Science.gov

Sample records for avian respiratory system

  1. Avian respiratory system disorders

    USGS Publications Warehouse

    Olsen, G.H.

    1989-01-01

    Diagnosing and treating respiratory diseases in avian species requires a basic knowledge about the anatomy and physiology of this system in birds. Differences between mammalian and avian respiratory system function, diagnosis, and treatment are highlighted.

  2. The avian respiratory system: a unique model for studies of respiratory toxicosis and for monitoring air quality.

    PubMed

    Brown, R E; Brain, J D; Wang, N

    1997-02-01

    There are many distinct differences (morphologic, physiologic, and mechanical) between the bird's lung-air-sac respiratory system and the mammalian bronchoalveolar lung. In this paper, we review the physiology of the avian respiratory system with attention to those mechanisms that may lead to significantly different results, relative to those in mammals, following exposure to toxic gases and airborne particulates. We suggest that these differences can be productively exploited to further our understanding of the basic mechanisms of inhalant toxicology (gases and particulates). The large mass-specific gas uptake by the avian respiratory system, at rest and especially during exercise, could be exploited as a sensitive monitor of air quality. Birds have much to offer in our understanding of respiratory toxicology, but that expectation can only be realized by investigating, in a wide variety of avian taxa, the pathophysiologic interactions of a broad range of inhaled toxicants on the bird's unique respiratory system.

  3. The avian respiratory system: a unique model for studies of respiratory toxicosis and for monitoring air quality.

    PubMed Central

    Brown, R E; Brain, J D; Wang, N

    1997-01-01

    There are many distinct differences (morphologic, physiologic, and mechanical) between the bird's lung-air-sac respiratory system and the mammalian bronchoalveolar lung. In this paper, we review the physiology of the avian respiratory system with attention to those mechanisms that may lead to significantly different results, relative to those in mammals, following exposure to toxic gases and airborne particulates. We suggest that these differences can be productively exploited to further our understanding of the basic mechanisms of inhalant toxicology (gases and particulates). The large mass-specific gas uptake by the avian respiratory system, at rest and especially during exercise, could be exploited as a sensitive monitor of air quality. Birds have much to offer in our understanding of respiratory toxicology, but that expectation can only be realized by investigating, in a wide variety of avian taxa, the pathophysiologic interactions of a broad range of inhaled toxicants on the bird's unique respiratory system. Images p188-a Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. A Figure 5. B Figure 5. C Figure 6. Figure 7. Figure 8. PMID:9105794

  4. Avian respiratory distress: etiology, diagnosis, and treatment.

    PubMed

    Orosz, Susan E; Lichtenberger, Marla

    2011-05-01

    Respiratory distress is usually a life-threatening emergency in any species and this is particularly important in avian species because of their unique anatomy and physiology. In the emergency room, observation of breathing patterns, respiratory sounds, and a brief physical examination are the most important tools for the diagnosis and treatment of respiratory distress in avian patients. These tools will help the clinician localize the lesion. This discussion focuses on the 5 anatomic divisions of the respiratory system and provides clinically important anatomic and physiologic principles and diagnosis and treatment protocols for the common diseases occurring in each part. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. The pulmonary anatomy of Alligator mississippiensis and its similarity to the avian respiratory system.

    PubMed

    Sanders, R Kent; Farmer, C G

    2012-04-01

    Using gross dissections and computed tomography we studied the lungs of juvenile American alligators (Alligator mississippiensis). Our findings indicate that both the external and internal morphology of the lungs is strikingly similar to the embryonic avian respiratory system (lungs + air sacs). We identified bronchi that we propose are homologous to the avian ventrobronchi (entobronchi), laterobronchi, dorsobronchi (ectobronchi), as well as regions of the lung hypothesized to be homologous to the cervical, interclavicular, anterior thoracic, posterior thoracic, and abdominal air sacs. Furthermore, we suggest that many of the features that alligators and birds share are homologous and that some of these features are important to the aerodynamic valve mechanism and are likely plesiomorphic for Archosauria.

  6. Relationship of structure and function of the avian respiratory system to disease susceptibility.

    PubMed

    Fedde, M R

    1998-08-01

    The avian respiratory system exchanges oxygen and carbon dioxide between the gas and the blood utilizing a relatively small, rigid, flow-through lung, and a system of air sacs that act as bellows to move the gas through the lung. Gas movement through the paleopulmonic parabronchi, the main gas exchanging bronchi, in the lung is in the same direction during both inspiration and expiration, i.e., from the mediodorsal secondary bronchi to the medioventral secondary bronchi. During inspiration, acceleration of the gas at the segmentum accelerans of the primary bronchus increases gas velocity so it does not enter the medioventral secondary bronchi. During expiration, airway resistance is increased in he intrapulmonary primary bronchus because of dynamic compression causing gas to enter the mediodorsal secondary bronchi. Reduction in air flow velocity may decrease the efficiency of this aerodynamic valving and thereby decrease the efficiency of gas exchange. The convective gas flow in the avian parabronchus is orientated at a 90 degree angle with respect to the parabronchial blood flow; hence, the cross-current designation of this gas exchanger. With this design, the partial pressure of oxygen in the blood leaving the parabronchus can be higher than that in the gas exiting this structure, giving the avian lung a high gas exchange efficacy. The relationship of the partial pressure of oxygen in the moist inspired gas to that in the blood leaving the lung is dependent on he rate of ventilation. A low ventilation rate may produce a ow oxygen partial pressure in part of the parabronchus, thereby inducing hypoxic vasoconstriction in the pulmonary arterioles supplying this region. Inhaled foreign particles are removed by nasal mucociliary action, by escalator in the trachea, primary bronchi, and secondary bronchi. Small particles that enter parabronchi appear to be phagocytized by the epithelial cells in eh atria and infundibulum. These particles can e transported to

  7. Pivotal debates and controversies on the structure and function of the avian respiratory system: setting the record straight.

    PubMed

    Maina, John N

    2016-07-28

    Among the extant air-breathing vertebrates, the avian respiratory system is structurally the most complex and functionally the most efficient gas exchanger. Having been investigated for over four centuries, some aspects of its biology have been extremely challenging and highly contentious and others still remain unresolved. Here, while assessing the most recent findings, four notable aspects of the structure and function of the avian respiratory system are examined critically to highlight the questions, speculations, controversies and debates that have arisen from past research. The innovative techniques and experiments that were performed to answer particular research questions are emphasised. The features that are outlined here concern the arrangement of the airways, the path followed by the inspired air, structural features of the lung and the air and blood capillaries, and the level of cellular defence in the avian respiratory system. Hitherto, based on association with the proven efficiency of naturally evolved and human-made counter-current exchange systems rather than on definite experimental evidence, a counter-current gas exchange system was suggested to exist in the avian respiratory system and was used to explain its exceptional efficiency. However, by means of an elegant experiment in which the direction of the air-flow in the lung was reversed, a cross-current system was shown to be in operation instead. Studies of the arrangement of the airways and the blood vessels corroborated the existence of a cross-current system in the avian lung. While the avian respiratory system is ventilated tidally, like most other invaginated gas exchangers, the lung, specifically the paleopulmonic parabronchi, is ventilated unidirectionally and continuously in a caudocranial (back-to-front) direction by synchronized actions of the air sacs. The path followed by the inspired air in the lung-air sac system is now known to be controlled by a mechanism of aerodynamic valving

  8. Reassessment of the Evidence for Postcranial Skeletal Pneumaticity in Triassic Archosaurs, and the Early Evolution of the Avian Respiratory System

    PubMed Central

    Butler, Richard J.; Barrett, Paul M.; Gower, David J.

    2012-01-01

    Uniquely among extant vertebrates, birds possess complex respiratory systems characterised by the combination of small, rigid lungs, extensive pulmonary air sacs that possess diverticula that invade (pneumatise) the postcranial skeleton, unidirectional ventilation of the lungs, and efficient crosscurrent gas exchange. Crocodilians, the only other living archosaurs, also possess unidirectional lung ventilation, but lack true air sacs and postcranial skeletal pneumaticity (PSP). PSP can be used to infer the presence of avian-like pulmonary air sacs in several extinct archosaur clades (non-avian theropod dinosaurs, sauropod dinosaurs and pterosaurs). However, the evolution of respiratory systems in other archosaurs, especially in the lineage leading to crocodilians, is poorly documented. Here, we use µCT-scanning to investigate the vertebral anatomy of Triassic archosaur taxa, from both the avian and crocodilian lineages as well as non-archosaurian diapsid outgroups. Our results confirm previous suggestions that unambiguous evidence of PSP (presence of internal pneumatic cavities linked to the exterior by foramina) is found only in bird-line (ornithodiran) archosaurs. We propose that pulmonary air sacs were present in the common ancestor of Ornithodira and may have been subsequently lost or reduced in some members of the clade (notably in ornithischian dinosaurs). The development of these avian-like respiratory features might have been linked to inferred increases in activity levels among ornithodirans. By contrast, no crocodile-line archosaur (pseudosuchian) exhibits evidence for unambiguous PSP, but many of these taxa possess the complex array of vertebral laminae and fossae that always accompany the presence of air sacs in ornithodirans. These laminae and fossae are likely homologous with those in ornithodirans, which suggests the need for further investigation of the hypothesis that a reduced, or non-invasive, system of pulmonary air sacs may be have been present

  9. Reassessment of the evidence for postcranial skeletal pneumaticity in Triassic archosaurs, and the early evolution of the avian respiratory system.

    PubMed

    Butler, Richard J; Barrett, Paul M; Gower, David J

    2012-01-01

    Uniquely among extant vertebrates, birds possess complex respiratory systems characterised by the combination of small, rigid lungs, extensive pulmonary air sacs that possess diverticula that invade (pneumatise) the postcranial skeleton, unidirectional ventilation of the lungs, and efficient crosscurrent gas exchange. Crocodilians, the only other living archosaurs, also possess unidirectional lung ventilation, but lack true air sacs and postcranial skeletal pneumaticity (PSP). PSP can be used to infer the presence of avian-like pulmonary air sacs in several extinct archosaur clades (non-avian theropod dinosaurs, sauropod dinosaurs and pterosaurs). However, the evolution of respiratory systems in other archosaurs, especially in the lineage leading to crocodilians, is poorly documented. Here, we use µCT-scanning to investigate the vertebral anatomy of Triassic archosaur taxa, from both the avian and crocodilian lineages as well as non-archosaurian diapsid outgroups. Our results confirm previous suggestions that unambiguous evidence of PSP (presence of internal pneumatic cavities linked to the exterior by foramina) is found only in bird-line (ornithodiran) archosaurs. We propose that pulmonary air sacs were present in the common ancestor of Ornithodira and may have been subsequently lost or reduced in some members of the clade (notably in ornithischian dinosaurs). The development of these avian-like respiratory features might have been linked to inferred increases in activity levels among ornithodirans. By contrast, no crocodile-line archosaur (pseudosuchian) exhibits evidence for unambiguous PSP, but many of these taxa possess the complex array of vertebral laminae and fossae that always accompany the presence of air sacs in ornithodirans. These laminae and fossae are likely homologous with those in ornithodirans, which suggests the need for further investigation of the hypothesis that a reduced, or non-invasive, system of pulmonary air sacs may be have been present

  10. Implications of an avian-style respiratory system for gigantism in sauropod dinosaurs.

    PubMed

    Perry, Steven F; Christian, Andreas; Breuer, Thomas; Pajor, Nadine; Codd, Jonathan R

    2009-10-01

    In light of evidence for avian-like lungs in saurischian dinosaurs, the physiological implications of cross-current gas exchange and voluminous, highly heterogeneous lungs for sauropod gigantism are critically examined. At 12 ton the predicted body temperature and metabolic rate of a growing sauropod would be similar to that of a bird scaled to the same body weight, but would increase exponentially as body mass increases. Although avian-like lung structure would be consistent with either a tachymetabolic-endothermic or a bradymetabolic-gigantothermic model, increasing body temperature requires adjustments to avoid overheating. We suggest that a unique sauropod structure/function unit facilitated the evolution of gigantism. This unit consisted of (1) a reduction in metabolic rate below that predicted by the body temperature, akin to thermal adaptation as seen in extant squamates, (2) presence of air-filled diverticula in the long neck and in the visceral cavity, and (3) low activity of respiratory muscles coupled with the high efficiency of cross-current gas exchange.

  11. Composite cellular defence stratagem in the avian respiratory system: functional morphology of the free (surface) macrophages and specialized pulmonary epithelia.

    PubMed

    Nganpiep, L N; Maina, J N

    2002-05-01

    Qualitative and quantitative attributes of the free respiratory macrophages (FRMs) of the lung--air sac systems of the domestic fowl (Gallus gallus variant domesticus) and the muscovy duck (Cairina moschata) were compared with those of the alveolar macrophages of the lung of the black rat (Rattus rattus). The birds had significantly fewer FRMs compared to the rat. In the birds, the FRMs were found both in the lungs and in the air sacs. Under similar experimental conditions, the most robust FRMs were those of the domestic fowl followed by those of the rat and the duck. Flux of macrophages onto the respiratory surface from the subepithelial compartment and probably also from the pulmonary vasculature was observed in the birds but not in the rat. In the duck and the domestic fowl, a phagocytic epithelium that constituted over 70% of the surface area of the blood-gas (tissue) barrier lines the atrial muscles, the atria and the infundibulae. The epithelial cells of the upper respiratory airways contain abundant lysosomes, suggesting a high lytic capacity. By inference, the various defence strategies in the avian lung may explain the dearth of FRMs on the respiratory surface. We counter-propose that rather than arising directly from paucity of FRMs, an aspect that has been over-stressed by most investigators, the purported high susceptibility of birds (particularly table birds) to respiratory ailments and afflictions may be explained by factors such as inadequate management and husbandry practices and severe genetic manipulation for fast growth and high productivity, manipulations that may have weakened cellular and immunological defences.

  12. Protective roles of free avian respiratory macrophages in captive birds.

    PubMed

    Mutua, Mbuvi P; Muya, Shadrack; Gicheru, Muita M

    2016-06-16

    In the mammalian lung, respiratory macrophages provide front line defense against invading pathogens and particulate matter. In birds, respiratory macrophages are known as free avian respiratory macrophages (FARM) and a dearth of the cells in the avian lung has been purported to foreordain a weak first line of pulmonary defense, a condition associated with high mortality of domestic birds occasioned by respiratory inflictions. Avian pulmonary mechanisms including a three tiered aerodynamic filtration system, tight epithelial junctions and an efficient mucociliary escalator system have been known to supplement FARM protective roles. Current studies, however, report FARM to exhibit an exceptionally efficient phagocytic capacity and are effective in elimination of invading pathogens. In this review, we also report on effects of selective synthetic peroxisome proliferator activated receptor gamma (PPAR γ) agonists on non phlogistic phagocytic properties in the FARM. To develop effective therapeutic interventions targeting FARM in treatment and management of respiratory disease conditions in the poultry, further studies are required to fully understand the role of FARM in innate and adaptive immune responses.

  13. Respiratory system

    NASA Technical Reports Server (NTRS)

    Bartlett, R. G., Jr.

    1973-01-01

    The general anatomy and function of the human respiratory system is summarized. Breathing movements, control of breathing, lung volumes and capacities, mechanical relations, and factors relevant to respiratory support and equipment design are discussed.

  14. The Avian Proghrelin System

    PubMed Central

    Richards, Mark P.; McMurtry, John P.

    2010-01-01

    To understand how the proghrelin system functions in regulating growth hormone release and food intake as well as defining its pleiotropic roles in such diverse physiological processes as energy homeostasis, gastrointestinal tract function and reproduction require detailed knowledge of the structure and function of the components that comprise this system. These include the preproghrelin gene that encodes the proghrelin precursor protein from which two peptide hormones, ghrelin and obestatin, are derived and the cognate receptors that bind proghrelin-derived peptides to mediate their physiological actions in different tissues. Also key to the functioning of this system is the posttranslational processing of the proghrelin precursor protein and the individual peptides derived from it. While this system has been intensively studied in a variety of animal species and humans over the last decade, there has been considerably less investigation of the avian proghrelin system which exhibits some unique differences compared to mammals. This review summarizes what is currently known about the proghrelin system in birds and offers new insights into the nature and function of this important endocrine system. Such information facilitates cross-species comparisons and contributes to our understanding of the evolution of the proghrelin system. PMID:20798876

  15. Lungs and Respiratory System

    MedlinePlus

    ... Your 1- to 2-Year-Old Lungs and Respiratory System KidsHealth > For Parents > Lungs and Respiratory System A ... ll have taken at least 600 million breaths. Respiratory System Basics All of this breathing couldn't happen ...

  16. Lungs and Respiratory System

    MedlinePlus

    ... A Week of Healthy Breakfasts Shyness Lungs and Respiratory System KidsHealth > For Teens > Lungs and Respiratory System A ... didn't breathe, you couldn't live. Lungs & Respiratory System Basics Each day we breathe about 20,000 ...

  17. The Avian Proglucagon System

    USDA-ARS?s Scientific Manuscript database

    Understanding how the proglucagon system functions in maintaining glycemic control and energy balance in birds, as well as defining its specific roles in regulating metabolism, gastrointestinal tract function and food intake requires detailed knowledge of the components that comprise this system. T...

  18. The Avian Proghrelin System

    USDA-ARS?s Scientific Manuscript database

    To understand how the proghrelin system functions in regulating growth hormone release and food intake as well as defining its pleiotropic roles in such diverse physiological processes as energy homeostasis, gastrointestinal tract function and reproduction requires detailed knowledge of the structur...

  19. Prevalence of avian respiratory viruses in broiler flocks in Egypt.

    PubMed

    Hassan, Kareem E; Shany, Salama A S; Ali, A; Dahshan, Al-Hussien M; El-Sawah, Azza A; El-Kady, Magdy F

    2016-06-01

    In this study, respiratory viral pathogens were screened using real-time RT-PCR in 86 broiler chicken flocks suffering from respiratory diseases problems in 4 Egyptian governorates between January 2012 and February 2014. The mortality rates in the investigated flocks ranged from 1 to 47%. Results showed that mixed infection represented 66.3% of the examined flocks. Mixed infectious bronchitis (IBV) and avian influenza (AI)-H9N2 viruses were the most common infection (41.7%). Lack of AI-H9N2 vaccination and high rates of mixed infections in which AI-H9N2 is involved indicate an early AI-H9N2 infection with a potential immunosuppressive effect that predisposes for other viral infections. High pathogenic AI-H5N1 and virulent Newcastle disease virus (vNDV) infections were also detected (26.7% and 8.1%, respectively). Interestingly, co-infection of AI-H9N2 with either AIV-H5N1 or vNDV rarely resulted in high mortality. Partial cell-mediated immunity against similar internal AI genes, as well as virus interference between AI and vNDV, could be an explanation for this. Highly prevalent IBV and AI-H9N2 were isolated and were molecularly characterized based on S1 gene hypervariable region 3 ( HVR3: ) and hemagglutinin gene (HA) sequences, respectively. IBV strains were related to the variant group of IBV with multiple mutations in HVR3. Though AI-H9N2 viruses showed low rate of evolution in comparison to recent strains, few amino acid substitutions indicative of antibody selection pressure were observed in the HA gene. In conclusion, mixed viral infections, especially with IBV and AI-H9N2 viruses, are the predominant etiology of respiratory disease problems in broiler chickens in Egypt. Further investigations of the role of AI, IBV, and ND viruses' co-infections and interference in terms of altering the severity of clinical signs and lesions and/or generating novel reassortants within each virus are needed.

  20. Efficacy of disinfectants and hand sanitizers against avian respiratory viruses.

    PubMed

    Patnayak, Devi P; Prasad, A Minakshi; Malik, Yashpal S; Ramakrishnan, M A; Goyal, Sagar M

    2008-06-01

    Disinfectants play a major role in the control of animal diseases by decontaminating the farm environment. We evaluated the virucidal efficacy of nine commonly used disinfectants on a nonporous surface contaminated experimentally with avian metapneumovirus (aMPV), avian influenza virus, or Newcastle disease virus (NDV). Phenolic compounds and glutaraldehyde were found to be the most effective against all three viruses. Quaternary ammonium compounds were effective against aMPV but not against the other two viruses. In addition, efficacy of commercially available hand sanitizers was evaluated on human fingers contaminated with aMPV and NDV. All three hand sanitizers tested were found to be effective against both viruses within 1 min of application on fingers.

  1. Your Lungs and Respiratory System

    MedlinePlus

    ... Lifesaver Kids Talk About: Coaches Your Lungs & Respiratory System KidsHealth > For Kids > Your Lungs & Respiratory System Print ... its regular size. You've just felt the power of your lungs! continue A Look Inside the ...

  2. Advances in vaccination against avian pathogenic Escherichia coli respiratory disease: potentials and limitations.

    PubMed

    Ghunaim, Haitham; Abu-Madi, Marwan Abdelhamid; Kariyawasam, Subhashinie

    2014-08-06

    Avian pathogenic Escherichia coli (APEC) is one of the most economically devastating pathogens affecting the poultry industry. This group of extra-intestinal E. coli causes a variety of clinical conditions including airsacculitis and cellulitis. The economic impact of APEC is mainly due to mortality, slower growth rates, and carcass downgrading. In commercial broiler operations, APEC infections are controlled indirectly by vaccination against other respiratory diseases and minimizing stress conditions, and directly by administration of antimicrobial agents to suppress the infection in already infected flocks. The fact that most APEC strains possess some common virulence factors suggests that an effective vaccine against APEC is a viable option. The most important virulence factors that have been investigated over the years include type I and P fimbriae, aerobactin iron-acquisition system, and serum resistance traits. Despite the potential for developing an efficacious vaccine to combat this economically important poultry disease, several obstacles hinder such efforts. Those obstacles include the cost, vaccine delivery method and timing of vaccination as the birds should be immune to APEC by 21 days of age. Herein, we review the various attempts to develop an effective vaccine against the respiratory form of APEC diseases in poultry. We also discuss in-depth the potentials and limitations of such vaccines. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. The avian lung-associated immune system: a review.

    PubMed

    Reese, Sven; Dalamani, Grammatia; Kaspers, Bernd

    2006-01-01

    The lung is a major target organ for numerous viral and bacterial diseases of poultry. To control this constant threat birds have developed a highly organized lung-associated immune system. In this review the basic features of this system are described and their functional properties discussed. Most prominent in the avian lung is the bronchus-associated lymphoid tissue (BALT) which is located at the junctions between the primary bronchus and the caudal secondary bronchi. BALT nodules are absent in newly hatched birds, but gradually developed into the mature structures found from 6-8 weeks onwards. They are organized into distinct B and T cell areas, frequently comprise germinal centres and are covered by a characteristic follicle-associated epithelium. The interstitial tissue of the parabronchial walls harbours large numbers of tissue macrophages and lymphocytes which are scattered throughout tissue. A striking feature of the avian lung is the low number of macrophages on the respiratory surface under non-inflammatory conditions. Stimulation of the lung by live bacteria but not by a variety of bacterial products elicits a significant efflux of activated macrophages and, depending on the pathogen, of heterophils. In addition to the cellular components humoral defence mechanisms are found on the lung surface including secretory IgA. The compartmentalisation of the immune system in the avian lung into BALT and non BALT-regions should be taken into account in studies on the host-pathogen interaction since these structures may have distinct functional properties during an immune response.

  4. Lungs and Respiratory System

    MedlinePlus

    ... bad cough to get rid of the mucus. Common cold . Colds are caused by over 200 different viruses ... cause inflammation in the upper respiratory tract. The common cold is the most common respiratory infection. Symptoms may ...

  5. Lungs and Respiratory System

    MedlinePlus

    ... chronic bronchitis in teens. previous continue Other Conditions Common cold . Caused by more than 200 different viruses that cause inflammation in the upper respiratory tract, the common cold is the most common respiratory infection. Symptoms may ...

  6. Respiratory mechanics of eleven avian species resident at high and low altitude.

    PubMed

    York, Julia M; Chua, Beverly A; Ivy, Catherine M; Alza, Luis; Cheek, Rebecca; Scott, Graham R; McCracken, Kevin G; Frappell, Peter B; Dawson, Neal J; Laguë, Sabine L; Milsom, William K

    2017-03-15

    The metabolic cost of breathing at rest has never been successfully measured in birds, but has been hypothesized to be higher than in mammals of a similar size because of the rocking motion of the avian sternum being encumbered by the pectoral flight muscles. To measure the cost and work of breathing, and to investigate whether species resident at high altitude exhibit morphological or mechanical changes that alter the work of breathing, we studied 11 species of waterfowl: five from high altitudes (>3000 m) in Perú, and six from low altitudes in Oregon, USA. Birds were anesthetized and mechanically ventilated in sternal recumbency with known tidal volumes and breathing frequencies. The work done by the ventilator was measured, and these values were applied to the combinations of tidal volumes and breathing frequencies used by the birds to breathe at rest. We found the respiratory system of high-altitude species to be of a similar size, but consistently more compliant than that of low-altitude sister taxa, although this did not translate to a significantly reduced work of breathing. The metabolic cost of breathing was estimated to be between 1 and 3% of basal metabolic rate, as low or lower than estimates for other groups of tetrapods.

  7. Doping and respiratory system.

    PubMed

    Casali, L; Pinchi, G; Puxeddu, E

    2007-03-01

    Historically many different drugs have been used to enhance sporting performances. The magic elixir is still elusive and the drugs are still used despite the heavy adverse effects. The respiratory system is regularly involved in this research probably because of its central location in the body with several connections to the cardiovascular system. Moreover people are aware that O2 consumption and its delivery to mitochondria firstly depend on ventilation and on the respiratory exchanges. The second step consists in the tendency to increase V'O2 max and to prolong its availability with the aim of improving the endurance time and to relieve the fatigue. Many methods and substances had been used in order to gain an artificial success. Additional oxygen, autologous and homologous transfusion and erythropoietin, mainly the synthetic type, have been administered with the aim of increasing the amount of oxygen being delivered to the tissues. Some compounds like stimulants and caffeine are endowed of excitatory activity on the CNS and stimulate pulmonary ventilation. They did not prove to have any real activity in supporting the athletic performances. Beta-adrenergic drugs, particularly clenbuterol, when administered orally or parenterally develop a clear illicit activity on the myosin fibres and on the muscles as a whole. Salbutamol, terbutaline, salmeterol and formoterol are legally admitted when administrated by MDI in the treatment of asthma. The prevalence of asthma and bronchial hyperactivity is higher in athletes than amongst the general population. This implies that clear rules must be provided to set a correct diagnosis of asthma in the athletes and a correct therapy to align with the actual guidelines according to the same rights of the "other" asthmatic patients.

  8. Human and Avian Influenza Viruses Target Different Cells in the Lower Respiratory Tract of Humans and Other Mammals

    PubMed Central

    van Riel, Debby; Munster, Vincent J.; de Wit, Emmie; Rimmelzwaan, Guus F.; Fouchier, Ron A.M.; Osterhaus, Albert D.M.E.; Kuiken, Thijs

    2007-01-01

    Viral attachment to the host cell is critical for tissue and species specificity of virus infections. Recently, pattern of viral attachment (PVA) in human respiratory tract was determined for highly pathogenic avian influenza virus of subtype H5N1. However, PVA of human influenza viruses and other avian influenza viruses in either humans or experimental animals is unknown. Therefore, we compared PVA of two human influenza viruses (H1N1 and H3N2) and two low pathogenic avian influenza viruses (H5N9 and H6N1) with that of H5N1 virus in respiratory tract tissues of humans, mice, ferrets, cynomolgus macaques, cats, and pigs by virus histochemistry. We found that human influenza viruses attached more strongly to human trachea and bronchi than H5N1 virus and attached to different cell types than H5N1 virus. These differences correspond to primary diagnoses of tracheobronchitis for human influenza viruses and diffuse alveolar damage for H5N1 virus. The PVA of low pathogenic avian influenza viruses in human respiratory tract resembled that of H5N1 virus, demonstrating that other properties determine its pathogenicity for humans. The PVA in human respiratory tract most closely mirrored that in ferrets and pigs for human influenza viruses and that in ferrets, pigs, and cats for avian influenza viruses. PMID:17717141

  9. Human and avian influenza viruses target different cells in the lower respiratory tract of humans and other mammals.

    PubMed

    van Riel, Debby; Munster, Vincent J; de Wit, Emmie; Rimmelzwaan, Guus F; Fouchier, Ron A M; Osterhaus, Albert D M E; Kuiken, Thijs

    2007-10-01

    Viral attachment to the host cell is critical for tissue and species specificity of virus infections. Recently, pattern of viral attachment (PVA) in human respiratory tract was determined for highly pathogenic avian influenza virus of subtype H5N1. However, PVA of human influenza viruses and other avian influenza viruses in either humans or experimental animals is unknown. Therefore, we compared PVA of two human influenza viruses (H1N1 and H3N2) and two low pathogenic avian influenza viruses (H5N9 and H6N1) with that of H5N1 virus in respiratory tract tissues of humans, mice, ferrets, cynomolgus macaques, cats, and pigs by virus histochemistry. We found that human influenza viruses attached more strongly to human trachea and bronchi than H5N1 virus and attached to different cell types than H5N1 virus. These differences correspond to primary diagnoses of tracheobronchitis for human influenza viruses and diffuse alveolar damage for H5N1 virus. The PVA of low pathogenic avian influenza viruses in human respiratory tract resembled that of H5N1 virus, demonstrating that other properties determine its pathogenicity for humans. The PVA in human respiratory tract most closely mirrored that in ferrets and pigs for human influenza viruses and that in ferrets, pigs, and cats for avian influenza viruses.

  10. Respiratory transmission of an avian H3N8 influenza virus isolated from a harbour seal

    USGS Publications Warehouse

    Karlsson, Erik A.; Ip, Hon S.; Hall, Jeffrey S.; Yoon, Sun W.; Johnson, Jordan; Beck, Melinda A.; Webby, Richard J.; Schultz-Cherry, Stacey

    2014-01-01

    The ongoing human H7N9 influenza infections highlight the threat of emerging avian influenza viruses. In 2011, an avian H3N8 influenza virus isolated from moribund New England harbour seals was shown to have naturally acquired mutations known to increase the transmissibility of highly pathogenic H5N1 influenza viruses. To elucidate the potential human health threat, here we evaluate a panel of avian H3N8 viruses and find that the harbour seal virus displays increased affinity for mammalian receptors, transmits via respiratory droplets in ferrets and replicates in human lung cells. Analysis of a panel of human sera for H3N8 neutralizing antibodies suggests that there is no population-wide immunity to these viruses. The prevalence of H3N8 viruses in birds and multiple mammalian species including recent isolations from pigs and evidence that it was a past human pandemic virus make the need for surveillance and risk analysis of these viruses of public health importance.

  11. Respiratory transmission of an avian H3N8 influenza virus isolated from a harbour seal

    PubMed Central

    Karlsson, Erik A.; Ip, Hon S.; Hall, Jeffrey S.; Yoon, Sun Woo; Johnson, Jordan; Beck, Melinda A.; Webby, Richard J.; Schultz-Cherry, Stacey

    2016-01-01

    The ongoing human H7N9 influenza infections highlight the threat of emerging avian influenza viruses. In 2011, an avian H3N8 influenza virus isolated from moribund New England harbour seals was shown to have naturally acquired mutations known to increase the transmissibility of highly pathogenic H5N1 influenza viruses. To elucidate the potential human health threat, here we evaluate a panel of avian H3N8 viruses and find that the harbour seal virus displays increased affinity for mammalian receptors, transmits via respiratory droplets in ferrets and replicates in human lung cells. Analysis of a panel of human sera for H3N8 neutralizing antibodies suggests that there is no population-wide immunity to these viruses. The prevalence of H3N8 viruses in birds and multiple mammalian species including recent isolations from pigs and evidence that it was a past human pandemic virus make the need for surveillance and risk analysis of these viruses of public health importance. PMID:25183346

  12. Assessing Respiratory System Mechanical Function.

    PubMed

    Restrepo, Ruben D; Serrato, Diana M; Adasme, Rodrigo

    2016-12-01

    The main goals of assessing respiratory system mechanical function are to evaluate the lung function through a variety of methods and to detect early signs of abnormalities that could affect the patient's outcomes. In ventilated patients, it has become increasingly important to recognize whether respiratory function has improved or deteriorated, whether the ventilator settings match the patient's demand, and whether the selection of ventilator parameters follows a lung-protective strategy. Ventilator graphics, esophageal pressure, intra-abdominal pressure, and electric impedance tomography are some of the best-known monitoring tools to obtain measurements and adequately evaluate the respiratory system mechanical function.

  13. Induction of respiratory immune responses in the chicken; implications for development of mucosal avian influenza virus vaccines.

    PubMed

    de Geus, Eveline D; Rebel, Johanna M J; Vervelde, Lonneke

    2012-06-01

    The risk and the size of an outbreak of avian influenza virus (AIV) could be restricted by vaccination of poultry. A vaccine used for rapid intervention during an AIV outbreak should be safe, highly effective after a single administration and suitable for mass application. In the case of AIV, aerosol vaccination using live virus is not desirable because of its zoonotic potential and because of the risk for virus reassortment. The rational design of novel mucosal-inactivated vaccines against AIV requires a comprehensive knowledge of the structure and function of the lung-associated immune system in birds in order to target vaccines appropriately and to design efficient mucosal adjuvants. This review addresses our current understanding of the induction of respiratory immune responses in the chicken. Furthermore, possible mucosal vaccination strategies for AIV are highlighted.

  14. Respiratory care management information systems.

    PubMed

    Ford, Richard M

    2004-04-01

    Hospital-wide computerized information systems evolved from the need to capture patient information and perform billing and other financial functions. These systems, however, have fallen short of meeting the needs of respiratory care departments regarding work load assessment, productivity management, and the level of outcome reporting required to support programs such as patient-driven protocols. The respiratory care management information systems (RCMIS) of today offer many advantages over paper-based systems and hospital-wide computer systems. RCMIS are designed to facilitate functions specific to respiratory care, including assessing work demand, assigning and tracking resources, charting, billing, and reporting results. RCMIS incorporate mobile, point-of-care charting and are highly configurable to meet the specific needs of individual respiratory care departments. Important and substantial benefits can be realized with an RCMIS and mobile, wireless charting devices. The initial and ongoing costs of an RCMIS are justified by increased charge capture and reduced costs, by way of improved productivity and efficiency. It is not unusual to recover the total cost of an RCMIS within the first year of its operation. In addition, such systems can facilitate and monitor patient-care protocols and help to efficiently manage the vast amounts of information encountered during the practitioner's workday. Respiratory care departments that invest in RCMIS have an advantage in the provision of quality care and in reducing expenses. A centralized respiratory therapy department with an RCMIS is the most efficient and cost-effective way to monitor work demand and manage the hospital-wide allocation of respiratory care services.

  15. Protection against avian metapneumovirus subtype C in turkeys immunized via the respiratory tract with inactivated virus.

    PubMed

    Cha, Ra Mi; Khatri, Mahesh; Sharma, Jagdev M

    2011-01-10

    Avian metapneumovirus subtype C (aMPV/C) causes a severe upper respiratory tract (URT) infection in turkeys. Turkeys were inoculated oculonasally with inactivated aMPV/C adjuvanted with synthetic double-stranded RNA polyriboinosinic polyribocytidylic acid (Poly IC). Immunized turkeys had elevated numbers of mucosal IgA+ cells in the URT and increased levels of virus-specific IgG and IgA in the lachrymal fluid and IgG in the serum. After 7 or 21 days post immunization, turkeys were challenged oculonasally with pathogenic aMPV/C. Immunized groups were protected against respiratory lesions induced by the challenge virus. Further, the viral copy number of the challenge virus in the URT were significantly lower in the immunized turkeys than in the unimmunized turkeys (P<0.05). These results showed that inactivated aMPV/C administered by the respiratory route induced protective immunity against pathogenic virus challenge. Copyright © 2010 Elsevier Ltd. All rights reserved.

  16. Seasonal and pandemic human influenza viruses attach better to human upper respiratory tract epithelium than avian influenza viruses.

    PubMed

    van Riel, Debby; den Bakker, Michael A; Leijten, Lonneke M E; Chutinimitkul, Salin; Munster, Vincent J; de Wit, Emmie; Rimmelzwaan, Guus F; Fouchier, Ron A M; Osterhaus, Albert D M E; Kuiken, Thijs

    2010-04-01

    Influenza viruses vary markedly in their efficiency of human-to-human transmission. This variation has been speculated to be determined in part by the tropism of influenza virus for the human upper respiratory tract. To study this tropism, we determined the pattern of virus attachment by virus histochemistry of three human and three avian influenza viruses in human nasal septum, conchae, nasopharynx, paranasal sinuses, and larynx. We found that the human influenza viruses-two seasonal influenza viruses and pandemic H1N1 virus-attached abundantly to ciliated epithelial cells and goblet cells throughout the upper respiratory tract. In contrast, the avian influenza viruses, including the highly pathogenic H5N1 virus, attached only rarely to epithelial cells or goblet cells. Both human and avian viruses attached occasionally to cells of the submucosal glands. The pattern of virus attachment was similar among the different sites of the human upper respiratory tract for each virus tested. We conclude that influenza viruses that are transmitted efficiently among humans attach abundantly to human upper respiratory tract, whereas inefficiently transmitted influenza viruses attach rarely. These results suggest that the ability of an influenza virus to attach to human upper respiratory tract is a critical factor for efficient transmission in the human population.

  17. Distribution patterns of influenza virus receptors and viral attachment patterns in the respiratory and intestinal tracts of seven avian species.

    PubMed

    Costa, Taiana; Chaves, Aida J; Valle, Rosa; Darji, Ayub; van Riel, Debby; Kuiken, Thijs; Majó, Natàlia; Ramis, Antonio

    2012-04-10

    This study assessed the presence of sialic acid α-2,3 and α-2,6 linked glycan receptors in seven avian species. The respiratory and intestinal tracts of the chicken, common quail, red-legged partridge, turkey, golden pheasant, ostrich, and mallard were tested by means of lectin histochemistry, using the lectins Maackia amurensis agglutinin II and Sambucus nigra agglutinin, which show affinity for α-2,3 and α-2,6 receptors, respectively. Additionally, the pattern of virus attachment (PVA) was evaluated with virus histochemistry, using an avian-origin H4N5 virus and a human-origin seasonal H1N1 virus. There was a great variation of receptor distribution among the tissues and avian species studied. Both α-2,3 and α-2,6 receptors were present in the respiratory and intestinal tracts of the chicken, common quail, red-legged partridge, turkey, and golden pheasant. In ostriches, the expression of the receptor was basically restricted to α-2,3 in both the respiratory and intestinal tracts and in mallards the α-2,6 receptors were absent from the intestinal tract. The results obtained with the lectin histochemistry were, in general, in agreement with the PVA. The differential expression and distribution of α-2,3 and α-2,6 receptors among various avian species might reflect a potentially decisive factor in the emergence of new viral strains.

  18. Distribution patterns of influenza virus receptors and viral attachment patterns in the respiratory and intestinal tracts of seven avian species

    PubMed Central

    2012-01-01

    This study assessed the presence of sialic acid α-2,3 and α-2,6 linked glycan receptors in seven avian species. The respiratory and intestinal tracts of the chicken, common quail, red-legged partridge, turkey, golden pheasant, ostrich, and mallard were tested by means of lectin histochemistry, using the lectins Maackia amurensis agglutinin II and Sambucus nigra agglutinin, which show affinity for α-2,3 and α-2,6 receptors, respectively. Additionally, the pattern of virus attachment (PVA) was evaluated with virus histochemistry, using an avian-origin H4N5 virus and a human-origin seasonal H1N1 virus. There was a great variation of receptor distribution among the tissues and avian species studied. Both α-2,3 and α-2,6 receptors were present in the respiratory and intestinal tracts of the chicken, common quail, red-legged partridge, turkey, and golden pheasant. In ostriches, the expression of the receptor was basically restricted to α-2,3 in both the respiratory and intestinal tracts and in mallards the α-2,6 receptors were absent from the intestinal tract. The results obtained with the lectin histochemistry were, in general, in agreement with the PVA. The differential expression and distribution of α-2,3 and α-2,6 receptors among various avian species might reflect a potentially decisive factor in the emergence of new viral strains. PMID:22489675

  19. The relationship of severe acute respiratory syndrome coronavirus with avian and other coronaviruses.

    PubMed

    Jackwood, Mark W

    2006-09-01

    In February 2003, a severe acute respiratory syndrome coronavirus (SARS-CoV) emerged in humans in Guangdong Province, China, and caused an epidemic that had severe impact on public health, travel, and economic trade. Coronaviruses are worldwide in distribution, highly infectious, and extremely difficult to control because they have extensive genetic diversity, a short generation time, and a high mutation rate. They can cause respiratory, enteric, and in some cases hepatic and neurological diseases in a wide variety of animals and humans. An enormous, previously unrecognized reservoir of coronaviruses exists among animals. Because coronaviruses have been shown, both experimentally and in nature, to undergo genetic mutations and recombination at a rate similar to that of influenza viruses, it is not surprising that zoonosis and host switching that leads to epidemic diseases have occurred among coronaviruses. Analysis of coronavirus genomic sequence data indicates that SARS-CoV emerged from an animal reservoir. Scientists examining coronavirus isolates from a variety of animals in and around Guangdong Province reported that SARS-CoV has similarities with many different coronaviruses including avian coronaviruses and SARS-CoV-like viruses from a variety of mammals found in live-animal markets. Although a SARS-like coronavirus isolated from a bat is thought to be the progenitor of SARS-CoV, a lack of genomic sequences for the animal coronaviruses has prevented elucidation of the true origin of SARS-CoV. Sequence analysis of SARS-CoV shows that the 5' polymerase gene has a mammalian ancestry; whereas the 3' end structural genes (excluding the spike glycoprotein) have an avian origin. Spike glycoprotein, the host cell attachment viral surface protein, was shown to be a mosaic of feline coronavirus and avian coronavirus sequences resulting from a recombination event. Based on phylogenetic analysis designed to elucidate evolutionary links among viruses, SARS-CoV is believed

  20. Avians as a Model System of Vascular Development

    PubMed Central

    Bressan, Michael; Mikawa, Takashi

    2015-01-01

    Summary For more then 2000 years philosophers and scientists have turned to the avian embryo with questions of how life begins (Aristotle; Needham, 1959). Then, as now, the unique accessibility of the embryo both in terms of acquisition of eggs from domesticated fowl, and ease at which the embryo can be visualized by simply opening the shell, have made avians an appealing and powerful model system for the study of development. Thus, as the field of embryology has evolved through observational, comparative, and experimental embryology, into its current iteration as the cellular and molecular biology of development, avians have remained a useful and practical system of study. PMID:25468608

  1. A miniaturised respiratory sensor system

    NASA Astrophysics Data System (ADS)

    Hoffmann, U.; Fasoulas, S.; Linnarsson, D.; Paiva, M.; Stoll, R.; Hammer, F.; Stangl, R.; Martinot, Guy

    2005-10-01

    Solid-electrolyte gas sensors, originally designed for residual oxygen detection in low Earth orbit, have provided the basis for developing a multi-function sensor system for respiratory investigations. These sensors allow the detection of oxygen and carbon dioxide partial pressures simultaneously with total flow rates. Moreover, with only minor modifications, other gases of interest in cardio-respiratory testing, such as carbon monoxide and hydrogen, can be detected. The sensors are highly miniaturised and can be positioned in the mainstream of the breath. Thus there is no delay through sample transport. The characteristics of the flow detection are comparable with common sensors used in spirometry. The oxygen and carbon dioxide sensitivities have reached a level that is comparable to or even better than those of mass spectrometers optimised for respiratory analysis. Data from this sensor system allow single-breath or breath-by-breath analysis. Integrated into a portable system, the system provides greater flexibility than other devices, significantly increasing the range of scientific and health-monitoring applications.

  2. B-cell infiltration in the respiratory mucosa of turkeys exposed to subtype C avian metapneumovirus.

    PubMed

    Cha, Ra Mi; Khatri, Mahesh; Sharma, Jagdev M

    2007-09-01

    Turkeys exposed to avian metapneumovirus (aMPV) subtype C showed extensive lymphoid cell infiltrations in the nasal turbinates of the upper respiratory tract. The cellular infiltration occurred after the first virus exposure but not after re-exposure. Quantitation of the relative proportions of mucosal immunoglobulin (Ig)A+, IgG+, and IgM+ cells in controls and virus-exposed turkeys revealed that at 7 days after the first virus exposure, when mucosal infiltration was well pronounced, there was a significant increase (P < 0.05) in the numbers of infiltrating IgA+ but not of IgG+ and IgM+ cells. After the second virus exposure, although the overall numbers of mucosal lymphoid cells were similar in the virus-exposed and control turkeys, the relative proportions of IgA+ and IgG+ cells were significantly higher in the virus-exposed turkeys (P < 0.05) than in controls. Furthermore, elevated levels of aMPV-specific IgA were detected in the nasal secretions and the bile of virus-exposed birds after the second but not after the first virus exposure. These results suggest, for the first time, the possible involvement of local mucosal immunoglobulins in the pathogenesis of aMPV in turkeys.

  3. Effects of Aging on the Respiratory System.

    ERIC Educational Resources Information Center

    Levitzky, Michael G.

    1984-01-01

    Relates alterations in respiratory system functions occurring with aging to changes in respiratory system structure during the course of life. Main alterations noted include loss of alveolar elastic recoil, alteration in chest wall structure and decreased respiratory muscle strength, and loss of surface area and changes in pulmonary circulation.…

  4. Effects of Aging on the Respiratory System.

    ERIC Educational Resources Information Center

    Levitzky, Michael G.

    1984-01-01

    Relates alterations in respiratory system functions occurring with aging to changes in respiratory system structure during the course of life. Main alterations noted include loss of alveolar elastic recoil, alteration in chest wall structure and decreased respiratory muscle strength, and loss of surface area and changes in pulmonary circulation.…

  5. Respiratory analysis system and method

    NASA Technical Reports Server (NTRS)

    Liu, F. F. (Inventor)

    1973-01-01

    A system is described for monitoring the respiratory process in which the gas flow rate and the frequency of respiration and expiration cycles can be determined on a real time basis. A face mask is provided with one-way inlet and outlet valves where the gas flow is through independent flowmeters and through a mass spectrometer. The opening and closing of a valve operates an electrical switch, and the combination of the two switches produces a low frequency electrical signal of the respiratory inhalation and exhalation cycles. During the time a switch is operated, the corresponsing flowmeter produces electric pulses representative of the flow rate; the electrical pulses being at a higher frequency than that of the breathing cycle and combined with the low frequency signal. The high frequency pulses are supplied to conventional analyzer computer which also receives temperature and pressure inputs and computes mass flow rate and totalized mass flow of gas. From the mass spectrometer, components of the gas are separately computed as to flow rate. The electrical switches cause operation of up-down inputs of a reversible counter. The respective up and down cycles can be individually monitored and combined for various respiratory measurements.

  6. Integration and Validation of Avian Radars (IVAR): Functional Requirements and Performance Specifications for Avian Radar Systems. Version 3.0

    DTIC Science & Technology

    2011-12-09

    see also UTC GPS Global Positioning System GUI Graphical User Interface IVAR Integration and Validation of Avian Radars KML Keyhole Markup...Coordinated Universal Time VPN Virtual Private Network WAN Wide Area Network WiFi Wireless Fidelity WGS84 World Geodetic System, 1984 Revision 1...recording global positioning system ( GPS ) to verify the 3D coordinates of targets computed by the avian radar system. The UAV was flown along a

  7. Avian influenza (fowl plague)

    USDA-ARS?s Scientific Manuscript database

    Avian influenza (AI) viruses infect domestic poultry and wild birds. In domestic poultry, AI viruses are typically of low pathogenicity (LP) causing subclinical infections, respiratory disease or drops in egg production. However, a few AI viruses cause severe systemic disease with high mortality; ...

  8. 76 FR 67017 - Notice to Manufacturers of Airport Avian Radar Systems

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-28

    ... Federal Aviation Administration Notice to Manufacturers of Airport Avian Radar Systems AGENCY: Federal Aviation Administration (FAA), U.S. DOT. ACTION: Notice to Manufacturers of Airport Avian Radar Systems... waivers to foreign manufacturers of airport avian radar systems that meet the requirements of FAA Advisory...

  9. The anatomy and physiology of the avian endocrine system.

    PubMed

    Ritchie, Midge; Pilny, Anthony A

    2008-01-01

    The endocrine system of birds is comparable to that of mammals, although there are many unique aspects to consider when studying the anatomy, physiology, and biochemistry. Avian endocrinology is a field of veterinary medicine that is unfamiliar to many practitioners; however, it is important to have a comprehensive understanding when evaluating companion birds in clinical practice. This article covers the anatomy and physiology of the normal avian, and readers are referred to other articles for a more detailed explanation of altered physiology and pathology.

  10. Novel avian-origin human influenza A(H7N9) can be transmitted between ferrets via respiratory droplets.

    PubMed

    Xu, Lili; Bao, Linlin; Deng, Wei; Dong, Libo; Zhu, Hua; Chen, Ting; Lv, Qi; Li, Fengdi; Yuan, Jing; Xiang, Zhiguang; Gao, Kai; Xu, Yanfeng; Huang, Lan; Li, Yanhong; Liu, Jiangning; Yao, Yanfeng; Yu, Pin; Li, Xiyan; Huang, Weijuan; Zhao, Xiang; Lan, Yu; Guo, Junfeng; Yong, Weidong; Wei, Qiang; Chen, Honglin; Zhang, Lianfeng; Qin, Chuan

    2014-02-15

    The outbreak of human infections caused by novel avian-origin influenza A(H7N9) in China since March 2013 underscores the need to better understand the pathogenicity and transmissibility of these viruses in mammals. In a ferret model, the pathogenicity of influenza A(H7N9) was found to be less than that of an influenza A(H5N1) strain but comparable to that of 2009 pandemic influenza A(H1N1), based on the clinical signs, mortality, virus dissemination, and results of histopathologic analyses. Influenza A(H7N9) could replicate in the upper and lower respiratory tract, the heart, the liver, and the olfactory bulb. It is worth noting that influenza A(H7N9) exhibited a low level of transmission between ferrets via respiratory droplets. There were 4 mutations in the virus isolated from the contact ferret: D678Y in the gene encoding PB2, R157K in the gene encoding hemagglutinin (H3 numbering), I109T in the gene encoding nucleoprotein, and T10I in the gene encoding neuraminidase. These data emphasized that avian-origin influenza A(H7N9) can be transmitted between mammals, highlighting its potential for human-to-human transmissibility.

  11. Other avian paramyxoviruses

    USDA-ARS?s Scientific Manuscript database

    Avian paramyxovirus infections have been reported for chickens and turkeys in association with respiratory disease or drops in egg production. This book chapter provides general information on etiology, clinical signs, lesions, diagnosis, prevention and control of avian paramyxoviruses except Newcas...

  12. Auscultation of the respiratory system

    PubMed Central

    Sarkar, Malay; Madabhavi, Irappa; Niranjan, Narasimhalu; Dogra, Megha

    2015-01-01

    Auscultation of the lung is an important part of the respiratory examination and is helpful in diagnosing various respiratory disorders. Auscultation assesses airflow through the trachea-bronchial tree. It is important to distinguish normal respiratory sounds from abnormal ones for example crackles, wheezes, and pleural rub in order to make correct diagnosis. It is necessary to understand the underlying pathophysiology of various lung sounds generation for better understanding of disease processes. Bedside teaching should be strengthened in order to avoid erosion in this age old procedure in the era of technological explosion. PMID:26229557

  13. Infectious bronchitis virus in different avian physiological systems-a field study in Brazilian poultry flocks.

    PubMed

    Balestrin, Eder; Fraga, Aline P; Ikuta, Nilo; Canal, Cláudio W; Fonseca, André S K; Lunge, Vagner R

    2014-08-01

    Avian infectious bronchitis is a highly contagious viral disease with economic effects on poultry agribusiness. The disease presents multi-systemic clinical signs (respiratory, renal, enteric, and reproductive) and is caused by one coronavirus (infectious bronchitis virus, IBV). Infectious bronchitis virus is classified into different serotypes and genotypes (vaccine strains and field variants). This study aimed to evaluate the occurrence of IBV in commercial poultry flocks from 3 important producing regions in Brazil and to determine the tropism of the main circulating genotypes to 3 different avian physiological systems (respiratory, digestive, urinary/reproductive). Clinical samples with suggestive signs of IBV infection were collected from 432 different poultry commercial flocks (198 from broilers and 234 from breeders). The total number of biological samples consisted of organ pools from the 3 above physiological systems obtained of farms from 3 important producing regions: midwest, northeast, and south. Infectious bronchitis virus was detected by reverse-transcription, real-time PCR of the 5' untranslated region. The results showed 179 IBV-positive flocks (41.4% of the flocks), with 107 (24.8%) from broilers and 72 (16.8%) from breeders. There were similar frequencies of IBV-positive flocks in farms from different regions of the country, most often in broilers (average 54%) compared with breeders (average 30.8%). reverse-transcription was more frequently detected in the digestive system of breeders (40%), and in the digestive (43.5%) and respiratory (37.7%) systems of broilers. Infectious bronchitis virus genotyping was performed by a reverse-transcription nested PCR and sequencing of the S1 gene from a selection of 79 IBV-positive flocks (45 from broilers and 34 from breeders). The majority of the flocks were infected with Brazilian variant genotype than with Massachusetts vaccine genotype. These results demonstrate the predominance of the Brazilian variant

  14. Heliox reduces respiratory system resistance in respiratory syncytial virus induced respiratory failure.

    PubMed

    Kneyber, Martin C J; van Heerde, Marc; Twisk, Jos W R; Plötz, Frans B; Markhors, Dick G

    2009-01-01

    Respiratory syncytial virus (RSV) lower respiratory tract disease is characterised by narrowing of the airways resulting in increased airway resistance, air-trapping and respiratory acidosis. These problems might be overcome using helium-oxygen gas mixture. However, the effect of mechanical ventilation with heliox in these patients is unclear. The objective of this prospective cross-over study was to determine the effects of mechanical ventilation with heliox 60/40 versus conventional gas on respiratory system resistance, air-trapping and CO2 removal. Mechanically ventilated, sedated and paralyzed infants with proven RSV were enrolled within 24 hours after paediatric intensive care unit (PICU)admission. At T = 0, respiratory system mechanics including respiratory system compliance and resistance, and peak expiratory flow rate were measured with the AVEA ventilator. The measurements were repeated at each interval (after 30 minutes of ventilation with heliox, after 30 minutes of ventilation with nitrox and again after 30 minutes of ventilation with heliox). Indices of gas exchange (ventilation and oxygenation index) were calculated at each interval. Air-trapping (defined by relative change in end-expiratory lung volume) was determined by electrical impedance tomography (EIT) at each interval. Thirteen infants were enrolled. In nine, EIT measurements were performed. Mechanical ventilation with heliox significantly decreased respiratory system resistance. This was not accompanied by an improved CO2 elimination, decreased peak expiratory flow rate or decreased end-expiratory lung volume. Importantly, oxygenation remained unaltered throughout the experimental protocol. Respiratory system resistance is significantly decreased by mechanical ventilation with heliox (ISCRTN98152468).

  15. Respiratory system involvement in Costello syndrome.

    PubMed

    Gomez-Ospina, Natalia; Kuo, Christin; Ananth, Amitha Lakshmi; Myers, Angela; Brennan, Marie-Luise; Stevenson, David A; Bernstein, Jonathan A; Hudgins, Louanne

    2016-07-01

    Costello syndrome (CS) is a multisystem disorder caused by heterozygous germline mutations in the HRAS proto-oncogene. Respiratory system complications have been reported in individuals with CS, but a comprehensive description of the full spectrum and incidence of respiratory symptoms in these patients is not available. Here, we report the clinical course of four CS patients with respiratory complications as a major cause of morbidity. Review of the literature identified 56 CS patients with descriptions of their neonatal course and 17 patients in childhood/adulthood. We found that in the neonatal period, respiratory complications are seen in approximately 78% of patients with transient respiratory distress reported in 45% of neonates. Other more specific respiratory diagnoses were reported in 62% of patients, the majority of which comprised disorders of the upper and lower respiratory tract. Symptoms of upper airway obstruction were reported in CS neonates but were more commonly diagnosed in childhood/adulthood (71%). Analysis of HRAS mutations and their respiratory phenotype revealed that the common p.Gly12Ser mutation is more often associated with transient respiratory distress and other respiratory diagnoses. Respiratory failure and dependence on mechanical ventilation occurs almost exclusively with rare mutations. In cases of prenatally diagnosed CS, the high incidence of respiratory complications in the neonatal period should prompt anticipatory guidance and development of a postnatal management plan. This may be important in cases involving rarer mutations. Furthermore, the high frequency of airway obstruction in CS patients suggests that otorhinolaryngological evaluation and sleep studies should be considered. © 2016 Wiley Periodicals, Inc.

  16. Respiratory System Involvement in Costello Syndrome

    PubMed Central

    Gomez-Ospina, Natalia; Kuo, Christin; Ananth, Amitha Lakshmi; Myers, Angela; Brennan, Marie-Luise; Stevenson, David A; Bernstein, Jonathan A; Hudgins, Louanne

    2017-01-01

    Costello syndrome (CS) is a multisystem disorder caused by heterozygous germline mutations in the HRAS proto-oncogene. Respiratory system complications have been reported in individuals with CS, but a comprehensive description of the full spectrum and incidence of respiratory symptoms in these patients is not available. Here we report the clinical course of four CS patients with respiratory complications as a major cause of morbidity. Review of the literature identified 56 CS patients with descriptions of their neonatal course and 17 patients in childhood/adulthood. We found that in the neonatal period respiratory complications are seen in approximately 78% of patients with transient respiratory distress reported in 45% of neonates. Other more specific respiratory diagnoses were reported in 62% of patients, the majority of which comprised disorders of the upper and lower respiratory tract. Symptoms of upper airway obstruction were reported in CS neonates but were more commonly diagnosed in childhood/adulthood (71%). Analysis of HRAS mutations and their respiratory phenotype revealed that the common p.Gly12Ser mutation is more often associated with transient respiratory distress and other respiratory diagnoses. Respiratory failure and dependence on mechanical ventilation occurs almost exclusively with rare mutations. In cases of prenatally diagnosed CS, the high incidence of respiratory complications in the neonatal period should prompt anticipatory guidance and development of a postnatal management plan. This may be important in cases involving rarer mutations. Furthermore, the high frequency of airway obstruction in CS patients suggests that otorhinolaryngological evaluation and sleep studies should be considered. PMID:27102959

  17. Investigations of respiratory control systems simulation

    NASA Technical Reports Server (NTRS)

    Gallagher, R. R.

    1973-01-01

    The Grodins' respiratory control model was investigated and it was determined that the following modifications were necessary before the model would be adaptable for current research efforts: (1) the controller equation must be modified to allow for integration of the respiratory system model with other physiological systems; (2) the system must be more closely correlated to the salient physiological functionings; (3) the respiratory frequency and the heart rate should be expanded to illustrate other physiological relationships and dependencies; and (4) the model should be adapted to particular individuals through a better defined set of initial parameter values in addition to relating these parameter values to the desired environmental conditions. Several of Milhorn's respiratory control models were also investigated in hopes of using some of their features as modifications for Grodins' model.

  18. Study of nebulization delivery of aerosolized fluorescent microspheres to the avian respiratory tract

    PubMed Central

    Tell, Lisa A.; Stephens, Kimberly; Teague, Stephen V.; Pinkerton, Kent E.; Raabe, Otto G.

    2015-01-01

    SUMMARY This study investigated the delivery of an aerosol of monodisperse microspheres to the respiratory tract of birds following aerosol exposure. Adult domestic pigeons (Columbia livia domestica; n=5 birds per timed treatment) were exposed to an aerosol of fluorescent 1.0 μm diameter carboxylate microspheres for 0.5, 1, 2 or 4 hr. During the aerosolization period, the birds were free standing in a plexiglass treatment chamber, and the aerosol was delivered using a commercial nebulizer. Immediately following aerosol exposure the birds were euthanized and the carcasses were intravenously infused with a modified paraformaldehyde/gluteraldehyde fixative. Evaluation of microsphere distribution was performed using a stereoscopic microscope with an epifluorescent module. The results from this study revealed that the amount of aerosolized particles delivered using a commercial nebulizer was proportional to exposure periods. Aerosol exposure periods of 0.5 h or 1 h did not result in a readily observable distribution of 1.0 μm fluorescent microspheres to the cranial thoracic, caudal thoracic, or abdominal air sac membranes. This was partly attributed to the relatively low concentration of the individual monodisperse microspheres in the aerosolized suspension. The 2 and 4 hr exposure periods resulted in readily observable deposition of the 1.0 μm fluorescent microspheres in the cranial thoracic, caudal thoracic, or abdominal air sac membranes with the 4 hr exposure period resulting in the greatest number of particles on the membrane surfaces. For each of the exposure periods there was individual animal variation regarding the distribution and relative number of spheres deposited. This study demonstrates the widespread deposition of particles that had an aerodynamic equivalent diameter of approximately 1 μm and provides a better understanding of particle deposition efficiency within the respiratory system following aerosol exposure in birds. PMID:22856198

  19. Study of nebulization delivery of aerosolized fluorescent microspheres to the avian respiratory tract.

    PubMed

    Tell, Lisa A; Stephens, Kimberly; Teague, Stephen V; Pinkerton, Kent E; Raabe, Otto G

    2012-06-01

    This study investigated the delivery of an aerosol of monodisperse microspheres to the respiratory tract of birds following aerosol exposure. Adult domestic pigeons (Columbia livia domestica, n = 5 birds per timed treatment) were exposed to an aerosol of fluorescent 1.0 microm diameter carboxylate microspheres for 0.5, 1, 2, or 4 hr. During the aerosolization period, the birds were free-standing in a plexiglass treatment chamber and the aerosol was delivered using a commercial nebulizer. Immediately following aerosol exposure, the birds were euthanatized and the carcasses were intravenously infused with a modified paraformaldehyde/gluteraldehyde fixative. Evaluation of microsphere distribution was performed using a stereoscopic microscope with an epifluorescent module. The results from this study revealed that the amount of aerosolized particles delivered using a commercial nebulizer was proportional to exposure periods. Aerosol exposure periods of 0.5 hr or 1 hr did not result in a readily observable distribution of 1.0 microm fluorescent microspheres to the cranial thoracic, caudal thoracic, or abdominal air sac membranes. This was partly attributed to the relatively low concentration of the individual monodisperse microspheres in the aerosolized suspension. The 2- and 4-hr exposure periods resulted in readily observable deposition of the 1.0 mirom fluorescent microspheres in the cranial thoracic, caudal thoracic, or abdominal air sac membranes, with the 4-hr exposure period resulting in the greatest number of particles on the membrane surfaces. For each of the exposure periods, there was individual animal variation regarding the distribution and relative number of spheres deposited. This study demonstrates the widespread deposition of particles that had an aerodynamic equivalent diameter of approximately 1 microm and provides a better understanding of particle deposition efficiency within the respiratory system following aerosol exposure in birds.

  20. Evaluation of exercise-respiratory system modifications and preliminary respiratory-circulatory system integration scheme

    NASA Technical Reports Server (NTRS)

    Gallagher, R. R.

    1974-01-01

    The respiratory control system, functioning as an independent system, is presented with modifications of the exercise subroutine. These modifications illustrate an improved control of ventilation rates and arterial and compartmental gas tensions. A very elementary approach to describing the interactions of the respiratory and circulatory system is presented.

  1. [Present situation and control on emerging respiratory infectious diseases such as SARS and avian influenza].

    PubMed

    Okabe, Nobuhiko

    2005-11-01

    Infectious diseases have been recognized again due to appearing of emerging and re-emerging infectious diseases in the world. Most of them occur not only in developing countries but also in developed countries, and in Asian region. The pathogen is mainly virus and most of them are suspected zoonotic origin. SARS emerged in the world abruptly and disappeared in 2003. We have had many lessons and learn on control measures, public health, economic impacts, human rights, international cooperation and infectious diseases. The outbreaks of avian influenza among fowls have been occurred since 2004, and some fatal human cases infected with avian influenza virus are detected in Viet Nam, Thailand, Cambodia and Indonesia. Although the total number of human cases are still limited and human to human transmission mode is not yet detected, it has been concerned the possibility to shift new types of influenza for human as pandemic. It is necessary to recognize correctly on existing of infectious diseases, to enhance surveillance, to call partnerships among several sectors such as medical institutes, medical education institutes, research institutes and public health departments. Further, infectious disease control should tackle in global level.

  2. Avian biological clock - Immune system relationship.

    PubMed

    Markowska, Magdalena; Majewski, Paweł M; Skwarło-Sońta, Krystyna

    2017-01-01

    Biological rhythms in birds are driven by the master clock, which includes the suprachiasmatic nucleus, the pineal gland and the retina. Light/dark cycles are the cues that synchronize the rhythmic changes in physiological processes, including immunity. This review summarizes our investigations on the bidirectional relationships between the chicken pineal gland and the immune system. We demonstrated that, in the chicken, the main pineal hormone, melatonin, regulates innate immunity, maintains the rhythmicity of immune reactions and is involved in the seasonal changes in immunity. Using thioglycollate-induced peritonitis as a model, we showed that the activated immune system regulates the pineal gland by inhibition of melatonin production at the level of the key enzyme in its biosynthetic pathway, arylalkylamine-N-acetyltransferase (AANAT). Interleukin 6 and interleukin 18 seem to be the immune mediators influencing the pineal gland, directly inhibiting Aanat gene transcription and modulating expression of the clock genes Bmal1 and Per3, which in turn regulate Aanat.

  3. Mutations during the Adaptation of H9N2 Avian Influenza Virus to the Respiratory Epithelium of Pigs Enhance Sialic Acid Binding Activity and Virulence in Mice

    PubMed Central

    Yang, W.; Punyadarsaniya, D.; Lambertz, R. L. O.; Lee, D. C. C.; Liang, C. H.; Höper, D.; Leist, S. R.; Hernández-Cáceres, A.; Stech, J.; Beer, M.; Wu, C. Y.; Wong, C. H.; Schughart, K.

    2017-01-01

    by passaging the virus three times in differentiated porcine respiratory epithelial cells. Among the four mutations detected, the two HA mutations were analyzed by generating recombinant viruses. Depending on the infection system used, the mutations differed in their phenotypic expression, e.g., sialic acid binding activity, replication kinetics, plaque size, and pathogenicity in inbred mice. However, none of the mutations affected the ciliary activity which serves as a virulence marker. Thus, early adaptive mutation enhances the replication kinetics, but more mutations are required for IAV of the H9N2 subtype to become virulent. PMID:28148793

  4. Loss of avian phylogenetic diversity in neotropical agricultural systems.

    PubMed

    Frishkoff, Luke O; Karp, Daniel S; M'Gonigle, Leithen K; Mendenhall, Chase D; Zook, Jim; Kremen, Claire; Hadly, Elizabeth A; Daily, Gretchen C

    2014-09-12

    Habitat conversion is the primary driver of biodiversity loss, yet little is known about how it is restructuring the tree of life by favoring some lineages over others. We combined a complete avian phylogeny with 12 years of Costa Rican bird surveys (118,127 detections across 487 species) sampled in three land uses: forest reserves, diversified agricultural systems, and intensive monocultures. Diversified agricultural systems supported 600 million more years of evolutionary history than intensive monocultures but 300 million fewer years than forests. Compared with species with many extant relatives, evolutionarily distinct species were extirpated at higher rates in both diversified and intensive agricultural systems. Forests are therefore essential for maintaining diversity across the tree of life, but diversified agricultural systems may help buffer against extreme loss of phylogenetic diversity.

  5. An aerosolized fluorescent microsphere technique for evaluating particle deposition in the avian respiratory tract.

    PubMed

    Tell, Lisa A; Smiley-Jewell, Suzette; Hinds, David; Stephens, Kimberly E; Teague, Stephen V; Plopper, Charles G; Pinkerton, Kent E

    2006-06-01

    The objective of this study was to examine the feasibility of using aerosolized fluorescent microspheres to examine particle distribution in the respiratory tract of birds following aerosol exposure. Adult domestic pigeons (Columbia livia domestica; n = 5 birds per microsphere size) were exposed to aerosolized monodispersed populations of various sized carboxylate microspheres (0.5, 1.0, 2.0, 3.0, 6.0, and 10.0 microm) for 30 min. For aerosol-exposure purposes, the birds were anesthetized with injectable anesthetics, intubated, and placed on positive-pressure ventilation using a mechanical ventilator. Immediately following aerosol exposure, the birds were euthanatized, and carcasses were preserved via intravenous infusion of modified paraformaldehyde/gluteraldehyde fixative (pH = 7.2 and 340 mOsm). Initial evaluation of microsphere distribution in air sacs (cranial and caudal thoracic and abdominal) and at the level of the ostia was performed using a stereoscopic microscope with an epifluorescent module. More detailed examination of the distribution of microspheres within the respiratory tract was achieved using a confocal scanning laser microscope with a krypton argon laser and a scanning electron microscope. The results from this study revealed that positive-pressure ventilation resulted in distribution of smaller sized fluorescent microspheres (sizes 1.0, 2.0, and 3.0 microm) throughout the pigeon's respiratory tracts, and these microspheres were in highest concentration in the secondary bronchi and ostia for all of the examined air sacs. The larger sized beads (6.0 and 10.0) were confined to the upper airway (trachea and primary bronchi). The results from this study allow for a better understanding of particle deposition following positive-pressure ventilation and aerosol exposure in birds.

  6. Novel Avian-Origin Influenza A (H7N9) Virus Attaches to Epithelium in Both Upper and Lower Respiratory Tract of Humans

    PubMed Central

    van Riel, Debby; Leijten, Lonneke M.E.; de Graaf, Miranda; Siegers, Jurre Y.; Short, Kirsty R.; Spronken, Monique I.J.; Schrauwen, Eefje J.A.; Fouchier, Ron A.M.; Osterhaus, Albert D.M.E.; Kuiken, Thijs

    2014-01-01

    Influenza A viruses from animal reservoirs have the capacity to adapt to humans and cause influenza pandemics. The occurrence of an influenza pandemic requires efficient virus transmission among humans, which is associated with virus attachment to the upper respiratory tract. Pandemic severity depends on virus ability to cause pneumonia, which is associated with virus attachment to the lower respiratory tract. Recently, a novel avian-origin H7N9 influenza A virus with unknown pandemic potential emerged in humans. We determined the pattern of attachment of two genetically engineered viruses containing the hemagglutinin of either influenza virus A/Shanghai/1/13 or A/Anhui/1/13 to formalin-fixed human respiratory tract tissues using histochemical analysis. Our results show that the emerging H7N9 virus attached moderately or abundantly to both upper and lower respiratory tract, a pattern not seen before for avian influenza A viruses. With the caveat that virus attachment is only the first step in the virus replication cycle, these results suggest that the emerging H7N9 virus has the potential both to transmit efficiently among humans and to cause severe pneumonia. PMID:24029490

  7. Novel avian-origin influenza A (H7N9) virus attaches to epithelium in both upper and lower respiratory tract of humans.

    PubMed

    van Riel, Debby; Leijten, Lonneke M E; de Graaf, Miranda; Siegers, Jurre Y; Short, Kirsty R; Spronken, Monique I J; Schrauwen, Eefje J A; Fouchier, Ron A M; Osterhaus, Albert D M E; Kuiken, Thijs

    2013-10-01

    Influenza A viruses from animal reservoirs have the capacity to adapt to humans and cause influenza pandemics. The occurrence of an influenza pandemic requires efficient virus transmission among humans, which is associated with virus attachment to the upper respiratory tract. Pandemic severity depends on virus ability to cause pneumonia, which is associated with virus attachment to the lower respiratory tract. Recently, a novel avian-origin H7N9 influenza A virus with unknown pandemic potential emerged in humans. We determined the pattern of attachment of two genetically engineered viruses containing the hemagglutinin of either influenza virus A/Shanghai/1/13 or A/Anhui/1/13 to formalin-fixed human respiratory tract tissues using histochemical analysis. Our results show that the emerging H7N9 virus attached moderately or abundantly to both upper and lower respiratory tract, a pattern not seen before for avian influenza A viruses. With the caveat that virus attachment is only the first step in the virus replication cycle, these results suggest that the emerging H7N9 virus has the potential both to transmit efficiently among humans and to cause severe pneumonia. Copyright © 2013 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  8. Biotransport in the human respiratory system.

    PubMed

    Elad, D

    1999-01-01

    The human respiratory system is an 'open' organ, which is designed to exchange oxygen and carbon dioxide between the circulating blood and the external environment. This gas exchange is successfully accomplished via a set of transport phenomena comprised of oscillatory air flow, heat and water vapor exchange, mucus transport and air-blood gas exchange all of which take place in a complex geometry that undergoes large changes. These transport phenomena occur simultaneously to supply the body's need for oxygen in different physiological conditions and/or environments, while defending it from external hazards. The need for better comprehension of the mechanisms involved in pulmonary diseases and for advanced techniques for both diagnosis and intervention stimulated numerous studies of the different biotransport processes that take place in the human respiratory system.

  9. Basic avian pulmonary design and flow-through ventilation in non-avian theropod dinosaurs.

    PubMed

    O'Connor, Patrick M; Claessens, Leon P A M

    2005-07-14

    Birds are unique among living vertebrates in possessing pneumaticity of the postcranial skeleton, with invasion of bone by the pulmonary air-sac system. The avian respiratory system includes high-compliance air sacs that ventilate a dorsally fixed, non-expanding parabronchial lung. Caudally positioned abdominal and thoracic air sacs are critical components of the avian aspiration pump, facilitating flow-through ventilation of the lung and near-constant airflow during both inspiration and expiration, highlighting a design optimized for efficient gas exchange. Postcranial skeletal pneumaticity has also been reported in numerous extinct archosaurs including non-avian theropod dinosaurs and Archaeopteryx. However, the relationship between osseous pneumaticity and the evolution of the avian respiratory apparatus has long remained ambiguous. Here we report, on the basis of a comparative analysis of region-specific pneumaticity with extant birds, evidence for cervical and abdominal air-sac systems in non-avian theropods, along with thoracic skeletal prerequisites of an avian-style aspiration pump. The early acquisition of this system among theropods is demonstrated by examination of an exceptional new specimen of Majungatholus atopus, documenting these features in a taxon only distantly related to birds. Taken together, these specializations imply the existence of the basic avian pulmonary Bauplan in basal neotheropods, indicating that flow-through ventilation of the lung is not restricted to birds but is probably a general theropod characteristic.

  10. Supramolecular organization in prokaryotic respiratory systems.

    PubMed

    Magalon, Axel; Arias-Cartin, Rodrigo; Walburger, Anne

    2012-01-01

    Prokaryotes are characterized by an extreme flexibility of their respiratory systems allowing them to cope with various extreme environments. To date, supramolecular organization of respiratory systems appears as a conserved evolutionary feature as supercomplexes have been isolated in bacteria, archaea, and eukaryotes. Most of the yet identified supercomplexes in prokaryotes are involved in aerobic respiration and share similarities with those reported in mitochondria. Supercomplexes likely reflect a snapshot of the cellular respiration in a given cell population. While the exact nature of the determinants for supramolecular organization in prokaryotes is not understood, lipids, proteins, and subcellular localization can be seen as key players. Owing to the well-reported supramolecular organization of the mitochondrial respiratory chain in eukaryotes, several hypotheses have been formulated to explain the consequences of such arrangement and can be tested in the context of prokaryotes. Considering the inherent metabolic flexibility of a number of prokaryotes, cellular distribution and composition of the supramolecular assemblies should be studied in regards to environmental signals. This would pave the way to new concepts in cellular respiration.

  11. Non lineal respiratory systems mechanics simulation of acute respiratory distress syndrome during mechanical ventilation.

    PubMed

    Madorno, Matias; Rodriguez, Pablo O

    2010-01-01

    Model and simulation of biological systems help to better understand these systems. In ICUs patients often reach a complex situation where supportive maneuvers require special expertise. Among them, mechanical ventilation in patients suffering from acuter respiratory distress syndrome (ARDS) is specially challenging. This work presents a model which can be simulated and use to help in training of physicians and respiratory therapists to analyze the respiratory mechanics in this kind of patients. We validated the model in 2 ARDS patients.

  12. Severe acute respiratory syndrome vaccine development: experiences of vaccination against avian infectious bronchitis coronavirus.

    PubMed

    Cavanagh, Dave

    2003-12-01

    Vaccines against infectious bronchitis of chickens (Gallus gallus domesticus) have arguably been the most successful, and certainly the most widely used, of vaccines for diseases caused by coronaviruses, the others being against bovine, canine, feline and porcine coronaviruses. Infectious bronchitis virus (IBV), together with the genetically related coronaviruses of turkey (Meleagris gallopovo) and ring-necked pheasant (Phasianus colchicus), is a group 3 coronavirus, severe acute respiratory syndrome (SARS) coronavirus being tentatively in group 4, the other known mammalian coronaviruses being in groups 1 and 2. IBV replicates not only in respiratory tissues (including the nose, trachea, lungs and airsacs, causing respiratory disease), but also in the kidney (associated with minor or major nephritis), oviduct, and in many parts of the alimentary tract--the oesophagus, proventriculus, duodenum, jejunum, bursa of Fabricius, caecal tonsils (near the distal end of the tract), rectum and cloaca (the common opening for release of eggs and faeces), usually without clinical effects. The virus can persist, being re-excreted at the onset of egg laying (4 to 5 months of age), believed to be a consequence of the stress of coming into lay. Genetic lines of chickens differ in the extent to which IBV causes mortality in chicks, and in respect of clearance of the virus after the acute phase. Live attenuated (by passage in chicken embryonated eggs) IBV strains were introduced as vaccines in the 1950s, followed a couple of decades later by inactivated vaccines for boosting protection in egg-laying birds. Live vaccines are usually applied to meat-type chickens at 1 day of age. In experimental situations this can result in sterile immunity when challenged by virulent homologous virus. Although 100% of chickens may be protected (against clinical signs and loss of ciliary activity in trachea), sometimes 10% of vaccinated chicks do not respond with a protective immune response

  13. Evolution of the respiratory system in nonavian theropods: evidence from rib and vertebral morphology.

    PubMed

    Schachner, Emma R; Lyson, Tyler R; Dodson, Peter

    2009-09-01

    Recent reports of region-specific vertebral pneumaticity in nonavian theropod dinosaurs have brought attention to the hypothesis that these animals possessed an avian-style respiratory system with flow-through ventilation. This study explores the thoracic rib and vertebral anatomy of Sinraptor, Allosaurus, Tyrannosaurus, and Deinonychus; four nonavian theropods that all show well-preserved thoracic vertebrae and ribs. Comparisons to the osteology and soft tissue anatomy of extant saurians provide new evidence supporting the hypothesis of flow-through ventilation in nonavian theropods. Analyses of diapophyseal and parapophyseal position and thoracic rib morphology suggest that most nonavian theropods possessed lungs that were deeply incised by the adjacent bicapitate thoracic ribs. This functionally constrains the lungs as rigid nonexpansive organs that were likely ventilated by accessory nonvascularized air sacs. The axial anatomy of this group also reveals that a crocodilian-like hepatic-piston lung would be functionally and biomechanically untenable. Taken together with the evidence that avian-like air sacs were present in basal theropods, these data lead us to conclude that an avian-style pulmonary system was likely a universal theropod trait.

  14. Hypothermia and physiological control: the respiratory system.

    PubMed

    Frappell, P

    1998-02-01

    1. Ventilation (VE) in unanaesthetized hypothermic animals remains tightly coupled to oxygen consumption (VO2) such that VE/VO2 remains constant despite changes in body temperature. 2. Ventilatory responses to hypoxia would suggest that, relative to metabolic rate, the gain of the respiratory system is unaltered in hypothermic animals. 3. Future studies should exercise care to ensure that the method applied in inducing hypothermia does not complicate ventilatory control and that the ability of the species to hibernate is taken into consideration.

  15. Oral administration of live attenuated Salmonella enterica serovar Typhimurium expressing chicken interferon-α alleviates clinical signs caused by respiratory infection with avian influenza virus H9N2.

    PubMed

    Rahman, Md Masudur; Uyangaa, Erdenebileg; Han, Young Woo; Kim, Seong Bum; Kim, Jin Hyoung; Choi, Jin Young; Yoo, Dong Jin; Hong, Jin Tae; Han, Sang-Bae; Kim, Bumseok; Kim, Koanhoi; Eo, Seong Kug

    2011-12-29

    Low pathogenic avian influenza (LPAI) H9N2 has attracted considerable attention due to severe commercial losses in the poultry industry. Furthermore, avian influenza virus (AIV) H9N2-infected chickens can be a reservoir for viral transmission to mammals including pigs and humans, complicating control of viral mutants. Chicken interferon-alpha (chIFN-α) may be useful as an exogenous antiviral agent to control AIV H9N2 infection. However, a superior vehicle for administration of chIFN-α is needed because of challenges of protein stability, production cost, and labor associated with mass administration. Presently, oral administration of single dose of attenuated Salmonella enterica serovar Typhimurium expressing chIFN-α alleviated clinical signs and histopathological changes caused by respiratory infection with AIV H9N2 and reduced the excretion of virus in cloacal swab samples. Similarly, chickens administered S. enterica serovar Typhimurium expressing chIFN-α showed inhibited replication of AIV H9N2 in several different tissues including trachea, lung, cecal tonsil, and brain. Furthermore, immune responses specific for challenged AIV H9N2 were enhanced in chickens administered S. enterica serovar Typhimurium expressing chIFN-α, as determined by hemagglutination inhibition assay of sera, proliferation and IFN-γ and interleukin-4 expression by AIV H9N2 antigen-stimulated peripheral blood mononuclear cells and splenocytes. Therefore, oral administration of S. enterica serovar Typhimurium expressing chIFN-α can successfully control clinical signs caused by respiratory infection with AIV H9N2, which provides valuable insight into the use of attenuated Salmonella vaccine as an oral delivery system of chIFN-α to prevent the replication of AIV H9N2 in respiratory tract. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Involvement of the avian song system in reproductive behaviour.

    PubMed

    Wild, J Martin; Botelho, João F

    2015-12-01

    The song system of songbirds consists of an interconnected set of forebrain nuclei that has traditionally been regarded as dedicated to the learning and production of song. Here, however, we suggest that the song system could also influence muscles used in reproductive behaviour, such as the cloacal sphincter muscle. We show that the same medullary nucleus, retroambigualis (RAm), that projects upon spinal motoneurons innervating expiratory muscles (which provide the pressure head for vocalization) and upon vocal motoneurons for respiratory-vocal coordination also projects upon cloacal motoneurons. Furthermore, RAm neurons projecting to sacral spinal levels were shown to receive direct projections from nucleus robustus arcopallialis (RA) of the forebrain song system. Thus, by indicating a possible disynaptic relationship between RA and motoneurons innervating the reproductive organ, in both males and females, these results potentially extend the role of the song system to include consummatory as well as appetitive aspects of reproductive behaviour. © 2015 The Author(s).

  17. Respiratory system mechanics in acute respiratory distress syndrome.

    PubMed

    Kallet, Richard H; Katz, Jeffrey A

    2003-09-01

    Respiratory mechanics research is important to the advancement of ARDS management. Twenty-eight years ago, research on the effects of PEEP and VT indicated that the lungs of ARDS patients did not behave in a manner consistent with homogenously distributed lung injury. Both Suter and colleagues] and Katz and colleagues reported that oxygenation continued to improve as PEEP increased (suggesting lung recruitment), even though static Crs decreased and dead-space ventilation increased (suggesting concurrent lung overdistension). This research strongly suggested that without VT reduction, the favorable effects of PEEP on lung recruitment are offset by lung overdistension at end-inspiration. The implications of these studies were not fully appreciated at that time, in part because the concept of ventilator-associated lung injury was in its nascent state. Ten years later. Gattinoni and colleagues compared measurements of static pressure-volume curves with FRC and CT scans of the chest in ARDS. They found that although PEEP recruits collapsed (primarily dorsal) lung segments, it simultaneously causes overdistension of non-dependent, inflated lung regions. Furthermore, the specific compliance of the aerated, residually healthy lung tissue is essentially normal. The main implication of these findings is that traditional mechanical ventilation practice was injecting excessive volumes of gas into functionally small lungs. Therefore, the emblematic low static Crs measured in ARDS reflects not only surface tension phenomena and recruitment of collapsed airspaces but also overdistension of the remaining healthy lung. The studies reviewed in this article support the concept that lung injury in ARDS is heterogeneously distributed, with resulting disparate mechanical stresses, and indicate the additional complexity from alterations in chest wall mechanics. Most of these studies, however, were published before lung-protective ventilation. Therefore, further studies are needed to

  18. Development, structure, and function of a novel respiratory organ, the lung-air sac system of birds: to go where no other vertebrate has gone.

    PubMed

    Maina, John N

    2006-11-01

    Among the air-breathing vertebrates, the avian respiratory apparatus, the lung-air sac system, is the most structurally complex and functionally efficient. After intricate morphogenesis, elaborate pulmonary vascular and airway (bronchial) architectures are formed. The crosscurrent, countercurrent, and multicapillary serial arterialization systems represent outstanding operational designs. The arrangement between the conduits of air and blood allows the respiratory media to be transported optimally in adequate measures and rates and to be exposed to each other over an extensive respiratory surface while separated by an extremely thin blood-gas barrier. As a consequence, the diffusing capacity (conductance) of the avian lung for oxygen is remarkably efficient. The foremost adaptive refinements are: (1) rigidity of the lung which allows intense subdivision of the exchange tissue (parenchyma) leading to formation of very small terminal respiratory units and consequently a vast respiratory surface; (2) a thin blood-gas barrier enabled by confinement of the pneumocytes (especially the type II cells) and the connective tissue elements to the atria and infundibulae, i.e. away from the respiratory surface of the air capillaries; (3) physical separation (uncoupling) of the lung (the gas exchanger) from the air sacs (the mechanical ventilators), permitting continuous and unidirectional ventilation of the lung. Among others, these features have created an incredibly efficient gas exchanger that supports the highly aerobic lifestyles and great metabolic capacities characteristic of birds. Interestingly, despite remarkable morphological heterogeneity in the gas exchangers of extant vertebrates at maturity, the processes involved in their formation and development are very similar. Transformation of one lung type to another is clearly conceivable, especially at lower levels of specialization. The crocodilian (reptilian) multicameral lung type represents a Bauplan from which the

  19. Avian Soft Tissue Surgery.

    PubMed

    Guzman, David Sanchez-Migallon

    2016-01-01

    Basic surgical instrumentation for avian soft tissue surgery includes soft tissue retractors, microsurgical instrumentation, surgical loupes, and head-mounted lights. Hemostasis is fundamental during the surgical procedures. The indications, approach, and complications associated with soft tissue surgeries of the integumentary (digit constriction repair, feather cyst excision, cranial wound repair, sternal wound repair, uropygial gland excision), gastrointestinal (ingluviotomy, crop biopsy, crop burn repair, celiotomy, coelomic hernia and pseudohernia repair, proventriculotomy, ventriculotomy, enterotomy, intestinal resection and anastomosis, cloacoplasty, cloacopexy), respiratory (rhinolith removal, sinusotomy, tracheotomy, tracheal resection and anastomosis, tracheostomy, pneumonectomy) and reproductive (ovocentesis, ovariectomy, salpingohysterectomy, cesarean section, orchidectomy, vasectomy, phallectomy) systems are reviewed.

  20. [The environment and human respiratory system].

    PubMed

    Nikodemowicz, Marian

    2008-01-01

    The process of gas exchange that is breathing is an important element of any person's relation with the environment. What decides about our health and life are the respiratory systems responsible for the breathing process and the quality of the air we breathe. On an average through a person's life 400 millions liters of air flows which carries pollution in the form of constant gases and liquid particles. Particles of about PM-2.5 size get into the deepest structures of the respiratory system from which they are being spread into the whole organism through circulation exerting thier toxic effect on all tissues and organs. The outdoor pollution diffuses but in certain local circumstances it increases. It was so in big ecological disasters such as in 1930 in the Mozy valley in Belgium, in 1948 in the Donory region in the USA and in 1952 smog pollution in London. On an average any human being spends indoors about 60-80% of his time. The increased concentration of pollution occurs indoors and there is a possibility of exposing oneself to ETS- Environmental Tobacco Smoke. The biggest concentration of inhaled pollution takes place when smoking tobacco. Pollution of air causes diseases of the respiratory system, cardiovascular system, tumours and others. Frequent occurrence of COPD in certain areas correlates with the level of air pollution and it significantly increases in tobacco smokers. The number and frequency of bronchial asthma and the need for hospitalization depends on air pollution. Lung cancer cases were rarely described in literature before the area of industrialization and wide spread custom of tobacco smoking. Now it is the most frequently occurred cancer in the whole world. There is an interdependence of the density of population, of the number of smoked cigarettes and of density of pollution with the number lung cancer cases. It is hoped that in the future, smoking habits will be eliminated, the use of crude oil and coal will be replaced by hydroelectric

  1. A respiratory compensating system: design and performance evaluation.

    PubMed

    Chuang, Ho-Chiao; Huang, Ding-Yang; Tien, Der-Chi; Wu, Ren-Hong; Hsu, Chung-Hsien

    2014-05-08

    This study proposes a respiratory compensating system which is mounted on the top of the treatment couch for reverse motion, opposite from the direction of the targets (diaphragm and hemostatic clip), in order to offset organ displacement generated by respiratory motion. Traditionally, in the treatment of cancer patients, doctors must increase the field size for radiation therapy of tumors because organs move with respiratory motion, which causes radiation-induced inflammation on the normal tissues (organ at risk (OAR)) while killing cancer cells, and thereby reducing the patient's quality of life. This study uses a strain gauge as a respiratory signal capture device to obtain abdomen respiratory signals, a proposed respiratory simulation system (RSS) and respiratory compensating system to experiment how to offset the organ displacement caused by respiratory movement and compensation effect. This study verifies the effect of the respiratory compensating system in offsetting the target displacement using two methods. The first method uses linac (medical linear accelerator) to irradiate a 300 cGy dose on the EBT film (GAFCHROMIC EBT film). The second method uses a strain gauge to capture the patients' respiratory signals, while using fluoroscopy to observe in vivo targets, such as a diaphragm, to enable the respiratory compensating system to offset the displacements of targets in superior-inferior (SI) direction. Testing results show that the RSS position error is approximately 0.45 ~ 1.42 mm, while the respiratory compensating system position error is approximately 0.48 ~ 1.42 mm. From the EBT film profiles based on different input to the RSS, the results suggest that when the input respiratory signals of RSS are sine wave signals, the average dose (%) in the target area is improved by 1.4% ~ 24.4%, and improved in the 95% isodose area by 15.3% ~ 76.9% after compensation. If the respiratory signals input into the RSS respiratory signals are actual human respiratory

  2. Endocan and the respiratory system: a review

    PubMed Central

    Kechagia, Maria; Papassotiriou, Ioannis; Gourgoulianis, Konstantinos I

    2016-01-01

    Endocan, formerly called endothelial cell-specific molecule 1, is an endothelial cell-associated proteoglycan that is preferentially expressed by renal and pulmonary endothelium. It is upregulated by proangiogenic molecules as well as by pro-inflammatory cytokines, and since it reflects endothelial activation and dysfunction, it is regarded as a novel tissue and blood-based relevant biomarker. As such, it is increasingly being researched and evaluated in a wide spectrum of healthy and disease pathophysiological processes. Here, we review the present scientific knowledge on endocan, with emphasis on the evidence that underlines its possible clinical value as a prognostic marker in several malignant, inflammatory and obstructive disorders of the respiratory system. PMID:28003744

  3. Endocan and the respiratory system: a review.

    PubMed

    Kechagia, Maria; Papassotiriou, Ioannis; Gourgoulianis, Konstantinos I

    2016-01-01

    Endocan, formerly called endothelial cell-specific molecule 1, is an endothelial cell-associated proteoglycan that is preferentially expressed by renal and pulmonary endothelium. It is upregulated by proangiogenic molecules as well as by pro-inflammatory cytokines, and since it reflects endothelial activation and dysfunction, it is regarded as a novel tissue and blood-based relevant biomarker. As such, it is increasingly being researched and evaluated in a wide spectrum of healthy and disease pathophysiological processes. Here, we review the present scientific knowledge on endocan, with emphasis on the evidence that underlines its possible clinical value as a prognostic marker in several malignant, inflammatory and obstructive disorders of the respiratory system.

  4. Citation classics: Top 50 cited articles in 'respiratory system'.

    PubMed

    Tam, Wilson W S; Wong, Eliza L Y; Wong, Faye C Y; Hui, David S C

    2013-01-01

    Identifying citation classics in the field is one of the key methodologies used to conduct a systematic evaluation of research performance. The objective of this study was to determine the most frequently cited articles published in journals that are placed under the 'respiratory system' subject category (Institute for Scientific Information (ISI) Journal Citation Reports) and to compare them with the most frequently cited respiratory-related articles published in any journal, regardless of subject category. The authors utilized the ISI Journal Citation Reports: Science Edition 2010 database in April 2012 to determine the most frequently cited articles by respiratory system subject category and by respiratory-related keywords. The top 50 most-cited articles were identified in each category and evaluated according to various characteristics. The majority of these papers originated from the United States. The median numbers of citations for the top 50 cited articles stratified by respiratory system subject category and respiratory-related keywords were 841.5 and 2701, respectively. Half of the top 50 cited articles identified by respiratory-related keywords were published in general medical or basic science journals, whereas only three out of these were published in journals under the respiratory system subject category in ISI Journal Citation Reports. In summary, respiratory-related articles published in general medical or science journals attracted more citations than those published in the specific respiratory journals.

  5. The cellular endosomal sorting complex required for transport pathway is not involved in avian metapneumovirus budding in a virus-like-particle expression system.

    USDA-ARS?s Scientific Manuscript database

    Avian metapneumovirus (AMPV) is a paramyxovirus that principally causes respiratory disease and egg production drops in turkeys and chickens. Together with its closely related human metapneumovirus (HMPV), they comprise the genus metapneumovirus in the Paramyxoviridae family. Little is currently kno...

  6. Physical examination of the respiratory system.

    PubMed

    Sharp, Claire R; Rozanski, Elizabeth A

    2013-08-01

    This article reviews the approach to a patient with respiratory distress, with a focus on clues obtained from the physical examination. Respiratory distress is a common reason for presentation of a companion animal to a veterinarian on an emergency basis, and thus the clinician should have a comfort level with the approach to these patients. Our discussion includes a basic review of respiratory pathophysiology and the differential diagnoses for hypoxemia. In the majority of cases, physical examination should allow localization of the cause of the respiratory problem to the upper airways, lower airways, pleural space, or pulmonary parenchyma. Such localization, coupled with signalment and historical clues, guides additional diagnostics and therapeutics based on the most likely differential diagnoses. Although managing a patient with respiratory distress can be challenging, a systematic approach such as the one presented here should ensure appropriate intervention in a timely fashion and maximize the chance of a good outcome.

  7. Respiratory Effects and Systemic Stress Response Following ...

    EPA Pesticide Factsheets

    Previous studies have demonstrated that exposure to the pulmonary irritant ozone causes myriad systemic metabolic and pulmonary effects attributed to sympathetic and hypothalamus-pituitary-adrenal (HPA) axis activation, which are exacerbated in metabolically impaired models. We examined respiratory and systemic effects following exposure to a sensory irritant acrolein to elucidate the systemic and pulmonary consequences in healthy and diabetic rat models. Male Wistar and Goto Kakizaki (GK) rats, a nonobese type II diabetic Wistar-derived model, were exposed by inhalation to 0, 2, or 4 ppm acrolein, 4 h/d for 1 or 2 days. Exposure at 4 ppm significantly increased pulmonary and nasal inflammation in both strains with vascular protein leakage occurring only in the nose. Acrolein exposure (4 ppm) also caused metabolic impairment by inducing hyperglycemia and glucose intolerance (GK > Wistar). Serum total cholesterol (GKs only), low-density lipoprotein (LDL) cholesterol (both strains), and free fatty acids (GK > Wistar) levels increased; however, no acrolein-induced changes were noted in branched-chain amino acid or insulin levels. These responses corresponded with a significant increase in corticosterone and modest but insignificant increases in adrenaline in both strains, suggesting activation of the HPA axis. Collectively, these data demonstrate that acrolein exposure has a profound effect on nasal and pulmonary inflammation, as well as glucose and lipid metabolis

  8. Respiratory Effects and Systemic Stress Response Following ...

    EPA Pesticide Factsheets

    Previous studies have demonstrated that exposure to ozone, a pulmonary irritant, causes myriad systemic metabolic and pulmonary effects that are attributed to neuronal and hypothalamus-pituitary-adrenal (HPA) axis activation, which are exacerbated in metabolically-impaired models. In order to elucidate the systemic consequences and the contribution of the HPA axis in mediating metabolic and respiratory effects of acrolein, a sensory irritant, we examined pulmonary, nasal, and systemic effects in rats following exposure. Male, 10 week old Wistar and Goto Kakizaki (GK) rats, a non-obese type II diabetic Wistar-derived model, were exposed to 0, 2 or 4 ppm acrolein, 4h/day for 1 or 2 days. Acrolein exposure at 4 ppm significantly increased pulmonary and nasal damage in both strains as demonstrated by increased inspiratory and expiratory times indicating labored breathing, elevated biomarkers of injury, and neutrophilic inflammation. Overall, at both time points acrolein exposure caused noticeably more damage in the nasal passages as opposed to the lung with vascular protein leakage occurring only in the nose. Acrolein exposure (4 ppm) also led to metabolic impairment by inducing hyperglycemia and glucose intolerance (GK>Wistar) as indicated by glucose tolerance testing. In addition, serum total cholesterol (GKs only), LDL cholesterol (both strains), and free fatty acids (GK>Wistar) levels increased; however, no acrolein-induced changes were noted in branched-c

  9. Evaluation of NxTAG Respiratory Pathogen Panel and Comparison with xTAG Respiratory Viral Panel Fast v2 and Film Array Respiratory Panel for Detecting Respiratory Pathogens in Nasopharyngeal Aspirates and Swine/Avian-Origin Influenza A Subtypes in Culture Isolates.

    PubMed

    Chan, K H; To, K K W; Li, P T W; Wong, T L; Zhang, R; Chik, K K H; Chan, G; Yip, C C Y; Chen, H L; Hung, I F N; Chan, J F W; Yuen, K Y

    2017-01-01

    This study evaluated a new multiplex kit, Luminex NxTAG Respiratory Pathogen Panel, for respiratory pathogens and compared it with xTAG RVP Fast v2 and FilmArray Respiratory Panel using nasopharyngeal aspirate specimens and culture isolates of different swine/avian-origin influenza A subtypes (H2N2, H5N1, H7N9, H5N6, and H9N2). NxTAG RPP gave sensitivity of 95.2%, specificity of 99.6%, PPV of 93.5%, and NPV of 99.7%. NxTAG RPP, xTAG RVP, and FilmArray RP had highly concordant performance among each other for the detection of respiratory pathogens. The mean analytic sensitivity (TCID50/ml) of NxTAG RPP, xTAG RVP, and FilmArray RP for detection of swine/avian-origin influenza A subtype isolates was 0.7, 41.8, and 0.8, respectively. All three multiplex assays correctly typed and genotyped the influenza viruses, except for NxTAG RRP that could not distinguish H3N2 from H3N2v. Further investigation should be performed if H3N2v is suspected to be the cause of disease. Sensitive and specific laboratory diagnosis of all influenza A viruses subtypes is especially essential in certain epidemic regions, such as Southeast Asia. The results of this study should help clinical laboratory professionals to be aware of the different performances of commercially available molecular multiplex RT-PCR assays that are commonly adopted in many clinical diagnostic laboratories.

  10. Respiratory and systemic mycoses: an overview.

    PubMed

    Randhawa, H S

    2000-01-01

    Respiratory and systemic mycoses are globally emerging as a problem of increasing importance in infectious diseases. This is attributed to the growing population of immunocompromised patients due to epidemic outbreak of AIDS or to other factors such as use of immunosuppressive drugs in recipients of organ transplantation. The available evidence has unequivocally established the endemic occurrence of blastomycosis, histoplasmosis and penicilliosis mameffei in India. In fact, pencilliosis marneffei has emerged as a major endemic mycosis of AIDS patients in Southeast Asia. It has manifestations simulating those of histoplasmosis capsulati, and it may spread to other regions with enlarging population of AIDS patients. Comprehensive studies are indicated in order to delineate the endemic areas of the afore-mentioned systemic mycoses. Among the other important systemic mycoses reported from India are aspergillosis, cryptococcosis, candidiasis and zygomycosis. Our current knowledge of the global distribution of systemic mycoses does not depict their true prevalence. It largely reflects the geographic distribution of medical mycologists or other investigators engaged in the study of fungal diseases and their research interests. Invasive aspergillosis has emerged as an important disease in patients with neutropenia and bone narrow transplant recipients, cryptoccosis, penicilliosis marneffei and pneumocystosis in patients with AIDS, fusariosis in patients with leukaemia receiving cytotoxic therapy, zygomycosis in diabetic patients and in patients on defroxamine therapy, and Malasseziafurfur infection in patients on total parenteral nutrition: Opportunistic systemic mycoses due to yeasts and yeast-like fungi have become commoner than those due to filamentous fungi, occupying fourth position in the list of bloodstream pathogens in some centers in USA. Also, their incidence, pattern of clinical presentations and species spectrum have significantly changed, largely due to more

  11. A Molecular atlas of Xenopus respiratory system development.

    PubMed

    Rankin, Scott A; Thi Tran, Hong; Wlizla, Marcin; Mancini, Pamela; Shifley, Emily T; Bloor, Sean D; Han, Lu; Vleminckx, Kris; Wert, Susan E; Zorn, Aaron M

    2015-01-01

    Respiratory system development is regulated by a complex series of endoderm-mesoderm interactions that are not fully understood. Recently Xenopus has emerged as an alternative model to investigate early respiratory system development, but the extent to which the morphogenesis and molecular pathways involved are conserved between Xenopus and mammals has not been systematically documented. In this study, we provide a histological and molecular atlas of Xenopus respiratory system development, focusing on Nkx2.1+ respiratory cell fate specification in the developing foregut. We document the expression patterns of Wnt/β-catenin, fibroblast growth factor (FGF), and bone morphogenetic protein (BMP) signaling components in the foregut and show that the molecular mechanisms of respiratory lineage induction are remarkably conserved between Xenopus and mice. Finally, using several functional experiments we refine the epistatic relationships among FGF, Wnt, and BMP signaling in early Xenopus respiratory system development. We demonstrate that Xenopus trachea and lung development, before metamorphosis, is comparable at the cellular and molecular levels to embryonic stages of mouse respiratory system development between embryonic days 8.5 and 10.5. This molecular atlas provides a fundamental starting point for further studies using Xenopus as a model to define the conserved genetic programs controlling early respiratory system development. © 2014 Wiley Periodicals, Inc.

  12. Mild Respiratory Illness Among Young Children Caused by Highly Pathogenic Avian Influenza A (H5N1) Virus Infection in Dhaka, Bangladesh, 2011.

    PubMed

    Chakraborty, Apurba; Rahman, Mahmudur; Hossain, M Jahangir; Khan, Salah Uddin; Haider, M Sabbir; Sultana, Rebeca; Ali Rimi, Nadia; Islam, M Saiful; Haider, Najmul; Islam, Ausraful; Sultana Shanta, Ireen; Sultana, Tahmina; Al Mamun, Abdullah; Homaira, Nusrat; Goswami, Doli; Nahar, Kamrun; Alamgir, A S M; Rahman, Mustafizur; Mahbuba Jamil, Khondokar; Azziz-Baumgartner, Eduardo; Simpson, Natosha; Shu, Bo; Lindstrom, Stephen; Gerloff, Nancy; Davis, C Todd; Katz, Jaqueline M; Mikolon, Andrea; Uyeki, Timothy M; Luby, Stephen P; Sturm-Ramirez, Katharine

    2017-09-15

    In March 2011, a multidisciplinary team investigated 2 human cases of highly pathogenic avian influenza A(H5N1) virus infection, detected through population-based active surveillance for influenza in Bangladesh, to assess transmission and contain further spread. We collected clinical and exposure history of the case patients and monitored persons coming within 1 m of a case patient during their infectious period. Nasopharyngeal wash specimens from case patients and contacts were tested with real-time reverse-transcription polymerase chain reaction, and virus culture and isolates were characterized. Serum samples were tested with microneutralization and hemagglutination inhibition assays. We tested poultry, wild bird, and environmental samples from case patient households and surrounding areas for influenza viruses. Two previously healthy case patients, aged 13 and 31 months, had influenzalike illness and fully recovered. They had contact with poultry 7 and 10 days before illness onset, respectively. None of their 57 contacts were subsequently ill. Clade 2.2.2.1 highly pathogenic avian influenza H5N1 viruses were isolated from the case patients and from chicken fecal samples collected at the live bird markets near the patients' dwellings. Identification of H5N1 cases through population-based surveillance suggests possible additional undetected cases throughout Bangladesh and highlights the importance of surveillance for mild respiratory illness among populations frequently exposed to infected poultry.

  13. Creating clinical decision support systems for respiratory medicine.

    PubMed

    Tams, Carl G; Euliano, Neil R

    2015-01-01

    Clinical decision support systems are vital for advances in improving patient therapeutic care. We share lessons learned from creating two respiratory clinical decisions support systems for ventilating patients in a critical care setting.

  14. A Mathematical Model of the Human Respiratory Control System

    PubMed Central

    Milhorn, Howard T.; Benton, Richard; Ross, Richard; Guyton, Arthur C.

    1965-01-01

    The respiratory system exhibits the properties of a control system of the regulator type. Equations describing this biological control system have been derived. Transient and steady-state solutions for various CO2 and O2 step input disturbances were obtained utilizing a digital computer and are compared with experimental results. The effectiveness of the respiratory system as a regulator is investigated. Further extensions of the model are suggested. PMID:14284328

  15. Local immunity of the respiratory mucosal system in chickens and turkeys.

    PubMed

    Smiałek, M; Tykałowski, B; Stenzel, T; Koncicki, A

    2011-01-01

    from lung lavages in birds are referred to as FARM (free avian respiratory macrophages). Their number in chickens and turkeys is estimated to be 20 times lower than that in mice and rats, which indicates a deficit in the first-line of defence in the birds' respiratory system. There are numerous B cells and antibody secreting cells (ASC) present throughout the respiratory system in birds. Their role comes down to perform antigen-specific protection by producing antibodies (IgM, IgY or IgA class) as a result of contact with pathogenic factors.

  16. Rice production systems and avian influenza: Interactions between mixed-farming systems, poultry and wild birds

    USGS Publications Warehouse

    Muzaffar, S.B.; Takekawa, John Y.; Prosser, D.J.; Newman, S.H.; Xiao, X.

    2010-01-01

    Wild waterfowl are the reservoir for avian influenza viruses (AIVs), a family of RNA viruses that may cause mild sickness in waterbirds. Emergence of H5N1, a highly pathogenic avian influenza (HPAI) strain, causing severe disease and mortality in wild birds, poultry and humans, had raised concerns about the role of wild birds in possible transmission of the disease. In this review, the link between rice production systems, poultry production systems, and wild bird ecology is examined to assess the extent to which these interactions could contribute towards the persistence and evolution of HPAI H5N1. The rice (Oryza sativa) and poultry production systems in Asia described, and then migration and movements of wild birds discussed. Mixed farming systems in Asia and wild bird movement and migration patterns create opportunities for the persistence of low pathogenic AIVs in these systems. Nonetheless, there is no evidence of long-term persistence of HPAI viruses (including the H5N1 subtype) in the wild. There are still significant gaps in the understanding of how AIVs circulate in rice systems. A better understanding of persistence of AIVs in rice farms, particularly of poultry origins, is essential in limiting exchange of AIVs between mixed-farming systems, poultry and wild birds.

  17. Avian influenza pandemic threat and health systems response.

    PubMed

    Bradt, David A; Drummond, Christina M

    2006-01-01

    Avian influenza is a panzootic and recurring human epidemic with pandemic potential. Pandemic requirements for a viral pathogen are: a novel virus must emerge against which the general population has little or no immunity; the new virus must be able to replicate in humans and cause serious illness; and the new virus must be efficiently transmitted from person to person. At present, only the first two conditions have been met. Nonetheless, influenza pandemics are considered inevitable. Expected worldwide human mortality from a moderate pandemic scenario is 45 million people or more than 75% of the current annual global death burden. Although mathematical models have predicted that an emerging pandemic could be contained at its source, this conclusion remains controversial among public health experts. The Terrestrial Animal Health Code and International Health Regulations are enforceable legal instruments integral to pandemic preparedness. Donor support in financial, material and technical assistance remains critical to disease control efforts - particularly in developing countries where avian influenza predominately occurs at present. Personal protective equipment kits, decontamination kits and specimen collection kits in lightweight, portable packages are becoming standardized. Air transport border control measures purporting to delay importation and spread of human avian influenza are scientifically controversial. National pandemic plans prioritize beneficiary access to antiviral drugs and vaccines for some countries. Other medical commodities including ventilators, hospital beds and intensive care units remain less well prioritized in national plans. These resources will play virtually no role in care of the overwhelming majority of patients worldwide in a pandemic. Prehospital care, triage and acute care all require additional professional standardization for the high patient volumes anticipated in a pandemic.

  18. Defense mechanisms of the respiratory system and aerosol production systems.

    PubMed

    Zarogoulidis, Paul; Darwiche, Kaid; Yarmus, Lonny; Spyratos, Dionysios; Secen, Nevena; Hohenforst-Schmidt, Wolfgang; Katsikogiannis, Nikolaos; Huang, Haidong; Gschwendtner, Andreas; Zarogoulidis, Konstantinos

    2014-03-01

    Aerosolized therapies have been used in everyday clinical practice for decades. Experimentation with different delivery systems have led to the creation of aerosolized insulin, antibiotics, gene therapy and chemotherapy. Several of these therapies are already clinically available while others are being investigated in active clinical trials. The main factors affecting the efficiency and safety of the aerosolized therapies are the production of the aerosol, distribution/deposition of the aerosol throughout the lung parenchyma, respiratory defense mechanisms and tissue/pharmaceutical molecule interactions. Current methods of aerosol production and distribution will be presented along with an overview of the respiratory defense mechanisms. In addition, methods of aerosol evaluation in conjunction with a future perspective of the potential development of aerosol therapies will be presented.

  19. Avian influenza virus, Streptococcus suis serotype 2, severe acute respiratory syndrome-coronavirus and beyond: molecular epidemiology, ecology and the situation in China

    PubMed Central

    Ma, Ying; Feng, Youjun; Liu, Di; Gao, George F.

    2009-01-01

    The outbreak and spread of severe acute respiratory syndrome-associated coronavirus and the subsequent identification of its animal origin study have heightened the world's awareness of animal-borne or zoonotic pathogens. In addition to SARS, the highly pathogenic avian influenza virus (AIV), H5N1, and the lower pathogenicity H9N2 AIV have expanded their host ranges to infect human beings and other mammalian species as well as birds. Even the ‘well-known’ reservoir animals for influenza virus, migratory birds, became victims of the highly pathogenic H5N1 virus. Not only the viruses, but bacteria can also expand their host range: a new disease, streptococcal toxic shock syndrome, caused by human Streptococcus suis serotype 2 infection, has been observed in China with 52 human fatalities in two separate outbreaks (1998 and 2005, respectively). Additionally, enterohaemorrhagic Escherichia coli O157:H7 infection has increased worldwide with severe disease. Several outbreaks and sporadic isolations of this pathogen in China have made it an important target for disease control. A new highly pathogenic variant of porcine reproductive and respiratory syndrome virus (PRRSV) has been isolated in both China and Vietnam recently; although PRRSV is not a zoonotic human pathogen, its severe outbreaks have implications for food safety. All of these pathogens occur in Southeast Asia, including China, with severe consequences; therefore, we discuss the issues in this article by addressing the situation of the zoonotic threat in China. PMID:19687041

  20. AVIAN IMMUNOTOXICOLOGY

    EPA Science Inventory

    Methods for studying the avian immune system have matured during the past two decades, with laboratory studies predominating in earlier years and field studies being conducted only in the past decade. One application has been to determine the potential for environmental contamina...

  1. AVIAN IMMUNOTOXICOLOGY

    EPA Science Inventory

    Methods for studying the avian immune system have matured during the past two decades, with laboratory studies predominating in earlier years and field studies being conducted only in the past decade. One application has been to determine the potential for environmental contamina...

  2. [Parasites of the respiratory system: research and significance (author's transl)].

    PubMed

    De Carneri, I; Trane, F

    1976-01-01

    A review is made of the methods of diagnosing both autochthonous and exotic protozoal and helminthic diseases of the respiratory system. Referring to protozooses, recent findings on respiratory pathology due to amoebae of the genus Acanthamoeba are commented, and modern methods are discussed of checking for Pneumocystis carinii in the patient, not just on autopsy material. Referring to helminthiases, in addition to pulmonary echinococcosis which is of prevalent interest in Italy, attention is also given to the pathology of migrant larvae of nematodes. Finally, the role of some microscopic mites in the pathogenesis of respiratory allergic disease from house dust is discussed.

  3. Competition between low and high pathogenicity avian influenza in a two-patch system.

    PubMed

    Saucedo, Omar; Martcheva, M

    2017-06-01

    Over the last decade, the epidemiology of avian influenza has undergone a significant transformation. Not only have we seen an increase in the number of outbreaks of the deadly strain known as highly pathogenic avian influenza (HPAI), but the number of birds infected, and the cost of control has risen drastically. Live poultry markets play a huge role in the bird to bird transmission of avian influenza. We develop a two patch model to determine the competition between low pathogenic avian influenza (LPAI) and HPAI strains when migration is present. We define the two patches as live poultry markets in which the patches are connected through migration. We use a system of differential equations to analyze the existence-stability of the LPAI and HPAI equilibria and established results for the critical threshold R0. We observed that in general migration in both directions increases the abundance of poultry infected with the HPAI strain. Migration promotes the coexistence in Patch 2 while in Patch 1 the region of coexistence fluctuates when migration is active between both patches. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. [Respiratory system elastance and resistance measured by proportional assist ventilation in patients with respiratory muscle weakness].

    PubMed

    Oya, Yasushi; Ogawa, Masafumi; Kawai, Mitsuru

    2004-01-01

    Non-invasive ventilatory therapy has prolonged survival of myopathy patients with hypoventilation. Efficacy of non-invasive ventilation depends on both elastance and resistance of the respiratory system. Although these parameters are important in the prescription of respiratory management, conventional respiratory function test does not show the appropriate answer in patients with severe respiratory muscle weakness. In muscular dystrophy, muscle tends to be shortened due to its fibrosis, when muscle becomes atrophic and weak; fibrosis of respiratory muscle tissues presumably causes high thoracic elastance. We evaluated the total respiratory system elastance and resistance during proportional assist ventilation (PAV) in myopathy patients. In PAV with 100% assist, using BiPAP Vision ventilator, airway pressure exceeds 20 cmH2O or tidal volume exceeds 1.5 liter (run-away phenomenon) when the volume assist or the flow assist is higher than the individual elastance or the resistance, respectively. Twenty myopathy patients with ventilatory failure and 7 healthy controls were evaluated, including 7 patients with Duchenne muscular dystrophy (DMD), 2 patients with congenital myopathy (CM), 1 patient with limb-girdle muscular dystrophy (LG), 6 patients with myotonic dystrophy (MyD) and 4 patients with acid maltase deficiency (AMD). Seventeen patients used a nasal mask and 3 patients had a tracheostomy tube. Fifteen patients used a pressure-preset ventilator, and 3 patients used a volume-preset ventilator. In all patients with DMD, CM and LG, respiratory system elastance was higher than 20 (cmH2O/L) and than in all patients with AMD and MyD except 1 MyD patient. Follow-up measurement after half a or one year showed increase of respiratory system elastance in 2 DMD patients and 1 CM patient, but almost no change in 3 AMD patients. The elastance measured during PAV was consistent with the clinical impression of muscle shortening. One exceptional MyD patient showed extremely

  5. [Development of expert diagnostic system for common respiratory diseases].

    PubMed

    Xu, Wei-hua; Chen, You-ling; Yan, Zheng

    2014-03-01

    To develop an internet-based expert diagnostic system for common respiratory diseases. SaaS system was used to build architecture; pattern of forward reasoning was applied for inference engine design; ASP.NET with C# from the tool pack of Microsoft Visual Studio 2005 was used for website-interview medical expert system.The database of the system was constructed with Microsoft SQL Server 2005. The developed expert system contained large data memory and high efficient function of data interview and data analysis for diagnosis of various diseases.The users were able to perform this system to obtain diagnosis for common respiratory diseases via internet. The developed expert system may be used for internet-based diagnosis of various respiratory diseases,particularly in telemedicine setting.

  6. First Report of Avian Metapneumovirus Subtype B Field Strain in a Romanian Broiler Flock During an Outbreak of Respiratory Disease.

    PubMed

    Franzo, Giovanni; Tucciarone, Claudia Maria; Enache, Mirel; Bejan, Violeta; Ramon, Gema; Koutoulis, Konstantinos C; Cecchinato, Mattia

    2017-06-01

    Avian metapneumovirus (aMPV) represents one of the most prevalent diseases of turkey, especially in combination with other pathogens, and its frequency is also increasing among chickens. Despite this evidence, epidemiologic data are poor and scattered, severely preventing control of the disease even in highly developed areas such as Europe. In the present study, the detection and characterization of an aMPV subtype B strain circulating in a vaccinated but symptomatic Romanian broiler flock is reported for the first time. The phylogenetic analysis based on the partial G gene sequence demonstrates the close relationship of the Romanian virus with a group of recently emerged Italian field strains for which vaccine-induced protection was experimentally proven to be partial. These preliminary results allow us to hypothesize the spreading of vaccine-escaping aMPV subtype B strains through Europe and, consequently, dictate the carrying out of a more systematic survey to confirm this theory and enforce adequate countermeasures.

  7. Isolation and characterization of H7N9 avian influenza A virus from humans with respiratory diseases in Zhejiang, China.

    PubMed

    Zhang, Yanjun; Mao, Haiyan; Yan, Juying; Zhang, Lei; Sun, Yi; Wang, Xinying; Chen, Yin; Lu, Yiyu; Chen, Enfu; Lv, Huakun; Gong, Liming; Li, Zhen; Gao, Jian; Xu, Changping; Feng, Yan; Ge, Qiong; Xu, Baoxiang; Xu, Fang; Yang, Zhangnv; Zhao, Guoqiu; Han, Jiankang; Guus, Koch; Li, Hui; Shu, Yuelong; Chen, Zhiping; Xia, Shichang

    2014-08-30

    In 2013, the novel reassortant avian-origin influenza A (H7N9) virus was reported in China. Through enhanced surveillance, infection by the H7N9 virus in humans was first identified in Zhejiang Province. Real-time reverse-transcriptase-polymerase-chain-reaction (RT-PCR) was used to confirm the infection. Embryonated chicken eggs were used for virus isolation from pharyngeal swabs taken from infected human patients. The H7N9 isolates were first identified by the hemagglutination test and electron microscopy, then used for whole genome sequencing. Bioinformatics software was used to construct the phylogenetic tree and for computing the mean rate of evolution of the HA gene in H7Nx and NA in HxN9. Two novel H7N9 avian influenza A viruses (A/Zhejiang/1/2013 and A/Zhejiang/2/2013) were isolated from the positive infection cases. Substitutions were found in both Zhejiang isolates and were identified as human-type viruses. All phylogenetic results indicated that the novel reassortant in H7N9 originated in viruses that infected birds. The sequencing and phylogenetic analysis of the whole genome revealed the mean rate of evolution of the HA gene in H7NX to be 5.74E-3 (95% Highest posterior density: 3.8218E-3 to 7.7873E-3) while the NA gene showed 2.243E-3 (4.378E-4 to 3.79E-3) substitutions per nucleotide site per year. The novel reassortant H7N9 virus was confirmed by molecular methods to have originated in poultry, with the mutations occurring during the spread of the H7N9 virus infection. Live poultry markets played an important role in whole H7N9 circulation. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Cellular transcripts regulated during infections with Highly Pathogenic H5N1 Avian Influenza virus in 3 host systems.

    PubMed

    Balasubramaniam, Vinod Rmt; Hassan, Sharifah S; Omar, Abdul R; Mohamed, Maizan; Noor, Suriani M; Mohamed, Ramlan; Othman, Iekhsan

    2011-04-29

    Highly pathogenic Avian Influenza (HPAI) virus is able to infect many hosts and the virus replicates in high levels in the respiratory tract inducing severe lung lesions. The pathogenesis of the disease is actually the outcome of the infection as determined by complex host-virus interactions involving the functional kinetics of large numbers of participating genes. Understanding the genes and proteins involved in host cellular responses are therefore, critical for the elucidation of the mechanisms of infection. Differentially expressed transcripts regulated in a H5N1 infections of whole lung organ of chicken, in-vitro chick embryo lung primary cell culture (CeLu) and a continuous Madin Darby Canine Kidney cell line was undertaken. An improved mRNA differential display technique (Gene Fishing™) using annealing control primers that generates reproducible, authentic and long PCR products that are detectable on agarose gels was used for the identification of differentially expressed genes (DEGs). Seven of the genes have been selected for validation using a TaqMan® based real time quantitative PCR assay. Thirty seven known and unique differentially expressed genes from lungs of chickens, CeLu and MDCK cells were isolated. Among the genes isolated and identified include heat shock proteins, Cyclin D2, Prenyl (decaprenyl) diphosphate synthase, IL-8 and many other unknown genes. The quantitative real time RT-PCR assay data showed that the transcription kinetics of the selected genes were clearly altered during infection by the Highly Pathogenic Avian Influenza virus. The Gene Fishing™ technique has allowed for the first time, the isolation and identification of sequences of host cellular genes regulated during H5N1 virus infection. In this limited study, the differentially expressed genes in the three host systems were not identical, thus suggesting that their responses to the H5N1 infection may not share similar mechanisms and pathways.

  9. The live bird market system and low-pathogenic avian influenza prevention in southern California.

    PubMed

    Yee, Karen S; Carpenter, Tim E; Mize, Sarah; Cardona, Carol J

    2008-06-01

    Although live bird markets (LBMs) have been associated with outbreaks of avian influenza (AI), there are some LBM systems where AI outbreaks are extremely rare events. The California LBMs have not had any detected avian influenza viruses (AIVs) since December 2005. Responses to a detailed questionnaire on the practices and characteristics of the participants in the California low-pathogenic (LP) AI control program have been described to characterize possible reasons for the lack of AI outbreaks in LBMs. Compliance with an LPAI control program that contains active surveillance, prevention, and rapid response measures by those involved in the LBM system, rendering services to dispose of carcasses, no wholesalers, and few third-party bird deliveries was associated with the lack of LPAIV circulating in the Southern California LBM system.

  10. Activity of respiratory system during laser irradiation of brain structures

    NASA Astrophysics Data System (ADS)

    Merkulova, N. A.; Sergeyeva, L. I.

    1984-06-01

    The performance of one of the principal links of the respiratory system, the respiratory center, was studied as a function of the exposure of the medulla oblongata and the sensomotor zone of the cerebral hemisphere cortex to low level laser irradiation in the red wavelength of the spectrum. Experiments were done on white rats under barbital anesthesia. Under such conditions a substantial effect was observed on the activity of the respiratory center. Laser light may display activating or inhibitory influences, in some cases the bilateral symmetry of the activity of the respiratory center is affected indicating deep changes in the integrative mechanism of the functioning of the right and left sides of the hemispheres. The laser beam effect depends on many factors: specific light properties, duration of the exposure, repetition of exposures, initial functional state of the CNS, etc.

  11. Anatomy and physiology of respiratory system relevant to anaesthesia.

    PubMed

    Patwa, Apeksh; Shah, Amit

    2015-09-01

    Clinical application of anatomical and physiological knowledge of respiratory system improves patient's safety during anaesthesia. It also optimises patient's ventilatory condition and airway patency. Such knowledge has influence on airway management, lung isolation during anaesthesia, management of cases with respiratory disorders, respiratory endoluminal procedures and optimising ventilator strategies in the perioperative period. Understanding of ventilation, perfusion and their relation with each other is important for understanding respiratory physiology. Ventilation to perfusion ratio alters with anaesthesia, body position and with one-lung anaesthesia. Hypoxic pulmonary vasoconstriction, an important safety mechanism, is inhibited by majority of the anaesthetic drugs. Ventilation perfusion mismatch leads to reduced arterial oxygen concentration mainly because of early closure of airway, thus leading to decreased ventilation and atelectasis during anaesthesia. Various anaesthetic drugs alter neuronal control of the breathing and bronchomotor tone.

  12. Physiologically driven avian vocal synthesizer

    NASA Astrophysics Data System (ADS)

    Sitt, Jacobo D.; Arneodo, Ezequiel M.; Goller, Franz; Mindlin, Gabriel B.

    2010-03-01

    In this work, we build an electronic syrinx, i.e., a programmable electronic device capable of integrating biomechanical model equations for the avian vocal organ in order to synthesize song. This vocal prosthesis is controlled by the bird’s neural instructions to respiratory and the syringeal motor systems, thus opening great potential for studying motor control and its modification by sensory feedback mechanisms. Furthermore, a well-functioning subject-controlled vocal prosthesis can lay the foundation for similar devices in humans and thus provide directly health-related data and procedures.

  13. A Review on the Respiratory System Toxicity of Carbon Nanoparticles

    PubMed Central

    Pacurari, Maricica; Lowe, Kristine; Tchounwou, Paul B.; Kafoury, Ramzi

    2016-01-01

    The respiratory system represents the main gateway for nanoparticles’ entry into the human body. Although there is a myriad of engineered nanoparticles, carbon nanoparticles/nanotubes (CNPs/CNTs) have received much attention mainly due to their light weight, very high surface area, durability, and their diverse applications. Since their discovery and manufacture over two decades ago, much has been learned about nanoparticles’ interactions with diverse biological system models. In particular, the respiratory system has been of great interest because various natural and man-made fibrous particles are known to be responsible for chronic and debilitating lung diseases. In this review, we present up-to-date the literature regarding the effects of CNTs or carbon nanofibers (CNFs) on the human respiratory system with respect to respiratory toxicity pathways and associated pathologies. This article is intended to emphasize the potentially dangerous effects to the human respiratory system if inadequate measures are used in the manufacture, handling, and preparation and applications of CNP or CNP-based products. PMID:26999172

  14. A Review on the Respiratory System Toxicity of Carbon Nanoparticles.

    PubMed

    Pacurari, Maricica; Lowe, Kristine; Tchounwou, Paul B; Kafoury, Ramzi

    2016-03-15

    The respiratory system represents the main gateway for nanoparticles' entry into the human body. Although there is a myriad of engineered nanoparticles, carbon nanoparticles/nanotubes (CNPs/CNTs) have received much attention mainly due to their light weight, very high surface area, durability, and their diverse applications. Since their discovery and manufacture over two decades ago, much has been learned about nanoparticles' interactions with diverse biological system models. In particular, the respiratory system has been of great interest because various natural and man-made fibrous particles are known to be responsible for chronic and debilitating lung diseases. In this review, we present up-to-date the literature regarding the effects of CNTs or carbon nanofibers (CNFs) on the human respiratory system with respect to respiratory toxicity pathways and associated pathologies. This article is intended to emphasize the potentially dangerous effects to the human respiratory system if inadequate measures are used in the manufacture, handling, and preparation and applications of CNP or CNP-based products.

  15. H4N8 subtype avian influenza virus isolated from shorebirds contains a unique PB1 gene and causes severe respiratory disease in mice

    PubMed Central

    Bui, Vuong N.; Ogawa, Haruko; Xininigen; Karibe, Kazuji; Matsuo, Kengo; Awad, Sanaa S. A.; Minoungou, Germaine L.; Yoden, Satoshi; Haneda, Hiroaki; Ngo, Lai H.; Tamaki, Shio; Yamamoto, Yu; Nakamura, Kikuyasu; Saito, Keisuke; Watanabe, Yukiko; Runstadler, Jonathan; Huettman, Falk; Happ, George M.; Imai, Kunitoshi

    2011-01-01

    H4N8 subtype avian influenza viruses were isolated from shorebirds in eastern Hokkaido. All the isolates shared >99.7% nucleotide homology, and all the viral genes except for PB1 were highly related to those of A/red-necked stint/Australia/1/04. Thus, the isolates were regarded as PB1 reassortants. The most similar PB1 gene was identified in A/mallard/New Zealand/1615-17/04 (H4N6) with nucleotide homology of 90.9%. BALB/c mice intranasally inoculated with the H4N8 isolates developed severe respiratory disease, which eventually led to death in some mice. Virus was isolated from the lungs, and viral antigen was detected in the lungs with pneumonia. Other H4 subtype viruses tested did not cause any symptoms in mice, although these viruses were also isolated from the lungs. The PB2 gene of the H4N8 isolates contains K482R, but not the E627K or D701N substitutions. The PB1-F2 gene of the isolates consists of a 101-amino acid unique sequence, but lacks the N66S mutation. PMID:22192630

  16. Avian Test Battery for the Evaluation of Developmental Abnormalities of Neuro- and Reproductive Systems.

    PubMed

    Kawashima, Takaharu; Ahmed, Walaa M S; Nagino, Koki; Ubuka, Takayoshi; Tsutsui, Kazuyoshi

    2016-01-01

    Most of the currently used toxicity assays for environmental chemicals use acute or chronic systemic or reproductive toxicity endpoints rather than neurobehavioral endpoints. In addition, the current standard approaches to assess reproductive toxicity are time-consuming. Therefore, with increasing numbers of chemicals being developed with potentially harmful neurobehavioral effects in higher vertebrates, including humans, more efficient means of assessing neuro- and reproductive toxicity are required. Here we discuss the use of a Galliformes-based avian test battery in which developmental toxicity is assessed by means of a combination of chemical exposure during early embryonic development using an embryo culture system followed by analyses after hatching of sociosexual behaviors such as aggression and mating and of visual memory via filial imprinting. This Galliformes-based avian test battery shows promise as a sophisticated means not only of assessing chemical toxicity in avian species but also of assessing the risks posed to higher vertebrates, including humans, which are markedly sensitive to nervous or neuroendocrine system dysfunction.

  17. Avian Test Battery for the Evaluation of Developmental Abnormalities of Neuro- and Reproductive Systems

    PubMed Central

    Kawashima, Takaharu; Ahmed, Walaa M. S.; Nagino, Koki; Ubuka, Takayoshi; Tsutsui, Kazuyoshi

    2016-01-01

    Most of the currently used toxicity assays for environmental chemicals use acute or chronic systemic or reproductive toxicity endpoints rather than neurobehavioral endpoints. In addition, the current standard approaches to assess reproductive toxicity are time-consuming. Therefore, with increasing numbers of chemicals being developed with potentially harmful neurobehavioral effects in higher vertebrates, including humans, more efficient means of assessing neuro- and reproductive toxicity are required. Here we discuss the use of a Galliformes-based avian test battery in which developmental toxicity is assessed by means of a combination of chemical exposure during early embryonic development using an embryo culture system followed by analyses after hatching of sociosexual behaviors such as aggression and mating and of visual memory via filial imprinting. This Galliformes-based avian test battery shows promise as a sophisticated means not only of assessing chemical toxicity in avian species but also of assessing the risks posed to higher vertebrates, including humans, which are markedly sensitive to nervous or neuroendocrine system dysfunction. PMID:27445667

  18. Evaluation of respiratory system in textile-dyeing workers.

    PubMed

    Salmani Nodoushan, Mojahede; Mehrparvar, Amir Houshang; Loukzadeh, Ziba; Rahimian, Masoud; Ghove Nodoushan, Mohamad Ali; Jafari Nodoushan, Reza

    2014-01-01

    Despite the presence of many textile and dyeing plants in Iran, we couldn't find similar studies in this country. Forthermore, considering progress in the dyeing process and engineering controls, assessment of respiratory system is important for these workers. The present study was performed to evaluate the respiratory system in dyeing workers. In a cross-sectional study, 101 dyeing workers (all dyeing workers in yazd) and 90 workers without respiratory exposures (control group), were evaluated. A questionnaire was filled for each participant included Venables questionnaire and some other questions about age, work experience, personal or familial history of asthma or atopy, acute and chronic respiratory symptoms; Then spirometry was performed before and after the shift work Results: The frequency of acute and chronic respiratory symptoms was significantly higher among dyeing workers than controls. According to the Venables questionnaire, 11.9% of the dyeing workers suffered from asthma. Means of FVC and FEV1 of pre-shift spirometry were lower than control (p< 0.001). Across-shift spirometry showed significant reduction of FVC (p< 0.001), FEV1 (p< 0.001), FEF25-75% (p= 0.05) and FEF25% (p= 0.007) in dyeing workers compared to the control group. Evaluation of dyeing workers' respiratory system in this study showed that despite development in dyeing processes and engineering controls, workers in this job show more prevalent acute and chronic symptoms, and across-shift changes in spirometric parameters were significantly higher in this work group than the control group. Therefore it is necessary to pay attention to the control of respiratory exposures in this job.

  19. Evaluation of respiratory system in textile-dyeing workers

    PubMed Central

    Salmani Nodoushan, Mojahede; Mehrparvar, Amir Houshang; Loukzadeh, Ziba; Rahimian, Masoud; Ghove Nodoushan, Mohamad ali; Jafari Nodoushan, Reza

    2014-01-01

    Background: Despite the presence of many textile and dyeing plants in Iran, we couldn’t find similar studies in this country. Forthermore, considering progress in the dyeing process and engineering controls, assessment of respiratory system is important for these workers. The present study was performed to evaluate the respiratory system in dyeing workers. Methods: In a cross-sectional study, 101 dyeing workers (all dyeing workers in yazd) and 90 workers without respiratory exposures (control group), were evaluated. A questionnaire was filled for each participant included Venables questionnaire and some other questions about age, work experience, personal or familial history of asthma or atopy, acute and chronic respiratory symptoms; Then spirometry was performed before and after the shift work Results: The frequency of acute and chronic respiratory symptoms was significantly higher among dyeing workers than controls. According to the Venables questionnaire, 11.9% of the dyeing workers suffered from asthma. Means of FVC and FEV1 of pre-shift spirometry were lower than control (p< 0.001). Across-shift spirometry showed significant reduction of FVC (p< 0.001), FEV1 (p< 0.001), FEF25-75% (p= 0.05) and FEF25% (p= 0.007) in dyeing workers compared to the control group. Conclusion: Evaluation of dyeing workers’ respiratory system in this study showed that despite development in dyeing processes and engineering controls, workers in this job show more prevalent acute and chronic symptoms, and across-shift changes in spirometric parameters were significantly higher in this work group than the control group. Therefore it is necessary to pay attention to the control of respiratory exposures in this job. PMID:25664289

  20. The role of leptin in the respiratory system: an overview

    PubMed Central

    2010-01-01

    Since its cloning in 1994, leptin has emerged in the literature as a pleiotropic hormone whose actions extend from immune system homeostasis to reproduction and angiogenesis. Recent investigations have identified the lung as a leptin responsive and producing organ, while extensive research has been published concerning the role of leptin in the respiratory system. Animal studies have provided evidence indicating that leptin is a stimulant of ventilation, whereas researchers have proposed an important role for leptin in lung maturation and development. Studies further suggest a significant impact of leptin on specific respiratory diseases, including obstructive sleep apnoea-hypopnoea syndrome, asthma, COPD and lung cancer. However, as new investigations are under way, the picture is becoming more complex. The scope of this review is to decode the existing data concerning the actions of leptin in the lung and provide a detailed description of leptin's involvement in the most common disorders of the respiratory system. PMID:21040518

  1. Host Tissue and Glycan Binding Specificities of Avian Viral Attachment Proteins Using Novel Avian Tissue Microarrays

    PubMed Central

    Ambepitiya Wickramasinghe, Iresha N.; de Vries, Robert P.; Eggert, Amber M.; Wandee, Nantaporn; de Haan, Cornelis A. M.; Gröne, Andrea; Verheije, Monique H.

    2015-01-01

    The initial interaction between viral attachment proteins and the host cell is a critical determinant for the susceptibility of a host for a particular virus. To increase our understanding of avian pathogens and the susceptibility of poultry species, we developed novel avian tissue microarrays (TMAs). Tissue binding profiles of avian viral attachment proteins were studied by performing histochemistry on multi-species TMA, comprising of selected tissues from ten avian species, and single-species TMAs, grouping organ systems of each species together. The attachment pattern of the hemagglutinin protein was in line with the reported tropism of influenza virus H5N1, confirming the validity of TMAs in profiling the initial virus-host interaction. The previously believed chicken-specific coronavirus (CoV) M41 spike (S1) protein displayed a broad attachment pattern to respiratory tissues of various avian species, albeit with lower affinity than hemagglutinin, suggesting that other avian species might be susceptible for chicken CoV. When comparing tissue-specific binding patterns of various avian coronaviral S1 proteins on the single-species TMAs, chicken and partridge CoV S1 had predominant affinity for the trachea, while pigeon CoV S1 showed marked preference for lung of their respective hosts. Binding of all coronaviral S1 proteins was dependent on sialic acids; however, while chicken CoV S1 preferred sialic acids type I lactosamine (Gal(1-3)GlcNAc) over type II (Gal(1-4)GlcNAc), the fine glycan specificities of pigeon and partridge CoVs were different, as chicken CoV S1-specific sialylglycopolymers could not block their binding to tissues. Taken together, TMAs provide a novel platform in the field of infectious diseases to allow identification of binding specificities of viral attachment proteins and are helpful to gain insight into the susceptibility of host and organ for avian pathogens. PMID:26035584

  2. Avian-like breathing mechanics in maniraptoran dinosaurs.

    PubMed

    Codd, Jonathan R; Manning, Phillip L; Norell, Mark A; Perry, Steven F

    2008-01-22

    In 1868 Thomas Huxley first proposed that dinosaurs were the direct ancestors of birds and subsequent analyses have identified a suite of 'avian' characteristics in theropod dinosaurs. Ossified uncinate processes are found in most species of extant birds and also occur in extinct non-avian maniraptoran dinosaurs. Their presence in these dinosaurs represents another morphological character linking them to Aves, and further supports the presence of an avian-like air-sac respiratory system in theropod dinosaurs, prior to the evolution of flight. Here we report a phylogenetic analysis of the presence of uncinate processes in Aves and non-avian maniraptoran dinosaurs indicating that these were homologous structures. Furthermore, recent work on Canada geese has demonstrated that uncinate processes are integral to the mechanics of avian ventilation, facilitating both inspiration and expiration. In extant birds, uncinate processes function to increase the mechanical advantage for movements of the ribs and sternum during respiration. Our study presents a mechanism whereby uncinate processes, in conjunction with lateral and ventral movements of the sternum and gastral basket, affected avian-like breathing mechanics in extinct non-avian maniraptoran dinosaurs.

  3. The Lung Surfactant System in Adult Respiratory Distress Syndrome.

    DTIC Science & Technology

    1980-08-01

    STANDAROS- 193 A AD_ THE LUNG SURFACTANT SYSTEM IN ADULT RESPIRATORY DISTRESS SYNDROME FINAL PROGRESS REPORT John U. Balls August 1980 Sponsored by: US...D-A12l 434 THE LUNG SURFACTANT SYvTKl-OJL E~~rP DISTRESS SYNDROME (U) UNIVERSITY OF SOUTH FLORIDA TAMPA COLL OF MEDICINE J U BALIS RUG 8S DRNDi7-78-C...SURFACTANT SYSTEM IN ADULT Final 1 November 1978 - RESPIRATORY DISTU~SS SYNDROME - 30 April 1980 6. PERFORMING ORG. REPORT NUMBER * 7. AUTHOR(e) G. CONTRACT

  4. Heat injuries to the respiratory system.

    PubMed

    Brinkmann, B; Püschel, K

    1978-10-03

    A steam-tube of the main boiler exploded on a ship lying in the harbour of Hamburg. The steam temperature was 283 degrees C. Cutaneous and severe inhalational scalding occured in the 27 fatalities, the men dying after different intervals. This paper deals with the pathological findings in the respiratory passages and the lung, describing the topographical extent of direct thermal injury and the temporal course of tissue reactions. In cases of instantaneous death coagulation necrosis of the tracheal and bronchial wall was found to extend to alveolar ducts in central parts of the lung. The lung parenchyma showed marked congestion, alveolar edema and desquamation of alveolar epithelial cells. Death occured due to acute pulmonary dysfunction and shock. Lethal complications following the period of primary shock consisted of fulminant confluent bronchopneumonia, the hyaline membrane syndrome or the onset of desquamative interstitial pneumonia. These changes rendered it difficult to evaluate the effects of the heavy cutaneous scalding on the pathological course of inhalational injuries in those surviving for longer periods.

  5. [Aging of the respiratory system: anatomical changes and physiological consequences].

    PubMed

    Ketata, W; Rekik, W K; Ayadi, H; Kammoun, S

    2012-10-01

    The respiratory system undergoes progressive involution with age, resulting in anatomical and functional changes that are exerted on all levels. The rib cage stiffens and respiratory muscles weaken. Distal bronchioles have reduced diameter and tend to be collapsed. Mobilized lung volumes decrease with age while residual volume increases. Gas exchanges are modified with a linear decrease of PaO(2) up to the age of 70 years and a decreased diffusing capacity of carbon monoxide. Ventilatory responses to hypercapnia, hypoxia and exercise decrease in the elderly. Knowledge of changes in the respiratory system related to advancing age is a medical issue of great importance in order to distinguish the effects of aging from those of diseases.

  6. Avian cardiology.

    PubMed

    Strunk, Anneliese; Wilson, G Heather

    2003-01-01

    The field of avian cardiology is continually expanding. Although a great deal of the current knowledge base has been derived from poultry data, research and clinical reports involving companion avian species have been published. This article will present avian cardiovascular anatomy and physiology, history and physical examination considerations in the avian cardiac disease patient, specific diagnostic tools, cardiovascular disease processes, and current therapeutic modalities.

  7. Evaluation of exercise-respiratory system modifications and integration schemes for physiological systems

    NASA Technical Reports Server (NTRS)

    Gallagher, R. R.

    1974-01-01

    Exercise subroutine modifications are implemented in an exercise-respiratory system model yielding improvement of system response to exercise forcings. A more physiologically desirable respiratory ventilation rate in addition to an improved regulation of arterial gas tensions and cerebral blood flow is observed. A respiratory frequency expression is proposed which would be appropriate as an interfacing element of the respiratory-pulsatile cardiovascular system. Presentation of a circulatory-respiratory system integration scheme along with its computer program listing is given. The integrated system responds to exercise stimulation for both nonstressed and stressed physiological states. Other integration possibilities are discussed with respect to the respiratory, pulsatile cardiovascular, thermoregulatory, and the long-term circulatory systems.

  8. Evaluation of performance of portable respiratory monitoring system based on micro-electro-mechanical-system for respiratory gated radiotherapy

    NASA Astrophysics Data System (ADS)

    Moon, Sun Young; Sung, Jiwon; Yoon, Myonggeun; Chung, Mijoo; Chung, Weon Kuu; Kim, Dong Wook

    2015-08-01

    In respiratory-gated radiotherapy of patients with lung or liver cancer, the patient's respiratory pattern and repeatability are important factors affecting therapy accuracy; it has been reported that these factors can be controlled if patients undergo respiration training. As such, this study evaluates the feasibility of micro-electro-mechanical-system (MEMS) in radiotherapy by investigating the effect of radiation on a miniature portable respiratory monitoring system based on the MEMS system, which is currently under development. Using a patient respiration simulation phantom, the time-acceleration graph measured by a normal sensor according to the phantom's respiratory movement before irradiation and the change in this graph with accumulated dose were compared using the baseline slope and the change in amplitude and period of the sine wave. The results showed that with a 400Gy accumulated dose in the sensor, a baseline shift occurred and both the amplitude and period changed. As a result, if the MEMS is applied in respiratory-gated radiotherapy, the sensor should be replaced after use with roughly 6-10 patients so as to ensure continued therapy accuracy, based on the characteristics of the sensor itself. In the future, a more diverse range of sensors should be similarly evaluated.

  9. Avian influenza A (H5N1) infection with respiratory failure and meningoencephalitis in a Canadian traveller.

    PubMed

    Rajabali, Naheed; Lim, Thomas; Sokolowski, Colleen; Prevost, Jason D; Lee, Edward Z

    2015-01-01

    In an urban centre in Alberta, an otherwise healthy 28-year-old woman presented to hospital with pleuritic chest and abdominal pain after returning from Beijing, China. After several days, this was followed by headache, confusion and, ultimately, respiratory failure, coma and death. Microbiology yielded influenza A subtype H5N1 from various body sites and neuroimaging was consistent with meningoencephalitis. While H5N1 infections in humans have been reported in Asia since 1997, this is the first documented case of H5N1 influenza in the Western Hemisphere. The present case demonstrated the typical manifestation of H5N1 influenza but, for the first time, also confirmed previous suggestions from human and animal studies that H5N1 is neurotropic and can manifest with neurological symptoms and meningoencephalitis.

  10. Cost Analysis of Various Low Pathogenic Avian Influenza Surveillance Systems in the Dutch Egg Layer Sector

    PubMed Central

    Rutten, Niels; Gonzales, José L.; Elbers, Armin R. W.; Velthuis, Annet G. J.

    2012-01-01

    Background As low pathogenic avian influenza viruses can mutate into high pathogenic viruses the Dutch poultry sector implemented a surveillance system for low pathogenic avian influenza (LPAI) based on blood samples. It has been suggested that egg yolk samples could be sampled instead of blood samples to survey egg layer farms. To support future decision making about AI surveillance economic criteria are important. Therefore a cost analysis is performed on systems that use either blood or eggs as sampled material. Methodology/Principal Findings The effectiveness of surveillance using egg or blood samples was evaluated using scenario tree models. Then an economic model was developed that calculates the total costs for eight surveillance systems that have equal effectiveness. The model considers costs for sampling, sample preparation, sample transport, testing, communication of test results and for the confirmation test on false positive results. The surveillance systems varied in sampled material (eggs or blood), sampling location (farm or packing station) and location of sample preparation (laboratory or packing station). It is shown that a hypothetical system in which eggs are sampled at the packing station and samples prepared in a laboratory had the lowest total costs (i.e. € 273,393) a year. Compared to this a hypothetical system in which eggs are sampled at the farm and samples prepared at a laboratory, and the currently implemented system in which blood is sampled at the farm and samples prepared at a laboratory have 6% and 39% higher costs respectively. Conclusions/Significance This study shows that surveillance for avian influenza on egg yolk samples can be done at lower costs than surveillance based on blood samples. The model can be used in future comparison of surveillance systems for different pathogens and hazards. PMID:22523543

  11. 76 FR 62164 - VASRD Improvement Forum-Updating Disability Criteria for the Respiratory System, Cardiovascular...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-06

    ... AFFAIRS VASRD Improvement Forum--Updating Disability Criteria for the Respiratory System, Cardiovascular...) Improvement Forum-- Updating Disability Criteria for the Respiratory System, Cardiovascular System, Hearing... four body systems: (1) Respiratory System (38 CFR 4.96-4.97), (2) the Cardiovascular System (38 CFR...

  12. Avian Influenza.

    PubMed

    Zeitlin, Gary Adam; Maslow, Melanie Jane

    2005-05-01

    The current epidemic of H5N1 highly pathogenic avian influenza in Southeast Asia raises serious concerns that genetic reassortment will result in the next influenza pandemic. There have been 164 confirmed cases of human infection with avian influenza since 1996. In 2004, there were 45 cases of human H5N1 in Vietnam and Thailand, with a mortality rate more than 70%. In addition to the potential public health hazard, the current zoonotic epidemic has caused severe economic losses. Efforts must be concentrated on early detection of bird outbreaks with aggressive culling, quarantining, and disinfection. To prepare for and prevent an increase in human cases, it is essential to improve detection methods and stockpile effective antivirals. Novel therapeutic modalities, including short-interfering RNAs and new vaccine strategies that use plasmid-based genetic systems, offer promise should a pandemic occur.

  13. Avian influenza.

    PubMed

    Zeitlin, Gary A; Maslow, Melanie J

    2006-03-01

    The current epidemic of H5N1 highly pathogenic avian influenza in Southeast Asia raises serious concerns that genetic reassortment will result in the next influenza pandemic. There have been 164 confirmed cases of human infection with avian influenza since 1996. In 2004 alone, there were 45 cases of human H5N1 in Vietnam and Thailand, with a mortality rate over 70%. In addition to the potential public health hazard, the current zoonotic epidemic has caused severe economic losses. Efforts must be concentrated on early detection of bird outbreaks with aggressive culling, quarantines, and disinfection. To prepare for and prevent increased human cases, it is essential to improve detection methods and stockpile effective antivirals. Novel therapeutic modalities, including short, interfering RNAs and new vaccine strategies that use plasmid-based genetic systems offer promise, should a pandemic occur.

  14. Nanocarriers as pulmonary drug delivery systems to treat and to diagnose respiratory and non respiratory diseases

    PubMed Central

    Smola, Malgorzata; Vandamme, Thierry; Sokolowski, Adam

    2008-01-01

    The purpose of this review is to discuss the impact of nanocarriers administered by pulmonary route to treat and to diagnose respiratory and non respiratory diseases. Indeed, during the past 10 years, the removal of chlorofluorocarbon propellants from industrial and household products intended for the pulmonary route has lead to the developments of new alternative products. Amongst these ones, on one hand, a lot of attention has been focused to improve the bioavailability of marketed drugs intended for respiratory diseases and to develop new concepts for pulmonary administration of drugs and, on the other hand, to use the pulmonary route to administer drugs for systemic diseases. This has led to some marketed products through the last decade. Although the introduction of nanotechnology permitted to step over numerous problems and to improve the bioavailability of drugs, there are, however, unresolved delivery problems to be still addressed. These scientific and industrial innovations and challenges are discussed along this review together with an analysis of the current situation concerning the industrial developments. PMID:18488412

  15. [Adaptation potential of cardio-respiratory system in dust diseases].

    PubMed

    Serebryakov, P V; Nenenko, O I; Fedina, I N; Rakhimzyanov, A R

    2016-01-01

    The article covers results of cardio-respiratory system evaluation in workers exposed to dust, on basis of adaptation potential evaluation via calculation of functional changes index and 6 minutes' walk test with continuous assessment of blood oxygenation and heart rate. Adaptation disorders are supported by results of external respiration assessment and echo-cardiography.

  16. Computational 3-D Model of the Human Respiratory System

    EPA Science Inventory

    We are developing a comprehensive, morphologically-realistic computational model of the human respiratory system that can be used to study the inhalation, deposition, and clearance of contaminants, while being adaptable for age, race, gender, and health/disease status. The model ...

  17. Computational 3-D Model of the Human Respiratory System

    EPA Science Inventory

    We are developing a comprehensive, morphologically-realistic computational model of the human respiratory system that can be used to study the inhalation, deposition, and clearance of contaminants, while being adaptable for age, race, gender, and health/disease status. The model ...

  18. Traffic aerosol lobar doses deposited in the human respiratory system.

    PubMed

    Manigrasso, Maurizio; Vernale, Claudio; Avino, Pasquale

    2015-10-30

    Aerosol pollution in urban environments has been recognized to be responsible for important pathologies of the cardiovascular and respiratory systems. In this perspective, great attention has been addressed to Ultra Fine Particles (UFPs < 100 nm), because they efficiently penetrate into the respiratory system and are capable of translocating from the airways into the blood circulation. This paper describes the aerosol regional doses deposited in the human respiratory system in a high-traffic urban area. The aerosol measurements were carried out on a curbside in downtown Rome, on a street characterized by a high density of autovehicular traffic. Aerosol number-size distributions were measured by means of a Fast Mobility Particle Sizer in the range from 5.6 to 560 nm with a 1 s time resolution. Dosimetry estimates were performed with the Multiple-Path Particle Dosimetry model by means of the stochastic lung model. The exposure scenario close to traffic is represented by a sequence of short-term peak exposures: about 6.6 × 10(10) particles are deposited hourly into the respiratory system. After 1 h of exposure in proximity of traffic, 1.29 × 10(10), 1.88 × 10(10), and 3.45 × 10(10) particles are deposited in the head, tracheobronchial, and alveolar regions. More than 95 % of such doses are represented by UFPs. Finally, according to the greater dose estimated, the right lung lobes are expected to be more susceptible to respiratory pathologies than the left lobes.

  19. A wireless portable system with microsensors for monitoring respiratory diseases.

    PubMed

    Cao, Zhe; Zhu, Rong; Que, Rui-Yi

    2012-11-01

    A wireless portable monitoring system for respiratory diseases using microsensors is proposed. The monitoring system consists of two sensor nodes integrating with Bluetooth transmitters that measure user's respiratory airflow, blood oxygen saturation, and body posture. The utility of micro-hot-film flow sensor makes the monitor can acquire comprehensive respiration parameters which are useful for diagnoses of obstructive sleep apnea, chronic obstructive pulmonary disease, and asthma. The system can serve as both sleep recorder and spirometer. Additionally, a mobile phone or a PC connected to the Internet serving as a monitoring and transfer terminal makes telemedicine achievable. Several experiments were conducted to verify the feasibility and effectiveness of the proposed system for monitoring and diagnosing OSA, COPD, and asthma.

  20. [French survey on anesthesia systems and peroperative respiratory monitoring equipment].

    PubMed

    Bourgain, J L; Duranteau, J; Deriaz, H; Noviant, Y

    1986-01-01

    A national inquiry has been carried out in France. It concerned the anaesthetic systems and respiratory monitoring equipment in use at the moment, as well as that wished for. The equipment in use was very stereotyped: an open system with a respirator, for the most volumetric, and with a safety O2/N2O mixer. Monitoring is carried out with the pressure gauges and the measure of expiratory volume; only two thirds of the equipment had an alarm. The O2 and CO2 analysers were little used. Expired CO2 monitoring was only carried out in teaching hospitals and in big centres. Apart from this, the equipment was independent of the hospital and the type of surgery carried out. As for anaesthetic systems, 53% of centres would like obtain open systems, 15% closed systems; 32% did not answer. This increase in number of closed systems is not significant. However, a very strong wish for respirators with flow rate control and safety O2/N2O mixers was observed, whilst the safety parameters of these mixers were open to discussion. Respiratory monitoring was not just confined to the mechanical aspects, as 65% of centres wished to monitor FIO2. The big centres and the teaching hospitals were interested by the expiratory CO2 monitoring. This inquiry showed the interest in respiratory safety in operating theatres. Further studies should confirm or not the increasing interest in closed systems.

  1. Performance test and verification of an off-the-shelf automated avian radar tracking system.

    PubMed

    May, Roel; Steinheim, Yngve; Kvaløy, Pål; Vang, Roald; Hanssen, Frank

    2017-08-01

    Microwave radar is an important tool for observation of birds in flight and represents a tremendous increase in observation capability in terms of amount of surveillance space that can be covered at relatively low cost. Based on off-the-shelf radar hardware, automated radar tracking systems have been developed for monitoring avian movements. However, radar used as an observation instrument in biological research has its limitations that are important to be aware of when analyzing recorded radar data. This article describes a method for exploring the detection capabilities of a dedicated short-range avian radar system used inside the operational Smøla wind-power plant. The purpose of the testing described was to find the maximum detection range for various sized birds, while controlling for the effects of flight tortuosity, flight orientation relative to the radar and ground clutter. The method was to use a dedicated test target in form of a remotely controlled unmanned aerial vehicle (UAV) with calibrated radar cross section (RCS), which enabled the design of virtually any test flight pattern within the area of interest. The UAV had a detection probability of 0.5 within a range of 2,340 m from the radar. The detection performance obtained by the RCS-calibrated test target (-11 dBm(2), 0.08 m(2) RCS) was then extrapolated to find the corresponding performance of differently sized birds. Detection range depends on system sensitivity, the environment within which the radar is placed and the spatial distribution of birds. The avian radar under study enables continuous monitoring of bird activity within a maximum range up to 2 km dependent on the size of the birds in question. While small bird species may be detected up to 0.5-1 km, larger species may be detected up to 1.5-2 km distance from the radar.

  2. Respiratory protective device design using control system techniques

    NASA Technical Reports Server (NTRS)

    Burgess, W. A.; Yankovich, D.

    1972-01-01

    The feasibility of a control system analysis approach to provide a design base for respiratory protective devices is considered. A system design approach requires that all functions and components of the system be mathematically identified in a model of the RPD. The mathematical notations describe the operation of the components as closely as possible. The individual component mathematical descriptions are then combined to describe the complete RPD. Finally, analysis of the mathematical notation by control system theory is used to derive compensating component values that force the system to operate in a stable and predictable manner.

  3. The ecology and evolution of avian alarm call signaling systems

    NASA Astrophysics Data System (ADS)

    Billings, Alexis Chandon

    Communication is often set up as a simple dyadic exchange between one sender and one receiver. However, in reality, signaling systems have evolved and are used with many forms and types of information bombarding multiple senders, who in turn send multiple signals of different modalities, through various environmental spaces, finally reaching multiple receivers. In order to understand both the ecology and evolution of a signaling system, we must examine all the facets of the signaling system. My dissertation focused on the alarm call signaling system in birds. Alarm calls are acoustic signals given in response to danger or predators. My first two chapters examine how information about predators alters alarm calls. In chapter one I found that chickadees make distinctions between predators of different hunting strategies and appear to encode information about predators differently if they are heard instead of seen. In my second chapter, I test these findings more robustly in a non-model bird, the Steller's jay. I again found that predator species matters, but that how Steller's jays respond if they saw or heard the predator depends on the predator species. In my third chapter, I tested how habitat has influenced the evolution of mobbing call acoustic structure. I found that habitat is not a major contributor to the variation in acoustic structure seen across species and that other selective pressures such as body size may be more important. In my fourth chapter I present a new framework to understand the evolution of multimodal communication across species. I identify a unique constraint, the need for overlapping sensory systems, thresholds and cognitive abilities between sender and receiver in order for different forms of interspecific communication to evolve. Taken together, these chapters attempt to understand a signaling system from both an ecological and evolutionary perspective by examining each piece of the communication scheme.

  4. Electrical Neuromodulation of the Respiratory System After Spinal Cord Injury.

    PubMed

    Hachmann, Jan T; Grahn, Peter J; Calvert, Jonathan S; Drubach, Dina I; Lee, Kendall H; Lavrov, Igor A

    2017-09-01

    Spinal cord injury (SCI) is a complex and devastating condition characterized by disruption of descending, ascending, and intrinsic spinal circuitry resulting in chronic neurologic deficits. In addition to limb and trunk sensorimotor deficits, SCI can impair autonomic neurocircuitry such as the motor networks that support respiration and cough. High cervical SCI can cause complete respiratory paralysis, and even lower cervical or thoracic lesions commonly result in partial respiratory impairment. Although electrophrenic respiration can restore ventilator-independent breathing in select candidates, only a small subset of affected individuals can benefit from this technology at this moment. Over the past decades, spinal cord stimulation has shown promise for augmentation and recovery of neurologic function including motor control, cough, and breathing. The present review discusses the challenges and potentials of spinal cord stimulation for restoring respiratory function by overcoming some of the limitations of conventional respiratory functional electrical stimulation systems. Copyright © 2017 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved.

  5. Construction of Multilevel Structure for Avian Influenza Virus System Based on Granular Computing

    PubMed Central

    Sun, Meng-Meng; Tang, Xu-Qing

    2017-01-01

    Exploring the genetic structure of influenza viruses attracts the attention in the field of molecular ecology and medical genetics, whose epidemics cause morbidity and mortality worldwide. The rapid variations in RNA strand and changes of protein structure of the virus result in low-accuracy subtyping identification and make it difficult to develop effective drugs and vaccine. This paper constructs the evolutionary structure of avian influenza virus system considering both hemagglutinin and neuraminidase protein fragments. An optimization model was established to determine the rational granularity of the virus system for exploring the intrinsic relationship among the subtypes based on the fuzzy hierarchical evaluation index. Thus, an algorithm was presented to extract the rational structure. Furthermore, to reduce the systematic and computational complexity, the granular signatures of virus system were identified based on the coarse-grained idea and then its performance was evaluated through a designed classifier. The results showed that the obtained virus signatures could approximate and reflect the whole avian influenza virus system, indicating that the proposed method could identify the effective virus signatures. Once a new molecular virus is detected, it is efficient to identify the homologous virus hierarchically. PMID:28191464

  6. Four-dimensional computed tomography based respiratory-gated radiotherapy with respiratory guidance system: analysis of respiratory signals and dosimetric comparison.

    PubMed

    Lee, Jung Ae; Kim, Chul Yong; Yang, Dae Sik; Yoon, Won Sup; Park, Young Je; Lee, Suk; Kim, Young Bum

    2014-01-01

    To investigate the effectiveness of respiratory guidance system in 4-dimensional computed tomography (4 DCT) based respiratory-gated radiation therapy (RGRT) by comparing respiratory signals and dosimetric analysis of treatment plans. The respiratory amplitude and period of the free, the audio device-guided, and the complex system-guided breathing were evaluated in eleven patients with lung or liver cancers. The dosimetric parameters were assessed by comparing free breathing CT plan and 4 DCT-based 30-70% maximal intensity projection (MIP) plan. The use of complex system-guided breathing showed significantly less variation in respiratory amplitude and period compared to the free or audio-guided breathing regarding the root mean square errors (RMSE) of full inspiration (P = 0.031), full expiration (P = 0.007), and period (P = 0.007). The dosimetric parameters including V(5 Gy), V(10 Gy), V(20 Gy), V(30 Gy), V(40 Gy), and V(50 Gy) of normal liver or lung in 4 DCT MIP plan were superior over free breathing CT plan. The reproducibility and regularity of respiratory amplitude and period were significantly improved with the complex system-guided breathing compared to the free or the audio-guided breathing. In addition, the treatment plan based on the 4D CT-based MIP images acquired with the complex system guided breathing showed better normal tissue sparing than that on the free breathing CT.

  7. Respiratory manifestations of systemic lupus erythematosus: old and new concepts.

    PubMed

    Pego-Reigosa, José María; Medeiros, Dina A; Isenberg, David A

    2009-08-01

    The respiratory system is commonly involved in systemic lupus erythematosus. Lung disorders are classified as primary (due to lupus) and secondary to other conditions. Pleuritis and pulmonary infections are the most prevalent respiratory manifestations of each type. Other infrequent manifestations include interstitial lung disease, acute lupus pneumonitis, diffuse alveolar haemorrhage, pulmonary arterial hypertension, acute reversible hypoxaemia and shrinking lung syndrome. Even when current diagnostic tests contribute to an earlier diagnosis, the treatment of these manifestations is based on clinical experience and small series. Larger controlled trials of the different therapies in the treatment of those lung manifestations of lupus are needed. Overall malignancy is little increased in lupus, but lung cancer and non-Hodgkin's lymphoma are among the most frequent types of cancer found in these patients. As survival in lupus patients has improved over recent decades, avoiding pulmonary damage emerges as an important objective.

  8. Inhaled formulations and pulmonary drug delivery systems for respiratory infections.

    PubMed

    Zhou, Qi Tony; Leung, Sharon Shui Yee; Tang, Patricia; Parumasivam, Thaigarajan; Loh, Zhi Hui; Chan, Hak-Kim

    2015-05-01

    Respiratory infections represent a major global health problem. They are often treated by parenteral administrations of antimicrobials. Unfortunately, systemic therapies of high-dose antimicrobials can lead to severe adverse effects and this calls for a need to develop inhaled formulations that enable targeted drug delivery to the airways with minimal systemic drug exposure. Recent technological advances facilitate the development of inhaled anti-microbial therapies. The newer mesh nebulisers have achieved minimal drug residue, higher aerosolisation efficiencies and rapid administration compared to traditional jet nebulisers. Novel particle engineering and intelligent device design also make dry powder inhalers appealing for the delivery of high-dose antibiotics. In view of the fact that no new antibiotic entities against multi-drug resistant bacteria have come close to commercialisation, advanced formulation strategies are in high demand for combating respiratory 'super bugs'.

  9. Avian-like breathing mechanics in maniraptoran dinosaurs

    PubMed Central

    Codd, Jonathan R; Manning, Phillip L; Norell, Mark A; Perry, Steven F

    2007-01-01

    In 1868 Thomas Huxley first proposed that dinosaurs were the direct ancestors of birds and subsequent analyses have identified a suite of ‘avian’ characteristics in theropod dinosaurs. Ossified uncinate processes are found in most species of extant birds and also occur in extinct non-avian maniraptoran dinosaurs. Their presence in these dinosaurs represents another morphological character linking them to Aves, and further supports the presence of an avian-like air-sac respiratory system in theropod dinosaurs, prior to the evolution of flight. Here we report a phylogenetic analysis of the presence of uncinate processes in Aves and non-avian maniraptoran dinosaurs indicating that these were homologous structures. Furthermore, recent work on Canada geese has demonstrated that uncinate processes are integral to the mechanics of avian ventilation, facilitating both inspiration and expiration. In extant birds, uncinate processes function to increase the mechanical advantage for movements of the ribs and sternum during respiration. Our study presents a mechanism whereby uncinate processes, in conjunction with lateral and ventral movements of the sternum and gastral basket, affected avian-like breathing mechanics in extinct non-avian maniraptoran dinosaurs. PMID:17986432

  10. Avian influenza

    MedlinePlus

    Bird flu; H5N1; H5N2; H5N8; H7N9; Avian influenza A (HPAI) H5 ... The first avian influenza in humans was reported in Hong Kong in 1997. It was called avian influenza (H5N1). The outbreak was linked ...

  11. Avian Astrovirus

    USDA-ARS?s Scientific Manuscript database

    Avian astroviruses comprise a diverse group of viruses affecting many avian species and causing enteritis, hepatitis and nephritis. To date, six different astroviruses have been identified in avian species based on the species of origin and viral genome characteristics: two turkey-origin astroviru...

  12. [Designs of optimized microbial therapy systems of respiratory infections].

    PubMed

    Morimoto, Kazuhiro

    2013-01-01

    Several respiratory infections are frequently induced by pathogenic microorganisms in lung epithelial lining fluid (ELF) and alveolar macrophages (AM). Then, two studies concerning designs of antimicrobial therapy systems of respiratory infections were carried out; one was the distribution mechanisms of three macrolide and ketolide antibiotics, clarithromycin (CAM), azithromycin (AZM) and telithromycin (TEL) in plasma, ELF and AM, and the other was the efficient drug delivery to AM by pulmonary administration of fluoroquinolone antibiotic, a ciprofloxacin (CPFX) incorporated into liposomes (CPFX-liposome). In the first study, the areas under drug concentration-time curves (AUCs) in ELF following oral administration of three macrolide and ketolide antibiotics to rats were significantly higher than AUCs in plasma, furthermore AUCs in AM significantly higher than AUCs in ELF. The high distribution of these antibiotics to the respiratory infection site is due to the transport from blood to ELF via MDR1 in lung epithelial cells as well as the uptake by AM. These antibiotics were taken up by AM via active transport system and the trapping in organelles. In the second study, drug delivery efficacy of CPFX-liposome to AM was particle size-dependent over the 100-1000 nm and then become constant at over 1000 nm by pulmonary aerosolization to rats. This result indicates that the most effective size is 1000 nm. Furthermore, the drug delivery efficacy of mannosylated CPFX-liposome (particle size: 1000 nm) was highly delivered to AM and antibacterial effects were significantly higher than those of unmodified CPFX-liposome. This review provides useful findings for microbial therapy systems of respiratory infections.

  13. Current developments in avian influenza vaccines, including safety of vaccinated birds as food.

    PubMed

    Swayne, D E; Suarez, D L

    2007-01-01

    Until recently, most vaccines against avian influenza were based on oil-emulsified inactivated low- or high-pathogenicity viruses. Now, recombinant fowl pox and avian paramyxovirus type 1 vaccines with avian influenza H5 gene inserts (+ or - N1 gene insert) are available and licensed. New technologies might overcome existing limitations to make available vaccines that can be grown in tissue culture systems for more rapid production; provide optimized protection, as a result of closer genetic relations to field viruses; allow mass administration by aerosol, in drinking-water or in ovo; and allow easier strategies for identifying infected birds within vaccinated populations (DIVA). The technologies include avian influenza viruses with partial gene deletions, avian influenza-Newcastle disease virus chimeras, vectored vaccines such as adenoviruses and Marek's disease virus, and subunit vaccines. These new methods should be licensed only after their purity, safety, efficacy and potency against avian influenza viruses have been demonstrated, and, for live vectored vaccines, restriction of viral transmission to unvaccinated birds. Use of vaccines in countries affected by highly pathogenic avian influenza will not only protect poultry but will provide additional safety for consumers. Experimental studies have shown that birds vaccinated against avian influenza have no virus in meat and minimal amounts in eggs after HPAI virus challenge, and that replication and shedding from their respiratory and alimentary tracts is greatly reduced.

  14. Testosterone regulates alpha-synuclein mRNA in the avian song system.

    PubMed

    Hartman, V N; Miller, M A; Clayton, D F; Liu, W C; Kroodsma, D E; Brenowitz, E A

    2001-04-17

    Alpha-synuclein is a small, highly conserved protein in vertebrates that has been linked to several neurodegenerative diseases. The avian song control system is one of the model systems in which the protein was independently discovered. Alpha-synuclein is dynamically regulated in the song system during song learning, a process in which sex steroids play a central role. We compared alpha-synuclein mRNA expression in the brains of 12 adult male chipping sparrows (Spizella passerina) treated with either testosterone or blank s.c. implants. We saw pronounced upregulation of alpha-synuclein mRNA in, as well as an increase in the volume of, the song control nucleus area X in response to exogenous testosterone. To our knowledge this is the first report of steroid regulation of synuclein gene expression in any model system.

  15. Noninvasive measurement system for human respiratory condition and body temperature

    NASA Astrophysics Data System (ADS)

    Toba, Eiji; Sekiguchi, Sadamu; Nishimatsu, Toyonori

    1995-06-01

    A special chromel (C) and alumel wire (A) thermopile has been developed which can measure the human respiratory condition and body temperature without directly contacting a sensor to the human body. The measurement system enables high speed, real time, noninvasive, and simultaneous measurement of respiratory rates and body temperature with the same sensor. The special CA thermopile, with each sensing junction of approximately 25 μm, was constructed by using spot welded thermopile junctions. The thermoelectric power of 17 pairs of special CA thermopile is 0.7 mV/ °C. The special CA thermopile provides high sensitivity and fine frequency characteristics, of which the gain is flat to approximately 10 Hz.

  16. Numerical simulation of volume-controlled mechanical ventilated respiratory system with 2 different lungs.

    PubMed

    Shi, Yan; Zhang, Bolun; Cai, Maolin; Zhang, Xiaohua Douglas

    2016-11-09

    Mechanical ventilation is a key therapy for patients who cannot breathe adequately by themselves, and dynamics of mechanical ventilation system is of great significance for life support of patients. Recently, models of mechanical ventilated respiratory system with 1 lung are used to simulate the respiratory system of patients. However, humans have 2 lungs. When the respiratory characteristics of 2 lungs are different, a single-lung model cannot reflect real respiratory system. In this paper, to illustrate dynamic characteristics of mechanical ventilated respiratory system with 2 different lungs, we propose a mathematical model of mechanical ventilated respiratory system with 2 different lungs and conduct experiments to verify the model. Furthermore, we study the dynamics of mechanical ventilated respiratory system with 2 different lungs. This research study can be used for improving the efficiency and safety of volume-controlled mechanical ventilation system.

  17. Measurement of respiratory system compliance and respiratory system resistance in healthy dogs undergoing general anaesthesia for elective orthopaedic procedures.

    PubMed

    Bradbrook, Carl A; Clark, Louise; Dugdale, Alexandra H A; Burford, John; Mosing, Martina

    2013-07-01

    The aim of this study was to investigate normal values for the dynamic compliance of the respiratory system (Crs) and respiratory system resistance (Rrs) in mechanically ventilated anaesthetized dogs. Prospective clinical study. Forty healthy dogs undergoing elective orthopaedic surgery. Body weight was (mean ± SD) 26.8 ± 10.7 kg (range: 1.9-45.0 kg), age 4.7 ± 2.9 years (range: 0.1-10.6 years). Dogs were premedicated with acepromazine and methadone administered intramuscularly and anaesthesia induced with propofol intravenously. After endotracheal intubation the dog's lungs were connected to an appropriate breathing system depending on body weight and isoflurane in oxygen administered for maintenance of anaesthesia. The lungs were ventilated mechanically with variables set to maintain normocapnia (end-tidal carbon dioxide concentration 4.7-6.0 kPa). Peak inspiratory pressure, Crs, Rrs, tidal volume, respiratory rate and positive end-expiratory pressure were recorded at 5, 30, 60, 90 and 120 minutes after start of mechanical ventilation. Cardiovascular variables were recorded at time of collection of respiratory data. General additive modeling revealed the following relationships: Crs =[0.895 × body weight (kg)] + 8.845 and Rrs=[-0.0966 × body weight (kg)] + 6.965. Body weight and endotracheal tube diameter were associated with Crs (p<0.001 and p=0.002 respectively) and Rrs (p=0.017 and p=0.002 respectively), body weight being linearly related to Crs and inversely to Rrs. Body weight was linearly related to Crs while Rrs has an inverse linear relationship with body weight in mechanically ventilated dogs. The derived values of Crs and Rrs may be used for monitoring of lung function and ventilation in healthy dogs under anaesthesia. © 2013 The Authors. Veterinary Anaesthesia and Analgesia © 2013 Association of Veterinary Anaesthetists and the American College of Veterinary Anesthesia and Analgesia.

  18. OSCILLATION MECHANICS OF THE RESPIRATORY SYSTEM: APPLICATIONS TO LUNG DISEASE

    PubMed Central

    Kaczka, David W.; Dellacá, Raffaele L.

    2011-01-01

    Since its introduction in the 1950s, the forced oscillation technique (FOT) and the measurement of respiratory impedance have evolved into powerful tools for the assessment of various mechanical phenomena in the mammalian lung during health and disease. In this review, we highlight the most recent developments in instrumentation, signal processing, and modeling relevant to FOT measurements. We demonstrate how FOT provides unparalleled information on the mechanical status of the respiratory system compared to more widely-used pulmonary function tests. The concept of mechanical impedance is reviewed, as well as the various measurement techniques used to acquire such data. Emphasis is placed on the analysis of lower, physiologic frequency ranges (typically less than 10 Hz) that are most sensitive to normal physical processes as well as pathologic structural alterations. Various inverse modeling approaches used to interpret alterations in impedance are also discussed, specifically in the context of three common respiratory diseases: asthma, chronic obstructive pulmonary disease, and acute lung injury. Finally, we speculate on the potential role for FOT in the clinical arena. PMID:22011237

  19. Use of ex vivo and in vitro cultures of the human respiratory tract to study the tropism and host responses of highly pathogenic avian influenza A (H5N1) and other influenza viruses.

    PubMed

    Chan, Renee W Y; Chan, Michael C W; Nicholls, John M; Malik Peiris, J S

    2013-12-05

    The tropism of influenza viruses for the human respiratory tract is a key determinant of host-range, and consequently, of pathogenesis and transmission. Insights can be obtained from clinical and autopsy studies of human disease and relevant animal models. Ex vivo cultures of the human respiratory tract and in vitro cultures of primary human cells can provide complementary information provided they are physiologically comparable in relevant characteristics to human tissues in vivo, e.g. virus receptor distribution, state of differentiation. We review different experimental models for their physiological relevance and summarize available data using these cultures in relation to highly pathogenic avian influenza H5N1, in comparison where relevant, with other influenza viruses. Transformed continuous cell-lines often differ in important ways to the corresponding tissues in vivo. The state of differentiation of primary human cells (respiratory epithelium, macrophages) can markedly affect virus tropism and host responses. Ex vivo cultures of human respiratory tissues provide a close resemblance to tissues in vivo and may be used to risk assess animal viruses for pandemic threat. Physiological factors (age, inflammation) can markedly affect virus receptor expression and virus tropism. Taken together with data from clinical studies on infected humans and relevant animal models, data from ex vivo and in vitro cultures of human tissues and cells can provide insights into virus transmission and pathogenesis and may provide understanding that leads to novel therapeutic interventions.

  20. Lung volume recruitment acutely increases respiratory system compliance in individuals with severe respiratory muscle weakness

    PubMed Central

    Molgat-Seon, Yannick; Hannan, Liam M.; Dominelli, Paolo B.; Peters, Carli M.; Fougere, Renee J.; McKim, Douglas A.; Sheel, A. William

    2017-01-01

    The aim of the present study was to determine whether lung volume recruitment (LVR) acutely increases respiratory system compliance (Crs) in individuals with severe respiratory muscle weakness (RMW). Individuals with RMW resulting from neuromuscular disease or quadriplegia (n=12) and healthy controls (n=12) underwent pulmonary function testing and the measurement of Crs at baseline, immediately after, 1 h after and 2 h after a single standardised session of LVR. The LVR session involved 10 consecutive supramaximal lung inflations with a manual resuscitation bag to the highest tolerable mouth pressure or a maximum of 50 cmH2O. Each LVR inflation was followed by brief breath-hold and a maximal expiration to residual volume. At baseline, individuals with RMW had lower Crs than controls (37±5 cmH2O versus 109±10 mL·cmH2O−1, p<0.001). Immediately after LVR, Crs increased by 39.5±9.8% to 50±7 mL·cmH2O−1 in individuals with RMW (p<0.05), while no significant change occurred in controls (p=0.23). At 1 h and 2 h post-treatment, there were no within-group differences in Crs compared to baseline (all p>0.05). LVR had no significant effect on measures of pulmonary function at any time point in either group (all p>0.05). During inflations, mean arterial pressure decreased significantly relative to baseline by 10.4±2.8 mmHg and 17.3±3.0 mmHg in individuals with RMW and controls, respectively (both p<0.05). LVR acutely increases Crs in individuals with RMW. However, the high airway pressures during inflations cause reductions in mean arterial pressure that should be considered when applying this technique. PMID:28326313

  1. Avian influenza virus-induced regulation of duck fibroblast gene expression

    USDA-ARS?s Scientific Manuscript database

    Highly pathogenic avian influenza (HPAI) H5N1 viruses have been non-pathogenic in ducks causing no disease or mild respiratory infections. However, in 2002, new viruses emerged causing systemic disease and death. To better understand the differences in pathogenicity of HPAI viruses in ducks, we in...

  2. Surveillance for emerging respiratory viruses.

    PubMed

    Al-Tawfiq, Jaffar A; Zumla, Alimuddin; Gautret, Philippe; Gray, Gregory C; Hui, David S; Al-Rabeeah, Abdullah A; Memish, Ziad A

    2014-10-01

    Several new viral respiratory tract infectious diseases with epidemic potential that threaten global health security have emerged in the past 15 years. In 2003, WHO issued a worldwide alert for an unknown emerging illness, later named severe acute respiratory syndrome (SARS). The disease caused by a novel coronavirus (SARS-CoV) rapidly spread worldwide, causing more than 8000 cases and 800 deaths in more than 30 countries with a substantial economic impact. Since then, we have witnessed the emergence of several other viral respiratory pathogens including influenza viruses (avian influenza H5N1, H7N9, and H10N8; variant influenza A H3N2 virus), human adenovirus-14, and Middle East respiratory syndrome coronavirus (MERS-CoV). In response, various surveillance systems have been developed to monitor the emergence of respiratory-tract infections. These include systems based on identification of syndromes, web-based systems, systems that gather health data from health facilities (such as emergency departments and family doctors), and systems that rely on self-reporting by patients. More effective national, regional, and international surveillance systems are required to enable rapid identification of emerging respiratory epidemics, diseases with epidemic potential, their specific microbial cause, origin, mode of acquisition, and transmission dynamics.

  3. SU-E-J-211: Development of Respiratory Training System Using Individual Characteristic Guiding Waveform.

    PubMed

    Kang, S; Yoon, J; Kim, T; Suh, T

    2012-06-01

    The purpose of this study is to develop the respiratory training system using individual characteristic guiding waveform to reduce the impact of respiratory motion that causes artifact in radiation therapy. Respiratory training system was developed by LabView (National Instruments, version 8.6). The real-time respiratory signals were acquired using in-house developed belt type sensor and more user-comfortable HMD was used for visual guiding (Vuzix, Wrap 920). The respiratory training program consists of three main components. It is (1) respiratory signal reading and peak detection program (2) individual characteristic guiding waveform generation program (3) respiratory signals acquisition and visual guiding program. In order to evaluate the feasibility of in-house developed respiratory training system, 5 volunteers were included and their respiratory signals were acquired using the in-house developed belt-type sensor. Respiratory training system needs 10 free breathing cycles of each volunteer to make individual characteristic guiding waveform based on Fourier series and it guides patient's next breathing. For each volunteer, free breathing and guided breathing which uses individual characteristic guiding waveform were performed to acquire the respiratory cycles for 3 min. The root mean square error (RMSE) was computed to analyze improvement of respiratory regularity in period and displacement. It was found that respiratory regularity was improved by using respiratory training system. RMSE of guided breathing decreased up to 40% in displacement and 76% in period compared with free breathing. The average of RMSE was decreases from 0.012V to 0.008V in displacement and from 0.432 sec to 0.192 sec in period. In conclusion, since the guiding waveform was easy to follow for the volunteers, The respiratory regularity was significantly improved by using in-house developed respiratory training system. So it would be helpful to improve accuracy and efficiency during 4D-RT, 4

  4. New insight into the evolution of the vertebrate respiratory system and the discovery of unidirectional airflow in iguana lungs.

    PubMed

    Cieri, Robert L; Craven, Brent A; Schachner, Emma R; Farmer, C G

    2014-12-02

    The generally accepted framework for the evolution of a key feature of the avian respiratory system, unidirectional airflow, is that it is an adaptation for efficiency of gas exchange and expanded aerobic capacities, and therefore it has historically been viewed as important to the ability of birds to fly and to maintain an endothermic metabolism. This pattern of flow has been presumed to arise from specific features of the respiratory system, such as an enclosed intrapulmonary bronchus and parabronchi. Here we show unidirectional airflow in the green iguana, a lizard with a strikingly different natural history from that of birds and lacking these anatomical features. This discovery indicates a paradigm shift is needed. The selective drivers of the trait, its date of origin, and the fundamental aerodynamic mechanisms by which unidirectional flow arises must be reassessed to be congruent with the natural history of this lineage. Unidirectional flow may serve functions other than expanded aerobic capacity; it may have been present in the ancestral diapsid; and it can occur in structurally simple lungs.

  5. New insight into the evolution of the vertebrate respiratory system and the discovery of unidirectional airflow in iguana lungs

    PubMed Central

    Cieri, Robert L.; Craven, Brent A.; Schachner, Emma R.; Farmer, C. G.

    2014-01-01

    The generally accepted framework for the evolution of a key feature of the avian respiratory system, unidirectional airflow, is that it is an adaptation for efficiency of gas exchange and expanded aerobic capacities, and therefore it has historically been viewed as important to the ability of birds to fly and to maintain an endothermic metabolism. This pattern of flow has been presumed to arise from specific features of the respiratory system, such as an enclosed intrapulmonary bronchus and parabronchi. Here we show unidirectional airflow in the green iguana, a lizard with a strikingly different natural history from that of birds and lacking these anatomical features. This discovery indicates a paradigm shift is needed. The selective drivers of the trait, its date of origin, and the fundamental aerodynamic mechanisms by which unidirectional flow arises must be reassessed to be congruent with the natural history of this lineage. Unidirectional flow may serve functions other than expanded aerobic capacity; it may have been present in the ancestral diapsid; and it can occur in structurally simple lungs. PMID:25404314

  6. A wearable respiratory biofeedback system based on body sensor networks.

    PubMed

    Liu, Guang-Zheng; Huang, Bang-Yu; Mei, Zhan-Yong; Guo, Yan-Wei; Wang, Lei

    2010-01-01

    Technology advantages of body sensor networks (BSN) have shown great deal of promises in medical applications. In this paper we introduced a wearable device for biofeedback application based on the BSN platform we had developed. The biofeedback device we have developed includes the heart rate monitoring belt with conductive fabric and the biofeedback device with respiration belt. A wearable respiratory biofeedback system was preliminarily explored based on the BSN platform. In-situ experiments showed that the BSN platform and the biofeedback device worked as intended.

  7. An impulse radio ultrawideband system for contactless noninvasive respiratory monitoring.

    PubMed

    Nijsure, Yogesh; Tay, Wee Peng; Gunawan, Erry; Wen, Fuxi; Yang, Zhang; Guan, Yong Liang; Chua, Ai Ping

    2013-06-01

    We design a impulse radio ultrawideband radar monitoring system to track the chest wall movement of a human subject during respiration. Multiple sensors are placed at different locations to ensure that the backscattered signal could be detected by at least one sensor no matter which direction the human subject faces. We design a hidden Markov model to infer the subject facing direction and his or her chest movement. We compare the performance of our proposed scheme on 15 human volunteers with the medical gold standard using respiratory inductive plethysmography (RIP) belts, and show that on average, our estimation is over 81% correlated with the measurements of a RIP belt system. Furthermore, in order to automatically differentiate between periods of normal and abnormal breathing patterns, we develop a change point detection algorithm based on perfect simulation techniques to detect changes in the subject's breathing. The feasibility of our proposed system is verified by both the simulation and experiment results.

  8. Experimental quantum simulation of Avian Compass in a nuclear magnetic resonance system

    NASA Astrophysics Data System (ADS)

    Pearson, Jason; Feng, GuanRu; Zheng, Chao; Long, GuiLu

    2016-12-01

    Avian magnetoreception is the capacity for avians to sense the direction of the Earth's magnetic field. Discovered more than forty years ago, it has attracted intensive studies over the years. One promising model for describing this capacity in avians is the widely used reference-and-probe model where radical pairs within the eyes of bird combines to form singlet and triplet quantum states. The yield depends on the angle between the Earth's magnetic field and the molecules' axis, hence the relative value of yield of the singlet state or triplet state enables avians to sense the direction. Here we report the experimental demonstration of avian magnetoreception in a nuclear magnetic resonance quantum information processor. It is shown clearly from the experiment that the yield of the singlet state attains maximum when it is normal to the Earth's magnetic field, and the experimental results agree with theory very well.

  9. Respiratory effects of occupational exposure to an epoxy resin system.

    PubMed

    Sargent, E V; Brubaker, R E; Mitchell, C A

    1976-01-01

    A standardized respiratory questionnaire and pulmonary function tests were used to examine thirty-four employees of a snow-ski manufacturing plant, including twenty-five workers who were exposed to an epoxy resin system containing the amine hardener 3-dimethylamino propylamine (3-DMAPA). Maximum expiratory flow-volume curves were obtained on Monday and Thursday, before and after each shift, and FVC, FEV1.0, MEF50%, and MEF25% were caculated. Environmental measurements of the total amine levels were found to range from 0.41 to 1.38 ppm. The group with the greatest exposure (0.55-1.38 ppm) showed significant decreases in lung function over Monday and over the week. Although all employees in this group showed decreases in pulmonary function, acute changes were greater in present cigarette smokers and in subjects who reported respiratory symptoms upon exposure to the epoxy resin system. There was no evidence of permanent loss of lung function in subjects with either the highest or longest exposure.

  10. Comparison of pig and ferret models for evaluation of respiratory versus alimentary transmission of H5N1 high pathogenicity avian influenza virus

    USDA-ARS?s Scientific Manuscript database

    Background: H5N1 high pathogenicity avian influenza viruses (HPAIV) have caused over 300 human infections and over 200 deaths since 2003. The majority of the cases have involved close direct or indirect contact with infected poultry but a few cases have incriminated consumption of uncooked poultry p...

  11. The East Jakarta Project: surveillance for highly pathogenic avian influenza A(H5N1) and seasonal influenza viruses in patients seeking care for respiratory disease, Jakarta, Indonesia, October 2011-September 2012.

    PubMed

    Storms, A D; Kusriastuti, R; Misriyah, S; Praptiningsih, C Y; Amalya, M; Lafond, K E; Samaan, G; Triada, R; Iuliano, A D; Ester, M; Sidjabat, R; Chittenden, K; Vogel, R; Widdowson, M A; Mahoney, F; Uyeki, T M

    2015-12-01

    Indonesia has reported the most human infections with highly pathogenic avian influenza (HPAI) A(H5N1) virus worldwide. We implemented enhanced surveillance in four outpatient clinics and six hospitals for HPAI H5N1 and seasonal influenza viruses in East Jakarta district to assess the public health impact of influenza in Indonesia. Epidemiological and clinical data were collected from outpatients with influenza-like illness (ILI) and hospitalized patients with severe acute respiratory infection (SARI); respiratory specimens were obtained for influenza testing by real-time reverse transcription-polymerase chain reaction. During October 2011-September 2012, 1131/3278 specimens from ILI cases (34·5%) and 276/1787 specimens from SARI cases (15·4%) tested positive for seasonal influenza viruses. The prevalence of influenza virus infections was highest during December-May and the proportion testing positive was 76% for ILI and 36% for SARI during their respective weeks of peak activity. No HPAI H5N1 virus infections were identified, including hundreds of ILI and SARI patients with recent poultry exposures, whereas seasonal influenza was an important contributor to acute respiratory disease in East Jakarta. Overall, 668 (47%) of influenza viruses were influenza B, 384 (27%) were A(H1N1)pdm09, and 359 (25%) were H3. While additional data over multiple years are needed, our findings suggest that seasonal influenza prevention efforts, including influenza vaccination, should target the months preceding the rainy season.

  12. Vertebrate lungs: structure, topography and mechanics. A comparative perspective of the progressive integration of respiratory system, locomotor apparatus and ontogenetic development.

    PubMed

    Duncker, Hans-Rainer

    2004-12-15

    Vertebrate lungs are highly diverse in their structure, topographical position, ventilation mechanisms, constructional integration into the locomotor apparatus, and the interrelationships with the mode of their ontogenetic development. Vertebrate lungs evolved as supplementary air-breathing organs in primary fishes, being ventilated by buccal pumping. In most recent fishes the lungs are transformed into the hydrostatic swimbladder. This basic type of unicameral lungs and their buccal pumping ventilation are also found in recent amphibians. Land vertebrates developed a very efficient aspiration type of ventilation. In most recent reptiles the lungs are subdivided into three rows of lung chambers, enlarging the exchange surface in correlation to their increasing metabolic needs. The avian respiratory apparatus, with its volume-constant lungs and highly compliant air sacs, and the mammalian broncho-alveolar lung, with its very low compliance, are both derived from multicameral lungs. The avian and the mammalian respiratory systems are integrated very differently with the specific constructions of their locomotor apparatusses and the specific mode of their ontogenetic development.

  13. An immuno-biosensor system based on quartz crystal microbalance for avian influenza virus detection

    NASA Astrophysics Data System (ADS)

    Liu, Shengping; Chen, Guoming; Zhou, Qi; Wei, Yunlong

    2007-12-01

    For the quick detection of Avian Influenza Virus (AIV), a biosensor based on Quartz Crystal Microbalance (QCM) was fabricated according to the specific bonding principle between antibody and antigen. Staphylococcal Protein A (SPA) was extracted from Staphylococcus and purified. Then SPA was coated on the surface of QCM for immobilizing AIV monoclonal antibodies. The use of AIV monoclonal antibody could enhance the specificity of the immuno-biosensor. A multi-channel piezoelectricity detection system for the immuno-biosensor was developed. The system can work for the quick detection of AIV antigen in the case of the entirely aqueous status owe to one special oscillating circuit designed in this work. The optimum conditions of SPA coating and AIV monoclonal antibody immobilization were investigated utilizing the multi-channel detection system. The preliminary application of the immuno-biosensor system for detection of AIV was evaluated. Results indicate that the immuno-biosensor system can detect the AIV antigens with a linear range of 3-200ng/ml. The system can accomplish the detection of AIV antigens around 40 minutes.

  14. On the origin of avian air sacs.

    PubMed

    Farmer, C G

    2006-11-01

    For many vertebrates the lung is the largest and lightest organ in the body cavity and for these reasons can greatly affect an organism's shape, density, and its distribution of mass; characters that are important to locomotion. In this paper non-respiratory functions of the lung are considered along with data on the respiratory capacities and gas exchange abilities of birds and crocodilians to infer the evolutionary history of the respiratory systems of dinosaurs, including birds. From a quadrupedal ancestry theropod dinosaurs evolved a bipedal posture. Bipedalism is an impressive balancing act, especially for tall animals with massive heads. During this transition selection for good balance and agility may have helped shape pulmonary morphology. Respiratory adaptations arising for bipedalism are suggested to include a reduction in costal ventilation and the use of cuirassal ventilation with a caudad expansion of the lung into the dorsal abdominal cavity. The evolution of volant animals from bipeds required yet again a major reorganization in body form. With this transition avian air sacs may have been favored because they enhanced balance and agility in flight. Finally, I propose that these hypotheses can be tested by examining the importance of the air sacs to balance and agility in extant animals and that these data will enhance our understanding of the evolution of the respiratory system in archosaurs.

  15. Universal and reusable virus deactivation system for respiratory protection

    PubMed Central

    Quan, Fu-Shi; Rubino, Ilaria; Lee, Su-Hwa; Koch, Brendan; Choi, Hyo-Jick

    2017-01-01

    Aerosolized pathogens are a leading cause of respiratory infection and transmission. Currently used protective measures pose potential risk of primary/secondary infection and transmission. Here, we report the development of a universal, reusable virus deactivation system by functionalization of the main fibrous filtration unit of surgical mask with sodium chloride salt. The salt coating on the fiber surface dissolves upon exposure to virus aerosols and recrystallizes during drying, destroying the pathogens. When tested with tightly sealed sides, salt-coated filters showed remarkably higher filtration efficiency than conventional mask filtration layer, and 100% survival rate was observed in mice infected with virus penetrated through salt-coated filters. Viruses captured on salt-coated filters exhibited rapid infectivity loss compared to gradual decrease on bare filters. Salt-coated filters proved highly effective in deactivating influenza viruses regardless of subtypes and following storage in harsh environmental conditions. Our results can be applied in obtaining a broad-spectrum, airborne pathogen prevention device in preparation for epidemic and pandemic of respiratory diseases. PMID:28051158

  16. Universal and reusable virus deactivation system for respiratory protection

    NASA Astrophysics Data System (ADS)

    Quan, Fu-Shi; Rubino, Ilaria; Lee, Su-Hwa; Koch, Brendan; Choi, Hyo-Jick

    2017-01-01

    Aerosolized pathogens are a leading cause of respiratory infection and transmission. Currently used protective measures pose potential risk of primary/secondary infection and transmission. Here, we report the development of a universal, reusable virus deactivation system by functionalization of the main fibrous filtration unit of surgical mask with sodium chloride salt. The salt coating on the fiber surface dissolves upon exposure to virus aerosols and recrystallizes during drying, destroying the pathogens. When tested with tightly sealed sides, salt-coated filters showed remarkably higher filtration efficiency than conventional mask filtration layer, and 100% survival rate was observed in mice infected with virus penetrated through salt-coated filters. Viruses captured on salt-coated filters exhibited rapid infectivity loss compared to gradual decrease on bare filters. Salt-coated filters proved highly effective in deactivating influenza viruses regardless of subtypes and following storage in harsh environmental conditions. Our results can be applied in obtaining a broad-spectrum, airborne pathogen prevention device in preparation for epidemic and pandemic of respiratory diseases.

  17. Avian Reovirus

    USDA-ARS?s Scientific Manuscript database

    Avian reoviruses (ARV) are widespread worldwide and may infect turkeys, chickens and other avian species, including domestic waterfowl and game birds. The virus is non-enveloped double-stranded RNA, therefore is environmentally stable and due to its segmented genome can generate variants easily. A...

  18. PHOTOINACTIVATION AND PHOTOREACTIVATION OF CONSTITUTIVE AND ADAPTIVE RESPIRATORY SYSTEMS OF AZOTOBACTER,

    DTIC Science & Technology

    AZOTOBACTER , PHOTOSENSITIVITY(BIOLOGICAL)), ADAPTATION(PHYSIOLOGY), RADIATION EFFECTS, ULTRAVIOLET RADIATION, ENZYMES, OXIDATION, INHIBITION, LIGHT, RESPIRATORY SYSTEM, ADSORPTION, SUCROSE, GROWTH(PHYSIOLOGY).

  19. Verification and compensation of respiratory motion using an ultrasound imaging system

    SciTech Connect

    Chuang, Ho-Chiao Hsu, Hsiao-Yu; Chiu, Wei-Hung; Tien, Der-Chi; Wu, Ren-Hong; Hsu, Chung-Hsien

    2015-03-15

    Purpose: The purpose of this study was to determine if it is feasible to use ultrasound imaging as an aid for moving the treatment couch during diagnosis and treatment procedures associated with radiation therapy, in order to offset organ displacement caused by respiratory motion. A noninvasive ultrasound system was used to replace the C-arm device during diagnosis and treatment with the aims of reducing the x-ray radiation dose on the human body while simultaneously being able to monitor organ displacements. Methods: This study used a proposed respiratory compensating system combined with an ultrasound imaging system to monitor the compensation effect of respiratory motion. The accuracy of the compensation effect was verified by fluoroscopy, which means that fluoroscopy could be replaced so as to reduce unnecessary radiation dose on patients. A respiratory simulation system was used to simulate the respiratory motion of the human abdomen and a strain gauge (respiratory signal acquisition device) was used to capture the simulated respiratory signals. The target displacements could be detected by an ultrasound probe and used as a reference for adjusting the gain value of the respiratory signal used by the respiratory compensating system. This ensured that the amplitude of the respiratory compensation signal was a faithful representation of the target displacement. Results: The results show that performing respiratory compensation with the assistance of the ultrasound images reduced the compensation error of the respiratory compensating system to 0.81–2.92 mm, both for sine-wave input signals with amplitudes of 5, 10, and 15 mm, and human respiratory signals; this represented compensation of the respiratory motion by up to 92.48%. In addition, the respiratory signals of 10 patients were captured in clinical trials, while their diaphragm displacements were observed simultaneously using ultrasound. Using the respiratory compensating system to offset, the diaphragm

  20. Verification and compensation of respiratory motion using an ultrasound imaging system.

    PubMed

    Chuang, Ho-Chiao; Hsu, Hsiao-Yu; Chiu, Wei-Hung; Tien, Der-Chi; Wu, Ren-Hong; Hsu, Chung-Hsien

    2015-03-01

    The purpose of this study was to determine if it is feasible to use ultrasound imaging as an aid for moving the treatment couch during diagnosis and treatment procedures associated with radiation therapy, in order to offset organ displacement caused by respiratory motion. A noninvasive ultrasound system was used to replace the C-arm device during diagnosis and treatment with the aims of reducing the x-ray radiation dose on the human body while simultaneously being able to monitor organ displacements. This study used a proposed respiratory compensating system combined with an ultrasound imaging system to monitor the compensation effect of respiratory motion. The accuracy of the compensation effect was verified by fluoroscopy, which means that fluoroscopy could be replaced so as to reduce unnecessary radiation dose on patients. A respiratory simulation system was used to simulate the respiratory motion of the human abdomen and a strain gauge (respiratory signal acquisition device) was used to capture the simulated respiratory signals. The target displacements could be detected by an ultrasound probe and used as a reference for adjusting the gain value of the respiratory signal used by the respiratory compensating system. This ensured that the amplitude of the respiratory compensation signal was a faithful representation of the target displacement. The results show that performing respiratory compensation with the assistance of the ultrasound images reduced the compensation error of the respiratory compensating system to 0.81-2.92 mm, both for sine-wave input signals with amplitudes of 5, 10, and 15 mm, and human respiratory signals; this represented compensation of the respiratory motion by up to 92.48%. In addition, the respiratory signals of 10 patients were captured in clinical trials, while their diaphragm displacements were observed simultaneously using ultrasound. Using the respiratory compensating system to offset, the diaphragm displacement resulted in

  1. Systems biology unravels interferon responses to respiratory virus infections.

    PubMed

    Kroeker, Andrea L; Coombs, Kevin M

    2014-02-26

    Interferon production is an important defence against viral replication and its activation is an attractive therapeutic target. However, it has long been known that viruses perpetually evolve a multitude of strategies to evade these host immune responses. In recent years there has been an explosion of information on virus-induced alterations of the host immune response that have resulted from data-rich omics technologies. Unravelling how these systems interact and determining the overall outcome of the host response to viral infection will play an important role in future treatment and vaccine development. In this review we focus primarily on the interferon pathway and its regulation as well as mechanisms by which respiratory RNA viruses interfere with its signalling capacity.

  2. Mathematical modelling of a human external respiratory system

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A closed system of algebraic and common differential equations solved by computer is investigated. It includes equations which describe the activity pattern of the respiratory center, the phrenic nerve, the thrust produced by the diaphragm as a function of the lung volume and discharge frequency of the phrenic nerve, as well as certain relations of the lung stretch receptors and chemoreceptors on various lung and blood characteristics, equations for lung biomechanics, pulmonary blood flow, alveolar gas exchange and capillary blood composition equations to determine various air and blood flow and gas exchange parameters, and various gas mixing and arterial and venous blood composition equations, to determine other blood, air and gas mixing characteristics. Data are presented by means of graphs and tables, and some advantages of this model over others are demonstrated by test results.

  3. Simulation of Flow Patterns Within the Human Respiratory System

    NASA Astrophysics Data System (ADS)

    Quatember, Bernhard; Mayr, Martin; Recheis, Wolfgang

    2008-09-01

    A nonlinear simulation model of the respiratory system is presented here. It describes the flow patterns as well as the specific gas mixing and distribution processes that occur in the tracheobronchial tree. The model is based on the commonly used morphometric scheme of E. Weibel. It consists of a "pressure-flow submodel" and a "gas mixing submodel. The former is a lumped parameter model consisting of 24 lumped components. The second type, the "gas mixing submodel," enables the simulation of the mixing processes in the trachea and in the larger bronchi (up to the 10th generation). Several simulation studies that are based on it have been carried out; they deal with both the physiological conditions and the specific pathological changes that occur in the small airways during the early stages of chronic obstructive bronchitis.

  4. Aerosol deposition in the human respiratory system. Final report

    SciTech Connect

    Yu, C.P.

    1988-01-01

    Attempts were made to develop mathematical models for the deposition of aerosols in the human respiratory system. Expressions were obtained for the mean deposition efficiency for nasal inspiration, nasal expiration, and mouth inspiration. A determination was made of statistical properties associated with each deposition efficiency due to intersubject and intrasubject variabilities. Expressions were then derived for head deposition with combined nose and mouth breathing. In the lung, deposition is a result primarily of impaction, sedimentation, and diffusion. While there was no adequate model for impaction, several deposition formulae for sedimentation were derived as well as ones for diffusion. Studies were also made of the particle charge effect, as the electrostatic image force on a particle contributes to its deposition. There is, however, a threshold charge per particle below which the particle charge has no effect on deposition. Deposition data on ultrafine particles is scarce due to the difficulties in conducting proper experiments.

  5. Detection of speaking with a new respiratory inductive plethysmography system.

    PubMed

    Wilhelm, Frank H; Handke, Eva M; Roth, Walton T

    2003-01-01

    The LifeShirt system, a garment with integrated sensors connected to a handheld computer, allows recording of a wide variety of clinically important cardiorespiratory data continuously for extended periods outside the laboratory or clinic. The device includes sensors for assessment of physical activity and posture since both can affect physiological activation and need to be controlled. Speaking is another potential confounding factor in the interpretation of physiological data. Auditory speech recording is problematic because it can pick up sources other than the person's voice (external microphone) or is obtrusive (throat microphone). The abdominal and thoracic calibrated respiratory inductive plethysmography (RIP) sensors integrated in the LifeShirt system might be an adequate alternative for detecting speech. In a laboratory experiment we determined respiratory parameters indicative of speech. Eighteen subjects were instructed to sit quietly, write, and speak continuously, for 4 min each. Nine parameters were derived from the RIP signals and averaged over each minute. In addition, nine variability parameters were computed as their coefficients of breath-by-breath variation. Inspiratory/expiratory time (IE-ratio) best distinguished speaking from writing with 98% correct classification at a cutoff criterion of 0.52. This criterion was equally successful in distinguishing speaking from sitting quietly. Discriminant analyses indicated that linear combinations of IE-ratio and a variety of other parameters did not reliably improve classification accuracy across tasks and replications. These results demonstrate the high efficacy of RIP-derived IE-ratio for speech detection and suggest that auditory recording is not necessary for detection of speech in ambulatory assessment.

  6. The Respiratory System. Instructional Materials in Anatomy and Physiology for Pennsylvania Health Occupations Programs.

    ERIC Educational Resources Information Center

    National Evaluation Systems, Inc., Amherst, MA.

    This instructional modular unit with instructor's guide provides materials on aspects of one of the major systems of the human body--the respiratory system. Its purpose is to introduce the student to the structures and functions of the human respiratory system--and the interrelationships of the two--and to famlliarize the student with some of the…

  7. Commissioning and quality assurance for a respiratory training system based on audiovisual biofeedback.

    PubMed

    Cui, Guoqiang; Gopalan, Siddharth; Yamamoto, Tokihiro; Berger, Jonathan; Maxim, Peter G; Keall, Paul J

    2010-07-12

    A respiratory training system based on audiovisual biofeedback has been implemented at our institution. It is intended to improve patients' respiratory regularity during four-dimensional (4D) computed tomography (CT) image acquisition. The purpose is to help eliminate the artifacts in 4D-CT images caused by irregular breathing, as well as improve delivery efficiency during treatment, where respiratory irregularity is a concern. This article describes the commissioning and quality assurance (QA) procedures developed for this peripheral respiratory training system, the Stanford Respiratory Training (START) system. Using the Varian real-time position management system for the respiratory signal input, the START software was commissioned and able to acquire sample respiratory traces, create a patient-specific guiding waveform, and generate audiovisual signals for improving respiratory regularity. Routine QA tests that include hardware maintenance, visual guiding-waveform creation, auditory sounds synchronization, and feedback assessment, have been developed for the START system. The QA procedures developed here for the START system could be easily adapted to other respiratory training systems based on audiovisual biofeedback.

  8. Functional Requirements and Performance Specifications for Avian Radar Systems: Integration and Validation of Avian Radars (IVAR), Ver 2.0

    DTIC Science & Technology

    2011-05-02

    US] Federal Aviation Administration GIS Geographic Information System GMT Greenwich Mean Time; see also UTC GPS Global Positioning System GUI...Network WAN Wide Area Network WiFi Wireless Fidelity WGS84 World Geodetic System, 1984 Revision viii 1 1. Introduction...Among wireless connections, dedicated wireless fidelity ( WiFi ) links can usually support real-time streaming of plots and tracks data from

  9. Cigarette Smoking and Respiratory System Diseases in Adolescents.

    PubMed

    Saracen, Agnieszka

    2017-01-01

    Respiratory system diseases are common in youngsters, smoking being one of the main cause of them. In this article, results are presented of a survey-type study on smoking and respiratory malady conducted in 3108 high school students from the Mazovian Region in Poland. The questionnaire made for this study contained questions concerning the health status, chronic diseases, and the cigarette smoking habit. The subjects were high school student aged 15-19. Overall, 1694 males and 1414 females were enrolled in the study. Regarding males, 66.4 % of them were non-smokers, 18.1 % smoked up to 20 cigarettes daily, and 15.5 % smoked more than 20 cigarettes daily; 12.5 % of all smokers smoked longer than one year. Overall, 38.5 % of males reported symptoms of chronic bronchitis. When stratified by the smoking habit, chronic bronchitis was reported by 21 % of non-smokers and 71 % of all smokers. Regarding females, 77 % of them were non-smokers, 16 % smoked up to 20 cigarettes daily, and 7 % more than 20 cigarettes daily; 8 % of all smokers smoked longer than one year. Overall, 35 % females reported symptoms of chronic bronchitis. When stratified by the smoking habit, chronic bronchitis was reported by 23 % of non-smokers and 75 % of smokers. Bronchial asthma was reported by 22 (0.7 %) subjects, none of them was a smoker. In conclusion, males more often than females smoked cigarettes. The number of persons complaining of symptoms of chronic bronchitis was markedly higher in the group of smokers. The study shows that smoking is a key cause of chronic bronchitis in adolescents. That implies a need for enhanced educational activity on the adverse effects of smoking and undertaking active anti-smoking campaigns at the level of high school.

  10. Early host responses to avian influenza A virus are prolonged and enhanced at transcriptional level depending on maturation of the immune system.

    PubMed

    Reemers, Sylvia S; van Leenen, Dik; Koerkamp, Marian J Groot; van Haarlem, Daphne; van de Haar, Peter; van Eden, Willem; Vervelde, Lonneke

    2010-05-01

    Newly hatched chickens are more susceptible to infectious diseases than older birds because of an immature immune system. The aim of this study was to determine to what extent host responses to avian influenza virus (AIV) inoculation are affected by age. Therefore, 1- and 4-week (wk) old birds were inoculated with H9N2 AIV or saline. The trachea and lung were sampled at 0, 8, 16 and 24h post-inoculation (h.p.i.) and gene expression profiles determined using microarray analysis. Firstly, saline controls of both groups were compared to analyse the changes in gene profiles related to development. In 1-wk-old birds, higher expression of genes related to development of the respiratory immune system and innate responses were found, whereas in 4-wk-old birds genes were up regulated that relate to the presence of higher numbers of leukocytes in the respiratory tract. After inoculation with H9N2, gene expression was most affected at 16 h.p.i. in 1-wk-old birds and at 16 and 24h.p.i. in 4-wk-old birds in the trachea and especially in the lung. In 1-wk-old birds less immune related genes including innate related genes were induced which might be due to age-dependent reduced functionality of antigen presenting cells (APC), T cells and NK cells. In contrast cytokine and chemokines gene expression was related to viral load in 1-wk-old birds and less in 4-wk-old birds. Expression of cellular host factors that block virus replication by interacting with viral factors was independent of age or tissue for most host factors. These data show that differences in development are reflected in gene expression and suggest that the strength of host responses at transcriptional level may be a key factor in age-dependent susceptibility to infection, and the cellular host factors involved in virus replication are not.

  11. National Training Course. Emergency Medical Technician. Paramedic. Instructor's Lesson Plans. Module V. Respiratory System.

    ERIC Educational Resources Information Center

    National Highway Traffic Safety Administration (DOT), Washington, DC.

    This instructor's lesson plan guide on the respiratory system is one of fifteen modules designed for use in the training of emergency medical technicians (paramedics). Five units of study are presented: (1) anatomy and physiology of the respiratory system; (2) pathophysiology assessment of the patient; (3) pathophysiology and management of…

  12. [Check list of the helminths in the respiratory system of domesticated animals in Turkey].

    PubMed

    Gürler, Ali Tümay

    2006-01-01

    Helminths of the respiratory system make up an important part of the parasitic diseases found in domestic animals. Therefore, many studies have been carried out on these helminths in Turkey. In this article, a check list and the prevalence rates of helminths of respiratory system found in domestic animals in Turkey has been given.

  13. Transgenic Quail as a Model for Research in the Avian Nervous System – A Comparative Study of the Auditory Brainstem

    PubMed Central

    Seidl, Armin H.; Sanchez, Jason Tait; Schecterson, Leslayann; Tabor, Kathryn M.; Wang, Yuan; Kashima, Daniel T.; Poynter, Greg; Huss, David; Fraser, Scott E.; Lansford, Rusty; Rubel, Edwin W

    2012-01-01

    Research performed on transgenic animals has led to numerous advances in biological research. However, using traditional retroviral methods to generate transgenic avian research models has proven problematic. As a result, experiments aimed at genetic manipulations on birds remained difficult for this popular research tool. Recently, lentiviral methods have enabled production of transgenic birds, including a transgenic Japanese quail (Coturnix coturnix japonica) line showing neuronal-specificity and stable expression of eGFP across generations (termed here as GFP quail). To test whether the GFP quail may serve as a viable alternative to the popular chicken model system, with the additional benefit of gene manipulation, we compared the development, organization, structure and function of a specific neuronal circuit in chicken (Gallus gallus domesticus) to that of the GFP quail. This study focuses on a well-defined avian brain region, the principal nuclei of the sound localization circuit in the auditory brainstem, nucleus magnocellularis (NM) and nucleus laminaris (NL). Our results demonstrate that structural and functional properties of NM and NL neurons in the GFP quail, as well as their dynamic properties in response to changes in the environment, are nearly identical to those in chickens. These similarities demonstrate that the GFP quail, as well as other transgenic quail lines, can serve as an attractive avian model system, with the advantage of being able to build on the wealth of information already available from the chicken. PMID:22806400

  14. Avian Wings

    NASA Technical Reports Server (NTRS)

    Liu, Tianshu; Kuykendoll, K.; Rhew, R.; Jones, S.

    2004-01-01

    This paper describes the avian wing geometry (Seagull, Merganser, Teal and Owl) extracted from non-contact surface measurements using a three-dimensional laser scanner. The geometric quantities, including the camber line and thickness distribution of airfoil, wing planform, chord distribution, and twist distribution, are given in convenient analytical expressions. Thus, the avian wing surfaces can be generated and the wing kinematics can be simulated. The aerodynamic characteristics of avian airfoils in steady inviscid flows are briefly discussed. The avian wing kinematics is recovered from videos of three level-flying birds (Crane, Seagull and Goose) based on a two-jointed arm model. A flapping seagull wing in the 3D physical space is re-constructed from the extracted wing geometry and kinematics.

  15. Efficient production of an avian adeno-associated virus vector using insect cell/baculovirus expression system.

    PubMed

    Wang, Anping; Wang, Yongjuan; Wu, Shuang; Zuo, Weiyong; Guo, Changming; Hong, Weiming; Zhu, Shanyuan

    2017-02-01

    Recombinant avian adeno-associated virus (rAAAV) is a promising gene transfer vector for avian cells. Although rAAAV can be produced by co-transfection of HEK293 cells with three plasmids, both scalability and productivity of the transient transfection method can not meet the demand for large-scale in vivo experiments. In this study, a scalable rAAAV production method was established by using insect cell/baculovirus expression system. Three recombinant baculoviruses, namely BacARep, BacAVP and BacAGFP, were generated by transfection of Sf9 cells with the three plasmids expressing AAAV Rep genes, modified VP gene or the inverted terminal repeats-flanked green fluorescent protein (GFP) gene. After demonstration of the correct expression of AAAV genes, rAAAV-GFP was produced by triple infection of insect cells or triple transfection of HEK293 cells for comparison purpose. Electron microscopy revealed the formation of typical AAAV particles in the insect cells. Western blotting showed the correct assembly of rAAAV particles with a VP protein ratio similar to that of AAAV. Quantitative PCR showed that the insect cell-produced rAAAV yield was almost 25-fold higher than that produced by HEK293 cells. Fluorescent microscopy showed that the insect cell-produced rAAAV could transfer GFP reporter gene into two avian cell types with similar transfer efficiency to that of HEK293 cell-produced rAAAV. These data suggest that insect cell/baculovirus expression system could be used for scalable production of rAAAV, and the viral vector produced could be used as the gene transfer vehicle for avian cells. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Nonlinear statistical data assimilation for HVC[Formula: see text] neurons in the avian song system.

    PubMed

    Kadakia, Nirag; Armstrong, Eve; Breen, Daniel; Morone, Uriel; Daou, Arij; Margoliash, Daniel; Abarbanel, Henry D I

    2016-12-01

    With the goal of building a model of the HVC nucleus in the avian song system, we discuss in detail a model of HVC[Formula: see text] projection neurons comprised of a somatic compartment with fast Na[Formula: see text] and K[Formula: see text] currents and a dendritic compartment with slower Ca[Formula: see text] dynamics. We show this model qualitatively exhibits many observed electrophysiological behaviors. We then show in numerical procedures how one can design and analyze feasible laboratory experiments that allow the estimation of all of the many parameters and unmeasured dynamical variables, given observations of the somatic voltage [Formula: see text] alone. A key to this procedure is to initially estimate the slow dynamics associated with Ca, blocking the fast Na and K variations, and then with the Ca parameters fixed estimate the fast Na and K dynamics. This separation of time scales provides a numerically robust method for completing the full neuron model, and the efficacy of the method is tested by prediction when observations are complete. The simulation provides a framework for the slice preparation experiments and illustrates the use of data assimilation methods for the design of those experiments.

  17. Avian botulism

    USGS Publications Warehouse

    Friend, Milton; Locke, Louis N.; Kennelly, James J.

    1985-01-01

    What is avian botulism? Avian botulism, or Western duck sickness, is one of the three most important disease problems of wild migratory birds. Each year, many birds are paralyzed or die after exposure to a toxin produced by the botulinum bacterium. Two of the seven toxin types that have been identifies cause mortality in wild birds; one of these types, type C, is most often associated with dieoffs of ducks, while type E primarily affects gulls and loons.

  18. Avian Hematology.

    PubMed

    Jones, Michael P

    2015-09-01

    Avian veterinarians often rely heavily on the results of various diagnostic tests, including hematology results. As such, cellular identification and evaluation of the cellular response are invaluable tools that help veterinarians understand the health or condition of their patient, as well as to monitor severity and clinical progression of disease and response to treatment. Therefore, it is important to thoroughly understand how to identify and evaluate changes in the avian erythron and leukon, as well as to interpret normal and abnormal results.

  19. Avian hematology.

    PubMed

    Jones, Michael P

    2015-01-01

    Avian veterinarians often rely heavily on the results of various diagnostic tests, including hematology results. As such, cellular identification and evaluation of the cellular response are invaluable tools that help veterinarians understand the health or condition of their patient, as well as to monitor severity and clinical progression of disease and response to treatment. Therefore, it is important to thoroughly understand how to identify and evaluate changes in the avian erythron and leukon, as well as to interpret normal and abnormal results.

  20. Avian Flu

    SciTech Connect

    Professor Paul Eckburg

    2006-11-06

    Since 2003, a severe form of H5N1 avian influenza has rapidly spread throughout Asia and Europe, infecting over 200 humans in 10 countries. The spread of H5N1 virus from person-to-person has been rare, thus preventing the emergence of a widespread pandemic. However, this ongoing epidemic continues to pose an important public health threat. Avian flu and its pandemic potential in humans will be discussed.

  1. Avian Flu

    SciTech Connect

    Eckburg, Paul

    2006-11-06

    Since 2003, a severe form of H5N1 avian influenza has rapidly spread throughout Asia and Europe, infecting over 200 humans in 10 countries. The spread of H5N1 virus from person-to-person has been rare, thus preventing the emergence of a widespread pandemic. However, this ongoing epidemic continues to pose an important public health threat. Avian flu and its pandemic potential in humans will be discussed.

  2. [The role of opioidergic and GABAergic systems in the mechanosensitivity regulation of the respiratory system in rats].

    PubMed

    Tikhomirova, L N; Safina, N F; Tarakanov, I A

    2015-01-01

    In anaesthetized white outbred male rats we investigated the change of respiratory mechanoreceptors sensitivity to morphine and phenibut. Bilateral transection of the vagus nerves causes a severely slowdown of respiratory rate in 30 minutes after the systemic administration of morphine, however after administration of phenibut the respiratory rate and other respiration parameters have not changed significantly. It means that the activation of opioid receptors by morphine does not significantly affect the function of the respiratory mechanoreceptor control loop, and transection of the vagus nerves on this background increases the probability of respiratory rhythm disorders. Activation of GABAergic system by phenibut significantly weakened the impact of the regulating contour of the respiratory mechanoreceptor on breathing parameters, up to effect of "central vagotomy": that is, to no changes in respiratory parameters after cutting the vagus nerves.

  3. Evaluation of Lightweight and Low Profile Communications Devices for Respiratory Protective System 21 (RESPO 21)

    DTIC Science & Technology

    1992-02-01

    AD-A253 393 Ir ic EREP ORT ELECTE" S JUL2,3 992 C FINAL REPORT Evaluation of Lightweight and Low Profile Communications Devices for Respiratory ...Evaluation of Lightweight and Low Profile Communications Devices for Respiratory Protective System 21 (RESPO21) to U.S. Army Chemical Research, Development...1 INTRODUCTION The Chemical Research, Development, and Engineering Center (CRDEC) is entering development of the next generation of respiratory

  4. [Latex proteins as the trigger of respiratory and systemic allergies].

    PubMed

    Baur, X; Jäger, D; Engelke, T; Rennert, S; Czuppon, A B

    1992-08-21

    56 patients (52 members of the hospital's staff, four with other employment) who had hypersensitivity reactions to latex articles and developed an immediate-type response to latex extract with the skin-prick test were studied. Specific IgE antibodies were present in the enzyme-allergo-sorbent test of 50 of the subjects. Latex-containing surgical and household gloves were the main cause of allergies. Patients with isolated contact urticaria (n = 8) had a tendency towards lower antibody concentrations than those with additional respiratory and/or systemic symptoms (n = 48). Occupation-related provocation tests triggered rhinitis in 19, conjunctivitis in ten, and bronchial obstruction in six. The main allergen was found to be a protein with a relative molecular mass of 58,000, originating from the latex milk and passing from the latex glove into the glove powder. In the course of usual activities considerable allergen inhalation can occur. Even small amounts (e.g. 400 ng/ml) can precipitate significant allergic reactions. The results show that the main latex allergen, a glycine-rich protein molecule, can cause cutaneous, inhalant and systemic hypersensitivity reactions.

  5. The respiratory-vocal system of songbirds: anatomy, physiology, and neural control.

    PubMed

    Schmidt, Marc F; Martin Wild, J

    2014-01-01

    This wide-ranging review presents an overview of the respiratory-vocal system in songbirds, which are the only other vertebrate group known to display a degree of respiratory control during song rivalling that of humans during speech; this despite the fact that the peripheral components of both the respiratory and vocal systems differ substantially in the two groups. We first provide a brief description of these peripheral components in songbirds (lungs, air sacs and respiratory muscles, vocal organ (syrinx), upper vocal tract) and then proceed to a review of the organization of central respiratory-related neurons in the spinal cord and brainstem, the latter having an organization fundamentally similar to that of the ventral respiratory group of mammals. The second half of the review describes the nature of the motor commands generated in a specialized "cortical" song control circuit and how these might engage brainstem respiratory networks to shape the temporal structure of song. We also discuss a bilaterally projecting "respiratory-thalamic" pathway that links the respiratory system to "cortical" song control nuclei. This necessary pathway for song originates in the brainstem's primary inspiratory center and is hypothesized to play a vital role in synchronizing song motor commands both within and across hemispheres.

  6. The respiratory-vocal system of songbirds: Anatomy, physiology, and neural control

    PubMed Central

    Schmidt, Marc F.; Wild, J. Martin

    2015-01-01

    This wide-ranging review presents an overview of the respiratory-vocal system in songbirds, which are the only other vertebrate group known to display a degree of respiratory control during song rivalling that of humans during speech; this despite the fact that the peripheral components of both the respiratory and vocal systems differ substantially in the two groups. We first provide a brief description of these peripheral components in songbirds (lungs, air sacs and respiratory muscles, vocal organ (syrinx), upper vocal tract) and then proceed to a review of the organization of central respiratory-related neurons in the spinal cord and brainstem, the latter having an organization fundamentally similar to that of the ventral respiratory group of mammals. The second half of the review describes the nature of the motor commands generated in a specialized “cortical” song control circuit and how these might engage brainstem respiratory networks to shape the temporal structure of song. We also discuss a bilaterally projecting “respiratory-thalamic” pathway that links the respiratory system to “cortical” song control nuclei. This necessary pathway for song originates in the brainstem’s primary inspiratory center and is hypothesized to play a vital role in synchronizing song motor commands both within and across hemispheres. PMID:25194204

  7. Accuracy Verification of Respiratory-gated Radiotherapy that Combines the Respiration-Monitoring Device and Respiratory-gated System.

    PubMed

    Shintani, Naoya; Monzen, Hajime; Tamura, Masaya; Asai, Yoshiyuki; Shimomura, Kouhei; Matsumoto, Kenji; Okumura, Masahiko; Nishimura, Yasumasa

    The purpose of this study is to evaluate the mechanical accuracy of a respiratory-gated radiation system that combines the Linear Indicator-equipped Abches respiration-monitoring device and the Varian Real-time Position Management system (LI-RPM system). This combined configuration, implemented for the first time in Japan, was compared with the stand-alone Varian RPM system (RPM system). The delay times, dose profiles, and output waveforms of the LI-RPM and RPM systems were evaluated using a self-produced dynamic phantom. The delay times for the LI-RPM and RPM systems were both 0.1 s for 4 s and 8 s test periods. The corresponding output waveform correlation factors (R(2)) for the 4 s and 8 s test periods were 0.9981 and 0.9975, respectively. No difference was observed in the dose profiles of the two systems. Thus, the present results indicate that the proposed LI-RPM combined respiratory-gated radiation system has similar properties to the RPM system. However, it offers several advantages in terms of its versatility, including its alignment assistance capabilities for non-coplanar treatments.

  8. Mortality and Pathology Associated with Highly Pathogenic Avian Influenza H5N1 Outbreaks in Commercial Poultry Production Systems in Nigeria

    PubMed Central

    Akanbi, Olatunde Babatunde; Taiwo, Victor Olusegun

    2014-01-01

    Commercial layer-type, pullet, cockerel, and broiler chicken flocks infected with highly pathogenic avian influenza (HPAI) H5N1 in Nigeria between 2006 and 2008 were investigated for morbidity, mortality, and pathology. Of the one hundred and fifty-three (153) farms confirmed with HPAI infection, one hundred and twenty-seven (127) were layer-type farms, nine (9) were pullet and broiler farms each, and eight (8) were cockerel rearing farms. This study revealed the morbidity and mortality of a total of 939,620 commercial layer chickens, 16,421 pullets, 3,109 cockerels, and 6,433 broilers. Mortality rates were 11.11% in commercial layers, 26.84% in pullets, 45.51% in cockerels, and 73.92% in broilers in a total of eighteen (18) states and the Federal Capital Territory, Abuja. A total of 316 carcasses were examined of which 248 were commercial layer, 25 were pullet, 14 were cockerel, and 29 were broiler. Main clinical and pathologic findings were observed in the nervous, circulatory, respiratory, integumentary, musculoskeletal, hemopoietic, gastrointestinal, and reproductive systems and, occasionally, lesions were generally nonspecific and multisystemic. Lesions occurred more frequently, severely, and in most of the carcasses examined, irrespective of chicken type. PMID:27379256

  9. Recording system and data fusion algorithm for enhancing the estimation of the respiratory rate from photoplethysmogram.

    PubMed

    Cernat, Roxana A; Ciorecan, Silvia I; Ungureanu, Constantin; Arends, Johan; Strungaru, Rodica; Ungureanu, G Mihaela

    2015-01-01

    The respiratory rate is a vital parameter that can provide valuable information about the health condition of a patient. The extraction of respiratory information from photoplethysmographic signal (PPG) was actually encouraged by the reported results, our main goal being to obtain accurate respiratory rate estimation from the PPG signal. We developed a fusion algorithm that identifies the best derived respiratory signals, from which is possible to extract the respiratory rate; based on these, a global respiratory rate is computed using the proposed fusion algorithm. The algorithm is qualitatively tested on real PPG signals recorded by an acquisition system we implemented, using a reflection pulse oximeter sensor. Its performance is also statistically evaluated using benchmark dataset publically available from CapnoBase.Org.

  10. Low-power system-on-chip implementation for respiratory rate detection and transmission.

    PubMed

    Padasdao, Bryson; Yee, Roxanne; Boric-Lubecke, Olga

    2012-01-01

    Recent biosensors can measure respiratory rate non-invasively, but limits patient mobility or requires regular battery replacement. Respiratory effort, which can scavenge mW, may power the sensor, but requires minimal sensor power usage. This paper demonstrates feasibility of respiratory rate measurement by using a comparator instead of ADC. A low-power system-on-chip can implement respiratory rate detection and wireless data transmission with a total power consumption under 82 µW. This approach produces significant power savings, and transmission uses under 30% of total power consumption.

  11. Rapid response to systemic bevacizumab therapy in recurrent respiratory papillomatosis

    PubMed Central

    MOHR, MICHAEL; SCHLIEMANN, CHRISTOPH; BIERMANN, CHRISTOPH; SCHMIDT, LARS-HENNING; KESSLER, TORSTEN; SCHMIDT, JOACHIM; WIEBE, KARSTEN; MÜLLER, KLAUS-MICHAEL; HOFFMANN, THOMAS K.; GROLL, ANDREAS H.; WERNER, CLAUDIUS; KESSLER, CHRISTINA; WIEWRODT, RAINER; RUDACK, CLAUDIA; BERDEL, WOLFGANG E.

    2014-01-01

    Recurrent respiratory papillomatosis (RRP) is a primary benign disease, which is characterized by papillomatous growth in the respiratory tract. Malignant transformation occurs in only 3–5% of cases, however, local growth of the benign papillomas is interpreted as clinically malignant in a markedly higher proportion of patients. Local surgical or endoscopic interventional debulking or excision is currently the commonly selected treatment method and antiviral therapy is a potential adjuvant approach. However, the long-term management of RRP patients, who commonly require multiple procedures over numerous years, is challenging and the overall therapeutic armamentarium remains unsatisfactory. The administration of systemic bevacizumab treatment in a series of five patients with long histories of RRP, who required repeated local interventions to control papilloma growth is evaluated. Treatment with the anti-vascular endothelial growth factor (VEGF) antibody bevacizumab was administered at a dose of 5 mg/kg (n=1), 10 mg/kg (n=3) or 15 mg/kg (n=1) intravenously to the five RRP patients, who were clinically classified as exhibiting progressive disease. Endoscopic evaluations were performed prior to the first infusion of bevacizumab and intermittently at variable time points during the course of therapy. Histopathological analyses were performed using pre- and post-treatment papilloma biopsies, including immunohistochemical analyses of VEGF and phosphorylated VEGF receptor (VEGFR)-2 expression. The patients received between three and 16 courses of bevacizumab (median, six courses). The first course was initiated when progression following the previous intervention was observed. An immediate response to bevacizumab treatment was demonstrated in all five RRP patients. While the cumulative number of interventions in the five patients was 18 throughout the 12 months prior to the initiation of bevacizumab treatment, only one patient required interventional treatment due to a

  12. B lymphocyte lineage cells and the respiratory system

    PubMed Central

    Kato, Atsushi; Hulse, Kathryn E.; Tan, Bruce K.; Schleimer, Robert P.

    2013-01-01

    Adaptive humoral immune responses in the airways are mediated by B cells and plasma cells that express highly evolved and specific receptors and produce immunoglobulins of most isotypes. In some cases, such as autoimmune diseases or inflammatory diseases caused by excessive exposure to foreign antigens, these same immune cells can cause disease by virtue of overly vigorous responses. This review discusses the generation, differentiation, signaling, activation and recruitment pathways of B cells and plasma cells, with special emphasis on unique characteristics of subsets of these cells functioning within the respiratory system. The primary sensitization events that generate B cells responsible for effector responses throughout the airways usually occur in the upper airways, in tonsils and adenoid structures that make up Waldeyer’s Ring. Upon secondary exposure to antigen in the airways, antigen-processing dendritic cells migrate into secondary lymphoid organs such as lymph nodes that drain the upper and lower airways and further B cell expansion takes place at those sites. Antigen exposure in the upper or lower airways can also drive expansion of B lineage cells in the airway mucosal tissue and lead to the formation of inducible lymphoid follicles or aggregates that can mediate local immunity or disease. PMID:23540615

  13. Prevalence of chronic obstructive pulmonary disease among patients with systemic arterial hypertension without respiratory symptoms.

    PubMed

    Rabahi, Marcelo Fouad; Pereira, Sheila Alves; Silva Júnior, José Laerte Rodrigues; de Rezende, Aline Pacheco; Castro da Costa, Adeliane; de Sousa Corrêa, Krislainy; Conde, Marcus Barreto

    2015-01-01

    The diagnosis of chronic obstructive pulmonary disease (COPD) is often delayed until later stages of the disease. The purpose of the present study was to determine the prevalence of COPD among adults on treatment for systemic arterial hypertension independently of the presence of respiratory symptoms. This cross-sectional study included adults aged ≥40 years with tobacco/occupational exposure and systemic arterial hypertension diagnosed at three Primary Health Care facilities in Goiania, Brazil. Patients were evaluated using a standardized respiratory questionnaire and spirometry. COPD prevalence was measured considering the value of forced vital capacity and/or forced expiratory volume in 1 second <0.70. Of a total of 570 subjects, 316 (55%) met inclusion criteria and were invited to participate. Two hundred and thirty-three (73.7%) patients with arterial hypertension reported at least one respiratory symptom, while 83 (26.3%) reported no respiratory symptoms; 41 (17.6%) patients with arterial hypertension and at least one respiratory symptom, and 10 (12%) patients with arterial hypertension but no respiratory symptoms were diagnosed with COPD (P=0.24). The prevalence of COPD in people with no previous COPD diagnosis was greater among those with no respiratory symptoms (100%) than among those with respiratory symptoms (56.1%) (P=0.01). Our findings suggest that regardless of the presence of respiratory symptoms, individuals aged ≥40 years with tobacco/occupational exposure and arterial hypertension may benefit from spirometric evaluation.

  14. Prevalence of chronic obstructive pulmonary disease among patients with systemic arterial hypertension without respiratory symptoms

    PubMed Central

    Rabahi, Marcelo Fouad; Pereira, Sheila Alves; Silva Júnior, José Laerte Rodrigues; de Rezende, Aline Pacheco; Castro da Costa, Adeliane; de Sousa Corrêa, Krislainy; Conde, Marcus Barreto

    2015-01-01

    Background The diagnosis of chronic obstructive pulmonary disease (COPD) is often delayed until later stages of the disease. The purpose of the present study was to determine the prevalence of COPD among adults on treatment for systemic arterial hypertension independently of the presence of respiratory symptoms. Methods This cross-sectional study included adults aged ≥40 years with tobacco/occupational exposure and systemic arterial hypertension diagnosed at three Primary Health Care facilities in Goiania, Brazil. Patients were evaluated using a standardized respiratory questionnaire and spirometry. COPD prevalence was measured considering the value of forced vital capacity and/or forced expiratory volume in 1 second <0.70. Results Of a total of 570 subjects, 316 (55%) met inclusion criteria and were invited to participate. Two hundred and thirty-three (73.7%) patients with arterial hypertension reported at least one respiratory symptom, while 83 (26.3%) reported no respiratory symptoms; 41 (17.6%) patients with arterial hypertension and at least one respiratory symptom, and 10 (12%) patients with arterial hypertension but no respiratory symptoms were diagnosed with COPD (P=0.24). The prevalence of COPD in people with no previous COPD diagnosis was greater among those with no respiratory symptoms (100%) than among those with respiratory symptoms (56.1%) (P=0.01). Conclusion Our findings suggest that regardless of the presence of respiratory symptoms, individuals aged ≥40 years with tobacco/occupational exposure and arterial hypertension may benefit from spirometric evaluation. PMID:26257517

  15. Determination of resonance frequency of the respiratory system in respiratory distress syndrome

    PubMed Central

    Lee, S; Alexander, J; Blowes, R; Ingram, D; Milner, A

    1999-01-01

    AIM—To measure tidal volume delivery produced by high frequency oscillation (HFO) at a range of frequencies including the resonance frequency.
METHODS—Eighteen infants with respiratory distress syndrome were recruited (median gestation 28.7 weeks). Each was ventilated at frequencies between 8 and 30 Hertz. Phase analysis was performed at various points of the respiratory cycle. HFO was provided by a variable speed piston device. Resonance frequency was determined from the phase relation between the cyclical movements of the piston and pressure changes at the airway opening. Tidal volume was measured using a jacket plethysmograph.
RESULTS—The results were most reproducible when analysis was performed at the end of inspiration (within 1 Hz in nine out of 10 cases). Comparison between tidal volume delivery at 10 Hz and resonance frequency was made in 10 subjects. Delivery was significantly higher at resonance than at 10 Hertz (mean percentage increase 92%, range 9-222%).
CONCLUSIONS—These preliminary findings suggest that there is improved volume delivery at resonance frequency.

 PMID:10212081

  16. Interleukin-6 and lung inflammation: evidence for a causative role in inducing respiratory system resistance increments.

    PubMed

    Rubini, Alessandro

    2013-10-01

    Interleukin-6 is a multifunctional cytokine that has been shown to be increased in some pathological conditions involving the respiratory system such as those experimentally induced in animals or spontaneously occurring in humans. Experimental data demonstrating that interleukin-6 plays a significant role in commonly occurring respiratory system inflammatory diseases are reviewed here. Those diseases, i.e. asthma and chronic obstructive pulmonary disease, are characterised by mechanical derangements of the respiratory system, for the most part due to increased elastance and airway resistance. Recent findings showing that interleukin-6 has a causative role in determining an increase in airway resistance are reviewed. The end-inflation occlusion method was used to study the mechanical properties of the respiratory system before and after interleukin-6 administration. The cytokine was shown to induce significant, dose-dependent increments in both the resistive pressure dissipation due to frictional forces opposing the airflow in the airway (ohmic resistance) and the additional resistive pressure dissipation due to the visco-elastic properties of the system, i.e. stress relaxation (visco-elastic resistance). There were no alterations in respiratory system elastance. Even when administered to healthy mammals, interleukin-6 determines a significant effect on respiratory system resistance causing an increase in the mechanical work of breathing during inspiration. IL-6 hypothetically plays an active role in the pathogenesis of respiratory system diseases and the mechanisms that may be involved are discussed here.

  17. Dispersal in a patchy landscape reveals contrasting determinants of infection in a wild avian malaria system.

    PubMed

    Knowles, Sarah C L; Wood, Matthew J; Alves, Ricardo; Sheldon, Ben C

    2014-03-01

    Understanding exactly when, where and how hosts become infected with parasites is critical to understanding host-parasite co-evolution in natural populations. However, for host-parasite systems in which hosts or parasites are mobile, for example in vector-borne diseases, the spatial location of infection and the relative importance of parasite exposure at successive host life-history stages are often uncertain. Here, using a 6-year longitudinal data set from a spatially referenced population of blue tits, we test the extent to which infection by avian malaria parasites is determined by conditions experienced at natal or breeding sites, as well as by postnatal dispersal between the two. We show that the location and timing of infection differs markedly between two sympatric malaria parasite species. For one species (Plasmodium circumflexum), our analyses indicate that infection occurs after birds have settled on breeding territories, and because the distribution of this parasite is temporally stable across years, hosts born in malarious areas could in principle alter their exposure and potentially avoid infection through postnatal dispersal. Conversely, the spatial distribution of another parasite species (Plasmodium relictum) is unpredictable and infection probability is positively associated with postnatal dispersal distance, potentially indicating that infection occurs during this major dispersal event. These findings suggest that hosts in this population may be subject to divergent selection pressures from these two parasites, potentially acting at different life-history stages. Because this implies parasite species-specific predictions for many coevolutionary processes, they also illustrate the complexity of predicting such processes in multi-parasite systems. © 2013 The Authors. Journal of Animal Ecology © 2013 British Ecological Society.

  18. Technical evaluation of different respiratory monitoring systems used for 4D CT acquisition under free breathing.

    PubMed

    Heinz, Christian; Reiner, Michael; Belka, Claus; Walter, Franziska; Söhn, Matthias

    2015-03-08

    Respiratory monitoring systems are required to supply CT scanners with information on the patient's breathing during the acquisition of a respiration-correlated computer tomography (RCCT), also referred to as 4D CT. The information a respiratory monitoring system has to provide to the CT scanner depends on the specific scanner. The purpose of this study is to compare two different respiratory monitoring systems (Anzai Respiratory Gating System; C-RAD Sentinel) with respect to their applicability in combination with an Aquilion Large Bore CT scanner from Toshiba. The scanner used in our clinic does not make use of the full time dependent breathing signal, but only single trigger pulses indicating the beginning of a new breathing cycle. Hence the attached respiratory monitoring system is expected to deliver accurate online trigger pulse for each breathing cycle. The accuracy of the trigger pulses sent to the CT scanner has to be ensured by the selected respiratory monitoring system. Since a trigger pulse (output signal) of a respiratory monitoring system is a function of the measured breathing signal (input signal), the typical clinical range of the input signal is estimated for both examined respiratory monitoring systems. Both systems are analyzed based on the following parameters: time resolution, signal amplitude, noise, signal-to-noise ratio (SNR), signal linearity, trigger compatibility, and clinical examples. The Anzai system shows a better SNR (≥ 28 dB) than the Sentinel system (≥ 14.6 dB). In terms of compatibility with the cycle-based image sorting algorithm of the Toshiba CT scanner, the Anzai system benefits from the possibility to generate cycle-based triggers, whereas the Sentinel system is only able to generate amplitude-based triggers. In clinical practice, the combination of a Toshiba CT scanner and the Anzai system will provide better results due to the compatibility of the image sorting and trigger release methods.

  19. Simulated respiratory system for in vitro evaluation of two inhalation delivery systems using selected steroids.

    PubMed

    Sciarra, J J; Cutie, A

    1978-10-01

    A simulated respiratory system was developed for the in vitro evaluation of two differently designed oral inhalation delivery systems. The deposition properties of a newly designed delivery system used for triamcinolone acetonide were compared to the more conventional, commercially available adapter utilized for an aerosol containing beclomethasone dipropionate. The simulated respiratory system was constructed so that the delivered dose of active ingredient could be classified into two fractions: the fraction that would be deposited in the oral cavity and throat and the fraction that would reach the desired site of activity in the respiratory tract. Based on this method, the newly designed system delivered more than 95% of the labeled dose to the desired site. The beclomethasone dipropionate aerosol system, which was observed to discharge the active ingredient with a greater intensity, delivered approximately 40% of the labeled dose. The particle-size distribution of the dose dispensed from the newly designed delivery system attached to the triamcinolone acetonide aerosol was determined using an impactor technique. No effort was made to correlate these results with an in vivo response.

  20. Avian Influenza Virus Infection of Immortalized Human Respiratory Epithelial Cells Depends upon a Delicate Balance between Hemagglutinin Acid Stability and Endosomal pH.

    PubMed

    Daidoji, Tomo; Watanabe, Yohei; Ibrahim, Madiha S; Yasugi, Mayo; Maruyama, Hisataka; Masuda, Taisuke; Arai, Fumihito; Ohba, Tomoyuki; Honda, Ayae; Ikuta, Kazuyoshi; Nakaya, Takaaki

    2015-04-24

    The highly pathogenic avian influenza (AI) virus, H5N1, is a serious threat to public health worldwide. Both the currently circulating H5N1 and previously circulating AI viruses recognize avian-type receptors; however, only the H5N1 is highly infectious and virulent in humans. The mechanism(s) underlying this difference in infectivity remains unclear. The aim of this study was to clarify the mechanisms responsible for the difference in infectivity between the current and previously circulating strains. Primary human small airway epithelial cells (SAECs) were transformed with the SV40 large T-antigen to establish a series of clones (SAEC-Ts). These clones were then used to test the infectivity of AI strains. Human SAEC-Ts could be broadly categorized into two different types based on their susceptibility (high or low) to the viruses. SAEC-T clones were poorly susceptible to previously circulating AI but were completely susceptible to the currently circulating H5N1. The hemagglutinin (HA) of the current H5N1 virus showed greater membrane fusion activity at higher pH levels than that of previous AI viruses, resulting in broader cell tropism. Moreover, the endosomal pH was lower in high susceptibility SAEC-T clones than that in low susceptibility SAEC-T clones. Taken together, the results of this study suggest that the infectivity of AI viruses, including H5N1, depends upon a delicate balance between the acid sensitivity of the viral HA and the pH within the endosomes of the target cell. Thus, one of the mechanisms underlying H5N1 pathogenesis in humans relies on its ability to fuse efficiently with the endosomes in human airway epithelial cells.

  1. Minimizing the threat of pandemic emergence from avian influenza in poultry systems

    PubMed Central

    2013-01-01

    Background Live-animal markets are a culturally important feature of meat distribution chains in many populations, yet they provide an opportunity for the maintenance and transmission of potentially emergent zoonotic pathogens. The ongoing human outbreak of avian H7N9 in China highlights the need for increased surveillance and control in these live-bird markets (LBMs). Discussion Closure of retail markets in affected areas rapidly decreased human cases to rare, sporadic occurrence, but little attention has been paid thus far to the role of upstream elements of the poultry distribution chain such as wholesale markets. This could partly explain why transmission in poultry populations has not been eliminated more broadly. We present surveillance data from both wholesale live-bird markets (wLBMs) and rLBMs in Shantou, China (from 2004–2006), and call on disease-dynamic theory to illustrate why closing rLBMs has only minor effects on the overall volume of transmission. We show that the length of time birds stay in rLBMs can severely limit transmission there, but that the system-wide effect may be reduced substantially by high levels of transmission upstream of retail markets. Summary Management plans that minimize transmission throughout the entire poultry supply chain are essential for minimizing exposure to the public. These include reducing stay-time of birds in markets to 1 day, standardizing poultry supply chains to limit transmission in pre-retail settings, and monitoring strains with epidemiological traits that pose a high risk of emergence. These actions will further limit human exposure to extant viruses and reduce the likelihood of the emergence of novel strains by decreasing the overall volume of transmission. PMID:24341669

  2. A novel respiratory rate estimation method for sound-based wearable monitoring systems.

    PubMed

    Zhang, Jianmin; Ser, Wee; Goh, Daniel Yam Thiam

    2011-01-01

    The respiratory rate is a vital sign that can provide important information about the health of a patient, especially that of the respiratory system. The aim of this study is to develop a simple method that can be applied in wearable systems to monitor the respiratory rate automatically and continuously over extended periods of time. In this paper, a novel respiratory rate estimation method is presented to achieve this target. The proposed method has been evaluated in both the open-source data as well as the local-hospital data, and the results are encouraging. The findings of this study revealed strong linear correlation to the reference respiratory rate. The correlation coefficients for the open-source data and the in-hospital data are 0.99 and 0.96 respectively. The standard deviation of the estimation error is less than 7% for both types of data.

  3. Comparison of three isolation systems for the culture of mycobacteria from respiratory and non-respiratory samples

    PubMed Central

    Harris, G; Rayner, A; Blair, J; Watt, B

    2000-01-01

    Aims—To compare the recovery of mycobacteria from clinical samples using the MB/BacT rapid culture system with that obtained using egg medium or the Bactec radiometric method. Methods—The three methods were compared using 681 clinical samples (462 respiratory and 219 non-respiratory samples) and eight external quality control strains. Culture media were incubated at 35–37°C for six weeks in the MB/BacT system and for 12 weeks in the Bactec system and on egg medium. Solid media were examined macroscopically once a week and the Bactec vials were read six times in the first two weeks, and then weekly for the next 10 weeks (a growth index > 50 indicated a positive vial). The MB/BacT system positive vials were unloaded from the machine as soon as possible after detection. Confirmation of growth for all systems was by Ziehl-Neelson stained smears. Isolates were identified by a combination of phenotypic and molecular methods. Results—Of the 681 clinical samples, 59 (8.7%) were positive on culture, including 23 strains of Mycobacterium tuberculosis. None of the three systems recovered all of the isolates, but each recovered mycobacteria not detected by either of the other two systems. After six weeks incubation, isolation rates were 87%, 78%, and 90%, and mean times to detection were 13, 19, and nine days for the MB/BacT, egg medium, and Bactec systems, respectively. Although the MB/BacT system was slightly slower than the Bactec system, the biomass was greater, allowing earlier use of molecular probes and earlier inoculation of susceptibility tests. Conclusions—The MB/BacT system provides comparable performance to the Bactec radiometric system, without the problems of disposal of radioactive waste. Optimal recovery is obtained when culture on egg medium is used in conjunction with a rapid culture system. Key Words: mycobacteria • rapid culture • solid media PMID:11002766

  4. Prototype development of an electrical impedance based simultaneous respiratory and cardiac monitoring system for gated radiotherapy.

    PubMed

    Kohli, Kirpal; Liu, Jeff; Schellenberg, Devin; Karvat, Anand; Parameswaran, Ash; Grewal, Parvind; Thomas, Steven

    2014-10-14

    In radiotherapy, temporary translocations of the internal organs and tumor induced by respiratory and cardiac activities can undesirably lead to significantly lower radiation dose on the targeted tumor but more harmful radiation on surrounding healthy tissues. Respiratory and cardiac gated radiotherapy offers a potential solution for the treatment of tumors located in the upper thorax. The present study focuses on the design and development of simultaneous acquisition of respiratory and cardiac signal using electrical impedance technology for use in dual gated radiotherapy. An electronic circuitry was developed for monitoring the bio-impedance change due to respiratory and cardiac motions and extracting the cardiogenic ECG signal. The system was analyzed in terms of reliability of signal acquisition, time delay, and functionality in a high energy radiation environment. The resulting signal of the system developed was also compared with the output of the commercially available Real-time Position Management™ (RPM) system in both time and frequency domains. The results demonstrate that the bioimpedance-based method can potentially provide reliable tracking of respiratory and cardiac motion in humans, alternative to currently available methods. When compared with the RPM system, the impedance-based system developed in the present study shows similar output pattern but different sensitivities in monitoring different respiratory rates. The tracking of cardiac motion was more susceptible to interference from other sources than respiratory motion but also provided synchronous output compared with the ECG signal extracted. The proposed hardware-based implementation was observed to have a worst-case time delay of approximately 33 ms for respiratory monitoring and 45 ms for cardiac monitoring. No significant effect on the functionality of the system was observed when it was tested in a radiation environment with the electrode lead wires directly exposed to high-energy X

  5. Physiological evidence that the vestibular system participates in autonomic and respiratory control.

    PubMed

    Yates, B J; Miller, A D

    1998-01-01

    Electrical or natural stimulation of the vestibular system results in changes in blood pressure and respiratory motor output. An increase in excitatory drive on the sympathetic nervous system occurs during nose-up vestibular stimulation in cats; this response is appropriate to offset orthostatic hypotension that could result from nose-up body rotations during movements such as vertical climbing. In addition, transection of the vestibular nerves in anesthetized or awake cats compromises the ability to correct decreases in blood pressure that result from nose-up body tilt. The vestibular system also has influences on respiratory muscles; these effects are appropriate to participate in making adjustments in the activity of respiratory muscles that are necessary to offset mechanical constraints on these muscles that occur during changes in body position. These data thus suggest that the influences of the vestibular system on the autonomic and respiratory systems serve to maintain homeostasis during movement.

  6. Effects of hypothyroidism on the respiratory system and control of breathing: Human studies and animal models.

    PubMed

    Schlenker, Evelyn H

    2012-04-30

    Hypothyroidism, subclinical hypothyroidism and euthyroid sick syndrome, are prevalent disorders that affect all body systems including the respiratory system and control of breathing. The purpose of this review article is to discuss the regulation of thyroid hormone production and their function at the cellular level; the many causes of hypothyroidism; the effects of hypothyroidism on the respiratory system and on control of ventilation in hypothyroid patients; the variety of ways animal models of hypothyroidism are induced; and how in animal models hypothyroidism affects the respiratory system and control of breathing including neurotransmitters that influence breathing. Finally, this review will present controversies that exist in the field and thus encourage new research directions. Because of the high prevalence of hypothyroidism and subclinical forms of hypothyroidism and their influence on ventilation and the respiratory system, understanding underlying molecular mechanisms is necessary to ascertain how and sometimes why not thyroid replacement may normalize function.

  7. Timely diagnosis of dairy calf respiratory disease using a standardized scoring system.

    PubMed

    McGuirk, Sheila M; Peek, Simon F

    2014-12-01

    Respiratory disease of young dairy calves is a significant cause of morbidity, mortality, economic loss, and animal welfare concern but there is no gold standard diagnostic test for antemortem diagnosis. Clinical signs typically used to make a diagnosis of respiratory disease of calves are fever, cough, ocular or nasal discharge, abnormal breathing, and auscultation of abnormal lung sounds. Unfortunately, routine screening of calves for respiratory disease on the farm is rarely performed and until more comprehensive, practical and affordable respiratory disease-screening tools such as accelerometers, pedometers, appetite monitors, feed consumption detection systems, remote temperature recording devices, radiant heat detectors, electronic stethoscopes, and thoracic ultrasound are validated, timely diagnosis of respiratory disease can be facilitated using a standardized scoring system. We have developed a scoring system that attributes severity scores to each of four clinical parameters; rectal temperature, cough, nasal discharge, ocular discharge or ear position. A total respiratory score of five points or higher (provided that at least two abnormal parameters are observed) can be used to distinguish affected from unaffected calves. This can be applied as a screening tool twice-weekly to identify pre-weaned calves with respiratory disease thereby facilitating early detection. Coupled with effective treatment protocols, this scoring system will reduce post-weaning pneumonia, chronic pneumonia, and otitis media.

  8. Respiratory and Circulatory Systems, Science (Experimental): 5363.04.

    ERIC Educational Resources Information Center

    Weiss, Alan; And Others

    This biology course is especially recommended for students interested in a vocation in nursing, medical technology, dental hygiene or other para-medical areas. In part, it is considered a second course in biology. The course includes an intensive in-depth study of the respiratory structures, nerve and chemical control of breathing, gas exchange,…

  9. A new laboratory-based surveillance system (Respiratory DataMart System) for influenza and other respiratory viruses in England: results and experience from 2009 to 2012.

    PubMed

    Zhao, H; Green, H; Lackenby, A; Donati, M; Ellis, J; Thompson, C; Bermingham, A; Field, J; Sebastianpillai, P; Zambon, M; Watson, Jm; Pebody, R

    2014-01-23

    During the 2009 influenza A(H1N1) pandemic, a new laboratory-based virological sentinel surveillance system, the Respiratory DataMart System (RDMS), was established in a network of 14 Health Protection Agency (now Public Health England (PHE)) and National Health Service (NHS) laboratories in England. Laboratory results (both positive and negative) were systematically collected from all routinely tested clinical respiratory samples for a range of respiratory viruses including influenza, respiratory syncytial virus (RSV), rhinovirus, parainfluenza virus, adenovirus and human metapneumovirus (hMPV). The RDMS also monitored the occurrence of antiviral resistance of influenza viruses. Data from the RDMS for the 2009–2012 period showed that the 2009 pandemic influenza virus caused three waves of activity with different intensities during the pandemic and post pandemic periods. Peaks in influenza A(H1N1)pdm09 positivity (defined as number of positive samples per total number of samples tested) were seen in summer and autumn in 2009, with slightly higher peak positivity observed in the first post-pandemic season in 2010/2011. The influenza A(H1N1)pdm09 virus strain almost completely disappeared in the second postpandemic season in 2011/2012. The RDMS findings are consistent with other existing community-based virological and clinical surveillance systems. With a large sample size, this new system provides a robust supplementary mechanism, through the collection of routinely available laboratory data at minimum extra cost, to monitor influenza as well as other respiratory virus activity. A near real-time, daily reporting mechanism in the RDMS was established during the London 2012 Olympic and Paralympic Games. Furthermore, this system can be quickly adapted and used to monitor future influenza pandemics and other major outbreaks of respiratory infectious disease, including novel pathogens.

  10. A new approach to modeling of selected human respiratory system diseases, directed to computer simulations.

    PubMed

    Redlarski, Grzegorz; Jaworski, Jacek

    2013-10-01

    This paper presents a new versatile approach to model severe human respiratory diseases via computer simulation. The proposed approach enables one to predict the time histories of various diseases via information accessible in medical publications. This knowledge is useful to bioengineers involved in the design and construction of medical devices that are employed for monitoring of respiratory condition. The approach provides the data that are crucial for testing diagnostic systems. This can be achieved without the necessity of probing the physiological details of the respiratory system as well as without identification of parameters that are based on measurement data. © 2013 Elsevier Ltd. All rights reserved.

  11. Respiratory system involvement in antineutrophil cytoplasmic-associated systemic vasculitides: clinical, pathological, radiological and therapeutic considerations.

    PubMed

    Pesci, Alberto; Manganelli, Paolo

    2007-01-01

    Wegener's granulomatosis (WG), microscopic polyangiitis (MPA) and Churg- Strauss syndrome (CSS) are small-vessel vasculitides that, because of their frequent association with antineutrophil cytoplasmic antibodies (ANCA), are usually referred to as ANCA-associated systemic vasculitides (AASV). The diagnosis of AASV is made on the basis of clinical findings, biopsy of an involved organ and the presence of ANCA in the serum. Lung disease is a very common and important clinical feature of AASV. In WG, almost all patients have either upper airway or lower respiratory tract disease. Solitary or multiple nodules, frequently cavitated, and masses are the most common findings on chest radiography. Asthma is a cardinal symptom of CSS, often preceded by allergic rhinitis. Pulmonary transient and patchy alveolar infiltrates are the most common radiographic findings. In MPA, diffuse alveolar haemorrhage as a result of alveolar capillaritis is the most frequent manifestation of respiratory involvement, and is clinically expressed as haemoptysis, respiratory distress and anaemia. However, diffuse alveolar haemorrhage may also be subclinical and should be suspected when a chest radiograph demonstrates new unexplained bilateral alveolar infiltrates in the context of falling haemoglobin levels. Normal and high-resolution CT have a higher sensitivity than chest radiography for demonstrating airway, parenchymal and pleural lesions. However, many of these radiological findings are nonspecific and, therefore, their interpretation must take into account all clinical, laboratory and pathological data. Therapy of AASV is commonly divided into two phases: an initial 'remission induction' phase, in which more intensive immunosuppressant therapy is used to control disease activity, and a 'maintenance' phase, which uses less intensive therapy, for maintaining disease remission while lowering the risk of adverse effects of immunosuppressant drugs. In patients with AASV refractory to standard

  12. Interleukin-6 and Lung Inflammation: Evidences of A Causing Role in Inducing Respiratory System Resistance Increments.

    PubMed

    Rubini, Alessandro

    2013-07-10

    Interleukin-6 has been shown to be increased in various pathological conditions involving the lungs, both experimentally induced in animals, or spontaneously occurring in humans. Experimental data demonstrating a significant role of interleukin-6 in commonly occurring respiratory system inflammatory diseases are reviewed. These diseases, i.e. asthma and chronic obstructive pulmonary disease, are characterised by respiratory system mechanical derangement, most of all because increased elastance and airway resistance. Recent findings showing a causative role of interleukin-6 in determining an airway resistance increment are reviewed. By applying the end-inflation occlusion method to study respiratory system mechanical properties before and after interleukin-6 administration, it was shown that this cytokine induced significant increments in both the resistive pressure dissipation due to frictional forces opposing the airflow in the airway (ohmic resistance), and in the additional resistive pressure dissipation due to the visco-elastic properties of the system, i.e. stress relaxation (visco-elastic resistance). A dose-dependent effect was also demonstrated. No effects were instead detected on respiratory system elastance. Even solely administrated in healthy mammals, interleukin-6 exhibits a significant effect on respiratory system resistances, leading to increased inspiratory muscle mechanical work of breathing. Thus, IL-6 may play an active role in the pathogenesis of respiratory system diseases. The possible involved mechanisms are discussed.

  13. Mortality and pulmonary mechanics in relation to respiratory system and transpulmonary driving pressures in ARDS.

    PubMed

    Baedorf Kassis, Elias; Loring, Stephen H; Talmor, Daniel

    2016-08-01

    The driving pressure of the respiratory system has been shown to strongly correlate with mortality in a recent large retrospective ARDSnet study. Respiratory system driving pressure [plateau pressure-positive end-expiratory pressure (PEEP)] does not account for variable chest wall compliance. Esophageal manometry can be utilized to determine transpulmonary driving pressure. We have examined the relationships between respiratory system and transpulmonary driving pressure, pulmonary mechanics and 28-day mortality. Fifty-six patients from a previous study were analyzed to compare PEEP titration to maintain positive transpulmonary end-expiratory pressure to a control protocol. Respiratory system and transpulmonary driving pressures and pulmonary mechanics were examined at baseline, 5 min and 24 h. Analysis of variance and linear regression were used to compare 28 day survivors versus non-survivors and the intervention group versus the control group, respectively. At baseline and 5 min there was no difference in respiratory system or transpulmonary driving pressure. By 24 h, survivors had lower respiratory system and transpulmonary driving pressures. Similarly, by 24 h the intervention group had lower transpulmonary driving pressure. This decrease was explained by improved elastance and increased PEEP. The results suggest that utilizing PEEP titration to target positive transpulmonary pressure via esophageal manometry causes both improved elastance and driving pressures. Treatment strategies leading to decreased respiratory system and transpulmonary driving pressure at 24 h may be associated with improved 28 day mortality. Studies to clarify the role of respiratory system and transpulmonary driving pressures as a prognosticator and bedside ventilator target are warranted.

  14. [Impacts of airborne particulate matter and its components on respiratory system health].

    PubMed

    Cao, L M; Zhou, Y; Zhang, Z; Sun, W W; Mu, G; Chen, W H

    2016-12-06

    Nowadays, particulate air pollution has been a global environmental problem. Numerous studies has shown that long-term exposure to high level of airborne particulate matter (PM) can damage human health. Respiratory system, as a direct portal to contact with particulate matter, can be more susceptible to airborne particulates. Summarizing latest five-year epidemiological research, the present review is focused on the effects of PM on respiratory system health in different age groups. In detail, we investigated the harmful effect of PM, or its components on three common respiratory diseases, including lung function decline, chronic obstructive pulmonary disease (COPD) and asthma. The result showed that, to a certain degree, PM could induce the decline of lung function, the development and the exacerbation of COPD and asthma by oxidative stress and inflammatory reaction. And it may prompt that exposure to PM can be an improtant risk factor for the respiratory system health.

  15. Excessive Cytokine Response to Rapid Proliferation of Highly Pathogenic Avian Influenza Viruses Leads to Fatal Systemic Capillary Leakage in Chickens

    PubMed Central

    Kuribayashi, Saya; Sakoda, Yoshihiro; Kawasaki, Takeshi; Tanaka, Tomohisa; Yamamoto, Naoki; Okamatsu, Masatoshi; Isoda, Norikazu; Tsuda, Yoshimi; Sunden, Yuji; Umemura, Takashi; Nakajima, Noriko; Hasegawa, Hideki; Kida, Hiroshi

    2013-01-01

    Highly pathogenic avian influenza viruses (HPAIVs) cause lethal infection in chickens. Severe cases of HPAIV infections have been also reported in mammals, including humans. In both mammals and birds, the relationship between host cytokine response to the infection with HPAIVs and lethal outcome has not been well understood. In the present study, the highly pathogenic avian influenza viruses A/turkey/Italy/4580/1999 (H7N1) (Ty/Italy) and A/chicken/Netherlands/2586/2003 (H7N7) (Ck/NL) and the low pathogenic avian influenza virus (LPAIV) A/chicken/Ibaraki/1/2005 (H5N2) (Ck/Ibaraki) were intranasally inoculated into chickens. Ty/Italy replicated more extensively than Ck/NL in systemic tissues of the chickens, especially in the brain, and induced excessive mRNA expression of inflammatory and antiviral cytokines (IFN-γ, IL-1β, IL-6, and IFN-α) in proportion to its proliferation. Using in situ hybridization, IL-6 mRNA was detected mainly in microglial nodules in the brain of the chickens infected with Ty/Italy. Capillary leakage assessed by Evans blue staining was observed in multiple organs, especially in the brains of the chickens infected with Ty/Italy, and was not observed in those infected with Ck/NL. In contrast, LPAIV caused only local infection in the chickens, with neither apparent cytokine expression nor capillary leakage in any tissue of the chickens. The present results indicate that an excessive cytokine response is induced by rapid and extensive proliferation of HPAIV and causes fatal multiple organ failure in chickens. PMID:23874602

  16. Physiological system integrations with emphasis on the respiratory-cardiovascular system

    NASA Technical Reports Server (NTRS)

    Gallagher, R. R.

    1975-01-01

    The integration of two types of physiological system simulations is presented. The long term model is a circulatory system model which simulates long term blood flow variations and compartmental fluid shifts. The short term models simulate transient phenomena of the respiratory, thermoregulatory, and pulsatile cardiovascular systems as they respond to stimuli such as LBNP, exercise, and environmental gaseous variations. An overview of the interfacing approach is described. Descriptions of the variable interface for long term to short term and between the three short term models are given.

  17. Early development of chick embryo respiratory nervous system: an immunohistochemical study.

    PubMed

    Vaccaro, R; Parisi Salvi, E; Renda, T

    2006-10-01

    The extrinsic and intrinsic respiratory nervous systems receive specific contributions from the vagal and sympathetic components. Using specific markers for vagal and sympathetic structures, we studied the distribution patterns of immunoreactivity to galanin (GAL), pituitary adenylate cyclase-activating polypeptide-27 (PACAP) and the tachykinin substance P in extrinsic and intrinsic nerve of chick embryo respiratory system, during development from the very early age to hatching. All peptides studied appeared in the intrinsic and extrinsic nervous systems early. We found substance P in both the vagal and sympathetic systems, PACAP in vagal components alone and GAL mainly in the sympathetic system. The intrinsic nervous system showed high immunoreactivity for all peptides studied. These data accord with the well known early trophic functions that peptides have on the development of nervous networks and modulatory activity on the intrinsic nervous system. The GAL again proves to be the main peptide in chick embryo sympathetic respiratory system.

  18. The Respiratory System [and] Instructor's Guide: The Respiratory System. Health Occupations Education Module: Instructional Materials in Anatomy and Physiology for Pennsylvania Health Occupations Programs.

    ERIC Educational Resources Information Center

    National Evaluation Systems, Inc., Amherst, MA.

    This module on the respiratory system is one of 17 modules designed for individualized instruction in health occupations education programs at both the secondary and postsecondary levels. It is part of an eight-unit miniseries on anatomy and physiology within the series of 17 modules. Following a preface which explains to the student how to use…

  19. Influence of industrial environments on the development of respiratory systems and morphofunctional features in preadolescent boys.

    PubMed

    Dziubek, Wioletta; Ignasiak, Zofia; Rozek, Krystyna

    2011-12-01

    The present study examines the differences between levels of selected structural and functional features of boys 11-13 years in age from regions with varying levels of air pollution, including an industrial and rural region. The sample consisted of 213 boys from the industrial region and 98 from the rural region. Somatic, respiratory parameters and motor abilities were evaluated in both groups. The analysis of respiratory parameters revealed significantly better development of respiratory systems in boys from the rural region. Additionally, motor abilities were also better developed in boys from the rural region.

  20. Influence of Industrial Environments on the Development of Respiratory Systems and Morphofunctional Features in Preadolescent Boys

    PubMed Central

    Dziubek, Wioletta; Ignasiak, Zofia; Rozek, Krystyna

    2011-01-01

    The present study examines the differences between levels of selected structural and functional features of boys 11–13 years in age from regions with varying levels of air pollution, including an industrial and rural region. The sample consisted of 213 boys from the industrial region and 98 from the rural region. Somatic, respiratory parameters and motor abilities were evaluated in both groups. The analysis of respiratory parameters revealed significantly better development of respiratory systems in boys from the rural region. Additionally, motor abilities were also better developed in boys from the rural region. PMID:23486548

  1. Computational fluid dynamics model of avian tracheal temperature control as a model for extant and extinct animals.

    PubMed

    Sverdlova, N S; Arkali, F; Witzel, U; Perry, S F

    2013-10-01

    Respiratory evaporative cooling is an important mechanism of temperature control in bird. A computational simulation of the breathing cycle, heat and water loss in anatomical avian trachea/air sac model has not previously been conducted. We report a first attempt to simulate a breathing cycle in a three-dimensional model of avian trachea and air sacs (domestic fowl) using transient computational fluid dynamics. The airflow in the trachea of the model is evoked by changing the volume of the air sacs based on the measured tidal volume and inspiratory/expiratory times for the domestic fowl. We compare flow parameters and heat transfer results with in vivo data and with our previously reported results for a two-dimensional model. The total respiratory heat loss corresponds to about 13-19% of the starvation metabolic rate of domestic fowl. The present study can lend insight into a possible thermoregulatory function in species with long necks and/or a very long trachea, as found in swans and birds of paradise. Assuming the structure of the sauropod dinosaur respiratory system was close to avian, the simulation of the respiratory temperature control (using convective and evaporative cooling) in the extensively experimentally studied domestic fowl may also help in making simulations of respiratory heat control in these extinct animals. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Respiratory alkalosis.

    PubMed

    Foster, G T; Vaziri, N D; Sassoon, C S

    2001-04-01

    Respiratory alkalosis is an extremely common and complicated problem affecting virtually every organ system in the body. This article reviews the various facets of this interesting problem. Respiratory alkalosis produces multiple metabolic abnormalities, from changes in potassium, phosphate, and calcium, to the development of a mild lactic acidosis. Renal handling of the above ions is also affected. The etiologies may be related to pulmonary or extrapulmonary disorders. Hyperventilation syndrome is a common etiology of respiratory alkalosis in the emergency department setting and is a diagnosis by exclusion. There are many cardiac effects of respiratory alkalosis, such as tachycardia, ventricular and atrial arrhythmias, and ischemic and nonischemic chest pain. In the lungs, vasodilation occurs, and in the gastrointestinal system there are changes in perfusion, motility, and electrolyte handling. Therapeutically, respiratory alkalosis is used for treatment of elevated intracranial pressure. Correction of a respiratory alkalosis is best performed by correcting the underlying etiology.

  3. Neonatal Gastrointestinal and Respiratory Microbiome in Cystic Fibrosis: Potential Interactions and Implications for Systemic Health

    PubMed Central

    Madan, Juliette C.

    2016-01-01

    Purpose The gastrointestinal microbiome plays a critical role in nutrition and metabolic and immune functions in infants and young children and has implications for lifelong health. Cystic fibrosis (CF) transmembrane conductance regulator (CFTR) mutations in CF result in viscous mucous production, frequent exposure to antibiotics, and atypical colonization patterns, resulting in an evolving dysbiosis of the gastrointestinal and respiratory microsystems; dysbiosis in CF results in systemic inflammation, chronic infection, and dysregulation of immune function. Dysbiosis in both the respiratory system and gut contributes to undernutrition, growth failure, and long-term respiratory and systemic morbidity in infants and children with CF. Understanding the role that the gut and respiratory microbiome plays in health or disease progression in CF will afford opportunities to better identify interventions to affect clinical changes. Methods Summary was done of the pertinent literature in CF and the study of the microbiome and probiotics. Findings New studies have identified bacteria in the respiratory tract in CF that are typically members of the intestinal microbiota, and enteral exposures to breast milk and probiotics are associated with prolonged periods of respiratory stability in CF. Implications Understanding the complex interactions between the CFTR mutations, microbial colonization, and mucosal and systemic immunity is of major importance to inform new treatment strategies (such as restoring a healthier microbiome with probiotics or dietary interventions) to improve nutritional status and immune competence and to decrease morbidity and mortality in CF. PMID:26973296

  4. Neonatal Gastrointestinal and Respiratory Microbiome in Cystic Fibrosis: Potential Interactions and Implications for Systemic Health.

    PubMed

    Madan, Juliette C

    2016-04-01

    The gastrointestinal microbiome plays a critical role in nutrition and metabolic and immune functions in infants and young children and has implications for lifelong health. Cystic fibrosis (CF) transmembrane conductance regulator (CFTR) mutations in CF result in viscous mucous production, frequent exposure to antibiotics, and atypical colonization patterns, resulting in an evolving dysbiosis of the gastrointestinal and respiratory microsystems; dysbiosis in CF results in systemic inflammation, chronic infection, and dysregulation of immune function. Dysbiosis in both the respiratory system and gut contributes to undernutrition, growth failure, and long-term respiratory and systemic morbidity in infants and children with CF. Understanding the role that the gut and respiratory microbiome plays in health or disease progression in CF will afford opportunities to better identify interventions to affect clinical changes. Summary was done of the pertinent literature in CF and the study of the microbiome and probiotics. New studies have identified bacteria in the respiratory tract in CF that are typically members of the intestinal microbiota, and enteral exposures to breast milk and probiotics are associated with prolonged periods of respiratory stability in CF. Understanding the complex interactions between the CFTR mutations, microbial colonization, and mucosal and systemic immunity is of major importance to inform new treatment strategies (such as restoring a healthier microbiome with probiotics or dietary interventions) to improve nutritional status and immune competence and to decrease morbidity and mortality in CF. Copyright © 2016. Published by Elsevier Inc.

  5. Development of an integrated sensor module for a non-invasive respiratory monitoring system

    NASA Astrophysics Data System (ADS)

    Kang, Seok-Won; Chang, Keun-Shik

    2013-09-01

    A respiratory monitoring system has been developed for analyzing the carbon dioxide (CO2) and oxygen (O2) concentrations in the expired air using gas sensors. The data can be used to estimate some medical conditions, including diffusion capability of the lung membrane, oxygen uptake, and carbon dioxide output. For this purpose, a 3-way valve derived from a servomotor was developed, which operates synchronously with human respiratory signals. In particular, the breath analysis system includes an integrated sensor module for valve control, data acquisition through the O2 and CO2 sensors, and respiratory rate monitoring, as well as software dedicated to analysis of respiratory gasses. In addition, an approximation technique for experimental data based on Haar-wavelet-based decomposition is explored to remove noise as well as to reduce the file size of data for long-term monitoring.

  6. Avian colibacillosis: still many black holes.

    PubMed

    Guabiraba, Rodrigo; Schouler, Catherine

    2015-08-01

    Avian pathogenic Escherichia coli (APEC) strains cause severe respiratory and systemic diseases, threatening food security and avian welfare worldwide. Intensification of poultry production and the quick expansion of free-range production systems will increase the incidence of colibacillosis through greater exposure of birds to pathogens and stress. Therapy is mainly based on antibiotherapy and current vaccines have poor efficacy. Serotyping remains the most frequently used diagnostic method, only allowing the identification of a limited number of APEC strains. Several studies have demonstrated that the most common virulence factors studied in APEC are all rarely present in the same isolate, showing that APEC strains constitute a heterogeneous group. Different isolates may harbor different associations of virulence factors, each one able to induce colibacillosis. Despite its economical relevance, pathogenesis of colibacillosis is poorly understood. Our knowledge on the host response to APEC is based on very descriptive studies, mostly restricted to bacteriological and histopathological analysis of infected organs such as lungs. Furthermore, only a small number of APEC isolates have been used in experimental studies. In the present review, we discuss current knowledge on APEC diversity and virulence, including host response to infection and the associated inflammatory response with a focus on pulmonary colibacillosis.

  7. The effects of low tidal ventilation on lung strain correlate with respiratory system compliance.

    PubMed

    Xie, Jianfeng; Jin, Fang; Pan, Chun; Liu, Songqiao; Liu, Ling; Xu, Jingyuan; Yang, Yi; Qiu, Haibo

    2017-02-03

    The effect of alterations in tidal volume on mortality of acute respiratory distress syndrome (ARDS) is determined by respiratory system compliance. We aimed to investigate the effects of different tidal volumes on lung strain in ARDS patients who had various levels of respiratory system compliance. Nineteen patients were divided into high (Chigh group) and low (Clow group) respiratory system compliance groups based on their respiratory system compliance values. We defined compliance ≥0.6 ml/(cmH2O/kg) as Chigh and compliance <0.6 ml/(cmH2O/kg) as Clow. End-expiratory lung volumes (EELV) at various tidal volumes were measured by nitrogen wash-in/washout. Lung strain was calculated as the ratio between tidal volume and EELV. The primary outcome was that lung strain is a function of tidal volume in patients with various levels of respiratory system compliance. The mean baseline EELV, strain and respiratory system compliance values were 1873 ml, 0.31 and 0.65 ml/(cmH2O/kg), respectively; differences in all of these parameters were statistically significant between the two groups. For all participants, a positive correlation was found between the respiratory system compliance and EELV (R = 0.488, p = 0.034). Driving pressure and strain increased together as the tidal volume increased from 6 ml/kg predicted body weight (PBW) to 12 ml/kg PBW. Compared to the Chigh ARDS patients, the driving pressure was significantly higher in the Clow patients at each tidal volume. Similar effects of lung strain were found for tidal volumes of 6 and 8 ml/kg PBW. The "lung injury" limits for driving pressure and lung strain were much easier to exceed with increases in the tidal volume in Clow patients. Respiratory system compliance affected the relationships between tidal volume and driving pressure and lung strain in ARDS patients. These results showed that increasing tidal volume induced lung injury more easily in patients with low respiratory system compliance

  8. The mammalian respiratory system and critical windows of exposure for children's health.

    PubMed Central

    Pinkerton, K E; Joad, J P

    2000-01-01

    The respiratory system is a complex organ system composed of multiple cell types involved in a variety of functions. The development of the respiratory system occurs from embryogenesis to adult life, passing through several distinct stages of maturation and growth. We review embryonic, fetal, and postnatal phases of lung development. We also discuss branching morphogenesis and cellular differentiation of the respiratory system, as well as the postnatal development of xenobiotic metabolizing systems within the lungs. Exposure of the respiratory system to a wide range of chemicals and environmental toxicants during perinatal life has the potential to significantly affect the maturation, growth, and function of this organ system. Although the potential targets for exposure to toxic factors are currently not known, they are likely to affect critical molecular signals expressed during distinct stages of lung development. The effects of exposure to environmental tobacco smoke during critical windows of perinatal growth are provided as an example leading to altered cellular and physiological function of the lungs. An understanding of critical windows of exposure of the respiratory system on children's health requires consideration that lung development is a multistep process and cannot be based on studies in adults. Images Figure 1 Figure 4 PMID:10852845

  9. Predicting performance and plasticity in the development of respiratory structures and metabolic systems.

    PubMed

    Greenlee, Kendra J; Montooth, Kristi L; Helm, Bryan R

    2014-07-01

    The scaling laws governing metabolism suggest that we can predict metabolic rates across taxonomic scales that span large differences in mass. Yet, scaling relationships can vary with development, body region, and environment. Within species, there is variation in metabolic rate that is independent of mass and which may be explained by genetic variation, the environment or their interaction (i.e., metabolic plasticity). Additionally, some structures, such as the insect tracheal respiratory system, change throughout development and in response to the environment to match the changing functional requirements of the organism. We discuss how study of the development of respiratory function meets multiple challenges set forth by the NSF Grand Challenges Workshop. Development of the structure and function of respiratory and metabolic systems (1) is inherently stable and yet can respond dynamically to change, (2) is plastic and exhibits sensitivity to environments, and (3) can be examined across multiple scales in time and space. Predicting respiratory performance and plasticity requires quantitative models that integrate information across scales of function from the expression of metabolic genes and mitochondrial biogenesis to the building of respiratory structures. We present insect models where data are available on the development of the tracheal respiratory system and of metabolic physiology and suggest what is needed to develop predictive models. Incorporating quantitative genetic data will enable mapping of genetic and genetic-by-environment variation onto phenotypes, which is necessary to understand the evolution of respiratory and metabolic systems and their ability to enable respiratory homeostasis as organisms walk the tightrope between stability and change.

  10. Predicting Performance and Plasticity in the Development of Respiratory Structures and Metabolic Systems

    PubMed Central

    Montooth, Kristi L.; Helm, Bryan R.

    2014-01-01

    The scaling laws governing metabolism suggest that we can predict metabolic rates across taxonomic scales that span large differences in mass. Yet, scaling relationships can vary with development, body region, and environment. Within species, there is variation in metabolic rate that is independent of mass and which may be explained by genetic variation, the environment or their interaction (i.e., metabolic plasticity). Additionally, some structures, such as the insect tracheal respiratory system, change throughout development and in response to the environment to match the changing functional requirements of the organism. We discuss how study of the development of respiratory function meets multiple challenges set forth by the NSF Grand Challenges Workshop. Development of the structure and function of respiratory and metabolic systems (1) is inherently stable and yet can respond dynamically to change, (2) is plastic and exhibits sensitivity to environments, and (3) can be examined across multiple scales in time and space. Predicting respiratory performance and plasticity requires quantitative models that integrate information across scales of function from the expression of metabolic genes and mitochondrial biogenesis to the building of respiratory structures. We present insect models where data are available on the development of the tracheal respiratory system and of metabolic physiology and suggest what is needed to develop predictive models. Incorporating quantitative genetic data will enable mapping of genetic and genetic-by-environment variation onto phenotypes, which is necessary to understand the evolution of respiratory and metabolic systems and their ability to enable respiratory homeostasis as organisms walk the tightrope between stability and change. PMID:24812329

  11. Development of Non-contact Respiratory Monitoring System for Newborn Using a FG Vision Sensor

    NASA Astrophysics Data System (ADS)

    Kurami, Yoshiyuki; Itoh, Yushi; Natori, Michiya; Ohzeki, Kazuo; Aoki, Yoshimitsu

    In recent years, development of neonatal care is strongly hoped, with increase of the low-birth-weight baby birth rate. Especially respiration of low-birth-weight baby is incertitude because central nerve and respiratory function is immature. Therefore, a low-birth-weight baby often causes a disease of respiration. In a NICU (Neonatal Intensive Care Unit), neonatal respiration is monitored using cardio-respiratory monitor and pulse oximeter at all times. These contact-type sensors can measure respiratory rate and SpO2 (Saturation of Peripheral Oxygen). However, because a contact-type sensor might damage the newborn's skin, it is a real burden to monitor neonatal respiration. Therefore, we developed the respiratory monitoring system for newborn using a FG (Fiber Grating) vision sensor. FG vision sensor is an active stereo vision sensor, it is possible for non-contact 3D measurement. A respiratory waveform is calculated by detecting the vertical motion of the thoracic and abdominal region with respiration. We attempted clinical experiment in the NICU, and confirmed the accuracy of the obtained respiratory waveform was high. Non-contact respiratory monitoring of newborn using a FG vision sensor enabled the minimally invasive procedure.

  12. The effect of acute exposure to hyperbaric oxygen on respiratory system mechanics in the rat.

    PubMed

    Rubini, Alessandro; Porzionato, Andrea; Zara, Susi; Cataldi, Amelia; Garetto, Giacomo; Bosco, Gerardo

    2013-10-01

    This study was designed to investigate the possible effects of acute hyperbaric hyperoxia on respiratory mechanics of anaesthetised, positive-pressure ventilated rats. We measured respiratory mechanics by the end-inflation occlusion method in nine rats previously acutely exposed to hyperbaric hyperoxia in a standard fashion. The method allows the measurements of respiratory system elastance and of both the "ohmic" and of the viscoelastic components of airway resistance, which respectively depend on the newtonian pressure dissipation due to the ohmic airway resistance to air flow, and on the viscoelastic pressure dissipation caused by respiratory system tissues stress-relaxation. The activities of inducible and endothelial NO-synthase in the lung's tissues (iNOS and eNOS respectively) also were investigated. Data were compared with those obtained in control animals. We found that the exposure to hyperbaric hyperoxia increased respiratory system elastance and both the "ohmic" and viscoelastic components of inspiratory resistances. These changes were accompanied by increased iNOS but not eNOS activities. Hyperbaric hyperoxia was shown to acutely induce detrimental effects on respiratory mechanics. A possible causative role was suggested for increased nitrogen reactive species production because of increased iNOS activity.

  13. Aging-related changes in respiratory system mechanics and morphometry in mice.

    PubMed

    Elliott, Jonathan E; Mantilla, Carlos B; Pabelick, Christina M; Roden, Anja C; Sieck, Gary C

    2016-07-01

    Previous work investigating respiratory system mechanics in mice has reported an aging-related increase in compliance and mean linear intercept (Lm). However, these changes were assessed using only a young (2-mo-old) and old (20- and 26-mo-old) group yet were interpreted to reflect a linear evolution across the life span. Therefore, to investigate respiratory system mechanics and lung morphometry across a more complete spectrum of ages, we utilized 2 (100% survival, n = 6)-, 6 (100% survival, n = 12)-, 18 (90% survival, n = 12)-, 24 (75% survival, n = 12)-, and 30 (25% survival, n = 12)-mo-old C57BL/6 mice. We found a nonlinear aging-related decrease in respiratory system resistance and increase in dynamic compliance and hysteresis between 2- and 24-mo-old mice. However, in 30-mo-old mice, respiratory system resistance increased, and dynamic compliance and hysteresis decreased relative to 24-mo-old mice. Respiratory system impedance spectra were measured between 1-20.5 Hz at positive end-expiratory pressures (PEEP) of 1, 3, 5, and 7 cmH2O. Respiratory system resistance and reactance at each level of PEEP were increased and decreased, respectively, only in 2-mo-old animals. No differences in the respiratory system impedance spectra were observed in 6-, 18-, 24-, and 30-mo-old mice. Additionally, lungs were fixed following tracheal instillation of 4% paraformaldehyde at 25 cmH2O and processed for Lm and airway collagen deposition. There was an aging-related increase in Lm consistent with emphysematous-like changes and no evidence of increased airway collagen deposition. Accordingly, we demonstrate nonlinear aging-related changes in lung mechanics and morphometry in C57BL/6 mice.

  14. Avian Nucleus Retroambigualis: Cell Types and Projections to Other Respiratory-Vocal Nuclei in the Brain of the Zebra Finch (Taeniopygia guttata)

    PubMed Central

    Wild, J.M.; Kubke, M.F.; Mooney, R.

    2008-01-01

    In songbirds song production requires the intricate coordination of vocal and respiratory muscles under the executive influence of the telencephalon, as for speech in humans. In songbirds the site of this coordination is suspected to be the nucleus retroambigualis (RAm), because it contains premotor neurons projecting upon both vocal motoneurons and spinal motoneurons innervating expiratory muscles, and because it receives descending inputs from the telencephalic vocal control nucleus robustus archopallialis (RA). Here we used tract-tracing techniques to provide a more comprehensive account of the projections of RAm and to identify the different populations of RAm neurons. We found that RAm comprises diverse projection neuron types, including: 1) bulbospinal neurons that project, primarily contralaterally, upon expiratory motoneurons; 2) a separate group of neurons that project, primarily ipsilaterally, upon vocal motoneurons in the tracheosyringeal part of the hypoglossal nucleus (XIIts); 3) neurons that project throughout the ipsilateral and contralateral RAm; 4) another group that sends reciprocal, ascending projections to all the brainstem sources of afferents to RAm, namely, nucleus parambigualis, the ventrolateral nucleus of the rostral medulla, nucleus infra-olivarus superior, ventrolateral parabrachial nucleus, and dorsomedial nucleus of the intercollicular complex; and 5) a group of relatively large neurons that project their axons into the vagus nerve. Three morphological classes of RAm cells were identified by intracellular labeling, the dendritic arbors of which were confined to RAm, as defined by the terminal field of RA axons. Together the ascending and descending projections of RAm confirm its pivotal role in the mediation of respiratory-vocal control. PMID:19067354

  15. Avian nucleus retroambigualis: cell types and projections to other respiratory-vocal nuclei in the brain of the zebra finch (Taeniopygia guttata).

    PubMed

    Wild, J M; Kubke, M F; Mooney, R

    2009-02-20

    In songbirds song production requires the intricate coordination of vocal and respiratory muscles under the executive influence of the telencephalon, as for speech in humans. In songbirds the site of this coordination is suspected to be the nucleus retroambigualis (RAm), because it contains premotor neurons projecting upon both vocal motoneurons and spinal motoneurons innervating expiratory muscles, and because it receives descending inputs from the telencephalic vocal control nucleus robustus archopallialis (RA). Here we used tract-tracing techniques to provide a more comprehensive account of the projections of RAm and to identify the different populations of RAm neurons. We found that RAm comprises diverse projection neuron types, including: 1) bulbospinal neurons that project, primarily contralaterally, upon expiratory motoneurons; 2) a separate group of neurons that project, primarily ipsilaterally, upon vocal motoneurons in the tracheosyringeal part of the hypoglossal nucleus (XIIts); 3) neurons that project throughout the ipsilateral and contralateral RAm; 4) another group that sends reciprocal, ascending projections to all the brainstem sources of afferents to RAm, namely, nucleus parambigualis, the ventrolateral nucleus of the rostral medulla, nucleus infra-olivarus superior, ventrolateral parabrachial nucleus, and dorsomedial nucleus of the intercollicular complex; and 5) a group of relatively large neurons that project their axons into the vagus nerve. Three morphological classes of RAm cells were identified by intracellular labeling, the dendritic arbors of which were confined to RAm, as defined by the terminal field of RA axons. Together the ascending and descending projections of RAm confirm its pivotal role in the mediation of respiratory-vocal control.

  16. Evaluating a surveillance system: live-bird market surveillance for highly pathogenic avian influenza, a case study.

    PubMed

    Waziri, Ndadilnasiya Endie; Nguku, Patrick; Olayinka, Adebola; Ajayi, Ike; Kabir, Junaidu; Okolocha, Emmanuel; Tseggai, Tesfai; Joannis, Tony; Okewole, Phillip; Kumbish, Peterside; Ahmed, Mohammed; Lombin, Lami; Nsubuga, Peter

    2014-01-01

    Highly pathogenic avian influenza H5N1 was first reported in poultry in Nigeria in February 2006. The only human case that occurred was linked to contact with poultry in a live bird market (LBM). LBM surveillance was instituted to assess the degree of threat of human exposure to H5N1. The key indicator was detection of H5N1 in LBMs. We evaluated the surveillance system to assess its operations and attributes. We used the US Centers for Disease Control and Prevention (CDC) updated guidelines for evaluating public health surveillance systems. We reviewed and analyzed passive surveillance data for HPAI (January 2006-March 2009) from the Avian Influenza National Reference Laboratory, and live bird market surveillance data from the Food and Agriculture Organization of the United Nations, Nigeria. We interviewed key stakeholders and reviewed reports of live bird market surveillance to obtain additional information on the operations of the system. We assessed the key system attributes. A total of 299 cases occurred in 25 (72%) states and the Federal Capital Territory (FCT). The system detected HPAI H5N1 virus in 7 (9.5%) LBMs; 2 (29%) of which were from 2 (18.2%) states with no previous case. A total of 17,852 (91.5%) of samples arrived at the laboratory within 24 hours but laboratory analysis took over 7 days. The sensitivity and positive predictive value (PPV) were 15.4% and 66.7% respectively. The system is useful, flexible, complex and not timely, but appears to be meeting its objectives. The isolation of HPAI H5N1 virus in some of these markets is an indication that the markets are possible reservoirs of the virus in Nigeria. We recommend that the Federal Government of Nigeria should dedicate more funds for surveillance for HPAI as this will aid early warning and reduce the risk of a pandemic.

  17. Immunohistochemistry for detection of avian infectious bronchitis virus strain M41 in the proventriculus and nervous system of experimentally infected chicken embryos

    PubMed Central

    Abdel-Moneim, Ahmed S; Zlotowski, Priscila; Veits, Jutta; Keil, Günther M; Teifke, Jens P

    2009-01-01

    Background Infectious bronchitis virus primarily induces a disease of the respiratory system, different IBV strains may show variable tissue tropisms and also affect the oviduct and the kidneys. Proventriculitis was also associated with some new IBV strains. Aim of this study was to investigate by immunohistochemistry (IHC) the tissue tropism of avian infectious bronchitis virus (IBV) strain M41 in experimentally infected chicken embryos. Results To this end chicken embryos were inoculated in the allantoic sac with 103 EID50 of IBV M41 at 10 days of age. At 48, 72, and 120 h postinoculation (PI), embryos and chorioallantoic membranes (CAM) were sampled, fixed, and paraffin-wax embedded. Allantoic fluid was also collected and titrated in chicken embryo kidney cells (CEK). The sensitivity of IHC in detecting IBV antigens in the CAM of inoculated eggs matched the virus reisolation and detection in CEK. Using IHC, antigens of IBV were detected in nasal epithelium, trachea, lung, spleen, myocardial vasculature, liver, gastrointestinal tract, kidney, skin, sclera of the eye, spinal cord, as well as in brain neurons of the inoculated embryos. These results were consistent with virus isolation and denote the wide tissue tropism of IBV M41 in the chicken embryo. Most importantly, we found infection of vasculature and smooth muscle of the proventriculus which has not seen before with IBV strain M41. Conclusion IHC can be an additional useful tool for diagnosis of IBV infection in chickens and allows further studies to foster a deeper understanding of the pathogenesis of infections with IBV strains of different virulence. Moreover, these results underline that embryonic tissues in addition to CAM could be also used as possible source to generate IBV antigens for diagnostic purposes. PMID:19196466

  18. Systemic virus distribution and host responses in brain and intestine of chickens infected with low pathogenic or high pathogenic avian influenza virus

    PubMed Central

    2012-01-01

    Background Avian influenza virus (AIV) is classified into two pathotypes, low pathogenic (LP) and high pathogenic (HP), based on virulence in chickens. Differences in pathogenicity between HPAIV and LPAIV might eventually be related to specific characteristics of strains, tissue tropism and host responses. Methods To study differences in disease development between HPAIV and LPAIV, we examined the first appearance and eventual load of viral RNA in multiple organs as well as host responses in brain and intestine of chickens infected with two closely related H7N1 HPAIV or LPAIV strains. Results Both H7N1 HPAIV and LPAIV spread systemically in chickens after a combined intranasal/intratracheal inoculation. In brain, large differences in viral RNA load and host gene expression were found between H7N1 HPAIV and LPAIV infected chickens. Chicken embryo brain cell culture studies revealed that both HPAIV and LPAIV could infect cultivated embryonic brain cells, but in accordance with the absence of the necessary proteases, replication of LPAIV was limited. Furthermore, TUNEL assay indicated apoptosis in brain of HPAIV infected chickens only. In intestine, where endoproteases that cleave HA of LPAIV are available, we found minimal differences in the amount of viral RNA and a large overlap in the transcriptional responses between HPAIV and LPAIV infected chickens. Interestingly, brain and ileum differed clearly in the cellular pathways that were regulated upon an AI infection. Conclusions Although both H7N1 HPAIV and LPAIV RNA was detected in a broad range of tissues beyond the respiratory and gastrointestinal tract, our observations indicate that differences in pathogenicity and mortality between HPAIV and LPAIV could originate from differences in virus replication and the resulting host responses in vital organs like the brain. PMID:22390870

  19. Guinea pig model for evaluating the potential public health risk of swine and avian influenza viruses.

    PubMed

    Sun, Yipeng; Bi, Yuhai; Pu, Juan; Hu, Yanxin; Wang, Jingjing; Gao, Huijie; Liu, Linqing; Xu, Qi; Tan, Yuanyuan; Liu, Mengda; Guo, Xin; Yang, Hanchun; Liu, Jinhua

    2010-11-23

    The influenza viruses circulating in animals sporadically transmit to humans and pose pandemic threats. Animal models to evaluate the potential public health risk potential of these viruses are needed. We investigated the guinea pig as a mammalian model for the study of the replication and transmission characteristics of selected swine H1N1, H1N2, H3N2 and avian H9N2 influenza viruses, compared to those of pandemic (H1N1) 2009 and seasonal human H1N1, H3N2 influenza viruses. The swine and avian influenza viruses investigated were restricted to the respiratory system of guinea pigs and shed at high titers in nasal tracts without prior adaptation, similar to human strains. None of the swine and avian influenza viruses showed transmissibility among guinea pigs; in contrast, pandemic (H1N1) 2009 virus transmitted from infected guinea pigs to all animals and seasonal human influenza viruses could also horizontally transmit in guinea pigs. The analysis of the receptor distribution in the guinea pig respiratory tissues by lectin histochemistry indicated that both SAα2,3-Gal and SAα2,6-Gal receptors widely presented in the nasal tract and the trachea, while SAα2,3-Gal receptor was the main receptor in the lung. We propose that the guinea pig could serve as a useful mammalian model to evaluate the potential public health threat of swine and avian influenza viruses.

  20. Guinea Pig Model for Evaluating the Potential Public Health Risk of Swine and Avian Influenza Viruses

    PubMed Central

    Pu, Juan; Hu, Yanxin; Wang, Jingjing; Gao, Huijie; Liu, Linqing; Xu, Qi; Tan, Yuanyuan; Liu, Mengda; Guo, Xin; Yang, Hanchun; Liu, Jinhua

    2010-01-01

    Background The influenza viruses circulating in animals sporadically transmit to humans and pose pandemic threats. Animal models to evaluate the potential public health risk potential of these viruses are needed. Methodology/Principal Findings We investigated the guinea pig as a mammalian model for the study of the replication and transmission characteristics of selected swine H1N1, H1N2, H3N2 and avian H9N2 influenza viruses, compared to those of pandemic (H1N1) 2009 and seasonal human H1N1, H3N2 influenza viruses. The swine and avian influenza viruses investigated were restricted to the respiratory system of guinea pigs and shed at high titers in nasal tracts without prior adaptation, similar to human strains. None of the swine and avian influenza viruses showed transmissibility among guinea pigs; in contrast, pandemic (H1N1) 2009 virus transmitted from infected guinea pigs to all animals and seasonal human influenza viruses could also horizontally transmit in guinea pigs. The analysis of the receptor distribution in the guinea pig respiratory tissues by lectin histochemistry indicated that both SAα2,3-Gal and SAα2,6-Gal receptors widely presented in the nasal tract and the trachea, while SAα2,3-Gal receptor was the main receptor in the lung. Conclusions/Significance We propose that the guinea pig could serve as a useful mammalian model to evaluate the potential public health threat of swine and avian influenza viruses. PMID:21124850

  1. The effect of progressive hypoxia on the respiratory and cardiovascular systems of the chicken

    PubMed Central

    Butler, P. J.

    1967-01-01

    1. During the initial stages of progressive hypoxia the intact, unanaesthetized chicken shows increases in heart rate and respiratory frequency with no change in arterial blood pressure and oxygen consumption. During the later stages, heart rate, diastolic and mean blood pressure and oxygen consumption fall, while respiratory frequency increases further. 2. Following bilateral cervical vagotomy and adrenergic β-receptor blockage there is no tachycardia, but the late bradycardia and fall in blood pressure do occur during progressive hypoxia. Respiratory frequency remains at a low level after vagotomy. 3. It is suggested that the initial tachycardia is dependent on both the sympathetic and parasympathetic nervous systems, and that the former helps maintain arterial pressure during the early stages of hypoxia. Bradycardia and hypotension seem to be due to anoxia itself, and the vagus is essential for the increase in respiratory frequency. PMID:6050107

  2. [Amphibians as a model system for the investigation of respiratory control development].

    PubMed

    Belzile, Olivier; Simard, Edith; Gulemetova, Roumiana; Bairam, Aida; Kinkead, Richard

    2004-10-01

    Recent medical advances have made it possible for babies to survive premature birth at increasingly earlier developmental stages. This population requires costly and sophisticated medical care to address the problems associated with immaturity of the respiratory system. In addition to pulmonary complications, respiratory instability and apnea reflecting immaturity of the respiratory control system are major causes of hospitalization and morbidity in this highly vulnerable population. These medical concerns, combined with the curiosity of physiologists, have contributed to the expansion of research in respiratory neurobiology. While most researchers working in this field commonly use rodents as an animal model, recent research using in vitro brainstem preparation from bullfrogs (Rana catesbeiana) have revealed the technical advantages of this animal model, and shown that the basic principles underlying respiratory control and its ontogeny are very similar between these two groups of vertebrates. The present review highlights the recent advances in the area of research with a focus on intermittent (episodic) breathing and the role of serotonergic and GABAergic modulation of respiratory activity during development.

  3. Sensorimotor nucleus NIf is necessary for auditory processing but not vocal motor output in the avian song system.

    PubMed

    Cardin, Jessica A; Raksin, Jonathan N; Schmidt, Marc F

    2005-04-01

    Sensorimotor integration in the avian song system is crucial for both learning and maintenance of song, a vocal motor behavior. Although a number of song system areas demonstrate both sensory and motor characteristics, their exact roles in auditory and premotor processing are unclear. In particular, it is unknown whether input from the forebrain nucleus interface of the nidopallium (NIf), which exhibits both sensory and premotor activity, is necessary for both auditory and premotor processing in its target, HVC. Here we show that bilateral NIf lesions result in long-term loss of HVC auditory activity but do not impair song production. NIf is thus a major source of auditory input to HVC, but an intact NIf is not necessary for motor output in adult zebra finches.

  4. Antitussive activity and respiratory system effects of levodropropizine in man.

    PubMed

    Bossi, R; Braga, P C; Centanni, S; Legnani, D; Moavero, N E; Allegra, L

    1988-08-01

    Antitussive activity of the new antitussive drug, levodropropizine (S(-)-3-(4-phenyl-piperazin-1-yl)-propane-1,2-diol, DF 526), was evaluated in healthy volunteers by the classical method of citric acid-induced coughing. Levodropropizine dose-dependently reduced cough frequency. Maximal inhibition was observed at 6 h after administration. Cough intensity was also reduced, as shown by the analysis of cough noise. Levodropropizine, at the dosage of 60 mg t.i.d., had no adverse effects on respiratory function nor on airway clearance mechanisms: in fact, it did not affect spirometric parameters. Levodropropizine had no effects on the rheological properties of mucus nor on ciliary activity of airway epithelium.

  5. SU-E-J-192: Comparative Effect of Different Respiratory Motion Management Systems

    SciTech Connect

    Nakajima, Y; Kadoya, N; Ito, K; Kanai, T; Jingu, K; Kida, S; Kishi, K; Sato, K; Dobashi, S; Takeda, K

    2015-06-15

    Purpose: Irregular breathing can influence the outcome of four-dimensional computed tomography imaging for causing artifacts. Audio-visual biofeedback systems associated with patient-specific guiding waveform are known to reduce respiratory irregularities. In Japan, abdomen and chest motion self-control devices (Abches), representing simpler visual coaching techniques without guiding waveform are used instead; however, no studies have compared these two systems to date. Here, we evaluate the effectiveness of respiratory coaching to reduce respiratory irregularities by comparing two respiratory management systems. Methods: We collected data from eleven healthy volunteers. Bar and wave models were used as audio-visual biofeedback systems. Abches consisted of a respiratory indicator indicating the end of each expiration and inspiration motion. Respiratory variations were quantified as root mean squared error (RMSE) of displacement and period of breathing cycles. Results: All coaching techniques improved respiratory variation, compared to free breathing. Displacement RMSEs were 1.43 ± 0.84, 1.22 ± 1.13, 1.21 ± 0.86, and 0.98 ± 0.47 mm for free breathing, Abches, bar model, and wave model, respectively. Free breathing and wave model differed significantly (p < 0.05). Period RMSEs were 0.48 ± 0.42, 0.33 ± 0.31, 0.23 ± 0.18, and 0.17 ± 0.05 s for free breathing, Abches, bar model, and wave model, respectively. Free breathing and all coaching techniques differed significantly (p < 0.05). For variation in both displacement and period, wave model was superior to free breathing, bar model, and Abches. The average reduction in displacement and period RMSE compared with wave model were 27% and 47%, respectively. Conclusion: The efficacy of audio-visual biofeedback to reduce respiratory irregularity compared with Abches. Our results showed that audio-visual biofeedback combined with a wave model can potentially provide clinical benefits in respiratory management

  6. Amyloidosis involving the respiratory system: 5-year's experience of a multi-disciplinary group's activity

    PubMed Central

    Scala, Raffaele; Maccari, Uberto; Madioni, Chiara; Venezia, Duccio; La Magra, Lidia Calogera

    2015-01-01

    Amyloidosis may involve the respiratory system with different clinical-radiological-functional patterns which are not always easy to be recognized. A good level of knowledge of the disease, an active integration of the pulmonologist within a multidisciplinary setting and a high level of clinical suspicion are necessary for an early diagnosis of respiratory amyloidosis. The aim of this retrospective study was to evaluate the number and the patterns of amyloidosis involving the respiratory system. We searched the cases of amyloidosis among patients attending the multidisciplinary rare and diffuse lung disease outpatients' clinic of Pulmonology Unit of the Hospital of Arezzo from 2007 to 2012. Among the 298 patients evaluated during the study period, we identified three cases of amyloidosis with involvement of the respiratory system, associated or not with other extra-thoracic localizations, whose diagnosis was histo-pathologically confirmed after the pulmonologist, the radiologist, and the pathologist evaluation. Our experience of a multidisciplinary team confirms that intra-thoracic amyloidosis is an uncommon disorder, representing 1.0% of the cases of rare and diffuse lung diseases referred to our center. The diagnosis of the disease is not always easy and quick as the amyloidosis may involve different parts of the respiratory system (airways, pleura, parenchyma). It is therefore recommended to remind this orphan disease in the differential diagnosis of the wide clinical scenarios the pulmonologist may intercept in clinical practice. PMID:26229565

  7. Amyloidosis involving the respiratory system: 5-year's experience of a multi-disciplinary group's activity.

    PubMed

    Scala, Raffaele; Maccari, Uberto; Madioni, Chiara; Venezia, Duccio; La Magra, Lidia Calogera

    2015-01-01

    Amyloidosis may involve the respiratory system with different clinical-radiological-functional patterns which are not always easy to be recognized. A good level of knowledge of the disease, an active integration of the pulmonologist within a multidisciplinary setting and a high level of clinical suspicion are necessary for an early diagnosis of respiratory amyloidosis. The aim of this retrospective study was to evaluate the number and the patterns of amyloidosis involving the respiratory system. We searched the cases of amyloidosis among patients attending the multidisciplinary rare and diffuse lung disease outpatients' clinic of Pulmonology Unit of the Hospital of Arezzo from 2007 to 2012. Among the 298 patients evaluated during the study period, we identified three cases of amyloidosis with involvement of the respiratory system, associated or not with other extra-thoracic localizations, whose diagnosis was histo-pathologically confirmed after the pulmonologist, the radiologist, and the pathologist evaluation. Our experience of a multidisciplinary team confirms that intra-thoracic amyloidosis is an uncommon disorder, representing 1.0% of the cases of rare and diffuse lung diseases referred to our center. The diagnosis of the disease is not always easy and quick as the amyloidosis may involve different parts of the respiratory system (airways, pleura, parenchyma). It is therefore recommended to remind this orphan disease in the differential diagnosis of the wide clinical scenarios the pulmonologist may intercept in clinical practice.

  8. Avian influenza virus

    USDA-ARS?s Scientific Manuscript database

    Avian influenza virus (AIV) is type A influenza, which is adapted to an avian host. Although avian influenza has been isolated from numerous avian species, the primary natural hosts for the virus are dabbling ducks, shorebirds, and gulls. The virus can be found world-wide in these species and in o...

  9. Avian Influenza in Birds

    MedlinePlus

    ... during outbreaks of highly pathogenic avian influenza the economic impact and trade restrictions from a highly pathogenic avian influenza outbreak the possibility that avian influenza A viruses could be transmitted to humans When H5 or H7 avian influenza outbreaks occur ...

  10. Lumbo-sacral neural crest contributes to the avian enteric nervous system independently of vagal neural crest.

    PubMed

    Hearn, C; Newgreen, D

    2000-07-01

    Most of the avian enteric nervous system is derived from the vagal neural crest, but a minority of the neural cells in the hindgut, and to an even lesser extent in the midgut, are of lumbo-sacral crest origin. Since the lumbo-sacral contribution was not detected or deemed negligible in the absence of vagal cells, it had been hypothesised that lumbo-sacral neural crest cells require vagal crest cells to contribute to the enteric nervous system. In contrast, zonal aganglionosis, a rare congenital human bowel disease led to the opposite suggestion, that lumbo-sacral cells could compensate for the absence of vagal cells to construct a complete enteric nervous system. To test these notions, we combined E4 chick midgut and hindgut, isolated prior to arrival of neural precursors, with E1. 7 chick vagal and/or E2.7 quail lumbo-sacral neural tube as crest donors, and grafted these to the chorio-allantoic membrane of E9 chick hosts. Double and triple immuno-labelling for quail cells (QCPNA), neural crest cells (HNK-1), neurons and neurites (neurofilament) and glial cells (GFAP) indicated that vagal crest cells produced neurons and glia in large ganglia throughout the entire intestinal tissues. Lumbo-sacral crest contributed small numbers of neurons and glial cells in the presence or absence of vagal cells, chiefly in colorectum, but not in nearby small intestinal tissue. Thus for production of enteric neural cells the avian lumbo-sacral neural crest neither requires the vagal neural crest, nor significantly compensates for its lack. However, enteric neurogenesis of lumbo-sacral cells requires the hindgut microenvironment, whereas that of vagal cells is not restricted to a particular intestinal region.

  11. [Design and research of an interface compatible non-contacting respiratory signal detection system].

    PubMed

    Song, Kui; Qi, Jiajun; Lin, Tao; Zhang, Yi

    2011-06-01

    Respiration-induced displacements of organs greatly affect the safety and efficiency of high intensity focused ultrasound (HIFU) tumor therapy system. The key to solve this problem is accurate, real-time detection of respiratory signals. The present study gives a new design of an interface compatible non-contacting respiratory signal detection system using the method of irradiating the laser beam onto certain region of the surface of human body that is intensely influenced by the breathing movements (mostly the breast or the dorsum) at a certain angle, and meanwhile using a camera to acquire information from the location of the laser projection. Then we can draw a curve of the location of laser projection versus time base, that is the respiration curve. This respiratory signal detection method is non-contacting, interface compatible and easy to be integrated into the treatment system.

  12. The impact of PM2.5 on the human respiratory system.

    PubMed

    Xing, Yu-Fei; Xu, Yue-Hua; Shi, Min-Hua; Lian, Yi-Xin

    2016-01-01

    Recently, many researchers paid more attentions to the association between air pollution and respiratory system disease. In the past few years, levels of smog have increased throughout China resulting in the deterioration of air quality, raising worldwide concerns. PM2.5 (particles less than 2.5 micrometers in diameter) can penetrate deeply into the lung, irritate and corrode the alveolar wall, and consequently impair lung function. Hence it is important to investigate the impact of PM2.5 on the respiratory system and then to help China combat the current air pollution problems. In this review, we will discuss PM2.5 damage on human respiratory system from epidemiological, experimental and mechanism studies. At last, we recommend to the population to limit exposure to air pollution and call to the authorities to create an index of pollution related to health.

  13. Nonlinear dynamics of avian influenza epidemic models.

    PubMed

    Liu, Sanhong; Ruan, Shigui; Zhang, Xinan

    2017-01-01

    Avian influenza is a zoonotic disease caused by the transmission of the avian influenza A virus, such as H5N1 and H7N9, from birds to humans. The avian influenza A H5N1 virus has caused more than 500 human infections worldwide with nearly a 60% death rate since it was first reported in Hong Kong in 1997. The four outbreaks of the avian influenza A H7N9 in China from March 2013 to June 2016 have resulted in 580 human cases including 202 deaths with a death rate of nearly 35%. In this paper, we construct two avian influenza bird-to-human transmission models with different growth laws of the avian population, one with logistic growth and the other with Allee effect, and analyze their dynamical behavior. We obtain a threshold value for the prevalence of avian influenza and investigate the local or global asymptotical stability of each equilibrium of these systems by using linear analysis technique or combining Liapunov function method and LaSalle's invariance principle, respectively. Moreover, we give necessary and sufficient conditions for the occurrence of periodic solutions in the avian influenza system with Allee effect of the avian population. Numerical simulations are also presented to illustrate the theoretical results. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Prevalence and association of welding related systemic and respiratory symptoms in welders

    PubMed Central

    El-Zein, M; Malo, J; Infante-Rivard, C; Gautrin, D

    2003-01-01

    Background: The prevalence of welding related respiratory symptoms coexisting with welding related systemic symptoms in welders is unknown. Aims: To determine in a sample of welders the prevalence of coexisting welding related systemic symptoms indicative of metal fume fever (MFF) and welding related respiratory symptoms suggestive of occupational asthma (OA), and the strength and significance of any association between these two groups of symptoms. Methods: A respiratory symptoms questionnaire, a systemic symptoms questionnaire, and a questionnaire on occupational history were administered by telephone to 351 of a sample of 441 welders (79.6%) from two cities in Québec, Canada. Results: The co-occurrence of possible MFF (defined as having at least two symptoms of fever, feelings of flu, general malaise, chills, dry cough, metallic taste, and shortness of breath, occurring at the beginning of the working week, 3–10 hours after exposure to welding fumes) together with welding related respiratory symptoms suggestive of OA (defined as having at least two welding related symptoms of cough, wheezing, and chest tightness) was 5.8%. These two groups of symptoms were significantly associated (χ2 = 18.9, p < 0.001). Conclusion: There is a strong association between welding related MFF and welding related respiratory symptoms suggestive of OA. As such, MFF could be viewed as a pre-marker of welding related OA, a hypothesis that requires further investigation. PMID:12937186

  15. A review of recent findings about stress-relaxation in the respiratory system tissues.

    PubMed

    Rubini, Alessandro; Carniel, Emanuele Luigi

    2014-12-01

    This article reviews the state of the art about an unclear physiological phenomenon interesting respiratory system tissues, i.e., stress-relaxation. Due to their visco-elastic properties, the tissues do not maintain constant stress under constant deformation. Rather, the stress slowly relaxes and falls to a lower value. The exact molecular basis of this complex visco-elastic behavior is not well defined, but it has been suggested that it may be generated because of the anisotropic mechanical properties of elastin and collagen fibers in the alveolar septa and their interaction phenomena, such as reciprocal sliding, also in relation to interstitial liquid movements. The effects on stress-relaxation of various biochemical and physical factors are reviewed, including the consequences of body temperature variations, respiratory system inflammations and hyperbaric oxygen exposure, endocrinal factors, circulating blood volume variations, changes in inflation volume and/or flow, changes in intra-abdominal pressure because of pneumoperitoneum or Trendelenburg position. The effects of these factors on stress-relaxation have practical consequences because, depending on visco-elastic pressure amount which is requested to inflate the respiratory system in different conditions, respiratory muscles have to produce different values of inspiratory pressure during spontaneous breathing. High inspiratory pressure values might increase the risk of respiratory failure development on mechanical basis.

  16. Robust Unidirectional Airflow through Avian Lungs: New Insights from a Piecewise Linear Mathematical Model

    PubMed Central

    Harvey, Emily P.; Ben-Tal, Alona

    2016-01-01

    Avian lungs are remarkably different from mammalian lungs in that air flows unidirectionally through rigid tubes in which gas exchange occurs. Experimental observations have been able to determine the pattern of gas flow in the respiratory system, but understanding how the flow pattern is generated and determining the factors contributing to the observed dynamics remains elusive. It has been hypothesized that the unidirectional flow is due to aerodynamic valving during inspiration and expiration, resulting from the anatomical structure and the fluid dynamics involved, however, theoretical studies to back up this hypothesis are lacking. We have constructed a novel mathematical model of the airflow in the avian respiratory system that can produce unidirectional flow which is robust to changes in model parameters, breathing frequency and breathing amplitude. The model consists of two piecewise linear ordinary differential equations with lumped parameters and discontinuous, flow-dependent resistances that mimic the experimental observations. Using dynamical systems techniques and numerical analysis, we show that unidirectional flow can be produced by either effective inspiratory or effective expiratory valving, but that both inspiratory and expiratory valving are required to produce the high efficiencies of flows observed in avian lungs. We further show that the efficacy of the inspiratory and expiratory valving depends on airsac compliances and airflow resistances that may not be located in the immediate area of the valving. Our model provides additional novel insights; for example, we show that physiologically realistic resistance values lead to efficiencies that are close to maximum, and that when the relative lumped compliances of the caudal and cranial airsacs vary, it affects the timing of the airflow across the gas exchange area. These and other insights obtained by our study significantly enhance our understanding of the operation of the avian respiratory

  17. Nondomestic avian pediatric pathology.

    PubMed

    St Leger, Judy

    2012-05-01

    This is a snapshot of avian neonatal pathology—not an exhaustive review. Through knowledge and recognition of the significant pathogenic challenges of avian neonates and the associated lesions, avian practitioners can improve their diagnostic and therapeutic success. An area of need for avian research is determining the specific pathogenesis of many conditions affecting avian neonates. By narrowing the specific etiologies, we can improve management and reduce neonatal concerns.

  18. Genetic control of malaria parasite transmission: threshold levels for infection in an avian model system.

    PubMed

    Jasinskiene, Nijole; Coleman, Judy; Ashikyan, Aurora; Salampessy, Michael; Marinotti, Osvaldo; James, Anthony A

    2007-06-01

    Genetic strategies for controlling malaria transmission based on engineering pathogen resistance in Anopheles mosquitoes are being tested in a number of animal models. A key component is the effector molecule and the efficiency with which it reduces parasite transmission. Single-chain antibodies (scFvs) that bind the circumsporozoite protein of the avian parasite, Plasmodium gallinaceum, can reduce mean intensities of sporozoite infection of salivary glands by two to four orders of magnitude in transgenic Aedes aegypti. Significantly, mosquitoes with as few as 20 sporozoites in their salivary glands are infectious for a vertebrate host, Gallus gallus. Although scFvs hold promise as effector molecules, they will have to reduce mean intensities of infection to zero to prevent parasite transmission and disease. We conclude that similar endpoints must be reached with human pathogens if we are to expect an effect on disease transmission.

  19. Statistical Determination of the Gating Windows for Respiratory-Gated Radiotherapy Using a Visible Guiding System

    PubMed Central

    Oh, Se An; Yea, Ji Woon

    2016-01-01

    Respiratory-gated radiation therapy (RGRT) is used to minimize the radiation dose to normal tissue in lung-cancer patients. Although determining the gating window in the respiratory phase of patients is important in RGRT, it is not easy. Our aim was to determine the optimal gating window when using a visible guiding system for RGRT. Between April and October 2014, the breathing signals of 23 lung-cancer patients were recorded with a real-time position management (RPM) respiratory gating system (Varian, USA). We performed statistical analysis with breathing signals to find the optimal gating window for guided breathing in RGRT. When we compared breathing signals before and after the breathing training, 19 of the 23 patients showed statistically significant differences (p < 0.05). The standard deviation of the respiration signals after breathing training was lowest for phases of 30%–70%. The results showed that the optimal gating window in RGRT is 40% (30%–70%) with respect to repeatability for breathing after respiration training with the visible guiding system. RGRT was performed with the RPM system to confirm the usefulness of the visible guiding system. The RPM system and our visible guiding system improve the respiratory regularity, which in turn should improve the accuracy and efficiency of RGRT. PMID:27228097

  20. Statistical Determination of the Gating Windows for Respiratory-Gated Radiotherapy Using a Visible Guiding System.

    PubMed

    Oh, Se An; Yea, Ji Woon; Kim, Sung Kyu

    2016-01-01

    Respiratory-gated radiation therapy (RGRT) is used to minimize the radiation dose to normal tissue in lung-cancer patients. Although determining the gating window in the respiratory phase of patients is important in RGRT, it is not easy. Our aim was to determine the optimal gating window when using a visible guiding system for RGRT. Between April and October 2014, the breathing signals of 23 lung-cancer patients were recorded with a real-time position management (RPM) respiratory gating system (Varian, USA). We performed statistical analysis with breathing signals to find the optimal gating window for guided breathing in RGRT. When we compared breathing signals before and after the breathing training, 19 of the 23 patients showed statistically significant differences (p < 0.05). The standard deviation of the respiration signals after breathing training was lowest for phases of 30%-70%. The results showed that the optimal gating window in RGRT is 40% (30%-70%) with respect to repeatability for breathing after respiration training with the visible guiding system. RGRT was performed with the RPM system to confirm the usefulness of the visible guiding system. The RPM system and our visible guiding system improve the respiratory regularity, which in turn should improve the accuracy and efficiency of RGRT.

  1. Low-power system for the acquisition of the respiratory signal of neonates using diaphragmatic electromyography.

    PubMed

    Torres, Róbinson; López-Isaza, Sergio; Mejía-Mejía, Elisa; Paniagua, Viviana; González, Víctor

    2017-01-01

    An apnea episode is defined as the cessation of breathing for ≥15 seconds or as any suspension of breathing accompanied by hypoxia and bradycardia. Obtaining information about the respiratory system in a neonate can be accomplished using electromyography signals from the diaphragm muscle. The purpose of this paper is to illustrate a method by which the respiratory and electrocardiographic signals from neonates can be obtained using diaphragmatic electromyography. The system was developed using single-supply, micropower components, which deliver a low-power consumption system appropriate for the development of portable devices. The stages of the system were tested in both adult and neonate patients. The system delivers signals as those expected in both patients and allows the acquisition of respiratory signals directly from the diaphragmatic electromyography. This low-power system may present a good alternative for monitoring the cardiac and respiratory activity in newborn babies, both in the hospital and at home. The system delivers good signals but needs to be validated for its use in neonates. It is being used in the Neonatal Intensive Care Unit of the Hospital General de Medellín Luz Castro de Gutiérrez.

  2. Low-power system for the acquisition of the respiratory signal of neonates using diaphragmatic electromyography

    PubMed Central

    Torres, Róbinson; López-Isaza, Sergio; Mejía-Mejía, Elisa; Paniagua, Viviana; González, Víctor

    2017-01-01

    Introduction An apnea episode is defined as the cessation of breathing for ≥15 seconds or as any suspension of breathing accompanied by hypoxia and bradycardia. Obtaining information about the respiratory system in a neonate can be accomplished using electromyography signals from the diaphragm muscle. Objective The purpose of this paper is to illustrate a method by which the respiratory and electrocardiographic signals from neonates can be obtained using diaphragmatic electromyography. Materials and methods The system was developed using single-supply, micropower components, which deliver a low-power consumption system appropriate for the development of portable devices. The stages of the system were tested in both adult and neonate patients. Results The system delivers signals as those expected in both patients and allows the acquisition of respiratory signals directly from the diaphragmatic electromyography. Conclusion This low-power system may present a good alternative for monitoring the cardiac and respiratory activity in newborn babies, both in the hospital and at home. Significance The system delivers good signals but needs to be validated for its use in neonates. It is being used in the Neonatal Intensive Care Unit of the Hospital General de Medellín Luz Castro de Gutiérrez. PMID:28260954

  3. [Mechanisms of the effect of oxidants on the respiratory system].

    PubMed

    Strapkova, A; Nosalova, G; Franova, S; Adamicova, K

    1999-01-01

    It is known that oxidants may evoke changes of respiratory tract functions. The precise mechanisms of these changes are yet unknown. In this study possible participation of eicosanoids, cytochrome P-450 and reactive oxygen species in the changes of airways reactivity evoked by toluene exposure as the source of free radicals was followed up by an indirect method. Used drugs--naproxen (50 mg/kg b.w.), cimetidine (50 mg/kg b.w.) and N-acetylcysteine (300 mg/kg b.w.) were administered in two doses (first 30 minutes before exposure to toluene, second six hours after first dose). After exposure to toluene (2 hours in each of 3 consecutive days) was followed up reactivity of tracheal and lung smooth muscle to histamine in "in vitro" conditions. The studied substances were not administered in the control group of animals. In pretreated animals exposed to toluene the administration of naproxen, cimetidine and N-acetylcysteine does not provoke pronounced changes of tracheal smooth muscle reactivity compared to control group. More pronounced effect of these drugs with decrease contraction amplitude was detected on lung smooth muscle reactivity. According to our results it is not possible to determine the precise mechanisms which participate in changes of airways reactivity. There are probably multifactorial in nature.

  4. A closed-loop model of the respiratory system: focus on hypercapnia and active expiration.

    PubMed

    Molkov, Yaroslav I; Shevtsova, Natalia A; Park, Choongseok; Ben-Tal, Alona; Smith, Jeffrey C; Rubin, Jonathan E; Rybak, Ilya A

    2014-01-01

    Breathing is a vital process providing the exchange of gases between the lungs and atmosphere. During quiet breathing, pumping air from the lungs is mostly performed by contraction of the diaphragm during inspiration, and muscle contraction during expiration does not play a significant role in ventilation. In contrast, during intense exercise or severe hypercapnia forced or active expiration occurs in which the abdominal "expiratory" muscles become actively involved in breathing. The mechanisms of this transition remain unknown. To study these mechanisms, we developed a computational model of the closed-loop respiratory system that describes the brainstem respiratory network controlling the pulmonary subsystem representing lung biomechanics and gas (O2 and CO2) exchange and transport. The lung subsystem provides two types of feedback to the neural subsystem: a mechanical one from pulmonary stretch receptors and a chemical one from central chemoreceptors. The neural component of the model simulates the respiratory network that includes several interacting respiratory neuron types within the Bötzinger and pre-Bötzinger complexes, as well as the retrotrapezoid nucleus/parafacial respiratory group (RTN/pFRG) representing the central chemoreception module targeted by chemical feedback. The RTN/pFRG compartment contains an independent neural generator that is activated at an increased CO2 level and controls the abdominal motor output. The lung volume is controlled by two pumps, a major one driven by the diaphragm and an additional one activated by abdominal muscles and involved in active expiration. The model represents the first attempt to model the transition from quiet breathing to breathing with active expiration. The model suggests that the closed-loop respiratory control system switches to active expiration via a quantal acceleration of expiratory activity, when increases in breathing rate and phrenic amplitude no longer provide sufficient ventilation. The model

  5. A Novel Point-of-Care Smartphone Based System for Monitoring the Cardiac and Respiratory Systems

    PubMed Central

    Sohn, Kwanghyun; Merchant, Faisal M.; Sayadi, Omid; Puppala, Dheeraj; Doddamani, Rajiv; Sahani, Ashish; Singh, Jagmeet P.; Heist, E. Kevin; Isselbacher, Eric M.; Armoundas, Antonis A.

    2017-01-01

    Cardio-respiratory monitoring is one of the most demanding areas in the rapidly growing, mobile-device, based health care delivery. We developed a 12-lead smartphone-based electrocardiogram (ECG) acquisition and monitoring system (called “cvrPhone”), and an application to assess underlying ischemia, and estimate the respiration rate (RR) and tidal volume (TV) from analysis of electrocardiographic (ECG) signals only. During in-vivo swine studies (n = 6), 12-lead ECG signals were recorded at baseline and following coronary artery occlusion. Ischemic indices calculated from each lead showed statistically significant (p < 0.05) increase within 2 min of occlusion compared to baseline. Following myocardial infarction, spontaneous ventricular tachycardia episodes (n = 3) were preceded by significant (p < 0.05) increase of the ischemic index ~1–4 min prior to the onset of the tachy-arrhythmias. In order to assess the respiratory status during apnea, the mechanical ventilator was paused for up to 2 min during normal breathing. We observed that the RR and TV estimation algorithms detected apnea within 7.9 ± 1.1 sec and 5.5 ± 2.2 sec, respectively, while the estimated RR and TV values were 0 breaths/min and less than 100 ml, respectively. In conclusion, the cvrPhone can be used to detect myocardial ischemia and periods of respiratory apnea using a readily available mobile platform. PMID:28327645

  6. [Evaluation on the risks of H5, H7 and H9 avian influenza infections in Guangzhou: using data from the 2006-2012 avian influenza surveillance program].

    PubMed

    Chen, Zong-qiu; Lu, Jian-yun; Xiao, Xin-cai; Liu, Hui; DI, Biao; Li, Kui-biao; Lu, En-jie; Luo, Lei; Yang, Zhi-cong

    2013-09-01

    To analyze the results of avian influenza surveillance program in Guangzhou from 2006 to 2012 and to evaluate the risk of infections with H5, H7 and H9 subtypes avian influenza viruses. Avian influenza surveillance system in Guangzhou consisted five components:serum surveillance on occupational population, environmental specimen surveillance of avian influenza virus, avian flu emergency surveillance, influenza viruses surveillance on ILI patient and surveillance on pneumonia of unknown causes. Hemagglutination inhibition test was conducted to detect the antibodies against H5, H7 and H9 while RT-PCR was used to test the nucleic acid of H5, H7 and H9 viruses. From 2006 to 2012, 4103 serum specimens were collected from occupational populations and the overall positive rate of H5/H7/H9 antibodies was 3.82% . The antibody positive rates for H5, H7 and H9 were 0.22% ,0.00% and 3.70% respectively. 4 serum specimens for H5 and H9 simultaneously showed antibody positive. The positive rate of H9 among occupational populations(4.21%)appeared higher than that from the control population(2.16%). 2028 specimens were collected from poultry sites and 55 samples found positive for H5 nucleic acid (positive rate:2.71%), 14 samples positive for H9 nucleic acid (positive rate:0.69%), 5 specimens, simultaneously positive for H5 and H9 nucleic acids. However, none of the samples showing H7 nucleic acid positive. From 2006 to 2012, all the tested H5/H7/H9 virus were negative from the respiratory/serum specimens among those close contacts of patients or high risk groups through the avian flu emergency surveillance program,ILI patient influenza virus surveillance programs or pneumonia of unknown causes surveillance program. Contamination of H5/H9 avian influenza virus did exist in the poultry sites in Guangzhou, especially in the wet Markets. The H5/H9 avian influenza virus caused asymptomatic infection was proved to be existed within the population exposed to the poultry, suggesting that

  7. A novel modelling approach to energy transport in a respiratory system.

    PubMed

    Nithiarasu, Perumal; Sazonov, Igor

    2016-11-24

    In this paper, energy transport in a respiratory tract is modelled using the finite element method for the first time. The upper and lower respiratory tracts are approximated as a 1-dimensional domain with varying cross-sectional and surface areas, and the radial heat conduction in the tissue is approximated using the 1-dimensional cylindrical coordinate system. The governing equations are solved using 1-dimensional linear finite elements with convective and evaporative boundary conditions on the wall. The results obtained for the exhalation temperature of the respiratory system have been compared with the available animal experiments. The study of a full breathing cycle indicates that evaporation is the main mode of heat transfer, and convection plays almost negligible role in the energy transport. This is in-line with the results obtained from animal experiments. Copyright © 2016 John Wiley & Sons, Ltd.

  8. Instrumentation for the analysis of respiratory system disorders during sleep: Design and application

    NASA Astrophysics Data System (ADS)

    de Melo, Pedro Lopes; de Andrade Lemes, Lucas Neves

    2002-11-01

    Sleep breathing disorders are estimated to be present in 2%-4% of middle-aged adults. Serious adverse consequences, such as systemic arterial hypertension, myocardial infraction, and cerebrovascular disease, can be related to these conditions. Intellectual deficits associated with attention, memory, and problem-solving have also been associated with a poor quality of sleep. The main causes of these disorders are obstructions resulting from repetitive narrowing and closure of the pharyngeal airway, which have been monitored by indirect measurements of temperature, displacement, and other highly invasive procedures. The measurement of mechanical impedance of the respiratory system by the forced oscillation technique (FOT) has recently been suggested to quantify the respiratory obstruction during sleep. It is claimed that the noninvasive and dynamic characteristics of this technique would allow a noninvasive and accurate analysis of these events. In spite of this high scientific and clinical potential, there is no detailed description of a complete instrumentation system to implement this promising technique in sleep studies. In this context, the purpose of this study was twofold: (1) describe the development of a new computer-based system for identification of the mechanical impedance of the respiratory system during sleep by the FOT and (2) evaluate the performance of this device in the description of respiratory events in conditions including no, mild, serious disease, and therapeutic procedures. These evaluations confirmed the desirable features achieved in laboratory tests and the high scientific and clinical potential of this system.

  9. Integrative approaches for modeling regulation and function of the respiratory system.

    PubMed

    Ben-Tal, Alona; Tawhai, Merryn H

    2013-01-01

    Mathematical models have been central to understanding the interaction between neural control and breathing. Models of the entire respiratory system-which comprises the lungs and the neural circuitry that controls their ventilation-have been derived using simplifying assumptions to compartmentalize each component of the system and to define the interactions between components. These full system models often rely-through necessity-on empirically derived relationships or parameters, in addition to physiological values. In parallel with the development of whole respiratory system models are mathematical models that focus on furthering a detailed understanding of the neural control network, or of the several functions that contribute to gas exchange within the lung. These models are biophysically based, and rely on physiological parameters. They include single-unit models for a breathing lung or neural circuit, through to spatially distributed models of ventilation and perfusion, or multicircuit models for neural control. The challenge is to bring together these more recent advances in models of neural control with models of lung function, into a full simulation for the respiratory system that builds upon the more detailed models but remains computationally tractable. This requires first understanding the mathematical models that have been developed for the respiratory system at different levels, and which could be used to study how physiological levels of O2 and CO2 in the blood are maintained.

  10. Integrative approaches for modeling regulation and function of the respiratory system

    PubMed Central

    Ben-Tal, Alona

    2013-01-01

    Mathematical models have been central to understanding the interaction between neural control and breathing. Models of the entire respiratory system – which comprises the lungs and the neural circuitry that controls their ventilation - have been derived using simplifying assumptions to compartmentalise each component of the system and to define the interactions between components. These full system models often rely – through necessity - on empirically derived relationships or parameters, in addition to physiological values. In parallel with the development of whole respiratory system models are mathematical models that focus on furthering a detailed understanding of the neural control network, or of the several functions that contribute to gas exchange within the lung. These models are biophysically based, and rely on physiological parameters. They include single-unit models for a breathing lung or neural circuit, through to spatially-distributed models of ventilation and perfusion, or multi-circuit models for neural control. The challenge is to bring together these more recent advances in models of neural control with models of lung function, into a full simulation for the respiratory system that builds upon the more detailed models but remains computationally tractable. This requires first understanding the mathematical models that have been developed for the respiratory system at different levels, and which could be used to study how physiological levels of O2 and CO2 in the blood are maintained. PMID:24591490

  11. A mainstream monitoring system for respiratory CO2 concentration and gasflow.

    PubMed

    Yang, Jiachen; Chen, Bobo; Burk, Kyle; Wang, Haitao; Zhou, Jianxiong

    2016-08-01

    Continuous respiratory gas monitoring is an important tool for clinical monitoring. In particular, measurement of respiratory [Formula: see text] concentration and gasflow can reflect the status of a patient by providing parameters such as volume of carbon dioxide, end-tidal [Formula: see text] respiratory rate and alveolar deadspace. However, in the majority of previous work, [Formula: see text] concentration and gasflow have been studied separately. This study focuses on a mainstream system which simultaneously measures respiratory [Formula: see text] concentration and gasflow at the same location, allowing for volumetric capnography to be implemented. A non-dispersive infrared monitor is used to measure [Formula: see text] concentration and a differential pressure sensor is used to measure gasflow. In developing this new device, we designed a custom airway adapter which can be placed in line with the breathing circuit and accurately monitor relevant respiratory parameters. Because the airway adapter is used both for capnography and gasflow, our system reduces mechanical deadspace. The finite element method was used to design the airway adapter which can provide a strong differential pressure while reducing airway resistance. Statistical analysis using the coefficient of variation was performed to find the optimal driving voltage of the pressure transducer. Calibration between variations and flows was used to avoid pressure signal drift. We carried out targeted experiments using the proposed device and confirmed that the device can produce stable signals.

  12. Complex distribution of avian color vision systems revealed by sequencing the SWS1 opsin from total DNA.

    PubMed

    Odeen, Anders; Hastad, Olle

    2003-06-01

    To gain insights into the evolution and ecology of visually acute animals such as birds, biologists often need to understand how these animals perceive colors. This poses a problem, since the human eye is of a different design than that of most other animals. The standard solution is to examine the spectral sensitivity properties of animal retinas through microspectophotometry-a procedure that is rather complicated and therefore only has allowed examinations of a limited number of species to date. We have developed a faster and simpler molecular method, which can be used to estimate the color sensitivities of a bird by sequencing a part of the gene coding for the ultraviolet or violet absorbing opsin in the avian retina. With our method, there is no need to sacrifice the animal, and it thereby facilitates large screenings, including rare and endangered species beyond the reach of microspectrophotometry. Color vision in birds may be categorized into two classes: one with a short-wavelength sensitivity biased toward violet (VS) and the other biased toward ultraviolet (UVS). Using our method on 45 species from 35 families, we demonstrate that the distribution of avian color vision is more complex than has previously been shown. Our data support VS as the ancestral state in birds and show that UVS has evolved independently at least four times. We found species with the UVS type of color vision in the orders Psittaciformes and Passeriformes, in agreement with previous findings. However, species within the families Corvidae and Tyrannidae did not share this character with other passeriforms. We also found UVS type species within the Laridae and Struthionidae families. Raptors (Accipitridae and Falconidae) are of the violet type, giving them a vision system different from their passeriform prey. Intriguing effects on the evolution of color signals can be expected from interactions between predators and prey. Such interactions may explain the presence of UVS in Laridae and

  13. Agreement between bovine respiratory disease scoring systems for pre-weaned dairy calves.

    PubMed

    Aly, Sharif S; Love, William J; Williams, Deniece R; Lehenbauer, Terry W; Van Eenennaam, Alison; Drake, Christiana; Kass, Philip H; Farver, Thomas B

    2014-12-01

    Clinical scoring systems have been proposed for respiratory disease diagnosis in calves, including the Wisconsin (WI) system (McGuirk in 2008) which uses five clinical signs, each partitioned into four levels of severity. Recently, we developed the California (CA) bovine respiratory disease (BRD) scoring system requiring less calf handling and consisting of six clinical signs, each classified as normal or abnormal. The objective of this study was to estimate the on-farm agreement between the WI and the CA scoring systems. A total of 100 calves were enrolled on a CA dairy and assessed for BRD case status using the two scoring systems simultaneously. The Kappa coefficient of agreement between these two systems was estimated to be 0.85, which indicated excellent agreement beyond chance. The simpler design and reduced calf handling required by the CA BRD scoring system may make it advantageous for on-farm use.

  14. Avian Influenza/Pandemic Influenza Program

    DTIC Science & Technology

    2006-09-01

    Defense Global Emerging Infections Surveillance and Response System (DoD-GEIS) research related to avian influenza and pandemic influenza preparedness and...surveillance and efforts in support of research related to avian influenza /pandemic influenza. The results of these efforts will be coordinated with the

  15. The global nature of avian influenza

    USDA-ARS?s Scientific Manuscript database

    Avian influenza virus is a global virus which knows no geographic boundaries, has no political agenda, and can infect poultry irrespective of their agricultural or anthropocentric production systems. Avian influenza viruses or evidence of their infection have been detected in poultry and wild birds...

  16. End-expiration respiratory gating for a high-resolution stationary cardiac SPECT system.

    PubMed

    Chan, Chung; Harris, Mark; Le, Max; Biondi, James; Grobshtein, Yariv; Liu, Yi-Hwa; Sinusas, Albert J; Liu, Chi

    2014-10-21

    Respiratory and cardiac motions can degrade myocardial perfusion SPECT (MPS) image quality and reduce defect detection and quantitative accuracy. In this study, we developed a dual respiratory and cardiac gating system for a high-resolution fully stationary cardiac SPECT scanner in order to improve the image quality and defect detection. Respiratory motion was monitored using a compressive sensor pillow connected to a dual respiratory-cardiac gating box, which sends cardiac triggers only during end-expiration phases to the single cardiac trigger input on the SPECT scanners. The listmode data were rebinned retrospectively into end-expiration frames for respiratory motion reduction or eight cardiac gates only during end-expiration phases to compensate for both respiratory and cardiac motions. The proposed method was first validated on a motion phantom in the presence and absence of multiple perfusion defects, and then applied on 11 patient studies with and without perfusion defects. In the normal phantom studies, the end-expiration gated SPECT (EXG-SPECT) reduced respiratory motion blur and increased myocardium to blood pool contrast by 51.2% as compared to the ungated images. The proposed method also yielded an average of 11.2% increase in myocardium to defect contrast as compared to the ungated images in the phantom studies with perfusion defects. In the patient studies, EXG-SPECT significantly improved the myocardium to blood pool contrast (p < 0.005) by 24% on average as compared to the ungated images, and led to improved perfusion uniformity across segments on polar maps for normal patients. For a patient with defect, EXG-SPECT improved the defect contrast and definition. The dual respiratory-cardiac gating further reduced the blurring effect, increased the myocardium to blood pool contrast significantly by 36% (p < 0.05) compared to EXG-SPECT, and further improved defect characteristics and visualization of fine structures at the expense of increased noise

  17. End-expiration Respiratory Gating for a High Resolution Stationary Cardiac SPECT system

    PubMed Central

    Chan, Chung; Harris, Mark; Le, Max; Biondi, James; Grobshtein, Yariv; Liu, Yi-Hwa; Sinusas, Albert J.; Liu, Chi

    2014-01-01

    Respiratory and cardiac motions can degrade myocardial perfusion SPECT (MPS) image quality and reduce defect detection and quantitative accuracy. In this study, we developed a dual-respiratory and cardiac gating system for a high resolution fully stationary cardiac SPECT scanner in order to improve the image quality and defect detection. Respiratory motion was monitored using a compressive sensor pillow connected to a dual respiratory-cardiac gating box, which sends cardiac triggers only during end-expiration phases to the single cardiac trigger input on the SPECT scanners. The listmode data were rebinned retrospectively into end-expiration frames for respiratory motion reduction or 8 cardiac gates only during end-expiration phases to compensate for both respiratory and cardiac motions. The proposed method was first validated on a motion phantom in the presence and absence of multiple perfusion defects, and then applied on 11 patient studies with and without perfusion defects. In the normal phantom studies, the end-expiration gated SPECT (EXG-SPECT) reduced respiratory motion blur and increased myocardium to blood pool contrast by 51.2% as compared to the ungated images. The proposed method also yielded an average of 11.2% increase in myocardium to defect contrast as compared to the ungated images in the phantom studies with perfusion defects. In the patient studies, EXG-SPECT significantly improved the myocardium to blood pool contrast (p<0.005) by 24% on average as compared to the ungated images, and led to improved perfusion uniformity across segments on polar maps for normal patients. For a patient with defect, EXG-SPECT improved the defect contrast and definition. The dual respiratory-cardiac gating further reduced the blurring effect, increased the myocardium to blood pool contrast significantly by 36% (p<0.05) compared to EXG SPECT, and further improved defect characteristics and visualization of fine structures at the expense of increased noise on the

  18. End-expiration respiratory gating for a high-resolution stationary cardiac SPECT system

    NASA Astrophysics Data System (ADS)

    Chan, Chung; Harris, Mark; Le, Max; Biondi, James; Grobshtein, Yariv; Liu, Yi-Hwa; Sinusas, Albert J.; Liu, Chi

    2014-10-01

    Respiratory and cardiac motions can degrade myocardial perfusion SPECT (MPS) image quality and reduce defect detection and quantitative accuracy. In this study, we developed a dual respiratory and cardiac gating system for a high-resolution fully stationary cardiac SPECT scanner in order to improve the image quality and defect detection. Respiratory motion was monitored using a compressive sensor pillow connected to a dual respiratory-cardiac gating box, which sends cardiac triggers only during end-expiration phases to the single cardiac trigger input on the SPECT scanners. The listmode data were rebinned retrospectively into end-expiration frames for respiratory motion reduction or eight cardiac gates only during end-expiration phases to compensate for both respiratory and cardiac motions. The proposed method was first validated on a motion phantom in the presence and absence of multiple perfusion defects, and then applied on 11 patient studies with and without perfusion defects. In the normal phantom studies, the end-expiration gated SPECT (EXG-SPECT) reduced respiratory motion blur and increased myocardium to blood pool contrast by 51.2% as compared to the ungated images. The proposed method also yielded an average of 11.2% increase in myocardium to defect contrast as compared to the ungated images in the phantom studies with perfusion defects. In the patient studies, EXG-SPECT significantly improved the myocardium to blood pool contrast (p < 0.005) by 24% on average as compared to the ungated images, and led to improved perfusion uniformity across segments on polar maps for normal patients. For a patient with defect, EXG-SPECT improved the defect contrast and definition. The dual respiratory-cardiac gating further reduced the blurring effect, increased the myocardium to blood pool contrast significantly by 36% (p < 0.05) compared to EXG-SPECT, and further improved defect characteristics and visualization of fine structures at the expense of increased noise on

  19. Effects of persistent organic pollutants on the developing respiratory and immune systems: a systematic review.

    PubMed

    Gascon, Mireia; Morales, Eva; Sunyer, Jordi; Vrijheid, Martine

    2013-02-01

    Disruption of developing immune and respiratory systems by early-life exposure to persistent organic pollutants (POPs) could result into reduced capacity to fight infections and increased risk to develop allergic manifestations later in life. To systematically review the epidemiologic literature on the adverse effects of early-life exposure to POPs on respiratory health, allergy and the immune system in infancy, childhood and adolescence. Based on published guidelines for systematic reviews, two independent researchers searched for published articles in MEDLINE and SCOPUS using defined keywords on POPs and respiratory health, immune function and allergy. Study eligibility criteria were defined to select the articles. This review of 41 studies finds limited evidence for prenatal exposure to DDE, PCBs and dioxins and risk of respiratory infections. Evidence was limited also for postnatal exposure to PCBs, specifically ndl-PCBs, and reduced immune response after vaccination in childhood. The review indicates lack of association between postnatal exposure to PCBs/ndl-PCBs and risk of asthma-related symptoms. For the other exposure-outcome associations reviewed evidence was inadequate. Current epidemiological evidence suggests that early-life exposure to POPs can adversely influence immune and respiratory systems development. Heterogeneity between studies in exposure and outcome assessment and the small number of studies for any given exposure-outcome relationship currently make comparisons difficult and meta-analyses impossible. Also, mechanisms remain largely unexplored. Recommendations for significantly improving our understanding thus include harmonization of exposure and outcome assessment between studies, conduct of larger studies, long-term assessment of respiratory infections and asthma symptoms in order to identify critical periods of susceptibility, integration of the potential immunotoxic mechanisms of POPs, and use of new statistical tools to detangle the

  20. Assessment of continuous acoustic respiratory rate monitoring as an addition to a pulse oximetry-based patient surveillance system.

    PubMed

    McGrath, Susan P; Pyke, Joshua; Taenzer, Andreas H

    2016-05-03

    Technology advances make it possible to consider continuous acoustic respiratory rate monitoring as an integral component of physiologic surveillance systems. This study explores technical and logistical aspects of augmenting pulse oximetry-based patient surveillance systems with continuous respiratory rate monitoring and offers some insight into the impact on patient deterioration detection that may result. Acoustic respiratory rate sensors were introduced to a general care pulse oximetry-based surveillance system with respiratory rate alarms deactivated. Simulation was used after 4324 patient days to determine appropriate alarm thresholds for respiratory rate, which were then activated. Data were collected for an additional 4382 patient days. Physiologic parameters, alarm data, sensor utilization and patient/staff feedback were collected throughout the study and analyzed. No notable technical or workflow issues were observed. Sensor utilization was 57 %, with patient refusal leading reasons for nonuse (22.7 %). With respiratory rate alarm thresholds set to 6 and 40 breaths/min., the majority of nurse pager clinical notifications were triggered by low oxygen saturation values (43 %), followed by low respiratory rate values (21 %) and low pulse rate values (13 %). Mean respiratory rate collected was 16.6 ± 3.8 breaths/min. The vast majority (82 %) of low oxygen saturation states coincided with normal respiration rates of 12-20 breaths/min. Continuous respiratory rate monitoring can be successfully added to a pulse oximetry-based surveillance system without significant technical, logistical or workflow issues and is moderately well-tolerated by patients. Respiratory rate sensor alarms did not significantly impact overall system alarm burden. Respiratory rate and oxygen saturation distributions suggest adding continuous respiratory rate monitoring to a pulse oximetry-based surveillance system may not significantly improve patient deterioration detection.

  1. A cloud-based mobile system to improve respiratory therapy services at home.

    PubMed

    Risso, Nicolas A; Neyem, Andrés; Benedetto, Jose I; Carrillo, Marie J; Farías, Angélica; Gajardo, Macarena J; Loyola, Oscar

    2016-10-01

    Chronic respiratory diseases are one of the most prevalent health problems in the world. Treatment for these kind of afflictions often take place at home, where the continuous care of a medical specialist is frequently beyond the economical means of the patient, therefore having to rely on informal caregivers (family, friends, etc.). Unfortunately, these treatments require a deep involvement on their part, which results in a heavy burden on the caregivers' routine and usually end up deteriorating their quality of life. In recent years, mHealth and eHealth applications have gained a wide interest in academia due to new capabilities enabled by the latest advancements in mobile technologies and wireless communication infrastructure. These innovations have resulted in several applications that have successfully managed to improve automatic patient monitoring and treatment and to bridge the distance between patients, caregivers and medical specialists. We therefore seek to move this trend forward by now pushing these capabilities into the field of respiratory therapies in order to assist patients with chronic respiratory diseases with their treatment, and to improve both their own and their caregivers' quality of life. This paper presents a cloud-based mobile system to support and improve homecare for respiratory diseases. The platform described uses vital signs monitoring as a way of sharing data between hospitals, caregivers and patients. Using an iterative research approach and the user's direct feedback, we show how mobile technologies can improve a respiratory therapy and a family's quality of life.

  2. The Mechanisms of Compensatory Responses of the Respiratory System to Simulated Central Hypervolemia in Normal Subjects.

    PubMed

    Segizbaeva, M O; Donina, Zh A; Aleksandrov, V G; Aleksandrova, N P

    2015-01-01

    The compensatory responses of the respiratory system to simulated central hypervolemia (CHV) were investigated in 14 normal subjects. The central hypervolemia was caused by a short-time passive head-down tilt (HDT, -30°, 30 min). The results show that CHV increased the mechanical respiratory load and the airway resistance, slowed the inspiratory flow, increased the duration of the inspiratory phase, reduced the respiratory rate, but not changed the minute ventilation. CHV induced a significant rise in inspiratory swings of alveolar pressure (184%), based on the inspiratory occlusion pressure measurement. These changes indicate a compensatory increase in the inspiratory muscle contraction force. A stable level of minute ventilation during CHV was an effect of increased EMG activity of parasternal muscles more than twice (P<0.01). A contribution of the diaphragm and scalene muscles to ventilation during spontaneous breathing in HDT was reduced. An increase of genioglossus contractile activity during HDT contributed to the stabilization of airway patency. These results suggest that a coordinated modulation of inspiratory muscles activity allows preserving a constant level of minute ventilation during a short-time intrathoracic blood volume expansion. The mechanisms of respiratory load compensation seem to be mediated by afferent information from the lung and respiratory muscle receptors and from the segmentary reflexes and intrinsic properties of the muscle fibers.

  3. Endogenous excitatory drive to the respiratory system in rapid eye movement sleep in cats

    PubMed Central

    Orem, John; Lovering, Andrew T; Dunin-Barkowski, Witali; Vidruk, Edward H

    2000-01-01

    A putative endogenous excitatory drive to the respiratory system in rapid eye movement (REM) sleep may explain many characteristics of breathing in that state, e.g. its irregularity and variable ventilatory responses to chemical stimuli. This drive is hypothetical, and determinations of its existence and character are complicated by control of the respiratory system by the oscillator and its feedback mechanisms. In the present study, endogenous drive was studied during apnoea caused by mechanical hyperventilation. We reasoned that if there was a REM-dependent drive to the respiratory system, then respiratory activity should emerge out of the background apnoea as a manifestation of the drive. Diaphragmatic muscle or medullary respiratory neuronal activity was studied in five intact, unanaesthetized adult cats who were either mechanically hyperventilated or breathed spontaneously in more than 100 REM sleep periods. Diaphragmatic activity emerged out of a background apnoea caused by mechanical hyperventilation an average of 34 s after the onset of REM sleep. Emergent activity occurred in 60 % of 10 s epochs in REM sleep and the amount of activity per unit time averaged approximately 40 % of eupnoeic activity. The activity occurred in episodes and was poorly related to pontogeniculo-occipital waves. At low CO2 levels, this activity was non-rhythmic. At higher CO2 levels (less than 0.5 % below eupnoeic end-tidal percentage CO2 levels in non-REM (NREM) sleep), activity became rhythmic. Medullary respiratory neurons were recorded in one of the five animals. Nineteen of twenty-seven medullary respiratory neurons were excited in REM sleep during apnoea. Excited neurons included inspiratory, expiratory and phase-spanning neurons. Excitation began about 43 s after the onset of REM sleep. Activity increased from an average of 6 impulses s−1 in NREM sleep to 15.5 impulses s−1 in REM sleep. Neuronal activity was non-rhythmic at low CO2 levels and became rhythmic when levels

  4. [Functional state of the respiratory system in employees at the tantalum plant].

    PubMed

    Omarova, D K

    2014-01-01

    Indices of pulmonary ventilation function in employees at the tantalum plant tended to decrease according to the length of service and type of performed technological operations. Physiological changes of the functional State of the respiratory system were accompanied by pulmonary ventilation disorders of mixed and obstructive types. Changes in indices of respiratory function at the level of distal and proximal airways, including the bronchial tree, wore compensatory-adaptive character in response to the exposure of harmful factors of dust-gas mixture from the tantalum production.

  5. From Head to Toe: Respiratory, Circulatory, and Skeletal Systems. Book 3.

    ERIC Educational Resources Information Center

    Wiebe, Arthur, Ed.; And Others

    Designed to supplement curricular programs dealing with the human body, this booklet offers an activity-based, student-oriented approach for middle school teachers and students. Twelve activities focus on principles and skills related to the respiratory, circulatory, and skeletal systems. Each activity consists of student sheets and a teacher's…

  6. From Head to Toe: Respiratory, Circulatory, and Skeletal Systems. Book 3.

    ERIC Educational Resources Information Center

    Wiebe, Arthur, Ed.; And Others

    Designed to supplement curricular programs dealing with the human body, this booklet offers an activity-based, student-oriented approach for middle school teachers and students. Twelve activities focus on principles and skills related to the respiratory, circulatory, and skeletal systems. Each activity consists of student sheets and a teacher's…

  7. Influence of the viscoelastic properties of the respiratory system on the energetically optimum breathing frequency.

    PubMed

    Bates, J H; Milic-Emili, J

    1993-01-01

    We hypothesized that the viscoelastic properties of the respiratory system should have significant implications for the energetically optimal frequency of breathing, in view of the fact that these properties cause marked dependencies of overall system resistance and elastance on frequency. To test our hypothesis we simulated two models of canine and human respiratory system mechanics during sinusoidal breathing and calculated the inspiratory work (WI) and pressure-time integral (PTI) per minute under both resting and exercise conditions. The two models were a two-compartment viscoelastic model and a single-compartment model. Requiring minute alveolar ventilation to be fixed, we found that both models predicted almost identical optimum breathing frequencies. The calculated PTI was very insensitive to increases in breathing frequency above the optimal frequencies, while WI was found to increase slowly with frequency above its optimum. In contrast, both WI and PTI increased sharply as frequency decreased below their respective optima. A sensitivity analysis showed that the model predictions were very insensitive to the elastance and resistance values chosen to characterize tissue viscoelasticity. We conclude that the WI criterion for choosing the frequency of breathing is compatible with observations in nature, whereas the optimal frequency predictions of the PTI are rather too high. Both criteria allow for a fairly wide margin of choice in frequency above the optimum values without incurring excessive additional energy expenditure. Furthermore, contrary to our expectations, the viscoelastic properties of the respiratory system tissues do not pose a noticeable problem to the respiratory controller in terms of energy expenditure.

  8. Bilingual Skills Training Program. Barbering/Cosmetology. Module 9.0: Respiratory System.

    ERIC Educational Resources Information Center

    Northern New Mexico Community Coll., El Rito.

    This module on the respiratory system is the ninth of ten (CE 028 308-318) in the barbering/cosmetology course of a bilingual skills training program. (A Vocabulary Development Workbook for modules 6-10 is available as CE 028 313.) The course is designed to furnish theoretical and laboratory experiences. Module objectives are for students to…

  9. Influence of indoor formaldehyde pollution on respiratory system health in the urban area of Shenyang, China.

    PubMed

    Zhai, L; Zhao, J; Xu, B; Deng, Y; Xu, Z

    2013-03-01

    The decoration of interior spaces can lead to dangerous levels of indoor formaldehyde pollution. Exposure to indoor air pollution may be responsible for nearly 2 million deaths per year in developing countries. To assess the prevalence of indoor formaldehyde pollution caused by decoration and resultant respiratory system symptoms exhibited in exposed adults and children, due to indoor formaldehyde pollution caused by decoration. Survey sites were chosen and indoor formaldehyde concentrations determined according to the standard of formaldehyde in GB50325-2001. Logistic regression models were used to derive odds ratios (ORs) and 95% confidence intervals (95% CIs) after adjusting for potential confounders for this survey. Formaldehyde concentration was above the standard in 64% of Shenyang City. Some adults surveyed complained of common respiratory system disorders, including coughing (11.8%), nasal irritation (39.2%), Heterosmia (14.51%), and throat irritation (25.27%); 12% of children suffered from asthma. The analysis identified formaldehyde pollution and ventilation frequency as risk factors for respiratory system disorders in both adults (OR=2.603, [95% CI: 1.770-3.828], OR=1.604, [95% CI: 1.146-2.244], respectively) and children (OR=4.250, [2.064-8.753], OR=1.831, [1.006-3.333], respectively). The prevalence of common respiratory system disorders was related both to formaldehyde pollution and insufficient ventilation after decorating.

  10. Bilingual Skills Training Program. Barbering/Cosmetology. Module 9.0: Respiratory System.

    ERIC Educational Resources Information Center

    Northern New Mexico Community Coll., El Rito.

    This module on the respiratory system is the ninth of ten (CE 028 308-318) in the barbering/cosmetology course of a bilingual skills training program. (A Vocabulary Development Workbook for modules 6-10 is available as CE 028 313.) The course is designed to furnish theoretical and laboratory experiences. Module objectives are for students to…

  11. Development and Application of a Miniaturised Sensor System for Respiratory Investigations (MAP-RSS)

    NASA Astrophysics Data System (ADS)

    Hoffmann, U.; Drager, T.; Baumann, R.; Fasoulas, S.

    2008-06-01

    The project supported by the European Space Agency (ESA) in the frame of the "Microgravity Application Promotion Programe (MAP)" deals with the development and application of a new respiratory sensor system (RSS) for human respiratory investigations. Eight institutions, including three Industrial partners from different areas, combine their expertise by focusing on two selected applications in the field of ergospirometric exercise testing and lung function diagnostics with subsequent medication. The main goals of this project are to develop miniaturized oxygen and carbon dioxide sensors, to use their capability for simultaneous detection of total flow rates, to integrate them into a mask for the in-situ measurement of respiratory parameters, and to perform first qualification tests. For many manned space missions, and especially on the International Space Station, there is a need for a small, light-weight, portable, potentially body-mounted, metabolic gas analyzer with which periodic fitness or scientific evaluations could be performed by the astronauts.

  12. Acute respiratory distress syndrome in a pregnant woman with systemic lupus erythematosus: a case report.

    PubMed

    Chen, Y-J A; Tseng, J-J; Yang, M-J; Tsao, Y-P; Lin, H-Y

    2014-12-01

    When the disease activity of systemic lupus erythematosus (SLE) is controlled appropriately, a pregnant woman who has lupus is able to carry safely to term and deliver a healthy infant. While the physiology of a healthy pregnancy itself influences ventilatory function, acute pulmonary distress may decrease oxygenation and influence both mother and fetus. Though respiratory failure in pregnancy is relatively rare, it remains one of the leading conditions requiring intensive care unit admission in pregnancy and carries a high risk of maternal and fetal morbidity and mortality, not to mention the complexity caused by lupus flare. We report a case of SLE complicated with lupus pneumonitis and followed by acute respiratory distress during pregnancy. Though there is a high risk of maternal and fetal morbidity and mortality, maternal respiratory function improved after cesarean section and treatment of the underlying causes. The newborn had an extremely low birth weight but was well at discharge.

  13. Respiratory modulation of startle eye blink: a new approach to assess afferent signals from the respiratory system.

    PubMed

    Schulz, André; Schilling, Thomas M; Vögele, Claus; Larra, Mauro F; Schächinger, Hartmut

    2016-11-19

    Current approaches to assess interoception of respiratory functions cannot differentiate between the physiological basis of interoception, i.e. visceral-afferent signal processing, and the psychological process of attention focusing. Furthermore, they typically involve invasive procedures, e.g. induction of respiratory occlusions or the inhalation of CO2-enriched air. The aim of this study was to test the capacity of startle methodology to reflect respiratory-related afferent signal processing, independent of invasive procedures. Forty-two healthy participants were tested in a spontaneous breathing and in a 0.25 Hz paced breathing condition. Acoustic startle noises of 105 dB(A) intensity (50 ms white noise) were presented with identical trial frequency at peak and on-going inspiration and expiration, based on a new pattern detection method, involving the online processing of the respiratory belt signal. The results show the highest startle magnitudes during on-going expiration compared with any other measurement points during the respiratory cycle, independent of whether breathing was spontaneous or paced. Afferent signals from slow adapting phasic pulmonary stretch receptors may be responsible for this effect. This study is the first to demonstrate startle modulation by respiration. These results offer the potential to apply startle methodology in the non-invasive testing of interoception-related aspects in respiratory psychophysiology.This article is part of the themed issue 'Interoception beyond homeostasis: affect, cognition and mental health'.

  14. Simple gas chromatographic system for analysis of microbial respiratory gases

    NASA Technical Reports Server (NTRS)

    Carle, G. C.

    1972-01-01

    Dual column ambient temperature system, consisting of pair of capillary columns, microbead thermistor detector and micro gas-sampling valve, is used in remote life-detection equipment for space experiments. Performance outweighs advantage gained by utilizing single-column systems to reduce weight, conserve carrier gas and operate at lower power levels.

  15. Comparison of commercial systems for extraction of nucleic acids from DNA/RNA respiratory pathogens.

    PubMed

    Yang, Genyan; Erdman, Dean E; Kodani, Maja; Kools, John; Bowen, Michael D; Fields, Barry S

    2011-01-01

    This study compared six automated nucleic acid extraction systems and one manual kit for their ability to recover nucleic acids from human nasal wash specimens spiked with five respiratory pathogens, representing Gram-positive bacteria (Streptococcus pyogenes), Gram-negative bacteria (Legionella pneumophila), DNA viruses (adenovirus), segmented RNA viruses (human influenza virus A), and non-segmented RNA viruses (respiratory syncytial virus). The robots and kit evaluated represent major commercially available methods that are capable of simultaneous extraction of DNA and RNA from respiratory specimens, and included platforms based on magnetic-bead technology (KingFisher mL, Biorobot EZ1, easyMAG, KingFisher Flex, and MagNA Pure Compact) or glass fiber filter technology (Biorobot MDX and the manual kit Allprep). All methods yielded extracts free of cross-contamination and RT-PCR inhibition. All automated systems recovered L. pneumophila and adenovirus DNA equivalently. However, the MagNA Pure protocol demonstrated more than 4-fold higher DNA recovery from the S. pyogenes than other methods. The KingFisher mL and easyMAG protocols provided 1- to 3-log wider linearity and extracted 3- to 4-fold more RNA from the human influenza virus and respiratory syncytial virus. These findings suggest that systems differed in nucleic acid recovery, reproducibility, and linearity in a pathogen specific manner. Published by Elsevier B.V.

  16. Immediate early responses of avian tracheal epithelial cells to infection with highly pathogenic avian invluenza virus

    USDA-ARS?s Scientific Manuscript database

    Highly pathogenic (HP) avian influenza viruses (AIV) present an ongoing threat to the world poultry industry. In order to develop new AIV control strategies it is necessary to understand the underlying mechanism of viral infection at mucosal respiratory sites. Chicken and duck tracheal epithelial ...

  17. Estimation of the sensitivity of the surveillance system for avian influenza in the western region of Cuba.

    PubMed

    Ferrer, Edyniesky; Calistri, Paolo; Fonseca, Osvaldo; Ippoliti, Carla; Alfonso, Pastor; Iannetti, Simona; Abeledo, María A; Fernández, Octavio; Percedo, María I; Pérez, Antonio

    2013-01-01

    Although avian influenza (AI) virus of H5 and H7 subtypes has the potential to mutate to a highly pathogenic form and cause very high mortalities in some poultry species, most AI infections in poultry are due to low pathogenic AI (LPAI). Hence serological surveys, coupled with passive surveillance activities, are essential to detect sub-clinical infections by LPAI viruses, H5 and H7 subtypes. However the proper planning of an active surveillance system should be based on a careful estimation of its performance. Therefore, the sensitivity of the active surveillance system for AI in the western region of Cuba was assessed by a stochastic model quantifying the probability of revealing at least one animal infected by H5 or H7 subtype. The diagnostic sensitivity of the haemagglutination inhibition assay and different levels of within-flock prevalence (5%, 12% and 30%) were considered. The sensitivity of the surveillance system was then assessed under five different samples size scenarios: testing 20, 30, 40, 50 or 60 animals in each flock. Poultry flock sites in the western region of Cuba with a size ranging from 10,000 to 335,000 birds were included in the study.

  18. The feasibility of the auto tuning respiratory compensation system with ultrasonic image tracking technique.

    PubMed

    Chuang, Ho-Chiao; Hsu, Hsiao-Yu; Nieh, Shu-Kan; Tien, Der-Chi

    2015-01-01

    The purpose of this study is to assess the feasibility of using the analytical technique of ultrasound images in combination with an auto tumor localization system. During respiration, the activity of breathing in and out causes organs displacement at the lower lobe of the lung, and the maximum displacement range happens in the Superior-Inferior (SI) direction. Therefore, in this study all the tumor positioning is in SI direction under respiratory compensation, in which the compensations are carried out to the organs at the lower lobe and adjacent to the lower lobe of lung.In this research, due to the processes of ultrasound imaging generation, image analysis and signal transmission, when the captured respiratory signals are sent to auto tumor localization system, there was a signal time delay. The total delay time of the entire signal transmission process was 0.254 ± 0.023 seconds (with the lowest standard deviation) after implementing a series of analyses. To compensate for this signal delay time (0.254 ± 0.023 sec), a phase lead compensator (PLC) was designed and built into the auto tumor localization system. By analyzing the impact of the delay time and the respiratory waveforms under different frequencies on the phase lead compensator, an overall system delay time can be configured. Results showed as the respiratory frequency increased, variable value ``a'' and the subsequent gain ``k'' in the controller becomes larger. Moreover, value ``a'' and ``k'' increased as the system delay time increased when the respiratory frequency was fixed. The relationship of value ``a'' and ``k'' to the respiratory frequency can be obtained by using the curve fitting method to compensate for the respiratory motion for tumor localization. Through the comparison of the uncompensated signal and the compensated signal performed by the auto tumor localization system on the simulated respiratory signal, the feasibility of using ultrasound image analysis technology combined with the

  19. SU-D-17A-07: Development and Evaluation of a Prototype Ultrasonography Respiratory Monitoring System for 4DCT Reconstruction

    SciTech Connect

    Yan, P; Cheng, S; Chao, C; Jain, A

    2014-06-01

    Purpose: Respiratory motion artifacts are commonly seen in the abdominal and thoracic CT images. A Real-time Position Management (RPM) system is integrated with CT simulator using abdominal surface as a surrogate for tracking the patient respiratory motion. The respiratory-correlated four-dimensional computed tomography (4DCT) is then reconstructed by GE advantage software. However, there are still artifacts due to inaccurate respiratory motion detecting and sorting methods. We developed an Ultrasonography Respiration Monitoring (URM) system which can directly monitor diaphragm motion to detect respiratory cycles. We also developed a new 4DCT sorting and motion estimation method to reduce the respiratory motion artifacts. The new 4DCT system was compared with RPM and the GE 4DCT system. Methods: Imaging from a GE CT scanner was simultaneously correlated with both the RPM and URM to detect respiratory motion. A radiation detector, Blackcat GM-10, recorded the X-ray on/off and synchronized with URM. The diaphragm images were acquired with Ultrasonix RP system. The respiratory wave was derived from diaphragm images and synchronized with CT scanner. A more precise peaks and valleys detection tool was developed and compared with RPM. The motion is estimated for the slices which are not in the predefined respiratory phases by using block matching and optical flow method. The CT slices were then sorted into different phases and reconstructed, compared with the images reconstructed from GE Advantage software using respiratory wave produced from RPM system. Results: The 4DCT images were reconstructed for eight patients. The discontinuity at the diaphragm level due to an inaccurate identification of phases by the RPM was significantly improved by URM system. Conclusion: Our URM 4DCT system was evaluated and compared with RPM and GE 4DCT system. The new system is user friendly and able to reduce motion artifacts. It also has the potential to monitor organ motion during

  20. Coronavirus Infections in the Central Nervous System and Respiratory Tract Show Distinct Features in Hospitalized Children.

    PubMed

    Li, Yuanyuan; Li, Haipeng; Fan, Ruyan; Wen, Bo; Zhang, Jian; Cao, Xiaoying; Wang, Chengwu; Song, Zhanyi; Li, Shuochi; Li, Xiaojie; Lv, Xinjun; Qu, Xiaowang; Huang, Renbin; Liu, Wenpei

    2016-01-01

    Coronavirus (CoV) infections induce respiratory tract illnesses and central nervous system (CNS) diseases. We aimed to explore the cytokine expression profiles in hospitalized children with CoV-CNS and CoV-respiratory tract infections. A total of 183 and 236 hospitalized children with acute encephalitis-like syndrome and respiratory tract infection, respectively, were screened for anti-CoV IgM antibodies. The expression profiles of multiple cytokines were determined in CoV-positive patients. Anti-CoV IgM antibodies were detected in 22/183 (12.02%) and 26/236 (11.02%) patients with acute encephalitis-like syndrome and respiratory tract infection, respectively. Cytokine analysis revealed that the level of serum granulocyte colony-stimulating factor (G-CSF) was significantly higher in both CoV-CNS and CoV-respiratory tract infection compared with healthy controls. Additionally, the serum level of granulocyte macrophage colony-stimulating factor (GM-CSF) was significantly higher in CoV-CNS infection than in CoV-respiratory tract infection. In patients with CoV-CNS infection, the levels of IL-6, IL-8, MCP-1, and GM-CSF were significantly higher in their cerebrospinal fluid samples than in matched serum samples. To the best of our knowledge, this is the first report showing a high incidence of CoV infection in hospitalized children, especially with CNS illness. The characteristic cytokine expression profiles in CoV infection indicate the importance of host immune response in disease progression. © 2017 S. Karger AG, Basel.

  1. Continuous on-line measurements of respiratory system, lung and chest wall mechanics during mechanic ventilation.

    PubMed

    Kárason, S; Søndergaard, S; Lundin, S; Stenqvist, O

    2001-08-01

    We present a concept of on-line, manoeuvre-free monitoring of respiratory mechanics during dynamic conditions, displaying calculated alveolar pressure/volume curves continuously and separating lung and chest wall mechanics. Prospective observational study. Intensive care unit of a university hospital. Ten ventilator-treated patients with acute lung injury. Different positive end-expiratory pressure (PEEP) and tidal volumes, low flow inflation. Previously validated methods were used to present a single-value dynostatic compliance for the whole breath and a dynostatic volume-dependent initial, middle and final compliance within the breath. A high individual variation of respiratory mechanics was observed. Reproducibility of repeated measurements was satisfactory (coefficients of variations for dynostatic volume-dependent compliance: < or =9.2% for total respiratory system, < or =18% for lung). Volume-dependent compliance showed a statistically significant pattern of successively decreasing compliance from the initial segment through the middle and final parts within each breath at all respiratory settings. This pattern became more prominent with increasing PEEP and tidal volume, indicating a greater distension of alveoli. No lower inflection point (LIP) was seen in patients with respiratory rate 20/min and PEEP at 4 cmH2O. A trial with low flow inflation in four of the patients showed formation of a LIP in three of them and an upper inflection in one. The monitoring concept revealed a constant pattern of successively decreasing compliance within each breath, which became more prominent with increasing PEEP and tidal volume. The monitoring concept offers a simple and reliable method of monitoring respiratory mechanics during ongoing ventilator treatment.

  2. Field Programmable Gate Array (FPGA) Respiratory Monitoring System Using a Flow Microsensor and an Accelerometer

    NASA Astrophysics Data System (ADS)

    Mellal, Idir; Laghrouche, Mourad; Bui, Hung Tien

    2017-04-01

    This paper describes a non-invasive system for respiratory monitoring using a Micro Electro Mechanical Systems (MEMS) flow sensor and an IMU (Inertial Measurement Unit) accelerometer. The designed system is intended to be wearable and used in a hospital or at home to assist people with respiratory disorders. To ensure the accuracy of our system, we proposed a calibration method based on ANN (Artificial Neural Network) to compensate the temperature drift of the silicon flow sensor. The sigmoid activation functions used in the ANN model were computed with the CORDIC (COordinate Rotation DIgital Computer) algorithm. This algorithm was also used to estimate the tilt angle in body position. The design was implemented on reconfigurable platform FPGA.

  3. A Surveillance Model for Human Avian Influenza with a Comprehensive Surveillance System for Local-Priority Communicable Diseases in South Sulawesi, Indonesia

    PubMed Central

    Hanafusa, Shigeki; Muhadir, Andi; Santoso, Hari; Tanaka, Kohtaroh; Anwar, Muhammad; Sulistyo, Erwan Tri; Hachiya, Masahiko

    2012-01-01

    The government of Indonesia and the Japan International Cooperation Agency launched a three-year project (2008–2011) to strengthen the surveillance of human avian influenza cases through a comprehensive surveillance system of local-priority communicable diseases in South Sulawesi Province. Based on findings from preliminary and baseline surveys, the project developed a technical protocol for surveillance and response activities in local settings, consistent with national guidelines. District surveillance officers (DSOs) and rapid-response-team members underwent training to improve surveillance and response skills. A network-based early warning and response system for weekly reports and a short message service (SMS) gateway for outbreak reports, both encompassing more than 20 probable outbreak diseases, were introduced to support existing paper-based systems. Two further strategies were implemented to optimize project outputs: a simulation exercise and a DSO-centered model. As a result, the timeliness of weekly reports improved from 33% in 2009 to 82% in 2011. In 2011, 65 outbreaks were reported using the SMS, with 64 subsequent paper-based reports. All suspected human avian influenza outbreaks up to September 2011 were reported in the stipulated format. A crosscutting approach using human avian influenza as the core disease for coordinating surveillance activities improved the overall surveillance system for communicable diseases. PMID:23532690

  4. A surveillance model for human avian influenza with a comprehensive surveillance system for local-priority communicable diseases in South sulawesi, indonesia.

    PubMed

    Hanafusa, Shigeki; Muhadir, Andi; Santoso, Hari; Tanaka, Kohtaroh; Anwar, Muhammad; Sulistyo, Erwan Tri; Hachiya, Masahiko

    2012-12-01

    The government of Indonesia and the Japan International Cooperation Agency launched a three-year project (2008-2011) to strengthen the surveillance of human avian influenza cases through a comprehensive surveillance system of local-priority communicable diseases in South Sulawesi Province. Based on findings from preliminary and baseline surveys, the project developed a technical protocol for surveillance and response activities in local settings, consistent with national guidelines. District surveillance officers (DSOs) and rapid-response-team members underwent training to improve surveillance and response skills. A network-based early warning and response system for weekly reports and a short message service (SMS) gateway for outbreak reports, both encompassing more than 20 probable outbreak diseases, were introduced to support existing paper-based systems. Two further strategies were implemented to optimize project outputs: a simulation exercise and a DSO-centered model. As a result, the timeliness of weekly reports improved from 33% in 2009 to 82% in 2011. In 2011, 65 outbreaks were reported using the SMS, with 64 subsequent paper-based reports. All suspected human avian influenza outbreaks up to September 2011 were reported in the stipulated format. A crosscutting approach using human avian influenza as the core disease for coordinating surveillance activities improved the overall surveillance system for communicable diseases.

  5. Evidence and control of bifurcations in a respiratory system

    SciTech Connect

    Goldin, Matías A. Mindlin, Gabriel B.

    2013-12-15

    We studied the pressure patterns used by domestic canaries in the production of birdsong. Acoustically different sound elements (“syllables”) were generated by qualitatively different pressure gestures. We found that some ubiquitous transitions between syllables can be interpreted as bifurcations of a low dimensional dynamical system. We interpreted these results as evidence supporting a model in which different timescales interact nonlinearly.

  6. A control system for automatic electrical stimulation of abdominal muscles to assist respiratory function in tetraplegia.

    PubMed

    Gollee, H; Hunt, K J; Allan, D B; Fraser, M H; McLean, A N

    2007-09-01

    People with tetraplegia have poor respiratory function leading to limited tidal volume (V(T)) and reduced cough peak flow (CPF). These problems may cause respiratory failure during the initial admission or subsequent intercurrent illness. Electrical stimulation of the abdominal muscles during expiration can improve respiratory function by increasing V(T) and CPF. We developed a novel control system to automatically trigger muscle stimulation, synchronised with the subject's voluntary respiratory activity. The system was tested in four subjects with a functionally complete lesion at level C4 to C6, aged between 16 and 46 years, 3 months to 5 years post injury, who were breathing spontaneously. The algorithm delivered automatic stimulation patterns, detecting cough and quiet breathing while suppressing stimulation during other activities such as speaking. Marked increases in V(T) (between 9% and 71% of baseline) and CPF (between 31% and 54% of baseline) were observed, suggesting that the technique may have potential use in both acute and established tetraplegia to increase minute ventilation and to improve cough clearance of secretions.

  7. HOXA5 plays tissue-specific roles in the developing respiratory system.

    PubMed

    Landry-Truchon, Kim; Houde, Nicolas; Boucherat, Olivier; Joncas, France-Hélène; Dasen, Jeremy S; Philippidou, Polyxeni; Mansfield, Jennifer H; Jeannotte, Lucie

    2017-10-01

    Hoxa5 is essential for development of several organs and tissues. In the respiratory system, loss of Hoxa5 function causes neonatal death due to respiratory distress. Expression of HOXA5 protein in mesenchyme of the respiratory tract and in phrenic motor neurons of the central nervous system led us to address the individual contribution of these Hoxa5 expression domains using a conditional gene targeting approach. Hoxa5 does not play a cell-autonomous role in lung epithelium, consistent with lack of HOXA5 expression in this cell layer. In contrast, ablation of Hoxa5 in mesenchyme perturbed trachea development, lung epithelial cell differentiation and lung growth. Further, deletion of Hoxa5 in motor neurons resulted in abnormal diaphragm innervation and musculature, and lung hypoplasia. It also reproduced the neonatal lethality observed in null mutants, indicating that the defective diaphragm is the main cause of impaired survival at birth. Thus, Hoxa5 possesses tissue-specific functions that differentially contribute to the morphogenesis of the respiratory tract. © 2017. Published by The Company of Biologists Ltd.

  8. Evaluation of the clinical efficacy of the PeTrack motion tracking system for respiratory gating in cardiac PET imaging

    NASA Astrophysics Data System (ADS)

    Manwell, Spencer; Chamberland, Marc J. P.; Klein, Ran; Xu, Tong; deKemp, Robert

    2017-03-01

    Respiratory gating is a common technique used to compensate for patient breathing motion and decrease the prevalence of image artifacts that can impact diagnoses. In this study a new data-driven respiratory gating method (PeTrack) was compared with a conventional optical tracking system. The performance of respiratory gating of the two systems was evaluated by comparing the number of respiratory triggers, patient breathing intervals and gross heart motion as measured in the respiratory-gated image reconstructions of rubidium-82 cardiac PET scans in test and control groups consisting of 15 and 8 scans, respectively. We found evidence suggesting that PeTrack is a robust patient motion tracking system that can be used to retrospectively assess patient motion in the event of failure of the conventional optical tracking system.

  9. Avian Influenza (Bird Flu)

    MedlinePlus

    ... Address What's this? Submit What's this? Submit Button Influenza Types Seasonal Avian Swine/Variant Pandemic Other Information on Avian Influenza Language: English (US) Español Recommend on Facebook ...

  10. Thermal inactivation of avian viral and bacterial pathogens in an effluent treatment system within a biosafety level 2 and 3 enhanced facility

    USDA-ARS?s Scientific Manuscript database

    Avian influenza (AI) virus, avian paramyxovirus Type 1 (APMV-1 or Newcastle disease virus [NDV]), reovirus, rotavirus, turkey astrovirus (TAstV), avian metapneumovirus (aMPV), Marek’s disease virus (MDV-1), avian parvovirus (ChPV) and Salmonella enterica serovar Enteritidis are significant biosafety...

  11. Infection of Differentiated Porcine Airway Epithelial Cells by Influenza Virus: Differential Susceptibility to Infection by Porcine and Avian Viruses

    PubMed Central

    Punyadarsaniya, Darsaniya; Liang, Chi-Hui; Winter, Christine; Petersen, Henning; Rautenschlein, Silke; Hennig-Pauka, Isabel; Schwegmann-Wessels, Christel; Wu, Chung-Yi; Wong, Chi-Huey; Herrler, Georg

    2011-01-01

    Background Swine are important hosts for influenza A viruses playing a crucial role in the epidemiology and interspecies transmission of these viruses. Respiratory epithelial cells are the primary target cells for influenza viruses. Methodology/Principal Findings To analyze the infection of porcine airway epithelial cells by influenza viruses, we established precision-cut lung slices as a culture system for differentiated respiratory epithelial cells. Both ciliated and mucus-producing cells were found to be susceptible to infection by swine influenza A virus (H3N2 subtype) with high titers of infectious virus released into the supernatant already one day after infection. By comparison, growth of two avian influenza viruses (subtypes H9N2 and H7N7) was delayed by about 24 h. The two avian viruses differed both in the spectrum of susceptible cells and in the efficiency of replication. As the H9N2 virus grew to titers that were only tenfold lower than that of a porcine H3N2 virus this avian virus is an interesting candidate for interspecies transmission. Lectin staining indicated the presence of both α-2,3- and α-2,6-linked sialic acids on airway epithelial cells. However, their distribution did not correlate with pattern of virus infection indicating that staining by plant lectins is not a reliable indicator for the presence of cellular receptors for influenza viruses. Conclusions/Significance Differentiated respiratory epithelial cells significantly differ in their susceptibility to infection by avian influenza viruses. We expect that the newly described precision-cut lung slices from the swine lung are an interesting culture system to analyze the infection of differentiated respiratory epithelial cells by different pathogens (viral, bacterial and parasitic ones) of swine. PMID:22174804

  12. Infection of differentiated porcine airway epithelial cells by influenza virus: differential susceptibility to infection by porcine and avian viruses.

    PubMed

    Punyadarsaniya, Darsaniya; Liang, Chi-Hui; Winter, Christine; Petersen, Henning; Rautenschlein, Silke; Hennig-Pauka, Isabel; Schwegmann-Wessels, Christel; Wu, Chung-Yi; Wong, Chi-Huey; Herrler, Georg

    2011-01-01

    Swine are important hosts for influenza A viruses playing a crucial role in the epidemiology and interspecies transmission of these viruses. Respiratory epithelial cells are the primary target cells for influenza viruses. To analyze the infection of porcine airway epithelial cells by influenza viruses, we established precision-cut lung slices as a culture system for differentiated respiratory epithelial cells. Both ciliated and mucus-producing cells were found to be susceptible to infection by swine influenza A virus (H3N2 subtype) with high titers of infectious virus released into the supernatant already one day after infection. By comparison, growth of two avian influenza viruses (subtypes H9N2 and H7N7) was delayed by about 24 h. The two avian viruses differed both in the spectrum of susceptible cells and in the efficiency of replication. As the H9N2 virus grew to titers that were only tenfold lower than that of a porcine H3N2 virus this avian virus is an interesting candidate for interspecies transmission. Lectin staining indicated the presence of both α-2,3- and α-2,6-linked sialic acids on airway epithelial cells. However, their distribution did not correlate with pattern of virus infection indicating that staining by plant lectins is not a reliable indicator for the presence of cellular receptors for influenza viruses. Differentiated respiratory epithelial cells significantly differ in their susceptibility to infection by avian influenza viruses. We expect that the newly described precision-cut lung slices from the swine lung are an interesting culture system to analyze the infection of differentiated respiratory epithelial cells by different pathogens (viral, bacterial and parasitic ones) of swine.

  13. An integrated mathematical model of the cardiovascular and respiratory systems.

    PubMed

    Trenhago, Paulo Roberto; Fernandes, Luciano Gonçalves; Müller, Lucas Omar; Blanco, Pablo Javier; Feijóo, Raúl Antonino

    2016-01-01

    This study presents a lumped model for the human cardiorespiratory system. Specifically, we incorporate a sophisticated gas dissociation and transport system to a fully integrated cardiovascular and pulmonary model. The model provides physiologically consistent predictions in terms of hemodynamic variables such as pressure, flow rate, gas partial pressures, and pH. We perform numerical simulations to evaluate the behavior of the partial pressures of oxygen and carbon dioxide in different vascular and pulmonary compartments. For this, we design the rest condition with low oxygen requirements and carbon dioxide production and exercise conditions with high oxygen demand and carbon dioxide production. Furthermore, model sensitivity to more relevant model parameters is studied. Copyright © 2015 John Wiley & Sons, Ltd.

  14. Slowly emerging glycinergic transmission enhances inhibition in the sound localization pathway of the avian auditory system

    PubMed Central

    Fischl, Matthew J.; Weimann, Sonia R.; Kearse, Michael G.

    2013-01-01

    Localization of low-frequency acoustic stimuli is processed in dedicated neural pathways where coincidence-detecting neurons compare the arrival time of sound stimuli at the two ears, or interaural time disparity (ITD). ITDs occur in the submillisecond range, and vertebrates have evolved specialized excitatory and inhibitory circuitry to compute these differences. Glycinergic inhibition is a computationally significant and prominent component of the mammalian ITD pathway. However, evidence for glycinergic transmission is limited in birds, where GABAergic inhibition has been thought to be the dominant or exclusive inhibitory transmitter. Indeed, previous work showed that GABA antagonists completely eliminate inhibition in avian nuclei specialized for processing temporal features of sound, nucleus magnocellularis (NM) and nucleus laminaris (NL). However, more recent work shows that glycine is coexpressed with GABA in synaptic terminals apposed to neurons in both nuclei (Coleman WL, Fischl MJ, Weimann SR, Burger RM. J Neurophysiol 105: 2405–2420, 2011; Kuo SP, Bradley LA, Trussell LO. J Neurosci 29: 9625–9634, 2009). Here we show complementary evidence of functional glycine receptor (GlyR) expression in NM and NL. Additionally, we show that glycinergic input can be evoked under particular stimulus conditions. Stimulation at high but physiologically relevant rates evokes a slowly emerging glycinergic response in NM and NL that builds over the course of the stimulus. Glycinergic response magnitude was stimulus rate dependent, representing 18% and 7% of the total inhibitory current in NM and NL, respectively, at the end of the 50-pulse, 200-Hz stimulus. Finally, we show that the glycinergic component is functionally relevant, as its elimination reduced inhibition of discharges evoked by current injection into NM neurons. PMID:24198323

  15. Slowly emerging glycinergic transmission enhances inhibition in the sound localization pathway of the avian auditory system.

    PubMed

    Fischl, Matthew J; Weimann, Sonia R; Kearse, Michael G; Burger, R Michael

    2014-02-01

    Localization of low-frequency acoustic stimuli is processed in dedicated neural pathways where coincidence-detecting neurons compare the arrival time of sound stimuli at the two ears, or interaural time disparity (ITD). ITDs occur in the submillisecond range, and vertebrates have evolved specialized excitatory and inhibitory circuitry to compute these differences. Glycinergic inhibition is a computationally significant and prominent component of the mammalian ITD pathway. However, evidence for glycinergic transmission is limited in birds, where GABAergic inhibition has been thought to be the dominant or exclusive inhibitory transmitter. Indeed, previous work showed that GABA antagonists completely eliminate inhibition in avian nuclei specialized for processing temporal features of sound, nucleus magnocellularis (NM) and nucleus laminaris (NL). However, more recent work shows that glycine is coexpressed with GABA in synaptic terminals apposed to neurons in both nuclei (Coleman WL, Fischl MJ, Weimann SR, Burger RM. J Neurophysiol 105: 2405-2420, 2011; Kuo SP, Bradley LA, Trussell LO. J Neurosci 29: 9625-9634, 2009). Here we show complementary evidence of functional glycine receptor (GlyR) expression in NM and NL. Additionally, we show that glycinergic input can be evoked under particular stimulus conditions. Stimulation at high but physiologically relevant rates evokes a slowly emerging glycinergic response in NM and NL that builds over the course of the stimulus. Glycinergic response magnitude was stimulus rate dependent, representing 18% and 7% of the total inhibitory current in NM and NL, respectively, at the end of the 50-pulse, 200-Hz stimulus. Finally, we show that the glycinergic component is functionally relevant, as its elimination reduced inhibition of discharges evoked by current injection into NM neurons.

  16. Effect of Systemic Lupus Erythematosus on the Risk of Incident Respiratory Failure: A National Cohort Study

    PubMed Central

    Yeh, Jun-Jun; Wang, Yu-Chiao; Chen, Jiunn-Horng; Hsu, Wu-Huei

    2016-01-01

    Purpose We conducted a nationwide cohort study to investigate the relationship between systemic lupus erythematosus (SLE) and the risk of incident respiratory failure. Methods From the National Health Insurance Research Database, we identified 11 533 patients newly diagnosed with SLE and 46 132 controls without SLE who were randomly selected through frequency-matching according to age, sex, and index year. Both cohorts were followed until the end of 2011 to measure the incidence of incident respiratory failure, which was compared between the 2 cohorts through a Cox proportional hazards regression analysis. Results The adjusted hazard ratio (aHR) of incident respiratory failure was 5.80 (95% confidence interval [CI] = 5.15–6.52) for the SLE cohort after we adjusted for sex, age, and comorbidities. Both men (aHR = 3.44, 95% CI = 2.67–4.43) and women (aHR = 6.79, 95% CI = 5.93–7.77) had a significantly higher rate of incident respiratory failure in the SLE cohort than in the non-SLE cohort. Both men and women aged <35 years (aHR = 31.2, 95% CI = 21.6–45.2), 35–65 years; (aHR = 6.19, 95% CI = 5.09–7.54) and ≥65 years (aHR = 2.35, 95% CI = 1.92–2.87) had a higher risk of incident respiratory failure in the SLE cohort. Moreover, the risk of incident respiratory failure was higher in the SLE cohort than the non-SLE cohort, for subjects with (aHR = 2.65, 95% CI = 2.22–3.15) or without (aHR = 9.08, 95% CI = 7.72–10.7) pre-existing comorbidities. In the SLE cohort, subjects with >24 outpatient visits and hospitalizations per year had a higher incident respiratory failure risk (aHR = 21.7, 95% CI = 18.0–26.1) compared with the non-SLE cohort. Conclusion Patients with SLE are associated with an increased risk of incident respiratory failure, regardless of their age, sex, and pre-existing comorbidities; especially medical services with higher frequency. PMID:27654828

  17. Multicenter clinical performance evaluation of BD Veritor™ system for rapid detection of respiratory syncytial virus.

    PubMed

    Bell, J Jeremiah; Anderson, Evan J; Greene, Wallace H; Romero, José R; Merchant, Moheet; Selvarangan, Rangaraj

    2014-09-01

    BD Veritor™ System for Rapid Detection of Respiratory Syncytial Virus (RSV) is a new-generation lateral flow immunochromatographic assay for objective detection of RSV in respiratory specimens from children. To evaluate the performance of BD Veritor™ System for Rapid Detection of RSV in respiratory specimens collected from pediatric patients. A prospective, multicenter clinical trial was undertaken at five study sites representing geographically diverse regions of the U.S. to assess the performance of the BD Veritor™ System for Rapid Detection of RSV in comparison to R-mix shell vial culture and ProFlu+ reverse transcription-PCR assay (Gen-Probe/Prodesse). 440 nasopharyngeal washes/aspirates (NPW/A) and 706 nasopharyngeal swab (NPS) specimens from U.S. subjects<20 years of age were collected and tested using the BD Veritor™ System and compared with shell vial culture and real-time RT-PCR results. Analysis of the data indicates the overall sensitivity and specificity for BD Veritor™ System for all sample types combined was 90% and 97.0% versus shell vial culture and 75.5% and 98.7% versus RT-PCR respectively. Overall, the BD Veritor™ System for the Rapid Detection of RSV performed well when compared to both viral cell culture and RT-PCR in children. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Three-dimensional printed magnetophoretic system for the continuous flow separation of avian influenza H5N1 viruses.

    PubMed

    Wang, Yuhe; Li, Yanbin; Wang, Ronghui; Wang, Maohua; Lin, Jianhan

    2017-04-01

    As a result of the low concentration of avian influenza viruses in samples for routine screening, the separation and concentration of these viruses are vital for their sensitive detection. We present a novel three-dimensional printed magnetophoretic system for the continuous flow separation of the viruses using aptamer-modified magnetic nanoparticles, a magnetophoretic chip, a magnetic field, and a fluidic controller. The magnetic field was designed based on finite element magnetic simulation and developed using neodymium magnets with a maximum intensity of 0.65 T and a gradient of 32 T/m for dragging the nanoparticle-virus complexes. The magnetophoretic chip was designed by SOLIDWORKS and fabricated by a three-dimensional printer with a magnetophoretic channel for the continuous flow separation of the viruses using phosphate-buffered saline as carrier flow. The fluidic controller was developed using a microcontroller and peristaltic pumps to inject the carrier flow and the viruses. The trajectory of the virus-nanoparticle complexes was simulated using COMSOL for optimization of the carrier flow and the magnetic field, respectively. The results showed that the H5N1 viruses could be captured, separated, and concentrated using the proposed magnetophoretic system with the separation efficiency up to 88% in a continuous flow separation time of 2 min for a sample volume of 200 μL.

  19. Evaluation of integrated respiratory gating systems on a Novalis Tx system.

    PubMed

    Chang, Zheng; Liu, Tonghai; Cai, Jing; Chen, Qing; Wang, Zhiheng; Yin, Fang-Fang

    2011-04-04

    The purpose of this study was to investigate the accuracy of motion tracking and radiation delivery control of integrated gating systems on a Novalis Tx system. The study was performed on a Novalis Tx system, which is equipped with Varian Real-time Position Management (RPM) system, and BrainLAB ExacTrac gating systems. In this study, the two systems were assessed on accuracy of both motion tracking and radiation delivery control. To evaluate motion tracking, two artificial motion profiles and five patients' respiratory profiles were used. The motion trajectories acquired by the two gating systems were compared against the references. To assess radiation delivery control, time delays were measured using a single-exposure method. More specifically, radiation is delivered with a 4 mm diameter cone within the phase range of 10%-45% for the BrainLAB ExacTrac system, and within the phase range of 0%-25% for the Varian RPM system during expiration, each for three times. Radiochromic films were used to record the radiation exposures and to calculate the time delays. In the work, the discrepancies were quantified using the parameters of mean and standard deviation (SD). Pearson's product-moment correlational analysis was used to test correlation of the data, which is quantified using a parameter of r. The trajectory profiles acquired by the gating systems show good agreement with those reference profiles. A quantitative analysis shows that the average mean discrepancies between BrainLAB ExacTrac system and known references are 1.5 mm and 1.9 mm for artificial and patient profiles, with the maximum motion amplitude of 28.0 mm. As for the Varian RPM system, the corresponding average mean discrepancies are 1.1 mm and 1.7 mm for artificial and patient profiles. With the proposed single-exposure method, the time delays are found to be 0.20 ± 0.03 seconds and 0.09 ± 0.01 seconds for BrainLAB ExacTrac and Varian RPM systems, respectively. The results indicate the systems can

  20. Residue 627 of PB2 is a determinant of cold sensitivity in RNA replication of avian influenza viruses.

    PubMed

    Massin, P; van der Werf, S; Naffakh, N

    2001-06-01

    Human influenza A viruses replicate in the upper respiratory tract at a temperature of about 33 degrees C, whereas avian viruses replicate in the intestinal tract at a temperature close to 41 degrees C. In the present study, we analyzed the influence of low temperature (33 degrees C) on RNA replication of avian and human viruses in cultured cells. The kinetics of replication of the NP segment were similar at 33 and 37 degrees C for the human A/Puerto-Rico/8/34 and A/Sydney/5/97 viruses, whereas replication was delayed at 33 degrees C compared to 37 degrees C for the avian A/FPV/Rostock/34 and A/Mallard/NY/6750/78 viruses. Making use of a genetic system for the in vivo reconstitution of functional ribonucleoproteins, we observed that the polymerase complexes derived from avian viruses but not human viruses exhibited cold sensitivity in mammalian cells, which was determined mostly by residue 627 of PB2. Our results suggest that a reduced ability of the polymerase complex of avian viruses to ensure replication of the viral genome at 33 degrees C could contribute to their inability to grow efficiently in humans.

  1. A breath sampling system assessing the influence of respiratory rate on exhaled breath composition.

    PubMed

    Lomonaco, T; Salvo, P; Ghimenti, S; Biagini, D; Bellagambi, F; Fuoco, R; Di Francesco, F

    2015-01-01

    This work presents a computerized system to monitor mouth pressure, tidal volume, exhaled airflow, respiration rate and end-tidal partial pressure of CO2 during breath collection. The system was used to investigate the effect of different respiratory rates on the volatile organic compounds (VOCs) concentrations in exhaled breath. For this purpose, VOCs with well-defined biochemical pathways and different chemical and physical properties were selected as biomarkers related to metabolism (acetone and isopropyl alcohol), cholesterol synthesis (isoprene) and intestinal microflora activity (ethanol). Mixed breath was collected from a nominally healthy volunteer in resting conditions by filling a Nalophan bag. The subject followed a regimented breathing pattern at different respiratory rates (10, 30 and 50 breaths per minute). Results highlight that ventilation pattern strongly influences the concentration of the selected compounds. The proposed system allows exhaled breath to be collected also in patients showing dyspnea such as in case of chronic heart failure, asthma and pulmonary diseases.

  2. A Respiratory Movement Monitoring System Using Fiber-Grating Vision Sensor for Diagnosing Sleep Apnea Syndrome

    NASA Astrophysics Data System (ADS)

    Takemura, Yasuhiro; Sato, Jun-Ya; Nakajima, Masato

    2005-01-01

    A non-restrictive and non-contact respiratory movement monitoring system that finds the boundary between chest and abdomen automatically and detects the vertical movement of each part of the body separately is proposed. The system uses a fiber-grating vision sensor technique and the boundary position detection is carried out by calculating the centers of gravity of upward moving and downward moving sampling points, respectively. In the experiment to evaluate the ability to detect the respiratory movement signals of each part and to discriminate between obstructive and central apneas, detected signals of the two parts and their total clearly showed the peculiarities of obstructive and central apnea. The cross talk between the two categories classified automatically according to several rules that reflect the peculiarities was ≤ 15%. This result is sufficient for discriminating central sleep apnea syndrome from obstructive sleep apnea syndrome and indicates that the system is promising as screening equipment. Society of Japan

  3. Avian influenza virus

    USDA-ARS?s Scientific Manuscript database

    Avian influenza virus (AIV) is type A influenza that is adapted to avian host species. Although the virus can be isolated from numerous avian species, the natural host reservoir species are dabbling ducks, shorebirds and gulls. Domestic poultry species (poultry being defined as birds that are rais...

  4. Inverse Modeling of Respiratory System during Noninvasive Ventilation by Maximum Likelihood Estimation

    NASA Astrophysics Data System (ADS)

    Saatci, Esra; Akan, Aydin

    2010-12-01

    We propose a procedure to estimate the model parameters of presented nonlinear Resistance-Capacitance (RC) and the widely used linear Resistance-Inductance-Capacitance (RIC) models of the respiratory system by Maximum Likelihood Estimator (MLE). The measurement noise is assumed to be Generalized Gaussian Distributed (GGD), and the variance and the shape factor of the measurement noise are estimated by MLE and Kurtosis method, respectively. The performance of the MLE algorithm is also demonstrated by the Cramer-Rao Lower Bound (CRLB) with artificially produced respiratory signals. Airway flow, mask pressure, and lung volume are measured from patients with Chronic Obstructive Pulmonary Disease (COPD) under the noninvasive ventilation and from healthy subjects. Simulations show that respiratory signals from healthy subjects are better represented by the RIC model compared to the nonlinear RC model. On the other hand, the Patient group respiratory signals are fitted to the nonlinear RC model with lower measurement noise variance, better converged measurement noise shape factor, and model parameter tracks. Also, it is observed that for the Patient group the shape factor of the measurement noise converges to values between 1 and 2 whereas for the Control group shape factor values are estimated in the super-Gaussian area.

  5. Acute effects of dokha smoking on the cardiovascular and respiratory systems among UAE male university students.

    PubMed

    Shaikh, Rizwana B; Abdul Haque, Noor Mohammad; Abdul Hadi Khalil Al Mohsen, Hassan; Abdul Hadi Khalil Al Mohsen, Ali; Haitham Khalaf Humadi, Marwa; Zaki Al Mubarak, Zainab; Mathew, Elsheba; Al Sharbatti, Shatha

    2012-01-01

    In the United Arab Emirates (UAE) tobacco use is rampant. A less reported, yet widely used form of smoking native to UAE is midwakh or dhokha. The aim of the study is to assess the acute effects of smoking dokha (Arabian pipe) on the cardiovascular and respiratory systems among male university students in the UAE. A quasi-experimental study was conducted among 97 male volunteers aged more than 17 years. Blood pressure, heart rate and respiratory rate of each participant, were measured before and immediately after smoking. A self administered questionnaire was used to collect personal details and data about smoking pattern. Mean increases in systolic blood pressures (12±1 mmHg), heart rates (20±2 bpm) and respiratory rates (4±1 breaths/min) were observed (p<0.001). A mean decrease in diastolic blood pressures (1±1 mmHg) was observed (p=0.483). Smoking dokha has a significant acute effect on systolic blood pressure, heart rate and respiratory rate. Anti smoking campaigns must address the ill effects of this form of smoking. Results from the study warrant further research into this method of smoking which is becoming more popular.

  6. Respiratory and cardiovascular indicators of autonomic nervous system dysregulation in familial dysautonomia.

    PubMed

    Carroll, Michael S; Kenny, Anna S; Patwari, Pallavi P; Ramirez, Jan-Marino; Weese-Mayer, Debra E

    2012-07-01

    Familial dysautonomia (FD) is a profound sensory and autonomic nervous system disorder associated with an increased risk for sudden death. While bradycardia resulting from loss of sympathetic tone has been hypothesized to play a role in this mortality, extended in-home monitoring has failed to find evidence of low heart rates in children with FD. In order to better characterize the specific cardio-respiratory pathophysiology and autonomic dysregulation in patients with FD, 25 affected children and matched controls were studied with in-home technology, during day and night. Respiratory and heart rate timing and variability metrics were derived from inductance plethysmography and electrocardiogram signals. Selective shortening of inspiratory time produced an overall increase in respiratory frequency in children with FD, with higher daytime respiratory variability (vs. controls), suggesting alterations in central rhythm generating circuits that may contribute to the heightened risk for sudden death. Overall heart rate was increased and variability reduced in FD cases, with elevated heart rates during 20% of study time. Time and frequency domain measures of autonomic tone indicated lower parasympathetic drive in FD patients (vs. controls). These results suggest withdrawal of vagal, rather than sympathetic tone, as a cause for the sustained increase and dramatic lability in respiration and heart rates that characterize this disorder. Copyright © 2011 Wiley Periodicals, Inc.

  7. Respiratory effects of changing the volume load imposed on the peripheral venous system.

    PubMed

    Haouzi, Philippe; Bell, Harold J

    2010-05-31

    This study was designed to determine if acute distension of the hindlimb venous circulation stimulates breathing, thereby contributing to the respiratory responses to rapid changes in total blood volume. In 10 spontaneously breathing anesthetized sheep, we withdrew 15 ml kg(-1) of blood from a femoral vein over approximately 1-2 min. We then compared the respiratory effects of infusing this venous blood back into the femoral veins across two conditions: the inferior vena cava (IVC) was either unobstructed or obstructed by a balloon-tipped catheter. We found that when blood was withdrawn and blood volume decreased, an absolute increase in breathing often occurred, but more importantly that a relative hyperventilation was always observed. When this blood was re-infused into the animal, effectively increasing blood volume, the respiratory response depended upon whether or not the IVC was open or obstructed. With the IVC unobstructed, a relative hypoventilation occurred, accompanied by an increase in alveolar PCO(2). In contrast, when the venous blood was re-infused and the IVC was obstructed, ventilation increased significantly, and the response was often hypocapnic. These results indicate that increasing the volume load in the venous circulation increases breathing, and that the transduction mechanism is contained within the peripheral venous system. Further, the respiratory drive from this sensory mechanism is subject to modulation via changes in the circulatory status, most likely within the arterial side. Copyright 2010 Elsevier B.V. All rights reserved.

  8. A novel simulator for mechanical ventilation in newborns: MEchatronic REspiratory System SImulator for Neonatal Applications.

    PubMed

    Baldoli, Ilaria; Cuttano, Armando; Scaramuzzo, Rosa T; Tognarelli, Selene; Ciantelli, Massimiliano; Cecchi, Francesca; Gentile, Marzia; Sigali, Emilio; Laschi, Cecilia; Ghirri, Paolo; Menciassi, Arianna; Dario, Paolo; Boldrini, Antonio

    2015-08-01

    Respiratory problems are among the main causes of mortality for preterm newborns with pulmonary diseases; mechanical ventilation provides standard care, but long-term complications are still largely reported. In this framework, continuous medical education is mandatory to correctly manage assistance devices. However, commercially available neonatal respiratory simulators are rarely suitable for representing anatomical and physiological conditions; a step toward high-fidelity simulation, therefore, is essential for nurses and neonatologists to acquire the practice needed without any risk. An innovative multi-compartmental infant respirator simulator based on a five-lobe model was developed to reproduce different physio-pathological conditions in infants and to simulate many different kinds of clinical scenarios. The work consisted of three phases: (1) a theoretical study and modeling phase, (2) a prototyping phase, and (3) testing of the simulation software during training courses. The neonatal pulmonary simulator produced allows the replication and evaluation of different mechanical ventilation modalities in infants suffering from many different kinds of respiratory physio-pathological conditions. In particular, the system provides variable compliances for each lobe in an independent manner and different resistance levels for the airway branches; moreover, it allows the trainer to simulate both autonomous and mechanically assisted respiratory cycles in newborns. The developed and tested simulator is a significant contribution to the field of medical simulation in neonatology, as it makes it possible to choose the best ventilation strategy and to perform fully aware management of ventilation parameters. © IMechE 2015.

  9. Avian influenza in Mexico.

    PubMed

    Villarreal, C

    2009-04-01

    The outbreak of highly pathogenic avian influenza (HPAI) H5N2 in Mexico in 1994 led to a clear increase in biosecurity measures and improvement of intensive poultry production systems. The control and eradication measures implemented were based on active surveillance, disease detection, depopulation of infected farms and prevention of possible contacts (identified by epidemiological investigations), improvement of biosecurity measures, and restriction of the movement of live birds, poultry products, by-products and infected material. In addition, Mexico introduced a massive vaccination programme, which resulted in the eradication of HPAI in a relatively short time in two affected areas that had a high density of commercial poultry.

  10. Interaction between nitric oxide and prostanoids in the respiratory system.

    PubMed

    Strapkova, A; Antosova, M; Nosalova, G

    2006-01-01

    Prostaglandins and nitric oxide are important mediators of different physiological and pathophysiological processes. So far, is not characterized clearly their relationship in the conditions of airways hyperreactivity. We tried to detect the relationship of interaction NOS-COX in conditions of exogenous irritant-induced experimental bronchial hyperreactivity. Male guinea pigs were used in the experiment. Animals received agent that inhibits COX activity--diclofenac in a dose of 10 mg/kg i.m. or direct NO donor--molsidomine in a dose of 2 mg/kg i.p. Agents were administered singly (10 days) or in combination (last 3 days). Then animals were exposed to the toluene vapours for two hours over each of three consecutive days to provoke hyperreactivity. Then we recorded the reactivity changes to cumulative doses of histamine or acetylcholine (10(-8)-10(-3) mol/I). The administration of NO donor (10 days) and consecutive COX inhibition (3 days) increased the reactivity of both observed preparations in comparison to agents administered single. COX inhibition during 10 days and consecutive treatment with NO donor (3 days) evoked different changes of tracheal smooth muscle and lung tissue smooth muscle response but had more beneficial effect on the airways reactivity on the whole. It is possible to suppose some participation of both followed enzymatic systems and theirs interaction in our experimental conditions since airways reactivity was affected the by used agents (Fig. 7, Ref. 32).

  11. Precision-cut intestinal slices as a culture system to analyze the infection of differentiated intestinal epithelial cells by avian influenza viruses.

    PubMed

    Punyadarsaniya, Darsaniya; Winter, Christine; Mork, Ann-Kathrin; Amiri, Mahdi; Naim, Hassan Y; Rautenschlein, Silke; Herrler, Georg

    2015-02-01

    Many viruses infect and replicate in their host via the intestinal tract, e.g. many picornaviruses, several coronaviruses and avian influenza viruses of waterfowl. To analyze infection of enterocytes is a challenging task as culture systems for differentiated intestinal epithelial cells are not readily available and often have a life span that is too short for infection studies. Precision-cut intestinal slices (PCIS) from chicken embryos were prepared and shown that the epithelial cells lining the lumen of the intestine are viable for up to 4 days. Using lectin staining, it was demonstrated that α2,3-linked sialic acids, the preferred receptor determinants of avian influenza viruses, are present on the apical side of the epithelial cells. Furthermore, the epithelial cells (at the tips) of the villi were shown to be susceptible to infection by an avian influenza virus of the H9N2 subtype. This culture system will be useful to analyze virus infection of intestinal epithelial cells and it should be applicable also to the intestine of other species.

  12. Stimulating effect of Japanese herbal (kampo) medicine, hochuekkito on upper respiratory mucosal immune system.

    PubMed

    Kiyohara, H; Nagai, T; Munakata, K; Nonaka, K; Hanawa, T; Kim, S J; Yamada, H

    2006-12-01

    Japanese herbal (Kampo) medicine, Hochuekkito (Bu-Zhong-Yi-Qi-Tang in Chinese, TJ-41) and Juzentaihoto (Shi-Quan-Da-Bu-Tang in Chinese, TJ-48) are well-known Kampo formulas used as tonic. Although these medicines have separately been applied to the patients clinically depending on their symptoms, the differences of the pharmacological activities for these medicines have not been fully understood. TJ-48 and TJ-41 were compared for their effects on antibody response in upper respiratory mucosal immune system in vivo. Oral administration of TJ-41 (100 mg kg(-1) per day) to early aged BALB/c mice, which were nasally sensitized with influenza hemagglutinin vaccine, significantly enhanced influenza virus-specific IgA and IgG antibody titers in nasal cavity and sera, respectively. However, oral administration of TJ-48 (100 mg kg(-1) per day) failed to show the enhancing activity. TJ-41 increased not only influenza virus-specific IgA antibody titer but also total IgA antibody titer in nasal cavity. The stimulating activity of TJ-41 disappeared after treatment with methotrexate. The present study strongly suggests that TJ-41 can stimulate the mucosal immune system of upper respiratory tract, and results in enhancement of antigen-specific antibody response in upper respiratory mucosal and systemic immune systems.

  13. Stimulating Effect of Japanese Herbal (Kampo) Medicine, Hochuekkito on Upper Respiratory Mucosal Immune System

    PubMed Central

    Kiyohara, H.; Nagai, T.; Munakata, K.; Nonaka, K.; Hanawa, T.; Kim, S. J.; Yamada, H.

    2006-01-01

    Japanese herbal (Kampo) medicine, Hochuekkito (Bu-Zhong-Yi-Qi-Tang in Chinese, TJ-41) and Juzentaihoto (Shi-Quan-Da-Bu-Tang in Chinese, TJ-48) are well-known Kampo formulas used as tonic. Although these medicines have separately been applied to the patients clinically depending on their symptoms, the differences of the pharmacological activities for these medicines have not been fully understood. TJ-48 and TJ-41 were compared for their effects on antibody response in upper respiratory mucosal immune system in vivo. Oral administration of TJ-41 (100 mg kg−1 per day) to early aged BALB/c mice, which were nasally sensitized with influenza hemagglutinin vaccine, significantly enhanced influenza virus-specific IgA and IgG antibody titers in nasal cavity and sera, respectively. However, oral administration of TJ-48 (100 mg kg−1 per day) failed to show the enhancing activity. TJ-41 increased not only influenza virus-specific IgA antibody titer but also total IgA antibody titer in nasal cavity. The stimulating activity of TJ-41 disappeared after treatment with methotrexate. The present study strongly suggests that TJ-41 can stimulate the mucosal immune system of upper respiratory tract, and results in enhancement of antigen-specific antibody response in upper respiratory mucosal and systemic immune systems. PMID:17173109

  14. IMPACT OF SULPHUR DIOXIDE ON THE RESPIRATORY SYSTEM OF TBILISI POPULATION.

    PubMed

    Vepkhvadze, N; Kiladze, N; Khorbaladze, M; Kochoradze, T; Kugoti, I

    2017-04-01

    The possible relationship between levels of sulphur dioxide (SO2) in the air and the rate of respiratory diseases has been studied. Results of monitoring of main contaminants of outdoor air were analyzed and they are reflected in Environmental Report 2015. Information on morbidity by respiratory system diseases of Tbilisi population is has been taken from 2011-2015 reports of the National Center of Disease Control. Identified that there is no consistent correlation between sulphur dioxide concentration in the air and respiratory system disease rates in the population, including children. Obtained data demonstrated that during the study period maximum SO2 concentration was registered in 2015 - 0,14 mg/m3 (exceeding almost 3 times maximum permissible concentration - 0,5 mg/m3) and in the same year high morbidity rates are registered (incidence -18106,08), though the lowest rates are registered in 2011 (0,09 mg/m3), when incidence of respiratory system diseases in this period (13103.2) exceeds the rates registered in 2012, 2013 and 2014 (12736.4, 11336.3, 13009.0 accordingly). There is no direct correlation between the morbidity rates of 0-15 year old children and SO2 concentration. Maximum incidence rate is registered in 2015 (48487.0) and in the same year is also registered maximum concentration of SO2 (0,14 mg/m3), whereas the lowest rate is registered in 2013 (35538,70), when SO2 concentration in 2013 is lower only by 0.02 mg/m3 compared to the concentration in 2015. Direct correlation between morbidity with asthma in children and concentration of SO2 was not identified. Prevalence of asthma is minimal in 2014 (65,4), maximal in 2012 (207,1), whereas SO2 concentration in 2014 (0,13 mg/m3) exceeds the concentration in 2012 (0,12 mg/m3). It has to be considered, that besides SO2 there are many small intensity adverse factors, which are also risk factors for development of respiratory diseases. Isolated action of these factors with certain concentrations may not

  15. AB025. Diseases with temporary disability of the respiratory system at persons working in hospitals

    PubMed Central

    Hristova, Lidiya; Filippidou, Elisavet-Christina; Chernaeva, Mariya; Tsacheva, Nevena

    2016-01-01

    Background This retrospective study carried out during the period 2009–2015, represents an examination of people working in a Multi-profile Hospital of Varna, suffering from temporary disability of the respiratory system, with regard to structure, dynamics and relationship to their working conditions. Methods The status and the trends of health of more than 1,000 medical practitioners and other people working in the field of health were examined. Used methods sociological, electronic health record, patient charts and statistical methods. An inquiry was carried out with the purpose of risk assessment for all the workers in the hospital. Leading biological, chemical and physical risk factors at the place of work have been measured. Results We found out that the lung diseases take the first place in the temporary morbidity of the contingent under survey. The acute infections of the upper respiratory tract result in absence from work: (I) the yearly average of 100 workers shows 17 new cases and 812 days of absence due to acute bronchitis; (II) the yearly average of 100 workers—13 new cases and 1,035 days of absence from work due to pneumonia and COPD; (III) the yearly average of 100 workers—4 new cases and 859 days of absence from work. Thereby the overall indexes characterizing the temporary incapacity of the respiratory system are: frequency—35.44 new cases and frequency of the days—249.71 days of absences due to these diseases. Failure to observe the requirements for healthy and safe work conditions and especially the use of personal protective equipment, as well as the restriction of the vaccination of the employees, are one of the main reasons for the temporary incapacity disease of the respiratory system. Conclusions Our study, conducted for many years, proved that the respiratory system disorders are increasingly becoming one of the most important medical, social and financial problems. Most important measures to control and to reduce the respiratory

  16. Avian flu to human influenza.

    PubMed

    Lewis, David B

    2006-01-01

    Influenza A viral infection causes substantial annual morbidity and mortality worldwide, particularly for infants, the elderly, and the immunocompromised. The virus mainly replicates in the respiratory tract and is spread by respiratory secretions. A growing concern is the recent identification of H5N1 strains of avian influenza A in Asia that were previously thought to infect only wild birds and poultry, but have now infected humans, cats, pigs, and other mammals, often with fatal results, in an ongoing outbreak. A human pandemic with H5N1 virus could potentially be catastrophic because most human populations have negligible antibody-mediated immunity to the H5 surface protein and this viral subtype is highly virulent. Whether an H5N1 influenza pandemic will occur is likely to hinge on whether the viral strains involved in the current outbreak acquire additional mutations that facilitate efficient human-to-human transfer of infection. Although there is no historical precedent for an H5N1 avian strain causing widespread human-to-human transmission, some type of influenza A pandemic is very likely in the near future. The possibility of an H5N1 influenza pandemic has highlighted the many current limitations of treatment with antiviral agents and of vaccine production and immunogenicity. Future vaccine strategies that may include more robust induction of T-cell responses, such as cytotoxic T lymphocytes, may provide better protection than is offered by current vaccines, which rely solely or mainly on antibody neutralization of infection.

  17. Neuroendocrine diffuse system of the respiratory tract of Rana temporaria: an immunocytochemical study.

    PubMed

    Bodegas, M E; Montuenga, L M; Sesma, P

    1995-11-01

    The neuroendocrine cell population of the respiratory system of Rana temporaria has been studied by means of immunocytochemical methods at the light-microscopic level. Isolated or clustered endocrine cells have been found in the epithelium of the buccal cavity, glottis, larynx, and lung. Nine different types of endocrine isolated cell types can be distinguished according to their immunoreactivity to several regulatory peptides [calcitonin, substance P, bombesin, peptide histidine isoleucine (PHI), cholecystokinin (CCK), and endothelin 1] and neuroendocrine markers (7B2, chromogranin, and serotonin). Neuroepithelial bodies are innervated clusters of cells simultaneously immunoreactive for serotonin and 7B2. Nerves and/or neurons have been detected in different regions of the respiratory system using antibodies against protein gene product 9.5, serotonin, calcitonin gene-related peptide (CGRP), substance P, PHI, helodermin, and CCK.

  18. Cigarette smoking and mechanisms of susceptibility to infections of the respiratory tract and other organ systems.

    PubMed

    Feldman, Charles; Anderson, Ronald

    2013-09-01

    The predisposition of cigarette smokers for development of oral and respiratory infections caused by microbial pathogens is well recognised, with those infected with the human immunodeficiency virus (HIV) at particularly high risk. Smoking cigarettes has a suppressive effect on the protective functions of airway epithelium, alveolar macrophages, dendritic cells, natural killer (NK) cells and adaptive immune mechanisms, in the setting of chronic systemic activation of neutrophils. Cigarette smoke also has a direct effect on microbial pathogens to promote the likelihood of infective disease, specifically promotion of microbial virulence and antibiotic resistance. In addition to interactions between smoking and HIV infection, a number of specific infections/clinical syndromes have been associated epidemiologically with cigarette smoking, including those of the upper and lower respiratory tract, gastrointestinal tract, central nervous and other organ systems. Smoking cessation benefits patients in many ways, including reduction of the risk of infectious disease.

  19. A wearable respiratory biofeedback system based on generalized body sensor network.

    PubMed

    Liu, Guan-Zheng; Huang, Bang-Yu; Wang, Lei

    2011-06-01

    Wearable medical devices have enabled unobtrusive monitoring of vital signs and emerging biofeedback services in a pervasive manner. This article describes a wearable respiratory biofeedback system based on a generalized body sensor network (BSN) platform. The compact BSN platform was tailored for the strong requirements of overall system optimizations. A waist-worn biofeedback device was designed using the BSN. Extensive bench tests have shown that the generalized BSN worked as intended. In-situ experiments with 22 subjects indicated that the biofeedback device was discreet, easy to wear, and capable of offering wearable respiratory trainings. Pilot studies on wearable training patterns and resultant heart rate variability suggested that paced respirations at abdominal level and with identical inhaling/exhaling ratio were more appropriate for decreasing sympathetic arousal and increasing parasympathetic activities.

  20. A Wearable Respiratory Biofeedback System Based on Generalized Body Sensor Network

    PubMed Central

    Liu, Guan-Zheng; Huang, Bang-Yu

    2011-01-01

    Abstract Wearable medical devices have enabled unobtrusive monitoring of vital signs and emerging biofeedback services in a pervasive manner. This article describes a wearable respiratory biofeedback system based on a generalized body sensor network (BSN) platform. The compact BSN platform was tailored for the strong requirements of overall system optimizations. A waist-worn biofeedback device was designed using the BSN. Extensive bench tests have shown that the generalized BSN worked as intended. In-situ experiments with 22 subjects indicated that the biofeedback device was discreet, easy to wear, and capable of offering wearable respiratory trainings. Pilot studies on wearable training patterns and resultant heart rate variability suggested that paced respirations at abdominal level and with identical inhaling/exhaling ratio were more appropriate for decreasing sympathetic arousal and increasing parasympathetic activities. PMID:21545293

  1. Effects of volatile substance abuse on the respiratory system in adolescents

    PubMed Central

    2011-01-01

    Aim Inhalant abuse is a prevalent and often overlooked form of substance abuse in adolescents. Chronic inhalant abuse can damage respiratory, cardiac, renal, hepatic, and neurologic systems. This study aims to determine the physiologic effects of inhaling solvents on the respiratory functions. Methods The general health status of the subjects was assessed by history taking, physical examination and a questionnaire which was designed to show the severity of respiratory symptoms. Spirometry, ventilation/perfusion scintigraphy, and high resolution computed tomography (HRCT) were performed to assess pulmonary functions and anatomy. Results Thirty-one male volatile substance abusers and 19 control subjects were included in the study. The mean age of onset of inhalant use was 14.6 ± 2.2 (9-18) years and duration of drug use was 3.7 ± 1.7 years. The most common respiratory symptoms in volatile substance abusers were nasal congestion (45.2%), sputum (38.7%), exercise intolerance (32.3%) and cough (22.6%). Results of spirometric studies showed 12 (41.4%) subjects with low FVC values < 80% of predicted, indicative of restrictive ventilatory pattern in the study group. Although the difference was not statistically significant, restrictive ventilatory pattern was higher in the study group. There was no statistically significant correlation between restrictive ventilatory pattern and the age of onset/duration/frequency of inhalant abuse, respiratory symptoms and scintigraphic abnormalities. Subjects who had restrictive pattern in their pulmonary function tests were more likely to have abnormal findings at HRCT (p < 0.01). Conclusion This study has shown a positive correlation between volatile substance abuse and the development of restrictive ventilatory pattern, but more comprehensive studies are needed for more precise conclusions. PMID:22958270

  2. [SOME CLINICAL AND CYTOKINE FEATURES OF THE CLINICAL COURSE OF RECURRENT RESPIRATORY SYSTEM DISEASES IN CHILDREN WITH THE TOXOCARIASIS INVASION].

    PubMed

    Dralova, A; Usachova, E

    2015-12-01

    The aim of the present study was to analyze clinical and cytokine features of recurrent respiratory system diseases in children with toxocariasis. 50 children aged 1 to 17 years (mean age - 10±5 years) with recurrent current of respiratory system disorders were studied. During the survey such clinical manifestations of the respiratory system disorders as obstructive bronchitis (50%), bronchial asthma (30%), pneumonia (10%) and laryngotracheitis (10%) have been revealed. Statistical analysis of the results was performed using the software package STATISTICA 6.1 (SNANSOFT). We have shown that the disorders of respiratory system in case of toxocariasis invasion often occur with severe intoxication and bronchial obstruction syndromes, temperature reaction, respiratory insufficiency and hepatomegaly. A prolonged course of the disease has been noted. "Inflammatory" indicators of general blood analysis, such as leukocytosis and increased of ESR have been recorded in patients with respiratory system disorders in children with T.canis infection significantly more often, significant "allergic" laboratory changes were in the form of eosinophilia. High average levels of pro-inflammatory IL-6, as well as low levels of IL 5 have been determined in children suffering from the respiratory system disorders and with toxocariasis invasion in the anamnesis. The obtained findings require further study.

  3. Respiratory System Function in Patients After Minimally Invasive Aortic Valve Replacement Surgery: A Case Control Study.

    PubMed

    Stoliński, Jarosław; Musiał, Robert; Plicner, Dariusz; Andres, Janusz

    The aim of the study was to comparatively analyze respiratory system function after minimally invasive, through right minithoracotomy aortic valve replacement (RT-AVR) to conventional AVR. Analysis of 201 patients scheduled for RT-AVR and 316 for AVR between January 2010 and November 2013. Complications of the respiratory system and pulmonary functional status are presented. Complications of the respiratory system occurred in 16.8% of AVR and 11.0% of RT-AVR patients (P = 0.067). The rate of pleural effusions, thoracenteses, pneumonias, or phrenic nerve dysfunctions was not significantly different between groups. Perioperative mortality was 1.9% in AVR and 1.0% in RT-AVR (P = 0.417). Mechanical ventilation time after surgery was 9.7 ± 5.9 hours for AVR and 7.2 ± 3.2 hours for RT-AVR patients (P < 0.001). Stroke (odds ratio [OR] = 13.4, P = 0.008), increased postoperative blood loss (OR = 9.6, P < 0.001), and chronic obstructive pulmonary disease (OR = 7.7, P < 0.001) were risk factors of prolonged mechanical lung ventilation. A week after surgery, the results of most pulmonary function tests were lower in the AVR than in the RT-AVR group (P < 0.001 was seen for forced expiratory volume in the first second, vital capacity, total lung capacity, maximum inspiratory pressure and maximum expiratory pressure, P = 0.377 was seen for residual volume). Right anterior aortic valve replacement minithoracotomy surgery with single-lung ventilation did not result in increased rate of respiratory system complications. Spirometry examinations revealed that pulmonary functional status was more impaired after AVR in comparison with RT-AVR surgery.

  4. Systems Biology and Clinical Practice in Respiratory Medicine. The Twain Shall Meet.

    PubMed

    Thamrin, Cindy; Frey, Urs; Kaminsky, David A; Reddel, Helen K; Seely, Andrew J E; Suki, Béla; Sterk, Peter J

    2016-11-01

    Respiratory diseases are highly complex, being driven by host-environment interactions and manifested by inflammatory, structural, and functional abnormalities that vary over time. Traditional reductionist approaches have contributed vastly to our knowledge of biological systems in health and disease to date; however, they are insufficient to provide an understanding of the behavior of the system as a whole. In this Pulmonary Perspective, we discuss systems biology approaches, especially but not limited to the study of the lung as a complex system. Such integrative approaches take into account the large number of dynamic subunits and their interactions found in biological systems. Borrowing methods from physics and mathematics, it is possible to study the collective behavior of these systems over time and in a multidimensional manner. We first examine the physiological basis for complexity in the respiratory system and its implications for disease. We then expand on the potential applications of systems biology methods to study complex systems, within the context of diagnosis and monitoring of respiratory diseases including asthma, chronic obstructive pulmonary disease (COPD), and critical illness. We summarize the significant advances made in recent years using systems approaches for disease phenotyping, applied to data ranging from the molecular to clinical level, obtained from large-scale asthma and COPD networks. We describe new studies using temporal complexity patterns to characterize asthma and COPD and predict exacerbations as well as predict adverse outcomes in critical care. We highlight new methods that are emerging with this approach and discuss remaining questions that merit greater attention in the field.

  5. Avian influenza virus in pregnancy.

    PubMed

    Liu, Shelan; Sha, Jianping; Yu, Zhao; Hu, Yan; Chan, Ta-Chien; Wang, Xiaoxiao; Pan, Hao; Cheng, Wei; Mao, Shenghua; Zhang, Run Ju; Chen, Enfu

    2016-07-01

    The unprecedented epizootic of avian influenza viruses, such as H5N1, H5N6, H7N1 and H10N8, has continued to cause disease in humans in recent years. In 2013, another novel influenza A (H7N9) virus emerged in China, and 30% of those patients died. Pregnant women are particularly susceptible to avian influenza and are more likely to develop severe complications and to die, especially when infection occurs in the middle and late trimesters. Viremia is believed to occur infrequently, and thus vertical transmission induced by avian influenza appears to be rare. However, avian influenza increases the risk of adverse pregnancy outcomes, including spontaneous abortion, preterm birth and fatal distress. This review summarises 39 cases of pregnant women and their fetuses from different countries dating back to 1997, including 11, 15 and 13 infections with H7N9, H5N1 and the 2009 pandemic influenza (H1N1), respectively. We analysed the epidemic features, following the geographical, population and pregnancy trimester distributions; underlying diseases; exposure history; medical timelines; human-to-human transmission; pathogenicity and vertical transmission; antivirus treatments; maternal severity and mortality and pregnancy outcome. The common experiences reported in different countries and areas suggest that early identification and treatment are imperative. In the future, vigilant virologic and epidemiologic surveillance systems should be developed to monitor avian influenza viruses during pregnancy. Furthermore, extensive study on the immune mechanisms should be conducted, as this will guide safe, rational immunomodulatory treatment among this high-risk population. Most importantly, we should develop a universal avian influenza virus vaccine to prevent outbreaks of the different subtypes. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  6. Development of a three-dimensional model of the human respiratory system for dosimetric use

    PubMed Central

    2013-01-01

    Background Determining the fate of inhaled contaminants in the human respiratory system has challenged scientists for years. Human and animal studies have provided some data, but there is a paucity of data for toxic contaminants and sensitive populations (such as children, elderly, diseased). Methods Three-dimensional modeling programs and publicly available human physiology data have been used to develop a comprehensive model of the human respiratory system. Results The in silico human respiratory system model, which includes the extrathoracic region (nasal, oral, pharyngeal, and laryngeal passages), the upper airways (trachea and main bronchi), the tracheobronchial tree, and branching networks through alveolar region, allows for virtually any variation of airway geometries and disease states. The model allows for parameterization of variables that define the subject’s airways by integrating morphological changes created by disease, age, etc. with a dynamic morphology. Conclusions The model can be used for studies of sensitive populations and the homeland security community, in cases where inhalation studies on humans cannot be conducted with toxic contaminants of interest. PMID:23634755

  7. Regenerative medicine for the respiratory system: distant future or tomorrow's treatment?

    PubMed

    Brouwer, Katrien M; Hoogenkamp, Henk R; Daamen, Willeke F; van Kuppevelt, Toin H

    2013-03-01

    Regenerative medicine (RM) is a new field of biomedical science that focuses on the regeneration of tissues and organs and the restoration of organ function. Although regeneration of organ systems such as bone, cartilage, and heart has attracted intense scientific research over recent decades, RM research regarding the respiratory system, including the trachea, the lung proper, and the diaphragm, has lagged behind. However, the last 5 years have witnessed novel approaches and initial clinical applications of tissue-engineered constructs to restore organ structure and function. In this regard, this article briefly addresses the basics of RM and introduces the key elements necessary for tissue regeneration, including (stem) cells, biomaterials, and extracellular matrices. In addition, the current status of the (clinical) application of RM to the respiratory system is discussed, and bottlenecks and recent approaches are identified. For the trachea, several initial clinical studies have been reported and have used various combinations of cells and scaffolds. Although promising, the methods used in these studies require optimization and standardization. For the lung proper, only (stem) cell-based approaches have been probed clinically, but it is becoming apparent that combinations of cells and scaffolds are required to successfully restore the lung's architecture and function. In the case of the diaphragm, clinical applications have focused on the use of decellularized scaffolds, but novel scaffolds, with or without cells, are clearly needed for true regeneration of diaphragmatic tissue. We conclude that respiratory treatment with RM will not be realized tomorrow, but its future looks promising.

  8. [Respiratory distress].

    PubMed

    Galili, D; Garfunkel, A; Elad, S; Zusman, S P; Malamed, S F; Findler, M; Kaufman, E

    2002-01-01

    Dental treatment is usually conducted in the oral cavity and in very close proximity to the upper respiratory airway. The possibility of unintentionally compromising this airway is high in the dental environment. The accumulation of fluid (water or blood) near to the upper respiratory airway or the loosening of teeth fragmentations and fallen dental instruments can occur. Also, some of the drugs prescribed in the dental practice are central nervous system depressants and some are direct respiratory drive depressors. For this reason, awareness of the respiratory status of the dental patient is of paramount importance. This article focuses on several of the more common causes of respiratory distress, including airway obstruction, hyperventilation, asthma, bronchospasm, pulmonary edema, pulmonary embolism and cardiac insufficiency. The common denominator to all these conditions described here is that in most instances the patient is conscious. Therefore, on the one hand, valuable information can be retrieved from the patient making diagnosis easier than when the patient is unconscious. On the other hand, the conscious patient is under extreme apprehension and stress under such situations. Respiratory depression which occurs during conscious sedation or following narcotic analgesic medication will not be dealt with in this article. Advanced pain and anxiety control techniques such as conscious sedation and general anesthesia should be confined only to operators who undergo special extended training.

  9. Respiratory System

    MedlinePlus

    ... exchange between the capillaries and alveoli. CO2 is carbon dioxide, and O2 is oxygen. Airways The airways are ... rich air to your lungs. They also carry carbon dioxide, a waste gas, out of your lungs. The ...

  10. Prevalence of low pathogenicity avian influenza virus during 2005 in two U.S. live bird market systems.

    PubMed

    Yee, Karen S; Novick, Christy A; Halvorson, David A; Dao, Nguyet; Carpenter, Tim E; Cardona, Carol J

    2011-06-01

    Oropharyngeal and cloacal swabs were collected from poultry sold in two live bird market (LBM) systems to estimate the prevalence of low pathogenicity avian influenza virus (LPAIV) shedding during the summer and fall of 2005. Random sampling was conducted in three LBMs in Minnesota where 50 birds were sampled twice weekly for 4 wk, and in three LBMs in a California marketing system. A stratified systematic sampling method was used to collect samples from Southern California LBMs, where LPAIV was detected during routine surveillance. No LPAIV was detected in the LBM system in Minnesota where realtime reverse transcription-PCR (RT-PCR) was conducted on oropharyngeal samples. RT-PCR was performed on swabs taken from 290 of 14,000, 65 of 252, and 60 of 211 birds at the three Southern California LBMs. The number of samples collected was based on the number of birds, age of the birds, and number of species present in the LBM. Virus isolation, subtyping, and sequencing of the hemagglutinin, neuraminidase, and other internal protein genes was performed on AIV-positive samples. The estimated prevalence of LPAIV in California was 0.345% in an LBM/supply farm with multiple ages of Japanese quail, 3% in an LBM with multiple ages and strains of chickens present, and 49.8% in an LBM with multiple species, multiple strains, and multiple ages. The positive virus samples were all LPAIV H6N2 and closely related to viruses isolated from Southern California in 2001 and 2004. Little or no comingling of poultry may contribute to little or no LPAIV detection in the LBMs.

  11. Respiratory systems abnormalities and clinical milestones for patients with amyotrophic lateral sclerosis with emphasis upon survival.

    PubMed

    Vender, Robert L; Mauger, David; Walsh, Susan; Alam, Shoaib; Simmons, Zachary

    2007-02-01

    Respiratory system complications and abnormalities are common in patients with amyotrophic lateral sclerosis (ALS) and respiratory failure remains the most common cause of death. Extensive epidemiological longitudinal data have documented the extent, magnitude, and clinical course of these abnormalities, but few studies have provided objective information that can have prognostic significance for individual patients. In this study, the reported data represent results from a retrospective review of the medical records of 153 patients with ALS cared for at a single institution (The Penn State Milton S. Hershey Medical Center) over a 50-month period. Medical information in relation to respiratory system abnormalities and complications including pulmonary function measurements was extracted for data analyses. The intent of this review of longitudinal data from a relatively large cohort of patients with ALS was to identify clinically relevant easily-identifiable objective information and clinical milestones that could have potential prognostic significance when applied to individual patients. Demographic data including gender, survival outcome, respiratory symptoms, age of disease onset, and age at death were similar to previously published epidemiological studies: mean age at ALS disease onset was 58.9+/-12.7 years, and mean age at death was 66.7+/-10.8 years. For 151 patients with available data, the incidence of study defined respiratory complications included infectious pneumonia 13 (9%), venothromboembolism 9 (6%), and tracheostomy and mechanical ventilation 6 (4%). For 139 patients with serial measurements of forced vital capacity (FVC), median values for calculated rate of decline in FVC was 97 ml/30 days (2.4% predicted/30 days); 25% of patients had FVC rates of decline less than 52 ml/30 days (1.4% predicted/30 days) and 25% had rates of decline greater than 170 ml/30 days (4.4% predicted/30 days). Stratifying patients into two distinct clinical subgroups based

  12. Rational design of avian metapneumovirus live attenuated vaccines by inhibiting viral messenger RNA cap methyltransferase

    USDA-ARS?s Scientific Manuscript database

    Avian metapneumovirus (aMPV), also known as avian pneumovirus or turkey rhinotracheitis, is a non-segmented negative-sense RNA virus belonging to the family of Paramyxoviridae, the subfamily Pneumovirinae, and the genus Metapneumovirus. aMPV is the causative agent of respiratory tract infection and ...

  13. Optimizing an Internal Airway Percussion Device for Facilitating Exhalate Diagnostics of the Human Respiratory System.

    PubMed

    Afshar-Mohajer, Nima; Wu, Chang-Yu; Tsai, Hsiu-Wen; Silverman, Erin; Davenport, Paul; Hegde, Satyanarayan

    2015-03-31

    There is an urgent need for simple, inexpensive, noninvasive, and repeatable technique for the diagnosis of pulmonary diseases. Bronchoalveolar lavage, which is the gold standard diagnostic method for pulmonary diseases, does not meet any of these criteria. This study seeks to develop and optimize a novel technique of Internal Airway Percussion (IAP) to facilitate the collection and characterization of human respiratory system exhalates. The IAP device transmits sound waves into the respiratory tract, thereby increasing the release of aerosolized particles within exhaled breath by vibrating both lungs. Nine combinations of sound wave frequencies and amplitudes were studied to determine optimal frequency and amplitude combination for maximum aerosol particle gain in healthy human subjects. Square-shaped sound waves generated at 15 Hz and 3 cm H2O resulted in 15 times greater total mass of collected particles in the first 2 min of sampling, and 1.2 to 1.5 times increase in count median diameter of the particles. IAP, optimized at the frequency of 15 Hz and the pressure amplitude of 3 cm H2O, increased the total mass of particles exhaled from the human respiratory system. IAP has a broad range of potential clinical applications for noninvasive diagnosis of lung diseases including asthma, cystic fibrosis, pneumonia, and lung cancer, along with improvement of mucus clearance.

  14. Multiple-System Atrophy with Cerebellar Predominance Presenting as Respiratory Insufficiency and Vocal Cords Paralysis

    PubMed Central

    de Mello, Ramon Andrade Bezerra; Ferreira, Diana; Dias da Costa, José Manuel; Rosas, Maria José; Quinaz, João Manuel

    2010-01-01

    Background. MSA (Multiple System Atrophy) may be associated either with Parkinsonism or with cerebellar ataxia (MSA-c subtype). It is considered a rare disease, but many patients are misdiagnosed as suffering from idiopathic Parkinson's disease. In this paper, we report a case of a patient admitted with respiratory failure and vocal cords paralysis due to MSA-c. Case Report. A 79-year-old Caucasian woman was admitted in March 2010 with dyspnea, asthenia, stridor, and respiratory failure needing noninvasive ventilation. She had orthostatic blood pressure decline, constipation, insomnia, daytime sleepiness, and snoring. The neurologic examination revealed cerebellar ataxia. A laryngoscopy revealed vocal cord paralysis in midline position and tracheostomy was performed. The Brain Magnetic Resonance Imaging revealed atrophy of middle cerebellar peduncles and pons with the “hot cross bun sign.” Conclusion. Although Multiple-system atrophy is a rare disease, unexplained respiratory failure, bilateral vocal cord paralysis, or stridor should lead to consider MSA as diagnosis. PMID:20862340

  15. Whether a novel drug delivery system can overcome the problem of biofilms in respiratory diseases?

    PubMed

    Dua, Kamal; Shukla, Shakti D; Tekade, Rakesh K; Hansbro, Philip M

    2017-02-01

    Biofilm comprises a community of microorganisms which form on medical devices and can lead to various threatening infections. It is a major concern in various respiratory diseases like cystic fibrosis, chronic obstructive pulmonary disease, etc. The treatment strategies for such infections are difficult due to the resistance of the microflora existing in the biofilms against various antimicrobial agents, thus posing threats to the patient population. The present era witnesses the beginning of research to understand the biofilm physiology and the associated microfloral diversity by applying -omics approaches. There is very limited information about how the deposition of biofilm on the respiratory devices and lung itself affects the drug delivered, the delivery system, and other implications. The present mini review summarizes the basic introduction to the biofilms and its avoidance using various drug delivery systems with special emphasis on the respiratory diseases. Understanding the approaches, principles, and modes of drug delivery involved in preventing biofilm deposition will be of interest to both biological and formulation scientists, thereby opening avenues to explore the new vistas in biofilm research for identifying better treatments for pulmonary infectious diseases.

  16. Drug candidates and model systems in respiratory syncytial virus antiviral drug discovery.

    PubMed

    Heylen, Elisabeth; Neyts, Johan; Jochmans, Dirk

    2017-03-01

    The development of antiviral strategies to prevent or treat respiratory syncytial virus (RSV) infections is of great importance, especially considering the fact that RSV is one of the most important causes of pediatric respiratory infections. However, despite intense efforts, there is no antiviral or vaccine approved for the prevention or treatment of RSV infections. Several inhibitors, targeting different RSV proteins have been discovered over the past decade. We here review the most important chemical series as well as recent developments in understanding which viral proteins and/or host cell factors are good targets for inhibition of viral replication. In addition, we highlight the current in vitro and in vivo model systems of the disease. A number of molecules are currently in (advanced) preclinical or clinical development. Significant breakthroughs in the field may be expected in the upcoming years.

  17. [Proteomic analysis of exhaled breath condensate for diagnosis of pathologies of the respiratory system].

    PubMed

    Kononikhin, A S; Fedorchenko, K Yu; Ryabokon, A M; Starodubtseva, N L; Popov, I A; Zavialova, M G; Anaev, E C; Chuchalin, A G; Varfolomeev, S D; Nikolaev, E N

    2015-01-01

    Study of the proteomic composition of exhaled breath condensate (EBC), is a promising non-invasive method for the diagnosis of the respiratory tract diseases in patients. In this study the EBC proteomic composition of the 79 donors, including patients with different pathologies of the respiratory system has been investigated. Cytoskeletal keratins type II (1, 2, 3, 4, 5, 6) and cytoskeletal keratins the type I (9, 10, 14, 15, 16) were invariant for all samples. Analyzing the frequency of occurrence of proteins in different groups of examined patients, several categories of protein have been recognized: found in all pathologies (Dermcidin, Alpha-1-microglobulin, SHROOM3), found in several pathologies (CSTA, LCN1, JUP, PIP, TXN), and specific for a single pathology (PRDX1, Annexin A1/A2). The EBC analysis by HPLC-MS/MS can be used to identify potential protein markers characteristic for pathologies such as chronic obstructive pulmonary disease (PRDX1) and pneumonia (Annexin A1/A2).

  18. Consecutive Food and Respiratory Allergies Amplify Systemic and Gut but Not Lung Outcomes in Mice.

    PubMed

    Bouchaud, Gregory; Gourbeyre, Paxcal; Bihouée, Tiphaine; Aubert, Phillippe; Lair, David; Cheminant, Marie-Aude; Denery-Papini, Sandra; Neunlist, Michel; Magnan, Antoine; Bodinier, Marie

    2015-07-22

    Epidemiological data suggest a link between food allergies and the subsequent development of asthma. Although this progression may result from the additional effects of exposure to multiple allergens, whether both allergies amplify each other's effects remains unknown. This study investigated whether oral exposure to food allergens influences the outcomes of subsequent respiratory exposure to an asthma-inducing allergen. Mice were sensitized and orally challenged with wheat (FA) and then exposed to house dust mite (HDM) extract (RA). Immunoglobulin (Ig), histamine, and cytokine levels were assayed by ELISA. Intestinal and lung physiology was assessed. Ig levels, histamine release, and cytokine secretion were higher after exposure to both allergens than after separate exposure to each. Intestinal permeability was higher, although airway hyper-responsiveness and lung inflammation remained unchanged. Exposure to food and respiratory allergens amplifies systemic and gut allergy-related immune responses without any additional effect on lung function and inflammation.

  19. MEchatronic REspiratory System SImulator for Neonatal Applications (MERESSINA) project: a novel bioengineering goal.

    PubMed

    Scaramuzzo, Rosa T; Ciantelli, Massimiliano; Baldoli, Ilaria; Bellanti, Lisa; Gentile, Marzia; Cecchi, Francesca; Sigali, Emilio; Tognarelli, Selene; Ghirri, Paolo; Mazzoleni, Stefano; Menciassi, Arianna; Cuttano, Armando; Boldrini, Antonio; Laschi, Cecilia; Dario, Paolo

    2013-01-01

    Respiratory function is mandatory for extrauterine life, but is sometimes impaired in newborns due to prematurity, congenital malformations, or acquired pathologies. Mechanical ventilation is standard care, but long-term complications, such as bronchopulmonary dysplasia, are still largely reported. Therefore, continuous medical education is mandatory to correctly manage devices for assistance. Commercially available breathing function simulators are rarely suitable for the anatomical and physiological realities. The aim of this study is to develop a high-fidelity mechatronic simulator of neonatal airways and lungs for staff training and mechanical ventilator testing. The project is divided into three different phases: (1) a review study on respiratory physiology and pathophysiology and on already available single and multi-compartment models; (2) the prototyping phase; and (3) the on-field system validation.

  20. MEchatronic REspiratory System SImulator for Neonatal Applications (MERESSINA) project: a novel bioengineering goal

    PubMed Central

    Scaramuzzo, Rosa T; Ciantelli, Massimiliano; Baldoli, Ilaria; Bellanti, Lisa; Gentile, Marzia; Cecchi, Francesca; Sigali, Emilio; Tognarelli, Selene; Ghirri, Paolo; Mazzoleni, Stefano; Menciassi, Arianna; Cuttano, Armando; Boldrini, Antonio; Laschi, Cecilia; Dario, Paolo

    2013-01-01

    Respiratory function is mandatory for extrauterine life, but is sometimes impaired in newborns due to prematurity, congenital malformations, or acquired pathologies. Mechanical ventilation is standard care, but long-term complications, such as bronchopulmonary dysplasia, are still largely reported. Therefore, continuous medical education is mandatory to correctly manage devices for assistance. Commercially available breathing function simulators are rarely suitable for the anatomical and physiological realities. The aim of this study is to develop a high-fidelity mechatronic simulator of neonatal airways and lungs for staff training and mechanical ventilator testing. The project is divided into three different phases: (1) a review study on respiratory physiology and pathophysiology and on already available single and multi-compartment models; (2) the prototyping phase; and (3) the on-field system validation. PMID:23966804

  1. Trade patterns facilitating highly pathogenic avian influenza virus dissemination in the free-grazing layer duck system in Vietnam.

    PubMed

    Meyer, A; Dinh, T X; Han, T A; Do, D V; Nhu, T V; Pham, L T; Nguyen, T T T; Newman, S; Häsler, B; Pfeiffer, D U; Vergne, T

    2017-08-16

    Highly pathogenic avian influenza (HPAI) viruses continue to threaten smallholder poultry producers in several South-east Asian countries, including Vietnam. In particular, the free-grazing duck system has been repeatedly highlighted as a major risk factor for HPAI outbreaks. Free-grazing ducks, which scavenge on rice paddies after the harvest, account for a large proportion of the duck population in Vietnam and the wider South-east Asian region. However, the structure and dynamics of the free-grazing duck production from farm to consumption has not been described for Vietnam. In this study, we used a value chain approach to provide a complete picture of the actors involved in the production and marketing of free-grazing duck eggs and spent layer ducks, as well as to investigate the governance structure of this food system. Group interviews and key informant interviews were conducted in two provinces located in the Mekong River Delta (MRD) and the Red River Delta (RRD). The results presented here highlight similarities and differences in farming and trade practices between the two provinces. The trade of spent layer ducks involved large volumes of live ducks being sent to China and Cambodia for consumption, generating a substantial risk of transboundary spread of pathogens, including HPAI viruses. We describe the major role of "duck yards", which act as hubs in the northbound trade of spent layer ducks. These yards should be considered as essential links in the value chain of spent layer ducks when considering HPAI surveillance and control. The veterinary authorities are only marginally involved in the value chain activities, and their influence could be strengthened by increasing surveillance activities for instance in duck yards. Last, we discuss the dynamics of the duck value chain and further implications for future HPAI management policies. © 2017 The Authors. Transboundary and Emerging Diseases Published by Blackwell Verlag GmbH.

  2. Neuroprotective effects of testosterone in a naturally-occurring model of neurodegeneration in the adult avian song control system

    PubMed Central

    Thompson, Christopher K.; Brenowitz, Eliot A.

    2010-01-01

    Seasonal regression of the avian song control system, a series of discrete brain nuclei that regulate song learning and production, serves as a useful model for investigating the neuroprotective effects of steroids. In seasonally-breeding male songbirds, the song control system regresses rapidly when males are transferred from breeding to nonbreeding physiological conditions. One nucleus in particular, HVC, regresses in volume by 22% within days of castration and transfer to a nonbreeding photoperiod. This regression is primarily mediated by a 30% decrease in neuron number, a result of a caspase-dependent process of programmed cell death. Here we examine whether testosterone (T) can act locally in the brain to prevent seasonal-like neurodegeneration in HVC. We began to infuse T intracerebrally near HVC on one side of the brain in breeding-condition male white-crowned sparrows two days prior to T-withdrawal and shifting them to short day photoperiods. The birds were sacrificed three or seven days later. Local T-infusion significantly protected ipsilateral HVC from volume regression and neuron loss. In addition, T-infusion significantly reduced the number, density, and number/1000 neurons of activated caspase-3 cells and cells positive for cleaved PARP, both markers for programmed cell death, in the ipsilateral HVC. T-infusion near HVC also prevented regression of ipsilateral efferent targets of HVC neurons, including the volumes of RA and Area X, and the soma area and density of RA neurons. Thus T can act locally in the brain to have a neuroprotective effect and act transsynaptically to prevent regression of efferent nuclei. PMID:20963827

  3. Differential display system with vertebrate-common degenerate oligonucleotide primers: uncovering genes responsive to dioxin in avian embryonic liver.

    PubMed

    Teraoka, Hiroki; Ito, Shino; Ikeda, Haruki; Kubota, Akira; Abou Elmagd, M M; Kitazawa, Takio; Kim, Eun-Young; Iwata, Hisato; Endoh, Daiji

    2012-01-03

    To assess possible impacts of environmental pollutants on gene expression profiles in a variety of organisms, we developed a novel differential display system with primer sets that are common in seven vertebrate species, based on degenerate oligonucleotide-primed PCR (DOP-PCR). An 8-mer inverse repeat motif was found in most transcripts from the seven vertebrates including fish to primates with detailed transcriptome information; more than 10,000 motifs were recognized in common in the transcripts of the seven species. Among them, we selected 275 common motifs that cover about 40-70% of transcripts throughout these species, and designed 275 DOP-PCR primers that were common to seven vertebrate species (common DOP-PCR primers). To detect genes responsive to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in developing embryos, differential display with common DOP-PCR primers was applied to embryonic liver of two avian species, the chicken (Gallus gallus) and the common cormorant (Phalacrocorax carbo), which were exposed in ovo to TCDD. The cDNA bands that showed differences between the control and TCDD-treated groups were sequenced and the mRNA expression levels were confirmed by real-time RT-PCR. This approach succeeded in isolating novel dioxin-responsive genes that include 10 coding genes in the chicken, and 1 coding gene and 1 unknown transcript in the cormorant, together with cytochrome P450 1As that have already been well established as dioxin markers. These results highlighted the usefulness of systematically designed novel differential display systems to search genes responsive to chemicals in vertebrates, including wild species, for which transcriptome information is not available.

  4. Modulation of virulence genes by the two-component system PhoP-PhoQ in avian pathogenic Escherichia coli.

    PubMed

    Tu, Jian; Huang, Boyan; Zhang, Yu; Zhang, Yuxi; Xue, Ting; Li, Shaocan; Qi, Kezong

    2016-01-01

    Avian pathogenic Escherichia coli (APEC) infections are a very important problem in the poultry industry. PhoP-PhoQ is a two-component system that regulates virulence genes in APEC. In this study, we constructed strains that lacked the PhoP or PhoQ genes to assess regulation of APEC pathogenicity by the PhoP-PhoQ two-component system. The PhoP mutant strain AE18, PhoQ mutant strain AE19, and PhoP/PhoQ mutant strain AE20 were constructed by the Red homologous recombination method. Swim plates were used to evaluate the motility of the APEC strains, viable bacteria counting was used to assess adhesion and invasion of chick embryo fibroblasts, and Real-Time PCR was used to measure mRNA expression of virulence genes. We first confirmed that AE18, AE19, and AE20 were successfully constructed from the wild-type AE17 strain. AE18, AE19, and AE20 showed significant decreases in motility of 70.97%, 83.87%, and 37.1%, respectively, in comparison with AE17. Moreover, in comparison with AE17, AE18, AE19, and AE20 showed significant decreases of 63.11%, 65.42%, and 30.26%, respectively, in CEF cell adhesion, and significant decreases of 59.83%, 57.82%, and 37.90%, respectively, in CEF cell invasion. In comparison with AE17, transcript levels of sodA, polA, and iss were significantly decreased in AE18, while transcript levels of fimC and iss were significantly decreased in AE19. Our results demonstrate that deletion of PhoP or PhoQ inhibits invasion and adhesion of APEC to CEF cells and significantly reduces APEC virulence by regulating transcription of virulence genes.

  5. Two Functional Type VI Secretion Systems in Avian Pathogenic Escherichia coli Are Involved in Different Pathogenic Pathways

    PubMed Central

    Ma, Jiale; Bao, Yinli; Sun, Min; Dong, Wenyang; Pan, Zihao; Zhang, Wei; Lu, Chengping

    2014-01-01

    Type VI secretion systems (T6SSs) are involved in the pathogenicity of several Gram-negative bacteria. The VgrG protein, a core component and effector of T6SS, has been demonstrated to perform diverse functions. The N-terminal domain of VgrG protein is a homologue of tail fiber protein gp27 of phage T4, which performs a receptor binding function and determines the host specificity. Based on sequence analysis, we found that two putative T6SS loci exist in the genome of the avian pathogenic Escherichia coli (APEC) strain TW-XM. To assess the contribution of these two T6SSs to TW-XM pathogenesis, the crucial clpV clusters of these two T6SS loci and their vgrG genes were deleted to generate a series of mutants. Consequently, T6SS1-associated mutants presented diminished adherence to and invasion of several host cell lines cultured in vitro, decreased pathogenicity in duck and mouse infection models in vivo, and decreased biofilm formation and bacterial competitive advantage. In contrast, T6SS2-associated mutants presented a significant decrease only in the adherence to and invasion of mouse brain microvascular endothelial cell (BMEC) line bEnd.3 and brain tissue of the duck infection model. These results suggested that T6SS1 was involved in the proliferation of APEC in systemic infection, whereas VgrG-T6SS2 was responsible only for cerebral infection. Further study demonstrated that VgrG-T6SS2 was able to bind to the surface of bEnd.3 cells, whereas it did not bind to DF-1 (chicken embryo fibroblast) cells, which further proved the interaction of VgrG-T6SS2 with the surface of BMECs. PMID:24980972

  6. Prospective evaluation of a new automated nucleic acid extraction system using routine clinical respiratory specimens.

    PubMed

    Mengelle, C; Mansuy, J-M; Sandres-Sauné, K; Barthe, C; Boineau, J; Izopet, J

    2012-06-01

    The aim of the study was to evaluate the MagNA Pure 96™ nucleic acid extraction system using clinical respiratory specimens for identifying viruses by qualitative real-time PCR assays. Three extraction methods were tested, that is, the MagNA Pure LC™, the COBAS Ampliprep™, and the MagNA Pure 96™ with 10-fold dilutions of an influenza A(H1N1)pdm09 sample. Two hundred thirty-nine respiratory specimens, 35 throat swabs, 164 nasopharyngeal specimens, and 40 broncho-alveolar fluids, were extracted with the MagNA Pure 96™ and the COBAS Ampliprep™ instruments. Forty COBAS Ampliprep™ positive samples were also tested. Real-time PCRs were used to identify influenza A and influenza A(H1N1)pdm09, rhinovirus, enterovirus, adenovirus, varicella zoster virus, cytomegalovirus, and herpes simplex virus. Similar results were obtained on RNA extracted from dilutions of influenza A(H1N1)pdm09 with the three systems: the MagNA Pure LC™, the COBAS Ampliprep™, and the MagNA Pure 96™. Data from clinical respiratory specimens extracted with the MagNA Pure 96™ and COBAS Ampliprep™ instruments were in 98.5% in agreement (P < 0.0001) for influenza A and influenza A(H1N1)pdm09. Data for rhinovirus were in 97.3% agreement (P < 0.0001) and in 96.8% agreement for enterovirus. They were in 100% agreement for adenovirus. Data for cytomegalovirus and HSV1-2 were in 95.2% agreement (P < 0.0001). The MagNA Pure 96™ instrument is easy-to-use, reliable, and has a high throughput for extracting total nucleic acid from respiratory specimens. These extracts are suitable for molecular diagnosis with any type of real-time PCR assay.

  7. Differences of respiratory function according to level of the gross motor function classification system in children with cerebral palsy.

    PubMed

    Kwon, Yong Hyun; Lee, Hye Young

    2014-03-01

    [Purpose] The current study was designed to investigate the difference in lung capacity and muscle strengthening related to respiration depending on the level of the Gross Motor Function Classification System (GMFCS) in children with cerebral palsy (CP) through tests of respiratory function and respiratory pressure. [Subjects and Methods] A total of 49 children with CP who were classified as below level III of the GMFCS were recruited for this study. They were divided into three groups (i.e., GMFCS level I, GMFCS level II, and GMFCS level III). All children took the pulmonary function test (PFT) and underwent respiratory pressure testing for assessment of respiratory function in terms of lung capacity and respiratory muscle strength. [Results] The GMFCS level III group showed significantly lower scores for all tests of the PFT (i.e., forced vital capacity (FVC), forced expiratory volume at one second (FEV1), and slow vital capacity (SVC)) and testing for respiratory pressures (maximal inspiratory pressure (MIP) and maximal expiratory pressure (MEP)) compared with the other two groups. The results of post hoc analysis indicated that the GMFCS level III group differed significantly from the other two groups in terms of FVC, FEV1, MIP, and MEP. In addition, a significant difference in SVC was observed between GMFCS level II and III. [Conclusion] Children with CP who had relatively low motor function showed poor pulmonary capacity and respiratory muscle weakness. Therefore, clinical manifestations regarding lung capacity and respiratory muscle will be required in children with CP who demonstrate poor physical activity.

  8. Is the sheet-flow design a 'frozen core' (a Bauplan) of the gas exchangers? Comparative functional morphology of the respiratory microvascular systems: illustration of the geometry and rationalization of the fractal properties.

    PubMed

    Maina, J N

    2000-08-01

    The sheet-flow design is ubiquitous in the respiratory microvascular systems of the modern gas exchangers. The blood percolates through a maze of narrow microvascular channels spreading out into a thin film, a "sheet". The design has been convergently conceived through remarkably different evolutionary strategies. Endothelial cells, e.g. connect parallel epithelial cells in the fish gills and reptilian lungs; epithelial cells divide the gill filaments in the crustacean gills, the amphibian lungs, and vascular channels on the lung of pneumonate gastropods; connective tissue elements weave between the blood capillaries of the mammalian lungs; and in birds, the blood capillaries attach directly and in some areas connect by short extensions of the epithelial cells. In the gills, skin, and most lungs, the blood in the capillary meshwork geometrically lies parallel to the respiratory surface. In the avian lung, where the blood capillaries anastomose intensely and interdigitate closely with the air capillaries, the blood occasions a 'volume' rather than a 'sheet.' The sheet-flow design and the intrinsic fractal properties of the respiratory microvascular systems have produced a highly tractable low-pressure low-resistance region that facilitates optimal perfusion. In complex animals, the sheet-flow design is a prescriptive evolutionary construction for efficient gas exchange by diffusion. The design facilitates the internal and external respiratory media to be exposed to each other over an extensive surface area across a thin tissue barrier. This comprehensive design is a classic paradigm of evolutionary convergence motivated by common enterprise to develop corresponding functionally efficient structures. With appropriate corrections for any relevant intertaxa differences, use of similar morphofunctional models in determining the diffusing capacities of various gas exchangers is warranted.

  9. Avian Influenza A Virus Infections in Humans

    MedlinePlus

    ... Avian Swine/Variant Pandemic Other Avian Influenza A Virus Infections in Humans Language: English (US) Español ... with Avian Influenza A Viruses Avian Influenza A Virus Infections in Humans Although avian influenza A viruses ...

  10. Particle deposition due to turbulent diffusion in the upper respiratory system

    NASA Technical Reports Server (NTRS)

    Hamill, P.

    1979-01-01

    Aerosol deposition in the upper respiratory system (trachea to segmental bronchi) is considered and the importance of turbulent diffusion as a deposition mechanism is evaluated. It is demonstrated that for large particles (diameter greater than about 5 microns), turbulent diffusion is the dominant deposition mechanism in the trachea. Conditions under which turbulent diffusion may be important in successive generations of the pulmonary system are determined. The probability of particle deposition is compared with probabilities of deposition, as determined by the equations generally used in regional deposition models. The analysis is theoretical; no new experimental data is presented.

  11. Effects of acute and chronic systemic methamphetamine on respiratory, cardiovascular and metabolic function, and cardiorespiratory reflexes.

    PubMed

    Hassan, Sarah F; Wearne, Travis A; Cornish, Jennifer L; Goodchild, Ann K

    2016-02-01

    Methamphetamine (METH) abuse is escalating worldwide, with the most common cause of death resulting from cardiovascular failure and hyperthermia; however, the underlying physiological mechanisms are poorly understood. Systemic administration of METH in anaesthetised rats reduced the effectiveness of some protective cardiorespiratory reflexes, increased central respiratory activity independently of metabolic function, and increased heart rate, metabolism and respiration in a pattern indicating that non-shivering thermogenesis contributes to the well-described hyperthermia. In animals that showed METH-induced behavioural sensitisation following chronic METH treatment, no changes were evident in baseline cardiovascular, respiratory and metabolic measures and the METH-evoked effects in these parameters were similar to those seen in saline-treated or drug naïve animals. Physiological effects evoked by METH were retained but were neither facilitated nor depressed following chronic treatment with METH. These data highlight and identify potential mechanisms for targeted intervention in patients vulnerable to METH overdose. Methamphetamine (METH) is known to promote cardiovascular failure or life-threatening hyperthermia; however, there is still limited understanding of the mechanisms responsible for evoking the physiological changes. In this study, we systematically determined the effects on both autonomic and respiratory outflows, as well as reflex function, following acute and repeated administration of METH, which enhances behavioural responses. Arterial pressure, heart rate, phrenic nerve discharge amplitude and frequency, lumbar and splanchnic sympathetic nerve discharge, interscapular brown adipose tissue and core temperatures, and expired CO2 were measured in urethane-anaesthetised male Sprague-Dawley rats. Novel findings include potent increases in central inspiratory drive and frequency that are not dependent on METH-evoked increases in expired CO2 levels

  12. Effects of acute and chronic systemic methamphetamine on respiratory, cardiovascular and metabolic function, and cardiorespiratory reflexes

    PubMed Central

    Hassan, Sarah F.; Wearne, Travis A.; Cornish, Jennifer L.

    2016-01-01

    Key points Methamphetamine (METH) abuse is escalating worldwide, with the most common cause of death resulting from cardiovascular failure and hyperthermia; however, the underlying physiological mechanisms are poorly understood.Systemic administration of METH in anaesthetised rats reduced the effectiveness of some protective cardiorespiratory reflexes, increased central respiratory activity independently of metabolic function, and increased heart rate, metabolism and respiration in a pattern indicating that non‐shivering thermogenesis contributes to the well‐described hyperthermia.In animals that showed METH‐induced behavioural sensitisation following chronic METH treatment, no changes were evident in baseline cardiovascular, respiratory and metabolic measures and the METH‐evoked effects in these parameters were similar to those seen in saline‐treated or drug naïve animals.Physiological effects evoked by METH were retained but were neither facilitated nor depressed following chronic treatment with METH.These data highlight and identify potential mechanisms for targeted intervention in patients vulnerable to METH overdose. Abstract Methamphetamine (METH) is known to promote cardiovascular failure or life‐threatening hyperthermia; however, there is still limited understanding of the mechanisms responsible for evoking the physiological changes. In this study, we systematically determined the effects on both autonomic and respiratory outflows, as well as reflex function, following acute and repeated administration of METH, which enhances behavioural responses. Arterial pressure, heart rate, phrenic nerve discharge amplitude and frequency, lumbar and splanchnic sympathetic nerve discharge, interscapular brown adipose tissue and core temperatures, and expired CO2 were measured in urethane‐anaesthetised male Sprague‐Dawley rats. Novel findings include potent increases in central inspiratory drive and frequency that are not dependent on METH

  13. Control aspects of the human cardiovascular-respiratory system under a nonconstant workload.

    PubMed

    Calderon, Pio Gabrielle B; Habib, Mustafa; Kappel, Franz; de Los Reyes, Aurelio A

    2017-07-01

    The human cardiovascular system (CVS) and respiratory system (RS) work together in order to supply oxygen (O2) and other substrates needed for metabolism and to remove carbon dioxide (CO2). Global and local control mechanisms act on the CVS in order to adjust blood flow to the different parts of the body. This, in turn, affects the RS since the amount of O2 and CO2 transported, respectively to and away from the tissues depends on the cardiac output and blood flow in both the systemic and pulmonary circuits of the CVS. Local metabolic control is influenced by local concentrations of blood gases affecting systemic resistance, resulting to vasoconstriction/vasodilation. Thus, the exchange of blood gases demands a tight coordination between blood flow and ventilation of the lungs. In this work, a model of the cardiovascular-respiratory system (CVRS) is considered to obtain an optimal control for time-dependent ergometric workloads by using the Euler-Lagrange formulation of the optimal control problem. The essential controls in the CVRS model are variations in the heart rate and alveolar ventilation through which the central nervous system restricts the arterial partial pressure of CO2 ( [Formula: see text] ) close to 40  mmHg. Further, penalization terms in the cost functional are included to match the metabolic need for O2 and the metabolic production of CO2 with O2- and CO2-transport by blood. Copyright © 2017. Published by Elsevier Inc.

  14. A flock-tailored early warning system for low pathogenic avian influenza (LPAI) in commercial egg laying flocks.

    PubMed

    Beltrán-Alcrudo, Daniel; Carpenter, Tim E; Cardona, Carol

    2009-12-01

    The aim of this study was to develop and evaluate an early warning system (EWS) for commercial egg laying flocks to detect the subtle mortality and egg production changes that characterize low pathogenic avian influenza virus (LPAIV) infections. An EWS will create an alert when the recommended 'trigger point' is reached or exceeded. Previously used EWSs are based on fixed alert levels, while the proposed EWS customizes the alert level to each flock. While a fixed approach may be valid for highly pathogenic diseases, it results in a lower detection probability for low pathogenic diseases. The EWS was based on daily data collected from flocks affected by the 2000-2004 H6N2 LPAI epidemic in California. Three EWSs were evaluated: (1) EWS1, which is triggered when the observed mortality increase or production decrease exceeds more than "x" times the expected daily value (2.75-3.50 times the expected mortality), (2) EWS2, which is triggered when the observed mortality increase or production decrease exceeds more than "y" times during each of 2 consecutive days the expected daily values (1.75-2.15 times the expected mortality), and (3) a combination of the two. The EWSs were evaluated according to three parameters: detection delay (days) of a LPAI outbreak, false alerts (%) and outbreaks missed (%). Results showed that an egg production-based EWS added no benefit to a mortality-based system, mainly because H6N2 LPAI-related egg production decrease always occurred after increase in mortality. Combining the two EWSs resulted in a reduced detection delay and no missed outbreaks, but at the expense of a slight increase in the number of false alerts triggered. The system presented in this study also outperformed fixed EWSs in all three evaluated parameters. The proposed EWS, if used as part of a poultry cooperative program and combined with a rapid laboratory diagnosis, could be a useful tool in the detection and control of LPAI outbreaks and other poultry diseases. Built in a

  15. Monolayer culture systems with respiratory epithelial cells for evaluation of bacterial invasiveness.

    PubMed

    Hirakata, Yoichi; Yano, Hisakazu; Arai, Kazuaki; Endo, Shiro; Kanamori, Hajime; Aoyagi, Tetsuji; Hirotani, Ayako; Kitagawa, Miho; Hatta, Masumitsu; Yamamoto, Natsuo; Kunishima, Hiroyuki; Kawakami, Kazuyoshi; Kaku, Mitsuo

    2010-01-01

    Pseudomonas (P.) aeruginosa is a major opportunistic pathogen especially in immunocompromised patients. To evaluate the invasiveness of respiratory pathogens, we developed monolayer culture systems and examined the degree of invasion by P. aeruginosa and invasive Salmonella (S.) typhimurium strains using human respiratory cell lines: A549 (derived from lung cancer), BEAS-2B (normal bronchial epithelium), and Calu-3 (pleural effusion of a patient with adenocarcinoma of the lung). Cells were seeded into filter units containing 0.33 cm(2) filter membranes with 3.0 microm pores, and were incubated at 37 degrees C under 5% CO(2) for 4-10 days. By monitoring the trans-monolayer electrical resistance (TER), we judged that BEAS-2B cells (TER values: 436.2 +/- 16.8 to 628.8 +/- 66.3 Omega cm(2)) and Calu-3 cells (TER values: 490.5 +/- 25.2 to 547.8 +/- 21.6 Omega cm(2)) formed monolayers with tight junctions, but not A549 cells. On day 8 of culture, monolayer cultures were infected with bacteria, and the number of microorganisms penetrating into the basolateral medium was counted. Wild-type P. aeruginosa PAO1 (PAO1 WT) and S. typhimurium SL1344 were detected in the basolateral medium of BEAS-2B monolayer system by 3 h after inoculation, while only P. aeruginosa PAO1 WT was detected in the basolateral medium of Calu-3 monolayer, indicating poor invasiveness of S. typhimurium SL1344 in the Calu-3 system. These findings suggest that BEAS-2B or Calu-3 monolayer system could be useful for evaluating the invasiveness of respiratory pathogens. Because of the difference in bacterial invasiveness, we may need to choose a suitable cell system for each target pathogen.

  16. Commissioning of a motion system to investigate dosimetric consequences due to variability of respiratory waveforms.

    PubMed

    Cetnar, Ashley J; James, Joshua; Wang, Brain

    2016-01-08

    A commercially available six-dimensional (6D) motion system was assessed for accuracy and clinical use in our department. Positional accuracy and respiratory waveform reproducibility were evaluated for the motion system. The system was then used to investigate the dosimetric consequences of respiratory waveform variation when an internal target volume (ITV) approach is used for motion management. The maximum deviations are 0.3 mm and 0.22° for translation and rotation accuracy, respectively, for the tested clinical ranges. The origin reproducibility is less than±0.1 mm. The average differences are less than 0.1 mm with a maximum standard deviation of 0.8 mm between waveforms of actual patients and replication of those waveforms by HexaMotion for three breath-hold and one free-breathing waveform. A modified gamma analysis shows greater than 98% agreement with a 0.5 mm and 100 ms threshold. The motion system was used to investigate respiratory waveform variation and showed that, as the amplitude of the treatment waveform increases above that of the simulation waveform, the periphery of the target volume receives less dose than expected. However, by using gating limits to terminate the beam outside of the simulation amplitude, the results are as expected dosimetrically. Specifically, the average dose difference in the periphery between treating with the simulation waveform and the larger amplitude waveform could be up to 12% less without gating limits, but only differed 2% or less with the gating limits in place. The general functionality of the system performs within the manufacturer's specifications and can accurately replicate patient specific waveforms. When an ITV approach is used for motion management, we found the use of gating limits that coincide with the amplitude of the patient waveform at simulation helpful to prevent the potential underdosing of the target due to changes in patient respiration.

  17. Immediate and short-term consequences of secondhand smoke exposure on the respiratory system.

    PubMed

    Flouris, Andreas D; Koutedakis, Yiannis

    2011-03-01

    This review critically evaluates the existing biological evidence regarding the immediate and short-term respiratory consequences of secondhand smoke (SHS). A 1-h exposure to SHS at bar/restaurant levels generates a marked inflammatory reaction and significant decrements on lung function. These deleterious effects of SHS are exacerbated when physical activity follows the SHS exposure, particularly in less fit individuals. The main respiratory effect mechanisms of SHS include a direct induction of growth factors resulting in airway remodelling and alterations in nitric oxide regulation. Pharmacological agents that increase either apical membrane chloride conductance or basolateral membrane potassium conductance may be of therapeutic benefit in patients with diseases related to SHS exposure. Moreover, treatment with statins has shown beneficial effects towards preventing the SHS-induced pulmonary hypertension, vascular remodelling, and endothelial dysfunction. Based on recently discovered evidence, even brief and short-term exposures to SHS generate significant adverse effects on the human respiratory system. Future research directions in this area include the concentrations of tobacco smoke constituents in the alveolar milieu following SHS exposure, individual susceptibility to SHS, as well as pharmacological treatments for reversing the SHS-induced airway remodelling.

  18. Self-gated radial MRI for respiratory motion compensation on hybrid PET/MR systems.

    PubMed

    Grimm, Robert; Fürst, Sebastian; Dregely, Isabel; Forman, Christoph; Hutter, Jana Maria; Ziegler, Sibylle I; Nekolla, Stephan; Kiefer, Berthold; Schwaiger, Markus; Hornegger, Joachim; Block, Tobias

    2013-01-01

    Accurate localization and uptake quantification of lesions in the chest and abdomen using PET imaging is challenging due to the respiratory motion during the exam. The advent of hybrid PET/MR systems offers new ways to compensate for respiratory motion without exposing the patient to additional radiation. The use of self-gated reconstructions of a 3D radial stack-of-stars GRE acquisition is proposed to derive a high-resolution MRI motion model. The self-gating signal is used to perform respiratory binning of the simultaneously acquired PET raw data. Matching mu-maps are generated for every bin, and post-reconstruction registration is performed in order to obtain a motion-compensated PET volume from the individual gates. The proposed method is demonstrated in-vivo for three clinical patients. Motion-corrected reconstructions are compared against ungated and gated PET reconstructions. In all cases, motion-induced blurring of lesions in the liver and lung was substantially reduced, without compromising SNR as it is the case for gated reconstructions.

  19. Pediatric recurrent respiratory tract infections: when and how to explore the immune system? (About 53 cases)

    PubMed Central

    El-Azami-El-Idrissi, Mohammed; Lakhdar-Idrissi, Mounia; Chaouki, Sanae; Atmani, Samir; Bouharrou, Abdelhak; Hida, Moustapha

    2016-01-01

    Recurrent respiratory tract infections are one of the most frequent reasons for pediatric visits and hospitalization. Causes of this pathology are multiple ranging from congenital to acquired and local to general. Immune deficiencies are considered as underlying conditions predisposing to this pathology. Our work is about to determine when and how to explore the immune system when facing recurrent respiratory infections. This was based on the records of 53 children hospitalized at the pediatrics unit of Hassan II University Hospital, Fez Morocco. Thirty boys and 23 girls with age ranging from 5 months to 12 years with an average age of 2 years were involved in this study. Bronchial foreign body was the main etiology in children of 3 to 6 year old. Gastro-esophageal reflux, which in some cases is a consequence of chronic cough, as well as asthma were most frequent in infants (17 and 15% respectively). Immune deficiency was described in 7.5% of patients and the only death we deplored in our series belongs to this group. Recurrent respiratory tract infections have multiple causes. In our series they are dominated by foreign body inhalation and gastroesophageal reflux, which in some cases is a consequence of a chronic cough. Immune deficiency is not frequent but could influence the prognosis. Therefore immune explorations should be well codified. PMID:27642394

  20. Effects of Long-Term Dust Exposure on Human Respiratory System Health in Minqin County, China.

    PubMed

    Wang, Jinyu; Li, Sheng; Wang, Shigong; Shang, Kezheng

    2015-01-01

    The aim of this study was to assess the effects of long-term sand dust exposure on human respiratory health. Dust events break out frequently in Minqin County, northwest China, whereas Pingliang City, northwest China, is rarely influenced by dust events. Therefore, Minqin and Pingliang were selected as sand dust exposure region and control area, respectively. The incidence of respiratory system diseases and symptoms was determined through a structured respiratory health questionnaire (ATS-DLD-78-A) and personal interviews. The subjects comprised 728 farmers (Minqin, 424; Pingliang, 304) aged 40 years or older, who had nondocumented occupational history to industrial dust exposure. Prevalences (odds ratio [OR], 95% confidence interval [CI]) of chronic rhinitis, chronic bronchitis, and chronic cough increased 9.6% (3.141, 1.776-5.555), 7.5% (2.468, 1.421-4.286), and 10.2% (1.787, 1.246-2.563) in Minqin comparison with Pingliang, respectively, and the differences were significant (p <.01).

  1. Pediatric recurrent respiratory tract infections: when and how to explore the immune system? (About 53 cases).

    PubMed

    El-Azami-El-Idrissi, Mohammed; Lakhdar-Idrissi, Mounia; Chaouki, Sanae; Atmani, Samir; Bouharrou, Abdelhak; Hida, Moustapha

    2016-01-01

    Recurrent respiratory tract infections are one of the most frequent reasons for pediatric visits and hospitalization. Causes of this pathology are multiple ranging from congenital to acquired and local to general. Immune deficiencies are considered as underlying conditions predisposing to this pathology. Our work is about to determine when and how to explore the immune system when facing recurrent respiratory infections. This was based on the records of 53 children hospitalized at the pediatrics unit of Hassan II University Hospital, Fez Morocco. Thirty boys and 23 girls with age ranging from 5 months to 12 years with an average age of 2 years were involved in this study. Bronchial foreign body was the main etiology in children of 3 to 6 year old. Gastro-esophageal reflux, which in some cases is a consequence of chronic cough, as well as asthma were most frequent in infants (17 and 15% respectively). Immune deficiency was described in 7.5% of patients and the only death we deplored in our series belongs to this group. Recurrent respiratory tract infections have multiple causes. In our series they are dominated by foreign body inhalation and gastroesophageal reflux, which in some cases is a consequence of a chronic cough. Immune deficiency is not frequent but could influence the prognosis. Therefore immune explorations should be well codified.

  2. Color structured light system of chest wall motion measurement for respiratory volume evaluation

    NASA Astrophysics Data System (ADS)

    Chen, Huijun; Cheng, Yuan; Liu, Dongdong; Zhang, Xiaodong; Zhang, Jue; Que, Chengli; Wang, Guangfa; Fang, Jing

    2010-03-01

    We present a structured light system to dynamically measure human chest wall motion for respiratory volume estimation. Based on a projection of an encoded color pattern and a few active markers attached to the trunk, respiratory volumes are obtained by evaluating the 3-D topographic changes of the chest wall in an anatomically consistent measuring region during respiration. Three measuring setups are established: a single-sided illuminating-recording setup for standing posture, an inclined single-sided setup for supine posture, and a double-sided setup for standing posture. Results are compared with the pneumotachography and show good agreement in volume estimations [correlation coefficient: R>0.99 (P<0.001) for all setups]. The isovolume tests present small variations of the obtained volume during the isovolume maneuver (standard deviation<0.085 L for all setups). After validation by the isovolume test, an investigation of a patient with pleural effusion using the proposed method shows pulmonary functional differences between the diseased and the contralateral sides of the thorax, and subsequent improvement of this imbalance after drainage. These results demonstrate the proposed optical method is capable of not only whole respiratory volume evaluation with high accuracy, but also regional pulmonary function assessment in different chest wall behaviors, with the advantage of whole-field measurement.

  3. Hospital admissions for respiratory system diseases in adults with intellectual disabilities in Southeast London: a register-based cohort study

    PubMed Central

    Chang, Chin-Kuo; Chen, Chih-Yin; Broadbent, Mathew; Stewart, Robert; O'Hara, Jean

    2017-01-01

    Background Intellectual disability (ID) carries a high impact on need for care, health status and premature mortality. Respiratory system diseases contribute a major part of mortality among people with ID, but remain underinvestigated as consequent morbidities. Methods Anonymised electronic mental health records from the South London and Maudsley Trust (SLaM) were linked to national acute medical care data. Using retrospective cohort and matched case–control study designs, adults with ID receiving SLaM care between 1 January 2008 and 31 March 2013 were identified and compared with local catchment residents for respiratory system disease admissions. Standardised admission ratios (SARs) were first calculated, followed by a comparison of duration of hospitalisation with respiratory system disease between people with ID and age-matched and gender-matched random counterparts modelled using linear regression. Finally, the risk of readmission for respiratory system disease was analysed using the Cox models. Results For the 3138 adults with ID identified in SLaM, the SAR for respiratory system disease admissions was 4.02 (95% CI 3.79 to 4.26). Compared with adults without ID, duration of hospitalisation was significantly longer by 2.34 days (95% CI 0.03 to 4.64) and respiratory system disease readmission was significantly elevated (HR=1.35; 95% CI 1.17 to 1.56) after confounding adjustment. Conclusions Respiratory system disease admissions in adults with ID are more frequent, of longer duration and have a higher likelihood of recurring. Development and evaluation of potential interventions to the preventable causes of respiratory diseases should be prioritised. PMID:28360254

  4. Hospital admissions for respiratory system diseases in adults with intellectual disabilities in Southeast London: a register-based cohort study.

    PubMed

    Chang, Chin-Kuo; Chen, Chih-Yin; Broadbent, Mathew; Stewart, Robert; O'Hara, Jean

    2017-03-29

    Intellectual disability (ID) carries a high impact on need for care, health status and premature mortality. Respiratory system diseases contribute a major part of mortality among people with ID, but remain underinvestigated as consequent morbidities. Anonymised electronic mental health records from the South London and Maudsley Trust (SLaM) were linked to national acute medical care data. Using retrospective cohort and matched case-control study designs, adults with ID receiving SLaM care between 1 January 2008 and 31 March 2013 were identified and compared with local catchment residents for respiratory system disease admissions. Standardised admission ratios (SARs) were first calculated, followed by a comparison of duration of hospitalisation with respiratory system disease between people with ID and age-matched and gender-matched random counterparts modelled using linear regression. Finally, the risk of readmission for respiratory system disease was analysed using the Cox models. For the 3138 adults with ID identified in SLaM, the SAR for respiratory system disease admissions was 4.02 (95% CI 3.79 to 4.26). Compared with adults without ID, duration of hospitalisation was significantly longer by 2.34 days (95% CI 0.03 to 4.64) and respiratory system disease readmission was significantly elevated (HR=1.35; 95% CI 1.17 to 1.56) after confounding adjustment. Respiratory system disease admissions in adults with ID are more frequent, of longer duration and have a higher likelihood of recurring. Development and evaluation of potential interventions to the preventable causes of respiratory diseases should be prioritised. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  5. Telemedicine system for the care of patients with neuromuscular disease and chronic respiratory failure

    PubMed Central

    Morete, Emilio; González, Francisco

    2014-01-01

    Introduction Neuromuscular diseases cause a number of limitations which may be improved by using a telemedicine system. These include functional impairment and dependence associated with muscle weakness, the insidious development of respiratory failure and episodes of exacerbation. Material and methods The present study involved three patients with severe neuromuscular disease, chronic respiratory failure and long-term mechanical ventilation, who were followed up using a telemedicine platform. The telemedicine system is based on videoconferencing and telemonitoring of cardiorespiratory variables (oxygen saturation, heart rate, blood pressure and electrocardiogram). Two different protocols were followed depending on whether the patient condition was stable or unstable. Results Over a period of 5 years, we analyzed a series of variables including use of the system, patient satisfaction and clinical impact. Overall we performed 290 videoconference sessions, 269 short monitoring oximetry measurements and 110 blood pressure measurements. With respect to the clinical impact, after enrolment in the telemedicine program, the total number of hospital admissions fell from 18 to 3. Conclusions Our findings indicate that the system was user friendly for patients and care givers. Patient satisfaction scores were acceptable. The telemedicine system was effective for the home treatment of three patients with severe neuromuscular diseases and reduced the need for hospital admissions. PMID:25395959

  6. MIMO Radar System for Respiratory Monitoring Using Tx and Rx Modulation with M-Sequence Codes

    NASA Astrophysics Data System (ADS)

    Miwa, Takashi; Ogiwara, Shun; Yamakoshi, Yoshiki

    The importance of respiratory monitoring systems during sleep have increased due to early diagnosis of sleep apnea syndrome (SAS) in the home. This paper presents a simple respiratory monitoring system suitable for home use having 3D ranging of targets. The range resolution and azimuth resolution are obtained by a stepped frequency transmitting signal and MIMO arrays with preferred pair M-sequence codes doubly modulating in transmission and reception, respectively. Due to the use of these codes, Gold sequence codes corresponding to all the antenna combinations are equivalently modulated in receiver. The signal to interchannel interference ratio of the reconstructed image is evaluated by numerical simulations. The results of experiments on a developed prototype 3D-MIMO radar system show that this system can extract only the motion of respiration of a human subject 2m apart from a metallic rotatable reflector. Moreover, it is found that this system can successfully measure the respiration information of sleeping human subjects for 96.6 percent of the whole measurement time except for instances of large posture change.

  7. Development of a one-run real-time PCR detection system for pathogens associated with bovine respiratory disease complex.

    PubMed

    Kishimoto, Mai; Tsuchiaka, Shinobu; Rahpaya, Sayed Samim; Hasebe, Ayako; Otsu, Keiko; Sugimura, Satoshi; Kobayashi, Suguru; Komatsu, Natsumi; Nagai, Makoto; Omatsu, Tsutomu; Naoi, Yuki; Sano, Kaori; Okazaki-Terashima, Sachiko; Oba, Mami; Katayama, Yukie; Sato, Reiichiro; Asai, Tetsuo; Mizutani, Tetsuya

    2017-03-18

    Bovine respiratory disease complex (BRDC) is frequently found in cattle worldwide. The etiology of BRDC is complicated by infections with multiple pathogens, making identification of the causal pathogen difficult. Here, we developed a detection system by applying TaqMan real-time PCR (Dembo respiratory-PCR) to screen a broad range of microbes associated with BRDC in a single run. We selected 16 bovine respiratory pathogens (bovine viral diarrhea virus, bovine coronavirus, bovine parainfluenza virus 3, bovine respiratory syncytial virus, influenza D virus, bovine rhinitis A virus, bovine rhinitis B virus, bovine herpesvirus 1, bovine adenovirus 3, bovine adenovirus 7, Mannheimia haemolytica, Pasteurella multocida, Histophilus somni, Trueperella pyogenes, Mycoplasma bovis and Ureaplasma diversum) as detection targets and designed novel specific primer-probe sets for nine of them. The assay performance was assessed using standard curves from synthesized DNA. In addition, the sensitivity of the assay was evaluated by spiking solutions extracted from nasal swabs that were negative by Dembo respiratory-PCR for nucleic acids of pathogens or synthesized DNA. All primer-probe sets showed high sensitivity. In this study, a total of 40 nasal swab samples from cattle on six farms were tested by Dembo respiratory-PCR. Dembo respiratory-PCR can be applied as a screening system with wide detection targets.

  8. Development of a one-run real-time PCR detection system for pathogens associated with bovine respiratory disease complex

    PubMed Central

    KISHIMOTO, Mai; TSUCHIAKA, Shinobu; RAHPAYA, Sayed Samim; HASEBE, Ayako; OTSU, Keiko; SUGIMURA, Satoshi; KOBAYASHI, Suguru; KOMATSU, Natsumi; NAGAI, Makoto; OMATSU, Tsutomu; NAOI, Yuki; SANO, Kaori; OKAZAKI-TERASHIMA, Sachiko; OBA, Mami; KATAYAMA, Yukie; SATO, Reiichiro; ASAI, Tetsuo; MIZUTANI, Tetsuya

    2017-01-01

    Bovine respiratory disease complex (BRDC) is frequently found in cattle worldwide. The etiology of BRDC is complicated by infections with multiple pathogens, making identification of the causal pathogen difficult. Here, we developed a detection system by applying TaqMan real-time PCR (Dembo respiratory-PCR) to screen a broad range of microbes associated with BRDC in a single run. We selected 16 bovine respiratory pathogens (bovine viral diarrhea virus, bovine coronavirus, bovine parainfluenza virus 3, bovine respiratory syncytial virus, influenza D virus, bovine rhinitis A virus, bovine rhinitis B virus, bovine herpesvirus 1, bovine adenovirus 3, bovine adenovirus 7, Mannheimia haemolytica, Pasteurella multocida, Histophilus somni, Trueperella pyogenes, Mycoplasma bovis and Ureaplasma diversum) as detection targets and designed novel specific primer-probe sets for nine of them. The assay performance was assessed using standard curves from synthesized DNA. In addition, the sensitivity of the assay was evaluated by spiking solutions extracted from nasal swabs that were negative by Dembo respiratory-PCR for nucleic acids of pathogens or synthesized DNA. All primer-probe sets showed high sensitivity. In this study, a total of 40 nasal swab samples from cattle on six farms were tested by Dembo respiratory-PCR. Dembo respiratory-PCR can be applied as a screening system with wide detection targets. PMID:28070089

  9. Using avian radar to examine relationships among avian activity, bird strikes, and meteorological factors

    USGS Publications Warehouse

    Coates, Peter S.; Casazza, Michael L.; Halstead, Brian J.; Fleskes, Joseph P.; Laughlin, James A.

    2011-01-01

    Radar systems designed to detect avian activity at airfields are useful in understanding factors that influence the risk of bird and aircraft collisions (bird strikes). We used an avian radar system to measure avian activity at Beale Air Force Base, California, USA, during 2008 and 2009. We conducted a 2-part analysis to examine relationships among avian activity, bird strikes, and meteorological and time-dependent factors. We found that avian activity around the airfield was greater at times when bird strikes occurred than on average using a permutation resampling technique. Second, we developed generalized linear mixed models of an avian activity index (AAI). Variation in AAI was first explained by seasons that were based on average migration dates of birds at the study area. We then modeled AAI by those seasons to further explain variation by meteorological factors and daily light levels within a 24-hour period. In general, avian activity increased with decreased temperature, wind, visibility, precipitation, and increased humidity and cloud cover. These effects differed by season. For example, during the spring bird migration period, most avian activity occurred before sunrise at twilight hours on clear days with low winds, whereas during fall migration, substantial activity occurred after sunrise, and birds generally were more active at lower temperatures. We report parameter estimates (i.e., constants and coefficients) averaged across models and a relatively simple calculation for safety officers and wildlife managers to predict AAI and the relative risk of bird strike based on time, date, and meteorological values. We validated model predictability and assessed model fit. These analyses will be useful for general inference of avian activity and risk assessment efforts. Further investigation and ongoing data collection will refine these inference models and improve our understanding of factors that influence avian activity, which is necessary to inform

  10. [Basic types of respiratory system structure in insect egg envelopes, and genes controlling their formation].

    PubMed

    Omelina, E S; Baricheva, É M; Fedorova, E V

    2012-01-01

    Insects is a taxon surprisingly rich with species and varieties, and its representatives are considered as the most fitted and "evolutionary successful" living things. Insects are distinguished by diversity and abundance of adaptations to environmental conditions, representatives of this class inhabit different ecological niches, they can be found practically in every corner of the Earth and, in particular, in close adjacency to man. Among them are those who man benefits from and those who man struggles against. This determines man's interest in studying peculiarities of their development as well as adaptations formed by them in the course of evolution to become more viable. In the paper, data are presented on morphological structure of respiratory systems in insect egg envelopes that ensure respiration process of developing embryo. Variability of these systems and their dependence on environmental conditions are demonstrated for different insect species. The information about genes controlling development of respiratory systems in fruit fly eggs is brought together, and occurrence of evolutionary conservative genes participating in development of such systems in other insect species is ascertained.

  11. Potential toxicity and safety evaluation of nanomaterials for the respiratory system and lung cancer

    PubMed Central

    Vlachogianni, Thomais; Fiotakis, Konstantinos; Loridas, Spyridon; Perdicaris, Stamatis; Valavanidis, Athanasios

    2013-01-01

    Engineered nanomaterials (ENMs) are a diverse group of materials finding increasing use in manufacturing, computing, food, pharmaceuticals, and biomedicine due to their very small size and exceptional properties. Health and safety concerns for ENMs have forced regulatory agencies to consider preventive measures and regulations for workers’ health and safety protection. Respiratory system toxicity from inhalable ENMs is the most important concern to health specialists. In this review, we focus on similarities and differences between conventional microparticles (diameters in mm and μm), which have been previously studied, and nanoparticles (sizes between 1 and 100 nm) in terms of size, composition, and mechanisms of action in biological systems. In past decades, respirable particulate matter (PM), asbestos fibers, crystalline silicate, and various amorphous dusts have been studied, and epidemiological evidence has shown how dangerous they are to human health, especially from exposure in working environments. Scientific evidence has shown that there is a close connection between respirable PM and pulmonary oxidative stress through the generation of reactive oxygen species (ROS) and reactive nitrogen species (RNS). There is a close connection between oxidative stress in the cell and the elicitation of an inflammatory response via pro-inflammatory gene transcription. Inflammatory processes increase the risk for lung cancer. Studies in vitro and in vivo in the last decade have shown that engineered nanoparticles (ENPs) at various doses can cause ROS generation, oxidative stress, and pro-inflammatory gene expression in the cell. It is assumed that ENPs have the potential to cause acute respiratory diseases and probably lung cancer in humans. The situation regarding chronic exposure at low doses is more complicated. The long-term accumulation of ENPs in the respiratory system cannot be excluded. However, at present, exposure data for the general public regarding ENPs

  12. Respiratory system impedance with impulse oscillometry in healthy and COPD subjects: ECLIPSE baseline results.

    PubMed

    Crim, Courtney; Celli, Bartolome; Edwards, Lisa D; Wouters, Emiel; Coxson, Harvey O; Tal-Singer, Ruth; Calverley, Peter M A

    2011-07-01

    Current assessment of COPD relies extensively on the use of spirometry, an effort-dependent maneuver. Impulse oscillometry (IOS) is a non-volitional way to measure respiratory system mechanics, but its relationship to structural and functional measurements in large groups of patients with COPD is not clear. We evaluated the ability of IOS to detect and stage COPD severity in the prospective ECLIPSE cohort of COPD patients defined spirometrically, and contrasted with smoking and non-smoking healthy subjects. Additionally, we assessed whether IOS relates to extent of CT-defined emphysema. We measured lung impedance with IOS in healthy non-smokers (n = 233), healthy former smokers (n = 322) or patients with COPD (n = 2054) and related these parameters with spirometry and areas of low attenuation in lung CT. In healthy control subjects, IOS demonstrated good repeatability over 3 months. In the COPD group, respiratory system impedance was worse compared with controls as was frequency dependence of resistance, which related to GOLD stage. However, 29-86% of the COPD subjects had values that fell within the 90% confidence interval of several parameters of the healthy non-smokers. Although mean values for impedance parameters and CT indices worsened as GOLD severity increased, actual correlations between them were poor (r ≤ 0.16). IOS can be reliably used in large cohorts of subjects to assess respiratory system impedance. Cross-sectional data suggest that it may have limited usefulness in evaluating the degree of pathologic disease, whereas its role in assessing disease progression in COPD currently remains undefined. Copyright © 2011. Published by Elsevier Ltd.

  13. Next Generation Respiratory Viral Vaccine System: Advanced and Emerging Bioengineered Human Lung Epithelia Model (HLEM) Organoid Technology

    NASA Technical Reports Server (NTRS)

    Goodwin, Thomas J.; Schneider, Sandra L.; MacIntosh, Victor; Gibbons, Thomas F.

    2010-01-01

    Acute respiratory infections, including pneumonia and influenza, are the S t" leading cause of United States and worldwide deaths. Newly emerging pathogens signaled the need for an advanced generation of vaccine technology.. Human bronchial-tracheal epithelial tissue was bioengineered to detect, identify, host and study the pathogenesis of acute respiratory viral disease. The 3-dimensional (3D) human lung epithelio-mesechymal tissue-like assemblies (HLEM TLAs) share characteristics with human respiratory epithelium: tight junctions, desmosomes, microvilli, functional markers villin, keratins and production of tissue mucin. Respiratory Syntial Virus (RSV) studies demonstrate viral growth kinetics and membrane bound glycoproteins up to day 20 post infection in the human lung-orgainoid infected cell system. Peak replication of RSV occurred on day 10 at 7 log10 particles forming units per ml/day. HLEM is an advanced virus vaccine model and biosentinel system for emergent viral infectious diseases to support DoD global surveillance and military readiness.

  14. Breathing and vocal control: the respiratory system as both a driver and a target of telencephalic vocal motor circuits in songbirds.

    PubMed

    Schmidt, Marc F; McLean, Judith; Goller, Franz

    2012-04-01

    The production of vocalizations is intimately linked to the respiratory system. Despite our understanding of neural circuits that generate normal respiratory patterns, very little is understood regarding how these pontomedullary circuits become engaged during vocal production. Songbirds offer a potentially powerful model system for addressing this relationship. Songs dramatically alter the respiratory pattern in ways that are often highly predictable, and songbirds have a specialized telencephalic vocal motor circuit that provides massive innervation to a brainstem respiratory network that shares many similarities with its mammalian counterpart. In this review, we highlight interactions between the song motor circuit and the respiratory system, describing how both systems are likely to interact to produce the complex respiratory patterns that are observed during vocalization. We also discuss how the respiratory system, through its bilateral bottom-up projections to thalamus, might play a key role in sending precisely timed signals that synchronize premotor activity in both hemispheres.

  15. Some recent advances on the study and understanding of the functional design of the avian lung: morphological and morphometric perspectives.

    PubMed

    Maina, J N

    2002-02-01

    The small highly aerobic avian species have morphometrically superior lungs while the large flightless ones have less well-refined lungs. Two parabronchial systems, i.e. the paleopulmo and neopulmo, occur in the lungs of relatively advanced birds. Although their evolution and development are not clear, understanding their presence is physiologically important particularly since the air- and blood flow patterns in them are different. Geometrically, the bulk air flow in the parabronchial lumen, i.e. in the longitudinal direction, and the flow of deoxygenated blood from the periphery, i.e. in a centripetal direction, are perpendicularly arranged to produce a cross-current relationship. Functionally, the blood capillaries in the avian lung constitute a multicapillary serial arterialization system. The amount of oxygen and carbon dioxide exchanged arises from many modest transactions that occur where air- and blood capillaries interface along the parabronchial lengths, an additive process that greatly enhances the respiratory efficiency. In some species of birds, an epithelial tumescence occurs at the terminal part of the extrapulmonary primary bronchi (EPPB). The swelling narrows the EPPB, conceivably allowing the shunting of inspired air across the openings of the medioventral secondary bronchi, i.e. inspiratory aerodynamic valving. The defence stratagems in the avian lung differ from those of mammals: fewer surface (free) macrophages (SMs) occur, the epithelial cells that line the atria and infundibula are phagocytic, a large population of subepithelial macrophages is present and pulmonary intravascular macrophages exist. This complex defence inventory may explain the paucity of SMs in the avian lung.

  16. Optimal determination of respiratory airflow patterns using a nonlinear multicompartment model for a lung mechanics system.

    PubMed

    Li, Hancao; Haddad, Wassim M

    2012-01-01

    We develop optimal respiratory airflow patterns using a nonlinear multicompartment model for a lung mechanics system. Specifically, we use classical calculus of variations minimization techniques to derive an optimal airflow pattern for inspiratory and expiratory breathing cycles. The physiological interpretation of the optimality criteria used involves the minimization of work of breathing and lung volume acceleration for the inspiratory phase, and the minimization of the elastic potential energy and rapid airflow rate changes for the expiratory phase. Finally, we numerically integrate the resulting nonlinear two-point boundary value problems to determine the optimal airflow patterns over the inspiratory and expiratory breathing cycles.

  17. Optimal Determination of Respiratory Airflow Patterns Using a Nonlinear Multicompartment Model for a Lung Mechanics System

    PubMed Central

    Li, Hancao; Haddad, Wassim M.

    2012-01-01

    We develop optimal respiratory airflow patterns using a nonlinear multicompartment model for a lung mechanics system. Specifically, we use classical calculus of variations minimization techniques to derive an optimal airflow pattern for inspiratory and expiratory breathing cycles. The physiological interpretation of the optimality criteria used involves the minimization of work of breathing and lung volume acceleration for the inspiratory phase, and the minimization of the elastic potential energy and rapid airflow rate changes for the expiratory phase. Finally, we numerically integrate the resulting nonlinear two-point boundary value problems to determine the optimal airflow patterns over the inspiratory and expiratory breathing cycles. PMID:22719793

  18. Multiplexed Molecular Diagnostics for Respiratory, Gastrointestinal, and Central Nervous System Infections.

    PubMed

    Hanson, Kimberly E; Couturier, Marc Roger

    2016-11-15

    The development and implementation of highly multiplexed molecular diagnostic tests have allowed clinical microbiology laboratories to more rapidly and sensitively detect a variety of pathogens directly in clinical specimens. Current US Food and Drug Administration-approved multiplex panels target multiple different organisms simultaneously and can identify the most common pathogens implicated in respiratory viral, gastrointestinal, or central nervous system infections. This review summarizes the test characteristics of available assays, highlights the advantages and limitations of multiplex technology for infectious diseases, and discusses potential utilization of these new tests in clinical practice.

  19. Deleterious effects of disulfiram on the respiratory electron transport system of liver mitochondria.

    PubMed

    Kuroda, M A; Cuéllar, A

    1993-01-01

    1. The mechanism of action of disulfiram on the respiratory electron transport system of the liver mitochondria was studied in vitro. 2. Disulfiram inhibited the respiration supported by malate-glutamate as well as succinate. 3. Mitochondrial respiration inhibition was dependent upon alteration of -SH groups. 4. The inhibitory action of disulfiram might be related to the crosslinking of several proteins of the inner mitochondrial membrane. 5. The effects described above could be attributed to disulfiram per se and not to the main metabolite diethyldithiocarbamate.

  20. An epornitic of avian pox in a research aviary.

    PubMed

    Donnelly, T M; Crane, L A

    1984-01-01

    An outbreak of avian pox in a bird research colony was reported. Although 10 species of passerine birds were housed within the facility, clinical signs and mortality were restricted to canaries and house sparrows. Post-mortem lesions initially occurred in the upper and lower respiratory tracts and were characterized by proliferative rhinitis, proliferative bronchopneumonia, and proliferative airsacculitis, and diphtheritic lesions occurring in the esophagus were characterized by proliferative granulomatous esophagitis. Cutaneous lesions occurred subsequently in some birds, and a diagnosis was made by histopathology, electron microscopy, and virus isolation. The occurrence of diphtheritic lesions in pox infections of wild birds has been rare, and a sparrow showed an unusual combination of both diphtheritic and acute systemic lesions previously undescribed.

  1. Epidemiology of avian influenza in agricultural and other man-made systems

    USDA-ARS?s Scientific Manuscript database

    Over thousands of years, mankind has changed the natural ecosystems of birds by domestication and their influenza A viruses (IAVs) have reassorted and adapted to new systems and hosts. At high risk for introduction of IAVs from free-living aquatic birds are outdoor reared domestic poultry, especial...

  2. SU-E-J-190: Development of Abdominal Compression & Respiratory Guiding System Using Gas Pressure Sensor

    SciTech Connect

    Kim, T; Kim, D; Kang, S; Cho, M; Kim, K; Shin, D; Suh, T; Kim, S

    2015-06-15

    Purpose: Abdominal compression is known to be effective but, often makes external-marker-based monitoring of breathing motion not feasible. In this study, we developed and evaluated a system that enables both abdominal compression and monitoring of residual abdominal motion simultaneously. The system can also provide visual-biofeedback capability. Methods: The system developed consists of a compression belt, an abdominal motion monitoring sensor (gas pressure sensor) and a visual biofeedback device. The compression belt was designed to be able to compress the frontal side of the abdomen. The pressure level of the belt is controlled by air volume and monitored in real time using the gas pressure sensor. The system displays not only the real-time monitoring curve but also a guiding respiration model (e.g., a breath hold or shallow breathing curve) simultaneously on the head mounted display to help patients keep their breathing pattern as consistent as possible. Three healthy volunteers were enrolled in this pilot study and respiratory signals (pressure variations) were obtained both with and without effective abdominal compression to investigate the feasibility of the developed system. Two guidance patterns, breath hold and shallow breathing, were tested. Results: All volunteers showed smaller abdominal motion with compression (about 40% amplitude reduction compared to without compression). However, the system was able to monitor residual abdominal motion for all volunteers. Even under abdominal compression, in addition, it was possible to make the subjects successfully follow the guide patterns using the visual biofeedback system. Conclusion: The developed abdominal compression & respiratory guiding system was feasible for residual abdominal motion management. It is considered that the system can be used for a respiratory motion involved radiation therapy while maintaining the merit of abdominal compression. This work was supported by the Radiation Technology R

  3. Pediatric respiratory and systemic effects of chronic air pollution exposure: nose, lung, heart, and brain pathology.

    PubMed

    Calderón-Garcidueñas, Lilian; Franco-Lira, Maricela; Torres-Jardón, Ricardo; Henriquez-Roldán, Carlos; Barragán-Mejía, Gerardo; Valencia-Salazar, Gildardo; González-Maciel, Angelica; Reynoso-Robles, Rafael; Villarreal-Calderón, Rafael; Reed, William

    2007-01-01

    Exposures to particulate matter and gaseous air pollutants have been associated with respiratory tract inflammation, disruption of the nasal respiratory and olfactory barriers, systemic inflammation, production of mediators of inflammation capable of reaching the brain and systemic circulation of particulate matter. Mexico City (MC) residents are exposed to significant amounts of ozone, particulate matter and associated lipopolysaccharides. MC dogs exhibit brain inflammation and an acceleration of Alzheimer's-like pathology, suggesting that the brain is adversely affected by air pollutants. MC children, adolescents and adults have a significant upregulation of cyclooxygenase-2 (COX2) and interleukin-1beta (IL-1beta) in olfactory bulb and frontal cortex, as well as neuronal and astrocytic accumulation of the 42 amino acid form of beta -amyloid peptide (Abeta 42), including diffuse amyloid plaques in frontal cortex. The pathogenesis of Alzheimer's disease (AD) is characterized by brain inflammation and the accumulation of Abeta 42, which precede the appearance of neuritic plaques and neurofibrillary tangles, the pathological hallmarks of AD. Our findings of nasal barrier disruption, systemic inflammation, and the upregulation of COX2 and IL-1beta expression and Abeta 42 accumulation in brain suggests that sustained exposures to significant concentrations of air pollutants such as particulate matter could be a risk factor for AD and other neurodegenerative diseases.

  4. A portable respiratory rate estimation system with a passive single-lead electrocardiogram acquisition module.

    PubMed

    Nayan, Nazrul Anuar; Risman, Nur Sabrina; Jaafar, Rosmina

    2016-07-27

    Among vital signs of acutely ill hospital patients, respiratory rate (RR) is a highly accurate predictor of health deterioration. This study proposes a system that consists of a passive and non-invasive single-lead electrocardiogram (ECG) acquisition module and an ECG-derived respiratory (EDR) algorithm in the working prototype of a mobile application. Before estimating RR that produces the EDR rate, ECG signals were evaluated based on the signal quality index (SQI). The SQI algorithm was validated quantitatively using the PhysioNet/Computing in Cardiology Challenge 2011 training data set. The RR extraction algorithm was validated by adopting 40 MIT PhysioNet Multiparameter Intelligent Monitoring in Intensive Care II data set. The estimated RR showed a mean absolute error (MAE) of 1.4 compared with the ``gold standard'' RR. The proposed system was used to record 20 ECGs of healthy subjects and obtained the estimated RR with MAE of 0.7 bpm. Results indicate that the proposed hardware and algorithm could replace the manual counting method, uncomfortable nasal airflow sensor, chest band, and impedance pneumotachography often used in hospitals. The system also takes advantage of the prevalence of smartphone usage and increase the monitoring frequency of the current ECG of patients with critical illnesses.

  5. BP8, a novel peptide from avian immune system, modulates B cell developments.

    PubMed

    Liu, Xiao-Dong; Zhou, Bin; Feng, Xiu-Li; Cao, Rui-Bing; Chen, Pu-Yan

    2014-12-01

    The bursa of Fabricius (BF) is the key humoral immune organ unique to birds, and is critical for early B-lymphocyte proliferation and differentiation. However, the molecular basis and mechanisms through which the BF regulates B cell development are not fully understood. In this study, we isolated and identified a new bursal peptide (BP8, AGHTKKAP) by RP-HPLC and MALDI-TOF-MS. BP8 promoted colony-forming pre-B formation, bound B cell precursor, regulated B cell development in vitro as well as in vivo, upstream of the EBF-E2A-Pax5 regulatory complex and increased immunoglobulin secretion. These data revealed a bursal-derived multifunctional factor BP8 as a novel biomaterial which is essential for the development of the immune system. This study elucidates further the mechanisms involved in humoral immune system and has implications in treating human diseases.

  6. The Role and Immunobiology of Eosinophils in the Respiratory System: a Comprehensive Review.

    PubMed

    Eng, Stephanie S; DeFelice, Magee L

    2016-04-01

    The eosinophil is a fully delineated granulocyte that disseminates throughout the bloodstream to end-organs after complete maturation in the bone marrow. While the presence of eosinophils is not uncommon even in healthy individuals, these granulocytes play a central role in inflammation and allergic processes. Normally appearing in smaller numbers, higher levels of eosinophils in the peripheral blood or certain tissues typically signal a pathologic process. Eosinophils confer a beneficial effect on the host by enhancing immunity against molds and viruses. However, tissue-specific elevation of eosinophils, particularly in the respiratory system, can cause a variety of short-term symptoms and may lead to long-term sequelae. Eosinophils often play a role in more commonly encountered disease processes, such as asthma and allergic responses in the upper respiratory tract. They are also integral in the pathology of less common diseases including eosinophilic pneumonia, allergic bronchopulmonary aspergillosis, hypersensitivity pneumonitis, and drug reaction with eosinophilia and systemic symptoms. They can be seen in neoplastic disorders or occupational exposures as well. The involvement of eosinophils in pulmonary disease processes can affect the method of diagnosis and the selection of treatment modalities. By analyzing the complex interaction between the eosinophil and its environment, which includes signaling molecules and tissues, different therapies have been discovered and created in order to target disease processes at a cellular level. Innovative treatments such as mepolizumab and benralizumab will be discussed. The purpose of this article is to further explore the topic of eosinophilic presence, activity, and pathology in the respiratory tract, as well as discuss current and future treatment options through a detailed literature review.

  7. A computer-aided audit system for respiratory therapy consult evaluations: description of a method and early results.

    PubMed

    Kester, Lucy; Stoller, James K

    2013-05-01

    Use of respiratory therapist (RT)-guided protocols enhances allocation of respiratory care. In the context that optimal protocol use requires a system for auditing respiratory care plans to assure adherence to protocols and expertise of the RTs generating the care plan, a live audit system has been in longstanding use in our Respiratory Therapy Consult Service. Growth in the number of RT positions and the need to audit more frequently has prompted development of a new, computer-aided audit system. The number and results of audits using the old and new systems were compared (for the periods May 30, 2009 through May 30, 2011 and January 1, 2012 through May 30, 2012, respectively). In contrast to the original, live system requiring a patient visit by the auditor, the new system involves completion of a respiratory therapy care plan using patient information in the electronic medical record, both by the RT generating the care plan and the auditor. Completing audits in the new system also uses an electronic respiratory therapy management system. The degrees of concordance between the audited RT's care plans and the "gold standard" care plans using the old and new audit systems were similar. Use of the new system was associated with an almost doubling of the rate of audits (ie, 11 per month vs 6.1 per month). The new, computer-aided audit system increased capacity to audit more RTs performing RT-guided consults while preserving accuracy as an audit tool. Ensuring that RTs adhere to the audit process remains the challenge for the new system, and is the rate-limiting step.

  8. Avian host defense peptides.

    PubMed

    Cuperus, Tryntsje; Coorens, Maarten; van Dijk, Albert; Haagsman, Henk P

    2013-11-01

    Host defense peptides (HDPs) are important effector molecules of the innate immune system of vertebrates. These antimicrobial peptides are also present in invertebrates, plants and fungi. HDPs display broad-spectrum antimicrobial activities and fulfill an important role in the first line of defense of many organisms. It is becoming increasingly clear that in the animal kingdom the functions of HDPs are not confined to direct antimicrobial actions. Research in mammals has indicated that HDPs have many immunomodulatory functions and are also involved in other physiological processes ranging from development to wound healing. During the past five years our knowledge about avian HDPs has increased considerably. This review addresses our current knowledge on the evolution, regulation and biological functions of HDPs of birds.

  9. Procedures for identifying infectious prions after passage through the digestive system of an avian species.

    PubMed

    Fischer, Justin W; Nichols, Tracy A; Phillips, Gregory E; VerCauteren, Kurt C

    2013-11-06

    Infectious prion (PrP(Res)) material is likely the cause of fatal, neurodegenerative transmissible spongiform encephalopathy (TSE) diseases(1). Transmission of TSE diseases, such as chronic wasting disease (CWD), is presumed to be from animal to animal(2,3) as well as from environmental sources(4-6). Scavengers and carnivores have potential to translocate PrP(Res) material through consumption and excretion of CWD-contaminated carrion. Recent work has documented passage of PrP(Res) material through the digestive system of American crows (Corvus brachyrhynchos), a common North American scavenger(7). We describe procedures used to document passage of PrP(Res) material through American crows. Crows were gavaged with RML-strain mouse-adapted scrapie and their feces were collected 4 hr post gavage. Crow feces were then pooled and injected intraperitoneally into C57BL/6 mice. Mice were monitored daily until they expressed clinical signs of mouse scrapie and were thereafter euthanized. Asymptomatic mice were monitored until 365 days post inoculation. Western blot analysis was conducted to confirm disease status. Results revealed that prions remain infectious after traveling through the digestive system of crows and are present in the feces, causing disease in test mice.

  10. Avian response to tidal freshwater habitat creation by controlled reduced tide system

    NASA Astrophysics Data System (ADS)

    Beauchard, Olivier; Jacobs, Sander; Ysebaert, Tom; Meire, Patrick

    2013-10-01

    Human activities have caused extensive loss of estuarine wetlands, and the restoration of functional habitats remains a challenging task given several physical constraints in strongly embanked estuaries. In the Schelde estuary (Belgium), a new tidal marsh restoration technique, Controlled Reduced Tide system (CRT), is being implemented in the freshwater zone. A polder area of 8.2 ha was equipped with a CRT to test the system functionality. Among different ecological compartments that are studied for assessing the CRT restoration success, avifauna was monitored over three years. The tidal regime generated a habitat gradient typical of tidal freshwater wetlands along which the distributions of bird and ecological groups were studied. 103 bird species were recorded over the three years. In addition to many generalist bird species, several specialist species typical of the North Sea coast were present. Thirty-nine species of local and/or international conservation interest were encountered, emphasising the importance of this habitat for certain species. Species communities and ecological groups were strongly habitat specific and non-randomly organized across habitats. Spatiotemporal analyses highlighted a rapid habitat colonization, and a subsequent stable habitat community structure across seasons in spite of strong seasonal species turnovers. Hence, these findings advocate CRT implementation as a means to effectively compensate for wetland habitat loss.

  11. Avian influenza virus.

    PubMed

    Lee, Chang-Won; Saif, Yehia M

    2009-07-01

    Avian influenza viruses do not typically replicate efficiently in humans, indicating direct transmission of avian influenza virus to humans is unlikely. However, since 1997, several cases of human infections with different subtypes (H5N1, H7N7, and H9N2) of avian influenza viruses have been identified and raised the pandemic potential of avian influenza virus in humans. Although circumstantial evidence of human to human transmission exists, the novel avian-origin influenza viruses isolated from humans lack the ability to transmit efficiently from person-to-person. However, the on-going human infection with avian-origin H5N1 viruses increases the likelihood of the generation of human-adapted avian influenza virus with pandemic potential. Thus, a better understanding of the biological and genetic basis of host restriction of influenza viruses is a critical factor in determining whether the introduction of a novel influenza virus into the human population will result in a pandemic. In this article, we review current knowledge of type A influenza virus in which all avian influenza viruses are categorized.

  12. The Pulsed Flow Algorithm (PFA) Applied to Coupled Respiratory and Circulatory Systems

    NASA Astrophysics Data System (ADS)

    Staples, A.; Oran, E.; Boris, J.; Kaplan, C.; Kailasanath, K.

    2007-11-01

    The Pulsed Flow Equations (PFE) are a set of coupled partial differential equations designed to capture features particularly relevant to internal flows through flexible elastic channels, such as flows in physiological systems in biological organisms, and hydraulics systems. The equations are an extension of the standard one-dimensional fluid flow equations that, in addition, are able to capture two-dimensional diffusion, branching, transport, viscous, and other effects. A limiting case of the equations is the standard one-dimensional fluid flow equations. The equations are discretized and solved partially using an asymptotic solution, after which they reduce to tridiagonal form. The solution formalism can be applied to many types of complex networks of internal flows, and solves these problems, including some important two-dimensional effects, at the cost of a one-dimensional tridiagonal computation. Here we apply the PFA to describe a coupled circulatory and respiratory system calibrated to the average human body.

  13. [Association of fatty acid metabolism with systemic inflammatory response in chronic respiratory diseases].

    PubMed

    Denisenko, Y K; Novgorodtseva, T P; Zhukova, N V; Antonuk, M V; Lobanova, E G; Kalinina, E P

    2016-03-01

    We examined composition of plasma non-esterified fatty acids (NFAs), erythrocyte fatty acids, levels of eicosanoids in patients with asthma and chronic obstructive pulmonary disease (COPD) with different type of the inflammatory response. The results of our study show that asthma and COPD in remission are associated with changes in the composition NFAs of plasma, FA of erythrocytes, level eicosanoid despite the difference in the regulation of immunological mechanisms of systemic inflammation. These changes are characterized by excessive production of arachidonic acid (20:4n-6) and cyclooxygenase and lipoxygenase metabolites (thromboxane B2, leukotriene B4) and deficiency of their functional antagonist, eicosapentaenoic acid (20:5n-3). The recognized association between altered fatty acid composition and disorders of the immune mechanisms of regulation of systemic inflammation in COPD and asthma demonstrated the important role of fatty acids and their metabolites in persistence of inflammatory processes in diseases of the respiratory system in the condition of remission.

  14. Systems-level comparison of host-responses elicited by avian H5N1 and seasonal H1N1 influenza viruses in primary human macrophages.

    PubMed

    Lee, Suki M Y; Gardy, Jennifer L; Cheung, C Y; Cheung, Timothy K W; Hui, Kenrie P Y; Ip, Nancy Y; Guan, Y; Hancock, Robert E W; Peiris, J S Malik

    2009-12-14

    Human disease caused by highly pathogenic avian influenza (HPAI) H5N1 can lead to a rapidly progressive viral pneumonia leading to acute respiratory distress syndrome. There is increasing evidence from clinical, animal models and in vitro data, which suggests a role for virus-induced cytokine dysregulation in contributing to the pathogenesis of human H5N1 disease. The key target cells for the virus in the lung are the alveolar epithelium and alveolar macrophages, and we have shown that, compared to seasonal human influenza viruses, equivalent infecting doses of H5N1 viruses markedly up-regulate pro-inflammatory cytokines in both primary cell types in vitro. Whether this H5N1-induced dysregulation of host responses is driven by qualitative (i.e activation of unique host pathways in response to H5N1) or quantitative differences between seasonal influenza viruses is unclear. Here we used microarrays to analyze and compare the gene expression profiles in primary human macrophages at 1, 3, and 6 h after infection with H5N1 virus or low-pathogenic seasonal influenza A (H1N1) virus. We found that host responses to both viruses are qualitatively similar with the activation of nearly identical biological processes and pathways. However, in comparison to seasonal H1N1 virus, H5N1 infection elicits a quantitatively stronger host inflammatory response including type I interferon (IFN) and tumor necrosis factor (TNF)-alpha genes. A network-based analysis suggests that the synergy between IFN-beta and TNF-alpha results in an enhanced and sustained IFN and pro-inflammatory cytokine response at the early stage of viral infection that may contribute to the viral pathogenesis and this is of relevance to the design of novel therapeutic strategies for H5N1 induced respiratory disease.

  15. Avian biology, the human influence on global avian influenza transmission, and performing surveillance in wild birds.

    PubMed

    Gibbs, Samantha E J

    2010-06-01

    This paper takes a closer look at three interrelated areas of study: avian host biology, the role of human activities in virus transmission, and the surveillance activities centered on avian influenza in wild birds. There are few ecosystems in which birds are not found. Correspondingly, avian influenza viruses are equally global in distribution, relying on competent avian hosts. The immune systems, annual cycles, feeding behaviors, and migration patterns of these hosts influence the ecology of the disease. Decreased biodiversity has also been linked to heightened disease transmission in several disease systems, and it is evident that active destruction and modification of wetland environments for human use is impacting avian populations drastically. Legal and illegal trade in wild birds present a significant risk for introduction and maintenance of exotic diseases. After the emergence of HPAI H5N1 in Hong Kong in 1996 and the ensuing geographic spread of outbreaks after 2003, both infected countries and those at risk of introduction began intensifying avian influenza surveillance efforts. Several techniques for sampling wild birds for influenza viruses have been applied. Benefits, problems, and biases exist for each method. The wild bird avian influenza surveillance programs taking place across the continents are now scaling back due to the rise of other spending priorities; hopefully the lessons learned from this work will be preserved and will inform future research and disease outbreak response priorities.

  16. Immunohistochemical techniques and their applications in the histopathology of the respiratory system.

    PubMed Central

    Linnoila, I; Petrusz, P

    1984-01-01

    Subsequent to the first report in the 1940s on incubation of tissue sections with fluorescein-conjugated antibodies for localization of antigens, a great number of modifications were introduced to improve the validity of immunohistochemistry which has become a growingly popular tool. The use of immunoenzymatic techniques eliminates the need for expensive fluorescence microscopy equipment, the lack of permanency of preparations and the lack of electron density required in ultrastructural localization of antigens. Regardless of the technique, it is also important to choose a correct fixation which allows the proper preservation of antigens and morphology and the penetration of antibodies through the entire thickness of the preparation. A variety of immunohistochemical techniques have been applied to study several components of the lung, such as collagen, surface active material, lung specific antigens, and enzymes and the detection of tumor markers, immunoglobulins and infectious agents in the respiratory system which is reviewed. The large surface area and the multiplicity of cell types provided by the respiratory tract epithelium of humans for exposure to microbial as well as toxic substances in the environment make this organ system very vulnerable but a good early indicator of adverse health effects. Immunohistochemistry provides valuable information complementary to the immunochemical and biochemical characterization of this barrier. Images FIGURE 2. FIGURE 3. FIGURE 3. FIGURE 4. FIGURE 4. FIGURE 5. PMID:6090113

  17. Randomised controlled trial of respiratory system compliance measurements in mechanically ventilated neonates

    PubMed Central

    Stenson, B.; Glover, R.; Wilkie, R.; Laing, I.; Tarnow-Mordi, W.

    1998-01-01

    AIM—To determine whether outcomes of neonatal mechanical ventilation could be improved by regular pulmonary function testing.
METHODS—Two hundred and forty five neonates, without immediately life threatening congenital malformations, were mechanically ventilated in the newborn period. Infants were randomly allocated to conventional clinical management (control group) or conventional management supplemented by regular measurements of static respiratory system compliance, using the single breath technique, with standardised management advice based on the results.
RESULTS—Fifty five (45%) infants in each group experienced one or more adverse outcomes. The median (quartile) durations of ventilation and oxygen supplementation were 5 (2-12) and 6 (2-34) days for the control group, and 4 (2-9) and 6 (3-36) days for the experimental group (not significant). On post-hoc secondary analysis, control group survivors were ventilated for 1269 days with a median (quartile) of 5 (2-13) days, and experimental group survivors were ventilated for 775 days with a median (quartile) duration of 3 (2-8) days (p=0.03).
CONCLUSIONS—Although primary analysis did not show any substantial benefit associated with regular measurement of static respiratory system compliance, this may reflect a type II error, and a moderate benefit has not been excluded. Larger studies are required to establish the value of on-line monitoring techniques now available with neonatal ventilators.

 PMID:9536834

  18. Macroscopic anatomy of the lower respiratory system in mole rats (Spalax leucodon).

    PubMed

    İlgun, R; Yoldas, A; Kuru, N; Özkan, Z E

    2014-12-01

    The morphologic and morphometric features of the lower respiratory system in mole rats were examined. It was seen that the low respiratory system of this species leading a special life under highly hypoxic/hypercapnic conditions underground is structurally similar to other mammals living on land in terms of the parts examined; trachea was formed by 29.5 ± 4 oval-formed cartilaginous tracheals arranged backwards and became gradually more stenotic diameter from cranial to the caudal of the neck. The trachea was separated in two principal bronchus at the fourth thoracal intercostal spatium level. The angle between the two main principal bronchi was 60.5 ± 2.35°. The lung constituted 1.29 ± 0.03% of the body weight and the right lung was heavier than the left lung. Fissura inter-lobaris was deep and separated the lung lobes wholly, and the right lung was separated in four lobes, whereas the left lung was not separated into the lobes. Also, the medial lobe of the left lung was the lightest lobe.

  19. [Diseases caused by diisocyanates. 1. Irritation of the respiratory system and skin].

    PubMed

    Lubach, D

    1978-01-01

    Toluylene diisocyanate (TDI) has an uncommon importance in the production of irritation of respiratory system. In the last few years less volatile isocyanate compounds have been substituted for TDI. Commercial available diphenylmethane diisocyanate (MDI) and polymethylene polyphenyl isocyanate (PAPI) were analyzed in 1971. The analysis indicated the presence of 21% TDI in several samples. It is evident, with respect to the relatively high vapor pressure of TDI, that such impurities will be able to cause air concentrations in excess of the current threshold limit value (TLV) of 0.02 ppm. Liberation of TDI by heat from varnish insulinations is a difficult problem. This problem was described as "an old hazard in new guise". Especially, in a soldering process on polyurethane coated wire, excess of TLV is possible in unfavourable conditions. By the regulation that the concentration of TLV must not exceed 0.02 ppm and by the use of new non-volatile isocyanate the risk of acute and subacute intoxications has considerably subsided. Chronic irritations of respiratory system and asthma-like diseases, however represent still an unsolved problem.

  20. Patterns of laryngeal electromyography and the activity of the respiratory system during spontaneous laughter.

    PubMed

    Luschei, Erich S; Ramig, Lorraine O; Finnegan, Eileen M; Baker, Kristen K; Smith, Marshall E

    2006-07-01

    Laryngeal muscle electromyography (EMG) and measures of the behavior of the respiratory system have been made during spontaneous laughter in two groups of subjects. The smaller group also had a direct measure of tracheal pressure during this behavior. Laryngeal adductors such as the thyroarytenoid (TA) and lateral cricoarytenoid (LCA) exhibited brief high-amplitude bursts of activity, at a rate of approximately 5 Hz, which were usually associated on a 1 : 1 basis with the sound bursts (ha ha ha) of laughter. The laryngeal abductor, posterior cricoarytenoid (PCA), also showed bursts of activity that were out of phase with TA and LCA. The cricothyroid (CT) was only weakly, if at all, modulated during the bursting activity of the other laryngeal muscles. Tracheal pressure usually exhibited positive pressure pulses during laughter that were often, but not always, temporally correlated to the bursts of laryngeal adductor EMG activity. Such pressure modulations appeared to precisely determine when-and if-phonation was produced during the laugh. During laughter, laryngeal EMG is highly stereotyped both within and between subjects. In most instances, this activity appears to be supported by coordinated pulses of tracheal pressure. The periaqueductal gray (PAG) has been shown in animal studies to produce emotionally indicative vocalizations, in which the laryngeal and respiratory system are coordinated. Therefore, it is suggested that the PAG is involved with the production of laughter.

  1. Glycomic Characterization of Respiratory Tract Tissues of Ferrets

    PubMed Central

    Jia, Nan; Barclay, Wendy S.; Roberts, Kim; Yen, Hui-Ling; Chan, Renee W. Y.; Lam, Alfred K. Y.; Air, Gillian; Peiris, J. S. Malik; Dell, Anne; Nicholls, John M.; Haslam, Stuart M.

    2014-01-01

    The initial recognition between influenza virus and the host cell is mediated by interactions between the viral surface protein hemagglutinin and sialic acid-terminated glycoconjugates on the host cell surface. The sialic acid residues can be linked to the adjacent monosaccharide by α2–3- or α2–6-type glycosidic bonds. It is this linkage difference that primarily defines the species barrier of the influenza virus infection with α2–3 binding being associated with avian influenza viruses and α2–6 binding being associated with human strains. The ferret has been extensively used as an animal model to study the transmission of influenza. To better understand the validity of this model system, we undertook glycomic characterization of respiratory tissues of ferret, which allows a comparison of potential viral receptors to be made between humans and ferrets. To complement the structural analysis, lectin staining experiments were performed to characterize the regional distributions of glycans along the respiratory tract of ferrets. Finally, the binding between the glycans identified and the hemagglutinins of different strains of influenza viruses was assessed by glycan array experiments. Our data indicated that the respiratory tissues of ferret heterogeneously express both α2–3- and α2–6-linked sialic acids. However, the respiratory tissues of ferret also expressed the Sda epitope (NeuAcα2-3(GalNAcβ1–4)Galβ1–4GlcNAc) and sialylated N,N′-diacetyllactosamine (NeuAcα2–6GalNAcβ1–4GlcNAc), which have not been observed in the human respiratory tract surface epithelium. The presence of the Sda epitope reduces potential binding sites for avian viruses and thus may have implications for the usefulness of the ferret in the study of influenza virus infection. PMID:25135641

  2. Pathogenesis and pathobiology of avian influenza virus infection in birds.

    PubMed

    Pantin-Jackwood, M J; Swayne, D E

    2009-04-01

    Avian influenza (AI) viruses vary in their ability to produce infection, disease and death in different bird species. Based on the pathobiological effect in chickens, AI viruses (AIV) are categorised as low pathogenic (LPAIV) or highly pathogenic (HPAIV). Typically, LPAIV cause asymptomatic infections in wild aquatic birds, but when introduced into domesticated poultry, infections may be asymptomatic or produce clinical signs and lesions reflecting pathophysiological damage to the respiratory, digestive and reproductive systems. The HPAIV have primarily been seen in gallinaceous poultry, producing high morbidity and mortality, and systemic disease with necrosis and inflammation in multiple visceral organs, nervous and cardiovascular systems, and the integument. Although HPAIV have rarely infected domestic waterfowl or wild birds, the Eurasian-African H5N1 HPAIV have evolved over the past decade with the unique capacity to infect and cause disease in domestic ducks and wild birds, producing a range of syndromes including asymptomatic respiratory and digestive tract infections; systemic disease limited to two or three critical organs, usually the brain, heart and pancreas; and severe disseminated infection and death as seen in gallinaceous poultry. Although experimental studies using intranasal inoculation have produced infection in a variety of wild bird species, the inefficiency of contact transmission in some of them, for example, passerines and Columbiformes, suggests they are unlikely to be a reservoir for the viruses, while others such as some wild Anseriformes, can be severely affected and could serve as a dissemination host over intermediate distances.

  3. Novel avian coronavirus and fulminating disease in guinea fowl, France.

    PubMed

    Liais, Etienne; Croville, Guillaume; Mariette, Jérôme; Delverdier, Maxence; Lucas, Marie-Noëlle; Klopp, Christophe; Lluch, Jérôme; Donnadieu, Cécile; Guy, James S; Corrand, Léni; Ducatez, Mariette F; Guérin, Jean-Luc

    2014-01-01

    For decades, French guinea fowl have been affected by fulminating enteritis of unclear origin. By using metagenomics, we identified a novel avian gammacoronavirus associated with this disease that is distantly related to turkey coronaviruses. Fatal respiratory diseases in humans have recently been caused by coronaviruses of animal origin.

  4. Novel Avian Coronavirus and Fulminating Disease in Guinea Fowl, France

    PubMed Central

    Liais, Etienne; Croville, Guillaume; Mariette, Jérôme; Delverdier, Maxence; Lucas, Marie-Noëlle; Klopp, Christophe; Lluch, Jérôme; Donnadieu, Cécile; Guy, James S.; Corrand, Léni; Ducatez, Mariette F.

    2014-01-01

    For decades, French guinea fowl have been affected by fulminating enteritis of unclear origin. By using metagenomics, we identified a novel avian gammacoronavirus associated with this disease that is distantly related to turkey coronaviruses. Fatal respiratory diseases in humans have recently been caused by coronaviruses of animal origin. PMID:24377831

  5. On avian influenza epidemic models with time delay.

    PubMed

    Liu, Sanhong; Ruan, Shigui; Zhang, Xinan

    2015-12-01

    After the outbreak of the first avian influenza A virus (H5N1) in Hong Kong in 1997, another avian influenza A virus (H7N9) crossed the species barrier in mainland China in 2013 and 2014 and caused more than 400 human cases with a death rate of nearly 40%. In this paper, we take account of the incubation periods of avian influenza A virus and construct a bird-to-human transmission model with different time delays in the avian and human populations combining the survival probability of the infective avian and human populations at the latent time. By analyzing the dynamical behavior of the model, we obtain a threshold value for the prevalence of avian influenza and investigate local and global asymptotical stability of equilibria of the system.

  6. Systems for the management of respiratory disease in primary care - an international series: Australia.

    PubMed

    Glasgow, Nicholas

    2008-03-01

    Australia has a complex health system with policy and funding responsibilities divided across federal and state/territory boundaries and service provision split between public and private providers. General practice is largely funded through the federal government. Other primary health care services are provided by state/territory public entities and private allied health practitioners. Indigenous health services are specifically funded by the federal government through a series of Aboriginal Community Controlled Organisations. NATIONAL POLICY AND MODELS: The dominant primary health care model is federally-funded private "small business" general practices. Medicare reimbursement items have incrementally changed over the last decade to include increasing support for chronic disease care with both generic and disease specific items as incentives. Asthma has received a large amount of national policy attention. Other respiratory diseases have not had similar policy emphasis. Australia has a high prevalence of asthma. Respiratory-related encounters in general practice, including acute and chronic respiratory illness and influenza immunisations, account for 20.6% of general practice activity. Lung cancer is a rare disease in general practice. Tuberculosis is uncommon and most often found in people born outside of Australia. Aboriginal and Torres Strait Islanders have higher rates of asthma, smoking and tuberculosis. Access to care is positively influenced by substantial public funding underpinning both the private and public sectors through Medicare. Access to general practice care is negatively influenced by workforce shortages, the ongoing demands of acute care, and the incremental way in which system redesign is occurring in general practice. Most general practice operates from privately-owned rooms. The Australian Government requires general practice facilities to be accredited against certain standards in order for the practice to receive income from a number of

  7. Oxidative Stress and Respiratory System: Pharmacological and Clinical Reappraisal of N-Acetylcysteine

    PubMed Central

    Santus, Pierachille; Corsico, Angelo; Solidoro, Paolo; Braido, Fulvio; Di Marco, Fabiano

    2014-01-01

    The large surface area for gas exchange makes the respiratory system particularly susceptible to oxidative stress-mediated injury. Both endogenous and exogenous pro-oxidants (e.g. cigarette smoke) trigger activation of leukocytes and host defenses. These mechanisms interact in a “multilevel cycle” responsible for the control of the oxidant/antioxidant homeostasis. Several studies have demonstrated the presence of increased oxidative stress and decreased antioxidants (e.g. reduced glutathione [GSH]) in subjects with chronic obstructive pulmonary disease (COPD), but the contribution of oxidative stress to the pathophysiology of COPD is generally only minimally discussed. The aim of this review was to provide a comprehensive overview of the role of oxidative stress in the pathogenesis of respiratory diseases, particularly COPD, and to examine the available clinical and experimental evidence on the use of the antioxidant N-acetylcysteine (NAC), a precursor of GSH, as an adjunct to standard therapy for the treatment of COPD. The proposed concept of “multilevel cycle” helps understand the relationship between respiratory diseases and oxidative stress, thus clarifying the rationale for using NAC in COPD. Until recently, antioxidant drugs such as NAC have been regarded only as mucolytic agents. Nevertheless, several clinical trials indicate that NAC may reduce the rate of COPD exacerbations and improve small airways function. The most plausible explanation for the beneficial effects observed in patients with COPD treated with NAC lies in the mucolytic and antioxidant effects of this drug. Modulation of bronchial inflammation by NAC may further account for these favorable clinical results. PMID:24787454

  8. Evaluation of chest ultrasound integrated teaching of respiratory system physiology to medical students.

    PubMed

    Paganini, Matteo; Bondì, Michela; Rubini, Alessandro

    2017-12-01

    Ultrasound imaging is a widely used diagnostic technique, whose integration in medical education is constantly growing. The aim of this study was to evaluate chest ultrasound usefulness in teaching respiratory system physiology, students' perception of chest ultrasound integration into a traditional lecture in human physiology, and short-term concept retention. A lecture about respiratory physiology was integrated with ultrasound and delivered to third-year medical students. It included basic concepts of ultrasound imaging and the physiology of four anatomic sectors of the body of a male volunteer, shown with a portable ultrasound device (pleural sliding, diaphragmatic movement, inferior vena cava diameter variations, cardiac movements). Students' perceptions of the integrated lecture were assessed, and attendance recorded. After 4 mo, four multiple-choice questions about respiratory physiology were administered during the normal human physiology examinations, and the results of students who attended the lesson and those of who did not were compared. One hundred thirty-four students attended the lecture. Most of them showed encouragement for the study of the subject and considered the ultrasound integrated lecture more interesting than a traditional one and pertinent to the syllabus. Exposed students achieved a better score at the examination and committed less errors than did nonexposed students. The chest ultrasound integrated lecture was appreciated by students. A possible association between the exposure to the lecture and short-term concept retention is shown by better performances of the exposed cohort at the examination. A systematic introduction of ultrasound into physiology traditional teaching will be promoted by the Ultrasound-Based Medical Education movement. Copyright © 2017 the American Physiological Society.

  9. Function of the Respiratory System in Elderly Patients After Aortic Valve Replacement.

    PubMed

    Stoliński, Jarosław; Plicner, Dariusz; Gawęda, Bogusław; Musiał, Robert; Fijorek, Kamil; Wąsowicz, Marcin; Andres, Janusz; Kapelak, Bogusław

    2016-10-01

    To compare the function of the respiratory system after aortic valve replacement through median sternotomy (AVR) or the minimally invasive right anterior minithoracotomy (RAT-AVR) approach among elderly (aged≥75 years) patients. Observational cohort study. University hospital. The study included 65 elderly patients scheduled for RAT-AVR and 82 for standard AVR. Pulmonary function tests (PFT) were performed preoperatively, 1 week, 1 month, and 3 months after surgery. In addition, respiratory complications were analyzed. Respiratory complications occurred in 12.3% of patients in the RAT-AVR group and 18.3% of patients in the AVR group (p = 0.445). Mechanical ventilation time in the intensive care unit was 7.7±3.6 hours for RAT-AVR patients and 9.7±5.4 hours for AVR patients (p = 0.003). Most PFT were worse in the AVR group than in the RAT-AVR group when performed 1 week after surgery. After 1 month, forced expiratory volume in the first second, vital capacity, and total lung capacity differed significantly in favor of the RAT-AVR group (p = 0.002, p<0.001, and p = 0.001, respectively). After 3 months, the PFT parameters still had not returned to preoperative values, but the differences were no longer significant between the RAT-AVR and AVR groups. The multivariable median regression analysis demonstrated that RAT-AVR surgery was a key factor in a patient's higher postoperative PFT parameter values. RAT-AVR surgery resulted in shorter postoperative mechanical ventilation time and improved the recovery of pulmonary function in elderly patients, but it did not reduce the incidence of pulmonary complications when compared with surgery performed through a median sternotomy. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. The development of avian enteric nervous system: distribution of artemin immunoreactivity.

    PubMed

    Maruccio, Lucianna; Lucini, Carla; Russo, Finizia; Antonucci, Rosanna; Castaldo, Luciana

    2008-01-01

    Among the factors that control neural crest cell precursors within the enteric nervous system, the ligands of the glial cell line-derived neurotrophic factor family (GFL) seem to be the most influential. Artemin, a member of the GFLs, was previously described only in the oesophagus and stomach of mouse embryos. In this study, the presence and distribution of artemin is reported in duck embryos and adults. Artemin immunoreactivity was apparent in the intestinal tract at embryonic day 7 (d7), firstly in the myenteric plexus and then in the submucous plexus. Later, artemin immunoreactive nerve fibres were also seen in the longitudinal muscle plexus, the circular muscle plexus, the plexus of the muscularis mucosa and in the mucosal plexus. Furthermore, at d7, weak labeling of artemin was detected in neurons and glial cells in the oesophagus, gastric region and duodenum. Subsequently, artemin was also detected in all other intestinal segments. Moreover, during development of the gut in the domestic duck, artemin immunoreactivity decreased in neuronal cell bodies, whilst it increased in neuronal fibres and glial cells. These findings suggest an involvement of artemin in the development and biology of the gut of the domestic duck.

  11. [Music and respiratory pathology].

    PubMed

    Herer, B

    2001-04-01

    Musical performance, especially in singers and wind instrument players, depends on an effective pulmonary function. Performing artists may be seriously impaired by respiratory diseases that, comparatively, may produce only modest inconvenience for non-musicians. The report of two cases of respiratory diseases occurring in musicians herein provides an introduction to a review of the interactions between music and the human respiratory system. The following points are considered: epidemiological data; pulmonary function in musicians; favorable effects of music on the respiratory system; description of the main respiratory problems that may affect musicians.

  12. SU-E-J-158: A Prototype of a Real-Time Respiratory Motion Monitoring System Using Microsoft Kinect Sensor.

    PubMed

    Xia, J; Siochi, R

    2012-06-01

    To investigate the feasibility of a low-cost respiratory motion monitoring system based on the Microsoft Xbox Kinect sensor. We improved Kinect's inherent depth resolution from 1 cm to 1 mm via a motion magnification system. Using the Kinect software development kit, we programmed the Kinect to capture depth images and determine the average depth over a thoracic region of interest, viewed almost parallel to the subject's surface. Kinect respiratory traces (average depth vs time at a rate of 30 Hz) were acquired from four volunteers and compared with those simultaneously acquired using a commercially available strain gauge respiratory gating system. The correlation coefficient (CC) between Kinect and strain gauge traces varied from 0.958 to 0.978, with a mean CC of 0.969. This strong correlation was also demonstrated by the joint probability distribution and visual inspection. This work demonstrates the feasibility of using the Kinect for respiratory motion tracking. Traces are similar to those of a clinically used strain gauge system. The Kinect-based system provides a new and economical way to monitor respiratory motion. © 2012 American Association of Physicists in Medicine.

  13. Technical and dosimetric aspects of respiratory gating using a pressure-sensor motion monitoring system

    SciTech Connect

    Li, X. Allen; Stepaniak, Christopher; Gore, Elizabeth

    2006-01-15

    This work introduces a gating technique that uses 4DCT to determine gating parameters and to plan gated treatment, and employs a Siemens linear accelerator to deliver the gated treatment. Because of technology incompatibility, the 4DCT scanner (LightSpeed, GE) and the Siemens accelerator require two different motion-monitoring systems. The motion monitoring system (AZ-773V, Anzai Med.) used for the gated delivery utilizes a pressure sensor to detect the external respiratory motion (pressure change) in real time. Another system (RPM, Varian) used for the 4DCT scanner (LightSpeed, GE) is based on an infrared camera to detect motion of external markers. These two motion monitoring systems (RPM and Anzai systems) were found to correlate well with each other. The depth doses and profile measured for gated delivery (with a duty cycle of 25% or 50%) were found to agree within 1.0% with those measured for ungated delivery, indicating that gating did not significantly alter beam characteristics. The measurement verified also that the MU linearity and beam output remained unchanged (within 0.3%). A practical method of using 4DCT to plan a gated treatment was developed. The duty cycle for either phase or amplitude gating can be determined based on 4DCT with consideration of set-up error and delivery efficiency. The close-loop measurement involving the entire gating process (imaging, planning, and delivery) showed that the measured isodose distributions agreed with those intended, validating the accuracy and reliability of the gating technique. Based these observations, we conclude that the gating technique introduced in this work, integrating Siemens linear accelerator and Anzai pressure sensor device with GE/Varian RPM 4DCT, is reliable and effective, and it can be used clinically to account for respiratory motion during radiation therapy.

  14. Technical and dosimetric aspects of respiratory gating using a pressure-sensor motion monitoring system.

    PubMed

    Li, X Allen; Stepaniak, Christopher; Gore, Elizabeth

    2006-01-01

    This work introduces a gating technique that uses 4DCT to determine gating parameters and to plan gated treatment, and employs a Siemens linear accelerator to deliver the gated treatment. Because of technology incompatibility, the 4DCT scanner (LightSpeed, GE) and the Siemens accelerator require two different motion-monitoring systems. The motion monitoring system (AZ-773V, Anzai Med.) used for the gated delivery utilizes a pressure sensor to detect the external respiratory motion (pressure change) in real time. Another system (RPM, Varian) used for the 4DCT scanner (LightSpeed, GE) is based on an infrared camera to detect motion of external markers. These two motion monitoring systems (RPM and Anzai systems) were found to correlate well with each other. The depth doses and profile measured for gated delivery (with a duty cycle of 25% or 50%) were found to agree within 1.0% with those measured for ungated delivery, indicating that gating did not significantly alter beam characteristics. The measurement verified also that the MU linearity and beam output remained unchanged (within 0.3%). A practical method of using 4DCT to plan a gated treatment was developed. The duty cycle for either phase or amplitude gating can be determined based on 4DCT with consideration of set-up error and delivery efficiency. The close-loop measurement involving the entire gating process (imaging, planning, and delivery) showed that the measured isodose distributions agreed with those intended, validating the accuracy and reliability of the gating technique. Based these observations, we conclude that the gating technique introduced in this work, integrating Siemens linear accelerator and Anzai pressure sensor device with GE/Varian RPM 4DCT, is reliable and effective, and it can be used clinically to account for respiratory motion during radiation therapy.

  15. Systems for the management of respiratory disease in primary care - an international series: Canada.

    PubMed

    Kaplan, Alan

    2008-06-01

    Canada has a universal health care system funded by the government. All people are supposed to have unrestricted access to all essential health care in a timely fashion. Canada has ten provinces and three territories. Health care is funded by each province/territory, with federal payments providing some of the funding. The bulk of the provision of respiratory care in Canada is provided by primary care practitioners. Across the country we have a family physician shortage; thus, in many areas of the country there is insufficient access since patients do not actually have a family physician. This has less effect on acute medical services, which can be available in ER or walk-in settings, but certainly does affect the provision of services for chronic illnesses. While thus far the health care system is 'free', there are some significant limitations; the commonest is waiting times for specialist care and investigations. Other significant deficiencies include the lack of coverage for medications for both acute and chronic conditions and of medical devices. Primary care reforms by local governments have attempted to fix these issues by changing care models. Fee-for-service medicine by physicians is slowly being changed in places to capitation models and other systems such as rewards for managing chronic conditions optimally. Ontario has instituted 'reward systems' for diabetes and smoking cessation. British Columbia has rewards for multiple chronic diseases. In many areas, care in the provinces is regionalised to allow local arrangements to help decide on where and how care is organised. Respiratory diseases (excluding lung cancer) rank fourth in Canada in the total proportion of direct health care costs (behind neuropsychiatric, injury and cardiovascular diseases). A number of studies have shown that respiratory conditions such as asthma and COPD are underdiagnosed and/or undermanaged. Other conditions need treatment by specialists or physicians with a special interest

  16. Commissioning of a motion system to investigate dosimetric consequences due to variability of respiratory waveforms.

    PubMed

    Cetnar, Ashley J; James, Joshua; Wang, Brain

    2016-01-01

    A commercially available six-dimensional (6D) motion system was assessed for accuracy and clinical use in our department. Positional accuracy and respiratory waveform reproducibility were evaluated for the motion system. The system was then used to investigate the dosimetric consequences of respiratory waveform variation when an internal target volume (ITV) approach is used for motion management. The maximum deviations are 0.3 mm and 0.22° for translation and rotation accuracy, respectively, for the tested clinical ranges. The origin reproducibility is less than ±0.1 mm. The average differences are less than 0.1 mm with a maximum standard deviation of 0.8 mm between waveforms of actual patients and replication of those waveforms by HexaMotion for three breath-hold and one free-breathing waveform. A modified gamma analysis shows greater than 98% agreement with a 0.5 mm and 100 ms threshold. The motion system was used to investigate respiratory waveform variation and showed that, as the amplitude of the treatment waveform increases above that of the simulation waveform, the periphery of the target volume receives less dose than expected. However, by using gating limits to terminate the beam outside of the simulation amplitude, the results are as expected dosimetrically. Specifically, the average dose difference in the periphery between treating with the simulation waveform and the larger amplitude waveform could be up to 12% less without gating limits, but only differed 2% or less with the gating limits in place. The general functionality of the system performs within the manufacturer's specifications and can accurately replicate patient specific waveforms. When an ITV approach is used for motion management, we found the use of gating limits that coincide with the amplitude of the patient waveform at simulation helpful to prevent the potential underdosing of the target due to changes in patient respiration. PACS numbers: 87.55.Kh, 87.55.Qr, 87.56.Fc. © 2016 The

  17. Acupuncture Meridian of Traditional Chinese Medical Science: An Auxiliary Respiratory System.

    PubMed

    Zhao, Liang-Ju

    2015-08-01

    The acupuncture meridian system (AMS) is the key concept of Traditional Chinese Medical Science (TCMS). It is a natural network formed by the tissue space that connects human viscera and skin. In this article, a new hypothesis that the AMS is an auxiliary respiratory system is presented. The AMS collects the CO2 that is produced by tissue supersession and that cannot be excreted via blood circulation, and discharges the CO2 through the body's pores, thus preventing a pressure increase in the internal environment. Thus, local blood circulation will not be blocked, and the body will remain healthy. In addition to neuroregulation and humoral regulation, AMS regulation is an important method of physiological regulation. Furthermore, the pathological principle of the AMS, therapies of TCMS, and the excellent future of the AMS are discussed. Copyright © 2015. Published by Elsevier B.V.

  18. Tropism and innate host responses of a novel avian influenza A H7N9 virus: an analysis of ex-vivo and in-vitro cultures of the human respiratory tract.

    PubMed

    Chan, Michael C W; Chan, Renee W Y; Chan, Louisa L Y; Mok, Chris K P; Hui, Kenrie P Y; Fong, Joanne H M; Tao, Kin P; Poon, Leo L M; Nicholls, John M; Guan, Y; Peiris, J S Malik

    2013-09-01

    Since March, 2013, an avian-origin influenza A H7N9 virus has caused severe pneumonia in China. The aim of this study was to investigate the pathogenesis of this new virus in human beings. We obtained ex-vivo cultures of the human bronchus, lung, nasopharynx, and tonsil and in-vitro cultures of primary human alveolar epithelial cells and peripheral blood monocyte-derived macrophages. We compared virus tropism and induction of proinflammatory cytokine responses of two human influenza A H7N9 virus isolates, A/Shanghai/1/2013 and A/Shanghai/2/2013; a highly pathogenic avian influenza H5N1 virus; the highly pathogenic avian influenza H7N7 virus that infected human beings in the Netherlands in 2003; the 2009 pandemic influenza H1N1 virus, and a low pathogenic duck H7N9 virus that was genetically different to the human disease causing A H7N9 viruses. Both human H7N9 viruses replicated efficiently in human bronchus and lung ex-vivo cultures, whereas duck/H7N9 virus failed to replicate in either. Both human A H7N9 viruses infected both ciliated and non-ciliated human bronchial epithelial cells and replicated to higher titres than did H5N1 (p<0.0001 to 0.0046) and A/Shanghai/1/2013 replicated to higher titres than did H7N7 (p=0.0002-0.01). Both human A H7N9 viruses predominantly infected type II alveolar epithelial cells and alveolar macrophages in the human lung and replicated to higher titres than did H5N1 (p<0.0001 to 0.0078); A/Shanghai/1/2013 replicated to higher titres than did H1N1 (p=0.0052-0.05) and H7N7 (p=0.0031-0.0151). Human H7N9 viruses were less potent inducers of proinflammatory cytokines compared with H5N1 virus. Collectively, the results suggest that the novel H7N9 viruses are better adapted to infect and replicate in the human conducting and lower airways than are other avian influenza viruses, including H5N1, and pose an important pandemic threat. Area of Excellence Scheme of the University Grants Committee (AoE/M-12/96), Hong Kong Special Administrative

  19. Inhaled Pollutants: The Molecular Scene behind Respiratory and Systemic Diseases Associated with Ultrafine Particulate Matter

    PubMed Central

    Traboulsi, Hussein; Guerrina, Necola; Iu, Matthew; Maysinger, Dusica; Ariya, Parisa; Baglole, Carolyn J.

    2017-01-01

    Air pollution of anthropogenic origin is largely from the combustion of biomass (e.g., wood), fossil fuels (e.g., cars and trucks), incinerators, landfills, agricultural activities and tobacco smoke. Air pollution is a complex mixture that varies in space and time, and contains hundreds of compounds including volatile organic compounds (e.g., benzene), metals, sulphur and nitrogen oxides, ozone and particulate matter (PM). PM0.1 (ultrafine particles (UFP)), those particles with a diameter less than 100 nm (includes nanoparticles (NP)) are considered especially dangerous to human health and may contribute significantly to the development of numerous respiratory and cardiovascular diseases such as chronic obstructive pulmonary disease (COPD) and atherosclerosis. Some of the pathogenic mechanisms through which PM0.1 may contribute to chronic disease is their ability to induce inflammation, oxidative stress and cell death by molecular mechanisms that include transcription factors such as nuclear factor κB (NF-κB) and nuclear factor (erythroid-derived 2)-like 2 (Nrf2). Epigenetic mechanisms including non-coding RNA (ncRNA) may also contribute towards the development of chronic disease associated with exposure to PM0.1. This paper highlights emerging molecular concepts associated with inhalational exposure to PM0.1 and their ability to contribute to chronic respiratory and systemic disease. PMID:28125025

  20. Respiratory dynamics of discontinuous gas exchange in the tracheal system of the desert locust, Schistocerca gregaria.

    PubMed

    Groenewald, Berlizé; Hetz, Stefan K; Chown, Steven L; Terblanche, John S

    2012-07-01

    Gas exchange dynamics in insects is of fundamental importance to understanding evolved variation in breathing patterns, such as discontinuous gas exchange cycles (DGCs). Most insects do not rely solely on diffusion for the exchange of respiratory gases but may also make use of respiratory movements (active ventilation) to supplement gas exchange at rest. However, their temporal dynamics have not been widely investigated. Here, intratracheal pressure, V(CO2) and body movements of the desert locust Schistocerca gregaria were measured simultaneously during the DGC and revealed several important aspects of gas exchange dynamics. First, S. gregaria employs two different ventilatory strategies, one involving dorso-ventral contractions and the other longitudinal telescoping movements. Second, although a true spiracular closed (C)-phase of the DGC could be identified by means of subatmospheric intratracheal pressure recordings, some CO(2) continued to be released. Third, strong pumping actions do not necessarily lead to CO(2) release and could be used to ensure mixing of gases in the closed tracheal system, or enhance water vapour reabsorption into the haemolymph from fluid-filled tracheole tips by increasing the hydrostatic pressure or forcing fluid into the haemocoel. Finally, this work showed that the C-phase of the DGC can occur at any pressure. These results provide further insights into the mechanistic basis of insect gas exchange.

  1. Enhancement of Aerosol Cisplatin Chemotherapy with Gene Therapy Expressing ABC10 protein in Respiratory System

    PubMed Central

    Hohenforst-Schmidt, Wolfgang; Zarogoulidis, Paul; Linsmeier, Bernd; Kioumis, Ioannis; Li, Qiang; Huang, Haidong; Sachpatzidou, Despoina; Lampaki, Sofia; Organtzis, John; Domvri, Kalliopi; Sakkas, Leonidas; Zachariadis, George A.; Archontas, Konstantinos N.; Kallianos, Anastasios; Rapti, Aggeliki; Yarmus, Lonny; Zarogoulidis, Konstantinos; Brachmann, Johannes

    2014-01-01

    Inhaled therapy for lung cancer is a local form of treatment. Currently inhaled non-specific cytotoxic agents have been evaluated as a future treatment for local disease control and distant metastasis control. There are few information regarding the influence of local transporters and gene expression of the respiratory epithelium to the absorption of administered drugs. In the current work we used adenoviral-type 5(dE1/E3) (Cytomegalovirus promoter) with human ABCA10 transgene (Ad-h-ABCA10) purchased from Vector Labs® in order to investigate whether gene therapy can be used as a pre-treatment to enhance the efficiency of inhaled cisplatin. We included the following groups to our work: a) control, b) aerosol vector, c) aerosol vector plus cisplatin, d) aerosol cisplatin, e) intratumoral cisplatin administration, f) intratumoral vector plus cisplatin administration. The results indicate that the aerosol cisplatin group had a long term survival with the intratumoral cisplatin group following. The enhancement of the ABCA family locally to the respiratory system prior to the aerosol cisplatin administration can be used safely and efficiently. Future treatment design of local therapies should include the investigation of local transporters and genes. PMID:24723977

  2. Distribution and respiratory activity of mycobacteria in household water system of healthy volunteers in Japan.

    PubMed

    Ichijo, Tomoaki; Izumi, Yoko; Nakamoto, Sayuri; Yamaguchi, Nobuyasu; Nasu, Masao

    2014-01-01

    The primary infectious source of nontuberculous mycobacteria (NTM), which are known as opportunistic pathogens, appears to be environmental exposure, and it is important to reduce the frequency of exposure from environmental sources for preventing NTM infections. In order to achieve this, the distribution and respiratory activity of NTM in the environments must be clarified. In this study, we determined the abundance of mycobacteria and respiratory active mycobacteria in the household water system of healthy volunteers using quantitative PCR and a fluorescent staining method, because household water has been considered as one of the possible infectious sources. We chose healthy volunteer households in order to lessen the effect of possible residential contamination from an infected patient. We evaluated whether each sampling site (bathroom drain, kitchen drain, bath heater pipe and showerhead) have the potential to be the sources of NTM infections. Our results indicated that drains in the bathroom and kitchen sink are the niche for Mycobacterium spp. and M. avium cells were only detected in the bathtub inlet. Both physicochemical and biologic selective pressures may affect the preferred habitat of Mycobacterium spp. Regional differences also appear to exist as demonstrated by the presence (US) or absence (Japan) of Mycobacterium spp. on showerheads. Understanding of the country specific human activities and water usage will help to elucidate the infectious source and route of nontuberculous mycobacterial disease.

  3. Effect of a botanical composition, UP446, on respiratory, cardiovascular and central nervous systems in beagle dogs and rats.

    PubMed

    Yimam, Mesfin; Lee, Young Chul; Jia, Qi

    2016-06-01

    Extensive safety evaluation of UP446, a botanical composition comprised of standardized extracts from roots of Scutellaria baicalensis and heartwoods of Acacia catechu, has been reported previously. Here we carried out additional studies to assess the effect of UP446 on respiratory, cardiovascular and central nervous (CNS) systems. A Functional observational battery (FOB) and whole body plethysmography system in rats and implanted telemetry in dogs were utilized to evaluate the potential CNS, respiratory and cardiovascular toxicity, respectively. UP446 was administered orally at dose levels of 800, 2000 and 5000 mg/kg to SpragueDawley rats and at 4 ascending dose levels (0, 250, 500 and 1000 mg/kg) to beagle dogs. No abnormal effects were observed on the cage side, open field, hand held, and sensori-motor observations suggestive of toxicity in respiratory, cardiovascular and central nervous (CNS) systems. Rectal temperatures were comparable for each treatment groups. Similarly, respiratory rate, tidal volume and minute volume were unaffected by any of the treatment groups. No UP446 related changes were observed on blood pressure, heart rate and electrocardiogram in beagle dogs at dose levels of 250, 500 and 1000 mg/kg. Some minor incidental, non-dose correlated changes were observed in the FOB assessment. These data suggest that UP446 has minimal or no pharmaco-toxicological effect on the respiratory, cardiovascular and central nervous systems.

  4. The effects of centrally injected arachidonic acid on respiratory system: Involvement of cyclooxygenase to thromboxane signaling pathway.

    PubMed

    Erkan, Leman Gizem; Guvenc, Gokcen; Altinbas, Burcin; Niaz, Nasir; Yalcin, Murat

    2016-05-01

    Arachidonic acid (AA) is a polyunsaturated fatty acid that is present in the phospholipids of the cell membranes of the body and is abundant in the brain. Exogenously administered AA has been shown to affect brain metabolism and to exhibit cardiovascular and neuroendocrine actions. However, little is known regarding its respiratory actions and/or central mechanism of its respiratory effects. Therefore, the present study was designed to investigate the possible effects of centrally injected AA on respiratory system and the mediation of the central cyclooxygenase (COX) to thromboxane A2 (TXA2) signaling pathway on AA-induced respiratory effects in anaesthetized rats. Intracerebroventricular (i.c.v.) administration of AA induced dose- and time-dependent increase in tidal volume, respiratory rates and respiratory minute ventilation and also caused an increase in partial oxygen pressure (pO2) and decrease in partial carbon dioxide pressure (pCO2) in male anaesthetized Spraque Dawley rats. I.c.v. pretreatment with ibuprofen, a non-selective COX inhibitor, completely blocked the hyperventilation and blood gases changes induced by AA. In addition, central pretreatment with different doses of furegrelate, a TXA2 synthesis inhibitor, also partially prevented AA-evoked hyperventilation and blood gases effects. These data explicitly show that centrally administered AA induces hyperventilation with increasing pO2 and decreasing pCO2 levels which are mediated by the activation of central COX to TXA2 signaling pathway.

  5. A novel approach to detect respiratory phases from pulmonary acoustic signals using normalised power spectral density and fuzzy inference system.

    PubMed

    Palaniappan, Rajkumar; Sundaraj, Kenneth; Sundaraj, Sebastian; Huliraj, N; Revadi, S S

    2016-07-01

    Monitoring respiration is important in several medical applications. One such application is respiratory rate monitoring in patients with sleep apnoea. The respiratory rate in patients with sleep apnoea disorder is irregular compared with the controls. Respiratory phase detection is required for a proper monitoring of respiration in patients with sleep apnoea. To develop a model to detect the respiratory phases present in the pulmonary acoustic signals and to evaluate the performance of the model in detecting the respiratory phases. Normalised averaged power spectral density for each frame and change in normalised averaged power spectral density between the adjacent frames were fuzzified and fuzzy rules were formulated. The fuzzy inference system (FIS) was developed with both Mamdani and Sugeno methods. To evaluate the performance of both Mamdani and Sugeno methods, correlation coefficient and root mean square error (RMSE) were calculated. In the correlation coefficient analysis in evaluating the fuzzy model using Mamdani and Sugeno method, the strength of the correlation was found to be r = 0.9892 and r = 0.9964, respectively. The RMSE for Mamdani and Sugeno methods are RMSE = 0.0853 and RMSE = 0.0817, respectively. The correlation coefficient and the RMSE of the proposed fuzzy models in detecting the respiratory phases reveals that Sugeno method performs better compared with the Mamdani method. © 2014 John Wiley & Sons Ltd.

  6. Effect of body position on respiratory system volumes in anesthetized red-tailed hawks (Buteo jamaicensis) as measured via computed tomography.

    PubMed

    Malka, Shachar; Hawkins, Michelle G; Jones, James H; Pascoe, Peter J; Kass, Philip H; Wisner, Erik R

    2009-09-01

    To determine the effects of body position on lung and air-sac volumes in anesthetized and spontaneously breathing red-tailed hawks (Buteo jamaicensis). 6 adult red-tailed hawks (sex unknown). A crossover study design was used for quantitative estimation of lung and air-sac volumes in anesthetized hawks in 3 body positions: dorsal, right lateral, and sternal recumbency. Lung volume, lung density, and air-sac volume were calculated from helical computed tomographic (CT) images by use of software designed for volumetric analysis of CT data. Effects of body position were compared by use of repeated-measures ANOVA and a paired Student t test. Results for all pairs of body positions were significantly different from each other. Mean +/- SD lung density was lowest when hawks were in sternal recumbency (-677 +/- 28 CT units), followed by right lateral (-647 +/- 23 CT units) and dorsal (-630 +/- 19 CT units) recumbency. Mean lung volume was largest in sternal recumbency (28.6 +/- 1.5 mL), followed by right lateral (27.6 +/- 1.7 mL) and dorsal (27.0 +/- 1.5 mL) recumbency. Mean partial air-sac volume was largest in sternal recumbency (27.0 +/- 19.3 mL), followed by right lateral (21.9 +/- 16.1 mL) and dorsal (19.3 +/- 16.9 mL) recumbency. In anesthetized red-tailed hawks, positioning in sternal recumbency resulted in the greatest lung and air-sac volumes and lowest lung density, compared with positioning in right lateral and dorsal recumbency. Additional studies are necessary to determine the physiologic effects of body position on the avian respiratory system.

  7. Avian influenza: an agricultural perspective.

    PubMed

    Morgan, Andrea

    2006-11-01

    Recent outbreaks of infection with highly pathogenic H5N1 strains of avian influenza virus in poultry in Asia, Africa, Europe, and the Middle East have raised concern over the potential emergence of a pandemic strain that can easily infect humans and cause serious morbidity and mortality. To prevent and control a national outbreak, the US Department of Agriculture (USDA) conducts measures based on the ecology of avian influenza viruses. To prevent an outbreak in the United States, the USDA conducts surveillance of bird populations, restrictions on bird importation, educational outreach, and regulation of agricultural practices, in collaboration with local, state, and federal organizations. To manage an outbreak, the USDA has in place a well-established emergency management system for optimizing efforts. The USDA also collaborates with international organizations for disease prevention and control in other countries.

  8. [The compensatory and adaptive e reactions of the respiratory system as the diagnostic criteria for histological studies in forensic medicine].

    PubMed

    Os'minkin, V A; Os'minkin, S V

    2015-01-01

    The objective of the present study was to characterize the structural changes in the respiratory system equivalent to its compensatory and adaptive reactions in response to the action of various factors under the normal and extreme conditions for the assessment of the possibility of their further use for the purpose of diagnostics. The action of various factors on the tissues obtained from the human respiratory system for forensic medical examination was shown to cause combined histomorphological alterations that refelect a wide spectrum of protective, compensatory, and adaptive reactions. The range of potential morphological and functional changes in the respiratory system depends on the characteristics of endogenous and exogenous factors influencing the organism of the affected subjects. It is concluded that the use of the proposed approach to morphological diagnostics may be useful for the development of criteria for the evaluation of various variants of tanatogenesis with their objective confirmation by mathematical models.

  9. Workshop to identify critical windows of exposure for children's health: immune and respiratory systems work group summary.

    PubMed

    Dietert, R R; Etzel, R A; Chen, D; Halonen, M; Holladay, S D; Jarabek, A M; Landreth, K; Peden, D B; Pinkerton, K; Smialowicz, R J; Zoetis, T

    2000-06-01

    Fetuses, infants, and juveniles (preadults) should not be considered simply "small adults" when it comes to toxicological risk. We present specific examples of developmental toxicants that are more toxic to children than to adults, focusing on effects on the immune and respiratory systems. We describe differences in both the pharmacokinetics of the developing immune and respiratory systems as well as changes in target organ sensitivities to toxicants. Differential windows of vulnerability during development are identified in the context of available animal models. We provide specific approaches to directly investigate differential windows of vulnerability. These approaches are based on fundamental developmental biology and the existence of discrete developmental processes within the immune and respiratory systems. The processes are likely to influence differential developmental susceptibility to toxicants, resulting in lifelong toxicological changes. We also provide a template for comparative research. Finally, we discuss the application of these data to risk assessment.

  10. Influenza-induced innate immunity: regulators of viral replication, respiratory tract pathology & adaptive immunity

    PubMed Central

    Oslund, Karen L; Baumgarth, Nicole

    2011-01-01

    Influenza virus infections usually cause mild to moderately severe respiratory disease, however some infections, like those involving the avian H5N1 virus, can cause massive viral pneumonia, systemic disease and death. The innate immune response of respiratory tract resident cells is the first line of defense and limits virus replication. Enhanced cytokine and chemokine production following infection, however, appears to underlie much of the pathology that develops after infection with highly pathogenic strains. A so-called `cytokine storm' can damage the lung tissue and cause systemic disease, despite the control of viral replication. By summarizing current knowledge of the innate responses mounted to influenza infection, this review highlights the importance of the respiratory tract epithelial cells as regulators of innate and adaptive immunity to influenza virus. PMID:21909336

  11. Comparison of visual biofeedback system with a guiding waveform and abdomen-chest motion self-control system for respiratory motion management.

    PubMed

    Nakajima, Yujiro; Kadoya, Noriyuki; Kanai, Takayuki; Ito, Kengo; Sato, Kiyokazu; Dobashi, Suguru; Yamamoto, Takaya; Ishikawa, Yojiro; Matsushita, Haruo; Takeda, Ken; Jingu, Keiichi

    2016-07-01

    Irregular breathing can influence the outcome of 4D computed tomography imaging and cause artifacts. Visual biofeedback systems associated with a patient-specific guiding waveform are known to reduce respiratory irregularities. In Japan, abdomen and chest motion self-control devices (Abches) (representing simpler visual coaching techniques without a guiding waveform) are used instead; however, no studies have compared these two systems to date. Here, we evaluate the effectiveness of respiratory coaching in reducing respiratory irregularities by comparing two respiratory management systems. We collected data from 11 healthy volunteers. Bar and wave models were used as visual biofeedback systems. Abches consisted of a respiratory indicator indicating the end of each expiration and inspiration motion. Respiratory variations were quantified as root mean squared error (RMSE) of displacement and period of breathing cycles. All coaching techniques improved respiratory variation, compared with free-breathing. Displacement RMSEs were 1.43 ± 0.84, 1.22 ± 1.13, 1.21 ± 0.86 and 0.98 ± 0.47 mm for free-breathing, Abches, bar model and wave model, respectively. Period RMSEs were 0.48 ± 0.42, 0.33 ± 0.31, 0.23 ± 0.18 and 0.17 ± 0.05 s for free-breathing, Abches, bar model and wave model, respectively. The average reduction in displacement and period RMSE compared with the wave model were 27% and 47%, respectively. For variation in both displacement and period, wave model was superior to the other techniques. Our results showed that visual biofeedback combined with a wave model could potentially provide clinical benefits in respiratory management, although all techniques were able to reduce respiratory irregularities.

  12. A Wireless Electronic Esophageal Stethoscope for Continuous Monitoring of Cardiovascular and Respiratory Systems during Anaesthesia

    PubMed Central

    Parsaei, H.; Vakily, A.; Shafiei, A.M.

    2017-01-01

    Background: The basic requirements for monitoring anesthetized patients during surgery are assessing cardiac and respiratory function. Esophageal stethoscopes have been developed for this purpose, but these devices may not provide clear heart and lung sound due to existence of various noises in operating rooms. In addition, the stethoscope is not applicable for continues monitoring, and it is unsuitable for observing inaccessible patients in some conditions such as during CT scan. Objective: A wireless electronic esophageal stethoscope is designed for continues auscultation of heart and lung sounds in anesthetized patients. The system consists of a transmitter and a receiver. The former acquires, amplifies and transmits the acquired sound signals to the latter via a frequency modulation transmitter. The receiver demodulates, amplifies, and delivers the received signal to a headphone to be heard by anesthesiologist. Results: The usability and effectiveness of the designed system was qualitatively evaluated by 5 anesthesiologists in Namazi Hospital and Shahid Chamran Hospital, Shiraz, Iran on 30 patients in several operating rooms in different conditions; e.g., when electro surgery instruments are working. Fortunately, the experts on average ranked good quality for the heard heart and lung sounds and very good on the user friendly being of the instrument. Conclusion: Evaluation results demonstrate that the developed system is capable of capturing and transmitting heart and lung sounds successfully. Therefore, it can be used to continuously monitor anesthetized patients’ cardiac and respiratory function. Since via the instrument wireless auscultation is possible, it could be suitable for observing inaccessible patients in several conditions such as during CT scan. PMID:28451580

  13. Impact of exacerbations on respiratory system impedance measured by a forced oscillation technique in COPD: a prospective observational study.

    PubMed

    Kamada, Takahiro; Kaneko, Masahiro; Tomioka, Hiromi

    2017-01-01

    Forced oscillation technique (FOT) has been reported to be useful in the evaluation and management of obstructive lung disease, including COPD. To date, no data are available concerning long-term changes in respiratory system impedance measured by FOT. Additionally, although exacerbations have been reported to be associated with excessive lung function decline in COPD, the impact of exacerbations on the results of FOT has not been demonstrated. The aim of this study was to investigate the longitudinal changes in respiratory system impedance and the influence of exacerbations thereon. Between March 2011 and March 2012, outpatients who attended Kobe City Medical Center West Hospital with a diagnosis of COPD were assessed for eligibility. Baseline patient characteristics (age, sex, body mass index, smoking history, current smoking status, COPD stage), lung function (post-bronchodilator forced expiratory volume in 1 second [FEV1]), blood tests (neutrophils and eosinophils), FOT, and COPD assessment test results were collected at enrollment. Lung function and FOT were examined every 6 months until March 2016. Annual changes in FEV1 and FOT parameters were obtained from the slope of the linear regression curve. The patients were divided into 2 groups based on exacerbation history. Fifty-one of 58 patients with COPD were enrolled in this study. The median follow-up period was 57 (52-59) months. Twenty-five (49%) patients experienced exacerbations. A significant annual decline in FEV1 and respiratory system impedance were shown. Additionally, annual changes in FEV1, respiratory system resistance at 5 Hz, respiratory system reactance at 5 Hz, and resonant frequency were greater in patients with exacerbations than in those without exacerbations. Exacerbations of COPD lead not only to a decline in lung function but also to an increase in respiratory system impedance.

  14. Impact of exacerbations on respiratory system impedance measured by a forced oscillation technique in COPD: a prospective observational study

    PubMed Central

    Kamada, Takahiro; Kaneko, Masahiro; Tomioka, Hiromi

    2017-01-01

    Background Forced oscillation technique (FOT) has been reported to be useful in the evaluation and management of obstructive lung disease, including COPD. To date, no data are available concerning long-term changes in respiratory system impedance measured by FOT. Additionally, although exacerbations have been reported to be associated with excessive lung function decline in COPD, the impact of exacerbations on the results of FOT has not been demonstrated. The aim of this study was to investigate the longitudinal changes in respiratory system impedance and the influence of exacerbations thereon. Methods Between March 2011 and March 2012, outpatients who attended Kobe City Medical Center West Hospital with a diagnosis of COPD were assessed for eligibility. Baseline patient characteristics (age, sex, body mass index, smoking history, current smoking status, COPD stage), lung function (post-bronchodilator forced expiratory volume in 1 second [FEV1]), blood tests (neutrophils and eo