Science.gov

Sample records for avian respiratory system

  1. Avian respiratory system disorders

    USGS Publications Warehouse

    Olsen, G.H.

    1989-01-01

    Diagnosing and treating respiratory diseases in avian species requires a basic knowledge about the anatomy and physiology of this system in birds. Differences between mammalian and avian respiratory system function, diagnosis, and treatment are highlighted.

  2. The pulmonary anatomy of Alligator mississippiensis and its similarity to the avian respiratory system.

    PubMed

    Sanders, R Kent; Farmer, C G

    2012-04-01

    Using gross dissections and computed tomography we studied the lungs of juvenile American alligators (Alligator mississippiensis). Our findings indicate that both the external and internal morphology of the lungs is strikingly similar to the embryonic avian respiratory system (lungs + air sacs). We identified bronchi that we propose are homologous to the avian ventrobronchi (entobronchi), laterobronchi, dorsobronchi (ectobronchi), as well as regions of the lung hypothesized to be homologous to the cervical, interclavicular, anterior thoracic, posterior thoracic, and abdominal air sacs. Furthermore, we suggest that many of the features that alligators and birds share are homologous and that some of these features are important to the aerodynamic valve mechanism and are likely plesiomorphic for Archosauria.

  3. Pivotal debates and controversies on the structure and function of the avian respiratory system: setting the record straight.

    PubMed

    Maina, John N

    2016-07-28

    Among the extant air-breathing vertebrates, the avian respiratory system is structurally the most complex and functionally the most efficient gas exchanger. Having been investigated for over four centuries, some aspects of its biology have been extremely challenging and highly contentious and others still remain unresolved. Here, while assessing the most recent findings, four notable aspects of the structure and function of the avian respiratory system are examined critically to highlight the questions, speculations, controversies and debates that have arisen from past research. The innovative techniques and experiments that were performed to answer particular research questions are emphasised. The features that are outlined here concern the arrangement of the airways, the path followed by the inspired air, structural features of the lung and the air and blood capillaries, and the level of cellular defence in the avian respiratory system. Hitherto, based on association with the proven efficiency of naturally evolved and human-made counter-current exchange systems rather than on definite experimental evidence, a counter-current gas exchange system was suggested to exist in the avian respiratory system and was used to explain its exceptional efficiency. However, by means of an elegant experiment in which the direction of the air-flow in the lung was reversed, a cross-current system was shown to be in operation instead. Studies of the arrangement of the airways and the blood vessels corroborated the existence of a cross-current system in the avian lung. While the avian respiratory system is ventilated tidally, like most other invaginated gas exchangers, the lung, specifically the paleopulmonic parabronchi, is ventilated unidirectionally and continuously in a caudocranial (back-to-front) direction by synchronized actions of the air sacs. The path followed by the inspired air in the lung-air sac system is now known to be controlled by a mechanism of aerodynamic valving

  4. Reassessment of the Evidence for Postcranial Skeletal Pneumaticity in Triassic Archosaurs, and the Early Evolution of the Avian Respiratory System

    PubMed Central

    Butler, Richard J.; Barrett, Paul M.; Gower, David J.

    2012-01-01

    Uniquely among extant vertebrates, birds possess complex respiratory systems characterised by the combination of small, rigid lungs, extensive pulmonary air sacs that possess diverticula that invade (pneumatise) the postcranial skeleton, unidirectional ventilation of the lungs, and efficient crosscurrent gas exchange. Crocodilians, the only other living archosaurs, also possess unidirectional lung ventilation, but lack true air sacs and postcranial skeletal pneumaticity (PSP). PSP can be used to infer the presence of avian-like pulmonary air sacs in several extinct archosaur clades (non-avian theropod dinosaurs, sauropod dinosaurs and pterosaurs). However, the evolution of respiratory systems in other archosaurs, especially in the lineage leading to crocodilians, is poorly documented. Here, we use µCT-scanning to investigate the vertebral anatomy of Triassic archosaur taxa, from both the avian and crocodilian lineages as well as non-archosaurian diapsid outgroups. Our results confirm previous suggestions that unambiguous evidence of PSP (presence of internal pneumatic cavities linked to the exterior by foramina) is found only in bird-line (ornithodiran) archosaurs. We propose that pulmonary air sacs were present in the common ancestor of Ornithodira and may have been subsequently lost or reduced in some members of the clade (notably in ornithischian dinosaurs). The development of these avian-like respiratory features might have been linked to inferred increases in activity levels among ornithodirans. By contrast, no crocodile-line archosaur (pseudosuchian) exhibits evidence for unambiguous PSP, but many of these taxa possess the complex array of vertebral laminae and fossae that always accompany the presence of air sacs in ornithodirans. These laminae and fossae are likely homologous with those in ornithodirans, which suggests the need for further investigation of the hypothesis that a reduced, or non-invasive, system of pulmonary air sacs may be have been present

  5. Implications of an avian-style respiratory system for gigantism in sauropod dinosaurs.

    PubMed

    Perry, Steven F; Christian, Andreas; Breuer, Thomas; Pajor, Nadine; Codd, Jonathan R

    2009-10-01

    In light of evidence for avian-like lungs in saurischian dinosaurs, the physiological implications of cross-current gas exchange and voluminous, highly heterogeneous lungs for sauropod gigantism are critically examined. At 12 ton the predicted body temperature and metabolic rate of a growing sauropod would be similar to that of a bird scaled to the same body weight, but would increase exponentially as body mass increases. Although avian-like lung structure would be consistent with either a tachymetabolic-endothermic or a bradymetabolic-gigantothermic model, increasing body temperature requires adjustments to avoid overheating. We suggest that a unique sauropod structure/function unit facilitated the evolution of gigantism. This unit consisted of (1) a reduction in metabolic rate below that predicted by the body temperature, akin to thermal adaptation as seen in extant squamates, (2) presence of air-filled diverticula in the long neck and in the visceral cavity, and (3) low activity of respiratory muscles coupled with the high efficiency of cross-current gas exchange.

  6. Respiratory System

    MedlinePlus

    ... this page from the NHLBI on Twitter. The Respiratory System The respiratory system is made up of organs ... vessels, and the muscles that enable breathing. The Respiratory System Figure A shows the location of the respiratory ...

  7. Protective roles of free avian respiratory macrophages in captive birds.

    PubMed

    Mutua, Mbuvi P; Muya, Shadrack; Gicheru, Muita M

    2016-06-16

    In the mammalian lung, respiratory macrophages provide front line defense against invading pathogens and particulate matter. In birds, respiratory macrophages are known as free avian respiratory macrophages (FARM) and a dearth of the cells in the avian lung has been purported to foreordain a weak first line of pulmonary defense, a condition associated with high mortality of domestic birds occasioned by respiratory inflictions. Avian pulmonary mechanisms including a three tiered aerodynamic filtration system, tight epithelial junctions and an efficient mucociliary escalator system have been known to supplement FARM protective roles. Current studies, however, report FARM to exhibit an exceptionally efficient phagocytic capacity and are effective in elimination of invading pathogens. In this review, we also report on effects of selective synthetic peroxisome proliferator activated receptor gamma (PPAR γ) agonists on non phlogistic phagocytic properties in the FARM. To develop effective therapeutic interventions targeting FARM in treatment and management of respiratory disease conditions in the poultry, further studies are required to fully understand the role of FARM in innate and adaptive immune responses.

  8. Respiratory system

    NASA Technical Reports Server (NTRS)

    Bartlett, R. G., Jr.

    1973-01-01

    The general anatomy and function of the human respiratory system is summarized. Breathing movements, control of breathing, lung volumes and capacities, mechanical relations, and factors relevant to respiratory support and equipment design are discussed.

  9. Lungs and Respiratory System

    MedlinePlus

    ... Your 1- to 2-Year-Old Lungs and Respiratory System KidsHealth > For Parents > Lungs and Respiratory System Print ... ll have taken at least 600 million breaths. Respiratory System Basics All of this breathing couldn't happen ...

  10. Lungs and Respiratory System

    MedlinePlus

    ... Your 1- to 2-Year-Old Lungs and Respiratory System KidsHealth > For Parents > Lungs and Respiratory System A ... ll have taken at least 600 million breaths. Respiratory System Basics All of this breathing couldn't happen ...

  11. Lungs and Respiratory System

    MedlinePlus

    ... A Week of Healthy Breakfasts Shyness Lungs and Respiratory System KidsHealth > For Teens > Lungs and Respiratory System Print ... didn't breathe, you couldn't live. Lungs & Respiratory System Basics Each day we breathe about 20,000 ...

  12. Lungs and Respiratory System

    MedlinePlus

    ... A Week of Healthy Breakfasts Shyness Lungs and Respiratory System KidsHealth > For Teens > Lungs and Respiratory System A ... didn't breathe, you couldn't live. Lungs & Respiratory System Basics Each day we breathe about 20,000 ...

  13. Prevalence of avian respiratory viruses in broiler flocks in Egypt.

    PubMed

    Hassan, Kareem E; Shany, Salama A S; Ali, A; Dahshan, Al-Hussien M; El-Sawah, Azza A; El-Kady, Magdy F

    2016-06-01

    In this study, respiratory viral pathogens were screened using real-time RT-PCR in 86 broiler chicken flocks suffering from respiratory diseases problems in 4 Egyptian governorates between January 2012 and February 2014. The mortality rates in the investigated flocks ranged from 1 to 47%. Results showed that mixed infection represented 66.3% of the examined flocks. Mixed infectious bronchitis (IBV) and avian influenza (AI)-H9N2 viruses were the most common infection (41.7%). Lack of AI-H9N2 vaccination and high rates of mixed infections in which AI-H9N2 is involved indicate an early AI-H9N2 infection with a potential immunosuppressive effect that predisposes for other viral infections. High pathogenic AI-H5N1 and virulent Newcastle disease virus (vNDV) infections were also detected (26.7% and 8.1%, respectively). Interestingly, co-infection of AI-H9N2 with either AIV-H5N1 or vNDV rarely resulted in high mortality. Partial cell-mediated immunity against similar internal AI genes, as well as virus interference between AI and vNDV, could be an explanation for this. Highly prevalent IBV and AI-H9N2 were isolated and were molecularly characterized based on S1 gene hypervariable region 3 ( HVR3: ) and hemagglutinin gene (HA) sequences, respectively. IBV strains were related to the variant group of IBV with multiple mutations in HVR3. Though AI-H9N2 viruses showed low rate of evolution in comparison to recent strains, few amino acid substitutions indicative of antibody selection pressure were observed in the HA gene. In conclusion, mixed viral infections, especially with IBV and AI-H9N2 viruses, are the predominant etiology of respiratory disease problems in broiler chickens in Egypt. Further investigations of the role of AI, IBV, and ND viruses' co-infections and interference in terms of altering the severity of clinical signs and lesions and/or generating novel reassortants within each virus are needed.

  14. The Avian Proglucagon System

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Understanding how the proglucagon system functions in maintaining glycemic control and energy balance in birds, as well as defining its specific roles in regulating metabolism, gastrointestinal tract function and food intake requires detailed knowledge of the components that comprise this system. T...

  15. The Avian Proghrelin System

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To understand how the proghrelin system functions in regulating growth hormone release and food intake as well as defining its pleiotropic roles in such diverse physiological processes as energy homeostasis, gastrointestinal tract function and reproduction requires detailed knowledge of the structur...

  16. Efficacy of disinfectants and hand sanitizers against avian respiratory viruses.

    PubMed

    Patnayak, Devi P; Prasad, A Minakshi; Malik, Yashpal S; Ramakrishnan, M A; Goyal, Sagar M

    2008-06-01

    Disinfectants play a major role in the control of animal diseases by decontaminating the farm environment. We evaluated the virucidal efficacy of nine commonly used disinfectants on a nonporous surface contaminated experimentally with avian metapneumovirus (aMPV), avian influenza virus, or Newcastle disease virus (NDV). Phenolic compounds and glutaraldehyde were found to be the most effective against all three viruses. Quaternary ammonium compounds were effective against aMPV but not against the other two viruses. In addition, efficacy of commercially available hand sanitizers was evaluated on human fingers contaminated with aMPV and NDV. All three hand sanitizers tested were found to be effective against both viruses within 1 min of application on fingers.

  17. Your Lungs and Respiratory System

    MedlinePlus

    ... dientes Video: Getting an X-ray Your Lungs & Respiratory System KidsHealth > For Kids > Your Lungs & Respiratory System Print A A A What's in this article? ... in your body, and they work with your respiratory system to allow you to take in fresh air, ...

  18. Respiratory mechanics of eleven avian species resident at high and low altitude.

    PubMed

    York, Julia M; Chua, Beverly A; Ivy, Catherine M; Alza, Luis; Cheek, Rebecca; Scott, Graham R; McCracken, Kevin G; Frappell, Peter B; Dawson, Neal J; Laguë, Sabine L; Milsom, William K

    2017-03-15

    The metabolic cost of breathing at rest has never been successfully measured in birds, but has been hypothesized to be higher than in mammals of a similar size because of the rocking motion of the avian sternum being encumbered by the pectoral flight muscles. To measure the cost and work of breathing, and to investigate whether species resident at high altitude exhibit morphological or mechanical changes that alter the work of breathing, we studied 11 species of waterfowl: five from high altitudes (>3000 m) in Perú, and six from low altitudes in Oregon, USA. Birds were anesthetized and mechanically ventilated in sternal recumbency with known tidal volumes and breathing frequencies. The work done by the ventilator was measured, and these values were applied to the combinations of tidal volumes and breathing frequencies used by the birds to breathe at rest. We found the respiratory system of high-altitude species to be of a similar size, but consistently more compliant than that of low-altitude sister taxa, although this did not translate to a significantly reduced work of breathing. The metabolic cost of breathing was estimated to be between 1 and 3% of basal metabolic rate, as low or lower than estimates for other groups of tetrapods.

  19. Human and Avian Influenza Viruses Target Different Cells in the Lower Respiratory Tract of Humans and Other Mammals

    PubMed Central

    van Riel, Debby; Munster, Vincent J.; de Wit, Emmie; Rimmelzwaan, Guus F.; Fouchier, Ron A.M.; Osterhaus, Albert D.M.E.; Kuiken, Thijs

    2007-01-01

    Viral attachment to the host cell is critical for tissue and species specificity of virus infections. Recently, pattern of viral attachment (PVA) in human respiratory tract was determined for highly pathogenic avian influenza virus of subtype H5N1. However, PVA of human influenza viruses and other avian influenza viruses in either humans or experimental animals is unknown. Therefore, we compared PVA of two human influenza viruses (H1N1 and H3N2) and two low pathogenic avian influenza viruses (H5N9 and H6N1) with that of H5N1 virus in respiratory tract tissues of humans, mice, ferrets, cynomolgus macaques, cats, and pigs by virus histochemistry. We found that human influenza viruses attached more strongly to human trachea and bronchi than H5N1 virus and attached to different cell types than H5N1 virus. These differences correspond to primary diagnoses of tracheobronchitis for human influenza viruses and diffuse alveolar damage for H5N1 virus. The PVA of low pathogenic avian influenza viruses in human respiratory tract resembled that of H5N1 virus, demonstrating that other properties determine its pathogenicity for humans. The PVA in human respiratory tract most closely mirrored that in ferrets and pigs for human influenza viruses and that in ferrets, pigs, and cats for avian influenza viruses. PMID:17717141

  20. Respiratory transmission of an avian H3N8 influenza virus isolated from a harbour seal

    USGS Publications Warehouse

    Karlsson, Erik A.; Ip, Hon S.; Hall, Jeffrey S.; Yoon, Sun W.; Johnson, Jordan; Beck, Melinda A.; Webby, Richard J.; Schultz-Cherry, Stacey

    2014-01-01

    The ongoing human H7N9 influenza infections highlight the threat of emerging avian influenza viruses. In 2011, an avian H3N8 influenza virus isolated from moribund New England harbour seals was shown to have naturally acquired mutations known to increase the transmissibility of highly pathogenic H5N1 influenza viruses. To elucidate the potential human health threat, here we evaluate a panel of avian H3N8 viruses and find that the harbour seal virus displays increased affinity for mammalian receptors, transmits via respiratory droplets in ferrets and replicates in human lung cells. Analysis of a panel of human sera for H3N8 neutralizing antibodies suggests that there is no population-wide immunity to these viruses. The prevalence of H3N8 viruses in birds and multiple mammalian species including recent isolations from pigs and evidence that it was a past human pandemic virus make the need for surveillance and risk analysis of these viruses of public health importance.

  1. Assessing Respiratory System Mechanical Function.

    PubMed

    Restrepo, Ruben D; Serrato, Diana M; Adasme, Rodrigo

    2016-12-01

    The main goals of assessing respiratory system mechanical function are to evaluate the lung function through a variety of methods and to detect early signs of abnormalities that could affect the patient's outcomes. In ventilated patients, it has become increasingly important to recognize whether respiratory function has improved or deteriorated, whether the ventilator settings match the patient's demand, and whether the selection of ventilator parameters follows a lung-protective strategy. Ventilator graphics, esophageal pressure, intra-abdominal pressure, and electric impedance tomography are some of the best-known monitoring tools to obtain measurements and adequately evaluate the respiratory system mechanical function.

  2. Induction of respiratory immune responses in the chicken; implications for development of mucosal avian influenza virus vaccines.

    PubMed

    de Geus, Eveline D; Rebel, Johanna M J; Vervelde, Lonneke

    2012-06-01

    The risk and the size of an outbreak of avian influenza virus (AIV) could be restricted by vaccination of poultry. A vaccine used for rapid intervention during an AIV outbreak should be safe, highly effective after a single administration and suitable for mass application. In the case of AIV, aerosol vaccination using live virus is not desirable because of its zoonotic potential and because of the risk for virus reassortment. The rational design of novel mucosal-inactivated vaccines against AIV requires a comprehensive knowledge of the structure and function of the lung-associated immune system in birds in order to target vaccines appropriately and to design efficient mucosal adjuvants. This review addresses our current understanding of the induction of respiratory immune responses in the chicken. Furthermore, possible mucosal vaccination strategies for AIV are highlighted.

  3. Respiratory care management information systems.

    PubMed

    Ford, Richard M

    2004-04-01

    Hospital-wide computerized information systems evolved from the need to capture patient information and perform billing and other financial functions. These systems, however, have fallen short of meeting the needs of respiratory care departments regarding work load assessment, productivity management, and the level of outcome reporting required to support programs such as patient-driven protocols. The respiratory care management information systems (RCMIS) of today offer many advantages over paper-based systems and hospital-wide computer systems. RCMIS are designed to facilitate functions specific to respiratory care, including assessing work demand, assigning and tracking resources, charting, billing, and reporting results. RCMIS incorporate mobile, point-of-care charting and are highly configurable to meet the specific needs of individual respiratory care departments. Important and substantial benefits can be realized with an RCMIS and mobile, wireless charting devices. The initial and ongoing costs of an RCMIS are justified by increased charge capture and reduced costs, by way of improved productivity and efficiency. It is not unusual to recover the total cost of an RCMIS within the first year of its operation. In addition, such systems can facilitate and monitor patient-care protocols and help to efficiently manage the vast amounts of information encountered during the practitioner's workday. Respiratory care departments that invest in RCMIS have an advantage in the provision of quality care and in reducing expenses. A centralized respiratory therapy department with an RCMIS is the most efficient and cost-effective way to monitor work demand and manage the hospital-wide allocation of respiratory care services.

  4. Seasonal and pandemic human influenza viruses attach better to human upper respiratory tract epithelium than avian influenza viruses.

    PubMed

    van Riel, Debby; den Bakker, Michael A; Leijten, Lonneke M E; Chutinimitkul, Salin; Munster, Vincent J; de Wit, Emmie; Rimmelzwaan, Guus F; Fouchier, Ron A M; Osterhaus, Albert D M E; Kuiken, Thijs

    2010-04-01

    Influenza viruses vary markedly in their efficiency of human-to-human transmission. This variation has been speculated to be determined in part by the tropism of influenza virus for the human upper respiratory tract. To study this tropism, we determined the pattern of virus attachment by virus histochemistry of three human and three avian influenza viruses in human nasal septum, conchae, nasopharynx, paranasal sinuses, and larynx. We found that the human influenza viruses-two seasonal influenza viruses and pandemic H1N1 virus-attached abundantly to ciliated epithelial cells and goblet cells throughout the upper respiratory tract. In contrast, the avian influenza viruses, including the highly pathogenic H5N1 virus, attached only rarely to epithelial cells or goblet cells. Both human and avian viruses attached occasionally to cells of the submucosal glands. The pattern of virus attachment was similar among the different sites of the human upper respiratory tract for each virus tested. We conclude that influenza viruses that are transmitted efficiently among humans attach abundantly to human upper respiratory tract, whereas inefficiently transmitted influenza viruses attach rarely. These results suggest that the ability of an influenza virus to attach to human upper respiratory tract is a critical factor for efficient transmission in the human population.

  5. The relationship of severe acute respiratory syndrome coronavirus with avian and other coronaviruses.

    PubMed

    Jackwood, Mark W

    2006-09-01

    In February 2003, a severe acute respiratory syndrome coronavirus (SARS-CoV) emerged in humans in Guangdong Province, China, and caused an epidemic that had severe impact on public health, travel, and economic trade. Coronaviruses are worldwide in distribution, highly infectious, and extremely difficult to control because they have extensive genetic diversity, a short generation time, and a high mutation rate. They can cause respiratory, enteric, and in some cases hepatic and neurological diseases in a wide variety of animals and humans. An enormous, previously unrecognized reservoir of coronaviruses exists among animals. Because coronaviruses have been shown, both experimentally and in nature, to undergo genetic mutations and recombination at a rate similar to that of influenza viruses, it is not surprising that zoonosis and host switching that leads to epidemic diseases have occurred among coronaviruses. Analysis of coronavirus genomic sequence data indicates that SARS-CoV emerged from an animal reservoir. Scientists examining coronavirus isolates from a variety of animals in and around Guangdong Province reported that SARS-CoV has similarities with many different coronaviruses including avian coronaviruses and SARS-CoV-like viruses from a variety of mammals found in live-animal markets. Although a SARS-like coronavirus isolated from a bat is thought to be the progenitor of SARS-CoV, a lack of genomic sequences for the animal coronaviruses has prevented elucidation of the true origin of SARS-CoV. Sequence analysis of SARS-CoV shows that the 5' polymerase gene has a mammalian ancestry; whereas the 3' end structural genes (excluding the spike glycoprotein) have an avian origin. Spike glycoprotein, the host cell attachment viral surface protein, was shown to be a mosaic of feline coronavirus and avian coronavirus sequences resulting from a recombination event. Based on phylogenetic analysis designed to elucidate evolutionary links among viruses, SARS-CoV is believed

  6. A miniaturised respiratory sensor system

    NASA Astrophysics Data System (ADS)

    Hoffmann, U.; Fasoulas, S.; Linnarsson, D.; Paiva, M.; Stoll, R.; Hammer, F.; Stangl, R.; Martinot, Guy

    2005-10-01

    Solid-electrolyte gas sensors, originally designed for residual oxygen detection in low Earth orbit, have provided the basis for developing a multi-function sensor system for respiratory investigations. These sensors allow the detection of oxygen and carbon dioxide partial pressures simultaneously with total flow rates. Moreover, with only minor modifications, other gases of interest in cardio-respiratory testing, such as carbon monoxide and hydrogen, can be detected. The sensors are highly miniaturised and can be positioned in the mainstream of the breath. Thus there is no delay through sample transport. The characteristics of the flow detection are comparable with common sensors used in spirometry. The oxygen and carbon dioxide sensitivities have reached a level that is comparable to or even better than those of mass spectrometers optimised for respiratory analysis. Data from this sensor system allow single-breath or breath-by-breath analysis. Integrated into a portable system, the system provides greater flexibility than other devices, significantly increasing the range of scientific and health-monitoring applications.

  7. Avians as a Model System of Vascular Development

    PubMed Central

    Bressan, Michael; Mikawa, Takashi

    2015-01-01

    Summary For more then 2000 years philosophers and scientists have turned to the avian embryo with questions of how life begins (Aristotle; Needham, 1959). Then, as now, the unique accessibility of the embryo both in terms of acquisition of eggs from domesticated fowl, and ease at which the embryo can be visualized by simply opening the shell, have made avians an appealing and powerful model system for the study of development. Thus, as the field of embryology has evolved through observational, comparative, and experimental embryology, into its current iteration as the cellular and molecular biology of development, avians have remained a useful and practical system of study. PMID:25468608

  8. Effects of Aging on the Respiratory System.

    ERIC Educational Resources Information Center

    Levitzky, Michael G.

    1984-01-01

    Relates alterations in respiratory system functions occurring with aging to changes in respiratory system structure during the course of life. Main alterations noted include loss of alveolar elastic recoil, alteration in chest wall structure and decreased respiratory muscle strength, and loss of surface area and changes in pulmonary circulation.…

  9. Respiratory analysis system and method

    NASA Technical Reports Server (NTRS)

    Liu, F. F. (Inventor)

    1973-01-01

    A system is described for monitoring the respiratory process in which the gas flow rate and the frequency of respiration and expiration cycles can be determined on a real time basis. A face mask is provided with one-way inlet and outlet valves where the gas flow is through independent flowmeters and through a mass spectrometer. The opening and closing of a valve operates an electrical switch, and the combination of the two switches produces a low frequency electrical signal of the respiratory inhalation and exhalation cycles. During the time a switch is operated, the corresponsing flowmeter produces electric pulses representative of the flow rate; the electrical pulses being at a higher frequency than that of the breathing cycle and combined with the low frequency signal. The high frequency pulses are supplied to conventional analyzer computer which also receives temperature and pressure inputs and computes mass flow rate and totalized mass flow of gas. From the mass spectrometer, components of the gas are separately computed as to flow rate. The electrical switches cause operation of up-down inputs of a reversible counter. The respective up and down cycles can be individually monitored and combined for various respiratory measurements.

  10. Avian influenza (fowl plague)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Avian influenza (AI) viruses infect domestic poultry and wild birds. In domestic poultry, AI viruses are typically of low pathogenicity (LP) causing subclinical infections, respiratory disease or drops in egg production. However, a few AI viruses cause severe systemic disease with high mortality; ...

  11. Avian Metapneumoviruses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Avian metapneumovirus (aMPV) is an economically important virus that is the primary causal agent of turkey rhinotracheitis (TRT), also known as avian rhinotracheitis (ART). The virus causes an acute highly contagious infection of the upper respiratory tract in turkeys and was first isolated from tur...

  12. 76 FR 67017 - Notice to Manufacturers of Airport Avian Radar Systems

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-28

    ... Federal Aviation Administration Notice to Manufacturers of Airport Avian Radar Systems AGENCY: Federal Aviation Administration (FAA), U.S. DOT. ACTION: Notice to Manufacturers of Airport Avian Radar Systems... waivers to foreign manufacturers of airport avian radar systems that meet the requirements of FAA...

  13. Novel avian-origin human influenza A(H7N9) can be transmitted between ferrets via respiratory droplets.

    PubMed

    Xu, Lili; Bao, Linlin; Deng, Wei; Dong, Libo; Zhu, Hua; Chen, Ting; Lv, Qi; Li, Fengdi; Yuan, Jing; Xiang, Zhiguang; Gao, Kai; Xu, Yanfeng; Huang, Lan; Li, Yanhong; Liu, Jiangning; Yao, Yanfeng; Yu, Pin; Li, Xiyan; Huang, Weijuan; Zhao, Xiang; Lan, Yu; Guo, Junfeng; Yong, Weidong; Wei, Qiang; Chen, Honglin; Zhang, Lianfeng; Qin, Chuan

    2014-02-15

    The outbreak of human infections caused by novel avian-origin influenza A(H7N9) in China since March 2013 underscores the need to better understand the pathogenicity and transmissibility of these viruses in mammals. In a ferret model, the pathogenicity of influenza A(H7N9) was found to be less than that of an influenza A(H5N1) strain but comparable to that of 2009 pandemic influenza A(H1N1), based on the clinical signs, mortality, virus dissemination, and results of histopathologic analyses. Influenza A(H7N9) could replicate in the upper and lower respiratory tract, the heart, the liver, and the olfactory bulb. It is worth noting that influenza A(H7N9) exhibited a low level of transmission between ferrets via respiratory droplets. There were 4 mutations in the virus isolated from the contact ferret: D678Y in the gene encoding PB2, R157K in the gene encoding hemagglutinin (H3 numbering), I109T in the gene encoding nucleoprotein, and T10I in the gene encoding neuraminidase. These data emphasized that avian-origin influenza A(H7N9) can be transmitted between mammals, highlighting its potential for human-to-human transmissibility.

  14. Auscultation of the respiratory system

    PubMed Central

    Sarkar, Malay; Madabhavi, Irappa; Niranjan, Narasimhalu; Dogra, Megha

    2015-01-01

    Auscultation of the lung is an important part of the respiratory examination and is helpful in diagnosing various respiratory disorders. Auscultation assesses airflow through the trachea-bronchial tree. It is important to distinguish normal respiratory sounds from abnormal ones for example crackles, wheezes, and pleural rub in order to make correct diagnosis. It is necessary to understand the underlying pathophysiology of various lung sounds generation for better understanding of disease processes. Bedside teaching should be strengthened in order to avoid erosion in this age old procedure in the era of technological explosion. PMID:26229557

  15. The anatomy and physiology of the avian endocrine system.

    PubMed

    Ritchie, Midge; Pilny, Anthony A

    2008-01-01

    The endocrine system of birds is comparable to that of mammals, although there are many unique aspects to consider when studying the anatomy, physiology, and biochemistry. Avian endocrinology is a field of veterinary medicine that is unfamiliar to many practitioners; however, it is important to have a comprehensive understanding when evaluating companion birds in clinical practice. This article covers the anatomy and physiology of the normal avian, and readers are referred to other articles for a more detailed explanation of altered physiology and pathology.

  16. Respiratory system involvement in Costello syndrome.

    PubMed

    Gomez-Ospina, Natalia; Kuo, Christin; Ananth, Amitha Lakshmi; Myers, Angela; Brennan, Marie-Luise; Stevenson, David A; Bernstein, Jonathan A; Hudgins, Louanne

    2016-07-01

    Costello syndrome (CS) is a multisystem disorder caused by heterozygous germline mutations in the HRAS proto-oncogene. Respiratory system complications have been reported in individuals with CS, but a comprehensive description of the full spectrum and incidence of respiratory symptoms in these patients is not available. Here, we report the clinical course of four CS patients with respiratory complications as a major cause of morbidity. Review of the literature identified 56 CS patients with descriptions of their neonatal course and 17 patients in childhood/adulthood. We found that in the neonatal period, respiratory complications are seen in approximately 78% of patients with transient respiratory distress reported in 45% of neonates. Other more specific respiratory diagnoses were reported in 62% of patients, the majority of which comprised disorders of the upper and lower respiratory tract. Symptoms of upper airway obstruction were reported in CS neonates but were more commonly diagnosed in childhood/adulthood (71%). Analysis of HRAS mutations and their respiratory phenotype revealed that the common p.Gly12Ser mutation is more often associated with transient respiratory distress and other respiratory diagnoses. Respiratory failure and dependence on mechanical ventilation occurs almost exclusively with rare mutations. In cases of prenatally diagnosed CS, the high incidence of respiratory complications in the neonatal period should prompt anticipatory guidance and development of a postnatal management plan. This may be important in cases involving rarer mutations. Furthermore, the high frequency of airway obstruction in CS patients suggests that otorhinolaryngological evaluation and sleep studies should be considered. © 2016 Wiley Periodicals, Inc.

  17. Infectious bronchitis virus in different avian physiological systems-a field study in Brazilian poultry flocks.

    PubMed

    Balestrin, Eder; Fraga, Aline P; Ikuta, Nilo; Canal, Cláudio W; Fonseca, André S K; Lunge, Vagner R

    2014-08-01

    Avian infectious bronchitis is a highly contagious viral disease with economic effects on poultry agribusiness. The disease presents multi-systemic clinical signs (respiratory, renal, enteric, and reproductive) and is caused by one coronavirus (infectious bronchitis virus, IBV). Infectious bronchitis virus is classified into different serotypes and genotypes (vaccine strains and field variants). This study aimed to evaluate the occurrence of IBV in commercial poultry flocks from 3 important producing regions in Brazil and to determine the tropism of the main circulating genotypes to 3 different avian physiological systems (respiratory, digestive, urinary/reproductive). Clinical samples with suggestive signs of IBV infection were collected from 432 different poultry commercial flocks (198 from broilers and 234 from breeders). The total number of biological samples consisted of organ pools from the 3 above physiological systems obtained of farms from 3 important producing regions: midwest, northeast, and south. Infectious bronchitis virus was detected by reverse-transcription, real-time PCR of the 5' untranslated region. The results showed 179 IBV-positive flocks (41.4% of the flocks), with 107 (24.8%) from broilers and 72 (16.8%) from breeders. There were similar frequencies of IBV-positive flocks in farms from different regions of the country, most often in broilers (average 54%) compared with breeders (average 30.8%). reverse-transcription was more frequently detected in the digestive system of breeders (40%), and in the digestive (43.5%) and respiratory (37.7%) systems of broilers. Infectious bronchitis virus genotyping was performed by a reverse-transcription nested PCR and sequencing of the S1 gene from a selection of 79 IBV-positive flocks (45 from broilers and 34 from breeders). The majority of the flocks were infected with Brazilian variant genotype than with Massachusetts vaccine genotype. These results demonstrate the predominance of the Brazilian variant

  18. Investigations of respiratory control systems simulation

    NASA Technical Reports Server (NTRS)

    Gallagher, R. R.

    1973-01-01

    The Grodins' respiratory control model was investigated and it was determined that the following modifications were necessary before the model would be adaptable for current research efforts: (1) the controller equation must be modified to allow for integration of the respiratory system model with other physiological systems; (2) the system must be more closely correlated to the salient physiological functionings; (3) the respiratory frequency and the heart rate should be expanded to illustrate other physiological relationships and dependencies; and (4) the model should be adapted to particular individuals through a better defined set of initial parameter values in addition to relating these parameter values to the desired environmental conditions. Several of Milhorn's respiratory control models were also investigated in hopes of using some of their features as modifications for Grodins' model.

  19. Evaluation of exercise-respiratory system modifications and preliminary respiratory-circulatory system integration scheme

    NASA Technical Reports Server (NTRS)

    Gallagher, R. R.

    1974-01-01

    The respiratory control system, functioning as an independent system, is presented with modifications of the exercise subroutine. These modifications illustrate an improved control of ventilation rates and arterial and compartmental gas tensions. A very elementary approach to describing the interactions of the respiratory and circulatory system is presented.

  20. Avian biological clock - Immune system relationship.

    PubMed

    Markowska, Magdalena; Majewski, Paweł M; Skwarło-Sońta, Krystyna

    2017-01-01

    Biological rhythms in birds are driven by the master clock, which includes the suprachiasmatic nucleus, the pineal gland and the retina. Light/dark cycles are the cues that synchronize the rhythmic changes in physiological processes, including immunity. This review summarizes our investigations on the bidirectional relationships between the chicken pineal gland and the immune system. We demonstrated that, in the chicken, the main pineal hormone, melatonin, regulates innate immunity, maintains the rhythmicity of immune reactions and is involved in the seasonal changes in immunity. Using thioglycollate-induced peritonitis as a model, we showed that the activated immune system regulates the pineal gland by inhibition of melatonin production at the level of the key enzyme in its biosynthetic pathway, arylalkylamine-N-acetyltransferase (AANAT). Interleukin 6 and interleukin 18 seem to be the immune mediators influencing the pineal gland, directly inhibiting Aanat gene transcription and modulating expression of the clock genes Bmal1 and Per3, which in turn regulate Aanat.

  1. Novel Avian-Origin Influenza A (H7N9) Virus Attaches to Epithelium in Both Upper and Lower Respiratory Tract of Humans

    PubMed Central

    van Riel, Debby; Leijten, Lonneke M.E.; de Graaf, Miranda; Siegers, Jurre Y.; Short, Kirsty R.; Spronken, Monique I.J.; Schrauwen, Eefje J.A.; Fouchier, Ron A.M.; Osterhaus, Albert D.M.E.; Kuiken, Thijs

    2014-01-01

    Influenza A viruses from animal reservoirs have the capacity to adapt to humans and cause influenza pandemics. The occurrence of an influenza pandemic requires efficient virus transmission among humans, which is associated with virus attachment to the upper respiratory tract. Pandemic severity depends on virus ability to cause pneumonia, which is associated with virus attachment to the lower respiratory tract. Recently, a novel avian-origin H7N9 influenza A virus with unknown pandemic potential emerged in humans. We determined the pattern of attachment of two genetically engineered viruses containing the hemagglutinin of either influenza virus A/Shanghai/1/13 or A/Anhui/1/13 to formalin-fixed human respiratory tract tissues using histochemical analysis. Our results show that the emerging H7N9 virus attached moderately or abundantly to both upper and lower respiratory tract, a pattern not seen before for avian influenza A viruses. With the caveat that virus attachment is only the first step in the virus replication cycle, these results suggest that the emerging H7N9 virus has the potential both to transmit efficiently among humans and to cause severe pneumonia. PMID:24029490

  2. Biotransport in the human respiratory system.

    PubMed

    Elad, D

    1999-01-01

    The human respiratory system is an 'open' organ, which is designed to exchange oxygen and carbon dioxide between the circulating blood and the external environment. This gas exchange is successfully accomplished via a set of transport phenomena comprised of oscillatory air flow, heat and water vapor exchange, mucus transport and air-blood gas exchange all of which take place in a complex geometry that undergoes large changes. These transport phenomena occur simultaneously to supply the body's need for oxygen in different physiological conditions and/or environments, while defending it from external hazards. The need for better comprehension of the mechanisms involved in pulmonary diseases and for advanced techniques for both diagnosis and intervention stimulated numerous studies of the different biotransport processes that take place in the human respiratory system.

  3. Non lineal respiratory systems mechanics simulation of acute respiratory distress syndrome during mechanical ventilation.

    PubMed

    Madorno, Matias; Rodriguez, Pablo O

    2010-01-01

    Model and simulation of biological systems help to better understand these systems. In ICUs patients often reach a complex situation where supportive maneuvers require special expertise. Among them, mechanical ventilation in patients suffering from acuter respiratory distress syndrome (ARDS) is specially challenging. This work presents a model which can be simulated and use to help in training of physicians and respiratory therapists to analyze the respiratory mechanics in this kind of patients. We validated the model in 2 ARDS patients.

  4. Supramolecular organization in prokaryotic respiratory systems.

    PubMed

    Magalon, Axel; Arias-Cartin, Rodrigo; Walburger, Anne

    2012-01-01

    Prokaryotes are characterized by an extreme flexibility of their respiratory systems allowing them to cope with various extreme environments. To date, supramolecular organization of respiratory systems appears as a conserved evolutionary feature as supercomplexes have been isolated in bacteria, archaea, and eukaryotes. Most of the yet identified supercomplexes in prokaryotes are involved in aerobic respiration and share similarities with those reported in mitochondria. Supercomplexes likely reflect a snapshot of the cellular respiration in a given cell population. While the exact nature of the determinants for supramolecular organization in prokaryotes is not understood, lipids, proteins, and subcellular localization can be seen as key players. Owing to the well-reported supramolecular organization of the mitochondrial respiratory chain in eukaryotes, several hypotheses have been formulated to explain the consequences of such arrangement and can be tested in the context of prokaryotes. Considering the inherent metabolic flexibility of a number of prokaryotes, cellular distribution and composition of the supramolecular assemblies should be studied in regards to environmental signals. This would pave the way to new concepts in cellular respiration.

  5. Severe acute respiratory syndrome vaccine development: experiences of vaccination against avian infectious bronchitis coronavirus.

    PubMed

    Cavanagh, Dave

    2003-12-01

    Vaccines against infectious bronchitis of chickens (Gallus gallus domesticus) have arguably been the most successful, and certainly the most widely used, of vaccines for diseases caused by coronaviruses, the others being against bovine, canine, feline and porcine coronaviruses. Infectious bronchitis virus (IBV), together with the genetically related coronaviruses of turkey (Meleagris gallopovo) and ring-necked pheasant (Phasianus colchicus), is a group 3 coronavirus, severe acute respiratory syndrome (SARS) coronavirus being tentatively in group 4, the other known mammalian coronaviruses being in groups 1 and 2. IBV replicates not only in respiratory tissues (including the nose, trachea, lungs and airsacs, causing respiratory disease), but also in the kidney (associated with minor or major nephritis), oviduct, and in many parts of the alimentary tract--the oesophagus, proventriculus, duodenum, jejunum, bursa of Fabricius, caecal tonsils (near the distal end of the tract), rectum and cloaca (the common opening for release of eggs and faeces), usually without clinical effects. The virus can persist, being re-excreted at the onset of egg laying (4 to 5 months of age), believed to be a consequence of the stress of coming into lay. Genetic lines of chickens differ in the extent to which IBV causes mortality in chicks, and in respect of clearance of the virus after the acute phase. Live attenuated (by passage in chicken embryonated eggs) IBV strains were introduced as vaccines in the 1950s, followed a couple of decades later by inactivated vaccines for boosting protection in egg-laying birds. Live vaccines are usually applied to meat-type chickens at 1 day of age. In experimental situations this can result in sterile immunity when challenged by virulent homologous virus. Although 100% of chickens may be protected (against clinical signs and loss of ciliary activity in trachea), sometimes 10% of vaccinated chicks do not respond with a protective immune response

  6. Evolution of the respiratory system in nonavian theropods: evidence from rib and vertebral morphology.

    PubMed

    Schachner, Emma R; Lyson, Tyler R; Dodson, Peter

    2009-09-01

    Recent reports of region-specific vertebral pneumaticity in nonavian theropod dinosaurs have brought attention to the hypothesis that these animals possessed an avian-style respiratory system with flow-through ventilation. This study explores the thoracic rib and vertebral anatomy of Sinraptor, Allosaurus, Tyrannosaurus, and Deinonychus; four nonavian theropods that all show well-preserved thoracic vertebrae and ribs. Comparisons to the osteology and soft tissue anatomy of extant saurians provide new evidence supporting the hypothesis of flow-through ventilation in nonavian theropods. Analyses of diapophyseal and parapophyseal position and thoracic rib morphology suggest that most nonavian theropods possessed lungs that were deeply incised by the adjacent bicapitate thoracic ribs. This functionally constrains the lungs as rigid nonexpansive organs that were likely ventilated by accessory nonvascularized air sacs. The axial anatomy of this group also reveals that a crocodilian-like hepatic-piston lung would be functionally and biomechanically untenable. Taken together with the evidence that avian-like air sacs were present in basal theropods, these data lead us to conclude that an avian-style pulmonary system was likely a universal theropod trait.

  7. Hypothermia and physiological control: the respiratory system.

    PubMed

    Frappell, P

    1998-02-01

    1. Ventilation (VE) in unanaesthetized hypothermic animals remains tightly coupled to oxygen consumption (VO2) such that VE/VO2 remains constant despite changes in body temperature. 2. Ventilatory responses to hypoxia would suggest that, relative to metabolic rate, the gain of the respiratory system is unaltered in hypothermic animals. 3. Future studies should exercise care to ensure that the method applied in inducing hypothermia does not complicate ventilatory control and that the ability of the species to hibernate is taken into consideration.

  8. Respiratory system mechanics in acute respiratory distress syndrome.

    PubMed

    Kallet, Richard H; Katz, Jeffrey A

    2003-09-01

    Respiratory mechanics research is important to the advancement of ARDS management. Twenty-eight years ago, research on the effects of PEEP and VT indicated that the lungs of ARDS patients did not behave in a manner consistent with homogenously distributed lung injury. Both Suter and colleagues] and Katz and colleagues reported that oxygenation continued to improve as PEEP increased (suggesting lung recruitment), even though static Crs decreased and dead-space ventilation increased (suggesting concurrent lung overdistension). This research strongly suggested that without VT reduction, the favorable effects of PEEP on lung recruitment are offset by lung overdistension at end-inspiration. The implications of these studies were not fully appreciated at that time, in part because the concept of ventilator-associated lung injury was in its nascent state. Ten years later. Gattinoni and colleagues compared measurements of static pressure-volume curves with FRC and CT scans of the chest in ARDS. They found that although PEEP recruits collapsed (primarily dorsal) lung segments, it simultaneously causes overdistension of non-dependent, inflated lung regions. Furthermore, the specific compliance of the aerated, residually healthy lung tissue is essentially normal. The main implication of these findings is that traditional mechanical ventilation practice was injecting excessive volumes of gas into functionally small lungs. Therefore, the emblematic low static Crs measured in ARDS reflects not only surface tension phenomena and recruitment of collapsed airspaces but also overdistension of the remaining healthy lung. The studies reviewed in this article support the concept that lung injury in ARDS is heterogeneously distributed, with resulting disparate mechanical stresses, and indicate the additional complexity from alterations in chest wall mechanics. Most of these studies, however, were published before lung-protective ventilation. Therefore, further studies are needed to

  9. A respiratory compensating system: design and performance evaluation.

    PubMed

    Chuang, Ho-Chiao; Huang, Ding-Yang; Tien, Der-Chi; Wu, Ren-Hong; Hsu, Chung-Hsien

    2014-05-08

    This study proposes a respiratory compensating system which is mounted on the top of the treatment couch for reverse motion, opposite from the direction of the targets (diaphragm and hemostatic clip), in order to offset organ displacement generated by respiratory motion. Traditionally, in the treatment of cancer patients, doctors must increase the field size for radiation therapy of tumors because organs move with respiratory motion, which causes radiation-induced inflammation on the normal tissues (organ at risk (OAR)) while killing cancer cells, and thereby reducing the patient's quality of life. This study uses a strain gauge as a respiratory signal capture device to obtain abdomen respiratory signals, a proposed respiratory simulation system (RSS) and respiratory compensating system to experiment how to offset the organ displacement caused by respiratory movement and compensation effect. This study verifies the effect of the respiratory compensating system in offsetting the target displacement using two methods. The first method uses linac (medical linear accelerator) to irradiate a 300 cGy dose on the EBT film (GAFCHROMIC EBT film). The second method uses a strain gauge to capture the patients' respiratory signals, while using fluoroscopy to observe in vivo targets, such as a diaphragm, to enable the respiratory compensating system to offset the displacements of targets in superior-inferior (SI) direction. Testing results show that the RSS position error is approximately 0.45 ~ 1.42 mm, while the respiratory compensating system position error is approximately 0.48 ~ 1.42 mm. From the EBT film profiles based on different input to the RSS, the results suggest that when the input respiratory signals of RSS are sine wave signals, the average dose (%) in the target area is improved by 1.4% ~ 24.4%, and improved in the 95% isodose area by 15.3% ~ 76.9% after compensation. If the respiratory signals input into the RSS respiratory signals are actual human respiratory

  10. [The environment and human respiratory system].

    PubMed

    Nikodemowicz, Marian

    2008-01-01

    The process of gas exchange that is breathing is an important element of any person's relation with the environment. What decides about our health and life are the respiratory systems responsible for the breathing process and the quality of the air we breathe. On an average through a person's life 400 millions liters of air flows which carries pollution in the form of constant gases and liquid particles. Particles of about PM-2.5 size get into the deepest structures of the respiratory system from which they are being spread into the whole organism through circulation exerting thier toxic effect on all tissues and organs. The outdoor pollution diffuses but in certain local circumstances it increases. It was so in big ecological disasters such as in 1930 in the Mozy valley in Belgium, in 1948 in the Donory region in the USA and in 1952 smog pollution in London. On an average any human being spends indoors about 60-80% of his time. The increased concentration of pollution occurs indoors and there is a possibility of exposing oneself to ETS- Environmental Tobacco Smoke. The biggest concentration of inhaled pollution takes place when smoking tobacco. Pollution of air causes diseases of the respiratory system, cardiovascular system, tumours and others. Frequent occurrence of COPD in certain areas correlates with the level of air pollution and it significantly increases in tobacco smokers. The number and frequency of bronchial asthma and the need for hospitalization depends on air pollution. Lung cancer cases were rarely described in literature before the area of industrialization and wide spread custom of tobacco smoking. Now it is the most frequently occurred cancer in the whole world. There is an interdependence of the density of population, of the number of smoked cigarettes and of density of pollution with the number lung cancer cases. It is hoped that in the future, smoking habits will be eliminated, the use of crude oil and coal will be replaced by hydroelectric

  11. Citation classics: Top 50 cited articles in 'respiratory system'.

    PubMed

    Tam, Wilson W S; Wong, Eliza L Y; Wong, Faye C Y; Hui, David S C

    2013-01-01

    Identifying citation classics in the field is one of the key methodologies used to conduct a systematic evaluation of research performance. The objective of this study was to determine the most frequently cited articles published in journals that are placed under the 'respiratory system' subject category (Institute for Scientific Information (ISI) Journal Citation Reports) and to compare them with the most frequently cited respiratory-related articles published in any journal, regardless of subject category. The authors utilized the ISI Journal Citation Reports: Science Edition 2010 database in April 2012 to determine the most frequently cited articles by respiratory system subject category and by respiratory-related keywords. The top 50 most-cited articles were identified in each category and evaluated according to various characteristics. The majority of these papers originated from the United States. The median numbers of citations for the top 50 cited articles stratified by respiratory system subject category and respiratory-related keywords were 841.5 and 2701, respectively. Half of the top 50 cited articles identified by respiratory-related keywords were published in general medical or basic science journals, whereas only three out of these were published in journals under the respiratory system subject category in ISI Journal Citation Reports. In summary, respiratory-related articles published in general medical or science journals attracted more citations than those published in the specific respiratory journals.

  12. The Lung Surfactant System in Adult Respiratory Distress Syndrome.

    DTIC Science & Technology

    1979-12-01

    TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERo THE LUNG SURFACTANT SYSTEM IN ADULT RESPIRATORY Annual DISTRESS SYNDROME 6. PERFORMING ORO. REPORT...SURFACTANT SYSTEM IN ADULT RESPIRATORY DISTRESS SYNDROME - Annual Progress Report John U. Balis December 1979 Sponsored by: US ARMY MEDICAL RESEARCH AND...112-116, 1979. 6. Hallman, M., Feldman, B.H., Kirkpatrick, E. and Gluck, L.: Absence of phosphatidylglycerol (PG) in respiratory distress syndrome in

  13. Endocan and the respiratory system: a review

    PubMed Central

    Kechagia, Maria; Papassotiriou, Ioannis; Gourgoulianis, Konstantinos I

    2016-01-01

    Endocan, formerly called endothelial cell-specific molecule 1, is an endothelial cell-associated proteoglycan that is preferentially expressed by renal and pulmonary endothelium. It is upregulated by proangiogenic molecules as well as by pro-inflammatory cytokines, and since it reflects endothelial activation and dysfunction, it is regarded as a novel tissue and blood-based relevant biomarker. As such, it is increasingly being researched and evaluated in a wide spectrum of healthy and disease pathophysiological processes. Here, we review the present scientific knowledge on endocan, with emphasis on the evidence that underlines its possible clinical value as a prognostic marker in several malignant, inflammatory and obstructive disorders of the respiratory system. PMID:28003744

  14. Avian Soft Tissue Surgery.

    PubMed

    Guzman, David Sanchez-Migallon

    2016-01-01

    Basic surgical instrumentation for avian soft tissue surgery includes soft tissue retractors, microsurgical instrumentation, surgical loupes, and head-mounted lights. Hemostasis is fundamental during the surgical procedures. The indications, approach, and complications associated with soft tissue surgeries of the integumentary (digit constriction repair, feather cyst excision, cranial wound repair, sternal wound repair, uropygial gland excision), gastrointestinal (ingluviotomy, crop biopsy, crop burn repair, celiotomy, coelomic hernia and pseudohernia repair, proventriculotomy, ventriculotomy, enterotomy, intestinal resection and anastomosis, cloacoplasty, cloacopexy), respiratory (rhinolith removal, sinusotomy, tracheotomy, tracheal resection and anastomosis, tracheostomy, pneumonectomy) and reproductive (ovocentesis, ovariectomy, salpingohysterectomy, cesarean section, orchidectomy, vasectomy, phallectomy) systems are reviewed.

  15. Physical examination of the respiratory system.

    PubMed

    Sharp, Claire R; Rozanski, Elizabeth A

    2013-08-01

    This article reviews the approach to a patient with respiratory distress, with a focus on clues obtained from the physical examination. Respiratory distress is a common reason for presentation of a companion animal to a veterinarian on an emergency basis, and thus the clinician should have a comfort level with the approach to these patients. Our discussion includes a basic review of respiratory pathophysiology and the differential diagnoses for hypoxemia. In the majority of cases, physical examination should allow localization of the cause of the respiratory problem to the upper airways, lower airways, pleural space, or pulmonary parenchyma. Such localization, coupled with signalment and historical clues, guides additional diagnostics and therapeutics based on the most likely differential diagnoses. Although managing a patient with respiratory distress can be challenging, a systematic approach such as the one presented here should ensure appropriate intervention in a timely fashion and maximize the chance of a good outcome.

  16. Respiratory and systemic mycoses: an overview.

    PubMed

    Randhawa, H S

    2000-01-01

    Respiratory and systemic mycoses are globally emerging as a problem of increasing importance in infectious diseases. This is attributed to the growing population of immunocompromised patients due to epidemic outbreak of AIDS or to other factors such as use of immunosuppressive drugs in recipients of organ transplantation. The available evidence has unequivocally established the endemic occurrence of blastomycosis, histoplasmosis and penicilliosis mameffei in India. In fact, pencilliosis marneffei has emerged as a major endemic mycosis of AIDS patients in Southeast Asia. It has manifestations simulating those of histoplasmosis capsulati, and it may spread to other regions with enlarging population of AIDS patients. Comprehensive studies are indicated in order to delineate the endemic areas of the afore-mentioned systemic mycoses. Among the other important systemic mycoses reported from India are aspergillosis, cryptococcosis, candidiasis and zygomycosis. Our current knowledge of the global distribution of systemic mycoses does not depict their true prevalence. It largely reflects the geographic distribution of medical mycologists or other investigators engaged in the study of fungal diseases and their research interests. Invasive aspergillosis has emerged as an important disease in patients with neutropenia and bone narrow transplant recipients, cryptoccosis, penicilliosis marneffei and pneumocystosis in patients with AIDS, fusariosis in patients with leukaemia receiving cytotoxic therapy, zygomycosis in diabetic patients and in patients on defroxamine therapy, and Malasseziafurfur infection in patients on total parenteral nutrition: Opportunistic systemic mycoses due to yeasts and yeast-like fungi have become commoner than those due to filamentous fungi, occupying fourth position in the list of bloodstream pathogens in some centers in USA. Also, their incidence, pattern of clinical presentations and species spectrum have significantly changed, largely due to more

  17. The cellular endosomal sorting complex required for transport pathway is not involved in avian metapneumovirus budding in a virus-like-particle expression system.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Avian metapneumovirus (AMPV) is a paramyxovirus that principally causes respiratory disease and egg production drops in turkeys and chickens. Together with its closely related human metapneumovirus (HMPV), they comprise the genus metapneumovirus in the Paramyxoviridae family. Little is currently kno...

  18. Creating clinical decision support systems for respiratory medicine.

    PubMed

    Tams, Carl G; Euliano, Neil R

    2015-01-01

    Clinical decision support systems are vital for advances in improving patient therapeutic care. We share lessons learned from creating two respiratory clinical decisions support systems for ventilating patients in a critical care setting.

  19. A Mathematical Model of the Human Respiratory Control System

    PubMed Central

    Milhorn, Howard T.; Benton, Richard; Ross, Richard; Guyton, Arthur C.

    1965-01-01

    The respiratory system exhibits the properties of a control system of the regulator type. Equations describing this biological control system have been derived. Transient and steady-state solutions for various CO2 and O2 step input disturbances were obtained utilizing a digital computer and are compared with experimental results. The effectiveness of the respiratory system as a regulator is investigated. Further extensions of the model are suggested. PMID:14284328

  20. Defense mechanisms of the respiratory system and aerosol production systems.

    PubMed

    Zarogoulidis, Paul; Darwiche, Kaid; Yarmus, Lonny; Spyratos, Dionysios; Secen, Nevena; Hohenforst-Schmidt, Wolfgang; Katsikogiannis, Nikolaos; Huang, Haidong; Gschwendtner, Andreas; Zarogoulidis, Konstantinos

    2014-03-01

    Aerosolized therapies have been used in everyday clinical practice for decades. Experimentation with different delivery systems have led to the creation of aerosolized insulin, antibiotics, gene therapy and chemotherapy. Several of these therapies are already clinically available while others are being investigated in active clinical trials. The main factors affecting the efficiency and safety of the aerosolized therapies are the production of the aerosol, distribution/deposition of the aerosol throughout the lung parenchyma, respiratory defense mechanisms and tissue/pharmaceutical molecule interactions. Current methods of aerosol production and distribution will be presented along with an overview of the respiratory defense mechanisms. In addition, methods of aerosol evaluation in conjunction with a future perspective of the potential development of aerosol therapies will be presented.

  1. Avian influenza virus, Streptococcus suis serotype 2, severe acute respiratory syndrome-coronavirus and beyond: molecular epidemiology, ecology and the situation in China

    PubMed Central

    Ma, Ying; Feng, Youjun; Liu, Di; Gao, George F.

    2009-01-01

    The outbreak and spread of severe acute respiratory syndrome-associated coronavirus and the subsequent identification of its animal origin study have heightened the world's awareness of animal-borne or zoonotic pathogens. In addition to SARS, the highly pathogenic avian influenza virus (AIV), H5N1, and the lower pathogenicity H9N2 AIV have expanded their host ranges to infect human beings and other mammalian species as well as birds. Even the ‘well-known’ reservoir animals for influenza virus, migratory birds, became victims of the highly pathogenic H5N1 virus. Not only the viruses, but bacteria can also expand their host range: a new disease, streptococcal toxic shock syndrome, caused by human Streptococcus suis serotype 2 infection, has been observed in China with 52 human fatalities in two separate outbreaks (1998 and 2005, respectively). Additionally, enterohaemorrhagic Escherichia coli O157:H7 infection has increased worldwide with severe disease. Several outbreaks and sporadic isolations of this pathogen in China have made it an important target for disease control. A new highly pathogenic variant of porcine reproductive and respiratory syndrome virus (PRRSV) has been isolated in both China and Vietnam recently; although PRRSV is not a zoonotic human pathogen, its severe outbreaks have implications for food safety. All of these pathogens occur in Southeast Asia, including China, with severe consequences; therefore, we discuss the issues in this article by addressing the situation of the zoonotic threat in China. PMID:19687041

  2. [Parasites of the respiratory system: research and significance (author's transl)].

    PubMed

    De Carneri, I; Trane, F

    1976-01-01

    A review is made of the methods of diagnosing both autochthonous and exotic protozoal and helminthic diseases of the respiratory system. Referring to protozooses, recent findings on respiratory pathology due to amoebae of the genus Acanthamoeba are commented, and modern methods are discussed of checking for Pneumocystis carinii in the patient, not just on autopsy material. Referring to helminthiases, in addition to pulmonary echinococcosis which is of prevalent interest in Italy, attention is also given to the pathology of migrant larvae of nematodes. Finally, the role of some microscopic mites in the pathogenesis of respiratory allergic disease from house dust is discussed.

  3. Rice production systems and avian influenza: Interactions between mixed-farming systems, poultry and wild birds

    USGS Publications Warehouse

    Muzaffar, S.B.; Takekawa, J.Y.; Prosser, D.J.; Newman, S.H.; Xiao, X.

    2010-01-01

    Wild waterfowl are the reservoir for avian influenza viruses (AIVs), a family of RNA viruses that may cause mild sickness in waterbirds. Emergence of H5N1, a highly pathogenic avian influenza (HPAI) strain, causing severe disease and mortality in wild birds, poultry and humans, had raised concerns about the role of wild birds in possible transmission of the disease. In this review, the link between rice production systems, poultry production systems, and wild bird ecology is examined to assess the extent to which these interactions could contribute towards the persistence and evolution of HPAI H5N1. The rice (Oryza sativa) and poultry production systems in Asia described, and then migration and movements of wild birds discussed. Mixed farming systems in Asia and wild bird movement and migration patterns create opportunities for the persistence of low pathogenic AIVs in these systems. Nonetheless, there is no evidence of long-term persistence of HPAI viruses (including the H5N1 subtype) in the wild. There are still significant gaps in the understanding of how AIVs circulate in rice systems. A better understanding of persistence of AIVs in rice farms, particularly of poultry origins, is essential in limiting exchange of AIVs between mixed-farming systems, poultry and wild birds.

  4. Avian influenza pandemic threat and health systems response.

    PubMed

    Bradt, David A; Drummond, Christina M

    2006-01-01

    Avian influenza is a panzootic and recurring human epidemic with pandemic potential. Pandemic requirements for a viral pathogen are: a novel virus must emerge against which the general population has little or no immunity; the new virus must be able to replicate in humans and cause serious illness; and the new virus must be efficiently transmitted from person to person. At present, only the first two conditions have been met. Nonetheless, influenza pandemics are considered inevitable. Expected worldwide human mortality from a moderate pandemic scenario is 45 million people or more than 75% of the current annual global death burden. Although mathematical models have predicted that an emerging pandemic could be contained at its source, this conclusion remains controversial among public health experts. The Terrestrial Animal Health Code and International Health Regulations are enforceable legal instruments integral to pandemic preparedness. Donor support in financial, material and technical assistance remains critical to disease control efforts - particularly in developing countries where avian influenza predominately occurs at present. Personal protective equipment kits, decontamination kits and specimen collection kits in lightweight, portable packages are becoming standardized. Air transport border control measures purporting to delay importation and spread of human avian influenza are scientifically controversial. National pandemic plans prioritize beneficiary access to antiviral drugs and vaccines for some countries. Other medical commodities including ventilators, hospital beds and intensive care units remain less well prioritized in national plans. These resources will play virtually no role in care of the overwhelming majority of patients worldwide in a pandemic. Prehospital care, triage and acute care all require additional professional standardization for the high patient volumes anticipated in a pandemic.

  5. Activity of respiratory system during laser irradiation of brain structures

    NASA Astrophysics Data System (ADS)

    Merkulova, N. A.; Sergeyeva, L. I.

    1984-06-01

    The performance of one of the principal links of the respiratory system, the respiratory center, was studied as a function of the exposure of the medulla oblongata and the sensomotor zone of the cerebral hemisphere cortex to low level laser irradiation in the red wavelength of the spectrum. Experiments were done on white rats under barbital anesthesia. Under such conditions a substantial effect was observed on the activity of the respiratory center. Laser light may display activating or inhibitory influences, in some cases the bilateral symmetry of the activity of the respiratory center is affected indicating deep changes in the integrative mechanism of the functioning of the right and left sides of the hemispheres. The laser beam effect depends on many factors: specific light properties, duration of the exposure, repetition of exposures, initial functional state of the CNS, etc.

  6. Anatomy and physiology of respiratory system relevant to anaesthesia.

    PubMed

    Patwa, Apeksh; Shah, Amit

    2015-09-01

    Clinical application of anatomical and physiological knowledge of respiratory system improves patient's safety during anaesthesia. It also optimises patient's ventilatory condition and airway patency. Such knowledge has influence on airway management, lung isolation during anaesthesia, management of cases with respiratory disorders, respiratory endoluminal procedures and optimising ventilator strategies in the perioperative period. Understanding of ventilation, perfusion and their relation with each other is important for understanding respiratory physiology. Ventilation to perfusion ratio alters with anaesthesia, body position and with one-lung anaesthesia. Hypoxic pulmonary vasoconstriction, an important safety mechanism, is inhibited by majority of the anaesthetic drugs. Ventilation perfusion mismatch leads to reduced arterial oxygen concentration mainly because of early closure of airway, thus leading to decreased ventilation and atelectasis during anaesthesia. Various anaesthetic drugs alter neuronal control of the breathing and bronchomotor tone.

  7. Isolation and characterization of H7N9 avian influenza A virus from humans with respiratory diseases in Zhejiang, China.

    PubMed

    Zhang, Yanjun; Mao, Haiyan; Yan, Juying; Zhang, Lei; Sun, Yi; Wang, Xinying; Chen, Yin; Lu, Yiyu; Chen, Enfu; Lv, Huakun; Gong, Liming; Li, Zhen; Gao, Jian; Xu, Changping; Feng, Yan; Ge, Qiong; Xu, Baoxiang; Xu, Fang; Yang, Zhangnv; Zhao, Guoqiu; Han, Jiankang; Guus, Koch; Li, Hui; Shu, Yuelong; Chen, Zhiping; Xia, Shichang

    2014-08-30

    In 2013, the novel reassortant avian-origin influenza A (H7N9) virus was reported in China. Through enhanced surveillance, infection by the H7N9 virus in humans was first identified in Zhejiang Province. Real-time reverse-transcriptase-polymerase-chain-reaction (RT-PCR) was used to confirm the infection. Embryonated chicken eggs were used for virus isolation from pharyngeal swabs taken from infected human patients. The H7N9 isolates were first identified by the hemagglutination test and electron microscopy, then used for whole genome sequencing. Bioinformatics software was used to construct the phylogenetic tree and for computing the mean rate of evolution of the HA gene in H7Nx and NA in HxN9. Two novel H7N9 avian influenza A viruses (A/Zhejiang/1/2013 and A/Zhejiang/2/2013) were isolated from the positive infection cases. Substitutions were found in both Zhejiang isolates and were identified as human-type viruses. All phylogenetic results indicated that the novel reassortant in H7N9 originated in viruses that infected birds. The sequencing and phylogenetic analysis of the whole genome revealed the mean rate of evolution of the HA gene in H7NX to be 5.74E-3 (95% Highest posterior density: 3.8218E-3 to 7.7873E-3) while the NA gene showed 2.243E-3 (4.378E-4 to 3.79E-3) substitutions per nucleotide site per year. The novel reassortant H7N9 virus was confirmed by molecular methods to have originated in poultry, with the mutations occurring during the spread of the H7N9 virus infection. Live poultry markets played an important role in whole H7N9 circulation.

  8. AVIAN IMMUNOTOXICOLOGY

    EPA Science Inventory

    Methods for studying the avian immune system have matured during the past two decades, with laboratory studies predominating in earlier years and field studies being conducted only in the past decade. One application has been to determine the potential for environmental contamina...

  9. A Review on the Respiratory System Toxicity of Carbon Nanoparticles.

    PubMed

    Pacurari, Maricica; Lowe, Kristine; Tchounwou, Paul B; Kafoury, Ramzi

    2016-03-15

    The respiratory system represents the main gateway for nanoparticles' entry into the human body. Although there is a myriad of engineered nanoparticles, carbon nanoparticles/nanotubes (CNPs/CNTs) have received much attention mainly due to their light weight, very high surface area, durability, and their diverse applications. Since their discovery and manufacture over two decades ago, much has been learned about nanoparticles' interactions with diverse biological system models. In particular, the respiratory system has been of great interest because various natural and man-made fibrous particles are known to be responsible for chronic and debilitating lung diseases. In this review, we present up-to-date the literature regarding the effects of CNTs or carbon nanofibers (CNFs) on the human respiratory system with respect to respiratory toxicity pathways and associated pathologies. This article is intended to emphasize the potentially dangerous effects to the human respiratory system if inadequate measures are used in the manufacture, handling, and preparation and applications of CNP or CNP-based products.

  10. A Review on the Respiratory System Toxicity of Carbon Nanoparticles

    PubMed Central

    Pacurari, Maricica; Lowe, Kristine; Tchounwou, Paul B.; Kafoury, Ramzi

    2016-01-01

    The respiratory system represents the main gateway for nanoparticles’ entry into the human body. Although there is a myriad of engineered nanoparticles, carbon nanoparticles/nanotubes (CNPs/CNTs) have received much attention mainly due to their light weight, very high surface area, durability, and their diverse applications. Since their discovery and manufacture over two decades ago, much has been learned about nanoparticles’ interactions with diverse biological system models. In particular, the respiratory system has been of great interest because various natural and man-made fibrous particles are known to be responsible for chronic and debilitating lung diseases. In this review, we present up-to-date the literature regarding the effects of CNTs or carbon nanofibers (CNFs) on the human respiratory system with respect to respiratory toxicity pathways and associated pathologies. This article is intended to emphasize the potentially dangerous effects to the human respiratory system if inadequate measures are used in the manufacture, handling, and preparation and applications of CNP or CNP-based products. PMID:26999172

  11. Avian metapneumovirus subgroup C infection in chickens, China.

    PubMed

    Wei, Li; Zhu, Shanshan; Yan, Xv; Wang, Jing; Zhang, Chunyan; Liu, Shuhang; She, Ruiping; Hu, Fengjiao; Quan, Rong; Liu, Jue

    2013-07-01

    Avian metapneumovirus causes acute respiratory tract infection and reductions in egg production in various avian species. We isolated and characterized an increasingly prevalent avian metapneumovirus subgroup C strain from meat-type commercial chickens with severe respiratory signs in China. Culling of infected flocks could lead to economic consequences.

  12. Evaluation of respiratory system in textile-dyeing workers

    PubMed Central

    Salmani Nodoushan, Mojahede; Mehrparvar, Amir Houshang; Loukzadeh, Ziba; Rahimian, Masoud; Ghove Nodoushan, Mohamad ali; Jafari Nodoushan, Reza

    2014-01-01

    Background: Despite the presence of many textile and dyeing plants in Iran, we couldn’t find similar studies in this country. Forthermore, considering progress in the dyeing process and engineering controls, assessment of respiratory system is important for these workers. The present study was performed to evaluate the respiratory system in dyeing workers. Methods: In a cross-sectional study, 101 dyeing workers (all dyeing workers in yazd) and 90 workers without respiratory exposures (control group), were evaluated. A questionnaire was filled for each participant included Venables questionnaire and some other questions about age, work experience, personal or familial history of asthma or atopy, acute and chronic respiratory symptoms; Then spirometry was performed before and after the shift work Results: The frequency of acute and chronic respiratory symptoms was significantly higher among dyeing workers than controls. According to the Venables questionnaire, 11.9% of the dyeing workers suffered from asthma. Means of FVC and FEV1 of pre-shift spirometry were lower than control (p< 0.001). Across-shift spirometry showed significant reduction of FVC (p< 0.001), FEV1 (p< 0.001), FEF25-75% (p= 0.05) and FEF25% (p= 0.007) in dyeing workers compared to the control group. Conclusion: Evaluation of dyeing workers’ respiratory system in this study showed that despite development in dyeing processes and engineering controls, workers in this job show more prevalent acute and chronic symptoms, and across-shift changes in spirometric parameters were significantly higher in this work group than the control group. Therefore it is necessary to pay attention to the control of respiratory exposures in this job. PMID:25664289

  13. Physiologically driven avian vocal synthesizer

    NASA Astrophysics Data System (ADS)

    Sitt, Jacobo D.; Arneodo, Ezequiel M.; Goller, Franz; Mindlin, Gabriel B.

    2010-03-01

    In this work, we build an electronic syrinx, i.e., a programmable electronic device capable of integrating biomechanical model equations for the avian vocal organ in order to synthesize song. This vocal prosthesis is controlled by the bird’s neural instructions to respiratory and the syringeal motor systems, thus opening great potential for studying motor control and its modification by sensory feedback mechanisms. Furthermore, a well-functioning subject-controlled vocal prosthesis can lay the foundation for similar devices in humans and thus provide directly health-related data and procedures.

  14. The Lung Surfactant System in Adult Respiratory Distress Syndrome.

    DTIC Science & Technology

    1980-08-01

    STANDAROS- 193 A AD_ THE LUNG SURFACTANT SYSTEM IN ADULT RESPIRATORY DISTRESS SYNDROME FINAL PROGRESS REPORT John U. Balls August 1980 Sponsored by: US...D-A12l 434 THE LUNG SURFACTANT SYvTKl-OJL E~~rP DISTRESS SYNDROME (U) UNIVERSITY OF SOUTH FLORIDA TAMPA COLL OF MEDICINE J U BALIS RUG 8S DRNDi7-78-C...SURFACTANT SYSTEM IN ADULT Final 1 November 1978 - RESPIRATORY DISTU~SS SYNDROME - 30 April 1980 6. PERFORMING ORG. REPORT NUMBER * 7. AUTHOR(e) G. CONTRACT

  15. [Aging of the respiratory system: anatomical changes and physiological consequences].

    PubMed

    Ketata, W; Rekik, W K; Ayadi, H; Kammoun, S

    2012-10-01

    The respiratory system undergoes progressive involution with age, resulting in anatomical and functional changes that are exerted on all levels. The rib cage stiffens and respiratory muscles weaken. Distal bronchioles have reduced diameter and tend to be collapsed. Mobilized lung volumes decrease with age while residual volume increases. Gas exchanges are modified with a linear decrease of PaO(2) up to the age of 70 years and a decreased diffusing capacity of carbon monoxide. Ventilatory responses to hypercapnia, hypoxia and exercise decrease in the elderly. Knowledge of changes in the respiratory system related to advancing age is a medical issue of great importance in order to distinguish the effects of aging from those of diseases.

  16. Heat injuries to the respiratory system.

    PubMed

    Brinkmann, B; Püschel, K

    1978-10-03

    A steam-tube of the main boiler exploded on a ship lying in the harbour of Hamburg. The steam temperature was 283 degrees C. Cutaneous and severe inhalational scalding occured in the 27 fatalities, the men dying after different intervals. This paper deals with the pathological findings in the respiratory passages and the lung, describing the topographical extent of direct thermal injury and the temporal course of tissue reactions. In cases of instantaneous death coagulation necrosis of the tracheal and bronchial wall was found to extend to alveolar ducts in central parts of the lung. The lung parenchyma showed marked congestion, alveolar edema and desquamation of alveolar epithelial cells. Death occured due to acute pulmonary dysfunction and shock. Lethal complications following the period of primary shock consisted of fulminant confluent bronchopneumonia, the hyaline membrane syndrome or the onset of desquamative interstitial pneumonia. These changes rendered it difficult to evaluate the effects of the heavy cutaneous scalding on the pathological course of inhalational injuries in those surviving for longer periods.

  17. The live bird market system and low-pathogenic avian influenza prevention in southern California.

    PubMed

    Yee, Karen S; Carpenter, Tim E; Mize, Sarah; Cardona, Carol J

    2008-06-01

    Although live bird markets (LBMs) have been associated with outbreaks of avian influenza (AI), there are some LBM systems where AI outbreaks are extremely rare events. The California LBMs have not had any detected avian influenza viruses (AIVs) since December 2005. Responses to a detailed questionnaire on the practices and characteristics of the participants in the California low-pathogenic (LP) AI control program have been described to characterize possible reasons for the lack of AI outbreaks in LBMs. Compliance with an LPAI control program that contains active surveillance, prevention, and rapid response measures by those involved in the LBM system, rendering services to dispose of carcasses, no wholesalers, and few third-party bird deliveries was associated with the lack of LPAIV circulating in the Southern California LBM system.

  18. Evaluation of performance of portable respiratory monitoring system based on micro-electro-mechanical-system for respiratory gated radiotherapy

    NASA Astrophysics Data System (ADS)

    Moon, Sun Young; Sung, Jiwon; Yoon, Myonggeun; Chung, Mijoo; Chung, Weon Kuu; Kim, Dong Wook

    2015-08-01

    In respiratory-gated radiotherapy of patients with lung or liver cancer, the patient's respiratory pattern and repeatability are important factors affecting therapy accuracy; it has been reported that these factors can be controlled if patients undergo respiration training. As such, this study evaluates the feasibility of micro-electro-mechanical-system (MEMS) in radiotherapy by investigating the effect of radiation on a miniature portable respiratory monitoring system based on the MEMS system, which is currently under development. Using a patient respiration simulation phantom, the time-acceleration graph measured by a normal sensor according to the phantom's respiratory movement before irradiation and the change in this graph with accumulated dose were compared using the baseline slope and the change in amplitude and period of the sine wave. The results showed that with a 400Gy accumulated dose in the sensor, a baseline shift occurred and both the amplitude and period changed. As a result, if the MEMS is applied in respiratory-gated radiotherapy, the sensor should be replaced after use with roughly 6-10 patients so as to ensure continued therapy accuracy, based on the characteristics of the sensor itself. In the future, a more diverse range of sensors should be similarly evaluated.

  19. Evaluation of exercise-respiratory system modifications and integration schemes for physiological systems

    NASA Technical Reports Server (NTRS)

    Gallagher, R. R.

    1974-01-01

    Exercise subroutine modifications are implemented in an exercise-respiratory system model yielding improvement of system response to exercise forcings. A more physiologically desirable respiratory ventilation rate in addition to an improved regulation of arterial gas tensions and cerebral blood flow is observed. A respiratory frequency expression is proposed which would be appropriate as an interfacing element of the respiratory-pulsatile cardiovascular system. Presentation of a circulatory-respiratory system integration scheme along with its computer program listing is given. The integrated system responds to exercise stimulation for both nonstressed and stressed physiological states. Other integration possibilities are discussed with respect to the respiratory, pulsatile cardiovascular, thermoregulatory, and the long-term circulatory systems.

  20. 76 FR 62164 - VASRD Improvement Forum-Updating Disability Criteria for the Respiratory System, Cardiovascular...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-06

    ... AFFAIRS VASRD Improvement Forum--Updating Disability Criteria for the Respiratory System, Cardiovascular...) Improvement Forum-- Updating Disability Criteria for the Respiratory System, Cardiovascular System, Hearing... four body systems: (1) Respiratory System (38 CFR 4.96-4.97), (2) the Cardiovascular System (38 CFR...

  1. Nanocarriers as pulmonary drug delivery systems to treat and to diagnose respiratory and non respiratory diseases

    PubMed Central

    Smola, Malgorzata; Vandamme, Thierry; Sokolowski, Adam

    2008-01-01

    The purpose of this review is to discuss the impact of nanocarriers administered by pulmonary route to treat and to diagnose respiratory and non respiratory diseases. Indeed, during the past 10 years, the removal of chlorofluorocarbon propellants from industrial and household products intended for the pulmonary route has lead to the developments of new alternative products. Amongst these ones, on one hand, a lot of attention has been focused to improve the bioavailability of marketed drugs intended for respiratory diseases and to develop new concepts for pulmonary administration of drugs and, on the other hand, to use the pulmonary route to administer drugs for systemic diseases. This has led to some marketed products through the last decade. Although the introduction of nanotechnology permitted to step over numerous problems and to improve the bioavailability of drugs, there are, however, unresolved delivery problems to be still addressed. These scientific and industrial innovations and challenges are discussed along this review together with an analysis of the current situation concerning the industrial developments. PMID:18488412

  2. Avian-like breathing mechanics in maniraptoran dinosaurs.

    PubMed

    Codd, Jonathan R; Manning, Phillip L; Norell, Mark A; Perry, Steven F

    2008-01-22

    In 1868 Thomas Huxley first proposed that dinosaurs were the direct ancestors of birds and subsequent analyses have identified a suite of 'avian' characteristics in theropod dinosaurs. Ossified uncinate processes are found in most species of extant birds and also occur in extinct non-avian maniraptoran dinosaurs. Their presence in these dinosaurs represents another morphological character linking them to Aves, and further supports the presence of an avian-like air-sac respiratory system in theropod dinosaurs, prior to the evolution of flight. Here we report a phylogenetic analysis of the presence of uncinate processes in Aves and non-avian maniraptoran dinosaurs indicating that these were homologous structures. Furthermore, recent work on Canada geese has demonstrated that uncinate processes are integral to the mechanics of avian ventilation, facilitating both inspiration and expiration. In extant birds, uncinate processes function to increase the mechanical advantage for movements of the ribs and sternum during respiration. Our study presents a mechanism whereby uncinate processes, in conjunction with lateral and ventral movements of the sternum and gastral basket, affected avian-like breathing mechanics in extinct non-avian maniraptoran dinosaurs.

  3. Host Tissue and Glycan Binding Specificities of Avian Viral Attachment Proteins Using Novel Avian Tissue Microarrays

    PubMed Central

    Ambepitiya Wickramasinghe, Iresha N.; de Vries, Robert P.; Eggert, Amber M.; Wandee, Nantaporn; de Haan, Cornelis A. M.; Gröne, Andrea; Verheije, Monique H.

    2015-01-01

    The initial interaction between viral attachment proteins and the host cell is a critical determinant for the susceptibility of a host for a particular virus. To increase our understanding of avian pathogens and the susceptibility of poultry species, we developed novel avian tissue microarrays (TMAs). Tissue binding profiles of avian viral attachment proteins were studied by performing histochemistry on multi-species TMA, comprising of selected tissues from ten avian species, and single-species TMAs, grouping organ systems of each species together. The attachment pattern of the hemagglutinin protein was in line with the reported tropism of influenza virus H5N1, confirming the validity of TMAs in profiling the initial virus-host interaction. The previously believed chicken-specific coronavirus (CoV) M41 spike (S1) protein displayed a broad attachment pattern to respiratory tissues of various avian species, albeit with lower affinity than hemagglutinin, suggesting that other avian species might be susceptible for chicken CoV. When comparing tissue-specific binding patterns of various avian coronaviral S1 proteins on the single-species TMAs, chicken and partridge CoV S1 had predominant affinity for the trachea, while pigeon CoV S1 showed marked preference for lung of their respective hosts. Binding of all coronaviral S1 proteins was dependent on sialic acids; however, while chicken CoV S1 preferred sialic acids type I lactosamine (Gal(1-3)GlcNAc) over type II (Gal(1-4)GlcNAc), the fine glycan specificities of pigeon and partridge CoVs were different, as chicken CoV S1-specific sialylglycopolymers could not block their binding to tissues. Taken together, TMAs provide a novel platform in the field of infectious diseases to allow identification of binding specificities of viral attachment proteins and are helpful to gain insight into the susceptibility of host and organ for avian pathogens. PMID:26035584

  4. Avian influenza A (H5N1) infection with respiratory failure and meningoencephalitis in a Canadian traveller.

    PubMed

    Rajabali, Naheed; Lim, Thomas; Sokolowski, Colleen; Prevost, Jason D; Lee, Edward Z

    2015-01-01

    In an urban centre in Alberta, an otherwise healthy 28-year-old woman presented to hospital with pleuritic chest and abdominal pain after returning from Beijing, China. After several days, this was followed by headache, confusion and, ultimately, respiratory failure, coma and death. Microbiology yielded influenza A subtype H5N1 from various body sites and neuroimaging was consistent with meningoencephalitis. While H5N1 infections in humans have been reported in Asia since 1997, this is the first documented case of H5N1 influenza in the Western Hemisphere. The present case demonstrated the typical manifestation of H5N1 influenza but, for the first time, also confirmed previous suggestions from human and animal studies that H5N1 is neurotropic and can manifest with neurological symptoms and meningoencephalitis.

  5. Computational 3-D Model of the Human Respiratory System

    EPA Science Inventory

    We are developing a comprehensive, morphologically-realistic computational model of the human respiratory system that can be used to study the inhalation, deposition, and clearance of contaminants, while being adaptable for age, race, gender, and health/disease status. The model ...

  6. [Adaptation potential of cardio-respiratory system in dust diseases].

    PubMed

    Serebryakov, P V; Nenenko, O I; Fedina, I N; Rakhimzyanov, A R

    2016-01-01

    The article covers results of cardio-respiratory system evaluation in workers exposed to dust, on basis of adaptation potential evaluation via calculation of functional changes index and 6 minutes' walk test with continuous assessment of blood oxygenation and heart rate. Adaptation disorders are supported by results of external respiration assessment and echo-cardiography.

  7. Avian Test Battery for the Evaluation of Developmental Abnormalities of Neuro- and Reproductive Systems.

    PubMed

    Kawashima, Takaharu; Ahmed, Walaa M S; Nagino, Koki; Ubuka, Takayoshi; Tsutsui, Kazuyoshi

    2016-01-01

    Most of the currently used toxicity assays for environmental chemicals use acute or chronic systemic or reproductive toxicity endpoints rather than neurobehavioral endpoints. In addition, the current standard approaches to assess reproductive toxicity are time-consuming. Therefore, with increasing numbers of chemicals being developed with potentially harmful neurobehavioral effects in higher vertebrates, including humans, more efficient means of assessing neuro- and reproductive toxicity are required. Here we discuss the use of a Galliformes-based avian test battery in which developmental toxicity is assessed by means of a combination of chemical exposure during early embryonic development using an embryo culture system followed by analyses after hatching of sociosexual behaviors such as aggression and mating and of visual memory via filial imprinting. This Galliformes-based avian test battery shows promise as a sophisticated means not only of assessing chemical toxicity in avian species but also of assessing the risks posed to higher vertebrates, including humans, which are markedly sensitive to nervous or neuroendocrine system dysfunction.

  8. Avian Test Battery for the Evaluation of Developmental Abnormalities of Neuro- and Reproductive Systems

    PubMed Central

    Kawashima, Takaharu; Ahmed, Walaa M. S.; Nagino, Koki; Ubuka, Takayoshi; Tsutsui, Kazuyoshi

    2016-01-01

    Most of the currently used toxicity assays for environmental chemicals use acute or chronic systemic or reproductive toxicity endpoints rather than neurobehavioral endpoints. In addition, the current standard approaches to assess reproductive toxicity are time-consuming. Therefore, with increasing numbers of chemicals being developed with potentially harmful neurobehavioral effects in higher vertebrates, including humans, more efficient means of assessing neuro- and reproductive toxicity are required. Here we discuss the use of a Galliformes-based avian test battery in which developmental toxicity is assessed by means of a combination of chemical exposure during early embryonic development using an embryo culture system followed by analyses after hatching of sociosexual behaviors such as aggression and mating and of visual memory via filial imprinting. This Galliformes-based avian test battery shows promise as a sophisticated means not only of assessing chemical toxicity in avian species but also of assessing the risks posed to higher vertebrates, including humans, which are markedly sensitive to nervous or neuroendocrine system dysfunction. PMID:27445667

  9. Traffic aerosol lobar doses deposited in the human respiratory system.

    PubMed

    Manigrasso, Maurizio; Vernale, Claudio; Avino, Pasquale

    2015-10-30

    Aerosol pollution in urban environments has been recognized to be responsible for important pathologies of the cardiovascular and respiratory systems. In this perspective, great attention has been addressed to Ultra Fine Particles (UFPs < 100 nm), because they efficiently penetrate into the respiratory system and are capable of translocating from the airways into the blood circulation. This paper describes the aerosol regional doses deposited in the human respiratory system in a high-traffic urban area. The aerosol measurements were carried out on a curbside in downtown Rome, on a street characterized by a high density of autovehicular traffic. Aerosol number-size distributions were measured by means of a Fast Mobility Particle Sizer in the range from 5.6 to 560 nm with a 1 s time resolution. Dosimetry estimates were performed with the Multiple-Path Particle Dosimetry model by means of the stochastic lung model. The exposure scenario close to traffic is represented by a sequence of short-term peak exposures: about 6.6 × 10(10) particles are deposited hourly into the respiratory system. After 1 h of exposure in proximity of traffic, 1.29 × 10(10), 1.88 × 10(10), and 3.45 × 10(10) particles are deposited in the head, tracheobronchial, and alveolar regions. More than 95 % of such doses are represented by UFPs. Finally, according to the greater dose estimated, the right lung lobes are expected to be more susceptible to respiratory pathologies than the left lobes.

  10. Avian cardiology.

    PubMed

    Strunk, Anneliese; Wilson, G Heather

    2003-01-01

    The field of avian cardiology is continually expanding. Although a great deal of the current knowledge base has been derived from poultry data, research and clinical reports involving companion avian species have been published. This article will present avian cardiovascular anatomy and physiology, history and physical examination considerations in the avian cardiac disease patient, specific diagnostic tools, cardiovascular disease processes, and current therapeutic modalities.

  11. [French survey on anesthesia systems and peroperative respiratory monitoring equipment].

    PubMed

    Bourgain, J L; Duranteau, J; Deriaz, H; Noviant, Y

    1986-01-01

    A national inquiry has been carried out in France. It concerned the anaesthetic systems and respiratory monitoring equipment in use at the moment, as well as that wished for. The equipment in use was very stereotyped: an open system with a respirator, for the most volumetric, and with a safety O2/N2O mixer. Monitoring is carried out with the pressure gauges and the measure of expiratory volume; only two thirds of the equipment had an alarm. The O2 and CO2 analysers were little used. Expired CO2 monitoring was only carried out in teaching hospitals and in big centres. Apart from this, the equipment was independent of the hospital and the type of surgery carried out. As for anaesthetic systems, 53% of centres would like obtain open systems, 15% closed systems; 32% did not answer. This increase in number of closed systems is not significant. However, a very strong wish for respirators with flow rate control and safety O2/N2O mixers was observed, whilst the safety parameters of these mixers were open to discussion. Respiratory monitoring was not just confined to the mechanical aspects, as 65% of centres wished to monitor FIO2. The big centres and the teaching hospitals were interested by the expiratory CO2 monitoring. This inquiry showed the interest in respiratory safety in operating theatres. Further studies should confirm or not the increasing interest in closed systems.

  12. Avian Influenza.

    PubMed

    Zeitlin, Gary Adam; Maslow, Melanie Jane

    2005-05-01

    The current epidemic of H5N1 highly pathogenic avian influenza in Southeast Asia raises serious concerns that genetic reassortment will result in the next influenza pandemic. There have been 164 confirmed cases of human infection with avian influenza since 1996. In 2004, there were 45 cases of human H5N1 in Vietnam and Thailand, with a mortality rate more than 70%. In addition to the potential public health hazard, the current zoonotic epidemic has caused severe economic losses. Efforts must be concentrated on early detection of bird outbreaks with aggressive culling, quarantining, and disinfection. To prepare for and prevent an increase in human cases, it is essential to improve detection methods and stockpile effective antivirals. Novel therapeutic modalities, including short-interfering RNAs and new vaccine strategies that use plasmid-based genetic systems, offer promise should a pandemic occur.

  13. Avian influenza.

    PubMed

    Zeitlin, Gary A; Maslow, Melanie J

    2006-03-01

    The current epidemic of H5N1 highly pathogenic avian influenza in Southeast Asia raises serious concerns that genetic reassortment will result in the next influenza pandemic. There have been 164 confirmed cases of human infection with avian influenza since 1996. In 2004 alone, there were 45 cases of human H5N1 in Vietnam and Thailand, with a mortality rate over 70%. In addition to the potential public health hazard, the current zoonotic epidemic has caused severe economic losses. Efforts must be concentrated on early detection of bird outbreaks with aggressive culling, quarantines, and disinfection. To prepare for and prevent increased human cases, it is essential to improve detection methods and stockpile effective antivirals. Novel therapeutic modalities, including short, interfering RNAs and new vaccine strategies that use plasmid-based genetic systems offer promise, should a pandemic occur.

  14. Respiratory protective device design using control system techniques

    NASA Technical Reports Server (NTRS)

    Burgess, W. A.; Yankovich, D.

    1972-01-01

    The feasibility of a control system analysis approach to provide a design base for respiratory protective devices is considered. A system design approach requires that all functions and components of the system be mathematically identified in a model of the RPD. The mathematical notations describe the operation of the components as closely as possible. The individual component mathematical descriptions are then combined to describe the complete RPD. Finally, analysis of the mathematical notation by control system theory is used to derive compensating component values that force the system to operate in a stable and predictable manner.

  15. Cost Analysis of Various Low Pathogenic Avian Influenza Surveillance Systems in the Dutch Egg Layer Sector

    PubMed Central

    Rutten, Niels; Gonzales, José L.; Elbers, Armin R. W.; Velthuis, Annet G. J.

    2012-01-01

    Background As low pathogenic avian influenza viruses can mutate into high pathogenic viruses the Dutch poultry sector implemented a surveillance system for low pathogenic avian influenza (LPAI) based on blood samples. It has been suggested that egg yolk samples could be sampled instead of blood samples to survey egg layer farms. To support future decision making about AI surveillance economic criteria are important. Therefore a cost analysis is performed on systems that use either blood or eggs as sampled material. Methodology/Principal Findings The effectiveness of surveillance using egg or blood samples was evaluated using scenario tree models. Then an economic model was developed that calculates the total costs for eight surveillance systems that have equal effectiveness. The model considers costs for sampling, sample preparation, sample transport, testing, communication of test results and for the confirmation test on false positive results. The surveillance systems varied in sampled material (eggs or blood), sampling location (farm or packing station) and location of sample preparation (laboratory or packing station). It is shown that a hypothetical system in which eggs are sampled at the packing station and samples prepared in a laboratory had the lowest total costs (i.e. € 273,393) a year. Compared to this a hypothetical system in which eggs are sampled at the farm and samples prepared at a laboratory, and the currently implemented system in which blood is sampled at the farm and samples prepared at a laboratory have 6% and 39% higher costs respectively. Conclusions/Significance This study shows that surveillance for avian influenza on egg yolk samples can be done at lower costs than surveillance based on blood samples. The model can be used in future comparison of surveillance systems for different pathogens and hazards. PMID:22523543

  16. Inhaled formulations and pulmonary drug delivery systems for respiratory infections.

    PubMed

    Zhou, Qi Tony; Leung, Sharon Shui Yee; Tang, Patricia; Parumasivam, Thaigarajan; Loh, Zhi Hui; Chan, Hak-Kim

    2015-05-01

    Respiratory infections represent a major global health problem. They are often treated by parenteral administrations of antimicrobials. Unfortunately, systemic therapies of high-dose antimicrobials can lead to severe adverse effects and this calls for a need to develop inhaled formulations that enable targeted drug delivery to the airways with minimal systemic drug exposure. Recent technological advances facilitate the development of inhaled anti-microbial therapies. The newer mesh nebulisers have achieved minimal drug residue, higher aerosolisation efficiencies and rapid administration compared to traditional jet nebulisers. Novel particle engineering and intelligent device design also make dry powder inhalers appealing for the delivery of high-dose antibiotics. In view of the fact that no new antibiotic entities against multi-drug resistant bacteria have come close to commercialisation, advanced formulation strategies are in high demand for combating respiratory 'super bugs'.

  17. [Designs of optimized microbial therapy systems of respiratory infections].

    PubMed

    Morimoto, Kazuhiro

    2013-01-01

    Several respiratory infections are frequently induced by pathogenic microorganisms in lung epithelial lining fluid (ELF) and alveolar macrophages (AM). Then, two studies concerning designs of antimicrobial therapy systems of respiratory infections were carried out; one was the distribution mechanisms of three macrolide and ketolide antibiotics, clarithromycin (CAM), azithromycin (AZM) and telithromycin (TEL) in plasma, ELF and AM, and the other was the efficient drug delivery to AM by pulmonary administration of fluoroquinolone antibiotic, a ciprofloxacin (CPFX) incorporated into liposomes (CPFX-liposome). In the first study, the areas under drug concentration-time curves (AUCs) in ELF following oral administration of three macrolide and ketolide antibiotics to rats were significantly higher than AUCs in plasma, furthermore AUCs in AM significantly higher than AUCs in ELF. The high distribution of these antibiotics to the respiratory infection site is due to the transport from blood to ELF via MDR1 in lung epithelial cells as well as the uptake by AM. These antibiotics were taken up by AM via active transport system and the trapping in organelles. In the second study, drug delivery efficacy of CPFX-liposome to AM was particle size-dependent over the 100-1000 nm and then become constant at over 1000 nm by pulmonary aerosolization to rats. This result indicates that the most effective size is 1000 nm. Furthermore, the drug delivery efficacy of mannosylated CPFX-liposome (particle size: 1000 nm) was highly delivered to AM and antibacterial effects were significantly higher than those of unmodified CPFX-liposome. This review provides useful findings for microbial therapy systems of respiratory infections.

  18. Noninvasive measurement system for human respiratory condition and body temperature

    NASA Astrophysics Data System (ADS)

    Toba, Eiji; Sekiguchi, Sadamu; Nishimatsu, Toyonori

    1995-06-01

    A special chromel (C) and alumel wire (A) thermopile has been developed which can measure the human respiratory condition and body temperature without directly contacting a sensor to the human body. The measurement system enables high speed, real time, noninvasive, and simultaneous measurement of respiratory rates and body temperature with the same sensor. The special CA thermopile, with each sensing junction of approximately 25 μm, was constructed by using spot welded thermopile junctions. The thermoelectric power of 17 pairs of special CA thermopile is 0.7 mV/ °C. The special CA thermopile provides high sensitivity and fine frequency characteristics, of which the gain is flat to approximately 10 Hz.

  19. Numerical simulation of volume-controlled mechanical ventilated respiratory system with 2 different lungs.

    PubMed

    Shi, Yan; Zhang, Bolun; Cai, Maolin; Zhang, Xiaohua Douglas

    2016-11-09

    Mechanical ventilation is a key therapy for patients who cannot breathe adequately by themselves, and dynamics of mechanical ventilation system is of great significance for life support of patients. Recently, models of mechanical ventilated respiratory system with 1 lung are used to simulate the respiratory system of patients. However, humans have 2 lungs. When the respiratory characteristics of 2 lungs are different, a single-lung model cannot reflect real respiratory system. In this paper, to illustrate dynamic characteristics of mechanical ventilated respiratory system with 2 different lungs, we propose a mathematical model of mechanical ventilated respiratory system with 2 different lungs and conduct experiments to verify the model. Furthermore, we study the dynamics of mechanical ventilated respiratory system with 2 different lungs. This research study can be used for improving the efficiency and safety of volume-controlled mechanical ventilation system.

  20. Avian-like breathing mechanics in maniraptoran dinosaurs

    PubMed Central

    Codd, Jonathan R; Manning, Phillip L; Norell, Mark A; Perry, Steven F

    2007-01-01

    In 1868 Thomas Huxley first proposed that dinosaurs were the direct ancestors of birds and subsequent analyses have identified a suite of ‘avian’ characteristics in theropod dinosaurs. Ossified uncinate processes are found in most species of extant birds and also occur in extinct non-avian maniraptoran dinosaurs. Their presence in these dinosaurs represents another morphological character linking them to Aves, and further supports the presence of an avian-like air-sac respiratory system in theropod dinosaurs, prior to the evolution of flight. Here we report a phylogenetic analysis of the presence of uncinate processes in Aves and non-avian maniraptoran dinosaurs indicating that these were homologous structures. Furthermore, recent work on Canada geese has demonstrated that uncinate processes are integral to the mechanics of avian ventilation, facilitating both inspiration and expiration. In extant birds, uncinate processes function to increase the mechanical advantage for movements of the ribs and sternum during respiration. Our study presents a mechanism whereby uncinate processes, in conjunction with lateral and ventral movements of the sternum and gastral basket, affected avian-like breathing mechanics in extinct non-avian maniraptoran dinosaurs. PMID:17986432

  1. Surveillance for emerging respiratory viruses.

    PubMed

    Al-Tawfiq, Jaffar A; Zumla, Alimuddin; Gautret, Philippe; Gray, Gregory C; Hui, David S; Al-Rabeeah, Abdullah A; Memish, Ziad A

    2014-10-01

    Several new viral respiratory tract infectious diseases with epidemic potential that threaten global health security have emerged in the past 15 years. In 2003, WHO issued a worldwide alert for an unknown emerging illness, later named severe acute respiratory syndrome (SARS). The disease caused by a novel coronavirus (SARS-CoV) rapidly spread worldwide, causing more than 8000 cases and 800 deaths in more than 30 countries with a substantial economic impact. Since then, we have witnessed the emergence of several other viral respiratory pathogens including influenza viruses (avian influenza H5N1, H7N9, and H10N8; variant influenza A H3N2 virus), human adenovirus-14, and Middle East respiratory syndrome coronavirus (MERS-CoV). In response, various surveillance systems have been developed to monitor the emergence of respiratory-tract infections. These include systems based on identification of syndromes, web-based systems, systems that gather health data from health facilities (such as emergency departments and family doctors), and systems that rely on self-reporting by patients. More effective national, regional, and international surveillance systems are required to enable rapid identification of emerging respiratory epidemics, diseases with epidemic potential, their specific microbial cause, origin, mode of acquisition, and transmission dynamics.

  2. OSCILLATION MECHANICS OF THE RESPIRATORY SYSTEM: APPLICATIONS TO LUNG DISEASE

    PubMed Central

    Kaczka, David W.; Dellacá, Raffaele L.

    2011-01-01

    Since its introduction in the 1950s, the forced oscillation technique (FOT) and the measurement of respiratory impedance have evolved into powerful tools for the assessment of various mechanical phenomena in the mammalian lung during health and disease. In this review, we highlight the most recent developments in instrumentation, signal processing, and modeling relevant to FOT measurements. We demonstrate how FOT provides unparalleled information on the mechanical status of the respiratory system compared to more widely-used pulmonary function tests. The concept of mechanical impedance is reviewed, as well as the various measurement techniques used to acquire such data. Emphasis is placed on the analysis of lower, physiologic frequency ranges (typically less than 10 Hz) that are most sensitive to normal physical processes as well as pathologic structural alterations. Various inverse modeling approaches used to interpret alterations in impedance are also discussed, specifically in the context of three common respiratory diseases: asthma, chronic obstructive pulmonary disease, and acute lung injury. Finally, we speculate on the potential role for FOT in the clinical arena. PMID:22011237

  3. Construction of Multilevel Structure for Avian Influenza Virus System Based on Granular Computing

    PubMed Central

    Sun, Meng-Meng; Tang, Xu-Qing

    2017-01-01

    Exploring the genetic structure of influenza viruses attracts the attention in the field of molecular ecology and medical genetics, whose epidemics cause morbidity and mortality worldwide. The rapid variations in RNA strand and changes of protein structure of the virus result in low-accuracy subtyping identification and make it difficult to develop effective drugs and vaccine. This paper constructs the evolutionary structure of avian influenza virus system considering both hemagglutinin and neuraminidase protein fragments. An optimization model was established to determine the rational granularity of the virus system for exploring the intrinsic relationship among the subtypes based on the fuzzy hierarchical evaluation index. Thus, an algorithm was presented to extract the rational structure. Furthermore, to reduce the systematic and computational complexity, the granular signatures of virus system were identified based on the coarse-grained idea and then its performance was evaluated through a designed classifier. The results showed that the obtained virus signatures could approximate and reflect the whole avian influenza virus system, indicating that the proposed method could identify the effective virus signatures. Once a new molecular virus is detected, it is efficient to identify the homologous virus hierarchically. PMID:28191464

  4. Lung volume recruitment acutely increases respiratory system compliance in individuals with severe respiratory muscle weakness

    PubMed Central

    Molgat-Seon, Yannick; Hannan, Liam M.; Dominelli, Paolo B.; Peters, Carli M.; Fougere, Renee J.; McKim, Douglas A.; Sheel, A. William

    2017-01-01

    The aim of the present study was to determine whether lung volume recruitment (LVR) acutely increases respiratory system compliance (Crs) in individuals with severe respiratory muscle weakness (RMW). Individuals with RMW resulting from neuromuscular disease or quadriplegia (n=12) and healthy controls (n=12) underwent pulmonary function testing and the measurement of Crs at baseline, immediately after, 1 h after and 2 h after a single standardised session of LVR. The LVR session involved 10 consecutive supramaximal lung inflations with a manual resuscitation bag to the highest tolerable mouth pressure or a maximum of 50 cmH2O. Each LVR inflation was followed by brief breath-hold and a maximal expiration to residual volume. At baseline, individuals with RMW had lower Crs than controls (37±5 cmH2O versus 109±10 mL·cmH2O−1, p<0.001). Immediately after LVR, Crs increased by 39.5±9.8% to 50±7 mL·cmH2O−1 in individuals with RMW (p<0.05), while no significant change occurred in controls (p=0.23). At 1 h and 2 h post-treatment, there were no within-group differences in Crs compared to baseline (all p>0.05). LVR had no significant effect on measures of pulmonary function at any time point in either group (all p>0.05). During inflations, mean arterial pressure decreased significantly relative to baseline by 10.4±2.8 mmHg and 17.3±3.0 mmHg in individuals with RMW and controls, respectively (both p<0.05). LVR acutely increases Crs in individuals with RMW. However, the high airway pressures during inflations cause reductions in mean arterial pressure that should be considered when applying this technique. PMID:28326313

  5. Respiratory acidosis

    MedlinePlus

    ... Names Ventilatory failure; Respiratory failure; Acidosis - respiratory Images Respiratory system References Effros RM, Swenson ER. Acid-base balance. In: Broaddus VC, Mason RJ, Ernst JD, et al, eds. Murray and Nadel's Textbook of Respiratory Medicine . 6th ed. Philadelphia, PA: Elsevier Saunders; 2016: ...

  6. Current developments in avian influenza vaccines, including safety of vaccinated birds as food.

    PubMed

    Swayne, D E; Suarez, D L

    2007-01-01

    Until recently, most vaccines against avian influenza were based on oil-emulsified inactivated low- or high-pathogenicity viruses. Now, recombinant fowl pox and avian paramyxovirus type 1 vaccines with avian influenza H5 gene inserts (+ or - N1 gene insert) are available and licensed. New technologies might overcome existing limitations to make available vaccines that can be grown in tissue culture systems for more rapid production; provide optimized protection, as a result of closer genetic relations to field viruses; allow mass administration by aerosol, in drinking-water or in ovo; and allow easier strategies for identifying infected birds within vaccinated populations (DIVA). The technologies include avian influenza viruses with partial gene deletions, avian influenza-Newcastle disease virus chimeras, vectored vaccines such as adenoviruses and Marek's disease virus, and subunit vaccines. These new methods should be licensed only after their purity, safety, efficacy and potency against avian influenza viruses have been demonstrated, and, for live vectored vaccines, restriction of viral transmission to unvaccinated birds. Use of vaccines in countries affected by highly pathogenic avian influenza will not only protect poultry but will provide additional safety for consumers. Experimental studies have shown that birds vaccinated against avian influenza have no virus in meat and minimal amounts in eggs after HPAI virus challenge, and that replication and shedding from their respiratory and alimentary tracts is greatly reduced.

  7. Use of ex vivo and in vitro cultures of the human respiratory tract to study the tropism and host responses of highly pathogenic avian influenza A (H5N1) and other influenza viruses.

    PubMed

    Chan, Renee W Y; Chan, Michael C W; Nicholls, John M; Malik Peiris, J S

    2013-12-05

    The tropism of influenza viruses for the human respiratory tract is a key determinant of host-range, and consequently, of pathogenesis and transmission. Insights can be obtained from clinical and autopsy studies of human disease and relevant animal models. Ex vivo cultures of the human respiratory tract and in vitro cultures of primary human cells can provide complementary information provided they are physiologically comparable in relevant characteristics to human tissues in vivo, e.g. virus receptor distribution, state of differentiation. We review different experimental models for their physiological relevance and summarize available data using these cultures in relation to highly pathogenic avian influenza H5N1, in comparison where relevant, with other influenza viruses. Transformed continuous cell-lines often differ in important ways to the corresponding tissues in vivo. The state of differentiation of primary human cells (respiratory epithelium, macrophages) can markedly affect virus tropism and host responses. Ex vivo cultures of human respiratory tissues provide a close resemblance to tissues in vivo and may be used to risk assess animal viruses for pandemic threat. Physiological factors (age, inflammation) can markedly affect virus receptor expression and virus tropism. Taken together with data from clinical studies on infected humans and relevant animal models, data from ex vivo and in vitro cultures of human tissues and cells can provide insights into virus transmission and pathogenesis and may provide understanding that leads to novel therapeutic interventions.

  8. Avian Astrovirus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Avian astroviruses comprise a diverse group of viruses affecting many avian species and causing enteritis, hepatitis and nephritis. To date, six different astroviruses have been identified in avian species based on the species of origin and viral genome characteristics: two turkey-origin astroviru...

  9. Avian influenza virus-induced regulation of duck fibroblast gene expression

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Highly pathogenic avian influenza (HPAI) H5N1 viruses have been non-pathogenic in ducks causing no disease or mild respiratory infections. However, in 2002, new viruses emerged causing systemic disease and death. To better understand the differences in pathogenicity of HPAI viruses in ducks, we in...

  10. New insight into the evolution of the vertebrate respiratory system and the discovery of unidirectional airflow in iguana lungs

    PubMed Central

    Cieri, Robert L.; Craven, Brent A.; Schachner, Emma R.; Farmer, C. G.

    2014-01-01

    The generally accepted framework for the evolution of a key feature of the avian respiratory system, unidirectional airflow, is that it is an adaptation for efficiency of gas exchange and expanded aerobic capacities, and therefore it has historically been viewed as important to the ability of birds to fly and to maintain an endothermic metabolism. This pattern of flow has been presumed to arise from specific features of the respiratory system, such as an enclosed intrapulmonary bronchus and parabronchi. Here we show unidirectional airflow in the green iguana, a lizard with a strikingly different natural history from that of birds and lacking these anatomical features. This discovery indicates a paradigm shift is needed. The selective drivers of the trait, its date of origin, and the fundamental aerodynamic mechanisms by which unidirectional flow arises must be reassessed to be congruent with the natural history of this lineage. Unidirectional flow may serve functions other than expanded aerobic capacity; it may have been present in the ancestral diapsid; and it can occur in structurally simple lungs. PMID:25404314

  11. New insight into the evolution of the vertebrate respiratory system and the discovery of unidirectional airflow in iguana lungs.

    PubMed

    Cieri, Robert L; Craven, Brent A; Schachner, Emma R; Farmer, C G

    2014-12-02

    The generally accepted framework for the evolution of a key feature of the avian respiratory system, unidirectional airflow, is that it is an adaptation for efficiency of gas exchange and expanded aerobic capacities, and therefore it has historically been viewed as important to the ability of birds to fly and to maintain an endothermic metabolism. This pattern of flow has been presumed to arise from specific features of the respiratory system, such as an enclosed intrapulmonary bronchus and parabronchi. Here we show unidirectional airflow in the green iguana, a lizard with a strikingly different natural history from that of birds and lacking these anatomical features. This discovery indicates a paradigm shift is needed. The selective drivers of the trait, its date of origin, and the fundamental aerodynamic mechanisms by which unidirectional flow arises must be reassessed to be congruent with the natural history of this lineage. Unidirectional flow may serve functions other than expanded aerobic capacity; it may have been present in the ancestral diapsid; and it can occur in structurally simple lungs.

  12. A wearable respiratory biofeedback system based on body sensor networks.

    PubMed

    Liu, Guang-Zheng; Huang, Bang-Yu; Mei, Zhan-Yong; Guo, Yan-Wei; Wang, Lei

    2010-01-01

    Technology advantages of body sensor networks (BSN) have shown great deal of promises in medical applications. In this paper we introduced a wearable device for biofeedback application based on the BSN platform we had developed. The biofeedback device we have developed includes the heart rate monitoring belt with conductive fabric and the biofeedback device with respiration belt. A wearable respiratory biofeedback system was preliminarily explored based on the BSN platform. In-situ experiments showed that the BSN platform and the biofeedback device worked as intended.

  13. Testosterone regulates alpha-synuclein mRNA in the avian song system.

    PubMed

    Hartman, V N; Miller, M A; Clayton, D F; Liu, W C; Kroodsma, D E; Brenowitz, E A

    2001-04-17

    Alpha-synuclein is a small, highly conserved protein in vertebrates that has been linked to several neurodegenerative diseases. The avian song control system is one of the model systems in which the protein was independently discovered. Alpha-synuclein is dynamically regulated in the song system during song learning, a process in which sex steroids play a central role. We compared alpha-synuclein mRNA expression in the brains of 12 adult male chipping sparrows (Spizella passerina) treated with either testosterone or blank s.c. implants. We saw pronounced upregulation of alpha-synuclein mRNA in, as well as an increase in the volume of, the song control nucleus area X in response to exogenous testosterone. To our knowledge this is the first report of steroid regulation of synuclein gene expression in any model system.

  14. An impulse radio ultrawideband system for contactless noninvasive respiratory monitoring.

    PubMed

    Nijsure, Yogesh; Tay, Wee Peng; Gunawan, Erry; Wen, Fuxi; Yang, Zhang; Guan, Yong Liang; Chua, Ai Ping

    2013-06-01

    We design a impulse radio ultrawideband radar monitoring system to track the chest wall movement of a human subject during respiration. Multiple sensors are placed at different locations to ensure that the backscattered signal could be detected by at least one sensor no matter which direction the human subject faces. We design a hidden Markov model to infer the subject facing direction and his or her chest movement. We compare the performance of our proposed scheme on 15 human volunteers with the medical gold standard using respiratory inductive plethysmography (RIP) belts, and show that on average, our estimation is over 81% correlated with the measurements of a RIP belt system. Furthermore, in order to automatically differentiate between periods of normal and abnormal breathing patterns, we develop a change point detection algorithm based on perfect simulation techniques to detect changes in the subject's breathing. The feasibility of our proposed system is verified by both the simulation and experiment results.

  15. The cellular endosomal sorting complex required for transport pathway is not involved in avian metapneumovirus budding in a virus-like-particle expression system.

    PubMed

    Weng, Yuejin; Lu, Wuxun; Harmon, Aaron; Xiang, Xiaoxiao; Deng, Qiji; Song, Minxun; Wang, Dan; Yu, Qingzhong; Li, Feng

    2011-05-01

    Avian metapneumovirus (AMPV) is a paramyxovirus that principally causes respiratory disease and egg production drops in turkeys and chickens. Together with its closely related human metapneumovirus (HMPV), they comprise the genus Metapneumovirus in the family Paramyxoviridae. Little is currently known about the mechanisms involved in the budding of metapneumovirus. By using AMPV as a model system, we showed that the matrix (M) protein by itself was insufficient to form virus-like-particles (VLPs). The incorporation of M into VLPs was shown to occur only when both the viral nucleoprotein (N) and the fusion (F) proteins were co-expressed. Furthermore, we provided evidence indicating that two YSKL and YAGL segments encoded within the M protein were not a functional late domain, and the endosomal sorting complex required for transport (ESCRT) machinery was not involved in metapneumovirus budding, consistent with a recent observation that human respiratory syncytial virus, closely related to HMPV, uses an ESCRT-independent budding mechanism. Taken together, these results suggest that metapneumovirus budding is independent of the ESCRT pathway and the minimal budding machinery described here will aid our future understanding of metapneumovirus assembly and egress.

  16. Vertebrate lungs: structure, topography and mechanics. A comparative perspective of the progressive integration of respiratory system, locomotor apparatus and ontogenetic development.

    PubMed

    Duncker, Hans-Rainer

    2004-12-15

    Vertebrate lungs are highly diverse in their structure, topographical position, ventilation mechanisms, constructional integration into the locomotor apparatus, and the interrelationships with the mode of their ontogenetic development. Vertebrate lungs evolved as supplementary air-breathing organs in primary fishes, being ventilated by buccal pumping. In most recent fishes the lungs are transformed into the hydrostatic swimbladder. This basic type of unicameral lungs and their buccal pumping ventilation are also found in recent amphibians. Land vertebrates developed a very efficient aspiration type of ventilation. In most recent reptiles the lungs are subdivided into three rows of lung chambers, enlarging the exchange surface in correlation to their increasing metabolic needs. The avian respiratory apparatus, with its volume-constant lungs and highly compliant air sacs, and the mammalian broncho-alveolar lung, with its very low compliance, are both derived from multicameral lungs. The avian and the mammalian respiratory systems are integrated very differently with the specific constructions of their locomotor apparatusses and the specific mode of their ontogenetic development.

  17. Universal and reusable virus deactivation system for respiratory protection

    PubMed Central

    Quan, Fu-Shi; Rubino, Ilaria; Lee, Su-Hwa; Koch, Brendan; Choi, Hyo-Jick

    2017-01-01

    Aerosolized pathogens are a leading cause of respiratory infection and transmission. Currently used protective measures pose potential risk of primary/secondary infection and transmission. Here, we report the development of a universal, reusable virus deactivation system by functionalization of the main fibrous filtration unit of surgical mask with sodium chloride salt. The salt coating on the fiber surface dissolves upon exposure to virus aerosols and recrystallizes during drying, destroying the pathogens. When tested with tightly sealed sides, salt-coated filters showed remarkably higher filtration efficiency than conventional mask filtration layer, and 100% survival rate was observed in mice infected with virus penetrated through salt-coated filters. Viruses captured on salt-coated filters exhibited rapid infectivity loss compared to gradual decrease on bare filters. Salt-coated filters proved highly effective in deactivating influenza viruses regardless of subtypes and following storage in harsh environmental conditions. Our results can be applied in obtaining a broad-spectrum, airborne pathogen prevention device in preparation for epidemic and pandemic of respiratory diseases. PMID:28051158

  18. Universal and reusable virus deactivation system for respiratory protection

    NASA Astrophysics Data System (ADS)

    Quan, Fu-Shi; Rubino, Ilaria; Lee, Su-Hwa; Koch, Brendan; Choi, Hyo-Jick

    2017-01-01

    Aerosolized pathogens are a leading cause of respiratory infection and transmission. Currently used protective measures pose potential risk of primary/secondary infection and transmission. Here, we report the development of a universal, reusable virus deactivation system by functionalization of the main fibrous filtration unit of surgical mask with sodium chloride salt. The salt coating on the fiber surface dissolves upon exposure to virus aerosols and recrystallizes during drying, destroying the pathogens. When tested with tightly sealed sides, salt-coated filters showed remarkably higher filtration efficiency than conventional mask filtration layer, and 100% survival rate was observed in mice infected with virus penetrated through salt-coated filters. Viruses captured on salt-coated filters exhibited rapid infectivity loss compared to gradual decrease on bare filters. Salt-coated filters proved highly effective in deactivating influenza viruses regardless of subtypes and following storage in harsh environmental conditions. Our results can be applied in obtaining a broad-spectrum, airborne pathogen prevention device in preparation for epidemic and pandemic of respiratory diseases.

  19. Verification and compensation of respiratory motion using an ultrasound imaging system

    SciTech Connect

    Chuang, Ho-Chiao Hsu, Hsiao-Yu; Chiu, Wei-Hung; Tien, Der-Chi; Wu, Ren-Hong; Hsu, Chung-Hsien

    2015-03-15

    Purpose: The purpose of this study was to determine if it is feasible to use ultrasound imaging as an aid for moving the treatment couch during diagnosis and treatment procedures associated with radiation therapy, in order to offset organ displacement caused by respiratory motion. A noninvasive ultrasound system was used to replace the C-arm device during diagnosis and treatment with the aims of reducing the x-ray radiation dose on the human body while simultaneously being able to monitor organ displacements. Methods: This study used a proposed respiratory compensating system combined with an ultrasound imaging system to monitor the compensation effect of respiratory motion. The accuracy of the compensation effect was verified by fluoroscopy, which means that fluoroscopy could be replaced so as to reduce unnecessary radiation dose on patients. A respiratory simulation system was used to simulate the respiratory motion of the human abdomen and a strain gauge (respiratory signal acquisition device) was used to capture the simulated respiratory signals. The target displacements could be detected by an ultrasound probe and used as a reference for adjusting the gain value of the respiratory signal used by the respiratory compensating system. This ensured that the amplitude of the respiratory compensation signal was a faithful representation of the target displacement. Results: The results show that performing respiratory compensation with the assistance of the ultrasound images reduced the compensation error of the respiratory compensating system to 0.81–2.92 mm, both for sine-wave input signals with amplitudes of 5, 10, and 15 mm, and human respiratory signals; this represented compensation of the respiratory motion by up to 92.48%. In addition, the respiratory signals of 10 patients were captured in clinical trials, while their diaphragm displacements were observed simultaneously using ultrasound. Using the respiratory compensating system to offset, the diaphragm

  20. The Respiratory System. Instructional Materials in Anatomy and Physiology for Pennsylvania Health Occupations Programs.

    ERIC Educational Resources Information Center

    National Evaluation Systems, Inc., Amherst, MA.

    This instructional modular unit with instructor's guide provides materials on aspects of one of the major systems of the human body--the respiratory system. Its purpose is to introduce the student to the structures and functions of the human respiratory system--and the interrelationships of the two--and to famlliarize the student with some of the…

  1. Commissioning and quality assurance for a respiratory training system based on audiovisual biofeedback.

    PubMed

    Cui, Guoqiang; Gopalan, Siddharth; Yamamoto, Tokihiro; Berger, Jonathan; Maxim, Peter G; Keall, Paul J

    2010-07-12

    A respiratory training system based on audiovisual biofeedback has been implemented at our institution. It is intended to improve patients' respiratory regularity during four-dimensional (4D) computed tomography (CT) image acquisition. The purpose is to help eliminate the artifacts in 4D-CT images caused by irregular breathing, as well as improve delivery efficiency during treatment, where respiratory irregularity is a concern. This article describes the commissioning and quality assurance (QA) procedures developed for this peripheral respiratory training system, the Stanford Respiratory Training (START) system. Using the Varian real-time position management system for the respiratory signal input, the START software was commissioned and able to acquire sample respiratory traces, create a patient-specific guiding waveform, and generate audiovisual signals for improving respiratory regularity. Routine QA tests that include hardware maintenance, visual guiding-waveform creation, auditory sounds synchronization, and feedback assessment, have been developed for the START system. The QA procedures developed here for the START system could be easily adapted to other respiratory training systems based on audiovisual biofeedback.

  2. Systems biology unravels interferon responses to respiratory virus infections.

    PubMed

    Kroeker, Andrea L; Coombs, Kevin M

    2014-02-26

    Interferon production is an important defence against viral replication and its activation is an attractive therapeutic target. However, it has long been known that viruses perpetually evolve a multitude of strategies to evade these host immune responses. In recent years there has been an explosion of information on virus-induced alterations of the host immune response that have resulted from data-rich omics technologies. Unravelling how these systems interact and determining the overall outcome of the host response to viral infection will play an important role in future treatment and vaccine development. In this review we focus primarily on the interferon pathway and its regulation as well as mechanisms by which respiratory RNA viruses interfere with its signalling capacity.

  3. Mathematical modelling of a human external respiratory system

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A closed system of algebraic and common differential equations solved by computer is investigated. It includes equations which describe the activity pattern of the respiratory center, the phrenic nerve, the thrust produced by the diaphragm as a function of the lung volume and discharge frequency of the phrenic nerve, as well as certain relations of the lung stretch receptors and chemoreceptors on various lung and blood characteristics, equations for lung biomechanics, pulmonary blood flow, alveolar gas exchange and capillary blood composition equations to determine various air and blood flow and gas exchange parameters, and various gas mixing and arterial and venous blood composition equations, to determine other blood, air and gas mixing characteristics. Data are presented by means of graphs and tables, and some advantages of this model over others are demonstrated by test results.

  4. Experimental quantum simulation of Avian Compass in a nuclear magnetic resonance system

    NASA Astrophysics Data System (ADS)

    Pearson, Jason; Feng, GuanRu; Zheng, Chao; Long, GuiLu

    2016-12-01

    Avian magnetoreception is the capacity for avians to sense the direction of the Earth's magnetic field. Discovered more than forty years ago, it has attracted intensive studies over the years. One promising model for describing this capacity in avians is the widely used reference-and-probe model where radical pairs within the eyes of bird combines to form singlet and triplet quantum states. The yield depends on the angle between the Earth's magnetic field and the molecules' axis, hence the relative value of yield of the singlet state or triplet state enables avians to sense the direction. Here we report the experimental demonstration of avian magnetoreception in a nuclear magnetic resonance quantum information processor. It is shown clearly from the experiment that the yield of the singlet state attains maximum when it is normal to the Earth's magnetic field, and the experimental results agree with theory very well.

  5. Avian metapneumovirus in the USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the United States of America (USA), avian metapneumovirus (aMPV) causes an upper respiratory tract infection in turkeys; no outbreaks have been reported in commercial chicken flocks. Typical clinical signs of the disease in turkey poults include coughing, sneezing, nasal discharge, tracheal rale...

  6. Avian Reovirus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Avian reoviruses (ARV) are widespread worldwide and may infect turkeys, chickens and other avian species, including domestic waterfowl and game birds. The virus is non-enveloped double-stranded RNA, therefore is environmentally stable and due to its segmented genome can generate variants easily. A...

  7. Respiratory alkalosis

    MedlinePlus

    ... shortness of breath. Alternative Names Alkalosis - respiratory Images Respiratory system References Effros RM, Swenson ER. Acid-base balance. In: Broaddus VC, Mason RJ, Ernst JD, et al, eds. Murray and Nadel's Textbook of Respiratory Medicine . 6th ed. Philadelphia, PA: Elsevier Saunders; 2016: ...

  8. An immuno-biosensor system based on quartz crystal microbalance for avian influenza virus detection

    NASA Astrophysics Data System (ADS)

    Liu, Shengping; Chen, Guoming; Zhou, Qi; Wei, Yunlong

    2007-12-01

    For the quick detection of Avian Influenza Virus (AIV), a biosensor based on Quartz Crystal Microbalance (QCM) was fabricated according to the specific bonding principle between antibody and antigen. Staphylococcal Protein A (SPA) was extracted from Staphylococcus and purified. Then SPA was coated on the surface of QCM for immobilizing AIV monoclonal antibodies. The use of AIV monoclonal antibody could enhance the specificity of the immuno-biosensor. A multi-channel piezoelectricity detection system for the immuno-biosensor was developed. The system can work for the quick detection of AIV antigen in the case of the entirely aqueous status owe to one special oscillating circuit designed in this work. The optimum conditions of SPA coating and AIV monoclonal antibody immobilization were investigated utilizing the multi-channel detection system. The preliminary application of the immuno-biosensor system for detection of AIV was evaluated. Results indicate that the immuno-biosensor system can detect the AIV antigens with a linear range of 3-200ng/ml. The system can accomplish the detection of AIV antigens around 40 minutes.

  9. National Training Course. Emergency Medical Technician. Paramedic. Instructor's Lesson Plans. Module V. Respiratory System.

    ERIC Educational Resources Information Center

    National Highway Traffic Safety Administration (DOT), Washington, DC.

    This instructor's lesson plan guide on the respiratory system is one of fifteen modules designed for use in the training of emergency medical technicians (paramedics). Five units of study are presented: (1) anatomy and physiology of the respiratory system; (2) pathophysiology assessment of the patient; (3) pathophysiology and management of…

  10. [Check list of the helminths in the respiratory system of domesticated animals in Turkey].

    PubMed

    Gürler, Ali Tümay

    2006-01-01

    Helminths of the respiratory system make up an important part of the parasitic diseases found in domestic animals. Therefore, many studies have been carried out on these helminths in Turkey. In this article, a check list and the prevalence rates of helminths of respiratory system found in domestic animals in Turkey has been given.

  11. Evaluation of Lightweight and Low Profile Communications Devices for Respiratory Protective System 21 (RESPO 21)

    DTIC Science & Technology

    1992-02-01

    AD-A253 393 Ir ic EREP ORT ELECTE" S JUL2,3 992 C FINAL REPORT Evaluation of Lightweight and Low Profile Communications Devices for Respiratory ...Evaluation of Lightweight and Low Profile Communications Devices for Respiratory Protective System 21 (RESPO21) to U.S. Army Chemical Research, Development...1 INTRODUCTION The Chemical Research, Development, and Engineering Center (CRDEC) is entering development of the next generation of respiratory

  12. [The role of opioidergic and GABAergic systems in the mechanosensitivity regulation of the respiratory system in rats].

    PubMed

    Tikhomirova, L N; Safina, N F; Tarakanov, I A

    2015-01-01

    In anaesthetized white outbred male rats we investigated the change of respiratory mechanoreceptors sensitivity to morphine and phenibut. Bilateral transection of the vagus nerves causes a severely slowdown of respiratory rate in 30 minutes after the systemic administration of morphine, however after administration of phenibut the respiratory rate and other respiration parameters have not changed significantly. It means that the activation of opioid receptors by morphine does not significantly affect the function of the respiratory mechanoreceptor control loop, and transection of the vagus nerves on this background increases the probability of respiratory rhythm disorders. Activation of GABAergic system by phenibut significantly weakened the impact of the regulating contour of the respiratory mechanoreceptor on breathing parameters, up to effect of "central vagotomy": that is, to no changes in respiratory parameters after cutting the vagus nerves.

  13. The respiratory-vocal system of songbirds: Anatomy, physiology, and neural control

    PubMed Central

    Schmidt, Marc F.; Wild, J. Martin

    2015-01-01

    This wide-ranging review presents an overview of the respiratory-vocal system in songbirds, which are the only other vertebrate group known to display a degree of respiratory control during song rivalling that of humans during speech; this despite the fact that the peripheral components of both the respiratory and vocal systems differ substantially in the two groups. We first provide a brief description of these peripheral components in songbirds (lungs, air sacs and respiratory muscles, vocal organ (syrinx), upper vocal tract) and then proceed to a review of the organization of central respiratory-related neurons in the spinal cord and brainstem, the latter having an organization fundamentally similar to that of the ventral respiratory group of mammals. The second half of the review describes the nature of the motor commands generated in a specialized “cortical” song control circuit and how these might engage brainstem respiratory networks to shape the temporal structure of song. We also discuss a bilaterally projecting “respiratory-thalamic” pathway that links the respiratory system to “cortical” song control nuclei. This necessary pathway for song originates in the brainstem’s primary inspiratory center and is hypothesized to play a vital role in synchronizing song motor commands both within and across hemispheres. PMID:25194204

  14. The respiratory-vocal system of songbirds: anatomy, physiology, and neural control.

    PubMed

    Schmidt, Marc F; Martin Wild, J

    2014-01-01

    This wide-ranging review presents an overview of the respiratory-vocal system in songbirds, which are the only other vertebrate group known to display a degree of respiratory control during song rivalling that of humans during speech; this despite the fact that the peripheral components of both the respiratory and vocal systems differ substantially in the two groups. We first provide a brief description of these peripheral components in songbirds (lungs, air sacs and respiratory muscles, vocal organ (syrinx), upper vocal tract) and then proceed to a review of the organization of central respiratory-related neurons in the spinal cord and brainstem, the latter having an organization fundamentally similar to that of the ventral respiratory group of mammals. The second half of the review describes the nature of the motor commands generated in a specialized "cortical" song control circuit and how these might engage brainstem respiratory networks to shape the temporal structure of song. We also discuss a bilaterally projecting "respiratory-thalamic" pathway that links the respiratory system to "cortical" song control nuclei. This necessary pathway for song originates in the brainstem's primary inspiratory center and is hypothesized to play a vital role in synchronizing song motor commands both within and across hemispheres.

  15. [Latex proteins as the trigger of respiratory and systemic allergies].

    PubMed

    Baur, X; Jäger, D; Engelke, T; Rennert, S; Czuppon, A B

    1992-08-21

    56 patients (52 members of the hospital's staff, four with other employment) who had hypersensitivity reactions to latex articles and developed an immediate-type response to latex extract with the skin-prick test were studied. Specific IgE antibodies were present in the enzyme-allergo-sorbent test of 50 of the subjects. Latex-containing surgical and household gloves were the main cause of allergies. Patients with isolated contact urticaria (n = 8) had a tendency towards lower antibody concentrations than those with additional respiratory and/or systemic symptoms (n = 48). Occupation-related provocation tests triggered rhinitis in 19, conjunctivitis in ten, and bronchial obstruction in six. The main allergen was found to be a protein with a relative molecular mass of 58,000, originating from the latex milk and passing from the latex glove into the glove powder. In the course of usual activities considerable allergen inhalation can occur. Even small amounts (e.g. 400 ng/ml) can precipitate significant allergic reactions. The results show that the main latex allergen, a glycine-rich protein molecule, can cause cutaneous, inhalant and systemic hypersensitivity reactions.

  16. Recording system and data fusion algorithm for enhancing the estimation of the respiratory rate from photoplethysmogram.

    PubMed

    Cernat, Roxana A; Ciorecan, Silvia I; Ungureanu, Constantin; Arends, Johan; Strungaru, Rodica; Ungureanu, G Mihaela

    2015-01-01

    The respiratory rate is a vital parameter that can provide valuable information about the health condition of a patient. The extraction of respiratory information from photoplethysmographic signal (PPG) was actually encouraged by the reported results, our main goal being to obtain accurate respiratory rate estimation from the PPG signal. We developed a fusion algorithm that identifies the best derived respiratory signals, from which is possible to extract the respiratory rate; based on these, a global respiratory rate is computed using the proposed fusion algorithm. The algorithm is qualitatively tested on real PPG signals recorded by an acquisition system we implemented, using a reflection pulse oximeter sensor. Its performance is also statistically evaluated using benchmark dataset publically available from CapnoBase.Org.

  17. Low-power system-on-chip implementation for respiratory rate detection and transmission.

    PubMed

    Padasdao, Bryson; Yee, Roxanne; Boric-Lubecke, Olga

    2012-01-01

    Recent biosensors can measure respiratory rate non-invasively, but limits patient mobility or requires regular battery replacement. Respiratory effort, which can scavenge mW, may power the sensor, but requires minimal sensor power usage. This paper demonstrates feasibility of respiratory rate measurement by using a comparator instead of ADC. A low-power system-on-chip can implement respiratory rate detection and wireless data transmission with a total power consumption under 82 µW. This approach produces significant power savings, and transmission uses under 30% of total power consumption.

  18. Prevalence of chronic obstructive pulmonary disease among patients with systemic arterial hypertension without respiratory symptoms

    PubMed Central

    Rabahi, Marcelo Fouad; Pereira, Sheila Alves; Silva Júnior, José Laerte Rodrigues; de Rezende, Aline Pacheco; Castro da Costa, Adeliane; de Sousa Corrêa, Krislainy; Conde, Marcus Barreto

    2015-01-01

    Background The diagnosis of chronic obstructive pulmonary disease (COPD) is often delayed until later stages of the disease. The purpose of the present study was to determine the prevalence of COPD among adults on treatment for systemic arterial hypertension independently of the presence of respiratory symptoms. Methods This cross-sectional study included adults aged ≥40 years with tobacco/occupational exposure and systemic arterial hypertension diagnosed at three Primary Health Care facilities in Goiania, Brazil. Patients were evaluated using a standardized respiratory questionnaire and spirometry. COPD prevalence was measured considering the value of forced vital capacity and/or forced expiratory volume in 1 second <0.70. Results Of a total of 570 subjects, 316 (55%) met inclusion criteria and were invited to participate. Two hundred and thirty-three (73.7%) patients with arterial hypertension reported at least one respiratory symptom, while 83 (26.3%) reported no respiratory symptoms; 41 (17.6%) patients with arterial hypertension and at least one respiratory symptom, and 10 (12%) patients with arterial hypertension but no respiratory symptoms were diagnosed with COPD (P=0.24). The prevalence of COPD in people with no previous COPD diagnosis was greater among those with no respiratory symptoms (100%) than among those with respiratory symptoms (56.1%) (P=0.01). Conclusion Our findings suggest that regardless of the presence of respiratory symptoms, individuals aged ≥40 years with tobacco/occupational exposure and arterial hypertension may benefit from spirometric evaluation. PMID:26257517

  19. Early host responses to avian influenza A virus are prolonged and enhanced at transcriptional level depending on maturation of the immune system.

    PubMed

    Reemers, Sylvia S; van Leenen, Dik; Koerkamp, Marian J Groot; van Haarlem, Daphne; van de Haar, Peter; van Eden, Willem; Vervelde, Lonneke

    2010-05-01

    Newly hatched chickens are more susceptible to infectious diseases than older birds because of an immature immune system. The aim of this study was to determine to what extent host responses to avian influenza virus (AIV) inoculation are affected by age. Therefore, 1- and 4-week (wk) old birds were inoculated with H9N2 AIV or saline. The trachea and lung were sampled at 0, 8, 16 and 24h post-inoculation (h.p.i.) and gene expression profiles determined using microarray analysis. Firstly, saline controls of both groups were compared to analyse the changes in gene profiles related to development. In 1-wk-old birds, higher expression of genes related to development of the respiratory immune system and innate responses were found, whereas in 4-wk-old birds genes were up regulated that relate to the presence of higher numbers of leukocytes in the respiratory tract. After inoculation with H9N2, gene expression was most affected at 16 h.p.i. in 1-wk-old birds and at 16 and 24h.p.i. in 4-wk-old birds in the trachea and especially in the lung. In 1-wk-old birds less immune related genes including innate related genes were induced which might be due to age-dependent reduced functionality of antigen presenting cells (APC), T cells and NK cells. In contrast cytokine and chemokines gene expression was related to viral load in 1-wk-old birds and less in 4-wk-old birds. Expression of cellular host factors that block virus replication by interacting with viral factors was independent of age or tissue for most host factors. These data show that differences in development are reflected in gene expression and suggest that the strength of host responses at transcriptional level may be a key factor in age-dependent susceptibility to infection, and the cellular host factors involved in virus replication are not.

  20. Rapid response to systemic bevacizumab therapy in recurrent respiratory papillomatosis

    PubMed Central

    MOHR, MICHAEL; SCHLIEMANN, CHRISTOPH; BIERMANN, CHRISTOPH; SCHMIDT, LARS-HENNING; KESSLER, TORSTEN; SCHMIDT, JOACHIM; WIEBE, KARSTEN; MÜLLER, KLAUS-MICHAEL; HOFFMANN, THOMAS K.; GROLL, ANDREAS H.; WERNER, CLAUDIUS; KESSLER, CHRISTINA; WIEWRODT, RAINER; RUDACK, CLAUDIA; BERDEL, WOLFGANG E.

    2014-01-01

    Recurrent respiratory papillomatosis (RRP) is a primary benign disease, which is characterized by papillomatous growth in the respiratory tract. Malignant transformation occurs in only 3–5% of cases, however, local growth of the benign papillomas is interpreted as clinically malignant in a markedly higher proportion of patients. Local surgical or endoscopic interventional debulking or excision is currently the commonly selected treatment method and antiviral therapy is a potential adjuvant approach. However, the long-term management of RRP patients, who commonly require multiple procedures over numerous years, is challenging and the overall therapeutic armamentarium remains unsatisfactory. The administration of systemic bevacizumab treatment in a series of five patients with long histories of RRP, who required repeated local interventions to control papilloma growth is evaluated. Treatment with the anti-vascular endothelial growth factor (VEGF) antibody bevacizumab was administered at a dose of 5 mg/kg (n=1), 10 mg/kg (n=3) or 15 mg/kg (n=1) intravenously to the five RRP patients, who were clinically classified as exhibiting progressive disease. Endoscopic evaluations were performed prior to the first infusion of bevacizumab and intermittently at variable time points during the course of therapy. Histopathological analyses were performed using pre- and post-treatment papilloma biopsies, including immunohistochemical analyses of VEGF and phosphorylated VEGF receptor (VEGFR)-2 expression. The patients received between three and 16 courses of bevacizumab (median, six courses). The first course was initiated when progression following the previous intervention was observed. An immediate response to bevacizumab treatment was demonstrated in all five RRP patients. While the cumulative number of interventions in the five patients was 18 throughout the 12 months prior to the initiation of bevacizumab treatment, only one patient required interventional treatment due to a

  1. Interleukin-6 and lung inflammation: evidence for a causative role in inducing respiratory system resistance increments.

    PubMed

    Rubini, Alessandro

    2013-10-01

    Interleukin-6 is a multifunctional cytokine that has been shown to be increased in some pathological conditions involving the respiratory system such as those experimentally induced in animals or spontaneously occurring in humans. Experimental data demonstrating that interleukin-6 plays a significant role in commonly occurring respiratory system inflammatory diseases are reviewed here. Those diseases, i.e. asthma and chronic obstructive pulmonary disease, are characterised by mechanical derangements of the respiratory system, for the most part due to increased elastance and airway resistance. Recent findings showing that interleukin-6 has a causative role in determining an increase in airway resistance are reviewed. The end-inflation occlusion method was used to study the mechanical properties of the respiratory system before and after interleukin-6 administration. The cytokine was shown to induce significant, dose-dependent increments in both the resistive pressure dissipation due to frictional forces opposing the airflow in the airway (ohmic resistance) and the additional resistive pressure dissipation due to the visco-elastic properties of the system, i.e. stress relaxation (visco-elastic resistance). There were no alterations in respiratory system elastance. Even when administered to healthy mammals, interleukin-6 determines a significant effect on respiratory system resistance causing an increase in the mechanical work of breathing during inspiration. IL-6 hypothetically plays an active role in the pathogenesis of respiratory system diseases and the mechanisms that may be involved are discussed here.

  2. Avian Wings

    NASA Technical Reports Server (NTRS)

    Liu, Tianshu; Kuykendoll, K.; Rhew, R.; Jones, S.

    2004-01-01

    This paper describes the avian wing geometry (Seagull, Merganser, Teal and Owl) extracted from non-contact surface measurements using a three-dimensional laser scanner. The geometric quantities, including the camber line and thickness distribution of airfoil, wing planform, chord distribution, and twist distribution, are given in convenient analytical expressions. Thus, the avian wing surfaces can be generated and the wing kinematics can be simulated. The aerodynamic characteristics of avian airfoils in steady inviscid flows are briefly discussed. The avian wing kinematics is recovered from videos of three level-flying birds (Crane, Seagull and Goose) based on a two-jointed arm model. A flapping seagull wing in the 3D physical space is re-constructed from the extracted wing geometry and kinematics.

  3. Avian botulism

    USGS Publications Warehouse

    Friend, Milton; Locke, Louis N.; Kennelly, James J.

    1985-01-01

    What is avian botulism? Avian botulism, or Western duck sickness, is one of the three most important disease problems of wild migratory birds. Each year, many birds are paralyzed or die after exposure to a toxin produced by the botulinum bacterium. Two of the seven toxin types that have been identifies cause mortality in wild birds; one of these types, type C, is most often associated with dieoffs of ducks, while type E primarily affects gulls and loons.

  4. Avian Flu

    SciTech Connect

    Eckburg, Paul

    2006-11-06

    Since 2003, a severe form of H5N1 avian influenza has rapidly spread throughout Asia and Europe, infecting over 200 humans in 10 countries. The spread of H5N1 virus from person-to-person has been rare, thus preventing the emergence of a widespread pandemic. However, this ongoing epidemic continues to pose an important public health threat. Avian flu and its pandemic potential in humans will be discussed.

  5. Avian Hematology.

    PubMed

    Jones, Michael P

    2015-09-01

    Avian veterinarians often rely heavily on the results of various diagnostic tests, including hematology results. As such, cellular identification and evaluation of the cellular response are invaluable tools that help veterinarians understand the health or condition of their patient, as well as to monitor severity and clinical progression of disease and response to treatment. Therefore, it is important to thoroughly understand how to identify and evaluate changes in the avian erythron and leukon, as well as to interpret normal and abnormal results.

  6. Avian hematology.

    PubMed

    Jones, Michael P

    2015-01-01

    Avian veterinarians often rely heavily on the results of various diagnostic tests, including hematology results. As such, cellular identification and evaluation of the cellular response are invaluable tools that help veterinarians understand the health or condition of their patient, as well as to monitor severity and clinical progression of disease and response to treatment. Therefore, it is important to thoroughly understand how to identify and evaluate changes in the avian erythron and leukon, as well as to interpret normal and abnormal results.

  7. Technical evaluation of different respiratory monitoring systems used for 4D CT acquisition under free breathing.

    PubMed

    Heinz, Christian; Reiner, Michael; Belka, Claus; Walter, Franziska; Söhn, Matthias

    2015-03-08

    Respiratory monitoring systems are required to supply CT scanners with information on the patient's breathing during the acquisition of a respiration-correlated computer tomography (RCCT), also referred to as 4D CT. The information a respiratory monitoring system has to provide to the CT scanner depends on the specific scanner. The purpose of this study is to compare two different respiratory monitoring systems (Anzai Respiratory Gating System; C-RAD Sentinel) with respect to their applicability in combination with an Aquilion Large Bore CT scanner from Toshiba. The scanner used in our clinic does not make use of the full time dependent breathing signal, but only single trigger pulses indicating the beginning of a new breathing cycle. Hence the attached respiratory monitoring system is expected to deliver accurate online trigger pulse for each breathing cycle. The accuracy of the trigger pulses sent to the CT scanner has to be ensured by the selected respiratory monitoring system. Since a trigger pulse (output signal) of a respiratory monitoring system is a function of the measured breathing signal (input signal), the typical clinical range of the input signal is estimated for both examined respiratory monitoring systems. Both systems are analyzed based on the following parameters: time resolution, signal amplitude, noise, signal-to-noise ratio (SNR), signal linearity, trigger compatibility, and clinical examples. The Anzai system shows a better SNR (≥ 28 dB) than the Sentinel system (≥ 14.6 dB). In terms of compatibility with the cycle-based image sorting algorithm of the Toshiba CT scanner, the Anzai system benefits from the possibility to generate cycle-based triggers, whereas the Sentinel system is only able to generate amplitude-based triggers. In clinical practice, the combination of a Toshiba CT scanner and the Anzai system will provide better results due to the compatibility of the image sorting and trigger release methods.

  8. A novel respiratory rate estimation method for sound-based wearable monitoring systems.

    PubMed

    Zhang, Jianmin; Ser, Wee; Goh, Daniel Yam Thiam

    2011-01-01

    The respiratory rate is a vital sign that can provide important information about the health of a patient, especially that of the respiratory system. The aim of this study is to develop a simple method that can be applied in wearable systems to monitor the respiratory rate automatically and continuously over extended periods of time. In this paper, a novel respiratory rate estimation method is presented to achieve this target. The proposed method has been evaluated in both the open-source data as well as the local-hospital data, and the results are encouraging. The findings of this study revealed strong linear correlation to the reference respiratory rate. The correlation coefficients for the open-source data and the in-hospital data are 0.99 and 0.96 respectively. The standard deviation of the estimation error is less than 7% for both types of data.

  9. Transgenic Quail as a Model for Research in the Avian Nervous System – A Comparative Study of the Auditory Brainstem

    PubMed Central

    Seidl, Armin H.; Sanchez, Jason Tait; Schecterson, Leslayann; Tabor, Kathryn M.; Wang, Yuan; Kashima, Daniel T.; Poynter, Greg; Huss, David; Fraser, Scott E.; Lansford, Rusty; Rubel, Edwin W

    2012-01-01

    Research performed on transgenic animals has led to numerous advances in biological research. However, using traditional retroviral methods to generate transgenic avian research models has proven problematic. As a result, experiments aimed at genetic manipulations on birds remained difficult for this popular research tool. Recently, lentiviral methods have enabled production of transgenic birds, including a transgenic Japanese quail (Coturnix coturnix japonica) line showing neuronal-specificity and stable expression of eGFP across generations (termed here as GFP quail). To test whether the GFP quail may serve as a viable alternative to the popular chicken model system, with the additional benefit of gene manipulation, we compared the development, organization, structure and function of a specific neuronal circuit in chicken (Gallus gallus domesticus) to that of the GFP quail. This study focuses on a well-defined avian brain region, the principal nuclei of the sound localization circuit in the auditory brainstem, nucleus magnocellularis (NM) and nucleus laminaris (NL). Our results demonstrate that structural and functional properties of NM and NL neurons in the GFP quail, as well as their dynamic properties in response to changes in the environment, are nearly identical to those in chickens. These similarities demonstrate that the GFP quail, as well as other transgenic quail lines, can serve as an attractive avian model system, with the advantage of being able to build on the wealth of information already available from the chicken. PMID:22806400

  10. Comparison of three isolation systems for the culture of mycobacteria from respiratory and non-respiratory samples

    PubMed Central

    Harris, G; Rayner, A; Blair, J; Watt, B

    2000-01-01

    Aims—To compare the recovery of mycobacteria from clinical samples using the MB/BacT rapid culture system with that obtained using egg medium or the Bactec radiometric method. Methods—The three methods were compared using 681 clinical samples (462 respiratory and 219 non-respiratory samples) and eight external quality control strains. Culture media were incubated at 35–37°C for six weeks in the MB/BacT system and for 12 weeks in the Bactec system and on egg medium. Solid media were examined macroscopically once a week and the Bactec vials were read six times in the first two weeks, and then weekly for the next 10 weeks (a growth index > 50 indicated a positive vial). The MB/BacT system positive vials were unloaded from the machine as soon as possible after detection. Confirmation of growth for all systems was by Ziehl-Neelson stained smears. Isolates were identified by a combination of phenotypic and molecular methods. Results—Of the 681 clinical samples, 59 (8.7%) were positive on culture, including 23 strains of Mycobacterium tuberculosis. None of the three systems recovered all of the isolates, but each recovered mycobacteria not detected by either of the other two systems. After six weeks incubation, isolation rates were 87%, 78%, and 90%, and mean times to detection were 13, 19, and nine days for the MB/BacT, egg medium, and Bactec systems, respectively. Although the MB/BacT system was slightly slower than the Bactec system, the biomass was greater, allowing earlier use of molecular probes and earlier inoculation of susceptibility tests. Conclusions—The MB/BacT system provides comparable performance to the Bactec radiometric system, without the problems of disposal of radioactive waste. Optimal recovery is obtained when culture on egg medium is used in conjunction with a rapid culture system. Key Words: mycobacteria • rapid culture • solid media PMID:11002766

  11. Nonlinear statistical data assimilation for HVC[Formula: see text] neurons in the avian song system.

    PubMed

    Kadakia, Nirag; Armstrong, Eve; Breen, Daniel; Morone, Uriel; Daou, Arij; Margoliash, Daniel; Abarbanel, Henry D I

    2016-12-01

    With the goal of building a model of the HVC nucleus in the avian song system, we discuss in detail a model of HVC[Formula: see text] projection neurons comprised of a somatic compartment with fast Na[Formula: see text] and K[Formula: see text] currents and a dendritic compartment with slower Ca[Formula: see text] dynamics. We show this model qualitatively exhibits many observed electrophysiological behaviors. We then show in numerical procedures how one can design and analyze feasible laboratory experiments that allow the estimation of all of the many parameters and unmeasured dynamical variables, given observations of the somatic voltage [Formula: see text] alone. A key to this procedure is to initially estimate the slow dynamics associated with Ca, blocking the fast Na and K variations, and then with the Ca parameters fixed estimate the fast Na and K dynamics. This separation of time scales provides a numerically robust method for completing the full neuron model, and the efficacy of the method is tested by prediction when observations are complete. The simulation provides a framework for the slice preparation experiments and illustrates the use of data assimilation methods for the design of those experiments.

  12. Simulated respiratory system for in vitro evaluation of two inhalation delivery systems using selected steroids.

    PubMed

    Sciarra, J J; Cutie, A

    1978-10-01

    A simulated respiratory system was developed for the in vitro evaluation of two differently designed oral inhalation delivery systems. The deposition properties of a newly designed delivery system used for triamcinolone acetonide were compared to the more conventional, commercially available adapter utilized for an aerosol containing beclomethasone dipropionate. The simulated respiratory system was constructed so that the delivered dose of active ingredient could be classified into two fractions: the fraction that would be deposited in the oral cavity and throat and the fraction that would reach the desired site of activity in the respiratory tract. Based on this method, the newly designed system delivered more than 95% of the labeled dose to the desired site. The beclomethasone dipropionate aerosol system, which was observed to discharge the active ingredient with a greater intensity, delivered approximately 40% of the labeled dose. The particle-size distribution of the dose dispensed from the newly designed delivery system attached to the triamcinolone acetonide aerosol was determined using an impactor technique. No effort was made to correlate these results with an in vivo response.

  13. Effects of hypothyroidism on the respiratory system and control of breathing: Human studies and animal models.

    PubMed

    Schlenker, Evelyn H

    2012-04-30

    Hypothyroidism, subclinical hypothyroidism and euthyroid sick syndrome, are prevalent disorders that affect all body systems including the respiratory system and control of breathing. The purpose of this review article is to discuss the regulation of thyroid hormone production and their function at the cellular level; the many causes of hypothyroidism; the effects of hypothyroidism on the respiratory system and on control of ventilation in hypothyroid patients; the variety of ways animal models of hypothyroidism are induced; and how in animal models hypothyroidism affects the respiratory system and control of breathing including neurotransmitters that influence breathing. Finally, this review will present controversies that exist in the field and thus encourage new research directions. Because of the high prevalence of hypothyroidism and subclinical forms of hypothyroidism and their influence on ventilation and the respiratory system, understanding underlying molecular mechanisms is necessary to ascertain how and sometimes why not thyroid replacement may normalize function.

  14. Physiological evidence that the vestibular system participates in autonomic and respiratory control.

    PubMed

    Yates, B J; Miller, A D

    1998-01-01

    Electrical or natural stimulation of the vestibular system results in changes in blood pressure and respiratory motor output. An increase in excitatory drive on the sympathetic nervous system occurs during nose-up vestibular stimulation in cats; this response is appropriate to offset orthostatic hypotension that could result from nose-up body rotations during movements such as vertical climbing. In addition, transection of the vestibular nerves in anesthetized or awake cats compromises the ability to correct decreases in blood pressure that result from nose-up body tilt. The vestibular system also has influences on respiratory muscles; these effects are appropriate to participate in making adjustments in the activity of respiratory muscles that are necessary to offset mechanical constraints on these muscles that occur during changes in body position. These data thus suggest that the influences of the vestibular system on the autonomic and respiratory systems serve to maintain homeostasis during movement.

  15. Avian Influenza Virus Infection of Immortalized Human Respiratory Epithelial Cells Depends upon a Delicate Balance between Hemagglutinin Acid Stability and Endosomal pH.

    PubMed

    Daidoji, Tomo; Watanabe, Yohei; Ibrahim, Madiha S; Yasugi, Mayo; Maruyama, Hisataka; Masuda, Taisuke; Arai, Fumihito; Ohba, Tomoyuki; Honda, Ayae; Ikuta, Kazuyoshi; Nakaya, Takaaki

    2015-04-24

    The highly pathogenic avian influenza (AI) virus, H5N1, is a serious threat to public health worldwide. Both the currently circulating H5N1 and previously circulating AI viruses recognize avian-type receptors; however, only the H5N1 is highly infectious and virulent in humans. The mechanism(s) underlying this difference in infectivity remains unclear. The aim of this study was to clarify the mechanisms responsible for the difference in infectivity between the current and previously circulating strains. Primary human small airway epithelial cells (SAECs) were transformed with the SV40 large T-antigen to establish a series of clones (SAEC-Ts). These clones were then used to test the infectivity of AI strains. Human SAEC-Ts could be broadly categorized into two different types based on their susceptibility (high or low) to the viruses. SAEC-T clones were poorly susceptible to previously circulating AI but were completely susceptible to the currently circulating H5N1. The hemagglutinin (HA) of the current H5N1 virus showed greater membrane fusion activity at higher pH levels than that of previous AI viruses, resulting in broader cell tropism. Moreover, the endosomal pH was lower in high susceptibility SAEC-T clones than that in low susceptibility SAEC-T clones. Taken together, the results of this study suggest that the infectivity of AI viruses, including H5N1, depends upon a delicate balance between the acid sensitivity of the viral HA and the pH within the endosomes of the target cell. Thus, one of the mechanisms underlying H5N1 pathogenesis in humans relies on its ability to fuse efficiently with the endosomes in human airway epithelial cells.

  16. Timely diagnosis of dairy calf respiratory disease using a standardized scoring system.

    PubMed

    McGuirk, Sheila M; Peek, Simon F

    2014-12-01

    Respiratory disease of young dairy calves is a significant cause of morbidity, mortality, economic loss, and animal welfare concern but there is no gold standard diagnostic test for antemortem diagnosis. Clinical signs typically used to make a diagnosis of respiratory disease of calves are fever, cough, ocular or nasal discharge, abnormal breathing, and auscultation of abnormal lung sounds. Unfortunately, routine screening of calves for respiratory disease on the farm is rarely performed and until more comprehensive, practical and affordable respiratory disease-screening tools such as accelerometers, pedometers, appetite monitors, feed consumption detection systems, remote temperature recording devices, radiant heat detectors, electronic stethoscopes, and thoracic ultrasound are validated, timely diagnosis of respiratory disease can be facilitated using a standardized scoring system. We have developed a scoring system that attributes severity scores to each of four clinical parameters; rectal temperature, cough, nasal discharge, ocular discharge or ear position. A total respiratory score of five points or higher (provided that at least two abnormal parameters are observed) can be used to distinguish affected from unaffected calves. This can be applied as a screening tool twice-weekly to identify pre-weaned calves with respiratory disease thereby facilitating early detection. Coupled with effective treatment protocols, this scoring system will reduce post-weaning pneumonia, chronic pneumonia, and otitis media.

  17. A new laboratory-based surveillance system (Respiratory DataMart System) for influenza and other respiratory viruses in England: results and experience from 2009 to 2012.

    PubMed

    Zhao, H; Green, H; Lackenby, A; Donati, M; Ellis, J; Thompson, C; Bermingham, A; Field, J; Sebastianpillai, P; Zambon, M; Watson, Jm; Pebody, R

    2014-01-23

    During the 2009 influenza A(H1N1) pandemic, a new laboratory-based virological sentinel surveillance system, the Respiratory DataMart System (RDMS), was established in a network of 14 Health Protection Agency (now Public Health England (PHE)) and National Health Service (NHS) laboratories in England. Laboratory results (both positive and negative) were systematically collected from all routinely tested clinical respiratory samples for a range of respiratory viruses including influenza, respiratory syncytial virus (RSV), rhinovirus, parainfluenza virus, adenovirus and human metapneumovirus (hMPV). The RDMS also monitored the occurrence of antiviral resistance of influenza viruses. Data from the RDMS for the 2009–2012 period showed that the 2009 pandemic influenza virus caused three waves of activity with different intensities during the pandemic and post pandemic periods. Peaks in influenza A(H1N1)pdm09 positivity (defined as number of positive samples per total number of samples tested) were seen in summer and autumn in 2009, with slightly higher peak positivity observed in the first post-pandemic season in 2010/2011. The influenza A(H1N1)pdm09 virus strain almost completely disappeared in the second postpandemic season in 2011/2012. The RDMS findings are consistent with other existing community-based virological and clinical surveillance systems. With a large sample size, this new system provides a robust supplementary mechanism, through the collection of routinely available laboratory data at minimum extra cost, to monitor influenza as well as other respiratory virus activity. A near real-time, daily reporting mechanism in the RDMS was established during the London 2012 Olympic and Paralympic Games. Furthermore, this system can be quickly adapted and used to monitor future influenza pandemics and other major outbreaks of respiratory infectious disease, including novel pathogens.

  18. A new approach to modeling of selected human respiratory system diseases, directed to computer simulations.

    PubMed

    Redlarski, Grzegorz; Jaworski, Jacek

    2013-10-01

    This paper presents a new versatile approach to model severe human respiratory diseases via computer simulation. The proposed approach enables one to predict the time histories of various diseases via information accessible in medical publications. This knowledge is useful to bioengineers involved in the design and construction of medical devices that are employed for monitoring of respiratory condition. The approach provides the data that are crucial for testing diagnostic systems. This can be achieved without the necessity of probing the physiological details of the respiratory system as well as without identification of parameters that are based on measurement data.

  19. Respiratory and Circulatory Systems, Science (Experimental): 5363.04.

    ERIC Educational Resources Information Center

    Weiss, Alan; And Others

    This biology course is especially recommended for students interested in a vocation in nursing, medical technology, dental hygiene or other para-medical areas. In part, it is considered a second course in biology. The course includes an intensive in-depth study of the respiratory structures, nerve and chemical control of breathing, gas exchange,…

  20. Interleukin-6 and Lung Inflammation: Evidences of A Causing Role in Inducing Respiratory System Resistance Increments.

    PubMed

    Rubini, Alessandro

    2013-07-10

    Interleukin-6 has been shown to be increased in various pathological conditions involving the lungs, both experimentally induced in animals, or spontaneously occurring in humans. Experimental data demonstrating a significant role of interleukin-6 in commonly occurring respiratory system inflammatory diseases are reviewed. These diseases, i.e. asthma and chronic obstructive pulmonary disease, are characterised by respiratory system mechanical derangement, most of all because increased elastance and airway resistance. Recent findings showing a causative role of interleukin-6 in determining an airway resistance increment are reviewed. By applying the end-inflation occlusion method to study respiratory system mechanical properties before and after interleukin-6 administration, it was shown that this cytokine induced significant increments in both the resistive pressure dissipation due to frictional forces opposing the airflow in the airway (ohmic resistance), and in the additional resistive pressure dissipation due to the visco-elastic properties of the system, i.e. stress relaxation (visco-elastic resistance). A dose-dependent effect was also demonstrated. No effects were instead detected on respiratory system elastance. Even solely administrated in healthy mammals, interleukin-6 exhibits a significant effect on respiratory system resistances, leading to increased inspiratory muscle mechanical work of breathing. Thus, IL-6 may play an active role in the pathogenesis of respiratory system diseases. The possible involved mechanisms are discussed.

  1. Respiratory alkalosis.

    PubMed

    Foster, G T; Vaziri, N D; Sassoon, C S

    2001-04-01

    Respiratory alkalosis is an extremely common and complicated problem affecting virtually every organ system in the body. This article reviews the various facets of this interesting problem. Respiratory alkalosis produces multiple metabolic abnormalities, from changes in potassium, phosphate, and calcium, to the development of a mild lactic acidosis. Renal handling of the above ions is also affected. The etiologies may be related to pulmonary or extrapulmonary disorders. Hyperventilation syndrome is a common etiology of respiratory alkalosis in the emergency department setting and is a diagnosis by exclusion. There are many cardiac effects of respiratory alkalosis, such as tachycardia, ventricular and atrial arrhythmias, and ischemic and nonischemic chest pain. In the lungs, vasodilation occurs, and in the gastrointestinal system there are changes in perfusion, motility, and electrolyte handling. Therapeutically, respiratory alkalosis is used for treatment of elevated intracranial pressure. Correction of a respiratory alkalosis is best performed by correcting the underlying etiology.

  2. Respiratory system involvement in antineutrophil cytoplasmic-associated systemic vasculitides: clinical, pathological, radiological and therapeutic considerations.

    PubMed

    Pesci, Alberto; Manganelli, Paolo

    2007-01-01

    Wegener's granulomatosis (WG), microscopic polyangiitis (MPA) and Churg- Strauss syndrome (CSS) are small-vessel vasculitides that, because of their frequent association with antineutrophil cytoplasmic antibodies (ANCA), are usually referred to as ANCA-associated systemic vasculitides (AASV). The diagnosis of AASV is made on the basis of clinical findings, biopsy of an involved organ and the presence of ANCA in the serum. Lung disease is a very common and important clinical feature of AASV. In WG, almost all patients have either upper airway or lower respiratory tract disease. Solitary or multiple nodules, frequently cavitated, and masses are the most common findings on chest radiography. Asthma is a cardinal symptom of CSS, often preceded by allergic rhinitis. Pulmonary transient and patchy alveolar infiltrates are the most common radiographic findings. In MPA, diffuse alveolar haemorrhage as a result of alveolar capillaritis is the most frequent manifestation of respiratory involvement, and is clinically expressed as haemoptysis, respiratory distress and anaemia. However, diffuse alveolar haemorrhage may also be subclinical and should be suspected when a chest radiograph demonstrates new unexplained bilateral alveolar infiltrates in the context of falling haemoglobin levels. Normal and high-resolution CT have a higher sensitivity than chest radiography for demonstrating airway, parenchymal and pleural lesions. However, many of these radiological findings are nonspecific and, therefore, their interpretation must take into account all clinical, laboratory and pathological data. Therapy of AASV is commonly divided into two phases: an initial 'remission induction' phase, in which more intensive immunosuppressant therapy is used to control disease activity, and a 'maintenance' phase, which uses less intensive therapy, for maintaining disease remission while lowering the risk of adverse effects of immunosuppressant drugs. In patients with AASV refractory to standard

  3. Influence of the Ageing Process on the Resistive and Reactive Properties of the Respiratory System

    PubMed Central

    e Tramont, Caio Vinicius Villalón; Faria, Alvaro Camilo Dias; Lopes, Agnaldo José; Jansen, José Manoel; de Melo, Pedro Lopes

    2009-01-01

    INTRODUCTION In an increasingly old society, the study of the respiratory system changes and new techniques dedicated to older patients are of interest in physiologic studies as well as in the diagnosis of respiratory diseases. OBJECTIVES (1) To investigate the impact of ageing on the resistive and reactive properties of the respiratory system, and (2) to compare the easiness of accomplishment of spirometry and forced oscillation for assessing lung function. METHODS We conducted a cross-sectional study in which forced oscillation was used to investigate respiratory system resistive and reactive properties, while spirometry was used as a reference test to evaluate 80 normal subjects aged between 20 and 86 years. A questionnaire was used to evaluate the easiness of accomplishment of spirometry and forced oscillation. RESULTS There was a significant increase in the respiratory system resonance frequency (p<0.003) and a reduction in the mean reactance (p<0.004) with increasing age. Respiratory system resistance and dynamic compliance were not related to the ageing process. The easiness of accomplishment of forced oscillation measurements was greater than that of spirometry. This result was particularly relevant in subjects over 70 years old (p<0.05). CONCLUSIONS Respiratory system resistance and dynamic compliance are not modified with ageing. On the other hand, respiratory system homogeneity decreases during the ageing process. Forced oscillation is easy to perform and provides information complementary to spirometry. This technique may be a promising alternative and/or complement to other conventional exams used to evaluate older people who are unable to adequately perform spirometric tests. PMID:19936180

  4. The Respiratory System [and] Instructor's Guide: The Respiratory System. Health Occupations Education Module: Instructional Materials in Anatomy and Physiology for Pennsylvania Health Occupations Programs.

    ERIC Educational Resources Information Center

    National Evaluation Systems, Inc., Amherst, MA.

    This module on the respiratory system is one of 17 modules designed for individualized instruction in health occupations education programs at both the secondary and postsecondary levels. It is part of an eight-unit miniseries on anatomy and physiology within the series of 17 modules. Following a preface which explains to the student how to use…

  5. Influence of industrial environments on the development of respiratory systems and morphofunctional features in preadolescent boys.

    PubMed

    Dziubek, Wioletta; Ignasiak, Zofia; Rozek, Krystyna

    2011-12-01

    The present study examines the differences between levels of selected structural and functional features of boys 11-13 years in age from regions with varying levels of air pollution, including an industrial and rural region. The sample consisted of 213 boys from the industrial region and 98 from the rural region. Somatic, respiratory parameters and motor abilities were evaluated in both groups. The analysis of respiratory parameters revealed significantly better development of respiratory systems in boys from the rural region. Additionally, motor abilities were also better developed in boys from the rural region.

  6. Influence of Industrial Environments on the Development of Respiratory Systems and Morphofunctional Features in Preadolescent Boys

    PubMed Central

    Dziubek, Wioletta; Ignasiak, Zofia; Rozek, Krystyna

    2011-01-01

    The present study examines the differences between levels of selected structural and functional features of boys 11–13 years in age from regions with varying levels of air pollution, including an industrial and rural region. The sample consisted of 213 boys from the industrial region and 98 from the rural region. Somatic, respiratory parameters and motor abilities were evaluated in both groups. The analysis of respiratory parameters revealed significantly better development of respiratory systems in boys from the rural region. Additionally, motor abilities were also better developed in boys from the rural region. PMID:23486548

  7. Minimizing the threat of pandemic emergence from avian influenza in poultry systems

    PubMed Central

    2013-01-01

    Background Live-animal markets are a culturally important feature of meat distribution chains in many populations, yet they provide an opportunity for the maintenance and transmission of potentially emergent zoonotic pathogens. The ongoing human outbreak of avian H7N9 in China highlights the need for increased surveillance and control in these live-bird markets (LBMs). Discussion Closure of retail markets in affected areas rapidly decreased human cases to rare, sporadic occurrence, but little attention has been paid thus far to the role of upstream elements of the poultry distribution chain such as wholesale markets. This could partly explain why transmission in poultry populations has not been eliminated more broadly. We present surveillance data from both wholesale live-bird markets (wLBMs) and rLBMs in Shantou, China (from 2004–2006), and call on disease-dynamic theory to illustrate why closing rLBMs has only minor effects on the overall volume of transmission. We show that the length of time birds stay in rLBMs can severely limit transmission there, but that the system-wide effect may be reduced substantially by high levels of transmission upstream of retail markets. Summary Management plans that minimize transmission throughout the entire poultry supply chain are essential for minimizing exposure to the public. These include reducing stay-time of birds in markets to 1 day, standardizing poultry supply chains to limit transmission in pre-retail settings, and monitoring strains with epidemiological traits that pose a high risk of emergence. These actions will further limit human exposure to extant viruses and reduce the likelihood of the emergence of novel strains by decreasing the overall volume of transmission. PMID:24341669

  8. Physiological system integrations with emphasis on the respiratory-cardiovascular system

    NASA Technical Reports Server (NTRS)

    Gallagher, R. R.

    1975-01-01

    The integration of two types of physiological system simulations is presented. The long term model is a circulatory system model which simulates long term blood flow variations and compartmental fluid shifts. The short term models simulate transient phenomena of the respiratory, thermoregulatory, and pulsatile cardiovascular systems as they respond to stimuli such as LBNP, exercise, and environmental gaseous variations. An overview of the interfacing approach is described. Descriptions of the variable interface for long term to short term and between the three short term models are given.

  9. Development of an integrated sensor module for a non-invasive respiratory monitoring system

    NASA Astrophysics Data System (ADS)

    Kang, Seok-Won; Chang, Keun-Shik

    2013-09-01

    A respiratory monitoring system has been developed for analyzing the carbon dioxide (CO2) and oxygen (O2) concentrations in the expired air using gas sensors. The data can be used to estimate some medical conditions, including diffusion capability of the lung membrane, oxygen uptake, and carbon dioxide output. For this purpose, a 3-way valve derived from a servomotor was developed, which operates synchronously with human respiratory signals. In particular, the breath analysis system includes an integrated sensor module for valve control, data acquisition through the O2 and CO2 sensors, and respiratory rate monitoring, as well as software dedicated to analysis of respiratory gasses. In addition, an approximation technique for experimental data based on Haar-wavelet-based decomposition is explored to remove noise as well as to reduce the file size of data for long-term monitoring.

  10. Development of Non-contact Respiratory Monitoring System for Newborn Using a FG Vision Sensor

    NASA Astrophysics Data System (ADS)

    Kurami, Yoshiyuki; Itoh, Yushi; Natori, Michiya; Ohzeki, Kazuo; Aoki, Yoshimitsu

    In recent years, development of neonatal care is strongly hoped, with increase of the low-birth-weight baby birth rate. Especially respiration of low-birth-weight baby is incertitude because central nerve and respiratory function is immature. Therefore, a low-birth-weight baby often causes a disease of respiration. In a NICU (Neonatal Intensive Care Unit), neonatal respiration is monitored using cardio-respiratory monitor and pulse oximeter at all times. These contact-type sensors can measure respiratory rate and SpO2 (Saturation of Peripheral Oxygen). However, because a contact-type sensor might damage the newborn's skin, it is a real burden to monitor neonatal respiration. Therefore, we developed the respiratory monitoring system for newborn using a FG (Fiber Grating) vision sensor. FG vision sensor is an active stereo vision sensor, it is possible for non-contact 3D measurement. A respiratory waveform is calculated by detecting the vertical motion of the thoracic and abdominal region with respiration. We attempted clinical experiment in the NICU, and confirmed the accuracy of the obtained respiratory waveform was high. Non-contact respiratory monitoring of newborn using a FG vision sensor enabled the minimally invasive procedure.

  11. Predicting performance and plasticity in the development of respiratory structures and metabolic systems.

    PubMed

    Greenlee, Kendra J; Montooth, Kristi L; Helm, Bryan R

    2014-07-01

    The scaling laws governing metabolism suggest that we can predict metabolic rates across taxonomic scales that span large differences in mass. Yet, scaling relationships can vary with development, body region, and environment. Within species, there is variation in metabolic rate that is independent of mass and which may be explained by genetic variation, the environment or their interaction (i.e., metabolic plasticity). Additionally, some structures, such as the insect tracheal respiratory system, change throughout development and in response to the environment to match the changing functional requirements of the organism. We discuss how study of the development of respiratory function meets multiple challenges set forth by the NSF Grand Challenges Workshop. Development of the structure and function of respiratory and metabolic systems (1) is inherently stable and yet can respond dynamically to change, (2) is plastic and exhibits sensitivity to environments, and (3) can be examined across multiple scales in time and space. Predicting respiratory performance and plasticity requires quantitative models that integrate information across scales of function from the expression of metabolic genes and mitochondrial biogenesis to the building of respiratory structures. We present insect models where data are available on the development of the tracheal respiratory system and of metabolic physiology and suggest what is needed to develop predictive models. Incorporating quantitative genetic data will enable mapping of genetic and genetic-by-environment variation onto phenotypes, which is necessary to understand the evolution of respiratory and metabolic systems and their ability to enable respiratory homeostasis as organisms walk the tightrope between stability and change.

  12. Predicting Performance and Plasticity in the Development of Respiratory Structures and Metabolic Systems

    PubMed Central

    Montooth, Kristi L.; Helm, Bryan R.

    2014-01-01

    The scaling laws governing metabolism suggest that we can predict metabolic rates across taxonomic scales that span large differences in mass. Yet, scaling relationships can vary with development, body region, and environment. Within species, there is variation in metabolic rate that is independent of mass and which may be explained by genetic variation, the environment or their interaction (i.e., metabolic plasticity). Additionally, some structures, such as the insect tracheal respiratory system, change throughout development and in response to the environment to match the changing functional requirements of the organism. We discuss how study of the development of respiratory function meets multiple challenges set forth by the NSF Grand Challenges Workshop. Development of the structure and function of respiratory and metabolic systems (1) is inherently stable and yet can respond dynamically to change, (2) is plastic and exhibits sensitivity to environments, and (3) can be examined across multiple scales in time and space. Predicting respiratory performance and plasticity requires quantitative models that integrate information across scales of function from the expression of metabolic genes and mitochondrial biogenesis to the building of respiratory structures. We present insect models where data are available on the development of the tracheal respiratory system and of metabolic physiology and suggest what is needed to develop predictive models. Incorporating quantitative genetic data will enable mapping of genetic and genetic-by-environment variation onto phenotypes, which is necessary to understand the evolution of respiratory and metabolic systems and their ability to enable respiratory homeostasis as organisms walk the tightrope between stability and change. PMID:24812329

  13. The mammalian respiratory system and critical windows of exposure for children's health.

    PubMed Central

    Pinkerton, K E; Joad, J P

    2000-01-01

    The respiratory system is a complex organ system composed of multiple cell types involved in a variety of functions. The development of the respiratory system occurs from embryogenesis to adult life, passing through several distinct stages of maturation and growth. We review embryonic, fetal, and postnatal phases of lung development. We also discuss branching morphogenesis and cellular differentiation of the respiratory system, as well as the postnatal development of xenobiotic metabolizing systems within the lungs. Exposure of the respiratory system to a wide range of chemicals and environmental toxicants during perinatal life has the potential to significantly affect the maturation, growth, and function of this organ system. Although the potential targets for exposure to toxic factors are currently not known, they are likely to affect critical molecular signals expressed during distinct stages of lung development. The effects of exposure to environmental tobacco smoke during critical windows of perinatal growth are provided as an example leading to altered cellular and physiological function of the lungs. An understanding of critical windows of exposure of the respiratory system on children's health requires consideration that lung development is a multistep process and cannot be based on studies in adults. Images Figure 1 Figure 4 PMID:10852845

  14. Aging-related changes in respiratory system mechanics and morphometry in mice.

    PubMed

    Elliott, Jonathan E; Mantilla, Carlos B; Pabelick, Christina M; Roden, Anja C; Sieck, Gary C

    2016-07-01

    Previous work investigating respiratory system mechanics in mice has reported an aging-related increase in compliance and mean linear intercept (Lm). However, these changes were assessed using only a young (2-mo-old) and old (20- and 26-mo-old) group yet were interpreted to reflect a linear evolution across the life span. Therefore, to investigate respiratory system mechanics and lung morphometry across a more complete spectrum of ages, we utilized 2 (100% survival, n = 6)-, 6 (100% survival, n = 12)-, 18 (90% survival, n = 12)-, 24 (75% survival, n = 12)-, and 30 (25% survival, n = 12)-mo-old C57BL/6 mice. We found a nonlinear aging-related decrease in respiratory system resistance and increase in dynamic compliance and hysteresis between 2- and 24-mo-old mice. However, in 30-mo-old mice, respiratory system resistance increased, and dynamic compliance and hysteresis decreased relative to 24-mo-old mice. Respiratory system impedance spectra were measured between 1-20.5 Hz at positive end-expiratory pressures (PEEP) of 1, 3, 5, and 7 cmH2O. Respiratory system resistance and reactance at each level of PEEP were increased and decreased, respectively, only in 2-mo-old animals. No differences in the respiratory system impedance spectra were observed in 6-, 18-, 24-, and 30-mo-old mice. Additionally, lungs were fixed following tracheal instillation of 4% paraformaldehyde at 25 cmH2O and processed for Lm and airway collagen deposition. There was an aging-related increase in Lm consistent with emphysematous-like changes and no evidence of increased airway collagen deposition. Accordingly, we demonstrate nonlinear aging-related changes in lung mechanics and morphometry in C57BL/6 mice.

  15. The effect of progressive hypoxia on the respiratory and cardiovascular systems of the chicken

    PubMed Central

    Butler, P. J.

    1967-01-01

    1. During the initial stages of progressive hypoxia the intact, unanaesthetized chicken shows increases in heart rate and respiratory frequency with no change in arterial blood pressure and oxygen consumption. During the later stages, heart rate, diastolic and mean blood pressure and oxygen consumption fall, while respiratory frequency increases further. 2. Following bilateral cervical vagotomy and adrenergic β-receptor blockage there is no tachycardia, but the late bradycardia and fall in blood pressure do occur during progressive hypoxia. Respiratory frequency remains at a low level after vagotomy. 3. It is suggested that the initial tachycardia is dependent on both the sympathetic and parasympathetic nervous systems, and that the former helps maintain arterial pressure during the early stages of hypoxia. Bradycardia and hypotension seem to be due to anoxia itself, and the vagus is essential for the increase in respiratory frequency. PMID:6050107

  16. [Amphibians as a model system for the investigation of respiratory control development].

    PubMed

    Belzile, Olivier; Simard, Edith; Gulemetova, Roumiana; Bairam, Aida; Kinkead, Richard

    2004-10-01

    Recent medical advances have made it possible for babies to survive premature birth at increasingly earlier developmental stages. This population requires costly and sophisticated medical care to address the problems associated with immaturity of the respiratory system. In addition to pulmonary complications, respiratory instability and apnea reflecting immaturity of the respiratory control system are major causes of hospitalization and morbidity in this highly vulnerable population. These medical concerns, combined with the curiosity of physiologists, have contributed to the expansion of research in respiratory neurobiology. While most researchers working in this field commonly use rodents as an animal model, recent research using in vitro brainstem preparation from bullfrogs (Rana catesbeiana) have revealed the technical advantages of this animal model, and shown that the basic principles underlying respiratory control and its ontogeny are very similar between these two groups of vertebrates. The present review highlights the recent advances in the area of research with a focus on intermittent (episodic) breathing and the role of serotonergic and GABAergic modulation of respiratory activity during development.

  17. Avian colibacillosis: still many black holes.

    PubMed

    Guabiraba, Rodrigo; Schouler, Catherine

    2015-08-01

    Avian pathogenic Escherichia coli (APEC) strains cause severe respiratory and systemic diseases, threatening food security and avian welfare worldwide. Intensification of poultry production and the quick expansion of free-range production systems will increase the incidence of colibacillosis through greater exposure of birds to pathogens and stress. Therapy is mainly based on antibiotherapy and current vaccines have poor efficacy. Serotyping remains the most frequently used diagnostic method, only allowing the identification of a limited number of APEC strains. Several studies have demonstrated that the most common virulence factors studied in APEC are all rarely present in the same isolate, showing that APEC strains constitute a heterogeneous group. Different isolates may harbor different associations of virulence factors, each one able to induce colibacillosis. Despite its economical relevance, pathogenesis of colibacillosis is poorly understood. Our knowledge on the host response to APEC is based on very descriptive studies, mostly restricted to bacteriological and histopathological analysis of infected organs such as lungs. Furthermore, only a small number of APEC isolates have been used in experimental studies. In the present review, we discuss current knowledge on APEC diversity and virulence, including host response to infection and the associated inflammatory response with a focus on pulmonary colibacillosis.

  18. SU-E-J-192: Comparative Effect of Different Respiratory Motion Management Systems

    SciTech Connect

    Nakajima, Y; Kadoya, N; Ito, K; Kanai, T; Jingu, K; Kida, S; Kishi, K; Sato, K; Dobashi, S; Takeda, K

    2015-06-15

    Purpose: Irregular breathing can influence the outcome of four-dimensional computed tomography imaging for causing artifacts. Audio-visual biofeedback systems associated with patient-specific guiding waveform are known to reduce respiratory irregularities. In Japan, abdomen and chest motion self-control devices (Abches), representing simpler visual coaching techniques without guiding waveform are used instead; however, no studies have compared these two systems to date. Here, we evaluate the effectiveness of respiratory coaching to reduce respiratory irregularities by comparing two respiratory management systems. Methods: We collected data from eleven healthy volunteers. Bar and wave models were used as audio-visual biofeedback systems. Abches consisted of a respiratory indicator indicating the end of each expiration and inspiration motion. Respiratory variations were quantified as root mean squared error (RMSE) of displacement and period of breathing cycles. Results: All coaching techniques improved respiratory variation, compared to free breathing. Displacement RMSEs were 1.43 ± 0.84, 1.22 ± 1.13, 1.21 ± 0.86, and 0.98 ± 0.47 mm for free breathing, Abches, bar model, and wave model, respectively. Free breathing and wave model differed significantly (p < 0.05). Period RMSEs were 0.48 ± 0.42, 0.33 ± 0.31, 0.23 ± 0.18, and 0.17 ± 0.05 s for free breathing, Abches, bar model, and wave model, respectively. Free breathing and all coaching techniques differed significantly (p < 0.05). For variation in both displacement and period, wave model was superior to free breathing, bar model, and Abches. The average reduction in displacement and period RMSE compared with wave model were 27% and 47%, respectively. Conclusion: The efficacy of audio-visual biofeedback to reduce respiratory irregularity compared with Abches. Our results showed that audio-visual biofeedback combined with a wave model can potentially provide clinical benefits in respiratory management

  19. Antitussive activity and respiratory system effects of levodropropizine in man.

    PubMed

    Bossi, R; Braga, P C; Centanni, S; Legnani, D; Moavero, N E; Allegra, L

    1988-08-01

    Antitussive activity of the new antitussive drug, levodropropizine (S(-)-3-(4-phenyl-piperazin-1-yl)-propane-1,2-diol, DF 526), was evaluated in healthy volunteers by the classical method of citric acid-induced coughing. Levodropropizine dose-dependently reduced cough frequency. Maximal inhibition was observed at 6 h after administration. Cough intensity was also reduced, as shown by the analysis of cough noise. Levodropropizine, at the dosage of 60 mg t.i.d., had no adverse effects on respiratory function nor on airway clearance mechanisms: in fact, it did not affect spirometric parameters. Levodropropizine had no effects on the rheological properties of mucus nor on ciliary activity of airway epithelium.

  20. Amyloidosis involving the respiratory system: 5-year's experience of a multi-disciplinary group's activity.

    PubMed

    Scala, Raffaele; Maccari, Uberto; Madioni, Chiara; Venezia, Duccio; La Magra, Lidia Calogera

    2015-01-01

    Amyloidosis may involve the respiratory system with different clinical-radiological-functional patterns which are not always easy to be recognized. A good level of knowledge of the disease, an active integration of the pulmonologist within a multidisciplinary setting and a high level of clinical suspicion are necessary for an early diagnosis of respiratory amyloidosis. The aim of this retrospective study was to evaluate the number and the patterns of amyloidosis involving the respiratory system. We searched the cases of amyloidosis among patients attending the multidisciplinary rare and diffuse lung disease outpatients' clinic of Pulmonology Unit of the Hospital of Arezzo from 2007 to 2012. Among the 298 patients evaluated during the study period, we identified three cases of amyloidosis with involvement of the respiratory system, associated or not with other extra-thoracic localizations, whose diagnosis was histo-pathologically confirmed after the pulmonologist, the radiologist, and the pathologist evaluation. Our experience of a multidisciplinary team confirms that intra-thoracic amyloidosis is an uncommon disorder, representing 1.0% of the cases of rare and diffuse lung diseases referred to our center. The diagnosis of the disease is not always easy and quick as the amyloidosis may involve different parts of the respiratory system (airways, pleura, parenchyma). It is therefore recommended to remind this orphan disease in the differential diagnosis of the wide clinical scenarios the pulmonologist may intercept in clinical practice.

  1. [Design and research of an interface compatible non-contacting respiratory signal detection system].

    PubMed

    Song, Kui; Qi, Jiajun; Lin, Tao; Zhang, Yi

    2011-06-01

    Respiration-induced displacements of organs greatly affect the safety and efficiency of high intensity focused ultrasound (HIFU) tumor therapy system. The key to solve this problem is accurate, real-time detection of respiratory signals. The present study gives a new design of an interface compatible non-contacting respiratory signal detection system using the method of irradiating the laser beam onto certain region of the surface of human body that is intensely influenced by the breathing movements (mostly the breast or the dorsum) at a certain angle, and meanwhile using a camera to acquire information from the location of the laser projection. Then we can draw a curve of the location of laser projection versus time base, that is the respiration curve. This respiratory signal detection method is non-contacting, interface compatible and easy to be integrated into the treatment system.

  2. The impact of PM2.5 on the human respiratory system.

    PubMed

    Xing, Yu-Fei; Xu, Yue-Hua; Shi, Min-Hua; Lian, Yi-Xin

    2016-01-01

    Recently, many researchers paid more attentions to the association between air pollution and respiratory system disease. In the past few years, levels of smog have increased throughout China resulting in the deterioration of air quality, raising worldwide concerns. PM2.5 (particles less than 2.5 micrometers in diameter) can penetrate deeply into the lung, irritate and corrode the alveolar wall, and consequently impair lung function. Hence it is important to investigate the impact of PM2.5 on the respiratory system and then to help China combat the current air pollution problems. In this review, we will discuss PM2.5 damage on human respiratory system from epidemiological, experimental and mechanism studies. At last, we recommend to the population to limit exposure to air pollution and call to the authorities to create an index of pollution related to health.

  3. A review of recent findings about stress-relaxation in the respiratory system tissues.

    PubMed

    Rubini, Alessandro; Carniel, Emanuele Luigi

    2014-12-01

    This article reviews the state of the art about an unclear physiological phenomenon interesting respiratory system tissues, i.e., stress-relaxation. Due to their visco-elastic properties, the tissues do not maintain constant stress under constant deformation. Rather, the stress slowly relaxes and falls to a lower value. The exact molecular basis of this complex visco-elastic behavior is not well defined, but it has been suggested that it may be generated because of the anisotropic mechanical properties of elastin and collagen fibers in the alveolar septa and their interaction phenomena, such as reciprocal sliding, also in relation to interstitial liquid movements. The effects on stress-relaxation of various biochemical and physical factors are reviewed, including the consequences of body temperature variations, respiratory system inflammations and hyperbaric oxygen exposure, endocrinal factors, circulating blood volume variations, changes in inflation volume and/or flow, changes in intra-abdominal pressure because of pneumoperitoneum or Trendelenburg position. The effects of these factors on stress-relaxation have practical consequences because, depending on visco-elastic pressure amount which is requested to inflate the respiratory system in different conditions, respiratory muscles have to produce different values of inspiratory pressure during spontaneous breathing. High inspiratory pressure values might increase the risk of respiratory failure development on mechanical basis.

  4. Prevalence and association of welding related systemic and respiratory symptoms in welders

    PubMed Central

    El-Zein, M; Malo, J; Infante-Rivard, C; Gautrin, D

    2003-01-01

    Background: The prevalence of welding related respiratory symptoms coexisting with welding related systemic symptoms in welders is unknown. Aims: To determine in a sample of welders the prevalence of coexisting welding related systemic symptoms indicative of metal fume fever (MFF) and welding related respiratory symptoms suggestive of occupational asthma (OA), and the strength and significance of any association between these two groups of symptoms. Methods: A respiratory symptoms questionnaire, a systemic symptoms questionnaire, and a questionnaire on occupational history were administered by telephone to 351 of a sample of 441 welders (79.6%) from two cities in Québec, Canada. Results: The co-occurrence of possible MFF (defined as having at least two symptoms of fever, feelings of flu, general malaise, chills, dry cough, metallic taste, and shortness of breath, occurring at the beginning of the working week, 3–10 hours after exposure to welding fumes) together with welding related respiratory symptoms suggestive of OA (defined as having at least two welding related symptoms of cough, wheezing, and chest tightness) was 5.8%. These two groups of symptoms were significantly associated (χ2 = 18.9, p < 0.001). Conclusion: There is a strong association between welding related MFF and welding related respiratory symptoms suggestive of OA. As such, MFF could be viewed as a pre-marker of welding related OA, a hypothesis that requires further investigation. PMID:12937186

  5. Immunohistochemistry for detection of avian infectious bronchitis virus strain M41 in the proventriculus and nervous system of experimentally infected chicken embryos

    PubMed Central

    Abdel-Moneim, Ahmed S; Zlotowski, Priscila; Veits, Jutta; Keil, Günther M; Teifke, Jens P

    2009-01-01

    Background Infectious bronchitis virus primarily induces a disease of the respiratory system, different IBV strains may show variable tissue tropisms and also affect the oviduct and the kidneys. Proventriculitis was also associated with some new IBV strains. Aim of this study was to investigate by immunohistochemistry (IHC) the tissue tropism of avian infectious bronchitis virus (IBV) strain M41 in experimentally infected chicken embryos. Results To this end chicken embryos were inoculated in the allantoic sac with 103 EID50 of IBV M41 at 10 days of age. At 48, 72, and 120 h postinoculation (PI), embryos and chorioallantoic membranes (CAM) were sampled, fixed, and paraffin-wax embedded. Allantoic fluid was also collected and titrated in chicken embryo kidney cells (CEK). The sensitivity of IHC in detecting IBV antigens in the CAM of inoculated eggs matched the virus reisolation and detection in CEK. Using IHC, antigens of IBV were detected in nasal epithelium, trachea, lung, spleen, myocardial vasculature, liver, gastrointestinal tract, kidney, skin, sclera of the eye, spinal cord, as well as in brain neurons of the inoculated embryos. These results were consistent with virus isolation and denote the wide tissue tropism of IBV M41 in the chicken embryo. Most importantly, we found infection of vasculature and smooth muscle of the proventriculus which has not seen before with IBV strain M41. Conclusion IHC can be an additional useful tool for diagnosis of IBV infection in chickens and allows further studies to foster a deeper understanding of the pathogenesis of infections with IBV strains of different virulence. Moreover, these results underline that embryonic tissues in addition to CAM could be also used as possible source to generate IBV antigens for diagnostic purposes. PMID:19196466

  6. A closed-loop model of the respiratory system: focus on hypercapnia and active expiration.

    PubMed

    Molkov, Yaroslav I; Shevtsova, Natalia A; Park, Choongseok; Ben-Tal, Alona; Smith, Jeffrey C; Rubin, Jonathan E; Rybak, Ilya A

    2014-01-01

    Breathing is a vital process providing the exchange of gases between the lungs and atmosphere. During quiet breathing, pumping air from the lungs is mostly performed by contraction of the diaphragm during inspiration, and muscle contraction during expiration does not play a significant role in ventilation. In contrast, during intense exercise or severe hypercapnia forced or active expiration occurs in which the abdominal "expiratory" muscles become actively involved in breathing. The mechanisms of this transition remain unknown. To study these mechanisms, we developed a computational model of the closed-loop respiratory system that describes the brainstem respiratory network controlling the pulmonary subsystem representing lung biomechanics and gas (O2 and CO2) exchange and transport. The lung subsystem provides two types of feedback to the neural subsystem: a mechanical one from pulmonary stretch receptors and a chemical one from central chemoreceptors. The neural component of the model simulates the respiratory network that includes several interacting respiratory neuron types within the Bötzinger and pre-Bötzinger complexes, as well as the retrotrapezoid nucleus/parafacial respiratory group (RTN/pFRG) representing the central chemoreception module targeted by chemical feedback. The RTN/pFRG compartment contains an independent neural generator that is activated at an increased CO2 level and controls the abdominal motor output. The lung volume is controlled by two pumps, a major one driven by the diaphragm and an additional one activated by abdominal muscles and involved in active expiration. The model represents the first attempt to model the transition from quiet breathing to breathing with active expiration. The model suggests that the closed-loop respiratory control system switches to active expiration via a quantal acceleration of expiratory activity, when increases in breathing rate and phrenic amplitude no longer provide sufficient ventilation. The model

  7. Statistical Determination of the Gating Windows for Respiratory-Gated Radiotherapy Using a Visible Guiding System.

    PubMed

    Oh, Se An; Yea, Ji Woon; Kim, Sung Kyu

    2016-01-01

    Respiratory-gated radiation therapy (RGRT) is used to minimize the radiation dose to normal tissue in lung-cancer patients. Although determining the gating window in the respiratory phase of patients is important in RGRT, it is not easy. Our aim was to determine the optimal gating window when using a visible guiding system for RGRT. Between April and October 2014, the breathing signals of 23 lung-cancer patients were recorded with a real-time position management (RPM) respiratory gating system (Varian, USA). We performed statistical analysis with breathing signals to find the optimal gating window for guided breathing in RGRT. When we compared breathing signals before and after the breathing training, 19 of the 23 patients showed statistically significant differences (p < 0.05). The standard deviation of the respiration signals after breathing training was lowest for phases of 30%-70%. The results showed that the optimal gating window in RGRT is 40% (30%-70%) with respect to repeatability for breathing after respiration training with the visible guiding system. RGRT was performed with the RPM system to confirm the usefulness of the visible guiding system. The RPM system and our visible guiding system improve the respiratory regularity, which in turn should improve the accuracy and efficiency of RGRT.

  8. Low-power system for the acquisition of the respiratory signal of neonates using diaphragmatic electromyography

    PubMed Central

    Torres, Róbinson; López-Isaza, Sergio; Mejía-Mejía, Elisa; Paniagua, Viviana; González, Víctor

    2017-01-01

    Introduction An apnea episode is defined as the cessation of breathing for ≥15 seconds or as any suspension of breathing accompanied by hypoxia and bradycardia. Obtaining information about the respiratory system in a neonate can be accomplished using electromyography signals from the diaphragm muscle. Objective The purpose of this paper is to illustrate a method by which the respiratory and electrocardiographic signals from neonates can be obtained using diaphragmatic electromyography. Materials and methods The system was developed using single-supply, micropower components, which deliver a low-power consumption system appropriate for the development of portable devices. The stages of the system were tested in both adult and neonate patients. Results The system delivers signals as those expected in both patients and allows the acquisition of respiratory signals directly from the diaphragmatic electromyography. Conclusion This low-power system may present a good alternative for monitoring the cardiac and respiratory activity in newborn babies, both in the hospital and at home. Significance The system delivers good signals but needs to be validated for its use in neonates. It is being used in the Neonatal Intensive Care Unit of the Hospital General de Medellín Luz Castro de Gutiérrez. PMID:28260954

  9. Statistical Determination of the Gating Windows for Respiratory-Gated Radiotherapy Using a Visible Guiding System

    PubMed Central

    Oh, Se An; Yea, Ji Woon

    2016-01-01

    Respiratory-gated radiation therapy (RGRT) is used to minimize the radiation dose to normal tissue in lung-cancer patients. Although determining the gating window in the respiratory phase of patients is important in RGRT, it is not easy. Our aim was to determine the optimal gating window when using a visible guiding system for RGRT. Between April and October 2014, the breathing signals of 23 lung-cancer patients were recorded with a real-time position management (RPM) respiratory gating system (Varian, USA). We performed statistical analysis with breathing signals to find the optimal gating window for guided breathing in RGRT. When we compared breathing signals before and after the breathing training, 19 of the 23 patients showed statistically significant differences (p < 0.05). The standard deviation of the respiration signals after breathing training was lowest for phases of 30%–70%. The results showed that the optimal gating window in RGRT is 40% (30%–70%) with respect to repeatability for breathing after respiration training with the visible guiding system. RGRT was performed with the RPM system to confirm the usefulness of the visible guiding system. The RPM system and our visible guiding system improve the respiratory regularity, which in turn should improve the accuracy and efficiency of RGRT. PMID:27228097

  10. A novel modelling approach to energy transport in a respiratory system.

    PubMed

    Nithiarasu, Perumal; Sazonov, Igor

    2016-11-24

    In this paper, energy transport in a respiratory tract is modelled using the finite element method for the first time. The upper and lower respiratory tracts are approximated as a 1-dimensional domain with varying cross-sectional and surface areas, and the radial heat conduction in the tissue is approximated using the 1-dimensional cylindrical coordinate system. The governing equations are solved using 1-dimensional linear finite elements with convective and evaporative boundary conditions on the wall. The results obtained for the exhalation temperature of the respiratory system have been compared with the available animal experiments. The study of a full breathing cycle indicates that evaporation is the main mode of heat transfer, and convection plays almost negligible role in the energy transport. This is in-line with the results obtained from animal experiments.

  11. A mainstream monitoring system for respiratory CO2 concentration and gasflow.

    PubMed

    Yang, Jiachen; Chen, Bobo; Burk, Kyle; Wang, Haitao; Zhou, Jianxiong

    2016-08-01

    Continuous respiratory gas monitoring is an important tool for clinical monitoring. In particular, measurement of respiratory [Formula: see text] concentration and gasflow can reflect the status of a patient by providing parameters such as volume of carbon dioxide, end-tidal [Formula: see text] respiratory rate and alveolar deadspace. However, in the majority of previous work, [Formula: see text] concentration and gasflow have been studied separately. This study focuses on a mainstream system which simultaneously measures respiratory [Formula: see text] concentration and gasflow at the same location, allowing for volumetric capnography to be implemented. A non-dispersive infrared monitor is used to measure [Formula: see text] concentration and a differential pressure sensor is used to measure gasflow. In developing this new device, we designed a custom airway adapter which can be placed in line with the breathing circuit and accurately monitor relevant respiratory parameters. Because the airway adapter is used both for capnography and gasflow, our system reduces mechanical deadspace. The finite element method was used to design the airway adapter which can provide a strong differential pressure while reducing airway resistance. Statistical analysis using the coefficient of variation was performed to find the optimal driving voltage of the pressure transducer. Calibration between variations and flows was used to avoid pressure signal drift. We carried out targeted experiments using the proposed device and confirmed that the device can produce stable signals.

  12. Instrumentation for the analysis of respiratory system disorders during sleep: Design and application

    NASA Astrophysics Data System (ADS)

    de Melo, Pedro Lopes; de Andrade Lemes, Lucas Neves

    2002-11-01

    Sleep breathing disorders are estimated to be present in 2%-4% of middle-aged adults. Serious adverse consequences, such as systemic arterial hypertension, myocardial infraction, and cerebrovascular disease, can be related to these conditions. Intellectual deficits associated with attention, memory, and problem-solving have also been associated with a poor quality of sleep. The main causes of these disorders are obstructions resulting from repetitive narrowing and closure of the pharyngeal airway, which have been monitored by indirect measurements of temperature, displacement, and other highly invasive procedures. The measurement of mechanical impedance of the respiratory system by the forced oscillation technique (FOT) has recently been suggested to quantify the respiratory obstruction during sleep. It is claimed that the noninvasive and dynamic characteristics of this technique would allow a noninvasive and accurate analysis of these events. In spite of this high scientific and clinical potential, there is no detailed description of a complete instrumentation system to implement this promising technique in sleep studies. In this context, the purpose of this study was twofold: (1) describe the development of a new computer-based system for identification of the mechanical impedance of the respiratory system during sleep by the FOT and (2) evaluate the performance of this device in the description of respiratory events in conditions including no, mild, serious disease, and therapeutic procedures. These evaluations confirmed the desirable features achieved in laboratory tests and the high scientific and clinical potential of this system.

  13. Integrative approaches for modeling regulation and function of the respiratory system.

    PubMed

    Ben-Tal, Alona; Tawhai, Merryn H

    2013-01-01

    Mathematical models have been central to understanding the interaction between neural control and breathing. Models of the entire respiratory system-which comprises the lungs and the neural circuitry that controls their ventilation-have been derived using simplifying assumptions to compartmentalize each component of the system and to define the interactions between components. These full system models often rely-through necessity-on empirically derived relationships or parameters, in addition to physiological values. In parallel with the development of whole respiratory system models are mathematical models that focus on furthering a detailed understanding of the neural control network, or of the several functions that contribute to gas exchange within the lung. These models are biophysically based, and rely on physiological parameters. They include single-unit models for a breathing lung or neural circuit, through to spatially distributed models of ventilation and perfusion, or multicircuit models for neural control. The challenge is to bring together these more recent advances in models of neural control with models of lung function, into a full simulation for the respiratory system that builds upon the more detailed models but remains computationally tractable. This requires first understanding the mathematical models that have been developed for the respiratory system at different levels, and which could be used to study how physiological levels of O2 and CO2 in the blood are maintained.

  14. Integrative approaches for modeling regulation and function of the respiratory system

    PubMed Central

    Ben-Tal, Alona

    2013-01-01

    Mathematical models have been central to understanding the interaction between neural control and breathing. Models of the entire respiratory system – which comprises the lungs and the neural circuitry that controls their ventilation - have been derived using simplifying assumptions to compartmentalise each component of the system and to define the interactions between components. These full system models often rely – through necessity - on empirically derived relationships or parameters, in addition to physiological values. In parallel with the development of whole respiratory system models are mathematical models that focus on furthering a detailed understanding of the neural control network, or of the several functions that contribute to gas exchange within the lung. These models are biophysically based, and rely on physiological parameters. They include single-unit models for a breathing lung or neural circuit, through to spatially-distributed models of ventilation and perfusion, or multi-circuit models for neural control. The challenge is to bring together these more recent advances in models of neural control with models of lung function, into a full simulation for the respiratory system that builds upon the more detailed models but remains computationally tractable. This requires first understanding the mathematical models that have been developed for the respiratory system at different levels, and which could be used to study how physiological levels of O2 and CO2 in the blood are maintained. PMID:24591490

  15. A Novel Point-of-Care Smartphone Based System for Monitoring the Cardiac and Respiratory Systems

    PubMed Central

    Sohn, Kwanghyun; Merchant, Faisal M.; Sayadi, Omid; Puppala, Dheeraj; Doddamani, Rajiv; Sahani, Ashish; Singh, Jagmeet P.; Heist, E. Kevin; Isselbacher, Eric M.; Armoundas, Antonis A.

    2017-01-01

    Cardio-respiratory monitoring is one of the most demanding areas in the rapidly growing, mobile-device, based health care delivery. We developed a 12-lead smartphone-based electrocardiogram (ECG) acquisition and monitoring system (called “cvrPhone”), and an application to assess underlying ischemia, and estimate the respiration rate (RR) and tidal volume (TV) from analysis of electrocardiographic (ECG) signals only. During in-vivo swine studies (n = 6), 12-lead ECG signals were recorded at baseline and following coronary artery occlusion. Ischemic indices calculated from each lead showed statistically significant (p < 0.05) increase within 2 min of occlusion compared to baseline. Following myocardial infarction, spontaneous ventricular tachycardia episodes (n = 3) were preceded by significant (p < 0.05) increase of the ischemic index ~1–4 min prior to the onset of the tachy-arrhythmias. In order to assess the respiratory status during apnea, the mechanical ventilator was paused for up to 2 min during normal breathing. We observed that the RR and TV estimation algorithms detected apnea within 7.9 ± 1.1 sec and 5.5 ± 2.2 sec, respectively, while the estimated RR and TV values were 0 breaths/min and less than 100 ml, respectively. In conclusion, the cvrPhone can be used to detect myocardial ischemia and periods of respiratory apnea using a readily available mobile platform. PMID:28327645

  16. Robust Unidirectional Airflow through Avian Lungs: New Insights from a Piecewise Linear Mathematical Model

    PubMed Central

    Harvey, Emily P.; Ben-Tal, Alona

    2016-01-01

    Avian lungs are remarkably different from mammalian lungs in that air flows unidirectionally through rigid tubes in which gas exchange occurs. Experimental observations have been able to determine the pattern of gas flow in the respiratory system, but understanding how the flow pattern is generated and determining the factors contributing to the observed dynamics remains elusive. It has been hypothesized that the unidirectional flow is due to aerodynamic valving during inspiration and expiration, resulting from the anatomical structure and the fluid dynamics involved, however, theoretical studies to back up this hypothesis are lacking. We have constructed a novel mathematical model of the airflow in the avian respiratory system that can produce unidirectional flow which is robust to changes in model parameters, breathing frequency and breathing amplitude. The model consists of two piecewise linear ordinary differential equations with lumped parameters and discontinuous, flow-dependent resistances that mimic the experimental observations. Using dynamical systems techniques and numerical analysis, we show that unidirectional flow can be produced by either effective inspiratory or effective expiratory valving, but that both inspiratory and expiratory valving are required to produce the high efficiencies of flows observed in avian lungs. We further show that the efficacy of the inspiratory and expiratory valving depends on airsac compliances and airflow resistances that may not be located in the immediate area of the valving. Our model provides additional novel insights; for example, we show that physiologically realistic resistance values lead to efficiencies that are close to maximum, and that when the relative lumped compliances of the caudal and cranial airsacs vary, it affects the timing of the airflow across the gas exchange area. These and other insights obtained by our study significantly enhance our understanding of the operation of the avian respiratory

  17. Sensorimotor nucleus NIf is necessary for auditory processing but not vocal motor output in the avian song system.

    PubMed

    Cardin, Jessica A; Raksin, Jonathan N; Schmidt, Marc F

    2005-04-01

    Sensorimotor integration in the avian song system is crucial for both learning and maintenance of song, a vocal motor behavior. Although a number of song system areas demonstrate both sensory and motor characteristics, their exact roles in auditory and premotor processing are unclear. In particular, it is unknown whether input from the forebrain nucleus interface of the nidopallium (NIf), which exhibits both sensory and premotor activity, is necessary for both auditory and premotor processing in its target, HVC. Here we show that bilateral NIf lesions result in long-term loss of HVC auditory activity but do not impair song production. NIf is thus a major source of auditory input to HVC, but an intact NIf is not necessary for motor output in adult zebra finches.

  18. Agreement between bovine respiratory disease scoring systems for pre-weaned dairy calves.

    PubMed

    Aly, Sharif S; Love, William J; Williams, Deniece R; Lehenbauer, Terry W; Van Eenennaam, Alison; Drake, Christiana; Kass, Philip H; Farver, Thomas B

    2014-12-01

    Clinical scoring systems have been proposed for respiratory disease diagnosis in calves, including the Wisconsin (WI) system (McGuirk in 2008) which uses five clinical signs, each partitioned into four levels of severity. Recently, we developed the California (CA) bovine respiratory disease (BRD) scoring system requiring less calf handling and consisting of six clinical signs, each classified as normal or abnormal. The objective of this study was to estimate the on-farm agreement between the WI and the CA scoring systems. A total of 100 calves were enrolled on a CA dairy and assessed for BRD case status using the two scoring systems simultaneously. The Kappa coefficient of agreement between these two systems was estimated to be 0.85, which indicated excellent agreement beyond chance. The simpler design and reduced calf handling required by the CA BRD scoring system may make it advantageous for on-farm use.

  19. End-expiration respiratory gating for a high-resolution stationary cardiac SPECT system.

    PubMed

    Chan, Chung; Harris, Mark; Le, Max; Biondi, James; Grobshtein, Yariv; Liu, Yi-Hwa; Sinusas, Albert J; Liu, Chi

    2014-10-21

    Respiratory and cardiac motions can degrade myocardial perfusion SPECT (MPS) image quality and reduce defect detection and quantitative accuracy. In this study, we developed a dual respiratory and cardiac gating system for a high-resolution fully stationary cardiac SPECT scanner in order to improve the image quality and defect detection. Respiratory motion was monitored using a compressive sensor pillow connected to a dual respiratory-cardiac gating box, which sends cardiac triggers only during end-expiration phases to the single cardiac trigger input on the SPECT scanners. The listmode data were rebinned retrospectively into end-expiration frames for respiratory motion reduction or eight cardiac gates only during end-expiration phases to compensate for both respiratory and cardiac motions. The proposed method was first validated on a motion phantom in the presence and absence of multiple perfusion defects, and then applied on 11 patient studies with and without perfusion defects. In the normal phantom studies, the end-expiration gated SPECT (EXG-SPECT) reduced respiratory motion blur and increased myocardium to blood pool contrast by 51.2% as compared to the ungated images. The proposed method also yielded an average of 11.2% increase in myocardium to defect contrast as compared to the ungated images in the phantom studies with perfusion defects. In the patient studies, EXG-SPECT significantly improved the myocardium to blood pool contrast (p < 0.005) by 24% on average as compared to the ungated images, and led to improved perfusion uniformity across segments on polar maps for normal patients. For a patient with defect, EXG-SPECT improved the defect contrast and definition. The dual respiratory-cardiac gating further reduced the blurring effect, increased the myocardium to blood pool contrast significantly by 36% (p < 0.05) compared to EXG-SPECT, and further improved defect characteristics and visualization of fine structures at the expense of increased noise

  20. Avian influenza virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Avian influenza virus (AIV) is type A influenza, which is adapted to an avian host. Although avian influenza has been isolated from numerous avian species, the primary natural hosts for the virus are dabbling ducks, shorebirds, and gulls. The virus can be found world-wide in these species and in o...

  1. Assessment of continuous acoustic respiratory rate monitoring as an addition to a pulse oximetry-based patient surveillance system.

    PubMed

    McGrath, Susan P; Pyke, Joshua; Taenzer, Andreas H

    2016-05-03

    Technology advances make it possible to consider continuous acoustic respiratory rate monitoring as an integral component of physiologic surveillance systems. This study explores technical and logistical aspects of augmenting pulse oximetry-based patient surveillance systems with continuous respiratory rate monitoring and offers some insight into the impact on patient deterioration detection that may result. Acoustic respiratory rate sensors were introduced to a general care pulse oximetry-based surveillance system with respiratory rate alarms deactivated. Simulation was used after 4324 patient days to determine appropriate alarm thresholds for respiratory rate, which were then activated. Data were collected for an additional 4382 patient days. Physiologic parameters, alarm data, sensor utilization and patient/staff feedback were collected throughout the study and analyzed. No notable technical or workflow issues were observed. Sensor utilization was 57 %, with patient refusal leading reasons for nonuse (22.7 %). With respiratory rate alarm thresholds set to 6 and 40 breaths/min., the majority of nurse pager clinical notifications were triggered by low oxygen saturation values (43 %), followed by low respiratory rate values (21 %) and low pulse rate values (13 %). Mean respiratory rate collected was 16.6 ± 3.8 breaths/min. The vast majority (82 %) of low oxygen saturation states coincided with normal respiration rates of 12-20 breaths/min. Continuous respiratory rate monitoring can be successfully added to a pulse oximetry-based surveillance system without significant technical, logistical or workflow issues and is moderately well-tolerated by patients. Respiratory rate sensor alarms did not significantly impact overall system alarm burden. Respiratory rate and oxygen saturation distributions suggest adding continuous respiratory rate monitoring to a pulse oximetry-based surveillance system may not significantly improve patient deterioration detection.

  2. A cloud-based mobile system to improve respiratory therapy services at home.

    PubMed

    Risso, Nicolas A; Neyem, Andrés; Benedetto, Jose I; Carrillo, Marie J; Farías, Angélica; Gajardo, Macarena J; Loyola, Oscar

    2016-10-01

    Chronic respiratory diseases are one of the most prevalent health problems in the world. Treatment for these kind of afflictions often take place at home, where the continuous care of a medical specialist is frequently beyond the economical means of the patient, therefore having to rely on informal caregivers (family, friends, etc.). Unfortunately, these treatments require a deep involvement on their part, which results in a heavy burden on the caregivers' routine and usually end up deteriorating their quality of life. In recent years, mHealth and eHealth applications have gained a wide interest in academia due to new capabilities enabled by the latest advancements in mobile technologies and wireless communication infrastructure. These innovations have resulted in several applications that have successfully managed to improve automatic patient monitoring and treatment and to bridge the distance between patients, caregivers and medical specialists. We therefore seek to move this trend forward by now pushing these capabilities into the field of respiratory therapies in order to assist patients with chronic respiratory diseases with their treatment, and to improve both their own and their caregivers' quality of life. This paper presents a cloud-based mobile system to support and improve homecare for respiratory diseases. The platform described uses vital signs monitoring as a way of sharing data between hospitals, caregivers and patients. Using an iterative research approach and the user's direct feedback, we show how mobile technologies can improve a respiratory therapy and a family's quality of life.

  3. The Mechanisms of Compensatory Responses of the Respiratory System to Simulated Central Hypervolemia in Normal Subjects.

    PubMed

    Segizbaeva, M O; Donina, Zh A; Aleksandrov, V G; Aleksandrova, N P

    2015-01-01

    The compensatory responses of the respiratory system to simulated central hypervolemia (CHV) were investigated in 14 normal subjects. The central hypervolemia was caused by a short-time passive head-down tilt (HDT, -30°, 30 min). The results show that CHV increased the mechanical respiratory load and the airway resistance, slowed the inspiratory flow, increased the duration of the inspiratory phase, reduced the respiratory rate, but not changed the minute ventilation. CHV induced a significant rise in inspiratory swings of alveolar pressure (184%), based on the inspiratory occlusion pressure measurement. These changes indicate a compensatory increase in the inspiratory muscle contraction force. A stable level of minute ventilation during CHV was an effect of increased EMG activity of parasternal muscles more than twice (P<0.01). A contribution of the diaphragm and scalene muscles to ventilation during spontaneous breathing in HDT was reduced. An increase of genioglossus contractile activity during HDT contributed to the stabilization of airway patency. These results suggest that a coordinated modulation of inspiratory muscles activity allows preserving a constant level of minute ventilation during a short-time intrathoracic blood volume expansion. The mechanisms of respiratory load compensation seem to be mediated by afferent information from the lung and respiratory muscle receptors and from the segmentary reflexes and intrinsic properties of the muscle fibers.

  4. [Functional state of the respiratory system in employees at the tantalum plant].

    PubMed

    Omarova, D K

    2014-01-01

    Indices of pulmonary ventilation function in employees at the tantalum plant tended to decrease according to the length of service and type of performed technological operations. Physiological changes of the functional State of the respiratory system were accompanied by pulmonary ventilation disorders of mixed and obstructive types. Changes in indices of respiratory function at the level of distal and proximal airways, including the bronchial tree, wore compensatory-adaptive character in response to the exposure of harmful factors of dust-gas mixture from the tantalum production.

  5. Endogenous excitatory drive to the respiratory system in rapid eye movement sleep in cats

    PubMed Central

    Orem, John; Lovering, Andrew T; Dunin-Barkowski, Witali; Vidruk, Edward H

    2000-01-01

    A putative endogenous excitatory drive to the respiratory system in rapid eye movement (REM) sleep may explain many characteristics of breathing in that state, e.g. its irregularity and variable ventilatory responses to chemical stimuli. This drive is hypothetical, and determinations of its existence and character are complicated by control of the respiratory system by the oscillator and its feedback mechanisms. In the present study, endogenous drive was studied during apnoea caused by mechanical hyperventilation. We reasoned that if there was a REM-dependent drive to the respiratory system, then respiratory activity should emerge out of the background apnoea as a manifestation of the drive. Diaphragmatic muscle or medullary respiratory neuronal activity was studied in five intact, unanaesthetized adult cats who were either mechanically hyperventilated or breathed spontaneously in more than 100 REM sleep periods. Diaphragmatic activity emerged out of a background apnoea caused by mechanical hyperventilation an average of 34 s after the onset of REM sleep. Emergent activity occurred in 60 % of 10 s epochs in REM sleep and the amount of activity per unit time averaged approximately 40 % of eupnoeic activity. The activity occurred in episodes and was poorly related to pontogeniculo-occipital waves. At low CO2 levels, this activity was non-rhythmic. At higher CO2 levels (less than 0.5 % below eupnoeic end-tidal percentage CO2 levels in non-REM (NREM) sleep), activity became rhythmic. Medullary respiratory neurons were recorded in one of the five animals. Nineteen of twenty-seven medullary respiratory neurons were excited in REM sleep during apnoea. Excited neurons included inspiratory, expiratory and phase-spanning neurons. Excitation began about 43 s after the onset of REM sleep. Activity increased from an average of 6 impulses s−1 in NREM sleep to 15.5 impulses s−1 in REM sleep. Neuronal activity was non-rhythmic at low CO2 levels and became rhythmic when levels

  6. Respiratory modulation of startle eye blink: a new approach to assess afferent signals from the respiratory system.

    PubMed

    Schulz, André; Schilling, Thomas M; Vögele, Claus; Larra, Mauro F; Schächinger, Hartmut

    2016-11-19

    Current approaches to assess interoception of respiratory functions cannot differentiate between the physiological basis of interoception, i.e. visceral-afferent signal processing, and the psychological process of attention focusing. Furthermore, they typically involve invasive procedures, e.g. induction of respiratory occlusions or the inhalation of CO2-enriched air. The aim of this study was to test the capacity of startle methodology to reflect respiratory-related afferent signal processing, independent of invasive procedures. Forty-two healthy participants were tested in a spontaneous breathing and in a 0.25 Hz paced breathing condition. Acoustic startle noises of 105 dB(A) intensity (50 ms white noise) were presented with identical trial frequency at peak and on-going inspiration and expiration, based on a new pattern detection method, involving the online processing of the respiratory belt signal. The results show the highest startle magnitudes during on-going expiration compared with any other measurement points during the respiratory cycle, independent of whether breathing was spontaneous or paced. Afferent signals from slow adapting phasic pulmonary stretch receptors may be responsible for this effect. This study is the first to demonstrate startle modulation by respiration. These results offer the potential to apply startle methodology in the non-invasive testing of interoception-related aspects in respiratory psychophysiology.This article is part of the themed issue 'Interoception beyond homeostasis: affect, cognition and mental health'.

  7. Development and Application of a Miniaturised Sensor System for Respiratory Investigations (MAP-RSS)

    NASA Astrophysics Data System (ADS)

    Hoffmann, U.; Drager, T.; Baumann, R.; Fasoulas, S.

    2008-06-01

    The project supported by the European Space Agency (ESA) in the frame of the "Microgravity Application Promotion Programe (MAP)" deals with the development and application of a new respiratory sensor system (RSS) for human respiratory investigations. Eight institutions, including three Industrial partners from different areas, combine their expertise by focusing on two selected applications in the field of ergospirometric exercise testing and lung function diagnostics with subsequent medication. The main goals of this project are to develop miniaturized oxygen and carbon dioxide sensors, to use their capability for simultaneous detection of total flow rates, to integrate them into a mask for the in-situ measurement of respiratory parameters, and to perform first qualification tests. For many manned space missions, and especially on the International Space Station, there is a need for a small, light-weight, portable, potentially body-mounted, metabolic gas analyzer with which periodic fitness or scientific evaluations could be performed by the astronauts.

  8. Nonlinear dynamics of avian influenza epidemic models.

    PubMed

    Liu, Sanhong; Ruan, Shigui; Zhang, Xinan

    2017-01-01

    Avian influenza is a zoonotic disease caused by the transmission of the avian influenza A virus, such as H5N1 and H7N9, from birds to humans. The avian influenza A H5N1 virus has caused more than 500 human infections worldwide with nearly a 60% death rate since it was first reported in Hong Kong in 1997. The four outbreaks of the avian influenza A H7N9 in China from March 2013 to June 2016 have resulted in 580 human cases including 202 deaths with a death rate of nearly 35%. In this paper, we construct two avian influenza bird-to-human transmission models with different growth laws of the avian population, one with logistic growth and the other with Allee effect, and analyze their dynamical behavior. We obtain a threshold value for the prevalence of avian influenza and investigate the local or global asymptotical stability of each equilibrium of these systems by using linear analysis technique or combining Liapunov function method and LaSalle's invariance principle, respectively. Moreover, we give necessary and sufficient conditions for the occurrence of periodic solutions in the avian influenza system with Allee effect of the avian population. Numerical simulations are also presented to illustrate the theoretical results.

  9. From Head to Toe: Respiratory, Circulatory, and Skeletal Systems. Book 3.

    ERIC Educational Resources Information Center

    Wiebe, Arthur, Ed.; And Others

    Designed to supplement curricular programs dealing with the human body, this booklet offers an activity-based, student-oriented approach for middle school teachers and students. Twelve activities focus on principles and skills related to the respiratory, circulatory, and skeletal systems. Each activity consists of student sheets and a teacher's…

  10. Bilingual Skills Training Program. Barbering/Cosmetology. Module 9.0: Respiratory System.

    ERIC Educational Resources Information Center

    Northern New Mexico Community Coll., El Rito.

    This module on the respiratory system is the ninth of ten (CE 028 308-318) in the barbering/cosmetology course of a bilingual skills training program. (A Vocabulary Development Workbook for modules 6-10 is available as CE 028 313.) The course is designed to furnish theoretical and laboratory experiences. Module objectives are for students to…

  11. Influence of the viscoelastic properties of the respiratory system on the energetically optimum breathing frequency.

    PubMed

    Bates, J H; Milic-Emili, J

    1993-01-01

    We hypothesized that the viscoelastic properties of the respiratory system should have significant implications for the energetically optimal frequency of breathing, in view of the fact that these properties cause marked dependencies of overall system resistance and elastance on frequency. To test our hypothesis we simulated two models of canine and human respiratory system mechanics during sinusoidal breathing and calculated the inspiratory work (WI) and pressure-time integral (PTI) per minute under both resting and exercise conditions. The two models were a two-compartment viscoelastic model and a single-compartment model. Requiring minute alveolar ventilation to be fixed, we found that both models predicted almost identical optimum breathing frequencies. The calculated PTI was very insensitive to increases in breathing frequency above the optimal frequencies, while WI was found to increase slowly with frequency above its optimum. In contrast, both WI and PTI increased sharply as frequency decreased below their respective optima. A sensitivity analysis showed that the model predictions were very insensitive to the elastance and resistance values chosen to characterize tissue viscoelasticity. We conclude that the WI criterion for choosing the frequency of breathing is compatible with observations in nature, whereas the optimal frequency predictions of the PTI are rather too high. Both criteria allow for a fairly wide margin of choice in frequency above the optimum values without incurring excessive additional energy expenditure. Furthermore, contrary to our expectations, the viscoelastic properties of the respiratory system tissues do not pose a noticeable problem to the respiratory controller in terms of energy expenditure.

  12. Lumbo-sacral neural crest contributes to the avian enteric nervous system independently of vagal neural crest.

    PubMed

    Hearn, C; Newgreen, D

    2000-07-01

    Most of the avian enteric nervous system is derived from the vagal neural crest, but a minority of the neural cells in the hindgut, and to an even lesser extent in the midgut, are of lumbo-sacral crest origin. Since the lumbo-sacral contribution was not detected or deemed negligible in the absence of vagal cells, it had been hypothesised that lumbo-sacral neural crest cells require vagal crest cells to contribute to the enteric nervous system. In contrast, zonal aganglionosis, a rare congenital human bowel disease led to the opposite suggestion, that lumbo-sacral cells could compensate for the absence of vagal cells to construct a complete enteric nervous system. To test these notions, we combined E4 chick midgut and hindgut, isolated prior to arrival of neural precursors, with E1. 7 chick vagal and/or E2.7 quail lumbo-sacral neural tube as crest donors, and grafted these to the chorio-allantoic membrane of E9 chick hosts. Double and triple immuno-labelling for quail cells (QCPNA), neural crest cells (HNK-1), neurons and neurites (neurofilament) and glial cells (GFAP) indicated that vagal crest cells produced neurons and glia in large ganglia throughout the entire intestinal tissues. Lumbo-sacral crest contributed small numbers of neurons and glial cells in the presence or absence of vagal cells, chiefly in colorectum, but not in nearby small intestinal tissue. Thus for production of enteric neural cells the avian lumbo-sacral neural crest neither requires the vagal neural crest, nor significantly compensates for its lack. However, enteric neurogenesis of lumbo-sacral cells requires the hindgut microenvironment, whereas that of vagal cells is not restricted to a particular intestinal region.

  13. Nondomestic avian pediatric pathology.

    PubMed

    St Leger, Judy

    2012-05-01

    This is a snapshot of avian neonatal pathology—not an exhaustive review. Through knowledge and recognition of the significant pathogenic challenges of avian neonates and the associated lesions, avian practitioners can improve their diagnostic and therapeutic success. An area of need for avian research is determining the specific pathogenesis of many conditions affecting avian neonates. By narrowing the specific etiologies, we can improve management and reduce neonatal concerns.

  14. Comparison of commercial systems for extraction of nucleic acids from DNA/RNA respiratory pathogens.

    PubMed

    Yang, Genyan; Erdman, Dean E; Kodani, Maja; Kools, John; Bowen, Michael D; Fields, Barry S

    2011-01-01

    This study compared six automated nucleic acid extraction systems and one manual kit for their ability to recover nucleic acids from human nasal wash specimens spiked with five respiratory pathogens, representing Gram-positive bacteria (Streptococcus pyogenes), Gram-negative bacteria (Legionella pneumophila), DNA viruses (adenovirus), segmented RNA viruses (human influenza virus A), and non-segmented RNA viruses (respiratory syncytial virus). The robots and kit evaluated represent major commercially available methods that are capable of simultaneous extraction of DNA and RNA from respiratory specimens, and included platforms based on magnetic-bead technology (KingFisher mL, Biorobot EZ1, easyMAG, KingFisher Flex, and MagNA Pure Compact) or glass fiber filter technology (Biorobot MDX and the manual kit Allprep). All methods yielded extracts free of cross-contamination and RT-PCR inhibition. All automated systems recovered L. pneumophila and adenovirus DNA equivalently. However, the MagNA Pure protocol demonstrated more than 4-fold higher DNA recovery from the S. pyogenes than other methods. The KingFisher mL and easyMAG protocols provided 1- to 3-log wider linearity and extracted 3- to 4-fold more RNA from the human influenza virus and respiratory syncytial virus. These findings suggest that systems differed in nucleic acid recovery, reproducibility, and linearity in a pathogen specific manner.

  15. Simple gas chromatographic system for analysis of microbial respiratory gases

    NASA Technical Reports Server (NTRS)

    Carle, G. C.

    1972-01-01

    Dual column ambient temperature system, consisting of pair of capillary columns, microbead thermistor detector and micro gas-sampling valve, is used in remote life-detection equipment for space experiments. Performance outweighs advantage gained by utilizing single-column systems to reduce weight, conserve carrier gas and operate at lower power levels.

  16. SU-D-17A-07: Development and Evaluation of a Prototype Ultrasonography Respiratory Monitoring System for 4DCT Reconstruction

    SciTech Connect

    Yan, P; Cheng, S; Chao, C; Jain, A

    2014-06-01

    Purpose: Respiratory motion artifacts are commonly seen in the abdominal and thoracic CT images. A Real-time Position Management (RPM) system is integrated with CT simulator using abdominal surface as a surrogate for tracking the patient respiratory motion. The respiratory-correlated four-dimensional computed tomography (4DCT) is then reconstructed by GE advantage software. However, there are still artifacts due to inaccurate respiratory motion detecting and sorting methods. We developed an Ultrasonography Respiration Monitoring (URM) system which can directly monitor diaphragm motion to detect respiratory cycles. We also developed a new 4DCT sorting and motion estimation method to reduce the respiratory motion artifacts. The new 4DCT system was compared with RPM and the GE 4DCT system. Methods: Imaging from a GE CT scanner was simultaneously correlated with both the RPM and URM to detect respiratory motion. A radiation detector, Blackcat GM-10, recorded the X-ray on/off and synchronized with URM. The diaphragm images were acquired with Ultrasonix RP system. The respiratory wave was derived from diaphragm images and synchronized with CT scanner. A more precise peaks and valleys detection tool was developed and compared with RPM. The motion is estimated for the slices which are not in the predefined respiratory phases by using block matching and optical flow method. The CT slices were then sorted into different phases and reconstructed, compared with the images reconstructed from GE Advantage software using respiratory wave produced from RPM system. Results: The 4DCT images were reconstructed for eight patients. The discontinuity at the diaphragm level due to an inaccurate identification of phases by the RPM was significantly improved by URM system. Conclusion: Our URM 4DCT system was evaluated and compared with RPM and GE 4DCT system. The new system is user friendly and able to reduce motion artifacts. It also has the potential to monitor organ motion during

  17. The feasibility of the auto tuning respiratory compensation system with ultrasonic image tracking technique.

    PubMed

    Chuang, Ho-Chiao; Hsu, Hsiao-Yu; Nieh, Shu-Kan; Tien, Der-Chi

    2015-01-01

    The purpose of this study is to assess the feasibility of using the analytical technique of ultrasound images in combination with an auto tumor localization system. During respiration, the activity of breathing in and out causes organs displacement at the lower lobe of the lung, and the maximum displacement range happens in the Superior-Inferior (SI) direction. Therefore, in this study all the tumor positioning is in SI direction under respiratory compensation, in which the compensations are carried out to the organs at the lower lobe and adjacent to the lower lobe of lung.In this research, due to the processes of ultrasound imaging generation, image analysis and signal transmission, when the captured respiratory signals are sent to auto tumor localization system, there was a signal time delay. The total delay time of the entire signal transmission process was 0.254 ± 0.023 seconds (with the lowest standard deviation) after implementing a series of analyses. To compensate for this signal delay time (0.254 ± 0.023 sec), a phase lead compensator (PLC) was designed and built into the auto tumor localization system. By analyzing the impact of the delay time and the respiratory waveforms under different frequencies on the phase lead compensator, an overall system delay time can be configured. Results showed as the respiratory frequency increased, variable value ``a'' and the subsequent gain ``k'' in the controller becomes larger. Moreover, value ``a'' and ``k'' increased as the system delay time increased when the respiratory frequency was fixed. The relationship of value ``a'' and ``k'' to the respiratory frequency can be obtained by using the curve fitting method to compensate for the respiratory motion for tumor localization. Through the comparison of the uncompensated signal and the compensated signal performed by the auto tumor localization system on the simulated respiratory signal, the feasibility of using ultrasound image analysis technology combined with the

  18. The global nature of avian influenza

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Avian influenza virus is a global virus which knows no geographic boundaries, has no political agenda, and can infect poultry irrespective of their agricultural or anthropocentric production systems. Avian influenza viruses or evidence of their infection have been detected in poultry and wild birds...

  19. Effect of Systemic Lupus Erythematosus on the Risk of Incident Respiratory Failure: A National Cohort Study

    PubMed Central

    Yeh, Jun-Jun; Wang, Yu-Chiao; Chen, Jiunn-Horng; Hsu, Wu-Huei

    2016-01-01

    Purpose We conducted a nationwide cohort study to investigate the relationship between systemic lupus erythematosus (SLE) and the risk of incident respiratory failure. Methods From the National Health Insurance Research Database, we identified 11 533 patients newly diagnosed with SLE and 46 132 controls without SLE who were randomly selected through frequency-matching according to age, sex, and index year. Both cohorts were followed until the end of 2011 to measure the incidence of incident respiratory failure, which was compared between the 2 cohorts through a Cox proportional hazards regression analysis. Results The adjusted hazard ratio (aHR) of incident respiratory failure was 5.80 (95% confidence interval [CI] = 5.15–6.52) for the SLE cohort after we adjusted for sex, age, and comorbidities. Both men (aHR = 3.44, 95% CI = 2.67–4.43) and women (aHR = 6.79, 95% CI = 5.93–7.77) had a significantly higher rate of incident respiratory failure in the SLE cohort than in the non-SLE cohort. Both men and women aged <35 years (aHR = 31.2, 95% CI = 21.6–45.2), 35–65 years; (aHR = 6.19, 95% CI = 5.09–7.54) and ≥65 years (aHR = 2.35, 95% CI = 1.92–2.87) had a higher risk of incident respiratory failure in the SLE cohort. Moreover, the risk of incident respiratory failure was higher in the SLE cohort than the non-SLE cohort, for subjects with (aHR = 2.65, 95% CI = 2.22–3.15) or without (aHR = 9.08, 95% CI = 7.72–10.7) pre-existing comorbidities. In the SLE cohort, subjects with >24 outpatient visits and hospitalizations per year had a higher incident respiratory failure risk (aHR = 21.7, 95% CI = 18.0–26.1) compared with the non-SLE cohort. Conclusion Patients with SLE are associated with an increased risk of incident respiratory failure, regardless of their age, sex, and pre-existing comorbidities; especially medical services with higher frequency. PMID:27654828

  20. Evidence and control of bifurcations in a respiratory system

    SciTech Connect

    Goldin, Matías A. Mindlin, Gabriel B.

    2013-12-15

    We studied the pressure patterns used by domestic canaries in the production of birdsong. Acoustically different sound elements (“syllables”) were generated by qualitatively different pressure gestures. We found that some ubiquitous transitions between syllables can be interpreted as bifurcations of a low dimensional dynamical system. We interpreted these results as evidence supporting a model in which different timescales interact nonlinearly.

  1. Immediate early responses of avian tracheal epithelial cells to infection with highly pathogenic avian invluenza virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Highly pathogenic (HP) avian influenza viruses (AIV) present an ongoing threat to the world poultry industry. In order to develop new AIV control strategies it is necessary to understand the underlying mechanism of viral infection at mucosal respiratory sites. Chicken and duck tracheal epithelial ...

  2. An integrated mathematical model of the cardiovascular and respiratory systems.

    PubMed

    Trenhago, Paulo Roberto; Fernandes, Luciano Gonçalves; Müller, Lucas Omar; Blanco, Pablo Javier; Feijóo, Raúl Antonino

    2016-01-01

    This study presents a lumped model for the human cardiorespiratory system. Specifically, we incorporate a sophisticated gas dissociation and transport system to a fully integrated cardiovascular and pulmonary model. The model provides physiologically consistent predictions in terms of hemodynamic variables such as pressure, flow rate, gas partial pressures, and pH. We perform numerical simulations to evaluate the behavior of the partial pressures of oxygen and carbon dioxide in different vascular and pulmonary compartments. For this, we design the rest condition with low oxygen requirements and carbon dioxide production and exercise conditions with high oxygen demand and carbon dioxide production. Furthermore, model sensitivity to more relevant model parameters is studied. Copyright © 2015 John Wiley & Sons, Ltd.

  3. A Respiratory Movement Monitoring System Using Fiber-Grating Vision Sensor for Diagnosing Sleep Apnea Syndrome

    NASA Astrophysics Data System (ADS)

    Takemura, Yasuhiro; Sato, Jun-Ya; Nakajima, Masato

    2005-01-01

    A non-restrictive and non-contact respiratory movement monitoring system that finds the boundary between chest and abdomen automatically and detects the vertical movement of each part of the body separately is proposed. The system uses a fiber-grating vision sensor technique and the boundary position detection is carried out by calculating the centers of gravity of upward moving and downward moving sampling points, respectively. In the experiment to evaluate the ability to detect the respiratory movement signals of each part and to discriminate between obstructive and central apneas, detected signals of the two parts and their total clearly showed the peculiarities of obstructive and central apnea. The cross talk between the two categories classified automatically according to several rules that reflect the peculiarities was ≤ 15%. This result is sufficient for discriminating central sleep apnea syndrome from obstructive sleep apnea syndrome and indicates that the system is promising as screening equipment. Society of Japan

  4. [Respiratory distress].

    PubMed

    Galili, D; Garfunkel, A; Elad, S; Zusman, S P; Malamed, S F; Findler, M; Kaufman, E

    2002-01-01

    Dental treatment is usually conducted in the oral cavity and in very close proximity to the upper respiratory airway. The possibility of unintentionally compromising this airway is high in the dental environment. The accumulation of fluid (water or blood) near to the upper respiratory airway or the loosening of teeth fragmentations and fallen dental instruments can occur. Also, some of the drugs prescribed in the dental practice are central nervous system depressants and some are direct respiratory drive depressors. For this reason, awareness of the respiratory status of the dental patient is of paramount importance. This article focuses on several of the more common causes of respiratory distress, including airway obstruction, hyperventilation, asthma, bronchospasm, pulmonary edema, pulmonary embolism and cardiac insufficiency. The common denominator to all these conditions described here is that in most instances the patient is conscious. Therefore, on the one hand, valuable information can be retrieved from the patient making diagnosis easier than when the patient is unconscious. On the other hand, the conscious patient is under extreme apprehension and stress under such situations. Respiratory depression which occurs during conscious sedation or following narcotic analgesic medication will not be dealt with in this article. Advanced pain and anxiety control techniques such as conscious sedation and general anesthesia should be confined only to operators who undergo special extended training.

  5. Respiratory and cardiovascular indicators of autonomic nervous system dysregulation in familial dysautonomia.

    PubMed

    Carroll, Michael S; Kenny, Anna S; Patwari, Pallavi P; Ramirez, Jan-Marino; Weese-Mayer, Debra E

    2012-07-01

    Familial dysautonomia (FD) is a profound sensory and autonomic nervous system disorder associated with an increased risk for sudden death. While bradycardia resulting from loss of sympathetic tone has been hypothesized to play a role in this mortality, extended in-home monitoring has failed to find evidence of low heart rates in children with FD. In order to better characterize the specific cardio-respiratory pathophysiology and autonomic dysregulation in patients with FD, 25 affected children and matched controls were studied with in-home technology, during day and night. Respiratory and heart rate timing and variability metrics were derived from inductance plethysmography and electrocardiogram signals. Selective shortening of inspiratory time produced an overall increase in respiratory frequency in children with FD, with higher daytime respiratory variability (vs. controls), suggesting alterations in central rhythm generating circuits that may contribute to the heightened risk for sudden death. Overall heart rate was increased and variability reduced in FD cases, with elevated heart rates during 20% of study time. Time and frequency domain measures of autonomic tone indicated lower parasympathetic drive in FD patients (vs. controls). These results suggest withdrawal of vagal, rather than sympathetic tone, as a cause for the sustained increase and dramatic lability in respiration and heart rates that characterize this disorder.

  6. Inverse Modeling of Respiratory System during Noninvasive Ventilation by Maximum Likelihood Estimation

    NASA Astrophysics Data System (ADS)

    Saatci, Esra; Akan, Aydin

    2010-12-01

    We propose a procedure to estimate the model parameters of presented nonlinear Resistance-Capacitance (RC) and the widely used linear Resistance-Inductance-Capacitance (RIC) models of the respiratory system by Maximum Likelihood Estimator (MLE). The measurement noise is assumed to be Generalized Gaussian Distributed (GGD), and the variance and the shape factor of the measurement noise are estimated by MLE and Kurtosis method, respectively. The performance of the MLE algorithm is also demonstrated by the Cramer-Rao Lower Bound (CRLB) with artificially produced respiratory signals. Airway flow, mask pressure, and lung volume are measured from patients with Chronic Obstructive Pulmonary Disease (COPD) under the noninvasive ventilation and from healthy subjects. Simulations show that respiratory signals from healthy subjects are better represented by the RIC model compared to the nonlinear RC model. On the other hand, the Patient group respiratory signals are fitted to the nonlinear RC model with lower measurement noise variance, better converged measurement noise shape factor, and model parameter tracks. Also, it is observed that for the Patient group the shape factor of the measurement noise converges to values between 1 and 2 whereas for the Control group shape factor values are estimated in the super-Gaussian area.

  7. Evaluation of integrated respiratory gating systems on a Novalis Tx system.

    PubMed

    Chang, Zheng; Liu, Tonghai; Cai, Jing; Chen, Qing; Wang, Zhiheng; Yin, Fang-Fang

    2011-04-04

    The purpose of this study was to investigate the accuracy of motion tracking and radiation delivery control of integrated gating systems on a Novalis Tx system. The study was performed on a Novalis Tx system, which is equipped with Varian Real-time Position Management (RPM) system, and BrainLAB ExacTrac gating systems. In this study, the two systems were assessed on accuracy of both motion tracking and radiation delivery control. To evaluate motion tracking, two artificial motion profiles and five patients' respiratory profiles were used. The motion trajectories acquired by the two gating systems were compared against the references. To assess radiation delivery control, time delays were measured using a single-exposure method. More specifically, radiation is delivered with a 4 mm diameter cone within the phase range of 10%-45% for the BrainLAB ExacTrac system, and within the phase range of 0%-25% for the Varian RPM system during expiration, each for three times. Radiochromic films were used to record the radiation exposures and to calculate the time delays. In the work, the discrepancies were quantified using the parameters of mean and standard deviation (SD). Pearson's product-moment correlational analysis was used to test correlation of the data, which is quantified using a parameter of r. The trajectory profiles acquired by the gating systems show good agreement with those reference profiles. A quantitative analysis shows that the average mean discrepancies between BrainLAB ExacTrac system and known references are 1.5 mm and 1.9 mm for artificial and patient profiles, with the maximum motion amplitude of 28.0 mm. As for the Varian RPM system, the corresponding average mean discrepancies are 1.1 mm and 1.7 mm for artificial and patient profiles. With the proposed single-exposure method, the time delays are found to be 0.20 ± 0.03 seconds and 0.09 ± 0.01 seconds for BrainLAB ExacTrac and Varian RPM systems, respectively. The results indicate the systems can

  8. Stimulating effect of Japanese herbal (kampo) medicine, hochuekkito on upper respiratory mucosal immune system.

    PubMed

    Kiyohara, H; Nagai, T; Munakata, K; Nonaka, K; Hanawa, T; Kim, S J; Yamada, H

    2006-12-01

    Japanese herbal (Kampo) medicine, Hochuekkito (Bu-Zhong-Yi-Qi-Tang in Chinese, TJ-41) and Juzentaihoto (Shi-Quan-Da-Bu-Tang in Chinese, TJ-48) are well-known Kampo formulas used as tonic. Although these medicines have separately been applied to the patients clinically depending on their symptoms, the differences of the pharmacological activities for these medicines have not been fully understood. TJ-48 and TJ-41 were compared for their effects on antibody response in upper respiratory mucosal immune system in vivo. Oral administration of TJ-41 (100 mg kg(-1) per day) to early aged BALB/c mice, which were nasally sensitized with influenza hemagglutinin vaccine, significantly enhanced influenza virus-specific IgA and IgG antibody titers in nasal cavity and sera, respectively. However, oral administration of TJ-48 (100 mg kg(-1) per day) failed to show the enhancing activity. TJ-41 increased not only influenza virus-specific IgA antibody titer but also total IgA antibody titer in nasal cavity. The stimulating activity of TJ-41 disappeared after treatment with methotrexate. The present study strongly suggests that TJ-41 can stimulate the mucosal immune system of upper respiratory tract, and results in enhancement of antigen-specific antibody response in upper respiratory mucosal and systemic immune systems.

  9. Stimulating Effect of Japanese Herbal (Kampo) Medicine, Hochuekkito on Upper Respiratory Mucosal Immune System

    PubMed Central

    Kiyohara, H.; Nagai, T.; Munakata, K.; Nonaka, K.; Hanawa, T.; Kim, S. J.; Yamada, H.

    2006-01-01

    Japanese herbal (Kampo) medicine, Hochuekkito (Bu-Zhong-Yi-Qi-Tang in Chinese, TJ-41) and Juzentaihoto (Shi-Quan-Da-Bu-Tang in Chinese, TJ-48) are well-known Kampo formulas used as tonic. Although these medicines have separately been applied to the patients clinically depending on their symptoms, the differences of the pharmacological activities for these medicines have not been fully understood. TJ-48 and TJ-41 were compared for their effects on antibody response in upper respiratory mucosal immune system in vivo. Oral administration of TJ-41 (100 mg kg−1 per day) to early aged BALB/c mice, which were nasally sensitized with influenza hemagglutinin vaccine, significantly enhanced influenza virus-specific IgA and IgG antibody titers in nasal cavity and sera, respectively. However, oral administration of TJ-48 (100 mg kg−1 per day) failed to show the enhancing activity. TJ-41 increased not only influenza virus-specific IgA antibody titer but also total IgA antibody titer in nasal cavity. The stimulating activity of TJ-41 disappeared after treatment with methotrexate. The present study strongly suggests that TJ-41 can stimulate the mucosal immune system of upper respiratory tract, and results in enhancement of antigen-specific antibody response in upper respiratory mucosal and systemic immune systems. PMID:17173109

  10. AB025. Diseases with temporary disability of the respiratory system at persons working in hospitals

    PubMed Central

    Hristova, Lidiya; Filippidou, Elisavet-Christina; Chernaeva, Mariya; Tsacheva, Nevena

    2016-01-01

    Background This retrospective study carried out during the period 2009–2015, represents an examination of people working in a Multi-profile Hospital of Varna, suffering from temporary disability of the respiratory system, with regard to structure, dynamics and relationship to their working conditions. Methods The status and the trends of health of more than 1,000 medical practitioners and other people working in the field of health were examined. Used methods sociological, electronic health record, patient charts and statistical methods. An inquiry was carried out with the purpose of risk assessment for all the workers in the hospital. Leading biological, chemical and physical risk factors at the place of work have been measured. Results We found out that the lung diseases take the first place in the temporary morbidity of the contingent under survey. The acute infections of the upper respiratory tract result in absence from work: (I) the yearly average of 100 workers shows 17 new cases and 812 days of absence due to acute bronchitis; (II) the yearly average of 100 workers—13 new cases and 1,035 days of absence from work due to pneumonia and COPD; (III) the yearly average of 100 workers—4 new cases and 859 days of absence from work. Thereby the overall indexes characterizing the temporary incapacity of the respiratory system are: frequency—35.44 new cases and frequency of the days—249.71 days of absences due to these diseases. Failure to observe the requirements for healthy and safe work conditions and especially the use of personal protective equipment, as well as the restriction of the vaccination of the employees, are one of the main reasons for the temporary incapacity disease of the respiratory system. Conclusions Our study, conducted for many years, proved that the respiratory system disorders are increasingly becoming one of the most important medical, social and financial problems. Most important measures to control and to reduce the respiratory

  11. [SOME CLINICAL AND CYTOKINE FEATURES OF THE CLINICAL COURSE OF RECURRENT RESPIRATORY SYSTEM DISEASES IN CHILDREN WITH THE TOXOCARIASIS INVASION].

    PubMed

    Dralova, A; Usachova, E

    2015-12-01

    The aim of the present study was to analyze clinical and cytokine features of recurrent respiratory system diseases in children with toxocariasis. 50 children aged 1 to 17 years (mean age - 10±5 years) with recurrent current of respiratory system disorders were studied. During the survey such clinical manifestations of the respiratory system disorders as obstructive bronchitis (50%), bronchial asthma (30%), pneumonia (10%) and laryngotracheitis (10%) have been revealed. Statistical analysis of the results was performed using the software package STATISTICA 6.1 (SNANSOFT). We have shown that the disorders of respiratory system in case of toxocariasis invasion often occur with severe intoxication and bronchial obstruction syndromes, temperature reaction, respiratory insufficiency and hepatomegaly. A prolonged course of the disease has been noted. "Inflammatory" indicators of general blood analysis, such as leukocytosis and increased of ESR have been recorded in patients with respiratory system disorders in children with T.canis infection significantly more often, significant "allergic" laboratory changes were in the form of eosinophilia. High average levels of pro-inflammatory IL-6, as well as low levels of IL 5 have been determined in children suffering from the respiratory system disorders and with toxocariasis invasion in the anamnesis. The obtained findings require further study.

  12. Cigarette smoking and mechanisms of susceptibility to infections of the respiratory tract and other organ systems.

    PubMed

    Feldman, Charles; Anderson, Ronald

    2013-09-01

    The predisposition of cigarette smokers for development of oral and respiratory infections caused by microbial pathogens is well recognised, with those infected with the human immunodeficiency virus (HIV) at particularly high risk. Smoking cigarettes has a suppressive effect on the protective functions of airway epithelium, alveolar macrophages, dendritic cells, natural killer (NK) cells and adaptive immune mechanisms, in the setting of chronic systemic activation of neutrophils. Cigarette smoke also has a direct effect on microbial pathogens to promote the likelihood of infective disease, specifically promotion of microbial virulence and antibiotic resistance. In addition to interactions between smoking and HIV infection, a number of specific infections/clinical syndromes have been associated epidemiologically with cigarette smoking, including those of the upper and lower respiratory tract, gastrointestinal tract, central nervous and other organ systems. Smoking cessation benefits patients in many ways, including reduction of the risk of infectious disease.

  13. A wearable respiratory biofeedback system based on generalized body sensor network.

    PubMed

    Liu, Guan-Zheng; Huang, Bang-Yu; Wang, Lei

    2011-06-01

    Wearable medical devices have enabled unobtrusive monitoring of vital signs and emerging biofeedback services in a pervasive manner. This article describes a wearable respiratory biofeedback system based on a generalized body sensor network (BSN) platform. The compact BSN platform was tailored for the strong requirements of overall system optimizations. A waist-worn biofeedback device was designed using the BSN. Extensive bench tests have shown that the generalized BSN worked as intended. In-situ experiments with 22 subjects indicated that the biofeedback device was discreet, easy to wear, and capable of offering wearable respiratory trainings. Pilot studies on wearable training patterns and resultant heart rate variability suggested that paced respirations at abdominal level and with identical inhaling/exhaling ratio were more appropriate for decreasing sympathetic arousal and increasing parasympathetic activities.

  14. A Wearable Respiratory Biofeedback System Based on Generalized Body Sensor Network

    PubMed Central

    Liu, Guan-Zheng; Huang, Bang-Yu

    2011-01-01

    Abstract Wearable medical devices have enabled unobtrusive monitoring of vital signs and emerging biofeedback services in a pervasive manner. This article describes a wearable respiratory biofeedback system based on a generalized body sensor network (BSN) platform. The compact BSN platform was tailored for the strong requirements of overall system optimizations. A waist-worn biofeedback device was designed using the BSN. Extensive bench tests have shown that the generalized BSN worked as intended. In-situ experiments with 22 subjects indicated that the biofeedback device was discreet, easy to wear, and capable of offering wearable respiratory trainings. Pilot studies on wearable training patterns and resultant heart rate variability suggested that paced respirations at abdominal level and with identical inhaling/exhaling ratio were more appropriate for decreasing sympathetic arousal and increasing parasympathetic activities. PMID:21545293

  15. Effects of volatile substance abuse on the respiratory system in adolescents

    PubMed Central

    2011-01-01

    Aim Inhalant abuse is a prevalent and often overlooked form of substance abuse in adolescents. Chronic inhalant abuse can damage respiratory, cardiac, renal, hepatic, and neurologic systems. This study aims to determine the physiologic effects of inhaling solvents on the respiratory functions. Methods The general health status of the subjects was assessed by history taking, physical examination and a questionnaire which was designed to show the severity of respiratory symptoms. Spirometry, ventilation/perfusion scintigraphy, and high resolution computed tomography (HRCT) were performed to assess pulmonary functions and anatomy. Results Thirty-one male volatile substance abusers and 19 control subjects were included in the study. The mean age of onset of inhalant use was 14.6 ± 2.2 (9-18) years and duration of drug use was 3.7 ± 1.7 years. The most common respiratory symptoms in volatile substance abusers were nasal congestion (45.2%), sputum (38.7%), exercise intolerance (32.3%) and cough (22.6%). Results of spirometric studies showed 12 (41.4%) subjects with low FVC values < 80% of predicted, indicative of restrictive ventilatory pattern in the study group. Although the difference was not statistically significant, restrictive ventilatory pattern was higher in the study group. There was no statistically significant correlation between restrictive ventilatory pattern and the age of onset/duration/frequency of inhalant abuse, respiratory symptoms and scintigraphic abnormalities. Subjects who had restrictive pattern in their pulmonary function tests were more likely to have abnormal findings at HRCT (p < 0.01). Conclusion This study has shown a positive correlation between volatile substance abuse and the development of restrictive ventilatory pattern, but more comprehensive studies are needed for more precise conclusions. PMID:22958270

  16. Avian Influenza (Bird Flu)

    MedlinePlus

    ... Research Making a Candidate Vaccine Virus Related Links Influenza Types Seasonal Avian Swine/Variant Pandemic Other Get ... this? Submit Button Past Newsletters Information on Avian Influenza Language: English Español Recommend on Facebook Tweet ...

  17. Systems Biology and Clinical Practice in Respiratory Medicine. The Twain Shall Meet.

    PubMed

    Thamrin, Cindy; Frey, Urs; Kaminsky, David A; Reddel, Helen K; Seely, Andrew J E; Suki, Béla; Sterk, Peter J

    2016-11-01

    Respiratory diseases are highly complex, being driven by host-environment interactions and manifested by inflammatory, structural, and functional abnormalities that vary over time. Traditional reductionist approaches have contributed vastly to our knowledge of biological systems in health and disease to date; however, they are insufficient to provide an understanding of the behavior of the system as a whole. In this Pulmonary Perspective, we discuss systems biology approaches, especially but not limited to the study of the lung as a complex system. Such integrative approaches take into account the large number of dynamic subunits and their interactions found in biological systems. Borrowing methods from physics and mathematics, it is possible to study the collective behavior of these systems over time and in a multidimensional manner. We first examine the physiological basis for complexity in the respiratory system and its implications for disease. We then expand on the potential applications of systems biology methods to study complex systems, within the context of diagnosis and monitoring of respiratory diseases including asthma, chronic obstructive pulmonary disease (COPD), and critical illness. We summarize the significant advances made in recent years using systems approaches for disease phenotyping, applied to data ranging from the molecular to clinical level, obtained from large-scale asthma and COPD networks. We describe new studies using temporal complexity patterns to characterize asthma and COPD and predict exacerbations as well as predict adverse outcomes in critical care. We highlight new methods that are emerging with this approach and discuss remaining questions that merit greater attention in the field.

  18. Regenerative medicine for the respiratory system: distant future or tomorrow's treatment?

    PubMed

    Brouwer, Katrien M; Hoogenkamp, Henk R; Daamen, Willeke F; van Kuppevelt, Toin H

    2013-03-01

    Regenerative medicine (RM) is a new field of biomedical science that focuses on the regeneration of tissues and organs and the restoration of organ function. Although regeneration of organ systems such as bone, cartilage, and heart has attracted intense scientific research over recent decades, RM research regarding the respiratory system, including the trachea, the lung proper, and the diaphragm, has lagged behind. However, the last 5 years have witnessed novel approaches and initial clinical applications of tissue-engineered constructs to restore organ structure and function. In this regard, this article briefly addresses the basics of RM and introduces the key elements necessary for tissue regeneration, including (stem) cells, biomaterials, and extracellular matrices. In addition, the current status of the (clinical) application of RM to the respiratory system is discussed, and bottlenecks and recent approaches are identified. For the trachea, several initial clinical studies have been reported and have used various combinations of cells and scaffolds. Although promising, the methods used in these studies require optimization and standardization. For the lung proper, only (stem) cell-based approaches have been probed clinically, but it is becoming apparent that combinations of cells and scaffolds are required to successfully restore the lung's architecture and function. In the case of the diaphragm, clinical applications have focused on the use of decellularized scaffolds, but novel scaffolds, with or without cells, are clearly needed for true regeneration of diaphragmatic tissue. We conclude that respiratory treatment with RM will not be realized tomorrow, but its future looks promising.

  19. Estimation of the sensitivity of the surveillance system for avian influenza in the western region of Cuba.

    PubMed

    Ferrer, Edyniesky; Calistri, Paolo; Fonseca, Osvaldo; Ippoliti, Carla; Alfonso, Pastor; Iannetti, Simona; Abeledo, María A; Fernández, Octavio; Percedo, María I; Pérez, Antonio

    2013-01-01

    Although avian influenza (AI) virus of H5 and H7 subtypes has the potential to mutate to a highly pathogenic form and cause very high mortalities in some poultry species, most AI infections in poultry are due to low pathogenic AI (LPAI). Hence serological surveys, coupled with passive surveillance activities, are essential to detect sub-clinical infections by LPAI viruses, H5 and H7 subtypes. However the proper planning of an active surveillance system should be based on a careful estimation of its performance. Therefore, the sensitivity of the active surveillance system for AI in the western region of Cuba was assessed by a stochastic model quantifying the probability of revealing at least one animal infected by H5 or H7 subtype. The diagnostic sensitivity of the haemagglutination inhibition assay and different levels of within-flock prevalence (5%, 12% and 30%) were considered. The sensitivity of the surveillance system was then assessed under five different samples size scenarios: testing 20, 30, 40, 50 or 60 animals in each flock. Poultry flock sites in the western region of Cuba with a size ranging from 10,000 to 335,000 birds were included in the study.

  20. Upper respiratory tract (image)

    MedlinePlus

    The major passages and structures of the upper respiratory tract include the nose or nostrils, nasal cavity, mouth, throat (pharynx), and voice box (larynx). The respiratory system is lined with a mucous membrane that ...

  1. Thermal inactivation of avian viral and bacterial pathogens in an effluent treatment system within a biosafety level 2 and 3 enhanced facility

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Avian influenza (AI) virus, avian paramyxovirus Type 1 (APMV-1 or Newcastle disease virus [NDV]), reovirus, rotavirus, turkey astrovirus (TAstV), avian metapneumovirus (aMPV), Marek’s disease virus (MDV-1), avian parvovirus (ChPV) and Salmonella enterica serovar Enteritidis are significant biosafety...

  2. Respiratory systems abnormalities and clinical milestones for patients with amyotrophic lateral sclerosis with emphasis upon survival.

    PubMed

    Vender, Robert L; Mauger, David; Walsh, Susan; Alam, Shoaib; Simmons, Zachary

    2007-02-01

    Respiratory system complications and abnormalities are common in patients with amyotrophic lateral sclerosis (ALS) and respiratory failure remains the most common cause of death. Extensive epidemiological longitudinal data have documented the extent, magnitude, and clinical course of these abnormalities, but few studies have provided objective information that can have prognostic significance for individual patients. In this study, the reported data represent results from a retrospective review of the medical records of 153 patients with ALS cared for at a single institution (The Penn State Milton S. Hershey Medical Center) over a 50-month period. Medical information in relation to respiratory system abnormalities and complications including pulmonary function measurements was extracted for data analyses. The intent of this review of longitudinal data from a relatively large cohort of patients with ALS was to identify clinically relevant easily-identifiable objective information and clinical milestones that could have potential prognostic significance when applied to individual patients. Demographic data including gender, survival outcome, respiratory symptoms, age of disease onset, and age at death were similar to previously published epidemiological studies: mean age at ALS disease onset was 58.9+/-12.7 years, and mean age at death was 66.7+/-10.8 years. For 151 patients with available data, the incidence of study defined respiratory complications included infectious pneumonia 13 (9%), venothromboembolism 9 (6%), and tracheostomy and mechanical ventilation 6 (4%). For 139 patients with serial measurements of forced vital capacity (FVC), median values for calculated rate of decline in FVC was 97 ml/30 days (2.4% predicted/30 days); 25% of patients had FVC rates of decline less than 52 ml/30 days (1.4% predicted/30 days) and 25% had rates of decline greater than 170 ml/30 days (4.4% predicted/30 days). Stratifying patients into two distinct clinical subgroups based

  3. Avian influenza virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Avian influenza virus (AIV) is type A influenza that is adapted to avian host species. Although the virus can be isolated from numerous avian species, the natural host reservoir species are dabbling ducks, shorebirds and gulls. Domestic poultry species (poultry being defined as birds that are rais...

  4. Slowly emerging glycinergic transmission enhances inhibition in the sound localization pathway of the avian auditory system

    PubMed Central

    Fischl, Matthew J.; Weimann, Sonia R.; Kearse, Michael G.

    2013-01-01

    Localization of low-frequency acoustic stimuli is processed in dedicated neural pathways where coincidence-detecting neurons compare the arrival time of sound stimuli at the two ears, or interaural time disparity (ITD). ITDs occur in the submillisecond range, and vertebrates have evolved specialized excitatory and inhibitory circuitry to compute these differences. Glycinergic inhibition is a computationally significant and prominent component of the mammalian ITD pathway. However, evidence for glycinergic transmission is limited in birds, where GABAergic inhibition has been thought to be the dominant or exclusive inhibitory transmitter. Indeed, previous work showed that GABA antagonists completely eliminate inhibition in avian nuclei specialized for processing temporal features of sound, nucleus magnocellularis (NM) and nucleus laminaris (NL). However, more recent work shows that glycine is coexpressed with GABA in synaptic terminals apposed to neurons in both nuclei (Coleman WL, Fischl MJ, Weimann SR, Burger RM. J Neurophysiol 105: 2405–2420, 2011; Kuo SP, Bradley LA, Trussell LO. J Neurosci 29: 9625–9634, 2009). Here we show complementary evidence of functional glycine receptor (GlyR) expression in NM and NL. Additionally, we show that glycinergic input can be evoked under particular stimulus conditions. Stimulation at high but physiologically relevant rates evokes a slowly emerging glycinergic response in NM and NL that builds over the course of the stimulus. Glycinergic response magnitude was stimulus rate dependent, representing 18% and 7% of the total inhibitory current in NM and NL, respectively, at the end of the 50-pulse, 200-Hz stimulus. Finally, we show that the glycinergic component is functionally relevant, as its elimination reduced inhibition of discharges evoked by current injection into NM neurons. PMID:24198323

  5. Slowly emerging glycinergic transmission enhances inhibition in the sound localization pathway of the avian auditory system.

    PubMed

    Fischl, Matthew J; Weimann, Sonia R; Kearse, Michael G; Burger, R Michael

    2014-02-01

    Localization of low-frequency acoustic stimuli is processed in dedicated neural pathways where coincidence-detecting neurons compare the arrival time of sound stimuli at the two ears, or interaural time disparity (ITD). ITDs occur in the submillisecond range, and vertebrates have evolved specialized excitatory and inhibitory circuitry to compute these differences. Glycinergic inhibition is a computationally significant and prominent component of the mammalian ITD pathway. However, evidence for glycinergic transmission is limited in birds, where GABAergic inhibition has been thought to be the dominant or exclusive inhibitory transmitter. Indeed, previous work showed that GABA antagonists completely eliminate inhibition in avian nuclei specialized for processing temporal features of sound, nucleus magnocellularis (NM) and nucleus laminaris (NL). However, more recent work shows that glycine is coexpressed with GABA in synaptic terminals apposed to neurons in both nuclei (Coleman WL, Fischl MJ, Weimann SR, Burger RM. J Neurophysiol 105: 2405-2420, 2011; Kuo SP, Bradley LA, Trussell LO. J Neurosci 29: 9625-9634, 2009). Here we show complementary evidence of functional glycine receptor (GlyR) expression in NM and NL. Additionally, we show that glycinergic input can be evoked under particular stimulus conditions. Stimulation at high but physiologically relevant rates evokes a slowly emerging glycinergic response in NM and NL that builds over the course of the stimulus. Glycinergic response magnitude was stimulus rate dependent, representing 18% and 7% of the total inhibitory current in NM and NL, respectively, at the end of the 50-pulse, 200-Hz stimulus. Finally, we show that the glycinergic component is functionally relevant, as its elimination reduced inhibition of discharges evoked by current injection into NM neurons.

  6. Avian flu to human influenza.

    PubMed

    Lewis, David B

    2006-01-01

    Influenza A viral infection causes substantial annual morbidity and mortality worldwide, particularly for infants, the elderly, and the immunocompromised. The virus mainly replicates in the respiratory tract and is spread by respiratory secretions. A growing concern is the recent identification of H5N1 strains of avian influenza A in Asia that were previously thought to infect only wild birds and poultry, but have now infected humans, cats, pigs, and other mammals, often with fatal results, in an ongoing outbreak. A human pandemic with H5N1 virus could potentially be catastrophic because most human populations have negligible antibody-mediated immunity to the H5 surface protein and this viral subtype is highly virulent. Whether an H5N1 influenza pandemic will occur is likely to hinge on whether the viral strains involved in the current outbreak acquire additional mutations that facilitate efficient human-to-human transfer of infection. Although there is no historical precedent for an H5N1 avian strain causing widespread human-to-human transmission, some type of influenza A pandemic is very likely in the near future. The possibility of an H5N1 influenza pandemic has highlighted the many current limitations of treatment with antiviral agents and of vaccine production and immunogenicity. Future vaccine strategies that may include more robust induction of T-cell responses, such as cytotoxic T lymphocytes, may provide better protection than is offered by current vaccines, which rely solely or mainly on antibody neutralization of infection.

  7. [Proteomic analysis of exhaled breath condensate for diagnosis of pathologies of the respiratory system].

    PubMed

    Kononikhin, A S; Fedorchenko, K Yu; Ryabokon, A M; Starodubtseva, N L; Popov, I A; Zavialova, M G; Anaev, E C; Chuchalin, A G; Varfolomeev, S D; Nikolaev, E N

    2015-01-01

    Study of the proteomic composition of exhaled breath condensate (EBC), is a promising non-invasive method for the diagnosis of the respiratory tract diseases in patients. In this study the EBC proteomic composition of the 79 donors, including patients with different pathologies of the respiratory system has been investigated. Cytoskeletal keratins type II (1, 2, 3, 4, 5, 6) and cytoskeletal keratins the type I (9, 10, 14, 15, 16) were invariant for all samples. Analyzing the frequency of occurrence of proteins in different groups of examined patients, several categories of protein have been recognized: found in all pathologies (Dermcidin, Alpha-1-microglobulin, SHROOM3), found in several pathologies (CSTA, LCN1, JUP, PIP, TXN), and specific for a single pathology (PRDX1, Annexin A1/A2). The EBC analysis by HPLC-MS/MS can be used to identify potential protein markers characteristic for pathologies such as chronic obstructive pulmonary disease (PRDX1) and pneumonia (Annexin A1/A2).

  8. Drug candidates and model systems in respiratory syncytial virus antiviral drug discovery.

    PubMed

    Heylen, Elisabeth; Neyts, Johan; Jochmans, Dirk

    2017-03-01

    The development of antiviral strategies to prevent or treat respiratory syncytial virus (RSV) infections is of great importance, especially considering the fact that RSV is one of the most important causes of pediatric respiratory infections. However, despite intense efforts, there is no antiviral or vaccine approved for the prevention or treatment of RSV infections. Several inhibitors, targeting different RSV proteins have been discovered over the past decade. We here review the most important chemical series as well as recent developments in understanding which viral proteins and/or host cell factors are good targets for inhibition of viral replication. In addition, we highlight the current in vitro and in vivo model systems of the disease. A number of molecules are currently in (advanced) preclinical or clinical development. Significant breakthroughs in the field may be expected in the upcoming years.

  9. Consecutive Food and Respiratory Allergies Amplify Systemic and Gut but Not Lung Outcomes in Mice.

    PubMed

    Bouchaud, Gregory; Gourbeyre, Paxcal; Bihouée, Tiphaine; Aubert, Phillippe; Lair, David; Cheminant, Marie-Aude; Denery-Papini, Sandra; Neunlist, Michel; Magnan, Antoine; Bodinier, Marie

    2015-07-22

    Epidemiological data suggest a link between food allergies and the subsequent development of asthma. Although this progression may result from the additional effects of exposure to multiple allergens, whether both allergies amplify each other's effects remains unknown. This study investigated whether oral exposure to food allergens influences the outcomes of subsequent respiratory exposure to an asthma-inducing allergen. Mice were sensitized and orally challenged with wheat (FA) and then exposed to house dust mite (HDM) extract (RA). Immunoglobulin (Ig), histamine, and cytokine levels were assayed by ELISA. Intestinal and lung physiology was assessed. Ig levels, histamine release, and cytokine secretion were higher after exposure to both allergens than after separate exposure to each. Intestinal permeability was higher, although airway hyper-responsiveness and lung inflammation remained unchanged. Exposure to food and respiratory allergens amplifies systemic and gut allergy-related immune responses without any additional effect on lung function and inflammation.

  10. MEchatronic REspiratory System SImulator for Neonatal Applications (MERESSINA) project: a novel bioengineering goal

    PubMed Central

    Scaramuzzo, Rosa T; Ciantelli, Massimiliano; Baldoli, Ilaria; Bellanti, Lisa; Gentile, Marzia; Cecchi, Francesca; Sigali, Emilio; Tognarelli, Selene; Ghirri, Paolo; Mazzoleni, Stefano; Menciassi, Arianna; Cuttano, Armando; Boldrini, Antonio; Laschi, Cecilia; Dario, Paolo

    2013-01-01

    Respiratory function is mandatory for extrauterine life, but is sometimes impaired in newborns due to prematurity, congenital malformations, or acquired pathologies. Mechanical ventilation is standard care, but long-term complications, such as bronchopulmonary dysplasia, are still largely reported. Therefore, continuous medical education is mandatory to correctly manage devices for assistance. Commercially available breathing function simulators are rarely suitable for the anatomical and physiological realities. The aim of this study is to develop a high-fidelity mechatronic simulator of neonatal airways and lungs for staff training and mechanical ventilator testing. The project is divided into three different phases: (1) a review study on respiratory physiology and pathophysiology and on already available single and multi-compartment models; (2) the prototyping phase; and (3) the on-field system validation. PMID:23966804

  11. Whether a novel drug delivery system can overcome the problem of biofilms in respiratory diseases?

    PubMed

    Dua, Kamal; Shukla, Shakti D; Tekade, Rakesh K; Hansbro, Philip M

    2017-02-01

    Biofilm comprises a community of microorganisms which form on medical devices and can lead to various threatening infections. It is a major concern in various respiratory diseases like cystic fibrosis, chronic obstructive pulmonary disease, etc. The treatment strategies for such infections are difficult due to the resistance of the microflora existing in the biofilms against various antimicrobial agents, thus posing threats to the patient population. The present era witnesses the beginning of research to understand the biofilm physiology and the associated microfloral diversity by applying -omics approaches. There is very limited information about how the deposition of biofilm on the respiratory devices and lung itself affects the drug delivered, the delivery system, and other implications. The present mini review summarizes the basic introduction to the biofilms and its avoidance using various drug delivery systems with special emphasis on the respiratory diseases. Understanding the approaches, principles, and modes of drug delivery involved in preventing biofilm deposition will be of interest to both biological and formulation scientists, thereby opening avenues to explore the new vistas in biofilm research for identifying better treatments for pulmonary infectious diseases.

  12. Three-dimensional printed magnetophoretic system for the continuous flow separation of avian influenza H5N1 viruses.

    PubMed

    Wang, Yuhe; Li, Yanbin; Wang, Ronghui; Wang, Maohua; Lin, Jianhan

    2017-04-01

    As a result of the low concentration of avian influenza viruses in samples for routine screening, the separation and concentration of these viruses are vital for their sensitive detection. We present a novel three-dimensional printed magnetophoretic system for the continuous flow separation of the viruses using aptamer-modified magnetic nanoparticles, a magnetophoretic chip, a magnetic field, and a fluidic controller. The magnetic field was designed based on finite element magnetic simulation and developed using neodymium magnets with a maximum intensity of 0.65 T and a gradient of 32 T/m for dragging the nanoparticle-virus complexes. The magnetophoretic chip was designed by SOLIDWORKS and fabricated by a three-dimensional printer with a magnetophoretic channel for the continuous flow separation of the viruses using phosphate-buffered saline as carrier flow. The fluidic controller was developed using a microcontroller and peristaltic pumps to inject the carrier flow and the viruses. The trajectory of the virus-nanoparticle complexes was simulated using COMSOL for optimization of the carrier flow and the magnetic field, respectively. The results showed that the H5N1 viruses could be captured, separated, and concentrated using the proposed magnetophoretic system with the separation efficiency up to 88% in a continuous flow separation time of 2 min for a sample volume of 200 μL.

  13. Avian influenza in Mexico.

    PubMed

    Villarreal, C

    2009-04-01

    The outbreak of highly pathogenic avian influenza (HPAI) H5N2 in Mexico in 1994 led to a clear increase in biosecurity measures and improvement of intensive poultry production systems. The control and eradication measures implemented were based on active surveillance, disease detection, depopulation of infected farms and prevention of possible contacts (identified by epidemiological investigations), improvement of biosecurity measures, and restriction of the movement of live birds, poultry products, by-products and infected material. In addition, Mexico introduced a massive vaccination programme, which resulted in the eradication of HPAI in a relatively short time in two affected areas that had a high density of commercial poultry.

  14. Differences of respiratory function according to level of the gross motor function classification system in children with cerebral palsy.

    PubMed

    Kwon, Yong Hyun; Lee, Hye Young

    2014-03-01

    [Purpose] The current study was designed to investigate the difference in lung capacity and muscle strengthening related to respiration depending on the level of the Gross Motor Function Classification System (GMFCS) in children with cerebral palsy (CP) through tests of respiratory function and respiratory pressure. [Subjects and Methods] A total of 49 children with CP who were classified as below level III of the GMFCS were recruited for this study. They were divided into three groups (i.e., GMFCS level I, GMFCS level II, and GMFCS level III). All children took the pulmonary function test (PFT) and underwent respiratory pressure testing for assessment of respiratory function in terms of lung capacity and respiratory muscle strength. [Results] The GMFCS level III group showed significantly lower scores for all tests of the PFT (i.e., forced vital capacity (FVC), forced expiratory volume at one second (FEV1), and slow vital capacity (SVC)) and testing for respiratory pressures (maximal inspiratory pressure (MIP) and maximal expiratory pressure (MEP)) compared with the other two groups. The results of post hoc analysis indicated that the GMFCS level III group differed significantly from the other two groups in terms of FVC, FEV1, MIP, and MEP. In addition, a significant difference in SVC was observed between GMFCS level II and III. [Conclusion] Children with CP who had relatively low motor function showed poor pulmonary capacity and respiratory muscle weakness. Therefore, clinical manifestations regarding lung capacity and respiratory muscle will be required in children with CP who demonstrate poor physical activity.

  15. Prospective evaluation of a new automated nucleic acid extraction system using routine clinical respiratory specimens.

    PubMed

    Mengelle, C; Mansuy, J-M; Sandres-Sauné, K; Barthe, C; Boineau, J; Izopet, J

    2012-06-01

    The aim of the study was to evaluate the MagNA Pure 96™ nucleic acid extraction system using clinical respiratory specimens for identifying viruses by qualitative real-time PCR assays. Three extraction methods were tested, that is, the MagNA Pure LC™, the COBAS Ampliprep™, and the MagNA Pure 96™ with 10-fold dilutions of an influenza A(H1N1)pdm09 sample. Two hundred thirty-nine respiratory specimens, 35 throat swabs, 164 nasopharyngeal specimens, and 40 broncho-alveolar fluids, were extracted with the MagNA Pure 96™ and the COBAS Ampliprep™ instruments. Forty COBAS Ampliprep™ positive samples were also tested. Real-time PCRs were used to identify influenza A and influenza A(H1N1)pdm09, rhinovirus, enterovirus, adenovirus, varicella zoster virus, cytomegalovirus, and herpes simplex virus. Similar results were obtained on RNA extracted from dilutions of influenza A(H1N1)pdm09 with the three systems: the MagNA Pure LC™, the COBAS Ampliprep™, and the MagNA Pure 96™. Data from clinical respiratory specimens extracted with the MagNA Pure 96™ and COBAS Ampliprep™ instruments were in 98.5% in agreement (P < 0.0001) for influenza A and influenza A(H1N1)pdm09. Data for rhinovirus were in 97.3% agreement (P < 0.0001) and in 96.8% agreement for enterovirus. They were in 100% agreement for adenovirus. Data for cytomegalovirus and HSV1-2 were in 95.2% agreement (P < 0.0001). The MagNA Pure 96™ instrument is easy-to-use, reliable, and has a high throughput for extracting total nucleic acid from respiratory specimens. These extracts are suitable for molecular diagnosis with any type of real-time PCR assay.

  16. Is the sheet-flow design a 'frozen core' (a Bauplan) of the gas exchangers? Comparative functional morphology of the respiratory microvascular systems: illustration of the geometry and rationalization of the fractal properties.

    PubMed

    Maina, J N

    2000-08-01

    The sheet-flow design is ubiquitous in the respiratory microvascular systems of the modern gas exchangers. The blood percolates through a maze of narrow microvascular channels spreading out into a thin film, a "sheet". The design has been convergently conceived through remarkably different evolutionary strategies. Endothelial cells, e.g. connect parallel epithelial cells in the fish gills and reptilian lungs; epithelial cells divide the gill filaments in the crustacean gills, the amphibian lungs, and vascular channels on the lung of pneumonate gastropods; connective tissue elements weave between the blood capillaries of the mammalian lungs; and in birds, the blood capillaries attach directly and in some areas connect by short extensions of the epithelial cells. In the gills, skin, and most lungs, the blood in the capillary meshwork geometrically lies parallel to the respiratory surface. In the avian lung, where the blood capillaries anastomose intensely and interdigitate closely with the air capillaries, the blood occasions a 'volume' rather than a 'sheet.' The sheet-flow design and the intrinsic fractal properties of the respiratory microvascular systems have produced a highly tractable low-pressure low-resistance region that facilitates optimal perfusion. In complex animals, the sheet-flow design is a prescriptive evolutionary construction for efficient gas exchange by diffusion. The design facilitates the internal and external respiratory media to be exposed to each other over an extensive surface area across a thin tissue barrier. This comprehensive design is a classic paradigm of evolutionary convergence motivated by common enterprise to develop corresponding functionally efficient structures. With appropriate corrections for any relevant intertaxa differences, use of similar morphofunctional models in determining the diffusing capacities of various gas exchangers is warranted.

  17. Rational design of avian metapneumovirus live attenuated vaccines by inhibiting viral messenger RNA cap methyltransferase

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Avian metapneumovirus (aMPV), also known as avian pneumovirus or turkey rhinotracheitis, is a non-segmented negative-sense RNA virus belonging to the family of Paramyxoviridae, the subfamily Pneumovirinae, and the genus Metapneumovirus. aMPV is the causative agent of respiratory tract infection and ...

  18. Construction of a fowl adenovirus recombinant to express avian metapneumovirus glycoprotein

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Avian metapneumovirus (aMPV) is the cause of severe respiratory infection in turkeys. Despite detailed sequence analyses of most of the aMPV genes, very little is known about the role these proteins in viral virulence, pathogenesis, and immune response. Here, we report the construction of an avian a...

  19. Precision-cut intestinal slices as a culture system to analyze the infection of differentiated intestinal epithelial cells by avian influenza viruses.

    PubMed

    Punyadarsaniya, Darsaniya; Winter, Christine; Mork, Ann-Kathrin; Amiri, Mahdi; Naim, Hassan Y; Rautenschlein, Silke; Herrler, Georg

    2015-02-01

    Many viruses infect and replicate in their host via the intestinal tract, e.g. many picornaviruses, several coronaviruses and avian influenza viruses of waterfowl. To analyze infection of enterocytes is a challenging task as culture systems for differentiated intestinal epithelial cells are not readily available and often have a life span that is too short for infection studies. Precision-cut intestinal slices (PCIS) from chicken embryos were prepared and shown that the epithelial cells lining the lumen of the intestine are viable for up to 4 days. Using lectin staining, it was demonstrated that α2,3-linked sialic acids, the preferred receptor determinants of avian influenza viruses, are present on the apical side of the epithelial cells. Furthermore, the epithelial cells (at the tips) of the villi were shown to be susceptible to infection by an avian influenza virus of the H9N2 subtype. This culture system will be useful to analyze virus infection of intestinal epithelial cells and it should be applicable also to the intestine of other species.

  20. Reverse genetics of avian metapneumoviruses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An overview of avian metapneumovirus (aMPV) infection in turkeys and development of a reverse genetics system for aMPV subgroup C (aMPV-C) virus will be presented. By using reverse genetics technology, we generated recombinant aMPV-C viruses containing a different length of glycoprotein (G) gene or...

  1. Particle deposition due to turbulent diffusion in the upper respiratory system

    NASA Technical Reports Server (NTRS)

    Hamill, P.

    1979-01-01

    Aerosol deposition in the upper respiratory system (trachea to segmental bronchi) is considered and the importance of turbulent diffusion as a deposition mechanism is evaluated. It is demonstrated that for large particles (diameter greater than about 5 microns), turbulent diffusion is the dominant deposition mechanism in the trachea. Conditions under which turbulent diffusion may be important in successive generations of the pulmonary system are determined. The probability of particle deposition is compared with probabilities of deposition, as determined by the equations generally used in regional deposition models. The analysis is theoretical; no new experimental data is presented.

  2. Effects of acute and chronic systemic methamphetamine on respiratory, cardiovascular and metabolic function, and cardiorespiratory reflexes

    PubMed Central

    Hassan, Sarah F.; Wearne, Travis A.; Cornish, Jennifer L.

    2016-01-01

    Key points Methamphetamine (METH) abuse is escalating worldwide, with the most common cause of death resulting from cardiovascular failure and hyperthermia; however, the underlying physiological mechanisms are poorly understood.Systemic administration of METH in anaesthetised rats reduced the effectiveness of some protective cardiorespiratory reflexes, increased central respiratory activity independently of metabolic function, and increased heart rate, metabolism and respiration in a pattern indicating that non‐shivering thermogenesis contributes to the well‐described hyperthermia.In animals that showed METH‐induced behavioural sensitisation following chronic METH treatment, no changes were evident in baseline cardiovascular, respiratory and metabolic measures and the METH‐evoked effects in these parameters were similar to those seen in saline‐treated or drug naïve animals.Physiological effects evoked by METH were retained but were neither facilitated nor depressed following chronic treatment with METH.These data highlight and identify potential mechanisms for targeted intervention in patients vulnerable to METH overdose. Abstract Methamphetamine (METH) is known to promote cardiovascular failure or life‐threatening hyperthermia; however, there is still limited understanding of the mechanisms responsible for evoking the physiological changes. In this study, we systematically determined the effects on both autonomic and respiratory outflows, as well as reflex function, following acute and repeated administration of METH, which enhances behavioural responses. Arterial pressure, heart rate, phrenic nerve discharge amplitude and frequency, lumbar and splanchnic sympathetic nerve discharge, interscapular brown adipose tissue and core temperatures, and expired CO2 were measured in urethane‐anaesthetised male Sprague‐Dawley rats. Novel findings include potent increases in central inspiratory drive and frequency that are not dependent on METH

  3. Hospital admissions for respiratory system diseases in adults with intellectual disabilities in Southeast London: a register-based cohort study

    PubMed Central

    Chang, Chin-Kuo; Chen, Chih-Yin; Broadbent, Mathew; Stewart, Robert; O'Hara, Jean

    2017-01-01

    Background Intellectual disability (ID) carries a high impact on need for care, health status and premature mortality. Respiratory system diseases contribute a major part of mortality among people with ID, but remain underinvestigated as consequent morbidities. Methods Anonymised electronic mental health records from the South London and Maudsley Trust (SLaM) were linked to national acute medical care data. Using retrospective cohort and matched case–control study designs, adults with ID receiving SLaM care between 1 January 2008 and 31 March 2013 were identified and compared with local catchment residents for respiratory system disease admissions. Standardised admission ratios (SARs) were first calculated, followed by a comparison of duration of hospitalisation with respiratory system disease between people with ID and age-matched and gender-matched random counterparts modelled using linear regression. Finally, the risk of readmission for respiratory system disease was analysed using the Cox models. Results For the 3138 adults with ID identified in SLaM, the SAR for respiratory system disease admissions was 4.02 (95% CI 3.79 to 4.26). Compared with adults without ID, duration of hospitalisation was significantly longer by 2.34 days (95% CI 0.03 to 4.64) and respiratory system disease readmission was significantly elevated (HR=1.35; 95% CI 1.17 to 1.56) after confounding adjustment. Conclusions Respiratory system disease admissions in adults with ID are more frequent, of longer duration and have a higher likelihood of recurring. Development and evaluation of potential interventions to the preventable causes of respiratory diseases should be prioritised. PMID:28360254

  4. Pediatric recurrent respiratory tract infections: when and how to explore the immune system? (About 53 cases)

    PubMed Central

    El-Azami-El-Idrissi, Mohammed; Lakhdar-Idrissi, Mounia; Chaouki, Sanae; Atmani, Samir; Bouharrou, Abdelhak; Hida, Moustapha

    2016-01-01

    Recurrent respiratory tract infections are one of the most frequent reasons for pediatric visits and hospitalization. Causes of this pathology are multiple ranging from congenital to acquired and local to general. Immune deficiencies are considered as underlying conditions predisposing to this pathology. Our work is about to determine when and how to explore the immune system when facing recurrent respiratory infections. This was based on the records of 53 children hospitalized at the pediatrics unit of Hassan II University Hospital, Fez Morocco. Thirty boys and 23 girls with age ranging from 5 months to 12 years with an average age of 2 years were involved in this study. Bronchial foreign body was the main etiology in children of 3 to 6 year old. Gastro-esophageal reflux, which in some cases is a consequence of chronic cough, as well as asthma were most frequent in infants (17 and 15% respectively). Immune deficiency was described in 7.5% of patients and the only death we deplored in our series belongs to this group. Recurrent respiratory tract infections have multiple causes. In our series they are dominated by foreign body inhalation and gastroesophageal reflux, which in some cases is a consequence of a chronic cough. Immune deficiency is not frequent but could influence the prognosis. Therefore immune explorations should be well codified. PMID:27642394

  5. Self-gated radial MRI for respiratory motion compensation on hybrid PET/MR systems.

    PubMed

    Grimm, Robert; Fürst, Sebastian; Dregely, Isabel; Forman, Christoph; Hutter, Jana Maria; Ziegler, Sibylle I; Nekolla, Stephan; Kiefer, Berthold; Schwaiger, Markus; Hornegger, Joachim; Block, Tobias

    2013-01-01

    Accurate localization and uptake quantification of lesions in the chest and abdomen using PET imaging is challenging due to the respiratory motion during the exam. The advent of hybrid PET/MR systems offers new ways to compensate for respiratory motion without exposing the patient to additional radiation. The use of self-gated reconstructions of a 3D radial stack-of-stars GRE acquisition is proposed to derive a high-resolution MRI motion model. The self-gating signal is used to perform respiratory binning of the simultaneously acquired PET raw data. Matching mu-maps are generated for every bin, and post-reconstruction registration is performed in order to obtain a motion-compensated PET volume from the individual gates. The proposed method is demonstrated in-vivo for three clinical patients. Motion-corrected reconstructions are compared against ungated and gated PET reconstructions. In all cases, motion-induced blurring of lesions in the liver and lung was substantially reduced, without compromising SNR as it is the case for gated reconstructions.

  6. Pediatric recurrent respiratory tract infections: when and how to explore the immune system? (About 53 cases).

    PubMed

    El-Azami-El-Idrissi, Mohammed; Lakhdar-Idrissi, Mounia; Chaouki, Sanae; Atmani, Samir; Bouharrou, Abdelhak; Hida, Moustapha

    2016-01-01

    Recurrent respiratory tract infections are one of the most frequent reasons for pediatric visits and hospitalization. Causes of this pathology are multiple ranging from congenital to acquired and local to general. Immune deficiencies are considered as underlying conditions predisposing to this pathology. Our work is about to determine when and how to explore the immune system when facing recurrent respiratory infections. This was based on the records of 53 children hospitalized at the pediatrics unit of Hassan II University Hospital, Fez Morocco. Thirty boys and 23 girls with age ranging from 5 months to 12 years with an average age of 2 years were involved in this study. Bronchial foreign body was the main etiology in children of 3 to 6 year old. Gastro-esophageal reflux, which in some cases is a consequence of chronic cough, as well as asthma were most frequent in infants (17 and 15% respectively). Immune deficiency was described in 7.5% of patients and the only death we deplored in our series belongs to this group. Recurrent respiratory tract infections have multiple causes. In our series they are dominated by foreign body inhalation and gastroesophageal reflux, which in some cases is a consequence of a chronic cough. Immune deficiency is not frequent but could influence the prognosis. Therefore immune explorations should be well codified.

  7. Effects of Long-Term Dust Exposure on Human Respiratory System Health in Minqin County, China.

    PubMed

    Wang, Jinyu; Li, Sheng; Wang, Shigong; Shang, Kezheng

    2015-01-01

    The aim of this study was to assess the effects of long-term sand dust exposure on human respiratory health. Dust events break out frequently in Minqin County, northwest China, whereas Pingliang City, northwest China, is rarely influenced by dust events. Therefore, Minqin and Pingliang were selected as sand dust exposure region and control area, respectively. The incidence of respiratory system diseases and symptoms was determined through a structured respiratory health questionnaire (ATS-DLD-78-A) and personal interviews. The subjects comprised 728 farmers (Minqin, 424; Pingliang, 304) aged 40 years or older, who had nondocumented occupational history to industrial dust exposure. Prevalences (odds ratio [OR], 95% confidence interval [CI]) of chronic rhinitis, chronic bronchitis, and chronic cough increased 9.6% (3.141, 1.776-5.555), 7.5% (2.468, 1.421-4.286), and 10.2% (1.787, 1.246-2.563) in Minqin comparison with Pingliang, respectively, and the differences were significant (p <.01).

  8. Color structured light system of chest wall motion measurement for respiratory volume evaluation

    NASA Astrophysics Data System (ADS)

    Chen, Huijun; Cheng, Yuan; Liu, Dongdong; Zhang, Xiaodong; Zhang, Jue; Que, Chengli; Wang, Guangfa; Fang, Jing

    2010-03-01

    We present a structured light system to dynamically measure human chest wall motion for respiratory volume estimation. Based on a projection of an encoded color pattern and a few active markers attached to the trunk, respiratory volumes are obtained by evaluating the 3-D topographic changes of the chest wall in an anatomically consistent measuring region during respiration. Three measuring setups are established: a single-sided illuminating-recording setup for standing posture, an inclined single-sided setup for supine posture, and a double-sided setup for standing posture. Results are compared with the pneumotachography and show good agreement in volume estimations [correlation coefficient: R>0.99 (P<0.001) for all setups]. The isovolume tests present small variations of the obtained volume during the isovolume maneuver (standard deviation<0.085 L for all setups). After validation by the isovolume test, an investigation of a patient with pleural effusion using the proposed method shows pulmonary functional differences between the diseased and the contralateral sides of the thorax, and subsequent improvement of this imbalance after drainage. These results demonstrate the proposed optical method is capable of not only whole respiratory volume evaluation with high accuracy, but also regional pulmonary function assessment in different chest wall behaviors, with the advantage of whole-field measurement.

  9. Monolayer culture systems with respiratory epithelial cells for evaluation of bacterial invasiveness.

    PubMed

    Hirakata, Yoichi; Yano, Hisakazu; Arai, Kazuaki; Endo, Shiro; Kanamori, Hajime; Aoyagi, Tetsuji; Hirotani, Ayako; Kitagawa, Miho; Hatta, Masumitsu; Yamamoto, Natsuo; Kunishima, Hiroyuki; Kawakami, Kazuyoshi; Kaku, Mitsuo

    2010-01-01

    Pseudomonas (P.) aeruginosa is a major opportunistic pathogen especially in immunocompromised patients. To evaluate the invasiveness of respiratory pathogens, we developed monolayer culture systems and examined the degree of invasion by P. aeruginosa and invasive Salmonella (S.) typhimurium strains using human respiratory cell lines: A549 (derived from lung cancer), BEAS-2B (normal bronchial epithelium), and Calu-3 (pleural effusion of a patient with adenocarcinoma of the lung). Cells were seeded into filter units containing 0.33 cm(2) filter membranes with 3.0 microm pores, and were incubated at 37 degrees C under 5% CO(2) for 4-10 days. By monitoring the trans-monolayer electrical resistance (TER), we judged that BEAS-2B cells (TER values: 436.2 +/- 16.8 to 628.8 +/- 66.3 Omega cm(2)) and Calu-3 cells (TER values: 490.5 +/- 25.2 to 547.8 +/- 21.6 Omega cm(2)) formed monolayers with tight junctions, but not A549 cells. On day 8 of culture, monolayer cultures were infected with bacteria, and the number of microorganisms penetrating into the basolateral medium was counted. Wild-type P. aeruginosa PAO1 (PAO1 WT) and S. typhimurium SL1344 were detected in the basolateral medium of BEAS-2B monolayer system by 3 h after inoculation, while only P. aeruginosa PAO1 WT was detected in the basolateral medium of Calu-3 monolayer, indicating poor invasiveness of S. typhimurium SL1344 in the Calu-3 system. These findings suggest that BEAS-2B or Calu-3 monolayer system could be useful for evaluating the invasiveness of respiratory pathogens. Because of the difference in bacterial invasiveness, we may need to choose a suitable cell system for each target pathogen.

  10. Commissioning of a motion system to investigate dosimetric consequences due to variability of respiratory waveforms.

    PubMed

    Cetnar, Ashley J; James, Joshua; Wang, Brain

    2016-01-01

    A commercially available six-dimensional (6D) motion system was assessed for accuracy and clinical use in our department. Positional accuracy and respiratory waveform reproducibility were evaluated for the motion system. The system was then used to investigate the dosimetric consequences of respiratory waveform variation when an internal target volume (ITV) approach is used for motion management. The maximum deviations are 0.3 mm and 0.22° for translation and rotation accuracy, respectively, for the tested clinical ranges. The origin reproducibility is less than ±0.1 mm. The average differences are less than 0.1 mm with a maximum standard deviation of 0.8 mm between waveforms of actual patients and replication of those waveforms by HexaMotion for three breath-hold and one free-breathing waveform. A modified gamma analysis shows greater than 98% agreement with a 0.5 mm and 100 ms threshold. The motion system was used to investigate respiratory waveform variation and showed that, as the amplitude of the treatment waveform increases above that of the simulation waveform, the periphery of the target volume receives less dose than expected. However, by using gating limits to terminate the beam outside of the simulation amplitude, the results are as expected dosimetrically. Specifically, the average dose difference in the periphery between treating with the simulation waveform and the larger amplitude waveform could be up to 12% less without gating limits, but only differed 2% or less with the gating limits in place. The general functionality of the system performs within the manufacturer's specifications and can accurately replicate patient specific waveforms. When an ITV approach is used for motion management, we found the use of gating limits that coincide with the amplitude of the patient waveform at simulation helpful to prevent the potential underdosing of the target due to changes in patient respiration. PACS numbers: 87.55.Kh, 87.55.Qr, 87.56.Fc.

  11. Commissioning of a motion system to investigate dosimetric consequences due to variability of respiratory waveforms.

    PubMed

    Cetnar, Ashley J; James, Joshua; Wang, Brain

    2016-01-08

    A commercially available six-dimensional (6D) motion system was assessed for accuracy and clinical use in our department. Positional accuracy and respiratory waveform reproducibility were evaluated for the motion system. The system was then used to investigate the dosimetric consequences of respiratory waveform variation when an internal target volume (ITV) approach is used for motion management. The maximum deviations are 0.3 mm and 0.22° for translation and rotation accuracy, respectively, for the tested clinical ranges. The origin reproducibility is less than±0.1 mm. The average differences are less than 0.1 mm with a maximum standard deviation of 0.8 mm between waveforms of actual patients and replication of those waveforms by HexaMotion for three breath-hold and one free-breathing waveform. A modified gamma analysis shows greater than 98% agreement with a 0.5 mm and 100 ms threshold. The motion system was used to investigate respiratory waveform variation and showed that, as the amplitude of the treatment waveform increases above that of the simulation waveform, the periphery of the target volume receives less dose than expected. However, by using gating limits to terminate the beam outside of the simulation amplitude, the results are as expected dosimetrically. Specifically, the average dose difference in the periphery between treating with the simulation waveform and the larger amplitude waveform could be up to 12% less without gating limits, but only differed 2% or less with the gating limits in place. The general functionality of the system performs within the manufacturer's specifications and can accurately replicate patient specific waveforms. When an ITV approach is used for motion management, we found the use of gating limits that coincide with the amplitude of the patient waveform at simulation helpful to prevent the potential underdosing of the target due to changes in patient respiration.

  12. Development of a one-run real-time PCR detection system for pathogens associated with bovine respiratory disease complex.

    PubMed

    Kishimoto, Mai; Tsuchiaka, Shinobu; Rahpaya, Sayed Samim; Hasebe, Ayako; Otsu, Keiko; Sugimura, Satoshi; Kobayashi, Suguru; Komatsu, Natsumi; Nagai, Makoto; Omatsu, Tsutomu; Naoi, Yuki; Sano, Kaori; Okazaki-Terashima, Sachiko; Oba, Mami; Katayama, Yukie; Sato, Reiichiro; Asai, Tetsuo; Mizutani, Tetsuya

    2017-03-18

    Bovine respiratory disease complex (BRDC) is frequently found in cattle worldwide. The etiology of BRDC is complicated by infections with multiple pathogens, making identification of the causal pathogen difficult. Here, we developed a detection system by applying TaqMan real-time PCR (Dembo respiratory-PCR) to screen a broad range of microbes associated with BRDC in a single run. We selected 16 bovine respiratory pathogens (bovine viral diarrhea virus, bovine coronavirus, bovine parainfluenza virus 3, bovine respiratory syncytial virus, influenza D virus, bovine rhinitis A virus, bovine rhinitis B virus, bovine herpesvirus 1, bovine adenovirus 3, bovine adenovirus 7, Mannheimia haemolytica, Pasteurella multocida, Histophilus somni, Trueperella pyogenes, Mycoplasma bovis and Ureaplasma diversum) as detection targets and designed novel specific primer-probe sets for nine of them. The assay performance was assessed using standard curves from synthesized DNA. In addition, the sensitivity of the assay was evaluated by spiking solutions extracted from nasal swabs that were negative by Dembo respiratory-PCR for nucleic acids of pathogens or synthesized DNA. All primer-probe sets showed high sensitivity. In this study, a total of 40 nasal swab samples from cattle on six farms were tested by Dembo respiratory-PCR. Dembo respiratory-PCR can be applied as a screening system with wide detection targets.

  13. Development of a one-run real-time PCR detection system for pathogens associated with bovine respiratory disease complex

    PubMed Central

    KISHIMOTO, Mai; TSUCHIAKA, Shinobu; RAHPAYA, Sayed Samim; HASEBE, Ayako; OTSU, Keiko; SUGIMURA, Satoshi; KOBAYASHI, Suguru; KOMATSU, Natsumi; NAGAI, Makoto; OMATSU, Tsutomu; NAOI, Yuki; SANO, Kaori; OKAZAKI-TERASHIMA, Sachiko; OBA, Mami; KATAYAMA, Yukie; SATO, Reiichiro; ASAI, Tetsuo; MIZUTANI, Tetsuya

    2017-01-01

    Bovine respiratory disease complex (BRDC) is frequently found in cattle worldwide. The etiology of BRDC is complicated by infections with multiple pathogens, making identification of the causal pathogen difficult. Here, we developed a detection system by applying TaqMan real-time PCR (Dembo respiratory-PCR) to screen a broad range of microbes associated with BRDC in a single run. We selected 16 bovine respiratory pathogens (bovine viral diarrhea virus, bovine coronavirus, bovine parainfluenza virus 3, bovine respiratory syncytial virus, influenza D virus, bovine rhinitis A virus, bovine rhinitis B virus, bovine herpesvirus 1, bovine adenovirus 3, bovine adenovirus 7, Mannheimia haemolytica, Pasteurella multocida, Histophilus somni, Trueperella pyogenes, Mycoplasma bovis and Ureaplasma diversum) as detection targets and designed novel specific primer-probe sets for nine of them. The assay performance was assessed using standard curves from synthesized DNA. In addition, the sensitivity of the assay was evaluated by spiking solutions extracted from nasal swabs that were negative by Dembo respiratory-PCR for nucleic acids of pathogens or synthesized DNA. All primer-probe sets showed high sensitivity. In this study, a total of 40 nasal swab samples from cattle on six farms were tested by Dembo respiratory-PCR. Dembo respiratory-PCR can be applied as a screening system with wide detection targets. PMID:28070089

  14. Telemedicine system for the care of patients with neuromuscular disease and chronic respiratory failure

    PubMed Central

    Morete, Emilio; González, Francisco

    2014-01-01

    Introduction Neuromuscular diseases cause a number of limitations which may be improved by using a telemedicine system. These include functional impairment and dependence associated with muscle weakness, the insidious development of respiratory failure and episodes of exacerbation. Material and methods The present study involved three patients with severe neuromuscular disease, chronic respiratory failure and long-term mechanical ventilation, who were followed up using a telemedicine platform. The telemedicine system is based on videoconferencing and telemonitoring of cardiorespiratory variables (oxygen saturation, heart rate, blood pressure and electrocardiogram). Two different protocols were followed depending on whether the patient condition was stable or unstable. Results Over a period of 5 years, we analyzed a series of variables including use of the system, patient satisfaction and clinical impact. Overall we performed 290 videoconference sessions, 269 short monitoring oximetry measurements and 110 blood pressure measurements. With respect to the clinical impact, after enrolment in the telemedicine program, the total number of hospital admissions fell from 18 to 3. Conclusions Our findings indicate that the system was user friendly for patients and care givers. Patient satisfaction scores were acceptable. The telemedicine system was effective for the home treatment of three patients with severe neuromuscular diseases and reduced the need for hospital admissions. PMID:25395959

  15. MIMO Radar System for Respiratory Monitoring Using Tx and Rx Modulation with M-Sequence Codes

    NASA Astrophysics Data System (ADS)

    Miwa, Takashi; Ogiwara, Shun; Yamakoshi, Yoshiki

    The importance of respiratory monitoring systems during sleep have increased due to early diagnosis of sleep apnea syndrome (SAS) in the home. This paper presents a simple respiratory monitoring system suitable for home use having 3D ranging of targets. The range resolution and azimuth resolution are obtained by a stepped frequency transmitting signal and MIMO arrays with preferred pair M-sequence codes doubly modulating in transmission and reception, respectively. Due to the use of these codes, Gold sequence codes corresponding to all the antenna combinations are equivalently modulated in receiver. The signal to interchannel interference ratio of the reconstructed image is evaluated by numerical simulations. The results of experiments on a developed prototype 3D-MIMO radar system show that this system can extract only the motion of respiration of a human subject 2m apart from a metallic rotatable reflector. Moreover, it is found that this system can successfully measure the respiration information of sleeping human subjects for 96.6 percent of the whole measurement time except for instances of large posture change.

  16. Breathing and vocal control: the respiratory system as both a driver and a target of telencephalic vocal motor circuits in songbirds.

    PubMed

    Schmidt, Marc F; McLean, Judith; Goller, Franz

    2012-04-01

    The production of vocalizations is intimately linked to the respiratory system. Despite our understanding of neural circuits that generate normal respiratory patterns, very little is understood regarding how these pontomedullary circuits become engaged during vocal production. Songbirds offer a potentially powerful model system for addressing this relationship. Songs dramatically alter the respiratory pattern in ways that are often highly predictable, and songbirds have a specialized telencephalic vocal motor circuit that provides massive innervation to a brainstem respiratory network that shares many similarities with its mammalian counterpart. In this review, we highlight interactions between the song motor circuit and the respiratory system, describing how both systems are likely to interact to produce the complex respiratory patterns that are observed during vocalization. We also discuss how the respiratory system, through its bilateral bottom-up projections to thalamus, might play a key role in sending precisely timed signals that synchronize premotor activity in both hemispheres.

  17. Prevalence of low pathogenicity avian influenza virus during 2005 in two U.S. live bird market systems.

    PubMed

    Yee, Karen S; Novick, Christy A; Halvorson, David A; Dao, Nguyet; Carpenter, Tim E; Cardona, Carol J

    2011-06-01

    Oropharyngeal and cloacal swabs were collected from poultry sold in two live bird market (LBM) systems to estimate the prevalence of low pathogenicity avian influenza virus (LPAIV) shedding during the summer and fall of 2005. Random sampling was conducted in three LBMs in Minnesota where 50 birds were sampled twice weekly for 4 wk, and in three LBMs in a California marketing system. A stratified systematic sampling method was used to collect samples from Southern California LBMs, where LPAIV was detected during routine surveillance. No LPAIV was detected in the LBM system in Minnesota where realtime reverse transcription-PCR (RT-PCR) was conducted on oropharyngeal samples. RT-PCR was performed on swabs taken from 290 of 14,000, 65 of 252, and 60 of 211 birds at the three Southern California LBMs. The number of samples collected was based on the number of birds, age of the birds, and number of species present in the LBM. Virus isolation, subtyping, and sequencing of the hemagglutinin, neuraminidase, and other internal protein genes was performed on AIV-positive samples. The estimated prevalence of LPAIV in California was 0.345% in an LBM/supply farm with multiple ages of Japanese quail, 3% in an LBM with multiple ages and strains of chickens present, and 49.8% in an LBM with multiple species, multiple strains, and multiple ages. The positive virus samples were all LPAIV H6N2 and closely related to viruses isolated from Southern California in 2001 and 2004. Little or no comingling of poultry may contribute to little or no LPAIV detection in the LBMs.

  18. Next Generation Respiratory Viral Vaccine System: Advanced and Emerging Bioengineered Human Lung Epithelia Model (HLEM) Organoid Technology

    NASA Technical Reports Server (NTRS)

    Goodwin, Thomas J.; Schneider, Sandra L.; MacIntosh, Victor; Gibbons, Thomas F.

    2010-01-01

    Acute respiratory infections, including pneumonia and influenza, are the S t" leading cause of United States and worldwide deaths. Newly emerging pathogens signaled the need for an advanced generation of vaccine technology.. Human bronchial-tracheal epithelial tissue was bioengineered to detect, identify, host and study the pathogenesis of acute respiratory viral disease. The 3-dimensional (3D) human lung epithelio-mesechymal tissue-like assemblies (HLEM TLAs) share characteristics with human respiratory epithelium: tight junctions, desmosomes, microvilli, functional markers villin, keratins and production of tissue mucin. Respiratory Syntial Virus (RSV) studies demonstrate viral growth kinetics and membrane bound glycoproteins up to day 20 post infection in the human lung-orgainoid infected cell system. Peak replication of RSV occurred on day 10 at 7 log10 particles forming units per ml/day. HLEM is an advanced virus vaccine model and biosentinel system for emergent viral infectious diseases to support DoD global surveillance and military readiness.

  19. Potential toxicity and safety evaluation of nanomaterials for the respiratory system and lung cancer

    PubMed Central

    Vlachogianni, Thomais; Fiotakis, Konstantinos; Loridas, Spyridon; Perdicaris, Stamatis; Valavanidis, Athanasios

    2013-01-01

    Engineered nanomaterials (ENMs) are a diverse group of materials finding increasing use in manufacturing, computing, food, pharmaceuticals, and biomedicine due to their very small size and exceptional properties. Health and safety concerns for ENMs have forced regulatory agencies to consider preventive measures and regulations for workers’ health and safety protection. Respiratory system toxicity from inhalable ENMs is the most important concern to health specialists. In this review, we focus on similarities and differences between conventional microparticles (diameters in mm and μm), which have been previously studied, and nanoparticles (sizes between 1 and 100 nm) in terms of size, composition, and mechanisms of action in biological systems. In past decades, respirable particulate matter (PM), asbestos fibers, crystalline silicate, and various amorphous dusts have been studied, and epidemiological evidence has shown how dangerous they are to human health, especially from exposure in working environments. Scientific evidence has shown that there is a close connection between respirable PM and pulmonary oxidative stress through the generation of reactive oxygen species (ROS) and reactive nitrogen species (RNS). There is a close connection between oxidative stress in the cell and the elicitation of an inflammatory response via pro-inflammatory gene transcription. Inflammatory processes increase the risk for lung cancer. Studies in vitro and in vivo in the last decade have shown that engineered nanoparticles (ENPs) at various doses can cause ROS generation, oxidative stress, and pro-inflammatory gene expression in the cell. It is assumed that ENPs have the potential to cause acute respiratory diseases and probably lung cancer in humans. The situation regarding chronic exposure at low doses is more complicated. The long-term accumulation of ENPs in the respiratory system cannot be excluded. However, at present, exposure data for the general public regarding ENPs

  20. Optimal Determination of Respiratory Airflow Patterns Using a Nonlinear Multicompartment Model for a Lung Mechanics System

    PubMed Central

    Li, Hancao; Haddad, Wassim M.

    2012-01-01

    We develop optimal respiratory airflow patterns using a nonlinear multicompartment model for a lung mechanics system. Specifically, we use classical calculus of variations minimization techniques to derive an optimal airflow pattern for inspiratory and expiratory breathing cycles. The physiological interpretation of the optimality criteria used involves the minimization of work of breathing and lung volume acceleration for the inspiratory phase, and the minimization of the elastic potential energy and rapid airflow rate changes for the expiratory phase. Finally, we numerically integrate the resulting nonlinear two-point boundary value problems to determine the optimal airflow patterns over the inspiratory and expiratory breathing cycles. PMID:22719793

  1. Multiplexed Molecular Diagnostics for Respiratory, Gastrointestinal, and Central Nervous System Infections.

    PubMed

    Hanson, Kimberly E; Couturier, Marc Roger

    2016-11-15

    The development and implementation of highly multiplexed molecular diagnostic tests have allowed clinical microbiology laboratories to more rapidly and sensitively detect a variety of pathogens directly in clinical specimens. Current US Food and Drug Administration-approved multiplex panels target multiple different organisms simultaneously and can identify the most common pathogens implicated in respiratory viral, gastrointestinal, or central nervous system infections. This review summarizes the test characteristics of available assays, highlights the advantages and limitations of multiplex technology for infectious diseases, and discusses potential utilization of these new tests in clinical practice.

  2. Optimal determination of respiratory airflow patterns using a nonlinear multicompartment model for a lung mechanics system.

    PubMed

    Li, Hancao; Haddad, Wassim M

    2012-01-01

    We develop optimal respiratory airflow patterns using a nonlinear multicompartment model for a lung mechanics system. Specifically, we use classical calculus of variations minimization techniques to derive an optimal airflow pattern for inspiratory and expiratory breathing cycles. The physiological interpretation of the optimality criteria used involves the minimization of work of breathing and lung volume acceleration for the inspiratory phase, and the minimization of the elastic potential energy and rapid airflow rate changes for the expiratory phase. Finally, we numerically integrate the resulting nonlinear two-point boundary value problems to determine the optimal airflow patterns over the inspiratory and expiratory breathing cycles.

  3. [Music and respiratory pathology].

    PubMed

    Herer, B

    2001-04-01

    Musical performance, especially in singers and wind instrument players, depends on an effective pulmonary function. Performing artists may be seriously impaired by respiratory diseases that, comparatively, may produce only modest inconvenience for non-musicians. The report of two cases of respiratory diseases occurring in musicians herein provides an introduction to a review of the interactions between music and the human respiratory system. The following points are considered: epidemiological data; pulmonary function in musicians; favorable effects of music on the respiratory system; description of the main respiratory problems that may affect musicians.

  4. Differential display system with vertebrate-common degenerate oligonucleotide primers: uncovering genes responsive to dioxin in avian embryonic liver.

    PubMed

    Teraoka, Hiroki; Ito, Shino; Ikeda, Haruki; Kubota, Akira; Abou Elmagd, M M; Kitazawa, Takio; Kim, Eun-Young; Iwata, Hisato; Endoh, Daiji

    2012-01-03

    To assess possible impacts of environmental pollutants on gene expression profiles in a variety of organisms, we developed a novel differential display system with primer sets that are common in seven vertebrate species, based on degenerate oligonucleotide-primed PCR (DOP-PCR). An 8-mer inverse repeat motif was found in most transcripts from the seven vertebrates including fish to primates with detailed transcriptome information; more than 10,000 motifs were recognized in common in the transcripts of the seven species. Among them, we selected 275 common motifs that cover about 40-70% of transcripts throughout these species, and designed 275 DOP-PCR primers that were common to seven vertebrate species (common DOP-PCR primers). To detect genes responsive to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in developing embryos, differential display with common DOP-PCR primers was applied to embryonic liver of two avian species, the chicken (Gallus gallus) and the common cormorant (Phalacrocorax carbo), which were exposed in ovo to TCDD. The cDNA bands that showed differences between the control and TCDD-treated groups were sequenced and the mRNA expression levels were confirmed by real-time RT-PCR. This approach succeeded in isolating novel dioxin-responsive genes that include 10 coding genes in the chicken, and 1 coding gene and 1 unknown transcript in the cormorant, together with cytochrome P450 1As that have already been well established as dioxin markers. These results highlighted the usefulness of systematically designed novel differential display systems to search genes responsive to chemicals in vertebrates, including wild species, for which transcriptome information is not available.

  5. Neuroprotective effects of testosterone in a naturally-occurring model of neurodegeneration in the adult avian song control system

    PubMed Central

    Thompson, Christopher K.; Brenowitz, Eliot A.

    2010-01-01

    Seasonal regression of the avian song control system, a series of discrete brain nuclei that regulate song learning and production, serves as a useful model for investigating the neuroprotective effects of steroids. In seasonally-breeding male songbirds, the song control system regresses rapidly when males are transferred from breeding to nonbreeding physiological conditions. One nucleus in particular, HVC, regresses in volume by 22% within days of castration and transfer to a nonbreeding photoperiod. This regression is primarily mediated by a 30% decrease in neuron number, a result of a caspase-dependent process of programmed cell death. Here we examine whether testosterone (T) can act locally in the brain to prevent seasonal-like neurodegeneration in HVC. We began to infuse T intracerebrally near HVC on one side of the brain in breeding-condition male white-crowned sparrows two days prior to T-withdrawal and shifting them to short day photoperiods. The birds were sacrificed three or seven days later. Local T-infusion significantly protected ipsilateral HVC from volume regression and neuron loss. In addition, T-infusion significantly reduced the number, density, and number/1000 neurons of activated caspase-3 cells and cells positive for cleaved PARP, both markers for programmed cell death, in the ipsilateral HVC. T-infusion near HVC also prevented regression of ipsilateral efferent targets of HVC neurons, including the volumes of RA and Area X, and the soma area and density of RA neurons. Thus T can act locally in the brain to have a neuroprotective effect and act transsynaptically to prevent regression of efferent nuclei. PMID:20963827

  6. Two Functional Type VI Secretion Systems in Avian Pathogenic Escherichia coli Are Involved in Different Pathogenic Pathways

    PubMed Central

    Ma, Jiale; Bao, Yinli; Sun, Min; Dong, Wenyang; Pan, Zihao; Zhang, Wei; Lu, Chengping

    2014-01-01

    Type VI secretion systems (T6SSs) are involved in the pathogenicity of several Gram-negative bacteria. The VgrG protein, a core component and effector of T6SS, has been demonstrated to perform diverse functions. The N-terminal domain of VgrG protein is a homologue of tail fiber protein gp27 of phage T4, which performs a receptor binding function and determines the host specificity. Based on sequence analysis, we found that two putative T6SS loci exist in the genome of the avian pathogenic Escherichia coli (APEC) strain TW-XM. To assess the contribution of these two T6SSs to TW-XM pathogenesis, the crucial clpV clusters of these two T6SS loci and their vgrG genes were deleted to generate a series of mutants. Consequently, T6SS1-associated mutants presented diminished adherence to and invasion of several host cell lines cultured in vitro, decreased pathogenicity in duck and mouse infection models in vivo, and decreased biofilm formation and bacterial competitive advantage. In contrast, T6SS2-associated mutants presented a significant decrease only in the adherence to and invasion of mouse brain microvascular endothelial cell (BMEC) line bEnd.3 and brain tissue of the duck infection model. These results suggested that T6SS1 was involved in the proliferation of APEC in systemic infection, whereas VgrG-T6SS2 was responsible only for cerebral infection. Further study demonstrated that VgrG-T6SS2 was able to bind to the surface of bEnd.3 cells, whereas it did not bind to DF-1 (chicken embryo fibroblast) cells, which further proved the interaction of VgrG-T6SS2 with the surface of BMECs. PMID:24980972

  7. Pediatric respiratory and systemic effects of chronic air pollution exposure: nose, lung, heart, and brain pathology.

    PubMed

    Calderón-Garcidueñas, Lilian; Franco-Lira, Maricela; Torres-Jardón, Ricardo; Henriquez-Roldán, Carlos; Barragán-Mejía, Gerardo; Valencia-Salazar, Gildardo; González-Maciel, Angelica; Reynoso-Robles, Rafael; Villarreal-Calderón, Rafael; Reed, William

    2007-01-01

    Exposures to particulate matter and gaseous air pollutants have been associated with respiratory tract inflammation, disruption of the nasal respiratory and olfactory barriers, systemic inflammation, production of mediators of inflammation capable of reaching the brain and systemic circulation of particulate matter. Mexico City (MC) residents are exposed to significant amounts of ozone, particulate matter and associated lipopolysaccharides. MC dogs exhibit brain inflammation and an acceleration of Alzheimer's-like pathology, suggesting that the brain is adversely affected by air pollutants. MC children, adolescents and adults have a significant upregulation of cyclooxygenase-2 (COX2) and interleukin-1beta (IL-1beta) in olfactory bulb and frontal cortex, as well as neuronal and astrocytic accumulation of the 42 amino acid form of beta -amyloid peptide (Abeta 42), including diffuse amyloid plaques in frontal cortex. The pathogenesis of Alzheimer's disease (AD) is characterized by brain inflammation and the accumulation of Abeta 42, which precede the appearance of neuritic plaques and neurofibrillary tangles, the pathological hallmarks of AD. Our findings of nasal barrier disruption, systemic inflammation, and the upregulation of COX2 and IL-1beta expression and Abeta 42 accumulation in brain suggests that sustained exposures to significant concentrations of air pollutants such as particulate matter could be a risk factor for AD and other neurodegenerative diseases.

  8. SU-E-J-190: Development of Abdominal Compression & Respiratory Guiding System Using Gas Pressure Sensor

    SciTech Connect

    Kim, T; Kim, D; Kang, S; Cho, M; Kim, K; Shin, D; Suh, T; Kim, S

    2015-06-15

    Purpose: Abdominal compression is known to be effective but, often makes external-marker-based monitoring of breathing motion not feasible. In this study, we developed and evaluated a system that enables both abdominal compression and monitoring of residual abdominal motion simultaneously. The system can also provide visual-biofeedback capability. Methods: The system developed consists of a compression belt, an abdominal motion monitoring sensor (gas pressure sensor) and a visual biofeedback device. The compression belt was designed to be able to compress the frontal side of the abdomen. The pressure level of the belt is controlled by air volume and monitored in real time using the gas pressure sensor. The system displays not only the real-time monitoring curve but also a guiding respiration model (e.g., a breath hold or shallow breathing curve) simultaneously on the head mounted display to help patients keep their breathing pattern as consistent as possible. Three healthy volunteers were enrolled in this pilot study and respiratory signals (pressure variations) were obtained both with and without effective abdominal compression to investigate the feasibility of the developed system. Two guidance patterns, breath hold and shallow breathing, were tested. Results: All volunteers showed smaller abdominal motion with compression (about 40% amplitude reduction compared to without compression). However, the system was able to monitor residual abdominal motion for all volunteers. Even under abdominal compression, in addition, it was possible to make the subjects successfully follow the guide patterns using the visual biofeedback system. Conclusion: The developed abdominal compression & respiratory guiding system was feasible for residual abdominal motion management. It is considered that the system can be used for a respiratory motion involved radiation therapy while maintaining the merit of abdominal compression. This work was supported by the Radiation Technology R

  9. The Role and Immunobiology of Eosinophils in the Respiratory System: a Comprehensive Review.

    PubMed

    Eng, Stephanie S; DeFelice, Magee L

    2016-04-01

    The eosinophil is a fully delineated granulocyte that disseminates throughout the bloodstream to end-organs after complete maturation in the bone marrow. While the presence of eosinophils is not uncommon even in healthy individuals, these granulocytes play a central role in inflammation and allergic processes. Normally appearing in smaller numbers, higher levels of eosinophils in the peripheral blood or certain tissues typically signal a pathologic process. Eosinophils confer a beneficial effect on the host by enhancing immunity against molds and viruses. However, tissue-specific elevation of eosinophils, particularly in the respiratory system, can cause a variety of short-term symptoms and may lead to long-term sequelae. Eosinophils often play a role in more commonly encountered disease processes, such as asthma and allergic responses in the upper respiratory tract. They are also integral in the pathology of less common diseases including eosinophilic pneumonia, allergic bronchopulmonary aspergillosis, hypersensitivity pneumonitis, and drug reaction with eosinophilia and systemic symptoms. They can be seen in neoplastic disorders or occupational exposures as well. The involvement of eosinophils in pulmonary disease processes can affect the method of diagnosis and the selection of treatment modalities. By analyzing the complex interaction between the eosinophil and its environment, which includes signaling molecules and tissues, different therapies have been discovered and created in order to target disease processes at a cellular level. Innovative treatments such as mepolizumab and benralizumab will be discussed. The purpose of this article is to further explore the topic of eosinophilic presence, activity, and pathology in the respiratory tract, as well as discuss current and future treatment options through a detailed literature review.

  10. Randomised controlled trial of respiratory system compliance measurements in mechanically ventilated neonates

    PubMed Central

    Stenson, B.; Glover, R.; Wilkie, R.; Laing, I.; Tarnow-Mordi, W.

    1998-01-01

    AIM—To determine whether outcomes of neonatal mechanical ventilation could be improved by regular pulmonary function testing.
METHODS—Two hundred and forty five neonates, without immediately life threatening congenital malformations, were mechanically ventilated in the newborn period. Infants were randomly allocated to conventional clinical management (control group) or conventional management supplemented by regular measurements of static respiratory system compliance, using the single breath technique, with standardised management advice based on the results.
RESULTS—Fifty five (45%) infants in each group experienced one or more adverse outcomes. The median (quartile) durations of ventilation and oxygen supplementation were 5 (2-12) and 6 (2-34) days for the control group, and 4 (2-9) and 6 (3-36) days for the experimental group (not significant). On post-hoc secondary analysis, control group survivors were ventilated for 1269 days with a median (quartile) of 5 (2-13) days, and experimental group survivors were ventilated for 775 days with a median (quartile) duration of 3 (2-8) days (p=0.03).
CONCLUSIONS—Although primary analysis did not show any substantial benefit associated with regular measurement of static respiratory system compliance, this may reflect a type II error, and a moderate benefit has not been excluded. Larger studies are required to establish the value of on-line monitoring techniques now available with neonatal ventilators.

 PMID:9536834

  11. Macroscopic anatomy of the lower respiratory system in mole rats (Spalax leucodon).

    PubMed

    İlgun, R; Yoldas, A; Kuru, N; Özkan, Z E

    2014-12-01

    The morphologic and morphometric features of the lower respiratory system in mole rats were examined. It was seen that the low respiratory system of this species leading a special life under highly hypoxic/hypercapnic conditions underground is structurally similar to other mammals living on land in terms of the parts examined; trachea was formed by 29.5 ± 4 oval-formed cartilaginous tracheals arranged backwards and became gradually more stenotic diameter from cranial to the caudal of the neck. The trachea was separated in two principal bronchus at the fourth thoracal intercostal spatium level. The angle between the two main principal bronchi was 60.5 ± 2.35°. The lung constituted 1.29 ± 0.03% of the body weight and the right lung was heavier than the left lung. Fissura inter-lobaris was deep and separated the lung lobes wholly, and the right lung was separated in four lobes, whereas the left lung was not separated into the lobes. Also, the medial lobe of the left lung was the lightest lobe.

  12. Immunohistochemical techniques and their applications in the histopathology of the respiratory system.

    PubMed Central

    Linnoila, I; Petrusz, P

    1984-01-01

    Subsequent to the first report in the 1940s on incubation of tissue sections with fluorescein-conjugated antibodies for localization of antigens, a great number of modifications were introduced to improve the validity of immunohistochemistry which has become a growingly popular tool. The use of immunoenzymatic techniques eliminates the need for expensive fluorescence microscopy equipment, the lack of permanency of preparations and the lack of electron density required in ultrastructural localization of antigens. Regardless of the technique, it is also important to choose a correct fixation which allows the proper preservation of antigens and morphology and the penetration of antibodies through the entire thickness of the preparation. A variety of immunohistochemical techniques have been applied to study several components of the lung, such as collagen, surface active material, lung specific antigens, and enzymes and the detection of tumor markers, immunoglobulins and infectious agents in the respiratory system which is reviewed. The large surface area and the multiplicity of cell types provided by the respiratory tract epithelium of humans for exposure to microbial as well as toxic substances in the environment make this organ system very vulnerable but a good early indicator of adverse health effects. Immunohistochemistry provides valuable information complementary to the immunochemical and biochemical characterization of this barrier. Images FIGURE 2. FIGURE 3. FIGURE 3. FIGURE 4. FIGURE 4. FIGURE 5. PMID:6090113

  13. The Pulsed Flow Algorithm (PFA) Applied to Coupled Respiratory and Circulatory Systems

    NASA Astrophysics Data System (ADS)

    Staples, A.; Oran, E.; Boris, J.; Kaplan, C.; Kailasanath, K.

    2007-11-01

    The Pulsed Flow Equations (PFE) are a set of coupled partial differential equations designed to capture features particularly relevant to internal flows through flexible elastic channels, such as flows in physiological systems in biological organisms, and hydraulics systems. The equations are an extension of the standard one-dimensional fluid flow equations that, in addition, are able to capture two-dimensional diffusion, branching, transport, viscous, and other effects. A limiting case of the equations is the standard one-dimensional fluid flow equations. The equations are discretized and solved partially using an asymptotic solution, after which they reduce to tridiagonal form. The solution formalism can be applied to many types of complex networks of internal flows, and solves these problems, including some important two-dimensional effects, at the cost of a one-dimensional tridiagonal computation. Here we apply the PFA to describe a coupled circulatory and respiratory system calibrated to the average human body.

  14. [Association of fatty acid metabolism with systemic inflammatory response in chronic respiratory diseases].

    PubMed

    Denisenko, Y K; Novgorodtseva, T P; Zhukova, N V; Antonuk, M V; Lobanova, E G; Kalinina, E P

    2016-03-01

    We examined composition of plasma non-esterified fatty acids (NFAs), erythrocyte fatty acids, levels of eicosanoids in patients with asthma and chronic obstructive pulmonary disease (COPD) with different type of the inflammatory response. The results of our study show that asthma and COPD in remission are associated with changes in the composition NFAs of plasma, FA of erythrocytes, level eicosanoid despite the difference in the regulation of immunological mechanisms of systemic inflammation. These changes are characterized by excessive production of arachidonic acid (20:4n-6) and cyclooxygenase and lipoxygenase metabolites (thromboxane B2, leukotriene B4) and deficiency of their functional antagonist, eicosapentaenoic acid (20:5n-3). The recognized association between altered fatty acid composition and disorders of the immune mechanisms of regulation of systemic inflammation in COPD and asthma demonstrated the important role of fatty acids and their metabolites in persistence of inflammatory processes in diseases of the respiratory system in the condition of remission.

  15. Using avian radar to examine relationships among avian activity, bird strikes, and meteorological factors

    USGS Publications Warehouse

    Coates, Peter S.; Casazza, Michael L.; Halstead, Brian J.; Fleskes, Joseph P.; Laughlin, James A.

    2011-01-01

    Radar systems designed to detect avian activity at airfields are useful in understanding factors that influence the risk of bird and aircraft collisions (bird strikes). We used an avian radar system to measure avian activity at Beale Air Force Base, California, USA, during 2008 and 2009. We conducted a 2-part analysis to examine relationships among avian activity, bird strikes, and meteorological and time-dependent factors. We found that avian activity around the airfield was greater at times when bird strikes occurred than on average using a permutation resampling technique. Second, we developed generalized linear mixed models of an avian activity index (AAI). Variation in AAI was first explained by seasons that were based on average migration dates of birds at the study area. We then modeled AAI by those seasons to further explain variation by meteorological factors and daily light levels within a 24-hour period. In general, avian activity increased with decreased temperature, wind, visibility, precipitation, and increased humidity and cloud cover. These effects differed by season. For example, during the spring bird migration period, most avian activity occurred before sunrise at twilight hours on clear days with low winds, whereas during fall migration, substantial activity occurred after sunrise, and birds generally were more active at lower temperatures. We report parameter estimates (i.e., constants and coefficients) averaged across models and a relatively simple calculation for safety officers and wildlife managers to predict AAI and the relative risk of bird strike based on time, date, and meteorological values. We validated model predictability and assessed model fit. These analyses will be useful for general inference of avian activity and risk assessment efforts. Further investigation and ongoing data collection will refine these inference models and improve our understanding of factors that influence avian activity, which is necessary to inform

  16. Systems for the management of respiratory disease in primary care - an international series: Canada.

    PubMed

    Kaplan, Alan

    2008-06-01

    Canada has a universal health care system funded by the government. All people are supposed to have unrestricted access to all essential health care in a timely fashion. Canada has ten provinces and three territories. Health care is funded by each province/territory, with federal payments providing some of the funding. The bulk of the provision of respiratory care in Canada is provided by primary care practitioners. Across the country we have a family physician shortage; thus, in many areas of the country there is insufficient access since patients do not actually have a family physician. This has less effect on acute medical services, which can be available in ER or walk-in settings, but certainly does affect the provision of services for chronic illnesses. While thus far the health care system is 'free', there are some significant limitations; the commonest is waiting times for specialist care and investigations. Other significant deficiencies include the lack of coverage for medications for both acute and chronic conditions and of medical devices. Primary care reforms by local governments have attempted to fix these issues by changing care models. Fee-for-service medicine by physicians is slowly being changed in places to capitation models and other systems such as rewards for managing chronic conditions optimally. Ontario has instituted 'reward systems' for diabetes and smoking cessation. British Columbia has rewards for multiple chronic diseases. In many areas, care in the provinces is regionalised to allow local arrangements to help decide on where and how care is organised. Respiratory diseases (excluding lung cancer) rank fourth in Canada in the total proportion of direct health care costs (behind neuropsychiatric, injury and cardiovascular diseases). A number of studies have shown that respiratory conditions such as asthma and COPD are underdiagnosed and/or undermanaged. Other conditions need treatment by specialists or physicians with a special interest

  17. Technical and dosimetric aspects of respiratory gating using a pressure-sensor motion monitoring system

    SciTech Connect

    Li, X. Allen; Stepaniak, Christopher; Gore, Elizabeth

    2006-01-15

    This work introduces a gating technique that uses 4DCT to determine gating parameters and to plan gated treatment, and employs a Siemens linear accelerator to deliver the gated treatment. Because of technology incompatibility, the 4DCT scanner (LightSpeed, GE) and the Siemens accelerator require two different motion-monitoring systems. The motion monitoring system (AZ-773V, Anzai Med.) used for the gated delivery utilizes a pressure sensor to detect the external respiratory motion (pressure change) in real time. Another system (RPM, Varian) used for the 4DCT scanner (LightSpeed, GE) is based on an infrared camera to detect motion of external markers. These two motion monitoring systems (RPM and Anzai systems) were found to correlate well with each other. The depth doses and profile measured for gated delivery (with a duty cycle of 25% or 50%) were found to agree within 1.0% with those measured for ungated delivery, indicating that gating did not significantly alter beam characteristics. The measurement verified also that the MU linearity and beam output remained unchanged (within 0.3%). A practical method of using 4DCT to plan a gated treatment was developed. The duty cycle for either phase or amplitude gating can be determined based on 4DCT with consideration of set-up error and delivery efficiency. The close-loop measurement involving the entire gating process (imaging, planning, and delivery) showed that the measured isodose distributions agreed with those intended, validating the accuracy and reliability of the gating technique. Based these observations, we conclude that the gating technique introduced in this work, integrating Siemens linear accelerator and Anzai pressure sensor device with GE/Varian RPM 4DCT, is reliable and effective, and it can be used clinically to account for respiratory motion during radiation therapy.

  18. Effect of a botanical composition, UP446, on respiratory, cardiovascular and central nervous systems in beagle dogs and rats.

    PubMed

    Yimam, Mesfin; Lee, Young Chul; Jia, Qi

    2016-06-01

    Extensive safety evaluation of UP446, a botanical composition comprised of standardized extracts from roots of Scutellaria baicalensis and heartwoods of Acacia catechu, has been reported previously. Here we carried out additional studies to assess the effect of UP446 on respiratory, cardiovascular and central nervous (CNS) systems. A Functional observational battery (FOB) and whole body plethysmography system in rats and implanted telemetry in dogs were utilized to evaluate the potential CNS, respiratory and cardiovascular toxicity, respectively. UP446 was administered orally at dose levels of 800, 2000 and 5000 mg/kg to SpragueDawley rats and at 4 ascending dose levels (0, 250, 500 and 1000 mg/kg) to beagle dogs. No abnormal effects were observed on the cage side, open field, hand held, and sensori-motor observations suggestive of toxicity in respiratory, cardiovascular and central nervous (CNS) systems. Rectal temperatures were comparable for each treatment groups. Similarly, respiratory rate, tidal volume and minute volume were unaffected by any of the treatment groups. No UP446 related changes were observed on blood pressure, heart rate and electrocardiogram in beagle dogs at dose levels of 250, 500 and 1000 mg/kg. Some minor incidental, non-dose correlated changes were observed in the FOB assessment. These data suggest that UP446 has minimal or no pharmaco-toxicological effect on the respiratory, cardiovascular and central nervous systems.

  19. The effects of centrally injected arachidonic acid on respiratory system: Involvement of cyclooxygenase to thromboxane signaling pathway.

    PubMed

    Erkan, Leman Gizem; Guvenc, Gokcen; Altinbas, Burcin; Niaz, Nasir; Yalcin, Murat

    2016-05-01

    Arachidonic acid (AA) is a polyunsaturated fatty acid that is present in the phospholipids of the cell membranes of the body and is abundant in the brain. Exogenously administered AA has been shown to affect brain metabolism and to exhibit cardiovascular and neuroendocrine actions. However, little is known regarding its respiratory actions and/or central mechanism of its respiratory effects. Therefore, the present study was designed to investigate the possible effects of centrally injected AA on respiratory system and the mediation of the central cyclooxygenase (COX) to thromboxane A2 (TXA2) signaling pathway on AA-induced respiratory effects in anaesthetized rats. Intracerebroventricular (i.c.v.) administration of AA induced dose- and time-dependent increase in tidal volume, respiratory rates and respiratory minute ventilation and also caused an increase in partial oxygen pressure (pO2) and decrease in partial carbon dioxide pressure (pCO2) in male anaesthetized Spraque Dawley rats. I.c.v. pretreatment with ibuprofen, a non-selective COX inhibitor, completely blocked the hyperventilation and blood gases changes induced by AA. In addition, central pretreatment with different doses of furegrelate, a TXA2 synthesis inhibitor, also partially prevented AA-evoked hyperventilation and blood gases effects. These data explicitly show that centrally administered AA induces hyperventilation with increasing pO2 and decreasing pCO2 levels which are mediated by the activation of central COX to TXA2 signaling pathway.

  20. Novel avian coronavirus and fulminating disease in guinea fowl, France.

    PubMed

    Liais, Etienne; Croville, Guillaume; Mariette, Jérôme; Delverdier, Maxence; Lucas, Marie-Noëlle; Klopp, Christophe; Lluch, Jérôme; Donnadieu, Cécile; Guy, James S; Corrand, Léni; Ducatez, Mariette F; Guérin, Jean-Luc

    2014-01-01

    For decades, French guinea fowl have been affected by fulminating enteritis of unclear origin. By using metagenomics, we identified a novel avian gammacoronavirus associated with this disease that is distantly related to turkey coronaviruses. Fatal respiratory diseases in humans have recently been caused by coronaviruses of animal origin.

  1. Acupuncture Meridian of Traditional Chinese Medical Science: An Auxiliary Respiratory System.

    PubMed

    Zhao, Liang-Ju

    2015-08-01

    The acupuncture meridian system (AMS) is the key concept of Traditional Chinese Medical Science (TCMS). It is a natural network formed by the tissue space that connects human viscera and skin. In this article, a new hypothesis that the AMS is an auxiliary respiratory system is presented. The AMS collects the CO2 that is produced by tissue supersession and that cannot be excreted via blood circulation, and discharges the CO2 through the body's pores, thus preventing a pressure increase in the internal environment. Thus, local blood circulation will not be blocked, and the body will remain healthy. In addition to neuroregulation and humoral regulation, AMS regulation is an important method of physiological regulation. Furthermore, the pathological principle of the AMS, therapies of TCMS, and the excellent future of the AMS are discussed.

  2. Microfabricated Engineered Particle Systems for Respiratory Drug Delivery and Other Pharmaceutical Applications

    PubMed Central

    Garcia, Andres; Mack, Peter; Williams, Stuart; Fromen, Catherine; Shen, Tammy; Tully, Janet; Pillai, Jonathan; Kuehl, Philip; Napier, Mary; DeSimone, Joseph M.; Maynor, Benjamin W.

    2012-01-01

    Particle Replication in Non-Wetting Templates (PRINT®) is a platform particle drug delivery technology that coopts the precision and nanoscale spatial resolution inherently afforded by lithographic techniques derived from the microelectronics industry to produce precisely engineered particles. We describe the utility of PRINT technology as a strategy for formulation and delivery of small molecule and biologic therapeutics, highlighting previous studies where particle size, shape, and chemistry have been used to enhance systemic particle distribution properties. In addition, we introduce the application of PRINT technology towards respiratory drug delivery, a particular interest due to the pharmaceutical need for increased control over dry powder characteristics to improve drug delivery and therapeutic indices. To this end, we have produced dry powder particles with micro- and nanoscale geometric features and composed of small molecule and protein therapeutics. Aerosols generated from these particles show attractive properties for efficient pulmonary delivery and differential respiratory deposition characteristics based on particle geometry. This work highlights the advantages of adopting proven microfabrication techniques in achieving unprecedented control over particle geometric design for drug delivery. PMID:22518316

  3. Inhaled Pollutants: The Molecular Scene behind Respiratory and Systemic Diseases Associated with Ultrafine Particulate Matter

    PubMed Central

    Traboulsi, Hussein; Guerrina, Necola; Iu, Matthew; Maysinger, Dusica; Ariya, Parisa; Baglole, Carolyn J.

    2017-01-01

    Air pollution of anthropogenic origin is largely from the combustion of biomass (e.g., wood), fossil fuels (e.g., cars and trucks), incinerators, landfills, agricultural activities and tobacco smoke. Air pollution is a complex mixture that varies in space and time, and contains hundreds of compounds including volatile organic compounds (e.g., benzene), metals, sulphur and nitrogen oxides, ozone and particulate matter (PM). PM0.1 (ultrafine particles (UFP)), those particles with a diameter less than 100 nm (includes nanoparticles (NP)) are considered especially dangerous to human health and may contribute significantly to the development of numerous respiratory and cardiovascular diseases such as chronic obstructive pulmonary disease (COPD) and atherosclerosis. Some of the pathogenic mechanisms through which PM0.1 may contribute to chronic disease is their ability to induce inflammation, oxidative stress and cell death by molecular mechanisms that include transcription factors such as nuclear factor κB (NF-κB) and nuclear factor (erythroid-derived 2)-like 2 (Nrf2). Epigenetic mechanisms including non-coding RNA (ncRNA) may also contribute towards the development of chronic disease associated with exposure to PM0.1. This paper highlights emerging molecular concepts associated with inhalational exposure to PM0.1 and their ability to contribute to chronic respiratory and systemic disease. PMID:28125025

  4. [The compensatory and adaptive e reactions of the respiratory system as the diagnostic criteria for histological studies in forensic medicine].

    PubMed

    Os'minkin, V A; Os'minkin, S V

    2015-01-01

    The objective of the present study was to characterize the structural changes in the respiratory system equivalent to its compensatory and adaptive reactions in response to the action of various factors under the normal and extreme conditions for the assessment of the possibility of their further use for the purpose of diagnostics. The action of various factors on the tissues obtained from the human respiratory system for forensic medical examination was shown to cause combined histomorphological alterations that refelect a wide spectrum of protective, compensatory, and adaptive reactions. The range of potential morphological and functional changes in the respiratory system depends on the characteristics of endogenous and exogenous factors influencing the organism of the affected subjects. It is concluded that the use of the proposed approach to morphological diagnostics may be useful for the development of criteria for the evaluation of various variants of tanatogenesis with their objective confirmation by mathematical models.

  5. Respiratory Distress

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The University of Miami School of Medicine asked the Research Triangle Institute for assistance in improvising the negative pressure technique to relieve respiratory distress in infants. Marshall Space Flight Center and Johnson Space Center engineers adapted this idea to the lower-body negative-pressure system seals used during the Skylab missions. Some 20,000 babies succumb to respiratory distress in the U.S. each year, a condition in which lungs progressively lose their ability to oxygenate blood. Both positive and negative pressure techniques have been used - the first to force air into lungs, the second to keep infant's lungs expanded. Negative pressure around chest helps the baby expand his lungs and maintain proper volume of air. If doctors can keep the infant alive for four days, the missing substance in the lungs will usually form in sufficient quantity to permit normal breathing. The Skylab chamber and its leakproof seals were adapted for medical use.

  6. Epidemiology of avian influenza in agricultural and other man-made systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Over thousands of years, mankind has changed the natural ecosystems of birds by domestication and their influenza A viruses (IAVs) have reassorted and adapted to new systems and hosts. At high risk for introduction of IAVs from free-living aquatic birds are outdoor reared domestic poultry, especial...

  7. Avian host defense peptides.

    PubMed

    Cuperus, Tryntsje; Coorens, Maarten; van Dijk, Albert; Haagsman, Henk P

    2013-11-01

    Host defense peptides (HDPs) are important effector molecules of the innate immune system of vertebrates. These antimicrobial peptides are also present in invertebrates, plants and fungi. HDPs display broad-spectrum antimicrobial activities and fulfill an important role in the first line of defense of many organisms. It is becoming increasingly clear that in the animal kingdom the functions of HDPs are not confined to direct antimicrobial actions. Research in mammals has indicated that HDPs have many immunomodulatory functions and are also involved in other physiological processes ranging from development to wound healing. During the past five years our knowledge about avian HDPs has increased considerably. This review addresses our current knowledge on the evolution, regulation and biological functions of HDPs of birds.

  8. Impact of exacerbations on respiratory system impedance measured by a forced oscillation technique in COPD: a prospective observational study

    PubMed Central

    Kamada, Takahiro; Kaneko, Masahiro; Tomioka, Hiromi

    2017-01-01

    Background Forced oscillation technique (FOT) has been reported to be useful in the evaluation and management of obstructive lung disease, including COPD. To date, no data are available concerning long-term changes in respiratory system impedance measured by FOT. Additionally, although exacerbations have been reported to be associated with excessive lung function decline in COPD, the impact of exacerbations on the results of FOT has not been demonstrated. The aim of this study was to investigate the longitudinal changes in respiratory system impedance and the influence of exacerbations thereon. Methods Between March 2011 and March 2012, outpatients who attended Kobe City Medical Center West Hospital with a diagnosis of COPD were assessed for eligibility. Baseline patient characteristics (age, sex, body mass index, smoking history, current smoking status, COPD stage), lung function (post-bronchodilator forced expiratory volume in 1 second [FEV1]), blood tests (neutrophils and eosinophils), FOT, and COPD assessment test results were collected at enrollment. Lung function and FOT were examined every 6 months until March 2016. Annual changes in FEV1 and FOT parameters were obtained from the slope of the linear regression curve. The patients were divided into 2 groups based on exacerbation history. Results Fifty-one of 58 patients with COPD were enrolled in this study. The median follow-up period was 57 (52–59) months. Twenty-five (49%) patients experienced exacerbations. A significant annual decline in FEV1 and respiratory system impedance were shown. Additionally, annual changes in FEV1, respiratory system resistance at 5 Hz, respiratory system reactance at 5 Hz, and resonant frequency were greater in patients with exacerbations than in those without exacerbations. Conclusion Exacerbations of COPD lead not only to a decline in lung function but also to an increase in respiratory system impedance. PMID:28223791

  9. Comparison of visual biofeedback system with a guiding waveform and abdomen-chest motion self-control system for respiratory motion management.

    PubMed

    Nakajima, Yujiro; Kadoya, Noriyuki; Kanai, Takayuki; Ito, Kengo; Sato, Kiyokazu; Dobashi, Suguru; Yamamoto, Takaya; Ishikawa, Yojiro; Matsushita, Haruo; Takeda, Ken; Jingu, Keiichi

    2016-07-01

    Irregular breathing can influence the outcome of 4D computed tomography imaging and cause artifacts. Visual biofeedback systems associated with a patient-specific guiding waveform are known to reduce respiratory irregularities. In Japan, abdomen and chest motion self-control devices (Abches) (representing simpler visual coaching techniques without a guiding waveform) are used instead; however, no studies have compared these two systems to date. Here, we evaluate the effectiveness of respiratory coaching in reducing respiratory irregularities by comparing two respiratory management systems. We collected data from 11 healthy volunteers. Bar and wave models were used as visual biofeedback systems. Abches consisted of a respiratory indicator indicating the end of each expiration and inspiration motion. Respiratory variations were quantified as root mean squared error (RMSE) of displacement and period of breathing cycles. All coaching techniques improved respiratory variation, compared with free-breathing. Displacement RMSEs were 1.43 ± 0.84, 1.22 ± 1.13, 1.21 ± 0.86 and 0.98 ± 0.47 mm for free-breathing, Abches, bar model and wave model, respectively. Period RMSEs were 0.48 ± 0.42, 0.33 ± 0.31, 0.23 ± 0.18 and 0.17 ± 0.05 s for free-breathing, Abches, bar model and wave model, respectively. The average reduction in displacement and period RMSE compared with the wave model were 27% and 47%, respectively. For variation in both displacement and period, wave model was superior to the other techniques. Our results showed that visual biofeedback combined with a wave model could potentially provide clinical benefits in respiratory management, although all techniques were able to reduce respiratory irregularities.

  10. Systems-level comparison of host-responses elicited by avian H5N1 and seasonal H1N1 influenza viruses in primary human macrophages.

    PubMed

    Lee, Suki M Y; Gardy, Jennifer L; Cheung, C Y; Cheung, Timothy K W; Hui, Kenrie P Y; Ip, Nancy Y; Guan, Y; Hancock, Robert E W; Peiris, J S Malik

    2009-12-14

    Human disease caused by highly pathogenic avian influenza (HPAI) H5N1 can lead to a rapidly progressive viral pneumonia leading to acute respiratory distress syndrome. There is increasing evidence from clinical, animal models and in vitro data, which suggests a role for virus-induced cytokine dysregulation in contributing to the pathogenesis of human H5N1 disease. The key target cells for the virus in the lung are the alveolar epithelium and alveolar macrophages, and we have shown that, compared to seasonal human influenza viruses, equivalent infecting doses of H5N1 viruses markedly up-regulate pro-inflammatory cytokines in both primary cell types in vitro. Whether this H5N1-induced dysregulation of host responses is driven by qualitative (i.e activation of unique host pathways in response to H5N1) or quantitative differences between seasonal influenza viruses is unclear. Here we used microarrays to analyze and compare the gene expression profiles in primary human macrophages at 1, 3, and 6 h after infection with H5N1 virus or low-pathogenic seasonal influenza A (H1N1) virus. We found that host responses to both viruses are qualitatively similar with the activation of nearly identical biological processes and pathways. However, in comparison to seasonal H1N1 virus, H5N1 infection elicits a quantitatively stronger host inflammatory response including type I interferon (IFN) and tumor necrosis factor (TNF)-alpha genes. A network-based analysis suggests that the synergy between IFN-beta and TNF-alpha results in an enhanced and sustained IFN and pro-inflammatory cytokine response at the early stage of viral infection that may contribute to the viral pathogenesis and this is of relevance to the design of novel therapeutic strategies for H5N1 induced respiratory disease.

  11. Avian influenza virus.

    PubMed

    Lee, Chang-Won; Saif, Yehia M

    2009-07-01

    Avian influenza viruses do not typically replicate efficiently in humans, indicating direct transmission of avian influenza virus to humans is unlikely. However, since 1997, several cases of human infections with different subtypes (H5N1, H7N7, and H9N2) of avian influenza viruses have been identified and raised the pandemic potential of avian influenza virus in humans. Although circumstantial evidence of human to human transmission exists, the novel avian-origin influenza viruses isolated from humans lack the ability to transmit efficiently from person-to-person. However, the on-going human infection with avian-origin H5N1 viruses increases the likelihood of the generation of human-adapted avian influenza virus with pandemic potential. Thus, a better understanding of the biological and genetic basis of host restriction of influenza viruses is a critical factor in determining whether the introduction of a novel influenza virus into the human population will result in a pandemic. In this article, we review current knowledge of type A influenza virus in which all avian influenza viruses are categorized.

  12. BP8, a novel peptide from avian immune system, modulates B cell developments.

    PubMed

    Liu, Xiao-Dong; Zhou, Bin; Feng, Xiu-Li; Cao, Rui-Bing; Chen, Pu-Yan

    2014-12-01

    The bursa of Fabricius (BF) is the key humoral immune organ unique to birds, and is critical for early B-lymphocyte proliferation and differentiation. However, the molecular basis and mechanisms through which the BF regulates B cell development are not fully understood. In this study, we isolated and identified a new bursal peptide (BP8, AGHTKKAP) by RP-HPLC and MALDI-TOF-MS. BP8 promoted colony-forming pre-B formation, bound B cell precursor, regulated B cell development in vitro as well as in vivo, upstream of the EBF-E2A-Pax5 regulatory complex and increased immunoglobulin secretion. These data revealed a bursal-derived multifunctional factor BP8 as a novel biomaterial which is essential for the development of the immune system. This study elucidates further the mechanisms involved in humoral immune system and has implications in treating human diseases.

  13. Avian biology, the human influence on global avian influenza transmission, and performing surveillance in wild birds.

    PubMed

    Gibbs, Samantha E J

    2010-06-01

    This paper takes a closer look at three interrelated areas of study: avian host biology, the role of human activities in virus transmission, and the surveillance activities centered on avian influenza in wild birds. There are few ecosystems in which birds are not found. Correspondingly, avian influenza viruses are equally global in distribution, relying on competent avian hosts. The immune systems, annual cycles, feeding behaviors, and migration patterns of these hosts influence the ecology of the disease. Decreased biodiversity has also been linked to heightened disease transmission in several disease systems, and it is evident that active destruction and modification of wetland environments for human use is impacting avian populations drastically. Legal and illegal trade in wild birds present a significant risk for introduction and maintenance of exotic diseases. After the emergence of HPAI H5N1 in Hong Kong in 1996 and the ensuing geographic spread of outbreaks after 2003, both infected countries and those at risk of introduction began intensifying avian influenza surveillance efforts. Several techniques for sampling wild birds for influenza viruses have been applied. Benefits, problems, and biases exist for each method. The wild bird avian influenza surveillance programs taking place across the continents are now scaling back due to the rise of other spending priorities; hopefully the lessons learned from this work will be preserved and will inform future research and disease outbreak response priorities.

  14. Wearable interrupter module for home-based applications in a telemedical system dedicated to respiratory mechanics measurements.

    PubMed

    Jabłoński, Ireneusz

    2011-03-01

    The mobile interrupter module, dedicated to the enhanced interrupter (EIT) measurement of respiratory mechanics in a home environment and capable of cooperation with a telemedical system, is presented. Characterized by noninvasiveness and minimal requirements regarding patient cooperation, the EIT algorithm is especially suitable for newborns, preschool children, and patients suffering from respiratory muscle impairment. Furthermore, this device enables access to raw data--without initial preprocessing--in a fully flexible measurement protocol (which is not available in any commercial apparatus), and the EIT procedure improves insight (the number and precision of assessed parameters) into the physiological system with respect to the classical occlusive methods.

  15. On avian influenza epidemic models with time delay.

    PubMed

    Liu, Sanhong; Ruan, Shigui; Zhang, Xinan

    2015-12-01

    After the outbreak of the first avian influenza A virus (H5N1) in Hong Kong in 1997, another avian influenza A virus (H7N9) crossed the species barrier in mainland China in 2013 and 2014 and caused more than 400 human cases with a death rate of nearly 40%. In this paper, we take account of the incubation periods of avian influenza A virus and construct a bird-to-human transmission model with different time delays in the avian and human populations combining the survival probability of the infective avian and human populations at the latent time. By analyzing the dynamical behavior of the model, we obtain a threshold value for the prevalence of avian influenza and investigate local and global asymptotical stability of equilibria of the system.

  16. Avian response to tidal freshwater habitat creation by controlled reduced tide system

    NASA Astrophysics Data System (ADS)

    Beauchard, Olivier; Jacobs, Sander; Ysebaert, Tom; Meire, Patrick

    2013-10-01

    Human activities have caused extensive loss of estuarine wetlands, and the restoration of functional habitats remains a challenging task given several physical constraints in strongly embanked estuaries. In the Schelde estuary (Belgium), a new tidal marsh restoration technique, Controlled Reduced Tide system (CRT), is being implemented in the freshwater zone. A polder area of 8.2 ha was equipped with a CRT to test the system functionality. Among different ecological compartments that are studied for assessing the CRT restoration success, avifauna was monitored over three years. The tidal regime generated a habitat gradient typical of tidal freshwater wetlands along which the distributions of bird and ecological groups were studied. 103 bird species were recorded over the three years. In addition to many generalist bird species, several specialist species typical of the North Sea coast were present. Thirty-nine species of local and/or international conservation interest were encountered, emphasising the importance of this habitat for certain species. Species communities and ecological groups were strongly habitat specific and non-randomly organized across habitats. Spatiotemporal analyses highlighted a rapid habitat colonization, and a subsequent stable habitat community structure across seasons in spite of strong seasonal species turnovers. Hence, these findings advocate CRT implementation as a means to effectively compensate for wetland habitat loss.

  17. Procedures for identifying infectious prions after passage through the digestive system of an avian species.

    PubMed

    Fischer, Justin W; Nichols, Tracy A; Phillips, Gregory E; VerCauteren, Kurt C

    2013-11-06

    Infectious prion (PrP(Res)) material is likely the cause of fatal, neurodegenerative transmissible spongiform encephalopathy (TSE) diseases(1). Transmission of TSE diseases, such as chronic wasting disease (CWD), is presumed to be from animal to animal(2,3) as well as from environmental sources(4-6). Scavengers and carnivores have potential to translocate PrP(Res) material through consumption and excretion of CWD-contaminated carrion. Recent work has documented passage of PrP(Res) material through the digestive system of American crows (Corvus brachyrhynchos), a common North American scavenger(7). We describe procedures used to document passage of PrP(Res) material through American crows. Crows were gavaged with RML-strain mouse-adapted scrapie and their feces were collected 4 hr post gavage. Crow feces were then pooled and injected intraperitoneally into C57BL/6 mice. Mice were monitored daily until they expressed clinical signs of mouse scrapie and were thereafter euthanized. Asymptomatic mice were monitored until 365 days post inoculation. Western blot analysis was conducted to confirm disease status. Results revealed that prions remain infectious after traveling through the digestive system of crows and are present in the feces, causing disease in test mice.

  18. A system for respiratory motion detection using optical fibers embedded into textiles.

    PubMed

    D'Angelo, L T; Weber, S; Honda, Y; Thiel, T; Narbonneau, F; Luth, T C

    2008-01-01

    In this contribution, a first prototype for mobile respiratory motion detection using optical fibers embedded into textiles is presented. The developed system consists of a T-shirt with an integrated fiber sensor and a portable monitoring unit with a wireless communication link enabling the data analysis and visualization on a PC. A great effort is done worldwide to develop mobile solutions for health monitoring of vital signs for patients needing continuous medical care. Wearable, comfortable and smart textiles incorporating sensors are good approaches to solve this problem. In most of the cases, electrical sensors are integrated, showing significant limits such as for the monitoring of anaesthetized patients during Magnetic Resonance Imaging (MRI). OFSETH (Optical Fibre Embedded into technical Textile for Healthcare) uses optical sensor technologies to extend the current capabilities of medical technical textiles.

  19. The microbiota of the respiratory tract: gatekeeper to respiratory health.

    PubMed

    Man, Wing Ho; de Steenhuijsen Piters, Wouter A A; Bogaert, Debby

    2017-03-20

    The respiratory tract is a complex organ system that is responsible for the exchange of oxygen and carbon dioxide. The human respiratory tract spans from the nostrils to the lung alveoli and is inhabited by niche-specific communities of bacteria. The microbiota of the respiratory tract probably acts as a gatekeeper that provides resistance to colonization by respiratory pathogens. The respiratory microbiota might also be involved in the maturation and maintenance of homeostasis of respiratory physiology and immunity. The ecological and environmental factors that direct the development of microbial communities in the respiratory tract and how these communities affect respiratory health are the focus of current research. Concurrently, the functions of the microbiome of the upper and lower respiratory tract in the physiology of the human host are being studied in detail. In this Review, we will discuss the epidemiological, biological and functional evidence that support the physiological role of the respiratory microbiota in the maintenance of human health.

  20. Characterization of antigen-presenting cells from the porcine respiratory system.

    PubMed

    López-Robles, Guadalupe; Silva-Campa, Erika; Burgara-Estrella, Alexel; Hernández, Jesús

    2015-06-01

    Antigen-presenting cells (APCs) are strategically placed in all anatomic sites with high antigen exposure such as the respiratory system. The aim of this study was to evaluate phenotypic and functional properties of APCs from the lung (L-Cs), mediastinal lymph node (LN-Cs) and bronchoalveolar lavage cells (BAL-Cs). The APCs were first analyzed based on forward scatter and side scatter profiles and the selection of MHC-II(high)CD172a(+) cells (referred to as APCs); then the expression of CD1a, CD163, CD206, CD16 and CD11R3 was evaluated in the APCs. The results showed that CD1a, CD163 and CD206 were differentially expressed among L-Cs, LN-Cs and BAL-Cs, suggesting the phenotype MHC-II(high)CD172a(+)CD1a(low/-)CD163(low)CD206(-) for L-Cs and MHC-II(high)CD172a(+)CD1a(+)CD163(low/-)CD206(+) for LN-Cs. BAL-Cs were MHC-II(high)CD172a(+)CD1a(-)CD163(high)CD206(+/-). The functional characteristics of L-Cs and LN-Cs were different from those of BAL-Cs, confirming that L-Cs and LN-Cs resemble specialized APCs. In conclusion, we present the characterization of APCs from L-Cs, LN-Cs and BAL-Cs of the porcine respiratory system.

  1. Bacterial Respiratory Tract Infections are Promoted by Systemic Hyperglycemia after Severe Burn Injury in Pediatric Patients

    PubMed Central

    Kraft, Robert; Herndon, David N; Mlcak, Ronald P; Finnerty, Celeste C; Cox, Robert A; Williams, Felicia N; Jeschke, Marc G

    2014-01-01

    Background Burn injuries are associated with hyperglycemia leading to increased incidence of infections with pneumonia being one of the most prominent and adverse complication. Recently, various studies in critically ill patients indicated that increased pulmonary glucose levels with airway/blood glucose threshold over 150 mg/dl lead to an overwhelming growth of bacteria in the broncho-pulmonary system, subsequently resulting in an increased risk of pulmonary infections. The aim of the present study was to determine whether a similar cutoff value exists for severely burned pediatric patients. Methods One-hundred six severely burned pediatric patients were enrolled in the study. Patients were divided in two groups: high (H) defined as daily average glucose levels >75% of LOS >150 mg/dl), and low (L) with daily average glucose levels >75% of the LOS <150 mg/dl). Incidences of pneumonia, atelectasis, and acute respiratory distress syndrome (ARDS) were assessed. Incidence of infections, sepsis, and respiratory parameters were recorded. Blood was analyzed for glucose and insulin levels. Statistical analysis was performed using Student’s t-test and chi-square test. Significance was set at p<0.05. Results Patient groups were similar in demographics and injury characteristics. Pneumonia in patients on the mechanical ventilation (L: 21% H: 32%) and off mechanical ventilation (L: 5% H: 15%), as well as ARDS were significantly higher in the high group (L: 3% H: 19%), p<0.05, while atelectasis was not different. Patients in the high group required significantly longer ventilation compared to low patients (p<0.05). Furthermore, incidence of infection and sepsis were significantly higher in the high group, p<0.05. Conclusion Our results indicate that systemic glucose levels over 150 mg/dl are associated with a higher incidence of pneumonia confirming the previous studies in critically ill patients. PMID:24074819

  2. The development of avian enteric nervous system: distribution of artemin immunoreactivity.

    PubMed

    Maruccio, Lucianna; Lucini, Carla; Russo, Finizia; Antonucci, Rosanna; Castaldo, Luciana

    2008-01-01

    Among the factors that control neural crest cell precursors within the enteric nervous system, the ligands of the glial cell line-derived neurotrophic factor family (GFL) seem to be the most influential. Artemin, a member of the GFLs, was previously described only in the oesophagus and stomach of mouse embryos. In this study, the presence and distribution of artemin is reported in duck embryos and adults. Artemin immunoreactivity was apparent in the intestinal tract at embryonic day 7 (d7), firstly in the myenteric plexus and then in the submucous plexus. Later, artemin immunoreactive nerve fibres were also seen in the longitudinal muscle plexus, the circular muscle plexus, the plexus of the muscularis mucosa and in the mucosal plexus. Furthermore, at d7, weak labeling of artemin was detected in neurons and glial cells in the oesophagus, gastric region and duodenum. Subsequently, artemin was also detected in all other intestinal segments. Moreover, during development of the gut in the domestic duck, artemin immunoreactivity decreased in neuronal cell bodies, whilst it increased in neuronal fibres and glial cells. These findings suggest an involvement of artemin in the development and biology of the gut of the domestic duck.

  3. Comparative evaluation of susceptibility to motion artifact in different wearable systems for monitoring respiratory rate.

    PubMed

    Lanatà, Antonio; Scilingo, Enzo Pasquale; Nardini, Elena; Loriga, Giannicola; Paradiso, Rita; De-Rossi, Danilo

    2010-03-01

    The purpose of this study is to comparatively evaluate the performance of different wearable systems based on indirect breathing monitoring in terms of susceptibility to motion artifacts. These performances are compared with direct respiratory measurements using a spirometer, which is accurate, reliable, and less sensitive to movement artifacts, but cannot be integrated into truly wearable form. Experiments were carried out on four indirect methods implemented into wearable systems, inductive plethysmography, impedance plethysmography, piezoresistive pneumography, and piezoelectric pneumography, to ascertain the performance of each of them in terms of noise due to movement artifacts, as well as to study the effects of different movements or gestures during each test. A group of volunteers was asked to wear all of the breath monitoring systems simultaneously along with the face mask of the spirometer while carrying out four physical exercises in a gym under controlled conditions. Data are analyzed in the time and frequency domain to estimate the frequency respiration from each wearable system and compare it with those of the spirometer. Results confirmed that all the wearable systems are somehow affected by movement artifacts, but statistical investigation showed that for most of the physical exercises, three out of four, piezoelectric pneumography provided best performance in terms of robustness and reduced susceptibility to movement artifacts.

  4. [Respiratory viral diagnosis by using an automated system of multiplex PCR (FilmArray) compared to conventional methods].

    PubMed

    Marcone, Débora N; Carballal, Guadalupe; Ricarte, Carmen; Echavarria, Marcela

    2015-01-01

    Acute respiratory infections, which are commonly caused by viruses, are an important cause of morbidity and mortality in children. In Argentina, national surveillance programs for the detection of respiratory viruses are usually performed by using immunofluorescence (IF) assays, although it is well known that molecular methods are more sensitive. An automated multiplex PCR device, the FilmArray-Respiratory Panel (FilmArray-RP), can detect 17 viral and 3 bacterial pathogens in a closed system that requires only 5 min of hands-on time and 1h of instrumentation time. A total of 315 respiratory samples from children under 6 years of age suffering from acute respiratory infections, were studied by IF for 8 respiratory viruses and by RT-PCR for rhinoviruses. Later, these samples were tested by the FilmArray-RP. The positivity frequency obtained for the 9 viruses tested was 75% by IF/RT-PCR and 92% by the FilmArray-RP. The positive and negative percent agreement between both methods was 70.5% whereas the negative percent agreement was 99.6% (95% confidence interval:65.5-75.1 and 99.2-99.8 respectively). The FilmArray-RP allowed a higher positive diagnosis (97%) and detected other viruses such as coronavirus NL63, 229E, OC43, HKU1 (10%) and bocavirus (18%). In addition, this method identified multiple coinfections (39%) with 2, 3, 4 and up to 5 different viruses. At present, IF is still the most frequently used method in most Latin American countries for respiratory viruses diagnosis due to its low cost, its capability to process a high number of samples simultaneously and the fast determination of results for the most frequent viruses, which are available within 5h. However, the coming incorporation of molecular methods in routine procedures will significantly increase the diagnostic yield of these infections.

  5. Receptor characterization and susceptibility of cotton rats to avian and 2009 pandemic influenza virus strains.

    PubMed

    Blanco, Jorge C G; Pletneva, Lioubov M; Wan, Hongquan; Araya, Yonas; Angel, Matthew; Oue, Raymonde O; Sutton, Troy C; Perez, Daniel R

    2013-02-01

    Animal influenza viruses (AIVs) are a major threat to human health and the source of pandemic influenza. A reliable small-mammal model to study the pathogenesis of infection and for testing vaccines and therapeutics against multiple strains of influenza virus is highly desirable. We show that cotton rats (Sigmodon hispidus) are susceptible to avian and swine influenza viruses. Cotton rats express α2,3-linked sialic acid (SA) and α2,6-linked SA residues in the trachea and α2,6-linked SA residues in the lung parenchyma. Prototypic avian influenza viruses (H3N2, H9N2, and H5N1) and swine-origin 2009 pandemic H1N1 viruses replicated in the nose and in the respiratory tract of cotton rats without prior adaptation and produced strong lung pathology that was characterized by early lung neutrophilia, followed by subsequent pneumonia. Consistent with other natural and animal models of influenza, only the H5N1 virus was lethal for cotton rats. More importantly, we show that the different avian and pandemic H1N1 strains tested are strong activators of the type I interferon (IFN)-inducible MX-1 gene both locally and systemically. Our data indicate that the cotton rat is a suitable small-mammal model to study the infection of animal influenza viruses and for validation of vaccines and therapeutics against these viruses.

  6. The effect of centrally injected CDP-choline on respiratory system; involvement of phospholipase to thromboxane signaling pathway.

    PubMed

    Topuz, Bora B; Altinbas, Burcin; Yilmaz, Mustafa S; Saha, Sikha; Batten, Trevor F; Savci, Vahide; Yalcin, Murat

    2014-05-01

    CDP-choline is an endogenous metabolite in phosphatidylcholine biosynthesis. Exogenous administration of CDP-choline has been shown to affect brain metabolism and to exhibit cardiovascular, neuroendocrine neuroprotective actions. On the other hand, little is known regarding its respiratory actions and/or central mechanism of its respiratory effect. Therefore the current study was designed to investigate the possible effects of centrally injected CDP-choline on respiratory system and the mediation of the central cholinergic receptors and phospholipase to thromboxane signaling pathway on CDP-choline-induced respiratory effects in anaesthetized rats. Intracerebroventricularly (i.c.v.) administration of CDP-choline induced dose- and time-dependent increased respiratory rates, tidal volume and minute ventilation of male anaesthetized Spraque Dawley rats. İ.c.v. pretreatment with atropine failed to alter the hyperventilation responses to CDP-choline whereas mecamylamine, cholinergic nicotinic receptor antagonist, mepacrine, phospholipase A2 inhibitor, and neomycin phospholipase C inhibitor, blocked completely the hyperventilation induced by CDP-choline. In addition, central pretreatment with furegrelate, thromboxane A2 synthesis inhibitor, also partially blocked CDP-choline-evoked hyperventilation effects. These data show that centrally administered CDP-choline induces hyperventilation which is mediated by activation of central nicotinic receptors and phospholipase to thromboxane signaling pathway.

  7. Influence of pneumoperitoneum and postural change on the cardiovascular and respiratory systems in dogs.

    PubMed

    Park, Young Tae; Okano, Shozo

    2015-10-01

    We investigated the influence of pneumoperitoneum#(PP) and postural change under inhalation anesthesia with isoflurane, which is routinely used in dogs, on the cardiovascular and respiratory systems. As test animals, 6 adult beagles were used. To induce anesthesia, atropine, butorphanol and propofol were intravenously injected. Anesthesia was maintained with 1.3 MAC (1.7%) isoflurane. The following were the experiment conditions: I:E ratio, 1:1.9; tidal air exchange, 20 ml/kg; and ventilation frequency, 14 times/min. Respiration was regulated so that the PaCO2 was approximately 35 to 40 mmHg before the start of the experiment. PP with CO2 (intraperitoneal pressure 15 mmHg) and a postural change (15°C) was performed during the experiment. As parameters of circulatory kinetics, heart rate (HR), mean aortic pressure (MAP), mean pulmonary arterial pressure (MPAP), central venous pressure (CVP), femoral venous pressure (FVP) and cardiac output (CO) were measured. As parameters of respiratory kinetics, airway pressure (PAW) and blood gas (BG) were measured. There were significant increases in HR, MAP, MPAP, CVP, FVP, CO, PAW and PaCO2 after PP in the horizontal position. There were significant increases in CVP, FVP, PAW and PaCO2 after PP in the Trendelenburg position. There were significant increases in the MPAP, CVP, FVP, PAW and PaCO2 after PP in the inverse Trendelenburg position. There was a significant difference in FVP after PP between the Trendelenburg position and inverse Trendelenburg position. The results of this experiment suggest that appropriate anesthesia control, such as changing the ventilation conditions after PP, is required for laparoscopic surgery under inhalation anesthesia with isoflurane.

  8. [Inhaled treatments: Choice of devices, systemic absorption of inhaled drugs and bitter taste receptors in the respiratory tract].

    PubMed

    Benattia, A; Cavaillon, P; Gachelin, E; Devillier, P; Vecellio, L; Williams, G; Dubus, J-C

    2015-10-01

    Inhaled drugs are now routinely prescribed in daily medical practice. Recent topics about these treatments have been developed during the fourth annual meeting of the Groupe de travail aérosolthérapie (GAT) of the French-speaking respiratory society (Société de pneumologie de langue française). This article focuses mainly upon the choice of devices, systemic absorption of inhaled drugs and bitter taste receptors in the respiratory tract, a potential new target for drug development.

  9. [Changes in functional organization of the respiratory system among residents of West Siberia in the winter season].

    PubMed

    Shishkin, G S; Ustiuzhaninova, N V; Gul'tiaeva, V V

    2014-01-01

    The study examines respiratory parameters in healthy young males from Western Siberia. The correlations between the parameters are analyzed and the functional structure of the respiratory system in the summer and in the winter is identified. It was discovered that different regulatory programs operate depending on the temperature of inhaled air. The study shows that the changes in the oxygen request of the body in the summer are achieved through the changes in the volume of pulmonary ventilation ("ventilation" or "summer program"). In the winter, when maintaining the level of energy processes in the body is in conflict with maintaining thermal homeostasis in the respiratory regions of the lungs, pulmonary ventilation becomes limited and the number of functioning lung units is reduced. At the same time, for providing compensation, lung diffusion capacity increases ("diffusion" or "winter program"). This means that the functioning of the apparatus of external respiration is optimized in the winter.

  10. Research on curative effect of traditional Chinese medicine treating low-grade fever of children caused by respiratory system infection.

    PubMed

    Li, Xiangyun

    2015-07-01

    This study aims to explore the curative effect of traditional Chinese medicine treating low-grade fever of children caused by respiratory system infection. Sixty children who suffered low-grade fever caused by respiratory system infection were selected and divided into treatment group and control group randomly, each with 30 cases. Control group was treated with conventional methods including oxygen uptake, nebulization and anti-infection, etc, while treatment group was given boil-free granules of traditional Chinese medicine besides the treatment which control group received. Then clinical curative effect of two groups was compared. Results showed that 28 cases (93.3%) were cured in treatment group; while 21 cases (70.0%) were cured in control group. Compared with control group, the treatment group showed up better treatment efficiency and the difference between groups was of statistical significance (P<0.05). Comparison of results of two groups suggested that, traditional Chinese medicine granules has satisfactory curative effect in the treatment of low-grade fever of children caused by respiratory system infection; characterized by short treatment cycle and effective treatment effect, Chinese medicine granules in the combination with oxygen atomization inhalation is proved to be able to efficiently remit symptoms such as coughing, gasp and labored breathing, with outstanding curative effect in the treatment of low-grade fever of children caused by respiratory system infection, thus it is worthy of popularization and application clinically.

  11. Respiratory papillomas

    PubMed Central

    Alagusundaramoorthy, Sayee Sundar; Agrawal, Abhinav

    2016-01-01

    Papillomas are known to occur in the lower respiratory tract. They are however, rare compared to their occurrence in the upper respiratory tract. These are generally exophytic tumors in the more proximal upper airways however cases with more distal location with an inverted growth pattern have also been described in the literature. These can be solitary or multiple and multifocality associated with multiple papillomas in the upper respiratory/aerodigestive tract. The four major types of respiratory papillomas are (1) Recurrent respiratory papillomas, (2) solitary squamous papillomas, (3) solitary glandular papillomas, (4) mixed papillomas. We review the incidence, etiopathology, diagnosis, and possible treatment modalities and algorithms for these respiratory papillomas. PMID:27625447

  12. [Quality assurance of respiratory-gated stereotactic body radiation therapy in lung using real-time position management system].

    PubMed

    Nakaguchi, Yuji; Araki, Fujio; Kouno, Tomohiro; Maruyama, Masato

    2012-01-01

    In this study, we investigated comprehensive quality assurance (QA) for respiratory-gated stereotactic body radiation therapy (SBRT) in the lungs using a real-time position management system (RPM). By using the phantom study, we evaluated dose liberality and reproducibility, and dose distributions for low monitor unite (MU), and also checked the absorbed dose at isocenter and dose profiles for the respiratory-gated exposure using RPM. Furthermore, we evaluated isocenter dose and dose distributions for respiratory-gated SBRT plans in the lungs using RPM. The maximum errors for the dose liberality were 4% for 2 MU, 1% for 4-10 MU, and 0.5% for 15 MU and 20 MU. The dose reproducibility was 2% for 1 MU and within 0.1% for 5 MU or greater. The accuracy for dose distributions was within 2% for 2 MU or greater. The dose error along a central axis for respiratory cycles of 2, 4, and 6 sec was within 1%. As for geometric accuracy, 90% and 50% isodose areas for the respiratory-gated exposure became almost 1 mm and 2 mm larger than without gating, respectively. For clinical lung-SBRT plans, the point dose at isocenter agreed within 2.1% with treatment planning system (TPS). And the pass rates of all plans for TPS were more than 96% in the gamma analysis (3 mm/3%). The geometrical accuracy and the dose accuracy of TPS calculation algorithm are more important for the dose evaluation at penumbra region for respiratory-gated SBRT in lung using RPM.

  13. Low-Power Wearable Systems for Continuous Monitoring of Environment and Health for Chronic Respiratory Disease.

    PubMed

    Dieffenderfer, James; Goodell, Henry; Mills, Steven; McKnight, Michael; Yao, Shanshan; Lin, Feiyan; Beppler, Eric; Bent, Brinnae; Lee, Bongmook; Misra, Veena; Zhu, Yong; Oralkan, Omer; Strohmaier, Jason; Muth, John; Peden, David; Bozkurt, Alper

    2016-09-01

    We present our efforts toward enabling a wearable sensor system that allows for the correlation of individual environmental exposures with physiologic and subsequent adverse health responses. This system will permit a better understanding of the impact of increased ozone levels and other pollutants on chronic asthma conditions. We discuss the inefficiency of existing commercial off-the-shelf components to achieve continuous monitoring and our system-level and nano-enabled efforts toward improving the wearability and power consumption. Our system consists of a wristband, a chest patch, and a handheld spirometer. We describe our preliminary efforts to achieve a submilliwatt system ultimately powered by the energy harvested from thermal radiation and motion of the body with the primary contributions being an ultralow-power ozone sensor, an volatile organic compounds sensor, spirometer, and the integration of these and other sensors in a multimodal sensing platform. The measured environmental parameters include ambient ozone concentration, temperature, and relative humidity. Our array of sensors also assesses heart rate via photoplethysmography and electrocardiography, respiratory rate via photoplethysmography, skin impedance, three-axis acceleration, wheezing via a microphone, and expiratory airflow. The sensors on the wristband, chest patch, and spirometer consume 0.83, 0.96, and 0.01 mW, respectively. The data from each sensor are continually streamed to a peripheral data aggregation device and are subsequently transferred to a dedicated server for cloud storage. Future work includes reducing the power consumption of the system-on-chip including radio to reduce the entirety of each described system in the submilliwatt range.

  14. Cough detection through mechanomyographic signal in synchronized respiratory electrical stimulation systems.

    PubMed

    Costa, Taisa D; Nogueira-Neto, Guilherme N; Nohama, Percy

    2015-08-01

    Synchronization of transcutaneous functional electrical stimulation (TFES) with the spontaneous inspiration and expiration phases is a new approach for respiratory rehabilitation. One of the requirements for proper operation is the identification of cough events to automatically change the stimulation parameters in order to increase muscle strength during the cough. The aim of this work is to assess the viability in detection of cough events with a mechanomyographic (MMG) sensor on the abdominal region, and to evaluate if it can be used simultaneously with the synchronized TFES system. An MMG sensor was placed in contact with skin lined with the last ribs, above the rectus abdominis muscle and the linea alba. Two tests were accomplished which included quiet breathing, speaking and coughing episodes. The developed system efficiently distinguishes quiet breathing and coughing signals, but speaking is still confused with coughing episodes. The MMG sensor suffered detectable amplitude changes mainly during the forced expiration phase of the cough, but it could also detect the compression phase at lower amplitude. Therefore, the MMG system can be used for cough detection in this application.

  15. Mutations during the adaptation of H9N2 avian influenza virus to the respiratory epithelium of pigs enhance the sialic acid binding activity and the virulence in mice.

    PubMed

    Yang, W; Punyadarsaniya, D; Lambertz, R L O; Lee, D C C; Liang, C H; Höper, D; Leist, S R; Hernández-Cáceres, A; Stech, J; Beer, M; Wu, C Y; Wong, C H; Schughart, K; Meng, F; Herrler, G

    2017-02-01

    The natural reservoir for influenza viruses is waterfowl from where they succeeded to cross the barrier to different mammalian species. We analyzed the adaptation of avian influenza viruses to a mammalian host by passaging an H9N2 strain three times in differentiated swine airway epithelial cells. Using precision-cut slices from the porcine lung to passage the parental virus, isolates from each of the three passages (P1-P3) were characterized by assessing growth curves and ciliostatic effects. The only difference noted was an increased growth kinetics of the P3 virus. Sequence analysis revealed four mutations: one each in the PB2 and NS1, and two in the HA protein. The HA mutations, A190V and T212I, were characterized by generating recombinant viruses containing either one or both amino acid exchanges. Whereas the parental virus recognized α2,3-linked sialic acids preferentially, the HA190 mutant bound to a broad spectrum of glycans with α2,6/8/9-linked sialic acids. The HA212 mutant alone differed only slightly from the parental virus; however, the combination of both mutations (HA190+HA212) increased the binding affinity to those glycans recognized by the HA190 mutant. Remarkably, only the HA double mutant showed a significantly increased pathogenicity in mice. By contrast, none of those mutations affected the ciliary activity of the epithelial cells which is characteristic for virulent swine influenza viruses. Taken together, our results indicate that shifts in the HA receptor affinity are just an early adaptation step of avian H9N2 strains; further mutational changes may be required to become virulent for pigs.

  16. Avian Influenza A Virus Infections in Humans

    MedlinePlus

    ... this? Submit Button Past Newsletters Avian Influenza A Virus Infections in Humans Language: English Español Recommend ... with Avian Influenza A Viruses Avian Influenza A Virus Infections in Humans Although avian influenza A viruses ...

  17. Respiratory Failure

    MedlinePlus

    Respiratory failure happens when not enough oxygen passes from your lungs into your blood. Your body's organs, ... brain, need oxygen-rich blood to work well. Respiratory failure also can happen if your lungs can' ...

  18. Avian Influenza in Birds

    MedlinePlus

    ... National Wildlife Health Center website . Avian Influenza in Poultry (Domesticated Birds) Domesticated birds (chickens, turkeys, etc.) may ... direct contact with infected waterfowl or other infected poultry, or through contact with surfaces that have been ...

  19. Avian Fact Sheet

    SciTech Connect

    NWCC Wildlife Work Group

    2004-12-01

    OAK-B135 After conducting four national research meetings, producing a document guiding research: Metrics and Methods for Determining or Monitoring Potential Impacts on Birds at Existing and Proposed Wind Energy Sites, 1999, and another paper, Avian Collisions with Wind Turbines: A Summary of Existing Studies and Comparisons to Other Sources of Avian Collision Mortality in the United States, 2001, the subcommittee recognized a need to summarize in a short fact sheet what is known about avian-wind interaction and what questions remain. This fact sheet attempts to summarize in lay terms the result of extensive discussion about avian-wind interaction on land. This fact sheet does not address research conducted on offshore development. This fact sheet is not intended as a conclusion on the subject; rather, it is a summary as of Fall/Winter 2002.

  20. BreathSens: A Continuous On-Bed Respiratory Monitoring System With Torso Localization Using an Unobtrusive Pressure Sensing Array.

    PubMed

    Liu, Jason J; Huang, Ming-Chun; Xu, Wenyao; Zhang, Xiaoyi; Stevens, Luke; Alshurafa, Nabil; Sarrafzadeh, Majid

    2015-09-01

    The ability to continuously monitor respiration rates of patients in homecare or in clinics is an important goal. Past research showed that monitoring patient breathing can lower the associated mortality rates for long-term bedridden patients. Nowadays, in-bed sensors consisting of pressure sensitive arrays are unobtrusive and are suitable for deployment in a wide range of settings. Such systems aim to extract respiratory signals from time-series pressure sequences. However, variance of movements, such as unpredictable extremities activities, affect the quality of the extracted respiratory signals. BreathSens, a high-density pressure sensing system made of e-Textile, profiles the underbody pressure distribution and localizes torso area based on the high-resolution pressure images. With a robust bodyparts localization algorithm, respiratory signals extracted from the localized torso area are insensitive to arbitrary extremities movements. In a study of 12 subjects, BreathSens demonstrated its respiratory monitoring capability with variations of sleep postures, locations, and commonly tilted clinical bed conditions.

  1. Effects of Components of PM2.5 Collected in Japan on the Respiratory and Immune Systems.

    PubMed

    Honda, Akiko; Fukushima, Wataru; Oishi, Mizuki; Tsuji, Kenshi; Sawahara, Takahiro; Hayashi, Tomohiro; Kudo, Hitomi; Kashima, Yuji; Takahashi, Katsuyuki; Sasaki, Hideki; Ueda, Kayo; Takano, Hirohisa

    2017-01-01

    Epidemiologic studies have reported that particulate matter with aerodynamic diameters ≤2.5 μm (PM2.5) affect respiratory diseases, including asthma. The components and/or factors of PM2.5 that contribute to the exacerbation of asthma have not been identified. We investigated the effects of extracts of PM2.5 collected in Japan on the respiratory and immune systems. PM2.5 was collected from an industrial area and an urban area in December 2013. Airway epithelial cells and immune cells were exposed to aqueous or organic extracts of PM2.5. Exposure to extracts from both areas, especially to organic extracts rather than aqueous extracts, caused a pro-inflammatory response via interleukin (IL) 6 production from airway epithelial cells, and it induced the maturation/activation of bone marrow-derived antigen-presenting cells via dendritic and epithelial cell (DEC) 205 and cluster of differentiation (CD) 86 expression and proportional changes in the constitution of the splenocytes. The extracts collected from the industrial area tended to show greater effects than those from the urban area. These results suggest that organic components of PM2.5 affect the respiratory and immune systems. These effects can differ by the collection areas. In addition, IL-6, DEC205, and CD86 can be predictive biomarkers for the respiratory and immune effects of ambient PM2.5.

  2. Transmissibility of the monkeypox virus clades via respiratory transmission: investigation using the prairie dog-monkeypox virus challenge system.

    PubMed

    Hutson, Christina L; Gallardo-Romero, Nadia; Carroll, Darin S; Clemmons, Cody; Salzer, Johanna S; Nagy, Tamas; Hughes, Christine M; Olson, Victoria A; Karem, Kevin L; Damon, Inger K

    2013-01-01

    Monkeypox virus (MPXV) is endemic within Africa where it sporadically is reported to cause outbreaks of human disease. In 2003, an outbreak of human MPXV occurred in the US after the importation of infected African rodents. Since the eradication of smallpox (caused by an orthopoxvirus (OPXV) related to MPXV) and cessation of routine smallpox vaccination (with the live OPXV vaccinia), there is an increasing population of people susceptible to OPXV diseases. Previous studies have shown that the prairie dog MPXV model is a functional animal model for the study of systemic human OPXV illness. Studies with this model have demonstrated that infected animals are able to transmit the virus to naive animals through multiple routes of exposure causing subsequent infection, but were not able to prove that infected animals could transmit the virus exclusively via the respiratory route. Herein we used the model system to evaluate the hypothesis that the Congo Basin clade of MPXV is more easily transmitted, via respiratory route, than the West African clade. Using a small number of test animals, we show that transmission of viruses from each of the MPXV clade was minimal via respiratory transmission. However, transmissibility of the Congo Basin clade was slightly greater than West African MXPV clade (16.7% and 0% respectively). Based on these findings, respiratory transmission appears to be less efficient than those of previous studies assessing contact as a mechanism of transmission within the prairie dog MPXV animal model.

  3. Influenza A and B Virus Attachment to Respiratory Tract in Marine Mammals

    PubMed Central

    van Riel, Debby; van de Bildt, Marco W.G; Osterhaus, Albert; Kuiken, Thijs

    2012-01-01

    Patterns of virus attachment to the respiratory tract of 4 marine mammal species were determined for avian and human influenza viruses. Attachment of avian influenza A viruses (H4N5) and (H7N7) and human influenza B viruses to trachea and bronchi of harbor seals is consistent with reported influenza outbreaks in this species. PMID:22516350

  4. Porcine reproductive and respiratory syndrome virus (PRRSV): pathogenesis and interaction with the immune System

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This review addresses important issues of porcine reproductive and respiratory syndrome virus (PRRSV) infection, immunity, pathogenesis and control. Worldwide PRRS is the most economically important infectious disease of pigs. We highlight the latest information on viral genome structure, pathogenic...

  5. Efficacy of a Low-Cost Bubble CPAP System in Treatment of Respiratory Distress in a Neonatal Ward in Malawi

    PubMed Central

    Kawaza, Kondwani; Machen, Heather E.; Brown, Jocelyn; Mwanza, Zondiwe; Iniguez, Suzanne; Gest, Al; Smith, E. O'Brian; Oden, Maria; Richards-Kortum, Rebecca R.; Molyneux, Elizabeth

    2014-01-01

    Background Respiratory failure is a leading cause of neonatal mortality in the developing world. Bubble continuous positive airway pressure (bCPAP) is a safe, effective intervention for infants with respiratory distress and is widely used in developed countries. Because of its high cost, bCPAP is not widely utilized in low-resource settings. We evaluated the performance of a new bCPAP system to treat severe respiratory distress in a low resource setting, comparing it to nasal oxygen therapy, the current standard of care. Methods We conducted a non-randomized convenience sample study to test the efficacy of a low-cost bCPAP system treating newborns with severe respiratory distress in the neonatal ward of Queen Elizabeth Central Hospital, in Blantyre, Malawi. Neonates weighing >1,000 g and presenting with severe respiratory distress who fulfilled inclusion criteria received nasal bCPAP if a device was available; if not, they received standard care. Clinical assessments were made during treatment and outcomes compared for the two groups. Findings 87 neonates (62 bCPAP, 25 controls) were recruited. Survival rate for neonates receiving bCPAP was 71.0% (44/62) compared with 44.0% (11/25) for controls. 65.5% (19/29) of very low birth weight neonates receiving bCPAP survived to discharge compared to 15.4% (1/13) of controls. 64.6% (31/48) of neonates with respiratory distress syndrome (RDS) receiving bCPAP survived to discharge, compared to 23.5% (4/17) of controls. 61.5% (16/26) of neonates with sepsis receiving bCPAP survived to discharge, while none of the seven neonates with sepsis in the control group survived. Interpretation Use of a low-cost bCPAP system to treat neonatal respiratory distress resulted in 27% absolute improvement in survival. The beneficial effect was greater for neonates with very low birth weight, RDS, or sepsis. Implementing appropriate bCPAP devices could reduce neonatal mortality in developing countries. PMID:24489715

  6. Climate Change and Respiratory Infections.

    PubMed

    Mirsaeidi, Mehdi; Motahari, Hooman; Taghizadeh Khamesi, Mojdeh; Sharifi, Arash; Campos, Michael; Schraufnagel, Dean E

    2016-08-01

    The rate of global warming has accelerated over the past 50 years. Increasing surface temperature is melting glaciers and raising the sea level. More flooding, droughts, hurricanes, and heat waves are being reported. Accelerated changes in climate are already affecting human health, in part by altering the epidemiology of climate-sensitive pathogens. In particular, climate change may alter the incidence and severity of respiratory infections by affecting vectors and host immune responses. Certain respiratory infections, such as avian influenza and coccidioidomycosis, are occurring in locations previously unaffected, apparently because of global warming. Young children and older adults appear to be particularly vulnerable to rapid fluctuations in ambient temperature. For example, an increase in the incidence in childhood pneumonia in Australia has been associated with sharp temperature drops from one day to the next. Extreme weather events, such as heat waves, floods, major storms, drought, and wildfires, are also believed to change the incidence of respiratory infections. An outbreak of aspergillosis among Japanese survivors of the 2011 tsunami is one such well-documented example. Changes in temperature, precipitation, relative humidity, and air pollution influence viral activity and transmission. For example, in early 2000, an outbreak of Hantavirus respiratory disease was linked to a local increase in the rodent population, which in turn was attributed to a two- to threefold increase in rainfall before the outbreak. Climate-sensitive respiratory pathogens present challenges to respiratory health that may be far greater in the foreseeable future.

  7. The human respiratory gate

    NASA Technical Reports Server (NTRS)

    Eckberg, Dwain L.

    2003-01-01

    Respiratory activity phasically alters membrane potentials of preganglionic vagal and sympathetic motoneurones and continuously modulates their responsiveness to stimulatory inputs. The most obvious manifestation of this 'respiratory gating' is respiratory sinus arrhythmia, the rhythmic fluctuations of electrocardiographic R-R intervals observed in healthy resting humans. Phasic autonomic motoneurone firing, reflecting the throughput of the system, depends importantly on the intensity of stimulatory inputs, such that when levels of stimulation are low (as with high arterial pressure and sympathetic activity, or low arterial pressure and vagal activity), respiratory fluctuations of sympathetic or vagal firing are also low. The respiratory gate has a finite capacity, and high levels of stimulation override the ability of respiration to gate autonomic responsiveness. Autonomic throughput also depends importantly on other factors, including especially, the frequency of breathing, the rate at which the gate opens and closes. Respiratory sinus arrhythmia is small at rapid, and large at slow breathing rates. The strong correlation between systolic pressure and R-R intervals at respiratory frequencies reflects the influence of respiration on these two measures, rather than arterial baroreflex physiology. A wide range of evidence suggests that respiratory activity gates the timing of autonomic motoneurone firing, but does not influence its tonic level. I propose that the most enduring significance of respiratory gating is its use as a precisely controlled experimental tool to tease out and better understand otherwise inaccessible human autonomic neurophysiological mechanisms.

  8. Moving stereotactic fiducial system to obtain a respiratory signal: proof of principle.

    PubMed

    Caballero Pinelo, Roberto; Alfonso, Rodolfo; González Pérez, Yelina; García, Albin Ariel; Rubio, Arnaldo

    2016-01-08

    The purpose of this study was to obtain a respiratory signal with the use of an add-on device to a specific stereotactic body frame and evaluate precision and accuracy of the method, with the use of a dynamic phantom. The authors designed and constructed a simple add-on device which, attached to a stereotactic body frame, provides information of the patient's respiratory signal in every CT axial image acquired. To assess the approach, 12 CT studies were acquired, on a phantom that simulates respiratory motion, which was placed inside the frame with the add-on device. Images of the phantom with sinusoidal and shark-fin motion patterns were acquired, with different amplitude in the movement of the external surrogate and the target. Cycle time was 6 s. Images were retrospectively processed to obtain a respiratory signal from the vertical movement of the "abdomen." The obtained signal was adjusted to a sinusoidal function; the resultant amplitude and cycle time were compared with the preset function in the phantom. The cycle amplitude and time obtained with the method agreed with the preset values within 0.4 mm and 0.29 s, respectively. In the cases of sinusoidal movements the maximal discrepancy was less than 1 mm. A respiratory signal was obtained in all cine CT sequence studies with this method that consistently coincides with the preset motion of the phantom. The authors proposed a tool to obtain a respiratory signal based on information contained into the CT axial images.

  9. Occupational exposure to poultry dust and effects on the respiratory system in workers.

    PubMed

    Viegas, S; Faísca, V M; Dias, H; Clérigo, A; Carolino, E; Viegas, C

    2013-01-01

    Farmers are occupationally exposed to many respiratory hazards at work and display higher rates of asthma and respiratory symptoms than other workers. Dust is one of the components present in poultry production that increases risk of adverse respiratory disease occurrence. Dust originates from poultry residues, molds, and feathers and is biologically active as it contains microorganisms. Exposure to dust is known to produce a variety of clinical responses, including asthma, chronic bronchitis, chronic airways obstructive disease (COPD), allergic alveolitis, and organic dust toxic syndrome (ODTS). A study was developed to determine particle contamination in seven poultry farms and correlate this with prevalence rate of respiratory defects and record by means of a questionnaire the presence of clinical symptoms associated with asthma and other allergy diseases by European Community Respiratory Health Survey. Poultry farm dust contamination was found to contain higher concentrations of particulate matter (PM) PM5 and PM10. Prevalence rate of obstructive pulmonary disorders was higher in individuals with longer exposure regardless of smoking status. In addition, a high prevalence for asthmatic (42.5%) and nasal (51.1%) symptoms was noted in poultry workers. Data thus show that poultry farm workers are more prone to suffer from respiratory ailments and this may be attributed to higher concentrations of PM found in the dust. Intervention programs aimed at reducing exposure to dust will ameliorate occupational working conditions and enhance the health of workers.

  10. Accuracy of tumor motion compensation algorithm from a robotic respiratory tracking system: A simulation study

    SciTech Connect

    Seppenwoolde, Yvette; Berbeco, Ross I.; Nishioka, Seiko; Shirato, Hiroki; Heijmen, Ben

    2007-07-15

    The Synchrony{sup TM} Respiratory Tracking System (RTS) is a treatment option of the CyberKnife robotic treatment device to irradiate extra-cranial tumors that move due to respiration. Advantages of RTS are that patients can breath normally and that there is no loss of linac duty cycle such as with gated therapy. Tracking is based on a measured correspondence model (linear or polynomial) between internal tumor motion and external (chest/abdominal) marker motion. The radiation beam follows the tumor movement via the continuously measured external marker motion. To establish the correspondence model at the start of treatment, the 3D internal tumor position is determined at 15 discrete time points by automatic detection of implanted gold fiducials in two orthogonal x-ray images; simultaneously, the positions of the external markers are measured. During the treatment, the relationship between internal and external marker positions is continuously accounted for and is regularly checked and updated. Here we use computer simulations based on continuously and simultaneously recorded internal and external marker positions to investigate the effectiveness of tumor tracking by the RTS. The Cyberknife does not allow continuous acquisition of x-ray images to follow the moving internal markers (typical imaging frequency is once per minute). Therefore, for the simulations, we have used data for eight lung cancer patients treated with respiratory gating. All of these patients had simultaneous and continuous recordings of both internal tumor motion and external abdominal motion. The available continuous relationship between internal and external markers for these patients allowed investigation of the consequences of the lower acquisition frequency of the RTS. With the use of the RTS, simulated treatment errors due to breathing motion were reduced largely and consistently over treatment time for all studied patients. A considerable part of the maximum reduction in treatment error

  11. Pathogenesis of H5N1 influenza virus infections in mice and ferret models differ between respiratory and digestive system exposure

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background. Epidemiological, clinical and laboratory data suggests H5N1 influenza viruses are transmitted through and predominantly affect the respiratory system of mammals. Some data suggests digestive system involvement. However, direct evidence of alimentary transmission and infection in mammal...

  12. Mn enhancement and respiratory gating for in utero MRI of the embryonic mouse central nervous system.

    PubMed

    Deans, Abby E; Wadghiri, Youssef Zaim; Berrios-Otero, César A; Turnbull, Daniel H

    2008-06-01

    The mouse is the preferred model organism for genetic studies of mammalian brain development. MRI has potential for in utero studies of mouse brain development, but has been limited previously by challenges of maximizing image resolution and contrast while minimizing artifacts due to physiological motion. Manganese (Mn)-enhanced MRI (MEMRI) studies have demonstrated central nervous system (CNS) contrast enhancement in mice from the earliest postnatal stages. The purpose of this study was to expand MEMRI to in utero studies of the embryonic CNS in combination with respiratory gating to decrease motion artifacts. We investigated MEMRI-facilitated CNS segmentation and three-dimensional (3D) analysis in wild-type mouse embryos from midgestation, and explored effects of Mn on embryonic survival and image contrast. Motivated by observations that MEMRI provided an effective method for visualization and volumetric analysis of embryonic CNS structures, especially in ventral regions, we used MEMRI to examine Nkx2.1 mutant mice that were previously reported to have ventral forebrain defects. Quantitative MEMRI analysis of Nkx2.1 knockout mice demonstrated volumetric changes in septum (SE) and basal ganglia (BG), as well as alterations in hypothalamic structures. This method may provide an effective means for in utero analysis of CNS phenotypes in a variety of mouse mutants.

  13. Respiratory sinus arrhythmia and auditory processing in autism: modifiable deficits of an integrated social engagement system?

    PubMed

    Porges, Stephen W; Macellaio, Matthew; Stanfill, Shannon D; McCue, Kimberly; Lewis, Gregory F; Harden, Emily R; Handelman, Mika; Denver, John; Bazhenova, Olga V; Heilman, Keri J

    2013-06-01

    The current study evaluated processes underlying two common symptoms (i.e., state regulation problems and deficits in auditory processing) associated with a diagnosis of autism spectrum disorders. Although these symptoms have been treated in the literature as unrelated, when informed by the Polyvagal Theory, these symptoms may be viewed as the predictable consequences of depressed neural regulation of an integrated social engagement system, in which there is down regulation of neural influences to the heart (i.e., via the vagus) and to the middle ear muscles (i.e., via the facial and trigeminal cranial nerves). Respiratory sinus arrhythmia (RSA) and heart period were monitored to evaluate state regulation during a baseline and two auditory processing tasks (i.e., the SCAN tests for Filtered Words and Competing Words), which were used to evaluate auditory processing performance. Children with a diagnosis of autism spectrum disorders (ASD) were contrasted with aged matched typically developing children. The current study identified three features that distinguished the ASD group from a group of typically developing children: 1) baseline RSA, 2) direction of RSA reactivity, and 3) auditory processing performance. In the ASD group, the pattern of change in RSA during the attention demanding SCAN tests moderated the relation between performance on the Competing Words test and IQ. In addition, in a subset of ASD participants, auditory processing performance improved and RSA increased following an intervention designed to improve auditory processing.

  14. Development of a respiratory inductive plethysmography module supporting multiple sensors for wearable systems.

    PubMed

    Zhang, Zhengbo; Zheng, Jiewen; Wu, Hao; Wang, Weidong; Wang, Buqing; Liu, Hongyun

    2012-09-27

    In this paper, we present an RIP module with the features of supporting multiple inductive sensors, no variable frequency LC oscillator, low power consumption, and automatic gain adjustment for each channel. Based on the method of inductance measurement without using a variable frequency LC oscillator, we further integrate pulse amplitude modulation and time division multiplexing scheme into a module to support multiple RIP sensors. All inductive sensors are excited by a high-frequency electric current periodically and momentarily, and the inductance of each sensor is measured during the time when the electric current is fed to it. To improve the amplitude response of the RIP sensors, we optimize the sensing unit with a matching capacitor parallel with each RIP sensor forming a frequency selection filter. Performance tests on the linearity of the output with cross-sectional area and the accuracy of respiratory volume estimation demonstrate good linearity and accurate lung volume estimation. Power consumption of this new RIP module with two sensors is very low. The performance of respiration measurement during movement is also evaluated. This RIP module is especially desirable for wearable systems with multiple RIP sensors for long-term respiration monitoring.

  15. Influence of apnoeic oxygenation in respiratory and circulatory system under general anaesthesia.

    PubMed

    Kolettas, Alexander; Grosomanidis, Vasilis; Kolettas, Vasilis; Zarogoulidis, Paul; Tsakiridis, Kosmas; Katsikogiannis, Nikolaos; Tsiouda, Theodora; Kiougioumtzi, Ioanna; Machairiotis, Nikolaos; Drylis, Georgios; Kesisis, Georgios; Beleveslis, Thomas; Zarogoulidis, Konstantinos

    2014-03-01

    Apnoeic oxygenation is an alternative technique of oxygenation which is recommended in the consecutive oxygen administration with varying flows (2-10 lt/min) through a catheter which is positioned over the keel of the trachea. Apnoeic oxygenation maintains for a significant period of time the oxygenation of blood in breathless conditions. This technique was first applied in 1947 by Draper, Whitehead, and Spencer and it was studied sporadically by other inventors too. However, the international literature shows few studies that have examined closely apnoeic oxygenation and its effects on Hemodynamic image and the respiratory system of the human body. Recently they have begun to arise some studies which deal with the application of this technique in several conditions such as difficult tracheal intubation, ventilation of guinea pigs in campaign conditions where the oxygen supply is limited and calculable, the application of this technique in combination with the use of extracorporeal removal of carbon dioxide (CO2). All the above indicate, the clinical use of this technique.

  16. Influence of apnoeic oxygenation in respiratory and circulatory system under general anaesthesia

    PubMed Central

    Kolettas, Alexander; Grosomanidis, Vasilis; Kolettas, Vasilis; Tsakiridis, Kosmas; Katsikogiannis, Nikolaos; Tsiouda, Theodora; Kiougioumtzi, Ioanna; Machairiotis, Nikolaos; Drylis, Georgios; Kesisis, Georgios; Beleveslis, Thomas; Zarogoulidis, Konstantinos

    2014-01-01

    Apnoeic oxygenation is an alternative technique of oxygenation which is recommended in the consecutive oxygen administration with varying flows (2-10 lt/min) through a catheter which is positioned over the keel of the trachea. Apnoeic oxygenation maintains for a significant period of time the oxygenation of blood in breathless conditions. This technique was first applied in 1947 by Draper, Whitehead, and Spencer and it was studied sporadically by other inventors too. However, the international literature shows few studies that have examined closely apnoeic oxygenation and its effects on Hemodynamic image and the respiratory system of the human body. Recently they have begun to arise some studies which deal with the application of this technique in several conditions such as difficult tracheal intubation, ventilation of guinea pigs in campaign conditions where the oxygen supply is limited and calculable, the application of this technique in combination with the use of extracorporeal removal of carbon dioxide (CO2). All the above indicate, the clinical use of this technique. PMID:24672687

  17. Hygroscopic Properties and Respiratory System Deposition Behavior of Particulate Matter Emitted By Mining and Smelting Operations.

    PubMed

    Youn, Jong-Sang; Csavina, Janae; Rine, Kyle P; Shingler, Taylor; Taylor, Mark Patrick; Sáez, A Eduardo; Betterton, Eric A; Sorooshian, Armin

    2016-11-01

    This study examines size-resolved physicochemical data for particles sampled near mining and smelting operations and a background urban site in Arizona with a focus on how hygroscopic growth impacts particle deposition behavior. Particles with aerodynamic diameters between 0.056-18 μm were collected at three sites: (i) an active smelter operation in Hayden, AZ, (ii) a legacy mining site with extensive mine tailings in Iron King, AZ, and (iii) an urban site, inner-city Tucson, AZ. Mass size distributions of As and Pb exhibit bimodal profiles with a dominant peak between 0.32 and 0.56 μm and a smaller mode in the coarse range (>3 μm). The hygroscopicity profile did not exhibit the same peaks owing to dependence on other chemical constituents. Submicrometer particles were generally more hygroscopic than supermicrometer ones at all three sites with finite water-uptake ability at all sites and particle sizes examined. Model calculations at a relative humidity of 99.5% reveal significant respiratory system particle deposition enhancements at sizes with the largest concentrations of toxic contaminants. Between dry diameters of 0.32 and 0.56 μm, for instance, ICRP and MPPD models predict deposition fraction enhancements of 171%-261% and 33%-63%, respectively, at the three sites.

  18. Hygroscopic Properties and Respiratory System Deposition Behavior of Particulate Matter Emitted By Mining and Smelting Operations

    PubMed Central

    Youn, Jong-sang; Csavina, Janae; Rine, Kyle P.; Shingler, Taylor; Taylor, Mark Patrick; Sáez, A. Eduardo; Betterton, Eric A.; Sorooshian, Armin

    2016-01-01

    This study examines size-resolved physicochemical data for particles sampled near mining and smelting operations and a background urban site in Arizona with a focus on how hygroscopic growth impacts particle deposition behavior. Particles with aerodynamic diameters between 0.056 – 18 μm were collected at three sites: (i) an active smelter operation in Hayden, AZ, (ii) a legacy mining site with extensive mine tailings in Iron King, AZ, and (iii) an urban site, inner-city Tucson, AZ. Mass size distributions of As and Pb exhibit bimodal profiles with a dominant peak between 0.32-0.56 μm and a smaller mode in the coarse range (> 3 μm). The hygroscopicity profile did not exhibit the same peaks owing to dependence on other chemical constituents. Sub-micrometer particles were generally more hygroscopic than super-micrometer ones at all three sites with finite water-uptake ability at all sites and particle sizes examined. Model calculations at a relative humidity of 99.5% reveal significant respiratory system particle deposition enhancements at sizes with the largest concentrations of toxic contaminants. Between dry diameters of 0.32 and 0.56 μm, for instance, ICRP and MPPD models predict deposition fraction enhancements of 171%-261% and 33%-63%, respectively, at the three sites. PMID:27700056

  19. Determining respiratory system resistance and reactance by impulse oscillometry in obese individuals

    PubMed Central

    de Albuquerque, Cláudio Gonçalves; de Andrade, Flávio Maciel Dias; Rocha, Marcus Aurélio de Almeida; de Oliveira, Alina Farias França; Ladosky, Waldemar; Victor, Edgar Guimarães; Rizzo, José Ângelo

    2015-01-01

    Objective: To evaluate peripheral respiratory system resistance and reactance (Rrs and Xrs, respectively) in obese individuals. Methods: We recruited 99 individuals, dividing them into four groups by body mass index (BMI): < 30.0 kg/m2 (control, n = 31); 30.0-39.9 kg/m2 (obesity, n = 13); 40.0-49.9 kg/m2 (severe obesity, n = 28); and ≥ 50.0 kg/m2 (morbid obesity, n = 13). Using impulse oscillometry, we measured total Rrs, central Rrs, and Xrs. Peripheral Rrs was calculated as the difference between total Rrs and central Rrs. All subjects also underwent spirometry. Results: Of the 99 individuals recruited, 14 were excluded because they failed to perform forced expiratory maneuvers correctly during spirometry. The individuals in the severe obesity and morbid obesity groups showed higher peripheral Rrs and lower Xrs in comparison with those in the two other groups. Conclusions: Having a BMI ≥ 40 kg/m2 was associated with a significant increase in peripheral Rrs and with a decrease in Xrs. PMID:26578133

  20. Clinical Accuracy of the Respiratory Tumor Tracking System of the CyberKnife: Assessment by Analysis of Log Files

    SciTech Connect

    Hoogeman, Mischa Prevost, Jean-Briac; Nuyttens, Joost; Poell, Johan; Levendag, Peter; Heijmen, Ben

    2009-05-01

    Purpose: To quantify the clinical accuracy of the respiratory motion tracking system of the CyberKnife treatment device. Methods and Materials: Data in log files of 44 lung cancer patients treated with tumor tracking were analyzed. Errors in the correlation model, which relates the internal target motion with the external breathing motion, were quantified. The correlation model error was compared with the geometric error obtained when no respiratory tracking was used. Errors in the prediction method were calculated by subtracting the predicted position from the actual measured position after 192.5 ms (the time lag to prediction in our current system). The prediction error was also measured for a time lag of 115 ms and a new prediction method. Results: The mean correlation model errors were less than 0.3 mm. Standard deviations describing intrafraction variations around the whole-fraction mean error were 0.2 to 1.9 mm for cranio-caudal, 0.1 to 1.9 mm for left-right, and 0.2 to 2.5 mm for anterior-posterior directions. Without the use of respiratory tracking, these variations would have been 0.2 to 8.1 mm, 0.2 to 5.5 mm, and 0.2 to 4.4 mm. The overall mean prediction error was small (0.0 {+-} 0.0 mm) for all directions. The intrafraction standard deviation ranged from 0.0 to 2.9 mm for a time delay of 192.5 ms but was halved by using the new prediction method. Conclusions: Analyses of the log files of real clinical cases have shown that the geometric error caused by respiratory motion is substantially reduced by the application of respiratory motion tracking.

  1. Lesions of the avian pancreas.

    PubMed

    Schmidt, Robert E; Reavill, Drury R

    2014-01-01

    Although not well described, occasional reports of avian exocrine and endocrine pancreatic disease are available. This article describes the lesions associated with common diseases of the avian pancreas reported in the literature and/or seen by the authors.

  2. Circulating avian influenza viruses closely related to the 1918 virus have pandemic potential.

    PubMed

    Watanabe, Tokiko; Zhong, Gongxun; Russell, Colin A; Nakajima, Noriko; Hatta, Masato; Hanson, Anthony; McBride, Ryan; Burke, David F; Takahashi, Kenta; Fukuyama, Satoshi; Tomita, Yuriko; Maher, Eileen A; Watanabe, Shinji; Imai, Masaki; Neumann, Gabriele; Hasegawa, Hideki; Paulson, James C; Smith, Derek J; Kawaoka, Yoshihiro

    2014-06-11

    Wild birds harbor a large gene pool of influenza A viruses that have the potential to cause influenza pandemics. Foreseeing and understanding this potential is important for effective surveillance. Our phylogenetic and geographic analyses revealed the global prevalence of avian influenza virus genes whose proteins differ only a few amino acids from the 1918 pandemic influenza virus, suggesting that 1918-like pandemic viruses may emerge in the future. To assess this risk, we generated and characterized a virus composed of avian influenza viral segments with high homology to the 1918 virus. This virus exhibited pathogenicity in mice and ferrets higher than that in an authentic avian influenza virus. Further, acquisition of seven amino acid substitutions in the viral polymerases and the hemagglutinin surface glycoprotein conferred respiratory droplet transmission to the 1918-like avian virus in ferrets, demonstrating that contemporary avian influenza viruses with 1918 virus-like proteins may have pandemic potential.

  3. Physiological and pathophysiological interactions between the respiratory central pattern generator and the sympathetic nervous system.

    PubMed

    Molkov, Yaroslav I; Zoccal, Daniel B; Baekey, David M; Abdala, Ana P L; Machado, Benedito H; Dick, Thomas E; Paton, Julian F R; Rybak, Ilya A

    2014-01-01

    Respiratory modulation seen in the sympathetic nerve activity (SNA) implies that the respiratory and sympathetic networks interact. During hypertension elicited by chronic intermittent hypoxia (CIH), the SNA displays an enhanced respiratory modulation reflecting strengthened interactions between the networks. In this chapter, we review a series of experimental and modeling studies that help elucidate possible mechanisms of sympatho-respiratory coupling. We conclude that this coupling significantly contributes to both the sympathetic baroreflex and the augmented sympathetic activity after exposure to CIH. This conclusion is based on the following findings. (1) Baroreceptor activation results in perturbation of the respiratory pattern via transient activation of postinspiratory neurons in the Bötzinger complex (BötC). The same BötC neurons are involved in the respiratory modulation of SNA, and hence provide an additional pathway for the sympathetic baroreflex. (2) Under hypercapnia, phasic activation of abdominal motor nerves (AbN) is accompanied by synchronous discharges in SNA due to the common source of this rhythmic activity in the retrotrapezoid nucleus (RTN). CIH conditioning increases the CO2 sensitivity of central chemoreceptors in the RTN which results in the emergence of AbN and SNA discharges under normocapnic conditions similar to those observed during hypercapnia in naïve animals. Thus, respiratory-sympathetic interactions play an important role in defining sympathetic output and significantly contribute to the sympathetic activity and hypertension under certain physiological or pathophysiological conditions, and the theoretical framework presented may be instrumental in understanding of malfunctioning control of sympathetic activity in a variety of disease states.

  4. Fate of inhaled monoclonal antibodies after the deposition of aerosolized particles in the respiratory system.

    PubMed

    Guilleminault, L; Azzopardi, N; Arnoult, C; Sobilo, J; Hervé, V; Montharu, J; Guillon, A; Andres, C; Herault, O; Le Pape, A; Diot, P; Lemarié, E; Paintaud, G; Gouilleux-Gruart, V; Heuzé-Vourc'h, N

    2014-12-28

    Monoclonal antibodies (mAbs) are usually delivered systemically, but only a small proportion of the drug reaches the lung after intravenous injection. The inhalation route is an attractive alternative for the local delivery of mAbs to treat lung diseases, potentially improving tissue concentration and exposure to the drug while limiting passage into the bloodstream and adverse effects. Several studies have shown that the delivery of mAbs or mAb-derived biopharmaceuticals via the airways is feasible and efficient, but little is known about the fate of inhaled mAbs after the deposition of aerosolized particles in the respiratory system. We used cetuximab, an anti-EGFR antibody, as our study model and showed that, after its delivery via the airways, this mAb accumulated rapidly in normal and cancerous tissues in the lung, at concentrations twice those achieved after intravenous delivery, for early time points. The spatial distribution of cetuximab within the tumor was heterogeneous, as reported after i.v. injection. Pharmacokinetic (PK) analyses were carried out in both mice and macaques and showed aerosolized cetuximab bioavailability to be lower and elimination times shorter in macaques than in mice. Using transgenic mice, we showed that FcRn, a key receptor involved in mAb distribution and PK, was likely to make a greater contribution to cetuximab recycling than to the transcytosis of this mAb in the airways. Our results indicate that the inhalation route is potentially useful for the treatment of both acute and chronic lung diseases, to boost and ensure the sustained accumulation of mAbs within the lungs, while limiting their passage into the bloodstream.

  5. Reductions in the variations of respiration signals for respiratory-gated radiotherapy when using the video-coaching respiration guiding system

    NASA Astrophysics Data System (ADS)

    Lee, Hyun Jeong; Yea, Ji Woon; Oh, Se An

    2015-07-01

    Respiratory-gated radiation therapy (RGRT) has been used to minimize the dose to normal tissue in lung-cancer radiotherapy. The present research aims to improve the regularity of respiration in RGRT by using a video-coached respiration guiding system. In the study, 16 patients with lung cancer were evaluated. The respiration signals of the patients were measured by using a realtime position management (RPM) respiratory gating system (Varian, USA), and the patients were trained using the video-coaching respiration guiding system. The patients performed free breathing and guided breathing, and the respiratory cycles were acquired for ~5 min. Then, Microsoft Excel 2010 software was used to calculate the mean and the standard deviation for each phase. The standard deviation was computed in order to analyze the improvement in the respiratory regularity with respect to the period and the displacement. The standard deviation of the guided breathing decreased to 48.8% in the inhale peak and 24.2% in the exhale peak compared with the values for the free breathing of patient 6. The standard deviation of the respiratory cycle was found to be decreased when using the respiratory guiding system. The respiratory regularity was significantly improved when using the video-coaching respiration guiding system. Therefore, the system is useful for improving the accuracy and the efficiency of RGRT.

  6. Do Male and Female Cowbirds See Their World Differently? Implications for Sex Differences in the Sensory System of an Avian Brood Parasite

    PubMed Central

    Fernández-Juricic, Esteban; Ojeda, Agustin; Deisher, Marcella; Burry, Brianna; Baumhardt, Patrice; Stark, Amy; Elmore, Amanda G.; Ensminger, Amanda L.

    2013-01-01

    Background Male and female avian brood parasites are subject to different selection pressures: males compete for mates but do not provide parental care or territories and only females locate hosts to lay eggs. This sex difference may affect brain architecture in some avian brood parasites, but relatively little is known about their sensory systems and behaviors used to obtain sensory information. Our goal was to study the visual resolution and visual information gathering behavior (i.e., scanning) of brown-headed cowbirds. Methodology/Principal Findings We measured the density of single cone photoreceptors, associated with chromatic vision, and double cone photoreceptors, associated with motion detection and achromatic vision. We also measured head movement rates, as indicators of visual information gathering behavior, when exposed to an object. We found that females had significantly lower density of single and double cones than males around the fovea and in the periphery of the retina. Additionally, females had significantly higher head-movement rates than males. Conclusions Overall, we suggest that female cowbirds have lower chromatic and achromatic visual resolution than males (without sex differences in visual contrast perception). Females might compensate for the lower visual resolution by gazing alternatively with both foveae in quicker succession than males, increasing their head movement rates. However, other physiological factors may have influenced the behavioral differences observed. Our results bring up relevant questions about the sensory basis of sex differences in behavior. One possibility is that female and male cowbirds differentially allocate costly sensory resources, as a recent study found that females actually have greater auditory resolution than males. PMID:23544049

  7. [Prevalence of respiratory systems and evaluation of sensitization levels in traditional grain market workers in Casablanca].

    PubMed

    Laraqui, C H; Caubet, A; Laraqui, O; Benghalem, A; Harourate, K; Bichara, M; Curtes, J P; Verger, C

    2000-11-01

    Our study proposes to evaluate the prevalence of clinical respiratory symptoms, spirometric abnormalities and allergy skin test sensitivities in two groups: on exposed to grain dust in a big traditional grain market in Casablanca and the other unexposed. The inquiry which concerned 277 exposed workers and 230 non exposed consisted of a questionnaire, spirometric examinations and skin prick testings. Exposed and no exposed groups are statically similar as far as physical data (sex, age, weight, heignt) and smoking habits. The atopy was found among 18% of the exposed. The prevalence of clinical respiratory symptomatology among exposed is 64.3% against 24.8% among non exposed. Respiratory symptoms (cough, expectoration), rhinitis, asthma, conjonctivitis, dermatitis, chronic bronchitis were significantly more frequent in those exposed than in the non exposed. Smoking is at the origin of additional morbidity. Atopy seems to be a potentiating factor as all the atopic people exposed are symptomatic. Respiratory function was altered in 37.1% of those exposed versus 12.8% of those no exposed. Among exposed workers with decline of lung function parameters 68.9% have only light anomalies. Tabacco interferes significantly in the alteration of respiratory function parameters. Work exposure to grain associated with smoking resulted in a reduction in respiratory function values. In grain workers, the prevalence of allergy skin test sensitivities of occupational allergens is 30.3% versus 6.9% among those no exposed. The enquiry in the workplace shows complete absence of means of protection for the work force and elevated levels of dust. It is imperative to implement an occupational health service and to develop means for collective and individual prevention to maximally reduce the risk.

  8. Physiological and pathophysiological interactions between the respiratory central pattern generator and the sympathetic nervous system

    PubMed Central

    Molkov, Yaroslav I.; Zoccal, Daniel B.; Baekey, David M.; Abdala, Ana P.L.; Machado, Benedito H.; Dick, Thomas E.; Paton, Julian F.R.; Rybak, Ilya A.

    2015-01-01

    Respiratory modulation seen in the sympathetic nerve activity (SNA) implies that the respiratory and sympathetic networks interact. During hypertension elicited by chronic intermittent hypoxia (CIH), the SNA displays an enhanced respiratory modulation reflecting strengthened interactions between the networks. In this chapter, we review a series of experimental and modeling studies that help elucidate possible mechanisms of sympatho-respiratory coupling. We conclude that this coupling significantly contributes to both the sympathetic baroreflex and the augmented sympathetic activity after exposure to CIH. This conclusion is based on the following findings. (1) Baroreceptor activation results in perturbation of the respiratory pattern via transient activation of postinspiratory neurons in the Bötzinger complex (BötC). The same BötC neurons are involved in the respiratory modulation of SNA, and hence provide an additional pathway for the sympathetic baroreflex. (2) Under hypercapnia, phasic activation of abdominal motor nerves (AbN) is accompanied by synchronous discharges in SNA due to the common source of this rhythmic activity in the retrotrapezoid nucleus (RTN). CIH conditioning increases the CO2 sensitivity of central chemoreceptors in the RTN which results in the emergence of AbN and SNA discharges under normocapnic conditions similar to those observed during hypercapnia in naïve animals. Thus, respiratory–sympathetic interactions play an important role in defining sympathetic output and significantly contribute to the sympathetic activity and hypertension under certain physiological or pathophysiological conditions, and the theoretical framework presented may be instrumental in understanding of malfunctioning control of sympathetic activity in a variety of disease states. PMID:25194190

  9. Moving stereotactic fiducial system to obtain a respiratory signal: proof of principle.

    PubMed

    Pinelo, Roberto Caballero; Alfonso, Rodolfo; Pérez, Yelina González; García, Albin Ariel; Rubio, Arnaldo

    2016-01-01

    The purpose of this study was to obtain a respiratory signal with the use of an add-on device to a specific stereotactic body frame and evaluate precision and accuracy of the method, with the use of a dynamic phantom. The authors designed and constructed a simple add-on device which, attached to a stereotactic body frame, provides information of the patient's respiratory signal in every CT axial image acquired. To assess the approach, 12 CT studies were acquired, on a phantom that simulates respiratory motion, which was placed inside the frame with the add-on device. Images of the phantom with sinusoidal and shark-fin motion patterns were acquired, with different amplitude in the movement of the external surrogate and the target. Cycle time was 6 s. Images were retrospectively processed to obtain a respiratory signal from the vertical movement of the "abdomen." The obtained signal was adjusted to a sinusoidal function; the resultant amplitude and cycle time were compared with the preset function in the phantom. The cycle amplitude and time obtained with the method agreed with the preset values within 0.4 mm and 0.29 s, respectively. In the cases of sinusoidal movements the maximal discrepancy was less than 1 mm. A respiratory signal was obtained in all cine CT sequence studies with this method that consistently coincides with the preset motion of the phantom. The authors proposed a tool to obtain a respiratory signal based on information contained into the CT axial images. PACS number: 87.57qp.

  10. Macroscopic anatomy of the lower respiratory system in a nocturnal burrowing rodent: African giant pouched rat (Cricetomys gambianus, Waterhouse 1840).

    PubMed

    Ibe, C S; Salami, S O; Onyeanusi, B I

    2011-04-01

    Cricetomys gambianus is a rat that lives principally in burrows, coming out at night in search of food. The design and structure of the lower respiratory system reflects its oxygen and metabolic demand which can be attributed to its habitat. A morphological and morphometric investigation of its lower respiratory system was undertaken to document the normal anatomical features and assess its morpho-functional paradigm. Specifically, an anatomical detail of the lungs and conductive airway was described, the structures being elucidated by dissection and radiography. Evaluation of dissected specimens showed that tracheal cartilages ranged from 21 to 33 rings with an average of 25.5. They exhibited a random pattern of anastomoses between adjacent rings. Transverse diameters of the principal bronchus in the male and female rats were 3.767 and 3.759 mm respectively. The right lung consisted of four lobes while the left lung was not lobed. Bronchogram revealed that lung lobation corresponded with bronchial tree division. Inter-lobar fissures were absent on the right lung except for the ventral boarder separating the cranial lobe from the caudal lobe. The entire lungs provided stability to the heart in situ, through the cardiac notch. This study also included correlation analysis of the dimensions, weights and volumes of the lower respiratory organs with the nose-rump length and body weight of 18 African giant pouched rats of both sexes. The relationship of the anatomy of the lower respiratory system of the rodent to the oxygen tension in their burrow and to their energy utilization is discussed.

  11. Respiratory Syncytial Virus

    MedlinePlus

    ... respiratory syncytial virus (RSV) using indirect immunofluorescence technique. Biology & Genetics For more than 50 years, NIAID’s commitment ... Nucleotide Polymorphism Phylogenetics & Ontology Proteomics & Protein Analysis Systems Biology Data Portals Software Applications BCBB Mobyle Interface Designer ( ...

  12. Functional and structural optimization of the respiratory system of the bat Tadarida brasiliensis (Chiroptera, Molossidae): does airway geometry matter?

    PubMed

    Canals, Mauricio; Atala, Cristian; Olivares, Ricardo; Guajardo, Francisco; Figueroa, Daniela P; Sabat, Pablo; Rosenmann, Mario

    2005-10-01

    We studied structure and function of the respiratory system in the bat Tadarida brasiliensis and compared it with those of two species of rodents, Abrothrix andinus and A. olivaceus. Tadarida brasiliensis had lower resting oxygen consumption, but higher maximum oxygen consumption and aerobic scope, than the rodents. The blood-gas barrier of the bat was thinner and its relative lung size was larger; however, alveolar surface density was similar among the three species. In consequence, T. brasiliensis has an oxygen diffusion capacity two or three times higher than that of the rodents. In Tadarida brasiliensis the characteristics of the lung were accompanied by geometrical changes in the proximal airway, such as high physical optimization as a consequence of small variations in the symmetry and the scaling ratio of the bronchial diameters. These may constitute an efficient way to save energy in respiratory mechanics and are the first report of airway adjustments to decrease entropy generation in bats.

  13. Minocycline suppresses morphine-induced respiratory depression, suppresses morphine-induced reward, and enhances systemic morphine-induced analgesia

    PubMed Central

    Hutchinson, Mark R.; Northcutt, Alexis L.; Chao, Lindsey W.; Kearney, Jeffrey J.; Zhang, Yingning; Berkelhammer, Debra L.; Loram, Lisa C.; Rozeske, Robert R.; Bland, Sondra T.; Maier, Steven F.; Gleeson, Todd T.; Watkins, Linda R.

    2008-01-01

    Recent data suggest that opioids can activate immune-like cells of the central nervous system (glia). This opioid-induced glial activation is associated with decreased analgesia, owing to the release of proinflammatory mediators. Here we examine in rats whether the putative microglial inhibitor, minocycline, may affect morphine-induced respiratory depression and/or morphine-induced reward (conditioned place preference). Systemic co-administration of minocycline significantly attenuated morphine-induced reductions in tidal volume, minute volume, inspiratory force and expiratory force, but did not affect morphine-induced reductions in respiratory rate. Minocycline attenuation of respiratory depression was also paralleled with significant attenuation by minocycline of morphine-induced reductions in blood oxygen saturation. Minocycline also attenuated morphine conditioned place preference. Minocycline did not simply reduce all actions of morphine, as morphine analgesia was significantly potentiated by minocycline co-administration. Lastly, morphine dose-dependently increased cyclooxygenase-1 gene expression in a rat microglial cell line, an effect that was dose-dependently blocked by minocycline. Together, these data support that morphine can directly activate microglia in a minocycline-suppressible manner and suggest a pivotal role for minocycline-sensitive processes in the mechanisms of morphine-induced respiration depression, reward, and pain modulation. PMID:18706994

  14. Amla Enhances Mitochondrial Spare Respiratory Capacity by Increasing Mitochondrial Biogenesis and Antioxidant Systems in a Murine Skeletal Muscle Cell Line.

    PubMed

    Yamamoto, Hirotaka; Morino, Katsutaro; Mengistu, Lemecha; Ishibashi, Taishi; Kiriyama, Kohei; Ikami, Takao; Maegawa, Hiroshi

    2016-01-01

    Amla is one of the most important plants in Indian traditional medicine and has been shown to improve various age-related disorders while decreasing oxidative stress. Mitochondrial dysfunction is a proposed cause of aging through elevated oxidative stress. In this study, we investigated the effects of Amla on mitochondrial function in C2C12 myotubes, a murine skeletal muscle cell model with abundant mitochondria. Based on cell flux analysis, treatment with an extract of Amla fruit enhanced mitochondrial spare respiratory capacity, which enables cells to overcome various stresses. To further explore the mechanisms underlying these effects on mitochondrial function, we analyzed mitochondrial biogenesis and antioxidant systems, both proposed regulators of mitochondrial spare respiratory capacity. We found that Amla treatment stimulated both systems accompanied by AMPK and Nrf2 activation. Furthermore, we found that Amla treatment exhibited cytoprotective effects and lowered reactive oxygen species (ROS) levels in cells subjected to t-BHP-induced oxidative stress. These effects were accompanied by increased oxygen consumption, suggesting that Amla protected cells against oxidative stress by using enhanced spare respiratory capacity to produce more energy. Thus we identified protective effects of Amla, involving activation of mitochondrial function, which potentially explain its various effects on age-related disorders.

  15. Amla Enhances Mitochondrial Spare Respiratory Capacity by Increasing Mitochondrial Biogenesis and Antioxidant Systems in a Murine Skeletal Muscle Cell Line

    PubMed Central

    Yamamoto, Hirotaka; Morino, Katsutaro; Mengistu, Lemecha; Ishibashi, Taishi; Kiriyama, Kohei; Ikami, Takao; Maegawa, Hiroshi

    2016-01-01

    Amla is one of the most important plants in Indian traditional medicine and has been shown to improve various age-related disorders while decreasing oxidative stress. Mitochondrial dysfunction is a proposed cause of aging through elevated oxidative stress. In this study, we investigated the effects of Amla on mitochondrial function in C2C12 myotubes, a murine skeletal muscle cell model with abundant mitochondria. Based on cell flux analysis, treatment with an extract of Amla fruit enhanced mitochondrial spare respiratory capacity, which enables cells to overcome various stresses. To further explore the mechanisms underlying these effects on mitochondrial function, we analyzed mitochondrial biogenesis and antioxidant systems, both proposed regulators of mitochondrial spare respiratory capacity. We found that Amla treatment stimulated both systems accompanied by AMPK and Nrf2 activation. Furthermore, we found that Amla treatment exhibited cytoprotective effects and lowered reactive oxygen species (ROS) levels in cells subjected to t-BHP-induced oxidative stress. These effects were accompanied by increased oxygen consumption, suggesting that Amla protected cells against oxidative stress by using enhanced spare respiratory capacity to produce more energy. Thus we identified protective effects of Amla, involving activation of mitochondrial function, which potentially explain its various effects on age-related disorders. PMID:27340504

  16. The global nature of avian influenza

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Avian influenza (AI) virus (AIV) is a global virus which knows no geographic boundaries, has no political agenda, and can infect poultry irrespective of their occupying ecosystem, agricultural production system, or other anthropocentric niches. AIVs or evidence of their infection have been detected...

  17. First images of respiratory system in ancient Egypt: Trachea, bronchi and pulmonary lobes.

    PubMed

    Kwiecinski, Jakub

    2012-01-01

    Examination of ancient Egyptians' depictions of the respiratory tract, dating back to the 30th century BC, reveals their awareness of the pulmonary anatomy: reinforced with cartilaginous rings, the trachea is split into two main bronchi, which then enter the lungs (lungs being divided into pulmonary lobes).

  18. A review of respiratory system anatomy, physiology, and disease in the mouse, rat, hamster, and gerbil.

    PubMed

    Kling, Melissa A

    2011-05-01

    The purpose of this article is to provide for practitioners a comprehensive overview of respiratory diseases, both infectious and noninfectious, in the mouse, rat, hamster, and gerbil. The information presented will also be useful for veterinarians pursuing board certification. Anatomy and physiology are briefly addressed, as those two facets alone could encompass an entire article for these species.

  19. Assessing particle and fiber toxicology in the respiratory system: the stereology toolbox.

    PubMed

    Brandenberger, Christina; Ochs, Matthias; Mühlfeld, Christian

    2015-10-31

    The inhalation of airborne particles can lead to pathological changes in the respiratory tract. For this reason, toxicology studies on effects of inhalable particles and fibers often include an assessment of histopathological alterations in the upper respiratory tract, the trachea and/or the lungs. Conventional pathological evaluations are usually performed by scoring histological lesions in order to obtain "quantitative" information and an estimation of the severity of the lesion. This approach not only comprises a potential subjective bias, depending on the examiner's judgment, but also conveys the risk that mild alterations escape the investigator's eye. The most accurate way of obtaining unbiased quantitative information about three-dimensional (3D) features of tissues, cells, or organelles from two-dimensional physical or optical sections is by means of stereology, the gold standard of image-based morphometry. Nevertheless, it can be challenging to express histopathological changes by morphometric parameters such as volume, surface, length or number only. In this review we therefore provide an overview on different histopathological lesions in the respiratory tract associated with particle and fiber toxicology and on how to apply stereological methods in order to correctly quantify and interpret histological lesions in the respiratory tract. The article further aims at pointing out common pitfalls in quantitative histopathology and at providing some suggestions on how respiratory toxicology can be improved by stereology. Thus, we hope that this article will stimulate scientists in particle and fiber toxicology research to implement stereological techniques in their studies, thereby promoting an unbiased 3D assessment of pathological lesions associated with particle exposure.

  20. Emerging infectious diseases: Focus on infection control issues for novel coronaviruses (Severe Acute Respiratory Syndrome-CoV and Middle East Respiratory Syndrome-CoV), hemorrhagic fever viruses (Lassa and Ebola), and highly pathogenic avian influenza viruses, A(H5N1) and A(H7N9).

    PubMed

    Weber, David J; Rutala, William A; Fischer, William A; Kanamori, Hajime; Sickbert-Bennett, Emily E

    2016-05-02

    Over the past several decades, we have witnessed the emergence of many new infectious agents, some of which are major public threats. New and emerging infectious diseases which are both transmissible from patient-to-patient and virulent with a high mortality include novel coronaviruses (SARS-CoV, MERS-CV), hemorrhagic fever viruses (Lassa, Ebola), and highly pathogenic avian influenza A viruses, A(H5N1) and A(H7N9). All healthcare facilities need to have policies and plans in place for early identification of patients with a highly communicable diseases which are highly virulent, ability to immediately isolate such patients, and provide proper management (e.g., training and availability of personal protective equipment) to prevent transmission to healthcare personnel, other patients and visitors to the healthcare facility.

  1. Effect of a Healthcare-system Respiratory Fluoroquinolone Restriction Program to Alter Utilization and Impact Rates of C. difficile Infection.

    PubMed

    Shea, Katherine M; Hobbs, Athena L V; Jaso, Theresa C; Bissett, Jack D; Cruz, Christopher M; Douglass, Elizabeth T; Garey, Kevin W

    2017-03-27

    Fluoroquinolones are one of the most commonly prescribed antibiotic classes in the United States despite their association with adverse consequences, including Clostridium difficile infection (CDI). We sought to evaluate the impact of a healthcare-system antimicrobial stewardship-initiated respiratory fluoroquinolone restriction program on utilization, appropriateness of quinolone-based therapy based on institutional guidelines, and CDI rates. Following implementation, respiratory fluoroquinolone utilization decreased from a monthly mean (SD) of 41.0 (4.4) days of therapy per 1000 patient days (DOT/1000 PD) pre-intervention to 21.5 (6.4) DOT/1000 PD and 4.8 (3.6) DOT/1000 PD post-education and restriction, respectively. Using segmented regression analysis, both education (14.5 DOT/1000 PD per month decrease; p=0.023) and restriction (24.5 DOT/1000 PD per month decrease; p<0.0001) were associated with decreased utilization. Additionally, CDI rates decreased significantly (p=0.044) from pre-intervention using education (3.43 cases/10,000 PD) and restriction (2.2 cases/10,000 PD). Mean (SD) monthly CDI cases/10,000 PD decreased from 4.0 (2.1) pre-intervention to 2.2 (1.35) post-restriction. A significant increase in appropriate respiratory fluoroquinolone use was experienced post-restriction vs. pre-intervention in patients administered at least 1 dose [74/232 (32%) vs. 74/130 (57%); p<0.001] as well as those receiving 2 or more doses [47/65 (72%) vs. 67/191 (35%); p<0.001]. A significant reduction in the annual acquisition cost of moxifloxacin, the formulary respiratory fluoroquinolone, was found post-restriction compared to pre-intervention within the healthcare-system ($123,882 vs. $12,273; p=0.002). Implementation of a stewardship-initiated respiratory fluoroquinolone restriction program can increase appropriate use while reducing overall utilization, acquisition cost, and CDI rates within a healthcare-system.

  2. Avian influenza control strategies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Control strategies for avian influenza in poultry vary depending on whether the goal is prevention, management, or eradication. Components used in control programs include: 1) education which includes communication, public awareness, and behavioral change, 2) changes to production and marketing sys...

  3. Avian influenza virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Avian influenza (AI) is caused by type A influenza virus, a member of the Orthomyxoviridae family. AI viruses are serologically categorized into 16 hemagglutinin (H1-H16) and 9 neuraminidase (N1-N9) subtypes. All subtypes have been identified in birds. Infections by AI viruses have been reported in ...

  4. Effect of environmental exposure to hydrogen sulfide on central nervous system and respiratory function: a systematic review of human studies

    PubMed Central

    Lim, Eunjung; Mbowe, Omar; Lee, Angela S. W.; Davis, James

    2016-01-01

    Background Assessment of the health effects of low-level exposure to hydrogen sulfide (H2S) on humans through experiments, industrial, and community studies has shown inconsistent results. Objective To critically appraise available studies investigating the effect of H2S on the central nervous system (CNS) and on respiratory function. Methods A search was conducted in 16 databases for articles published between January 1980 and July 2014. Two researchers independently evaluated potentially relevant papers based on a set of inclusion/exclusion criteria. Results Twenty-seven articles met the inclusion criteria: 6 experimental, 12 industry-based studies, and 10 community-based studies (one article included both experimental and industry-based studies). The results of the systematic review varied by study setting and quality. Several community-based studies reported associations between day-to-day variations in H2S levels and health outcomes among patients with chronic respiratory conditions. However, evidence from the largest and better-designed community-based studies did not support that chronic, ambient H2S exposure has health effects on the CNS or respiratory function. Results from industry-based studies varied, reflecting the diversity of settings and the broad range of H2S exposures. Most studies did not have individual measurements of H2S exposure. Discussion The results across studies were inconsistent, justifying the need for further research. PMID:27128692

  5. Effects of bedding systems selected by manual muscle testing on sleep and sleep-related respiratory disturbances.

    PubMed

    Tsai, Ling-Ling; Liu, Hau-Min

    2008-03-01

    In this study, we investigated the feasibility of applying manual muscle testing (MMT) for bedding selection and examined the bedding effect on sleep. Four lay testers with limited training in MMT performed muscle tests for the selection of the bedding systems from five different mattresses and eight different pillows for 14 participants with mild sleep-related respiratory disturbances. For each participant individually, two bedding systems-one inducing stronger muscle forces and the other inducing weaker forces-were selected. The tester-participant pairs showed 85% and 100% agreement, respectively, for the selection of mattresses and pillows that induced the strongest muscle forces. The firmness of the mattress and the height of the pillow were significantly correlated with the body weight and body mass index of the participants for the selected strong bedding system but not for the weak bedding system. Finally, differences were observed between the strong and the weak bedding systems with regard to sleep-related respiratory disturbances and the percentage of slow-wave sleep. It was concluded that MMT can be performed by inexperienced testers for the selection of bedding systems.

  6. [Comparative radiography of the respiratory tract of snakes using conventional high-resolution film-screen-system and a digital detector system].

    PubMed

    Pees, Michael; Bochmann, Monika; Krautwald-Junghanns, Maria-Elisabeth; Schmidt, Volker; Ludewig, Eberhard

    2010-01-01

    A conventional high-resolution screen-film-system (film Kodak MIN-R S, screen Kodak MIN-R 2000) was compared to a digital detector system (Varian PaxScan 4030E) for the evaluation of the respiratory tract in snakes. Digital radiographs were taken with the same dose as well as with half the dose used for the conventional radiographs. A total of 20 Burmese pythons (Python molurus) were examined in dorsoventral and lateral projection. Four criteria (three features, one overall assessment) were defined for each of the anatomical structures lung, trachea and spinal column and assessed by five veterinarians in a semi-blinded study using a score system. Comparison of the ratings between the techniques used was done using a visual grading analysis. For the lung, two of the three features as well as the overall assessment were rated significantly superior using the digital system. The trachea was rated significantly superior using the conventional system for the overall assessment as well as for one feature. For the spinal column, the overall assessment was significantly superior using the digital system with the full dose. Conventional radiography as well as digital radiography using half the dose was rated significantly inferior for one feature each. The of the relatively low-contrast respiratory tract. A limiting factor is the demonstration of particularly small structures. Generally, a dose reduction (compared to a conventional high-resolution film-screen-system) is possible for the evaluation of the respiratory system.

  7. Feeding behavior as an early predictor of bovine respiratory disease in North American feedlot systems.

    PubMed

    Wolfger, B; Schwartzkopf-Genswein, K S; Barkema, H W; Pajor, E A; Levy, M; Orsel, K

    2015-01-01

    Bovine respiratory disease (BRD), which can cause substantial losses for feedlot operations, is often difficult to detect based solely on visual observations. The objectives of the current study were to determine a BRD case identification based on clinical and laboratory parameters and assess the value of feeding behavior for early detection of BRD. Auction-derived, mixed-breed beef steers (n = 213) with an average arrival weight of 294 kg were placed at a southern Alberta commercial feedlot equipped with an automated feed bunk monitoring system. Feeding behavior was recorded continuously (1-s intervals) for 5 wk after arrival and summarized into meals. Meals were defined as feeding events that were interrupted by less than 300 s nonfeeding. Meal intake (g) and meal time (min) were further summarized into daily mean, minimum, maximum, and sum and, together with frequency of meals per day, were fit into a discrete survival time analysis with a conditional log-log link. Feedlot staff visually evaluated (pen-checked) health status twice daily. Within 35 d after arrival, 76% (n = 165) of the steers had 1 or more clinical signs of BRD (reluctance to move, crusted nose, nasal or ocular discharge, drooped ears or head, and gaunt appearance). Whereas 41 blood samples could not be processed due to immediate freezing, for 124 of these steers, complete and differential blood cell count, total serum protein, plasma fibrinogen, serum concentration of haptoglobin (HP), and serum amyloid A (SAA) were determined. The disease definition for BRD was a rectal temperature ≥ 40.0°C, at least 2 clinical signs of BRD, and HP > 0.15 mg/mL. It was noteworthy that 94% of the 124 steers identified by the feedlot staff with clinical signs of BRD had HP > 0.15 mg/mL. An increase in mean meal intake, frequency, and mean inter-meal interval was associated with a decreased hazard for developing BRD 7 d before visual identification (P < 0.001). Furthermore, increased mean mealtime, frequency

  8. Avian dark cells

    NASA Technical Reports Server (NTRS)

    Hara, J.; Plymale, D. R.; Shepard, D. L.; Hara, H.; Garry, Robert F.; Yoshihara, T.; Zenner, Hans-Peter; Bolton, M.; Kalkeri, R.; Fermin, Cesar D.

    2002-01-01

    Dark cells (DCs) of mammalian and non-mammalian species help to maintain the homeostasis of the inner ear fluids in vivo. Although the avian cochlea is straight and the mammalian cochlea is coiled, no significant difference in the morphology and/or function of mammalian and avian DCs has been reported. The mammalian equivalent of avian DCs are marginal cells and are located in the stria vascularis along a bony sheet. Avian DCs hang free from the tegmentum vasculosum (TV) of the avian lagena between the perilymph and endolymph. Frame averaging was used to image the fluorescence emitted by several fluorochromes applied to freshly isolated dark cells (iDCs) from chickens (Gallus domesticus) inner ears. The viability of iDCs was monitored via trypan blue exclusion at each isolation step. Sodium Green, BCECF-AM, Rhodamine 123 and 9-anthroyl ouabain molecules were used to test iDC function. These fluorochromes label iDCs ionic transmembrane trafficking function, membrane electrogenic potentials and Na+/K+ ATPase pump's activity. Na+/K+ ATPase pump sites, were also evaluated by the p-nitrophenyl phosphatase reaction. These results suggest that iDCs remain viable for several hours after isolation without special culturing requirements and that the number and functional activity of Na+/K+ ATPase pumps in the iDCs were indistinguishable from in vivo DCs. Primary cultures of freshly iDCs were successfully maintained for 28 days in plastic dishes with RPMI 1640 culture medium. The preparation of iDCs overcomes the difficulty of DCs accessability in vivo and the unavoidable contamination that rupturing the inner ear microenvironments induces.

  9. Evaluation of the NanoChip 400 system for detection of influenza A and B, respiratory syncytial, and parainfluenza viruses.

    PubMed

    Takahashi, Hiroshi; Norman, Sylvia A; Mather, Elizabeth L; Patterson, Bruce K

    2008-05-01

    The NanoChip400 system uses multiplex PCR chemistry and electronic microarray detection of influenza A and B viruses; respiratory syncytial viruses A and B; and human parainfluenza virus types 1, 2, and 3. The results obtained with the NanoChip 400 system were compared with those obtained by direct fluorescent-antibody staining (DFA) and real-time PCR with 122 and 130 specimens, respectively. Concordance between DFA and NanoChip 400 system was obtained for 106 of 122 (86.9%) specimens. On the basis of discrepancy analysis with specimens available for confirmatory real-time PCR testing, the sensitivity and specificity of the NanoChip 400 were 98.6% and 100%, respectively. With respect to specimens previously tested by real-time PCR, the NanoChip 400 system demonstrated a sensitivity of 91.1% and a specificity of 100%. The NanoChip 400 system provides clinical laboratories with a practical, rapid, and sensitive method for the detection of common respiratory viruses.

  10. Central nervous system alterations caused by infection with the human respiratory syncytial virus.

    PubMed

    Bohmwald, Karen; Espinoza, Janyra A; González, Pablo A; Bueno, Susan M; Riedel, Claudia A; Kalergis, Alexis M

    2014-11-01

    Worldwide, the human respiratory syncytial virus (hRSV) is the leading cause of infant hospitalization because of acute respiratory tract infections, including severe bronchiolitis and pneumonia. Despite intense research, to date there is neither vaccine nor treatment available to control hRSV disease burden globally. After infection, an incubation period of 3-5 days is usually followed by symptoms, such as cough and low-grade fever. However, hRSV infection can also produce a larger variety of symptoms, some of which relate to the individual's age at infection. Indeed, infants can display severe symptoms, such as dyspnea and chest wall retractions. Upon examination, crackles and wheezes are also common features that suggest infection by hRSV. Additionally, infection in infants younger than 1 year is associated with several non-specific symptoms, such as failure to thrive, periodic breathing or apnea, and feeding difficulties that usually require hospitalization. Recently, neurological symptoms have also been associated with hRSV respiratory infection and include seizures, central apnea, lethargy, feeding or swallowing difficulties, abnormalities in muscle tone, strabismus, abnormalities in the CSF, and encephalopathy. Here, we discuss recent findings linking the neurological, extrapulmonary effects of hRSV with infection and functional impairment of the CNS.

  11. Only one of the two type VI secretion systems encoded in the Salmonella enterica serotype Dublin genome is involved in colonization of the avian and murine hosts.

    PubMed

    Pezoa, David; Blondel, Carlos J; Silva, Cecilia A; Yang, Hee-Jeong; Andrews-Polymenis, Helene; Santiviago, Carlos A; Contreras, Inés

    2014-01-09

    The type VI secretion system (T6SS) is a virulence factor for many Gram-negative bacteria. Salmonella genus harbors five phylogenetically distinct T6SS loci encoded in Salmonella Pathogenicity Islands (SPIs) SPI-6, SPI-19, SPI-20, SPI-21 and SPI-22, which are differentially distributed among serotypes. The T6SSs encoded in SPI-6 and SPI-19 contribute to pathogenesis of serotypes Typhimurium and Gallinarum in mice and chickens, respectively. Salmonella Dublin is a pathogen restricted to cattle where it causes a systemic disease. Also, it can colonize other hosts such as chickens and mice, which can act as reservoirs of this serotype. Salmonella Dublin harbors the genes for both T6SS(SPI-6) and T6SS(SPI-19). This study has determined the contribution of T6SS(SPI-6) and T6SS(SPI-19) to host-colonization by Salmonella Dublin using avian and murine models of infection. Competitive index experiments showed that, a mutant strain lacking both T6SSs (∆T6SS(SPI-6)/∆T6SS(SPI-19)) presents a strong colonization defect in cecum of chickens, similar to the defect observed for the ∆T6SS(SPI-6) mutant, suggesting that this serotype requires a functional T6SS(SPI-6) for efficient colonization of the avian gastrointestinal tract. Colonization of mice was also defective, although to a lesser extent than in chickens. In contrast, the T6SS(SPI-19) was not necessary for colonization of either chickens or mice. Transfer of T6SS(SPI-6), but not T6SS(SPI-19), restored the ability of the double mutant to colonize both animal hosts. Our data indicate that Salmonella Dublin requires only the T6SS(SPI-6) for efficient colonization of mice and chickens, and that the T6SS(SPI-6) and T6SS(SPI-19) are not functionally redundant.

  12. Pandemic threat posed by avian influenza A viruses.

    PubMed

    Horimoto, T; Kawaoka, Y

    2001-01-01

    Influenza pandemics, defined as global outbreaks of the disease due to viruses with new antigenic subtypes, have exacted high death tolls from human populations. The last two pandemics were caused by hybrid viruses, or reassortants, that harbored a combination of avian and human viral genes. Avian influenza viruses are therefore key contributors to the emergence of human influenza pandemics. In 1997, an H5N1 influenza virus was directly transmitted from birds in live poultry markets in Hong Kong to humans. Eighteen people were infected in this outbreak, six of whom died. This avian virus exhibited high virulence in both avian and mammalian species, causing systemic infection in both chickens and mice. Subsequently, another avian virus with the H9N2 subtype was directly transmitted from birds to humans in Hong Kong. Interestingly, the genes encoding the internal proteins of the H9N2 virus are genetically highly related to those of the H5N1 virus, suggesting a unique property of these gene products. The identification of avian viruses in humans underscores the potential of these and similar strains to produce devastating influenza outbreaks in major population centers. Although highly pathogenic avian influenza viruses had been identified before the 1997 outbreak in Hong Kong, their devastating effects had been confined to poultry. With the Hong Kong outbreak, it became clear that the virulence potential of these viruses extended to humans.

  13. Pandemic Threat Posed by Avian Influenza A Viruses

    PubMed Central

    Horimoto, Taisuke; Kawaoka, Yoshihiro

    2001-01-01

    Influenza pandemics, defined as global outbreaks of the disease due to viruses with new antigenic subtypes, have exacted high death tolls from human populations. The last two pandemics were caused by hybrid viruses, or reassortants, that harbored a combination of avian and human viral genes. Avian influenza viruses are therefore key contributors to the emergence of human influenza pandemics. In 1997, an H5N1 influenza virus was directly transmitted from birds in live poultry markets in Hong Kong to humans. Eighteen people were infected in this outbreak, six of whom died. This avian virus exhibited high virulence in both avian and mammalian species, causing systemic infection in both chickens and mice. Subsequently, another avian virus with the H9N2 subtype was directly transmitted from birds to humans in Hong Kong. Interestingly, the genes encoding the internal proteins of the H9N2 virus are genetically highly related to those of the H5N1 virus, suggesting a unique property of these gene products. The identification of avian viruses in humans underscores the potential of these and similar strains to produce devastating influenza outbreaks in major population centers. Although highly pathogenic avian influenza viruses had been identified before the 1997 outbreak in Hong Kong, their devastating effects had been confined to poultry. With the Hong Kong outbreak, it became clear that the virulence potential of these viruses extended to humans. PMID:11148006

  14. Experimental avian paramyxovirus serotype-3 infection in chickens and turkeys.

    PubMed

    Kumar, Sachin; Militino Dias, Flavia; Nayak, Baibaswata; Collins, Peter L; Samal, Siba K

    2010-01-01

    Avian paramyxoviruses (APMV) are divided into nine serotypes. Newcastle disease virus (APMV-1) is the most extensively characterized, while relatively little information is available for the other APMV serotypes. In the present study, we examined the pathogenicity of two divergent strains of APMV-3, Netherlands and Wisconsin, in (i) 9-day-old embryonated chicken eggs, (ii) 1-day-old specific pathogen free (SPF) chicks and turkeys, and (iii) 2-week-old SPF chickens and turkeys. The mean death time in 9-day-old embryonated chicken eggs was 112 h for APMV-3 strain Netherlands and > 168 h for strain Wisconsin. The intracerebral pathogenicity index in 1-day-old chicks for strain Netherlands was 0.39 and for strain Wisconsin was zero. Thus, both strains are lentogenic. Both the strains replicated well in brain tissue when inoculated intracerebrally in 1-day-old SPF chicks, but without causing death. Mild respiratory disease signs were observed in 1-day-old chickens and turkeys when inoculated through oculonasal route with either strain. There were no overt signs of illness in 2-weeks-old chickens and turkeys by either strain, although all the birds seroconverted after infection. The viruses were isolated predominantly from brain, lungs, spleens, trachea, pancreas and kidney. Immunohistochemistry studies also showed the presence of large amount of viral antigens in both epithelial and sub-epithelial lining of respiratory and alimentary tracts. Our result suggests systemic spread of APMV-3 even though the viral fusion glycoprotein does not contain the canonical furin proteases cleavage site. Furthermore, there was little or no disease despite systemic viral spread and abundant viral replication in all the tissues tested.

  15. Outer Membrane Proteins and DNA Profiles in Strains of Haemophilus parasuis Recovered from Systemic and Respiratory Sites

    PubMed Central

    Ruiz, Alvaro; Oliveira, Simone; Torremorell, Montserrat; Pijoan, Carlos

    2001-01-01

    Polyserositis caused by Haemophilus parasuis is an important disease that affects mostly weaned pigs. Recent studies have shown that virulence can differ among strains recovered from distinct body sites and also that it may be related to the presence of certain outer membrane proteins (OMPs). The objective of this study was to compare the OMP and DNA profiles of H. parasuis strains isolated from systemic and respiratory sites from diseased and healthy pigs. Strains evaluated in this study were processed using sodium dodecyl sulfate-polyacrylamide gel electrophoresis and repetitive-PCR techniques. Two experiments were conducted in order to better define the relationship among genotype, phenotype, and site of isolation. Experiment 1 included 53 H. parasuis isolates recovered from healthy and diseased pigs from unrelated herds. Experiment 2 included 31 isolates of H. parasuis obtained from diseased pigs involved in an outbreak in a large, multifarm system. Results showed that strains recovered from systemic sites had more homogeneous OMP and DNA profiles than those isolated from respiratory sites. Evaluation of isolates involved in the multifarm outbreak showed that only two H. parasuis strains were causing disease. These strains had homogeneous OMP and DNA profiles. However, it was noted that these two parameters were unrelated, since strains classified in the same genotype group expressed different OMP profiles. The homogeneity of OMP and DNA profiles of strains isolated from systemic sites strongly suggests the existence of clonal relationships between virulent strains and also suggests that expression of certain OMP profiles may be related to virulence. PMID:11325986

  16. [Effect of change in activity level of catecholaminergic systems on motor, respiratory, and cardiac activities in rat embryos].

    PubMed

    Timofeeva, O P; Vdovichenko, N D; Kuznetsov, S V

    2012-01-01

    Parameters of motor, respiratory and cardiac activities were studied in rat embryos (E17-20) after changes in activity level of catecholaminergic systems. To produce conditions for excessive level of catecholamines, the animal were administered individually with preparation of L-DOPA at doses of 25, 50 and 100 mg/kg. Also studied was action of L-DOPA after blockade of D1-(antagonist - SCH-23390, 0.1 mg/kg), D2-(antagonist - sulpiride, 50 mg/kg) dopaminic, and beta2-(antagonist - propranolol, 1 mg/kg) adrenergic receptors. It was found out in E17-18 that the DOPA administration regardless of dose, while in E19-20 dose-dependently produces continuous generalized activity. Between E18 and E19, ontogenetically new is the appearance in 92 % of embryos of stereotypical head movements (circular movements, lateral and dorso-ventral flexions) following in the nearsecond rhythm. Injection of DOPA to rat embryos increased 2-6 times the number of respiratory movements by the gasping type in E17-20 and decreased the amount of episodes of continuous rhythmical respiration in E19-20. No significant heart rate changes were observed after introduction of DOPA to E17-20. There was noted a tendency for a weak acceleration of the heart rate. The changes in activities of the motor and respiratory systems due to a rise of catecholamine level are not connected with activation of the dopamine system, as they are not reduced by blockade of dopamine receptors.

  17. Respiratory Therapists

    MedlinePlus

    ... programs typically include courses in human anatomy and physiology, chemistry, physics, microbiology, pharmacology, and math. Other courses ... and math skills. Respiratory therapists must understand anatomy, physiology, and other sciences and be able to calculate ...

  18. Avian Schistosomes and Outbreaks of Cercarial Dermatitis

    PubMed Central

    Mikeš, Libor; Lichtenbergová, Lucie; Skála, Vladimír; Soldánová, Miroslava; Brant, Sara Vanessa

    2015-01-01

    SUMMARY Cercarial dermatitis (swimmer's itch) is a condition caused by infective larvae (cercariae) of a species-rich group of mammalian and avian schistosomes. Over the last decade, it has been reported in areas that previously had few or no cases of dermatitis and is thus considered an emerging disease. It is obvious that avian schistosomes are responsible for the majority of reported dermatitis outbreaks around the world, and thus they are the primary focus of this review. Although they infect humans, they do not mature and usually die in the skin. Experimental infections of avian schistosomes in mice show that in previously exposed hosts, there is a strong skin immune reaction that kills the schistosome. However, penetration of larvae into naive mice can result in temporary migration from the skin. This is of particular interest because the worms are able to migrate to different organs, for example, the lungs in the case of visceral schistosomes and the central nervous system in the case of nasal schistosomes. The risk of such migration and accompanying disorders needs to be clarified for humans and animals of interest (e.g., dogs). Herein we compiled the most comprehensive review of the diversity, immunology, and epidemiology of avian schistosomes causing cercarial dermatitis. PMID:25567226

  19. The influence of boundary conditions to the flow through model of upper part of human respiratory system

    NASA Astrophysics Data System (ADS)

    Elcner, Jakub; Chovancova, Michaela; Jicha, Miroslav

    2014-03-01

    Respiratory system represents relatively large system of gradually branching channels which can be hardly solved by numerical simulations. Nowadays, research in this area is focused to solve problems in selected parts of respiratory tract rather than whole system. This simplification comes with problem of accurate assessment of boundary conditions on model geometry. Geometry used on Department of Thermomechanics and Environmental Engineering on Brno University of Technology consists of mouth cavity, larynx, trachea and bronchial tree up to seventh generation of branching. This article is focused on comparison of two different settings of boundary conditions steady inspiration during light activity regime. First set of boundary conditions represents commonly used setting with zero pressure resistance on outlet from the model and second method deals with more realistic assumption, where incomplete 3D geometry is coupled with the rest of bronchial tree described by 1D equations and also correlated by the amount of air, which flows in specific lung lobe. The article observed differences in individual mass flow through the model branches under different conditions and its influence on the flow structures.

  20. The effect of artichoke (Cynara scolymus L.) extract on respiratory chain system activity in rat liver mitochondria.

    PubMed

    Juzyszyn, Z; Czerny, B; Myśliwiec, Z; Pawlik, A; Droździk, M

    2010-06-01

    The effect of artichoke extract on mitochondrial respiratory chain (MRC) activity in isolated rat liver mitochondria (including reaction kinetics) was studied. The effect of the extract on the activity of isolated cytochrome oxidase was also studied. Extract in the range of 0.68-2.72 microg/ml demonstrated potent and concentration-dependent inhibitory activity. Concentrations > or =5.4 microg/ml entirely inhibited MRC activity. The succinate oxidase system (MRC complexes II-IV) was the most potently inhibited, its activity at an extract concentration of 1.36 microg/ml being reduced by 63.3% compared with the control (p < 0.05). The results suggest a complex inhibitory mechanism of the extract. Inhibition of the succinate oxidase system was competitive (K(i) = 0.23 microg/ml), whereas isolated cytochrome oxidase was inhibited noncompetitively (K(i) = 126 microg/ml). The results of this study suggest that the salubrious effects of artichoke extracts may rely in part on the effects of their active compounds on the activity of the mitochondrial respiratory chain system.

  1. Validity of Outcome Prediction Scoring Systems in Korean Patients with Severe Adult Respiratory Distress Syndrome Receiving Extracorporeal Membrane Oxygenation Therapy.

    PubMed

    Lee, Seunghyun; Yeo, Hye Ju; Yoon, Seong Hoon; Lee, Seung Eun; Cho, Woo Hyun; Jeon, Doo Soo; Kim, Yun Seong; Son, Bong Soo; Kim, Do Hyung

    2016-06-01

    Recently, several prognostic scoring systems for patients with severe acute respiratory distress syndrome (ARDS) requiring extracorporeal membrane oxygenation (ECMO) have been published. The aim of this study was to validate the established scoring systems for outcome prediction in Korean patients. We retrospectively reviewed the data of 50 patients on ECMO therapy in our center from 2012 to 2014. A calculation of outcome prediction scoring tools was performed and the comparison across various models was conducted. In our study, the overall hospital survival was 46% and successful weaning rate was 58%. The Predicting Death for Severe ARDS on V-V ECMO (PRESERVE) score showed good discrimination of mortality prediction for patients on ECMO with AUC of 0.80 (95% CI 0.66-0.90). The respiratory extracorporeal membrane oxygenation survival prediction (RESP) score and simplified acute physiology score (SAPS) II score also showed fair prediction ability with AUC of 0.79 (95% CI 0.65-0.89) and AUC of 0.78 (95% CI 0.64-0.88), respectively. However, the ECMOnet score failed to predict mortality with AUC of 0.51 (95% CI 0.37-0.66). When evaluating the predictive accuracy according to optimal cut-off point of each scoring system, RESP score had a best specificity of 91.3% and 66.7% of sensitivity, respectively. This study supports the clinical usefulness of the prognostic scoring tools for severe ARDS with ECMO therapy when applying to the Korean patients receiving ECMO.

  2. Self-Calibrating Respiratory-Flowmeter Combination

    NASA Technical Reports Server (NTRS)

    Westenskow, Dwayne R.; Orr, Joseph A.

    1990-01-01

    Dual flowmeters ensure accuracy over full range of human respiratory flow rates. System for measurement of respiratory flow employs two flowmeters; one compensates for deficiencies of other. Combination yields easily calibrated system accurate over wide range of gas flow.

  3. Cystic Fibrosis (CF) Respiratory Screen: Sputum

    MedlinePlus

    ... Cystic Fibrosis (CF) Chloride Sweat Test Lungs and Respiratory System Cystic Fibrosis: Diet and Nutrition Cystic Fibrosis Cystic Fibrosis: Diet and Nutrition Lungs and Respiratory System Contact Us Print Resources Send to a Friend ...

  4. Cystic Fibrosis (CF) Respiratory Screen: Sputum

    MedlinePlus

    ... Cystic Fibrosis (CF) Chloride Sweat Test Lungs and Respiratory System Cystic Fibrosis: Diet and Nutrition Cystic Fibrosis Cystic Fibrosis: Diet and Nutrition Lungs and Respiratory System Contact Us Print Resources Send to a friend ...

  5. Evaluation of a Decision Support System for Obstructive Sleep Apnea with Nonlinear Analysis of Respiratory Signals

    PubMed Central

    Kaimakamis, Evangelos; Tsara, Venetia; Bratsas, Charalambos; Sichletidis, Lazaros; Karvounis, Charalambos; Maglaveras, Nikolaos

    2016-01-01

    Introduction Obstructive Sleep Apnea (OSA) is a common sleep disorder requiring the time/money consuming polysomnography for diagnosis. Alternative methods for initial evaluation are sought. Our aim was the prediction of Apnea-Hypopnea Index (AHI) in patients potentially suffering from OSA based on nonlinear analysis of respiratory biosignals during sleep, a method that is related to the pathophysiology of the disorder. Materials and Methods Patients referred to a Sleep Unit (135) underwent full polysomnography. Three nonlinear indices (Largest Lyapunov Exponent, Detrended Fluctuation Analysis and Approximate Entropy) extracted from two biosignals (airflow from a nasal cannula, thoracic movement) and one linear derived from Oxygen saturation provided input to a data mining application with contemporary classification algorithms for the creation of predictive models for AHI. Results A linear regression model presented a correlation coefficient of 0.77 in predicting AHI. With a cutoff value of AHI = 8, the sensitivity and specificity were 93% and 71.4% in discrimination between patients and normal subjects. The decision tree for the discrimination between patients and normal had sensitivity and specificity of 91% and 60%, respectively. Certain obtained nonlinear values correlated significantly with commonly accepted physiological parameters of people suffering from OSA. Discussion We developed a predictive model for the presence/severity of OSA using a simple linear equation and additional decision trees with nonlinear features extracted from 3 respiratory recordings. The accuracy of the methodology is high and the findings provide insight to the underlying pathophysiology of the syndrome. Conclusions Reliable predictions of OSA are possible using linear and nonlinear indices from only 3 respiratory signals during sleep. The proposed models could lead to a better study of the pathophysiology of OSA and facilitate initial evaluation/follow up of suspected patients OSA

  6. Optimizing the respiratory pump: harnessing inspiratory resistance to treat systemic hypotension.

    PubMed

    Convertino, Victor A; Ryan, Kathy L; Rickards, Caroline A; Glorsky, Steven L; Idris, Ahamed H; Yannopoulos, Demetris; Metzger, Anja; Lurie, Keith G

    2011-06-01

    We review the physiology and affects of inspiration through a low level of added resistance for the treatment of hypotension. Recent animal and clinical studies demonstrated that one of the body's natural response mechanisms to hypotension is to harness the respiratory pump to increase circulation. That finding is consistent with observations, in the 1960s, about the effect of lowering intrathoracic pressure on key physiological and hemodynamic variables. We describe studies that focused on the fundamental relationship between the generation of negative intrathoracic pressure during inspiration through a low level of resistance created by an impedance threshold device and the physiologic sequelae of a respiratory pump. A decrease in intrathoracic pressure during inspiration through a fixed resistance resulting in a pressure difference of 7 cm H(2)O has multiple physiological benefits, including: enhanced venous return and cardiac stroke volume, lower intracranial pressure, resetting of the cardiac baroreflex, elevated cerebral blood flow oscillations, increased tissue blood flow/pressure gradient, and maintenance of the integrity of the baroreflex-mediated coherence between arterial pressure and sympathetic nerve activity. While breathing has traditionally been thought primarily to provide gas exchange, studies of the mechanisms involved in animals and humans provide the physiological underpinnings for "the other side of breathing": to increase circulation to the heart and brain, especially in the setting of physiological stress. The existing results support the use of the intrathoracic pump to treat clinical conditions associated with hypotension, including orthostatic hypotension, hypotension during and after hemodialysis, hemorrhagic shock, heat stroke, septic shock, and cardiac arrest. Harnessing these fundamental mechanisms that control cardiopulmonary physiology provides new opportunities for respiratory therapists and others who have traditionally focused on

  7. Respiratory Allergies: A General Overview of Remedies, Delivery Systems, and the Need to Progress

    PubMed Central

    Colombo, Giselda; Celenza, Cinzia

    2014-01-01

    The spread of respiratory allergies is increasing in parallel with the alarm of the scientific community. Evidently, our knowledge of the onset mechanisms of these diseases and, as a consequence, of the available remedies is inadequate. This review provides a brief, general description of current therapeutic resources and the state of research with regard to both drugs and medical devices in order to highlight their limits and the urgent need for progress. Increasing the amount of basic biochemical research will improve our knowledge of such onset mechanisms and the potential efficacy of therapeutic preparations. PMID:25006500

  8. Role of beta2 agonists in respiratory medicine with particular attention to novel patents and effects on endocrine system and immune response.

    PubMed

    Larocca, Nancy E; Moreno, Dolores; Garmendia, Jenny V; De Sanctis, Juan B

    2011-09-01

    Beta adrenergic receptors are very important in respiratory medicine. Traditionally, the stimulation of beta adrenergic receptors by beta2-agonists is commonly used for giving bronchodilation in chronic airflow obstruction However; the wide distribution of these receptors in cells and tissues other than airway smooth muscle suggests that beta agonists should offer other beneficial effects in respiratory disease. Recent studies have shown the importance of these receptors in the modulation of endocrine and immune system that affect respiratory function and may decrease therapy effectiveness in asthma and chronic obstructive pulmonary disease. New patented compound and uses have provided new insights in future therapeutics of respiratory diseases in which genetic, endocrine and immune response should be considered.

  9. Avian influenza in Poland.

    PubMed

    Smietanka, Krzysztof; Minta, Zenon

    2014-01-01

    Poland has experienced four episodes of avian influenza (AI) outbreaks over the past two decades. The first epidemic was caused by a low pathogenicity (LPAIV) H7N7 subtype and occurred in fattening and breeder turkeys in 1995. Two waves of H5N1 high pathogenicity avian influenza (HPAI) took place in 2006 and 2007. In spring 2006, 64 cases of the H5N1 virus were detected, mostly in mute swans. In December 2007, ten outbreaks of H5N1 HPAI were detected in commercial poultry (n = 9) and wild birds kept in captivity (n = 1). The outbreaks in 2006 and 2007 were caused by genetically similar but clearly distinguishable viruses of the 2.2 clade. In 2013, an H9N2 avian influenza virus was detected in 4 fattening turkey holdings. The virus was low pathogenic and a phylogenetic study has shown a close relatedness to the Eurasian lineage of AIV of the wild bird origin. Neither preventive nor prophylactic vaccinations have ever been used in poultry or other birds. Emergency vaccinations using autogenous vaccine were introduced only to control the H7N7 LPAI outbreaks in 1995. The baseline surveillance for AI in live migratory birds and poultry provides a valuable insight into the ecology of AIV at the wild and domestic bird interface. Passive surveillance is in place of early detection of HPAIV infection in dead or moribund birds.

  10. Evaluation of a commercial vaccine against avian poxvirus in turkeys kept in the backyard system in the state of Yucatan, Mexico.

    PubMed

    Estrella-Tec, J E; Gutiérrez-Ruiz, E J; Ramírez-González, S; Aranda-Cirerol, F; Santos-Ricalde, R; Puerto-Nájera, J L

    2013-12-01

    One hundred and sixty 1-month-old turkey poults were delivered to 40 households in four communities of the State of Yucatan, Mexico. The poults were divided into two populations, one vaccinated and the other non-vaccinated against avian pox. During three months, monthly visits were carried out in order to monitor the appearance of lesions suggesting avian pox in the birds delivered. Each turkey was clinically examined, searching for characteristic avian pox lesions that were classified according to the degree of severity observed. The true incidence rate and the cumulative incidence rate of avian pox were determined and the true incidence and cumulative incidence rates of mortality were determined and the relative risks calculated. The true incidence rates for avian pox in vaccinated and non-vaccinated birds were 1.5 and 1.47 respectively. The cumulative incidence rates were 0.94 and 0.90 for vaccinated and non-vaccinated birds, respectively. The comparison for the whole period between vaccinated and non-vaccinated groups did not show a significant statistical difference for mortality. However, when mortality was compared between vaccinated and non-vaccinated turkeys for each month of the study, there was a statistically significant difference for the first month (relative risk = 0.216, confidence interval 0.069 to 0.676). In addition, when the severity of pox lesions between groups was compared, statistically significant differences were found in favour of the vaccinated birds (P < 0.0001).

  11. Pathobiological features of a novel, highly pathogenic avian influenza A(H5N8) virus.

    PubMed

    Kim, Young-Il; Pascua, Philippe Noriel Q; Kwon, Hyeok-Il; Lim, Gyo-Jin; Kim, Eun-Ha; Yoon, Sun-Woo; Park, Su-Jin; Kim, Se Mi; Choi, Eun-Ji; Si, Young-Jae; Lee, Ok-Jun; Shim, Woo-Sub; Kim, Si-Wook; Mo, In-Pil; Bae, Yeonji; Lim, Yong Taik; Sung, Moon Hee; Kim, Chul-Joong; Webby, Richard J; Webster, Robert G; Choi, Young Ki

    2014-10-01

    The endemicity of highly pathogenic avian influenza (HPAI) A(H5N1) viruses in Asia has led to the generation of reassortant H5 strains with novel gene constellations. A newly emerged HPAI A(H5N8) virus caused poultry outbreaks in the Republic of Korea in 2014. Because newly emerging high-pathogenicity H5 viruses continue to pose public health risks, it is imperative that their pathobiological properties be examined. Here, we characterized A/mallard duck/Korea/W452/2014 (MDk/W452(H5N8)), a representative virus, and evaluated its pathogenic and pandemic potential in various animal models. We found that MDk/W452(H5N8), which originated from the reassortment of wild bird viruses harbored by migratory waterfowl in eastern China, replicated systemically and was lethal in chickens, but appeared to be attenuated, albeit efficiently transmitted, in ducks. Despite predominant attachment to avian-like virus receptors, MDk/W452(H5N8) also exhibited detectable human virus-like receptor binding and replicated in human respiratory tract tissues. In mice, MDk/W452(H5N8) was moderately pathogenic and had limited tissue tropism relative to previous HPAI A(H5N1) viruses. It also induced moderate nasal wash titers in inoculated ferrets; additionally, it was recovered in extrapulmonary tissues and one of three direct-contact ferrets seroconverted without shedding. Moreover, domesticated cats appeared to be more susceptible than dogs to virus infection. With their potential to become established in ducks, continued circulation of A(H5N8) viruses could alter the genetic evolution of pre-existing avian poultry strains. Overall, detailed virological investigation remains a necessity given the capacity of H5 viruses to evolve to cause human illness with few changes in the viral genome.

  12. Structural and functional development of the respiratory system in a newborn marsupial with cutaneous gas exchange.

    PubMed

    Simpson, Shannon J; Flecknoe, Sharon J; Clugston, Robin D; Greer, John J; Hooper, Stuart B; Frappell, Peter B

    2011-01-01

    Marsupials are born with structurally immature lungs and rely, to varying degrees, on cutaneous gas exchange. With a gestation of 13 d and a birth weight of 13 mg, the fat-tailed dunnart (Sminthopsis crassicaudata) is one of the smallest and most immature marsupial newborns. We determined that the skin is almost solely responsible for gas exchange in the early neonatal period. Indeed, fewer than 35% of newborn dunnarts were observed to make any respiratory effort on the day of birth, with pulmonary ventilation alone not meeting the demand for oxygen until approximately 35 d postpartum. Despite the lack of pulmonary ventilation, the phrenic nerve had made contact with the diaphragm, and the respiratory epithelium was sufficiently developed to support gas exchange on the day of birth. Both type I and type II (surfactant-producing) alveolar epithelial cells were present, with fewer than 7% of the cells resembling undifferentiated alveolar epithelial precursor cells. The type I epithelial cells did, however, display thickened cytoplasmic extensions, leading to a high diffusion distance for oxygen. In addition, the architecture of the lung was immature, resembling the early canalicular stage, with alveolarization not commencing until 45 d postpartum. The pulmonary vasculature was also immature, with a centrally positioned single-capillary layer not evident until 100 d postbirth. These structural limitations may impede efficient pulmonary gas exchange, forcing the neonatal fat-tailed dunnart to rely predominately on its skin, a phenomenon supported by a low metabolic rate and small size.

  13. Respiratory dysfunction associated with traumatic injury to the central nervous system.

    PubMed

    Slack, R S; Shucart, W

    1994-12-01

    Pulmonary dysfunction is a common complication of head trauma and spinal cord injury. Abnormal breathing patterns reflect the influence of altered neural integration. Early arterial hypoxemia can result from ventilation-perfusion mismatching, microatelectasis, aspiration, fat embolism, or the development of the adult respiratory distress syndrome. Significant changes in lung volumes, ventilation, and gas exchange can occur in spinal cord injury as a result of the loss of diaphramatic or intercostal muscle function. Recruitment of accessory respiratory muscles plays an important role in stabilizing the rib cage and improving expiratory function. Strength training improves expiratory muscle function in quadriplegics and should be continued indefinitely. Most importantly, survival of patients with CNS injuries improves with meticulous and vigorous pulmonary hygiene. The pulmonary hygiene program should include regular changes in the patient's position, assisted coughing and deep breathing exercises, incentive spirometer, bronchodilators, fiberoptic bronchoscopy when indicated, and frequent monitoring of pulmonary mechanics. Long-term survival of the patient with head trauma or spinal cord injury is correlated to successful weaning from mechanical ventilation. Various forms of mechanical ventilator support can be adopted for the patient's ventilatory needs, and many patients will achieve some degree of freedom from mechanical ventilation. Newer ventilatory assist devices that do not require tracheostomy should be considered.

  14. Technical Note: A respiratory monitoring and processing system based on computer vision: prototype and proof of principle.

    PubMed

    Leduc, Nicolas; Atallah, Vincent; Escarmant, Patrick; Vinh-Hung, Vincent

    2016-09-01

    Monitoring and controlling respiratory motion is a challenge for the accuracy and safety of therapeutic irradiation of thoracic tumors. Various commercial systems based on the monitoring of internal or external surrogates have been developed but remain costly. In this article we describe and validate Madibreast, an in-house-made respiratory monitoring and processing device based on optical tracking of external markers. We designed an optical apparatus to ensure real-time submillimetric image resolution at 4 m. Using OpenCv libraries, we optically tracked high-contrast markers set on patients' breasts. Validation of spatial and time accuracy was performed on a mechanical phantom and on human breast. Madibreast was able to track motion of markers up to a 5 cm/s speed, at a frame rate of 30 fps, with submillimetric accuracy on mechanical phantom and human breasts. Latency was below 100 ms. Concomitant monitoring of three different locations on the breast showed discrepancies in axial motion up to 4 mm for deep-breathing patterns. This low-cost, computer-vision system for real-time motion monitoring of the irradiation of breast cancer patients showed submillimetric accuracy and acceptable latency. It allowed the authors to highlight differences in surface motion that may be correlated to tumor motion. PACS number(s): 87.55.km.

  15. Technical Note: A respiratory monitoring and processing system based on computer vision: prototype and proof of principle.

    PubMed

    Leduc, Nicolas; Atallah, Vincent; Escarmant, Patrick; Vinh-Hung, Vincent

    2016-09-08

    Monitoring and controlling respiratory motion is a challenge for the accuracy and safety of therapeutic irradiation of thoracic tumors. Various commercial systems based on the monitoring of internal or external surrogates have been developed but remain costly. In this article we describe and validate Madibreast, an in-house-made respiratory monitoring and processing device based on optical tracking of external markers. We designed an optical apparatus to ensure real-time submillimetric image resolution at 4 m. Using OpenCv libraries, we optically tracked high-contrast markers set on patients' breasts. Validation of spatial and time accuracy was performed on a mechanical phantom and on human breast. Madibreast was able to track motion of markers up to a 5 cm/s speed, at a frame rate of 30 fps, with submillimetric accuracy on mechanical phantom and human breasts. Latency was below 100 ms. Concomitant monitoring of three different locations on the breast showed discrepancies in axial motion up to 4 mm for deep-breathing patterns. This low-cost, computer-vision system for real-time motion monitoring of the irradiation of breast cancer patients showed submillimetric accuracy and acceptable latency. It allowed the authors to highlight differences in surface motion that may be correlated to tumor motion.v.

  16. Successful management of acute respiratory failure in an Idiopathic Pulmonary Fibrosis patient using an extracorporeal carbon dioxide removal system.

    PubMed

    Vianello, Andrea; Arcaro, Giovanna; Paladini, Luciana; Iovino, Silvia

    2016-08-01

    Patients with Idiopathic Pulmonary Fibrosis (IPF) requiring Invasive Mechanical Ventilation (IMV) following unsuccessful treatment with Non-Invasive Ventilation (NIV) have a high mortality rate. IMV is, moreover, an independent predictor of poor outcome during the post-transplantation period in patients on waiting lists for Lung Transplantation (LT). Here we describe the successful management of an IPF patient with acute respiratory failure (ARF) using a pump-assisted veno-venous system for extracorporeal CO2 removal (ECCO2R) (ProLUNG® system) as an alternative to endotracheal intubation (ETI) following NIV failure. Given this positive experience, further studies are warranted focusing on the ECCO2R system's tolerability, safety, and efficacy in patients with IPF and severe ARF in whom NIV alone is ineffective.

  17. The pathogenicity of avian metapneumovirus subtype C wild bird isolates in domestic turkeys

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Avian metapneumovirus subtype C (aMPV/C) causes severe upper respiratory disease in turkeys. Previous report revealed the presence of aMPV/C in wild birds in the southeast regions of the United States. In this study, aMPV/C positive oral swabs from American coot (AC) and Canada goose (CG) were passa...

  18. Pathogenic assessment of recombinant avian metapneumovirus subgroup C viruses in SPF chickens and turkeys.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Avian metapneumovirus subgroup C (aMPV-C), a member of the Paramyxoviridae family, causes an upper respiratory disease in turkeys, resulting in significant economic losses for the US turkey industry. To study the disease pathogenesis and to eventually develop a safe and effective vaccine against aMP...

  19. Generation of recombinant avian metapneumovirus subgroup C viruses for pathogenesis studies and vaccine development

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Avian metapneumovirus subgroup C (aMPV-C), a member of the Paramyxoviridae family, causes an upper respiratory disease in turkeys, resulting in significant economic losses for the US turkey industry. To study the disease pathogenesis and to eventually develop a safe and effective vaccine against aMP...

  20. Preliminary crystallographic analysis of avian infectious bronchitis virus main protease

    SciTech Connect

    Li, Jun; Shen, Wei; Liao, Ming; Bartlam, Mark

    2007-01-01

    The avian infectious bronchitis virus main protease has been crystallized; crystals diffract to 2.7 Å resolution. Infectious bronchitis virus (IBV) is the prototype of the genus Coronavirus. It causes a highly contagious disease which affects the respiratory, reproductive, neurological and renal systems of chickens, resulting great economic losses in the poultry industry worldwide. The coronavirus (CoV) main protease (M{sup pro}), which plays a pivotal role in viral gene expression and replication through a highly complex cascade involving the proteolytic processing of replicase polyproteins, is an attractive target for antiviral drug design. In this study, IBV M{sup pro} was overexpressed in Escherichia coli. Crystals suitable for X-ray crystallography have been obtained using microseeding techniques and belong to space group P6{sub 1}22. X-ray diffraction data were collected in-house to 2.7 Å resolution from a single crystal. The unit-cell parameters were a = b = 119.1, c = 270.7 Å, α = β = 90, γ = 120°. Three molecules were predicted to be present in the asymmetric unit from a calculated self-rotation function.

  1. Investigation of the flow-field in the upper respiratory system when wearing N95 filtering facepiece respirator.

    PubMed

    Zhang, Xiaotie; Li, Hui; Shen, Shengnan; Cai, Mang

    2016-01-01

    This article presents a reverse modeling of the headform when wearing a filtering facepiece respirator (FFR) and a computational fluid dynamics (CFD) simulation based on the modeling. The whole model containing the upper respiratory airway, headform, and FFR was directly recorded by computed tomography (CT) scanning, and a medical contrast medium was used to make the FFR "visible." The FFR was normally worn by the subject during CT scanning so that the actual deformation of both the FFR and the face muscles during contact can be objectively conserved. The reverse modeling approach was introduced to rebuild the geometric model and convert it into a CFD solvable model. In this model, we conducted a transient numerical simulation of air flow containing carbon dioxide, thermal dynamics, and pressure and wall shear stress distribution in the respiratory system taking into consideration an individual wearing a FFR. The breathing cycle was described as a time-dependent profile of the air velocity through the respiratory airway. The result shows that wearing the N95 FFR results in CO2 accumulation, an increase in temperature and pressure elevation inside the FFR cavity. The volume fraction of CO2 reaches 1.2% after 7 breathing cycles and then is maintained at 3.04% on average. The wearers re-inhale excessive CO2 in every breathing cycle from the FFR cavity. The air temperature in the FFR cavity increases rapidly at first and then stays close to the exhaled temperature. Compared to not wearing an FFR, wearers have to increase approximately 90 Pa more pressure to keep the same breathing flow rate of 30.54 L/min after wearing an FFR. The nasal vestibule bears more wall shear stress than any other area in the airway.

  2. The relationship between clinical signs of respiratory system disorders and lung lesions at slaughter in veal calves.

    PubMed

    Leruste, H; Brscic, M; Heutinck, L F M; Visser, E K; Wolthuis-Fillerup, M; Bokkers, E A M; Stockhofe-Zurwieden, N; Cozzi, G; Gottardo, F; Lensink, B J; van Reenen, C G

    2012-06-01

    The presence and severity of lung lesions recorded post-mortem is commonly used as an indicator to assess the prevalence of respiratory problems in batches of bovines. In the context of a welfare monitoring based on on-farm measures, the recording of clinical signs on calves at the farm would be more convenient than the recording of lung lesions at slaughter. The aim of the present study was to investigate the relationship between clinical respiratory signs at farm and post-mortem analyses of lung lesions observed at slaughter in veal calves. If clinical signs were a good predictor of lung lesions it could be possible to integrate only those measures in a welfare monitoring system. One-hundred-and-seventy-four batches of calves were observed 3 times: at 3 and 13 weeks after arrival of the calves at the unit and at 2 weeks before slaughter. For each batch a maximum of 300 calves was observed and the proportions of calves showing abnormal breathing, nasal discharge and coughing were recorded. Post-mortem inspection was carried out on a sample of lungs belonging to calves from the observed batches. Each examined lung was classified according to a 4-point scale for pneumonia from healthy lung (score 0) to severe lesions (score 3). The clinical signs recorded infra vitam were significantly correlated with moderate and severe lung lesions for observations at 13 weeks and 2 weeks before slaughter and the level of the correlation was highly variable (r(sp) from 0.16 to 0.40). Receiver operating characteristic (ROC) curves were created and the area under the curves showed that batches with a high proportion of lungs with moderate or severe lesions could not be accurately detected by the three clinical signs of respiratory disorders. These results suggest that both clinical signs and post-mortem inspection of lung lesions must be included in a welfare monitoring schemes for veal calves.

  3. Inflammatory damage on respiratory and nervous systems due to hRSV infection.

    PubMed

    Bohmwald, Karen; Espinoza, Janyra A; Becerra, Daniela; Rivera, Katherine; Lay, Margarita K; Bueno, Susan M; Riedel, Claudia A; Kalergis, Alexis M

    2015-10-01

    The exacerbated inflammatory response elicited by human Respiratory Syncytial Virus (hRSV) in the lungs of infected patients causes a major health burden in the pediatric and elderly population. Since the discovery of hRSV, the exacerbated host immune-inflammatory response triggered by this virus has been extensively studied. In this article, we review the effects on the airways caused by immune cells and cytokines/chemokines secreted during hRSV infection. While molecules such as interferons contribute at controlling viral infection, IL-17 and others produce damage to the hRSV-infected lung. In addition to affecting the airways, hRSV infection can cause significant neurologic abnormalities in the host, such as seizures and encephalopathy. Although the origin of these symptoms remains unclear, studies from patients suffering neurological alteration suggest an involvement of the inflammatory response against hRSV.

  4. The innate immune system of the perinatal lung and responses to respiratory syncytial virus infection.

    PubMed

    Derscheid, R J; Ackermann, M R

    2013-09-01

    The response of the preterm and newborn lung to airborne pathogens, particles, and other insults is initially dependent on innate immune responses since adaptive responses may not fully mature and require weeks for sufficient responses to antigenic stimuli. Foreign material and microbial agents trigger soluble, cell surface, and cytoplasmic receptors that activate signaling cascades that invoke release of surfactant proteins, defensins, interferons, lactoferrin, oxidative products, and other innate immune substances that have antimicrobial activity, which can also influence adaptive responses. For viral infections such as respiratory syncytial virus (RSV), the pulmonary innate immune responses has an essential role in defense as there are no fully effective vaccines or therapies for RSV infections of humans and reinfections are common. Understanding the innate immune response by the preterm and newborn lung may lead to preventive strategies and more effective therapeutic regimens.

  5. [Response of immune system and lymphoid tissue of respiratory and gastrointestinal organs to space flight factors].

    PubMed

    Sapin, M R; Erofeeva, L M; Grigorenko, D E

    1999-01-01

    The studies demonstrated that gamma-radiation drastically enhanced destructive processes and suppressed the mitotic activity of lymphocytes in the thymus and spleen. This resulted in the altered morphological picture of immune organs: the inversion of layers occurred in the thymus, the splenic white pulp increased by three times, lymphoid nodules with germinating centers disappeared, the marginal area became thinner. Following gamma-radiation, restorative processes in the thymus and spleen were noticeable just on day 3 and 7, respectively. However, the cell composition of murine immune organs failed to achieve control values by day 60 after exposure. Examining the responses of respiratory and digestive lymphoid tissue to acetaldehyde and drinking water organisms indicated that as the concentration of an acting agent and the time of exposure increased, there was lymphocytopoietic inhibition in the lymphoid formations whereas its small doses activated a local immune response.

  6. Porcine Reproductive and Respiratory Syndrome Virus (PRRSV): Pathogenesis and Interaction with the Immune System.

    PubMed

    Lunney, Joan K; Fang, Ying; Ladinig, Andrea; Chen, Nanhua; Li, Yanhua; Rowland, Bob; Renukaradhya, Gourapura J

    2016-01-01

    This review addresses important issues of porcine reproductive and respiratory syndrome virus (PRRSV) infection, immunity, pathogenesis, and control. Worldwide, PRRS is the most economically important infectious disease of pigs. We highlight the latest information on viral genome structure, pathogenic mechanisms, and host immunity, with a special focus on immune factors that modulate PRRSV infections during the acute and chronic/persistent disease phases. We address genetic control of host resistance and probe effects of PRRSV infection on reproductive traits. A major goal is to identify cellular/viral targets and pathways for designing more effective vaccines and therapeutics. Based on progress in viral reverse genetics, host transcriptomics and genomics, and vaccinology and adjuvant technologies, we have identified new areas for PRRS control and prevention. Finally, we highlight the gaps in our knowledge base and the need for advanced molecular and immune tools to stimulate PRRS research and field applications.

  7. [The effect of wood dust on the respiratory system. Medical examination of furniture factory workers].

    PubMed

    Milanowski, J; Krysińska-Traczyk, E; Skórska, G; Cholewa, G; Sitkowska, J; Dutkiewicz, J; Fafrowicz

    1996-01-01

    The medical-environmental questionnaire, physical examination and pre-shift and post-shift spirometry have been performed in 48 furniture factory workers. The workers showed the work-related symptoms: cough, shortness of breath, chest pain, headache, general malaise, skin symptoms, eye symptoms, rhinitis. No relationship was found between the spirometry values and the frequency of the symptoms. The exposed workers showed a significant post-shift reduction of the FVC, FEV1, FEV1%VC and PEF (p < 0.001). The higher drops of the spirometric parameters occurred in younger workers. The presented data show that processing of wood may be associated with the work-related respiratory symptoms and diseases in exposed workers.

  8. Evidence for Avian Intrathoracic Air Sacs in a New Predatory Dinosaur from Argentina

    PubMed Central

    Sereno, Paul C.; Martinez, Ricardo N.; Wilson, Jeffrey A.; Varricchio, David J.; Alcober, Oscar A.; Larsson, Hans C. E.

    2008-01-01

    Background Living birds possess a unique heterogeneous pulmonary system composed of a rigid, dorsally-anchored lung and several compliant air sacs that operate as bellows, driving inspired air through the lung. Evidence from the fossil record for the origin and evolution of this system is extremely limited, because lungs do not fossilize and because the bellow-like air sacs in living birds only rarely penetrate (pneumatize) skeletal bone and thus leave a record of their presence. Methodology/Principal Findings We describe a new predatory dinosaur from Upper Cretaceous rocks in Argentina, Aerosteon riocoloradensis gen. et sp. nov., that exhibits extreme pneumatization of skeletal bone, including pneumatic hollowing of the furcula and ilium. In living birds, these two bones are pneumatized by diverticulae of air sacs (clavicular, abdominal) that are involved in pulmonary ventilation. We also describe several pneumatized gastralia (“stomach ribs”), which suggest that diverticulae of the air sac system were present in surface tissues of the thorax. Conclusions/Significance We present a four-phase model for the evolution of avian air sacs and costosternal-driven lung ventilation based on the known fossil record of theropod dinosaurs and osteological correlates in extant birds: (1) Phase I—Elaboration of paraxial cervical air sacs in basal theropods no later than the earliest Late Triassic. (2) Phase II—Differentiation of avian ventilatory air sacs, including both cranial (clavicular air sac) and caudal (abdominal air sac) divisions, in basal tetanurans during the Jurassic. A heterogeneous respiratory tract with compliant air sacs, in turn, suggests the presence of rigid, dorsally attached lungs with flow-through ventilation. (3) Phase III—Evolution of a primitive costosternal pump in maniraptoriform theropods before the close of the Jurassic. (4) Phase IV—Evolution of an advanced costosternal pump in maniraptoran theropods before the close of the

  9. A linear, time-varying simulation of the respiratory tract system

    SciTech Connect

    Hernandez, O.

    1992-11-01

    These results show that regional deposition efficiencies of inhaled particles are highly dependent on the level of physical activity in all the spectrum of thermodynamic and aerodynamic aerosol particle sizes; also it was shown that for particles in the aerodynamic size range, the values of regional deposition efficiencies at the inner regions of the lung are highly dependent on age. In addition, the shape of regional deposition efficiency curves as a function of particle size have a similar behavior for all ages; thus, any variation of the airway geometry and respiratory physiological parameters such as tidal volumes and breathing frequencies due to age difference do not cause a change in the fundamental mechanisms of deposition. Thus, for all the cases of physical activity and age dependency, the deposition of ultrafine aerosol particles is highly enhanced by diffusive processes in all regions of the respiratory tract, and for very large aerosol size particles this behavior is repeated again due to impaction and sedimentation mechanisms. Although the results presented at this work, are the result of computer simulations based on different sources of experimental data, the structure of the computer simulation code BIODEP is flexible enough to the acquisition of any kind of new experimental information in terms of biokinetic analysis and regional deposition parameters. In addition, since the design of BIODEP was intended for easy access to the users, then with exception of the subroutine DIVPAG, at this moment, the modular design of BIODEP using FORTRAN 77 allows the implementation of all the subroutines of BIODEP to be used in a interactive mode with any microcomputer.

  10. [A(H5N1) and A(H7N9) avian influenza: the H7N9 avian influenza outbreak of 2013].

    PubMed

    Wang, Quan; Yao, Kai-Hu

    2013-06-01

    influenza virus can infect humans and cause disease. The clinical presentation of human infection is usually mild, but the infection caused by A(H5N1) avian influenza virus occurring initially in Hongkong in 1997 or the A(H7N9) virus isolated first at the beginning of this year in China is severe and characterized by high mortality. The mortality rate of adolescents and children caused by H5N1 avian influenza is lower than that of adults and the younger the child the lower the mortality rate. A few pediatric H7N9 avian influenza cases recovered soon after treatment. A child was determined to be a H7N9 avian influenza virus carrier. These findings suggested that the pediatric H7N9 avian influenza infection was mild. It is very important to start anti-virus treatment with oseltamivir as early as possible in cases of avian influenza infection is considered. Combined therapy, including respiratory and circulatory support and inhibiting immunological reaction, is emphasized in the treatment of severe cases.

  11. Evaluating the penetration of Cladosporium spores into the human respiratory system on the basis of aerobiological sampling results.

    PubMed

    Rantio-Lehtimäki, A

    1989-01-01

    The penetration of Cladosporium spores and spore aggregates into human airways was studied using three different spore sampling methods: 1) a Burkard spore trap for determining the aggregation degree of Cladosporium; two samplers, simulating the human respiratory system, 2) a 6-stage Andersen 2000 sampler, and 3) a new size-selective bioaerosol sampler (SSBAS), designed specifically for immunochemical and chemical analyses. The aggregation degree of Cladosporium spores varied between 1.0 and 1.3 spores per dispersal unit. Grouping seems to be of little if any importance to the penetration ability of Cladosporium spores into the respiratory tract. The distribution of spores in the Andersen and SSBAS differed significantly in the largest size class (spores greater than 7 microns in diameter); with the Andersen sampler only 10.8% of the spores were detected in stage 1, compared with 43% with the SSBAS. On the Andersen culture plates 95% of all colonies were detected in stages 1-4, where particles greater than 2.1 microns in diameter are trapped. In the SSBAS altogether 99.4% of spores were found in the first two filter stages (cutoff point approx. 2.5 microns in diameter). Conclusions regarding the penetration of spores to the lungs on the basis of aerobiological results should always be based on the use of properly calibrated spore traps.

  12. Effects of Adjuvant Systems on the cardiovascular and respiratory functions in telemetered conscious dogs and anaesthetised rats.

    PubMed

    Segal, Lawrence; Roger, Virginie; Williams, Colin; Destexhe, Eric; Garçon, Nathalie

    2015-10-01

    Adjuvants Systems (AS) containing immunostimulant combinations are used in human vaccines. Safety pharmacology studies evaluated the cardiorespiratory effects of AS in conscious telemetered dogs and in anaesthetised rats. Sixteen telemetered beagle dogs (4/group) received intramuscular injections of saline at Day 0, and one clinical dose of AS01, AS03, AS04 or AS15 at Day 7 (7× the equivalent human dose on a bodyweight basis). Bodyweights were measured through Day 14 and cardiorespiratory parameters and body temperature through 72 h post-treatment. Anaesthetised rats (4/group) received one intravenous injection of AS01, AS03 or AS15 at 1 mL/kg bodyweight (140× the equivalent human dosages), or saline. Cardiorespiratory parameters were measured for 120 min post-dose. In dogs, food consumption and mean bodyweight decreased with AS03, and mean body temperature slightly increased with AS01, AS03 and AS15, but were not considered to be adverse. Cardiovascular effects (a slight, reversible increase in mean heart rate and shortened mean RR/PR/QT-intervals) were observed with AS15. No relevant clinical effects or effects on QRS-complex/QTc-interval durations, arterial pressure or respiratory parameters were observed. In rats, there were no consistent treatment-related effects. Collectively, this suggests that AS01, AS03, AS04 and AS15 are not associated with potentially deleterious effects on ventricular repolarisation, atrio/intra-ventricular conductivities or respiratory functions.

  13. The anatomy of the respiratory system in Platysternon megacephalum Gray, 1831 (Testudines: Cryptodira) and related species, and its phylogenetic implications.

    PubMed

    Lambertz, Markus; Böhme, Wolfgang; Perry, Steven F

    2010-07-01

    We discuss the morphology of the respiratory system regarding the phylogenetic relation among selected Testudines (Tetrapoda: Amniota). Lung structure and the associated coelomic organization are compared in Platysternon megacephalum and in representatives of the most-likely closely related taxa Chelydridae and Testudinoidea (Emydidae+Testudinidae). P. megacephalum shows horizontal intrapulmonary septation in the medial chambers, dividing them into dorsal and ventral lobes. This structure is found only in Platysternon and in the Emydidae, and is interpreted as a possible synapomorphy for these two taxa. In addition to further suggested synapomorphies for Platysternon and the Testudinoidea, we found - in contrast to previous reports - a small post-pulmonary septum (PPS) and incomplete coelomic compartmentalization in the Chelydridae. Thus, all major taxa of Testudines possess a PPS. Since this structure is also present in mammals, archosaurs and some lepidosaurs, the plesiomorphy of a coelomic compartmentalization by the PPS in amniotes in general should be considered. These preliminary results indicate that further comparative study of the respiratory apparatus might help resolve the phylogenetic relationships among the Testudines, as well as to shed light on its evolution among the Amniota.

  14. Investigations of the Cardiovascular and Respiratory Systems on Board the International Space Station: Experiments Puls and Pneumocard

    NASA Astrophysics Data System (ADS)

    Baranov, V. M.; Baevsky, R. M.; Drescher, J.; Tank, J.

    parameters describing the results of the function of these systems like heart rate, arterial pressure, cardiac output, or breathing frequency, concentration of O2 and CO2 , etc. Missing significant changes of these parameters during weightlessness supports the hypothesis that adaptational and compensatory mechanisms are sufficient and guarantee cardiovascular homeostasis under changing environmental conditions. characteristic changes of the vegetative balance and of the activity of different regulatory elements at the brainstem and subcortical level. This changes guaranteed the adaptation to long term weightlessness. However, it remains unclear to what extent the different levels are involved. Moreover, the criteria describing the efficacy of cardiorespiratory interaction for the different functional states are not defined yet. The investigation of this problems is highly relevant in order to improve the medical control, especially if considering that the disruption of regulatory systems mostly precedes dangerous destruction of homeostasis. cardiovascular and respiratory function on Board the International Space Station (ISS) aiming to obtain new insights into the interaction between different regulatory elements. "Puls" is measures ECG, photoplethysmogram (PPG), and the pneumotachogram (PTG). The ECG is used to measure time series of R-R intervals and to analyse HRV. PPG is used to define the pulse wave velocity, phases of the cardiac cycle, and an estimate of the filling of finger vessels. The variability of these parameters is also calculated and compared to HRV. The analysis of the PTG allows to describe the interaction of the regulatory parameters of the cardiovascular and respiratory systems. Hence, an important feature of the experiment "Puls" is the investigation of regulatory mechanisms rather than of cardiovascular homeostasis. cardiography) and left ventricular contractility (seismocardiography) will be obtained. This expansion is of major importance

  15. Association between exposure to emissions from the oil and gas industry and pathology of the immune, nervous, and respiratory systems, and skeletal and cardiac muscle in beef calves.

    PubMed

    Waldner, Cheryl L; Clark, Edward G

    2009-01-01

    To determine potential associations between emissions from oil and gas field facilities and the risk of lesions in the immune, nervous, and respiratory systems of beef calves, researchers examined tissue samples collected from 1,531 cases with exposure data, which included aborted fetuses, stillbirths, and calf mortalities from 203 cow-calf herds, by means of histopathology. The researchers prospectively measured exposure to sulfur dioxide, hydrogen sulfide, and volatile organic compounds by using air-monitoring data from passive monitors. They used the density of facilities surrounding each pasture as a second measure of exposure. Each tissue was classified by the presence or absence of a series of specified lesions, including those associated with degeneration, necrosis, infection, inflammation, anomaly, lympholysis (for lymphoid tissue), and proliferation (for the respiratory system). Exposure was not associated with the risk of lesions to tissues of either the immune or nervous system in calves that were aborted or died in spring 2002. Exposures to sulfur dioxide and hydrogen sulfide were not significantly associated with the risk of lesions to respiratory tissues in calves that were born alive in spring 2002. Increasing postnatal exposures to volatile organic compounds measured as benzene and toluene were associated with increased odds of respiratory lesions. The association between volatile organic compounds measured as benzene and respiratory lesions was significant for calves older than 3 weeks. During gestation, increasing exposure to sulfur dioxide was associated with increased odds of lesions in either the skeletal muscle or myocardium.

  16. [Anti-nicotine education applied in relation of parents of the diseased children on chronic allergic diseases of respiratory system].

    PubMed

    Przybylski, Grzegorz; Gołda, Ryszard; Pyskir, Jerzy; Pasińska, Magdalena; Ludwikowski, Grzegorz; Kuziemski, Arkadiusz; Kopiński, Piotr

    2006-01-01

    The allergies of respiratory system are at children the frequent illnesses. Among favorable them factors, risk on passive smoking tobacco can be also. Passive smoking is defined as risk non-smoking on tobacco smoke in environment. Recent reports represent that smoking in home environment tobacco increase on passive smokers' asthma morbidity, especially children in school age. It in it was report the necessity of leadership of anti-nicotine education was underlined in the face of smoking parents. It bets that she should motivate she better parents to cessation smoking, using authority of doctor and love parental. Acting we decided with these principles to analyze effectiveness two year anti-nicotine education which be applied in the face of all treated smoking parents of children with reason of chronic allergic diseases of respiratory system in out-patients. The study comprised parents of 146 children at the Allergy out-Patients clinic, who were diagnosed and cured in years 2003-2005. Generally were 292 persons. The children be treated with reason of bronchial asthma and allergic rhinitis. It the data on subject of smoking of tobacco were collected was on basis of interview got from parents during visits at information bureau on beginning the treatment the children, in his track as well as after two years of education. The anti-nicotine education was applied by whole period of observation during routine medical visits. In moment beginning of treatment in studied group the parents' and education children (n = 292) it 79 the parents' couple did not smoke. Smoking parents among remaining 67 steams were. From among them parents 13 children smoked both, only father in 36 cases smoked and mother in remaining 18 parents' couple smoked. 80 parents smoked with generally. 63 persons after two years of anti-nicotine education the nonsmoking committed one from group smoking. 22 persons among them were from among 24 fathers and 17 mothers' peer in which smoked both parents

  17. The Effects of Leucine, Zinc, and Chromium Supplements on Inflammatory Events of the Respiratory System in Type 2 Diabetic Rats

    PubMed Central

    Kolahian, Saeed; Sadri, Hassan; Shahbazfar, Amir Ali; Amani, Morvarid; Mazadeh, Anis; Mirani, Mehdi

    2015-01-01

    Diabetes mellitus is a major cause of serious micro- and macrovascular diseases that affect nearly every system in the body, including the respiratory system. Non-enzymatic protein glycation due to hyperglycaemic stress has fundamental implications due to the large capillary network and amount of connective tissue in the lung. The current study was designed to determine whether leucine, zinc, and chromium supplementations influence the function and histological structure of the respiratory tract in a rat model of type 2 diabetes. Seventy-seven rats were divided into eleven groups, consisting of 7 animals each. One group served as negative control and insulin and glibenclamide were used as positive control drugs. Thus, eight groups received the nutritional supplements alone or in combination with each other. Nutritional supplements and glibenclamide were added to the drinking water and neutral protamine Hagedorn insulin was subcutaneously injected during the 4 weeks of treatment period. The induction of type 2 diabetes in the rats caused an infiltration of mononuclear cells and edema in the submucosa of the trachea and lung, severe fibrosis around the vessels and airways, and perivascular and peribronchial infiltration of inflammatory cells and fibrin. In the diabetic group, the total inflammation score and Reid index significantly increased. Diabetes induction significantly reduced the total antioxidant status and elevated the lipid peroxidation products in the serum, lung lavage and lung tissue of the diabetic animals. Treatment with nutritional supplements significantly decreased the histopathological changes and inflammatory indices in the diabetic animals. Supplementation of diabetic rats with leucine, zinc, and chromium, alone and in combination, significantly increased the total antioxidant status and lipid peroxidation level in the diabetic animals. The nutritional supplements improved the enzymatic antioxidant activity of catalase, glutathione peroxidase

  18. The Effects of Leucine, Zinc, and Chromium Supplements on Inflammatory Events of the Respiratory System in Type 2 Diabetic Rats.

    PubMed

    Kolahian, Saeed; Sadri, Hassan; Shahbazfar, Amir Ali; Amani, Morvarid; Mazadeh, Anis; Mirani, Mehdi

    2015-01-01

    Diabetes mellitus is a major cause of serious micro- and macrovascular diseases that affect nearly every system in the body, including the respiratory system. Non-enzymatic protein glycation due to hyperglycaemic stress has fundamental implications due to the large capillary network and amount of connective tissue in the lung. The current study was designed to determine whether leucine, zinc, and chromium supplementations influence the function and histological structure of the respiratory tract in a rat model of type 2 diabetes. Seventy-seven rats were divided into eleven groups, consisting of 7 animals each. One group served as negative control and insulin and glibenclamide were used as positive control drugs. Thus, eight groups received the nutritional supplements alone or in combination with each other. Nutritional supplements and glibenclamide were added to the drinking water and neutral protamine Hagedorn insulin was subcutaneously injected during the 4 weeks of treatment period. The induction of type 2 diabetes in the rats caused an infiltration of mononuclear cells and edema in the submucosa of the trachea and lung, severe fibrosis around the vessels and airways, and perivascular and peribronchial infiltration of inflammatory cells and fibrin. In the diabetic group, the total inflammation score and Reid index significantly increased. Diabetes induction significantly reduced the total antioxidant status and elevated the lipid peroxidation products in the serum, lung lavage and lung tissue of the diabetic animals. Treatment with nutritional supplements significantly decreased the histopathological changes and inflammatory indices in the diabetic animals. Supplementation of diabetic rats with leucine, zinc, and chromium, alone and in combination, significantly increased the total antioxidant status and lipid peroxidation level in the diabetic animals. The nutritional supplements improved the enzymatic antioxidant activity of catalase, glutathione peroxidase

  19. Protection by recombinant Newcastle disease viruses (NDV) expressing the glycoprotein (G) of avian metapneumovirus (aMPV) subtype A or B against challenge with virulent NDV and aMPV

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Avian metapneumovirus (aMPV) and Newcastle disease virus (NDV) are threatening avian pathogens that cause sporadic but serious respiratory diseases in poultry worldwide. Although, vaccination, combined with strict biosecurity practices, has been the recommendation for controlling these diseases in t...

  20. Respiratory Protection Performance: Impact of Helmet Integration

    DTIC Science & Technology

    2016-09-01

    helmet system .1 The objective of this effort was to determine the respiratory protection impact of integrating the helmet and respirator into one...demonstrate that integrated helmet respirator systems that use ballistic protective materials with greater mass can achieve similar levels of respiratory ...ECBC-TR-1418 RESPIRATORY PROTECTION PERFORMANCE: IMPACT OF HELMET INTEGRATION Daniel J. Barker Corey M. Grove RESEARCH AND TECHNOLOGY

  1. Identification of viral epitopes recognized by the immune system following vaccination and challenge with the H7N9 avian influenza virus from China

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In March of 2013, the first cases of H7N9 influenza were reported in humans in China, and shortly thereafter the virus was confirmed from poultry in live bird markets. Since that time the virus has persisted in both human and avian populations. The genetic composition of these H7N9 influenza virus...

  2. Functional respiratory imaging to assess the interaction between systemic roflumilast and inhaled ICS/LABA/LAMA

    PubMed Central

    Vos, Wim; Hajian, Bita; De Backer, Jan; Van Holsbeke, Cedric; Vinchurkar, Samir; Claes, Rita; Hufkens, Annemie; Parizel, Paul M; Bedert, Lieven; De Backer, Wilfried

    2016-01-01

    Background Patients with COPD show a significant reduction of the lobar hyperinflation at the functional residual capacity level in the patients who improved >120 mL in forced expiratory volume in 1 second (FEV1) after 6 months of treatment with roflumilast in addition to inhaled corticosteroids (ICSs)/long-acting beta-2 agonists (LABAs)/long-acting muscarinic antagonists (LAMAs). Methods Functional respiratory imaging was used to quantify lobar hyperinflation, blood vessel density, ventilation, aerosol deposition, and bronchodilation. To investigate the exact mode of action of roflumilast, correlations between lobar and global measures have been tested using a mixed-model approach with nested random factors and Pearson correlation, respectively. Results The reduction in lobar hyperinflation appears to be associated with a larger blood vessel density in the respective lobes (t=−2.154, P=0.040); lobes with a higher percentage of blood vessels reduce more in hyperinflation in the responder group. Subsequently, it can be observed that lobes that reduce in hyperinflation after treatment are better ventilated (t=−5.368, P<0.001). Functional respiratory imaging (FRI)-based aerosol deposition showed that enhanced ventilation leads to more peripheral particle deposition of ICS/LABA/LAMA in the better-ventilated areas (t=2.407, P=0.024). Finally, the study showed that areas receiving more particles have increased FRI-based bronchodilation (t=2.564, P=0.017), leading to an increase in FEV1 (R=0.348, P=0.029). Conclusion The study demonstrated that orally administered roflumilast supports the reduction of regional hyperinflation in areas previously undertreated by inhalation medication. The local reduction in hyperinflation induces a redistribution of ventilation and aerosol deposition, leading to enhanced efficacy of the concomitant ICS/LABA/LAMA therapy. FRI appears to be a sensitive tool to describe the mode of action of novel compounds in chronic obstructive pulmonary

  3. The effects of particulate matter on inflammation of respiratory system: Differences between male and female.

    PubMed

    Yoshizaki, Kelly; Brito, Jôse Mára; Silva, Luiz Fernando; Lino-Dos-Santos-Franco, Adriana; Frias, Daniela Perroni; E Silva, Renata Calciolari Rossi; Amato-Lourenço, Luís Fernando; Saldiva, Paulo Hilário Nascimento; de Fátima Lopes Calvo Tibério, Iolanda; Mauad, Thais; Macchione, Mariangela

    2017-05-15

    Air pollution is known to exacerbate respiratory diseases and epidemiological studies have shown that women present more chronic respiratory symptoms than man exposed to traffic pollution, however, the reason why is unclear. This study evaluated the inflammatory differences in BALB/c mouse males (n=34) and females (n=111) in three phases of the estrous cycle that were exposed to ambient air (AA) or concentrated ambient particles (CAPs). Tracheal hyperreactivity to methacholine, bronchoalveolar lavage fluid (BALF) and immunohistochemical of airways and lung parenchyma were studied. Hyperreactivity increased in CAPs-exposed female mice compared with AA-exposed mice in estrus (p<0.05) and proestrus phases (p<0.05) and decreased in CAPs-exposed males compared with those exposed to AA (p<0.05). Males had increased numbers of total cells (p=0.037) and macrophages (p=0.028) compared to females. BALF levels of cyclooxygenase-2(COX-2) (p=0.000), transforming growth factor alpha (TGF-α) (p=0.001) and IL-8 receptor alpha (IL-8Rα) (p=0.014) were increased in males compared with proestrus, estrus and diestrus females, independent of exposure. Proestrus females exhibited significantly higher cadherin expression in lung parenchyma than did males (p=0.005). CAPs exposure increased matrix metalloproteinase-9 (MMP-9) (p=0.024) and isoprostane (p=0.003) expression in the airways of both, males and females. The level of substance P (SP) (p=0.001) increased in lung parenchyma in males compared with females, while IL-17 levels in airways (p=0.042) and in lung parenchyma (p=0.008) increased in females. MMP-9 levels (p=0.024) were significantly lower in the lung parenchyma of CAPs-exposed females. TGF-α (p=0.007) levels increased in the lung parenchyma of CAPs-exposed females compared to AA-exposed females. These results suggest that inflammatory markers differentially expressed in male mice were mostly linked to acute inflammation (IL-1β, IL-8Rα, COX-2), whereas in females, markers

  4. Avian pathogenic Escherichia coli bind fibronectin and laminin.

    PubMed

    Ramírez, Rosa María; Almanza, Yolanda; González, Rafael; García, Santos; Heredia, Norma

    2009-04-01

    Avian colisepticemia frequently occurs after respiratory tract damage, the primary site for infection allows bacteria to encounter an exposed basement membrane, where laminin and fibronectin are important components. We investigated the ability of an isolate of avian pathogenic Escherichia coli to bind fibronectin and laminin. Using Far-western dot blot analysis, we demonstrated the ability of this microorganism to bind basement membrane proteins fibronectin and laminin. Results from an ELISA-based approach indicate that the binding to these membrane proteins was bacterial-dose dependent. Furthermore, two specific E. coli polypeptides, of 32 kDa and 130 kDa, reacted with laminin and fibronectin, respectively. Further evaluation of these potential bacterial adhesins may provide insights into the pathogenesis of colibacillosis.

  5. Respiratory Home Health Care

    MedlinePlus

    ... Healthy Living > Living With Lung Disease > Respiratory Home Health Care Font: Aerosol Delivery Oxygen Resources Immunizations Pollution Nutrition ... Disease Articles written by Respiratory Experts Respiratory Home Health Care Respiratory care at home can contribute to improved ...

  6. Effects of ozone on the respiratory health, allergic sensitization, and cellular immune system in children

    SciTech Connect

    Zwick, H.; Popp, W.; Wagner, C.; Reiser, K.; Schmoeger, J.B.; Boeck, A.H.; Herkner, K.; Radunsky, K. )

    1991-11-01

    To investigate the lasting effects of high ozone concentrations under environmental conditions, we examined the respiratory health, pulmonary function, bronchial hyperresponsiveness to methacholine, allergic sensitization, and lymphocyte subpopulations of 10- to 14-yr-old children. A total of 218 children recruited from an area with high ozone concentrations (Group A) were tested against 281 children coming from an area with low ozone concentrations (Group B). As to subjective complaints, categorized as 'usually cough with or without phlegm,' 'breathlessness,' and 'susceptibility to chest colds,' there was no difference between the two groups. The lung function parameters were similar, but in Group A subjects' bronchial hyperresponsiveness occurred more frequently and was found to be more severe than in Group B (29.4 versus 19.9%, p less than 0.02; PD20 2,100 {plus minus} 87 versus 2,350 {plus minus} 58 micrograms, p less than 0.05). In both groups the number of children who had been suffering from allergic diseases and sensitization to aeroallergens, found by means of the skin test, was the same. Comparison of the total IgE levels showed no difference at all between the two groups. As far as the white blood cells are concerned, the total and differential cell count was the same, whereas lymphocyte subpopulations showed readily recognizable changes.

  7. [Comparative effects of terbutaline sulphate and ipratropium bromide on the respiratory system (author's transl)].

    PubMed

    Villate Navarro, J I; Sobradillo Peña, V; Atxotequi Iaraoligoitia, V; Salaverri Nalda, A; Orive Martínez, C

    1980-04-10

    Bronchodilator action of two pharmacologically different drugs have been compared. Ipratropium bromide (Sch 1000) is a synthetic atropine derivative and terbutaline sulphate is a beta-stimulating agent. Twelve asthmatic patients and eight patients with chronic bronquitis received terbutaline 0.50 mg. and ipratropium 0.04 mg by aerosol inhalation. Both drugs were given at random on a consecutive-day schedule. All patients were clinically stable before treatment (basal FEV/VC less than 60 percent). Total lung capacity (TLC) forced expiratory volume (FEV), SRaw, and V'/V curves before and at 15, 60, 120, and 240 minutes after the produce administration were registered. Presence of side-effects was also checked. An intensive bronchodilator action was observed either after inhalation of ipratropium bromide or terbutaline, but statistical studies showed no significant differences between both drugs in relation to intensity and duration of their actions. Sch 1000 caused similar bronchodilator effects in all cases; a more intense effect in patients with chronic bronchitis could not be noticed. Evaluation of V'/V curve, and especially its relation to a same pulmonary volume, pointed out that both drugs act upon small respiratory airways. Advance side-effects were not present.

  8. Macroscopic anatomy of the ringed seal [Pusa (Phoca) hispida] lower respiratory system.

    PubMed

    Smodlaka, H; Henry, R W; Reed, R B

    2009-06-01

    This investigation serves to document the normal anatomical features of the lower respiratory tract of the ringed seal [Pusa (phoca) hispida]. Evaluation of embalmed specimens and tracheobronchial casts showed that the right lung of this seal consists of four lobes while the left has only three lobes. The ventral margins of the lungs do not reach the sternum causing them to form the boundary of the broad recessus costomediastinalis. Lung lobation corresponds with bronchial tree division. Pulmonary venous drainage includes right and left common veins draining ipsilateral cranial and middle lung lobes, and one common caudal vein draining both caudal lobes and the accessory lobe. The right and left pulmonary arteries divide into cranial and caudal branches at the level of the principal bronchus. The ringed seal has three tracheobronchial lymph nodes. The trachea has an average of 87 cartilages that exhibit a pattern of random anastomoses between adjacent rings. The trachea exhibits to a small degree the dorsoventrally flattened pattern that is described in other pinnipeds. The tracheal diameter is smaller than that of the canine.

  9. Early-life Exposure to Widespread Environmental Toxicants and Health Risk: A Focus on the Immune and Respiratory Systems.

    PubMed

    Cao, Junjun; Xu, Xijin; Hylkema, Machteld N; Zeng, Eddy Y; Sly, Peter D; Suk, William A; Bergman, Åke; Huo, Xia

    2016-01-01

    Evidence has accumulated that exposure to widespread environmental toxicants, such as heavy metals, persistent organic pollutants, and tobacco smoke adversely affect fetal development and organ maturation, even after birth. The developing immune and respiratory systems are more sensitive to environmental toxicants due to their long-term physical development, starting from the early embryonic stage and persisting into early postnatal life, which requires complex signaling pathways that control proliferation and differentiation of highly heterogeneous cell types. In this review, we summarize the effect of early-life exposure to several widespread environmental toxicants on immune and lung development before and after birth, including the effects on immune cell counts, baseline characteristics of cell-mediated and humoral immunity, and alteration of lung structure and function in offspring. We also review evidence supporting the association between early-life exposure to environmental toxicants and risk for immune-related diseases and lung dysfunction in offspring in later life.

  10. [From diagnosis to the detection of avian influenza virus].

    PubMed

    Wunderli, W

    2007-11-01

    Until now the avian influenza A (H5N1) virus is only adapted to birds. But even so infections in man are observed sporadically. Why is this possible and how big is the risk that the virus becomes fully adapted to man so that he can be transmitted easily from man to man. Two major mechanisms for the adaptation to a new host have been described: Adaptation by the accumulation of mutations in important places of the genome and adaptation through the exchange of genome segments between two different types of viruses. But there are indications that the adaptation is not linked to only one event. It is probably a multifactor event where its requirements are not all known or understood. Until now avian influenza is not adapted to man. Infection is primarily observed after close contact with infected birds or their contaminated secretions. It seems that the virus needs to reach the lower respiratory tract in order to be able to infect. The disease starts with the clinical symptoms of influenza but progresses rapidly involving primarily the lower respiratory tract causing sometimes live threatening complications. Because of the similarity of symptoms with normal flu laboratory testing is necessary to clarify the situation. Ideally a rapid test would give in a short time a result. Unfortunately this type of test shows insufficient sensitivity and for this reason is not recommended to screen suspect cases for avian influenza. For this reason the detection of the avian virus by RT-PCR in throat swabs is the method of choice in order to be able to confirm or exclude a suspect case.

  11. Three-dimensional analysis of sexual dimorphism in human thoracic vertebrae: implications for the respiratory system and spine morphology.

    PubMed

    Bastir, Markus; Higuero, Antonio; Ríos, Luís; García Martínez, Daniel

    2014-12-01

    Sexual dimorphism is important for intraspecific variation and well studied in the human skeleton. In the thoracic part of the spine sexual dimorphism is expected for differences in the respiratory system related to body mass, lung capacity, and energetics, and in the reproductive system for adaptations to pregnancy (lower spine lordosis, posture). However, little is known about sexual dimorphism in this anatomical region. We use three-dimensional (3D)-geometric morphometrics to test hypotheses on sexual dimorphism in the first 10 thoracic vertebrae (T1-T10). Forty-six 3D-landmarks were measured on vertebrae of 24 adult females and males of known age and sex. Results confirm that male vertebrae are consistently larger than female ones. Males show more dorsally oriented transverse processes and relatively larger vertebral bodies in upper and lower thoracic vertebrae. Sexual dimorphism in lower thoracic vertebrae affects the orientation of the spinous processes, which is more horizontal in females but more caudal in males. Such regional pattering of sexual dimorphism emerges also from principal component analyses reflecting a complex interaction between the effects of sex and serial position on shape variation. Greater dorsal orientation of male transverse processes reorients the ribs and could lead to greater radial thorax diameters. This fits with greater male respiratory capacities, but may indicate also greater invagination of the male spine within the thorax. Horizontal orientation of the spinous processes in females could allow for a greater thoraco-lumbar lordosis during pregnancy, but more comparative research is necessary to test these hypotheses.

  12. Reconciling the structural attributes of avian antibodies.

    PubMed

    Conroy, Paul J; Law, Ruby H P; Gilgunn, Sarah; Hearty, Stephen; Caradoc-Davies, Tom T; Lloyd, Gordon; O'Kennedy, Richard J; Whisstock, James C

    2014-05-30

    Antibodies are high value therapeutic, diagnostic, biotechnological, and research tools. Combinatorial approaches to antibody discovery have facilitated access to unique antibodies by surpassing the diversity limitations of the natural repertoire, exploitation of immune repertoires from multiple species, and tailoring selections to isolate antibodies with desirable biophysical attributes. The V-gene repertoire of the chicken does not utilize highly diverse sequence and structures, which is in stark contrast to the mechanism employed by humans, mice, and primates. Recent exploitation of the avian immune system has generated high quality, high affinity antibodies to a wide range of antigens for a number of therapeutic, diagnostic and biotechnological applications. Furthermore, extensive examination of the amino acid characteristics of the chicken repertoire has provided significant insight into mechanisms employed by the avian immune system. A paucity of avian antibody crystal structures has limited our understanding of the structural consequences of these uniquely chicken features. This paper presents the crystal structure of two chicken single chain fragment variable (scFv) antibodies generated from large libraries by phage display against important human antigen targets, which capture two unique CDRL1 canonical classes in the presence and absence of a non-canonical disulfide constrained CDRH3. These structures cast light on the unique structural features of chicken antibodies and contribute further to our collective understanding of the unique mechanisms of diversity and biochemical attributes that render the chicken repertoire of particular value for antibody generation.

  13. The effects of individually ventilated cages on the respiratory systems of male and female Wistar rats from birth until adulthood

    PubMed Central

    Marchesi, Guilherme D’Aprile; de Fatima Soto, Sônia; de Castro, Isac; Rodrigues, Thiago Guimarães; Moriya, Henrique Takachi; de Almeida, Francine Maria; Pazetti, Rogerio; Heimann, Joel Claudio; Furukawa, Luzia Naôko Shinohara

    2017-01-01

    OBJECTIVE: To evaluate the respiratory systems of male and female rats maintained in individually ventilated cages (IVCs) from birth until adulthood. METHODS: Female Wistar rats were housed in individually ventilated cages or conventional cages (CCs) and mated with male Wistar rats. After birth and weaning, the male offspring were separated from the females and kept in cages of the same type until 12 weeks of age. RESULTS: The level of food consumption was lower in male offspring (IVC=171.7±9; CC=193.1±20) than in female offspring (IVC=100.6±7; CC=123.4±0.4), whereas the water intake was higher in female offspring (IVC=149.8±11; CC=99.2±0) than in male offspring (IVC=302.5±25; CC=249.7±22) at 11 weeks of age when housed in IVCs. The cage temperature was higher in individually ventilated cages than in conventional cages for both male (IVCs=25.9±0.5; CCs=22.95±0.3) and female (IVCs=26.2±0.3; CCs=23.1±0.3) offspring. The respiratory resistance (IVC=68.8±2.8; CC=50.6±3.0) and elastance (IVC=42.0±3.9; CC=32.4±2.0) at 300 µm/kg were higher in the female offspring housed in ventilated cages. The ciliary beat values were lower in both the male (IVCs=13.4±0.2; CC=15±0.4) and female (IVC=13.5±0.4; CC=15.9±0.6) offspring housed in individually ventilated cages than in those housed in conventional cages. The total cell (IVC=117.5±9.7; CC=285.0±22.8), neutrophil (IVC=13.1±4.8; CC=75.6±4.1) and macrophage (IVC=95.2±11.8; CC=170.0±18.8) counts in the bronchoalveolar lavage fluid were lower in the female offspring housed in individually ventilated cages than in those housed in conventional cages. CONCLUSIONS: The environmental conditions that exist in individually ventilated cages should be considered when interpreting the results of studies involving laboratory animals. In this study, we observed gender dimorphism in both the water consumption and respiratory mechanics of rats kept in ventilated cages. PMID:28355363

  14. [Cardiac, respiratory, and motor activity in norm and after activation of catecholaminergic systems in newborn rat pups].

    PubMed

    Kuznetsov, S V; Dmitrieva, L E; Sizonov, V A

    2012-01-01

    Study of parameters of the cardiac, respiratory, and motor activity (MA) was carried out on newborn rat pups for the first day after birth (P0) and at the 14th day of postnatal development (P14) after change of the level of activity of catecholaminergic systems. The animals were administered with L-DOPA (25-100 mg/kg) and the indirect adrenomimetic isoamine (3 and 10 mg/kg). Additionally there were studied effects of L-DOPA and isoamine after blockade of D1 and D2 dopamine receptors (antagonists SCH-23390 and sulpiride). The L-DOPA administration produced a dose-dependent MA enhancement with its possible transition into the uninterrupted activity. In P0 the release of monoamines was accompanied by development of weak bradycardia. There was noted a tendency for acceleration of respiration at administration of the low dose both of L-DOPA and of isoamine and for its retardation at high doses. In P14 the L-DOPA administration was accompanied by retardation of the heart rate (HR) by 8 % and by acceleration of respiratory rate by 26%. The isoamine administration produced an insignificant decrease of HR and an increase of respiratory rate (RR) by 8% at the low dose and by 21% at the high dose of the agent. At the blockade of D1 receptors, RR remained close to the background values, while at the blockade of D2 - decreased insignificantly. Blockade of D1 and D2 receptors did not cause significant HR changes. Analysis of the HR variability has shown that both after L-DOPA administration and at blockade of dopamine receptors no unidirectional reaction was observed: in 80 % of rat pups the portion of nerve mechanisms of HR regulation increased, while in the rest--of sympathetic and humoral factors at a decrease of parasympathetic effects. In all rat pups the isoamine administration was accompanied by a shift of the specter power into the higher frequency area; in 60% of animals there were enhanced sympathetic influences. In P14 in rat pups after administration both of L

  15. Polydatin protects the respiratory system from PM2.5 exposure

    NASA Astrophysics Data System (ADS)

    Yan, Xiao-Dan; Wang, Qi-Ming; Tie, Cai; Jin, Hong-Tao; Han, Yan-Xing; Zhang, Jin-Lan; Yu, Xiao-Ming; Hou, Qi; Zhang, Piao-Piao; Wang, Ai-Ping; Zhang, Pei-Cheng; Gao, Zhonggao; Jiang, Jian-Dong

    2017-01-01

    Atmospheric particle is one of the risk factors for respiratory disease; however, their injury mechanisms are poorly understood, and prevention methods are highly desirable. We constructed artificial PM2.5 (aPM2.5) particles according to the size and composition of actual PM2.5 collected in Beijing. Using these artificial particles, we created an inhalation-injury animal model. These aPM2.5 particles simulate the physical and chemical characteristics of the actual PM2.5, and inhalation of the aPM2.5 in rat results in a time-dependent change in lung suggesting a declined lung function, injury from oxidative stress and inflammation in lung. Thus, this aPM2.5-caused injury animal model may mimic that of the pulmonary injury in human exposed to airborne particles. In addition, polydatin (PD), a resveratrol glucoside that is rich in grapes and red wine, was found to significantly decrease the oxidative potential (OP) of aPM2.5 in vitro. Treating the model rats with PD prevented the lung function decline caused by aPM2.5, and reduced the level of oxidative damage in aPM2.5-exposed rats. Moreover, PD inhibited aPM2.5-induced inflammation response, as evidenced by downregulation of white blood cells in bronchoalveolar lavage fluid (BALF), inflammation-related lipids and proinflammation cytokines in lung. These results provide a practical means for self-protection against particulate air pollution.

  16. Response of mitochondrial antioxidant system and respiratory pathways to reactive nitrogen species in pea leaves.

    PubMed

    Martí, María C; Florez-Sarasa, Igor; Camejo, Daymi; Pallol, Beatriz; Ortiz, Ana; Ribas-Carbó, Miquel; Jiménez, Ana; Sevilla, Francisca

    2013-02-01

    Nitric oxide (NO) has emerged as an important signaling molecule in plants, but little is known about the effects of reactive nitrogen species in plant mitochondria. In this study, the effects of DETA-NONOate, a pure NO slow generator, and of SIN-1 (3-morpholinosydnonimine), a peroxynitrite producer, on the activities of respiratory pathways, enzymatic and non-enzymatic antioxidants have been investigated in isolated mitochondria from pea leaves. No significant changes in lipid peroxidation, protein oxidation or in ascorbate and glutathione redox state were observed after DETA-NONOate treatments whereas cytochrome pathway (CP) respiration was reversibly inhibited and alternative pathway (AP) respiration showed little inhibition. On the other hand, NO did not affect neither activities of Mn superoxide dismutase (Mn-SOD) nor enzymes involved in the ascorbate and glutathione regeneration in mitochondria except for ascorbate peroxidase (APX), which was reversely inhibited depending on ascorbate concentration. Finally, SIN-1 treatment of mitochondria produced a decrease in CP respiration, an increase in protein oxidation and strongly inhibited APX activity (90%), with glutathione reductase and dehydroascorbate reductase (DHAR) being moderately inhibited (30 and 20%, respectively). This treatment did not affect monodehydroascorbate reductase (MDHAR) and Mn-SOD activities. Results showed that mitochondrial nitrosative stress was not necessarily accompanied by oxidative stress. We suggest that NO-resistant AP and mitochondrial APX may be important components of the H(2) O(2) -signaling pathways under nitrosative stress induced by NO in this organelle. Also, MDHAR and DHAR, via ascorbate regeneration, could constitute an essential antioxidant defense together with Mn-SOD, against NO and ONOO(-) stress in plant mitochondria.

  17. Polydatin protects the respiratory system from PM2.5 exposure

    PubMed Central

    Yan, Xiao-Dan; Wang, Qi-Ming; Tie, Cai; Jin, Hong-Tao; Han, Yan-Xing; Zhang, Jin-Lan; Yu, Xiao-Ming; Hou, Qi; Zhang, Piao-Piao; Wang, Ai-Ping; Zhang, Pei-Cheng; Gao, Zhonggao; Jiang, Jian-Dong

    2017-01-01

    Atmospheric particle is one of the risk factors for respiratory disease; however, their injury mechanisms are poorly understood, and prevention methods are highly desirable. We constructed artificial PM2.5 (aPM2.5) particles according to the size and composition of actual PM2.5 collected in Beijing. Using these artificial particles, we created an inhalation-injury animal model. These aPM2.5 particles simulate the physical and chemical characteristics of the actual PM2.5, and inhalation of the aPM2.5 in rat results in a time-dependent change in lung suggesting a declined lung function, injury from oxidative stress and inflammation in lung. Thus, this aPM2.5-caused injury animal model may mimic that of the pulmonary injury in human exposed to airborne particles. In addition, polydatin (PD), a resveratrol glucoside that is rich in grapes and red wine, was found to significantly decrease the oxidative potential (OP) of aPM2.5 in vitro. Treating the model rats with PD prevented the lung function decline caused by aPM2.5, and reduced the level of oxidative damage in aPM2.5-exposed rats. Moreover, PD inhibited aPM2.5-induced inflammation response, as evidenced by downregulation of white blood cells in bronchoalveolar lavage fluid (BALF), inflammation-related lipids and proinflammation cytokines in lung. These results provide a practical means for self-protection against particulate air pollution. PMID:28067267

  18. Comparison of Respiratory Disease Prevalence among Voluntary Monitoring Systems for Pig Health and Welfare in the UK.

    PubMed

    Eze, J I; Correia-Gomes, C; Borobia-Belsué, J; Tucker, A W; Sparrow, D; Strachan, D W; Gunn, G J

    2015-01-01

    Surveillance of animal diseases provides information essential for the protection of animal health and ultimately public health. The voluntary pig health schemes, implemented in the United Kingdom, are integrated systems which capture information on different macroscopic disease conditions detected in slaughtered pigs. Many of these conditions have been associated with a reduction in performance traits and consequent increases in production costs. The schemes are the Wholesome Pigs Scotland in Scotland, the BPEX Pig Health Scheme in England and Wales and the Pig Regen Ltd. health and welfare checks done in Northern Ireland. This report set out to compare the prevalence of four respiratory conditions (enzootic pneumonia-like lesions, pleurisy, pleuropneumonia lesions and abscesses in the lung) assessed by these three Pig Health Schemes. The seasonal variations and year trends associated with the conditions in each scheme are presented. The paper also highlights the differences in prevalence for each condition across these schemes and areas where further research is needed. A general increase in the prevalence of enzootic pneumonia like lesions was observed in Scotland, England and Wales since 2009, while a general decrease was observed in Northern Ireland over the years of the scheme. Pleurisy prevalence has increased since 2010 in all three schemes, whilst pleuropneumonia has been decreasing. Prevalence of abscesses in the lung has decreased in England, Wales and Northern Ireland but has increased in Scotland. This analysis highlights the value of surveillance schemes based on abattoir pathology monitoring of four respiratory lesions. The outputs at scheme level have significant value as indicators of endemic and emerging disease, and for producers and herd veterinarians in planning and evaluating herd health control programs when comparing individual farm results with national averages.

  19. Comparison of Respiratory Disease Prevalence among Voluntary Monitoring Systems for Pig Health and Welfare in the UK

    PubMed Central

    Eze, J. I.; Correia-Gomes, C.; Borobia-Belsué, J.; Tucker, A. W.; Sparrow, D.; Strachan, D. W.; Gunn, G. J.

    2015-01-01

    Surveillance of animal diseases provides information essential for the protection of animal health and ultimately public health. The voluntary pig health schemes, implemented in the United Kingdom, are integrated systems which capture information on different macroscopic disease conditions detected in slaughtered pigs. Many of these conditions have been associated with a reduction in performance traits and consequent increases in production costs. The schemes are the Wholesome Pigs Scotland in Scotland, the BPEX Pig Health Scheme in England and Wales and the Pig Regen Ltd. health and welfare checks done in Northern Ireland. This report set out to compare the prevalence of four respiratory conditions (enzootic pneumonia-like lesions, pleurisy, pleuropneumonia lesions and abscesses in the lung) assessed by these three Pig Health Schemes. The seasonal variations and year trends associated with the conditions in each scheme are presented. The paper also highlights the differences in prevalence for each condition across these schemes and areas where further research is needed. A general increase in the prevalence of enzootic pneumonia like lesions was observed in Scotland, England and Wales since 2009, while a general decrease was observed in Northern Ireland over the years of the scheme. Pleurisy prevalence has increased since 2010 in all three schemes, whilst pleuropneumonia has been decreasing. Prevalence of abscesses in the lung has decreased in England, Wales and Northern Ireland but has increased in Scotland. This analysis highlights the value of surveillance schemes based on abattoir pathology monitoring of four respiratory lesions. The outputs at scheme level have significant value as indicators of endemic and emerging disease, and for producers and herd veterinarians in planning and evaluating herd health control programs when comparing individual farm results with national averages. PMID:26020635

  20. Modelling and quantification of the thermoregulatory responses of the developing avian embryo: electrical analogies of a physiological system.

    PubMed

    Youssef, Ali; Exadaktylos, Vasileios; Berckmans, Daniel

    2014-08-01

    Homeothermic animals, including birds, try to keep their body temperature at a constant level within certain boundaries by using thermoregulatory mechanisms. However, during incubation, the thermoregulatory system of the chicken embryo evolves through different stages from a poikilothermic to a homeothermic system. Hence, the thermal response of the fertile egg to changes in ambient temperature is different from one day to another during the embryonic development. The incubated egg can be considered as a physical (thermal) system, which transfers energy (heat) down a potential gradient (temperature difference). The heat flow between the micro-environment and the eggshell under a thermal driving force (temperature difference) has been studied in the past by using the analogy to the flow of electric charge under an electromotive-force. In this work, the thermal-response of incubated eggs to a step-increase in ambient-air temperature is studied and modelled. It is shown that the incubated egg is reacting as a first-order system between embryonic days ED01 and ED13, while, starting from ED14, the egg is reacting as a second-order system. This extends the existing RC (resistor-capacitor) circuit analogue to an RLC (resistor-inductor-capacitor) circuit analogue at the later stage of incubation. The concept of considering the fertile egg and its surrounding environment as an energy-handling device is introduced in this paper. It is suggested that the thermoregulation of the embryo has a thermal induction-like effect starting from ED14 and increasing gradually till hatching.

  1. Implementation of Individual System Qualification (ISQ) in a CBRN Respiratory Protection Program, Part B: Standard Operating Procedures

    DTIC Science & Technology

    2014-10-01

    first responders on proper use of respiratory protection programs, donning of respirators , sizing, doffing, maintenance through standard operating...respiratory protection programs (RPP) based on Z1610-11 for CBRN respirators . Prepare and provide standard operating procedures, which standardize...81 F.6 Editing the respirator table

  2. Avian Interferons and Their Antiviral Effectors.

    PubMed

    Santhakumar, Diwakar; Rubbenstroth, Dennis; Martinez-Sobrido, Luis; Munir, Muhammad

    2017-01-01

    Interferon (IFN) responses, mediated by a myriad of IFN-stimulated genes (ISGs), are the most profound innate immune responses against viruses. Cumulatively, these IFN effectors establish a multilayered antiviral state to safeguard the host against invading viral pathogens. Considerable genetic and functional characterizations of mammalian IFNs and their effectors have been made, and our understanding on the avian IFNs has started to expand. Similar to mammalian counterparts, three types of IFNs have been genetically characterized in most avian species with available annotated genomes. Intriguingly, chickens are capable of mounting potent innate immune responses upon various stimuli in the absence of essential components of IFN pathways including retinoic acid-inducible gene I, IFN regulatory factor 3 (IRF3), and possibility IRF9. Understanding these unique properties of the chicken IFN system would propose valuable targets for the development of potential therapeutics for a broader range of viruses of both veterinary and zoonotic importance. This review outlines recent developments in the roles of avian IFNs and ISGs against viruses and highlights important areas of research toward our understanding of the antiviral functions of IFN effectors against viral infections in birds.

  3. Avian Interferons and Their Antiviral Effectors

    PubMed Central

    Santhakumar, Diwakar; Rubbenstroth, Dennis; Martinez-Sobrido, Luis; Munir, Muhammad

    2017-01-01

    Interferon (IFN) responses, mediated by a myriad of IFN-stimulated genes (ISGs), are the most profound innate immune responses against viruses. Cumulatively, these IFN effectors establish a multilayered antiviral state to safeguard the host against invading viral pathogens. Considerable genetic and functional characterizations of mammalian IFNs and their effectors have been made, and our understanding on the avian IFNs has started to expand. Similar to mammalian counterparts, three types of IFNs have been genetically characterized in most avian species with available annotated genomes. Intriguingly, chickens are capable of mounting potent innate immune responses upon various stimuli in the absence of essential components of IFN pathways including retinoic acid-inducible gene I, IFN regulatory factor 3 (IRF3), and possibility IRF9. Understanding these unique properties of the chicken IFN system would propose valuable targets for the development of potential therapeutics for a broader range of viruses of both veterinary and zoonotic importance. This review outlines recent developments in the roles of avian IFNs and ISGs against viruses and highlights important areas of research toward our understanding of the antiviral functions of IFN effectors against viral infections in birds. PMID:28197148

  4. Global phylogeographic limits of Hawaii's avian malaria

    USGS Publications Warehouse

    Beadell, J.S.; Ishtiaq, F.; Covas, R.; Melo, M.; Warren, B.H.; Atkinson, C.T.; Bensch, S.; Graves, G.R.; Jhala, Y.V.; Peirce, M.A.; Rahmani, A.R.; Fonseca, D.M.; Fleischer, R.C.

    2006-01-01

    The introduction of avian malaria (Plasmodium relictum) to Hawaii has provided a model system for studying the influence of exotic disease on naive host populations. Little is known, however, about the origin or the genetic variation of Hawaii's malaria and traditional classification methods have confounded attempts to place the parasite within a global ecological and evolutionary context. Using fragments of the parasite mitochondrial gene cytochrome b and the nuclear gene dihydrofolate reductase-thymidylate synthase obtained from a global survey of greater than 13 000 avian samples, we show that Hawaii's avian malaria, which can cause high mortality and is a major limiting factor for many species of native passerines, represents just one of the numerous lineages composing the morphological parasite species. The single parasite lineage detected in Hawaii exhibits a broad host distribution worldwide and is dominant on several other remote oceanic islands, including Bermuda and Moorea, French Polynesia. The rarity of this lineage in the continental New World and the restriction of closely related lineages to the Old World suggest limitations to the transmission of reproductively isolated parasite groups within the morphological species. ?? 2006 The Royal Society.

  5. Computerized methods for determining respiratory phase on dynamic chest radiographs obtained by a dynamic flat-panel detector (FPD) system.

    PubMed

    Tanaka, Rie; Sanada, Shigeru; Kobayashi, Takeshi; Suzuki, Masayuki; Matsui, Takeshi; Matsui, Osamu

    2006-03-01

    Chest radiography using a dynamic flat-panel detector with a large field of view can provide sequential chest radiographs during respiration. These images provide information regarding respiratory kinetics, which is effective for diagnosis of pulmonary diseases. For valid analysis of respiratory kinetics in diagnosis of pulmonary diseases, it is crucial to determine the association between the kinetics and respiratory phase. We developed four methods to determine the respiratory phase based on image information associated with respiration and compared the results in dynamic chest radiographs of 37 subjects. Here, the properties of each method and future tasks are discussed. The method based on the change in size of the lung gave the most stable results, and that based on the change in distance from the lung apex to the diaphragm was the most promising method for determining the respiratory phase.

  6. Systemic combined melatonin-mitochondria treatment improves acute respiratory distress syndrome in the rat.

    PubMed

    Sun, Cheuk-Kwan; Lee, Fan-Yen; Kao, Ying-Hsien; Chiang, Hsin-Ju; Sung, Pei-Hsun; Tsai, Tzu-Hsien; Lin, Yu-Chun; Leu, Steve; Wu, Ying-Chung; Lu, Hung-I; Chen, Yung-Lung; Chung, Sheng-Ying; Su, Hong-Lin; Yip, Hon-Kan

    2015-03-01

    Despite high in-hospital mortality associated with acute respiratory distress syndrome (ARDS), there is no effective therapeutic strategy. We tested the hypothesis that combined melatonin-mitochondria treatment ameliorates 100% oxygen-induced ARDS in rats. Adult male Sprague-Dawley rats (n = 40) were equally categorized into normal controls, ARDS, ARDS-melatonin, ARDS with intravenous liver-derived mitochondria (1500 μg per rat 6 hr after ARDS induction), and ARDS receiving combined melatonin-mitochondria. The results showed that 22 hr after ARDS induction, oxygen saturation (saO2 ) was lowest in the ARDS group and highest in normal controls, significantly lower in ARDS-melatonin and ARDS-mitochondria than in combined melatonin-mitochondria group, and significantly lower in ARDS-mitochondria than in ARDS-melatonin group. Conversely, right ventricular systolic blood pressure and lung weight showed an opposite pattern compared with saO2 among all groups (all P < 0.001). Histological integrity of alveolar sacs showed a pattern identical to saO2 , whereas lung crowding score exhibited an opposite pattern (all P < 0.001). Albumin level and inflammatory cells (MPO+, CD40+, CD11b/c+) from bronchoalveolar lavage fluid showed a pattern opposite to saO2 (all P < 0.001). Protein expression of indices of inflammation (MMP-9, TNF-α, NF-κB), oxidative stress (oxidized protein, NO-1, NOX-2, NOX-4), apoptosis (mitochondrial Bax, cleaved caspase-3, and PARP), fibrosis (Smad3, TGF-β), mitochondrial damage (cytochrome C), and DNA damage (γ-H2AX+) exhibited an opposite pattern compared to saO2 in all groups, whereas protein (HO-1, NQO-1, GR, GPx) and cellular (HO-1+) expressions of antioxidants exhibited a progressively increased pattern from normal controls to ARDS combined melatonin-mitochondria group (all P < 0.001). In conclusion, combined melatonin-mitochondrial was superior to either treatment alone in attenuating ARDS in this rat model.

  7. Respiratory Systems of Dental Technicians Negatively Affected during 5 Years of Follow-Up

    PubMed Central

    Bozkurt, Nurgül; Yurdasal, Belkıs; Bozkurt, Ali İhsan; Yılmaz, Özlem; Tekin, Mahmut

    2016-01-01

    volume in one second (FEV1). While restrictive disorder was found 25% in the first PFT evaluations, this ratio increased to 31% in the second PFT. When the radiological results were considered, 62% of the first X-ray results were found to be normal but this ratio decreased to 18% in 2013. While reticular/reticulonodular opacities were found in 11% of cases in 2008, it increased to 30% in 2013. Seven technicians were diagnosed with pneumoconiosis (5.6%). Conclusion: Respiratory tracts of the technicians were negatively affected during the five year period. The number of pneumoconiosis cases (5.6%) shows that it is necessary to adopt comprehensive work health and safety precautions for laboratories. PMID:27606139

  8. Avian And Other Zoonotic Influenza

    MedlinePlus

    ... or indirect contact with infected live or dead poultry. Controlling the disease in the animal source is ... avian influenza (HPAI). Viruses that cause outbreaks in poultry but are not generally associated with severe disease ...

  9. Characterization of avian paramyxovirus type 1 from migratory wild birds in chickens.

    PubMed

    Shim, Jong-Bo; So, Hyun-Hee; Won, Ho-Keun; Mo, In-Pil

    2011-12-01

    Newcastle disease virus (NDV) is one of the most important infectious agents in the poultry industry, and vaccines against it have been widely used for prevention and control. Live vaccines, which can replicate in the respiratory and digestive systems, have been especially needed in areas with outbreaks of viscerotropic velogenic Newcastle disease. Towards the goal of searching for a new live vaccine candidate, avian paramyxovirus type 1 (APMV-1) was isolated from the faeces of wild birds. Three APMV-1 strains thus isolated were characterized in terms of phylogeny, pathogenicity, immunogenicity and tissue tropism, and on the basis of these analyses were classified as lentogenic genotype I NDV. CBU2179, one of the three APMV-1 strains, was selected and was evaluated in terms of its efficacy and safety in specific pathogen-free chickens and commercial broilers. The manufactured trial vaccine from this strain, also called CBU2179, induced similar immune responses to those of VG/GA and B1 commercial vaccines, and provided 100% protection against challenge from viscerotropic velogenic NDV, KJW/49 strain (the official challenge strain in Korea). Also, the CBU2179 virus was re-isolated and persisted as long as or longer than other vaccine strains in both the respiratory and alimentary tracts. Therefore, the CBU2179 strain may represent a good candidate for a live Newcastle disease vaccine to protect chickens against viscerotropic velogenic NDV.

  10. Combining Healthcare-Based and Participatory Approaches to Surveillance: Trends in Diarrheal and Respiratory Conditions Collected by a Mobile Phone System by Community Health Workers in Rural Nepal

    PubMed Central

    2016-01-01

    Background Surveillance systems are increasingly relying upon community-based or crowd-sourced data to complement traditional facilities-based data sources. Data collected by community health workers during the routine course of care could combine the early warning power of community-based data collection with the predictability and diagnostic regularity of facility data. These data could inform public health responses to epidemics and spatially-clustered endemic diseases. Here, we analyze data collected on a daily basis by community health workers during the routine course of clinical care in rural Nepal. We evaluate if such community-based surveillance systems can capture temporal trends in diarrheal diseases and acute respiratory infections. Methods During the course of their clinical activities from January to December 2013, community health workers recorded healthcare encounters using mobile phones. In parallel, we accessed condition-specific admissions from 2011–2013 in the hospital from which the community health program was based. We compared diarrhea and acute respiratory infection rates from both the hospital and the community, and assigned three categories of local disease activity (low, medium, and high) to each week in each village cluster with categories determined by tertiles. We compared condition-specific mean hospital rates across categories using ANOVA to assess concordance between hospital and community-collected data. Results There were 2,710 cases of diarrhea and 373 cases of acute respiratory infection reported by community health workers during the one-year study period. At the hospital, the average weekly incidence of diarrhea and acute respiratory infections over the three-year period was 1.8 and 3.9 cases respectively per 1,000 people in each village cluster. In the community, the average weekly rate of diarrhea and acute respiratory infections was 2.7 and 0.5 cases respectively per 1,000 people. Both diarrhea and acute respiratory

  11. Rapid detection of respiratory tract viral infections and coinfections in patients with influenza-like illnesses by use of reverse transcription-PCR DNA microarray systems.

    PubMed

    Renois, Fanny; Talmud, Déborah; Huguenin, Antoine; Moutte, Lauryane; Strady, Christophe; Cousson, Joel; Lévêque, Nicolas; Andréoletti, Laurent

    2010-11-01

    We prospectively tested 95 nasal swabs or nasopharyngeal aspirates taken from 56 adults and 39 children visiting the Reims University Medical Centre (northern France) for influenza-like illnesses (ILI) during the early stage of the French influenza A/H1N1v pandemic (October 2009). Respiratory samples were tested using a combination of two commercially available reverse transcription-PCR (RT-PCR) DNA microarray systems allowing rapid detection of influenza A virus strains, including the new A/H1N1v strain as well as 20 other common or newly discovered respiratory viruses. Concomitantly, a generic and classical real-time RT-PCR assay was performed to detect all circulating influenza A virus strains in the same samples. Of the 95 respiratory samples tested, 30 (31%) were positive for the detection of influenza A/H1N1v virus infection by both RT-PCR DNA microarray and classical real-time RT-PCR detection assays. Among the infections, 25 (83%) were monoinfections, whereas 5 (17%) were multiple infections associating influenza A/H1N1v virus with coronavirus (CoV), human bocavirus (HBoV), respiratory syncytial virus (RSV), or human rhinoviruses (HRVs). Of the 95 respiratory samples tested, 35 (37%) were positive for respiratory viruses other than influenza A/H1N1v virus. Among these infections, we observed 30 monoinfections (HRVs [63%], parainfluenza viruses [PIVs] [20%]), influenza A/H3N2 virus [6%], coronavirus [4%], and HBoV [4%]) and 5 multiple infections, in which HRVs and PIVs were the most frequently detected viruses. No specific single or mixed viral infections appeared to be associated significantly with secondary hospitalization in infectious disease or intensive care departments during the study period (P > 0.5). The use of RT-PCR DNA microarray systems in clinical virology practice allows the rapid and accurate detection of conventional and newly discovered viral respiratory pathogens in patients suffering from ILI and therefore could be of major interest for

  12. The Two Sets of DMSO Respiratory Systems of Shewanella piezotolerans WP3 Are Involved in Deep Sea Environmental Adaptation.

    PubMed

    Xiong, Lei; Jian, Huahua; Zhang, Yuxia; Xiao, Xiang

    2016-01-01

    Dimethyl sulfoxide (DMSO) is an abundant methylated sulfur compound in deep sea ecosystems. However, the mechanism underlying DMSO-induced reduction in benthic microorganisms is unknown. Shewanella piezotolerans WP3, which was isolated from a west Pacific deep sea sediment, can utilize DMSO as the terminal electron acceptor. In this study, two putative dms gene clusters [type I (dmsEFA1B1G1H1) and type II (dmsA2B2G2H2)] were identified in the WP3 genome. Genetic and physiological analyses demonstrated that both dms gene clusters were functional and the transcription of both gene clusters was affected by changes in pressure and temperature. Notably, the type I system is essential for WP3 to thrive under in situ conditions (4°C/20 MPa), whereas the type II system is more important under high pressure or low temperature conditions (20°C/20 MPa, 4°C/0.1 MPa). Additionally, DMSO-dependent growth conferred by the presence of both dms gene clusters was higher than growth conferred by either of the dms gene clusters alone. These data collectively suggest that the possession of two sets of DMSO respiratory systems is an adaptive strategy for WP3 survival in deep sea environments. We propose, for the first time, that deep sea microorganisms might be involved in global DMSO/DMS cycling.

  13. The Potent Respiratory System of Osedax mucofloris (Siboglinidae, Annelida) - A Prerequisite for the Origin of Bone-Eating Osedax?

    PubMed Central

    Huusgaard, Randi S.; Vismann, Bent; Kühl, Michael; Macnaugton, Martin; Colmander, Veronica; Rouse, Greg W.; Glover, Adrian G.; Dahlgren, Thomas; Worsaae, Katrine

    2012-01-01

    Members of the conspicuous bone-eating genus, Osedax, are widely distributed on whale falls in the Pacific and Atlantic Oceans. These gutless annelids contain endosymbiotic heterotrophic bacteria in a branching root system embedded in the bones of vertebrates, whereas a trunk and anterior palps extend into the surrounding water. The unique life style within a bone environment is challenged by the high bacterial activity on, and within, the bone matrix possibly causing O2 depletion, and build-up of potentially toxic sulphide. We measured the O2 distribution around embedded Osedax and showed that the bone microenvironment is anoxic. Morphological studies showed that ventilation mechanisms in Osedax are restricted to the anterior palps, which are optimized for high O2 uptake by possessing a large surface area, large surface to volume ratio, and short diffusion distances. The blood vascular system comprises large vessels in the trunk, which facilitate an ample supply of oxygenated blood from the anterior crown to a highly vascularised root structure. Respirometry studies of O. mucofloris showed a high O2 consumption that exceeded the average O2 consumption of a broad line of resting annelids without endosymbionts. We regard this combination of features of the respiratory system of O. mucofloris as an adaptation to their unique nutrition strategy with roots embedded in anoxic bones and elevated O2 demand due to aerobic heterotrophic endosymbionts. PMID:22558289

  14. The Two Sets of DMSO Respiratory Systems of Shewanella piezotolerans WP3 Are Involved in Deep Sea Environmental Adaptation

    PubMed Central

    Xiong, Lei; Jian, Huahua; Zhang, Yuxia; Xiao, Xiang

    2016-01-01

    Dimethyl sulfoxide (DMSO) is an abundant methylated sulfur compound in deep sea ecosystems. However, the mechanism underlying DMSO-induced reduction in benthic microorganisms is unknown. Shewanella piezotolerans WP3, which was isolated from a west Pacific deep sea sediment, can utilize DMSO as the terminal electron acceptor. In this study, two putative dms gene clusters [type I (dmsEFA1B1G1H1) and type II (dmsA2B2G2H2)] were identified in the WP3 genome. Genetic and physiological analyses demonstrated that both dms gene clusters were functional and the transcription of both gene clusters was affected by changes in pressure and temperature. Notably, the type I system is essential for WP3 to thrive under in situ conditions (4°C/20 MPa), whereas the type II system is more important under high pressure or low temperature conditions (20°C/20 MPa, 4°C/0.1 MPa). Additionally, DMSO-dependent growth conferred by the presence of both dms gene clusters was higher than growth conferred by either of the dms gene clusters alone. These data collectively suggest that the possession of two sets of DMSO respiratory systems is an adaptive strategy for WP3 survival in deep sea environments. We propose, for the first time, that deep sea microorganisms might be involved in global DMSO/DMS cycling. PMID:27656177

  15. The potent respiratory system of Osedax mucofloris (Siboglinidae, Annelida)--a prerequisite for the origin of bone-eating Osedax?

    PubMed

    Huusgaard, Randi S; Vismann, Bent; Kühl, Michael; Macnaugton, Martin; Colmander, Veronica; Rouse, Greg W; Glover, Adrian G; Dahlgren, Thomas; Worsaae, Katrine

    2012-01-01

    Members of the conspicuous bone-eating genus, Osedax, are widely distributed on whale falls in the Pacific and Atlantic Oceans. These gutless annelids contain endosymbiotic heterotrophic bacteria in a branching root system embedded in the bones of vertebrates, whereas a trunk and anterior palps extend into the surrounding water. The unique life style within a bone environment is challenged by the high bacterial activity on, and within, the bone matrix possibly causing O(2) depletion, and build-up of potentially toxic sulphide. We measured the O(2) distribution around embedded Osedax and showed that the bone microenvironment is anoxic. Morphological studies showed that ventilation mechanisms in Osedax are restricted to the anterior palps, which are optimized for high O(2) uptake by possessing a large surface area, large surface to volume ratio, and short diffusion distances. The blood vascular system comprises large vessels in the trunk, which facilitate an ample supply of oxygenated blood from the anterior crown to a highly vascularised root structure. Respirometry studies of O. mucofloris showed a high O(2) consumption that exceeded the average O(2) consumption of a broad line of resting annelids without endosymbionts. We regard this combination of features of the respiratory system of O. mucofloris as an adaptation to their unique nutrition strategy with roots embedded in anoxic bones and elevated O(2) demand due to aerobic heterotrophic endosymbionts.

  16. Yersinia pseudotuberculosis in Eurasian Collared Doves (Streptopelia decaocto) and Retrospective Study of Avian Yersiniosis at the California Animal Health and Food Safety Laboratory System (1990-2015).

    PubMed

    Stoute, Simone T; Cooper, George L; Bickford, Arthur A; Carnaccini, Silvia; Shivaprasad, H L; Sentíes-Cué, C Gabriel

    2016-03-01

    In February 2015, two Eurasian collared doves (Streptopelia decaocto) were submitted dead to the California Animal Health and Food Safety (CAHFS) Laboratory, Turlock branch, from a private aviary experiencing sudden, high mortality (4/9) in adult doves. In both doves, the gross and histologic lesions were indicative of acute, fatal septicemia. Grossly, there were numerous pale yellow foci, 1 to 2 mm in diameter, in the liver and spleen. Microscopically, these foci were composed of acute severe multifocal coagulative necrosis of hepatocytes and splenic pulp with infiltration of heterophils mixed with fibrin and dense colonies of gram-negative bacteria. Yersinia pseudotuberculosis was isolated from the lung, liver, spleen, heart, ovary, kidney, and trachea. The organism was susceptible to most antibiotics it was tested against, except erythromycin. Based on a retrospective study of necropsy submissions to CAHFS between 1990 and 2015, there were 77 avian case submissions of Y. pseudotuberculosis. There were 75/77 cases identified from a wide range of captive avian species from both zoo and private facilities and 2/77 cases from two backyard turkeys submitted from one premise. The largest number of cases originated from psittacine species (31/77). The lesions most commonly described were hepatitis (63/77), splenitis (49/77), pneumonia (30/77), nephritis (16/77), and enteritis (12/77). From 1990 to 2015, there was an average of three cases of avian pseudotuberculosis per year at CAHFS. Although there were no cases diagnosed in 1993 and 1994, in all other years, there were between one and eight cases of Y. pseudotuberculosis detected from avian diagnostic submissions.

  17. Protection of chickens against avian hepatitis E virus (avian HEV) infection by immunization with recombinant avian HEV capsid protein.

    PubMed

    Guo, H; Zhou, E M; Sun, Z F; Meng, X J

    2007-04-12

    Avian hepatitis E virus (avian HEV) is an emerging virus associated with hepatitis-splenomegaly syndrome in chickens in North America. Avian HEV is genetically and antigenically related to human HEV, the causative agent of hepatitis E in humans. In the lack of a practical animal model, avian HEV infection in chickens has been used as a model to study human HEV replication and pathogenesis. A 32 kDa recombinant ORF2 capsid protein of avian HEV expressed in Escherichia coli was found having similar antigenic structure as that of human HEV containing major neutralizing epitopes. To determine if the capsid protein of avian HEV can be used as a vaccine, 20 chickens were immunized with purified avian HEV recombinant protein with aluminum as adjuvant and another 20 chickens were mock immunized with KLH precipitated in aluminum as controls. Both groups of chickens were subsequently challenged with avian HEV. All the tested mock-immunized control chickens developed typical avian HEV infection characterized by viremia, fecal virus shedding and seroconversion to avian HEV antibodies. Gross hepatic lesions were also found in portion of these chickens. In contrast, none of the tested chickens immunized with avian HEV capsid protein had detectable viremia, fecal virus shedding or observable gross hepatitis lesions. The results from this study suggested that immunization of chickens with avian HEV recombinant ORF2 capsid protein with aluminum as adjuvant can induce protective immunity against avian HEV infection. Chickens are a useful small animal model to study anti-HEV immunity and pathogenesis.

  18. SU-E-T-247: Determinations of the Optimal Phase for Respiratory Gated Radiotherapy From Statistical Analysis Using a Visible Guidance System

    SciTech Connect

    Oh, S; Yea, J; Kang, M; Lee, H; Kim, S

    2015-06-15

    Purpose: Respiratory gated radiation therapy (RGRT) is used to minimize the radiation dose to normal tissue in lung cancer patients. Determination of the optimal point in the respiratory phase of a patient is important in RGRT but it is not easy. The goal of the present study was to see if a visible guidance system is helpful in determining the optimal phase in respiratory gated therapy. Methods: The breathing signals of 23 lung cancer patients were recorded with a Real-time Position Management (RPM) respiratory gating system (Varian, USA). The patients underwent breathing training with our visible guidance system, after which their breathing signals were recorded during 5 min of free breathing and 5 min of guided breathing. The breathing signals recorded between 3 and 5 min before and after training were compared. We performed statistical analysis of the breathing signals to find the optimal duty cycle in guided breathing for RGRT. Results: The breathing signals aided by the visible guidance system had more regular cycles over time and smaller variations in the positions of the marker block than the free breathing signals. Of the 23 lung cancer patients, 19 showed statistically significant differences by time when the values obtained before and after breathing were compared (p < 0.05); 30% and 40% of the duty cycle, respectively, was determined to be the most effective, and the corresponding phases were 30 60% (duty cycle, 30%; p < 0.05) and 30 70% (duty cycle, 40%; p < 0.05). Conclusion: Respiratory regularity was significantly improved with the use of the RPM with our visible guiding system; therefore, it would help improve the accuracy and efficiency of RGRT.

  19. Thromboelastography in Selected Avian Species.

    PubMed

    Strindberg, Sophie; Nielsen, Tenna W; Ribeiro, Ângela M; Wiinberg, Bo; Kristensen, Annemarie T; Bertelsen, Mads F

    2015-12-01

    Currently available assay methods and reagents are not optimized for evaluating avian hemostasis; therefore, assessing avian coagulopathies is challenging. Recently, thromboelastography (TEG), which measures the viscoelastic properties of blood, has been used clinically in mammalian species to diagnose and characterize hemostatic disorders. To evaluate TEG in healthy individuals of 6 avian species, we modified existing mammalian TEG protocols to allow analysis of citrated, avian whole-blood samples collected from scarlet ibis (Eudocimus ruber) (n = 13), American flamingos ( Phoenicopterus ruber ) (n = 13), helmeted Guinea fowl ( Numida meleagris ) (n = 12), Amazon parrots (Amazona species) (n = 9), Humboldt penguins ( Spheniscus humboldti ) (n = 6), and domestic chickens (n = 16). Activated partial thromboplastin time, prothrombin time, and fibrinogen were measured as a means of comparison. Regardless of the mode of activation, clot formation in the species studied was markedly delayed compared with mammals. Because of prolonged reaction time (14.7-52.7 minutes) with kaolin and diluted tissue factor, undiluted human tissue factor was used in all avian samples because it provided the shortest reaction time. Species differed significantly in reaction time (P = .007), clotting rate (P < .001), rate of clot formation (α angle; P < .001), and maximum amplitude (P < .001) values, indicating that species-specific reference intervals are necessary. Based on these results, TEG with specific reference intervals could prove useful in evaluating avian hemostatic disorders.

  20. Susceptibility of primary chicken intestinal epithelial cells for low pathogenic avian influenza virus and velogenic viscerotropic Newcastle disease virus.

    PubMed

    Kaiser, Annette; Willer, Thomas; Sid, Hicham; Petersen, Henning; Baumgärtner, Wolfgang; Steinberg, Pablo; Rautenschlein, Silke

    2016-10-02

    Avian influenza virus (AIV) and Newcastle disease virus (NDV) share a high tropism for the avian respiratory epithelium and may cause severe clinical disease associated with high mortality. Both viruses have different pathotypes, which may lead to differences in the severity of the disease. Respiratory epithelial cells were shown to be the primary target cells for infection and replication. Nevertheless, intestinal epithelial cells (IECs) were also suggested as target cells for both viruses in avian species. Most studies on AIV and NDV focused on the respiratory tract, while information regarding the virus-host interaction at the intestinal epithelial cell interface is lacking. We established a primary chicken IEC culture model. Primary chicken embryo fibroblast cultures (CEFs) were used for comparison. IECs and CEFs were infected with a low infectious dose (LID; multiplicity of infection, MOI, of 0.01) or high infectious dose (HID, MOI of 1), of low pathogenic AIV (LPAIV) H9N2 or velogenic viscerotropic NDV (vvNDV) Herts 33/56. Virus replication, mRNA expression pattern of the type I and type III interferon (IFN) and related genes IFIT5 (interferon-induced protein with tetratricopeptide repeats 5) and ISG12 (interferon stimulated gene 12) were investigated at four, 16, and 24h post infection (hpi). The results suggest high susceptibility of primary chicken IECs for these AIV and NDV strains. Replication rates and expression pattern of IFNs as well as related genes differed between the infecting viruses as well as cell culture systems. Both viruses induced an IFN λ-increase of more than 30-fold in IECs, while IFN-α and IFN-β mRNA expression was either downregulated or only slightly increased with up to 10fold changes for the latter at 24h post LPAIV-infection. These results suggest a possible role of IFN λ in the control of viruses at the gut epithelial surface. LPAIV induced upregulation of IFIT5 as well as ISG12 expression in a dose and time dependent manner

  1. High frequency mechanical ventilation affects respiratory system mechanics differently in C57BL/6J and BALB/c adult mice.

    PubMed

    Hadden, Hélène

    2013-01-15

    We tested the hypothesis that high frequency ventilation affects respiratory system mechanical functions in C57BL/6J and BALB/c mice. We measured respiratory mechanics by the forced oscillation technique over 1h in anesthetized, intubated, ventilated BALB/c and C57BL/6J male mice. We did not detect any change in airway resistance, Rn, tissue damping, G, tissue elastance, H and hysteresivity, eta in BALB/c mice during 1h of ventilation at 150 or at 450 breaths/min; nor did we find a difference between BALB/c mice ventilated at 150 breaths/min compared with 450 breaths/min. Among C57BL/6J mice, except for H, all parameters remained unchanged over 1h of ventilation in mice ventilated at 150 breaths/min. However, after 10 and 30 min of ventilation at 450 breaths/min, Rn, and respiratory system compliance were lower, and eta was higher, than their starting value. We conclude that high frequency mechanical ventilation affects respiratory system mechanics differently in C57BL/6J and BALB/c adult mice.

  2. Developmental change in the function of movement systems: transition of the pectoral fins between respiratory and locomotor roles in zebrafish.

    PubMed

    Hale, Melina E

    2014-07-01

    An animal may experience strikingly different functional demands on its body's systems through development. One way of meeting those demands is with temporary, stage-specific adaptations. This strategy requires the animal to develop appropriate morphological states or physiological pathways that address transient functional demands as well as processes that transition morphology, physiology, and function to that of the mature form. Recent research on ray-finned (actinopterygian) fishes is a developmental transition in function of the pectoral fin, thereby providing an opportunity to examine how an organism copes with changes in the roles of its morphology between stages of its life history. As larvae, zebrafish alternate their pectoral fins in coordination with the body axis during slow swimming. The movements of their fins do not appear to contribute to the production of thrust or to stability but instead exchange fluid near the body for cutaneous respiration. The morphology of the larval fin includes a simple stage-specific endoskeletal disc overlaid by fan-shaped adductor and abductor muscles. In contrast, the musculoskeletal system of the mature fin consists of a suite of muscles and bones. Fins are extended laterally during slow swimming of the adult, without the distinct, high-amplitude left-right fin alternation of the larval fin. The morphological and functional transition of the pectoral fin occurs through juvenile development. Early in this period, at about 3 weeks post-fertilization, the gills take over respiratory function, presumably freeing the fins for other roles. Kinematic data suggest that the loss of respiratory function does not lead to a rapid switch in patterns of fin movement but rather that both morphology and movement transition gradually through the juvenile stage of development. Studies relating structure to function often focus on stable systems that are arguably well adapted for the roles they play. Examining how animals navigate

  3. Developmental Change in the Function of Movement Systems: Transition of the Pectoral Fins between Respiratory and Locomotor Roles in Zebrafish

    PubMed Central

    Hale, Melina E.

    2014-01-01

    An animal may experience strikingly different functional demands on its body’s systems through development. One way of meeting those demands is with temporary, stage-specific adaptations. This strategy requires the animal to develop appropriate morphological states or physiological pathways that address transient functional demands as well as processes that transition morphology, physiology, and function to that of the mature form. Recent research on ray-finned (actinopterygian) fishes is a developmental transition in function of the pectoral fin, thereby providing an opportunity to examine how an organism copes with changes in the roles of its morphology between stages of its life history. As larvae, zebrafish alternate their pectoral fins in coordination with the body axis during slow swimming. The movements of their fins do not appear to contribute to the production of thrust or to stability but instead exchange fluid near the body for cutaneous respiration. The morphology of the larval fin includes a simple stage-specific endoskeletal disc overlaid by fan-shaped adductor and abductor muscles. In contrast, the musculoskeletal system of the mature fin consists of a suite of muscles and bones. Fins are extended laterally during slow swimming of the adult, without the distinct, high-amplitude left-right fin alternation of the larval fin. The morphological and functional transition of the pectoral fin occurs through juvenile development. Early in this period, at about 3 weeks post-fertilization, the gills take over respiratory function, presumably freeing the fins for other roles. Kinematic data suggest that the loss of respiratory function does not lead to a rapid switch in patterns of fin movement but rather that both morphology and movement transition gradually through the juvenile stage of development. Studies relating structure to function often focus on stable systems that are arguably well adapted for the roles they play. Examining how animals navigate

  4. Obesity and respiratory diseases.

    PubMed

    Zammit, Christopher; Liddicoat, Helen; Moonsie, Ian; Makker, Himender

    2010-10-20

    The obesity epidemic is a global problem, which is set to increase over time. However, the effects of obesity on the respiratory system are often underappreciated. In this review, we will discuss the mechanical effects of obesity on lung physiology and the function of adipose tissue as an endocrine organ producing systemic inflammation and effecting central respiratory control. Obesity plays a key role in the development of obstructive sleep apnea and obesity hypoventilation syndrome. Asthma is more common and often harder to treat in the obese population, and in this study, we review the effects of obesity on airway inflammation and respiratory mechanics. We also discuss the compounding effects of obesity on chronic obstructive pulmonary disease (COPD) and the paradoxical interaction of body mass index and COPD severity. Many practical challenges exist in caring for obese patients, and we highlight the complications faced by patients undergoing surgical procedures, especially given the increased use of bariatric surgery. Ultimately, a greater understanding of the effects of obesity on the respiratory disease and the provision of adequate health care resources is vital in order to care for this increasingly important patient population.

  5. Obesity and respiratory diseases

    PubMed Central

    Zammit, Christopher; Liddicoat, Helen; Moonsie, Ian; Makker, Himender

    2010-01-01

    The obesity epidemic is a global problem, which is set to increase over time. However, the effects of obesity on the respiratory system are often underappreciated. In this review, we will discuss the mechanical effects of obesity on lung physiology and the function of adipose tissue as an endocrine organ producing systemic inflammation and effecting central respiratory control. Obesity plays a key role in the development of obstructive sleep apnea and obesity hypoventilation syndrome. Asthma is more common and often harder to treat in the obese population, and in this study, we review the effects of obesity on airway inflammation and respiratory mechanics. We also discuss the compounding effects of obesity on chronic obstructive pulmonary disease (COPD) and the paradoxical interaction of body mass index and COPD severity. Many practical challenges exist in caring for obese patients, and we highlight the complications faced by patients undergoing surgical procedures, especially given the increased use of bariatric surgery. Ultimately, a greater understanding of the effects of obesity on the respiratory disease and the provision of adequate health care resources is vital in order to care for this increasingly important patient population. PMID:21116339

  6. A Review on Human Respiratory Modeling.

    PubMed

    Ghafarian, Pardis; Jamaati, Hamidreza; Hashemian, Seyed Mohammadreza

    2016-01-01

    Input impedance of the respiratory system is measured by forced oscillation technique (FOT). Multiple prior studies have attempted to match the electromechanical models of the respiratory system to impedance data. Since the mechanical behavior of airways and the respiratory system as a whole are similar to an electrical circuit in a combination of series and parallel formats some theories were introduced according to this issue. It should be noted that, the number of elements used in these models might be less than those required due to the complexity of the pulmonary-chest wall anatomy. Various respiratory models have been proposed based on this idea in order to demonstrate and assess the different parts of respiratory system related to children and adults data. With regard to our knowledge, some of famous respiratory models in related to obstructive, restrictive diseases and also Acute Respiratory Distress Syndrome (ARDS) are reviewed in this article.

  7. A Review on Human Respiratory Modeling

    PubMed Central

    Ghafarian, Pardis; Hashemian, Seyed Mohammadreza

    2016-01-01

    Input impedance of the respiratory system is measured by forced oscillation technique (FOT). Multiple prior studies have attempted to match the electromechanical models of the respiratory system to impedance data. Since the mechanical behavior of airways and the respiratory system as a whole are similar to an electrical circuit in a combination of series and parallel formats some theories were introduced according to this issue. It should be noted that, the number of elements used in these models might be less than those required due to the complexity of the pulmonary-chest wall anatomy. Various respiratory models have been proposed based on this idea in order to demonstrate and assess the different parts of respiratory system related to children and adults data. With regard to our knowledge, some of famous respiratory models in related to obstructive, restrictive diseases and also Acute Respiratory Distress Syndrome (ARDS) are reviewed in this article. PMID:27904536

  8. Enhanced virulence of clade 2.3.2.1 highly pathogenic avian influenza A H5N1 viruses in ferrets.

    PubMed

    Pearce, Melissa B; Pappas, Claudia; Gustin, Kortney M; Davis, C Todd; Pantin-Jackwood, Mary J; Swayne, David E; Maines, Taronna R; Belser, Jessica A; Tumpey, Terrence M

    2017-02-01

    Sporadic avian to human transmission of highly pathogenic avian influenza (HPAI) A(H5N1) viruses necessitates the analysis of currently circulating and evolving clades to assess their potential risk. Following the spread and sustained circulation of clade 2 viruses across multiple continents, numerous subclades and genotypes have been described. To better understand the pathogenesis associated with the continued diversification of clade 2A(H5N1) influenza viruses, we investigated the relative virulence of eleven human and poultry isolates collected from 2006 to 2013 by determining their ability to cause disease in the ferret model. Numerous clade 2 viruses, including a clade 2.2 avian isolate, a 2.2.2.1 human isolate, and two 2.2.1 human isolates, were found to be of low virulence in the ferret model, though lethality was detected following infection with one 2.2.1 human isolate. In contrast, three of six clade 2.3.2.1 avian isolates tested led to severe disease and death among infected ferrets. Clade 2.3.2.1b and 2.3.2.1c isolates, but not 2.3.2.1a isolates, were associated with ferret lethality. All A(H5N1) viruses replicated efficiently in the respiratory tract of ferrets regardless of their virulence and lethality. However, lethal isolates were characterized by systemic viral dissemination, including detection in the brain and enhanced histopathology in lung tissues. The finding of disparate virulence phenotypes between clade 2A(H5N1) viruses, notably differences between subclades of 2.3.2.1 viruses, suggests there are distinct molecular determinants present within the established subclades, the identification of which will assist in molecular-based surveillance and public health efforts against A(H5N1) viruses.

  9. Internal validation of a telemedical system for monitoring patients with chronic respiratory diseases.

    PubMed

    Jablonski, I; Glomb, G; Guszkowski, T; Kasprzak, B; Pekala, J; Polak, A G; Stepien, A F; Swierczynski, Z; Mroczka, J

    2010-01-01

    One of the most promising and innovative developments in medicine are telemedical systems. The system PulmoTel 2010 and its internal validation are presented, focusing on the system architecture, hardware, software and communication solutions. PulmoTel 2010 consists of a distant server managing users and medical devices, as well as data transmission, processing, storage and presentation. The server cooperates with home units used by patients, capable of performing lung function tests. All the elements communicate via the Internet, however other media, as wire and mobile telephony, can be additionally applied in regions with a less developed infrastructure. Internal validation of the system was performed using data generated by application simulating features of a home unit. It demonstrated an appropriate operation of the overall system and fulfillment of the main objectives of the project.

  10. The use of a generalized reconstruction by inversion of coupled systems (GRICS) approach for generic respiratory motion correction in PET/MR imaging.

    PubMed

    Fayad, Hadi; Odille, Freddy; Schmidt, Holger; Würslin, Christian; Küstner, Thomas; Feblinger, Jacques; Visvikis, Dimitris

    2015-03-21

    Respiratory motion is a source of artifacts in multimodality imaging such as PET/MR. Solutions include retrospective or prospective gating. They have however found limited use in clinical practice, since their increased overall acquisition duration to maintain overall image quality. More elaborate methods consist of using 4D MR datasets to extract spatial deformations in order to correct for the respiratory motion in PET. The main drawbacks of such approaches is the relatively long acquisition times associated with 4D MR imaging which is often incompatible