revising the criteria in the Listing of Impairments (listings) that we use to evaluate claims involving respiratory disorders in adults and children under titles II and XVI of the Social Security Act (Act). The revisions reflect our program experience and advances in medical knowledge since we last comprehensively revised this body system in 1993, as well as comments we received from medical experts and the public. PMID:27295734

  15. Revised Medical Criteria for Evaluating Respiratory System Disorders. Final rule.

    PubMed

    2016-06-01

    We are revising the criteria in the Listing of Impairments (listings) that we use to evaluate claims involving respiratory disorders in adults and children under titles II and XVI of the Social Security Act (Act). The revisions reflect our program experience and advances in medical knowledge since we last comprehensively revised this body system in 1993, as well as comments we received from medical experts and the public.

  16. Avian-like breathing mechanics in maniraptoran dinosaurs

    PubMed Central

    Codd, Jonathan R; Manning, Phillip L; Norell, Mark A; Perry, Steven F

    2007-01-01

    In 1868 Thomas Huxley first proposed that dinosaurs were the direct ancestors of birds and subsequent analyses have identified a suite of ‘avian’ characteristics in theropod dinosaurs. Ossified uncinate processes are found in most species of extant birds and also occur in extinct non-avian maniraptoran dinosaurs. Their presence in these dinosaurs represents another morphological character linking them to Aves, and further supports the presence of an avian-like air-sac respiratory system in theropod dinosaurs, prior to the evolution of flight. Here we report a phylogenetic analysis of the presence of uncinate processes in Aves and non-avian maniraptoran dinosaurs indicating that these were homologous structures. Furthermore, recent work on Canada geese has demonstrated that uncinate processes are integral to the mechanics of avian ventilation, facilitating both inspiration and expiration. In extant birds, uncinate processes function to increase the mechanical advantage for movements of the ribs and sternum during respiration. Our study presents a mechanism whereby uncinate processes, in conjunction with lateral and ventral movements of the sternum and gastral basket, affected avian-like breathing mechanics in extinct non-avian maniraptoran dinosaurs. PMID:17986432

  17. Avian Astrovirus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Avian astroviruses comprise a diverse group of viruses affecting many avian species and causing enteritis, hepatitis and nephritis. To date, six different astroviruses have been identified in avian species based on the species of origin and viral genome characteristics: two turkey-origin astroviru...

  18. Surveillance for emerging respiratory viruses.

    PubMed

    Al-Tawfiq, Jaffar A; Zumla, Alimuddin; Gautret, Philippe; Gray, Gregory C; Hui, David S; Al-Rabeeah, Abdullah A; Memish, Ziad A

    2014-10-01

    Several new viral respiratory tract infectious diseases with epidemic potential that threaten global health security have emerged in the past 15 years. In 2003, WHO issued a worldwide alert for an unknown emerging illness, later named severe acute respiratory syndrome (SARS). The disease caused by a novel coronavirus (SARS-CoV) rapidly spread worldwide, causing more than 8000 cases and 800 deaths in more than 30 countries with a substantial economic impact. Since then, we have witnessed the emergence of several other viral respiratory pathogens including influenza viruses (avian influenza H5N1, H7N9, and H10N8; variant influenza A H3N2 virus), human adenovirus-14, and Middle East respiratory syndrome coronavirus (MERS-CoV). In response, various surveillance systems have been developed to monitor the emergence of respiratory-tract infections. These include systems based on identification of syndromes, web-based systems, systems that gather health data from health facilities (such as emergency departments and family doctors), and systems that rely on self-reporting by patients. More effective national, regional, and international surveillance systems are required to enable rapid identification of emerging respiratory epidemics, diseases with epidemic potential, their specific microbial cause, origin, mode of acquisition, and transmission dynamics. PMID:25189347

  19. Flow Transport in Microtubes Inspired by Insect Respiratory Systems

    NASA Astrophysics Data System (ADS)

    Aboelkaasem, Yasser; Staples, Anne

    2010-11-01

    The mechanics of insect respiration and tracheal ventilation generally follow either highly discontinuous, or cyclic gas exchange patterns. In the former, gases are exchanged by diffusion, while in the latter, recent imaging of internal respiratory flow dynamics in insects performed at the x-ray synchrotron imaging facility at Argonne indicates that convective gas exchange is accomplished by changes in internal pressure due to rhythmic compressions of the tracheal tubes that comprise the respiratory network. These localized tracheal compressions are induced by global body movements and are used to enhance the oxygen transport to the tissue. Inspired by the dynamics of insect respiratory networks in the cyclic gas exchange regime, we study fluid transport in a mixed rigid/elastic microtube that undergoes localized single and multiple periodic collapses. The latter induces a streaming of flows and therefore enhances convection and flow transport in the tube downstream of the collapse site. The shape of the microtube, the material properties, and the compression and reinflation spatial and temporal profiles are selected to mimic those observed in insect tracheal tubes. A low Reynolds number assumption and lubrication theory are used to develop a mathematical model for the system. The effects of tube shape, collapse amplitude, collapse-to-collapse distance, and collapse phase lags on the net flow rate, pressure gradient, wall shear stress, velocity are investigated.

  20. Four-Dimensional Computed Tomography Based Respiratory-Gated Radiotherapy with Respiratory Guidance System: Analysis of Respiratory Signals and Dosimetric Comparison

    PubMed Central

    Kim, Chul Yong; Yang, Dae Sik; Yoon, Won Sup; Park, Young Je; Lee, Suk; Kim, Young Bum

    2014-01-01

    Purpose. To investigate the effectiveness of respiratory guidance system in 4-dimensional computed tomography (4DCT) based respiratory-gated radiation therapy (RGRT) by comparing respiratory signals and dosimetric analysis of treatment plans. Methods. The respiratory amplitude and period of the free, the audio device-guided, and the complex system-guided breathing were evaluated in eleven patients with lung or liver cancers. The dosimetric parameters were assessed by comparing free breathing CT plan and 4DCT-based 30–70% maximal intensity projection (MIP) plan. Results. The use of complex system-guided breathing showed significantly less variation in respiratory amplitude and period compared to the free or audio-guided breathing regarding the root mean square errors (RMSE) of full inspiration (P = 0.031), full expiration (P = 0.007), and period (P = 0.007). The dosimetric parameters including V5 Gy, V10 Gy, V20 Gy, V30 Gy, V40 Gy, and V50 Gy of normal liver or lung in 4DCT MIP plan were superior over free breathing CT plan. Conclusions. The reproducibility and regularity of respiratory amplitude and period were significantly improved with the complex system-guided breathing compared to the free or the audio-guided breathing. In addition, the treatment plan based on the 4D CT-based MIP images acquired with the complex system guided breathing showed better normal tissue sparing than that on the free breathing CT. PMID:25276775

  1. New insight into the evolution of the vertebrate respiratory system and the discovery of unidirectional airflow in iguana lungs.

    PubMed

    Cieri, Robert L; Craven, Brent A; Schachner, Emma R; Farmer, C G

    2014-12-01

    The generally accepted framework for the evolution of a key feature of the avian respiratory system, unidirectional airflow, is that it is an adaptation for efficiency of gas exchange and expanded aerobic capacities, and therefore it has historically been viewed as important to the ability of birds to fly and to maintain an endothermic metabolism. This pattern of flow has been presumed to arise from specific features of the respiratory system, such as an enclosed intrapulmonary bronchus and parabronchi. Here we show unidirectional airflow in the green iguana, a lizard with a strikingly different natural history from that of birds and lacking these anatomical features. This discovery indicates a paradigm shift is needed. The selective drivers of the trait, its date of origin, and the fundamental aerodynamic mechanisms by which unidirectional flow arises must be reassessed to be congruent with the natural history of this lineage. Unidirectional flow may serve functions other than expanded aerobic capacity; it may have been present in the ancestral diapsid; and it can occur in structurally simple lungs.

  2. New insight into the evolution of the vertebrate respiratory system and the discovery of unidirectional airflow in iguana lungs

    PubMed Central

    Cieri, Robert L.; Craven, Brent A.; Schachner, Emma R.; Farmer, C. G.

    2014-01-01

    The generally accepted framework for the evolution of a key feature of the avian respiratory system, unidirectional airflow, is that it is an adaptation for efficiency of gas exchange and expanded aerobic capacities, and therefore it has historically been viewed as important to the ability of birds to fly and to maintain an endothermic metabolism. This pattern of flow has been presumed to arise from specific features of the respiratory system, such as an enclosed intrapulmonary bronchus and parabronchi. Here we show unidirectional airflow in the green iguana, a lizard with a strikingly different natural history from that of birds and lacking these anatomical features. This discovery indicates a paradigm shift is needed. The selective drivers of the trait, its date of origin, and the fundamental aerodynamic mechanisms by which unidirectional flow arises must be reassessed to be congruent with the natural history of this lineage. Unidirectional flow may serve functions other than expanded aerobic capacity; it may have been present in the ancestral diapsid; and it can occur in structurally simple lungs. PMID:25404314

  3. A wearable respiratory biofeedback system based on body sensor networks.

    PubMed

    Liu, Guang-Zheng; Huang, Bang-Yu; Mei, Zhan-Yong; Guo, Yan-Wei; Wang, Lei

    2010-01-01

    Technology advantages of body sensor networks (BSN) have shown great deal of promises in medical applications. In this paper we introduced a wearable device for biofeedback application based on the BSN platform we had developed. The biofeedback device we have developed includes the heart rate monitoring belt with conductive fabric and the biofeedback device with respiration belt. A wearable respiratory biofeedback system was preliminarily explored based on the BSN platform. In-situ experiments showed that the BSN platform and the biofeedback device worked as intended. PMID:21096169

  4. Respiratory system mechanics in sedated, paralyzed, morbidly obese patients.

    PubMed

    Pelosi, P; Croci, M; Ravagnan, I; Cerisara, M; Vicardi, P; Lissoni, A; Gattinoni, L

    1997-03-01

    The effects of inspiratory flow and inflation volume on the mechanical properties of the respiratory system in eight sedated and paralyzed postoperative morbidly obese patients (aged 37.6 +/- 11.8 yr who had never smoked and had normal preoperative seated spirometry) were investigated by using the technique of rapid airway occlusion during constant-flow inflation. With the patients in the supine position, we measured the interrupter resistance (Rint,rs), which in humans probably reflects airway resistance, the "additional" resistance (delta Rrs) due to viscoelastic pressure dissipation and time-constant inequalities, and static respiratory elastance (Est,rs). Intra-abdominal pressure (IAP) was measured by using a bladder catheter, and functional residual capacity was measured by the heliumdilution technique. The results were compared with a previous study on 16 normal anesthetized paralyzed humans. Compared with normal persons, we found that in obese subjects: 1) functional residual capacity was markedly lower (0.645 +/- 0.208 liter) and IAP was higher (24 +/- 2.2 cmH2O); 2) alveolar-arterial oxygenation gradient was increased (178 +/- 59 mmHg); 3) the volume-pressure curve of the respiratory system was curvilinear with an "inflection" point; 4) Est,rs, Rint,rs, and delta Rrs were higher than normal (29.3 +/- 5.04 cmH2O/l, 5.9 +/- 2.4 cmH2O.l-1.s, and 6.4 +/- 1.6 cmH2O.l-1.s, respectively); 5) Rint,rs increased with increasing inspiratory flow, Est,rs did not change, and delta Rrs decreased progressively; and 6) with increasing inflation volume, Rint,rs and Est,rs decreased, whereas delta Rrs rose progressively. Overall, our data suggest that obese subjects during sedation and paralysis are characterized by hypoxemia and marked alterations of the mechanical properties of the respiratory system, largely explained by a reduction in lung volume due to the excessive unopposed IAP. PMID:9074968

  5. Respiratory effects of occupational exposure to an epoxy resin system.

    PubMed

    Sargent, E V; Brubaker, R E; Mitchell, C A

    1976-01-01

    A standardized respiratory questionnaire and pulmonary function tests were used to examine thirty-four employees of a snow-ski manufacturing plant, including twenty-five workers who were exposed to an epoxy resin system containing the amine hardener 3-dimethylamino propylamine (3-DMAPA). Maximum expiratory flow-volume curves were obtained on Monday and Thursday, before and after each shift, and FVC, FEV1.0, MEF50%, and MEF25% were caculated. Environmental measurements of the total amine levels were found to range from 0.41 to 1.38 ppm. The group with the greatest exposure (0.55-1.38 ppm) showed significant decreases in lung function over Monday and over the week. Although all employees in this group showed decreases in pulmonary function, acute changes were greater in present cigarette smokers and in subjects who reported respiratory symptoms upon exposure to the epoxy resin system. There was no evidence of permanent loss of lung function in subjects with either the highest or longest exposure.

  6. The East Jakarta Project: surveillance for highly pathogenic avian influenza A(H5N1) and seasonal influenza viruses in patients seeking care for respiratory disease, Jakarta, Indonesia, October 2011-September 2012.

    PubMed

    Storms, A D; Kusriastuti, R; Misriyah, S; Praptiningsih, C Y; Amalya, M; Lafond, K E; Samaan, G; Triada, R; Iuliano, A D; Ester, M; Sidjabat, R; Chittenden, K; Vogel, R; Widdowson, M A; Mahoney, F; Uyeki, T M

    2015-12-01

    Indonesia has reported the most human infections with highly pathogenic avian influenza (HPAI) A(H5N1) virus worldwide. We implemented enhanced surveillance in four outpatient clinics and six hospitals for HPAI H5N1 and seasonal influenza viruses in East Jakarta district to assess the public health impact of influenza in Indonesia. Epidemiological and clinical data were collected from outpatients with influenza-like illness (ILI) and hospitalized patients with severe acute respiratory infection (SARI); respiratory specimens were obtained for influenza testing by real-time reverse transcription-polymerase chain reaction. During October 2011-September 2012, 1131/3278 specimens from ILI cases (34·5%) and 276/1787 specimens from SARI cases (15·4%) tested positive for seasonal influenza viruses. The prevalence of influenza virus infections was highest during December-May and the proportion testing positive was 76% for ILI and 36% for SARI during their respective weeks of peak activity. No HPAI H5N1 virus infections were identified, including hundreds of ILI and SARI patients with recent poultry exposures, whereas seasonal influenza was an important contributor to acute respiratory disease in East Jakarta. Overall, 668 (47%) of influenza viruses were influenza B, 384 (27%) were A(H1N1)pdm09, and 359 (25%) were H3. While additional data over multiple years are needed, our findings suggest that seasonal influenza prevention efforts, including influenza vaccination, should target the months preceding the rainy season.

  7. The ectodomains but not the transmembrane domains of the fusion proteins of subtypes A and B avian pneumovirus are conserved to a similar extent as those of human respiratory syncytial virus.

    PubMed

    Naylor, C J; Britton, P; Cavanagh, D

    1998-06-01

    The fusion glycoprotein (F(B)) gene of five strains of the B subtype of avian pneumovirus (APV; turkey rhinotracheitis virus) has been sequenced. The length of the F(B) protein was 538 amino acids, identical to that of the F protein of subtype A virus, with which it had 74% and 83% overall nucleotide and deduced amino acid identities, respectively. The F(B) and F(A) ectodomains had 90% amino acid identity, very similar to the 91% identity between the ectodomains of the F proteins of subtype A and B human respiratory syncytial virus (HRSV). As with HRSV, the F2 polypeptide was less conserved (83% identity) than F1 (94%). In contrast to the ectodomain, the transmembrane and cytoplasmic domains of the two APV subtypes were much less conserved (30% and 48% identity, respectively) than those of HRSV (92% and 87%, respectively). Comparisons within all the genera of the Paramyxoviridae (Pneumovirus, Morbillivirus, Paramyxovirus and Rubullavirus) show that low amino acid identity between F protein transmembrane domains is a feature of different species of virus rather than of strain differences. This may indicate that the two subtypes of APV have evolved in different geographical regions and/or different avian species. This is the first report of an F gene sequence from a subtype B APV.

  8. Verification and compensation of respiratory motion using an ultrasound imaging system

    SciTech Connect

    Chuang, Ho-Chiao Hsu, Hsiao-Yu; Chiu, Wei-Hung; Tien, Der-Chi; Wu, Ren-Hong; Hsu, Chung-Hsien

    2015-03-15

    Purpose: The purpose of this study was to determine if it is feasible to use ultrasound imaging as an aid for moving the treatment couch during diagnosis and treatment procedures associated with radiation therapy, in order to offset organ displacement caused by respiratory motion. A noninvasive ultrasound system was used to replace the C-arm device during diagnosis and treatment with the aims of reducing the x-ray radiation dose on the human body while simultaneously being able to monitor organ displacements. Methods: This study used a proposed respiratory compensating system combined with an ultrasound imaging system to monitor the compensation effect of respiratory motion. The accuracy of the compensation effect was verified by fluoroscopy, which means that fluoroscopy could be replaced so as to reduce unnecessary radiation dose on patients. A respiratory simulation system was used to simulate the respiratory motion of the human abdomen and a strain gauge (respiratory signal acquisition device) was used to capture the simulated respiratory signals. The target displacements could be detected by an ultrasound probe and used as a reference for adjusting the gain value of the respiratory signal used by the respiratory compensating system. This ensured that the amplitude of the respiratory compensation signal was a faithful representation of the target displacement. Results: The results show that performing respiratory compensation with the assistance of the ultrasound images reduced the compensation error of the respiratory compensating system to 0.81–2.92 mm, both for sine-wave input signals with amplitudes of 5, 10, and 15 mm, and human respiratory signals; this represented compensation of the respiratory motion by up to 92.48%. In addition, the respiratory signals of 10 patients were captured in clinical trials, while their diaphragm displacements were observed simultaneously using ultrasound. Using the respiratory compensating system to offset, the diaphragm

  9. The Respiratory System. Instructional Materials in Anatomy and Physiology for Pennsylvania Health Occupations Programs.

    ERIC Educational Resources Information Center

    National Evaluation Systems, Inc., Amherst, MA.

    This instructional modular unit with instructor's guide provides materials on aspects of one of the major systems of the human body--the respiratory system. Its purpose is to introduce the student to the structures and functions of the human respiratory system--and the interrelationships of the two--and to famlliarize the student with some of the…

  10. Commissioning and quality assurance for a respiratory training system based on audiovisual biofeedback.

    PubMed

    Cui, Guoqiang; Gopalan, Siddharth; Yamamoto, Tokihiro; Berger, Jonathan; Maxim, Peter G; Keall, Paul J

    2010-07-12

    A respiratory training system based on audiovisual biofeedback has been implemented at our institution. It is intended to improve patients' respiratory regularity during four-dimensional (4D) computed tomography (CT) image acquisition. The purpose is to help eliminate the artifacts in 4D-CT images caused by irregular breathing, as well as improve delivery efficiency during treatment, where respiratory irregularity is a concern. This article describes the commissioning and quality assurance (QA) procedures developed for this peripheral respiratory training system, the Stanford Respiratory Training (START) system. Using the Varian real-time position management system for the respiratory signal input, the START software was commissioned and able to acquire sample respiratory traces, create a patient-specific guiding waveform, and generate audiovisual signals for improving respiratory regularity. Routine QA tests that include hardware maintenance, visual guiding-waveform creation, auditory sounds synchronization, and feedback assessment, have been developed for the START system. The QA procedures developed here for the START system could be easily adapted to other respiratory training systems based on audiovisual biofeedback.

  11. Antivirals for Respiratory Viral Infections: Problems and Prospects.

    PubMed

    Liu, Qiang; Zhou, Yuan-Hong; Ye, Feng; Yang, Zhan-Qiu

    2016-08-01

    In the past two decades, several newly emerging and reemerging viral respiratory pathogens including several influenza viruses (avian influenza and pandemic influenza), severe acute respiratory syndrome coronavirus (SARS-CoV), and Middle East respiratory syndrome coronavirus (MERS-CoV), have continued to challenge medical and public health systems. Thereafter, the development of cost-effective, broad-spectrum antiviral agents is the urgent mission of both virologists and pharmacologists. Current antiviral developments have focused targets on viral entry, replication, release, and intercellular pathways essential for viral life cycle. Here, we review the current literature on challenges and prospects in the development of these antivirals. PMID:27486742

  12. Mathematical modelling of a human external respiratory system

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A closed system of algebraic and common differential equations solved by computer is investigated. It includes equations which describe the activity pattern of the respiratory center, the phrenic nerve, the thrust produced by the diaphragm as a function of the lung volume and discharge frequency of the phrenic nerve, as well as certain relations of the lung stretch receptors and chemoreceptors on various lung and blood characteristics, equations for lung biomechanics, pulmonary blood flow, alveolar gas exchange and capillary blood composition equations to determine various air and blood flow and gas exchange parameters, and various gas mixing and arterial and venous blood composition equations, to determine other blood, air and gas mixing characteristics. Data are presented by means of graphs and tables, and some advantages of this model over others are demonstrated by test results.

  13. The valves, baffles and sphincters of the respiratory system.

    PubMed

    Baggot, M G

    1992-02-01

    'Starting with the integument we see many organs are contractile sacs or multiples thereof which tubes or bags constitute the major part of the entire body' (1). The lungs are a collection of these universal contractile chambers connected in chains and bunches. Such containers typically have muscular walls which stretch and contract to fill and empty also valves or sphincters to regulate the flow between neighbouring chambers. The heart, stomach and uterus are familiar examples. In some systems (e.g. the digestive, renal and respiratory tracts) traffic is also between the milieu exterior and the milieu interior through the organ's wall which is part of the integument. These movements from organ to organ or milieu to milieu involve pressure variations generated by the concerted actions of the mural and valvular muscles. A muscle usually has a doppel-gänger so they are arranged in reciprocating pairs, supinators with pronators, flexors with extensors, chamber walls with sphincters etc.

  14. An immuno-biosensor system based on quartz crystal microbalance for avian influenza virus detection

    NASA Astrophysics Data System (ADS)

    Liu, Shengping; Chen, Guoming; Zhou, Qi; Wei, Yunlong

    2007-12-01

    For the quick detection of Avian Influenza Virus (AIV), a biosensor based on Quartz Crystal Microbalance (QCM) was fabricated according to the specific bonding principle between antibody and antigen. Staphylococcal Protein A (SPA) was extracted from Staphylococcus and purified. Then SPA was coated on the surface of QCM for immobilizing AIV monoclonal antibodies. The use of AIV monoclonal antibody could enhance the specificity of the immuno-biosensor. A multi-channel piezoelectricity detection system for the immuno-biosensor was developed. The system can work for the quick detection of AIV antigen in the case of the entirely aqueous status owe to one special oscillating circuit designed in this work. The optimum conditions of SPA coating and AIV monoclonal antibody immobilization were investigated utilizing the multi-channel detection system. The preliminary application of the immuno-biosensor system for detection of AIV was evaluated. Results indicate that the immuno-biosensor system can detect the AIV antigens with a linear range of 3-200ng/ml. The system can accomplish the detection of AIV antigens around 40 minutes.

  15. National Training Course. Emergency Medical Technician. Paramedic. Instructor's Lesson Plans. Module V. Respiratory System.

    ERIC Educational Resources Information Center

    National Highway Traffic Safety Administration (DOT), Washington, DC.

    This instructor's lesson plan guide on the respiratory system is one of fifteen modules designed for use in the training of emergency medical technicians (paramedics). Five units of study are presented: (1) anatomy and physiology of the respiratory system; (2) pathophysiology assessment of the patient; (3) pathophysiology and management of…

  16. [The role of opioidergic and GABAergic systems in the mechanosensitivity regulation of the respiratory system in rats].

    PubMed

    Tikhomirova, L N; Safina, N F; Tarakanov, I A

    2015-01-01

    In anaesthetized white outbred male rats we investigated the change of respiratory mechanoreceptors sensitivity to morphine and phenibut. Bilateral transection of the vagus nerves causes a severely slowdown of respiratory rate in 30 minutes after the systemic administration of morphine, however after administration of phenibut the respiratory rate and other respiration parameters have not changed significantly. It means that the activation of opioid receptors by morphine does not significantly affect the function of the respiratory mechanoreceptor control loop, and transection of the vagus nerves on this background increases the probability of respiratory rhythm disorders. Activation of GABAergic system by phenibut significantly weakened the impact of the regulating contour of the respiratory mechanoreceptor on breathing parameters, up to effect of "central vagotomy": that is, to no changes in respiratory parameters after cutting the vagus nerves.

  17. The respiratory-vocal system of songbirds: Anatomy, physiology, and neural control

    PubMed Central

    Schmidt, Marc F.; Wild, J. Martin

    2015-01-01

    This wide-ranging review presents an overview of the respiratory-vocal system in songbirds, which are the only other vertebrate group known to display a degree of respiratory control during song rivalling that of humans during speech; this despite the fact that the peripheral components of both the respiratory and vocal systems differ substantially in the two groups. We first provide a brief description of these peripheral components in songbirds (lungs, air sacs and respiratory muscles, vocal organ (syrinx), upper vocal tract) and then proceed to a review of the organization of central respiratory-related neurons in the spinal cord and brainstem, the latter having an organization fundamentally similar to that of the ventral respiratory group of mammals. The second half of the review describes the nature of the motor commands generated in a specialized “cortical” song control circuit and how these might engage brainstem respiratory networks to shape the temporal structure of song. We also discuss a bilaterally projecting “respiratory-thalamic” pathway that links the respiratory system to “cortical” song control nuclei. This necessary pathway for song originates in the brainstem’s primary inspiratory center and is hypothesized to play a vital role in synchronizing song motor commands both within and across hemispheres. PMID:25194204

  18. The respiratory-vocal system of songbirds: anatomy, physiology, and neural control.

    PubMed

    Schmidt, Marc F; Martin Wild, J

    2014-01-01

    This wide-ranging review presents an overview of the respiratory-vocal system in songbirds, which are the only other vertebrate group known to display a degree of respiratory control during song rivalling that of humans during speech; this despite the fact that the peripheral components of both the respiratory and vocal systems differ substantially in the two groups. We first provide a brief description of these peripheral components in songbirds (lungs, air sacs and respiratory muscles, vocal organ (syrinx), upper vocal tract) and then proceed to a review of the organization of central respiratory-related neurons in the spinal cord and brainstem, the latter having an organization fundamentally similar to that of the ventral respiratory group of mammals. The second half of the review describes the nature of the motor commands generated in a specialized "cortical" song control circuit and how these might engage brainstem respiratory networks to shape the temporal structure of song. We also discuss a bilaterally projecting "respiratory-thalamic" pathway that links the respiratory system to "cortical" song control nuclei. This necessary pathway for song originates in the brainstem's primary inspiratory center and is hypothesized to play a vital role in synchronizing song motor commands both within and across hemispheres.

  19. Orexin system is expressed in avian muscle cells and regulates mitochondrial dynamics.

    PubMed

    Lassiter, Kentu; Greene, Elizabeth; Piekarski, Alissa; Faulkner, Olivia B; Hargis, Billy M; Bottje, Walter; Dridi, Sami

    2015-02-01

    Orexin A and B, orexigenic peptides produced primarily by the lateral hypothalamus that signal through two G protein-coupled receptors, orexin receptors 1/2, have been implicated in the regulation of several physiological processes in mammals. In avian (nonmammalian vertebrates) species; however, the physiological roles of orexin are not well defined. Here, we provide novel evidence that not only is orexin and its related receptors 1/2 (ORXR1/2) expressed in chicken muscle tissue and quail muscle (QM7) cell line, orexin appears to be a secretory protein in QM7 cells. In vitro administration of recombinant orexin A and B (rORX-A and B) differentially regulated prepro-orexin expression in a dose-dependent manner with up-regulation for rORX-A (P < 0.05) and downregulation for rORX-B (P < 0.05) in QM7 cells. While both peptides upregulated ORXR1 expression, only a high dose of rORX-B decreased the expression of ORXR2 (P < 0.05). The presence of orexin and its related receptors and the regulation of its own system in avian muscle cells indicate that orexin may have autocrine, paracrine, and/or endocrine roles. rORXs differentially regulated mitochondrial dynamics network. While rORX-A significantly induced the expression of mitochondrial fission-related genes (DNM1, MTFP1, MTFR1), rORX-B increased the expression of mitofusin 2, OPA1, and OMA1 genes that are involved in mitochondrial fusion. Concomitant with these changes, rORXs differentially regulated the expression of several mitochondrial metabolic genes (av-UCP, av-ANT, Ski, and NRF-1) and their related transcriptional regulators (PPARγ, PPARα, PGC-1α, PGC-1β, and FoxO-1) without affecting ATP synthesis. Taken together, our data represent the first evidence of the presence and secretion of orexin system in the muscle of nonmammalian species and its role in mitochondrial fusion and fission, probably through mitochondrial-related genes and their related transcription factors.

  20. Recording system and data fusion algorithm for enhancing the estimation of the respiratory rate from photoplethysmogram.

    PubMed

    Cernat, Roxana A; Ciorecan, Silvia I; Ungureanu, Constantin; Arends, Johan; Strungaru, Rodica; Ungureanu, G Mihaela

    2015-01-01

    The respiratory rate is a vital parameter that can provide valuable information about the health condition of a patient. The extraction of respiratory information from photoplethysmographic signal (PPG) was actually encouraged by the reported results, our main goal being to obtain accurate respiratory rate estimation from the PPG signal. We developed a fusion algorithm that identifies the best derived respiratory signals, from which is possible to extract the respiratory rate; based on these, a global respiratory rate is computed using the proposed fusion algorithm. The algorithm is qualitatively tested on real PPG signals recorded by an acquisition system we implemented, using a reflection pulse oximeter sensor. Its performance is also statistically evaluated using benchmark dataset publically available from CapnoBase.Org. PMID:26737653

  1. Recording system and data fusion algorithm for enhancing the estimation of the respiratory rate from photoplethysmogram.

    PubMed

    Cernat, Roxana A; Ciorecan, Silvia I; Ungureanu, Constantin; Arends, Johan; Strungaru, Rodica; Ungureanu, G Mihaela

    2015-01-01

    The respiratory rate is a vital parameter that can provide valuable information about the health condition of a patient. The extraction of respiratory information from photoplethysmographic signal (PPG) was actually encouraged by the reported results, our main goal being to obtain accurate respiratory rate estimation from the PPG signal. We developed a fusion algorithm that identifies the best derived respiratory signals, from which is possible to extract the respiratory rate; based on these, a global respiratory rate is computed using the proposed fusion algorithm. The algorithm is qualitatively tested on real PPG signals recorded by an acquisition system we implemented, using a reflection pulse oximeter sensor. Its performance is also statistically evaluated using benchmark dataset publically available from CapnoBase.Org.

  2. Avian Influenza

    MedlinePlus

    ... infectious viral disease of birds. Most avian influenza viruses do not infect humans; however some, such as ... often causing no apparent signs of illness. AI viruses can sometimes spread to domestic poultry and cause ...

  3. Avian Wings

    NASA Technical Reports Server (NTRS)

    Liu, Tianshu; Kuykendoll, K.; Rhew, R.; Jones, S.

    2004-01-01

    This paper describes the avian wing geometry (Seagull, Merganser, Teal and Owl) extracted from non-contact surface measurements using a three-dimensional laser scanner. The geometric quantities, including the camber line and thickness distribution of airfoil, wing planform, chord distribution, and twist distribution, are given in convenient analytical expressions. Thus, the avian wing surfaces can be generated and the wing kinematics can be simulated. The aerodynamic characteristics of avian airfoils in steady inviscid flows are briefly discussed. The avian wing kinematics is recovered from videos of three level-flying birds (Crane, Seagull and Goose) based on a two-jointed arm model. A flapping seagull wing in the 3D physical space is re-constructed from the extracted wing geometry and kinematics.

  4. Rapid seasonal-like regression of the adult avian song control system

    PubMed Central

    Thompson, Christopher K.; Bentley, George E.; Brenowitz, Eliot A.

    2007-01-01

    We analyzed how rapidly avian song control nuclei regress after testosterone (T) withdrawal. Regression of neuronal attributes resulting from T withdrawal has been observed in several animal models. The time course over which regression occurs is not known, however. To address this issue, we castrated adult male white-crowned sparrows and rapidly shifted them to short-day photoperiods after being held under breeding conditions (long-day photoperiod and systemic T exposure) for 3 weeks. We found that the volume of one song nucleus, HVC, regressed 22% within 12 h after T withdrawal. Changes in HVC neuron density after T withdrawal were dynamic; density increased at 12 h and then decreased by 4 days. HVC neuron number was reduced by 26% by 4 days. The volumes of Area X and the robust nucleus of the arcopallium (RA) were significantly regressed by 7 and 20 days, respectively. RA somatic area and neuronal spacing were significantly reduced by 2 days. The rapidity of HVC regression is unprecedented among vertebrate models of hormone-sensitive neural circuits. These results reveal that the rapid regression of the song control system provides a model for the important role sex steroid hormones play in mediating adult neural plasticity and in neuroprotection. PMID:17875989

  5. Avian botulism

    USGS Publications Warehouse

    Friend, Milton; Locke, Louis N.; Kennelly, James J.

    1985-01-01

    What is avian botulism? Avian botulism, or Western duck sickness, is one of the three most important disease problems of wild migratory birds. Each year, many birds are paralyzed or die after exposure to a toxin produced by the botulinum bacterium. Two of the seven toxin types that have been identifies cause mortality in wild birds; one of these types, type C, is most often associated with dieoffs of ducks, while type E primarily affects gulls and loons.

  6. Avian Flu

    SciTech Connect

    Eckburg, Paul

    2006-11-06

    Since 2003, a severe form of H5N1 avian influenza has rapidly spread throughout Asia and Europe, infecting over 200 humans in 10 countries. The spread of H5N1 virus from person-to-person has been rare, thus preventing the emergence of a widespread pandemic. However, this ongoing epidemic continues to pose an important public health threat. Avian flu and its pandemic potential in humans will be discussed.

  7. Prevalence of chronic obstructive pulmonary disease among patients with systemic arterial hypertension without respiratory symptoms

    PubMed Central

    Rabahi, Marcelo Fouad; Pereira, Sheila Alves; Silva Júnior, José Laerte Rodrigues; de Rezende, Aline Pacheco; Castro da Costa, Adeliane; de Sousa Corrêa, Krislainy; Conde, Marcus Barreto

    2015-01-01

    Background The diagnosis of chronic obstructive pulmonary disease (COPD) is often delayed until later stages of the disease. The purpose of the present study was to determine the prevalence of COPD among adults on treatment for systemic arterial hypertension independently of the presence of respiratory symptoms. Methods This cross-sectional study included adults aged ≥40 years with tobacco/occupational exposure and systemic arterial hypertension diagnosed at three Primary Health Care facilities in Goiania, Brazil. Patients were evaluated using a standardized respiratory questionnaire and spirometry. COPD prevalence was measured considering the value of forced vital capacity and/or forced expiratory volume in 1 second <0.70. Results Of a total of 570 subjects, 316 (55%) met inclusion criteria and were invited to participate. Two hundred and thirty-three (73.7%) patients with arterial hypertension reported at least one respiratory symptom, while 83 (26.3%) reported no respiratory symptoms; 41 (17.6%) patients with arterial hypertension and at least one respiratory symptom, and 10 (12%) patients with arterial hypertension but no respiratory symptoms were diagnosed with COPD (P=0.24). The prevalence of COPD in people with no previous COPD diagnosis was greater among those with no respiratory symptoms (100%) than among those with respiratory symptoms (56.1%) (P=0.01). Conclusion Our findings suggest that regardless of the presence of respiratory symptoms, individuals aged ≥40 years with tobacco/occupational exposure and arterial hypertension may benefit from spirometric evaluation. PMID:26257517

  8. B lymphocyte lineage cells and the respiratory system

    PubMed Central

    Kato, Atsushi; Hulse, Kathryn E.; Tan, Bruce K.; Schleimer, Robert P.

    2013-01-01

    Adaptive humoral immune responses in the airways are mediated by B cells and plasma cells that express highly evolved and specific receptors and produce immunoglobulins of most isotypes. In some cases, such as autoimmune diseases or inflammatory diseases caused by excessive exposure to foreign antigens, these same immune cells can cause disease by virtue of overly vigorous responses. This review discusses the generation, differentiation, signaling, activation and recruitment pathways of B cells and plasma cells, with special emphasis on unique characteristics of subsets of these cells functioning within the respiratory system. The primary sensitization events that generate B cells responsible for effector responses throughout the airways usually occur in the upper airways, in tonsils and adenoid structures that make up Waldeyer’s Ring. Upon secondary exposure to antigen in the airways, antigen-processing dendritic cells migrate into secondary lymphoid organs such as lymph nodes that drain the upper and lower airways and further B cell expansion takes place at those sites. Antigen exposure in the upper or lower airways can also drive expansion of B lineage cells in the airway mucosal tissue and lead to the formation of inducible lymphoid follicles or aggregates that can mediate local immunity or disease. PMID:23540615

  9. Transgenic Quail as a Model for Research in the Avian Nervous System – A Comparative Study of the Auditory Brainstem

    PubMed Central

    Seidl, Armin H.; Sanchez, Jason Tait; Schecterson, Leslayann; Tabor, Kathryn M.; Wang, Yuan; Kashima, Daniel T.; Poynter, Greg; Huss, David; Fraser, Scott E.; Lansford, Rusty; Rubel, Edwin W

    2012-01-01

    Research performed on transgenic animals has led to numerous advances in biological research. However, using traditional retroviral methods to generate transgenic avian research models has proven problematic. As a result, experiments aimed at genetic manipulations on birds remained difficult for this popular research tool. Recently, lentiviral methods have enabled production of transgenic birds, including a transgenic Japanese quail (Coturnix coturnix japonica) line showing neuronal-specificity and stable expression of eGFP across generations (termed here as GFP quail). To test whether the GFP quail may serve as a viable alternative to the popular chicken model system, with the additional benefit of gene manipulation, we compared the development, organization, structure and function of a specific neuronal circuit in chicken (Gallus gallus domesticus) to that of the GFP quail. This study focuses on a well-defined avian brain region, the principal nuclei of the sound localization circuit in the auditory brainstem, nucleus magnocellularis (NM) and nucleus laminaris (NL). Our results demonstrate that structural and functional properties of NM and NL neurons in the GFP quail, as well as their dynamic properties in response to changes in the environment, are nearly identical to those in chickens. These similarities demonstrate that the GFP quail, as well as other transgenic quail lines, can serve as an attractive avian model system, with the advantage of being able to build on the wealth of information already available from the chicken. PMID:22806400

  10. Interleukin-6 and lung inflammation: evidence for a causative role in inducing respiratory system resistance increments.

    PubMed

    Rubini, Alessandro

    2013-10-01

    Interleukin-6 is a multifunctional cytokine that has been shown to be increased in some pathological conditions involving the respiratory system such as those experimentally induced in animals or spontaneously occurring in humans. Experimental data demonstrating that interleukin-6 plays a significant role in commonly occurring respiratory system inflammatory diseases are reviewed here. Those diseases, i.e. asthma and chronic obstructive pulmonary disease, are characterised by mechanical derangements of the respiratory system, for the most part due to increased elastance and airway resistance. Recent findings showing that interleukin-6 has a causative role in determining an increase in airway resistance are reviewed. The end-inflation occlusion method was used to study the mechanical properties of the respiratory system before and after interleukin-6 administration. The cytokine was shown to induce significant, dose-dependent increments in both the resistive pressure dissipation due to frictional forces opposing the airflow in the airway (ohmic resistance) and the additional resistive pressure dissipation due to the visco-elastic properties of the system, i.e. stress relaxation (visco-elastic resistance). There were no alterations in respiratory system elastance. Even when administered to healthy mammals, interleukin-6 determines a significant effect on respiratory system resistance causing an increase in the mechanical work of breathing during inspiration. IL-6 hypothetically plays an active role in the pathogenesis of respiratory system diseases and the mechanisms that may be involved are discussed here.

  11. Technical evaluation of different respiratory monitoring systems used for 4D CT acquisition under free breathing.

    PubMed

    Heinz, Christian; Reiner, Michael; Belka, Claus; Walter, Franziska; Söhn, Matthias

    2015-03-08

    Respiratory monitoring systems are required to supply CT scanners with information on the patient's breathing during the acquisition of a respiration-correlated computer tomography (RCCT), also referred to as 4D CT. The information a respiratory monitoring system has to provide to the CT scanner depends on the specific scanner. The purpose of this study is to compare two different respiratory monitoring systems (Anzai Respiratory Gating System; C-RAD Sentinel) with respect to their applicability in combination with an Aquilion Large Bore CT scanner from Toshiba. The scanner used in our clinic does not make use of the full time dependent breathing signal, but only single trigger pulses indicating the beginning of a new breathing cycle. Hence the attached respiratory monitoring system is expected to deliver accurate online trigger pulse for each breathing cycle. The accuracy of the trigger pulses sent to the CT scanner has to be ensured by the selected respiratory monitoring system. Since a trigger pulse (output signal) of a respiratory monitoring system is a function of the measured breathing signal (input signal), the typical clinical range of the input signal is estimated for both examined respiratory monitoring systems. Both systems are analyzed based on the following parameters: time resolution, signal amplitude, noise, signal-to-noise ratio (SNR), signal linearity, trigger compatibility, and clinical examples. The Anzai system shows a better SNR (≥ 28 dB) than the Sentinel system (≥ 14.6 dB). In terms of compatibility with the cycle-based image sorting algorithm of the Toshiba CT scanner, the Anzai system benefits from the possibility to generate cycle-based triggers, whereas the Sentinel system is only able to generate amplitude-based triggers. In clinical practice, the combination of a Toshiba CT scanner and the Anzai system will provide better results due to the compatibility of the image sorting and trigger release methods.

  12. Avian Influenza Virus Infection of Immortalized Human Respiratory Epithelial Cells Depends upon a Delicate Balance between Hemagglutinin Acid Stability and Endosomal pH.

    PubMed

    Daidoji, Tomo; Watanabe, Yohei; Ibrahim, Madiha S; Yasugi, Mayo; Maruyama, Hisataka; Masuda, Taisuke; Arai, Fumihito; Ohba, Tomoyuki; Honda, Ayae; Ikuta, Kazuyoshi; Nakaya, Takaaki

    2015-04-24

    The highly pathogenic avian influenza (AI) virus, H5N1, is a serious threat to public health worldwide. Both the currently circulating H5N1 and previously circulating AI viruses recognize avian-type receptors; however, only the H5N1 is highly infectious and virulent in humans. The mechanism(s) underlying this difference in infectivity remains unclear. The aim of this study was to clarify the mechanisms responsible for the difference in infectivity between the current and previously circulating strains. Primary human small airway epithelial cells (SAECs) were transformed with the SV40 large T-antigen to establish a series of clones (SAEC-Ts). These clones were then used to test the infectivity of AI strains. Human SAEC-Ts could be broadly categorized into two different types based on their susceptibility (high or low) to the viruses. SAEC-T clones were poorly susceptible to previously circulating AI but were completely susceptible to the currently circulating H5N1. The hemagglutinin (HA) of the current H5N1 virus showed greater membrane fusion activity at higher pH levels than that of previous AI viruses, resulting in broader cell tropism. Moreover, the endosomal pH was lower in high susceptibility SAEC-T clones than that in low susceptibility SAEC-T clones. Taken together, the results of this study suggest that the infectivity of AI viruses, including H5N1, depends upon a delicate balance between the acid sensitivity of the viral HA and the pH within the endosomes of the target cell. Thus, one of the mechanisms underlying H5N1 pathogenesis in humans relies on its ability to fuse efficiently with the endosomes in human airway epithelial cells.

  13. Avian Influenza Virus Infection of Immortalized Human Respiratory Epithelial Cells Depends upon a Delicate Balance between Hemagglutinin Acid Stability and Endosomal pH.

    PubMed

    Daidoji, Tomo; Watanabe, Yohei; Ibrahim, Madiha S; Yasugi, Mayo; Maruyama, Hisataka; Masuda, Taisuke; Arai, Fumihito; Ohba, Tomoyuki; Honda, Ayae; Ikuta, Kazuyoshi; Nakaya, Takaaki

    2015-04-24

    The highly pathogenic avian influenza (AI) virus, H5N1, is a serious threat to public health worldwide. Both the currently circulating H5N1 and previously circulating AI viruses recognize avian-type receptors; however, only the H5N1 is highly infectious and virulent in humans. The mechanism(s) underlying this difference in infectivity remains unclear. The aim of this study was to clarify the mechanisms responsible for the difference in infectivity between the current and previously circulating strains. Primary human small airway epithelial cells (SAECs) were transformed with the SV40 large T-antigen to establish a series of clones (SAEC-Ts). These clones were then used to test the infectivity of AI strains. Human SAEC-Ts could be broadly categorized into two different types based on their susceptibility (high or low) to the viruses. SAEC-T clones were poorly susceptible to previously circulating AI but were completely susceptible to the currently circulating H5N1. The hemagglutinin (HA) of the current H5N1 virus showed greater membrane fusion activity at higher pH levels than that of previous AI viruses, resulting in broader cell tropism. Moreover, the endosomal pH was lower in high susceptibility SAEC-T clones than that in low susceptibility SAEC-T clones. Taken together, the results of this study suggest that the infectivity of AI viruses, including H5N1, depends upon a delicate balance between the acid sensitivity of the viral HA and the pH within the endosomes of the target cell. Thus, one of the mechanisms underlying H5N1 pathogenesis in humans relies on its ability to fuse efficiently with the endosomes in human airway epithelial cells. PMID:25673693

  14. Effect of Spinal Cord Injury on the Respiratory System: Basic Research and Current Clinical Treatment Options

    PubMed Central

    Zimmer, M. Beth; Nantwi, Kwaku; Goshgarian, Harry G

    2007-01-01

    Summary: Spinal cord injury (SCI) often leads to an impairment of the respiratory system. The more rostral the level of injury, the more likely the injury will affect ventilation. In fact, respiratory insufficiency is the number one cause of mortality and morbidity after SCI. This review highlights the progress that has been made in basic and clinical research, while noting the gaps in our knowledge. Basic research has focused on a hemisection injury model to examine methods aimed at improving respiratory function after SCI, but contusion injury models have also been used. Increasing synaptic plasticity, strengthening spared axonal pathways, and the disinhibition of phrenic motor neurons all result in the activation of a latent respiratory motor pathway that restores function to a previously paralyzed hemidiaphragm in animal models. Human clinical studies have revealed that respiratory function is negatively impacted by SCI. Respiratory muscle training regimens may improve inspiratory function after SCI, but more thorough and carefully designed studies are needed to adequately address this issue. Phrenic nerve and diaphragm pacing are options available to wean patients from standard mechanical ventilation. The techniques aimed at improving respiratory function in humans with SCI have both pros and cons, but having more options available to the clinician allows for more individualized treatment, resulting in better patient care. Despite significant progress in both basic and clinical research, there is still a significant gap in our understanding of the effect of SCI on the respiratory system. PMID:17853653

  15. Timely diagnosis of dairy calf respiratory disease using a standardized scoring system.

    PubMed

    McGuirk, Sheila M; Peek, Simon F

    2014-12-01

    Respiratory disease of young dairy calves is a significant cause of morbidity, mortality, economic loss, and animal welfare concern but there is no gold standard diagnostic test for antemortem diagnosis. Clinical signs typically used to make a diagnosis of respiratory disease of calves are fever, cough, ocular or nasal discharge, abnormal breathing, and auscultation of abnormal lung sounds. Unfortunately, routine screening of calves for respiratory disease on the farm is rarely performed and until more comprehensive, practical and affordable respiratory disease-screening tools such as accelerometers, pedometers, appetite monitors, feed consumption detection systems, remote temperature recording devices, radiant heat detectors, electronic stethoscopes, and thoracic ultrasound are validated, timely diagnosis of respiratory disease can be facilitated using a standardized scoring system. We have developed a scoring system that attributes severity scores to each of four clinical parameters; rectal temperature, cough, nasal discharge, ocular discharge or ear position. A total respiratory score of five points or higher (provided that at least two abnormal parameters are observed) can be used to distinguish affected from unaffected calves. This can be applied as a screening tool twice-weekly to identify pre-weaned calves with respiratory disease thereby facilitating early detection. Coupled with effective treatment protocols, this scoring system will reduce post-weaning pneumonia, chronic pneumonia, and otitis media.

  16. A new laboratory-based surveillance system (Respiratory DataMart System) for influenza and other respiratory viruses in England: results and experience from 2009 to 2012.

    PubMed

    Zhao, H; Green, H; Lackenby, A; Donati, M; Ellis, J; Thompson, C; Bermingham, A; Field, J; Sebastianpillai, P; Zambon, M; Watson, Jm; Pebody, R

    2014-01-01

    During the 2009 influenza A(H1N1) pandemic, a new laboratory-based virological sentinel surveillance system, the Respiratory DataMart System (RDMS), was established in a network of 14 Health Protection Agency (now Public Health England (PHE)) and National Health Service (NHS) laboratories in England. Laboratory results (both positive and negative) were systematically collected from all routinely tested clinical respiratory samples for a range of respiratory viruses including influenza, respiratory syncytial virus (RSV), rhinovirus, parainfluenza virus, adenovirus and human metapneumovirus (hMPV). The RDMS also monitored the occurrence of antiviral resistance of influenza viruses. Data from the RDMS for the 2009–2012 period showed that the 2009 pandemic influenza virus caused three waves of activity with different intensities during the pandemic and post pandemic periods. Peaks in influenza A(H1N1)pdm09 positivity (defined as number of positive samples per total number of samples tested) were seen in summer and autumn in 2009, with slightly higher peak positivity observed in the first post-pandemic season in 2010/2011. The influenza A(H1N1)pdm09 virus strain almost completely disappeared in the second postpandemic season in 2011/2012. The RDMS findings are consistent with other existing community-based virological and clinical surveillance systems. With a large sample size, this new system provides a robust supplementary mechanism, through the collection of routinely available laboratory data at minimum extra cost, to monitor influenza as well as other respiratory virus activity. A near real-time, daily reporting mechanism in the RDMS was established during the London 2012 Olympic and Paralympic Games. Furthermore, this system can be quickly adapted and used to monitor future influenza pandemics and other major outbreaks of respiratory infectious disease, including novel pathogens. PMID:24480060

  17. A new laboratory-based surveillance system (Respiratory DataMart System) for influenza and other respiratory viruses in England: results and experience from 2009 to 2012.

    PubMed

    Zhao, H; Green, H; Lackenby, A; Donati, M; Ellis, J; Thompson, C; Bermingham, A; Field, J; Sebastianpillai, P; Zambon, M; Watson, Jm; Pebody, R

    2014-01-23

    During the 2009 influenza A(H1N1) pandemic, a new laboratory-based virological sentinel surveillance system, the Respiratory DataMart System (RDMS), was established in a network of 14 Health Protection Agency (now Public Health England (PHE)) and National Health Service (NHS) laboratories in England. Laboratory results (both positive and negative) were systematically collected from all routinely tested clinical respiratory samples for a range of respiratory viruses including influenza, respiratory syncytial virus (RSV), rhinovirus, parainfluenza virus, adenovirus and human metapneumovirus (hMPV). The RDMS also monitored the occurrence of antiviral resistance of influenza viruses. Data from the RDMS for the 2009–2012 period showed that the 2009 pandemic influenza virus caused three waves of activity with different intensities during the pandemic and post pandemic periods. Peaks in influenza A(H1N1)pdm09 positivity (defined as number of positive samples per total number of samples tested) were seen in summer and autumn in 2009, with slightly higher peak positivity observed in the first post-pandemic season in 2010/2011. The influenza A(H1N1)pdm09 virus strain almost completely disappeared in the second postpandemic season in 2011/2012. The RDMS findings are consistent with other existing community-based virological and clinical surveillance systems. With a large sample size, this new system provides a robust supplementary mechanism, through the collection of routinely available laboratory data at minimum extra cost, to monitor influenza as well as other respiratory virus activity. A near real-time, daily reporting mechanism in the RDMS was established during the London 2012 Olympic and Paralympic Games. Furthermore, this system can be quickly adapted and used to monitor future influenza pandemics and other major outbreaks of respiratory infectious disease, including novel pathogens.

  18. A new approach to modeling of selected human respiratory system diseases, directed to computer simulations.

    PubMed

    Redlarski, Grzegorz; Jaworski, Jacek

    2013-10-01

    This paper presents a new versatile approach to model severe human respiratory diseases via computer simulation. The proposed approach enables one to predict the time histories of various diseases via information accessible in medical publications. This knowledge is useful to bioengineers involved in the design and construction of medical devices that are employed for monitoring of respiratory condition. The approach provides the data that are crucial for testing diagnostic systems. This can be achieved without the necessity of probing the physiological details of the respiratory system as well as without identification of parameters that are based on measurement data.

  19. Contraindications to Athletic Participation. Cardiac, Respiratory, and Central Nervous System Conditions.

    ERIC Educational Resources Information Center

    Moeller, James L.

    1996-01-01

    Discusses contraindications to athletic participation, examining the cardiac, respiratory, and central nervous system conditions that warrant activity disqualification. Provides guidelines about when it is safe for individuals to participate, and discusses the physician's responsibility. (SM)

  20. Use of a turbine in a breath-by-breath computer-based respiratory measurement system.

    PubMed

    Venkateswaran, R S; Gallagher, R R

    1997-01-01

    The Computer-Based Respiratory Measurement System (CBRMS) is capable of analyzing individual breaths to monitor the kinetics of oxygen uptake, carbon dioxide production, tidal volumes, pulmonary ventilation, and other respiratory parameters during rest, exercise, and recovery. Respiratory gas volumes are measured by a calibrated turbine transducer while the respiratory gas concentrations are measured by a calibrated, fast-responding medical gas analyzer. To improve accuracy of the results, the inspiratory volumes and gas concentrations are measured and not assumed to be equal to expiratory volumes or ambient concentrations respectively. The respiratory gas volumes and concentration signals are digitized and stored in arrays. The gas volumes are converted to flow signals by software differentiation. These digitized data arrays are stored as files in a personal computer. Time alignment of the flow and gas concentration signals is performed at each breath for maximum accuracy in analysis. For system verification, data were obtained under resting conditions and under constant load exercises at 50 W, 100 W, and 150 W. These workloads were performed by a healthy, male subject on a bicycle ergometer. A strong correlation existed between the CBRMS steady-state results and the standard end-expirate bag collection technique. Thus, there is reason to believe that the CBRMS is capable of calculating respiratory transient responses accurately, a significant contribution to an understanding of total respiratory system function.

  1. Interleukin-6 and Lung Inflammation: Evidences of A Causing Role in Inducing Respiratory System Resistance Increments.

    PubMed

    Rubini, Alessandro

    2013-07-10

    Interleukin-6 has been shown to be increased in various pathological conditions involving the lungs, both experimentally induced in animals, or spontaneously occurring in humans. Experimental data demonstrating a significant role of interleukin-6 in commonly occurring respiratory system inflammatory diseases are reviewed. These diseases, i.e. asthma and chronic obstructive pulmonary disease, are characterised by respiratory system mechanical derangement, most of all because increased elastance and airway resistance. Recent findings showing a causative role of interleukin-6 in determining an airway resistance increment are reviewed. By applying the end-inflation occlusion method to study respiratory system mechanical properties before and after interleukin-6 administration, it was shown that this cytokine induced significant increments in both the resistive pressure dissipation due to frictional forces opposing the airflow in the airway (ohmic resistance), and in the additional resistive pressure dissipation due to the visco-elastic properties of the system, i.e. stress relaxation (visco-elastic resistance). A dose-dependent effect was also demonstrated. No effects were instead detected on respiratory system elastance. Even solely administrated in healthy mammals, interleukin-6 exhibits a significant effect on respiratory system resistances, leading to increased inspiratory muscle mechanical work of breathing. Thus, IL-6 may play an active role in the pathogenesis of respiratory system diseases. The possible involved mechanisms are discussed.

  2. Central nervous system signs in chickens caused by a new avian reovirus strain: a pathogenesis study.

    PubMed

    Van de Zande, Saskia; Kuhn, Eva-Maria

    2007-02-25

    The present study describes the pathogenesis of infection of chicks with a new avian reovirus strain, belonging to the so-called enteric reovirus strains (ERS) that is capable of causing central nervous system signs in SPF white leghorns. After intramuscular (IM) or oral inoculation birds were either observed for clinical signs or sacrificed for macroscopic, histological and virological examination for 21 days. Virus isolation was performed on the brain, leg muscle, hock joint, liver and spleen. For the detection of viral antigen the immunohistochemistry (IHC) technique was performed on the caudal part of the cerebrum, spinal cord including spinal ganglia and right N. Ischiadicus. High mortality (79% in 7 days) was seen in birds that were inoculated IM. Survivors were depressed and stayed small until the end of the experiment. One bird had tremor and showed torticollis at 9 days after IM inoculation. Birds that were inoculated orally were depressed from day 4 and stayed small until the end of the experiment. One bird showed a torticollis at 10 days after inoculation. After both IM and oral inoculation ERS was isolated from the brain between 3 and 10 days after inoculation. Other examined organs were positive for virus isolation from day 1 or 5 until day 21. IHC revealed viral antigen positive cells in the Plexus chorioideus (plexus epithelial cells or cells within the underlying connective tissue) and in a spinal ganglion. The results indicate that the pathogenesis of ERS infection in chickens bears some resemblance with that of the mammalian reoviruses serotype 1 in mice. PMID:17158000

  3. Inflammatory myofibroblastic tumours of the respiratory system and the impact of the varying patterns.

    PubMed

    Lodhia, J V; Christensen, T D; Trotter, S E; Bishay, E S

    2016-01-01

    Inflammatory fibroblastic tumours are very rare. They are mostly located in the respiratory system. We present three cases of patients with fibroblastic tumours. The diversity of inflammatory fibroblastic tumours in the respiratory system and the surgical considerations are discussed. Our recommendation is that treatment should include a complete resection to prevent local recurrence and malignant transformation, and follow-up review should reflect the procedure carried out, especially in terms of the anatomical location and the extent of the surgical procedure performed.

  4. A compensating system of respiratory motion for tumor tracking: design and verification.

    PubMed

    Chuang, Ho-Chiao; Chiou, Chun-Yang; Tien, Der-Chi; Huang, Ding-Yang; Wu, Ren-Hong; Hsu, Chung-Hsien

    2012-01-01

    Using the reverse motion of the treatment couch, this study offset the organ displacement generated by respiratory motion to solve the current clinical problem of increasing field sizes and safety margin expansions. This study used the self-designed simulated respiratory system (SRS) coupled with radiochromic EBT film to verify the self-developed respiratory compensation system. Pressure signals were generated from SRS to simulate abdomen movements during respiratory motion. The respiratory compensation system takes the phase of the pressure signals as the respiratory motion phase and adjusts the pressure signal gain to make the compensation signal amplitude close to the displacement of the target region. A linear accelerator is used to irradiate a 300 cGy dose on the EBT film. The experimental results suggested that the average dose percentage in the target region for the sine-wave amplitudes of 5, 10 and 15 mm with compensation improved by 6.9 ∼ 20.3% over the cases without compensation. The 80% isodose area with compensation improved by 22.8 ∼ 77.2% over the cases without compensation. The average dose percentage in the target region with compensation for respiratory motion distances of 5, 10 and 15 mm improved by 10.3 ∼ 18.7%. The 80% isodose area improved by 22.4 ∼ 55.1% after compensation. The average dose percentage of the compensated target region indicates that the proposed respiratory compensation system could improve the issue of the inability to constantly irradiate the target region caused by respiratory motion.

  5. The Respiratory System [and] Instructor's Guide: The Respiratory System. Health Occupations Education Module: Instructional Materials in Anatomy and Physiology for Pennsylvania Health Occupations Programs.

    ERIC Educational Resources Information Center

    National Evaluation Systems, Inc., Amherst, MA.

    This module on the respiratory system is one of 17 modules designed for individualized instruction in health occupations education programs at both the secondary and postsecondary levels. It is part of an eight-unit miniseries on anatomy and physiology within the series of 17 modules. Following a preface which explains to the student how to use…

  6. Computational fluid dynamics model of avian tracheal temperature control as a model for extant and extinct animals.

    PubMed

    Sverdlova, N S; Arkali, F; Witzel, U; Perry, S F

    2013-10-01

    Respiratory evaporative cooling is an important mechanism of temperature control in bird. A computational simulation of the breathing cycle, heat and water loss in anatomical avian trachea/air sac model has not previously been conducted. We report a first attempt to simulate a breathing cycle in a three-dimensional model of avian trachea and air sacs (domestic fowl) using transient computational fluid dynamics. The airflow in the trachea of the model is evoked by changing the volume of the air sacs based on the measured tidal volume and inspiratory/expiratory times for the domestic fowl. We compare flow parameters and heat transfer results with in vivo data and with our previously reported results for a two-dimensional model. The total respiratory heat loss corresponds to about 13-19% of the starvation metabolic rate of domestic fowl. The present study can lend insight into a possible thermoregulatory function in species with long necks and/or a very long trachea, as found in swans and birds of paradise. Assuming the structure of the sauropod dinosaur respiratory system was close to avian, the simulation of the respiratory temperature control (using convective and evaporative cooling) in the extensively experimentally studied domestic fowl may also help in making simulations of respiratory heat control in these extinct animals.

  7. Physiological system integrations with emphasis on the respiratory-cardiovascular system

    NASA Technical Reports Server (NTRS)

    Gallagher, R. R.

    1975-01-01

    The integration of two types of physiological system simulations is presented. The long term model is a circulatory system model which simulates long term blood flow variations and compartmental fluid shifts. The short term models simulate transient phenomena of the respiratory, thermoregulatory, and pulsatile cardiovascular systems as they respond to stimuli such as LBNP, exercise, and environmental gaseous variations. An overview of the interfacing approach is described. Descriptions of the variable interface for long term to short term and between the three short term models are given.

  8. Development of an integrated sensor module for a non-invasive respiratory monitoring system

    NASA Astrophysics Data System (ADS)

    Kang, Seok-Won; Chang, Keun-Shik

    2013-09-01

    A respiratory monitoring system has been developed for analyzing the carbon dioxide (CO2) and oxygen (O2) concentrations in the expired air using gas sensors. The data can be used to estimate some medical conditions, including diffusion capability of the lung membrane, oxygen uptake, and carbon dioxide output. For this purpose, a 3-way valve derived from a servomotor was developed, which operates synchronously with human respiratory signals. In particular, the breath analysis system includes an integrated sensor module for valve control, data acquisition through the O2 and CO2 sensors, and respiratory rate monitoring, as well as software dedicated to analysis of respiratory gasses. In addition, an approximation technique for experimental data based on Haar-wavelet-based decomposition is explored to remove noise as well as to reduce the file size of data for long-term monitoring.

  9. Development of Non-contact Respiratory Monitoring System for Newborn Using a FG Vision Sensor

    NASA Astrophysics Data System (ADS)

    Kurami, Yoshiyuki; Itoh, Yushi; Natori, Michiya; Ohzeki, Kazuo; Aoki, Yoshimitsu

    In recent years, development of neonatal care is strongly hoped, with increase of the low-birth-weight baby birth rate. Especially respiration of low-birth-weight baby is incertitude because central nerve and respiratory function is immature. Therefore, a low-birth-weight baby often causes a disease of respiration. In a NICU (Neonatal Intensive Care Unit), neonatal respiration is monitored using cardio-respiratory monitor and pulse oximeter at all times. These contact-type sensors can measure respiratory rate and SpO2 (Saturation of Peripheral Oxygen). However, because a contact-type sensor might damage the newborn's skin, it is a real burden to monitor neonatal respiration. Therefore, we developed the respiratory monitoring system for newborn using a FG (Fiber Grating) vision sensor. FG vision sensor is an active stereo vision sensor, it is possible for non-contact 3D measurement. A respiratory waveform is calculated by detecting the vertical motion of the thoracic and abdominal region with respiration. We attempted clinical experiment in the NICU, and confirmed the accuracy of the obtained respiratory waveform was high. Non-contact respiratory monitoring of newborn using a FG vision sensor enabled the minimally invasive procedure.

  10. Predicting Performance and Plasticity in the Development of Respiratory Structures and Metabolic Systems

    PubMed Central

    Montooth, Kristi L.; Helm, Bryan R.

    2014-01-01

    The scaling laws governing metabolism suggest that we can predict metabolic rates across taxonomic scales that span large differences in mass. Yet, scaling relationships can vary with development, body region, and environment. Within species, there is variation in metabolic rate that is independent of mass and which may be explained by genetic variation, the environment or their interaction (i.e., metabolic plasticity). Additionally, some structures, such as the insect tracheal respiratory system, change throughout development and in response to the environment to match the changing functional requirements of the organism. We discuss how study of the development of respiratory function meets multiple challenges set forth by the NSF Grand Challenges Workshop. Development of the structure and function of respiratory and metabolic systems (1) is inherently stable and yet can respond dynamically to change, (2) is plastic and exhibits sensitivity to environments, and (3) can be examined across multiple scales in time and space. Predicting respiratory performance and plasticity requires quantitative models that integrate information across scales of function from the expression of metabolic genes and mitochondrial biogenesis to the building of respiratory structures. We present insect models where data are available on the development of the tracheal respiratory system and of metabolic physiology and suggest what is needed to develop predictive models. Incorporating quantitative genetic data will enable mapping of genetic and genetic-by-environment variation onto phenotypes, which is necessary to understand the evolution of respiratory and metabolic systems and their ability to enable respiratory homeostasis as organisms walk the tightrope between stability and change. PMID:24812329

  11. Aging-related changes in respiratory system mechanics and morphometry in mice.

    PubMed

    Elliott, Jonathan E; Mantilla, Carlos B; Pabelick, Christina M; Roden, Anja C; Sieck, Gary C

    2016-07-01

    Previous work investigating respiratory system mechanics in mice has reported an aging-related increase in compliance and mean linear intercept (Lm). However, these changes were assessed using only a young (2-mo-old) and old (20- and 26-mo-old) group yet were interpreted to reflect a linear evolution across the life span. Therefore, to investigate respiratory system mechanics and lung morphometry across a more complete spectrum of ages, we utilized 2 (100% survival, n = 6)-, 6 (100% survival, n = 12)-, 18 (90% survival, n = 12)-, 24 (75% survival, n = 12)-, and 30 (25% survival, n = 12)-mo-old C57BL/6 mice. We found a nonlinear aging-related decrease in respiratory system resistance and increase in dynamic compliance and hysteresis between 2- and 24-mo-old mice. However, in 30-mo-old mice, respiratory system resistance increased, and dynamic compliance and hysteresis decreased relative to 24-mo-old mice. Respiratory system impedance spectra were measured between 1-20.5 Hz at positive end-expiratory pressures (PEEP) of 1, 3, 5, and 7 cmH2O. Respiratory system resistance and reactance at each level of PEEP were increased and decreased, respectively, only in 2-mo-old animals. No differences in the respiratory system impedance spectra were observed in 6-, 18-, 24-, and 30-mo-old mice. Additionally, lungs were fixed following tracheal instillation of 4% paraformaldehyde at 25 cmH2O and processed for Lm and airway collagen deposition. There was an aging-related increase in Lm consistent with emphysematous-like changes and no evidence of increased airway collagen deposition. Accordingly, we demonstrate nonlinear aging-related changes in lung mechanics and morphometry in C57BL/6 mice.

  12. Avian colibacillosis: still many black holes.

    PubMed

    Guabiraba, Rodrigo; Schouler, Catherine

    2015-08-01

    Avian pathogenic Escherichia coli (APEC) strains cause severe respiratory and systemic diseases, threatening food security and avian welfare worldwide. Intensification of poultry production and the quick expansion of free-range production systems will increase the incidence of colibacillosis through greater exposure of birds to pathogens and stress. Therapy is mainly based on antibiotherapy and current vaccines have poor efficacy. Serotyping remains the most frequently used diagnostic method, only allowing the identification of a limited number of APEC strains. Several studies have demonstrated that the most common virulence factors studied in APEC are all rarely present in the same isolate, showing that APEC strains constitute a heterogeneous group. Different isolates may harbor different associations of virulence factors, each one able to induce colibacillosis. Despite its economical relevance, pathogenesis of colibacillosis is poorly understood. Our knowledge on the host response to APEC is based on very descriptive studies, mostly restricted to bacteriological and histopathological analysis of infected organs such as lungs. Furthermore, only a small number of APEC isolates have been used in experimental studies. In the present review, we discuss current knowledge on APEC diversity and virulence, including host response to infection and the associated inflammatory response with a focus on pulmonary colibacillosis.

  13. Avian colibacillosis: still many black holes.

    PubMed

    Guabiraba, Rodrigo; Schouler, Catherine

    2015-08-01

    Avian pathogenic Escherichia coli (APEC) strains cause severe respiratory and systemic diseases, threatening food security and avian welfare worldwide. Intensification of poultry production and the quick expansion of free-range production systems will increase the incidence of colibacillosis through greater exposure of birds to pathogens and stress. Therapy is mainly based on antibiotherapy and current vaccines have poor efficacy. Serotyping remains the most frequently used diagnostic method, only allowing the identification of a limited number of APEC strains. Several studies have demonstrated that the most common virulence factors studied in APEC are all rarely present in the same isolate, showing that APEC strains constitute a heterogeneous group. Different isolates may harbor different associations of virulence factors, each one able to induce colibacillosis. Despite its economical relevance, pathogenesis of colibacillosis is poorly understood. Our knowledge on the host response to APEC is based on very descriptive studies, mostly restricted to bacteriological and histopathological analysis of infected organs such as lungs. Furthermore, only a small number of APEC isolates have been used in experimental studies. In the present review, we discuss current knowledge on APEC diversity and virulence, including host response to infection and the associated inflammatory response with a focus on pulmonary colibacillosis. PMID:26204893

  14. Excretion-retention diagram to evaluate gas exchange properties of vertebrate respiratory systems.

    PubMed

    Zwart, A; Luijendijk, S C

    1982-09-01

    Excretion [E = (PE - PI)/(PV - PI)] and retention [R = (Pa - PI)/(PV -PI)]are completely model-free defined variables which describe the dual input-output black-box representation of vertebrate respiratory systems under steady-state conditions. In the excretion-retention diagram (E-R diagram), E is plotted as a function of R. The application of the principle of mass conservation confines the possible combinations of E and R for a gas with a blood-gas partition coefficient, lambda, in a respiratory system with an overall ventilation, VT, and an overall perfusion, QT, to E = (lambda QT/VT) (1 - R). In general, E can be described as a continuous function of R. The mathematical formulation of this function depends on the configuration of the respiratory system. Easily recognizable curvatures are obtained for counter-cross, and cocurrent systems with and without parallel inhomogeneities. Visual inspection of actual E and R data displayed in an E-R diagram therefore allows the correct choice of the configuration of the respiratory system to be eventually used for further parameter estimation schemes. The E-R diagram is also a powerful tutorial tool for visualizing the complex relationships between the gas exchange of agents with different physical properties and the consequences of changes in ventilation and perfusion distribution within the respiratory system on gas transport.

  15. SU-E-J-192: Comparative Effect of Different Respiratory Motion Management Systems

    SciTech Connect

    Nakajima, Y; Kadoya, N; Ito, K; Kanai, T; Jingu, K; Kida, S; Kishi, K; Sato, K; Dobashi, S; Takeda, K

    2015-06-15

    Purpose: Irregular breathing can influence the outcome of four-dimensional computed tomography imaging for causing artifacts. Audio-visual biofeedback systems associated with patient-specific guiding waveform are known to reduce respiratory irregularities. In Japan, abdomen and chest motion self-control devices (Abches), representing simpler visual coaching techniques without guiding waveform are used instead; however, no studies have compared these two systems to date. Here, we evaluate the effectiveness of respiratory coaching to reduce respiratory irregularities by comparing two respiratory management systems. Methods: We collected data from eleven healthy volunteers. Bar and wave models were used as audio-visual biofeedback systems. Abches consisted of a respiratory indicator indicating the end of each expiration and inspiration motion. Respiratory variations were quantified as root mean squared error (RMSE) of displacement and period of breathing cycles. Results: All coaching techniques improved respiratory variation, compared to free breathing. Displacement RMSEs were 1.43 ± 0.84, 1.22 ± 1.13, 1.21 ± 0.86, and 0.98 ± 0.47 mm for free breathing, Abches, bar model, and wave model, respectively. Free breathing and wave model differed significantly (p < 0.05). Period RMSEs were 0.48 ± 0.42, 0.33 ± 0.31, 0.23 ± 0.18, and 0.17 ± 0.05 s for free breathing, Abches, bar model, and wave model, respectively. Free breathing and all coaching techniques differed significantly (p < 0.05). For variation in both displacement and period, wave model was superior to free breathing, bar model, and Abches. The average reduction in displacement and period RMSE compared with wave model were 27% and 47%, respectively. Conclusion: The efficacy of audio-visual biofeedback to reduce respiratory irregularity compared with Abches. Our results showed that audio-visual biofeedback combined with a wave model can potentially provide clinical benefits in respiratory management

  16. Effect of intranasal immunization with inactivated avian influenza virus on local and systemic immune responses in ducks.

    PubMed

    Kang, H; Wang, H; Yu, Q; Yang, Q

    2012-05-01

    To evaluate the effects of co-administration of inactivated avian influenza H9N2 virus and adjuvants in waterfowls, 10-d-old ducks were immunized intranasally with inactivated avian influenza virus (IAIV) combined with CpG DNA and sodium cholate. Immunoglobulin A and IgG antibody levels in throat and tracheal tissues increased significantly, as did specific IgA and IgG antibody levels in the serum after intranasal immunization with IAIV combined with CpG DNA and sodium cholate, compared with immunization with IAIV only. Furthermore, enhanced hemagglutination inhibition titers were also detected in serum samples taken between the third and seventh weeks after immunization with IAIV and both adjuvants compared with IAIV alone. The expression of IL-2 and IL-6 in tracheal and lung tissues increased significantly in the early period after booster immunization. However, the enhancement induced by a single adjuvant was insignificant, and no significant change was detected in the antibody titers or cytokine levels between the ducks that received IAIV alone or saline. In the viral challenge study, prior administration of both CpG DNA and sodium cholate with IAIV reduced the viral titers in the oropharynx and cloaca swabs. Our study suggests that the combination of CpG DNA and sodium cholate could be beneficial to immunization with inactivated H9N2 virus by enhancing the local and systemic immune responses. PMID:22499863

  17. Generation of an Avian-Mammalian Rotavirus Reassortant by Using a Helper Virus-Dependent Reverse Genetics System

    PubMed Central

    Reetz, Jochen; Kaufer, Benedikt B.; Trojnar, Eva

    2015-01-01

    ABSTRACT The genetic diversity of rotavirus A (RVA) strains is facilitated in part by genetic reassortment. Although this process of genome segment exchange has been reported frequently among mammalian RVAs, it remained unknown if mammalian RVAs also could package genome segments from avian RVA strains. We generated a simian RVA strain SA11 reassortant containing the VP4 gene of chicken RVA strain 02V0002G3. To achieve this, we transfected BSR5/T7 cells with a T7 polymerase-driven VP4-encoding plasmid, infected the cells with a temperature-sensitive SA11 VP4 mutant, and selected the recombinant virus by increasing the temperature. The reassortant virus could be stably passaged and exhibited cytopathic effects in MA-104 cells, but it replicated less efficiently than both parental viruses. Our results show that avian and mammalian rotaviruses can exchange genome segments, resulting in replication-competent reassortants with new genomic and antigenic features. IMPORTANCE This study shows that rotaviruses of mammals can package genome segments from rotaviruses of birds. The genetic diversity of rotaviruses could be broadened by this process, which might be important for their antigenic variability. The reverse genetics system applied in the study could be useful for targeted generation and subsequent characterization of distinct rotavirus reassortant strains. PMID:26581988

  18. Antitussive activity and respiratory system effects of levodropropizine in man.

    PubMed

    Bossi, R; Braga, P C; Centanni, S; Legnani, D; Moavero, N E; Allegra, L

    1988-08-01

    Antitussive activity of the new antitussive drug, levodropropizine (S(-)-3-(4-phenyl-piperazin-1-yl)-propane-1,2-diol, DF 526), was evaluated in healthy volunteers by the classical method of citric acid-induced coughing. Levodropropizine dose-dependently reduced cough frequency. Maximal inhibition was observed at 6 h after administration. Cough intensity was also reduced, as shown by the analysis of cough noise. Levodropropizine, at the dosage of 60 mg t.i.d., had no adverse effects on respiratory function nor on airway clearance mechanisms: in fact, it did not affect spirometric parameters. Levodropropizine had no effects on the rheological properties of mucus nor on ciliary activity of airway epithelium.

  19. Antitussive activity and respiratory system effects of levodropropizine in man.

    PubMed

    Bossi, R; Braga, P C; Centanni, S; Legnani, D; Moavero, N E; Allegra, L

    1988-08-01

    Antitussive activity of the new antitussive drug, levodropropizine (S(-)-3-(4-phenyl-piperazin-1-yl)-propane-1,2-diol, DF 526), was evaluated in healthy volunteers by the classical method of citric acid-induced coughing. Levodropropizine dose-dependently reduced cough frequency. Maximal inhibition was observed at 6 h after administration. Cough intensity was also reduced, as shown by the analysis of cough noise. Levodropropizine, at the dosage of 60 mg t.i.d., had no adverse effects on respiratory function nor on airway clearance mechanisms: in fact, it did not affect spirometric parameters. Levodropropizine had no effects on the rheological properties of mucus nor on ciliary activity of airway epithelium. PMID:3196411

  20. Role of ventrolateral medulla in regulation of respiratory and cardiovascular systems.

    PubMed

    Millhorn, D E; Eldridge, F L

    1986-10-01

    It is now widely accepted that the ventrolateral aspect of the medulla oblongata (VLM) plays an important role in regulation of the respiratory and cardiovascular systems. The VLM has been implicated as being involved in a number of different physiological functions, including central chemoreception, integration of afferent inputs from certain sense organs to the respiratory and cardiovascular controllers, the source of excitatory input to preganglionic sympathetic neurons in the spinal cord, and location of synaptic relay between the higher brain defense areas and spinal cord sympathetic elements. In recent years there have been a number of important findings concerning both the anatomical substrate and neurophysiological characteristics of VLM neurons involved in regulation of the respiratory and cardiovascular systems. New anatomical findings show that neuronal networks located in the VLM send projections to and receive projections from brain stem nuclei that have traditionally been associated with respiratory and cardiovascular regulation. Nevertheless, there are still many important questions concerning the role of the VLM in control of these vital systems that have yet to be answered. For instance, are the same VLM neurons involved in control of both systems? Is the VLM the only site for central respiratory chemoreception? This review will endeavor to examine new findings and to reexamine some older findings concerning the VLM. PMID:3536832

  1. Amyloidosis involving the respiratory system: 5-year's experience of a multi-disciplinary group's activity.

    PubMed

    Scala, Raffaele; Maccari, Uberto; Madioni, Chiara; Venezia, Duccio; La Magra, Lidia Calogera

    2015-01-01

    Amyloidosis may involve the respiratory system with different clinical-radiological-functional patterns which are not always easy to be recognized. A good level of knowledge of the disease, an active integration of the pulmonologist within a multidisciplinary setting and a high level of clinical suspicion are necessary for an early diagnosis of respiratory amyloidosis. The aim of this retrospective study was to evaluate the number and the patterns of amyloidosis involving the respiratory system. We searched the cases of amyloidosis among patients attending the multidisciplinary rare and diffuse lung disease outpatients' clinic of Pulmonology Unit of the Hospital of Arezzo from 2007 to 2012. Among the 298 patients evaluated during the study period, we identified three cases of amyloidosis with involvement of the respiratory system, associated or not with other extra-thoracic localizations, whose diagnosis was histo-pathologically confirmed after the pulmonologist, the radiologist, and the pathologist evaluation. Our experience of a multidisciplinary team confirms that intra-thoracic amyloidosis is an uncommon disorder, representing 1.0% of the cases of rare and diffuse lung diseases referred to our center. The diagnosis of the disease is not always easy and quick as the amyloidosis may involve different parts of the respiratory system (airways, pleura, parenchyma). It is therefore recommended to remind this orphan disease in the differential diagnosis of the wide clinical scenarios the pulmonologist may intercept in clinical practice.

  2. The impact of PM2.5 on the human respiratory system

    PubMed Central

    Xing, Yu-Fei; Xu, Yue-Hua; Shi, Min-Hua

    2016-01-01

    Recently, many researchers paid more attentions to the association between air pollution and respiratory system disease. In the past few years, levels of smog have increased throughout China resulting in the deterioration of air quality, raising worldwide concerns. PM2.5 (particles less than 2.5 micrometers in diameter) can penetrate deeply into the lung, irritate and corrode the alveolar wall, and consequently impair lung function. Hence it is important to investigate the impact of PM2.5 on the respiratory system and then to help China combat the current air pollution problems. In this review, we will discuss PM2.5 damage on human respiratory system from epidemiological, experimental and mechanism studies. At last, we recommend to the population to limit exposure to air pollution and call to the authorities to create an index of pollution related to health. PMID:26904255

  3. The impact of PM2.5 on the human respiratory system.

    PubMed

    Xing, Yu-Fei; Xu, Yue-Hua; Shi, Min-Hua; Lian, Yi-Xin

    2016-01-01

    Recently, many researchers paid more attentions to the association between air pollution and respiratory system disease. In the past few years, levels of smog have increased throughout China resulting in the deterioration of air quality, raising worldwide concerns. PM2.5 (particles less than 2.5 micrometers in diameter) can penetrate deeply into the lung, irritate and corrode the alveolar wall, and consequently impair lung function. Hence it is important to investigate the impact of PM2.5 on the respiratory system and then to help China combat the current air pollution problems. In this review, we will discuss PM2.5 damage on human respiratory system from epidemiological, experimental and mechanism studies. At last, we recommend to the population to limit exposure to air pollution and call to the authorities to create an index of pollution related to health.

  4. The impact of PM2.5 on the human respiratory system.

    PubMed

    Xing, Yu-Fei; Xu, Yue-Hua; Shi, Min-Hua; Lian, Yi-Xin

    2016-01-01

    Recently, many researchers paid more attentions to the association between air pollution and respiratory system disease. In the past few years, levels of smog have increased throughout China resulting in the deterioration of air quality, raising worldwide concerns. PM2.5 (particles less than 2.5 micrometers in diameter) can penetrate deeply into the lung, irritate and corrode the alveolar wall, and consequently impair lung function. Hence it is important to investigate the impact of PM2.5 on the respiratory system and then to help China combat the current air pollution problems. In this review, we will discuss PM2.5 damage on human respiratory system from epidemiological, experimental and mechanism studies. At last, we recommend to the population to limit exposure to air pollution and call to the authorities to create an index of pollution related to health. PMID:26904255

  5. Prevalence and association of welding related systemic and respiratory symptoms in welders

    PubMed Central

    El-Zein, M; Malo, J; Infante-Rivard, C; Gautrin, D

    2003-01-01

    Background: The prevalence of welding related respiratory symptoms coexisting with welding related systemic symptoms in welders is unknown. Aims: To determine in a sample of welders the prevalence of coexisting welding related systemic symptoms indicative of metal fume fever (MFF) and welding related respiratory symptoms suggestive of occupational asthma (OA), and the strength and significance of any association between these two groups of symptoms. Methods: A respiratory symptoms questionnaire, a systemic symptoms questionnaire, and a questionnaire on occupational history were administered by telephone to 351 of a sample of 441 welders (79.6%) from two cities in Québec, Canada. Results: The co-occurrence of possible MFF (defined as having at least two symptoms of fever, feelings of flu, general malaise, chills, dry cough, metallic taste, and shortness of breath, occurring at the beginning of the working week, 3–10 hours after exposure to welding fumes) together with welding related respiratory symptoms suggestive of OA (defined as having at least two welding related symptoms of cough, wheezing, and chest tightness) was 5.8%. These two groups of symptoms were significantly associated (χ2 = 18.9, p < 0.001). Conclusion: There is a strong association between welding related MFF and welding related respiratory symptoms suggestive of OA. As such, MFF could be viewed as a pre-marker of welding related OA, a hypothesis that requires further investigation. PMID:12937186

  6. A review of recent findings about stress-relaxation in the respiratory system tissues.

    PubMed

    Rubini, Alessandro; Carniel, Emanuele Luigi

    2014-12-01

    This article reviews the state of the art about an unclear physiological phenomenon interesting respiratory system tissues, i.e., stress-relaxation. Due to their visco-elastic properties, the tissues do not maintain constant stress under constant deformation. Rather, the stress slowly relaxes and falls to a lower value. The exact molecular basis of this complex visco-elastic behavior is not well defined, but it has been suggested that it may be generated because of the anisotropic mechanical properties of elastin and collagen fibers in the alveolar septa and their interaction phenomena, such as reciprocal sliding, also in relation to interstitial liquid movements. The effects on stress-relaxation of various biochemical and physical factors are reviewed, including the consequences of body temperature variations, respiratory system inflammations and hyperbaric oxygen exposure, endocrinal factors, circulating blood volume variations, changes in inflation volume and/or flow, changes in intra-abdominal pressure because of pneumoperitoneum or Trendelenburg position. The effects of these factors on stress-relaxation have practical consequences because, depending on visco-elastic pressure amount which is requested to inflate the respiratory system in different conditions, respiratory muscles have to produce different values of inspiratory pressure during spontaneous breathing. High inspiratory pressure values might increase the risk of respiratory failure development on mechanical basis.

  7. Sensorimotor nucleus NIf is necessary for auditory processing but not vocal motor output in the avian song system.

    PubMed

    Cardin, Jessica A; Raksin, Jonathan N; Schmidt, Marc F

    2005-04-01

    Sensorimotor integration in the avian song system is crucial for both learning and maintenance of song, a vocal motor behavior. Although a number of song system areas demonstrate both sensory and motor characteristics, their exact roles in auditory and premotor processing are unclear. In particular, it is unknown whether input from the forebrain nucleus interface of the nidopallium (NIf), which exhibits both sensory and premotor activity, is necessary for both auditory and premotor processing in its target, HVC. Here we show that bilateral NIf lesions result in long-term loss of HVC auditory activity but do not impair song production. NIf is thus a major source of auditory input to HVC, but an intact NIf is not necessary for motor output in adult zebra finches.

  8. A closed-loop model of the respiratory system: focus on hypercapnia and active expiration.

    PubMed

    Molkov, Yaroslav I; Shevtsova, Natalia A; Park, Choongseok; Ben-Tal, Alona; Smith, Jeffrey C; Rubin, Jonathan E; Rybak, Ilya A

    2014-01-01

    Breathing is a vital process providing the exchange of gases between the lungs and atmosphere. During quiet breathing, pumping air from the lungs is mostly performed by contraction of the diaphragm during inspiration, and muscle contraction during expiration does not play a significant role in ventilation. In contrast, during intense exercise or severe hypercapnia forced or active expiration occurs in which the abdominal "expiratory" muscles become actively involved in breathing. The mechanisms of this transition remain unknown. To study these mechanisms, we developed a computational model of the closed-loop respiratory system that describes the brainstem respiratory network controlling the pulmonary subsystem representing lung biomechanics and gas (O2 and CO2) exchange and transport. The lung subsystem provides two types of feedback to the neural subsystem: a mechanical one from pulmonary stretch receptors and a chemical one from central chemoreceptors. The neural component of the model simulates the respiratory network that includes several interacting respiratory neuron types within the Bötzinger and pre-Bötzinger complexes, as well as the retrotrapezoid nucleus/parafacial respiratory group (RTN/pFRG) representing the central chemoreception module targeted by chemical feedback. The RTN/pFRG compartment contains an independent neural generator that is activated at an increased CO2 level and controls the abdominal motor output. The lung volume is controlled by two pumps, a major one driven by the diaphragm and an additional one activated by abdominal muscles and involved in active expiration. The model represents the first attempt to model the transition from quiet breathing to breathing with active expiration. The model suggests that the closed-loop respiratory control system switches to active expiration via a quantal acceleration of expiratory activity, when increases in breathing rate and phrenic amplitude no longer provide sufficient ventilation. The model

  9. Avian influenza virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Avian influenza virus (AIV) is type A influenza, which is adapted to an avian host. Although avian influenza has been isolated from numerous avian species, the primary natural hosts for the virus are dabbling ducks, shorebirds, and gulls. The virus can be found world-wide in these species and in o...

  10. Statistical Determination of the Gating Windows for Respiratory-Gated Radiotherapy Using a Visible Guiding System

    PubMed Central

    Oh, Se An; Yea, Ji Woon

    2016-01-01

    Respiratory-gated radiation therapy (RGRT) is used to minimize the radiation dose to normal tissue in lung-cancer patients. Although determining the gating window in the respiratory phase of patients is important in RGRT, it is not easy. Our aim was to determine the optimal gating window when using a visible guiding system for RGRT. Between April and October 2014, the breathing signals of 23 lung-cancer patients were recorded with a real-time position management (RPM) respiratory gating system (Varian, USA). We performed statistical analysis with breathing signals to find the optimal gating window for guided breathing in RGRT. When we compared breathing signals before and after the breathing training, 19 of the 23 patients showed statistically significant differences (p < 0.05). The standard deviation of the respiration signals after breathing training was lowest for phases of 30%–70%. The results showed that the optimal gating window in RGRT is 40% (30%–70%) with respect to repeatability for breathing after respiration training with the visible guiding system. RGRT was performed with the RPM system to confirm the usefulness of the visible guiding system. The RPM system and our visible guiding system improve the respiratory regularity, which in turn should improve the accuracy and efficiency of RGRT. PMID:27228097

  11. Statistical Determination of the Gating Windows for Respiratory-Gated Radiotherapy Using a Visible Guiding System.

    PubMed

    Oh, Se An; Yea, Ji Woon; Kim, Sung Kyu

    2016-01-01

    Respiratory-gated radiation therapy (RGRT) is used to minimize the radiation dose to normal tissue in lung-cancer patients. Although determining the gating window in the respiratory phase of patients is important in RGRT, it is not easy. Our aim was to determine the optimal gating window when using a visible guiding system for RGRT. Between April and October 2014, the breathing signals of 23 lung-cancer patients were recorded with a real-time position management (RPM) respiratory gating system (Varian, USA). We performed statistical analysis with breathing signals to find the optimal gating window for guided breathing in RGRT. When we compared breathing signals before and after the breathing training, 19 of the 23 patients showed statistically significant differences (p < 0.05). The standard deviation of the respiration signals after breathing training was lowest for phases of 30%-70%. The results showed that the optimal gating window in RGRT is 40% (30%-70%) with respect to repeatability for breathing after respiration training with the visible guiding system. RGRT was performed with the RPM system to confirm the usefulness of the visible guiding system. The RPM system and our visible guiding system improve the respiratory regularity, which in turn should improve the accuracy and efficiency of RGRT.

  12. Robust Unidirectional Airflow through Avian Lungs: New Insights from a Piecewise Linear Mathematical Model.

    PubMed

    Harvey, Emily P; Ben-Tal, Alona

    2016-02-01

    Avian lungs are remarkably different from mammalian lungs in that air flows unidirectionally through rigid tubes in which gas exchange occurs. Experimental observations have been able to determine the pattern of gas flow in the respiratory system, but understanding how the flow pattern is generated and determining the factors contributing to the observed dynamics remains elusive. It has been hypothesized that the unidirectional flow is due to aerodynamic valving during inspiration and expiration, resulting from the anatomical structure and the fluid dynamics involved, however, theoretical studies to back up this hypothesis are lacking. We have constructed a novel mathematical model of the airflow in the avian respiratory system that can produce unidirectional flow which is robust to changes in model parameters, breathing frequency and breathing amplitude. The model consists of two piecewise linear ordinary differential equations with lumped parameters and discontinuous, flow-dependent resistances that mimic the experimental observations. Using dynamical systems techniques and numerical analysis, we show that unidirectional flow can be produced by either effective inspiratory or effective expiratory valving, but that both inspiratory and expiratory valving are required to produce the high efficiencies of flows observed in avian lungs. We further show that the efficacy of the inspiratory and expiratory valving depends on airsac compliances and airflow resistances that may not be located in the immediate area of the valving. Our model provides additional novel insights; for example, we show that physiologically realistic resistance values lead to efficiencies that are close to maximum, and that when the relative lumped compliances of the caudal and cranial airsacs vary, it affects the timing of the airflow across the gas exchange area. These and other insights obtained by our study significantly enhance our understanding of the operation of the avian respiratory

  13. Robust Unidirectional Airflow through Avian Lungs: New Insights from a Piecewise Linear Mathematical Model

    PubMed Central

    Harvey, Emily P.; Ben-Tal, Alona

    2016-01-01

    Avian lungs are remarkably different from mammalian lungs in that air flows unidirectionally through rigid tubes in which gas exchange occurs. Experimental observations have been able to determine the pattern of gas flow in the respiratory system, but understanding how the flow pattern is generated and determining the factors contributing to the observed dynamics remains elusive. It has been hypothesized that the unidirectional flow is due to aerodynamic valving during inspiration and expiration, resulting from the anatomical structure and the fluid dynamics involved, however, theoretical studies to back up this hypothesis are lacking. We have constructed a novel mathematical model of the airflow in the avian respiratory system that can produce unidirectional flow which is robust to changes in model parameters, breathing frequency and breathing amplitude. The model consists of two piecewise linear ordinary differential equations with lumped parameters and discontinuous, flow-dependent resistances that mimic the experimental observations. Using dynamical systems techniques and numerical analysis, we show that unidirectional flow can be produced by either effective inspiratory or effective expiratory valving, but that both inspiratory and expiratory valving are required to produce the high efficiencies of flows observed in avian lungs. We further show that the efficacy of the inspiratory and expiratory valving depends on airsac compliances and airflow resistances that may not be located in the immediate area of the valving. Our model provides additional novel insights; for example, we show that physiologically realistic resistance values lead to efficiencies that are close to maximum, and that when the relative lumped compliances of the caudal and cranial airsacs vary, it affects the timing of the airflow across the gas exchange area. These and other insights obtained by our study significantly enhance our understanding of the operation of the avian respiratory

  14. The respiratory system of the piezophile Photobacterium profundum SS9 grown under various pressures.

    PubMed

    Tamegai, Hideyuki; Nishikawa, Shun; Haga, Minami; Bartlett, Douglas H

    2012-01-01

    It is known that the facultative piezophile Shewanella violacea DSS12 alters its respiratory components under the influence of hydrostatic pressure during growth. This can be considered one of the mechanisms of bacterial adaptation to high pressure. In this study, we investigated the respiratory system of another well-studied piezophile, Photobacterium profundum SS9. We analyzed cytochrome contents, the expression of genes encoding respiratory components in P. profundum SS9 grown under various conditions, and the pressure dependency of the terminal oxidase activities. Activity was more tolerant of relatively high pressures, such as 125 MPa when the cells were grown under high pressure as compared with cells grown under atmospheric pressure. Such properties observed are similar to the case of S. violacea. However, the contents of the cytochromes and expression of the respiratory genes were not influenced by growth pressure in P. profundum SS9, inconsistent with the case of S. violacea. We suggest that the mechanism of the piezoadaptation of the respiratory system of P. profundum SS9 differs from that of S. violacea, as described above, and that each strain chooses its own strategy. PMID:22878211

  15. Evaluating Humidity Recovery Efficiency of Currently Available Heat and Moisture Exchangers: A Respiratory System Model Study

    PubMed Central

    Lucato, Jeanette Janaina Jaber; Adams, Alexander Bernard; Souza, Rogério; Torquato, Jamili Anbar; Carvalho, Carlos Roberto Ribeiro; Marini, John J

    2009-01-01

    OBJECTIVES: To evaluate and compare the efficiency of humidification in available heat and moisture exchanger models under conditions of varying tidal volume, respiratory rate, and flow rate. INTRODUCTION: Inspired gases are routinely preconditioned by heat and moisture exchangers to provide a heat and water content similar to that provided normally by the nose and upper airways. The absolute humidity of air retrieved from and returned to the ventilated patient is an important measurable outcome of the heat and moisture exchangers’ humidifying performance. METHODS: Eight different heat and moisture exchangers were studied using a respiratory system analog. The system included a heated chamber (acrylic glass, maintained at 37°C), a preserved swine lung, a hygrometer, circuitry and a ventilator. Humidity and temperature levels were measured using eight distinct interposed heat and moisture exchangers given different tidal volumes, respiratory frequencies and flow-rate conditions. Recovery of absolute humidity (%RAH) was calculated for each setting. RESULTS: Increasing tidal volumes led to a reduction in %RAH for all heat and moisture exchangers while no significant effect was demonstrated in the context of varying respiratory rate or inspiratory flow. CONCLUSIONS: Our data indicate that heat and moisture exchangers are more efficient when used with low tidal volume ventilation. The roles of flow and respiratory rate were of lesser importance, suggesting that their adjustment has a less significant effect on the performance of heat and moisture exchangers. PMID:19578664

  16. A mainstream monitoring system for respiratory CO2 concentration and gasflow.

    PubMed

    Yang, Jiachen; Chen, Bobo; Burk, Kyle; Wang, Haitao; Zhou, Jianxiong

    2016-08-01

    Continuous respiratory gas monitoring is an important tool for clinical monitoring. In particular, measurement of respiratory [Formula: see text] concentration and gasflow can reflect the status of a patient by providing parameters such as volume of carbon dioxide, end-tidal [Formula: see text] respiratory rate and alveolar deadspace. However, in the majority of previous work, [Formula: see text] concentration and gasflow have been studied separately. This study focuses on a mainstream system which simultaneously measures respiratory [Formula: see text] concentration and gasflow at the same location, allowing for volumetric capnography to be implemented. A non-dispersive infrared monitor is used to measure [Formula: see text] concentration and a differential pressure sensor is used to measure gasflow. In developing this new device, we designed a custom airway adapter which can be placed in line with the breathing circuit and accurately monitor relevant respiratory parameters. Because the airway adapter is used both for capnography and gasflow, our system reduces mechanical deadspace. The finite element method was used to design the airway adapter which can provide a strong differential pressure while reducing airway resistance. Statistical analysis using the coefficient of variation was performed to find the optimal driving voltage of the pressure transducer. Calibration between variations and flows was used to avoid pressure signal drift. We carried out targeted experiments using the proposed device and confirmed that the device can produce stable signals.

  17. Integrative approaches for modeling regulation and function of the respiratory system

    PubMed Central

    Ben-Tal, Alona

    2013-01-01

    Mathematical models have been central to understanding the interaction between neural control and breathing. Models of the entire respiratory system – which comprises the lungs and the neural circuitry that controls their ventilation - have been derived using simplifying assumptions to compartmentalise each component of the system and to define the interactions between components. These full system models often rely – through necessity - on empirically derived relationships or parameters, in addition to physiological values. In parallel with the development of whole respiratory system models are mathematical models that focus on furthering a detailed understanding of the neural control network, or of the several functions that contribute to gas exchange within the lung. These models are biophysically based, and rely on physiological parameters. They include single-unit models for a breathing lung or neural circuit, through to spatially-distributed models of ventilation and perfusion, or multi-circuit models for neural control. The challenge is to bring together these more recent advances in models of neural control with models of lung function, into a full simulation for the respiratory system that builds upon the more detailed models but remains computationally tractable. This requires first understanding the mathematical models that have been developed for the respiratory system at different levels, and which could be used to study how physiological levels of O2 and CO2 in the blood are maintained. PMID:24591490

  18. Instrumentation for the analysis of respiratory system disorders during sleep: Design and application

    NASA Astrophysics Data System (ADS)

    de Melo, Pedro Lopes; de Andrade Lemes, Lucas Neves

    2002-11-01

    Sleep breathing disorders are estimated to be present in 2%-4% of middle-aged adults. Serious adverse consequences, such as systemic arterial hypertension, myocardial infraction, and cerebrovascular disease, can be related to these conditions. Intellectual deficits associated with attention, memory, and problem-solving have also been associated with a poor quality of sleep. The main causes of these disorders are obstructions resulting from repetitive narrowing and closure of the pharyngeal airway, which have been monitored by indirect measurements of temperature, displacement, and other highly invasive procedures. The measurement of mechanical impedance of the respiratory system by the forced oscillation technique (FOT) has recently been suggested to quantify the respiratory obstruction during sleep. It is claimed that the noninvasive and dynamic characteristics of this technique would allow a noninvasive and accurate analysis of these events. In spite of this high scientific and clinical potential, there is no detailed description of a complete instrumentation system to implement this promising technique in sleep studies. In this context, the purpose of this study was twofold: (1) describe the development of a new computer-based system for identification of the mechanical impedance of the respiratory system during sleep by the FOT and (2) evaluate the performance of this device in the description of respiratory events in conditions including no, mild, serious disease, and therapeutic procedures. These evaluations confirmed the desirable features achieved in laboratory tests and the high scientific and clinical potential of this system.

  19. Integrative approaches for modeling regulation and function of the respiratory system.

    PubMed

    Ben-Tal, Alona; Tawhai, Merryn H

    2013-01-01

    Mathematical models have been central to understanding the interaction between neural control and breathing. Models of the entire respiratory system-which comprises the lungs and the neural circuitry that controls their ventilation-have been derived using simplifying assumptions to compartmentalize each component of the system and to define the interactions between components. These full system models often rely-through necessity-on empirically derived relationships or parameters, in addition to physiological values. In parallel with the development of whole respiratory system models are mathematical models that focus on furthering a detailed understanding of the neural control network, or of the several functions that contribute to gas exchange within the lung. These models are biophysically based, and rely on physiological parameters. They include single-unit models for a breathing lung or neural circuit, through to spatially distributed models of ventilation and perfusion, or multicircuit models for neural control. The challenge is to bring together these more recent advances in models of neural control with models of lung function, into a full simulation for the respiratory system that builds upon the more detailed models but remains computationally tractable. This requires first understanding the mathematical models that have been developed for the respiratory system at different levels, and which could be used to study how physiological levels of O2 and CO2 in the blood are maintained.

  20. End-expiration Respiratory Gating for a High Resolution Stationary Cardiac SPECT system

    PubMed Central

    Chan, Chung; Harris, Mark; Le, Max; Biondi, James; Grobshtein, Yariv; Liu, Yi-Hwa; Sinusas, Albert J.; Liu, Chi

    2014-01-01

    Respiratory and cardiac motions can degrade myocardial perfusion SPECT (MPS) image quality and reduce defect detection and quantitative accuracy. In this study, we developed a dual-respiratory and cardiac gating system for a high resolution fully stationary cardiac SPECT scanner in order to improve the image quality and defect detection. Respiratory motion was monitored using a compressive sensor pillow connected to a dual respiratory-cardiac gating box, which sends cardiac triggers only during end-expiration phases to the single cardiac trigger input on the SPECT scanners. The listmode data were rebinned retrospectively into end-expiration frames for respiratory motion reduction or 8 cardiac gates only during end-expiration phases to compensate for both respiratory and cardiac motions. The proposed method was first validated on a motion phantom in the presence and absence of multiple perfusion defects, and then applied on 11 patient studies with and without perfusion defects. In the normal phantom studies, the end-expiration gated SPECT (EXG-SPECT) reduced respiratory motion blur and increased myocardium to blood pool contrast by 51.2% as compared to the ungated images. The proposed method also yielded an average of 11.2% increase in myocardium to defect contrast as compared to the ungated images in the phantom studies with perfusion defects. In the patient studies, EXG-SPECT significantly improved the myocardium to blood pool contrast (p<0.005) by 24% on average as compared to the ungated images, and led to improved perfusion uniformity across segments on polar maps for normal patients. For a patient with defect, EXG-SPECT improved the defect contrast and definition. The dual respiratory-cardiac gating further reduced the blurring effect, increased the myocardium to blood pool contrast significantly by 36% (p<0.05) compared to EXG SPECT, and further improved defect characteristics and visualization of fine structures at the expense of increased noise on the

  1. End-expiration respiratory gating for a high-resolution stationary cardiac SPECT system

    NASA Astrophysics Data System (ADS)

    Chan, Chung; Harris, Mark; Le, Max; Biondi, James; Grobshtein, Yariv; Liu, Yi-Hwa; Sinusas, Albert J.; Liu, Chi

    2014-10-01

    Respiratory and cardiac motions can degrade myocardial perfusion SPECT (MPS) image quality and reduce defect detection and quantitative accuracy. In this study, we developed a dual respiratory and cardiac gating system for a high-resolution fully stationary cardiac SPECT scanner in order to improve the image quality and defect detection. Respiratory motion was monitored using a compressive sensor pillow connected to a dual respiratory-cardiac gating box, which sends cardiac triggers only during end-expiration phases to the single cardiac trigger input on the SPECT scanners. The listmode data were rebinned retrospectively into end-expiration frames for respiratory motion reduction or eight cardiac gates only during end-expiration phases to compensate for both respiratory and cardiac motions. The proposed method was first validated on a motion phantom in the presence and absence of multiple perfusion defects, and then applied on 11 patient studies with and without perfusion defects. In the normal phantom studies, the end-expiration gated SPECT (EXG-SPECT) reduced respiratory motion blur and increased myocardium to blood pool contrast by 51.2% as compared to the ungated images. The proposed method also yielded an average of 11.2% increase in myocardium to defect contrast as compared to the ungated images in the phantom studies with perfusion defects. In the patient studies, EXG-SPECT significantly improved the myocardium to blood pool contrast (p < 0.005) by 24% on average as compared to the ungated images, and led to improved perfusion uniformity across segments on polar maps for normal patients. For a patient with defect, EXG-SPECT improved the defect contrast and definition. The dual respiratory-cardiac gating further reduced the blurring effect, increased the myocardium to blood pool contrast significantly by 36% (p < 0.05) compared to EXG-SPECT, and further improved defect characteristics and visualization of fine structures at the expense of increased noise on

  2. End-expiration respiratory gating for a high-resolution stationary cardiac SPECT system.

    PubMed

    Chan, Chung; Harris, Mark; Le, Max; Biondi, James; Grobshtein, Yariv; Liu, Yi-Hwa; Sinusas, Albert J; Liu, Chi

    2014-10-21

    Respiratory and cardiac motions can degrade myocardial perfusion SPECT (MPS) image quality and reduce defect detection and quantitative accuracy. In this study, we developed a dual respiratory and cardiac gating system for a high-resolution fully stationary cardiac SPECT scanner in order to improve the image quality and defect detection. Respiratory motion was monitored using a compressive sensor pillow connected to a dual respiratory-cardiac gating box, which sends cardiac triggers only during end-expiration phases to the single cardiac trigger input on the SPECT scanners. The listmode data were rebinned retrospectively into end-expiration frames for respiratory motion reduction or eight cardiac gates only during end-expiration phases to compensate for both respiratory and cardiac motions. The proposed method was first validated on a motion phantom in the presence and absence of multiple perfusion defects, and then applied on 11 patient studies with and without perfusion defects. In the normal phantom studies, the end-expiration gated SPECT (EXG-SPECT) reduced respiratory motion blur and increased myocardium to blood pool contrast by 51.2% as compared to the ungated images. The proposed method also yielded an average of 11.2% increase in myocardium to defect contrast as compared to the ungated images in the phantom studies with perfusion defects. In the patient studies, EXG-SPECT significantly improved the myocardium to blood pool contrast (p < 0.005) by 24% on average as compared to the ungated images, and led to improved perfusion uniformity across segments on polar maps for normal patients. For a patient with defect, EXG-SPECT improved the defect contrast and definition. The dual respiratory-cardiac gating further reduced the blurring effect, increased the myocardium to blood pool contrast significantly by 36% (p < 0.05) compared to EXG-SPECT, and further improved defect characteristics and visualization of fine structures at the expense of increased noise

  3. The Mechanisms of Compensatory Responses of the Respiratory System to Simulated Central Hypervolemia in Normal Subjects.

    PubMed

    Segizbaeva, M O; Donina, Zh A; Aleksandrov, V G; Aleksandrova, N P

    2015-01-01

    The compensatory responses of the respiratory system to simulated central hypervolemia (CHV) were investigated in 14 normal subjects. The central hypervolemia was caused by a short-time passive head-down tilt (HDT, -30°, 30 min). The results show that CHV increased the mechanical respiratory load and the airway resistance, slowed the inspiratory flow, increased the duration of the inspiratory phase, reduced the respiratory rate, but not changed the minute ventilation. CHV induced a significant rise in inspiratory swings of alveolar pressure (184%), based on the inspiratory occlusion pressure measurement. These changes indicate a compensatory increase in the inspiratory muscle contraction force. A stable level of minute ventilation during CHV was an effect of increased EMG activity of parasternal muscles more than twice (P<0.01). A contribution of the diaphragm and scalene muscles to ventilation during spontaneous breathing in HDT was reduced. An increase of genioglossus contractile activity during HDT contributed to the stabilization of airway patency. These results suggest that a coordinated modulation of inspiratory muscles activity allows preserving a constant level of minute ventilation during a short-time intrathoracic blood volume expansion. The mechanisms of respiratory load compensation seem to be mediated by afferent information from the lung and respiratory muscle receptors and from the segmentary reflexes and intrinsic properties of the muscle fibers.

  4. [Functional state of the respiratory system in employees at the tantalum plant].

    PubMed

    Omarova, D K

    2014-01-01

    Indices of pulmonary ventilation function in employees at the tantalum plant tended to decrease according to the length of service and type of performed technological operations. Physiological changes of the functional State of the respiratory system were accompanied by pulmonary ventilation disorders of mixed and obstructive types. Changes in indices of respiratory function at the level of distal and proximal airways, including the bronchial tree, wore compensatory-adaptive character in response to the exposure of harmful factors of dust-gas mixture from the tantalum production.

  5. Repair and regeneration of the respiratory system: complexity, plasticity, and mechanisms of lung stem cell function

    PubMed Central

    Hogan, Brigid L. M.; Barkauskas, Christina E.; Chapman, Harold A.; Epstein, Jonathan A.; Jain, Rajan; Hsia, Connie C. W.; Niklason, Laura; Calle, Elizabeth; Le, Andrew; Randell, Scott H.; Rock, Jason; Snitow, Melinda; Krummel, Matthew; Stripp, Barry R.; Vu, Thiennu; White, Eric S.; Whitsett, Jeffrey A.; Morrisey, Edward E.

    2014-01-01

    Respiratory disease is the third leading cause of death in the industrialized world. Consequently, the trachea, lungs, and cardiopulmonary vasculature have been the focus of extensive investigations. Recent studies have provided new information about the mechanisms driving lung development and differentiation. However, there is still much to learn about the ability of the adult respiratory system to undergo repair and to replace cells lost in response to injury and disease. This review highlights the multiple stem/progenitor populations in different regions of the adult lung, the plasticity of their behavior in injury models, and molecular pathways that support homeostasis and repair. PMID:25105578

  6. Endogenous excitatory drive to the respiratory system in rapid eye movement sleep in cats

    PubMed Central

    Orem, John; Lovering, Andrew T; Dunin-Barkowski, Witali; Vidruk, Edward H

    2000-01-01

    A putative endogenous excitatory drive to the respiratory system in rapid eye movement (REM) sleep may explain many characteristics of breathing in that state, e.g. its irregularity and variable ventilatory responses to chemical stimuli. This drive is hypothetical, and determinations of its existence and character are complicated by control of the respiratory system by the oscillator and its feedback mechanisms. In the present study, endogenous drive was studied during apnoea caused by mechanical hyperventilation. We reasoned that if there was a REM-dependent drive to the respiratory system, then respiratory activity should emerge out of the background apnoea as a manifestation of the drive. Diaphragmatic muscle or medullary respiratory neuronal activity was studied in five intact, unanaesthetized adult cats who were either mechanically hyperventilated or breathed spontaneously in more than 100 REM sleep periods. Diaphragmatic activity emerged out of a background apnoea caused by mechanical hyperventilation an average of 34 s after the onset of REM sleep. Emergent activity occurred in 60 % of 10 s epochs in REM sleep and the amount of activity per unit time averaged approximately 40 % of eupnoeic activity. The activity occurred in episodes and was poorly related to pontogeniculo-occipital waves. At low CO2 levels, this activity was non-rhythmic. At higher CO2 levels (less than 0.5 % below eupnoeic end-tidal percentage CO2 levels in non-REM (NREM) sleep), activity became rhythmic. Medullary respiratory neurons were recorded in one of the five animals. Nineteen of twenty-seven medullary respiratory neurons were excited in REM sleep during apnoea. Excited neurons included inspiratory, expiratory and phase-spanning neurons. Excitation began about 43 s after the onset of REM sleep. Activity increased from an average of 6 impulses s−1 in NREM sleep to 15.5 impulses s−1 in REM sleep. Neuronal activity was non-rhythmic at low CO2 levels and became rhythmic when levels

  7. Adaptation of enzyme-linked immunosorbent assay to the avian system.

    PubMed

    Slaght, S S; Yang, T J; van der Heide, L

    1979-11-01

    A microplate enzyme-linked immunosorbent assay was developed to detect chicken anti-rovirus antibodies. Studies of the parameters which affect the outcome of the assay with avian serum revealed two aspects for a successful assay. First, enzyme-antibody conjugates prepared by the periodate oxidation technique were found to have retained far more immunological activity than conjugates produced by a glutaraldehyde cross-linking. Second, the results indicated an unusually high affinity of chicken immunoglobulin for the microplate plastic which was mostly eliminated by a pretreatment technique with fixed fetal calf serum. The enzyme-linked immunosorbent assay compared favorably with the latex passive agglutination test, yielding a titration endpoint of 1:511,000, or approximately 1,300 times more sensitive than the latex passive agglutination assay. The assay proved not only to be sensitive to less than 1 ng of specific antibody, but also to have low to moderate variance and high reliability.

  8. Development and Application of a Miniaturised Sensor System for Respiratory Investigations (MAP-RSS)

    NASA Astrophysics Data System (ADS)

    Hoffmann, U.; Drager, T.; Baumann, R.; Fasoulas, S.

    2008-06-01

    The project supported by the European Space Agency (ESA) in the frame of the "Microgravity Application Promotion Programe (MAP)" deals with the development and application of a new respiratory sensor system (RSS) for human respiratory investigations. Eight institutions, including three Industrial partners from different areas, combine their expertise by focusing on two selected applications in the field of ergospirometric exercise testing and lung function diagnostics with subsequent medication. The main goals of this project are to develop miniaturized oxygen and carbon dioxide sensors, to use their capability for simultaneous detection of total flow rates, to integrate them into a mask for the in-situ measurement of respiratory parameters, and to perform first qualification tests. For many manned space missions, and especially on the International Space Station, there is a need for a small, light-weight, portable, potentially body-mounted, metabolic gas analyzer with which periodic fitness or scientific evaluations could be performed by the astronauts.

  9. From Head to Toe: Respiratory, Circulatory, and Skeletal Systems. Book 3.

    ERIC Educational Resources Information Center

    Wiebe, Arthur, Ed.; And Others

    Designed to supplement curricular programs dealing with the human body, this booklet offers an activity-based, student-oriented approach for middle school teachers and students. Twelve activities focus on principles and skills related to the respiratory, circulatory, and skeletal systems. Each activity consists of student sheets and a teacher's…

  10. 78 FR 7967 - Revised Medical Criteria for Evaluating Respiratory System Disorders

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-04

    ... disorders in adults and children under titles II and XVI of the Social Security Act (Act). The proposed... listings for both adults (section 3.00) and children (section 103.00); Remove reference listings; and... (people who are at least 18 years old)--and section 103.00--the respiratory system listings for...

  11. 38 CFR 4.97 - Schedule of ratings-respiratory system.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...—respiratory system. Rating DISEASES OF THE NOSE AND THROAT 6502Septum, nasal, deviation of: Traumatic only, With 50-percent obstruction of the nasal passage on both sides or complete obstruction on one side 10 6504Nose, loss of part of, or scars: Exposing both nasal passages 30 Loss of part of one ala, or...

  12. 38 CFR 4.97 - Schedule of ratings-respiratory system.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...—respiratory system. Rating DISEASES OF THE NOSE AND THROAT 6502Septum, nasal, deviation of: Traumatic only, With 50-percent obstruction of the nasal passage on both sides or complete obstruction on one side 10 6504Nose, loss of part of, or scars: Exposing both nasal passages 30 Loss of part of one ala, or...

  13. Bilingual Skills Training Program. Barbering/Cosmetology. Module 9.0: Respiratory System.

    ERIC Educational Resources Information Center

    Northern New Mexico Community Coll., El Rito.

    This module on the respiratory system is the ninth of ten (CE 028 308-318) in the barbering/cosmetology course of a bilingual skills training program. (A Vocabulary Development Workbook for modules 6-10 is available as CE 028 313.) The course is designed to furnish theoretical and laboratory experiences. Module objectives are for students to…

  14. The global nature of avian influenza

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Avian influenza virus is a global virus which knows no geographic boundaries, has no political agenda, and can infect poultry irrespective of their agricultural or anthropocentric production systems. Avian influenza viruses or evidence of their infection have been detected in poultry and wild birds...

  15. Complex distribution of avian color vision systems revealed by sequencing the SWS1 opsin from total DNA.

    PubMed

    Odeen, Anders; Hastad, Olle

    2003-06-01

    To gain insights into the evolution and ecology of visually acute animals such as birds, biologists often need to understand how these animals perceive colors. This poses a problem, since the human eye is of a different design than that of most other animals. The standard solution is to examine the spectral sensitivity properties of animal retinas through microspectophotometry-a procedure that is rather complicated and therefore only has allowed examinations of a limited number of species to date. We have developed a faster and simpler molecular method, which can be used to estimate the color sensitivities of a bird by sequencing a part of the gene coding for the ultraviolet or violet absorbing opsin in the avian retina. With our method, there is no need to sacrifice the animal, and it thereby facilitates large screenings, including rare and endangered species beyond the reach of microspectrophotometry. Color vision in birds may be categorized into two classes: one with a short-wavelength sensitivity biased toward violet (VS) and the other biased toward ultraviolet (UVS). Using our method on 45 species from 35 families, we demonstrate that the distribution of avian color vision is more complex than has previously been shown. Our data support VS as the ancestral state in birds and show that UVS has evolved independently at least four times. We found species with the UVS type of color vision in the orders Psittaciformes and Passeriformes, in agreement with previous findings. However, species within the families Corvidae and Tyrannidae did not share this character with other passeriforms. We also found UVS type species within the Laridae and Struthionidae families. Raptors (Accipitridae and Falconidae) are of the violet type, giving them a vision system different from their passeriform prey. Intriguing effects on the evolution of color signals can be expected from interactions between predators and prey. Such interactions may explain the presence of UVS in Laridae and

  16. Comparison of commercial systems for extraction of nucleic acids from DNA/RNA respiratory pathogens.

    PubMed

    Yang, Genyan; Erdman, Dean E; Kodani, Maja; Kools, John; Bowen, Michael D; Fields, Barry S

    2011-01-01

    This study compared six automated nucleic acid extraction systems and one manual kit for their ability to recover nucleic acids from human nasal wash specimens spiked with five respiratory pathogens, representing Gram-positive bacteria (Streptococcus pyogenes), Gram-negative bacteria (Legionella pneumophila), DNA viruses (adenovirus), segmented RNA viruses (human influenza virus A), and non-segmented RNA viruses (respiratory syncytial virus). The robots and kit evaluated represent major commercially available methods that are capable of simultaneous extraction of DNA and RNA from respiratory specimens, and included platforms based on magnetic-bead technology (KingFisher mL, Biorobot EZ1, easyMAG, KingFisher Flex, and MagNA Pure Compact) or glass fiber filter technology (Biorobot MDX and the manual kit Allprep). All methods yielded extracts free of cross-contamination and RT-PCR inhibition. All automated systems recovered L. pneumophila and adenovirus DNA equivalently. However, the MagNA Pure protocol demonstrated more than 4-fold higher DNA recovery from the S. pyogenes than other methods. The KingFisher mL and easyMAG protocols provided 1- to 3-log wider linearity and extracted 3- to 4-fold more RNA from the human influenza virus and respiratory syncytial virus. These findings suggest that systems differed in nucleic acid recovery, reproducibility, and linearity in a pathogen specific manner.

  17. Induced respiratory system modeling by high frequency chest compression using lumped system identification method.

    PubMed

    Lee, Jongwon; Lee, Yong Wan; O'Clock, George; Zhu, Xiaoming; Parhi, Keshab K; Warwick, Warren J

    2009-01-01

    High frequency chest compression (HFCC) treatment systems are used to promote mucus transport and mitigate pulmonary system clearance problems to remove sputum from the airways in patients with Cystic Fibrosis (CF) and at risk of developing chronic obstructive pulmonary disease (COPD). Every HFCC system consists of a pump generator, one or two hoses connected to a vest, to deliver the pulsation. There are three different waveforms in use; symmetric sine, the asymmetric sine and the trapezoid waveforms. There have been few studies that compared the efficacy of a sine waveform with the HFCC pulsations. In this study we present a model of the respiratory system for a young normal subject who is one of co-authors. The input signal is the pressure applied by the vest to chest, at a frequency of 6Hz. Using the system model simulation, the effectiveness of different source waveforms is evaluated and compared by observing the waveform response associated with air flow at the mouth. Also the study demonstrated that the ideal rectangle wave produced the maximum peak air flow, and followed by the trapezoid, triangle and sine waveform. The study suggests that a pulmonary system evaluation or modeling effort for CF patient might be useful as a method to optimize frequency and waveform structure choices for HFCC therapeutic intervention.

  18. Simple gas chromatographic system for analysis of microbial respiratory gases

    NASA Technical Reports Server (NTRS)

    Carle, G. C.

    1972-01-01

    Dual column ambient temperature system, consisting of pair of capillary columns, microbead thermistor detector and micro gas-sampling valve, is used in remote life-detection equipment for space experiments. Performance outweighs advantage gained by utilizing single-column systems to reduce weight, conserve carrier gas and operate at lower power levels.

  19. SU-D-17A-07: Development and Evaluation of a Prototype Ultrasonography Respiratory Monitoring System for 4DCT Reconstruction

    SciTech Connect

    Yan, P; Cheng, S; Chao, C; Jain, A

    2014-06-01

    Purpose: Respiratory motion artifacts are commonly seen in the abdominal and thoracic CT images. A Real-time Position Management (RPM) system is integrated with CT simulator using abdominal surface as a surrogate for tracking the patient respiratory motion. The respiratory-correlated four-dimensional computed tomography (4DCT) is then reconstructed by GE advantage software. However, there are still artifacts due to inaccurate respiratory motion detecting and sorting methods. We developed an Ultrasonography Respiration Monitoring (URM) system which can directly monitor diaphragm motion to detect respiratory cycles. We also developed a new 4DCT sorting and motion estimation method to reduce the respiratory motion artifacts. The new 4DCT system was compared with RPM and the GE 4DCT system. Methods: Imaging from a GE CT scanner was simultaneously correlated with both the RPM and URM to detect respiratory motion. A radiation detector, Blackcat GM-10, recorded the X-ray on/off and synchronized with URM. The diaphragm images were acquired with Ultrasonix RP system. The respiratory wave was derived from diaphragm images and synchronized with CT scanner. A more precise peaks and valleys detection tool was developed and compared with RPM. The motion is estimated for the slices which are not in the predefined respiratory phases by using block matching and optical flow method. The CT slices were then sorted into different phases and reconstructed, compared with the images reconstructed from GE Advantage software using respiratory wave produced from RPM system. Results: The 4DCT images were reconstructed for eight patients. The discontinuity at the diaphragm level due to an inaccurate identification of phases by the RPM was significantly improved by URM system. Conclusion: Our URM 4DCT system was evaluated and compared with RPM and GE 4DCT system. The new system is user friendly and able to reduce motion artifacts. It also has the potential to monitor organ motion during

  20. The feasibility of the auto tuning respiratory compensation system with ultrasonic image tracking technique.

    PubMed

    Chuang, Ho-Chiao; Hsu, Hsiao-Yu; Nieh, Shu-Kan; Tien, Der-Chi

    2015-01-01

    The purpose of this study is to assess the feasibility of using the analytical technique of ultrasound images in combination with an auto tumor localization system. During respiration, the activity of breathing in and out causes organs displacement at the lower lobe of the lung, and the maximum displacement range happens in the Superior-Inferior (SI) direction. Therefore, in this study all the tumor positioning is in SI direction under respiratory compensation, in which the compensations are carried out to the organs at the lower lobe and adjacent to the lower lobe of lung.In this research, due to the processes of ultrasound imaging generation, image analysis and signal transmission, when the captured respiratory signals are sent to auto tumor localization system, there was a signal time delay. The total delay time of the entire signal transmission process was 0.254 ± 0.023 seconds (with the lowest standard deviation) after implementing a series of analyses. To compensate for this signal delay time (0.254 ± 0.023 sec), a phase lead compensator (PLC) was designed and built into the auto tumor localization system. By analyzing the impact of the delay time and the respiratory waveforms under different frequencies on the phase lead compensator, an overall system delay time can be configured. Results showed as the respiratory frequency increased, variable value ``a'' and the subsequent gain ``k'' in the controller becomes larger. Moreover, value ``a'' and ``k'' increased as the system delay time increased when the respiratory frequency was fixed. The relationship of value ``a'' and ``k'' to the respiratory frequency can be obtained by using the curve fitting method to compensate for the respiratory motion for tumor localization. Through the comparison of the uncompensated signal and the compensated signal performed by the auto tumor localization system on the simulated respiratory signal, the feasibility of using ultrasound image analysis technology combined with the

  1. The feasibility of the auto tuning respiratory compensation system with ultrasonic image tracking technique.

    PubMed

    Chuang, Ho-Chiao; Hsu, Hsiao-Yu; Nieh, Shu-Kan; Tien, Der-Chi

    2015-01-01

    The purpose of this study is to assess the feasibility of using the analytical technique of ultrasound images in combination with an auto tumor localization system. During respiration, the activity of breathing in and out causes organs displacement at the lower lobe of the lung, and the maximum displacement range happens in the Superior-Inferior (SI) direction. Therefore, in this study all the tumor positioning is in SI direction under respiratory compensation, in which the compensations are carried out to the organs at the lower lobe and adjacent to the lower lobe of lung.In this research, due to the processes of ultrasound imaging generation, image analysis and signal transmission, when the captured respiratory signals are sent to auto tumor localization system, there was a signal time delay. The total delay time of the entire signal transmission process was 0.254 ± 0.023 seconds (with the lowest standard deviation) after implementing a series of analyses. To compensate for this signal delay time (0.254 ± 0.023 sec), a phase lead compensator (PLC) was designed and built into the auto tumor localization system. By analyzing the impact of the delay time and the respiratory waveforms under different frequencies on the phase lead compensator, an overall system delay time can be configured. Results showed as the respiratory frequency increased, variable value ``a'' and the subsequent gain ``k'' in the controller becomes larger. Moreover, value ``a'' and ``k'' increased as the system delay time increased when the respiratory frequency was fixed. The relationship of value ``a'' and ``k'' to the respiratory frequency can be obtained by using the curve fitting method to compensate for the respiratory motion for tumor localization. Through the comparison of the uncompensated signal and the compensated signal performed by the auto tumor localization system on the simulated respiratory signal, the feasibility of using ultrasound image analysis technology combined with the

  2. Effect of Systemic Lupus Erythematosus on the Risk of Incident Respiratory Failure: A National Cohort Study

    PubMed Central

    Yeh, Jun-Jun; Wang, Yu-Chiao; Chen, Jiunn-Horng; Hsu, Wu-Huei

    2016-01-01

    Purpose We conducted a nationwide cohort study to investigate the relationship between systemic lupus erythematosus (SLE) and the risk of incident respiratory failure. Methods From the National Health Insurance Research Database, we identified 11 533 patients newly diagnosed with SLE and 46 132 controls without SLE who were randomly selected through frequency-matching according to age, sex, and index year. Both cohorts were followed until the end of 2011 to measure the incidence of incident respiratory failure, which was compared between the 2 cohorts through a Cox proportional hazards regression analysis. Results The adjusted hazard ratio (aHR) of incident respiratory failure was 5.80 (95% confidence interval [CI] = 5.15–6.52) for the SLE cohort after we adjusted for sex, age, and comorbidities. Both men (aHR = 3.44, 95% CI = 2.67–4.43) and women (aHR = 6.79, 95% CI = 5.93–7.77) had a significantly higher rate of incident respiratory failure in the SLE cohort than in the non-SLE cohort. Both men and women aged <35 years (aHR = 31.2, 95% CI = 21.6–45.2), 35–65 years; (aHR = 6.19, 95% CI = 5.09–7.54) and ≥65 years (aHR = 2.35, 95% CI = 1.92–2.87) had a higher risk of incident respiratory failure in the SLE cohort. Moreover, the risk of incident respiratory failure was higher in the SLE cohort than the non-SLE cohort, for subjects with (aHR = 2.65, 95% CI = 2.22–3.15) or without (aHR = 9.08, 95% CI = 7.72–10.7) pre-existing comorbidities. In the SLE cohort, subjects with >24 outpatient visits and hospitalizations per year had a higher incident respiratory failure risk (aHR = 21.7, 95% CI = 18.0–26.1) compared with the non-SLE cohort. Conclusion Patients with SLE are associated with an increased risk of incident respiratory failure, regardless of their age, sex, and pre-existing comorbidities; especially medical services with higher frequency. PMID:27654828

  3. Evidence and control of bifurcations in a respiratory system

    SciTech Connect

    Goldin, Matías A. Mindlin, Gabriel B.

    2013-12-15

    We studied the pressure patterns used by domestic canaries in the production of birdsong. Acoustically different sound elements (“syllables”) were generated by qualitatively different pressure gestures. We found that some ubiquitous transitions between syllables can be interpreted as bifurcations of a low dimensional dynamical system. We interpreted these results as evidence supporting a model in which different timescales interact nonlinearly.

  4. Expression of chicken DEC205 reflects the unique structure and function of the avian immune system.

    PubMed

    Staines, Karen; Young, John R; Butter, Colin

    2013-01-01

    The generation of appropriate adaptive immune responses relies critically on dendritic cells, about which relatively little is known in chickens, a vital livestock species, in comparison with man and mouse. We cloned and sequenced chicken DEC205 cDNA and used this knowledge to produce quantitative PCR assays and monoclonal antibodies to study expression of DEC205 as well as CD83. The gene structure of DEC205 was identical to those of other species. Transcripts of both genes were found at higher levels in lymphoid tissues and the expression of DEC205 in normal birds had a characteristic distribution in the primary lymphoid organs. In spleen, DEC205 was seen on cells ideally located to trap antigen. In thymus it was found on cells thought to participate in the education of T cells, and in the bursa on cells that may be involved in presentation of antigen to B cells and regulation of B cell migration. The expression of DEC205 on cells other than antigen presenting cells (APC) is also described. Isolated splenocytes strongly expressing DEC205 but not the KUL01 antigen have morphology similar to mammalian dendritic cells and the distinct expression of DEC205 within the avian-specific Bursa of Fabricius alludes to a unique function in this organ of B cell diversification. PMID:23326318

  5. A Respiratory Movement Monitoring System Using Fiber-Grating Vision Sensor for Diagnosing Sleep Apnea Syndrome

    NASA Astrophysics Data System (ADS)

    Takemura, Yasuhiro; Sato, Jun-Ya; Nakajima, Masato

    2005-01-01

    A non-restrictive and non-contact respiratory movement monitoring system that finds the boundary between chest and abdomen automatically and detects the vertical movement of each part of the body separately is proposed. The system uses a fiber-grating vision sensor technique and the boundary position detection is carried out by calculating the centers of gravity of upward moving and downward moving sampling points, respectively. In the experiment to evaluate the ability to detect the respiratory movement signals of each part and to discriminate between obstructive and central apneas, detected signals of the two parts and their total clearly showed the peculiarities of obstructive and central apnea. The cross talk between the two categories classified automatically according to several rules that reflect the peculiarities was ≤ 15%. This result is sufficient for discriminating central sleep apnea syndrome from obstructive sleep apnea syndrome and indicates that the system is promising as screening equipment. Society of Japan

  6. Avian Influenza (Bird Flu)

    MedlinePlus

    ... this page: About CDC.gov . Avian Influenza H5 Viruses in the United States Updates and Publications Information ... Humans Examples of Human Infections with Avian Influenza Viruses Outbreaks Health Care and Laboratorian Guidance HPAI A ...

  7. A novel simulator for mechanical ventilation in newborns: MEchatronic REspiratory System SImulator for Neonatal Applications.

    PubMed

    Baldoli, Ilaria; Cuttano, Armando; Scaramuzzo, Rosa T; Tognarelli, Selene; Ciantelli, Massimiliano; Cecchi, Francesca; Gentile, Marzia; Sigali, Emilio; Laschi, Cecilia; Ghirri, Paolo; Menciassi, Arianna; Dario, Paolo; Boldrini, Antonio

    2015-08-01

    Respiratory problems are among the main causes of mortality for preterm newborns with pulmonary diseases; mechanical ventilation provides standard care, but long-term complications are still largely reported. In this framework, continuous medical education is mandatory to correctly manage assistance devices. However, commercially available neonatal respiratory simulators are rarely suitable for representing anatomical and physiological conditions; a step toward high-fidelity simulation, therefore, is essential for nurses and neonatologists to acquire the practice needed without any risk. An innovative multi-compartmental infant respirator simulator based on a five-lobe model was developed to reproduce different physio-pathological conditions in infants and to simulate many different kinds of clinical scenarios. The work consisted of three phases: (1) a theoretical study and modeling phase, (2) a prototyping phase, and (3) testing of the simulation software during training courses. The neonatal pulmonary simulator produced allows the replication and evaluation of different mechanical ventilation modalities in infants suffering from many different kinds of respiratory physio-pathological conditions. In particular, the system provides variable compliances for each lobe in an independent manner and different resistance levels for the airway branches; moreover, it allows the trainer to simulate both autonomous and mechanically assisted respiratory cycles in newborns. The developed and tested simulator is a significant contribution to the field of medical simulation in neonatology, as it makes it possible to choose the best ventilation strategy and to perform fully aware management of ventilation parameters. PMID:26238790

  8. Megacomplex organization of the oxidative phosphorylation system by structural analysis of respiratory supercomplexes from potato.

    PubMed

    Bultema, Jelle B; Braun, Hans-Peter; Boekema, Egbert J; Kouril, Roman

    2009-01-01

    The individual protein complexes of the oxidative phosphorylation system (OXPHOS complexes I to V) specifically interact and form defined supramolecular structures, the so-called "respiratory supercomplexes". Some supercomplexes appear to associate into larger structures, or megacomplexes, such as a string of dimeric ATP synthase (complex V(2)). A row-like organization of OXPHOS complexes I, III and IV into respiratory strings has also been proposed. These transient strings cannot be purified after detergent solubilization. Hence the shape and composition of the respiratory string was approached by an extensive structural characterization of all its possible building blocks, which are the supercomplexes. About 400,000 molecular projections of supercomplexes from potato mitochondria were processed by single particle electron microscopy. We obtained two-dimensional projection maps of at least five different supercomplexes, including the supercomplex I+III(2), III(2)+IV(1), V(2), I+III(2)+IV(1) and I(2)+III(2) in different types of position. From these maps the relative position of the individual complexes in the largest unit, the I(2)+III(2)+IV(2) supercomplex, could be determined in a coherent way. The maps also show that the I+III(2)+IV(1) supercomplex, or respirasome, differs from its counterpart in bovine mitochondria. The new structural features allow us to propose a consistent model of the respiratory string, composed of repeating I(2)+III(2)+IV(2) units, which is in agreement with dimensions observed in former freeze-fracture electron microscopy data.

  9. Inverse Modeling of Respiratory System during Noninvasive Ventilation by Maximum Likelihood Estimation

    NASA Astrophysics Data System (ADS)

    Saatci, Esra; Akan, Aydin

    2010-12-01

    We propose a procedure to estimate the model parameters of presented nonlinear Resistance-Capacitance (RC) and the widely used linear Resistance-Inductance-Capacitance (RIC) models of the respiratory system by Maximum Likelihood Estimator (MLE). The measurement noise is assumed to be Generalized Gaussian Distributed (GGD), and the variance and the shape factor of the measurement noise are estimated by MLE and Kurtosis method, respectively. The performance of the MLE algorithm is also demonstrated by the Cramer-Rao Lower Bound (CRLB) with artificially produced respiratory signals. Airway flow, mask pressure, and lung volume are measured from patients with Chronic Obstructive Pulmonary Disease (COPD) under the noninvasive ventilation and from healthy subjects. Simulations show that respiratory signals from healthy subjects are better represented by the RIC model compared to the nonlinear RC model. On the other hand, the Patient group respiratory signals are fitted to the nonlinear RC model with lower measurement noise variance, better converged measurement noise shape factor, and model parameter tracks. Also, it is observed that for the Patient group the shape factor of the measurement noise converges to values between 1 and 2 whereas for the Control group shape factor values are estimated in the super-Gaussian area.

  10. Respiratory and cardiovascular indicators of autonomic nervous system dysregulation in familial dysautonomia.

    PubMed

    Carroll, Michael S; Kenny, Anna S; Patwari, Pallavi P; Ramirez, Jan-Marino; Weese-Mayer, Debra E

    2012-07-01

    Familial dysautonomia (FD) is a profound sensory and autonomic nervous system disorder associated with an increased risk for sudden death. While bradycardia resulting from loss of sympathetic tone has been hypothesized to play a role in this mortality, extended in-home monitoring has failed to find evidence of low heart rates in children with FD. In order to better characterize the specific cardio-respiratory pathophysiology and autonomic dysregulation in patients with FD, 25 affected children and matched controls were studied with in-home technology, during day and night. Respiratory and heart rate timing and variability metrics were derived from inductance plethysmography and electrocardiogram signals. Selective shortening of inspiratory time produced an overall increase in respiratory frequency in children with FD, with higher daytime respiratory variability (vs. controls), suggesting alterations in central rhythm generating circuits that may contribute to the heightened risk for sudden death. Overall heart rate was increased and variability reduced in FD cases, with elevated heart rates during 20% of study time. Time and frequency domain measures of autonomic tone indicated lower parasympathetic drive in FD patients (vs. controls). These results suggest withdrawal of vagal, rather than sympathetic tone, as a cause for the sustained increase and dramatic lability in respiration and heart rates that characterize this disorder.

  11. Estimation of the sensitivity of the surveillance system for avian influenza in the western region of Cuba.

    PubMed

    Ferrer, Edyniesky; Calistri, Paolo; Fonseca, Osvaldo; Ippoliti, Carla; Alfonso, Pastor; Iannetti, Simona; Abeledo, María A; Fernández, Octavio; Percedo, María I; Pérez, Antonio

    2013-01-01

    Although avian influenza (AI) virus of H5 and H7 subtypes has the potential to mutate to a highly pathogenic form and cause very high mortalities in some poultry species, most AI infections in poultry are due to low pathogenic AI (LPAI). Hence serological surveys, coupled with passive surveillance activities, are essential to detect sub-clinical infections by LPAI viruses, H5 and H7 subtypes. However the proper planning of an active surveillance system should be based on a careful estimation of its performance. Therefore, the sensitivity of the active surveillance system for AI in the western region of Cuba was assessed by a stochastic model quantifying the probability of revealing at least one animal infected by H5 or H7 subtype. The diagnostic sensitivity of the haemagglutination inhibition assay and different levels of within-flock prevalence (5%, 12% and 30%) were considered. The sensitivity of the surveillance system was then assessed under five different samples size scenarios: testing 20, 30, 40, 50 or 60 animals in each flock. Poultry flock sites in the western region of Cuba with a size ranging from 10,000 to 335,000 birds were included in the study.

  12. Evaluation of integrated respiratory gating systems on a Novalis Tx system.

    PubMed

    Chang, Zheng; Liu, Tonghai; Cai, Jing; Chen, Qing; Wang, Zhiheng; Yin, Fang-Fang

    2011-04-04

    The purpose of this study was to investigate the accuracy of motion tracking and radiation delivery control of integrated gating systems on a Novalis Tx system. The study was performed on a Novalis Tx system, which is equipped with Varian Real-time Position Management (RPM) system, and BrainLAB ExacTrac gating systems. In this study, the two systems were assessed on accuracy of both motion tracking and radiation delivery control. To evaluate motion tracking, two artificial motion profiles and five patients' respiratory profiles were used. The motion trajectories acquired by the two gating systems were compared against the references. To assess radiation delivery control, time delays were measured using a single-exposure method. More specifically, radiation is delivered with a 4 mm diameter cone within the phase range of 10%-45% for the BrainLAB ExacTrac system, and within the phase range of 0%-25% for the Varian RPM system during expiration, each for three times. Radiochromic films were used to record the radiation exposures and to calculate the time delays. In the work, the discrepancies were quantified using the parameters of mean and standard deviation (SD). Pearson's product-moment correlational analysis was used to test correlation of the data, which is quantified using a parameter of r. The trajectory profiles acquired by the gating systems show good agreement with those reference profiles. A quantitative analysis shows that the average mean discrepancies between BrainLAB ExacTrac system and known references are 1.5 mm and 1.9 mm for artificial and patient profiles, with the maximum motion amplitude of 28.0 mm. As for the Varian RPM system, the corresponding average mean discrepancies are 1.1 mm and 1.7 mm for artificial and patient profiles. With the proposed single-exposure method, the time delays are found to be 0.20 ± 0.03 seconds and 0.09 ± 0.01 seconds for BrainLAB ExacTrac and Varian RPM systems, respectively. The results indicate the systems can

  13. Thermal inactivation of avian viral and bacterial pathogens in an effluent treatment system within a biosafety level 2 and 3 enhanced facility

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Avian influenza (AI) virus, avian paramyxovirus Type 1 (APMV-1 or Newcastle disease virus [NDV]), reovirus, rotavirus, turkey astrovirus (TAstV), avian metapneumovirus (aMPV), Marek’s disease virus (MDV-1), avian parvovirus (ChPV) and Salmonella enterica serovar Enteritidis are significant biosafety...

  14. [SOME CLINICAL AND CYTOKINE FEATURES OF THE CLINICAL COURSE OF RECURRENT RESPIRATORY SYSTEM DISEASES IN CHILDREN WITH THE TOXOCARIASIS INVASION].

    PubMed

    Dralova, A; Usachova, E

    2015-12-01

    The aim of the present study was to analyze clinical and cytokine features of recurrent respiratory system diseases in children with toxocariasis. 50 children aged 1 to 17 years (mean age - 10±5 years) with recurrent current of respiratory system disorders were studied. During the survey such clinical manifestations of the respiratory system disorders as obstructive bronchitis (50%), bronchial asthma (30%), pneumonia (10%) and laryngotracheitis (10%) have been revealed. Statistical analysis of the results was performed using the software package STATISTICA 6.1 (SNANSOFT). We have shown that the disorders of respiratory system in case of toxocariasis invasion often occur with severe intoxication and bronchial obstruction syndromes, temperature reaction, respiratory insufficiency and hepatomegaly. A prolonged course of the disease has been noted. "Inflammatory" indicators of general blood analysis, such as leukocytosis and increased of ESR have been recorded in patients with respiratory system disorders in children with T.canis infection significantly more often, significant "allergic" laboratory changes were in the form of eosinophilia. High average levels of pro-inflammatory IL-6, as well as low levels of IL 5 have been determined in children suffering from the respiratory system disorders and with toxocariasis invasion in the anamnesis. The obtained findings require further study.

  15. A Wearable Respiratory Biofeedback System Based on Generalized Body Sensor Network

    PubMed Central

    Liu, Guan-Zheng; Huang, Bang-Yu

    2011-01-01

    Abstract Wearable medical devices have enabled unobtrusive monitoring of vital signs and emerging biofeedback services in a pervasive manner. This article describes a wearable respiratory biofeedback system based on a generalized body sensor network (BSN) platform. The compact BSN platform was tailored for the strong requirements of overall system optimizations. A waist-worn biofeedback device was designed using the BSN. Extensive bench tests have shown that the generalized BSN worked as intended. In-situ experiments with 22 subjects indicated that the biofeedback device was discreet, easy to wear, and capable of offering wearable respiratory trainings. Pilot studies on wearable training patterns and resultant heart rate variability suggested that paced respirations at abdominal level and with identical inhaling/exhaling ratio were more appropriate for decreasing sympathetic arousal and increasing parasympathetic activities. PMID:21545293

  16. Effects of volatile substance abuse on the respiratory system in adolescents

    PubMed Central

    2011-01-01

    Aim Inhalant abuse is a prevalent and often overlooked form of substance abuse in adolescents. Chronic inhalant abuse can damage respiratory, cardiac, renal, hepatic, and neurologic systems. This study aims to determine the physiologic effects of inhaling solvents on the respiratory functions. Methods The general health status of the subjects was assessed by history taking, physical examination and a questionnaire which was designed to show the severity of respiratory symptoms. Spirometry, ventilation/perfusion scintigraphy, and high resolution computed tomography (HRCT) were performed to assess pulmonary functions and anatomy. Results Thirty-one male volatile substance abusers and 19 control subjects were included in the study. The mean age of onset of inhalant use was 14.6 ± 2.2 (9-18) years and duration of drug use was 3.7 ± 1.7 years. The most common respiratory symptoms in volatile substance abusers were nasal congestion (45.2%), sputum (38.7%), exercise intolerance (32.3%) and cough (22.6%). Results of spirometric studies showed 12 (41.4%) subjects with low FVC values < 80% of predicted, indicative of restrictive ventilatory pattern in the study group. Although the difference was not statistically significant, restrictive ventilatory pattern was higher in the study group. There was no statistically significant correlation between restrictive ventilatory pattern and the age of onset/duration/frequency of inhalant abuse, respiratory symptoms and scintigraphic abnormalities. Subjects who had restrictive pattern in their pulmonary function tests were more likely to have abnormal findings at HRCT (p < 0.01). Conclusion This study has shown a positive correlation between volatile substance abuse and the development of restrictive ventilatory pattern, but more comprehensive studies are needed for more precise conclusions. PMID:22958270

  17. Prolonged Use of the Hemolung Respiratory Assist System as a Bridge to Redo Lung Transplantation.

    PubMed

    Bermudez, Christian A; Zaldonis, Diana; Fan, Ming-Hui; Pilewski, Joseph M; Crespo, Maria M

    2015-12-01

    Although extracorporeal membrane oxygenation (ECMO) has been used frequently as a bridge to primary lung transplantation, active centers are conservative with this approach in patients requiring redo lung transplantation. We report the use of extracorporeal carbon dioxide removal, using the Hemolung respiratory assist system, as a prolonged bridge to lung transplantation, and the first use of the Hemolung as a bridge to redo lung transplantation. Hemolung support improved the patient's clinical status and allowed redo lung transplantation.

  18. Avian influenza in Mexico.

    PubMed

    Villarreal, C

    2009-04-01

    The outbreak of highly pathogenic avian influenza (HPAI) H5N2 in Mexico in 1994 led to a clear increase in biosecurity measures and improvement of intensive poultry production systems. The control and eradication measures implemented were based on active surveillance, disease detection, depopulation of infected farms and prevention of possible contacts (identified by epidemiological investigations), improvement of biosecurity measures, and restriction of the movement of live birds, poultry products, by-products and infected material. In addition, Mexico introduced a massive vaccination programme, which resulted in the eradication of HPAI in a relatively short time in two affected areas that had a high density of commercial poultry.

  19. Avian brood parasitism and ectoparasite richness-scale-dependent diversity interactions in a three-level host-parasite system.

    PubMed

    Vas, Zoltán; Fuisz, Tibor I; Fehérvári, Péter; Reiczigel, Jenő; Rózsa, Lajos

    2013-04-01

    Brood parasitic birds, their foster species and their ectoparasites form a complex coevolving system composed of three hierarchical levels. However, effects of hosts' brood parasitic life-style on the evolution of their louse (Phthiraptera: Amblycera, Ischnocera) lineages have never been tested. We present two phylogenetic analyses of ectoparasite richness of brood parasitic clades. Our hypothesis was that brood parasitic life-style affects louse richness negatively across all avian clades due to the lack of vertical transmission routes. Then, narrowing our scope to brood parasitic cuckoos, we explored macroevolutionary factors responsible for the variability of their louse richness. Our results show that taxonomic richness of lice is lower on brood parasitic clades than on their nonparasitic sister clades. However, we found a positive covariation between the richness of cuckoos' Ischnoceran lice and the number of their foster species, possibly due to the complex and dynamic subpopulation structure of cuckoo species that utilize several host species. We documented diversity interactions across a three-level host parasite system and we found evidence that brood parasitism has opposing effects on louse richness at two slightly differing macroevolutionary scales, namely the species richness and the genera richness.

  20. Development of a three-dimensional model of the human respiratory system for dosimetric use

    PubMed Central

    2013-01-01

    Background Determining the fate of inhaled contaminants in the human respiratory system has challenged scientists for years. Human and animal studies have provided some data, but there is a paucity of data for toxic contaminants and sensitive populations (such as children, elderly, diseased). Methods Three-dimensional modeling programs and publicly available human physiology data have been used to develop a comprehensive model of the human respiratory system. Results The in silico human respiratory system model, which includes the extrathoracic region (nasal, oral, pharyngeal, and laryngeal passages), the upper airways (trachea and main bronchi), the tracheobronchial tree, and branching networks through alveolar region, allows for virtually any variation of airway geometries and disease states. The model allows for parameterization of variables that define the subject’s airways by integrating morphological changes created by disease, age, etc. with a dynamic morphology. Conclusions The model can be used for studies of sensitive populations and the homeland security community, in cases where inhalation studies on humans cannot be conducted with toxic contaminants of interest. PMID:23634755

  1. Mycobacterium genavense and avian polyomavirus co-infection in a European goldfinch (Carduelis carduelis).

    PubMed

    Manarolla, G; Liandris, E; Pisoni, G; Moroni, P; Piccinini, R; Rampin, T

    2007-10-01

    Systemic mycobacteriosis associated with avian polyomavirus infection was diagnosed histologically in an 8-year-old, captive European goldfinch with a history of nervous signs. Severe mycobacterial lesions were observed in the central nervous system, lungs, cervical air sacs and adrenal glands, without involvement of the gastrointestinal tract. In addition to mycobacteriosis, intranuclear inclusions, typical of polyomavirus, were identified in the adrenal glands. Polymerase chain reaction assays were used to identify Mycobacterium genavense and finch polyomavirus as the causative agents. The absence of involvement of the gastrointestinal tract and the severity of the lesions in the respiratory tract suggested that inhalation may have been the primary route of infection with M. genavense.

  2. An avian influenza H5N1 virus vaccine candidate based on the extracellular domain produced in yeast system as subviral particles protects chickens from lethal challenge.

    PubMed

    Pietrzak, Maria; Macioła, Agnieszka; Zdanowski, Konrad; Protas-Klukowska, Anna Maria; Olszewska, Monika; Śmietanka, Krzysztof; Minta, Zenon; Szewczyk, Bogusław; Kopera, Edyta

    2016-09-01

    Highly pathogenic avian influenza is an on-going problem in poultry and a potential human pandemic threat. Pandemics occur suddenly and vaccine production must be fast and effective to be of value in controlling the spread of the virus. In this study we evaluated the potential of a recombinant protein from the extracellular domain of an H5 hemagglutinin protein produced in a yeast expression system to act as an effective vaccine. Protein production was efficient, with up to 200 mg purified from 1 L of culture medium. We showed that the deletion of the multibasic cleavage site from the protein improves oligomerization and, consequentially, its immunogenicity. We also showed that immunization with this deleted protein protected chickens from challenge with a highly pathogenic avian influenza H5N1 virus. Our results suggest that this recombinant protein produced in yeast may be an effective vaccine against H5N1 virus in poultry. PMID:27498036

  3. Precision-cut intestinal slices as a culture system to analyze the infection of differentiated intestinal epithelial cells by avian influenza viruses.

    PubMed

    Punyadarsaniya, Darsaniya; Winter, Christine; Mork, Ann-Kathrin; Amiri, Mahdi; Naim, Hassan Y; Rautenschlein, Silke; Herrler, Georg

    2015-02-01

    Many viruses infect and replicate in their host via the intestinal tract, e.g. many picornaviruses, several coronaviruses and avian influenza viruses of waterfowl. To analyze infection of enterocytes is a challenging task as culture systems for differentiated intestinal epithelial cells are not readily available and often have a life span that is too short for infection studies. Precision-cut intestinal slices (PCIS) from chicken embryos were prepared and shown that the epithelial cells lining the lumen of the intestine are viable for up to 4 days. Using lectin staining, it was demonstrated that α2,3-linked sialic acids, the preferred receptor determinants of avian influenza viruses, are present on the apical side of the epithelial cells. Furthermore, the epithelial cells (at the tips) of the villi were shown to be susceptible to infection by an avian influenza virus of the H9N2 subtype. This culture system will be useful to analyze virus infection of intestinal epithelial cells and it should be applicable also to the intestine of other species.

  4. Rational design of avian metapneumovirus live attenuated vaccines by inhibiting viral messenger RNA cap methyltransferase

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Avian metapneumovirus (aMPV), also known as avian pneumovirus or turkey rhinotracheitis, is a non-segmented negative-sense RNA virus belonging to the family of Paramyxoviridae, the subfamily Pneumovirinae, and the genus Metapneumovirus. aMPV is the causative agent of respiratory tract infection and ...

  5. Respiratory System

    MedlinePlus

    ... exchange between the capillaries and alveoli. CO2 is carbon dioxide, and O2 is oxygen. Airways The airways are ... rich air to your lungs. They also carry carbon dioxide, a waste gas, out of your lungs. The ...

  6. MEchatronic REspiratory System SImulator for Neonatal Applications (MERESSINA) project: a novel bioengineering goal

    PubMed Central

    Scaramuzzo, Rosa T; Ciantelli, Massimiliano; Baldoli, Ilaria; Bellanti, Lisa; Gentile, Marzia; Cecchi, Francesca; Sigali, Emilio; Tognarelli, Selene; Ghirri, Paolo; Mazzoleni, Stefano; Menciassi, Arianna; Cuttano, Armando; Boldrini, Antonio; Laschi, Cecilia; Dario, Paolo

    2013-01-01

    Respiratory function is mandatory for extrauterine life, but is sometimes impaired in newborns due to prematurity, congenital malformations, or acquired pathologies. Mechanical ventilation is standard care, but long-term complications, such as bronchopulmonary dysplasia, are still largely reported. Therefore, continuous medical education is mandatory to correctly manage devices for assistance. Commercially available breathing function simulators are rarely suitable for the anatomical and physiological realities. The aim of this study is to develop a high-fidelity mechatronic simulator of neonatal airways and lungs for staff training and mechanical ventilator testing. The project is divided into three different phases: (1) a review study on respiratory physiology and pathophysiology and on already available single and multi-compartment models; (2) the prototyping phase; and (3) the on-field system validation. PMID:23966804

  7. Estimation of alveolar pressure during forced oscillation of the respiratory system.

    PubMed

    Finucane, K E; Mead, J

    1975-03-01

    A method for obtaining a continuous estimate of alveolar pressure (PAlv) during periodic flow is described; it was developed to improve the precision of measurements of airway and respiratory tissue impedance using the improved resolution of relatively high-frequency (approximately 5 Hz) singlas. The respiratory system was modulated with a piston pump, and lung volume and the volume change due to compression and expansion of alveolar gas were measured plethysmorgraphically; these signals and an analog divider were used to obtain a continuous solution of Boyle's law during flow. The plethysmorgraph was of the "flow" type; with it volume changes at frequencies up to 10 Hz and with rates of change up to 6 l/s were measured without amplitude or phase distortion. The method permits control of frequency and flow amplitude during PAlv measurement and calibration of PAlv in the absence of an active chest wall. However, it is technically complex. PMID:1150566

  8. Consecutive Food and Respiratory Allergies Amplify Systemic and Gut but Not Lung Outcomes in Mice.

    PubMed

    Bouchaud, Gregory; Gourbeyre, Paxcal; Bihouée, Tiphaine; Aubert, Phillippe; Lair, David; Cheminant, Marie-Aude; Denery-Papini, Sandra; Neunlist, Michel; Magnan, Antoine; Bodinier, Marie

    2015-07-22

    Epidemiological data suggest a link between food allergies and the subsequent development of asthma. Although this progression may result from the additional effects of exposure to multiple allergens, whether both allergies amplify each other's effects remains unknown. This study investigated whether oral exposure to food allergens influences the outcomes of subsequent respiratory exposure to an asthma-inducing allergen. Mice were sensitized and orally challenged with wheat (FA) and then exposed to house dust mite (HDM) extract (RA). Immunoglobulin (Ig), histamine, and cytokine levels were assayed by ELISA. Intestinal and lung physiology was assessed. Ig levels, histamine release, and cytokine secretion were higher after exposure to both allergens than after separate exposure to each. Intestinal permeability was higher, although airway hyper-responsiveness and lung inflammation remained unchanged. Exposure to food and respiratory allergens amplifies systemic and gut allergy-related immune responses without any additional effect on lung function and inflammation.

  9. Development of a standardized nomenclature for bronchoscopy of the respiratory system of harbor porpoises (Phocoena phocoena).

    PubMed

    Harper, C M; Borkowski, R; Hoffman, A M; Warner, A

    2001-06-01

    Respiratory disease is common in captive and wild cetaceans. Bronchoscopy may permit early diagnosis of respiratory disease in dolphins and porpoises. Refinement of cetacean bronchoscopy requires development of a nomenclature system to facilitate description of the anatomic site at which lesions occur. A standard bronchoscopic nomenclature also permits serial evaluations of lesions and enhances communication between veterinarians. In this project, we adapted the bronchoscopic nomenclature devised by Amis and McKiernan for the dog and horse to the harbor porpoise (Phocoena phocoena). Silastic and air-dried models of the bronchial tree of the harbor porpoise were made to illustrate the anatomy and devise the nomenclature. Bronchial anatomy was consistent among the four porpoise lungs studied. The Amis and McKiernan nomenclature was readily adaptable to the harbor porpoise lung with minor modifications and may be useful for cetacean bronchoscopy.

  10. Consecutive Food and Respiratory Allergies Amplify Systemic and Gut but Not Lung Outcomes in Mice.

    PubMed

    Bouchaud, Gregory; Gourbeyre, Paxcal; Bihouée, Tiphaine; Aubert, Phillippe; Lair, David; Cheminant, Marie-Aude; Denery-Papini, Sandra; Neunlist, Michel; Magnan, Antoine; Bodinier, Marie

    2015-07-22

    Epidemiological data suggest a link between food allergies and the subsequent development of asthma. Although this progression may result from the additional effects of exposure to multiple allergens, whether both allergies amplify each other's effects remains unknown. This study investigated whether oral exposure to food allergens influences the outcomes of subsequent respiratory exposure to an asthma-inducing allergen. Mice were sensitized and orally challenged with wheat (FA) and then exposed to house dust mite (HDM) extract (RA). Immunoglobulin (Ig), histamine, and cytokine levels were assayed by ELISA. Intestinal and lung physiology was assessed. Ig levels, histamine release, and cytokine secretion were higher after exposure to both allergens than after separate exposure to each. Intestinal permeability was higher, although airway hyper-responsiveness and lung inflammation remained unchanged. Exposure to food and respiratory allergens amplifies systemic and gut allergy-related immune responses without any additional effect on lung function and inflammation. PMID:26172436

  11. [Proteomic analysis of exhaled breath condensate for diagnosis of pathologies of the respiratory system].

    PubMed

    Kononikhin, A S; Fedorchenko, K Yu; Ryabokon, A M; Starodubtseva, N L; Popov, I A; Zavialova, M G; Anaev, E C; Chuchalin, A G; Varfolomeev, S D; Nikolaev, E N

    2015-01-01

    Study of the proteomic composition of exhaled breath condensate (EBC), is a promising non-invasive method for the diagnosis of the respiratory tract diseases in patients. In this study the EBC proteomic composition of the 79 donors, including patients with different pathologies of the respiratory system has been investigated. Cytoskeletal keratins type II (1, 2, 3, 4, 5, 6) and cytoskeletal keratins the type I (9, 10, 14, 15, 16) were invariant for all samples. Analyzing the frequency of occurrence of proteins in different groups of examined patients, several categories of protein have been recognized: found in all pathologies (Dermcidin, Alpha-1-microglobulin, SHROOM3), found in several pathologies (CSTA, LCN1, JUP, PIP, TXN), and specific for a single pathology (PRDX1, Annexin A1/A2). The EBC analysis by HPLC-MS/MS can be used to identify potential protein markers characteristic for pathologies such as chronic obstructive pulmonary disease (PRDX1) and pneumonia (Annexin A1/A2).

  12. Systemic coagulation and fibrinolysis in patients with or at risk for the adult respiratory distress syndrome.

    PubMed

    Groeneveld, A B; Kindt, I; Raijmakers, P G; Hack, C E; Thijs, L G

    1997-12-01

    The authors sought to evaluate the pathogenetic and prognostic role of a procoagulant and hypofibrinolytic state in the adult respiratory distress syndrome (ARDS). Twenty-two consecutive patients admitted to the intensive care unit (ICU) for respiratory monitoring (n = 2) or mechanical ventilation (n = 20) were studied, of whom 13 had ARDS and 9 were at risk for the syndrome. Plasma levels of thrombin-antithrombin III complexes (TAT), the plasmin-alpha2-antiplasmin complexes (PAP), tissue-type plasminogen activator (tPA) and plasminogen activator inhibitor type 1 (PAI-1) were measured within 48 h after admission, together with respiratory variables allowing computation of the lung injury score (LIS), and pulmonary microvascular permeability [67Gallium-transferrin pulmonary leak index (PLI)], as measures of pulmonary dysfunction. Blood was also sampled 6-hourly until 2 days after admission. The LIS and PLI were higher in ARDS than at risk patients, in the presence of similar systemic morbidity and mortality. TAT complexes were elevated in a minority of patients of both groups, whereas the PAP, tPA and PAI levels were elevated above normal in the majority of ARDS and at risk patients, but groups did not differ. Neither circulating coagulation nor fibrinolysis variables correlated to either LIS or PLI. Furthermore, the course of haemostatic variables did not relate to outcome. These data indicate that systemic activation of coagulation and impaired fibrinolysis do not play a major role in ARDS development and outcome in patients with acute lung injury.

  13. Respiratory motion prediction by using the adaptive neuro fuzzy inference system (ANFIS)

    NASA Astrophysics Data System (ADS)

    Kakar, Manish; Nyström, Håkan; Rye Aarup, Lasse; Jakobi Nøttrup, Trine; Rune Olsen, Dag

    2005-10-01

    The quality of radiation therapy delivered for treating cancer patients is related to set-up errors and organ motion. Due to the margins needed to ensure adequate target coverage, many breast cancer patients have been shown to develop late side effects such as pneumonitis and cardiac damage. Breathing-adapted radiation therapy offers the potential for precise radiation dose delivery to a moving target and thereby reduces the side effects substantially. However, the basic requirement for breathing-adapted radiation therapy is to track and predict the target as precisely as possible. Recent studies have addressed the problem of organ motion prediction by using different methods including artificial neural network and model based approaches. In this study, we propose to use a hybrid intelligent system called ANFIS (the adaptive neuro fuzzy inference system) for predicting respiratory motion in breast cancer patients. In ANFIS, we combine both the learning capabilities of a neural network and reasoning capabilities of fuzzy logic in order to give enhanced prediction capabilities, as compared to using a single methodology alone. After training ANFIS and checking for prediction accuracy on 11 breast cancer patients, it was found that the RMSE (root-mean-square error) can be reduced to sub-millimetre accuracy over a period of 20 s provided the patient is assisted with coaching. The average RMSE for the un-coached patients was 35% of the respiratory amplitude and for the coached patients 6% of the respiratory amplitude.

  14. Avian influenza virus in pregnancy.

    PubMed

    Liu, Shelan; Sha, Jianping; Yu, Zhao; Hu, Yan; Chan, Ta-Chien; Wang, Xiaoxiao; Pan, Hao; Cheng, Wei; Mao, Shenghua; Zhang, Run Ju; Chen, Enfu

    2016-07-01

    The unprecedented epizootic of avian influenza viruses, such as H5N1, H5N6, H7N1 and H10N8, has continued to cause disease in humans in recent years. In 2013, another novel influenza A (H7N9) virus emerged in China, and 30% of those patients died. Pregnant women are particularly susceptible to avian influenza and are more likely to develop severe complications and to die, especially when infection occurs in the middle and late trimesters. Viremia is believed to occur infrequently, and thus vertical transmission induced by avian influenza appears to be rare. However, avian influenza increases the risk of adverse pregnancy outcomes, including spontaneous abortion, preterm birth and fatal distress. This review summarises 39 cases of pregnant women and their fetuses from different countries dating back to 1997, including 11, 15 and 13 infections with H7N9, H5N1 and the 2009 pandemic influenza (H1N1), respectively. We analysed the epidemic features, following the geographical, population and pregnancy trimester distributions; underlying diseases; exposure history; medical timelines; human-to-human transmission; pathogenicity and vertical transmission; antivirus treatments; maternal severity and mortality and pregnancy outcome. The common experiences reported in different countries and areas suggest that early identification and treatment are imperative. In the future, vigilant virologic and epidemiologic surveillance systems should be developed to monitor avian influenza viruses during pregnancy. Furthermore, extensive study on the immune mechanisms should be conducted, as this will guide safe, rational immunomodulatory treatment among this high-risk population. Most importantly, we should develop a universal avian influenza virus vaccine to prevent outbreaks of the different subtypes. Copyright © 2016 John Wiley & Sons, Ltd. PMID:27187752

  15. Differences of respiratory function according to level of the gross motor function classification system in children with cerebral palsy.

    PubMed

    Kwon, Yong Hyun; Lee, Hye Young

    2014-03-01

    [Purpose] The current study was designed to investigate the difference in lung capacity and muscle strengthening related to respiration depending on the level of the Gross Motor Function Classification System (GMFCS) in children with cerebral palsy (CP) through tests of respiratory function and respiratory pressure. [Subjects and Methods] A total of 49 children with CP who were classified as below level III of the GMFCS were recruited for this study. They were divided into three groups (i.e., GMFCS level I, GMFCS level II, and GMFCS level III). All children took the pulmonary function test (PFT) and underwent respiratory pressure testing for assessment of respiratory function in terms of lung capacity and respiratory muscle strength. [Results] The GMFCS level III group showed significantly lower scores for all tests of the PFT (i.e., forced vital capacity (FVC), forced expiratory volume at one second (FEV1), and slow vital capacity (SVC)) and testing for respiratory pressures (maximal inspiratory pressure (MIP) and maximal expiratory pressure (MEP)) compared with the other two groups. The results of post hoc analysis indicated that the GMFCS level III group differed significantly from the other two groups in terms of FVC, FEV1, MIP, and MEP. In addition, a significant difference in SVC was observed between GMFCS level II and III. [Conclusion] Children with CP who had relatively low motor function showed poor pulmonary capacity and respiratory muscle weakness. Therefore, clinical manifestations regarding lung capacity and respiratory muscle will be required in children with CP who demonstrate poor physical activity.

  16. Particle deposition due to turbulent diffusion in the upper respiratory system

    NASA Technical Reports Server (NTRS)

    Hamill, P.

    1979-01-01

    Aerosol deposition in the upper respiratory system (trachea to segmental bronchi) is considered and the importance of turbulent diffusion as a deposition mechanism is evaluated. It is demonstrated that for large particles (diameter greater than about 5 microns), turbulent diffusion is the dominant deposition mechanism in the trachea. Conditions under which turbulent diffusion may be important in successive generations of the pulmonary system are determined. The probability of particle deposition is compared with probabilities of deposition, as determined by the equations generally used in regional deposition models. The analysis is theoretical; no new experimental data is presented.

  17. Pediatric recurrent respiratory tract infections: when and how to explore the immune system? (About 53 cases)

    PubMed Central

    El-Azami-El-Idrissi, Mohammed; Lakhdar-Idrissi, Mounia; Chaouki, Sanae; Atmani, Samir; Bouharrou, Abdelhak; Hida, Moustapha

    2016-01-01

    Recurrent respiratory tract infections are one of the most frequent reasons for pediatric visits and hospitalization. Causes of this pathology are multiple ranging from congenital to acquired and local to general. Immune deficiencies are considered as underlying conditions predisposing to this pathology. Our work is about to determine when and how to explore the immune system when facing recurrent respiratory infections. This was based on the records of 53 children hospitalized at the pediatrics unit of Hassan II University Hospital, Fez Morocco. Thirty boys and 23 girls with age ranging from 5 months to 12 years with an average age of 2 years were involved in this study. Bronchial foreign body was the main etiology in children of 3 to 6 year old. Gastro-esophageal reflux, which in some cases is a consequence of chronic cough, as well as asthma were most frequent in infants (17 and 15% respectively). Immune deficiency was described in 7.5% of patients and the only death we deplored in our series belongs to this group. Recurrent respiratory tract infections have multiple causes. In our series they are dominated by foreign body inhalation and gastroesophageal reflux, which in some cases is a consequence of a chronic cough. Immune deficiency is not frequent but could influence the prognosis. Therefore immune explorations should be well codified. PMID:27642394

  18. Pediatric recurrent respiratory tract infections: when and how to explore the immune system? (About 53 cases).

    PubMed

    El-Azami-El-Idrissi, Mohammed; Lakhdar-Idrissi, Mounia; Chaouki, Sanae; Atmani, Samir; Bouharrou, Abdelhak; Hida, Moustapha

    2016-01-01

    Recurrent respiratory tract infections are one of the most frequent reasons for pediatric visits and hospitalization. Causes of this pathology are multiple ranging from congenital to acquired and local to general. Immune deficiencies are considered as underlying conditions predisposing to this pathology. Our work is about to determine when and how to explore the immune system when facing recurrent respiratory infections. This was based on the records of 53 children hospitalized at the pediatrics unit of Hassan II University Hospital, Fez Morocco. Thirty boys and 23 girls with age ranging from 5 months to 12 years with an average age of 2 years were involved in this study. Bronchial foreign body was the main etiology in children of 3 to 6 year old. Gastro-esophageal reflux, which in some cases is a consequence of chronic cough, as well as asthma were most frequent in infants (17 and 15% respectively). Immune deficiency was described in 7.5% of patients and the only death we deplored in our series belongs to this group. Recurrent respiratory tract infections have multiple causes. In our series they are dominated by foreign body inhalation and gastroesophageal reflux, which in some cases is a consequence of a chronic cough. Immune deficiency is not frequent but could influence the prognosis. Therefore immune explorations should be well codified. PMID:27642394

  19. Effects of Long-Term Dust Exposure on Human Respiratory System Health in Minqin County, China.

    PubMed

    Wang, Jinyu; Li, Sheng; Wang, Shigong; Shang, Kezheng

    2015-01-01

    The aim of this study was to assess the effects of long-term sand dust exposure on human respiratory health. Dust events break out frequently in Minqin County, northwest China, whereas Pingliang City, northwest China, is rarely influenced by dust events. Therefore, Minqin and Pingliang were selected as sand dust exposure region and control area, respectively. The incidence of respiratory system diseases and symptoms was determined through a structured respiratory health questionnaire (ATS-DLD-78-A) and personal interviews. The subjects comprised 728 farmers (Minqin, 424; Pingliang, 304) aged 40 years or older, who had nondocumented occupational history to industrial dust exposure. Prevalences (odds ratio [OR], 95% confidence interval [CI]) of chronic rhinitis, chronic bronchitis, and chronic cough increased 9.6% (3.141, 1.776-5.555), 7.5% (2.468, 1.421-4.286), and 10.2% (1.787, 1.246-2.563) in Minqin comparison with Pingliang, respectively, and the differences were significant (p <.01).

  20. Pediatric recurrent respiratory tract infections: when and how to explore the immune system? (About 53 cases).

    PubMed

    El-Azami-El-Idrissi, Mohammed; Lakhdar-Idrissi, Mounia; Chaouki, Sanae; Atmani, Samir; Bouharrou, Abdelhak; Hida, Moustapha

    2016-01-01

    Recurrent respiratory tract infections are one of the most frequent reasons for pediatric visits and hospitalization. Causes of this pathology are multiple ranging from congenital to acquired and local to general. Immune deficiencies are considered as underlying conditions predisposing to this pathology. Our work is about to determine when and how to explore the immune system when facing recurrent respiratory infections. This was based on the records of 53 children hospitalized at the pediatrics unit of Hassan II University Hospital, Fez Morocco. Thirty boys and 23 girls with age ranging from 5 months to 12 years with an average age of 2 years were involved in this study. Bronchial foreign body was the main etiology in children of 3 to 6 year old. Gastro-esophageal reflux, which in some cases is a consequence of chronic cough, as well as asthma were most frequent in infants (17 and 15% respectively). Immune deficiency was described in 7.5% of patients and the only death we deplored in our series belongs to this group. Recurrent respiratory tract infections have multiple causes. In our series they are dominated by foreign body inhalation and gastroesophageal reflux, which in some cases is a consequence of a chronic cough. Immune deficiency is not frequent but could influence the prognosis. Therefore immune explorations should be well codified.

  1. Cardio-respiratory effects of systemic neurotensin injection are mediated through activation of neurotensin NTS₁ receptors.

    PubMed

    Kaczyńska, Katarzyna; Szereda-Przestaszewska, Małgorzata

    2012-09-15

    The purpose of our study was to determine the cardio-respiratory pattern exerted by the systemic injection of neurotensin, contribution of neurotensin NTS(1) receptors and the neural pathways mediating the responses. The effects of an intravenous injection (i.v.) of neurotensin were investigated in anaesthetized, spontaneously breathing rats in following experimental schemes: (i) control animals before and after midcervical vagotomy; (ii) in three separate subgroups of rats: neurally intact, vagotomized at supranodosal level and initially midcervically vagotomized exposed to section of the carotid sinus nerves (CSNs); (iii) in the intact rats 2 minutes after blockade of neurotensin NTS(1) receptors with SR 142948. Intravenous injection of 10 μg/kg of neurotensin in the intact rats evoked prompt increase in the respiratory rate followed by a prolonged slowing down coupled with augmented tidal volume. Midcervical vagotomy precluded the effects of neurotensin on the frequency of breathing, while CSNs section reduced the increase in tidal volume. In all the neural states neurotensin caused significant fall in mean arterial blood pressure preceded by prompt hypertensive response. The cardio-respiratory effects of neurotensin were blocked by pre-treatment with NTS(1) receptor antagonist. The results of this study showed that neurotensin acting through NTS(1) receptors augments the tidal component of the breathing pattern in a large portion via carotid body afferentation whereas the respiratory timing response to neurotensin depends entirely on the intact midcervical vagi. Blood pressure effects evoked by an intravenous neurotensin occur outside vagal and CSNs pathways and might result from activation of the peripheral vascular NTS(1) receptors.

  2. Commissioning of a motion system to investigate dosimetric consequences due to variability of respiratory waveforms.

    PubMed

    Cetnar, Ashley J; James, Joshua; Wang, Brain

    2016-01-08

    A commercially available six-dimensional (6D) motion system was assessed for accuracy and clinical use in our department. Positional accuracy and respiratory waveform reproducibility were evaluated for the motion system. The system was then used to investigate the dosimetric consequences of respiratory waveform variation when an internal target volume (ITV) approach is used for motion management. The maximum deviations are 0.3 mm and 0.22° for translation and rotation accuracy, respectively, for the tested clinical ranges. The origin reproducibility is less than±0.1 mm. The average differences are less than 0.1 mm with a maximum standard deviation of 0.8 mm between waveforms of actual patients and replication of those waveforms by HexaMotion for three breath-hold and one free-breathing waveform. A modified gamma analysis shows greater than 98% agreement with a 0.5 mm and 100 ms threshold. The motion system was used to investigate respiratory waveform variation and showed that, as the amplitude of the treatment waveform increases above that of the simulation waveform, the periphery of the target volume receives less dose than expected. However, by using gating limits to terminate the beam outside of the simulation amplitude, the results are as expected dosimetrically. Specifically, the average dose difference in the periphery between treating with the simulation waveform and the larger amplitude waveform could be up to 12% less without gating limits, but only differed 2% or less with the gating limits in place. The general functionality of the system performs within the manufacturer's specifications and can accurately replicate patient specific waveforms. When an ITV approach is used for motion management, we found the use of gating limits that coincide with the amplitude of the patient waveform at simulation helpful to prevent the potential underdosing of the target due to changes in patient respiration.

  3. Telemedicine system for the care of patients with neuromuscular disease and chronic respiratory failure

    PubMed Central

    Morete, Emilio; González, Francisco

    2014-01-01

    Introduction Neuromuscular diseases cause a number of limitations which may be improved by using a telemedicine system. These include functional impairment and dependence associated with muscle weakness, the insidious development of respiratory failure and episodes of exacerbation. Material and methods The present study involved three patients with severe neuromuscular disease, chronic respiratory failure and long-term mechanical ventilation, who were followed up using a telemedicine platform. The telemedicine system is based on videoconferencing and telemonitoring of cardiorespiratory variables (oxygen saturation, heart rate, blood pressure and electrocardiogram). Two different protocols were followed depending on whether the patient condition was stable or unstable. Results Over a period of 5 years, we analyzed a series of variables including use of the system, patient satisfaction and clinical impact. Overall we performed 290 videoconference sessions, 269 short monitoring oximetry measurements and 110 blood pressure measurements. With respect to the clinical impact, after enrolment in the telemedicine program, the total number of hospital admissions fell from 18 to 3. Conclusions Our findings indicate that the system was user friendly for patients and care givers. Patient satisfaction scores were acceptable. The telemedicine system was effective for the home treatment of three patients with severe neuromuscular diseases and reduced the need for hospital admissions. PMID:25395959

  4. [Respiratory system of Pichia guilliermondii yeasts with different levels of flavinogenesis].

    PubMed

    Zviagil'skaia, R A; Fedorovich, D V; Shavlovskiĭ, G M

    1978-01-01

    The yeast Pichia guilliermondii was grown on media with different content of iron and its respiration system was studied. When the yeast was cultivated on a complete medium, its respiratory chain operated at the maximum rate in the exponential growth phase, i. e. all the three points of phosphorylation were involved; cytochrome oxidase was the only terminal oxidase. When the growth was decelerated and at the stationary phase, the alternative autooxidable cyanide-resistant pathway inhibited with salicyl hydroxamate partly functioned. Iron deficiency in the medium resulted in a two-three-fold decrease in the content of total and non-hemin iron in the cells, changes in the character and rate of growth, a decrease in the biomass yield, a high rate of flavinogenesis, a slight decrease in the respiration activity, though no drastic changes in the respiration system occurred. This system is represented, as in the case of cells grown on a complete medium, by a typical cytochrome system and an alternative autooxidable pathway. The absence of principal differences in the respiration systems of normal and iron-deficient cells, as well as the operation of the first point of coupling in flavinogenic cells, makes it doubtful that Fenh-proteins of the first segment of the respiratory chain are involved in the regulation of flavinogenesis. PMID:745565

  5. Modulation of virulence genes by the two-component system PhoP-PhoQ in avian pathogenic Escherichia coli.

    PubMed

    Tu, Jian; Huang, Boyan; Zhang, Yu; Zhang, Yuxi; Xue, Ting; Li, Shaocan; Qi, Kezong

    2016-01-01

    Avian pathogenic Escherichia coli (APEC) infections are a very important problem in the poultry industry. PhoP-PhoQ is a two-component system that regulates virulence genes in APEC. In this study, we constructed strains that lacked the PhoP or PhoQ genes to assess regulation of APEC pathogenicity by the PhoP-PhoQ two-component system. The PhoP mutant strain AE18, PhoQ mutant strain AE19, and PhoP/PhoQ mutant strain AE20 were constructed by the Red homologous recombination method. Swim plates were used to evaluate the motility of the APEC strains, viable bacteria counting was used to assess adhesion and invasion of chick embryo fibroblasts, and Real-Time PCR was used to measure mRNA expression of virulence genes. We first confirmed that AE18, AE19, and AE20 were successfully constructed from the wild-type AE17 strain. AE18, AE19, and AE20 showed significant decreases in motility of 70.97%, 83.87%, and 37.1%, respectively, in comparison with AE17. Moreover, in comparison with AE17, AE18, AE19, and AE20 showed significant decreases of 63.11%, 65.42%, and 30.26%, respectively, in CEF cell adhesion, and significant decreases of 59.83%, 57.82%, and 37.90%, respectively, in CEF cell invasion. In comparison with AE17, transcript levels of sodA, polA, and iss were significantly decreased in AE18, while transcript levels of fimC and iss were significantly decreased in AE19. Our results demonstrate that deletion of PhoP or PhoQ inhibits invasion and adhesion of APEC to CEF cells and significantly reduces APEC virulence by regulating transcription of virulence genes.

  6. Modulation of virulence genes by the two-component system PhoP-PhoQ in avian pathogenic Escherichia coli.

    PubMed

    Tu, Jian; Huang, Boyan; Zhang, Yu; Zhang, Yuxi; Xue, Ting; Li, Shaocan; Qi, Kezong

    2016-01-01

    Avian pathogenic Escherichia coli (APEC) infections are a very important problem in the poultry industry. PhoP-PhoQ is a two-component system that regulates virulence genes in APEC. In this study, we constructed strains that lacked the PhoP or PhoQ genes to assess regulation of APEC pathogenicity by the PhoP-PhoQ two-component system. The PhoP mutant strain AE18, PhoQ mutant strain AE19, and PhoP/PhoQ mutant strain AE20 were constructed by the Red homologous recombination method. Swim plates were used to evaluate the motility of the APEC strains, viable bacteria counting was used to assess adhesion and invasion of chick embryo fibroblasts, and Real-Time PCR was used to measure mRNA expression of virulence genes. We first confirmed that AE18, AE19, and AE20 were successfully constructed from the wild-type AE17 strain. AE18, AE19, and AE20 showed significant decreases in motility of 70.97%, 83.87%, and 37.1%, respectively, in comparison with AE17. Moreover, in comparison with AE17, AE18, AE19, and AE20 showed significant decreases of 63.11%, 65.42%, and 30.26%, respectively, in CEF cell adhesion, and significant decreases of 59.83%, 57.82%, and 37.90%, respectively, in CEF cell invasion. In comparison with AE17, transcript levels of sodA, polA, and iss were significantly decreased in AE18, while transcript levels of fimC and iss were significantly decreased in AE19. Our results demonstrate that deletion of PhoP or PhoQ inhibits invasion and adhesion of APEC to CEF cells and significantly reduces APEC virulence by regulating transcription of virulence genes. PMID:27096785

  7. Differential display system with vertebrate-common degenerate oligonucleotide primers: uncovering genes responsive to dioxin in avian embryonic liver.

    PubMed

    Teraoka, Hiroki; Ito, Shino; Ikeda, Haruki; Kubota, Akira; Abou Elmagd, M M; Kitazawa, Takio; Kim, Eun-Young; Iwata, Hisato; Endoh, Daiji

    2012-01-01

    To assess possible impacts of environmental pollutants on gene expression profiles in a variety of organisms, we developed a novel differential display system with primer sets that are common in seven vertebrate species, based on degenerate oligonucleotide-primed PCR (DOP-PCR). An 8-mer inverse repeat motif was found in most transcripts from the seven vertebrates including fish to primates with detailed transcriptome information; more than 10,000 motifs were recognized in common in the transcripts of the seven species. Among them, we selected 275 common motifs that cover about 40-70% of transcripts throughout these species, and designed 275 DOP-PCR primers that were common to seven vertebrate species (common DOP-PCR primers). To detect genes responsive to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in developing embryos, differential display with common DOP-PCR primers was applied to embryonic liver of two avian species, the chicken (Gallus gallus) and the common cormorant (Phalacrocorax carbo), which were exposed in ovo to TCDD. The cDNA bands that showed differences between the control and TCDD-treated groups were sequenced and the mRNA expression levels were confirmed by real-time RT-PCR. This approach succeeded in isolating novel dioxin-responsive genes that include 10 coding genes in the chicken, and 1 coding gene and 1 unknown transcript in the cormorant, together with cytochrome P450 1As that have already been well established as dioxin markers. These results highlighted the usefulness of systematically designed novel differential display systems to search genes responsive to chemicals in vertebrates, including wild species, for which transcriptome information is not available. PMID:21786751

  8. Breathing and vocal control: the respiratory system as both a driver and a target of telencephalic vocal motor circuits in songbirds.

    PubMed

    Schmidt, Marc F; McLean, Judith; Goller, Franz

    2012-04-01

    The production of vocalizations is intimately linked to the respiratory system. Despite our understanding of neural circuits that generate normal respiratory patterns, very little is understood regarding how these pontomedullary circuits become engaged during vocal production. Songbirds offer a potentially powerful model system for addressing this relationship. Songs dramatically alter the respiratory pattern in ways that are often highly predictable, and songbirds have a specialized telencephalic vocal motor circuit that provides massive innervation to a brainstem respiratory network that shares many similarities with its mammalian counterpart. In this review, we highlight interactions between the song motor circuit and the respiratory system, describing how both systems are likely to interact to produce the complex respiratory patterns that are observed during vocalization. We also discuss how the respiratory system, through its bilateral bottom-up projections to thalamus, might play a key role in sending precisely timed signals that synchronize premotor activity in both hemispheres.

  9. Next Generation Respiratory Viral Vaccine System: Advanced and Emerging Bioengineered Human Lung Epithelia Model (HLEM) Organoid Technology

    NASA Technical Reports Server (NTRS)

    Goodwin, Thomas J.; Schneider, Sandra L.; MacIntosh, Victor; Gibbons, Thomas F.

    2010-01-01

    Acute respiratory infections, including pneumonia and influenza, are the S t" leading cause of United States and worldwide deaths. Newly emerging pathogens signaled the need for an advanced generation of vaccine technology.. Human bronchial-tracheal epithelial tissue was bioengineered to detect, identify, host and study the pathogenesis of acute respiratory viral disease. The 3-dimensional (3D) human lung epithelio-mesechymal tissue-like assemblies (HLEM TLAs) share characteristics with human respiratory epithelium: tight junctions, desmosomes, microvilli, functional markers villin, keratins and production of tissue mucin. Respiratory Syntial Virus (RSV) studies demonstrate viral growth kinetics and membrane bound glycoproteins up to day 20 post infection in the human lung-orgainoid infected cell system. Peak replication of RSV occurred on day 10 at 7 log10 particles forming units per ml/day. HLEM is an advanced virus vaccine model and biosentinel system for emergent viral infectious diseases to support DoD global surveillance and military readiness.

  10. [Basic types of respiratory system structure in insect egg envelopes, and genes controlling their formation].

    PubMed

    Omelina, E S; Baricheva, É M; Fedorova, E V

    2012-01-01

    Insects is a taxon surprisingly rich with species and varieties, and its representatives are considered as the most fitted and "evolutionary successful" living things. Insects are distinguished by diversity and abundance of adaptations to environmental conditions, representatives of this class inhabit different ecological niches, they can be found practically in every corner of the Earth and, in particular, in close adjacency to man. Among them are those who man benefits from and those who man struggles against. This determines man's interest in studying peculiarities of their development as well as adaptations formed by them in the course of evolution to become more viable. In the paper, data are presented on morphological structure of respiratory systems in insect egg envelopes that ensure respiration process of developing embryo. Variability of these systems and their dependence on environmental conditions are demonstrated for different insect species. The information about genes controlling development of respiratory systems in fruit fly eggs is brought together, and occurrence of evolutionary conservative genes participating in development of such systems in other insect species is ascertained. PMID:22834166

  11. Optimal Determination of Respiratory Airflow Patterns Using a Nonlinear Multicompartment Model for a Lung Mechanics System

    PubMed Central

    Li, Hancao; Haddad, Wassim M.

    2012-01-01

    We develop optimal respiratory airflow patterns using a nonlinear multicompartment model for a lung mechanics system. Specifically, we use classical calculus of variations minimization techniques to derive an optimal airflow pattern for inspiratory and expiratory breathing cycles. The physiological interpretation of the optimality criteria used involves the minimization of work of breathing and lung volume acceleration for the inspiratory phase, and the minimization of the elastic potential energy and rapid airflow rate changes for the expiratory phase. Finally, we numerically integrate the resulting nonlinear two-point boundary value problems to determine the optimal airflow patterns over the inspiratory and expiratory breathing cycles. PMID:22719793

  12. Airway and tissue loading in postinterrupter response of the respiratory system - an identification algorithm construction.

    PubMed

    Jablonski, Ireneusz; Mroczka, Janusz

    2010-01-01

    The paper offers an enhancement of the classical interrupter technique algorithm dedicated to respiratory mechanics measurements. Idea consists in exploitation of information contained in postocclusional transient states during indirect measurement of parameter characteristics by model identification. It needs the adequacy of an inverse analogue to general behavior of the real system and a reliable algorithm of parameter estimation. The second one was a subject of reported works, which finally showed the potential of the approach to separation of airway and tissue response in a case of short-term excitation by interrupter valve operation. Investigations were conducted in a regime of forward-inverse computer experiment.

  13. Avian Retroviral Replication

    PubMed Central

    Justice, James; Beemon, Karen L.

    2013-01-01

    Avian retroviruses have undergone intense study since the beginning of the 20th century. They were originally identified as cancer-inducing filterable agents in chicken neoplasms. Since their discovery, the study of these simple retroviruses has contributed greatly to our understanding of retroviral replication and cancer. Avian retroviruses are continuing to evolve and have great economic importance in the poultry industry worldwide. The aim of this review is to provide a broad overview of the genome, pathology, and replication of avian retroviruses. Notable gaps in our current knowledge are highlighted, and areas where avian retroviruses differ from other retrovirus are also emphasized. PMID:24011707

  14. Using avian radar to examine relationships among avian activity, bird strikes, and meteorological factors

    USGS Publications Warehouse

    Coates, Peter S.; Casazza, Michael L.; Halstead, Brian J.; Fleskes, Joseph P.; Laughlin, James A.

    2011-01-01

    Radar systems designed to detect avian activity at airfields are useful in understanding factors that influence the risk of bird and aircraft collisions (bird strikes). We used an avian radar system to measure avian activity at Beale Air Force Base, California, USA, during 2008 and 2009. We conducted a 2-part analysis to examine relationships among avian activity, bird strikes, and meteorological and time-dependent factors. We found that avian activity around the airfield was greater at times when bird strikes occurred than on average using a permutation resampling technique. Second, we developed generalized linear mixed models of an avian activity index (AAI). Variation in AAI was first explained by seasons that were based on average migration dates of birds at the study area. We then modeled AAI by those seasons to further explain variation by meteorological factors and daily light levels within a 24-hour period. In general, avian activity increased with decreased temperature, wind, visibility, precipitation, and increased humidity and cloud cover. These effects differed by season. For example, during the spring bird migration period, most avian activity occurred before sunrise at twilight hours on clear days with low winds, whereas during fall migration, substantial activity occurred after sunrise, and birds generally were more active at lower temperatures. We report parameter estimates (i.e., constants and coefficients) averaged across models and a relatively simple calculation for safety officers and wildlife managers to predict AAI and the relative risk of bird strike based on time, date, and meteorological values. We validated model predictability and assessed model fit. These analyses will be useful for general inference of avian activity and risk assessment efforts. Further investigation and ongoing data collection will refine these inference models and improve our understanding of factors that influence avian activity, which is necessary to inform

  15. The Role and Immunobiology of Eosinophils in the Respiratory System: a Comprehensive Review.

    PubMed

    Eng, Stephanie S; DeFelice, Magee L

    2016-04-01

    The eosinophil is a fully delineated granulocyte that disseminates throughout the bloodstream to end-organs after complete maturation in the bone marrow. While the presence of eosinophils is not uncommon even in healthy individuals, these granulocytes play a central role in inflammation and allergic processes. Normally appearing in smaller numbers, higher levels of eosinophils in the peripheral blood or certain tissues typically signal a pathologic process. Eosinophils confer a beneficial effect on the host by enhancing immunity against molds and viruses. However, tissue-specific elevation of eosinophils, particularly in the respiratory system, can cause a variety of short-term symptoms and may lead to long-term sequelae. Eosinophils often play a role in more commonly encountered disease processes, such as asthma and allergic responses in the upper respiratory tract. They are also integral in the pathology of less common diseases including eosinophilic pneumonia, allergic bronchopulmonary aspergillosis, hypersensitivity pneumonitis, and drug reaction with eosinophilia and systemic symptoms. They can be seen in neoplastic disorders or occupational exposures as well. The involvement of eosinophils in pulmonary disease processes can affect the method of diagnosis and the selection of treatment modalities. By analyzing the complex interaction between the eosinophil and its environment, which includes signaling molecules and tissues, different therapies have been discovered and created in order to target disease processes at a cellular level. Innovative treatments such as mepolizumab and benralizumab will be discussed. The purpose of this article is to further explore the topic of eosinophilic presence, activity, and pathology in the respiratory tract, as well as discuss current and future treatment options through a detailed literature review.

  16. SU-E-J-190: Development of Abdominal Compression & Respiratory Guiding System Using Gas Pressure Sensor

    SciTech Connect

    Kim, T; Kim, D; Kang, S; Cho, M; Kim, K; Shin, D; Suh, T; Kim, S

    2015-06-15

    Purpose: Abdominal compression is known to be effective but, often makes external-marker-based monitoring of breathing motion not feasible. In this study, we developed and evaluated a system that enables both abdominal compression and monitoring of residual abdominal motion simultaneously. The system can also provide visual-biofeedback capability. Methods: The system developed consists of a compression belt, an abdominal motion monitoring sensor (gas pressure sensor) and a visual biofeedback device. The compression belt was designed to be able to compress the frontal side of the abdomen. The pressure level of the belt is controlled by air volume and monitored in real time using the gas pressure sensor. The system displays not only the real-time monitoring curve but also a guiding respiration model (e.g., a breath hold or shallow breathing curve) simultaneously on the head mounted display to help patients keep their breathing pattern as consistent as possible. Three healthy volunteers were enrolled in this pilot study and respiratory signals (pressure variations) were obtained both with and without effective abdominal compression to investigate the feasibility of the developed system. Two guidance patterns, breath hold and shallow breathing, were tested. Results: All volunteers showed smaller abdominal motion with compression (about 40% amplitude reduction compared to without compression). However, the system was able to monitor residual abdominal motion for all volunteers. Even under abdominal compression, in addition, it was possible to make the subjects successfully follow the guide patterns using the visual biofeedback system. Conclusion: The developed abdominal compression & respiratory guiding system was feasible for residual abdominal motion management. It is considered that the system can be used for a respiratory motion involved radiation therapy while maintaining the merit of abdominal compression. This work was supported by the Radiation Technology R

  17. Pseudorandom signals to estimate apparent transfer and coherence functions of nonlinear systems: applications to respiratory mechanics.

    PubMed

    Suki, B; Lutchen, K R

    1992-11-01

    There is an increasing need in physiology to estimate nonparametric linear transfer functions from data originating from biological systems which are invariably nonlinear. For pseudorandom (PRN) input stimuli, we derive general expressions for the apparent transfer (Z) and coherence (gamma 2) functions of nonlinear systems that can be represented by a Volterra series. It is shown that in the case of PRN signals in which the frequency components are integer multiples of other components the estimates of Z are seriously biased due to harmonic distortion and crosstalk among frequency components of the input. When the PRN signal includes components that are not integer multiples of other components harmonic distortion is avoided, but not necessarily cross talk. Here the estimates of Z remain poor without a noticeable influence on gamma 2. To avoid the problems associated with harmonic distortions and minimize the influence of crosstalk, a family of pseudorandom signals is proposed which are especially suited for the estimation of Z and gamma 2 in mechanical measurements of physiological systems at low frequencies. The components in the signals cannot be reproduced as linear combinations of two or more frequency components of the input. In a second-order system, this completely eliminates the bias, while in higher-order, but not strongly nonlinear systems, the interactions among the components are reduced to a level that the response can be considered as if it was measured with independent sine waves of an equivalent amplitude. It is also shown that the values of gamma 2 are not appropriate to assess linearity of the system. The theory is supported by simulation results and experimental examples brought from the field of respiratory mechanics by comparing the input impedance of the respiratory system of a dog measured with various PRN signals. PMID:1487277

  18. Effects of epilepsy on autonomic nervous system and respiratory function tests.

    PubMed

    Berilgen, M Said; Sari, Tacim; Bulut, Serpil; Mungen, Bulent

    2004-08-01

    We have investigated autonomic nervous system function during the interictal period in epileptic patients and the possible effects of autonomic dysfunction on respiratory functions. A total of 32 epileptic patients (23 generalized, 9 partial epilepsy) and 32 healthy volunteers were involved. Sympathetic skin response (SSR), for evaluating the sympathetic nervous system, and RR interval variation (RRIV) were measured at the beginning and third month of antiepileptic treatment, and respiratory function tests (RFTs) were performed. In patients with partial epilepsy, SSR latency in the upper extremity (1.3+/-0.2 s) was longer than that of controls (1.2+/-0.3 s) at baseline (P=0.05), and was significantly reduced (1.1+/-0.3 s) after treatment (P<0.05). RRIV values of patients with generalized epilepsy were statistically significantly lower than those of controls (P<0.01). However, deep breathing RRIV values (32.6+/-15.3%) of patients were lower than those (43.0+/-18.2%) of controls (P<0.05). Sympathetic dysfunction was determined in patients with partial epilepsy and parasympathetic dysfunction in patients with generalized epilepsy. No abnormality was observed on RFTs for both patients with partial epilepsy and patients with generalized epilepsy.

  19. [Association of fatty acid metabolism with systemic inflammatory response in chronic respiratory diseases].

    PubMed

    Denisenko, Y K; Novgorodtseva, T P; Zhukova, N V; Antonuk, M V; Lobanova, E G; Kalinina, E P

    2016-03-01

    We examined composition of plasma non-esterified fatty acids (NFAs), erythrocyte fatty acids, levels of eicosanoids in patients with asthma and chronic obstructive pulmonary disease (COPD) with different type of the inflammatory response. The results of our study show that asthma and COPD in remission are associated with changes in the composition NFAs of plasma, FA of erythrocytes, level eicosanoid despite the difference in the regulation of immunological mechanisms of systemic inflammation. These changes are characterized by excessive production of arachidonic acid (20:4n-6) and cyclooxygenase and lipoxygenase metabolites (thromboxane B2, leukotriene B4) and deficiency of their functional antagonist, eicosapentaenoic acid (20:5n-3). The recognized association between altered fatty acid composition and disorders of the immune mechanisms of regulation of systemic inflammation in COPD and asthma demonstrated the important role of fatty acids and their metabolites in persistence of inflammatory processes in diseases of the respiratory system in the condition of remission. PMID:27420629

  20. Development of a microspectrophotometer system for monitoring the redox reactions of respiratory pigments

    NASA Astrophysics Data System (ADS)

    Kavanagh, Karen Y.; Walsh, James E.; Murphy, J.; Harmey, M.; Farrell, M. A.; Hardimann, O.; Perryman, R.

    1997-05-01

    The continuing demand for non-invasive tools for use in clinical diagnosis has created the need for flexible and innovative optical systems which satisfy current requirements. We report the development of a microspectrophotometer system for use on mitochondrial respiratory pigments. This novel optical fiber set-up uses visible spectrophotometry to monitor the reduction of mitochondrial electron carriers. Preliminary data is presented for the reduction of cytochrome-c by two methods. In the first, cytochrome-c was reduced in isolation using sodium dithionite. The second was an in-vivo simulation of the reduction of cytochrome-c using the mitochondrial extract from rat liver. The key features of the system are; front end adaptability, high sensitivity and fast scanning capabilities which are essential for the rapid biological reactions which are observed.

  1. Effect of meditation on respiratory system, cardiovascular system and lipid profile.

    PubMed

    Vyas, Rashmi; Dikshit, Nirupama

    2002-10-01

    In this study, respiratory functions, cardiovascular parameters and lipid profile of those practicing Raja Yoga meditation (short and long term meditators) were compared with those of nonmediators. Vital capacity, tidal volume and breath holding were significantly higher in short and long term meditators than nonmeditators. Long term mediators had significantly higher vital capacity and expiratory pressure than short term meditators. Diastolic blood pressure was significantly lower in both short and long term meditators as compared to nonmeditators. Heart rate was significantly lower in long term meditators than in short term meditators and nonmeditators. Lipid profile showed a significant lowering of serum cholesterol in short and long term meditators as compared to nonmeditators. Lipid profile of short and long term meditators was better than the profile of nonmeditators inspite of similar physical activity. This shows that Raja Yoga meditation provides significant improvements in respiratory functions, cardiovascular parameters and lipid profile.

  2. Respiratory Impairment and Systemic Inflammation in Cedar Asthmatics Removed from Exposure

    PubMed Central

    Carlsten, Chris; Dybuncio, Anne; Pui, Mandy M.; Chan-Yeung, Moira

    2013-01-01

    Background Prior research has shown that removing occupational asthmatics from exposure does not routinely lead to significant improvements in respiratory impairment. These studies were of limited duration and factors determining recovery remain obscure. Our objective was to evaluate residual respiratory impairment and associated sputum and blood biomarkers in subjects with Western red cedar asthma after exposure cessation. Methods Subjects previously diagnosed with cedar asthma, and removed from exposure to cedar dust for at least one year, were recruited. Subjects completed a questionnaire and spirometry. PC20 (methacholine concentration that produces 20% fall in FEV1 (forced expiratory volume at 1 second)) sputum cellularity and select Th1/Th2 (T helper cells 1 and 2) cytokine concentrations in peripheral blood were determined. The asthma impairment class was determined and multivariate analyses were performed to determine its relationship with sputum cell counts and serum cytokines. Results 40 non-smoking males (mean age 62) were examined at a mean interval of 25 years from cedar asthma diagnosis and 17 years from last cedar exposure. 40% were in impairment class 2/3. On average, the PC20 had increased by 2.0 mg/ml; the FEV1 decreased by 1.5 L, with greater decrease in those with greater impairment. Higher impairment was associated with serum interferon-gamma (mean = 1.3 pg/ml in class 2/3 versus 0.62 pg/ml in class 0/1, p = 0.04), mainly due to the FEV1 component (correlation with interferon-gamma = −0.46, p = 0.005). Conclusion Years after exposure cessation, patients with Western red cedar asthma have persistent airflow obstruction and respiratory impairment, associated with systemic inflammation. PMID:23468925

  3. Interrelation between oxygen tension and nitric oxide in the respiratory system.

    PubMed

    Tsuchiya, M; Tokai, H; Takehara, Y; Haraguchi, Y; Asada, A; Utsumi, K; Inoue, M

    2000-10-01

    To understand the relationship between oxygen tension and nitric oxide (NO) function, one animal and two human studies were designed. In the animal study, the effect of NO in inducing the relaxation of aortic specimens was significantly lower by 68% under 480 mm Hg of oxygen tension than under 28 mm Hg, indicating that oxygen tension has an important role in determining the biological effects of NO. In a clinical analysis with nonsmokers (n = 23), the alveolar-to-arterial difference for oxygen (A-aDO(2)) was reciprocally correlated with exhaled NO concentrations (r = 0.53). Because NO concentration in the lower respiratory zone depends partly on the amount of inspirable NO originating in the upper airway, a well-ventilated area, requiring much perfusion, could receive greater amounts of NO than a poorly ventilated one. Thus, the reciprocal relation of A-aDO(2) with the concentration of exhaled NO is not necessarily incompatible with the effect of hypoxic pulmonary vasoconstriction in ventilation-to-perfusion (V'A/Q') imbalance. In our third experiment, with nonsmokers (n = 21), pure oxygen inhalation during mechanical ventilation significantly decreased the concentration of exhaled NO and enhanced A-aDO(2), indicating a relationship between NO and oxygen similar to that observed in the animal experiment. These findings led us to conclude that a positive relation between exhaled NO and blood oxygenation efficiency exists in the respiratory system, and further, that oxygen might affect this relationship. Thus, the relative balance of NO and oxygen concentrations may be another factor for consideration in respiratory function. PMID:11029327

  4. Oxidative Stress and Respiratory System: Pharmacological and Clinical Reappraisal of N-Acetylcysteine

    PubMed Central

    Santus, Pierachille; Corsico, Angelo; Solidoro, Paolo; Braido, Fulvio; Di Marco, Fabiano

    2014-01-01

    The large surface area for gas exchange makes the respiratory system particularly susceptible to oxidative stress-mediated injury. Both endogenous and exogenous pro-oxidants (e.g. cigarette smoke) trigger activation of leukocytes and host defenses. These mechanisms interact in a “multilevel cycle” responsible for the control of the oxidant/antioxidant homeostasis. Several studies have demonstrated the presence of increased oxidative stress and decreased antioxidants (e.g. reduced glutathione [GSH]) in subjects with chronic obstructive pulmonary disease (COPD), but the contribution of oxidative stress to the pathophysiology of COPD is generally only minimally discussed. The aim of this review was to provide a comprehensive overview of the role of oxidative stress in the pathogenesis of respiratory diseases, particularly COPD, and to examine the available clinical and experimental evidence on the use of the antioxidant N-acetylcysteine (NAC), a precursor of GSH, as an adjunct to standard therapy for the treatment of COPD. The proposed concept of “multilevel cycle” helps understand the relationship between respiratory diseases and oxidative stress, thus clarifying the rationale for using NAC in COPD. Until recently, antioxidant drugs such as NAC have been regarded only as mucolytic agents. Nevertheless, several clinical trials indicate that NAC may reduce the rate of COPD exacerbations and improve small airways function. The most plausible explanation for the beneficial effects observed in patients with COPD treated with NAC lies in the mucolytic and antioxidant effects of this drug. Modulation of bronchial inflammation by NAC may further account for these favorable clinical results. PMID:24787454

  5. Pathogenesis and pathobiology of avian influenza virus infection in birds.

    PubMed

    Pantin-Jackwood, M J; Swayne, D E

    2009-04-01

    Avian influenza (AI) viruses vary in their ability to produce infection, disease and death in different bird species. Based on the pathobiological effect in chickens, AI viruses (AIV) are categorised as low pathogenic (LPAIV) or highly pathogenic (HPAIV). Typically, LPAIV cause asymptomatic infections in wild aquatic birds, but when introduced into domesticated poultry, infections may be asymptomatic or produce clinical signs and lesions reflecting pathophysiological damage to the respiratory, digestive and reproductive systems. The HPAIV have primarily been seen in gallinaceous poultry, producing high morbidity and mortality, and systemic disease with necrosis and inflammation in multiple visceral organs, nervous and cardiovascular systems, and the integument. Although HPAIV have rarely infected domestic waterfowl or wild birds, the Eurasian-African H5N1 HPAIV have evolved over the past decade with the unique capacity to infect and cause disease in domestic ducks and wild birds, producing a range of syndromes including asymptomatic respiratory and digestive tract infections; systemic disease limited to two or three critical organs, usually the brain, heart and pancreas; and severe disseminated infection and death as seen in gallinaceous poultry. Although experimental studies using intranasal inoculation have produced infection in a variety of wild bird species, the inefficiency of contact transmission in some of them, for example, passerines and Columbiformes, suggests they are unlikely to be a reservoir for the viruses, while others such as some wild Anseriformes, can be severely affected and could serve as a dissemination host over intermediate distances.

  6. The Influence of Prehospital Systemic Corticosteroid Use on Development of Acute Respiratory Distress Syndrome and Hospital Outcomes

    PubMed Central

    Karnatovskaia, Lioudmila V.; Lee, Augustine S.; Gajic, Ognjen; Festic, Emir

    2015-01-01

    Objective The role of systemic corticosteroids in pathophysiology and treatment of acute respiratory distress syndrome is controversial. Use of prehospital systemic corticosteroid therapy may prevent the development of acute respiratory distress syndrome and improve hospital outcomes. Design This is a preplanned retrospective subgroup analysis of the prospectively identified cohort from a trial by the U.S. Critical Illness and Injury Trials Group designed to validate the Lung Injury Prediction Score. Setting Twenty-two acute care hospitals. Patients Five thousand eighty-nine patients with at least one risk factor for acute respiratory distress syndrome at the time of hospitalization. Intervention Propensity-based analysis of previously recorded data. Measurements and Main Results Three hundred sixty-four patients were on systemic corticosteroids. Prevalence of acute respiratory distress syndrome was 7.7% and 6.9% (odds ratio, 1.1 [95% CI, 0.8–1.7]; p = 0.54) for patients on systemic corticosteroid and not on systemic corticosteroids, respectively. A propensity for being on systemic corticosteroids was derived through logistic regression by using all available covariates. Subsequently, 354 patients (97%) on systemic corticosteroids were matched to 1,093 not on systemic corticosteroids by their propensity score for a total of 1,447 patients in the matched set. Adjusted risk for acute respiratory distress syndrome (odds ratio, 0.96 [95% CI, 0.54–1.38]), invasive ventilation (odds ratio, 0.84 [95% CI, 0.62–1.12]), and inhospital mortality (odds ratio, 0.97 [95% CI, 0.63–1.49]) was then calculated from the propensity-matched sample using conditional logistic regression model. No significant associations were present. Conclusions Prehospital use of systemic corticosteroids neither decreased the development of acute respiratory distress syndrome among patients hospitalized with at one least risk factor, nor affected the need for mechanical ventilation or hospital

  7. Avian biology, the human influence on global avian influenza transmission, and performing surveillance in wild birds.

    PubMed

    Gibbs, Samantha E J

    2010-06-01

    This paper takes a closer look at three interrelated areas of study: avian host biology, the role of human activities in virus transmission, and the surveillance activities centered on avian influenza in wild birds. There are few ecosystems in which birds are not found. Correspondingly, avian influenza viruses are equally global in distribution, relying on competent avian hosts. The immune systems, annual cycles, feeding behaviors, and migration patterns of these hosts influence the ecology of the disease. Decreased biodiversity has also been linked to heightened disease transmission in several disease systems, and it is evident that active destruction and modification of wetland environments for human use is impacting avian populations drastically. Legal and illegal trade in wild birds present a significant risk for introduction and maintenance of exotic diseases. After the emergence of HPAI H5N1 in Hong Kong in 1996 and the ensuing geographic spread of outbreaks after 2003, both infected countries and those at risk of introduction began intensifying avian influenza surveillance efforts. Several techniques for sampling wild birds for influenza viruses have been applied. Benefits, problems, and biases exist for each method. The wild bird avian influenza surveillance programs taking place across the continents are now scaling back due to the rise of other spending priorities; hopefully the lessons learned from this work will be preserved and will inform future research and disease outbreak response priorities.

  8. The effects of centrally injected arachidonic acid on respiratory system: Involvement of cyclooxygenase to thromboxane signaling pathway.

    PubMed

    Erkan, Leman Gizem; Guvenc, Gokcen; Altinbas, Burcin; Niaz, Nasir; Yalcin, Murat

    2016-05-01

    Arachidonic acid (AA) is a polyunsaturated fatty acid that is present in the phospholipids of the cell membranes of the body and is abundant in the brain. Exogenously administered AA has been shown to affect brain metabolism and to exhibit cardiovascular and neuroendocrine actions. However, little is known regarding its respiratory actions and/or central mechanism of its respiratory effects. Therefore, the present study was designed to investigate the possible effects of centrally injected AA on respiratory system and the mediation of the central cyclooxygenase (COX) to thromboxane A2 (TXA2) signaling pathway on AA-induced respiratory effects in anaesthetized rats. Intracerebroventricular (i.c.v.) administration of AA induced dose- and time-dependent increase in tidal volume, respiratory rates and respiratory minute ventilation and also caused an increase in partial oxygen pressure (pO2) and decrease in partial carbon dioxide pressure (pCO2) in male anaesthetized Spraque Dawley rats. I.c.v. pretreatment with ibuprofen, a non-selective COX inhibitor, completely blocked the hyperventilation and blood gases changes induced by AA. In addition, central pretreatment with different doses of furegrelate, a TXA2 synthesis inhibitor, also partially prevented AA-evoked hyperventilation and blood gases effects. These data explicitly show that centrally administered AA induces hyperventilation with increasing pO2 and decreasing pCO2 levels which are mediated by the activation of central COX to TXA2 signaling pathway.

  9. Constant-phase descriptions of canine lung, chest wall, and total respiratory system viscoelasticity: effects of distending pressure.

    PubMed

    Kaczka, David W; Smallwood, Jennifer L

    2012-08-15

    The dynamic mechanical properties of the respiratory system reflect the ensemble behavior of its constituent structural elements. This study assessed the appropriateness of constant-phase descriptions of respiratory tissue viscoelasticity at various distending pressures. We measured the mechanical input impedance (Z) of the lungs, chest wall and total respiratory system in 12 dogs at mean airway pressures from 5 to 30 cm H(2)O. Each Z was fitted with a constant-phase model which provided estimates tissue damping (G), elastance (H), and hysteresivity (η=G/H). Both G and H sharply increased with increasing distending pressure for the lungs and chest wall, while η attained a minimum near 15-20 cm H(2)O. Model fitting errors for the lungs and total respiratory system increased for distending pressures greater than 20 cm H(2)O, indicating that constant-phase descriptions of parenchymal and respiratory system viscoelasticty may be inappropriate at volumes closer to total lung capacity. Such behavior may reflect alterations in load distribution across various parenchymal stress-bearing elements.

  10. Effect of a botanical composition, UP446, on respiratory, cardiovascular and central nervous systems in beagle dogs and rats.

    PubMed

    Yimam, Mesfin; Lee, Young Chul; Jia, Qi

    2016-06-01

    Extensive safety evaluation of UP446, a botanical composition comprised of standardized extracts from roots of Scutellaria baicalensis and heartwoods of Acacia catechu, has been reported previously. Here we carried out additional studies to assess the effect of UP446 on respiratory, cardiovascular and central nervous (CNS) systems. A Functional observational battery (FOB) and whole body plethysmography system in rats and implanted telemetry in dogs were utilized to evaluate the potential CNS, respiratory and cardiovascular toxicity, respectively. UP446 was administered orally at dose levels of 800, 2000 and 5000 mg/kg to SpragueDawley rats and at 4 ascending dose levels (0, 250, 500 and 1000 mg/kg) to beagle dogs. No abnormal effects were observed on the cage side, open field, hand held, and sensori-motor observations suggestive of toxicity in respiratory, cardiovascular and central nervous (CNS) systems. Rectal temperatures were comparable for each treatment groups. Similarly, respiratory rate, tidal volume and minute volume were unaffected by any of the treatment groups. No UP446 related changes were observed on blood pressure, heart rate and electrocardiogram in beagle dogs at dose levels of 250, 500 and 1000 mg/kg. Some minor incidental, non-dose correlated changes were observed in the FOB assessment. These data suggest that UP446 has minimal or no pharmaco-toxicological effect on the respiratory, cardiovascular and central nervous systems. PMID:27012374

  11. On avian influenza epidemic models with time delay.

    PubMed

    Liu, Sanhong; Ruan, Shigui; Zhang, Xinan

    2015-12-01

    After the outbreak of the first avian influenza A virus (H5N1) in Hong Kong in 1997, another avian influenza A virus (H7N9) crossed the species barrier in mainland China in 2013 and 2014 and caused more than 400 human cases with a death rate of nearly 40%. In this paper, we take account of the incubation periods of avian influenza A virus and construct a bird-to-human transmission model with different time delays in the avian and human populations combining the survival probability of the infective avian and human populations at the latent time. By analyzing the dynamical behavior of the model, we obtain a threshold value for the prevalence of avian influenza and investigate local and global asymptotical stability of equilibria of the system.

  12. Evaluation of a rat tracheal epithelial cell culture assay system to identify respiratory carcinogens

    SciTech Connect

    Steele, V.E.; Arnold, J.T.; Arnold, J.V.; Mass, M.J. )

    1989-01-01

    To evaluate a short-term epithelial cell assay system to detect respiratory carcinogens, primary cultures of rat tracheal epithelial cells were exposed to a series of 17 compounds and scored for morphologically transformed cell colonies 28 days later. The test compounds included known carcinogens and noncarcinogens in volatile or liquid form. Tracheal epithelial cells were isolate from F344 rats, plated onto collagen-coated dishes, and exposed to the test compounds on day 1 for 24 hours. At day 30 the cultures were fixed, stained, and scored for colonies having a density greater than 1,300 cells/mm{sup 2}. With standardized protocols, such colonies are very infrequent in media and solvent control cultures. Concentration levels for each chemical were chosen over a range from nontoxic to toxic levels. Highly positive compounds in this assay included benzo(a)pyrene, benzo(l)aceanthrylene, 3-methylcholanthrene, and formaldehyde. Compounds which were negative in this assay included pyrene, benzo(e)pyrene, and 4-nitroquinoline-N-oxide. Examining the concordance of in vitro results with whole animal carcinogenesis studies revealed an accuracy of 88% with one false-positive and one false-negative compound. The results of these studies indicate that the rat tracheal epithelial cell assay may be useful in identifying potential respiratory carcinogens in our environment.

  13. The effect of progressive hypoxia on the respiratory and cardiovascular systems of the pigeon and duck

    PubMed Central

    Butler, P. J.

    1970-01-01

    1. During the initial stages of progressive hypoxia in ducks and pigeons (Pa, O2 100 → 60 mm Hg) there were no significant changes in heart rate, blood pressure or oxygen uptake, but respiratory frequency increased. 2. As hypoxia became more profound (Pa, O2 60 → 30 mm Hg), there was a significant tachycardia, and blood pressure fell slightly in both animals. Respiratory frequency continued to increase in both species, and ducks were able to maintain their oxygen uptake at control levels at a lower Pa, O2 than pigeons. 3. The response to progressive hypoxia of pigeons and ducks was compared with that of the domestic fowl. The former two birds could maintain control of their cardiovascular system at a lower environmental oxygen concentration than the latter. Arterial PO2 followed a similar course in all three birds in relation to environmental oxygen content. Pigeons and ducks were therefore able to endure a lower arterial PO2 than chickens. PMID:5501049

  14. Radon decay products in realistic living rooms and their activity distributions in human respiratory system.

    PubMed

    Mohery, M; Abdallah, A M; Baz, S S; Al-Amoudi, Z M

    2014-12-01

    In this study, the individual activity concentrations of attached short-lived radon decay products ((218)Po, (214)Pb and (214)Po) in aerosol particles were measured in ten poorly ventilated realistic living rooms. Using standard methodologies, the samples were collected using a filter holder technique connected with alpha-spectrometric. The mean value of air activity concentration of these radionuclides was found to be 5.3±0.8, 4.5±0.5 and 3.9±0.4 Bq m(-3), respectively. Based on the physical properties of the attached decay products and physiological parameters of light work activity for an adult human male recommended by ICRP 66 and considering the parameters of activity size distribution (AMD = 0.25 μm and σ(g) = 2.5) given by NRC, the total and regional deposition fractions in each airway generation could be evaluated. Moreover, the total and regional equivalent doses in the human respiratory tract could be estimated. In addition, the surface activity distribution per generation is calculated for the bronchial region (BB) and the bronchiolar region (bb) of the respiratory system. The maximum values of these activities were found in the upper bronchial airway generations.

  15. Distribution and Respiratory Activity of Mycobacteria in Household Water System of Healthy Volunteers in Japan

    PubMed Central

    Ichijo, Tomoaki; Izumi, Yoko; Nakamoto, Sayuri; Yamaguchi, Nobuyasu; Nasu, Masao

    2014-01-01

    The primary infectious source of nontuberculous mycobacteria (NTM), which are known as opportunistic pathogens, appears to be environmental exposure, and it is important to reduce the frequency of exposure from environmental sources for preventing NTM infections. In order to achieve this, the distribution and respiratory activity of NTM in the environments must be clarified. In this study, we determined the abundance of mycobacteria and respiratory active mycobacteria in the household water system of healthy volunteers using quantitative PCR and a fluorescent staining method, because household water has been considered as one of the possible infectious sources. We chose healthy volunteer households in order to lessen the effect of possible residential contamination from an infected patient. We evaluated whether each sampling site (bathroom drain, kitchen drain, bath heater pipe and showerhead) have the potential to be the sources of NTM infections. Our results indicated that drains in the bathroom and kitchen sink are the niche for Mycobacterium spp. and M. avium cells were only detected in the bathtub inlet. Both physicochemical and biologic selective pressures may affect the preferred habitat of Mycobacterium spp. Regional differences also appear to exist as demonstrated by the presence (US) or absence (Japan) of Mycobacterium spp. on showerheads. Understanding of the country specific human activities and water usage will help to elucidate the infectious source and route of nontuberculous mycobacterial disease. PMID:25350137

  16. Microfabricated engineered particle systems for respiratory drug delivery and other pharmaceutical applications.

    PubMed

    Garcia, Andres; Mack, Peter; Williams, Stuart; Fromen, Catherine; Shen, Tammy; Tully, Janet; Pillai, Jonathan; Kuehl, Philip; Napier, Mary; Desimone, Joseph M; Maynor, Benjamin W

    2012-01-01

    Particle Replication in Non-Wetting Templates (PRINT(®)) is a platform particle drug delivery technology that coopts the precision and nanoscale spatial resolution inherently afforded by lithographic techniques derived from the microelectronics industry to produce precisely engineered particles. We describe the utility of PRINT technology as a strategy for formulation and delivery of small molecule and biologic therapeutics, highlighting previous studies where particle size, shape, and chemistry have been used to enhance systemic particle distribution properties. In addition, we introduce the application of PRINT technology towards respiratory drug delivery, a particular interest due to the pharmaceutical need for increased control over dry powder characteristics to improve drug delivery and therapeutic indices. To this end, we have produced dry powder particles with micro- and nanoscale geometric features and composed of small molecule and protein therapeutics. Aerosols generated from these particles show attractive properties for efficient pulmonary delivery and differential respiratory deposition characteristics based on particle geometry. This work highlights the advantages of adopting proven microfabrication techniques in achieving unprecedented control over particle geometric design for drug delivery.

  17. Induction of antibody responses in the common mucosal immune system by respiratory syncytical virus immunostimulating complexes.

    PubMed

    Hu, K F; Ekström, J; Merza, M; Lövgren-Bengtsson, K; Morein, B

    1999-05-01

    Immunostimulating complexes (ISCOMs) containing envelope proteins of respiratory syncytial virus (RSV) were explored as a mucosal delivery system for the capacity of inducing a common mucosal antibody response. Two intranasal (i.n.) administrations of BALB/c mice with ISCOMs induced potent serum IgG, and strong IgA responses to RSV locally in the lungs and the upper respiratory, and remotely in the genital and the intestinal tracts. Virtually no measurable IgA response was found in these mucosal organs after two subcutaneous (s.c.) immunizations. Virus neutralizing (VN) antibodies were detected in serum and in all of the mucosal organ extracts after both s.c. and i.n. immunizations indicating that the neutralizing epitopes were preserved after both mucosal and parenteral modes of administration. While the mucosal IgA response appears to be of mucosal origin, the IgG antibodies to RSV detected in the mucosal organs were likely of serum origin. However, the mucosal VN antibodies correlated with the IgG rather than the IgA levels. An enhanced IgA response to gp120 in various mucosal organs was recorded after i.n. immunization with gp120 incorporated in RSV ISCOMs, indicating a role of RSV envelope proteins in enhancing and targeting mucosal responses to passenger antigens. PMID:10363675

  18. Microfabricated Engineered Particle Systems for Respiratory Drug Delivery and Other Pharmaceutical Applications

    PubMed Central

    Garcia, Andres; Mack, Peter; Williams, Stuart; Fromen, Catherine; Shen, Tammy; Tully, Janet; Pillai, Jonathan; Kuehl, Philip; Napier, Mary; DeSimone, Joseph M.; Maynor, Benjamin W.

    2012-01-01

    Particle Replication in Non-Wetting Templates (PRINT®) is a platform particle drug delivery technology that coopts the precision and nanoscale spatial resolution inherently afforded by lithographic techniques derived from the microelectronics industry to produce precisely engineered particles. We describe the utility of PRINT technology as a strategy for formulation and delivery of small molecule and biologic therapeutics, highlighting previous studies where particle size, shape, and chemistry have been used to enhance systemic particle distribution properties. In addition, we introduce the application of PRINT technology towards respiratory drug delivery, a particular interest due to the pharmaceutical need for increased control over dry powder characteristics to improve drug delivery and therapeutic indices. To this end, we have produced dry powder particles with micro- and nanoscale geometric features and composed of small molecule and protein therapeutics. Aerosols generated from these particles show attractive properties for efficient pulmonary delivery and differential respiratory deposition characteristics based on particle geometry. This work highlights the advantages of adopting proven microfabrication techniques in achieving unprecedented control over particle geometric design for drug delivery. PMID:22518316

  19. Respiratory dynamics of discontinuous gas exchange in the tracheal system of the desert locust, Schistocerca gregaria.

    PubMed

    Groenewald, Berlizé; Hetz, Stefan K; Chown, Steven L; Terblanche, John S

    2012-07-01

    Gas exchange dynamics in insects is of fundamental importance to understanding evolved variation in breathing patterns, such as discontinuous gas exchange cycles (DGCs). Most insects do not rely solely on diffusion for the exchange of respiratory gases but may also make use of respiratory movements (active ventilation) to supplement gas exchange at rest. However, their temporal dynamics have not been widely investigated. Here, intratracheal pressure, V(CO2) and body movements of the desert locust Schistocerca gregaria were measured simultaneously during the DGC and revealed several important aspects of gas exchange dynamics. First, S. gregaria employs two different ventilatory strategies, one involving dorso-ventral contractions and the other longitudinal telescoping movements. Second, although a true spiracular closed (C)-phase of the DGC could be identified by means of subatmospheric intratracheal pressure recordings, some CO(2) continued to be released. Third, strong pumping actions do not necessarily lead to CO(2) release and could be used to ensure mixing of gases in the closed tracheal system, or enhance water vapour reabsorption into the haemolymph from fluid-filled tracheole tips by increasing the hydrostatic pressure or forcing fluid into the haemocoel. Finally, this work showed that the C-phase of the DGC can occur at any pressure. These results provide further insights into the mechanistic basis of insect gas exchange. PMID:22675191

  20. Acupuncture Meridian of Traditional Chinese Medical Science: An Auxiliary Respiratory System.

    PubMed

    Zhao, Liang-Ju

    2015-08-01

    The acupuncture meridian system (AMS) is the key concept of Traditional Chinese Medical Science (TCMS). It is a natural network formed by the tissue space that connects human viscera and skin. In this article, a new hypothesis that the AMS is an auxiliary respiratory system is presented. The AMS collects the CO2 that is produced by tissue supersession and that cannot be excreted via blood circulation, and discharges the CO2 through the body's pores, thus preventing a pressure increase in the internal environment. Thus, local blood circulation will not be blocked, and the body will remain healthy. In addition to neuroregulation and humoral regulation, AMS regulation is an important method of physiological regulation. Furthermore, the pathological principle of the AMS, therapies of TCMS, and the excellent future of the AMS are discussed.

  1. Avian response to tidal freshwater habitat creation by controlled reduced tide system

    NASA Astrophysics Data System (ADS)

    Beauchard, Olivier; Jacobs, Sander; Ysebaert, Tom; Meire, Patrick

    2013-10-01

    Human activities have caused extensive loss of estuarine wetlands, and the restoration of functional habitats remains a challenging task given several physical constraints in strongly embanked estuaries. In the Schelde estuary (Belgium), a new tidal marsh restoration technique, Controlled Reduced Tide system (CRT), is being implemented in the freshwater zone. A polder area of 8.2 ha was equipped with a CRT to test the system functionality. Among different ecological compartments that are studied for assessing the CRT restoration success, avifauna was monitored over three years. The tidal regime generated a habitat gradient typical of tidal freshwater wetlands along which the distributions of bird and ecological groups were studied. 103 bird species were recorded over the three years. In addition to many generalist bird species, several specialist species typical of the North Sea coast were present. Thirty-nine species of local and/or international conservation interest were encountered, emphasising the importance of this habitat for certain species. Species communities and ecological groups were strongly habitat specific and non-randomly organized across habitats. Spatiotemporal analyses highlighted a rapid habitat colonization, and a subsequent stable habitat community structure across seasons in spite of strong seasonal species turnovers. Hence, these findings advocate CRT implementation as a means to effectively compensate for wetland habitat loss.

  2. Procedures for Identifying Infectious Prions After Passage Through the Digestive System of an Avian Species

    PubMed Central

    Fischer, Justin W; Nichols, Tracy A; Phillips, Gregory E; VerCauteren, Kurt C

    2013-01-01

    Infectious prion (PrPRes) material is likely the cause of fatal, neurodegenerative transmissible spongiform encephalopathy (TSE) diseases1. Transmission of TSE diseases, such as chronic wasting disease (CWD), is presumed to be from animal to animal2,3 as well as from environmental sources4-6. Scavengers and carnivores have potential to translocate PrPRes material through consumption and excretion of CWD-contaminated carrion. Recent work has documented passage of PrPRes material through the digestive system of American crows (Corvus brachyrhynchos), a common North American scavenger7. We describe procedures used to document passage of PrPRes material through American crows. Crows were gavaged with RML-strain mouse-adapted scrapie and their feces were collected 4 hr post gavage. Crow feces were then pooled and injected intraperitoneally into C57BL/6 mice. Mice were monitored daily until they expressed clinical signs of mouse scrapie and were thereafter euthanized. Asymptomatic mice were monitored until 365 days post inoculation. Western blot analysis was conducted to confirm disease status. Results revealed that prions remain infectious after traveling through the digestive system of crows and are present in the feces, causing disease in test mice. PMID:24300668

  3. Non-contact dual pulse Doppler system based respiratory and heart rates estimation for CHF patients.

    PubMed

    Tran, Vinh Phuc; Ali Al-Jumaily, Adel

    2015-01-01

    Long term continuous patient monitoring is required in many health systems for monitoring and analytical diagnosing purposes. Most of monitoring systems had shortcomings related to their functionality or patient comfortably. Non-contact continuous monitoring systems have been developed to address some of these shortcomings. One of such systems is non-contact physiological vital signs assessments for chronic heart failure (CHF) patients. This paper presents a novel automated estimation algorithm for the non-contact physiological vital signs assessments for CHF patients based on a patented novel non-contact biomotion sensor. A database consists of twenty CHF patients with New York Heart Association (NYHA) heart failure Classification Class II & III, whose underwent full Polysomnography (PSG) analysis for the diagnosis of sleep apnea, disordered sleep, or both, were selected for the study. The patients mean age is 68.89 years, with mean body weight of 86.87 kg, mean BMI of 28.83 (obesity) and mean recorded sleep duration of 7.78 hours. The propose algorithm analyze the non-contact biomotion signals and estimate the patients' respiratory and heart rates. The outputs of the algorithm are compared with gold-standard PSG recordings. Across all twenty patients' recordings, the respiratory rate estimation median accuracy achieved 92.4689% with median error of ± 1.2398 breaths per minute. The heart rate estimation median accuracy achieved 88.0654% with median error of ± 7.9338 beats per minute. Due to the good performance of the propose novel automated estimation algorithm, the patented novel non-contact biomotion sensor can be an excellent tool for long term continuous sleep monitoring for CHF patients in the home environment in an ultra-convenient fashion. PMID:26737221

  4. Workshop to identify critical windows of exposure for children's health: immune and respiratory systems work group summary.

    PubMed Central

    Dietert, R R; Etzel, R A; Chen, D; Halonen, M; Holladay, S D; Jarabek, A M; Landreth, K; Peden, D B; Pinkerton, K; Smialowicz, R J; Zoetis, T

    2000-01-01

    Fetuses, infants, and juveniles (preadults) should not be considered simply "small adults" when it comes to toxicological risk. We present specific examples of developmental toxicants that are more toxic to children than to adults, focusing on effects on the immune and respiratory systems. We describe differences in both the pharmacokinetics of the developing immune and respiratory systems as well as changes in target organ sensitivities to toxicants. Differential windows of vulnerability during development are identified in the context of available animal models. We provide specific approaches to directly investigate differential windows of vulnerability. These approaches are based on fundamental developmental biology and the existence of discrete developmental processes within the immune and respiratory systems. The processes are likely to influence differential developmental susceptibility to toxicants, resulting in lifelong toxicological changes. We also provide a template for comparative research. Finally, we discuss the application of these data to risk assessment. PMID:10852848

  5. [The compensatory and adaptive e reactions of the respiratory system as the diagnostic criteria for histological studies in forensic medicine].

    PubMed

    Os'minkin, V A; Os'minkin, S V

    2015-01-01

    The objective of the present study was to characterize the structural changes in the respiratory system equivalent to its compensatory and adaptive reactions in response to the action of various factors under the normal and extreme conditions for the assessment of the possibility of their further use for the purpose of diagnostics. The action of various factors on the tissues obtained from the human respiratory system for forensic medical examination was shown to cause combined histomorphological alterations that refelect a wide spectrum of protective, compensatory, and adaptive reactions. The range of potential morphological and functional changes in the respiratory system depends on the characteristics of endogenous and exogenous factors influencing the organism of the affected subjects. It is concluded that the use of the proposed approach to morphological diagnostics may be useful for the development of criteria for the evaluation of various variants of tanatogenesis with their objective confirmation by mathematical models.

  6. Respiratory Distress

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The University of Miami School of Medicine asked the Research Triangle Institute for assistance in improvising the negative pressure technique to relieve respiratory distress in infants. Marshall Space Flight Center and Johnson Space Center engineers adapted this idea to the lower-body negative-pressure system seals used during the Skylab missions. Some 20,000 babies succumb to respiratory distress in the U.S. each year, a condition in which lungs progressively lose their ability to oxygenate blood. Both positive and negative pressure techniques have been used - the first to force air into lungs, the second to keep infant's lungs expanded. Negative pressure around chest helps the baby expand his lungs and maintain proper volume of air. If doctors can keep the infant alive for four days, the missing substance in the lungs will usually form in sufficient quantity to permit normal breathing. The Skylab chamber and its leakproof seals were adapted for medical use.

  7. Comparison of visual biofeedback system with a guiding waveform and abdomen-chest motion self-control system for respiratory motion management.

    PubMed

    Nakajima, Yujiro; Kadoya, Noriyuki; Kanai, Takayuki; Ito, Kengo; Sato, Kiyokazu; Dobashi, Suguru; Yamamoto, Takaya; Ishikawa, Yojiro; Matsushita, Haruo; Takeda, Ken; Jingu, Keiichi

    2016-07-01

    Irregular breathing can influence the outcome of 4D computed tomography imaging and cause artifacts. Visual biofeedback systems associated with a patient-specific guiding waveform are known to reduce respiratory irregularities. In Japan, abdomen and chest motion self-control devices (Abches) (representing simpler visual coaching techniques without a guiding waveform) are used instead; however, no studies have compared these two systems to date. Here, we evaluate the effectiveness of respiratory coaching in reducing respiratory irregularities by comparing two respiratory management systems. We collected data from 11 healthy volunteers. Bar and wave models were used as visual biofeedback systems. Abches consisted of a respiratory indicator indicating the end of each expiration and inspiration motion. Respiratory variations were quantified as root mean squared error (RMSE) of displacement and period of breathing cycles. All coaching techniques improved respiratory variation, compared with free-breathing. Displacement RMSEs were 1.43 ± 0.84, 1.22 ± 1.13, 1.21 ± 0.86 and 0.98 ± 0.47 mm for free-breathing, Abches, bar model and wave model, respectively. Period RMSEs were 0.48 ± 0.42, 0.33 ± 0.31, 0.23 ± 0.18 and 0.17 ± 0.05 s for free-breathing, Abches, bar model and wave model, respectively. The average reduction in displacement and period RMSE compared with the wave model were 27% and 47%, respectively. For variation in both displacement and period, wave model was superior to the other techniques. Our results showed that visual biofeedback combined with a wave model could potentially provide clinical benefits in respiratory management, although all techniques were able to reduce respiratory irregularities.

  8. Comparison of visual biofeedback system with a guiding waveform and abdomen-chest motion self-control system for respiratory motion management

    PubMed Central

    Nakajima, Yujiro; Kadoya, Noriyuki; Kanai, Takayuki; Ito, Kengo; Sato, Kiyokazu; Dobashi, Suguru; Yamamoto, Takaya; Ishikawa, Yojiro; Matsushita, Haruo; Takeda, Ken; Jingu, Keiichi

    2016-01-01

    Irregular breathing can influence the outcome of 4D computed tomography imaging and cause artifacts. Visual biofeedback systems associated with a patient-specific guiding waveform are known to reduce respiratory irregularities. In Japan, abdomen and chest motion self-control devices (Abches) (representing simpler visual coaching techniques without a guiding waveform) are used instead; however, no studies have compared these two systems to date. Here, we evaluate the effectiveness of respiratory coaching in reducing respiratory irregularities by comparing two respiratory management systems. We collected data from 11 healthy volunteers. Bar and wave models were used as visual biofeedback systems. Abches consisted of a respiratory indicator indicating the end of each expiration and inspiration motion. Respiratory variations were quantified as root mean squared error (RMSE) of displacement and period of breathing cycles. All coaching techniques improved respiratory variation, compared with free-breathing. Displacement RMSEs were 1.43 ± 0.84, 1.22 ± 1.13, 1.21 ± 0.86 and 0.98 ± 0.47 mm for free-breathing, Abches, bar model and wave model, respectively. Period RMSEs were 0.48 ± 0.42, 0.33 ± 0.31, 0.23 ± 0.18 and 0.17 ± 0.05 s for free-breathing, Abches, bar model and wave model, respectively. The average reduction in displacement and period RMSE compared with the wave model were 27% and 47%, respectively. For variation in both displacement and period, wave model was superior to the other techniques. Our results showed that visual biofeedback combined with a wave model could potentially provide clinical benefits in respiratory management, although all techniques were able to reduce respiratory irregularities. PMID:26922090

  9. Avian influenza: an agricultural perspective.

    PubMed

    Morgan, Andrea

    2006-11-01

    Recent outbreaks of infection with highly pathogenic H5N1 strains of avian influenza virus in poultry in Asia, Africa, Europe, and the Middle East have raised concern over the potential emergence of a pandemic strain that can easily infect humans and cause serious morbidity and mortality. To prevent and control a national outbreak, the US Department of Agriculture (USDA) conducts measures based on the ecology of avian influenza viruses. To prevent an outbreak in the United States, the USDA conducts surveillance of bird populations, restrictions on bird importation, educational outreach, and regulation of agricultural practices, in collaboration with local, state, and federal organizations. To manage an outbreak, the USDA has in place a well-established emergency management system for optimizing efforts. The USDA also collaborates with international organizations for disease prevention and control in other countries.

  10. Reduction of a linear complex model for respiratory system during Airflow Interruption.

    PubMed

    Jablonski, Ireneusz; Mroczka, Janusz

    2010-01-01

    The paper presents methodology of a complex model reduction to its simpler version - an identifiable inverse model. Its main tool is a numerical procedure of sensitivity analysis (structural and parametric) applied to the forward linear equivalent designed for the conditions of interrupter experiment. Final result - the reduced analog for the interrupter technique is especially worth of notice as it fills a major gap in occlusional measurements, which typically use simple, one- or two-element physical representations. Proposed electrical reduced circuit, being structural combination of resistive, inertial and elastic properties, can be perceived as a candidate for reliable reconstruction and quantification (in the time and frequency domain) of dynamical behavior of the respiratory system in response to a quasi-step excitation by valve closure.

  11. Bacterial Respiratory Tract Infections are Promoted by Systemic Hyperglycemia after Severe Burn Injury in Pediatric Patients

    PubMed Central

    Kraft, Robert; Herndon, David N; Mlcak, Ronald P; Finnerty, Celeste C; Cox, Robert A; Williams, Felicia N; Jeschke, Marc G

    2014-01-01

    Background Burn injuries are associated with hyperglycemia leading to increased incidence of infections with pneumonia being one of the most prominent and adverse complication. Recently, various studies in critically ill patients indicated that increased pulmonary glucose levels with airway/blood glucose threshold over 150 mg/dl lead to an overwhelming growth of bacteria in the broncho-pulmonary system, subsequently resulting in an increased risk of pulmonary infections. The aim of the present study was to determine whether a similar cutoff value exists for severely burned pediatric patients. Methods One-hundred six severely burned pediatric patients were enrolled in the study. Patients were divided in two groups: high (H) defined as daily average glucose levels >75% of LOS >150 mg/dl), and low (L) with daily average glucose levels >75% of the LOS <150 mg/dl). Incidences of pneumonia, atelectasis, and acute respiratory distress syndrome (ARDS) were assessed. Incidence of infections, sepsis, and respiratory parameters were recorded. Blood was analyzed for glucose and insulin levels. Statistical analysis was performed using Student’s t-test and chi-square test. Significance was set at p<0.05. Results Patient groups were similar in demographics and injury characteristics. Pneumonia in patients on the mechanical ventilation (L: 21% H: 32%) and off mechanical ventilation (L: 5% H: 15%), as well as ARDS were significantly higher in the high group (L: 3% H: 19%), p<0.05, while atelectasis was not different. Patients in the high group required significantly longer ventilation compared to low patients (p<0.05). Furthermore, incidence of infection and sepsis were significantly higher in the high group, p<0.05. Conclusion Our results indicate that systemic glucose levels over 150 mg/dl are associated with a higher incidence of pneumonia confirming the previous studies in critically ill patients. PMID:24074819

  12. Characterization of antigen-presenting cells from the porcine respiratory system.

    PubMed

    López-Robles, Guadalupe; Silva-Campa, Erika; Burgara-Estrella, Alexel; Hernández, Jesús

    2015-06-01

    Antigen-presenting cells (APCs) are strategically placed in all anatomic sites with high antigen exposure such as the respiratory system. The aim of this study was to evaluate phenotypic and functional properties of APCs from the lung (L-Cs), mediastinal lymph node (LN-Cs) and bronchoalveolar lavage cells (BAL-Cs). The APCs were first analyzed based on forward scatter and side scatter profiles and the selection of MHC-II(high)CD172a(+) cells (referred to as APCs); then the expression of CD1a, CD163, CD206, CD16 and CD11R3 was evaluated in the APCs. The results showed that CD1a, CD163 and CD206 were differentially expressed among L-Cs, LN-Cs and BAL-Cs, suggesting the phenotype MHC-II(high)CD172a(+)CD1a(low/-)CD163(low)CD206(-) for L-Cs and MHC-II(high)CD172a(+)CD1a(+)CD163(low/-)CD206(+) for LN-Cs. BAL-Cs were MHC-II(high)CD172a(+)CD1a(-)CD163(high)CD206(+/-). The functional characteristics of L-Cs and LN-Cs were different from those of BAL-Cs, confirming that L-Cs and LN-Cs resemble specialized APCs. In conclusion, we present the characterization of APCs from L-Cs, LN-Cs and BAL-Cs of the porcine respiratory system.

  13. [Respiratory viral diagnosis by using an automated system of multiplex PCR (FilmArray) compared to conventional methods].

    PubMed

    Marcone, Débora N; Carballal, Guadalupe; Ricarte, Carmen; Echavarria, Marcela

    2015-01-01

    Acute respiratory infections, which are commonly caused by viruses, are an important cause of morbidity and mortality in children. In Argentina, national surveillance programs for the detection of respiratory viruses are usually performed by using immunofluorescence (IF) assays, although it is well known that molecular methods are more sensitive. An automated multiplex PCR device, the FilmArray-Respiratory Panel (FilmArray-RP), can detect 17 viral and 3 bacterial pathogens in a closed system that requires only 5 min of hands-on time and 1h of instrumentation time. A total of 315 respiratory samples from children under 6 years of age suffering from acute respiratory infections, were studied by IF for 8 respiratory viruses and by RT-PCR for rhinoviruses. Later, these samples were tested by the FilmArray-RP. The positivity frequency obtained for the 9 viruses tested was 75% by IF/RT-PCR and 92% by the FilmArray-RP. The positive and negative percent agreement between both methods was 70.5% whereas the negative percent agreement was 99.6% (95% confidence interval:65.5-75.1 and 99.2-99.8 respectively). The FilmArray-RP allowed a higher positive diagnosis (97%) and detected other viruses such as coronavirus NL63, 229E, OC43, HKU1 (10%) and bocavirus (18%). In addition, this method identified multiple coinfections (39%) with 2, 3, 4 and up to 5 different viruses. At present, IF is still the most frequently used method in most Latin American countries for respiratory viruses diagnosis due to its low cost, its capability to process a high number of samples simultaneously and the fast determination of results for the most frequent viruses, which are available within 5h. However, the coming incorporation of molecular methods in routine procedures will significantly increase the diagnostic yield of these infections.

  14. [Coupled evolution of digestive, respiratory, circulatory, and excretory systems: a model investigation].

    PubMed

    Menshutkin, V V; Natochin, Iu V

    2007-01-01

    A model is developed of evolution of an organism with digestive, respiratory, circulatory, and excretory systems at the single system. The model is realized on the basis of the language STELLA 8.0. A balance is found between perfection of each individual physiological system and necessary energy expenditures for survival of the organism as a whole. The model is based on a coupled development of several visceral systems. There is analyzed effect of a change of consumption of substances with food and of oxygen amount on their oxidation, a branching of blood flow to organs, specifically to kidneys, to excrete final products of metabolism from blood. The energy expenditures for circulation are believed to be proportional to blood flow in a given organ. An increase of efficiency of renal excretion from blood of final metabolic products and toxic substances has a favorable effect on inner medium and activity of each cell of an individual, but increases of the organism energy expenditures. Interrelation of these factors under conditions of adaptation to changing environmental conditions determines peculiarities of evolution of each physiological system in an individual.

  15. The effect of centrally injected CDP-choline on respiratory system; involvement of phospholipase to thromboxane signaling pathway.

    PubMed

    Topuz, Bora B; Altinbas, Burcin; Yilmaz, Mustafa S; Saha, Sikha; Batten, Trevor F; Savci, Vahide; Yalcin, Murat

    2014-05-01

    CDP-choline is an endogenous metabolite in phosphatidylcholine biosynthesis. Exogenous administration of CDP-choline has been shown to affect brain metabolism and to exhibit cardiovascular, neuroendocrine neuroprotective actions. On the other hand, little is known regarding its respiratory actions and/or central mechanism of its respiratory effect. Therefore the current study was designed to investigate the possible effects of centrally injected CDP-choline on respiratory system and the mediation of the central cholinergic receptors and phospholipase to thromboxane signaling pathway on CDP-choline-induced respiratory effects in anaesthetized rats. Intracerebroventricularly (i.c.v.) administration of CDP-choline induced dose- and time-dependent increased respiratory rates, tidal volume and minute ventilation of male anaesthetized Spraque Dawley rats. İ.c.v. pretreatment with atropine failed to alter the hyperventilation responses to CDP-choline whereas mecamylamine, cholinergic nicotinic receptor antagonist, mepacrine, phospholipase A2 inhibitor, and neomycin phospholipase C inhibitor, blocked completely the hyperventilation induced by CDP-choline. In addition, central pretreatment with furegrelate, thromboxane A2 synthesis inhibitor, also partially blocked CDP-choline-evoked hyperventilation effects. These data show that centrally administered CDP-choline induces hyperventilation which is mediated by activation of central nicotinic receptors and phospholipase to thromboxane signaling pathway.

  16. Respiratory snorkel and valve system for breath-by-breath gas analysis in swimming.

    PubMed

    Keskinen, Kari L; Rodríguez, Ferran A; Keskinen, Ossi P

    2003-10-01

    The present study aimed to compare a standard facemask (CM) and a newly modified swimming snorkel and valve system (SV) for breath-by-breath (BxB) gas analysis (K4 b2, Cosmed, Rome, Italy), and to validate the system under controlled laboratory conditions before being used in swimming. Nine healthy males performed two bouts of a stepwise exercise on an electrically braked stationary bicycle on separate days. Ventilatory and gas exchange parameters were analyzed using the same BxB portable system, with subjects breathing alternatively through the two different valves. Agreement between both methods was evaluated by Passing-Bablok regression analysis. The gas exchange values measured using the SV were highly correlated with those obtained using the CM (R2 values >0.9). However, differences existed between the two series of measurements so that most ventilatory and gas exchange parameters were lower (3-7%) with the SV. The error when using the SV device was mainly systematic along the whole range of measurement. Accordingly, linear regression equations were developed to further improve the accuracy of the measures when using the SV. Therefore, the modified respiratory SV system can be considered as a valid device for collecting expired gas for BxB analysis, comparable to the standard facemask, with the advantage of being suitable for measurements during swimming.

  17. [The features of cardio-respiratory system and autonomic regulation in parasportsmen with spinal injury].

    PubMed

    Ternovoĭ, K S; Romanchuk, A P; Sorokin, M Iu; Pankova, N B

    2012-01-01

    A comprehensive study of the functional state of basketball athletes in wheelchairs with spinal cord injuries in the T6-T10 and paraplegia (n = 9, mean age 26.6 +/- 1.7 years) was held. As a control, we used disability groups with a similar injury, leading an active life (n = 13, mean age 44.5 +/- 2.6 years), athletes ( = 14, mean age 24.6 +/- 1.3 years) and healthy physically active men (n = 15, the average age of 24.9 +/- 0.6 years). In the athletes in wheelchairs it was revealed an increase in the length of the body in a sitting position, the increase in tidal volume and increasing in the effectiveness of the functional respiratory tests. These changes in the state of the musculoskeletal system and autonomic systems to ensure physical activity classified as adaptive and due to sports training. In the state of the cardiovascular system and its autonomic regulation parasportsmen showed a reduction in trauma-induced increase in diastolic blood pressure and increase in the magnitude of arterial baroreflex sensitivity, decreased due to spinal injury. These data indicate availability of compensatory processes aimed at optimizing the cardiovascular system through the mechanisms of baroreflex regulation.

  18. Influence of pneumoperitoneum and postural change on the cardiovascular and respiratory systems in dogs.

    PubMed

    Park, Young Tae; Okano, Shozo

    2015-10-01

    We investigated the influence of pneumoperitoneum#(PP) and postural change under inhalation anesthesia with isoflurane, which is routinely used in dogs, on the cardiovascular and respiratory systems. As test animals, 6 adult beagles were used. To induce anesthesia, atropine, butorphanol and propofol were intravenously injected. Anesthesia was maintained with 1.3 MAC (1.7%) isoflurane. The following were the experiment conditions: I:E ratio, 1:1.9; tidal air exchange, 20 ml/kg; and ventilation frequency, 14 times/min. Respiration was regulated so that the PaCO2 was approximately 35 to 40 mmHg before the start of the experiment. PP with CO2 (intraperitoneal pressure 15 mmHg) and a postural change (15°C) was performed during the experiment. As parameters of circulatory kinetics, heart rate (HR), mean aortic pressure (MAP), mean pulmonary arterial pressure (MPAP), central venous pressure (CVP), femoral venous pressure (FVP) and cardiac output (CO) were measured. As parameters of respiratory kinetics, airway pressure (PAW) and blood gas (BG) were measured. There were significant increases in HR, MAP, MPAP, CVP, FVP, CO, PAW and PaCO2 after PP in the horizontal position. There were significant increases in CVP, FVP, PAW and PaCO2 after PP in the Trendelenburg position. There were significant increases in the MPAP, CVP, FVP, PAW and PaCO2 after PP in the inverse Trendelenburg position. There was a significant difference in FVP after PP between the Trendelenburg position and inverse Trendelenburg position. The results of this experiment suggest that appropriate anesthesia control, such as changing the ventilation conditions after PP, is required for laparoscopic surgery under inhalation anesthesia with isoflurane. PMID:26027843

  19. Avian Influenza in Birds

    MedlinePlus

    ... and even kill certain domesticated bird species including chickens, ducks, and turkeys. Infected birds can shed avian ... virus’ ability to cause disease and mortality in chickens in a laboratory setting [2.5 MB, 64 ...

  20. Avian Fact Sheet

    SciTech Connect

    NWCC Wildlife Work Group

    2004-12-01

    OAK-B135 After conducting four national research meetings, producing a document guiding research: Metrics and Methods for Determining or Monitoring Potential Impacts on Birds at Existing and Proposed Wind Energy Sites, 1999, and another paper, Avian Collisions with Wind Turbines: A Summary of Existing Studies and Comparisons to Other Sources of Avian Collision Mortality in the United States, 2001, the subcommittee recognized a need to summarize in a short fact sheet what is known about avian-wind interaction and what questions remain. This fact sheet attempts to summarize in lay terms the result of extensive discussion about avian-wind interaction on land. This fact sheet does not address research conducted on offshore development. This fact sheet is not intended as a conclusion on the subject; rather, it is a summary as of Fall/Winter 2002.

  1. A multi-radar wireless system for respiratory gating and accurate tumor tracking in lung cancer radiotherapy.

    PubMed

    Gu, Changzhan; Li, Ruijiang; Jiang, Steve B; Li, Changzhi

    2011-01-01

    Respiratory gating and tumor tracking are two promising motion-adaptive lung cancer treatments, minimizing incidence and severity of normal tissues and precisely delivering radiation dose to the tumor. Accurate respiration measurement is important in respiratory-gated radiotherapy. Conventional gating techniques are either invasive to the body or bring insufficient accuracy and discomfort to the patients. In this paper, we present an accurate noncontact means of measuring respiration for the use in gated lung cancer radiotherapy. We also present an accurate tumor tracking technique for dynamical beam tracking radiotherapy. Two 2.4 GHz miniature radars were used to monitor the chest wall and abdominal movements simultaneously to get high resolution and enhanced parameter identification. Ray tracing technique was used to investigate the impact of antenna size in clinical practice. It is shown that our multiple radar system can reliably measure respiration signals for respiratory gating and accurate tumor tracking in motion-adaptive lung cancer radiotherapy.

  2. Research on curative effect of traditional Chinese medicine treating low-grade fever of children caused by respiratory system infection.

    PubMed

    Li, Xiangyun

    2015-07-01

    This study aims to explore the curative effect of traditional Chinese medicine treating low-grade fever of children caused by respiratory system infection. Sixty children who suffered low-grade fever caused by respiratory system infection were selected and divided into treatment group and control group randomly, each with 30 cases. Control group was treated with conventional methods including oxygen uptake, nebulization and anti-infection, etc, while treatment group was given boil-free granules of traditional Chinese medicine besides the treatment which control group received. Then clinical curative effect of two groups was compared. Results showed that 28 cases (93.3%) were cured in treatment group; while 21 cases (70.0%) were cured in control group. Compared with control group, the treatment group showed up better treatment efficiency and the difference between groups was of statistical significance (P<0.05). Comparison of results of two groups suggested that, traditional Chinese medicine granules has satisfactory curative effect in the treatment of low-grade fever of children caused by respiratory system infection; characterized by short treatment cycle and effective treatment effect, Chinese medicine granules in the combination with oxygen atomization inhalation is proved to be able to efficiently remit symptoms such as coughing, gasp and labored breathing, with outstanding curative effect in the treatment of low-grade fever of children caused by respiratory system infection, thus it is worthy of popularization and application clinically. PMID:26431646

  3. Research on curative effect of traditional Chinese medicine treating low-grade fever of children caused by respiratory system infection.

    PubMed

    Li, Xiangyun

    2015-07-01

    This study aims to explore the curative effect of traditional Chinese medicine treating low-grade fever of children caused by respiratory system infection. Sixty children who suffered low-grade fever caused by respiratory system infection were selected and divided into treatment group and control group randomly, each with 30 cases. Control group was treated with conventional methods including oxygen uptake, nebulization and anti-infection, etc, while treatment group was given boil-free granules of traditional Chinese medicine besides the treatment which control group received. Then clinical curative effect of two groups was compared. Results showed that 28 cases (93.3%) were cured in treatment group; while 21 cases (70.0%) were cured in control group. Compared with control group, the treatment group showed up better treatment efficiency and the difference between groups was of statistical significance (P<0.05). Comparison of results of two groups suggested that, traditional Chinese medicine granules has satisfactory curative effect in the treatment of low-grade fever of children caused by respiratory system infection; characterized by short treatment cycle and effective treatment effect, Chinese medicine granules in the combination with oxygen atomization inhalation is proved to be able to efficiently remit symptoms such as coughing, gasp and labored breathing, with outstanding curative effect in the treatment of low-grade fever of children caused by respiratory system infection, thus it is worthy of popularization and application clinically.

  4. Novel Receptor Specificity of Avian Gammacoronaviruses That Cause Enteritis

    PubMed Central

    Ambepitiya Wickramasinghe, I. N.; de Vries, R. P.; Weerts, E. A. W. S.; van Beurden, S. J.; Peng, W.; McBride, R.; Ducatez, M.; Guy, J.; Brown, P.; Eterradossi, N.; Gröne, A.; Paulson, J. C.

    2015-01-01

    ABSTRACT Viruses exploit molecules on the target membrane as receptors for attachment and entry into host cells. Thus, receptor expression patterns can define viral tissue tropism and might to some extent predict the susceptibility of a host to a particular virus. Previously, others and we have shown that respiratory pathogens of the genus Gammacoronavirus, including chicken infectious bronchitis virus (IBV), require specific α2,3-linked sialylated glycans for attachment and entry. Here, we studied determinants of binding of enterotropic avian gammacoronaviruses, including turkey coronavirus (TCoV), guineafowl coronavirus (GfCoV), and quail coronavirus (QCoV), which are evolutionarily distant from respiratory avian coronaviruses based on the viral attachment protein spike (S1). We profiled the binding of recombinantly expressed S1 proteins of TCoV, GfCoV, and QCoV to tissues of their respective hosts. Protein histochemistry showed that the tissue binding specificity of S1 proteins of turkey, quail, and guineafowl CoVs was limited to intestinal tissues of each particular host, in accordance with the reported pathogenicity of these viruses in vivo. Glycan array analyses revealed that, in contrast to the S1 protein of IBV, S1 proteins of enteric gammacoronaviruses recognize a unique set of nonsialylated type 2 poly-N-acetyl-lactosamines. Lectin histochemistry as well as tissue binding patterns of TCoV S1 further indicated that these complex N-glycans are prominently expressed on the intestinal tract of various avian species. In conclusion, our data demonstrate not only that enteric gammacoronaviruses recognize a novel glycan receptor but also that enterotropism may be correlated with the high specificity of spike proteins for such glycans expressed in the intestines of the avian host. IMPORTANCE Avian coronaviruses are economically important viruses for the poultry industry. While infectious bronchitis virus (IBV), a respiratory pathogen of chickens, is rather well

  5. Respiratory papillomas

    PubMed Central

    Alagusundaramoorthy, Sayee Sundar; Agrawal, Abhinav

    2016-01-01

    Papillomas are known to occur in the lower respiratory tract. They are however, rare compared to their occurrence in the upper respiratory tract. These are generally exophytic tumors in the more proximal upper airways however cases with more distal location with an inverted growth pattern have also been described in the literature. These can be solitary or multiple and multifocality associated with multiple papillomas in the upper respiratory/aerodigestive tract. The four major types of respiratory papillomas are (1) Recurrent respiratory papillomas, (2) solitary squamous papillomas, (3) solitary glandular papillomas, (4) mixed papillomas. We review the incidence, etiopathology, diagnosis, and possible treatment modalities and algorithms for these respiratory papillomas.

  6. Respiratory papillomas.

    PubMed

    Alagusundaramoorthy, Sayee Sundar; Agrawal, Abhinav

    2016-01-01

    Papillomas are known to occur in the lower respiratory tract. They are however, rare compared to their occurrence in the upper respiratory tract. These are generally exophytic tumors in the more proximal upper airways however cases with more distal location with an inverted growth pattern have also been described in the literature. These can be solitary or multiple and multifocality associated with multiple papillomas in the upper respiratory/aerodigestive tract. The four major types of respiratory papillomas are (1) Recurrent respiratory papillomas, (2) solitary squamous papillomas, (3) solitary glandular papillomas, (4) mixed papillomas. We review the incidence, etiopathology, diagnosis, and possible treatment modalities and algorithms for these respiratory papillomas.

  7. Respiratory papillomas

    PubMed Central

    Alagusundaramoorthy, Sayee Sundar; Agrawal, Abhinav

    2016-01-01

    Papillomas are known to occur in the lower respiratory tract. They are however, rare compared to their occurrence in the upper respiratory tract. These are generally exophytic tumors in the more proximal upper airways however cases with more distal location with an inverted growth pattern have also been described in the literature. These can be solitary or multiple and multifocality associated with multiple papillomas in the upper respiratory/aerodigestive tract. The four major types of respiratory papillomas are (1) Recurrent respiratory papillomas, (2) solitary squamous papillomas, (3) solitary glandular papillomas, (4) mixed papillomas. We review the incidence, etiopathology, diagnosis, and possible treatment modalities and algorithms for these respiratory papillomas. PMID:27625447

  8. Songbirds and the revised avian brain nomenclature.

    PubMed

    Reiner, Anton; Perkel, David J; Mello, Claudio V; Jarvis, Erich D

    2004-06-01

    It has become increasingly clear that the standard nomenclature for many telencephalic and related brainstem structures of the avian brain is based on flawed once-held assumptions of homology to mammalian brain structures, greatly hindering functional comparisons between avian and mammalian brains. This has become especially problematic for those researchers studying the neurobiology of birdsong, the largest single group within the avian neuroscience community. To deal with the many communication problems this has caused among researchers specializing in different vertebrate classes, the Avian Brain Nomenclature Forum, held at Duke University from July 18-20, 2002, set out to develop a new terminology for the avian telencephalon and some allied brainstem cell groups. In one major step, the erroneous conception that the avian telencephalon consists mainly of a hypertrophied basal ganglia has been purged from the telencephalic terminology, and the actual parts of the basal ganglia and its brainstem afferent cell groups have been given new names to reflect their now-evident homologies. The telencephalic regions that were incorrectly named to reflect presumed homology to mammalian basal ganglia have been renamed as parts of the pallium. The prefixes used for the new names for the pallial subdivisions have retained most established abbreviations, in an effort to maintain continuity with the pre-existing nomenclature. Here we present a brief synopsis of the inaccuracies in the old nomenclature, a summary of the nomenclature changes, and details of changes for specific songbird vocal and auditory nuclei. We believe this new terminology will promote more accurate understanding of the broader neurobiological implications of song control mechanisms and facilitate the productive exchange of information between researchers studying avian and mammalian systems. PMID:15313771

  9. Respiratory Failure

    MedlinePlus

    Respiratory failure happens when not enough oxygen passes from your lungs into your blood. Your body's organs, ... brain, need oxygen-rich blood to work well. Respiratory failure also can happen if your lungs can' ...

  10. [Function of alveoles as a result of evolutionary development of respiratory system in mammals].

    PubMed

    Ivanov, K P

    2013-01-01

    Reaction of hemoglobin oxygenation is known to occur for 40 femtoseconds (40 x 10(-15) s). However, the process of oxygen diffusion to hemoglobin under physiologic conditions decelerated this reaction approximately billion times. In mammalian lungs, blood is moving at a high rate and in a relatively high amount. The human lung mass is as low as 600 g, but the complete cardiac output approaches 6 1/min. In rat, from 20 to 40 ml of blood is passed for q min through the lung whose mass is about 1.5 g. Such blood flow rate is possible, as in lungs of high animals there exists a dense network of relatively large microvessels with diameter from 20 to 40 microm and more. In spite of a large volume and a high blood flow rate hampering oxygen diffusion, the complete blood oxygenation occurs in lung alveoli. This is due to peculiar mechanisms that facilitate markedly the oxygen diffusion and that developed in alveoli of mammals in the course of many million years of evolution of their respiratory system. Thus, alveolus is not a bubble with air, but a complex tool of fight with inertness of diffusion. It is interesting that in lungs of the low vertebrates, neither such system of blood vessels nor alveoli exist, and their blood flow rate is much lower than in mammals.

  11. BreathSens: A Continuous On-Bed Respiratory Monitoring System With Torso Localization Using an Unobtrusive Pressure Sensing Array.

    PubMed

    Liu, Jason J; Huang, Ming-Chun; Xu, Wenyao; Zhang, Xiaoyi; Stevens, Luke; Alshurafa, Nabil; Sarrafzadeh, Majid

    2015-09-01

    The ability to continuously monitor respiration rates of patients in homecare or in clinics is an important goal. Past research showed that monitoring patient breathing can lower the associated mortality rates for long-term bedridden patients. Nowadays, in-bed sensors consisting of pressure sensitive arrays are unobtrusive and are suitable for deployment in a wide range of settings. Such systems aim to extract respiratory signals from time-series pressure sequences. However, variance of movements, such as unpredictable extremities activities, affect the quality of the extracted respiratory signals. BreathSens, a high-density pressure sensing system made of e-Textile, profiles the underbody pressure distribution and localizes torso area based on the high-resolution pressure images. With a robust bodyparts localization algorithm, respiratory signals extracted from the localized torso area are insensitive to arbitrary extremities movements. In a study of 12 subjects, BreathSens demonstrated its respiratory monitoring capability with variations of sleep postures, locations, and commonly tilted clinical bed conditions.

  12. The BarA-UvrY two-component system regulates virulence in avian pathogenic Escherichia coli O78:K80:H9.

    PubMed

    Herren, Christopher D; Mitra, Arindam; Palaniyandi, Senthil Kumar; Coleman, Adam; Elankumaran, Subbiah; Mukhopadhyay, Suman

    2006-08-01

    The BarA-UvrY two-component system (TCS) in Escherichia coli is known to regulate a number of phenotypic traits. Both in vitro and in vivo assays, including the chicken embryo lethality assay, showed that this TCS regulates virulence in avian pathogenic E. coli (APEC) serotype O78:K80:H9. A number of virulence determinants, such as the abilities to adhere, invade, persist within tissues, survive within macrophages, and resist bactericidal effects of serum complement, were compromised in mutants lacking either the barA or uvrY gene. The reduced virulence was attributed to down regulation of type 1 and Pap fimbriae, reduced exopolysaccharide production, and increased susceptibility to oxidative stress. Our results indicate that BarA-UvrY regulates virulence properties in APEC and that the chicken embryo lethality assay can be used as a surrogate model to determine virulence determinants and their regulation in APEC strains.

  13. Neuroplasticity in respiratory motor control.

    PubMed

    Mitchell, Gordon S; Johnson, Stephen M

    2003-01-01

    Although recent evidence demonstrates considerable neuroplasticity in the respiratory control system, a comprehensive conceptual framework is lacking. Our goals in this review are to define plasticity (and related neural properties) as it pertains to respiratory control and to discuss potential sites, mechanisms, and known categories of respiratory plasticity. Respiratory plasticity is defined as a persistent change in the neural control system based on prior experience. Plasticity may involve structural and/or functional alterations (most commonly both) and can arise from multiple cellular/synaptic mechanisms at different sites in the respiratory control system. Respiratory neuroplasticity is critically dependent on the establishment of necessary preconditions, the stimulus paradigm, the balance between opposing modulatory systems, age, gender, and genetics. Respiratory plasticity can be induced by hypoxia, hypercapnia, exercise, injury, stress, and pharmacological interventions or conditioning and occurs during development as well as in adults. Developmental plasticity is induced by experiences (e.g., altered respiratory gases) during sensitive developmental periods, thereby altering mature respiratory control. The same experience later in life has little or no effect. In adults, neuromodulation plays a prominent role in several forms of respiratory plasticity. For example, serotonergic modulation is thought to initiate and/or maintain respiratory plasticity following intermittent hypoxia, repeated hypercapnic exercise, spinal sensory denervation, spinal cord injury, and at least some conditioned reflexes. Considerable work is necessary before we fully appreciate the biological significance of respiratory plasticity, its underlying cellular/molecular and network mechanisms, and the potential to harness respiratory plasticity as a therapeutic tool. PMID:12486024

  14. Porcine reproductive and respiratory syndrome virus (PRRSV): pathogenesis and interaction with the immune System

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This review addresses important issues of porcine reproductive and respiratory syndrome virus (PRRSV) infection, immunity, pathogenesis and control. Worldwide PRRS is the most economically important infectious disease of pigs. We highlight the latest information on viral genome structure, pathogenic...

  15. Micromachined polymerase chain reaction system for multiple DNA amplification of upper respiratory tract infectious diseases.

    PubMed

    Liao, Chia-Sheng; Lee, Gwo-Bin; Wu, Jiunn-Jong; Chang, Chih-Ching; Hsieh, Tsung-Min; Huang, Fu-Chun; Luo, Ching-Hsing

    2005-01-15

    This paper presents a micro polymerase chain reaction (PCR) chip for the DNA-based diagnosis of microorganism genes and the detection of their corresponding antibiotic-resistant genes. The micro PCR chip comprises cheap biocompatible soda-lime glass substrates with integrated thin-film platinum resistors as heating/sensing elements, and is fabricated using micro-electro-mechanical-system (MEMS) techniques in a reliable batch-fabrication process. The heating and temperature sensing elements are made of the same material and are located inside the reaction chamber in order to ensure a uniform temperature distribution. This study performs the detection of several genes associated with upper respiratory tract infection microorganisms, i.e. Streptococcus pneumoniae, Haemopilus influenze, Staphylococcu aureus, Streptococcus pyogenes, and Neisseria meningitides, together with their corresponding antibiotic-resistant genes. The lower thermal inertia of the proposed micro PCR chip relative to conventional bench-top PCR systems enables a more rapid detection operation with reduced sample and reagent consumption. The experimental data reveal that the high heating and cooling rates of the system (20 and 10 degrees C/s, respectively) permit successful DNA amplification within 15 min. The micro PCR chip is also capable of performing multiple DNA amplification, i.e. the simultaneous duplication of multiple genes under different conditions in separate reaction wells. Compared with the large-scale PCR system, it is greatly advantageous for fast diagnosis of multiple infectious diseases. Multiplex PCR amplification of two DNA segments in the same well is also feasible using the proposed micro device. The developed micro PCR chip provides a crucial tool for genetic analysis, molecular biology, infectious disease detection, and many other biomedical applications. PMID:15590288

  16. Comparative in vitro study of interactions between particles and respiratory surface macrophages, erythrocytes, and epithelial cells of the chicken and the rat

    PubMed Central

    Kiama, S G; Adekunle, J S; Maina, J N

    2008-01-01

    Abstract In mammals, surface macrophages (SMs) play a foremost role in protecting the respiratory system by engulfing and destroying inhaled pathogens and harmful particulates. However, in birds, the direct defense role(s) that SMs perform remains ambiguous. Paucity and even lack of SMs have been reported in the avian respiratory system. It has been speculated that the pulmonary defenses in birds are inadequate and that birds are exceptionally susceptible to pulmonary diseases. In an endeavour to resolve the existing controversy, the phagocytic capacities of the respiratory SMs of the domestic fowl and the rat were compared under similar experimental conditions by exposure to polystyrene particles. In cells of equivalent diameters (8.5 µm in the chicken and 9.0 µm in the rat) and hence volumes, with the volume density of the engulfed polystyrene particles, i.e. the volume of the particles per unit volume of the cell (SM) of 23% in the chicken and 5% in the rat cells, the avian cells engulfed substantially more particles. Furthermore, the avian SMs phagocytized the particles more efficiently, i.e. at a faster rate. The chicken erythrocytes and the epithelial cells of the airways showed noteworthy phagocytic activity. In contrast to the rat cells that did not, 22% of the chicken erythrocytes phagocytized one to six particles. In birds, the phagocytic efficiencies of the SMs, erythrocytes, and epithelial cells may consolidate pulmonary defense. The assorted cellular defenses may explain how and why scarcity of SMs may not directly lead to a weak pulmonary defense. The perceived susceptibility of birds to respiratory diseases may stem from the human interventions that have included extreme genetic manipulation and intensive management for maximum productivity. The stress involved and the structural–functional disequilibria that have occurred from a ‘directed evolutionary process’, rather than weak immunological and cellular immunity, may explain the alleged

  17. Comparative in vitro study of interactions between particles and respiratory surface macrophages, erythrocytes, and epithelial cells of the chicken and the rat.

    PubMed

    Kiama, S G; Adekunle, J S; Maina, J N

    2008-10-01

    In mammals, surface macrophages (SMs) play a foremost role in protecting the respiratory system by engulfing and destroying inhaled pathogens and harmful particulates. However, in birds, the direct defense role(s) that SMs perform remains ambiguous. Paucity and even lack of SMs have been reported in the avian respiratory system. It has been speculated that the pulmonary defenses in birds are inadequate and that birds are exceptionally susceptible to pulmonary diseases. In an endeavour to resolve the existing controversy, the phagocytic capacities of the respiratory SMs of the domestic fowl and the rat were compared under similar experimental conditions by exposure to polystyrene particles. In cells of equivalent diameters (8.5 microm in the chicken and 9.0 microm in the rat) and hence volumes, with the volume density of the engulfed polystyrene particles, i.e. the volume of the particles per unit volume of the cell (SM) of 23% in the chicken and 5% in the rat cells, the avian cells engulfed substantially more particles. Furthermore, the avian SMs phagocytized the particles more efficiently, i.e. at a faster rate. The chicken erythrocytes and the epithelial cells of the airways showed noteworthy phagocytic activity. In contrast to the rat cells that did not, 22% of the chicken erythrocytes phagocytized one to six particles. In birds, the phagocytic efficiencies of the SMs, erythrocytes, and epithelial cells may consolidate pulmonary defense. The assorted cellular defenses may explain how and why scarcity of SMs may not directly lead to a weak pulmonary defense. The perceived susceptibility of birds to respiratory diseases may stem from the human interventions that have included extreme genetic manipulation and intensive management for maximum productivity. The stress involved and the structural-functional disequilibria that have occurred from a 'directed evolutionary process', rather than weak immunological and cellular immunity, may explain the alleged

  18. Circulating avian influenza viruses closely related to the 1918 virus have pandemic potential.

    PubMed

    Watanabe, Tokiko; Zhong, Gongxun; Russell, Colin A; Nakajima, Noriko; Hatta, Masato; Hanson, Anthony; McBride, Ryan; Burke, David F; Takahashi, Kenta; Fukuyama, Satoshi; Tomita, Yuriko; Maher, Eileen A; Watanabe, Shinji; Imai, Masaki; Neumann, Gabriele; Hasegawa, Hideki; Paulson, James C; Smith, Derek J; Kawaoka, Yoshihiro

    2014-06-11

    Wild birds harbor a large gene pool of influenza A viruses that have the potential to cause influenza pandemics. Foreseeing and understanding this potential is important for effective surveillance. Our phylogenetic and geographic analyses revealed the global prevalence of avian influenza virus genes whose proteins differ only a few amino acids from the 1918 pandemic influenza virus, suggesting that 1918-like pandemic viruses may emerge in the future. To assess this risk, we generated and characterized a virus composed of avian influenza viral segments with high homology to the 1918 virus. This virus exhibited pathogenicity in mice and ferrets higher than that in an authentic avian influenza virus. Further, acquisition of seven amino acid substitutions in the viral polymerases and the hemagglutinin surface glycoprotein conferred respiratory droplet transmission to the 1918-like avian virus in ferrets, demonstrating that contemporary avian influenza viruses with 1918 virus-like proteins may have pandemic potential. PMID:24922572

  19. Circulating avian influenza viruses closely related to the 1918 virus have pandemic potential

    PubMed Central

    Watanabe, Tokiko; Zhong, Gongxun; Russell, Colin A.; Nakajima, Noriko; Hatta, Masato; Hanson, Anthony; McBride, Ryan; Burke, David F.; Takahashi, Kenta; Fukuyama, Satoshi; Tomita, Yuriko; Maher, Eileen A.; Watanabe, Shinji; Imai, Masaki; Neumann, Gabriele; Hasegawa, Hideki; Paulson, James C.; Smith, Derek J.; Kawaoka, Yoshihiro

    2014-01-01

    Summary Wild birds harbor a large gene pool of influenza A viruses that have the potential to cause influenza pandemics. Foreseeing and understanding this potential is important for effective surveillance. Our phylogenetic and geographic analyses revealed the global prevalence of avian influenza virus genes whose proteins differ only a few amino acids from the 1918 pandemic influenza virus, suggesting that 1918-like pandemic viruses may emerge in the future. To assess this risk, we generated and characterized a virus composed of avian influenza viral segments with high homology to the 1918 virus. This virus exhibited higher pathogenicity in mice and ferrets than an authentic avian influenza virus. Further, acquisition of seven amino acid substitutions in the viral polymerases and the hemagglutinin surface glycoprotein conferred respiratory droplet transmission to the 1918-like avian virus in ferrets, demonstrating that contemporary avian influenza viruses with 1918 virus-like proteins may have pandemic potential. PMID:24922572

  20. Only one of the two type VI secretion systems encoded in the Salmonella enterica serotype Dublin genome is involved in colonization of the avian and murine hosts

    PubMed Central

    2014-01-01

    The type VI secretion system (T6SS) is a virulence factor for many Gram-negative bacteria. Salmonella genus harbors five phylogenetically distinct T6SS loci encoded in Salmonella Pathogenicity Islands (SPIs) SPI-6, SPI-19, SPI-20, SPI-21 and SPI-22, which are differentially distributed among serotypes. The T6SSs encoded in SPI-6 and SPI-19 contribute to pathogenesis of serotypes Typhimurium and Gallinarum in mice and chickens, respectively. Salmonella Dublin is a pathogen restricted to cattle where it causes a systemic disease. Also, it can colonize other hosts such as chickens and mice, which can act as reservoirs of this serotype. Salmonella Dublin harbors the genes for both T6SSSPI-6 and T6SSSPI-19. This study has determined the contribution of T6SSSPI-6 and T6SSSPI-19 to host-colonization by Salmonella Dublin using avian and murine models of infection. Competitive index experiments showed that, a mutant strain lacking both T6SSs (∆T6SSSPI-6/∆T6SSSPI-19) presents a strong colonization defect in cecum of chickens, similar to the defect observed for the ∆T6SSSPI-6 mutant, suggesting that this serotype requires a functional T6SSSPI-6 for efficient colonization of the avian gastrointestinal tract. Colonization of mice was also defective, although to a lesser extent than in chickens. In contrast, the T6SSSPI-19 was not necessary for colonization of either chickens or mice. Transfer of T6SSSPI-6, but not T6SSSPI-19, restored the ability of the double mutant to colonize both animal hosts. Our data indicate that Salmonella Dublin requires only the T6SSSPI-6 for efficient colonization of mice and chickens, and that the T6SSSPI-6 and T6SSSPI-19 are not functionally redundant. PMID:24405577

  1. Efficacy of a Low-Cost Bubble CPAP System in Treatment of Respiratory Distress in a Neonatal Ward in Malawi

    PubMed Central

    Kawaza, Kondwani; Machen, Heather E.; Brown, Jocelyn; Mwanza, Zondiwe; Iniguez, Suzanne; Gest, Al; Smith, E. O'Brian; Oden, Maria; Richards-Kortum, Rebecca R.; Molyneux, Elizabeth

    2014-01-01

    Background Respiratory failure is a leading cause of neonatal mortality in the developing world. Bubble continuous positive airway pressure (bCPAP) is a safe, effective intervention for infants with respiratory distress and is widely used in developed countries. Because of its high cost, bCPAP is not widely utilized in low-resource settings. We evaluated the performance of a new bCPAP system to treat severe respiratory distress in a low resource setting, comparing it to nasal oxygen therapy, the current standard of care. Methods We conducted a non-randomized convenience sample study to test the efficacy of a low-cost bCPAP system treating newborns with severe respiratory distress in the neonatal ward of Queen Elizabeth Central Hospital, in Blantyre, Malawi. Neonates weighing >1,000 g and presenting with severe respiratory distress who fulfilled inclusion criteria received nasal bCPAP if a device was available; if not, they received standard care. Clinical assessments were made during treatment and outcomes compared for the two groups. Findings 87 neonates (62 bCPAP, 25 controls) were recruited. Survival rate for neonates receiving bCPAP was 71.0% (44/62) compared with 44.0% (11/25) for controls. 65.5% (19/29) of very low birth weight neonates receiving bCPAP survived to discharge compared to 15.4% (1/13) of controls. 64.6% (31/48) of neonates with respiratory distress syndrome (RDS) receiving bCPAP survived to discharge, compared to 23.5% (4/17) of controls. 61.5% (16/26) of neonates with sepsis receiving bCPAP survived to discharge, while none of the seven neonates with sepsis in the control group survived. Interpretation Use of a low-cost bCPAP system to treat neonatal respiratory distress resulted in 27% absolute improvement in survival. The beneficial effect was greater for neonates with very low birth weight, RDS, or sepsis. Implementing appropriate bCPAP devices could reduce neonatal mortality in developing countries. PMID:24489715

  2. Climate Change and Respiratory Infections.

    PubMed

    Mirsaeidi, Mehdi; Motahari, Hooman; Taghizadeh Khamesi, Mojdeh; Sharifi, Arash; Campos, Michael; Schraufnagel, Dean E

    2016-08-01

    The rate of global warming has accelerated over the past 50 years. Increasing surface temperature is melting glaciers and raising the sea level. More flooding, droughts, hurricanes, and heat waves are being reported. Accelerated changes in climate are already affecting human health, in part by altering the epidemiology of climate-sensitive pathogens. In particular, climate change may alter the incidence and severity of respiratory infections by affecting vectors and host immune responses. Certain respiratory infections, such as avian influenza and coccidioidomycosis, are occurring in locations previously unaffected, apparently because of global warming. Young children and older adults appear to be particularly vulnerable to rapid fluctuations in ambient temperature. For example, an increase in the incidence in childhood pneumonia in Australia has been associated with sharp temperature drops from one day to the next. Extreme weather events, such as heat waves, floods, major storms, drought, and wildfires, are also believed to change the incidence of respiratory infections. An outbreak of aspergillosis among Japanese survivors of the 2011 tsunami is one such well-documented example. Changes in temperature, precipitation, relative humidity, and air pollution influence viral activity and transmission. For example, in early 2000, an outbreak of Hantavirus respiratory disease was linked to a local increase in the rodent population, which in turn was attributed to a two- to threefold increase in rainfall before the outbreak. Climate-sensitive respiratory pathogens present challenges to respiratory health that may be far greater in the foreseeable future. PMID:27300144

  3. Climate Change and Respiratory Infections.

    PubMed

    Mirsaeidi, Mehdi; Motahari, Hooman; Taghizadeh Khamesi, Mojdeh; Sharifi, Arash; Campos, Michael; Schraufnagel, Dean E

    2016-08-01

    The rate of global warming has accelerated over the past 50 years. Increasing surface temperature is melting glaciers and raising the sea level. More flooding, droughts, hurricanes, and heat waves are being reported. Accelerated changes in climate are already affecting human health, in part by altering the epidemiology of climate-sensitive pathogens. In particular, climate change may alter the incidence and severity of respiratory infections by affecting vectors and host immune responses. Certain respiratory infections, such as avian influenza and coccidioidomycosis, are occurring in locations previously unaffected, apparently because of global warming. Young children and older adults appear to be particularly vulnerable to rapid fluctuations in ambient temperature. For example, an increase in the incidence in childhood pneumonia in Australia has been associated with sharp temperature drops from one day to the next. Extreme weather events, such as heat waves, floods, major storms, drought, and wildfires, are also believed to change the incidence of respiratory infections. An outbreak of aspergillosis among Japanese survivors of the 2011 tsunami is one such well-documented example. Changes in temperature, precipitation, relative humidity, and air pollution influence viral activity and transmission. For example, in early 2000, an outbreak of Hantavirus respiratory disease was linked to a local increase in the rodent population, which in turn was attributed to a two- to threefold increase in rainfall before the outbreak. Climate-sensitive respiratory pathogens present challenges to respiratory health that may be far greater in the foreseeable future.

  4. Moving stereotactic fiducial system to obtain a respiratory signal: proof of principle.

    PubMed

    Caballero Pinelo, Roberto; Alfonso, Rodolfo; González Pérez, Yelina; García, Albin Ariel; Rubio, Arnaldo

    2016-01-01

    The purpose of this study was to obtain a respiratory signal with the use of an add-on device to a specific stereotactic body frame and evaluate precision and accuracy of the method, with the use of a dynamic phantom. The authors designed and constructed a simple add-on device which, attached to a stereotactic body frame, provides information of the patient's respiratory signal in every CT axial image acquired. To assess the approach, 12 CT studies were acquired, on a phantom that simulates respiratory motion, which was placed inside the frame with the add-on device. Images of the phantom with sinusoidal and shark-fin motion patterns were acquired, with different amplitude in the movement of the external surrogate and the target. Cycle time was 6 s. Images were retrospectively processed to obtain a respiratory signal from the vertical movement of the "abdomen." The obtained signal was adjusted to a sinusoidal function; the resultant amplitude and cycle time were compared with the preset function in the phantom. The cycle amplitude and time obtained with the method agreed with the preset values within 0.4 mm and 0.29 s, respectively. In the cases of sinusoidal movements the maximal discrepancy was less than 1 mm. A respiratory signal was obtained in all cine CT sequence studies with this method that consistently coincides with the preset motion of the phantom. The authors proposed a tool to obtain a respiratory signal based on information contained into the CT axial images. PMID:26894334

  5. Moving stereotactic fiducial system to obtain a respiratory signal: proof of principle.

    PubMed

    Caballero Pinelo, Roberto; Alfonso, Rodolfo; González Pérez, Yelina; García, Albin Ariel; Rubio, Arnaldo

    2016-01-08

    The purpose of this study was to obtain a respiratory signal with the use of an add-on device to a specific stereotactic body frame and evaluate precision and accuracy of the method, with the use of a dynamic phantom. The authors designed and constructed a simple add-on device which, attached to a stereotactic body frame, provides information of the patient's respiratory signal in every CT axial image acquired. To assess the approach, 12 CT studies were acquired, on a phantom that simulates respiratory motion, which was placed inside the frame with the add-on device. Images of the phantom with sinusoidal and shark-fin motion patterns were acquired, with different amplitude in the movement of the external surrogate and the target. Cycle time was 6 s. Images were retrospectively processed to obtain a respiratory signal from the vertical movement of the "abdomen." The obtained signal was adjusted to a sinusoidal function; the resultant amplitude and cycle time were compared with the preset function in the phantom. The cycle amplitude and time obtained with the method agreed with the preset values within 0.4 mm and 0.29 s, respectively. In the cases of sinusoidal movements the maximal discrepancy was less than 1 mm. A respiratory signal was obtained in all cine CT sequence studies with this method that consistently coincides with the preset motion of the phantom. The authors proposed a tool to obtain a respiratory signal based on information contained into the CT axial images.

  6. Accuracy of tumor motion compensation algorithm from a robotic respiratory tracking system: A simulation study

    SciTech Connect

    Seppenwoolde, Yvette; Berbeco, Ross I.; Nishioka, Seiko; Shirato, Hiroki; Heijmen, Ben

    2007-07-15

    The Synchrony{sup TM} Respiratory Tracking System (RTS) is a treatment option of the CyberKnife robotic treatment device to irradiate extra-cranial tumors that move due to respiration. Advantages of RTS are that patients can breath normally and that there is no loss of linac duty cycle such as with gated therapy. Tracking is based on a measured correspondence model (linear or polynomial) between internal tumor motion and external (chest/abdominal) marker motion. The radiation beam follows the tumor movement via the continuously measured external marker motion. To establish the correspondence model at the start of treatment, the 3D internal tumor position is determined at 15 discrete time points by automatic detection of implanted gold fiducials in two orthogonal x-ray images; simultaneously, the positions of the external markers are measured. During the treatment, the relationship between internal and external marker positions is continuously accounted for and is regularly checked and updated. Here we use computer simulations based on continuously and simultaneously recorded internal and external marker positions to investigate the effectiveness of tumor tracking by the RTS. The Cyberknife does not allow continuous acquisition of x-ray images to follow the moving internal markers (typical imaging frequency is once per minute). Therefore, for the simulations, we have used data for eight lung cancer patients treated with respiratory gating. All of these patients had simultaneous and continuous recordings of both internal tumor motion and external abdominal motion. The available continuous relationship between internal and external markers for these patients allowed investigation of the consequences of the lower acquisition frequency of the RTS. With the use of the RTS, simulated treatment errors due to breathing motion were reduced largely and consistently over treatment time for all studied patients. A considerable part of the maximum reduction in treatment error

  7. The human respiratory gate

    PubMed Central

    Eckberg, Dwain L

    2003-01-01

    Respiratory activity phasically alters membrane potentials of preganglionic vagal and sympathetic motoneurones and continuously modulates their responsiveness to stimulatory inputs. The most obvious manifestation of this ‘respiratory gating’ is respiratory sinus arrhythmia, the rhythmic fluctuations of electrocardiographic R–R intervals observed in healthy resting humans. Phasic autonomic motoneurone firing, reflecting the throughput of the system, depends importantly on the intensity of stimulatory inputs, such that when levels of stimulation are low (as with high arterial pressure and sympathetic activity, or low arterial pressure and vagal activity), respiratory fluctuations of sympathetic or vagal firing are also low. The respiratory gate has a finite capacity, and high levels of stimulation override the ability of respiration to gate autonomic responsiveness. Autonomic throughput also depends importantly on other factors, including especially, the frequency of breathing, the rate at which the gate opens and closes. Respiratory sinus arrhythmia is small at rapid, and large at slow breathing rates. The strong correlation between systolic pressure and R–R intervals at respiratory frequencies reflects the influence of respiration on these two measures, rather than arterial baroreflex physiology. A wide range of evidence suggests that respiratory activity gates the timing of autonomic motoneurone firing, but does not influence its tonic level. I propose that the most enduring significance of respiratory gating is its use as a precisely controlled experimental tool to tease out and better understand otherwise inaccessible human autonomic neurophysiological mechanisms. PMID:12626671

  8. The human respiratory gate

    NASA Technical Reports Server (NTRS)

    Eckberg, Dwain L.

    2003-01-01

    Respiratory activity phasically alters membrane potentials of preganglionic vagal and sympathetic motoneurones and continuously modulates their responsiveness to stimulatory inputs. The most obvious manifestation of this 'respiratory gating' is respiratory sinus arrhythmia, the rhythmic fluctuations of electrocardiographic R-R intervals observed in healthy resting humans. Phasic autonomic motoneurone firing, reflecting the throughput of the system, depends importantly on the intensity of stimulatory inputs, such that when levels of stimulation are low (as with high arterial pressure and sympathetic activity, or low arterial pressure and vagal activity), respiratory fluctuations of sympathetic or vagal firing are also low. The respiratory gate has a finite capacity, and high levels of stimulation override the ability of respiration to gate autonomic responsiveness. Autonomic throughput also depends importantly on other factors, including especially, the frequency of breathing, the rate at which the gate opens and closes. Respiratory sinus arrhythmia is small at rapid, and large at slow breathing rates. The strong correlation between systolic pressure and R-R intervals at respiratory frequencies reflects the influence of respiration on these two measures, rather than arterial baroreflex physiology. A wide range of evidence suggests that respiratory activity gates the timing of autonomic motoneurone firing, but does not influence its tonic level. I propose that the most enduring significance of respiratory gating is its use as a precisely controlled experimental tool to tease out and better understand otherwise inaccessible human autonomic neurophysiological mechanisms.

  9. Effect of particles of ashes produced from sugarcane burning on the respiratory system of rats.

    PubMed

    Ferreira, L E N; Muniz, B V; Bittar, T O; Berto, L A; Figueroba, S R; Groppo, F C; Pereira, A C

    2014-11-01

    The practice of burning sugarcane obtained by non-mechanized harvesting exposes workers and the people of neighboring towns to high concentrations of particulate matter (PM) that is harmful to health, and may trigger a series of cardiorespiratory diseases. The aim of this study was to analyze the chemical composition of the micro-particles coming from sugarcane burning residues and to verify the effects of this micro-particulate matter on lung and tracheal tissues. Micro-particulate matter (PM10) was obtained by dissolving filter paper containing burnt residues in NaCl solution. This material was instilled into the Wistar rats' nostrils. Histological analyses (hematoxylin and eosin - HE) of cardiac, lung and tracheal tissues were performed. Inflammatory mediators were measured in lung tissues by using ELISA. The chemical composition of the particulate material revealed a large quantity of the phthalic acid ester, high concentrations of phenolic compounds, anthracene and polycyclic aromatic hydrocarbons (PAH). Histological analysis showed a reduction in subjacent conjunctive tissue in the trachea, lung inflammation with inflammatory infiltrate formation and reduction of alveolar spaces and a significant increase (p<0.05) in the release of IL-1α, IL-1β, IL-6, and INF-γ in the group treated with PM10 when compared to the control group. We concluded that the burning sugarcane residues release many particles, which have toxic chemical compounds. The micro-particulate matter can induce alterations in the respiratory system.

  10. Hygroscopic Properties and Respiratory System Deposition Behavior of Particulate Matter Emitted By Mining and Smelting Operations

    PubMed Central

    Youn, Jong-sang; Csavina, Janae; Rine, Kyle P.; Shingler, Taylor; Taylor, Mark Patrick; Sáez, A. Eduardo; Betterton, Eric A.; Sorooshian, Armin

    2016-01-01

    This study examines size-resolved physicochemical data for particles sampled near mining and smelting operations and a background urban site in Arizona with a focus on how hygroscopic growth impacts particle deposition behavior. Particles with aerodynamic diameters between 0.056 – 18 μm were collected at three sites: (i) an active smelter operation in Hayden, AZ, (ii) a legacy mining site with extensive mine tailings in Iron King, AZ, and (iii) an urban site, inner-city Tucson, AZ. Mass size distributions of As and Pb exhibit bimodal profiles with a dominant peak between 0.32-0.56 μm and a smaller mode in the coarse range (> 3 μm). The hygroscopicity profile did not exhibit the same peaks owing to dependence on other chemical constituents. Sub-micrometer particles were generally more hygroscopic than super-micrometer ones at all three sites with finite water-uptake ability at all sites and particle sizes examined. Model calculations at a relative humidity of 99.5% reveal significant respiratory system particle deposition enhancements at sizes with the largest concentrations of toxic contaminants. Between dry diameters of 0.32 and 0.56 μm, for instance, ICRP and MPPD models predict deposition fraction enhancements of 171%-261% and 33%-63%, respectively, at the three sites. PMID:27700056

  11. Development of a respiratory inductive plethysmography module supporting multiple sensors for wearable systems.

    PubMed

    Zhang, Zhengbo; Zheng, Jiewen; Wu, Hao; Wang, Weidong; Wang, Buqing; Liu, Hongyun

    2012-09-27

    In this paper, we present an RIP module with the features of supporting multiple inductive sensors, no variable frequency LC oscillator, low power consumption, and automatic gain adjustment for each channel. Based on the method of inductance measurement without using a variable frequency LC oscillator, we further integrate pulse amplitude modulation and time division multiplexing scheme into a module to support multiple RIP sensors. All inductive sensors are excited by a high-frequency electric current periodically and momentarily, and the inductance of each sensor is measured during the time when the electric current is fed to it. To improve the amplitude response of the RIP sensors, we optimize the sensing unit with a matching capacitor parallel with each RIP sensor forming a frequency selection filter. Performance tests on the linearity of the output with cross-sectional area and the accuracy of respiratory volume estimation demonstrate good linearity and accurate lung volume estimation. Power consumption of this new RIP module with two sensors is very low. The performance of respiration measurement during movement is also evaluated. This RIP module is especially desirable for wearable systems with multiple RIP sensors for long-term respiration monitoring.

  12. Systemic immunoprophylaxis of nasal respiratory syncytial virus infection in cotton rats.

    PubMed

    Sami, I R; Piazza, F M; Johnson, S A; Darnell, M E; Ottolini, M G; Hemming, V G; Prince, G A

    1995-02-01

    The cotton rat model was used to test whether systemically administered immunoglobulin could protect nasal tissues against low challenge doses of respiratory syncytial virus (RSV). Animals were pretreated by intraperitoneal injection of human immunoglobulin with moderate (1:2226) or high (1:15,000) neutralizing antibody titers to RSV (day 0), challenged intranasally with RSV Long at doses ranging from 10(1) to 10(5) pfu (day 1), and sacrificed for virus titration (day 5). Pretreatment with moderate-titer immunoglobulin effected complete or near complete nasal protection against low to moderate (10(1)-10(3) pfu) RSV challenge doses and a significant reduction in nasal RSV titers at high (10(4)-10(5) pfu) challenge doses. Pretreatment with high-titer immunoglobulin effected near complete nasal protection at an RSV challenge dose of 10(3) pfu and highly significant and significant reductions in nasal RSV titers at challenge doses of 10(4) and 10(5) pfu, respectively. Immunoprophylaxis effected complete or near complete pulmonary protection at all RSV challenge doses.

  13. Influence of apnoeic oxygenation in respiratory and circulatory system under general anaesthesia

    PubMed Central

    Kolettas, Alexander; Grosomanidis, Vasilis; Kolettas, Vasilis; Tsakiridis, Kosmas; Katsikogiannis, Nikolaos; Tsiouda, Theodora; Kiougioumtzi, Ioanna; Machairiotis, Nikolaos; Drylis, Georgios; Kesisis, Georgios; Beleveslis, Thomas; Zarogoulidis, Konstantinos

    2014-01-01

    Apnoeic oxygenation is an alternative technique of oxygenation which is recommended in the consecutive oxygen administration with varying flows (2-10 lt/min) through a catheter which is positioned over the keel of the trachea. Apnoeic oxygenation maintains for a significant period of time the oxygenation of blood in breathless conditions. This technique was first applied in 1947 by Draper, Whitehead, and Spencer and it was studied sporadically by other inventors too. However, the international literature shows few studies that have examined closely apnoeic oxygenation and its effects on Hemodynamic image and the respiratory system of the human body. Recently they have begun to arise some studies which deal with the application of this technique in several conditions such as difficult tracheal intubation, ventilation of guinea pigs in campaign conditions where the oxygen supply is limited and calculable, the application of this technique in combination with the use of extracorporeal removal of carbon dioxide (CO2). All the above indicate, the clinical use of this technique. PMID:24672687

  14. Determining respiratory system resistance and reactance by impulse oscillometry in obese individuals

    PubMed Central

    de Albuquerque, Cláudio Gonçalves; de Andrade, Flávio Maciel Dias; Rocha, Marcus Aurélio de Almeida; de Oliveira, Alina Farias França; Ladosky, Waldemar; Victor, Edgar Guimarães; Rizzo, José Ângelo

    2015-01-01

    Objective: To evaluate peripheral respiratory system resistance and reactance (Rrs and Xrs, respectively) in obese individuals. Methods: We recruited 99 individuals, dividing them into four groups by body mass index (BMI): < 30.0 kg/m2 (control, n = 31); 30.0-39.9 kg/m2 (obesity, n = 13); 40.0-49.9 kg/m2 (severe obesity, n = 28); and ≥ 50.0 kg/m2 (morbid obesity, n = 13). Using impulse oscillometry, we measured total Rrs, central Rrs, and Xrs. Peripheral Rrs was calculated as the difference between total Rrs and central Rrs. All subjects also underwent spirometry. Results: Of the 99 individuals recruited, 14 were excluded because they failed to perform forced expiratory maneuvers correctly during spirometry. The individuals in the severe obesity and morbid obesity groups showed higher peripheral Rrs and lower Xrs in comparison with those in the two other groups. Conclusions: Having a BMI ≥ 40 kg/m2 was associated with a significant increase in peripheral Rrs and with a decrease in Xrs. PMID:26578133

  15. Respiratory system loop gain in normal men and women measured with proportional-assist ventilation.

    PubMed

    Wellman, Andrew; Malhotra, Atul; Fogel, Robert B; Edwards, Jill K; Schory, Karen; White, David P

    2003-01-01

    We hypothesized that increased chemical control instability (CCI) in men could partially explain the male predominance in obstructive sleep apnea (OSA). CCI was assessed by sequentially increasing respiratory control system loop gain (LG) with proportional-assist ventilation (PAV) in 10 men (age 24-48 yr) and 9 women (age 22-36 yr) until periodic breathing or awakening occurred. Women were studied in both the follicular and luteal phases of the menstrual cycle. The amount by which PAV amplified LG was quantified from the tidal volume amplification factor [(VtAF) assisted tidal volume/unassisted tidal volume]. LG was calculated as the inverse of the VtAF occurring at the assist level immediately preceding the emergence of periodic breathing (when LG x VtAF = 1). Only 1 of 10 men and 2 of 9 women developed periodic breathing with PAV. The rest were resistant to periodic breathing despite moderately high levels of PAV amplification. We conclude that LG is low in the majority of normal men and women and that higher volume amplification factors are needed to determine whether gender differences exist in this low range.

  16. Pathogenesis of H5N1 influenza virus infections in mice and ferret models differ between respiratory and digestive system exposure

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background. Epidemiological, clinical and laboratory data suggests H5N1 influenza viruses are transmitted through and predominantly affect the respiratory system of mammals. Some data suggests digestive system involvement. However, direct evidence of alimentary transmission and infection in mammal...

  17. Clinical Accuracy of the Respiratory Tumor Tracking System of the CyberKnife: Assessment by Analysis of Log Files

    SciTech Connect

    Hoogeman, Mischa Prevost, Jean-Briac; Nuyttens, Joost; Poell, Johan; Levendag, Peter; Heijmen, Ben

    2009-05-01

    Purpose: To quantify the clinical accuracy of the respiratory motion tracking system of the CyberKnife treatment device. Methods and Materials: Data in log files of 44 lung cancer patients treated with tumor tracking were analyzed. Errors in the correlation model, which relates the internal target motion with the external breathing motion, were quantified. The correlation model error was compared with the geometric error obtained when no respiratory tracking was used. Errors in the prediction method were calculated by subtracting the predicted position from the actual measured position after 192.5 ms (the time lag to prediction in our current system). The prediction error was also measured for a time lag of 115 ms and a new prediction method. Results: The mean correlation model errors were less than 0.3 mm. Standard deviations describing intrafraction variations around the whole-fraction mean error were 0.2 to 1.9 mm for cranio-caudal, 0.1 to 1.9 mm for left-right, and 0.2 to 2.5 mm for anterior-posterior directions. Without the use of respiratory tracking, these variations would have been 0.2 to 8.1 mm, 0.2 to 5.5 mm, and 0.2 to 4.4 mm. The overall mean prediction error was small (0.0 {+-} 0.0 mm) for all directions. The intrafraction standard deviation ranged from 0.0 to 2.9 mm for a time delay of 192.5 ms but was halved by using the new prediction method. Conclusions: Analyses of the log files of real clinical cases have shown that the geometric error caused by respiratory motion is substantially reduced by the application of respiratory motion tracking.

  18. Physiological and pathophysiological interactions between the respiratory central pattern generator and the sympathetic nervous system.

    PubMed

    Molkov, Yaroslav I; Zoccal, Daniel B; Baekey, David M; Abdala, Ana P L; Machado, Benedito H; Dick, Thomas E; Paton, Julian F R; Rybak, Ilya A

    2014-01-01

    Respiratory modulation seen in the sympathetic nerve activity (SNA) implies that the respiratory and sympathetic networks interact. During hypertension elicited by chronic intermittent hypoxia (CIH), the SNA displays an enhanced respiratory modulation reflecting strengthened interactions between the networks. In this chapter, we review a series of experimental and modeling studies that help elucidate possible mechanisms of sympatho-respiratory coupling. We conclude that this coupling significantly contributes to both the sympathetic baroreflex and the augmented sympathetic activity after exposure to CIH. This conclusion is based on the following findings. (1) Baroreceptor activation results in perturbation of the respiratory pattern via transient activation of postinspiratory neurons in the Bötzinger complex (BötC). The same BötC neurons are involved in the respiratory modulation of SNA, and hence provide an additional pathway for the sympathetic baroreflex. (2) Under hypercapnia, phasic activation of abdominal motor nerves (AbN) is accompanied by synchronous discharges in SNA due to the common source of this rhythmic activity in the retrotrapezoid nucleus (RTN). CIH conditioning increases the CO2 sensitivity of central chemoreceptors in the RTN which results in the emergence of AbN and SNA discharges under normocapnic conditions similar to those observed during hypercapnia in naïve animals. Thus, respiratory-sympathetic interactions play an important role in defining sympathetic output and significantly contribute to the sympathetic activity and hypertension under certain physiological or pathophysiological conditions, and the theoretical framework presented may be instrumental in understanding of malfunctioning control of sympathetic activity in a variety of disease states.

  19. Evaluation of systems for reducing the transmission of porcine reproductive and respiratory syndrome virus by aerosol.

    PubMed

    Dee, Scott A; Batista, Laura; Deen, John; Pijoan, Carlos

    2006-01-01

    The purpose of this study was to compare 3 methods for the reduction of aerosol transmission of Porcine reproductive and respiratory syndrome virus (PRRSV): high-efficiency particulate air (HEPA) filtration, low-cost filtration, and ultraviolet light (UV) irradiation. The HEPA-filtration system involved a pre-filter screen, a bag filter (EU8 rating), and a HEPA filter (EU13 rating). The low-cost-filtration system contained mosquito netting (pre-filter), a fiberglass furnace filter, and an electrostatic furnace filter. For UV irradiation, a lamp emitted UVC radiation at 253.7 nm. No form of intervention was used in the control group. The experimental facilities consisted of 2 chambers connected by a 1.3-m-long duct. Recipient pigs, housed in chamber 2, were exposed to artificial aerosols created by a mechanically operated mister containing modified live PRRSV vaccine located in chamber 1. Aerosol transmission of PRRSV occurred in 9 of the 10 control replicates, 8 of the 10 UVC-irradiation replicates, 4 of the 10 low-cost-filtration replicates, and 0 of the 10 HEPA-filtration replicates. When compared with no intervention, HEPA filtration and low-cost filtration significantly reduced PRRSV transmission (P < 0.0005 and = 0.0286, respectively), whereas UV irradiation had no effect (P = 0.5). However, low-cost filtration and UV irradiation were significantly less effective (P = 0.043 and P < 0.0005, respectively) than HEPA filtration. In conclusion, under the conditions of this study, HEPA filtration was significantly more effective at reducing aerosol transmission of PRRSV than the other methods evaluated. PMID:16548329

  20. Fate of inhaled monoclonal antibodies after the deposition of aerosolized particles in the respiratory system.

    PubMed

    Guilleminault, L; Azzopardi, N; Arnoult, C; Sobilo, J; Hervé, V; Montharu, J; Guillon, A; Andres, C; Herault, O; Le Pape, A; Diot, P; Lemarié, E; Paintaud, G; Gouilleux-Gruart, V; Heuzé-Vourc'h, N

    2014-12-28

    Monoclonal antibodies (mAbs) are usually delivered systemically, but only a small proportion of the drug reaches the lung after intravenous injection. The inhalation route is an attractive alternative for the local delivery of mAbs to treat lung diseases, potentially improving tissue concentration and exposure to the drug while limiting passage into the bloodstream and adverse effects. Several studies have shown that the delivery of mAbs or mAb-derived biopharmaceuticals via the airways is feasible and efficient, but little is known about the fate of inhaled mAbs after the deposition of aerosolized particles in the respiratory system. We used cetuximab, an anti-EGFR antibody, as our study model and showed that, after its delivery via the airways, this mAb accumulated rapidly in normal and cancerous tissues in the lung, at concentrations twice those achieved after intravenous delivery, for early time points. The spatial distribution of cetuximab within the tumor was heterogeneous, as reported after i.v. injection. Pharmacokinetic (PK) analyses were carried out in both mice and macaques and showed aerosolized cetuximab bioavailability to be lower and elimination times shorter in macaques than in mice. Using transgenic mice, we showed that FcRn, a key receptor involved in mAb distribution and PK, was likely to make a greater contribution to cetuximab recycling than to the transcytosis of this mAb in the airways. Our results indicate that the inhalation route is potentially useful for the treatment of both acute and chronic lung diseases, to boost and ensure the sustained accumulation of mAbs within the lungs, while limiting their passage into the bloodstream. PMID:25451545

  1. Reductions in the variations of respiration signals for respiratory-gated radiotherapy when using the video-coaching respiration guiding system

    NASA Astrophysics Data System (ADS)

    Lee, Hyun Jeong; Yea, Ji Woon; Oh, Se An

    2015-07-01

    Respiratory-gated radiation therapy (RGRT) has been used to minimize the dose to normal tissue in lung-cancer radiotherapy. The present research aims to improve the regularity of respiration in RGRT by using a video-coached respiration guiding system. In the study, 16 patients with lung cancer were evaluated. The respiration signals of the patients were measured by using a realtime position management (RPM) respiratory gating system (Varian, USA), and the patients were trained using the video-coaching respiration guiding system. The patients performed free breathing and guided breathing, and the respiratory cycles were acquired for ~5 min. Then, Microsoft Excel 2010 software was used to calculate the mean and the standard deviation for each phase. The standard deviation was computed in order to analyze the improvement in the respiratory regularity with respect to the period and the displacement. The standard deviation of the guided breathing decreased to 48.8% in the inhale peak and 24.2% in the exhale peak compared with the values for the free breathing of patient 6. The standard deviation of the respiratory cycle was found to be decreased when using the respiratory guiding system. The respiratory regularity was significantly improved when using the video-coaching respiration guiding system. Therefore, the system is useful for improving the accuracy and the efficiency of RGRT.

  2. Respiratory disease in systemic lupus erythematosus: correlation with results of laboratory tests and histological appearance of muscle biopsy specimens.

    PubMed Central

    Evans, S A; Hopkinson, N D; Kinnear, W J; Watson, L; Powell, R J; Johnston, I D

    1992-01-01

    BACKGROUND: In systemic lupus erythematosus, certain laboratory tests and evidence from muscle biopsy specimens of lymphocytic vasculitis reflect disease activity. A study was designed to determine if such indices predict respiratory lesions, and in particular whether the presence of vasculitis in quadriceps muscle reflects respiratory muscle function. METHODS: Twenty seven 27 patients with systemic lupus erythematosus were studied, ten of whom were consecutive untreated patients and 17 having clinically active disease and being treated. They were prospectively evaluated on the basis of erythrocyte sedimentation rate, lymphocyte count, C3 degradation products, quadriceps muscle biopsy, spirometry, lung volumes, carbon monoxide transfer factor, and mouth pressure during a maximal sniff. RESULTS: Lung function test results were abnormal in 12 patients. Vital capacity was reduced in seven, carbon monoxide transfer factor capacity in five, and mouth pressure was low (< 70% predicted) in ten. Lymphocytic vasculitis was seen in the muscle biopsy specimens of ten patients. No correlation was found between laboratory tests and lung function or mouth pressure, or between the presence of lymphocytic vasculitis and mouth pressure. In untreated patients, those with lymphocytic vasculitis had lower spirometric values. CONCLUSIONS: In systemic lupus erythematosus, evidence from muscle biopsy specimens of lymphocytic vasculitis is not predictive of impaired inspiratory muscle function as measured by mouth pressure. In untreated patients there were relationships between some laboratory test results and respiratory function, but this was not the case for the whole group. In systemic lupus erythematosus, laboratory tests and evidence from muscle biopsy specimens of lymphocytic vasculitis are therefore unlikely to be helpful in the assessment of respiratory disease. Images PMID:1465755

  3. The global nature of avian influenza

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Avian influenza (AI) virus (AIV) is a global virus which knows no geographic boundaries, has no political agenda, and can infect poultry irrespective of their occupying ecosystem, agricultural production system, or other anthropocentric niches. AIVs or evidence of their infection have been detected...

  4. [The effect of cerebral glutamate enhanced level on the respiratory system of anesthetized rats].

    PubMed

    Aleksandrov, V G; Buĭ Tkhi, Kh; Aleksandrova, N P

    2012-07-01

    A cerebral level of glutamate is one of the determinants of the central mechanisms of respiratory control. It had been hypothesized that endogenous glutamate could have a modulating effect on the functioning of mechanisms for neural control of respiratory function. Acute experiments on spontaneuosly breathing, urethane-anesthetized rats had been performed to study the respiratory effects of cerebroventricular microinjection of glutamate. It has been shown that a higher level of cerebral glutamate increases breathing rate and electrical activity of the diaphragm, and strengthen the Hering-Breuer reflex. These effects had a clear character of the phase. The results confirm the hypothesis suggested and prove that the increase in cerebral levels of glutamate leads to the activation of glutamate receptors of various types.

  5. Advanced lung ventilation system (ALVS) with linear respiratory mechanics assumption for waveform optimization of dual-controlled ventilation.

    PubMed

    Montecchia, F; Guerrisi, M; Canichella, A

    2007-03-01

    The present paper describes the functional features of an advanced lung ventilation system (ALVS) properly designed for the optimization of conventional dual-controlled ventilation (DCV), i.e. with pressure-controlled ventilation with ensured tidal or minute volume. Considering the particular clinical conditions of patients treated with controlled ventilation the analysis and synthesis of ALVS control have been performed assuming a linear respiratory mechanics. Moreover, new airways pressure waveforms with more physiological shape can be tested on simulators of respiratory system in order to evaluate their clinical application. This is obtained through the implementation of a compensation procedure making the desired airways pressure waveform independent on patient airways resistance and lung compliance variations along with a complete real-time monitoring of respiratory system parameters leading the ventilator setting. The experimental results obtained with a lung simulator agree with the theoretical ones and show that ALVS performance is useful for the research activity aiming at the improvement of both diagnostic evaluation and therapeutic outcome relative to mechanical ventilation treatments.

  6. Respiratory Homeostasis and Exploitation of the Immune System for Lung Cancer Vaccines.

    PubMed

    Yagui-Beltrán, Adam; Coussens, Lisa M; Jablons, David M

    2009-01-01

    Lung cancer is the leading cause of all cancer deaths in the US. The international scientific and clinical community has made significant advances toward understanding specific molecular mechanisms underlying lung carcinogenesis; however, despite these insights and advances in surgery and chemoradiotherapy, the prognosis for non-small-cell lung cancer (NSCLC) remains poor. Nonetheless, significant effort is being focused on advancing translational research evaluating the efficacy of novel targeted therapeutic strategies for lung cancer. Illustrative examples of this include antagonists of the epidermal growth factor receptor (EGFR), tyrosine kinase inhibitors (TKIs) such as gefitinib and erlotinib, and a diverse assortment of anti-angiogenic compounds targeting growth factors and/or their receptors that regulate tumor-associated angiogenic programs. In addition, with the increased awareness of the significant role chronically activated leukocytes play as potentiators of solid-tumor development, the role of innate and adaptive immune cells as regulators of lung carcinogenesis is being examined. While some of these studies are examining how novel therapeutic strategies may enhance the efficacy of lung cancer vaccines, others are evaluating the intrinsic characteristics of the immune response to lung cancer in order to identify rate-limiting molecular and/or cellular programs to target with novel anticancer therapeutics. In this article, we explore important aspects of the immune system and its role in regulating normal respiratory homeostasis compared with the immune response accompanying development of lung cancer. These hallmarks are then discussed in the context of recent efforts to develop lung cancer vaccines, where we have highlighted important concepts that must be taken into consideration for future development of novel therapeutic strategies and clinical trials assessing their efficacy.

  7. Systemic inflammatory response syndrome and prolonged hypoperfusion lesions in an infant with respiratory syncytial virus encephalopathy.

    PubMed

    Miyamoto, Kenji; Fujisawa, Masahide; Hozumi, Hajime; Tsuboi, Tatsuo; Kuwashima, Shigeko; Hirao, Jun-ichi; Sugita, Kenichi; Arisaka, Osamu

    2013-10-01

    Respiratory syncytial virus (RSV) is a cause of neurological complications in infants. We report a rare case of RSV encephalopathy in an infant who presented with poor sucking and hypothermia at 17 days of age after suffering from rhinorrhea and a cough for several days. After hospitalization, the patient presented with stupor and hypotonia lasting for at least 24 h, and was intubated, sedated, and ventilated for treatment of pneumonia. These symptoms led to diagnosis of pediatric systemic inflammatory response syndrome (SIRS) caused by RSV infection. High-dose steroid therapy was combined with artificial ventilation because the initial ventilation therapy was ineffective. Interleukin (IL)-6 levels in spinal fluid were markedly increased upon admission, and serum IL-6 and IL-8 levels showed even greater elevation. The patient was diagnosed with RSV encephalopathy. On day 5, high signal intensity in the bilateral hippocampus was observed on diffusion-weighted magnetic resonance imaging (MRI). On day 14, the patient presented with delayed partial seizure and an electroencephalogram showed occasional unilateral spikes in the parietal area, but the hippocampal abnormality had improved to normal on MRI. (99m)Tc-labeled ethylcysteinate dimer single-photon emission computed tomography (SPECT) on day 18 showed hypoperfusion of the bilateral frontal and parietal regions and the unilateral temporal region. SPECT at 3 months after onset still showed hypoperfusion of the bilateral frontal region and unilateral temporal region, but hypoperfusion of the bilateral parietal region had improved. The patient has no neurological deficit at 6 months. These findings suggest that RSV encephalopathy with cytokine storm induces several symptoms and complications, including SIRS and prolonged brain hypoperfusion on SPECT.

  8. ABCA3, a key player in neonatal respiratory transition and genetic disorders of the surfactant system.

    PubMed

    Peca, Donatella; Cutrera, Renato; Masotti, Andrea; Boldrini, Renata; Danhaive, Olivier

    2015-10-01

    Genetic disorders of the surfactant system are rare diseases with a broad range of clinical manifestations, from fatal respiratory distress syndrome (RDS) in neonates to chronic interstitial lung disease (ILD) in children and adults. ABCA3 [ATP-binding cassette (ABC), subfamily A, member 3] is a lung-specific phospholipid transporter critical for intracellular surfactant synthesis and storage in lamellar bodies (LBs). Its expression is developmentally regulated, peaking prior to birth under the influence of steroids and transcription factors. Bi-allelic mutations of the ABCA3 gene represent the most frequent cause of congenital surfactant deficiency, indicating its critical role in lung function. Mutations affect surfactant lipid and protein processing and LBs' morphology, leading to partial or total surfactant deficiency. Approximately 200 mutations have been reported, most of which are unique to individuals and families, which makes diagnosis and prognosis challenging. Various types of mutations, affecting different domains of the protein, account in part for phenotype diversity. Disease-causing mutations have been reported in most coding and some non-coding regions of the gene, but tend to cluster in the first extracellular loop and the second nucleotide-binding domain (NBD), leading to defective glycosylation and trafficking defects and interfering with ATP binding and hydrolysis respectively. Mono-allelic damaging and benign variants are often subclinical but may act as disease modifiers in lung diseases such as RDS of prematurity or associate with mutations in other surfactant-related genes. Diagnosis is complex but essential and should combine pathology and ultrastructure studies on lung biopsy with broad-spectrum genetic testing of surfactant-related genes, made possible by recent technology advances in the massive parallel sequencing technology.

  9. The design, construction, and operation of a whole-body inhalation chamber for use in avian toxicity studies.

    PubMed

    Olsgard, Mandy L; Smits, Judit E G

    2008-01-01

    Environmental risk assessments are broadening to include evaluations of avian species exposed to gaseous and particulate materials (Mineau, 2002b; Irvine, 2004; Carmalt, 2005). Since the avian respiratory tract is fundamentally different from the respiratory tract of rodents, the effects of gaseous materials on birds cannot validly be extrapolated from data derived from rodent exposure studies (Briant & Driver, 1992; Brown et al., 1997). To address the lack of avian-specific lowest observable effect levels used to calculate reference concentrations for airborne pollutants, a system was designed to facilitate research on inhalation toxicology in small birds. Birds have long been used as early indicators of poor air quality (Brown et al., 1997), and various chambers have been designed for head only exposures of larger birds (Briant & Driver, 1992). Smaller birds with short tracheal lengths and hooked beaks however require less restrictive exposure apparatus, thus warranting the proposed design. The chamber described in this article was designed to accommodate a small falcon, the American kestrel, a species frequently used in toxicological risk assessments (Wiemeyer & Lincer, 1987a; Smits & Bortolotti, 2001; Bortolotti et al., 2003; Fisher et al., 2006). To accomplish this, a 41-L closed inhalation system capable of exposing 12 adult American kestrels was constructed primarily of galvanized steel, polyvinyl chloride, and copper tubing. Humidified air was passed over the birds and subsequently decontaminated by an activated carbon filter and released to a HEPA filtration system. The proposed inhalation chamber was successfully used in 2005 and 2006 to expose a total of 55 male American kestrels to benzene and toluene. Measurements of various biochemical endpoints associated with benzene and toluene toxicity allowed us to study the effects of airborne pollutants on small nondomesticated birds in a controlled laboratory setting.

  10. The design, construction, and operation of a whole-body inhalation chamber for use in avian toxicity studies.

    PubMed

    Olsgard, Mandy L; Smits, Judit E G

    2008-01-01

    Environmental risk assessments are broadening to include evaluations of avian species exposed to gaseous and particulate materials (Mineau, 2002b; Irvine, 2004; Carmalt, 2005). Since the avian respiratory tract is fundamentally different from the respiratory tract of rodents, the effects of gaseous materials on birds cannot validly be extrapolated from data derived from rodent exposure studies (Briant & Driver, 1992; Brown et al., 1997). To address the lack of avian-specific lowest observable effect levels used to calculate reference concentrations for airborne pollutants, a system was designed to facilitate research on inhalation toxicology in small birds. Birds have long been used as early indicators of poor air quality (Brown et al., 1997), and various chambers have been designed for head only exposures of larger birds (Briant & Driver, 1992). Smaller birds with short tracheal lengths and hooked beaks however require less restrictive exposure apparatus, thus warranting the proposed design. The chamber described in this article was designed to accommodate a small falcon, the American kestrel, a species frequently used in toxicological risk assessments (Wiemeyer & Lincer, 1987a; Smits & Bortolotti, 2001; Bortolotti et al., 2003; Fisher et al., 2006). To accomplish this, a 41-L closed inhalation system capable of exposing 12 adult American kestrels was constructed primarily of galvanized steel, polyvinyl chloride, and copper tubing. Humidified air was passed over the birds and subsequently decontaminated by an activated carbon filter and released to a HEPA filtration system. The proposed inhalation chamber was successfully used in 2005 and 2006 to expose a total of 55 male American kestrels to benzene and toluene. Measurements of various biochemical endpoints associated with benzene and toluene toxicity allowed us to study the effects of airborne pollutants on small nondomesticated birds in a controlled laboratory setting. PMID:18236233

  11. Respiratory failure in diabetic ketoacidosis

    PubMed Central

    Konstantinov, Nikifor K; Rohrscheib, Mark; Agaba, Emmanuel I; Dorin, Richard I; Murata, Glen H; Tzamaloukas, Antonios H

    2015-01-01

    Respiratory failure complicating the course of diabetic ketoacidosis (DKA) is a source of increased morbidity and mortality. Detection of respiratory failure in DKA requires focused clinical monitoring, careful interpretation of arterial blood gases, and investigation for conditions that can affect adversely the respiration. Conditions that compromise respiratory function caused by DKA can be detected at presentation but are usually more prevalent during treatment. These conditions include deficits of potassium, magnesium and phosphate and hydrostatic or non-hydrostatic pulmonary edema. Conditions not caused by DKA that can worsen respiratory function under the added stress of DKA include infections of the respiratory system, pre-existing respiratory or neuromuscular disease and miscellaneous other conditions. Prompt recognition and management of the conditions that can lead to respiratory failure in DKA may prevent respiratory failure and improve mortality from DKA. PMID:26240698

  12. Avian influenza control strategies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Control strategies for avian influenza in poultry vary depending on whether the goal is prevention, management, or eradication. Components used in control programs include: 1) education which includes communication, public awareness, and behavioral change, 2) changes to production and marketing sys...

  13. The avian heterophil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Heterophils play an indispensable role in the immune defense of the avian host. To accomplish this defense, heterophils use sophisticated mechanisms to both detect and destroy pathogenic microbes. Detection of pathogens through toll-like receptors (TLR), FC and complement receptors, and other path...

  14. Respiratory infections unique to Asia.

    PubMed

    Tsang, Kenneth W; File, Thomas M

    2008-11-01

    Asia is a highly heterogeneous region with vastly different cultures, social constitutions and populations affected by a wide spectrum of respiratory diseases caused by tropical pathogens. Asian patients with community-acquired pneumonia differ from their Western counterparts in microbiological aetiology, in particular the prominence of Gram-negative organisms, Mycobacterium tuberculosis, Burkholderia pseudomallei and Staphylococcus aureus. In addition, the differences in socioeconomic and health-care infrastructures limit the usefulness of Western management guidelines for pneumonia in Asia. The importance of emerging infectious diseases such as severe acute respiratory syndrome and avian influenza infection remain as close concerns for practising respirologists in Asia. Specific infections such as melioidosis, dengue haemorrhagic fever, scrub typhus, leptospirosis, salmonellosis, penicilliosis marneffei, malaria, amoebiasis, paragonimiasis, strongyloidiasis, gnathostomiasis, trinchinellosis, schistosomiasis and echinococcosis occur commonly in Asia and manifest with a prominent respiratory component. Pulmonary eosinophilia, endemic in parts of Asia, could occur with a wide range of tropical infections. Tropical eosinophilia is believed to be a hyper-sensitivity reaction to degenerating microfilariae trapped in the lungs. This article attempts to address the key respiratory issues in these respiratory infections unique to Asia and highlight the important diagnostic and management issues faced by practising respirologists.

  15. Minocycline suppresses morphine-induced respiratory depression, suppresses morphine-induced reward, and enhances systemic morphine-induced analgesia

    PubMed Central

    Hutchinson, Mark R.; Northcutt, Alexis L.; Chao, Lindsey W.; Kearney, Jeffrey J.; Zhang, Yingning; Berkelhammer, Debra L.; Loram, Lisa C.; Rozeske, Robert R.; Bland, Sondra T.; Maier, Steven F.; Gleeson, Todd T.; Watkins, Linda R.

    2008-01-01

    Recent data suggest that opioids can activate immune-like cells of the central nervous system (glia). This opioid-induced glial activation is associated with decreased analgesia, owing to the release of proinflammatory mediators. Here we examine in rats whether the putative microglial inhibitor, minocycline, may affect morphine-induced respiratory depression and/or morphine-induced reward (conditioned place preference). Systemic co-administration of minocycline significantly attenuated morphine-induced reductions in tidal volume, minute volume, inspiratory force and expiratory force, but did not affect morphine-induced reductions in respiratory rate. Minocycline attenuation of respiratory depression was also paralleled with significant attenuation by minocycline of morphine-induced reductions in blood oxygen saturation. Minocycline also attenuated morphine conditioned place preference. Minocycline did not simply reduce all actions of morphine, as morphine analgesia was significantly potentiated by minocycline co-administration. Lastly, morphine dose-dependently increased cyclooxygenase-1 gene expression in a rat microglial cell line, an effect that was dose-dependently blocked by minocycline. Together, these data support that morphine can directly activate microglia in a minocycline-suppressible manner and suggest a pivotal role for minocycline-sensitive processes in the mechanisms of morphine-induced respiration depression, reward, and pain modulation. PMID:18706994

  16. Amla Enhances Mitochondrial Spare Respiratory Capacity by Increasing Mitochondrial Biogenesis and Antioxidant Systems in a Murine Skeletal Muscle Cell Line

    PubMed Central

    Yamamoto, Hirotaka; Morino, Katsutaro; Mengistu, Lemecha; Ishibashi, Taishi; Kiriyama, Kohei; Ikami, Takao; Maegawa, Hiroshi

    2016-01-01

    Amla is one of the most important plants in Indian traditional medicine and has been shown to improve various age-related disorders while decreasing oxidative stress. Mitochondrial dysfunction is a proposed cause of aging through elevated oxidative stress. In this study, we investigated the effects of Amla on mitochondrial function in C2C12 myotubes, a murine skeletal muscle cell model with abundant mitochondria. Based on cell flux analysis, treatment with an extract of Amla fruit enhanced mitochondrial spare respiratory capacity, which enables cells to overcome various stresses. To further explore the mechanisms underlying these effects on mitochondrial function, we analyzed mitochondrial biogenesis and antioxidant systems, both proposed regulators of mitochondrial spare respiratory capacity. We found that Amla treatment stimulated both systems accompanied by AMPK and Nrf2 activation. Furthermore, we found that Amla treatment exhibited cytoprotective effects and lowered reactive oxygen species (ROS) levels in cells subjected to t-BHP-induced oxidative stress. These effects were accompanied by increased oxygen consumption, suggesting that Amla protected cells against oxidative stress by using enhanced spare respiratory capacity to produce more energy. Thus we identified protective effects of Amla, involving activation of mitochondrial function, which potentially explain its various effects on age-related disorders. PMID:27340504

  17. The effect of body temperature on the dynamic respiratory system compliance-breathing frequency relationship in the rat.

    PubMed

    Rubini, Alessandro; Bosco, Gerardo

    2013-06-01

    The mechanical inhomogeneity of the respiratory system is frequently investigated by measuring the frequency dependence of dynamic compliance, but no data are currently available describing the effects of body temperature variations. The aim of the present report was to study those effects in vivo. Peak airway pressure was measured during positive pressure ventilation in eight anesthetized rats while breathing frequency (but not tidal volume) was altered. Dynamic compliance was calculated as the tidal volume/peak airway pressure, and measurements were taken in basal conditions (mean rectal temperature 37.3 °C) as well as after total body warming (mean rectal temperature 39.7 °C). Due to parenchymal mechanical inhomogeneity and stress relaxation-linked effects, the normal rat respiratory system exhibited frequency dependence of dynamic lung compliance. Even moderate body temperature increments significantly reduced the decrements in dynamic compliance linked to breathing rate increments. The results were analyzed using Student's and Wilcoxon's tests, which yielded the same results (p < 0.05). Body temperature variations are known to influence respiratory mechanics. The frequency dependence of dynamic compliance was found, in the experiments described, to be temperature-dependent as temperature variations affected parenchymal mechanical inhomogeneity and stress relaxation. These results suggest that body temperature variations should be taken into consideration when the dynamic compliance-breathing frequency relationship is being examined during clinical assessment of inhomogeneity of lung parenchyma in patients.

  18. Amla Enhances Mitochondrial Spare Respiratory Capacity by Increasing Mitochondrial Biogenesis and Antioxidant Systems in a Murine Skeletal Muscle Cell Line.

    PubMed

    Yamamoto, Hirotaka; Morino, Katsutaro; Mengistu, Lemecha; Ishibashi, Taishi; Kiriyama, Kohei; Ikami, Takao; Maegawa, Hiroshi

    2016-01-01

    Amla is one of the most important plants in Indian traditional medicine and has been shown to improve various age-related disorders while decreasing oxidative stress. Mitochondrial dysfunction is a proposed cause of aging through elevated oxidative stress. In this study, we investigated the effects of Amla on mitochondrial function in C2C12 myotubes, a murine skeletal muscle cell model with abundant mitochondria. Based on cell flux analysis, treatment with an extract of Amla fruit enhanced mitochondrial spare respiratory capacity, which enables cells to overcome various stresses. To further explore the mechanisms underlying these effects on mitochondrial function, we analyzed mitochondrial biogenesis and antioxidant systems, both proposed regulators of mitochondrial spare respiratory capacity. We found that Amla treatment stimulated both systems accompanied by AMPK and Nrf2 activation. Furthermore, we found that Amla treatment exhibited cytoprotective effects and lowered reactive oxygen species (ROS) levels in cells subjected to t-BHP-induced oxidative stress. These effects were accompanied by increased oxygen consumption, suggesting that Amla protected cells against oxidative stress by using enhanced spare respiratory capacity to produce more energy. Thus we identified protective effects of Amla, involving activation of mitochondrial function, which potentially explain its various effects on age-related disorders. PMID:27340504

  19. Respiratory failure following anti-lung serum: study on mechanisms associated with surfactant system damage

    SciTech Connect

    Lachmann, B.; Hallman, M.; Bergmann, K.C.

    1987-01-01

    Within 2 minutes intravenous anti-lung serum (ALS) into guinea pig induces a respiratory failure that is fatal within 30 min. The relationship between surfactant, alveolar-capillary permeability and respiratory failure was studied. Within two minutes ALS induced a leak in the alveolar-capillary barrier. Within 30 minutes 28.3% (controls, given normal rabbit serum: 0.7%) of iv /sup 131/I-albumin, and 0.5% (controls 0.02%) of iv surfactant phospholipid tracer were recovered in bronchoalveolar lavage. Furthermore, 57% (controls 32%) of the endotracheally administered surfactant phospholipid became associated with lung tissue and only less than 0.5% left the lung. The distribution of proteins and phospholipids between the in vivo small volume bronchoalveolar lavages and the ex vivo bronchoalveolar lavages were dissimilar: 84% (controls 20%) of intravenously injected, lavageable /sup 131/I-albumin and 23% (controls 18%) of total lavageable phospholipid were recovered in the in vivo small volume bronchoalveolar lavages. ALS also decreased lavageable surfactant phospholipid by 41%. After ALS the minimum surface tension increased. The supernatant of the lavage increased the minimum surface tension of normal surfactant. In addition, the sediment fraction of the lavage had slow surface adsorption, and a marked reduction in 35,000 and 10,000 MW peptides. Exogenous surfactant ameliorated the ALS-induced respiratory failure. We propose that inhibition, altered intrapulmonary distribution, and dissociation of protein and phospholipid components of surfactant are important in early pathogenesis of acute respiratory failure.

  20. [The design of a new respiratory detecting system using impedance method].

    PubMed

    Liu, Baohua

    2003-09-01

    A coupling principle of reflecting impedance based on resonance is designed to achieve impedance detection with high sensitivity. It is characterized by small impelled current, high sensitivity and simple circuit. The principle can be used not only in detecting human respiratory impedance, but also in detecting the bio-impedance of other human organs. It may find wide application in this aspect.

  1. First images of respiratory system in ancient Egypt: Trachea, bronchi and pulmonary lobes.

    PubMed

    Kwiecinski, Jakub

    2012-01-01

    Examination of ancient Egyptians' depictions of the respiratory tract, dating back to the 30th century BC, reveals their awareness of the pulmonary anatomy: reinforced with cartilaginous rings, the trachea is split into two main bronchi, which then enter the lungs (lungs being divided into pulmonary lobes).

  2. Preparing to prevent severe acute respiratory syndrome and other respiratory infections.

    PubMed

    Ho, Mei-Shang; Su, Ih-Jen

    2004-11-01

    Globalisation and its effect on human development has rendered an environment that is conducive for the rapid international spread of severe acute respiratory syndrome (SARS), and other new infectious diseases yet to emerge. After the unprecedented multi-country outbreak of avian influenza with human cases in the winter of 2003-2004, an influenza pandemic is a current threat. A critical review of problems and solutions encountered during the 2003-2004 SARS epidemics will serve as the basis for considering national preparedness steps that can be taken to facilitate the early detection of avian influenza, and a rapid response to an influenza pandemic should it occur.

  3. Avian dark cells

    NASA Technical Reports Server (NTRS)

    Hara, J.; Plymale, D. R.; Shepard, D. L.; Hara, H.; Garry, Robert F.; Yoshihara, T.; Zenner, Hans-Peter; Bolton, M.; Kalkeri, R.; Fermin, Cesar D.

    2002-01-01

    Dark cells (DCs) of mammalian and non-mammalian species help to maintain the homeostasis of the inner ear fluids in vivo. Although the avian cochlea is straight and the mammalian cochlea is coiled, no significant difference in the morphology and/or function of mammalian and avian DCs has been reported. The mammalian equivalent of avian DCs are marginal cells and are located in the stria vascularis along a bony sheet. Avian DCs hang free from the tegmentum vasculosum (TV) of the avian lagena between the perilymph and endolymph. Frame averaging was used to image the fluorescence emitted by several fluorochromes applied to freshly isolated dark cells (iDCs) from chickens (Gallus domesticus) inner ears. The viability of iDCs was monitored via trypan blue exclusion at each isolation step. Sodium Green, BCECF-AM, Rhodamine 123 and 9-anthroyl ouabain molecules were used to test iDC function. These fluorochromes label iDCs ionic transmembrane trafficking function, membrane electrogenic potentials and Na+/K+ ATPase pump's activity. Na+/K+ ATPase pump sites, were also evaluated by the p-nitrophenyl phosphatase reaction. These results suggest that iDCs remain viable for several hours after isolation without special culturing requirements and that the number and functional activity of Na+/K+ ATPase pumps in the iDCs were indistinguishable from in vivo DCs. Primary cultures of freshly iDCs were successfully maintained for 28 days in plastic dishes with RPMI 1640 culture medium. The preparation of iDCs overcomes the difficulty of DCs accessability in vivo and the unavoidable contamination that rupturing the inner ear microenvironments induces.

  4. Emerging infectious diseases: Focus on infection control issues for novel coronaviruses (Severe Acute Respiratory Syndrome-CoV and Middle East Respiratory Syndrome-CoV), hemorrhagic fever viruses (Lassa and Ebola), and highly pathogenic avian influenza viruses, A(H5N1) and A(H7N9).

    PubMed

    Weber, David J; Rutala, William A; Fischer, William A; Kanamori, Hajime; Sickbert-Bennett, Emily E

    2016-05-01

    Over the past several decades, we have witnessed the emergence of many new infectious agents, some of which are major public threats. New and emerging infectious diseases which are both transmissible from patient-to-patient and virulent with a high mortality include novel coronaviruses (SARS-CoV, MERS-CV), hemorrhagic fever viruses (Lassa, Ebola), and highly pathogenic avian influenza A viruses, A(H5N1) and A(H7N9). All healthcare facilities need to have policies and plans in place for early identification of patients with a highly communicable diseases which are highly virulent, ability to immediately isolate such patients, and provide proper management (e.g., training and availability of personal protective equipment) to prevent transmission to healthcare personnel, other patients and visitors to the healthcare facility.

  5. Assessing particle and fiber toxicology in the respiratory system: the stereology toolbox.

    PubMed

    Brandenberger, Christina; Ochs, Matthias; Mühlfeld, Christian

    2015-10-31

    The inhalation of airborne particles can lead to pathological changes in the respiratory tract. For this reason, toxicology studies on effects of inhalable particles and fibers often include an assessment of histopathological alterations in the upper respiratory tract, the trachea and/or the lungs. Conventional pathological evaluations are usually performed by scoring histological lesions in order to obtain "quantitative" information and an estimation of the severity of the lesion. This approach not only comprises a potential subjective bias, depending on the examiner's judgment, but also conveys the risk that mild alterations escape the investigator's eye. The most accurate way of obtaining unbiased quantitative information about three-dimensional (3D) features of tissues, cells, or organelles from two-dimensional physical or optical sections is by means of stereology, the gold standard of image-based morphometry. Nevertheless, it can be challenging to express histopathological changes by morphometric parameters such as volume, surface, length or number only. In this review we therefore provide an overview on different histopathological lesions in the respiratory tract associated with particle and fiber toxicology and on how to apply stereological methods in order to correctly quantify and interpret histological lesions in the respiratory tract. The article further aims at pointing out common pitfalls in quantitative histopathology and at providing some suggestions on how respiratory toxicology can be improved by stereology. Thus, we hope that this article will stimulate scientists in particle and fiber toxicology research to implement stereological techniques in their studies, thereby promoting an unbiased 3D assessment of pathological lesions associated with particle exposure.

  6. Emerging Respiratory Viruses: Challenges and Vaccine Strategies

    PubMed Central

    Gillim-Ross, Laura; Subbarao, Kanta

    2006-01-01

    The current threat of avian influenza to the human population, the potential for the reemergence of severe acute respiratory syndrome (SARS)-associated coronavirus, and the identification of multiple novel respiratory viruses underline the necessity for the development of therapeutic and preventive strategies to combat viral infection. Vaccine development is a key component in the prevention of widespread viral infection and in the reduction of morbidity and mortality associated with many viral infections. In this review we describe the different approaches currently being evaluated in the development of vaccines against SARS-associated coronavirus and avian influenza viruses and also highlight the many obstacles encountered in the development of these vaccines. Lessons learned from current vaccine studies, coupled with our increasing knowledge of the host and viral factors involved in viral pathogenesis, will help to increase the speed with which efficacious vaccines targeting newly emerging viral pathogens can be developed. PMID:17041137

  7. Pandemic Threat Posed by Avian Influenza A Viruses

    PubMed Central

    Horimoto, Taisuke; Kawaoka, Yoshihiro

    2001-01-01

    Influenza pandemics, defined as global outbreaks of the disease due to viruses with new antigenic subtypes, have exacted high death tolls from human populations. The last two pandemics were caused by hybrid viruses, or reassortants, that harbored a combination of avian and human viral genes. Avian influenza viruses are therefore key contributors to the emergence of human influenza pandemics. In 1997, an H5N1 influenza virus was directly transmitted from birds in live poultry markets in Hong Kong to humans. Eighteen people were infected in this outbreak, six of whom died. This avian virus exhibited high virulence in both avian and mammalian species, causing systemic infection in both chickens and mice. Subsequently, another avian virus with the H9N2 subtype was directly transmitted from birds to humans in Hong Kong. Interestingly, the genes encoding the internal proteins of the H9N2 virus are genetically highly related to those of the H5N1 virus, suggesting a unique property of these gene products. The identification of avian viruses in humans underscores the potential of these and similar strains to produce devastating influenza outbreaks in major population centers. Although highly pathogenic avian influenza viruses had been identified before the 1997 outbreak in Hong Kong, their devastating effects had been confined to poultry. With the Hong Kong outbreak, it became clear that the virulence potential of these viruses extended to humans. PMID:11148006

  8. Only one of the two type VI secretion systems encoded in the Salmonella enterica serotype Dublin genome is involved in colonization of the avian and murine hosts.

    PubMed

    Pezoa, David; Blondel, Carlos J; Silva, Cecilia A; Yang, Hee-Jeong; Andrews-Polymenis, Helene; Santiviago, Carlos A; Contreras, Inés

    2014-01-09

    The type VI secretion system (T6SS) is a virulence factor for many Gram-negative bacteria. Salmonella genus harbors five phylogenetically distinct T6SS loci encoded in Salmonella Pathogenicity Islands (SPIs) SPI-6, SPI-19, SPI-20, SPI-21 and SPI-22, which are differentially distributed among serotypes. The T6SSs encoded in SPI-6 and SPI-19 contribute to pathogenesis of serotypes Typhimurium and Gallinarum in mice and chickens, respectively. Salmonella Dublin is a pathogen restricted to cattle where it causes a systemic disease. Also, it can colonize other hosts such as chickens and mice, which can act as reservoirs of this serotype. Salmonella Dublin harbors the genes for both T6SS(SPI-6) and T6SS(SPI-19). This study has determined the contribution of T6SS(SPI-6) and T6SS(SPI-19) to host-colonization by Salmonella Dublin using avian and murine models of infection. Competitive index experiments showed that, a mutant strain lacking both T6SSs (∆T6SS(SPI-6)/∆T6SS(SPI-19)) presents a strong colonization defect in cecum of chickens, similar to the defect observed for the ∆T6SS(SPI-6) mutant, suggesting that this serotype requires a functional T6SS(SPI-6) for efficient colonization of the avian gastrointestinal tract. Colonization of mice was also defective, although to a lesser extent than in chickens. In contrast, the T6SS(SPI-19) was not necessary for colonization of either chickens or mice. Transfer of T6SS(SPI-6), but not T6SS(SPI-19), restored the ability of the double mutant to colonize both animal hosts. Our data indicate that Salmonella Dublin requires only the T6SS(SPI-6) for efficient colonization of mice and chickens, and that the T6SS(SPI-6) and T6SS(SPI-19) are not functionally redundant.

  9. Escherichia coli Type III Secretion System 2 ATPase EivC Is Involved in the Motility and Virulence of Avian Pathogenic Escherichia coli.

    PubMed

    Wang, Shaohui; Liu, Xin; Xu, Xuan; Yang, Denghui; Wang, Dong; Han, Xiangan; Shi, Yonghong; Tian, Mingxing; Ding, Chan; Peng, Daxin; Yu, Shengqing

    2016-01-01

    Type III secretion systems (T3SSs) are crucial for bacterial infections because they deliver effector proteins into host cells. The Escherichia coli type III secretion system 2 (ETT2) is present in the majority of E. coli strains, and although it is degenerate, ETT2 regulates bacterial virulence. An ATPase is essential for T3SS secretion, but the function of the ETT2 ATPase has not been demonstrated. Here, we show that EivC is homologous to the β subunit of F0F1 ATPases and it possesses ATPase activity. To investigate the effects of ETT2 ATPase EivC on the phenotype and virulence of avian pathogenic Escherichia coli (APEC), eivC mutant and complemented strains were constructed and characterized. Inactivation of eivC led to impaired flagella production and augmented fimbriae on the bacterial surface, and, consequently, reduced bacterial motility. In addition, the eivC mutant strain exhibited attenuated virulence in ducks, diminished serum resistance, reduced survival in macrophage cells and in ducks, upregulated fimbrial gene expression, and downregulated flagellar and virulence gene expression. The expression of the inflammatory cytokines interleukin (IL)-1β and IL-8 were increased in HD-11 macrophages infected with the eivC mutant strain, compared with the wild-type strain. These virulence-related phenotypes were restored by genetic complementation. These findings demonstrate that ETT2 ATPase EivC is involved in the motility and pathogenicity of APEC. PMID:27630634

  10. Escherichia coli Type III Secretion System 2 ATPase EivC Is Involved in the Motility and Virulence of Avian Pathogenic Escherichia coli

    PubMed Central

    Wang, Shaohui; Liu, Xin; Xu, Xuan; Yang, Denghui; Wang, Dong; Han, Xiangan; Shi, Yonghong; Tian, Mingxing; Ding, Chan; Peng, Daxin; Yu, Shengqing

    2016-01-01

    Type III secretion systems (T3SSs) are crucial for bacterial infections because they deliver effector proteins into host cells. The Escherichia coli type III secretion system 2 (ETT2) is present in the majority of E. coli strains, and although it is degenerate, ETT2 regulates bacterial virulence. An ATPase is essential for T3SS secretion, but the function of the ETT2 ATPase has not been demonstrated. Here, we show that EivC is homologous to the β subunit of F0F1 ATPases and it possesses ATPase activity. To investigate the effects of ETT2 ATPase EivC on the phenotype and virulence of avian pathogenic Escherichia coli (APEC), eivC mutant and complemented strains were constructed and characterized. Inactivation of eivC led to impaired flagella production and augmented fimbriae on the bacterial surface, and, consequently, reduced bacterial motility. In addition, the eivC mutant strain exhibited attenuated virulence in ducks, diminished serum resistance, reduced survival in macrophage cells and in ducks, upregulated fimbrial gene expression, and downregulated flagellar and virulence gene expression. The expression of the inflammatory cytokines interleukin (IL)-1β and IL-8 were increased in HD-11 macrophages infected with the eivC mutant strain, compared with the wild-type strain. These virulence-related phenotypes were restored by genetic complementation. These findings demonstrate that ETT2 ATPase EivC is involved in the motility and pathogenicity of APEC.

  11. Escherichia coli Type III Secretion System 2 ATPase EivC Is Involved in the Motility and Virulence of Avian Pathogenic Escherichia coli

    PubMed Central

    Wang, Shaohui; Liu, Xin; Xu, Xuan; Yang, Denghui; Wang, Dong; Han, Xiangan; Shi, Yonghong; Tian, Mingxing; Ding, Chan; Peng, Daxin; Yu, Shengqing

    2016-01-01

    Type III secretion systems (T3SSs) are crucial for bacterial infections because they deliver effector proteins into host cells. The Escherichia coli type III secretion system 2 (ETT2) is present in the majority of E. coli strains, and although it is degenerate, ETT2 regulates bacterial virulence. An ATPase is essential for T3SS secretion, but the function of the ETT2 ATPase has not been demonstrated. Here, we show that EivC is homologous to the β subunit of F0F1 ATPases and it possesses ATPase activity. To investigate the effects of ETT2 ATPase EivC on the phenotype and virulence of avian pathogenic Escherichia coli (APEC), eivC mutant and complemented strains were constructed and characterized. Inactivation of eivC led to impaired flagella production and augmented fimbriae on the bacterial surface, and, consequently, reduced bacterial motility. In addition, the eivC mutant strain exhibited attenuated virulence in ducks, diminished serum resistance, reduced survival in macrophage cells and in ducks, upregulated fimbrial gene expression, and downregulated flagellar and virulence gene expression. The expression of the inflammatory cytokines interleukin (IL)-1β and IL-8 were increased in HD-11 macrophages infected with the eivC mutant strain, compared with the wild-type strain. These virulence-related phenotypes were restored by genetic complementation. These findings demonstrate that ETT2 ATPase EivC is involved in the motility and pathogenicity of APEC. PMID:27630634

  12. Escherichia coli type III secretion system 2 (ETT2) is widely distributed in avian pathogenic Escherichia coli isolates from Eastern China.

    PubMed

    Wang, S; Liu, X; Xu, X; Zhao, Y; Yang, D; Han, X; Tian, M; Ding, C; Peng, D; Yu, S

    2016-10-01

    Pathogens utilize type III secretion systems to deliver effector proteins, which facilitate bacterial infections. The Escherichia coli type III secretion system 2 (ETT2) which plays a crucial role in bacterial virulence, is present in the majority of E. coli strains, although ETT2 has undergone widespread mutational attrition. We investigated the distribution and characteristics of ETT2 in avian pathogenic E. coli (APEC) isolates and identified five different ETT2 isoforms, including intact ETT2, in 57·6% (141/245) of the isolates. The ETT2 locus was present in the predominant APEC serotypes O78, O2 and O1. All of the ETT2 loci in the serotype O78 isolates were degenerate, whereas an intact ETT2 locus was mostly present in O1 and O2 serotype strains, which belong to phylogenetic groups B2 and D, respectively. Interestingly, a putative second type III secretion-associated locus (eip locus) was present only in the isolates with an intact ETT2. Moreover, ETT2 was more widely distributed in APEC isolates and exhibited more isoforms compared to ETT2 in human extraintestinal pathogenic E. coli, suggesting that APEC might be a potential risk to human health. However, there was no distinct correlation between ETT2 and other virulence factors in APEC.

  13. Feeding behavior as an early predictor of bovine respiratory disease in North American feedlot systems.

    PubMed

    Wolfger, B; Schwartzkopf-Genswein, K S; Barkema, H W; Pajor, E A; Levy, M; Orsel, K

    2015-01-01

    Bovine respiratory disease (BRD), which can cause substantial losses for feedlot operations, is often difficult to detect based solely on visual observations. The objectives of the current study were to determine a BRD case identification based on clinical and laboratory parameters and assess the value of feeding behavior for early detection of BRD. Auction-derived, mixed-breed beef steers (n = 213) with an average arrival weight of 294 kg were placed at a southern Alberta commercial feedlot equipped with an automated feed bunk monitoring system. Feeding behavior was recorded continuously (1-s intervals) for 5 wk after arrival and summarized into meals. Meals were defined as feeding events that were interrupted by less than 300 s nonfeeding. Meal intake (g) and meal time (min) were further summarized into daily mean, minimum, maximum, and sum and, together with frequency of meals per day, were fit into a discrete survival time analysis with a conditional log-log link. Feedlot staff visually evaluated (pen-checked) health status twice daily. Within 35 d after arrival, 76% (n = 165) of the steers had 1 or more clinical signs of BRD (reluctance to move, crusted nose, nasal or ocular discharge, drooped ears or head, and gaunt appearance). Whereas 41 blood samples could not be processed due to immediate freezing, for 124 of these steers, complete and differential blood cell count, total serum protein, plasma fibrinogen, serum concentration of haptoglobin (HP), and serum amyloid A (SAA) were determined. The disease definition for BRD was a rectal temperature ≥ 40.0°C, at least 2 clinical signs of BRD, and HP > 0.15 mg/mL. It was noteworthy that 94% of the 124 steers identified by the feedlot staff with clinical signs of BRD had HP > 0.15 mg/mL. An increase in mean meal intake, frequency, and mean inter-meal interval was associated with a decreased hazard for developing BRD 7 d before visual identification (P < 0.001). Furthermore, increased mean mealtime, frequency

  14. Tidal breathing parameters in young children: comparison of measurement by respiratory inductance plethysmography to a facemask pneumotachograph system.

    PubMed

    Manczur, T; Greenough, A; Hooper, R; Allen, K; Latham, S; Price, J F; Rafferty, G F

    1999-12-01

    The ratio of expiratory time at tidal peak flow to total expiratory time (t(ptef)/t(e)) correlates with conventional measures of airway obstruction. It is usually assessed using a facemask and pneumotachograph system which may be poorly tolerated in young children and hence limits the usefulness of this technique. We therefore determined in young asthmatic children the accuracy of t(ptef)/t(e), using an uncalibrated respiratory inductance plethysmograph (RIP), and compared the results with those from a facemask-pneumotachograph system. We also assessed whether age influenced the agreement between measurements using the two devices. Forty-seven children aged between 1 month and 12 years were recruited: 39 were inpatients recovering from an acute wheezy episode, and 8 were recruited from the asthma clinic. All were receiving bronchodilators. Tidal breathing parameters t(ptef)/t(e), the duty cycle (t(i)/t(tot)), and respiratory rate were initially measured using the Respitrace alone and then simultaneously with both the Respitrace and the facemask-pneumotachograph system. Eight children did not tolerate the facemask, and in two others it was impossible to analyze the Respitrace trace due to artefacts. In the remaining 37 children, the reliability coefficients and coefficients of variation of the two techniques were similar. Similar values of t(i)/t(tot) and respiratory rate were obtained using the two devices. The mean t(ptef)/t(e) obtained using the Respitrace was lower than with the facemask-pneumotachograph system (P < 0.01), although this was age group-dependent (P < 0.05), as the difference was less apparent in the 1 to 2-year-old children than in other age groups. Application of the facemask-pneumotachograph system did not significantly influence the results obtained using the Respitrace. We conclude that uncalibrated respiratory inductance plethysmography can measure tidal breathing parameters as reliably as a facemask-pneumotachograph system in young asthmatic

  15. [Possible long-term effects on the respiratory system of exposure to yperite of fishermen].

    PubMed

    Assennato, G; Ambrosi, F; Sivo, D

    1997-01-01

    Yperite or mustard gas is a well known vesicant agent that was widely used in World War I, and so far it has been the cause of several accidental exposures from sulfur mustard bombs in the marine environment. In Apulia from 1946 to 1996, 236 exposures were identified when sulfur mustard shells were caught up in fishing nets. The long term effects on the respiratory tract due to the occupational exposure to sulfur mustard are well known. Sulfur mustard has been demonstrated to be causally related to COLD and respiratory tract cancer in many epidemiological studies conducted on workers exposed in manufacturing plants. This study describes chronic pulmonary diseases in fishermen acutely exposed to mustard gas. PMID:9312665

  16. Avian Schistosomes and Outbreaks of Cercarial Dermatitis

    PubMed Central

    Mikeš, Libor; Lichtenbergová, Lucie; Skála, Vladimír; Soldánová, Miroslava; Brant, Sara Vanessa

    2015-01-01

    SUMMARY Cercarial dermatitis (swimmer's itch) is a condition caused by infective larvae (cercariae) of a species-rich group of mammalian and avian schistosomes. Over the last decade, it has been reported in areas that previously had few or no cases of dermatitis and is thus considered an emerging disease. It is obvious that avian schistosomes are responsible for the majority of reported dermatitis outbreaks around the world, and thus they are the primary focus of this review. Although they infect humans, they do not mature and usually die in the skin. Experimental infections of avian schistosomes in mice show that in previously exposed hosts, there is a strong skin immune reaction that kills the schistosome. However, penetration of larvae into naive mice can result in temporary migration from the skin. This is of particular interest because the worms are able to migrate to different organs, for example, the lungs in the case of visceral schistosomes and the central nervous system in the case of nasal schistosomes. The risk of such migration and accompanying disorders needs to be clarified for humans and animals of interest (e.g., dogs). Herein we compiled the most comprehensive review of the diversity, immunology, and epidemiology of avian schistosomes causing cercarial dermatitis. PMID:25567226

  17. Central neural mechanisms of progesterone action: application to the respiratory system.

    PubMed

    Bayliss, D A; Millhorn, D E

    1992-08-01

    Around the turn of the century, it was recognized that women hyperventilate during the luteal phase of the menstrual cycle and during pregnancy. Although a causative role for the steroid hormone progesterone in this hyperventilation was suggested as early as the 1940s, there has been no clear indication as to the mechanism by which it produces its respiratory effects. In contrast, much mechanistic information has been obtained over the same period about a different effect of progesterone, i.e., the facilitation of reproductive behaviors. In this case, the bulk of the evidence supports the hypothesis that progesterone acts via a genomic mechanism with characteristics not unlike those predicted by classic models for steroid hormone action. We recently, therefore, undertook a series of experiments to test predictions of those same models with reference to the respiratory effects of progesterone. Here we highlight the results of those studies; as background to and precedent for our experiments, we briefly review previous work in which effects of progesterone on respiration and reproductive behaviors have been studied. Our results indicate that the respiratory response to progesterone is mediated at hypothalamic sites through an estrogen- (E2) dependent progesterone receptor- (PR) mediated mechanism requiring RNA and protein synthesis, i.e., gene expression. The E2 dependence of the respiratory response to progesterone is likely a consequence of the demonstrated induction of PR mRNA and PR in hypothalamic neurons by E2. In short, we found that neural mechanisms underlying the stimulation of respiration by progesterone were similar to those mediating its reproductive effects. PMID:1399957

  18. Central nervous system alterations caused by infection with the human respiratory syncytial virus.

    PubMed

    Bohmwald, Karen; Espinoza, Janyra A; González, Pablo A; Bueno, Susan M; Riedel, Claudia A; Kalergis, Alexis M

    2014-11-01

    Worldwide, the human respiratory syncytial virus (hRSV) is the leading cause of infant hospitalization because of acute respiratory tract infections, including severe bronchiolitis and pneumonia. Despite intense research, to date there is neither vaccine nor treatment available to control hRSV disease burden globally. After infection, an incubation period of 3-5 days is usually followed by symptoms, such as cough and low-grade fever. However, hRSV infection can also produce a larger variety of symptoms, some of which relate to the individual's age at infection. Indeed, infants can display severe symptoms, such as dyspnea and chest wall retractions. Upon examination, crackles and wheezes are also common features that suggest infection by hRSV. Additionally, infection in infants younger than 1 year is associated with several non-specific symptoms, such as failure to thrive, periodic breathing or apnea, and feeding difficulties that usually require hospitalization. Recently, neurological symptoms have also been associated with hRSV respiratory infection and include seizures, central apnea, lethargy, feeding or swallowing difficulties, abnormalities in muscle tone, strabismus, abnormalities in the CSF, and encephalopathy. Here, we discuss recent findings linking the neurological, extrapulmonary effects of hRSV with infection and functional impairment of the CNS.

  19. Novel Avian Influenza A (H7N9) Virus Induces Impaired Interferon Responses in Human Dendritic Cells

    PubMed Central

    Arilahti, Veera; Mäkelä, Sanna M.; Tynell, Janne; Julkunen, Ilkka; Österlund, Pamela

    2014-01-01

    In March 2013 a new avian influenza A(H7N9) virus emerged in China and infected humans with a case fatality rate of over 30%. Like the highly pathogenic H5N1 virus, H7N9 virus is causing severe respiratory distress syndrome in most patients. Based on genetic analysis this avian influenza A virus shows to some extent adaptation to mammalian host. In the present study, we analyzed the activation of innate immune responses by this novel H7N9 influenza A virus and compared these responses to those induced by the avian H5N1 and seasonal H3N2 viruses in human monocyte-derived dendritic cells (moDCs). We observed that in H7N9 virus-infected cells, interferon (IFN) responses were weak although the virus replicated as well as the H5N1 and H3N2 viruses in moDCs. H7N9 virus-induced expression of pro-inflammatory cytokines remained at a significantly lower level as compared to H5N1 virus-induced “cytokine storm” seen in human moDCs. However, the H7N9 virus was extremely sensitive to the antiviral effects of IFN-α and IFN-β in pretreated cells. Our data indicates that different highly pathogenic avian viruses may show considerable differences in their ability to induce host antiviral responses in human primary cell models such as moDCs. The unexpected appearance of the novel H7N9 virus clearly emphasizes the importance of the global influenza surveillance system. It is, however, equally important to systematically characterize in normal human cells the replication capacity of the new viruses and their ability to induce and respond to natural antiviral substances such as IFNs. PMID:24804732

  20. An avian vocalization detector.

    PubMed

    Severns, M; Gray, L; Rubel, E W

    1985-05-01

    A simple circuit to detect avian vocalizations is described. Adjustments of five different controls (frequency, bandwidth, amplitude, duration and spacing) allow the circuit to accurately detect the vocalizations of different ages and species of birds. Analyses of over 4000 peeps and 500 inter-peep intervals from 40 chicks and 16 ducklings showed that the circuit and an experienced observer agreed closely in the timing and counting of vocalizations.

  1. Applications of avian transgenesis.

    PubMed

    Scott, Benjamin B; Velho, Tarciso A; Sim, Shuyin; Lois, Carlos

    2010-01-01

    The ability to introduce foreign DNA into the genome of an organism has proven to be one of the most powerful tools in modern biology. Methods for the manipulation of the animal genome have been developed at an impressive pace for 3 decades, but only in the past 5 years have useful tools for avian transgenesis emerged. The most efficient technique involves the use of replication-deficient lentiviral vectors to deliver foreign DNA into the avian germline. Although lentiviral-mediated transgenesis presents some constraints, progress in this area has garnered interest in both industry and academia for its potential applications in biological research, biotechnology, and agriculture. In this review we evaluate methods for the production of transgenic birds, focusing on the advantages and limitations of lentiviral-mediated transgenesis. We also provide an overview of future applications of this technology. The most exciting of these include disease-resistant transgenic poultry, genetically modified hens that produce therapeutic proteins in their eggs, and transgenic songbirds that serve as a model to study communication disorders. Finally, we discuss technological advances that will be necessary to make avian transgenesis a more versatile tool.

  2. Respiratory acidosis

    MedlinePlus

    ... obesity, which restricts how much the lungs can expand Obstructive sleep apnea Chronic respiratory acidosis occurs over ... Tests that may be done include: Arterial blood gas , which measures oxygen and carbon dioxide levels in ...

  3. Nurses' fears and professional obligations concerning possible human-to-human avian flu.

    PubMed

    Tzeng, Huey-Ming; Yin, Chang-Yi

    2006-09-01

    This survey aimed to illustrate factors that contribute to nurses' fear when faced with a possible human-to-human avian flu pandemic and their willingness to care for patients with avian flu in Taiwan. The participants were nursing students with a lesser nursing credential who were currently enrolled in a bachelor degree program in a private university in southern Taiwan. Nearly 42% of the nurses did not think that, if there were an outbreak of avian flu, their working hospitals would have sufficient infection control measures and equipment to prevent nosocomial infection in their working environment. About 57% of the nurse participants indicated that they were willing to care for patients infected with avian influenza. Nurses' fear about an unknown infectious disease, such as the H5N1 influenza virus, could easily be heightened to levels above those occurring during the 2003 severe acute respiratory syndrome outbreak in Taiwan.

  4. Pathobiological features of a novel, highly pathogenic avian influenza A(H5N8) virus.

    PubMed

    Kim, Young-Il; Pascua, Philippe Noriel Q; Kwon, Hyeok-Il; Lim, Gyo-Jin; Kim, Eun-Ha; Yoon, Sun-Woo; Park, Su-Jin; Kim, Se Mi; Choi, Eun-Ji; Si, Young-Jae; Lee, Ok-Jun; Shim, Woo-Sub; Kim, Si-Wook; Mo, In-Pil; Bae, Yeonji; Lim, Yong Taik; Sung, Moon Hee; Kim, Chul-Joong; Webby, Richard J; Webster, Robert G; Choi, Young Ki

    2014-10-01

    The endemicity of highly pathogenic avian influenza (HPAI) A(H5N1) viruses in Asia has led to the generation of reassortant H5 strains with novel gene constellations. A newly emerged HPAI A(H5N8) virus caused poultry outbreaks in the Republic of Korea in 2014. Because newly emerging high-pathogenicity H5 viruses continue to pose public health risks, it is imperative that their pathobiological properties be examined. Here, we characterized A/mallard duck/Korea/W452/2014 (MDk/W452(H5N8)), a representative virus, and evaluated its pathogenic and pandemic potential in various animal models. We found that MDk/W452(H5N8), which originated from the reassortment of wild bird viruses harbored by migratory waterfowl in eastern China, replicated systemically and was lethal in chickens, but appeared to be attenuated, albeit efficiently transmitted, in ducks. Despite predominant attachment to avian-like virus receptors, MDk/W452(H5N8) also exhibited detectable human virus-like receptor binding and replicated in human respiratory tract tissues. In mice, MDk/W452(H5N8) was moderately pathogenic and had limited tissue tropism relative to previous HPAI A(H5N1) viruses. It also induced moderate nasal wash titers in inoculated ferrets; additionally, it was recovered in extrapulmonary tissues and one of three direct-contact ferrets seroconverted without shedding. Moreover, domesticated cats appeared to be more susceptible than dogs to virus infection. With their potential to become established in ducks, continued circulation of A(H5N8) viruses could alter the genetic evolution of pre-existing avian poultry strains. Overall, detailed virological investigation remains a necessity given the capacity of H5 viruses to evolve to cause human illness with few changes in the viral genome. PMID:26038499

  5. Pathobiological features of a novel, highly pathogenic avian influenza A(H5N8) virus

    PubMed Central

    Kim, Young-Il; Pascua, Philippe Noriel Q; Kwon, Hyeok-Il; Lim, Gyo-Jin; Kim, Eun-Ha; Yoon, Sun-Woo; Park, Su-Jin; Kim, Se Mi; Choi, Eun-Ji; Si, Young-Jae; Lee, Ok-Jun; Shim, Woo-Sub; Kim, Si-Wook; Mo, In-Pil; Bae, Yeonji; Lim, Yong Taik; Sung, Moon Hee; Kim, Chul-Joong; Webby, Richard J; Webster, Robert G; Choi, Young Ki

    2014-01-01

    The endemicity of highly pathogenic avian influenza (HPAI) A(H5N1) viruses in Asia has led to the generation of reassortant H5 strains with novel gene constellations. A newly emerged HPAI A(H5N8) virus caused poultry outbreaks in the Republic of Korea in 2014. Because newly emerging high-pathogenicity H5 viruses continue to pose public health risks, it is imperative that their pathobiological properties be examined. Here, we characterized A/mallard duck/Korea/W452/2014 (MDk/W452(H5N8)), a representative virus, and evaluated its pathogenic and pandemic potential in various animal models. We found that MDk/W452(H5N8), which originated from the reassortment of wild bird viruses harbored by migratory waterfowl in eastern China, replicated systemically and was lethal in chickens, but appeared to be attenuated, albeit efficiently transmitted, in ducks. Despite predominant attachment to avian-like virus receptors, MDk/W452(H5N8) also exhibited detectable human virus-like receptor binding and replicated in human respiratory tract tissues. In mice, MDk/W452(H5N8) was moderately pathogenic and had limited tissue tropism relative to previous HPAI A(H5N1) viruses. It also induced moderate nasal wash titers in inoculated ferrets; additionally, it was recovered in extrapulmonary tissues and one of three direct-contact ferrets seroconverted without shedding. Moreover, domesticated cats appeared to be more susceptible than dogs to virus infection. With their potential to become established in ducks, continued circulation of A(H5N8) viruses could alter the genetic evolution of pre-existing avian poultry strains. Overall, detailed virological investigation remains a necessity given the capacity of H5 viruses to evolve to cause human illness with few changes in the viral genome. PMID:26038499

  6. The effect of artichoke (Cynara scolymus L.) extract on respiratory chain system activity in rat liver mitochondria.

    PubMed

    Juzyszyn, Z; Czerny, B; Myśliwiec, Z; Pawlik, A; Droździk, M

    2010-06-01

    The effect of artichoke extract on mitochondrial respiratory chain (MRC) activity in isolated rat liver mitochondria (including reaction kinetics) was studied. The effect of the extract on the activity of isolated cytochrome oxidase was also studied. Extract in the range of 0.68-2.72 microg/ml demonstrated potent and concentration-dependent inhibitory activity. Concentrations > or =5.4 microg/ml entirely inhibited MRC activity. The succinate oxidase system (MRC complexes II-IV) was the most potently inhibited, its activity at an extract concentration of 1.36 microg/ml being reduced by 63.3% compared with the control (p < 0.05). The results suggest a complex inhibitory mechanism of the extract. Inhibition of the succinate oxidase system was competitive (K(i) = 0.23 microg/ml), whereas isolated cytochrome oxidase was inhibited noncompetitively (K(i) = 126 microg/ml). The results of this study suggest that the salubrious effects of artichoke extracts may rely in part on the effects of their active compounds on the activity of the mitochondrial respiratory chain system.

  7. The influence of boundary conditions to the flow through model of upper part of human respiratory system

    NASA Astrophysics Data System (ADS)

    Elcner, Jakub; Chovancova, Michaela; Jicha, Miroslav

    2014-03-01

    Respiratory system represents relatively large system of gradually branching channels which can be hardly solved by numerical simulations. Nowadays, research in this area is focused to solve problems in selected parts of respiratory tract rather than whole system. This simplification comes with problem of accurate assessment of boundary conditions on model geometry. Geometry used on Department of Thermomechanics and Environmental Engineering on Brno University of Technology consists of mouth cavity, larynx, trachea and bronchial tree up to seventh generation of branching. This article is focused on comparison of two different settings of boundary conditions steady inspiration during light activity regime. First set of boundary conditions represents commonly used setting with zero pressure resistance on outlet from the model and second method deals with more realistic assumption, where incomplete 3D geometry is coupled with the rest of bronchial tree described by 1D equations and also correlated by the amount of air, which flows in specific lung lobe. The article observed differences in individual mass flow through the model branches under different conditions and its influence on the flow structures.

  8. Moderate local and systemic respiratory syncytial virus-specific T-cell responses upon mild or subclinical RSV infection.

    PubMed

    de Waal, L; Koopman, L P; van Benten, I J; Brandenburg, A H; Mulder, P G H; de Swart, R L; Fokkens, W J; Neijens, H J; Osterhaus, A D M E

    2003-06-01

    Respiratory syncytial virus (RSV) infections are a major cause of severe respiratory disease in infants. It has been shown that there is an increased frequency of childhood wheezing in ex-bronchiolitic preteen children. This was postulated to be mediated by a vigorous virus-specific Th2 response influencing the further development of the immune system. Little is known about the possible role of the immune response to clinically mild RSV infections in this respect. We have studied the RSV-specific cellular immune response in infants with a laboratory-confirmed RSV upper respiratory tract infection (URTI; n = 13, mean age 12 months, range 2-22 months) in comparison with infants with non-RSV mediated URTI (n = 9, mean age 9.3 months, range 4-18 months) or infants with severe RSV bronchiolitis (n = 11, mean age 2.3 months, range 1-6 months). RSV-specific cytokine-producing cells were enumerated using the ELISPOT method in peripheral blood mononuclear cells and nasal brush T-cells, collected during the acute and convalescent phase of the infection. Mixed Th1 (IFN-gamma) and Th2 (IL-4 and IL-13) responses were detected in all three groups. Frequencies of RSV-specific T-cells were lower in both URTI groups than in the RSV bronchiolitis group, and not significantly different between the RSV URTI and the non-RSV URTI group. The absence of vigorous virus-specific Th2 responses upon mild RSV infection does not support the hypothesis that these infections influence the development of the immune system and that they predispose for the development of atopic disease. PMID:12696123

  9. Systemic genotoxic effects produced by light, and synergism with cigarette smoke in the respiratory tract of hairless mice.

    PubMed

    Balansky, Roumen M; Izzotti, Alberto; D'Agostini, Francesco; Camoirano, Anna; Bagnasco, Maria; Lubet, Ronald A; De Flora, Silvio

    2003-09-01

    No information is available on the interaction between cigarette smoke, the most important man-made carcinogen, and light, the most widespread natural carcinogen. In order to clarify this issue, SKH-1 hairless mice were exposed to environmental smoke and/or to the light emitted by sunlight-simulating halogen quartz bulbs. After 28 days, intermediate biomarkers were evaluated in skin, respiratory tract, bone marrow and peripheral blood. The results showed that, individually, the light produced extensive alterations not only in the skin but even at a systemic level, as shown by formation of bulky DNA adducts in both lung and bone marrow and induction of cytogenetic damage in bone marrow and peripheral blood erythrocytes. Smoke damaged the respiratory tract and produced significant alterations in the skin as well as an evident cytogenetic damage in both bone marrow and peripheral blood. Interestingly, as compared with exposure to smoke only, alternate daily cycles of exposure to both light and smoke significantly increased malondialdehyde concentrations and DNA adduct levels in lung and the frequency of micronuclei in pulmonary alveolar macrophages. The oral administration of sulindac, a non-steroidal anti-inflammatory drug, attenuated several biomarker alterations due to the combined exposure of mice to light and smoke. In conclusion, the light induces a systemic genotoxic damage, which is presumably due to the UV-mediated formation in the skin of long-lived derivatives, such as aldehydes. This damage may mechanistically be involved in light-related hematopoietic malignancies. In addition, the light displayed an insofar unsuspected synergism with smoke in the induction of DNA damage in the respiratory tract.

  10. Avian Influenza (H7N9) Virus Infection in Chinese Tourist in Malaysia, 2014

    PubMed Central

    William, Timothy; Thevarajah, Bharathan; Lee, Shiu Fee; Suleiman, Maria; Jeffree, Mohamad Saffree; Menon, Jayaram; Saat, Zainah; Thayan, Ravindran; Tambyah, Paul Anantharajah

    2015-01-01

    Of the ≈400 cases of avian influenza (H7N9) diagnosed in China since 2003, the only travel-related cases have been in Hong Kong and Taiwan. Detection of a case in a Chinese tourist in Sabah, Malaysia, highlights the ease with which emerging viral respiratory infections can travel globally. PMID:25531078

  11. The pathogenicity of avian metapneumovirus subtype C wild bird isolates in domestic turkeys

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Avian metapneumovirus subtype C (aMPV/C) causes severe upper respiratory disease in turkeys. Previous report revealed the presence of aMPV/C in wild birds in the southeast regions of the United States. In this study, aMPV/C positive oral swabs from American coot (AC) and Canada goose (CG) were passa...

  12. Preliminary crystallographic analysis of avian infectious bronchitis virus main protease

    SciTech Connect

    Li, Jun; Shen, Wei; Liao, Ming; Bartlam, Mark

    2007-01-01

    The avian infectious bronchitis virus main protease has been crystallized; crystals diffract to 2.7 Å resolution. Infectious bronchitis virus (IBV) is the prototype of the genus Coronavirus. It causes a highly contagious disease which affects the respiratory, reproductive, neurological and renal systems of chickens, resulting great economic losses in the poultry industry worldwide. The coronavirus (CoV) main protease (M{sup pro}), which plays a pivotal role in viral gene expression and replication through a highly complex cascade involving the proteolytic processing of replicase polyproteins, is an attractive target for antiviral drug design. In this study, IBV M{sup pro} was overexpressed in Escherichia coli. Crystals suitable for X-ray crystallography have been obtained using microseeding techniques and belong to space group P6{sub 1}22. X-ray diffraction data were collected in-house to 2.7 Å resolution from a single crystal. The unit-cell parameters were a = b = 119.1, c = 270.7 Å, α = β = 90, γ = 120°. Three molecules were predicted to be present in the asymmetric unit from a calculated self-rotation function.

  13. Seroprevalence of avian pneumovirus in Minnesota turkeys.

    PubMed

    Goyal, Sagar M; Lauer, Dale; Friendshuh, Keith; Halvorson, David A

    2003-01-01

    Avian pneumovirus (APV) causes respiratory tract infection in turkeys and was first seen in the United States in Colorado in late 1996. In early 1997, the disease was recognized in Minnesota and caused estimated losses of up to 15 million dollars per year. This virus has not been reported in the other turkey producing states. We here report the seroprevalence of APV in Minnesota from August 1998 to July 2002. The average rate of seroprevalence has been 36.3% (range = 14.2%-64.8%). A seasonal bias was observed, with peak incidences in the fall and spring. A higher rate of seropositivity was observed in counties with the highest concentration of turkeys.

  14. Respiratory Allergies: A General Overview of Remedies, Delivery Systems, and the Need to Progress

    PubMed Central

    Colombo, Giselda; Celenza, Cinzia

    2014-01-01

    The spread of respiratory allergies is increasing in parallel with the alarm of the scientific community. Evidently, our knowledge of the onset mechanisms of these diseases and, as a consequence, of the available remedies is inadequate. This review provides a brief, general description of current therapeutic resources and the state of research with regard to both drugs and medical devices in order to highlight their limits and the urgent need for progress. Increasing the amount of basic biochemical research will improve our knowledge of such onset mechanisms and the potential efficacy of therapeutic preparations. PMID:25006500

  15. [Liver monooxygenase system inducers in the treatment of respiratory distress syndrome in newborn].

    PubMed

    Kabulov, Sh M

    2002-03-01

    Physical and biochemical parameters of pulmonary surfactant (PS) were studied in 6-day-old rabbits with the respiratory distress syndrome (RDS) treated by benzonal and zixorin inductors. Surface-active characteristics of PS were impaired under conditions of RDS at the expense of deficiency of total phospholipids, specifically phosphatidylcholine (PC) and phosphatidylethanolamine (PEA). Treatment with benzonal and zixorin improved the surface-active characteristics of PS and increased the content of total phospholipids mainly at the expense of PC and PEA. PMID:11980138

  16. Cystic Fibrosis (CF) Respiratory Screen: Sputum

    MedlinePlus

    ... Cystic Fibrosis (CF) Chloride Sweat Test Lungs and Respiratory System Cystic Fibrosis: Diet and Nutrition Cystic Fibrosis Cystic Fibrosis: Diet and Nutrition Lungs and Respiratory System Contact Us Print Resources Send to a friend ...

  17. Self-Calibrating Respiratory-Flowmeter Combination

    NASA Technical Reports Server (NTRS)

    Westenskow, Dwayne R.; Orr, Joseph A.

    1990-01-01

    Dual flowmeters ensure accuracy over full range of human respiratory flow rates. System for measurement of respiratory flow employs two flowmeters; one compensates for deficiencies of other. Combination yields easily calibrated system accurate over wide range of gas flow.

  18. Independent-Trajectories Thermodynamic-Integration Free-Energy Changes for Biomolecular Systems: Determinants of H5N1 Avian Influenza Virus Neuraminidase Inhibition by Peramivir

    PubMed Central

    2009-01-01

    Free-energy changes are essential physicochemical quantities for understanding most biochemical processes. Yet, the application of accurate thermodynamic-integration (TI) computation to biological and macromolecular systems is limited by finite-sampling artifacts. In this paper, we employ independent-trajectories thermodynamic-integration (IT-TI) computation to estimate improved free-energy changes and their uncertainties for (bio)molecular systems. IT-TI aids sampling statistics of the thermodynamic macrostates for flexible associating partners by ensemble averaging of multiple, independent simulation trajectories. We study peramivir (PVR) inhibition of the H5N1 avian influenza virus neuraminidase flexible receptor (N1). Binding site loops 150 and 119 are highly mobile, as revealed by N1-PVR 20-ns molecular dynamics. Due to such heterogeneous sampling, standard TI binding free-energy estimates span a rather large free-energy range, from a 19% underestimation to a 29% overestimation of the experimental reference value (−62.2 ± 1.8 kJ mol−1). Remarkably, our IT-TI binding free-energy estimate (−61.1 ± 5.4 kJ mol−1) agrees with a 2% relative difference. In addition, IT-TI runs provide a statistics-based free-energy uncertainty for the process of interest. Using ∼800 ns of overall sampling, we investigate N1-PVR binding determinants by IT-TI alchemical modifications of PVR moieties. These results emphasize the dominant electrostatic contribution, particularly through the N1 E277−PVR guanidinium interaction. Future drug development may be also guided by properly tuning ligand flexibility and hydrophobicity. IT-TI will allow estimation of relative free energies for systems of increasing size, with improved reliability by employing large-scale distributed computing. PMID:19461872

  19. Two molecular weight forms of muscarinic acetylcholine receptors in the avian central nervous system: switch in predominant form during differentiation of synapses.

    PubMed Central

    Large, T H; Rauh, J J; De Mello, F G; Klein, W L

    1985-01-01

    Muscarinic acetylcholine receptors from the avian central nervous system were examined for developmental changes that correlated with the differentiation of cholinergic synapses. In contrast to previous studies that showed a single molecular weight form of muscarinic receptors in the mature central nervous system, the current study of receptors from embryonic and newly hatched chick retina showed the presence of two electrophoretic forms having apparent molecular weights of 86,200 +/- 400 and 72,200 +/- 300. Two receptor forms also were observed in embryonic cerebrum, optic tectum, and cerebellum. Each form was present, although decreased in molecular weight by 6000, after treatment with deglycosylating enzymes, consistent with molecular differences occurring in the protein portions, rather than the carbohydrate portions, of the molecules. The relative proportions of the high and low molecular weight receptors in retina showed a striking inversion during development. Before synaptogenesis, receptors were mainly of Mr 86,000, whereas after synaptogenesis, receptors were mainly of Mr 72,000. Development of a predominantly low molecular weight receptor population also occurred in aggregate, but not monolayer, cell culture, suggesting a possible role for cell-cell interactions in triggering the change. Pulse-chase labeling of receptors on cultured cells indicated that both forms were present on the cell surface; the labeled Mr 86,000 population had a half-life of 5 hr, whereas the labeled Mr 72,000 population had a half-life of 19 hr. The change in size of muscarinic receptors during development may reflect the action of regulatory mechanisms critical to the proper assembly and function of synapses in the central nervous system. Images PMID:3866251

  20. Role of beta2 agonists in respiratory medicine with particular attention to novel patents and effects on endocrine system and immune response.

    PubMed

    Larocca, Nancy E; Moreno, Dolores; Garmendia, Jenny V; De Sanctis, Juan B

    2011-09-01

    Beta adrenergic receptors are very important in respiratory medicine. Traditionally, the stimulation of beta adrenergic receptors by beta2-agonists is commonly used for giving bronchodilation in chronic airflow obstruction However; the wide distribution of these receptors in cells and tissues other than airway smooth muscle suggests that beta agonists should offer other beneficial effects in respiratory disease. Recent studies have shown the importance of these receptors in the modulation of endocrine and immune system that affect respiratory function and may decrease therapy effectiveness in asthma and chronic obstructive pulmonary disease. New patented compound and uses have provided new insights in future therapeutics of respiratory diseases in which genetic, endocrine and immune response should be considered.

  1. Single and combined effects of air pollutants on circulatory and respiratory system-related mortality in Belgrade, Serbia.

    PubMed

    Stojić, Svetlana Stanišić; Stanišić, Nemanja; Stojić, Andreja; Šoštarić, Andrej

    2016-01-01

    The aim of this study was to investigate the association between short- and long-term exposure to particulate matter (PM10), nitrogen dioxide (NO2), sulfur dioxide (SO2), and soot and mortality attributed to circulatory and respiratory diseases in Belgrade area (Serbia). The analyzed data set comprised results of regular pollutant monitoring and corresponding administrative records on frequency of daily mortality in the period 2009-2014. Nonlinear exposure-response dependencies and delayed effects of temperature were examined by means of distributed lag nonlinear models. The air pollutant loadings and circulatory system-related death rates in Belgrade area are among the highest in Europe. Data demonstrated that excess risk of death with short-term exposure to elevated concentrations of PM10, SO2, and soot was not significant, whereas marked effect size estimates for exposure over 90 d preceding mortality were found. The influence of chronic exposure was shown to be greater for respiratory than circulatory system-related mortality. When stratified by age and gender, higher risk was noted for male individuals below the age of 65 years. PMID:26699658

  2. Technical Note: A respiratory monitoring and processing system based on computer vision: prototype and proof of principle.

    PubMed

    Leduc, Nicolas; Atallah, Vincent; Escarmant, Patrick; Vinh-Hung, Vincent

    2016-01-01

    Monitoring and controlling respiratory motion is a challenge for the accuracy and safety of therapeutic irradiation of thoracic tumors. Various commercial systems based on the monitoring of internal or external surrogates have been developed but remain costly. In this article we describe and validate Madibreast, an in-house-made respiratory monitoring and processing device based on optical tracking of external markers. We designed an optical apparatus to ensure real-time submillimetric image resolution at 4 m. Using OpenCv libraries, we optically tracked high-contrast markers set on patients' breasts. Validation of spatial and time accuracy was performed on a mechanical phantom and on human breast. Madibreast was able to track motion of markers up to a 5 cm/s speed, at a frame rate of 30 fps, with submillimetric accuracy on mechanical phantom and human breasts. Latency was below 100 ms. Concomitant monitoring of three different locations on the breast showed discrepancies in axial motion up to 4 mm for deep-breathing patterns. This low-cost, computer-vision system for real-time motion monitoring of the irradiation of breast cancer patients showed submillimetric accuracy and acceptable latency. It allowed the authors to highlight differences in surface motion that may be correlated to tumor motion.v. PMID:27685116

  3. [Characteristics of the respiratory chain and the oxidative phosphorylation system of mitochondria in the flavinogenic Eremothecium ashbyii strain].

    PubMed

    Zviagil'skaia, R A; Korosteleva, N L; Mironov, V A

    1976-01-01

    Tightly coupled mitochondria were isolated from cells of the flavinogenic strain of Eremothecium ashbyii collected during the logarithmic and stationary growth phases. The composition of the respiratory chain and characteristics of the energy coupling system are described. The mitochondria show a wide spectrum of metabolic activity and oxidize Krebs cycle compenents and exogenous NADH. The terminal segment of the respiratory chain is represented by a typical cytochrome system. The mitochondria of the ascomycete collected during the logarithmic growth phase are characterized by a relatively high content of cytochromes b and c, a high rate of oxidation of NAD-dependent substrates, the presence of lower homologues of ubiquinone, UQ6 and UQ7, and extremely high sensitivity of respiration to the action of antimycin A, low content of a component sensitive to rotenone, contrasting with the operation of all three sites of phosphorylation. Transition to the stationary growth phase is accompanied with a decrease in the rate of oxidation of all substrates studied and a declined effectiveness of oxidative phosphorylation. The data obtained are discussed in relation to the ability of the cells for "overproduction" of flavins. PMID:187903

  4. Technical Note: A respiratory monitoring and processing system based on computer vision: prototype and proof of principle.

    PubMed

    Leduc, Nicolas; Atallah, Vincent; Escarmant, Patrick; Vinh-Hung, Vincent

    2016-09-08

    Monitoring and controlling respiratory motion is a challenge for the accuracy and safety of therapeutic irradiation of thoracic tumors. Various commercial systems based on the monitoring of internal or external surrogates have been developed but remain costly. In this article we describe and validate Madibreast, an in-house-made respiratory monitoring and processing device based on optical tracking of external markers. We designed an optical apparatus to ensure real-time submillimetric image resolution at 4 m. Using OpenCv libraries, we optically tracked high-contrast markers set on patients' breasts. Validation of spatial and time accuracy was performed on a mechanical phantom and on human breast. Madibreast was able to track motion of markers up to a 5 cm/s speed, at a frame rate of 30 fps, with submillimetric accuracy on mechanical phantom and human breasts. Latency was below 100 ms. Concomitant monitoring of three different locations on the breast showed discrepancies in axial motion up to 4 mm for deep-breathing patterns. This low-cost, computer-vision system for real-time motion monitoring of the irradiation of breast cancer patients showed submillimetric accuracy and acceptable latency. It allowed the authors to highlight differences in surface motion that may be correlated to tumor motion.v.

  5. Single and combined effects of air pollutants on circulatory and respiratory system-related mortality in Belgrade, Serbia.

    PubMed

    Stojić, Svetlana Stanišić; Stanišić, Nemanja; Stojić, Andreja; Šoštarić, Andrej

    2016-01-01

    The aim of this study was to investigate the association between short- and long-term exposure to particulate matter (PM10), nitrogen dioxide (NO2), sulfur dioxide (SO2), and soot and mortality attributed to circulatory and respiratory diseases in Belgrade area (Serbia). The analyzed data set comprised results of regular pollutant monitoring and corresponding administrative records on frequency of daily mortality in the period 2009-2014. Nonlinear exposure-response dependencies and delayed effects of temperature were examined by means of distributed lag nonlinear models. The air pollutant loadings and circulatory system-related death rates in Belgrade area are among the highest in Europe. Data demonstrated that excess risk of death with short-term exposure to elevated concentrations of PM10, SO2, and soot was not significant, whereas marked effect size estimates for exposure over 90 d preceding mortality were found. The influence of chronic exposure was shown to be greater for respiratory than circulatory system-related mortality. When stratified by age and gender, higher risk was noted for male individuals below the age of 65 years.

  6. Successful management of acute respiratory failure in an Idiopathic Pulmonary Fibrosis patient using an extracorporeal carbon dioxide removal system.

    PubMed

    Vianello, Andrea; Arcaro, Giovanna; Paladini, Luciana; Iovino, Silvia

    2016-01-01

    Patients with Idiopathic Pulmonary Fibrosis (IPF) requiring Invasive Mechanical Ventilation (IMV) following unsuccessful treatment with Non-Invasive Ventilation (NIV) have a high mortality rate. IMV is, moreover, an independent predictor of poor outcome during the post-transplantation period in patients on waiting lists for Lung Transplantation (LT). Here we describe the successful management of an IPF patient with acute respiratory failure (ARF) using a pump-assisted veno-venous system for extracorporeal CO2 removal (ECCO2R) (ProLUNG® system) as an alternative to endotracheal intubation (ETI) following NIV failure. Given this positive experience, further studies are warranted focusing on the ECCO2R system's tolerability, safety, and efficacy in patients with IPF and severe ARF in whom NIV alone is ineffective. PMID:27537725

  7. Successful management of acute respiratory failure in an Idiopathic Pulmonary Fibrosis patient using an extracorporeal carbon dioxide removal system.

    PubMed

    Vianello, Andrea; Arcaro, Giovanna; Paladini, Luciana; Iovino, Silvia

    2016-08-01

    Patients with Idiopathic Pulmonary Fibrosis (IPF) requiring Invasive Mechanical Ventilation (IMV) following unsuccessful treatment with Non-Invasive Ventilation (NIV) have a high mortality rate. IMV is, moreover, an independent predictor of poor outcome during the post-transplantation period in patients on waiting lists for Lung Transplantation (LT). Here we describe the successful management of an IPF patient with acute respiratory failure (ARF) using a pump-assisted veno-venous system for extracorporeal CO2 removal (ECCO2R) (ProLUNG® system) as an alternative to endotracheal intubation (ETI) following NIV failure. Given this positive experience, further studies are warranted focusing on the ECCO2R system's tolerability, safety, and efficacy in patients with IPF and severe ARF in whom NIV alone is ineffective.

  8. Evidence for Avian Intrathoracic Air Sacs in a New Predatory Dinosaur from Argentina

    PubMed Central

    Sereno, Paul C.; Martinez, Ricardo N.; Wilson, Jeffrey A.; Varricchio, David J.; Alcober, Oscar A.; Larsson, Hans C. E.

    2008-01-01

    Background Living birds possess a unique heterogeneous pulmonary system composed of a rigid, dorsally-anchored lung and several compliant air sacs that operate as bellows, driving inspired air through the lung. Evidence from the fossil record for the origin and evolution of this system is extremely limited, because lungs do not fossilize and because the bellow-like air sacs in living birds only rarely penetrate (pneumatize) skeletal bone and thus leave a record of their presence. Methodology/Principal Findings We describe a new predatory dinosaur from Upper Cretaceous rocks in Argentina, Aerosteon riocoloradensis gen. et sp. nov., that exhibits extreme pneumatization of skeletal bone, including pneumatic hollowing of the furcula and ilium. In living birds, these two bones are pneumatized by diverticulae of air sacs (clavicular, abdominal) that are involved in pulmonary ventilation. We also describe several pneumatized gastralia (“stomach ribs”), which suggest that diverticulae of the air sac system were present in surface tissues of the thorax. Conclusions/Significance We present a four-phase model for the evolution of avian air sacs and costosternal-driven lung ventilation based on the known fossil record of theropod dinosaurs and osteological correlates in extant birds: (1) Phase I—Elaboration of paraxial cervical air sacs in basal theropods no later than the earliest Late Triassic. (2) Phase II—Differentiation of avian ventilatory air sacs, including both cranial (clavicular air sac) and caudal (abdominal air sac) divisions, in basal tetanurans during the Jurassic. A heterogeneous respiratory tract with compliant air sacs, in turn, suggests the presence of rigid, dorsally attached lungs with flow-through ventilation. (3) Phase III—Evolution of a primitive costosternal pump in maniraptoriform theropods before the close of the Jurassic. (4) Phase IV—Evolution of an advanced costosternal pump in maniraptoran theropods before the close of the

  9. Investigation of the flow-field in the upper respiratory system when wearing N95 filtering facepiece respirator.

    PubMed

    Zhang, Xiaotie; Li, Hui; Shen, Shengnan; Cai, Mang

    2016-01-01

    This article presents a reverse modeling of the headform when wearing a filtering facepiece respirator (FFR) and a computational fluid dynamics (CFD) simulation based on the modeling. The whole model containing the upper respiratory airway, headform, and FFR was directly recorded by computed tomography (CT) scanning, and a medical contrast medium was used to make the FFR "visible." The FFR was normally worn by the subject during CT scanning so that the actual deformation of both the FFR and the face muscles during contact can be objectively conserved. The reverse modeling approach was introduced to rebuild the geometric model and convert it into a CFD solvable model. In this model, we conducted a transient numerical simulation of air flow containing carbon dioxide, thermal dynamics, and pressure and wall shear stress distribution in the respiratory system taking into consideration an individual wearing a FFR. The breathing cycle was described as a time-dependent profile of the air velocity through the respiratory airway. The result shows that wearing the N95 FFR results in CO2 accumulation, an increase in temperature and pressure elevation inside the FFR cavity. The volume fraction of CO2 reaches 1.2% after 7 breathing cycles and then is maintained at 3.04% on average. The wearers re-inhale excessive CO2 in every breathing cycle from the FFR cavity. The air temperature in the FFR cavity increases rapidly at first and then stays close to the exhaled temperature. Compared to not wearing an FFR, wearers have to increase approximately 90 Pa more pressure to keep the same breathing flow rate of 30.54 L/min after wearing an FFR. The nasal vestibule bears more wall shear stress than any other area in the airway. PMID:26653154

  10. Investigation of the flow-field in the upper respiratory system when wearing N95 filtering facepiece respirator.

    PubMed

    Zhang, Xiaotie; Li, Hui; Shen, Shengnan; Cai, Mang

    2016-01-01

    This article presents a reverse modeling of the headform when wearing a filtering facepiece respirator (FFR) and a computational fluid dynamics (CFD) simulation based on the modeling. The whole model containing the upper respiratory airway, headform, and FFR was directly recorded by computed tomography (CT) scanning, and a medical contrast medium was used to make the FFR "visible." The FFR was normally worn by the subject during CT scanning so that the actual deformation of both the FFR and the face muscles during contact can be objectively conserved. The reverse modeling approach was introduced to rebuild the geometric model and convert it into a CFD solvable model. In this model, we conducted a transient numerical simulation of air flow containing carbon dioxide, thermal dynamics, and pressure and wall shear stress distribution in the respiratory system taking into consideration an individual wearing a FFR. The breathing cycle was described as a time-dependent profile of the air velocity through the respiratory airway. The result shows that wearing the N95 FFR results in CO2 accumulation, an increase in temperature and pressure elevation inside the FFR cavity. The volume fraction of CO2 reaches 1.2% after 7 breathing cycles and then is maintained at 3.04% on average. The wearers re-inhale excessive CO2 in every breathing cycle from the FFR cavity. The air temperature in the FFR cavity increases rapidly at first and then stays close to the exhaled temperature. Compared to not wearing an FFR, wearers have to increase approximately 90 Pa more pressure to keep the same breathing flow rate of 30.54 L/min after wearing an FFR. The nasal vestibule bears more wall shear stress than any other area in the airway.

  11. Replication, Neurotropism, and Pathogenicity of Avian Paramyxovirus Serotypes 1–9 in Chickens and Ducks

    PubMed Central

    Kim, Shin-Hee; Xiao, Sa; Shive, Heather; Collins, Peter L.; Samal, Siba K.

    2012-01-01

    Avian paramyxovirus (APMV) serotypes 1–9 have been isolated from many different avian species. APMV-1 (Newcastle disease virus) is the only well-characterized serotype, because of the high morbidity, mortality, and economic loss caused by highly virulent strains. Very little is known about the pathogenesis, replication, virulence, and tropism of the other APMV serotypes. Here, this was evaluated for prototypes strains of APMV serotypes 2–9 in cell culture and in chickens and ducks. In cell culture, only APMV-1, -3 and -5 induced syncytium formation. In chicken DF1 cells, APMV-3 replicated with an efficiency approaching that of APMV-1, while APMV-2 and -5 replicated to lower, intermediate titers and the others were much lower. Mean death time (MDT) assay in chicken eggs and intracerebral pathogenicity index (ICPI) test in 1-day-old SPF chicks demonstrated that APMV types 2–9 were avirulent. Evaluation of replication in primary neuronal cells in vitro as well as in the brains of 1-day-old chicks showed that, among types 2–9, only APMV-3 was neurotropic, although this virus was not neurovirulent. Following intranasal infection of 1-day-old and 2-week-old chickens, replication of APMV types 2–9 was mostly restricted to the respiratory tract, although APMV-3 was neuroinvasive and neurotropic (but not neurovirulent) and also was found in the spleen. Experimental intranasal infection of 3-week-old mallard ducks with the APMVs did not produce any clinical signs (even for APMV-1) and exhibited restricted viral replication of the APMVs (including APMV-1) to the upper respiratory tract regardless of their isolation source, indicating avirulence of APMV types 1–9 in mallard ducks. The link between the presence of a furin cleavage site in the F protein, syncytium formation, systemic spread, and virulence that has been well-established with APMV-1 pathotypes was not evident with the other APMV serotypes. PMID:22558104

  12. Pathology of highly pathogenic avian influenza virus (H5N1) infection in Canada geese (Branta canadensis): preliminary studies.

    PubMed

    Neufeld, J L; Embury-Hyatt, C; Berhane, Y; Manning, L; Ganske, S; Pasick, J

    2009-09-01

    Susceptibility of Canada geese (Branta canadensis) to highly pathogenic avian influenza (HPAI) virus (H5N1) infection was studied by inoculating 10 naïve (antibody-negative) animals (5 adults and 5 juveniles) with A/chicken/Vietnam/14/05 (H5N1) virus. In the adults, 1 of 5 became infected, and 4 of 5 remained normal; in the juvenile group, 5 of 5 became infected. The pathology observed in the affected animals was similar to that reported in natural occurrences. Peripheral and parasympathetic nervous systems were examined and found infected, as well as cerebrospinal fluid-contacting neurons. In some locations with significant virus infection in cells, the expected inflammatory reaction was absent or very mild. Immunohistochemistry was used to locate influenza A virus nucleoprotein in brain, spinal cord, respiratory and digestive systems, pancreas, heart, and peripheral and parasympathetic nervous systems. Further studies are needed to explain age-related differences in susceptibility.

  13. Inflammatory damage on respiratory and nervous systems due to hRSV infection.

    PubMed

    Bohmwald, Karen; Espinoza, Janyra A; Becerra, Daniela; Rivera, Katherine; Lay, Margarita K; Bueno, Susan M; Riedel, Claudia A; Kalergis, Alexis M

    2015-10-01

    The exacerbated inflammatory response elicited by human Respiratory Syncytial Virus (hRSV) in the lungs of infected patients causes a major health burden in the pediatric and elderly population. Since the discovery of hRSV, the exacerbated host immune-inflammatory response triggered by this virus has been extensively studied. In this article, we review the effects on the airways caused by immune cells and cytokines/chemokines secreted during hRSV infection. While molecules such as interferons contribute at controlling viral infection, IL-17 and others produce damage to the hRSV-infected lung. In addition to affecting the airways, hRSV infection can cause significant neurologic abnormalities in the host, such as seizures and encephalopathy. Although the origin of these symptoms remains unclear, studies from patients suffering neurological alteration suggest an involvement of the inflammatory response against hRSV.

  14. A linear, time-varying simulation of the respiratory tract system

    SciTech Connect

    Hernandez, O.

    1992-11-01

    These results show that regional deposition efficiencies of inhaled particles are highly dependent on the level of physical activity in all the spectrum of thermodynamic and aerodynamic aerosol particle sizes; also it was shown that for particles in the aerodynamic size range, the values of regional deposition efficiencies at the inner regions of the lung are highly dependent on age. In addition, the shape of regional deposition efficiency curves as a function of particle size have a similar behavior for all ages; thus, any variation of the airway geometry and respiratory physiological parameters such as tidal volumes and breathing frequencies due to age difference do not cause a change in the fundamental mechanisms of deposition. Thus, for all the cases of physical activity and age dependency, the deposition of ultrafine aerosol particles is highly enhanced by diffusive processes in all regions of the respiratory tract, and for very large aerosol size particles this behavior is repeated again due to impaction and sedimentation mechanisms. Although the results presented at this work, are the result of computer simulations based on different sources of experimental data, the structure of the computer simulation code BIODEP is flexible enough to the acquisition of any kind of new experimental information in terms of biokinetic analysis and regional deposition parameters. In addition, since the design of BIODEP was intended for easy access to the users, then with exception of the subroutine DIVPAG, at this moment, the modular design of BIODEP using FORTRAN 77 allows the implementation of all the subroutines of BIODEP to be used in a interactive mode with any microcomputer.

  15. Closed system respirometry may underestimate tissue gas exchange and bias the respiratory exchange ratio (RER).

    PubMed

    Malte, Christian Lind; Nørgaard, Simon; Wang, Tobias

    2016-02-01

    Closed respirometry is a commonly used method to measure gas exchange in animals due to its apparent simplicity. Typically, the rates of O2 uptake and CO2 excretion (VO2 and VCO2, respectively) are assumed to be in steady state, such that the measured rates of gas exchange equal those at tissue level. In other words, the respiratory gas exchange ratio (RER) is assumed to equal the respiratory quotient (RQ). However, because the gas concentrations change progressively during closure, the animal inspires air with a progressively increasing CO2 concentration and decreasing O2 concentration. These changes will eventually affect gas exchange causing the O2 and CO2 stores within the animal to change. Because of the higher solubility/capacitance of CO2 in the tissues of the body, VCO2 will be more affected than VO2, and we hypothesize therefore that RER will become progressively underestimated as closure time is prolonged. This hypothesis was addressed by a combination of experimental studies involving closed respirometry on ball pythons (Python regius) as well as mathematical models of gas exchange. We show that increased closed duration of the respirometer reduces RER by up to 13%, and these findings may explain previous reports of RER values being below 0.7. Our model reveals that the maximally possible reduction in RER is determined by the storage capacity of the body for CO2 (product of size and specific capacitance) relative to the respirometer storage capacity. Furthermore, modeling also shows that pronounced ventilatory and circulatory response to hypercapnia can alleviate the reduction in RER.

  16. Protection by recombinant Newcastle disease viruses (NDV) expressing the glycoprotein (G) of avian metapneumovirus (aMPV) subtype A or B against challenge with virulent NDV and aMPV

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Avian metapneumovirus (aMPV) and Newcastle disease virus (NDV) are threatening avian pathogens that cause sporadic but serious respiratory diseases in poultry worldwide. Although, vaccination, combined with strict biosecurity practices, has been the recommendation for controlling these diseases in t...

  17. Identification of viral epitopes recognized by the immune system following vaccination and challenge with the H7N9 avian influenza virus from China

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In March of 2013, the first cases of H7N9 influenza were reported in humans in China, and shortly thereafter the virus was confirmed from poultry in live bird markets. Since that time the virus has persisted in both human and avian populations. The genetic composition of these H7N9 influenza virus...

  18. Temperature control of a microspectrophotometer system for monitoring the redox reactions of respiratory pigments in small volumes

    NASA Astrophysics Data System (ADS)

    Kavanagh, Karen Y.; Walsh, James E.; Murphy, J.; Harmey, M.; Farrell, M. A.; Hardimann, O.; Perryman, R.

    1998-05-01

    We report the development of a microspectrophotometer system for use on micro samples of mitochondrial respiratory pigments. A novel optical fiber set-up uses visible spectrophotometry to monitor the reduction of mitochondrial electron carriers. Data is presented for the reduction of cytochrome-c and for the effect of temperature on the levels of complex II/III activity from the mitochondria of rat liver. This in-vivo simulation of the reduction of cytochrome-c can be observed using a fiber optic probe which requires less than twenty (mu) l of sample for analysis. The key features of the system are: front end adaptability, high sensitivity and fast multispectral acquisition which are essential for the biological reactions which are observed.

  19. Avian pox in blue-fronted Amazon parrots.

    PubMed

    McDonald, S E; Lowenstine, L J; Ardans, A A

    1981-12-01

    During a 1-month period at a quarantine station, an epornitic of avian pox occurred in blue-fronted Amazon parrots (Amazona aestiva). Clinical signs included conjunctivitis, blepharitis, and varying degrees of anorexia and respiratory distress. Lesions included periocular ulcerations and scabs and necrotic plaques in the oral cavity. Histologically, the lesions consisted of epithelial hyperplasia, secondary inflammatory changes, and eosinophilic inclusions which, by electron microscopy, were shown to contain poxvirus. When chicken embryos were inoculated with material from eyelid scabs and pharyngeal plaques, lesions of avian pox developed on the chorioallantoic membrane. The death rate of infected birds was high because of secondary bacterial and fungal infections, but uncomplicated cases were usually self-limiting. Periocular lesions also developed in 2 other species of psittacine birds housed in the same facility.

  20. Pattern of deposition of stainless steel welding fume particles inhaled into the respiratory systems of Sprague-Dawley rats exposed to a novel welding fume generating system.

    PubMed

    Yu, I J; Kim, K J; Chang, H K; Song, K S; Han, K T; Han, J H; Maeng, S H; Chung, Y H; Park, S H; Chung, K H; Han, J S; Chung, H K

    2000-07-27

    In order to investigate occupational diseases related to welding fume exposure, such as nasal septum perforation, pneumoconiosis and manganese intoxication, we built a welding fume exposure system that included a welding fume generator, exposure chamber and fume collector. The fume concentrations in the exposure chamber were monitored every 15 min during a 2-h exposure. Fume (mg/m(3)) concentrations of major metals, including Fe, Mn, Cr, and Ni were found to be consistently maintained. An acute inhalation toxicity study was conducted by exposing male Sprague-Dawley rats to the welding fumes generated in this apparatus by stainless steel arc welding. The rats were exposed in the inhalation chamber to a welding fume with a concentration of 62 mg/m(3) total suspended particulates for 4 h. Animals were sacrificed at 4 h and at 1, 3, 7, 10, and 14 days after exposure. Histopathological examinations were conducted on the animals' upper respiratory tracts, including the nasal pathway and the conducting airway, and on the gas exchange region including the alveolar ducts, alveolar sacs, and alveoli. Diameters of fume particles varied from 0.02 to 0.81 microm and were distributed log normally, with a mean diameter of 0.1 microm and geometric standard deviation of 1.42. Rats exposed to the welding fume for 4 h did not show any significant respiratory system toxicity. The mean particle diameter of 0.1 microm resulted in little adsorption of the welding fume particles in the upper respiratory tract. Particle adsorption took place principally in the lower respiratory tracts, including bronchioles, alveolar ducts, alveolar sacs, and alveoli.

  1. Stability of the human respiratory control system. I. Analysis of a two-dimensional delay state-space model.

    PubMed

    Batzel, J J; Tran, H T

    2000-07-01

    A number of mathematical models of the human respiratory control system have been developed since 1940 to study a wide range of features of this complex system. Among them, periodic breathing (including Cheyne-Stokes respiration and apneustic breathing) is a collection of regular but involuntary breathing patterns that have important medical implications. The hypothesis that periodic breathing is the result of delay in the feedback signals to the respiratory control system has been studied since the work of Grodins et al. in the early 1950's [12]. The purpose of this paper is to study the stability characteristics of a feedback control system of five differential equations with delays in both the state and control variables presented by Khoo et al. [17] in 1991 for modeling human respiration. The paper is divided in two parts. Part I studies a simplified mathematical model of two nonlinear state equations modeling arterial partial pressures of O2 and CO2 and a peripheral controller. Analysis was done on this model to illuminate the effect of delay on the stability. It shows that delay dependent stability is affected by the controller gain, compartmental volumes and the manner in which changes in the ventilation rate is produced (i.e., by deeper breathing or faster breathing). In addition, numerical simulations were performed to validate analytical results. Part II extends the model in Part I to include both peripheral and central controllers. This, however, necessitates the introduction of a third state equation modeling CO2 levels in the brain. In addition to analytical studies on delay dependent stability, it shows that the decreased cardiac output (and hence increased delay) resulting from the congestive heart condition can induce instability at certain control gain levels. These analytical results were also confirmed by numerical simulations. PMID:10958415

  2. Stability of the human respiratory control system. II. Analysis of a three-dimensional delay state-space model.

    PubMed

    Batzel, J J; Tran, H T

    2000-07-01

    A number of mathematical models of the human respiratory control system have been developed since 1940 to study a wide range of features of this complex system. Among them, periodic breathing (including Cheyne-Stokes respiration and apneustic breathing) is a collection of regular but involuntary breathing patterns that have important medical implications. The hypothesis that periodic breathing is the result of delay in the feedback signals to the respiratory control system has been studied since the work of Grodins et al. in the early 1950's [1]. The purpose of this paper is to study the stability characteristics of a feedback control system of five differential equations with delays in both the state and control variables presented by Khoo et al. [4] in 1991 for modeling human respiration. The paper is divided in two parts. Part I studies a simplified mathematical model of two nonlinear state equations modeling arterial partial pressures of O2 and CO2 and a peripheral controller. Analysis was done on this model to illuminate the effect of delay on the stability. It shows that delay dependent stability is affected by the controller gain, compartmental volumes and the manner in which changes in the ventilation rate is produced (i.e., by deeper breathing or faster breathing). In addition, numerical simulations were performed to validate analytical results. Part II extends the model in Part I to include both peripheral and central controllers. This, however, necessitates the introduction of a third state equation modeling CO2 levels in the brain. In addition to analytical studies on delay dependent stability, it shows that the decreased cardiac output (and hence increased delay) resulting from the congestive heart condition can induce instability at certain control gain levels. These analytical results were also confirmed by numerical simulations. PMID:10958416

  3. Investigations of the Cardiovascular and Respiratory Systems on Board the International Space Station: Experiments Puls and Pneumocard

    NASA Astrophysics Data System (ADS)

    Baranov, V. M.; Baevsky, R. M.; Drescher, J.; Tank, J.

    parameters describing the results of the function of these systems like heart rate, arterial pressure, cardiac output, or breathing frequency, concentration of O2 and CO2 , etc. Missing significant changes of these parameters during weightlessness supports the hypothesis that adaptational and compensatory mechanisms are sufficient and guarantee cardiovascular homeostasis under changing environmental conditions. characteristic changes of the vegetative balance and of the activity of different regulatory elements at the brainstem and subcortical level. This changes guaranteed the adaptation to long term weightlessness. However, it remains unclear to what extent the different levels are involved. Moreover, the criteria describing the efficacy of cardiorespiratory interaction for the different functional states are not defined yet. The investigation of this problems is highly relevant in order to improve the medical control, especially if considering that the disruption of regulatory systems mostly precedes dangerous destruction of homeostasis. cardiovascular and respiratory function on Board the International Space Station (ISS) aiming to obtain new insights into the interaction between different regulatory elements. "Puls" is measures ECG, photoplethysmogram (PPG), and the pneumotachogram (PTG). The ECG is used to measure time series of R-R intervals and to analyse HRV. PPG is used to define the pulse wave velocity, phases of the cardiac cycle, and an estimate of the filling of finger vessels. The variability of these parameters is also calculated and compared to HRV. The analysis of the PTG allows to describe the interaction of the regulatory parameters of the cardiovascular and respiratory systems. Hence, an important feature of the experiment "Puls" is the investigation of regulatory mechanisms rather than of cardiovascular homeostasis. cardiography) and left ventricular contractility (seismocardiography) will be obtained. This expansion is of major importance

  4. The Effects of Leucine, Zinc, and Chromium Supplements on Inflammatory Events of the Respiratory System in Type 2 Diabetic Rats

    PubMed Central

    Kolahian, Saeed; Sadri, Hassan; Shahbazfar, Amir Ali; Amani, Morvarid; Mazadeh, Anis; Mirani, Mehdi

    2015-01-01

    Diabetes mellitus is a major cause of serious micro- and macrovascular diseases that affect nearly every system in the body, including the respiratory system. Non-enzymatic protein glycation due to hyperglycaemic stress has fundamental implications due to the large capillary network and amount of connective tissue in the lung. The current study was designed to determine whether leucine, zinc, and chromium supplementations influence the function and histological structure of the respiratory tract in a rat model of type 2 diabetes. Seventy-seven rats were divided into eleven groups, consisting of 7 animals each. One group served as negative control and insulin and glibenclamide were used as positive control drugs. Thus, eight groups received the nutritional supplements alone or in combination with each other. Nutritional supplements and glibenclamide were added to the drinking water and neutral protamine Hagedorn insulin was subcutaneously injected during the 4 weeks of treatment period. The induction of type 2 diabetes in the rats caused an infiltration of mononuclear cells and edema in the submucosa of the trachea and lung, severe fibrosis around the vessels and airways, and perivascular and peribronchial infiltration of inflammatory cells and fibrin. In the diabetic group, the total inflammation score and Reid index significantly increased. Diabetes induction significantly reduced the total antioxidant status and elevated the lipid peroxidation products in the serum, lung lavage and lung tissue of the diabetic animals. Treatment with nutritional supplements significantly decreased the histopathological changes and inflammatory indices in the diabetic animals. Supplementation of diabetic rats with leucine, zinc, and chromium, alone and in combination, significantly increased the total antioxidant status and lipid peroxidation level in the diabetic animals. The nutritional supplements improved the enzymatic antioxidant activity of catalase, glutathione peroxidase

  5. [Anti-nicotine education applied in relation of parents of the diseased children on chronic allergic diseases of respiratory system].

    PubMed

    Przybylski, Grzegorz; Gołda, Ryszard; Pyskir, Jerzy; Pasińska, Magdalena; Ludwikowski, Grzegorz; Kuziemski, Arkadiusz; Kopiński, Piotr

    2006-01-01

    The allergies of respiratory system are at children the frequent illnesses. Among favorable them factors, risk on passive smoking tobacco can be also. Passive smoking is defined as risk non-smoking on tobacco smoke in environment. Recent reports represent that smoking in home environment tobacco increase on passive smokers' asthma morbidity, especially children in school age. It in it was report the necessity of leadership of anti-nicotine education was underlined in the face of smoking parents. It bets that she should motivate she better parents to cessation smoking, using authority of doctor and love parental. Acting we decided with these principles to analyze effectiveness two year anti-nicotine education which be applied in the face of all treated smoking parents of children with reason of chronic allergic diseases of respiratory system in out-patients. The study comprised parents of 146 children at the Allergy out-Patients clinic, who were diagnosed and cured in years 2003-2005. Generally were 292 persons. The children be treated with reason of bronchial asthma and allergic rhinitis. It the data on subject of smoking of tobacco were collected was on basis of interview got from parents during visits at information bureau on beginning the treatment the children, in his track as well as after two years of education. The anti-nicotine education was applied by whole period of observation during routine medical visits. In moment beginning of treatment in studied group the parents' and education children (n = 292) it 79 the parents' couple did not smoke. Smoking parents among remaining 67 steams were. From among them parents 13 children smoked both, only father in 36 cases smoked and mother in remaining 18 parents' couple smoked. 80 parents smoked with generally. 63 persons after two years of anti-nicotine education the nonsmoking committed one from group smoking. 22 persons among them were from among 24 fathers and 17 mothers' peer in which smoked both parents

  6. The Effects of Leucine, Zinc, and Chromium Supplements on Inflammatory Events of the Respiratory System in Type 2 Diabetic Rats.

    PubMed

    Kolahian, Saeed; Sadri, Hassan; Shahbazfar, Amir Ali; Amani, Morvarid; Mazadeh, Anis; Mirani, Mehdi

    2015-01-01

    Diabetes mellitus is a major cause of serious micro- and macrovascular diseases that affect nearly every system in the body, including the respiratory system. Non-enzymatic protein glycation due to hyperglycaemic stress has fundamental implications due to the large capillary network and amount of connective tissue in the lung. The current study was designed to determine whether leucine, zinc, and chromium supplementations influence the function and histological structure of the respiratory tract in a rat model of type 2 diabetes. Seventy-seven rats were divided into eleven groups, consisting of 7 animals each. One group served as negative control and insulin and glibenclamide were used as positive control drugs. Thus, eight groups received the nutritional supplements alone or in combination with each other. Nutritional supplements and glibenclamide were added to the drinking water and neutral protamine Hagedorn insulin was subcutaneously injected during the 4 weeks of treatment period. The induction of type 2 diabetes in the rats caused an infiltration of mononuclear cells and edema in the submucosa of the trachea and lung, severe fibrosis around the vessels and airways, and perivascular and peribronchial infiltration of inflammatory cells and fibrin. In the diabetic group, the total inflammation score and Reid index significantly increased. Diabetes induction significantly reduced the total antioxidant status and elevated the lipid peroxidation products in the serum, lung lavage and lung tissue of the diabetic animals. Treatment with nutritional supplements significantly decreased the histopathological changes and inflammatory indices in the diabetic animals. Supplementation of diabetic rats with leucine, zinc, and chromium, alone and in combination, significantly increased the total antioxidant status and lipid peroxidation level in the diabetic animals. The nutritional supplements improved the enzymatic antioxidant activity of catalase, glutathione peroxidase

  7. Conservation planning and monitoring avian habitat

    USGS Publications Warehouse

    Twedt, D.J.; Loesch, C.R.; Bonney, Rick; Pashley, David N.; Cooper, Robert; Niles, Larry

    2000-01-01

    Migratory bird conservation plans should not only develop population goals, they also should establish attainable objectives for optimizing avian habitats. Meeting population goals is of paramount importance, but progress toward established habitat objectives can generally be monitored more easily than can progress toward population goals. Additionally, local or regional habitat objectives can be attained regardless of perturbations to avian populations that occur outside the geographic area covered by conservation plans. Assessments of current avian habitats, obtained from remotely sensed data, and the historical distribution of habitats should be used in establishing habitat objectives. Habitat planning and monitoring are best conducted using a geographic information system. Habitat objectives are assigned to three categories: maintaining existing habitat, restoring habitat, and creating new or alternative habitat. Progress toward meeting habitat objectives can be monitored through geographic information systems by incorporating georeferenced information on public lands, private lands under conservation easements, corporate lands under prescribed management, habitat restoration areas, and private lands under alternative management to enhance wildlife values. We recommend that the area and distribution of habitats within the area covered by conservation plans be reassessed from remotely sensed imagery at intervals appropriate to detect predicted habitat changes.

  8. [The comparative analysis: the occurrence of acute respiratory system infections and chronic diseases among active smokers and non-smokers].

    PubMed

    Kałucka, Sylwia

    2006-01-01

    Cigarette smoking is one of the factors causing a lot of health problems. Breathing the smoke makes the development of arteriosclerosis and ischemic heart disease faster and the risk of myocardial infarction much higher. Toxic substances contained in the smoke induce inflammatory processes in bronchial tree, which finally leads to the destruction of lungs. One of the way of preventing complications in the circulatory system and stopping the inflammatory process in lungs is to give up the habit of smoking. Within the period of three years the group of more than 1000 people (smokers and non-smokers) was examined and the analysis of occurrence of acute respiratory system infections and chronic diseases was conducted. In the studies the questionnaire prepared by the author of the paper, some specialistic studies and medical reports were used. The achieved results show that more and more women smoke as many cigarettes as men and for as many years as they do. Both men and women who graduated either a grammar school or a university smoke more often than with elementary level of education. People who smoke suffer more often from numerous acute respiratory tract infections and must more often pay a visit to general practitioner. Considering the sex there are no statistically significant differences in the occurrence of chronic pulmonary diseases and the cardiovascular system. The achieved results show the changes of the attitude to smoking in Polish society. The increase of the consumption of cigarettes among women with high education is very worrying. It is a serious challenge for the whole medical staff. PMID:17288171

  9. Functional respiratory imaging to assess the interaction between systemic roflumilast and inhaled ICS/LABA/LAMA

    PubMed Central

    Vos, Wim; Hajian, Bita; De Backer, Jan; Van Holsbeke, Cedric; Vinchurkar, Samir; Claes, Rita; Hufkens, Annemie; Parizel, Paul M; Bedert, Lieven; De Backer, Wilfried

    2016-01-01

    Background Patients with COPD show a significant reduction of the lobar hyperinflation at the functional residual capacity level in the patients who improved >120 mL in forced expiratory volume in 1 second (FEV1) after 6 months of treatment with roflumilast in addition to inhaled corticosteroids (ICSs)/long-acting beta-2 agonists (LABAs)/long-acting muscarinic antagonists (LAMAs). Methods Functional respiratory imaging was used to quantify lobar hyperinflation, blood vessel density, ventilation, aerosol deposition, and bronchodilation. To investigate the exact mode of action of roflumilast, correlations between lobar and global measures have been tested using a mixed-model approach with nested random factors and Pearson correlation, respectively. Results The reduction in lobar hyperinflation appears to be associated with a larger blood vessel density in the respective lobes (t=−2.154, P=0.040); lobes with a higher percentage of blood vessels reduce more in hyperinflation in the responder group. Subsequently, it can be observed that lobes that reduce in hyperinflation after treatment are better ventilated (t=−5.368, P<0.001). Functional respiratory imaging (FRI)-based aerosol deposition showed that enhanced ventilation leads to more peripheral particle deposition of ICS/LABA/LAMA in the better-ventilated areas (t=2.407, P=0.024). Finally, the study showed that areas receiving more particles have increased FRI-based bronchodilation (t=2.564, P=0.017), leading to an increase in FEV1 (R=0.348, P=0.029). Conclusion The study demonstrated that orally administered roflumilast supports the reduction of regional hyperinflation in areas previously undertreated by inhalation medication. The local reduction in hyperinflation induces a redistribution of ventilation and aerosol deposition, leading to enhanced efficacy of the concomitant ICS/LABA/LAMA therapy. FRI appears to be a sensitive tool to describe the mode of action of novel compounds in chronic obstructive pulmonary

  10. Respiratory Home Health Care

    MedlinePlus

    ... Healthy Living > Living With Lung Disease > Respiratory Home Health Care Font: Aerosol Delivery Oxygen Resources Immunizations Pollution Nutrition ... Disease Articles written by Respiratory Experts Respiratory Home Health Care Respiratory care at home can contribute to improved ...

  11. Five Years' Evaluation of the BD ProbeTec System for the Direct Molecular Detection of Mycobacterium tuberculosis Complex in Respiratory and Nonrespiratory Clinical Samples.

    PubMed

    Bicmen, Can; Karaman, Onur; Gunduz, Ayriz T; Erer, Onur F; Coskun, Meral; Kaftan, Osman; Demirel, Mahmut M; Senol, Gunes; Akarca, Tulay; Dereli, Sevket; Ozsoz, Ayse

    2015-01-01

    In this study, Mycobacterium tuberculosis complex was detected by BD ProbeTec ET system in 4716 respiratory and 167 nonrespiratory samples [mostly (98%) smear negative). Sensitivity, specificity, positive and negative predictive values were 81.8%, 98.3, 85.1 and 97.9 for respiratory and 100%, 96.2, 64.7 and 100, for nonrespiratory samples, respectively. Among 149 (3.1%) ProbeTec DTB positive and culture negative samples, 72 (65 respiratory and seven nonrespiratory) (48.3%) were recovered from the patients who were evaluated as having TB infection. The system has been found as useful in early diagnosis of tuberculosis infection in association with the clinical, radiological and histopathological findings.

  12. Monoclonal antibodies to a particulate superoxide-forming system stimulate a respiratory burst in intact guinea pig neutrophils.

    PubMed Central

    Berton, G; Rosen, H; Ezekowitz, R A; Bellavite, P; Serra, M C; Rossi, F; Gordon, S

    1986-01-01

    Monoclonal rat antibodies were produced against a subcellular preparation of phorbol 12-myristate 13-acetate (PMA)-stimulated guinea pig neutrophils that retains NADPH-oxidase activity. Two antibodies, 1A10.4 and IG4, were isolated that bind to a surface antigen restricted to guinea pig neutrophils from bone marrow and peritoneal exudate and to macrophages and that trigger a respiratory burst in neutrophils in the presence of cytochalasin B. Intact antibody 1A10.4, subclass IgG2c, can trigger superoxide anion release directly; F(ab')2 fragments of 1A10.4 and intact IG4 require further cross-linking by F(ab')2 fragments of anti-rat immunoglobulin antibody. Both antibodies recognize the same antigen, a proteolipid of apparent molecular mass 10 kDa. Immunoprecipitation of solubilized oxidase activity with 1A10.4 brings down this activity as part of a macromolecular complex. Surface expression of the antigen is increased on treatment of cells with both PMA and cytochalasin B. 1A10.4 also triggers release of the granule enzyme beta-glucuronidase. Triggering of a respiratory burst by the antibodies appears distinct from the PMA and fMet-Leu-Phe signalling systems. These studies indicate that the antigen defined by antibodies 1A10.4 and IG4 becomes associated with the superoxide anion-generating system of neutrophils but may play a more general role in signal transduction in phagocytic cells. Images PMID:3012541

  13. Global phylogeographic limits of Hawaii's avian malaria

    USGS Publications Warehouse

    Beadell, J.S.; Ishtiaq, F.; Covas, R.; Melo, M.; Warren, B.H.; Atkinson, C.T.; Bensch, S.; Graves, G.R.; Jhala, Y.V.; Peirce, M.A.; Rahmani, A.R.; Fonseca, D.M.; Fleischer, R.C.

    2006-01-01

    The introduction of avian malaria (Plasmodium relictum) to Hawaii has provided a model system for studying the influence of exotic disease on naive host populations. Little is known, however, about the origin or the genetic variation of Hawaii's malaria and traditional classification methods have confounded attempts to place the parasite within a global ecological and evolutionary context. Using fragments of the parasite mitochondrial gene cytochrome b and the nuclear gene dihydrofolate reductase-thymidylate synthase obtained from a global survey of greater than 13 000 avian samples, we show that Hawaii's avian malaria, which can cause high mortality and is a major limiting factor for many species of native passerines, represents just one of the numerous lineages composing the morphological parasite species. The single parasite lineage detected in Hawaii exhibits a broad host distribution worldwide and is dominant on several other remote oceanic islands, including Bermuda and Moorea, French Polynesia. The rarity of this lineage in the continental New World and the restriction of closely related lineages to the Old World suggest limitations to the transmission of reproductively isolated parasite groups within the morphological species. ?? 2006 The Royal Society.

  14. The avian haemophili.

    PubMed Central

    Blackall, P J

    1989-01-01

    There are four currently recognized taxa to accommodate the avian haemophili: Haemophilus paragallinarum, Pasteurella avium, Pasteurella volantium, and Pasteurella species A (the last three being formerly united as Haemophilus avium). A range of other taxa has also been recognized, but they have been neither named nor assigned to a genus. All of these various taxa, legitimate and otherwise, have the common characteristic of requiring V factor, but not X factor, for in vitro growth. Several recent studies have established the phenotypic properties that allow the differentiation of the recognized taxa, both named and unnamed. The serological properties of H. paragallinarum, the causative agent of infectious coryza of chickens, has received considerable recent attention. In contrast, many questions on the pathogenicity and virulence mechanisms of H. paragallinarum remain unanswered. Another area requiring further work is the identification of those antigens responsible for inducing protective immunity in vaccinated or naturally infected chickens. PMID:2670190

  15. Avian psychology and communication.

    PubMed

    Rowe, Candy; Skelhorn, John

    2004-07-22

    The evolution of animal communication is a complex issue and one that attracts much research and debate. 'Receiver psychology' has been highlighted as a potential selective force, and we review how avian psychological processes and biases can influence the evolution and design of signals as well as the progress that has been made in testing these ideas in behavioural studies. Interestingly, although birds are a focal group for experimental psychologists and behavioural ecologists alike, the integration of theoretical ideas from psychology into studies of communication has been relatively slow. However, recent operant experiments are starting to address how birds perceive and respond to complex natural signals in an attempt to answer evolutionary problems in communication. This review outlines how a psychological approach to understanding communication is useful, and we hope that it stimulates further research addressing the role of psychological mechanisms in signal evolution.

  16. The Avian Development Facility

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The Avian Development Facility (ADF) supports 36 eggs in two carousels, one of which rotates to provide a 1-g control for comparing to eggs grown in microgravity. The ADF was designed to incubate up to 36 Japanese quail eggs, 18 in microgravity and 18 in artificial gravity. The two sets of eggs were exposed to otherwise identical conditions, the first time this is been accomplished in space. Eggs are preserved at intervals to provide snapshots of their development for later analysis. Quails incubate in just 15 days, so they are an ideal species to be studied within the duration of space shuttle missions. Further, several investigators can use the same specimens to address different questions. The ADF originated in NASA's Shuttle Student Involvement program in the 1980s and was developed under the NASA Small Business Irnovation Research program. In late 2001, the ADF made its first flight and carried eggs used in two investigations.

  17. Avian psychology and communication.

    PubMed Central

    Rowe, Candy; Skelhorn, John

    2004-01-01

    The evolution of animal communication is a complex issue and one that attracts much research and debate. 'Receiver psychology' has been highlighted as a potential selective force, and we review how avian psychological processes and biases can influence the evolution and design of signals as well as the progress that has been made in testing these ideas in behavioural studies. Interestingly, although birds are a focal group for experimental psychologists and behavioural ecologists alike, the integration of theoretical ideas from psychology into studies of communication has been relatively slow. However, recent operant experiments are starting to address how birds perceive and respond to complex natural signals in an attempt to answer evolutionary problems in communication. This review outlines how a psychological approach to understanding communication is useful, and we hope that it stimulates further research addressing the role of psychological mechanisms in signal evolution. PMID:15306314

  18. Response of mitochondrial antioxidant system and respiratory pathways to reactive nitrogen species in pea leaves.

    PubMed

    Martí, María C; Florez-Sarasa, Igor; Camejo, Daymi; Pallol, Beatriz; Ortiz, Ana; Ribas-Carbó, Miquel; Jiménez, Ana; Sevilla, Francisca

    2013-02-01

    Nitric oxide (NO) has emerged as an important signaling molecule in plants, but little is known about the effects of reactive nitrogen species in plant mitochondria. In this study, the effects of DETA-NONOate, a pure NO slow generator, and of SIN-1 (3-morpholinosydnonimine), a peroxynitrite producer, on the activities of respiratory pathways, enzymatic and non-enzymatic antioxidants have been investigated in isolated mitochondria from pea leaves. No significant changes in lipid peroxidation, protein oxidation or in ascorbate and glutathione redox state were observed after DETA-NONOate treatments whereas cytochrome pathway (CP) respiration was reversibly inhibited and alternative pathway (AP) respiration showed little inhibition. On the other hand, NO did not affect neither activities of Mn superoxide dismutase (Mn-SOD) nor enzymes involved in the ascorbate and glutathione regeneration in mitochondria except for ascorbate peroxidase (APX), which was reversely inhibited depending on ascorbate concentration. Finally, SIN-1 treatment of mitochondria produced a decrease in CP respiration, an increase in protein oxidation and strongly inhibited APX activity (90%), with glutathione reductase and dehydroascorbate reductase (DHAR) being moderately inhibited (30 and 20%, respectively). This treatment did not affect monodehydroascorbate reductase (MDHAR) and Mn-SOD activities. Results showed that mitochondrial nitrosative stress was not necessarily accompanied by oxidative stress. We suggest that NO-resistant AP and mitochondrial APX may be important components of the H(2) O(2) -signaling pathways under nitrosative stress induced by NO in this organelle. Also, MDHAR and DHAR, via ascorbate regeneration, could constitute an essential antioxidant defense together with Mn-SOD, against NO and ONOO(-) stress in plant mitochondria.

  19. The effect of tumor location and respiratory function on tumor movement estimated by real-time tracking radiotherapy (RTRT) system

    SciTech Connect

    Onimaru, Rikiya; Shirato, Hiroki . E-mail: hshirato@radi.med.hokudai.ac.jp; Fujino, Masaharu; Suzuki, Keishiro; Yamazaki, Kouichi; Nishimura, Masaharu; Dosaka-Akita, Hirotoshi; Miyasaka, Kazuo

    2005-09-01

    Purpose: The effects of tumor location and pulmonary function on the motion of fiducial markers near lung tumors were evaluated to deduce simple guidelines for determining the internal margin in radiotherapy without fiducial markers. Methods and Materials: Pooled data collected by a real-time tumor-tracking radiotherapy system on 42 markers in 39 patients were analyzed. The pulmonary functions of all patients were assessed before radiotherapy. Using chest X-ray film, the position of the marker was expressed relative to the geometry of the unilateral lung. Posterior location meant the area of the posterior half of the lung in a lateral chest X-ray film, and caudal location meant the caudal half of the chest X-ray film; these categories were determined by measuring the distance between the marker and anatomic landmarks, including the apex, costophrenic angle, midline of spinal canal, lateral, anterior, and posterior boundary of the lung. Results: Before the radiotherapy, 18 patients had obstructive respiratory dysfunction (ratio of forced expiratory volume in 1 s to forced vital capacity [FEV{sub 1.0}/FVC] <70), 5 patients had constrictive dysfunction (percent vital capacity [%VC] <80), and 3 had mixed dysfunction. Means of FEV{sub 1.0}/FVC and %VC were 97.0% and 66.5%, respectively. Median tumor movements in the x (left-right), y (anteroposterior), and z (craniocaudal) directions were 1.1 mm, 2.3 mm, and 5.4 mm, respectively. There was no significant correlation between respiratory function and magnitude of marker movement in any direction. Median marker movement in the z direction was 2.6 mm for the cranial location and 11.8 mm for the caudal location, respectively (p < 0.001). Median movement in the z direction was 11.8 mm for posterior location and 3.4 mm for anterior location, respectively (p < 0.01). Conclusions: Simple measurement of the relative location on plain chest X-ray film was related, but respiratory function test was not related, to the craniocaudal

  20. Thromboelastography in Selected Avian Species.

    PubMed

    Strindberg, Sophie; Nielsen, Tenna W; Ribeiro, Ângela M; Wiinberg, Bo; Kristensen, Annemarie T; Bertelsen, Mads F

    2015-12-01

    Currently available assay methods and reagents are not optimized for evaluating avian hemostasis; therefore, assessing avian coagulopathies is challenging. Recently, thromboelastography (TEG), which measures the viscoelastic properties of blood, has been used clinically in mammalian species to diagnose and characterize hemostatic disorders. To evaluate TEG in healthy individuals of 6 avian species, we modified existing mammalian TEG protocols to allow analysis of citrated, avian whole-blood samples collected from scarlet ibis (Eudocimus ruber) (n = 13), American flamingos ( Phoenicopterus ruber ) (n = 13), helmeted Guinea fowl ( Numida meleagris ) (n = 12), Amazon parrots (Amazona species) (n = 9), Humboldt penguins ( Spheniscus humboldti ) (n = 6), and domestic chickens (n = 16). Activated partial thromboplastin time, prothrombin time, and fibrinogen were measured as a means of comparison. Regardless of the mode of activation, clot formation in the species studied was markedly delayed compared with mammals. Because of prolonged reaction time (14.7-52.7 minutes) with kaolin and diluted tissue factor, undiluted human tissue factor was used in all avian samples because it provided the shortest reaction time. Species differed significantly in reaction time (P = .007), clotting rate (P < .001), rate of clot formation (α angle; P < .001), and maximum amplitude (P < .001) values, indicating that species-specific reference intervals are necessary. Based on these results, TEG with specific reference intervals could prove useful in evaluating avian hemostatic disorders.

  1. Thromboelastography in Selected Avian Species.

    PubMed

    Strindberg, Sophie; Nielsen, Tenna W; Ribeiro, Ângela M; Wiinberg, Bo; Kristensen, Annemarie T; Bertelsen, Mads F

    2015-12-01

    Currently available assay methods and reagents are not optimized for evaluating avian hemostasis; therefore, assessing avian coagulopathies is challenging. Recently, thromboelastography (TEG), which measures the viscoelastic properties of blood, has been used clinically in mammalian species to diagnose and characterize hemostatic disorders. To evaluate TEG in healthy individuals of 6 avian species, we modified existing mammalian TEG protocols to allow analysis of citrated, avian whole-blood samples collected from scarlet ibis (Eudocimus ruber) (n = 13), American flamingos ( Phoenicopterus ruber ) (n = 13), helmeted Guinea fowl ( Numida meleagris ) (n = 12), Amazon parrots (Amazona species) (n = 9), Humboldt penguins ( Spheniscus humboldti ) (n = 6), and domestic chickens (n = 16). Activated partial thromboplastin time, prothrombin time, and fibrinogen were measured as a means of comparison. Regardless of the mode of activation, clot formation in the species studied was markedly delayed compared with mammals. Because of prolonged reaction time (14.7-52.7 minutes) with kaolin and diluted tissue factor, undiluted human tissue factor was used in all avian samples because it provided the shortest reaction time. Species differed significantly in reaction time (P = .007), clotting rate (P < .001), rate of clot formation (α angle; P < .001), and maximum amplitude (P < .001) values, indicating that species-specific reference intervals are necessary. Based on these results, TEG with specific reference intervals could prove useful in evaluating avian hemostatic disorders. PMID:26771317

  2. Yersinia pseudotuberculosis in Eurasian Collared Doves (Streptopelia decaocto) and Retrospective Study of Avian Yersiniosis at the California Animal Health and Food Safety Laboratory System (1990-2015).

    PubMed

    Stoute, Simone T; Cooper, George L; Bickford, Arthur A; Carnaccini, Silvia; Shivaprasad, H L; Sentíes-Cué, C Gabriel

    2016-03-01

    In February 2015, two Eurasian collared doves (Streptopelia decaocto) were submitted dead to the California Animal Health and Food Safety (CAHFS) Laboratory, Turlock branch, from a private aviary experiencing sudden, high mortality (4/9) in adult doves. In both doves, the gross and histologic lesions were indicative of acute, fatal septicemia. Grossly, there were numerous pale yellow foci, 1 to 2 mm in diameter, in the liver and spleen. Microscopically, these foci were composed of acute severe multifocal coagulative necrosis of hepatocytes and splenic pulp with infiltration of heterophils mixed with fibrin and dense colonies of gram-negative bacteria. Yersinia pseudotuberculosis was isolated from the lung, liver, spleen, heart, ovary, kidney, and trachea. The organism was susceptible to most antibiotics it was tested against, except erythromycin. Based on a retrospective study of necropsy submissions to CAHFS between 1990 and 2015, there were 77 avian case submissions of Y. pseudotuberculosis. There were 75/77 cases identified from a wide range of captive avian species from both zoo and private facilities and 2/77 cases from two backyard turkeys submitted from one premise. The largest number of cases originated from psittacine species (31/77). The lesions most commonly described were hepatitis (63/77), splenitis (49/77), pneumonia (30/77), nephritis (16/77), and enteritis (12/77). From 1990 to 2015, there was an average of three cases of avian pseudotuberculosis per year at CAHFS. Although there were no cases diagnosed in 1993 and 1994, in all other years, there were between one and eight cases of Y. pseudotuberculosis detected from avian diagnostic submissions. PMID:26953950

  3. [Respiratory changes in deep diving].

    PubMed

    Segadal, K; Gulsvik, A; Nicolaysen, G

    1989-01-30

    Deep diving refers to saturation diving to a depth of more than 180 m (1.9 MPa ambient pressure). In the 1990s diving to 400 m may be necessary on the Norwegian continental shelf. The safety margins are narrow and at such depths the respiratory system is subject to great strain. Respiratory resistance increases and the dynamic lung volumes are reduced as the pressure increases due to enhanced gas density. Helium is used together with oxygen as breathing gas and the lower density partly normalises the dynamic lung volumes. The respiratory system imposes clear limitations on the intensity and duration of physical work during deep diving. We lack systematic studies of lung mechanics, gas exchange and respiratory regulation in the different phases of deep dives. Demonstration of possible chronic occupational respiratory diseases connected to diving is dependent on follow-up over a long time.

  4. Respiratory changes with deep diving.

    PubMed

    Segadal, K; Gulsvik, A; Nicolaysen, G

    1990-01-01

    Deep diving refers to saturation diving to a depth of more than 180 m (1.9 MPa ambient pressure). In the 1990s diving to 400 m may be necessary on the Norwegian continental shelf. The safety margins are narrow and the respiratory system is subject to great strain at such depths. The respiratory resistance increases and the dynamic lung volumes are reduced as the pressure increases due to enhanced gas density. Helium is used together with oxygen as breathing gas and its lower density partly normalises the dynamic lung volumes. The respiratory system puts clear limitations on intensity and duration of physical work in deep diving. Systematic studies of lung mechanics, gas exchange and respiratory regulation in the different phases of deep dives are lacking. Detection of occupational respiratory disorder following diving are dependent on long-term follow-up.

  5. Selective recording of electroneurograms from the left vagus nerve of a dog during stimulation of cardiovascular or respiratory systems.

    PubMed

    Rozman, Janez; Ribaric, Samo

    2007-10-31

    Selective electroneurograms (ENGs) from superficial regions of the left vagus nerve of a dog were recorded with a 33-electrode spiral cuff (cuff) implanted on the nerve at the neck in an adult Beagle dog. The electrodes in the cuff were arranged in thirteen groups of three electrodes (GTE 1-13). To identify the relative positions of the particular nerve regions that innervated the heart and lungs, stimulating pulses (2 mA, 200 micros, 20 Hz) were individually delivered to all thirteen GTEs. It was shown that by delivering stimulating pulses to GTEs 4 and 9, heart rate, blood pressure and respiratory rate were modulated. Precisely, only when the stimuli were delivered to GTE 9, the heart rate began to fall and only when the stimuli were delivered to GTE 4 the rate of breathing decreased. To test the selectivity of recording the above-defined groups GTEs 4 and 9 and randomly chosen GTEs 1 and 7 were simultaneously used as recording GTEs while cardio-vascular or respiratory systems were stimulated by carotid artery compression, epinephrine injection and non-invasive, positive end-pressure ventilation. Results showed that stimulations elicited site-specific changes in ENG power spectra recorded from the superficial regions of the vagus nerve. Power spectrum of the ENG recorded with GTE 9, contained frequencies belonging to the neural activity elicited by compression of the carotid artery and injection of epinephrine. The power spectrum of the ENG recorded with GTE 4, contained frequencies belonging to the neural activity elicited by non-invasive, positive end-expiratory pressure ventilation. We concluded that the multi-electrode nerve cuff enables selective stimulation and recording of nerve activity from internal organs.

  6. Comparison of Respiratory Disease Prevalence among Voluntary Monitoring Systems for Pig Health and Welfare in the UK

    PubMed Central

    Eze, J. I.; Correia-Gomes, C.; Borobia-Belsué, J.; Tucker, A. W.; Sparrow, D.; Strachan, D. W.; Gunn, G. J.

    2015-01-01

    Surveillance of animal diseases provides information essential for the protection of animal health and ultimately public health. The voluntary pig health schemes, implemented in the United Kingdom, are integrated systems which capture information on different macroscopic disease conditions detected in slaughtered pigs. Many of these conditions have been associated with a reduction in performance traits and consequent increases in production costs. The schemes are the Wholesome Pigs Scotland in Scotland, the BPEX Pig Health Scheme in England and Wales and the Pig Regen Ltd. health and welfare checks done in Northern Ireland. This report set out to compare the prevalence of four respiratory conditions (enzootic pneumonia-like lesions, pleurisy, pleuropneumonia lesions and abscesses in the lung) assessed by these three Pig Health Schemes. The seasonal variations and year trends associated with the conditions in each scheme are presented. The paper also highlights the differences in prevalence for each condition across these schemes and areas where further research is needed. A general increase in the prevalence of enzootic pneumonia like lesions was observed in Scotland, England and Wales since 2009, while a general decrease was observed in Northern Ireland over the years of the scheme. Pleurisy prevalence has increased since 2010 in all three schemes, whilst pleuropneumonia has been decreasing. Prevalence of abscesses in the lung has decreased in England, Wales and Northern Ireland but has increased in Scotland. This analysis highlights the value of surveillance schemes based on abattoir pathology monitoring of four respiratory lesions. The outputs at scheme level have significant value as indicators of endemic and emerging disease, and for producers and herd veterinarians in planning and evaluating herd health control programs when comparing individual farm results with national averages. PMID:26020635

  7. Rapid detection and identification of 12 respiratory viruses using a dual priming oligonucleotide system-based multiplex PCR assay.

    PubMed

    Kim, Suk Ran; Ki, Chang-Seok; Lee, Nam Yong

    2009-03-01

    Acute viral respiratory infections are among the most common causes of human disease. Rapid and accurate diagnosis of viral respiratory infections is important for providing timely therapeutic interventions. This study evaluated a new multiplex PCR assay (Seegene Inc., Seoul, Korea) for simultaneous detection and identification of 12 respiratory viruses using two primer mixes. The viruses included parainfluenza viruses 1, 2, and 3, human metapneumovirus, human coronavirus 229E/NL63 and OC43, adenovirus, influenza viruses A and B, human respiratory syncytial viruses A and B, and human rhinovirus A. The analytical sensitivity of the assay was 10-100 copies per reaction for each type of virus. There was no cross-reactivity with common bacterial or viral pathogens. A comparison with conventional viral culture and immunofluorescence was carried out using 101 respiratory specimens from 92 patients. Using viral culture, 57 specimens (56.4%) were positive without co-infection. The same viruses were identified in all 57 specimens using the multiplex PCR. Seven of the 57 specimens (12.3%) were found to be co-infected with other respiratory viruses, and 19 of 44 (43.2%) specimens which were negative by culture were positive by the multiplex PCR. The Seeplex Respiratory Virus Detection assay represents a significant improvement over the conventional methods for the detection of a broad spectrum of respiratory viruses.

  8. Global gene expression profiling in infants with acute respiratory syncytial virus broncholitis demonstrates systemic activation of interferon signaling networks

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Respiratory syncytial virus (RSV) is a leading cause of pediatric lower respiratory tract infections and has a high impact on pediatric emergency department utilization. Variation in host response may influence the pathogenesis and disease severity. We evaluated global gene expression profiles to be...

  9. Respiratory Systems of Dental Technicians Negatively Affected during 5 Years of Follow-Up

    PubMed Central

    Bozkurt, Nurgül; Yurdasal, Belkıs; Bozkurt, Ali İhsan; Yılmaz, Özlem; Tekin, Mahmut

    2016-01-01

    volume in one second (FEV1). While restrictive disorder was found 25% in the first PFT evaluations, this ratio increased to 31% in the second PFT. When the radiological results were considered, 62% of the first X-ray results were found to be normal but this ratio decreased to 18% in 2013. While reticular/reticulonodular opacities were found in 11% of cases in 2008, it increased to 30% in 2013. Seven technicians were diagnosed with pneumoconiosis (5.6%). Conclusion: Respiratory tracts of the technicians were negatively affected during the five year period. The number of pneumoconiosis cases (5.6%) shows that it is necessary to adopt comprehensive work health and safety precautions for laboratories. PMID:27606139

  10. Systemic combined melatonin-mitochondria treatment improves acute respiratory distress syndrome in the rat.

    PubMed

    Sun, Cheuk-Kwan; Lee, Fan-Yen; Kao, Ying-Hsien; Chiang, Hsin-Ju; Sung, Pei-Hsun; Tsai, Tzu-Hsien; Lin, Yu-Chun; Leu, Steve; Wu, Ying-Chung; Lu, Hung-I; Chen, Yung-Lung; Chung, Sheng-Ying; Su, Hong-Lin; Yip, Hon-Kan

    2015-03-01

    Despite high in-hospital mortality associated with acute respiratory distress syndrome (ARDS), there is no effective therapeutic strategy. We tested the hypothesis that combined melatonin-mitochondria treatment ameliorates 100% oxygen-induced ARDS in rats. Adult male Sprague-Dawley rats (n = 40) were equally categorized into normal controls, ARDS, ARDS-melatonin, ARDS with intravenous liver-derived mitochondria (1500 μg per rat 6 hr after ARDS induction), and ARDS receiving combined melatonin-mitochondria. The results showed that 22 hr after ARDS induction, oxygen saturation (saO2 ) was lowest in the ARDS group and highest in normal controls, significantly lower in ARDS-melatonin and ARDS-mitochondria than in combined melatonin-mitochondria group, and significantly lower in ARDS-mitochondria than in ARDS-melatonin group. Conversely, right ventricular systolic blood pressure and lung weight showed an opposite pattern compared with saO2 among all groups (all P < 0.001). Histological integrity of alveolar sacs showed a pattern identical to saO2 , whereas lung crowding score exhibited an opposite pattern (all P < 0.001). Albumin level and inflammatory cells (MPO+, CD40+, CD11b/c+) from bronchoalveolar lavage fluid showed a pattern opposite to saO2 (all P < 0.001). Protein expression of indices of inflammation (MMP-9, TNF-α, NF-κB), oxidative stress (oxidized protein, NO-1, NOX-2, NOX-4), apoptosis (mitochondrial Bax, cleaved caspase-3, and PARP), fibrosis (Smad3, TGF-β), mitochondrial damage (cytochrome C), and DNA damage (γ-H2AX+) exhibited an opposite pattern compared to saO2 in all groups, whereas protein (HO-1, NQO-1, GR, GPx) and cellular (HO-1+) expressions of antioxidants exhibited a progressively increased pattern from normal controls to ARDS combined melatonin-mitochondria group (all P < 0.001). In conclusion, combined melatonin-mitochondrial was superior to either treatment alone in attenuating ARDS in this rat model.

  11. Respiratory Systems of Dental Technicians Negatively Affected during 5 Years of Follow-Up

    PubMed Central

    Bozkurt, Nurgül; Yurdasal, Belkıs; Bozkurt, Ali İhsan; Yılmaz, Özlem; Tekin, Mahmut

    2016-01-01

    volume in one second (FEV1). While restrictive disorder was found 25% in the first PFT evaluations, this ratio increased to 31% in the second PFT. When the radiological results were considered, 62% of the first X-ray results were found to be normal but this ratio decreased to 18% in 2013. While reticular/reticulonodular opacities were found in 11% of cases in 2008, it increased to 30% in 2013. Seven technicians were diagnosed with pneumoconiosis (5.6%). Conclusion: Respiratory tracts of the technicians were negatively affected during the five year period. The number of pneumoconiosis cases (5.6%) shows that it is necessary to adopt comprehensive work health and safety precautions for laboratories.

  12. Troop education and avian influenza surveillance in military barracks in Ghana, 2011

    PubMed Central

    2012-01-01

    Background Influenza A viruses that cause highly pathogenic avian influenza (HPAI) also infect humans. In many developing countries such as Ghana, poultry and humans live in close proximity in both the general and military populations, increasing risk for the spread of HPAI from birds to humans. Respiratory infections such as influenza are especially prone to rapid spread among military populations living in close quarters such as barracks making this a key population for targeted avian influenza surveillance and public health education. Method Twelve military barracks situated in the coastal, tropical rain forest and northern savannah belts of the country were visited and the troops and their families educated on pandemic avian influenza. Attendants at each site was obtained from the attendance sheet provided for registration. The seminars focused on zoonotic diseases, influenza surveillance, pathogenesis of avian influenza, prevention of emerging infections and biosecurity. To help direct public health policies, a questionnaire was used to collect information on animal populations and handling practices from 102 households in the military barracks. Cloacal and tracheal samples were taken from 680 domestic and domesticated wild birds and analysed for influenza A using molecular methods for virus detection. Results Of the 1028 participants that took part in the seminars, 668 (65%) showed good knowledge of pandemic avian influenza and the risks associated with its infection. Even though no evidence of the presence of avian influenza (AI) infection was found in the 680 domestic and wild birds sampled, biosecurity in the households surveyed was very poor. Conclusion Active surveillance revealed that there was no AI circulation in the military barracks in April 2011. Though participants demonstrated good knowledge of pandemic avian influenza, biosecurity practices were minimal. Sustained educational programs are needed to further strengthen avian influenza surveillance

  13. Combining Healthcare-Based and Participatory Approaches to Surveillance: Trends in Diarrheal and Respiratory Conditions Collected by a Mobile Phone System by Community Health Workers in Rural Nepal

    PubMed Central

    2016-01-01

    Background Surveillance systems are increasingly relying upon community-based or crowd-sourced data to complement traditional facilities-based data sources. Data collected by community health workers during the routine course of care could combine the early warning power of community-based data collection with the predictability and diagnostic regularity of facility data. These data could inform public health responses to epidemics and spatially-clustered endemic diseases. Here, we analyze data collected on a daily basis by community health workers during the routine course of clinical care in rural Nepal. We evaluate if such community-based surveillance systems can capture temporal trends in diarrheal diseases and acute respiratory infections. Methods During the course of their clinical activities from January to December 2013, community health workers recorded healthcare encounters using mobile phones. In parallel, we accessed condition-specific admissions from 2011–2013 in the hospital from which the community health program was based. We compared diarrhea and acute respiratory infection rates from both the hospital and the community, and assigned three categories of local disease activity (low, medium, and high) to each week in each village cluster with categories determined by tertiles. We compared condition-specific mean hospital rates across categories using ANOVA to assess concordance between hospital and community-collected data. Results There were 2,710 cases of diarrhea and 373 cases of acute respiratory infection reported by community health workers during the one-year study period. At the hospital, the average weekly incidence of diarrhea and acute respiratory infections over the three-year period was 1.8 and 3.9 cases respectively per 1,000 people in each village cluster. In the community, the average weekly rate of diarrhea and acute respiratory infections was 2.7 and 0.5 cases respectively per 1,000 people. Both diarrhea and acute respiratory

  14. The Potent Respiratory System of Osedax mucofloris (Siboglinidae, Annelida) - A Prerequisite for the Origin of Bone-Eating Osedax?

    PubMed Central

    Huusgaard, Randi S.; Vismann, Bent; Kühl, Michael; Macnaugton, Martin; Colmander, Veronica; Rouse, Greg W.; Glover, Adrian G.; Dahlgren, Thomas; Worsaae, Katrine

    2012-01-01

    Members of the conspicuous bone-eating genus, Osedax, are widely distributed on whale falls in the Pacific and Atlantic Oceans. These gutless annelids contain endosymbiotic heterotrophic bacteria in a branching root system embedded in the bones of vertebrates, whereas a trunk and anterior palps extend into the surrounding water. The unique life style within a bone environment is challenged by the high bacterial activity on, and within, the bone matrix possibly causing O2 depletion, and build-up of potentially toxic sulphide. We measured the O2 distribution around embedded Osedax and showed that the bone microenvironment is anoxic. Morphological studies showed that ventilation mechanisms in Osedax are restricted to the anterior palps, which are optimized for high O2 uptake by possessing a large surface area, large surface to volume ratio, and short diffusion distances. The blood vascular system comprises large vessels in the trunk, which facilitate an ample supply of oxygenated blood from the anterior crown to a highly vascularised root structure. Respirometry studies of O. mucofloris showed a high O2 consumption that exceeded the average O2 consumption of a broad line of resting annelids without endosymbionts. We regard this combination of features of the respiratory system of O. mucofloris as an adaptation to their unique nutrition strategy with roots embedded in anoxic bones and elevated O2 demand due to aerobic heterotrophic endosymbionts. PMID:22558289

  15. The Two Sets of DMSO Respiratory Systems of Shewanella piezotolerans WP3 Are Involved in Deep Sea Environmental Adaptation.

    PubMed

    Xiong, Lei; Jian, Huahua; Zhang, Yuxia; Xiao, Xiang

    2016-01-01

    Dimethyl sulfoxide (DMSO) is an abundant methylated sulfur compound in deep sea ecosystems. However, the mechanism underlying DMSO-induced reduction in benthic microorganisms is unknown. Shewanella piezotolerans WP3, which was isolated from a west Pacific deep sea sediment, can utilize DMSO as the terminal electron acceptor. In this study, two putative dms gene clusters [type I (dmsEFA1B1G1H1) and type II (dmsA2B2G2H2)] were identified in the WP3 genome. Genetic and physiological analyses demonstrated that both dms gene clusters were functional and the transcription of both gene clusters was affected by changes in pressure and temperature. Notably, the type I system is essential for WP3 to thrive under in situ conditions (4°C/20 MPa), whereas the type II system is more important under high pressure or low temperature conditions (20°C/20 MPa, 4°C/0.1 MPa). Additionally, DMSO-dependent growth conferred by the presence of both dms gene clusters was higher than growth conferred by either of the dms gene clusters alone. These data collectively suggest that the possession of two sets of DMSO respiratory systems is an adaptive strategy for WP3 survival in deep sea environments. We propose, for the first time, that deep sea microorganisms might be involved in global DMSO/DMS cycling. PMID:27656177

  16. The Two Sets of DMSO Respiratory Systems of Shewanella piezotolerans WP3 Are Involved in Deep Sea Environmental Adaptation

    PubMed Central

    Xiong, Lei; Jian, Huahua; Zhang, Yuxia; Xiao, Xiang

    2016-01-01

    Dimethyl sulfoxide (DMSO) is an abundant methylated sulfur compound in deep sea ecosystems. However, the mechanism underlying DMSO-induced reduction in benthic microorganisms is unknown. Shewanella piezotolerans WP3, which was isolated from a west Pacific deep sea sediment, can utilize DMSO as the terminal electron acceptor. In this study, two putative dms gene clusters [type I (dmsEFA1B1G1H1) and type II (dmsA2B2G2H2)] were identified in the WP3 genome. Genetic and physiological analyses demonstrated that both dms gene clusters were functional and the transcription of both gene clusters was affected by changes in pressure and temperature. Notably, the type I system is essential for WP3 to thrive under in situ conditions (4°C/20 MPa), whereas the type II system is more important under high pressure or low temperature conditions (20°C/20 MPa, 4°C/0.1 MPa). Additionally, DMSO-dependent growth conferred by the presence of both dms gene clusters was higher than growth conferred by either of the dms gene clusters alone. These data collectively suggest that the possession of two sets of DMSO respiratory systems is an adaptive strategy for WP3 survival in deep sea environments. We propose, for the first time, that deep sea microorganisms might be involved in global DMSO/DMS cycling.

  17. The potent respiratory system of Osedax mucofloris (Siboglinidae, Annelida)--a prerequisite for the origin of bone-eating Osedax?

    PubMed

    Huusgaard, Randi S; Vismann, Bent; Kühl, Michael; Macnaugton, Martin; Colmander, Veronica; Rouse, Greg W; Glover, Adrian G; Dahlgren, Thomas; Worsaae, Katrine

    2012-01-01

    Members of the conspicuous bone-eating genus, Osedax, are widely distributed on whale falls in the Pacific and Atlantic Oceans. These gutless annelids contain endosymbiotic heterotrophic bacteria in a branching root system embedded in the bones of vertebrates, whereas a trunk and anterior palps extend into the surrounding water. The unique life style within a bone environment is challenged by the high bacterial activity on, and within, the bone matrix possibly causing O(2) depletion, and build-up of potentially toxic sulphide. We measured the O(2) distribution around embedded Osedax and showed that the bone microenvironment is anoxic. Morphological studies showed that ventilation mechanisms in Osedax are restricted to the anterior palps, which are optimized for high O(2) uptake by possessing a large surface area, large surface to volume ratio, and short diffusion distances. The blood vascular system comprises large vessels in the trunk, which facilitate an ample supply of oxygenated blood from the anterior crown to a highly vascularised root structure. Respirometry studies of O. mucofloris showed a high O(2) consumption that exceeded the average O(2) consumption of a broad line of resting annelids without endosymbionts. We regard this combination of features of the respiratory system of O. mucofloris as an adaptation to their unique nutrition strategy with roots embedded in anoxic bones and elevated O(2) demand due to aerobic heterotrophic endosymbionts.

  18. The Two Sets of DMSO Respiratory Systems of Shewanella piezotolerans WP3 Are Involved in Deep Sea Environmental Adaptation

    PubMed Central

    Xiong, Lei; Jian, Huahua; Zhang, Yuxia; Xiao, Xiang

    2016-01-01

    Dimethyl sulfoxide (DMSO) is an abundant methylated sulfur compound in deep sea ecosystems. However, the mechanism underlying DMSO-induced reduction in benthic microorganisms is unknown. Shewanella piezotolerans WP3, which was isolated from a west Pacific deep sea sediment, can utilize DMSO as the terminal electron acceptor. In this study, two putative dms gene clusters [type I (dmsEFA1B1G1H1) and type II (dmsA2B2G2H2)] were identified in the WP3 genome. Genetic and physiological analyses demonstrated that both dms gene clusters were functional and the transcription of both gene clusters was affected by changes in pressure and temperature. Notably, the type I system is essential for WP3 to thrive under in situ conditions (4°C/20 MPa), whereas the type II system is more important under high pressure or low temperature conditions (20°C/20 MPa, 4°C/0.1 MPa). Additionally, DMSO-dependent growth conferred by the presence of both dms gene clusters was higher than growth conferred by either of the dms gene clusters alone. These data collectively suggest that the possession of two sets of DMSO respiratory systems is an adaptive strategy for WP3 survival in deep sea environments. We propose, for the first time, that deep sea microorganisms might be involved in global DMSO/DMS cycling. PMID:27656177

  19. High frequency mechanical ventilation affects respiratory system mechanics differently in C57BL/6J and BALB/c adult mice.

    PubMed

    Hadden, Hélène

    2013-01-15

    We tested the hypothesis that high frequency ventilation affects respiratory system mechanical functions in C57BL/6J and BALB/c mice. We measured respiratory mechanics by the forced oscillation technique over 1h in anesthetized, intubated, ventilated BALB/c and C57BL/6J male mice. We did not detect any change in airway resistance, Rn, tissue damping, G, tissue elastance, H and hysteresivity, eta in BALB/c mice during 1h of ventilation at 150 or at 450 breaths/min; nor did we find a difference between BALB/c mice ventilated at 150 breaths/min compared with 450 breaths/min. Among C57BL/6J mice, except for H, all parameters remained unchanged over 1h of ventilation in mice ventilated at 150 breaths/min. However, after 10 and 30 min of ventilation at 450 breaths/min, Rn, and respiratory system compliance were lower, and eta was higher, than their starting value. We conclude that high frequency mechanical ventilation affects respiratory system mechanics differently in C57BL/6J and BALB/c adult mice.

  20. Developmental Change in the Function of Movement Systems: Transition of the Pectoral Fins between Respiratory and Locomotor Roles in Zebrafish

    PubMed Central

    Hale, Melina E.

    2014-01-01

    An animal may experience strikingly different functional demands on its body’s systems through development. One way of meeting those demands is with temporary, stage-specific adaptations. This strategy requires the animal to develop appropriate morphological states or physiological pathways that address transient functional demands as well as processes that transition morphology, physiology, and function to that of the mature form. Recent research on ray-finned (actinopterygian) fishes is a developmental transition in function of the pectoral fin, thereby providing an opportunity to examine how an organism copes with changes in the roles of its morphology between stages of its life history. As larvae, zebrafish alternate their pectoral fins in coordination with the body axis during slow swimming. The movements of their fins do not appear to contribute to the production of thrust or to stability but instead exchange fluid near the body for cutaneous respiration. The morphology of the larval fin includes a simple stage-specific endoskeletal disc overlaid by fan-shaped adductor and abductor muscles. In contrast, the musculoskeletal system of the mature fin consists of a suite of muscles and bones. Fins are extended laterally during slow swimming of the adult, without the distinct, high-amplitude left-right fin alternation of the larval fin. The morphological and functional transition of the pectoral fin occurs through juvenile development. Early in this period, at about 3 weeks post-fertilization, the gills take over respiratory function, presumably freeing the fins for other roles. Kinematic data suggest that the loss of respiratory function does not lead to a rapid switch in patterns of fin movement but rather that both morphology and movement transition gradually through the juvenile stage of development. Studies relating structure to function often focus on stable systems that are arguably well adapted for the roles they play. Examining how animals navigate

  1. Development of real-time motion verification system using in-room optical images for respiratory-gated radiotherapy.

    PubMed

    Park, Yang-Kyun; Son, Tae-geun; Kim, Hwiyoung; Lee, Jaegi; Sung, Wonmo; Kim, Il Han; Lee, Kunwoo; Bang, Young-bong; Ye, Sung-Joon

    2013-09-06

    Phase-based respiratory-gated radiotherapy relies on the reproducibility of patient breathing during the treatment. To monitor the positional reproducibility of patient breathing against a 4D CT simulation, we developed a real-time motion verification system (RMVS) using an optical tracking technology. The system in the treatment room was integrated with a real-time position management system. To test the system, an anthropomorphic phantom that was mounted on a motion platform moved on a programmed breathing pattern and then underwent a 4D CT simulation with RPM. The phase-resolved anterior surface lines were extracted from the 4D CT data to constitute 4D reference lines. In the treatment room, three infrared reflective markers were attached on the superior, middle, and inferior parts of the phantom along with the body midline and then RMVS could track those markers using an optical camera system. The real-time phase information extracted from RPM was delivered to RMVS via in-house network software. Thus, the real-time anterior-posterior positions of the markers were simultaneously compared with the 4D reference lines. The technical feasibility of RMVS was evaluated by repeating the above procedure under several scenarios such as ideal case (with identical motion parameters between simulation and treatment), cycle change, baseline shift, displacement change, and breathing type changes (abdominal or chest breathing). The system capability for operating under irregular breathing was also investigated using real patient data. The evaluation results showed that RMVS has a competence to detect phase-matching errors between patient's motion during the treatment and 4D CT simulation. Thus, we concluded that RMVS could be used as an online quality assurance tool for phase-based gating treatments.

  2. Avian Influenza A Virus Infections in Humans

    MedlinePlus

    ... Research Making a Candidate Vaccine Virus Related Links Influenza Types Seasonal Avian Swine Variant Pandemic Other Get ... Submit What's this? Submit Button Past Newsletters Avian Influenza A Virus Infections in Humans Language: English Españ ...

  3. Emergence of fatal avian influenza in New England harbor seals

    USGS Publications Warehouse

    Anthony, S.J.; St. Leger, J. A.; Pugliares, K.; Ip, H.S.; Chan, J.M.; Carpenter, Z.W.; Navarrete-Macias, I.; Sanchez-Leon, M.; Saliki, J.T.; Pedersen, J.; Karesh, W.; Daszak, P.; Rabadan, R.; Rowles, T.; Lipkin, W.I.

    2012-01-01

    From September to December 2011, 162 New England harbor seals died in an outbreak of pneumonia. Sequence analysis of postmortem samples revealed the presence of an avian H3N8 influenza A virus, similar to a virus circulating in North American waterfowl since at least 2002 but with mutations that indicate recent adaption to mammalian hosts. These include a D701N mutation in the viral PB2 protein, previously reported in highly pathogenic H5N1 avian influenza viruses infecting people. Lectin staining and agglutination assays indicated the presence of the avian-preferred SAα-2,3 and mammalian SAα-2,6 receptors in seal respiratory tract, and the ability of the virus to agglutinate erythrocytes bearing either the SAα-2,3 or the SAα-2,6 receptor. The emergence of this A/harbor seal/Massachusetts/1/2011 virus may herald the appearance of an H3N8 influenza clade with potential for persistence and cross-species transmission.

  4. Clinical features of avian influenza in Egyptian patients.

    PubMed

    Ashour, Maamoun Mohamad; Khatab, Adel Mahmoud; El-Folly, Runia Fouad; Amer, Wegdan Ahmad Fouad

    2012-08-01

    The clinical manifestations associated with H5N1 infection in humans range from asymptomatic infection to mild upper respiratory illness, severe pneumonia, and multiple organ failure. The ratio of symptomatic cases to asymptomatic cases is not known, because it is not possible to precisely define the number of asymptomatic cases. A total of 97 cases suffering from avian flu were suspected based on history taking, demographic data, clinical manifestations, laboratory and radiological investigations. The followings were done for all cases; complete blood picture (differential leucocytic count), coagulation profile, renal and liver function tests. H5N1 influenza virus was diagnosed thorough PCR technique. Changes in arterial blood gases and repeated chest X-rays were reported frequently. All patients were given specific antiviral therapy (oseltamivir). The study described the clinical picture and laboratory results of 81 confirmed avian influenza human cases in an Egyptian hospital (Abassia chest hospital), and reviewed the avian influenza current situation covering from March 2006 to June 2009 with very high pick in the first half of 2009. The significant apparent symptoms were fever as initial and main symptom (93.75%), followed by shortness of breathing (73%), cough (66.6%), muscle & joint pain (60%) and sore throat (40%).

  5. Respiratory infections during air travel.

    PubMed

    Leder, K; Newman, D

    2005-01-01

    An increasing number of individuals undertake air travel annually. Issues regarding cabin air quality and the potential risks of transmission of respiratory infections during flight have been investigated and debated previously, but, with the advent of severe acute respiratory syndrome and influenza outbreaks, these issues have recently taken on heightened importance. Anecdotally, many people complain of respiratory symptoms following air travel. However, studies of ventilation systems and patient outcomes indicate the spread of pathogens during flight occurs rarely. In the present review, aspects of the aircraft cabin environment that affect the likelihood of transmission of respiratory pathogens on airplanes are outlined briefly and evidence for the occurrence of outbreaks of respiratory illness among airline passengers are reviewed.

  6. The use of a generalized reconstruction by inversion of coupled systems (GRICS) approach for generic respiratory motion correction in PET/MR imaging.

    PubMed

    Fayad, Hadi; Odille, Freddy; Schmidt, Holger; Würslin, Christian; Küstner, Thomas; Feblinger, Jacques; Visvikis, Dimitris

    2015-03-21

    Respiratory motion is a source of artifacts in multimodality imaging such as PET/MR. Solutions include retrospective or prospective gating. They have however found limited use in clinical practice, since their increased overall acquisition duration to maintain overall image quality. More elaborate methods consist of using 4D MR datasets to extract spatial deformations in order to correct for the respiratory motion in PET. The main drawbacks of such approaches is the relatively long acquisition times associated with 4D MR imaging which is often incompatible with clinical PET/MR protocols. The objective of this work was to overcome these limitations by exploiting a generalized reconstruction by inversion of coupled systems (GRICS) approach. The methodology is based on a joint estimation of motion during the MR image reconstruction process, providing internal structure motion and associated deformation matrices for retrospective use in PET respiratory motion correction. This method was first validated on four MR volunteers and two PET/MR patient datasets by comparing GRICS generated MR images to 4D MR series obtained by retrospective gating. In a second step 4D PET datasets corresponding to acquired 4D MR images were simulated using the GATE Monte Carlo simulation platform. GRICS generated deformation matrices were subsequently used to correct respiratory motion in comparison to the 4D MR image based deformations both for the simulated and the two 4D PET/MR patient datasets. Results confirm that GRICS synchronized MR images correlate well with the acquired 4D MR series. Similarly, the use of GRICS for respiratory motion correction allows an equivalent percentage improvement on lesion contrast, position and size, considering the PET simulated tumors as well as PET real tumors. This work demonstrates the potential interest of using GRICS for PET respiratory motion correction in combined PET/MR using shorter duration acquisitions without the need for 4D MRI and

  7. The use of a generalized reconstruction by inversion of coupled systems (GRICS) approach for generic respiratory motion correction in PET/MR imaging

    NASA Astrophysics Data System (ADS)

    Fayad, Hadi; Odille, Freddy; Schmidt, Holger; Würslin, Christian; Küstner, Thomas; Feblinger, Jacques; Visvikis, Dimitris

    2015-03-01

    Respiratory motion is a source of artifacts in multimodality imaging such as PET/MR. Solutions include retrospective or prospective gating. They have however found limited use in clinical practice, since their increased overall acquisition duration to maintain overall image quality. More elaborate methods consist of using 4D MR datasets to extract spatial deformations in order to correct for the respiratory motion in PET. The main drawbacks of such approaches is the relatively long acquisition times associated with 4D MR imaging which is often incompatible with clinical PET/MR protocols. The objective of this work was to overcome these limitations by exploiting a generalized reconstruction by inversion of coupled systems (GRICS) approach. The methodology is based on a joint estimation of motion during the MR image reconstruction process, providing internal structure motion and associated deformation matrices for retrospective use in PET respiratory motion correction. This method was first validated on four MR volunteers and two PET/MR patient datasets by comparing GRICS generated MR images to 4D MR series obtained by retrospective gating. In a second step 4D PET datasets corresponding to acquired 4D MR images were simulated using the GATE Monte Carlo simulation platform. GRICS generated deformation matrices were subsequently used to correct respiratory motion in comparison to the 4D MR image based deformations both for the simulated and the two 4D PET/MR patient datasets. Results confirm that GRICS synchronized MR images correlate well with the acquired 4D MR series. Similarly, the use of GRICS for respiratory motion correction allows an equivalent percentage improvement on lesion contrast, position and size, considering the PET simulated tumors as well as PET real tumors. This work demonstrates the potential interest of using GRICS for PET respiratory motion correction in combined PET/MR using shorter duration acquisitions without the need for 4D MRI and

  8. Pre-clinical evaluation of an adult extracorporeal carbon dioxide removal system with active mixing for pediatric respiratory support.

    PubMed

    Jeffries, R Garrett; Mussin, Yerbol; Bulanin, Denis S; Lund, Laura W; Kocyildirim, Ergin; Zhumadilov, Zhaksybay Zh; Olzhayev, Farkhad S; Federspiel, William J; Wearden, Peter D

    2014-12-01

    The objective of this work was to conduct pre-clinical feasibility studies to determine if a highly efficient, active-mixing, adult extracorporeal carbon dioxide removal (ECCO2R) system can safely be translated to the pediatric population. The Hemolung Respiratory Assist System (RAS) was tested in vitro and in vivo to evaluate its performance for pediatric veno-venous applications. The Hemolung RAS operates at blood flows of 350-550 ml/min and utilizes an integrated pump-gas exchange cartridge with a membrane surface area of 0.59 m² as the only component of the extracorporeal circuit. Both acute and seven-day chronic in vivo tests were conducted in healthy juvenile sheep using a veno-venous cannulation strategy adapted to the in vivo model. The Hemolung RAS was found to have gas exchange and pumping capabilities relevant to patients weighing 3-25 kg. Seven-day animal studies in juvenile sheep demonstrated that veno-venous extracorporeal support could be used safely and effectively with no significant adverse reactions related to device operation.

  9. Evaluation of the mitochondrial respiratory chain and oxidative phosphorylation system using polarography and spectrophotometric enzyme assays.

    PubMed

    Barrientos, Antoni; Fontanesi, Flavia; Díaz, Francisca

    2009-10-01

    The oxidative phosphorylation (OXPHOS) system consists of five multimeric complexes embedded in the mitochondrial inner membrane. They work in concert to drive the aerobic synthesis of ATP. Mitochondrial and nuclear DNA mutations affecting the accumulation and function of these enzymes are the most common cause of mitochondrial diseases and have also been associated with neurodegeneration and aging. For this reason, several approaches for the assessment of the OXPHOS system enzymes have been developed. Based on the methods described elsewhere, the assays describe methods that form a biochemical characterization of the OXPHOS system in cells and mitochondria isolated from cultured cells or tissues.

  10. An ECG electrode-mounted heart rate, respiratory rhythm, posture and behavior recording system.

    PubMed

    Yoshimura, Takahiro; Yonezawa, Yoshiharu; Maki, Hiromichi; Ogawa, Hidekuni; Ninomiya, Ishio; Morton Caldwell, W

    2004-01-01

    R-R interval, respiration rhythm, posture and behavior recording system has been developed for monitoring a patient's cardiovascular regulatory system in daily life. The recording system consists of three ECG chest electrodes, a variable gain instrumentation amplifier, a dual axis accelerometer, a low power 8-bit single-chip microcomputer and a 1024 KB EEPROM. The complete system is mounted on the chest electrodes. R-R interval and respiration rhythm are calculated by the R waves detected from the ECG. Posture and behavior such as walking and running are detected from the body movements recorded by the accelerometer. The detected data are stored by the EEPROM and, after recording, are downloaded to a desktop computer for analysis.

  11. Dysrhythmias of the respiratory oscillator

    NASA Astrophysics Data System (ADS)

    Paydarfar, David; Buerkel, Daniel M.

    1995-03-01

    Breathing is regulated by a central neural oscillator that produces rhythmic output to the respiratory muscles. Pathological disturbances in rhythm (dysrhythmias) are observed in the breathing pattern of children and adults with neurological and cardiopulmonary diseases. The mechanisms responsible for genesis of respiratory dysrhythmias are poorly understood. The present studies take a novel approach to this problem. The basic postulate is that the rhythm of the respiratory oscillator can be altered by a variety of stimuli. When the oscillator recovers its rhythm after such perturbations, its phase may be reset relative to the original rhythm. The amount of phase resetting is dependent upon stimulus parameters and the level of respiratory drive. The long-range hypothesis is that respiratory dysrhythmias can be induced by stimuli that impinge upon or arise within the respiratory oscillator with certain combinations of strength and timing relative to the respiratory cycle. Animal studies were performed in anesthetized or decerebrate preparations. Neural respiratory rhythmicity is represented by phrenic nerve activity, allowing use of open-loop experimental conditions which avoid negative chemical feedback associated with changes in ventilation. In animal experiments, respiratory dysrhythmias can be induced by stimuli having specific combinations of strength and timing. Newborn animals readily exhibit spontaneous dysrhythmias which become more prominent at lower respiratory drives. In human subjects, swallowing was studied as a physiological perturbation of respiratory rhythm, causing a pattern of phase resetting that is characterized topologically as type 0. Computational studies of the Bonhoeffer-van der Pol (BvP) equations, whose qualitative behavior is representative of many excitable systems, supports a unified interpretation of these experimental findings. Rhythmicity is observed when the BvP model exhibits recurrent periods of excitation alternating with

  12. Current situation on highly pathogenic avian influenza

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Avian influenza is one of the most important diseases affecting the poultry industry worldwide. Avian influenza viruses can cause a range of clinical disease in poultry. Viruses that cause severe disease and mortality are referred to as highly pathogenic avian influenza (HPAI) viruses. The Asian ...

  13. Continued evolution of highly pathogenic avian influenza A (H5N1): updated nomenclature

    PubMed Central

    2011-01-01

    Please cite this paper as: WHO/OIE/FAO. (2012) Continued evolution of highly pathogenic avian influenza A(H5N1): Updated nomenclature. Influenza and Other Respiratory Viruses 6(1), 1–5. Background  Continued evolution of highly pathogenic avian influenza A (H5N1) throughout many regions of the eastern hemisphere has led to the emergence of new phylogenetic groups. A total of 1637 new H5N1 hemagglutinin (HA) sequences have become available since the previous nomenclature recommendations described in 2009 by the WHO/OIE/FAO H5N1 Evolution Working Group. A comprehensive analysis including all the new data is needed to update HA clade nomenclature. Methods  Phylogenetic trees were constructed from data sets of all available H5N1 HA sequences. New clades were designated on the basis of phylogeny and p‐distance using the pre‐established nomenclature system (Emerg Infec Dis 2008; 14:e1). Each circulating H5N1 clade was subjected to further phylogenetic analysis and nucleotide sequence divergence calculations. Results  All recently circulating clades (clade 1 in the Mekong River Delta, 2.1.3 in Indonesia, 2.2 in India/Bangladesh, 2.2.1 in Egypt, 2.3.2, 2.3.4 and 7 in Asia) required assignment of divergent HA genes to new second‐, third‐, and/or fourth‐order clades. At the same time, clades 0, 3, 4, 5, 6, 8, 9, and several second‐ and third‐order groups from clade 2 have not been detected since 2008 or earlier. Conclusions  New designations are recommended for 12 HA clades, named according to previously defined criteria. In addition, viruses from 13 clades have not been detected since 2008 or earlier. The periodic updating of this dynamic classification system allows continued use of a unified nomenclature in all H5N1 studies. PMID:22035148

  14. Evaluation of the mitochondrial respiratory chain and oxidative phosphorylation system using yeast models of OXPHOS deficiencies.

    PubMed

    Fontanesi, Flavia; Diaz, Francisca; Barrientos, Antoni

    2009-10-01

    The oxidative phosphorylation (OXPHOS) system consists of five multimeric complexes embedded in the mitochondrial inner membrane. They work in concert to drive the aerobic synthesis of ATP. Mitochondrial and nuclear DNA mutations affecting the accumulation and function of these enzymes are the most common cause of mitochondrial diseases and have also been associated with neurodegeneration and aging. Several approaches for the assessment of the OXPHOS system enzymes have been developed. Based on the methods described elsewhere, this unit describes the creation and study of yeast models of mitochondrial OXPHOS deficiencies.

  15. [Respiratory complications after transfusion].

    PubMed

    Bernasinski, M; Mertes, P-M; Carlier, M; Dupont, H; Girard, M; Gette, S; Just, B; Malinovsky, J-M

    2014-05-01

    Respiratory complications of blood transfusion have several possible causes. Transfusion-Associated Circulatory Overload (TACO) is often the first mentioned. Transfusion-Related Acute Lung Injury (TRALI), better defined since the consensus conference of Toronto in 2004, is rarely mentioned. French incidence is low. Non-hemolytic febrile reactions, allergies, infections and pulmonary embolism are also reported. The objective of this work was to determine the statistical importance of the different respiratory complications of blood transfusion. This work was conducted retrospectively on transfusion accidents in six health centers in Champagne-Ardenne, reported to Hemovigilance between 2000 and 2009 and having respiratory symptoms. The analysis of data was conducted by an expert committee. Eighty-three cases of respiratory complications are found (316,864 blood products). We have counted 26 TACO, 12 TRALI (only 6 cases were identified in the original investigation of Hemovigilance), 18 non-hemolytic febrile reactions, 16 cases of allergies, 5 transfusions transmitted bacterial infections and 2 pulmonary embolisms. Six new TRALI were diagnosed previously labeled TACO for 2 of them, allergy and infection in 2 other cases and diagnosis considered unknown for the last 2. Our study found an incidence of TRALI 2 times higher than that reported previously. Interpretation of the data by a multidisciplinary committee amended 20% of diagnoses. This study shows the imperfections of our system for reporting accidents of blood transfusion when a single observer analyses the medical records.

  16. Respiratory Muscle Plasticity

    PubMed Central

    Gransee, Heather M.; Mantilla, Carlos B.; Sieck, Gary C.

    2014-01-01

    Muscle plasticity is defined as the ability of a given muscle to alter its structural and functional properties in accordance with the environmental conditions imposed on it. As such, respiratory muscle is in a constant state of remodeling, and the basis of muscle’s plasticity is its ability to change protein expression and resultant protein balance in response to varying environmental conditions. Here, we will describe the changes of respiratory muscle imposed by extrinsic changes in mechanical load, activity, and innervation. Although there is a large body of literature on the structural and functional plasticity of respiratory muscles, we are only beginning to understand the molecular-scale protein changes that contribute to protein balance. We will give an overview of key mechanisms regulating protein synthesis and protein degradation, as well as the complex interactions between them. We suggest future application of a systems biology approach that would develop a mathematical model of protein balance and greatly improve treatments in a variety of clinical settings related to maintaining both muscle mass and optimal contractile function of respiratory muscles. PMID:23798306

  17. 76 FR 62164 - VASRD Improvement Forum-Updating Disability Criteria for the Respiratory System, Cardiovascular...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-06

    ... System, Hearing Impairment, and Ear, Nose and Throat Diseases AGENCY: Department of Veterans Affairs... Impairment, and Ear, Nose and Throat Diseases. The purpose of this VASRD Improvement Forum is to capture public comment and current medical science information from presentations made by subject matter...

  18. Contribution of Bordetella bronchiseptica Type III secretion system to respiratory disease in swine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: The type III secretion system (TTSS) of gram negative bacteria allows injection of effector proteins directly into the cytosol of eukaryotic cells. Previous studies have demonstrated that the B. bronchiseptica TTSS plays a role in the persistent bacterial colonization of the trachea of m...

  19. Current genomic editing approaches in avian transgenesis.

    PubMed

    Park, Tae Sub; Kang, Kyung Soo; Han, Jae Yong

    2013-09-01

    The chicken was domesticated from Red Jungle Fowl over 8000years ago and became one of the major food sources worldwide. At present, the poultry industry is one of the largest industrial animal stocks in the world, and its economic scale is expanding significantly with increasing consumption. Additionally, since Aristotle used chicken eggs as a model to provide remarkable insights into how life begins, chickens have been used as invaluable and powerful experimental materials for studying embryo development, immune systems, biomedical processes, and hormonal regulation. Combined with advancements in efficient transgenic technology, avian models have become even more important than would have been expected.

  20. Recovery of Avian Metapneumovirus Subgroup C from cDNA: Cross-Recognition of Avian and Human Metapneumovirus Support Proteins

    PubMed Central

    Govindarajan, Dhanasekaran; Buchholz, Ursula J.; Samal, Siba K.

    2006-01-01

    Avian metapneumovirus (AMPV) causes an acute respiratory disease in turkeys and is associated with “swollen head syndrome” in chickens, contributing to significant economic losses for the U.S. poultry industry. With a long-term goal of developing a better vaccine for controlling AMPV in the United States, we established a reverse genetics system to produce infectious AMPV of subgroup C entirely from cDNA. A cDNA clone encoding the entire 14,150-nucleotide genome of AMPV subgroup C strain Colorado (AMPV/CO) was generated by assembling five cDNA fragments between the T7 RNA polymerase promoter and the autocatalytic hepatitis delta virus ribozyme of a transcription plasmid, pBR 322. Transfection of this plasmid, along with the expression plasmids encoding the N, P, M2-1, and L proteins of AMPV/CO, into cells stably expressing T7 RNA polymerase resulted in the recovery of infectious AMPV/CO. Characterization of the recombinant AMPV/CO showed that its growth properties in tissue culture were similar to those of the parental virus. The potential of AMPV/CO to serve as a viral vector was also assessed by generating another recombinant virus, rAMPV/CO-GFP, that expressed the enhanced green fluorescent protein (GFP) as a foreign protein. Interestingly, GFP-expressing AMPV and GFP-expressing human metapneumovirus (HMPV) could be recovered using the support plasmids of either virus, denoting that the genome promoters are conserved between the two metapneumoviruses and can be cross-recognized by the polymerase complex proteins of either virus. These results indicate a close functional relationship between AMPV/CO and HMPV. PMID:16731918

  1. The physiology of dinosaurs: circulatory and respiratory function in the largest animals ever to walk the earth.

    PubMed

    Pierson, David J

    2009-07-01

    The cardiopulmonary physiology of dinosaurs-and especially of the long-necked sauropods, which grew much larger than any land animals before or since-should be inherently fascinating to anyone involved in respiratory care. What would the blood pressure be in an animal 12 m (40 ft) tall? How could airway resistance and dead space be overcome while breathing through a trachea 9 m (30 ft) long? The last decade has seen a dramatic increase in evidence bearing on these questions. Insight has come not only from new fossil discoveries but also from comparative studies of living species, clarification of evolutionary relationships, new evaluation techniques, computer modeling, and discoveries about the earth's ancient atmosphere. Pumping a vertical column of blood 8 m (26 ft) above the heart would probably require an arterial blood pressure > 600 mm Hg, and the implications of this for cardiac size and function have led to the proposal of several alternative cardiopulmonary designs. Diverse lines of evidence suggest that the giant sauropods were probably warm-blooded and metabolically active when young, but slowed their metabolism as they approached adult size, which diminished the load on the circulatory system. Circulatory considerations leave little doubt that the dinosaurs had 4-chambered hearts. Birds evolved from dinosaurs, and the avian-type air-sac respiratory system, which is more efficient than its mammalian counterpart, may hold the answer to the breathing problems posed by the sauropods' very long necks. Geochemical and other data indicate that, at the time the dinosaurs first appeared, the atmospheric oxygen concentration was only about half of what it is today, and development of the avian-type respiratory system may have been key in the dinosaurs' evolutionary success, enabling them to out-compete the mammals and dominate the land for 150 million years.

  2. Distribution of bovine alpha-herpesviruses and expression of toll-like receptors in the respiratory system of experimentally infected calves.

    PubMed

    Marin, M S; Quintana, S; Leunda, M R; Odeón, A C; Pérez, S E

    2016-04-01

    This study provides an initial analysis of the toll-like receptors (TLRs) that might be implicated in alpha-herpesvirus infection of the bovine respiratory system. A significant variation in the expression of TLR3 and TLRs 7-9 during bovine herpesvirus type 1 (BoHV-1) and 5 (BoHV-5) acute infections and particularly an up-regulation during viral reactivation in respiratory tissues has been demonstrated. Furthermore, viral distribution in the respiratory tract of BoHV-1- and BoHV-5-infected calves at different stages of the infectious cycle was analysed. The wide distribution of BoHV DNA in the respiratory tract during acute infection was restricted during latent infection and the subsequent reactivation of BoHV-1 and BoHV-5. Overall, the findings presented here contribute to the knowledge on the replication and dissemination of bovine alpha-herpesviruses. Furthermore, some of the immune factors triggered in the host that determine the different outcomes of infection by two closely related pathogens of cattle have been elucidated. PMID:27033908

  3. Distribution of bovine alpha-herpesviruses and expression of toll-like receptors in the respiratory system of experimentally infected calves.

    PubMed

    Marin, M S; Quintana, S; Leunda, M R; Odeón, A C; Pérez, S E

    2016-04-01

    This study provides an initial analysis of the toll-like receptors (TLRs) that might be implicated in alpha-herpesvirus infection of the bovine respiratory system. A significant variation in the expression of TLR3 and TLRs 7-9 during bovine herpesvirus type 1 (BoHV-1) and 5 (BoHV-5) acute infections and particularly an up-regulation during viral reactivation in respiratory tissues has been demonstrated. Furthermore, viral distribution in the respiratory tract of BoHV-1- and BoHV-5-infected calves at different stages of the infectious cycle was analysed. The wide distribution of BoHV DNA in the respiratory tract during acute infection was restricted during latent infection and the subsequent reactivation of BoHV-1 and BoHV-5. Overall, the findings presented here contribute to the knowledge on the replication and dissemination of bovine alpha-herpesviruses. Furthermore, some of the immune factors triggered in the host that determine the different outcomes of infection by two closely related pathogens of cattle have been elucidated.

  4. Optimal diving behaviour and respiratory gas exchange in birds.

    PubMed

    Halsey, Lewis G; Butler, Patrick J

    2006-11-01

    This review discusses the advancements in our understanding of the physiology and behaviour of avian diving that have been underpinned by optimal foraging theory and the testing of optimal models. To maximise their foraging efficiency during foraging periods, diving birds must balance numerous factors that are directly or indirectly related to the replenishment of the oxygen stores and the removal of excess carbon dioxide. These include (1) the time spent underwater (which diminishes the oxygen supply, increases carbon dioxide levels and may even include a build up of lactate due to anaerobic metabolism), (2) the time spent at the surface recovering from the previous dive and preparing for the next (including reloading their oxygen supply, decreasing their carbon dioxide levels and possibly also metabolising lactate) and (3) the trade-off between maximising oxygen reserves for consumption underwater by taking in more air to the respiratory system, and minimising the energy costs of positive buoyancy caused by this air, to maximise the time available underwater to forage. Due to its importance in avian diving, replenishment of the oxygen stores has become integral to models of optimal diving, which predict the time budgeting of animals foraging underwater. While many of these models have been examined qualitatively, such tests of predictive trends appear fallible and only quantifiable support affords strong evidence of their predictive value. This review describes how the quantification of certain optimal diving models, using tufted ducks, indeed demonstrates some predictive success. This suggests that replenishment of the oxygen stores and removal of excess carbon dioxide have significant influences on the duration of the surface period between dives. Nevertheless, present models are too simplistic to be robust predictors of diving behaviour for individual animals and it is proposed that they require refinement through the incorporation of other variables that also

  5. PCR-based detection of an emerging avian pneumovirus in US turkey flocks.

    PubMed

    Dar, A M; Tune, K; Munir, S; Panigrahy, B; Goyal, S M; Kapur, V

    2001-05-01

    Avian pneumovirus (APV) or turkey rhinotracheitis virus (TRTV) is an important respiratory pathogen of domesticated poultry in many countries in Europe, Africa, and Asia. Until recently, the United States was considered free of APV. In late 1996, an atypical upper respiratory tract infection appeared in turkey flocks in Colorado and shortly thereafter in turkey flocks in Minnesota. An avian pneumovirus (APV-US) that was serologically distinct from the previously described TRTV was isolated as the primary cause of the new syndrome. The nucleotide sequence of a fragment of the APV-US fusion gene was determined and used to develop a polymerase chain reaction-based assay that specifically detects APV-US viral nucleic acid sequences in RNA extracts of tracheal swabs and turbinate homogenates. The assay is highly sensitive in that it can detect <0.01 TCID50 of APV. The availability of this assay enables the rapid and accurate determination of APV-US in infected poultry flocks.

  6. Carbon nanotubes as delivery systems for respiratory disease: do the dangers outweigh the potential benefits?

    PubMed Central

    Bonner, James C

    2012-01-01

    Nanoparticle drug-delivery systems offer the potential for improved efficacy of treatment, and yet there are also potential risks associated with these novel therapeutic strategies. An attractive property of carbon nanotubes (CNTs) is that the tube- or fiber-like structure allows for extensive functionalization and loading of cargo. However, a large body of evidence indicates that CNTs may have adverse effects if used in drug delivery as they have been shown to cause pulmonary fibrosis and exacerbate lung disease in rodents with pre-existing lung diseases. Major factors that cause these toxic effects are the high aspect ratio, durability and residual metal content that generate reactive oxygen species. Therefore, careful consideration should be given to the possibility that lung inflammation or fibrosis could be significant side effects caused by a CNT-based drug-delivery system, thereby outweighing any potential beneficial effects of therapeutic treatment. However, functionalization of CNTs to modulate aspect ratio, biodegradability and to remove residual metals could allow for safe design of CNTs for use in drug delivery in certain circumstances. PMID:22082164

  7. Avian reproductive physiology

    USGS Publications Warehouse

    Gee, G.F.; Gibbons, Edward F.; Durrant, Barbara S.; Demarest, Jack

    1995-01-01

    Knowledge of the many physiological factors associated with egg production , fertility, incubation, and brooding in nondomestic birds is limited. Science knows even less about reproduction in most of the 238 endangered or threatened birds. This discussion uses studies of nondomestic and, when necessary, domestic birds to describe physiological control of reproduction. Studies of the few nondomestic avian species show large variation in physiological control of reproduction. Aviculturists, in order to successfully propagate an endangered bird, must understand the bird's reproductive peculiarities. First, investigators can do studies with carefully chosen surrogate species, but eventually they need to confirm the results in the target endangered bird. Studies of reproduction in nondomestic birds increased in the last decade. Still, scientists need to do more comparative studies to understand the mechanisms that control reproduction in birds. New technologies are making it possible to study reproductive physiology of nondomestic species in less limiting ways. These technologies include telemetry to collect information without inducing stress on captives (Howey et al., 1987; Klugman, 1987), new tests for most of the humoral factors associated with reproduction, and the skill to collect small samples and manipulate birds without disrupting the physiological mechanisms (Bercovitz et al., 1985). Managers are using knowledge from these studies to improve propagation in zoological parks, private and public propagation facilities, and research institutions. Researchers need to study the control of ovulation, egg formation, and oviposition in the species of nondomestic birds that lay very few eggs in a season, hold eggs in the oviduct for longer intervals, or differ in other ways from the more thoroughly studied domestic birds. Other techniques that would enhance propagation for nondomestlc birds include tissue culture of cloned embryonic cells, cryopreservation of embryos

  8. Management of the baseline shift using a new and simple method for respiratory-gated radiation therapy: Detectability and effectiveness of a flexible monitoring system

    SciTech Connect

    Tachibana, Hidenobu; Kitamura, Nozomi; Ito, Yasushi; Kawai, Daisuke; Nakajima, Masaru; Tsuda, Akihisa; Shiizuka, Hisao

    2011-07-15

    Purpose: In respiratory-gated radiation therapy, a baseline shift decreases the accuracy of target coverage and organs at risk (OAR) sparing. The effectiveness of audio-feedback and audio-visual feedback in correcting the baseline shift in the breathing pattern of the patient has been demonstrated previously. However, the baseline shift derived from the intrafraction motion of the patient's body cannot be corrected by these methods. In the present study, the authors designed and developed a simple and flexible system. Methods: The system consisted of a web camera and a computer running our in-house software. The in-house software was adapted to template matching and also to no preimage processing. The system was capable of monitoring the baseline shift in the intrafraction motion of the patient's body. Another marker box was used to monitor the baseline shift due to the flexible setups required of a marker box for gated signals. The system accuracy was evaluated by employing a respiratory motion phantom and was found to be within AAPM Task Group 142 tolerance (positional accuracy <2 mm and temporal accuracy <100 ms) for respiratory-gated radiation therapy. Additionally, the effectiveness of this flexible and independent system in gated treatment was investigated in healthy volunteers, in terms of the results from the differences in the baseline shift detectable between the marker positions, which the authors evaluated statistically. Results: The movement of the marker on the sternum [1.599 {+-} 0.622 mm (1 SD)] was substantially decreased as compared with the abdomen [6.547 {+-} 0.962 mm (1 SD)]. Additionally, in all of the volunteers, the baseline shifts for the sternum [-0.136 {+-} 0.868 (2 SD)] were in better agreement with the nominal baseline shifts than was the case for the abdomen [-0.722 {+-} 1.56 mm (2 SD)]. The baseline shifts could be accurately measured and detected using the monitoring system, which could acquire the movement of the marker on the

  9. Analysis of impulse oscillometric measures of lung function and respiratory system model parameters in small airway-impaired and healthy children over a 2-year period

    PubMed Central

    2011-01-01

    Background Is Impulse Oscillometry System (IOS) a valuable tool to measure respiratory system function in Children? Asthma (A) is the most prevalent chronic respiratory disease in children. Therefore, early and accurate assessment of respiratory function is of tremendous clinical interest in diagnosis, monitoring and treatment of respiratory conditions in this subpopulation. IOS has been successfully used to measure lung function in children with a high degree of sensitivity and specificity to small airway impairments (SAI) and asthma. IOS measures of airway function and equivalent electrical circuit models of the human respiratory system have been developed to quantify the severity of these conditions. Previously, we have evaluated several known respiratory models based on the Mead's model and more parsimonious versions based on fitting IOS data known as extended RIC (eRIC) and augmented RIC (aRIC) models have emerged, which offer advantages over earlier models. Methods IOS data from twenty-six children were collected and compared during pre-bronchodilation (pre-B) and post- bronchodilation (post-B) conditions over a period of 2 years. Results and Discussion Are the IOS and model parameters capable of differentiating between healthy children and children with respiratory system distress? Children were classified into two main categories: Healthy (H) and Small Airway-Impaired (SAI). The IOS measures and respiratory model parameters analyzed differed consistently between H and SAI children. SAI children showed smaller trend of "growth" and larger trend of bronchodilator responses than H children. The two model parameters: peripheral compliance (Cp) and peripheral resistance (Rp) tracked IOS indices of small airway function well. Cp was a more sensitive index than Rp. Both eRIC and aRIC Cps and the IOS Reactance Area, AX, (also known as the "Goldman Triangle") showed good correlations. Conclusions What are the most useful IOS and model parameters? In this work we

  10. [General pharmacology of T-3761, a new oral quinolone antibacterial agent (2). Effect on the respiratory and cardiovascular systems, autonomic nervous system and other functions].

    PubMed

    Furuhata, K; Hiraiwa, T; Terashima, N; Arai, H; Ono, S; Hashiba, K; Maekawa, M; Kitamura, K; Nakada, Y; Mori, Y

    1995-05-01

    General pharmacological effects of T-3761, a new oral quinolone antibacterial agent, on the respiratory and cardiovascular systems, autonomic nervous system and other functions were investigated in laboratory animals. The results obtained are summarized as follows. 1. Respiratory and cardiovascular systems: Oral administration of T-3761 at doses of 100-1,000 mg/kg did not affect in conscious rats. But intravenous administration of T-3761 at doses of 10-100 mg/kg caused an increase in respiratory rate, induced hypotension, caused increase or decrease in heart rate and altered ECG patterns (elevation of T waves and reduction of voltage of QRS complexes, etc.) in anesthetized dogs. Intravenous administration of T-3761 at doses of 10-100 mg/kg showed respiratory rate increase or decrease, hypertension, heart rate decrease and ECG patterns changes (T waves elevation and extrasystole) in anesthetized rabbits. 2. Autonomic nervous system and smooth muscle organs: T-3761 increased the epinephrine-induced contraction of the isolated guinea pig vas deferens at concentration of 10(-5)-10(-4) g/ml. T-3761 decreased the acetylcholine-induced contraction of the isolated guinea pig ileum and epinephrine-induced relaxation of the isolated guinea pig trachea-chain at concentration of 10(-4) g/ml. T-3761 increased the norepinephrine-induced contraction of the isolated rabbit thoracic aorta at concentration of 10(-4) g/ml. Oral administration of T-3761 at a dose of 1,000 mg/kg exerted slight mydriasis in mice. 3. Digestive system: T-3761 decreased the spontaneous motilities of isolated ileum and colon at concentration of 10(-4) g/ml. Oral administration of T-3761 at a dose of 1,000 mg/kg inhibited gastric output and intestinal transit time in rats or mice. 4. Renal functions: Oral administration of T-3761 at a dose of 300 mg/kg increased Na+ excretion but did not affect PSP excretion in rats. 5. Hematological examinations: T-3761 showed no effects on resistance to hemolysis, blood

  11. Predictive model of avian electrocution risk on overhead power lines.

    PubMed

    Dwyer, J F; Harness, R E; Donohue, K

    2014-02-01

    Electrocution on overhead power structures negatively affects avian populations in diverse ecosystems worldwide, contributes to the endangerment of raptor populations in Europe and Africa, and is a major driver of legal action against electric utilities in North America. We investigated factors associated with avian electrocutions so poles that are likely to electrocute a bird can be identified and retrofitted prior to causing avian mortality. We used historical data from southern California to identify patterns of avian electrocution by voltage, month, and year to identify species most often killed by electrocution in our study area and to develop a predictive model that compared poles where an avian electrocution was known to have occurred (electrocution poles) with poles where no known electrocution occurred (comparison poles). We chose variables that could be quantified by personnel with little training in ornithology or electric systems. Electrocutions were more common at distribution voltages (≤ 33 kV) and during breeding seasons and were more commonly reported after a retrofitting program began. Red-tailed Hawks (Buteo jamaicensis) (n = 265) and American Crows (Corvus brachyrhynchos) (n = 258) were the most commonly electrocuted species. In the predictive model, 4 of 14 candidate variables were required to distinguish electrocution poles from comparison poles: number of jumpers (short wires connecting energized equipment), number of primary conductors, presence of grounding, and presence of unforested unpaved areas as the dominant nearby land cover. When tested against a sample of poles not used to build the model, our model distributed poles relatively normally across electrocution-risk values and identified the average risk as higher for electrocution poles relative to comparison poles. Our model can be used to reduce avian electrocutions through proactive identification and targeting of high-risk poles for retrofitting. PMID:24033371

  12. Predictive model of avian electrocution risk on overhead power lines.

    PubMed

    Dwyer, J F; Harness, R E; Donohue, K

    2014-02-01

    Electrocution on overhead power structures negatively affects avian populations in diverse ecosystems worldwide, contributes to the endangerment of raptor populations in Europe and Africa, and is a major driver of legal action against electric utilities in North America. We investigated factors associated with avian electrocutions so poles that are likely to electrocute a bird can be identified and retrofitted prior to causing avian mortality. We used historical data from southern California to identify patterns of avian electrocution by voltage, month, and year to identify species most often killed by electrocution in our study area and to develop a predictive model that compared poles where an avian electrocution was known to have occurred (electrocution poles) with poles where no known electrocution occurred (comparison poles). We chose variables that could be quantified by personnel with little training in ornithology or electric systems. Electrocutions were more common at distribution voltages (≤ 33 kV) and during breeding seasons and were more commonly reported after a retrofitting program began. Red-tailed Hawks (Buteo jamaicensis) (n = 265) and American Crows (Corvus brachyrhynchos) (n = 258) were the most commonly electrocuted species. In the predictive model, 4 of 14 candidate variables were required to distinguish electrocution poles from comparison poles: number of jumpers (short wires connecting energized equipment), number of primary conductors, presence of grounding, and presence of unforested unpaved areas as the dominant nearby land cover. When tested against a sample of poles not used to build the model, our model distributed poles relatively normally across electrocution-risk values and identified the average risk as higher for electrocution poles relative to comparison poles. Our model can be used to reduce avian electrocutions through proactive identification and targeting of high-risk poles for retrofitting.

  13. Antigenic properties of avian hepatitis E virus capsid protein.

    PubMed

    Zhao, Qin; Syed, Shahid Faraz; Zhou, En-Min

    2015-10-22

    Avian hepatitis E virus (HEV) is the main causative agent of big liver and spleen disease and hepatitis-splenomegaly syndrome in chickens, and is genetically and antigenically related to mammalian HEVs. HEV capsid protein contains immunodominant epitopes and induces a protective humoral immune response. A better understanding of the antigenic composition of this protein is critically important for the development of effective vaccine and sensitive and specific serological assays. To date, six linear antigenic domains (I-VI) have been characterized in avian HEV capsid protein and analyzed for their applications in the serological diagnosis and vaccine design. Domains I and V induce strong immune response in chickens and are common to avian, human, and swine HEVs, indicating that the shared epitopes hampering differential diagnosis of avian HEV infection. Domains III and IV are not immunodominant and elicit a weak immune response. Domain VI, located in the N-terminal region of the capsid protein, can also trigger an intense immune response, but the anti-domain VI antibodies are transient. The protection analysis showed that the truncated capsid protein containing the C-terminal 268 amino acid residues expressed by the bacterial system can provide protective immunity against avian HEV infection in chickens. However, the synthetic peptides incorporating the different linear antigenic domains (I-VI) and epitopes are non-protective. The antigenic composition of avian HEV capsid protein is altogether complex. To develop an effective vaccine and accurate serological diagnostic methods, more conformational antigenic domains or epitopes are to be characterized in detail. PMID:26340899

  14. The thermal tolerance of crayfish could be estimated from respiratory electron transport system activity.

    PubMed

    Simčič, Tatjana; Pajk, Franja; Jaklič, Martina; Brancelj, Anton; Vrezec, Al

    2014-04-01

    Whether electron transport system (ETS) activity could be used as an estimator of crayfish thermal tolerance has been investigated experimentally. Food consumption rate, respiration rates in the air and water, the difference between energy consumption and respiration costs at a given temperature ('potential growth scope', PGS), and ETS activity of Orconectes limosus and Pacifastacus leniusculus were determined over a temperature range of 5-30°C. All concerned parameters were found to be temperature dependent. The significant correlation between ETS activity and PGS indicates that they respond similarly to temperature change. The regression analysis of ETS activity as an estimator of thermal tolerance at the mitochondrial level and PGS as an indicator of thermal tolerance at the organismic level showed the shift of optimum temperature ranges of ETS activity to the right for 2° in O. limosus and for 3° in P. leniusculus. Thus, lower estimated temperature optima and temperatures of optimum ranges of PGS compared to ETS activity could indicate higher thermal sensitivity at the organismic level than at a lower level of complexity (i.e. at the mitochondrial level). The response of ETS activity to temperature change, especially at lower and higher temperatures, indicates differences in the characteristics of the ETSs in O. limosus and P. leniusculus. O. limosus is less sensitive to high temperature. The significant correlation between PGS and ETS activity supports our assumption that ETS activity could be used for the rapid estimation of thermal tolerance in crayfish species. PMID:24679968

  15. Nanotechnology in respiratory medicine.

    PubMed

    Omlor, Albert Joachim; Nguyen, Juliane; Bals, Robert; Dinh, Quoc Thai

    2015-05-29

    Like two sides of the same coin, nanotechnology can be both boon and bane for respiratory medicine. Nanomaterials open new ways in diagnostics and treatment of lung diseases. Nanoparticle based drug delivery systems can help against diseases such as lung cancer, tuberculosis, and pulmonary fibrosis. Moreover, nanoparticles can be loaded with DNA and act as vectors for gene therapy in diseases like cystic fibrosis. Even lung diagnostics with computer tomography (CT) or magnetic resonance imaging (MRI) profits from new nanoparticle based contrast agents. However, the risks of nanotechnology also have to be taken into consideration as engineered nanomaterials resemble natural fine dusts and fibers, which are known to be harmful for the respiratory system in many cases. Recent studies have shown that nanoparticles in the respiratory tract can influence the immune system, can create oxidative stress and even cause genotoxicity. Another important aspect to assess the safety of nanotechnology based products is the absorption of nanoparticles. It was demonstrated that the amount of pulmonary nanoparticle uptake not only depends on physical and chemical nanoparticle characteristics but also on the health status of the organism. The huge diversity in nanotechnology could revolutionize medicine but makes safety assessment a challenging task.

  16. Multicenter evaluation of BD Veritor System and RSV K-SeT for rapid detection of respiratory syncytial virus in a diagnostic laboratory setting.

    PubMed

    Jonckheere, Stijn; Verfaillie, Charlotte; Boel, An; Van Vaerenbergh, Kristien; Vanlaere, Elke; Vankeerberghen, Anne; De Beenhouwer, Hans

    2015-09-01

    The recently introduced BD Veritor System RSV laboratory kit (Becton Dickinson, Sparks, MD, USA) with automatic reading was evaluated and compared with the RSV K-SeT (Coris BioConcept, Gembloux, Belgium) for the detection of respiratory syncytial virus (RSV) using 248 nasopharyngeal aspirates of children younger than 6 years old with respiratory tract infection. Compared to reverse transcriptase polymerase chain reaction as gold standard, both tests had an identical sensitivity of 78.1% and a specificity of 96.8% and 95.8% for the BD Veritor System and RSV K-SeT, respectively. Both antigen tests can be used to reliably confirm RSV in young children. However, a negative result does not definitively exclude the presence of RSV.

  17. Use of a feline respiratory epithelial cell culture system grown at the air-liquid interface to characterize the innate immune response following feline herpesvirus 1 infection.

    PubMed

    Nelli, Rahul K; Maes, Roger; Kiupel, Matti; Hussey, Gisela Soboll

    2016-03-01

    Infection with feline herpesvirus-1 (FHV-1) accounts for 50% of viral upper respiratory diseases in domestic cats and is a significant cause of ocular diseases. Despite the clinical significance and high prevalence of FHV-1 infection, currently available vaccines cannot completely protect cats from infection and lifelong latency. FHV-1 infects via the mucous membranes and replicates in respiratory epithelial cells, but very little is known about the early innate immunity at this site. To address questions about immunity to FHV-1, feline respiratory epithelial cells cultured at air-liquid interface (ALI-FRECs) were established by collecting respiratory tracts from 6 healthy cats after euthanasia. Cells were isolated, cultured and characterized histologically and immunologically before infection with FHV-1. The expression of Toll-like receptors (TLRs), cytokine and chemokine responses were measured by real time PCR. ALI-FRECs morphologically resembled the natural airways of cats with multilayered columnar epithelial cells and cilia. Immunological properties of the natural airways were maintained in ALI-FRECs, as evidenced by the expression of TLRs, cytokines, chemokines, interferons, beta-defensins, and other regulatory genes. Furthermore, ALI-FRECs were able to support infection and replication of FHV-1, as well as modulate transcriptional regulation of various immune genes in response to infection. IL-1β and TNFα were increased in ALI-FRECs by 24hpi, whereas expression levels of IFN-α and TLR9 were not increased until 36hpi. In contrast, TLR3, GM-CSF and TGF-1β expression was down-regulated at 36hpi. The data presented show the development of a system ideal for investigating the molecular pathogenesis and immunity of FHV-1 or other respiratory pathogens.

  18. Long-term effects of mustard gas on respiratory system of Iranian veterans after Iraq-Iran war: a review.

    PubMed

    Razavi, Seyed-Mansour; Ghanei, Mostafa; Salamati, Payman; Safiabadi, Mehdi

    2013-01-01

    To review long-term respiratory effects of mustard gas on Iranian veterans having undergone Iraq-Iran war. Electronic databases of Scopus, Medline, ISI, IranMedex, and Irandoc sites were searched. We accepted articles published in scientific journals as a quality criterion.The main pathogenic factors are free radical mediators. Prevalence of pulmonary involvement is approximately 42.5%. The most common complaints are cough and dyspnea. Major respiratory complications are chronic obstructive pulmonary disease, bronchiectasis, and asthma. Spirometry results can reveal restrictive and obstructive pulmonary disease. Plain chest X-ray does not help in about 50% of lung diseases. High-resolution CT of the lung is the best modality for diagnostic assessment of parenchymal lung and bronchi. There is no definite curative treatment for mustard lung. The effective treatment regimens consist of oxygen administration, use of vaporized moist air, respiratory physiotherapy, administration of mucolytic agents, bronchodilators, corticosteroids, and long-acting beta-2 agonists, antioxidants, surfactant, magnesium ions, therapeutic bronchoscopy, laser therapy, placement of respiratory stents, early tracheostomy in laryngospasm, and ultimately lung transplantation. High-resolution CT of the lung is the most accurate modality for the evaluation of the lung parenchyma and bronchi. The treatment efficacy of patients exposed to mustard gas depends on patient conditions (acute or chronic, upper or lower respiratory tract involvement). There are various treatment protocols, but unfortunately none of them is definitely curable. PMID:23735551

  19. Long-term effects of mustard gas on respiratory system of Iranian veterans after Iraq-Iran war: a review.

    PubMed

    Razavi, Seyed-Mansour; Ghanei, Mostafa; Salamati, Payman; Safiabadi, Mehdi

    2013-01-01

    To review long-term respiratory effects of mustard gas on Iranian veterans having undergone Iraq-Iran war. Electronic databases of Scopus, Medline, ISI, IranMedex, and Irandoc sites were searched. We accepted articles published in scientific journals as a quality criterion.The main pathogenic factors are free radical mediators. Prevalence of pulmonary involvement is approximately 42.5%. The most common complaints are cough and dyspnea. Major respiratory complications are chronic obstructive pulmonary disease, bronchiectasis, and asthma. Spirometry results can reveal restrictive and obstructive pulmonary disease. Plain chest X-ray does not help in about 50% of lung diseases. High-resolution CT of the lung is the best modality for diagnostic assessment of parenchymal lung and bronchi. There is no definite curative treatment for mustard lung. The effective treatment regimens consist of oxygen administration, use of vaporized moist air, respiratory physiotherapy, administration of mucolytic agents, bronchodilators, corticosteroids, and long-acting beta-2 agonists, antioxidants, surfactant, magnesium ions, therapeutic bronchoscopy, laser therapy, placement of respiratory stents, early tracheostomy in laryngospasm, and ultimately lung transplantation. High-resolution CT of the lung is the most accurate modality for the evaluation of the lung parenchyma and bronchi. The treatment efficacy of patients exposed to mustard gas depends on patient conditions (acute or chronic, upper or lower respiratory tract involvement). There are various treatment protocols, but unfortunately none of them is definitely curable.

  20. Avian influenza virus RNA extraction

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The efficient extraction and purification of viral RNA is critical for down-stream molecular applications whether it is the sensitive and specific detection of virus in clinical samples, virus gene cloning and expression, or quantification of avian influenza (AI) virus by molecular methods from expe...

  1. Correlation and prediction uncertainties in the CyberKnife Synchrony respiratory tracking system

    SciTech Connect

    Pepin, Eric W.; Wu, Huanmei; Zhang, Yuenian; Lord, Bryce

    2011-07-15

    Purpose: The CyberKnife uses an online prediction model to improve radiation delivery when treating lung tumors. This study evaluates the prediction model used by the CyberKnife radiation therapy system in terms of treatment margins about the gross tumor volume (GTV). Methods: From the data log files produced by the CyberKnife synchrony model, the uncertainty in radiation delivery can be calculated. Modeler points indicate the tracked position of the tumor and Predictor points predict the position about 115 ms in the future. The discrepancy between Predictor points and their corresponding Modeler points was analyzed for 100 treatment model data sets from 23 de-identified lung patients. The treatment margins were determined in each anatomic direction to cover an arbitrary volume of the GTV, derived from the Modeler points, when the radiation is targeted at the Predictor points. Each treatment model had about 30 min of motion data, of which about 10 min constituted treatment time; only these 10 min were used in the analysis. The frequencies of margin sizes were analyzed and truncated Gaussian normal functions were fit to each direction's distribution. The standard deviation of each Gaussian distribution was then used to describe the necessary margin expansions in each signed dimension in order to achieve the desired coverage. In this study, 95% modeler point coverage was compared to 99% modeler coverage. Two other error sources were investigated: the correlation error and the targeting error. These were added to the prediction error to give an aggregate error for the CyberKnife during treatment of lung tumors. Results: Considering the magnitude of 2{sigma} from the mean of the Gaussian in each signed dimension, the margin expansions needed for 95% modeler point coverage were 1.2 mm in the lateral (LAT) direction and 1.7 mm in the anterior-posterior (AP) direction. For the superior-inferior (SI) direction, the fit was poor; but empirically, the expansions were 3.5 mm

  2. Avian erythrocytes have functional mitochondria, opening novel perspectives for birds as animal models in the study of ageing

    PubMed Central

    2013-01-01

    Background In contrast to mammalian erythrocytes, which have lost their nucleus and mitochondria during maturation, the erythrocytes of almost all other vertebrate species are nucleated throughout their lifespan. Little research has been done however to test for the presence and functionality of mitochondria in these cells, especially for birds. Here, we investigated those two points in erythrocytes of one common avian model: the zebra finch (Taeniopygia guttata). Results Transmission electron microscopy showed the presence of mitochondria in erythrocytes of this small passerine bird, especially after removal of haemoglobin interferences. High-resolution respirometry revealed increased or decreased rates of oxygen consumption by erythrocytes in response to the addition of respiratory chain substrates or inhibitors, respectively. Fluorometric assays confirmed the production of mitochondrial superoxide by avian erythrocytes. Interestingly, measurements of plasmatic oxidative markers indicated lower oxidative stress in blood of the zebra finch compared to a size-matched mammalian model, the mouse. Conclusions Altogether, those findings demonstrate that avian erythrocytes possess functional mitochondria in terms of respiratory activities and reactive oxygen species (ROS) production. Interestingly, since blood oxidative stress was lower for our avian model compared to a size-matched mammalian, our results also challenge the idea that mitochondrial ROS production could have been one actor leading to this loss during the course of evolution. Opportunities to assess mitochondrial functioning in avian erythrocytes open new perspectives in the use of birds as models for longitudinal studies of ageing via lifelong blood sampling of the same subjects. PMID:23758841

  3. Computational modeling as part of alternative testing strategies in the respiratory and cardiovascular systems: inhaled nanoparticle dose modeling based on representative aerosol measurements and corresponding toxicological analysis.

    PubMed

    Pilou, Marika; Mavrofrydi, Olga; Housiadas, Christos; Eleftheriadis, Kostas; Papazafiri, Panagiota

    2015-05-01

    The objectives of modeling in this work were (a) the integration of two existing numerical models in order to connect external exposure to nanoparticles (NPs) with internal dose through inhalation, and (b) to use computational fluid-particle dynamics (CFPD) to analyze the behavior of NPs in the respiratory and the cardiovascular system. Regarding the first objective, a lung transport and deposition model was combined with a lung clearance/retention model to estimate NPs dose in the different regions of the human respiratory tract and some adjacent tissues. On the other hand, CFPD was used to estimate particle transport and deposition of particles in a physiologically based bifurcation created by the third and fourth lung generations (respiratory system), as well as to predict the fate of super-paramagnetic particles suspended in a liquid under the influence of an external magnetic field (cardiovascular system). All the above studies showed that, with proper refinement, the developed computational models and methodologies may serve as an alternative testing strategy, replacing transport/deposition experiments that are expensive both in time and resources and contribute to risk assessment.

  4. Effects of two systemic fungicides: Artea (Propiconazole+cyproconazole) and Punch (Flusilazole) on the physiology and the respiratory metabolism of durum wheat (Triticum durum L.).

    PubMed

    Bensoltane, S; Youbi, M; Djebar, H; Djebar, M R

    2006-01-01

    The present work aimed at the study of the effects of Artea and Punch; two systemic fungicides on durum Wheat (Triticum durum L. cv. GTA dur). Seeds were grown in a medium containing respectively 25, 50, 75 and 100 ppm of Artea and Punch under controlled conditions. After measuring root number and length, eight-day-old-root tips were used to determine Catalase (EC 1.11.1.6), Ascorbate-Peroxidase (EC 1.11.1.11) and Guaïacol-Peroxidase (EC 1.11.1.7) enzymatic activities. Root respiratory activity was also determined using a polarographic method (Clark electrode). Fungicide treatment triggered a decrease in root number and length for both fungicides. On the other hand, treatment with Artea and Punch resulted in an enhancement of the respiratory activity and increased antioxidative enzymatic levels in durum wheat roots. Activities of Catalase, Ascorbate-Peroxydase and Guaïacol-Peroxydase increased proportionally and were more meaningful at high concentrations (75 and 100 ppm) compared with controls. Modulations in respiratory metabolism and antioxidant system could probably be the result of Artea/Punch-induced toxicity which could lead to an oxidative stress status. The present study enhances previous works relevant to the toxic effects induced by systemic fungicides on plants.

  5. Development of a Luciferase Immunoprecipitation System Assay To Detect IgG Antibodies against Human Respiratory Syncytial Virus Nucleoprotein

    PubMed Central

    Kumari, Sangeeta; Crim, Roberta Lynne; Kulkarni, Ashwin; Audet, Susette A.; Mdluli, Thembi; Murata, Haruhiko

    2014-01-01

    The nucleoprotein of respiratory syncytial virus (RSV-N) is immunogenic and elicits an IgG response following infection. The RSV-N gene was cloned into a mammalian expression vector, pREN2, and the expressed luciferase-tagged protein (Ruc-N) detected anti-RSV-N-specific IgG antibodies using a high-throughput immunoprecipitation method (the luciferase immunoprecipitation system [LIPS]-NRSV assay). The specificity of the assay was evaluated using monoclonal antibodies (MAbs) and monospecific pre- and postimmunization rabbit antisera. Blood serum samples from chimpanzees and humans with proven/probable RSV infection were also tested. The pre- and postimmunization serum samples from rabbits given human metapneumovirus (HMPV) or measles virus were negative when tested by the LIPS-NRSV assay, while antisera obtained after immunization with either the RSV-A or RSV-B strain gave positive signals in a dose-dependent manner. RSV-N MAb 858-3 gave a positive signal in the LIPS-NRSV assay, while MAbs against other paramyxovirus nucleoproteins or RSV-F or RSV-G did not. Serum samples from chimpanzees simultaneously immunized with vaccinia-RSV-F and vaccinia-RSV-G recombinant viruses were negative in the LIPS-NRSV assay; however, anti-RSV-N IgG responses were detected following subsequent RSV challenge. Seven of the 12 infants who were seronegative at 9 months of age had detectable anti-RSV-N antibodies when they were retested at 15 to 18 months of age. The LIPS-NRSV assay detects specific anti-RSV-N IgG responses that may be used as a biomarker of RSV infection. PMID:24403526

  6. Drosophila melanogaster Acetyl-CoA-carboxylase sustains a fatty acid-dependent remote signal to waterproof the respiratory system.

    PubMed

    Parvy, Jean-Philippe; Napal, Laura; Rubin, Thomas; Poidevin, Mickael; Perrin, Laurent; Wicker-Thomas, Claude; Montagne, Jacques

    2012-01-01

    Fatty acid (FA) metabolism plays a central role in body homeostasis and related diseases. Thus, FA metabolic enzymes are attractive targets for drug therapy. Mouse studies on Acetyl-coenzymeA-carboxylase (ACC), the rate-limiting enzyme for FA synthesis, have highlighted its homeostatic role in liver and adipose tissue. We took advantage of the powerful genetics of Drosophila melanogaster to investigate the role of the unique Drosophila ACC homologue in the fat body and the oenocytes. The fat body accomplishes hepatic and storage functions, whereas the oenocytes are proposed to produce the cuticular lipids and to contribute to the hepatic function. RNA-interfering disruption of ACC in the fat body does not affect viability but does result in a dramatic reduction in triglyceride storage and a concurrent increase in glycogen accumulation. These metabolic perturbations further highlight the role of triglyceride and glycogen storage in controlling circulatory sugar levels, thereby validating Drosophila as a relevant model to explore the tissue-specific function of FA metabolic enzymes. In contrast, ACC disruption in the oenocytes through RNA-interference or tissue-targeted mutation induces lethality, as does oenocyte ablation. Surprisingly, this lethality is associated with a failure in the watertightness of the spiracles-the organs controlling the entry of air into the trachea. At the cellular level, we have observed that, in defective spiracles, lipids fail to transfer from the spiracular gland to the point of air entry. This phenotype is caused by disrupted synthesis of a putative very-long-chain-FA (VLCFA) within the oenocytes, which ultimately results in a lethal anoxic issue. Preventing liquid entry into respiratory systems is a universal issue for air-breathing animals. Here, we have shown that, in Drosophila, this process is controlled by a putative VLCFA produced within the oenocytes. PMID:22956916

  7. Respiratory fluid mechanics

    NASA Astrophysics Data System (ADS)

    Grotberg, James B.

    2011-02-01

    This article covers several aspects of respiratory fluid mechanics that have been actively investigated by our group over the years. For the most part, the topics involve two-phase flows in the respiratory system with applications to normal and diseased lungs, as well as therapeutic interventions. Specifically, the topics include liquid plug flow in airways and at airway bifurcations as it relates to surfactant, drug, gene, or stem cell delivery into the lung; liquid plug rupture and its damaging effects on underlying airway epithelial cells as well as a source of crackling sounds in the lung; airway closure from "capillary-elastic instabilities," as well as nonlinear stabilization from oscillatory core flow which we call the "oscillating butter knife;" liquid film, and surfactant dynamics in an oscillating alveolus and the steady streaming, and surfactant spreading on thin viscous films including our discovery of the Grotberg-Borgas-Gaver shock.

  8. Respiratory fluid mechanics.

    PubMed

    Grotberg, James B

    2011-02-01

    This article covers several aspects of respiratory fluid mechanics that have been actively investigated by our group over the years. For the most part, the topics involve two-phase flows in the respiratory system with applications to normal and diseased lungs, as well as therapeutic interventions. Specifically, the topics include liquid plug flow in airways and at airway bifurcations as it relates to surfactant, drug, gene, or stem cell delivery into the lung; liquid plug rupture and its damaging effects on underlying airway epithelial cells as well as a source of crackling sounds in the lung; airway closure from "capillary-elastic instabilities," as well as nonlinear stabilization from oscillatory core flow which we call the "oscillating butter knife;" liquid film, and surfactant dynamics in an oscillating alveolus and the steady streaming, and surfactant spreading on thin viscous films including our discovery of the Grotberg-Borgas-Gaver shock.

  9. The history of avian influenza.

    PubMed

    Lupiani, Blanca; Reddy, Sanjay M

    2009-07-01

    The first description of avian influenza (AI) dates back to 1878 in northern Italy, when Perroncito [Perroncito E. Epizoozia tifoide nei gallinacei. Annali Accad Agri Torino 1878;21:87-126] described a contagious disease of poultry associated with high mortality. The disease, termed "fowl plague", was initially confused with the acute septicemic form of fowl cholera. However, in 1880, soon after its first description, Rivolta and Delprato [as reported by Stubs EL. Fowl pest, In: Biester HE, Devries L, editors. Diseases of poultry. 1st ed. Ames, IO: Iowa State College Press; 1943. p. 493-502] showed it to be different from fowl cholera, based on clinical and pathological properties, and called it Typhus exudatious gallinarum. In 1901, Centanni and Savunzzi [Centanni E, Savonuzzi E, La peste aviaria I & II, Communicazione fatta all'accademia delle scienze mediche e naturali de Ferrara, 1901] determined that fowl plague was caused by a filterable virus; however, it was not until 1955 that the classical fowl plague virus was shown to be a type A influenza virus based on the presence of type A influenza virus type-specific ribonucleoprotein [Schäfer W. Vergleichender sero-immunologische Untersuchungen über die Viren der Influenza und klassischen Geflügelpest. Z Naturf 1955;10b:81-91]. The term fowl plague was substituted by the more appropriate term highly pathogenic avian influenza (HPAI) at the First International Symposium on Avian Influenza [Proceedings of the First International Symposium on Avian Influenza. Beltsville, MD. 1981, Avian Dis 47 (Special Issue) 2003.] and will be used throughout this review when referring to any previously described fowl plague virus.

  10. The relationship between respiratory exchange ratio, plasma lactate and muscle lactate concentrations in exercising horses using a valved gas collection system.

    PubMed Central

    Gauvreau, G M; Young, S S; Staempfli, H; McCutcheon, L J; Wilson, B A; McDonell, W N

    1996-01-01

    A valved gas collection system for horses was validated, then used to examine the relationship between the respiratory exchange ratio (RER), and plasma and muscle lactate in exercising horses. Four healthy Standardbred horses were trained to breathe through the apparatus while exercising on a treadmill. Comparisons of arterial blood gas tensions were made at 3 work levels for each horse, without (control), and with the gas collection system present. At the highest work level, the arterial oxygen tension (PaO2) was significantly lower (P < 0.05), and the arterial carbon dioxide tension (PaCO2) was significantly higher (P < 0.05), than control levels when the apparatus was present; however arterial oxygen content remained unchanged. The horses completed a standardized incremental treadmill test on 4 occas