Sample records for avionics engineering center

  1. Profile of an Effective Engineering Manager at the Naval Avionics Center

    DTIC Science & Technology

    1991-06-01

    GROUP Leadership ; Engineering Management Effectiveness; Engineers; Engineering Managers ; Naval Avionics Center 19 ABSTR. T (Continue on reverse if...Personnel. The purpose of the Institute is to support the implementation of the NAC Leadership / Management Principles throughout NAC. The Leadership ... Management Principles are as follows: - Develc 2 and Maintain a Corporate Outlook. - Communicate the Organizational Vision through Positive Leadership

  2. Space shuttle engineering and operations support. Avionics system engineering

    NASA Technical Reports Server (NTRS)

    Broome, P. A.; Neubaur, R. J.; Welsh, R. T.

    1976-01-01

    The shuttle avionics integration laboratory (SAIL) requirements for supporting the Spacelab/orbiter avionics verification process are defined. The principal topics are a Spacelab avionics hardware assessment, test operations center/electronic systems test laboratory (TOC/ESL) data processing requirements definition, SAIL (Building 16) payload accommodations study, and projected funding and test scheduling. Because of the complex nature of the Spacelab/orbiter computer systems, the PCM data link, and the high rate digital data system hardware/software relationships, early avionics interface verification is required. The SAIL is a prime candidate test location to accomplish this early avionics verification.

  3. An avionics scenario and command model description for Space Generic Open Avionics Architecture (SGOAA)

    NASA Technical Reports Server (NTRS)

    Stovall, John R.; Wray, Richard B.

    1994-01-01

    This paper presents a description of a model for a space vehicle operational scenario and the commands for avionics. This model will be used in developing a dynamic architecture simulation model using the Statemate CASE tool for validation of the Space Generic Open Avionics Architecture (SGOAA). The SGOAA has been proposed as an avionics architecture standard to NASA through its Strategic Avionics Technology Working Group (SATWG) and has been accepted by the Society of Automotive Engineers (SAE) for conversion into an SAE Avionics Standard. This architecture was developed for the Flight Data Systems Division (FDSD) of the NASA Johnson Space Center (JSC) by the Lockheed Engineering and Sciences Company (LESC), Houston, Texas. This SGOAA includes a generic system architecture for the entities in spacecraft avionics, a generic processing external and internal hardware architecture, and a nine class model of interfaces. The SGOAA is both scalable and recursive and can be applied to any hierarchical level of hardware/software processing systems.

  4. Crew Launch Vehicle (CLV) Avionics and Software Integration Overview

    NASA Technical Reports Server (NTRS)

    Monell, Donald W.; Flynn, Kevin C.; Maroney, Johnny

    2006-01-01

    On January 14, 2004, the President of the United States announced a new plan to explore space and extend a human presence across our solar system. The National Aeronautics and Space Administration (NASA) established the Exploration Systems Mission Directorate (ESMD) to develop and field a Constellation Architecture that will bring the Space Exploration vision to fruition. The Constellation Architecture includes a human-rated Crew Launch Vehicle (CLV) segment, managed by the Marshall Space Flight Center (MSFC), comprised of the First Stage (FS), Upper Stage (US), and Upper Stage Engine (USE) elements. The CLV s purpose is to provide safe and reliable crew and cargo transportation into Low Earth Orbit (LEO), as well as insertion into trans-lunar trajectories. The architecture's Spacecraft segment includes, among other elements, the Crew Exploration Vehicle (CEV), managed by the Johnson Space Flight Center (JSC), which is launched atop the CLV. MSFC is also responsible for CLV and CEV stack integration. This paper provides an overview of the Avionics and Software integration approach (which includes the Integrated System Health Management (ISHM) functions), both within the CLV, and across the CEV interface; it addresses the requirements to be met, logistics of meeting those requirements, and the roles of the various groups. The Avionics Integration and Vehicle Systems Test (ANST) Office was established at the MSFC with system engineering responsibilities for defining and developing the integrated CLV Avionics and Software system. The AIVST Office has defined two Groups, the Avionics and Software Integration Group (AVSIG), and the Integrated System Simulation and Test Integration Group (ISSTIG), and four Panels which will direct trade studies and analyses to ensure the CLV avionics and software meet CLV system and CEV interface requirements. The four panels are: 1) Avionics Integration Panel (AIP), 2) Software Integration Panel, 3) EEE Panel, and 4) Systems Simulation and Test Panel. Membership on the groups and panels includes the MSFC representatives from the requisite engineering disciplines, the First Stage, the Upper Stage, the Upper Stage Engine projects, and key personnel from other NASA centers. The four panels will take the results of trade studies and analyses and develop documentation in support of Design Analysis Cycle Reviews and ultimately the System Requirements Review.

  5. Developing Avionics Hardware and Software for Rocket Engine Testing

    NASA Technical Reports Server (NTRS)

    Aberg, Bryce Robert

    2014-01-01

    My summer was spent working as an intern at Kennedy Space Center in the Propulsion Avionics Branch of the NASA Engineering Directorate Avionics Division. The work that I was involved with was part of Rocket University's Project Neo, a small scale liquid rocket engine test bed. I began by learning about the layout of Neo in order to more fully understand what was required of me. I then developed software in LabView to gather and scale data from two flowmeters and integrated that code into the main control software. Next, I developed more LabView code to control an igniter circuit and integrated that into the main software, as well. Throughout the internship, I performed work that mechanics and technicians would do in order to maintain and assemble the engine.

  6. Spacecraft Avionics Software Development Then and Now: Different but the Same

    NASA Technical Reports Server (NTRS)

    Mangieri, Mark L.; Garman, John (Jack); Vice, Jason

    2012-01-01

    NASA has always been in the business of balancing new technologies and techniques to achieve human space travel objectives. NASA s historic Software Production Facility (SPF) was developed to serve complex avionics software solutions during an era dominated by mainframes, tape drives, and lower level programming languages. These systems have proven themselves resilient enough to serve the Shuttle Orbiter Avionics life cycle for decades. The SPF and its predecessor the Software Development Lab (SDL) at NASA s Johnson Space Center (JSC) hosted flight software (FSW) engineering, development, simulation, and test. It was active from the beginning of Shuttle Orbiter development in 1972 through the end of the shuttle program in the summer of 2011 almost 40 years. NASA s Kedalion engineering analysis lab is on the forefront of validating and using many contemporary avionics HW/SW development and integration techniques, which represent new paradigms to NASA s heritage culture in avionics software engineering. Kedalion has validated many of the Orion project s HW/SW engineering techniques borrowed from the adjacent commercial aircraft avionics environment, inserting new techniques and skills into the Multi-Purpose Crew Vehicle (MPCV) Orion program. Using contemporary agile techniques, COTS products, early rapid prototyping, in-house expertise and tools, and customer collaboration, NASA has adopted a cost effective paradigm that is currently serving Orion effectively. This paper will explore and contrast differences in technology employed over the years of NASA s space program, due largely to technological advances in hardware and software systems, while acknowledging that the basic software engineering and integration paradigms share many similarities.

  7. STS_135_SAIL

    NASA Image and Video Library

    2011-07-12

    JSC2011-E-067682 (12 July 2011) --- Chief engineer Frank Svrecek pauses in the Shuttle Avionics Integration Laboratory (SAIL) at the Johnson Space Center in Houston July 12, 2011. The laboratory is a skeletal avionics version of the shuttle that uses actual orbiter hardware and flight software. The facility is referred to as Orbiter Vehicle 095. Photo credit: NASA Photo/Houston Chronicle, Smiley N. Pool

  8. Digital Avionics

    NASA Technical Reports Server (NTRS)

    Koelbl, Terry G.; Ponchak, Denise; Lamarche, Teresa

    2002-01-01

    The field of digital avionics experienced another year of important advances in civil aviation, military systems, and space applications. As a result of the events of 9/11/2001, NASA has pursued activities to apply its aerospace technologies toward improved aviation security. Both NASA Glenn Research Center and Langley Research Center have performed flight research demonstrations using advanced datalink concepts to transmit live pictures from inside a jetliner, and to downlink the contents of the plane's 'black box' recorder in real time. The U.S. Navy and General Electric demonstrated survivable engine control (SEC) algorithms during engine ground tests at the Weapons Survivability Laboratory at China Lake. The scientists at Boeing Satellite Systems advanced the field of stellar inertial technology with the development of a new method for positioning optical star trackers on satellites.

  9. Case Study of the Space Shuttle Cockpit Avionics Upgrade Software

    NASA Technical Reports Server (NTRS)

    Ferguson, Roscoe C.; Thompson, Hiram C.

    2005-01-01

    The purpose of the Space Shuttle Cockpit Avionics Upgrade project was to reduce crew workload and improve situational awareness. The upgrade was to augment the Shuttle avionics system with new hardware and software. An early version of this system was used to gather human factor statistics in the Space Shuttle Motion Simulator of the Johnson Space Center for one month by multiple teams of astronauts. The results were compiled by NASA Ames Research Center and it was was determined that the system provided a better than expected increase in situational awareness and reduction in crew workload. Even with all of the benefits nf the system, NASA cancelled the project towards the end of the development cycle. A major success of this project was the validation of the hardware architecture and software design. This was significant because the project incorporated new technology and approaches for the development of human rated space software. This paper serves as a case study to document knowledge gained and techniques that can be applied for future space avionics development efforts. The major technological advances were the use of reflective memory concepts for data acquisition and the incorporation of Commercial off the Shelf (COTS) products in a human rated space avionics system. The infused COTS products included a real time operating system, a resident linker and loader, a display generation tool set, and a network data manager. Some of the successful design concepts were the engineering of identical outputs in multiple avionics boxes using an event driven approach and inter-computer communication, a reconfigurable data acquisition engine, the use of a dynamic bus bandwidth allocation algorithm. Other significant experiences captured were the use of prototyping to reduce risk, and the correct balance between Object Oriented and Functional based programming.

  10. STS_135_SAIL

    NASA Image and Video Library

    2011-07-12

    JSC2011-E-067674 (12 July 2011) --- Chris St. Julian, left, a Prairie View A&M electrical engineering major who is interning at NASA for the summer, pilots the shuttle for a simulated landing in the Shuttle Avionics Integration Laboratory (SAIL) at the Johnson Space Center in Houston, July 12, 2011. The laboratory is a skeletal avionics version of the shuttle that uses actual orbiter hardware and flight software. The facility bears the orbiter designation of Orbiter Vehicle 095. Photo credit: NASA Photo/Houston Chronicle, Smiley N. Pool

  11. NASA’s Improved Supersonic Cockpit Display Shows Precise Locations of Sonic Booms

    NASA Image and Video Library

    2016-10-15

    Flight Test Engineer Jacob Schaefer inspects the Cockpit Interactive Sonic Boom Display Avionics, or CISBoomDA, from the cockpit of his F-18 at NASA’s Armstrong Flight Research Center in Edwards, California.

  12. System Engineering Issues for Avionics Survival in the Space Environment

    NASA Technical Reports Server (NTRS)

    Pavelitz, Steven

    1999-01-01

    This paper examines how the system engineering process influences the design of a spacecraft's avionics by considering the space environment. Avionics are susceptible to the thermal, radiation, plasma, and meteoroids/orbital debris environments. The environment definitions for various spacecraft mission orbits (LEO/low inclination, LEO/Polar, MEO, HEO, GTO, GEO and High ApogeeElliptical) are discussed. NASA models and commercial software used for environment analysis are reviewed. Applicability of technical references, such as NASA TM-4527 "Natural Orbital Environment Guidelines for Use in Aerospace Vehicle Development" is discussed. System engineering references, such as the MSFC System Engineering Handbook, are reviewed to determine how the environments are accounted for in the system engineering process. Tools and databases to assist the system engineer and avionics designer in addressing space environment effects on avionics are described and usefulness assessed.

  13. Flight Avionics Sequencing Telemetry (FAST) DIV Latching Display

    NASA Technical Reports Server (NTRS)

    Moore, Charlotte

    2010-01-01

    The NASA Engineering (NE) Directorate at Kennedy Space Center provides engineering services to major programs such as: Space Shuttle, Inter national Space Station, and the Launch Services Program (LSP). The Av ionics Division within NE, provides avionics and flight control syste ms engineering support to LSP. The Launch Services Program is respons ible for procuring safe and reliable services for transporting critical, one of a kind, NASA payloads into orbit. As a result, engineers mu st monitor critical flight events during countdown and launch to asse ss anomalous behavior or any unexpected occurrence. The goal of this project is to take a tailored Systems Engineering approach to design, develop, and test Iris telemetry displays. The Flight Avionics Sequen cing Telemetry Delta-IV (FAST-D4) displays will provide NASA with an improved flight event monitoring tool to evaluate launch vehicle heal th and performance during system-level ground testing and flight. Flight events monitored will include data from the Redundant Inertial Fli ght Control Assembly (RIFCA) flight computer and launch vehicle comma nd feedback data. When a flight event occurs, the flight event is ill uminated on the display. This will enable NASA Engineers to monitor c ritical flight events on the day of launch. Completion of this project requires rudimentary knowledge of launch vehicle Guidance, Navigatio n, and Control (GN&C) systems, telemetry, and console operation. Work locations for the project include the engineering office, NASA telem etry laboratory, and Delta launch sites.

  14. STS-134 crew during PDRS PRF ADV (AMS) traiining

    NASA Image and Video Library

    2011-03-23

    JSC2011-E-028158 (23 March 2011) --- NASA astronaut Greg H. Johnson, STS-134 pilot, participates in an exercise in the systems engineering simulator in the Avionics Systems Laboratory at NASA's Johnson Space Center. Photo credit: NASA or National Aeronautics and Space Administration

  15. KSC-2013-4342

    NASA Image and Video Library

    2013-12-11

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, from the left, Leandro James, rocket avionics lead, Gary Dahlke, high powered rocket subject matter expert, and Julio Najarro of Mechanical Systems make final adjustments to a small rocket prior to launch as part of Rocket University. The launch will test systems designed by the student engineers. As part of Rocket University, the engineers are given an opportunity to work a fast-track project to develop skills in developing spacecraft systems of the future. As NASA plans for future spaceflight programs to low-Earth orbit and beyond, teams of engineers at Kennedy are gaining experience in designing and flying launch vehicle systems on a small scale. Four teams of five to eight members from Kennedy are designing rockets complete with avionics and recovery systems. Launch operations require coordination with federal agencies, just as they would with rockets launched in support of a NASA mission. Photo credit: NASA/Jim Grossmann

  16. KSC-2013-4343

    NASA Image and Video Library

    2013-12-11

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, from the left, Leandro James, rocket avionics lead, and Julio Najarro of Mechanical Systems make final adjustments to a small rocket prior to launch as part of Rocket University. The launch will test systems designed by the student engineers. As part of Rocket University, the engineers are given an opportunity to work a fast-track project to develop skills in developing spacecraft systems of the future. As NASA plans for future spaceflight programs to low-Earth orbit and beyond, teams of engineers at Kennedy are gaining experience in designing and flying launch vehicle systems on a small scale. Four teams of five to eight members from Kennedy are designing rockets complete with avionics and recovery systems. Launch operations require coordination with federal agencies, just as they would with rockets launched in support of a NASA mission. Photo credit: NASA/Jim Grossmann

  17. RATANA MEEKHAM, AN ELECTRICAL INTEGRATION TECHNICIAN FOR QUALIS CORP. OF HUNTSVILLE, ALABAMA, HELPS TEST AVIONICS -- COMPLEX VEHICLE SYSTEMS ENABLING NAVIGATION, COMMUNICATIONS AND OTHER FUNCTIONS CRITICAL TO HUMAN SPACEFLIGHT

    NASA Image and Video Library

    2015-01-08

    RATANA MEEKHAM, AN ELECTRICAL INTEGRATION TECHNICIAN FOR QUALIS CORP. OF HUNTSVILLE, ALABAMA, HELPS TEST AVIONICS -- COMPLEX VEHICLE SYSTEMS ENABLING NAVIGATION, COMMUNICATIONS AND OTHER FUNCTIONS CRITICAL TO HUMAN SPACEFLIGHT -- FOR THE SPACE LAUNCH SYSTEM PROGRAM AT NASA’S MARSHALL SPACE FLIGHT CENTER IN HUNTSVILLE, ALABAMA. HER WORK SUPPORTS THE NASA ENGINEERING & SCIENCE SERVICES AND SKILLS AUGMENTATION CONTRACT LED BY JACOBS ENGINEERING OF HUNTSVILLE. MEEKHAM WORKS FULL-TIME AT MARSHALL WHILE FINISHING HER ASSOCIATE'S DEGREE IN MACHINE TOOL TECHNOLOGY AT CALHOUN COMMUNITY COLLEGE IN DECATUR, ALABAMA. THE SPACE LAUNCH SYSTEM, NASA’S NEXT HEAVY-LIFT LAUNCH VEHICLE, IS THE WORLD’S MOST POWERFUL ROCKET, SET TO FLY ITS FIRST UNCREWED LUNAR ORBITAL MISSION IN 2018. ITS FIRST.

  18. STS-132 crew during their PDRS N-TSK MRM training in the building 16 cupola trainer.

    NASA Image and Video Library

    2009-12-22

    JSC2009-E-286973 (22 Dec. 2009) --- Astronauts Ken Ham (left), STS-132 commander; Tony Antonelli (center), pilot; and Mike Good, mission specialist, participate in an exercise in the systems engineering simulator in the Avionics Systems Laboratory at NASA?s Johnson Space Center. The facility includes moving scenes of full-sized International Space Station components over a simulated Earth.

  19. IEEE/AIAA/NASA Digital Avionics Systems Conference, 9th, Virginia Beach, VA, Oct. 15-18, 1990, Proceedings

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The present conference on digital avionics discusses vehicle-management systems, spacecraft avionics, special vehicle avionics, communication/navigation/identification systems, software qualification and quality assurance, launch-vehicle avionics, Ada applications, sensor and signal processing, general aviation avionics, automated software development, design-for-testability techniques, and avionics-software engineering. Also discussed are optical technology and systems, modular avionics, fault-tolerant avionics, commercial avionics, space systems, data buses, crew-station technology, embedded processors and operating systems, AI and expert systems, data links, and pilot/vehicle interfaces.

  20. STS-135 crew during Rendezvous Training session in Building 16 dome

    NASA Image and Video Library

    2011-03-23

    JSC2011-E-028153 (23 March 2011) --- NASA astronauts Doug Hurley, STS-135 pilot; and Sandy Magnus (foreground), mission specialist, participate in an exercise in the systems engineering simulator in the Avionics Systems Laboratory at NASA's Johnson Space Center. Photo credit: NASA or National Aeronautics and Space Administration

  1. STS-135 crew during Rendezvous Training session in Building 16 dome

    NASA Image and Video Library

    2011-03-23

    JSC2011-E-028151 (23 March 2011) --- NASA astronauts Doug Hurley, STS-135 pilot; and Sandy Magnus (foreground), mission specialist, participate in an exercise in the systems engineering simulator in the Avionics Systems Laboratory at NASA's Johnson Space Center. Photo credit: NASA or National Aeronautics and Space Administration

  2. STS-135 crew during Rendezvous Training session in Building 16 dome

    NASA Image and Video Library

    2011-03-23

    JSC2011-E-028122 (23 March 2011) --- NASA astronauts Doug Hurley, STS-135 pilot; and Sandy Magnus (foreground), mission specialist, participate in an exercise in the systems engineering simulator in the Avionics Systems Laboratory at NASA's Johnson Space Center. Photo credit: NASA or National Aeronautics and Space Administration

  3. STS-134 crew during PDRS PRF ADV (AMS) traiining

    NASA Image and Video Library

    2011-03-23

    JSC2011-E-028160 (23 March 2011) --- NASA astronauts Greg H. Johnson (right), STS-134 pilot; and Greg Chamitoff, mission specialist, are pictured during an exercise in the systems engineering simulator in the Avionics Systems Laboratory at NASA's Johnson Space Center. Photo credit: NASA or National Aeronautics and Space Administration

  4. STS-135 crew during Rendezvous Training session in Building 16 dome

    NASA Image and Video Library

    2011-03-23

    JSC2011-E-028150 (23 March 2011) --- NASA astronauts Doug Hurley, STS-135 pilot; and Sandy Magnus (foreground), mission specialist, participate in an exercise in the systems engineering simulator in the Avionics Systems Laboratory at NASA's Johnson Space Center. Photo credit: NASA or National Aeronautics and Space Administration

  5. General aviation avionics equipment maintenance

    NASA Technical Reports Server (NTRS)

    Parker, C. D.; Tommerdahl, J. B.

    1978-01-01

    Maintenance of general aviation avionics equipment was investigated with emphasis on single engine and light twin engine general aviation aircraft. Factors considered include the regulatory agencies, avionics manufacturers, avionics repair stations, the statistical character of the general aviation community, and owners and operators. The maintenance, environment, and performance, repair costs, and reliability of avionics were defined. It is concluded that a significant economic stratification is reflected in the maintenance problems encountered, that careful attention to installations and use practices can have a very positive impact on maintenance problems, and that new technologies and a general growth in general aviation will impact maintenance.

  6. Management of Microcircuit Obsolescence in a Pre-Production ACAT-ID Missile Program

    DTIC Science & Technology

    2002-12-01

    and Engineering Center ASIC Application Specific Integrated Circuit AVCOM Avionics Component Obsolescence Management BRU Battery Replaceable Unit...then just a paper qualification, e.g. Board or Battery Replaceable Unit ( BRU ) testing. 5 After-market Package The Die is Available and Can Be...Encapsulated Microcircuits (PEM), speed change, failure rate) 8 Emulation Manufacture or re-engineering of a FFF Replacement 9 CCA or BRU Redesign Board

  7. Fault tolerant testbed evaluation, phase 1

    NASA Technical Reports Server (NTRS)

    Caluori, V., Jr.; Newberry, T.

    1993-01-01

    In recent years, avionics systems development costs have become the driving factor in the development of space systems, military aircraft, and commercial aircraft. A method of reducing avionics development costs is to utilize state-of-the-art software application generator (autocode) tools and methods. The recent maturity of application generator technology has the potential to dramatically reduce development costs by eliminating software development steps that have historically introduced errors and the need for re-work. Application generator tools have been demonstrated to be an effective method for autocoding non-redundant, relatively low-rate input/output (I/O) applications on the Space Station Freedom (SSF) program; however, they have not been demonstrated for fault tolerant, high-rate I/O, flight critical environments. This contract will evaluate the use of application generators in these harsh environments. Using Boeing's quad-redundant avionics system controller as the target system, Space Shuttle Guidance, Navigation, and Control (GN&C) software will be autocoded, tested, and evaluated in the Johnson (Space Center) Avionics Engineering Laboratory (JAEL). The response of the autocoded system will be shown to match the response of the existing Shuttle General Purpose Computers (GPC's), thereby demonstrating the viability of using autocode techniques in the development of future avionics systems.

  8. Graduate engineering research participation in aeronautics

    NASA Technical Reports Server (NTRS)

    Roberts, A. S., Jr.

    1986-01-01

    The Aeronautics Graduate Research Program commenced in 1971, with the primary goal of engaging students who qualified for regular admission to the Graduate School of Engineering at Old Dominion University in a graduate engineering research and study program in collaboration with NASA Langley Research Center, Hampton, Virginia. The format and purposes of this program are discussed. Student selection and program statistics are summarized. Abstracts are presented in the folowing areas: aircraft design, aerodynamics, lift/drag characteristics; avionics; fluid mechanics; solid mechanics; instrumentation and measurement techniques; thermophysical properties experiments; large space structures; earth orbital dynamics; and environmental engineering.

  9. STS-135 crew during Rendezvous Training session in Building 16 dome

    NASA Image and Video Library

    2011-03-23

    JSC2011-E-028139 (23 March 2011) --- NASA astronauts Chris Ferguson (left), STS-135 commander; Doug Hurley (center), pilot; and Sandy Magnus, mission specialist, participate in an exercise in the systems engineering simulator in the Avionics Systems Laboratory at NASA's Johnson Space Center. The facility includes moving scenes of full-sized International Space Station components over a simulated Earth. Photo credit: NASA or National Aeronautics and Space Administration

  10. Software Engineering Improvement Activities/Plan

    NASA Technical Reports Server (NTRS)

    2003-01-01

    bd Systems personnel accomplished the technical responsibilities for this reporting period, as planned. A close working relationship was maintained with personnel of the MSFC Avionics Department Software Group (ED14). Work accomplishments included development, evaluation, and enhancement of a software cost model, performing literature search and evaluation of software tools available for code analysis and requirements analysis, and participating in other relevant software engineering activities. Monthly reports were submitted. This support was provided to the Flight Software Group/ED 1 4 in accomplishing the software engineering improvement engineering activities of the Marshall Space Flight Center (MSFC) Software Engineering Improvement Plan.

  11. Open-Loop HIRF Experiments Performed on a Fault Tolerant Flight Control Computer

    NASA Technical Reports Server (NTRS)

    Koppen, Daniel M.

    1997-01-01

    During the third quarter of 1996, the Closed-Loop Systems Laboratory was established at the NASA Langley Research Center (LaRC) to study the effects of High Intensity Radiated Fields on complex avionic systems and control system components. This new facility provided a link and expanded upon the existing capabilities of the High Intensity Radiated Fields Laboratory at LaRC that were constructed and certified during 1995-96. The scope of the Closed-Loop Systems Laboratory is to place highly integrated avionics instrumentation into a high intensity radiated field environment, interface the avionics to a real-time flight simulation that incorporates aircraft dynamics, engines, sensors, actuators and atmospheric turbulence, and collect, analyze, and model aircraft performance. This paper describes the layout and functionality of the Closed-Loop Systems Laboratory, and the open-loop calibration experiments that led up to the commencement of closed-loop real-time flight experiments.

  12. STS-133 crew members Mike Barratt and Nicole Stott in cupola

    NASA Image and Video Library

    2010-06-08

    JSC2010-E-090701 (8 June 2010) --- Several computer monitors are featured in this image photographed during an STS-133 exercise in the systems engineering simulator in the Avionics Systems Laboratory at NASA's Johnson Space Center. The facility includes moving scenes of full-sized International Space Station components over a simulated Earth.

  13. A Demonstration Advanced Avionics System for general aviation

    NASA Technical Reports Server (NTRS)

    Denery, D. G.; Callas, G. P.; Jackson, C. T.; Berkstresser, B. K.; Hardy, G. H.

    1979-01-01

    A program initiated within NASA has emphasized the use of a data bus, microprocessors, electronic displays and data entry devices for general aviation. A Demonstration Advanced Avionics System (DAAS) capable of evaluating critical and promising elements of an integrating system that will perform the functions of (1) automated guidance and navigation; (2) flight planning; (3) weight and balance performance computations; (4) monitoring and warning; and (5) storage of normal and emergency check lists and operational limitations is described. Consideration is given to two major parts of the DAAS instrument panel: the integrated data control center and an electronic horizontal situation indicator, and to the system architecture. The system is to be installed in the Ames Research Center's Cessna 402B in the latter part of 1980; engineering flight testing will begin in the first part of 1981.

  14. Kedalion: NASA's Adaptable and Agile Hardware/Software Integration and Test Lab

    NASA Technical Reports Server (NTRS)

    Mangieri, Mark L.; Vice, Jason

    2011-01-01

    NASA fs Kedalion engineering analysis lab at Johnson Space Center is on the forefront of validating and using many contemporary avionics hardware/software development and integration techniques, which represent new paradigms to heritage NASA culture. Kedalion has validated many of the Orion hardware/software engineering techniques borrowed from the adjacent commercial aircraft avionics solution space, with the intention to build upon such techniques to better align with today fs aerospace market. Using agile techniques, commercial products, early rapid prototyping, in-house expertise and tools, and customer collaboration, Kedalion has demonstrated that cost effective contemporary paradigms hold the promise to serve future NASA endeavors within a diverse range of system domains. Kedalion provides a readily adaptable solution for medium/large scale integration projects. The Kedalion lab is currently serving as an in-line resource for the project and the Multipurpose Crew Vehicle (MPCV) program.

  15. STS-133 crew members Mike Barratt and Nicole Stott in cupola

    NASA Image and Video Library

    2010-06-08

    JSC2010-E-090702 (8 June 2010) --- NASA astronauts Michael Barratt and Nicole Stott, both STS-133 mission specialists, participate in an exercise in the systems engineering simulator in the Avionics Systems Laboratory at NASA's Johnson Space Center. The facility includes moving scenes of full-sized International Space Station components over a simulated Earth.

  16. STS-133 crew members Mike Barratt and Nicole Stott in cupola

    NASA Image and Video Library

    2010-06-08

    JSC2010-E-090698 (8 June 2010) --- NASA astronauts Michael Barratt and Nicole Stott, both STS-133 mission specialists, participate in an exercise in the systems engineering simulator in the Avionics Systems Laboratory at NASA's Johnson Space Center. The facility includes moving scenes of full-sized International Space Station components over a simulated Earth.

  17. STS-133 crew members Mike Barratt and Nicole Stott in cupola

    NASA Image and Video Library

    2010-06-08

    JSC2010-E-090695 (8 June 2010) --- NASA astronauts Nicole Stott and Michael Barratt, both STS-133 mission specialists, participate in an exercise in the systems engineering simulator in the Avionics Systems Laboratory at NASA's Johnson Space Center. The facility includes moving scenes of full-sized International Space Station components over a simulated Earth.

  18. STS-133 crew members Mike Barratt and Nicole Stott in cupola

    NASA Image and Video Library

    2010-06-08

    JSC2010-E-090700 (8 June 2010) --- NASA astronauts Michael Barratt and Nicole Stott, both STS-133 mission specialists, participate in an exercise in the systems engineering simulator in the Avionics Systems Laboratory at NASA's Johnson Space Center. The facility includes moving scenes of full-sized International Space Station components over a simulated Earth.

  19. STS-133 crew members Mike Barratt and Nicole Stott in cupola

    NASA Image and Video Library

    2010-06-08

    JSC2010-E-090704 (8 June 2010) --- NASA astronauts Michael Barratt and Nicole Stott, both STS-133 mission specialists, participate in an exercise in the systems engineering simulator in the Avionics Systems Laboratory at NASA's Johnson Space Center. The facility includes moving scenes of full-sized International Space Station components over a simulated Earth.

  20. Requirements analysis notebook for the flight data systems definition in the Real-Time Systems Engineering Laboratory (RSEL)

    NASA Astrophysics Data System (ADS)

    Wray, Richard B.

    1991-12-01

    A hybrid requirements analysis methodology was developed, based on the practices actually used in developing a Space Generic Open Avionics Architecture. During the development of this avionics architecture, a method of analysis able to effectively define the requirements for this space avionics architecture was developed. In this methodology, external interfaces and relationships are defined, a static analysis resulting in a static avionics model was developed, operating concepts for simulating the requirements were put together, and a dynamic analysis of the execution needs for the dynamic model operation was planned. The systems engineering approach was used to perform a top down modified structured analysis of a generic space avionics system and to convert actual program results into generic requirements. CASE tools were used to model the analyzed system and automatically generate specifications describing the model's requirements. Lessons learned in the use of CASE tools, the architecture, and the design of the Space Generic Avionics model were established, and a methodology notebook was prepared for NASA. The weaknesses of standard real-time methodologies for practicing systems engineering, such as Structured Analysis and Object Oriented Analysis, were identified.

  1. Requirements analysis notebook for the flight data systems definition in the Real-Time Systems Engineering Laboratory (RSEL)

    NASA Technical Reports Server (NTRS)

    Wray, Richard B.

    1991-01-01

    A hybrid requirements analysis methodology was developed, based on the practices actually used in developing a Space Generic Open Avionics Architecture. During the development of this avionics architecture, a method of analysis able to effectively define the requirements for this space avionics architecture was developed. In this methodology, external interfaces and relationships are defined, a static analysis resulting in a static avionics model was developed, operating concepts for simulating the requirements were put together, and a dynamic analysis of the execution needs for the dynamic model operation was planned. The systems engineering approach was used to perform a top down modified structured analysis of a generic space avionics system and to convert actual program results into generic requirements. CASE tools were used to model the analyzed system and automatically generate specifications describing the model's requirements. Lessons learned in the use of CASE tools, the architecture, and the design of the Space Generic Avionics model were established, and a methodology notebook was prepared for NASA. The weaknesses of standard real-time methodologies for practicing systems engineering, such as Structured Analysis and Object Oriented Analysis, were identified.

  2. Comparison of Communication Architectures for Spacecraft Modular Avionics Systems

    NASA Technical Reports Server (NTRS)

    Gwaltney, D. A.; Briscoe, J. M.

    2006-01-01

    This document is a survey of publicly available information concerning serial communication architectures used, or proposed to be used, in aeronautic and aerospace applications. It focuses on serial communication architectures that are suitable for low-latency or real-time communication between physically distributed nodes in a system. Candidates for the study have either extensive deployment in the field, or appear to be viable for near-term deployment. Eleven different serial communication architectures are considered, and a brief description of each is given with the salient features summarized in a table in appendix A. This survey is a product of the Propulsion High Impact Avionics Technology (PHIAT) Project at NASA Marshall Space Flight Center (MSFC). PHIAT was originally funded under the Next Generation Launch Technology (NGLT) Program to develop avionics technologies for control of next generation reusable rocket engines. After the announcement of the Space Exploration Initiative, the scope of the project was expanded to include vehicle systems control for human and robotics missions. As such, a section is included presenting the rationale used for selection of a time-triggered architecture for implementation of the avionics demonstration hardware developed by the project team

  3. STS-132 crew during their PDRS N-TSK MRM training in the building 16 cupola trainer.

    NASA Image and Video Library

    2009-12-22

    JSC2009-E-286971 (22 Dec. 2009) --- Astronauts Piers Sellers (left) and Garrett Reisman, both STS-132 mission specialists, participate in an exercise in the systems engineering simulator in the Avionics Systems Laboratory at NASA?s Johnson Space Center. The facility includes moving scenes of full-sized International Space Station components over a simulated Earth.

  4. STS-132 crew during their PDRS N-TSK MRM training in the building 16 cupola trainer.

    NASA Image and Video Library

    2009-12-22

    JSC2009-E-286964 (22 Dec. 2009) --- Astronauts Ken Ham (foreground), STS-132 commander; and Mike Good, mission specialist, participate in an exercise in the systems engineering simulator in the Avionics Systems Laboratory at NASA?s Johnson Space Center. The facility includes moving scenes of full-sized International Space Station components over a simulated Earth.

  5. STS-132 crew during their PDRS N-TSK MRM training in the building 16 cupola trainer.

    NASA Image and Video Library

    2009-12-22

    JSC2009-E-286961 (22 Dec. 2009) --- Astronaut Tony Antonelli, STS-132 pilot, uses a communication system during an exercise in the systems engineering simulator in the Avionics Systems Laboratory at NASA?s Johnson Space Center. The facility includes moving scenes of full-sized International Space Station components over a simulated Earth.

  6. STS-132 crew during their PDRS N-TSK MRM training in the building 16 cupola trainer.

    NASA Image and Video Library

    2009-12-22

    JSC2009-E-286960 (22 Dec. 2009) --- Astronaut Tony Antonelli, STS-132 pilot, uses a communication system during an exercise in the systems engineering simulator in the Avionics Systems Laboratory at NASA?s Johnson Space Center. The facility includes moving scenes of full-sized International Space Station components over a simulated Earth.

  7. Implementing the space shuttle data processing system with the space generic open avionics architecture

    NASA Technical Reports Server (NTRS)

    Wray, Richard B.; Stovall, John R.

    1993-01-01

    This paper presents an overview of the application of the Space Generic Open Avionics Architecture (SGOAA) to the Space Shuttle Data Processing System (DPS) architecture design. This application has been performed to validate the SGOAA, and its potential use in flight critical systems. The paper summarizes key elements of the Space Shuttle avionics architecture, data processing system requirements and software architecture as currently implemented. It then summarizes the SGOAA architecture and describes a tailoring of the SGOAA to the Space Shuttle. The SGOAA consists of a generic system architecture for the entities in spacecraft avionics, a generic processing external and internal hardware architecture, a six class model of interfaces and functional subsystem architectures for data services and operations control capabilities. It has been proposed as an avionics architecture standard with the National Aeronautics and Space Administration (NASA), through its Strategic Avionics Technology Working Group, and is being considered by the Society of Aeronautic Engineers (SAE) as an SAE Avionics Standard. This architecture was developed for the Flight Data Systems Division of JSC by the Lockheed Engineering and Sciences Company, Houston, Texas.

  8. KSC-05PD-1587

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. Patricia Slinger (left), a test engineer, and Monica Hagley, an avionics test engineer, look at a replacement orbiter point sensor chassis. Components are being tested to determine why one of the four liquid hydrogen tank low- level fuel cut-off sensors failed in a routine prelaunch check during the launch countdown July 13. The failure caused mission managers to scrub Discovery's first launch attempt. The sensor protects the Shuttle's main engines by triggering their shutdown in the event fuel runs unexpectedly low. The sensor is one of four inside the liquid hydrogen section of the External Tank (ET).

  9. STS-132 crew during their PDRS N-TSK MRM training in the building 16 cupola trainer.

    NASA Image and Video Library

    2009-12-22

    JSC2009-E-286968 (22 Dec. 2009) --- Astronauts Ken Ham (left), STS-132 commander; Tony Antonelli (right), pilot; and Mike Good, mission specialist, participate in an exercise in the systems engineering simulator in the Avionics Systems Laboratory at NASA?s Johnson Space Center. The facility includes moving scenes of full-sized International Space Station components over a simulated Earth.

  10. STS-134 crew during PDRS PRF ADV (AMS) traiining

    NASA Image and Video Library

    2011-03-23

    JSC2011-E-028161 (23 March 2011) --- NASA astronauts Greg Chamitoff (foreground), STS-134 mission specialist; and Greg H. Johnson, pilot, participate in an exercise in the systems engineering simulator in the Avionics Systems Laboratory at NASA's Johnson Space Center. The facility includes moving scenes of full-sized International Space Station components over a simulated Earth. Photo credit: NASA or National Aeronautics and Space Administration

  11. STS-125 Crew Training in the Bldg. 16 SES Dome

    NASA Image and Video Library

    2008-01-28

    JSC2008-E-007759 (28 Jan. 2008) --- STS-125 crewmembers participate in an exercise in the systems engineering simulator in the Avionics Systems Laboratory at Johnson Space Center. The facility includes moving scenes of full-sized Hubble Space Telescope components over a simulated Earth. Pictured are astronauts Andrew J. Feustel (foreground), Michael T. Good, both mission specialists; and Scott D. Altman, commander.

  12. KSC-05PD-1584

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. Monica Hagley, an avionic test engineer, places a refurbished, spare orbiter point sensor chassis on the table. Faulty readings in the liquid hydrogen tank low-level fuel cut-off sensor are being investigated because one of the four sensors failed a routine prelaunch check during the launch countdown July 13, causing mission managers to scrub Discovery's first launch attempt. The sensor protects the Shuttle's main engines by triggering their shutdown in the event fuel runs unexpectedly low. The sensor is one of four inside the liquid hydrogen section of the External Tank (ET).

  13. Use of Soft Computing Technologies for a Qualitative and Reliable Engine Control System for Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Trevino, Luis; Brown, Terry; Crumbley, R. T. (Technical Monitor)

    2001-01-01

    The problem to be addressed in this paper is to explore how the use of Soft Computing Technologies (SCT) could be employed to improve overall vehicle system safety, reliability, and rocket engine performance by development of a qualitative and reliable engine control system (QRECS). Specifically, this will be addressed by enhancing rocket engine control using SCT, innovative data mining tools, and sound software engineering practices used in Marshall's Flight Software Group (FSG). The principle goals for addressing the issue of quality are to improve software management, software development time, software maintenance, processor execution, fault tolerance and mitigation, and nonlinear control in power level transitions. The intent is not to discuss any shortcomings of existing engine control methodologies, but to provide alternative design choices for control, implementation, performance, and sustaining engineering, all relative to addressing the issue of reliability. The approaches outlined in this paper will require knowledge in the fields of rocket engine propulsion (system level), software engineering for embedded flight software systems, and soft computing technologies (i.e., neural networks, fuzzy logic, data mining, and Bayesian belief networks); some of which are briefed in this paper. For this effort, the targeted demonstration rocket engine testbed is the MC-1 engine (formerly FASTRAC) which is simulated with hardware and software in the Marshall Avionics & Software Testbed (MAST) laboratory that currently resides at NASA's Marshall Space Flight Center, building 4476, and is managed by the Avionics Department. A brief plan of action for design, development, implementation, and testing a Phase One effort for QRECS is given, along with expected results. Phase One will focus on development of a Smart Start Engine Module and a Mainstage Engine Module for proper engine start and mainstage engine operations. The overall intent is to demonstrate that by employing soft computing technologies, the quality and reliability of the overall scheme to engine controller development is further improved and vehicle safety is further insured. The final product that this paper proposes is an approach to development of an alternative low cost engine controller that would be capable of performing in unique vision spacecraft vehicles requiring low cost advanced avionics architectures for autonomous operations from engine pre-start to engine shutdown.

  14. Avionics System Architecture Tool

    NASA Technical Reports Server (NTRS)

    Chau, Savio; Hall, Ronald; Traylor, marcus; Whitfield, Adrian

    2005-01-01

    Avionics System Architecture Tool (ASAT) is a computer program intended for use during the avionics-system-architecture- design phase of the process of designing a spacecraft for a specific mission. ASAT enables simulation of the dynamics of the command-and-data-handling functions of the spacecraft avionics in the scenarios in which the spacecraft is expected to operate. ASAT is built upon I-Logix Statemate MAGNUM, providing a complement of dynamic system modeling tools, including a graphical user interface (GUI), modeling checking capabilities, and a simulation engine. ASAT augments this with a library of predefined avionics components and additional software to support building and analyzing avionics hardware architectures using these components.

  15. Flight Avionics Hardware Roadmap

    NASA Technical Reports Server (NTRS)

    Hodson, Robert; McCabe, Mary; Paulick, Paul; Ruffner, Tim; Some, Rafi; Chen, Yuan; Vitalpur, Sharada; Hughes, Mark; Ling, Kuok; Redifer, Matt; hide

    2013-01-01

    As part of NASA's Avionics Steering Committee's stated goal to advance the avionics discipline ahead of program and project needs, the committee initiated a multi-Center technology roadmapping activity to create a comprehensive avionics roadmap. The roadmap is intended to strategically guide avionics technology development to effectively meet future NASA missions needs. The scope of the roadmap aligns with the twelve avionics elements defined in the ASC charter, but is subdivided into the following five areas: Foundational Technology (including devices and components), Command and Data Handling, Spaceflight Instrumentation, Communication and Tracking, and Human Interfaces.

  16. Flight Results from the HST SM4 Relative Navigation Sensor System

    NASA Technical Reports Server (NTRS)

    Naasz, Bo; Eepoel, John Van; Queen, Steve; Southward, C. Michael; Hannah, Joel

    2010-01-01

    On May 11, 2009, Space Shuttle Atlantis roared off of Launch Pad 39A enroute to the Hubble Space Telescope (HST) to undertake its final servicing of HST, Servicing Mission 4. Onboard Atlantis was a small payload called the Relative Navigation Sensor experiment, which included three cameras of varying focal ranges, avionics to record images and estimate, in real time, the relative position and attitude (aka "pose") of the telescope during rendezvous and deploy. The avionics package, known as SpaceCube and developed at the Goddard Space Flight Center, performed image processing using field programmable gate arrays to accelerate this process, and in addition executed two different pose algorithms in parallel, the Goddard Natural Feature Image Recognition and the ULTOR Passive Pose and Position Engine (P3E) algorithms

  17. STS-132 crew during their PDRS N-TSK MRM training in the building 16 cupola trainer.

    NASA Image and Video Library

    2009-12-22

    JSC2009-E-286974 (22 Dec. 2009) --- Astronauts Ken Ham (left background), STS-132 commander; Tony Antonelli (right background), pilot; and Mike Good, mission specialist, participate in an exercise in the systems engineering simulator in the Avionics Systems Laboratory at NASA?s Johnson Space Center. The facility includes moving scenes of full-sized International Space Station components over a simulated Earth.

  18. STS-132 crew during their PDRS N-TSK MRM training in the building 16 cupola trainer.

    NASA Image and Video Library

    2009-12-22

    JSC2009-E-286962 (22 Dec. 2009) --- Astronauts Ken Ham (right background), STS-132 commander; Tony Antonelli (left), pilot; and Mike Good, mission specialist, participate in an exercise in the systems engineering simulator in the Avionics Systems Laboratory at NASA?s Johnson Space Center. The facility includes moving scenes of full-sized International Space Station components over a simulated Earth.

  19. STS-132 crew during their PDRS N-TSK MRM training in the building 16 cupola trainer.

    NASA Image and Video Library

    2009-12-22

    JSC2009-E-286976 (22 Dec. 2009) --- Astronauts Ken Ham (left), STS-132 commander; Tony Antonelli (right background), pilot; and Mike Good, mission specialist, participate in an exercise in the systems engineering simulator in the Avionics Systems Laboratory at NASA?s Johnson Space Center. The facility includes moving scenes of full-sized International Space Station components over a simulated Earth.

  20. STS-132 crew during their PDRS N-TSK MRM training in the building 16 cupola trainer.

    NASA Image and Video Library

    2009-12-22

    JSC2009-E-286972 (22 Dec. 2009) --- Astronauts Ken Ham (right background), STS-132 commander; Tony Antonelli (left), pilot; and Mike Good, mission specialist, participate in an exercise in the systems engineering simulator in the Avionics Systems Laboratory at NASA?s Johnson Space Center. The facility includes moving scenes of full-sized International Space Station components over a simulated Earth.

  1. STS-134 crew during PDRS PRF ADV (AMS) traiining

    NASA Image and Video Library

    2011-03-23

    JSC2011-E-028173 (23 March 2011) --- European Space Agency astronaut Roberto Vittori (right) and NASA astronaut Andrew Feustel, both STS-134 mission specialists, participate in an exercise in the systems engineering simulator in the Avionics Systems Laboratory at NASA's Johnson Space Center. The facility includes moving scenes of full-sized International Space Station components over a simulated Earth. Photo credit: NASA or National Aeronautics and Space Administration

  2. STS-134 crew during PDRS PRF ADV (AMS) traiining

    NASA Image and Video Library

    2011-03-23

    JSC2011-E-028166 (23 March 2011) --- European Space Agency astronaut Roberto Vittori (right) and NASA astronaut Andrew Feustel, both STS-134 mission specialists, participate in an exercise in the systems engineering simulator in the Avionics Systems Laboratory at NASA's Johnson Space Center. The facility includes moving scenes of full-sized International Space Station components over a simulated Earth. Photo credit: NASA or National Aeronautics and Space Administration

  3. Systems engineering and integration: Advanced avionics laboratories

    NASA Technical Reports Server (NTRS)

    1990-01-01

    In order to develop the new generation of avionics which will be necessary for upcoming programs such as the Lunar/Mars Initiative, Advanced Launch System, and the National Aerospace Plane, new Advanced Avionics Laboratories are required. To minimize costs and maximize benefits, these laboratories should be capable of supporting multiple avionics development efforts at a single location, and should be of a common design to support and encourage data sharing. Recent technological advances provide the capability of letting the designer or analyst perform simulations and testing in an environment similar to his engineering environment and these features should be incorporated into the new laboratories. Existing and emerging hardware and software standards must be incorporated wherever possible to provide additional cost savings and compatibility. Special care must be taken to design the laboratories such that real-time hardware-in-the-loop performance is not sacrificed in the pursuit of these goals. A special program-independent funding source should be identified for the development of Advanced Avionics Laboratories as resources supporting a wide range of upcoming NASA programs.

  4. 75 FR 8476 - Airworthiness Directives; ATR-GIE Avions de Transport Régional Model ATR42 and ATR72 Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-25

    ... Airworthiness Directives; ATR-GIE Avions de Transport R[eacute]gional Model ATR42 and ATR72 Airplanes AGENCY... FURTHER INFORMATION CONTACT: Tom Rodriguez, Aerospace Engineer, International Branch, ANM-116, Transport... including but not limited to those listed in Table 1 of that AD. Although ATR-GIE Avions de Transport R...

  5. STS-135 crew during Rendezvous Training session in Building 16 dome

    NASA Image and Video Library

    2011-03-23

    JSC2011-E-028132 (23 March 2011) --- As news media representatives look on, NASA astronauts Chris Ferguson, STS-135 commander; Doug Hurley, pilot; and Sandy Magnus, mission specialist, participate in an exercise in the systems engineering simulator in the Avionics Systems Laboratory at NASA's Johnson Space Center. The facility includes moving scenes of full-sized International Space Station components over a simulated Earth. Photo credit: NASA or National Aeronautics and Space Administration

  6. A feasibility study for advanced technology integration for general aviation

    NASA Technical Reports Server (NTRS)

    Kohlman, D. L.; Matsuyama, G. T.; Hawley, K. E.; Meredith, P. T.

    1980-01-01

    An investigation was conducted to identify candidate technologies and specific developments which offer greatest promise for improving safety, fuel efficiency, performance, and utility of general aviation airplanes. Interviews were conducted with general aviation airframe and systems manufacturers and NASA research centers. The following technologies were evaluated for use in airplane design tradeoff studies conducted during the study: avionics, aerodynamics, configurations, structures, flight controls, and propulsion. Based on industry interviews and design tradeoff studies, several recommendations were made for further high payoff research. The most attractive technologies for use by the general aviation industry appear to be advanced engines, composite materials, natural laminar flow airfoils, and advanced integrated avionics systems. The integration of these technologies in airplane design can yield significant increases in speeds, ranges, and payloads over present aircraft with 40 percent to 50 percent reductions in fuel used.

  7. Pegasus XL CYGNSS Second Launch Attempt

    NASA Image and Video Library

    2016-12-15

    In the Mission Director's Center at Cape Canaveral Air Force Station, Andy Bundy, Avionics lead, left, and Pat Simpkins, director of Kennedy Space Center Engineering, monitor the progress of preparations to launch eight Cyclone Global Navigation Satellite System, or CYGNSS, spacecraft. The CYGNSS satellites will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes. The data that CYGNSS provides will enable scientists to probe key air-sea interaction processes that take place near the core of storms, which are rapidly changing and play a crucial role in the beginning and intensification of hurricanes.

  8. Russian Rocket Engine Test

    NASA Technical Reports Server (NTRS)

    1998-01-01

    NASA engineers successfully tested a Russian-built rocket engine on November 4, 1998 at the Marshall Space Flight Center (MSFC) Advanced Engine Test Facility, which had been used for testing the Saturn V F-1 engines and Space Shuttle Main engines. The MSFC was under a Space Act Agreement with Lockheed Martin Astronautics of Denver to provide a series of test firings of the Atlas III propulsion system configured with the Russian-designed RD-180 engine. The tests were designed to measure the performance of the Atlas III propulsion system, which included avionics and propellant tanks and lines, and how these components interacted with the RD-180 engine. The RD-180 is powered by kerosene and liquid oxygen, the same fuel mix used in Saturn rockets. The RD-180, the most powerful rocket engine tested at the MSFC since Saturn rocket tests in the 1960s, generated 860,000 pounds of thrust.

  9. Advanced Avionics Architecture and Technology Review. Executive Summary and Volume 1, Avionics Technology. Volume 2. Avionics Systems Engineering

    DTIC Science & Technology

    1993-08-06

    JIAWG core avionics are described in the section below. The JIAWO architecture standard (187-01) describes an open. system architeture which provides...0.35 microns (pRm). Present technology is in the 0.8 npm to 0.5 pm range for aggressive producers. Since the area of a die is approximately proportional ...analog (D/A) converters. The I A/D converter is a device or circuit that examines an analog voltage or current and converts it to a proportional binary

  10. Demonstration Advanced Avionics System (DAAS)

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The feasibility of developing an integrated avionics system suitable for general aviation was determined. A design of reliable integrated avionics which provides expanded functional capability that significantly enhances the utility and safety of general aviation at a cost commensurate with the general aviation market was developed. The use of a data bus, microprocessors, electronic displays and data entry devices, and improved function capabilities were emphasized. An avionics system capable of evaluating the most critical and promising elements of an integrated system was designed, built and flight tested in a twin engine general aviation aircraft.

  11. Around Marshall

    NASA Image and Video Library

    1998-11-04

    NASA engineers successfully tested a Russian-built rocket engine on November 4, 1998 at the Marshall Space Flight Center (MSFC) Advanced Engine Test Facility, which had been used for testing the Saturn V F-1 engines and Space Shuttle Main engines. The MSFC was under a Space Act Agreement with Lockheed Martin Astronautics of Denver to provide a series of test firings of the Atlas III propulsion system configured with the Russian-designed RD-180 engine. The tests were designed to measure the performance of the Atlas III propulsion system, which included avionics and propellant tanks and lines, and how these components interacted with the RD-180 engine. The RD-180 is powered by kerosene and liquid oxygen, the same fuel mix used in Saturn rockets. The RD-180, the most powerful rocket engine tested at the MSFC since Saturn rocket tests in the 1960s, generated 860,000 pounds of thrust.

  12. STS-135 crew during Rendezvous Training session in Building 16 dome

    NASA Image and Video Library

    2011-03-23

    JSC2011-E-028144 (23 March 2011) --- NASA astronauts Chris Ferguson (left foreground), STS-135 commander; Doug Hurley (left background), pilot; and Sandy Magnus (left), mission specialist, speak with news media representatives during an exercise in the systems engineering simulator in the Avionics Systems Laboratory at NASA's Johnson Space Center. The facility includes moving scenes of full-sized International Space Station components over a simulated Earth. Photo credit: NASA or National Aeronautics and Space Administration

  13. Color and Luminance Analysis of the Space Shuttle Multifunction Display Units(MDUs)

    NASA Technical Reports Server (NTRS)

    McCandless, Jeffrey W.

    2003-01-01

    The purpose of this evaluation is to measure and analyze the colors that can be shown on the Multifunction Display Units (MDUs) of the Space Shuttle cockpit. The evaluation was conducted in the JSC Avionics Engineering Laboratory (JAEL) in building 16A at NASA Johnson Space Center. The JAEL contains a suite of 11 MDUs, each of which can be configured to show colors based on input values of the MDU red, green and blue (RGB) channels. Each of the channels has a range of 0 to 15. For example, bright green is produced by setting RGB to 0,15,0, and orange is produced by setting RGB to 15,4,0. The Cockpit Avionics Upgrade (CAU) program has specified the RGB settings for 14 different colors in the Display Design document (Rev A, 29 June 2001). The analysis in this report may help the CAU program determine better RGB settings for the colors.

  14. Portable Automated Test Station: Using Engineering-Design Partnerships to Replace Obsolete Test Systems

    DTIC Science & Technology

    2015-04-01

    troubleshooting avionics system faults while the aircraft is on the ground. The core component of the PATS-30, the ruggedized laptop, is no longer sustainable...as well as trouble shooting avionics system faults while the aircraft is on the ground. The PATS-70 utilizes up-to-date, sustainable technology for...Operational Flight Program (OFP) software loading and diagnostic avionics system testing and includes additional TPSs to enhance its capability

  15. Avionics Simulation, Development and Software Engineering

    NASA Technical Reports Server (NTRS)

    2002-01-01

    During this reporting period, all technical responsibilities were accomplished as planned. A close working relationship was maintained with personnel of the MSFC Avionics Department Software Group (ED14), the MSFC EXPRESS Project Office (FD31), and the Huntsville Boeing Company. Accomplishments included: performing special tasks; supporting Software Review Board (SRB), Avionics Test Bed (ATB), and EXPRESS Software Control Panel (ESCP) activities; participating in technical meetings; and coordinating issues between the Boeing Company and the MSFC Project Office.

  16. NASA Dryden aircraft and avionics technicians install the nose cone on an inert Phoenix missile prior to a fit check on the center's F-15B research aircraft.

    NASA Image and Video Library

    2006-11-13

    NASA Dryden aircraft and avionics technicians (from left) Bryan Hookland, Art Cope, Herman Rijfkogel and Jonathan Richards install the nose cone on a Phoenix missile prior to a fit check on the center's F-15B research aircraft.

  17. Flight Avionics Hardware Roadmap

    NASA Technical Reports Server (NTRS)

    Some, Raphael; Goforth, Monte; Chen, Yuan; Powell, Wes; Paulick, Paul; Vitalpur, Sharada; Buscher, Deborah; Wade, Ray; West, John; Redifer, Matt; hide

    2014-01-01

    The Avionics Technology Roadmap takes an 80% approach to technology investment in spacecraft avionics. It delineates a suite of technologies covering foundational, component, and subsystem-levels, which directly support 80% of future NASA space mission needs. The roadmap eschews high cost, limited utility technologies in favor of lower cost, and broadly applicable technologies with high return on investment. The roadmap is also phased to support future NASA mission needs and desires, with a view towards creating an optimized investment portfolio that matures specific, high impact technologies on a schedule that matches optimum insertion points of these technologies into NASA missions. The roadmap looks out over 15+ years and covers some 114 technologies, 58 of which are targeted for TRL6 within 5 years, with 23 additional technologies to be at TRL6 by 2020. Of that number, only a few are recommended for near term investment: 1. Rad Hard High Performance Computing 2. Extreme temperature capable electronics and packaging 3. RFID/SAW-based spacecraft sensors and instruments 4. Lightweight, low power 2D displays suitable for crewed missions 5. Radiation tolerant Graphics Processing Unit to drive crew displays 6. Distributed/reconfigurable, extreme temperature and radiation tolerant, spacecraft sensor controller and sensor modules 7. Spacecraft to spacecraft, long link data communication protocols 8. High performance and extreme temperature capable C&DH subsystem In addition, the roadmap team recommends several other activities that it believes are necessary to advance avionics technology across NASA: center dot Engage the OCT roadmap teams to coordinate avionics technology advances and infusion into these roadmaps and their mission set center dot Charter a team to develop a set of use cases for future avionics capabilities in order to decouple this roadmap from specific missions center dot Partner with the Software Steering Committee to coordinate computing hardware and software technology roadmaps and investment recommendations center dot Continue monitoring foundational technologies upon which future avionics technologies will be dependent, e.g., RHBD and COTS semiconductor technologies

  18. Design of an Ada expert system shell for the VHSIC avionic modular flight processor

    NASA Technical Reports Server (NTRS)

    Fanning, F. Jesse

    1992-01-01

    The Embedded Computer System Expert System Shell (ES Shell) is an Ada-based expert system shell developed at the Avionics Laboratory for use on the VHSIC Avionic Modular Processor (VAMP) running under the Ada Avionics Real-Time Software (AARTS) Operating System. The ES Shell provides the interface between the expert system and the avionics environment, and controls execution of the expert system. Testing of the ES Shell in the Avionics Laboratory's Integrated Test Bed (ITB) has demonstrated its ability to control a non-deterministic software application executing on the VAMP's which can control the ITB's real-time closed-loop aircraft simulation. The results of these tests and the conclusions reached in the design and development of the ES Shell have played an important role in the formulation of the requirements for a production-quality expert system inference engine, an ingredient necessary for the successful use of expert systems on the VAMP embedded avionic flight processor.

  19. KSC-2012-2891

    NASA Image and Video Library

    2011-07-20

    LOUISVILLE, Colo. – During NASA's Commercial Crew Development Round 2 CCDev2) activities for the Commercial Crew Program CCP, Sierra Nevada Corp. SNC built a Simulator and Avionics Laboratory to help engineers evaluate the Dream Chaser's characteristics during the piloted phases of flight. Located at Sierra Nevada’s Space Systems facility in Louisville, Colo., it consists of a physical cockpit and integrated simulation hardware and software. The simulator is linked to the Vehicle Avionics Integration Laboratory, or VAIL, which serves as a platform for Dream Chaser avionics development, engineering testing and integration. VAIL also will also be used for verification and validation of avionics and software. Sierra Nevada is one of seven companies NASA entered into Space Act Agreements SAAs with during CCDev2 to aid in the innovation and development of American-led commercial capabilities for crew transportation and rescue services to and from the International Space Station and other low Earth orbit destinations. For information about CCP, visit www.nasa.gov/commercialcrew. Photo credit: Sierra Nevada Corp.

  20. Russian Rocket Engine Test

    NASA Technical Reports Server (NTRS)

    1998-01-01

    NASA engineers successfully tested a Russian-built rocket engine on November 4, 1998 at the Marshall Space Flight Center (MSFC) Advanced Engine Test Facility, which had been used for testing the Saturn V F-1 engines and Space Shuttle Main engines. The MSFC was under a Space Act Agreement with Lockheed Martin Astronautics of Denver to provide a series of test firings of the Atlas III propulsion system configured with the Russian-designed RD-180 engine. The tests were designed to measure the performance of the Atlas III propulsion system, which included avionics and propellant tanks and lines, and how these components interacted with the RD-180 engine. The RD-180 is powered by kerosene and liquid oxygen, the same fuel mix used in Saturn rockets. The RD-180, the most powerful rocket engine tested at the MSFC since Saturn rocket tests in the 1960s, generated 860,000 pounds of thrust. The test was the first test ever anywhere outside Russia of a Russian designed and built engine.

  1. Software modifications to the Demonstration Advanced Avionics Systems (DAAS)

    NASA Technical Reports Server (NTRS)

    Nedell, B. F.; Hardy, G. H.

    1984-01-01

    Critical information required for the design of integrated avionics suitable for generation aviation is applied towards software modifications for the Demonstration Advanced Avionics System (DAAS). The program emphasizes the use of data busing, distributed microprocessors, shared electronic displays and data entry devices, and improved functional capability. A demonstration advanced avionics system (DAAS) is designed, built, and flight tested in a Cessna 402, twin engine, general aviation aircraft. Software modifications are made to DAAS at Ames concurrent with the flight test program. The changes are the result of the experience obtained with the system at Ames, and the comments of the pilots who evaluated the system.

  2. A Definition of STS Accommodations for Attached Payloads

    NASA Technical Reports Server (NTRS)

    Echols, F. L.; Broome, P. A.

    1983-01-01

    An input to a study conducted to define a set of carrier avionics for supporting large structures experiments attached to the Space Shuttle Orbiter is reported. The "baseline" Orbier interface used in developing the avionics concept for the Space Technology Experiments Platform, STEP, which Langley Research Center has proposed for supporting experiments of this sort is defined. Primarily, flight operations capabilities and considerations and the avionics systems capabilities that are available to a payload as a "mixed cargo" user of the Space Transportation System are addressed. Ground operations for payload integration at Kennedy Space Center, and ground operations for payload support during the mission are also discussed.

  3. An engineering approach to the use of expert systems technology in avionics applications

    NASA Technical Reports Server (NTRS)

    Duke, E. L.; Regenie, V. A.; Brazee, M.; Brumbaugh, R. W.

    1986-01-01

    The concept of using a knowledge compiler to transform the knowledge base and inference mechanism of an expert system into a conventional program is presented. The need to accommodate real-time systems requirements in applications such as embedded avionics is outlined. Expert systems and a brief comparison of expert systems and conventional programs are reviewed. Avionics applications of expert systems are discussed before the discussions of applying the proposed concept to example systems using forward and backward chaining.

  4. Design of Z-Pinch and Dense Plasma Focus Powered Vehicles

    NASA Technical Reports Server (NTRS)

    Polsgrove, Tara; Fincher, Sharon; Adams, Robert B.; Cassibry, Jason; Cortez, Ross; Turner, Matthew; Maples, C. Daphne; Miermik, Janie N.; Statham, Geoffrey N.; Fabisinski, Leo; hide

    2011-01-01

    Z-pinch and Dense Plasma Focus (DPF) are two promising techniques for bringing fusion power to the field of in-space propulsion. A design team comprising of engineers and scientists from UAHuntsville, NASA's George C. Marshall Space Flight Center and the University of Wisconsin developed concept vehicles for a crewed round trip mission to Mars and an interstellar precursor mission. Outlined in this paper are vehicle concepts, complete with conceptual analysis of the mission profile, operations, structural and thermal analysis and power/avionics design. Additionally engineering design of the thruster itself is included. The design efforts adds greatly to the fidelity of estimates for power density (alpha) and overall performance for these thruster concepts

  5. Using Modern Design Tools for Digital Avionics Development

    NASA Technical Reports Server (NTRS)

    Hyde, David W.; Lakin, David R., II; Asquith, Thomas E.

    2000-01-01

    Using Modem Design Tools for Digital Avionics Development Shrinking development time and increased complexity of new avionics forces the designer to use modem tools and methods during hardware development. Engineers at the Marshall Space Flight Center have successfully upgraded their design flow and used it to develop a Mongoose V based radiation tolerant processor board for the International Space Station's Water Recovery System. The design flow, based on hardware description languages, simulation, synthesis, hardware models, and full functional software model libraries, allowed designers to fully simulate the processor board from reset, through initialization before any boards were built. The fidelity of a digital simulation is limited to the accuracy of the models used and how realistically the designer drives the circuit's inputs during simulation. By using the actual silicon during simulation, device modeling errors are reduced. Numerous design flaws were discovered early in the design phase when they could be easily fixed. The use of hardware models and actual MIPS software loaded into full functional memory models also provided checkout of the software development environment. This paper will describe the design flow used to develop the processor board and give examples of errors that were found using the tools. An overview of the processor board firmware will also be covered.

  6. Applying Ada to Beech Starship avionics

    NASA Technical Reports Server (NTRS)

    Funk, David W.

    1986-01-01

    As Ada solidified in its development, it became evident that it offered advantages for avionics systems because of it support for modern software engineering principles and real time applications. An Ada programming support environment was developed for two major avionics subsystems in the Beech Starship. The two subsystems include electronic flight instrument displays and the flight management computer system. Both of these systems use multiple Intel 80186 microprocessors. The flight management computer provides flight planning, navigation displays, primary flight display of checklists and other pilot advisory information. Together these systems represent nearly 80,000 lines of Ada source code and to date approximately 30 man years of effort. The Beech Starship avionics systems are in flight testing.

  7. Towards a distributed information architecture for avionics data

    NASA Technical Reports Server (NTRS)

    Mattmann, Chris; Freeborn, Dana; Crichton, Dan

    2003-01-01

    Avionics data at the National Aeronautics and Space Administration's (NASA) Jet Propulsion Laboratory (JPL consists of distributed, unmanaged, and heterogeneous information that is hard for flight system design engineers to find and use on new NASA/JPL missions. The development of a systematic approach for capturing, accessing and sharing avionics data critical to the support of NASA/JPL missions and projects is required. We propose a general information architecture for managing the existing distributed avionics data sources and a method for querying and retrieving avionics data using the Object Oriented Data Technology (OODT) framework. OODT uses XML messaging infrastructure that profiles data products and their locations using the ISO-11179 data model for describing data products. Queries against a common data dictionary (which implements the ISO model) are translated to domain dependent source data models, and distributed data products are returned asynchronously through the OODT middleware. Further work will include the ability to 'plug and play' new manufacturer data sources, which are distributed at avionics component manufacturer locations throughout the United States.

  8. NASA Affordable Vehicle Avionics (AVA): Common Modular Avionics System for Nano-Launchers Offering Affordable Access to Space

    NASA Technical Reports Server (NTRS)

    Cockrell, James

    2015-01-01

    Small satellites are becoming ever more capable of performing valuable missions for both government and commercial customers. However, currently these satellites can only be launched affordably as secondary payloads. This makes it difficult for the small satellite mission to launch when needed, to the desired orbit, and with acceptable risk. NASA Ames Research Center has developed and tested a prototype low-cost avionics package for space launch vehicles that provides complete GNC functionality in a package smaller than a tissue box with a mass less than 0.84 kg. AVA takes advantage of commercially available, low-cost, mass-produced, miniaturized sensors, filtering their more noisy inertial data with realtime GPS data. The goal of the Advanced Vehicle Avionics project is to produce and flight-verify a common suite of avionics and software that deliver affordable, capable GNC and telemetry avionics with application to multiple nano-launch vehicles at 1 the cost of current state-of-the-art avionics.

  9. V/STOLAND avionics system flight-test data on a UH-1H helicopter

    NASA Technical Reports Server (NTRS)

    Baker, F. A.; Jaynes, D. N.; Corliss, L. D.; Liden, S.; Merrick, R. B.; Dugan, D. C.

    1980-01-01

    The flight-acceptance test results obtained during the acceptance tests of the V/STOLAND (versatile simplex digital avionics system) digital avionics system on a Bell UH-1H helicopter in 1977 at Ames Research Center are presented. The system provides navigation, guidance, control, and display functions for NASA terminal area VTOL research programs and for the Army handling qualities research programs at Ames Research Center. The acceptance test verified system performance and contractual acceptability. The V/STOLAND hardware navigation, guidance, and control laws resident in the digital computers are described. Typical flight-test data are shown and discussed as documentation of the system performance at acceptance from the contractor.

  10. Orion FSW V and V and Kedalion Engineering Lab Insight

    NASA Technical Reports Server (NTRS)

    Mangieri, Mark L.

    2010-01-01

    NASA, along with its prime Orion contractor and its subcontractor s are adapting an avionics system paradigm borrowed from the manned commercial aircraft industry for use in manned space flight systems. Integrated Modular Avionics (IMA) techniques have been proven as a robust avionics solution for manned commercial aircraft (B737/777/787, MD 10/90). This presentation will outline current approaches to adapt IMA, along with its heritage FSW V&V paradigms, into NASA's manned space flight program for Orion. NASA's Kedalion engineering analysis lab is on the forefront of validating many of these contemporary IMA based techniques. Kedalion has already validated many of the proposed Orion FSW V&V paradigms using Orion's precursory Flight Test Article (FTA) Pad Abort 1 (PA-1) program. The Kedalion lab will evolve its architectures, tools, and techniques in parallel with the evolving Orion program.

  11. Design of an expert-system flight status monitor

    NASA Technical Reports Server (NTRS)

    Regenie, V. A.; Duke, E. L.

    1985-01-01

    The modern advanced avionics in new high-performance aircraft strains the capability of current technology to safely monitor these systems for flight test prior to their generalized use. New techniques are needed to improve the ability of systems engineers to understand and analyze complex systems in the limited time available during crucial periods of the flight test. The Dryden Flight Research Facility of NASA's Ames Research Center is involved in the design and implementation of an expert system to provide expertise and knowledge to aid the flight systems engineer. The need for new techniques in monitoring flight systems and the conceptual design of an expert-system flight status monitor is discussed. The status of the current project and its goals are described.

  12. Avionics Architectures for Exploration: Wireless Technologies and Human Spaceflight

    NASA Technical Reports Server (NTRS)

    Goforth, Montgomery B.; Ratliff, James E.; Barton, Richard J.; Wagner, Raymond S.; Lansdowne, Chatwin

    2014-01-01

    The authors describe ongoing efforts by the Avionics Architectures for Exploration (AAE) project chartered by NASA's Advanced Exploration Systems (AES) Program to evaluate new avionics architectures and technologies, provide objective comparisons of them, and mature selected technologies for flight and for use by other AES projects. The AAE project team includes members from most NASA centers and from industry. This paper provides an overview of recent AAE efforts, with particular emphasis on the wireless technologies being evaluated under AES to support human spaceflight.

  13. Systems Engineering and Integration (SE and I)

    NASA Technical Reports Server (NTRS)

    Chevers, ED; Haley, Sam

    1990-01-01

    The issue of technology advancement and future space transportation vehicles is addressed. The challenge is to develop systems which can be evolved and improved in small incremental steps where each increment reduces present cost, improves, reliability, or does neither but sets the stage for a second incremental upgrade that does. Future requirements are interface standards for commercial off the shelf products to aid in the development of integrated facilities; enhanced automated code generation system slightly coupled to specification and design documentation; modeling tools that support data flow analysis; and shared project data bases consisting of technical characteristics cast information, measurement parameters, and reusable software programs. Topics addressed include: advanced avionics development strategy; risk analysis and management; tool quality management; low cost avionics; cost estimation and benefits; computer aided software engineering; computer systems and software safety; system testability; and advanced avionics laboratories - and rapid prototyping. This presentation is represented by viewgraphs only.

  14. Heavy Lift Launch Vehicles for 1995 and Beyond

    NASA Technical Reports Server (NTRS)

    Toelle, R. (Compiler)

    1985-01-01

    A Heavy Lift Launch Vehicle (HLLV) designed to deliver 300,000 lb to a 540 n mi circular polar orbit may be required to meet national needs for 1995 and beyond. The vehicle described herein can accommodate payload envelopes up to 50 ft diameter by 200 ft in length. Design requirements include reusability for the more expensive components such as avionics and propulsion systems, rapid launch turnaround time, minimum hardware inventory, stage and component flexibility and commonality, and low operational costs. All ascent propulsion systems utilize liquid propellants, and overall launch vehicle stack height is minimized while maintaining a reasonable vehicle diameter. The ascent propulsion systems are based on the development of a new liquid oxygen/hydrocarbon booster engine and liquid oxygen/liquid hydrogen upper stage engine derived from today's SSME technology. Wherever possible, propulsion and avionics systems are contained in reusable propulsion/avionics modules that are recovered after each launch.

  15. Fiber optic interconnect and optoelectronic packaging challenges for future generation avionics

    NASA Astrophysics Data System (ADS)

    Beranek, Mark W.

    2007-02-01

    Forecasting avionics industry fiber optic interconnect and optoelectronic packaging challenges that lie ahead first requires an assumption that military avionics architectures will evolve from today's centralized/unified concept based on gigabit laser, optical-to-electrical-to-optical switching and optical backplane technology, to a future federated/distributed or centralized/unified concept based on gigabit tunable laser, electro-optical switch and add-drop wavelength division multiplexing (WDM) technology. The requirement to incorporate avionics optical built-in test (BIT) in military avionics fiber optic systems is also assumed to be correct. Taking these assumptions further indicates that future avionics systems engineering will use WDM technology combined with photonic circuit integration and advanced packaging to form the technical basis of the next generation military avionics onboard local area network (LAN). Following this theme, fiber optic cable plants will evolve from today's multimode interconnect solution to a single mode interconnect solution that is highly installable, maintainable, reliable and supportable. Ultimately optical BIT for fiber optic fault detection and isolation will be incorporated as an integral part of a total WDM-based avionics LAN solution. Cost-efficient single mode active and passive photonic component integration and packaging integration is needed to enable reliable operation in the harsh military avionics application environment. Rugged multimode fiber-based transmitters and receivers (transceivers) with in-package optical BIT capability are also needed to enable fully BIT capable single-wavelength fiber optic links on both legacy and future aerospace platforms.

  16. Dual-Use Space Technology Transfer Conference and Exhibition. Volume 2

    NASA Technical Reports Server (NTRS)

    Krishen, Kumar (Compiler)

    1994-01-01

    This is the second volume of papers presented at the Dual-Use Space Technology Transfer Conference and Exhibition held at the Johnson Space Center February 1-3, 1994. Possible technology transfers covered during the conference were in the areas of information access; innovative microwave and optical applications; materials and structures; marketing and barriers; intelligent systems; human factors and habitation; communications and data systems; business process and technology transfer; software engineering; biotechnology and advanced bioinstrumentation; communications signal processing and analysis; medical care; applications derived from control center data systems; human performance evaluation; technology transfer methods; mathematics, modeling, and simulation; propulsion; software analysis and decision tools; systems/processes in human support technology; networks, control centers, and distributed systems; power; rapid development; perception and vision technologies; integrated vehicle health management; automation technologies; advanced avionics; and robotics technologies.

  17. Assessment of avionics technology in European aerospace organizations

    NASA Technical Reports Server (NTRS)

    Martinec, D. A.; Baumbick, Robert; Hitt, Ellis; Leondes, Cornelius; Mayton, Monica; Schwind, Joseph; Traybar, Joseph

    1992-01-01

    This report provides a summary of the observations and recommendations made by a technical panel formed by the National Aeronautics and Space Administration (NASA). The panel, comprising prominent experts in the avionics field, was tasked to visit various organizations in Europe to assess the level of technology planned for use in manufactured civil avionics in the future. The primary purpose of the study was to assess avionics systems planned for implementation or already employed on civil aircraft and to evaluate future research, development, and engineering (RD&E) programs, address avionic systems and aircraft programs. The ultimate goal is to ensure that the technology addressed by NASa programs is commensurate with the needs of the aerospace industry at an international level. The panel focused on specific technologies, including guidance and control systems, advanced cockpit displays, sensors and data networks, and fly-by-wire/fly-by-light systems. However, discussions the panel had with the European organizations were not limited to these topics.

  18. The Next Great Ship: NASA's Space Launch System

    NASA Technical Reports Server (NTRS)

    May, Todd A.

    2013-01-01

    Topics covered include: Most Capable U.S. Launch Vehicle; Liquid engines Progress; Boosters Progress; Stages and Avionics Progress; Systems Engineering and Integration Progress; Spacecraft and Payload Integration Progress; Advanced Development Progress.

  19. Flight evaluation results from the general-aviation advanced avionics system program

    NASA Technical Reports Server (NTRS)

    Callas, G. P.; Denery, D. G.; Hardy, G. H.; Nedell, B. F.

    1983-01-01

    A demonstration advanced avionics system (DAAS) for general-aviation aircraft was tested at NASA Ames Research Center to provide information required for the design of reliable, low-cost, advanced avionics systems which would make general-aviation operations safer and more practicable. Guest pilots flew a DAAS-equipped NASA Cessna 402-B aircraft to evaluate the usefulness of data busing, distributed microprocessors, and shared electronic displays, and to provide data on the DAAS pilot/system interface for the design of future integrated avionics systems. Evaluation results indicate that the DAAS hardware and functional capability meet the program objective. Most pilots felt that the DAAS representative of the way avionics systems would evolve and felt the added capability would improve the safety and practicability of general-aviation operations. Flight-evaluation results compiled from questionnaires are presented, the results of the debriefings are summarized. General conclusions of the flight evaluation are included.

  20. The effect of requirements prioritization on avionics system conceptual design

    NASA Astrophysics Data System (ADS)

    Lorentz, John

    This dissertation will provide a detailed approach and analysis of a new collaborative requirements prioritization methodology that has been used successfully on four Coast Guard avionics acquisition and development programs valued at $400M+. A statistical representation of participant study results will be discussed and analyzed in detail. Many technically compliant projects fail to deliver levels of performance and capability that the customer desires. Some of these systems completely meet "threshold" levels of performance; however, the distribution of resources in the process devoted to the development and management of the requirements does not always represent the voice of the customer. This is especially true for technically complex projects such as modern avionics systems. A simplified facilitated process for prioritization of system requirements will be described. The collaborative prioritization process, and resulting artifacts, aids the systems engineer during early conceptual design. All requirements are not the same in terms of customer priority. While there is a tendency to have many thresholds inside of a system design, there is usually a subset of requirements and system performance that is of the utmost importance to the design. These critical capabilities and critical levels of performance typically represent the reason the system is being built. The systems engineer needs processes to identify these critical capabilities, the associated desired levels of performance, and the risks associated with the specific requirements that define the critical capability. The facilitated prioritization exercise is designed to collaboratively draw out these critical capabilities and levels of performance so they can be emphasized in system design. Developing the purpose, scheduling and process for prioritization events are key elements of systems engineering and modern project management. The benefits of early collaborative prioritization flow throughout the project schedule, resulting in greater success during system deployment and operational testing. This dissertation will discuss the data and findings from participant studies, present a literature review of systems engineering and design processes, and test the hypothesis that the prioritization process had no effect on stakeholder sentiment related to the conceptual design. In addition, the "Requirements Rationalization" process will be discussed in detail. Avionics, like many other systems, has transitioned from a discrete electronics engineering, hard engineering discipline to incorporate software engineering as a core process of the technology development cycle. As with other software-based systems, avionics now has significant soft system attributes that must be considered in the design process. The boundless opportunities that exist in software design demand prioritization to focus effort onto the critical functions that the software must provide. This has been a well documented and understood phenomenon in the software development community for many years. This dissertation will attempt to link the effect of software integrated avionics to the benefits of prioritization of requirements in the problem space and demonstrate the sociological and technical benefits of early prioritization practices.

  1. Heavy Lift Vehicle (HLV) Avionics Flight Computing Architecture Study

    NASA Technical Reports Server (NTRS)

    Hodson, Robert F.; Chen, Yuan; Morgan, Dwayne R.; Butler, A. Marc; Sdhuh, Joseph M.; Petelle, Jennifer K.; Gwaltney, David A.; Coe, Lisa D.; Koelbl, Terry G.; Nguyen, Hai D.

    2011-01-01

    A NASA multi-Center study team was assembled from LaRC, MSFC, KSC, JSC and WFF to examine potential flight computing architectures for a Heavy Lift Vehicle (HLV) to better understand avionics drivers. The study examined Design Reference Missions (DRMs) and vehicle requirements that could impact the vehicles avionics. The study considered multiple self-checking and voting architectural variants and examined reliability, fault-tolerance, mass, power, and redundancy management impacts. Furthermore, a goal of the study was to develop the skills and tools needed to rapidly assess additional architectures should requirements or assumptions change.

  2. Health management and controls for Earth-to-orbit propulsion systems

    NASA Astrophysics Data System (ADS)

    Bickford, R. L.

    1995-03-01

    Avionics and health management technologies increase the safety and reliability while decreasing the overall cost for Earth-to-orbit (ETO) propulsion systems. New ETO propulsion systems will depend on highly reliable fault tolerant flight avionics, advanced sensing systems and artificial intelligence aided software to ensure critical control, safety and maintenance requirements are met in a cost effective manner. Propulsion avionics consist of the engine controller, actuators, sensors, software and ground support elements. In addition to control and safety functions, these elements perform system monitoring for health management. Health management is enhanced by advanced sensing systems and algorithms which provide automated fault detection and enable adaptive control and/or maintenance approaches. Aerojet is developing advanced fault tolerant rocket engine controllers which provide very high levels of reliability. Smart sensors and software systems which significantly enhance fault coverage and enable automated operations are also under development. Smart sensing systems, such as flight capable plume spectrometers, have reached maturity in ground-based applications and are suitable for bridging to flight. Software to detect failed sensors has reached similar maturity. This paper will discuss fault detection and isolation for advanced rocket engine controllers as well as examples of advanced sensing systems and software which significantly improve component failure detection for engine system safety and health management.

  3. EVA Communications Avionics and Informatics

    NASA Technical Reports Server (NTRS)

    Carek, David Andrew

    2005-01-01

    The Glenn Research Center is investigating and developing technologies for communications, avionics, and information systems that will significantly enhance extra vehicular activity capabilities to support the Vision for Space Exploration. Several of the ongoing research and development efforts are described within this presentation including system requirements formulation, technology development efforts, trade studies, and operational concept demonstrations.

  4. Aviation Careers Series: Aviation Maintenance and Avionics

    DOT National Transportation Integrated Search

    1996-01-30

    The NHTSA Office of Crash Avoidance Research is responsible for identifying and developing effective vehicle systems for helping drivers avoid crashes. Our work utilizes the expertise of human factors engineers and psychologists, mechanical engineers...

  5. Preliminary candidate advanced avionics system for general aviation

    NASA Technical Reports Server (NTRS)

    Mccalla, T. M.; Grismore, F. L.; Greatline, S. E.; Birkhead, L. M.

    1977-01-01

    An integrated avionics system design was carried out to the level which indicates subsystem function, and the methods of overall system integration. Sufficient detail was included to allow identification of possible system component technologies, and to perform reliability, modularity, maintainability, cost, and risk analysis upon the system design. Retrofit to older aircraft, availability of this system to the single engine two place aircraft, was considered.

  6. Five-Segment Solid Rocket Motor Development Status

    NASA Technical Reports Server (NTRS)

    Priskos, Alex S.

    2012-01-01

    In support of the National Aeronautics and Space Administration (NASA), Marshall Space Flight Center (MSFC) is developing a new, more powerful solid rocket motor for space launch applications. To minimize technical risks and development costs, NASA chose to use the Space Shuttle s solid rocket boosters as a starting point in the design and development. The new, five segment motor provides a greater total impulse with improved, more environmentally friendly materials. To meet the mass and trajectory requirements, the motor incorporates substantial design and system upgrades, including new propellant grain geometry with an additional segment, new internal insulation system, and a state-of-the art avionics system. Significant progress has been made in the design, development and testing of the propulsion, and avionics systems. To date, three development motors (one each in 2009, 2010, and 2011) have been successfully static tested by NASA and ATK s Launch Systems Group in Promontory, UT. These development motor tests have validated much of the engineering with substantial data collected, analyzed, and utilized to improve the design. This paper provides an overview of the development progress on the first stage propulsion system.

  7. Managing Complexity in the MSL/Curiosity Entry, Descent, and Landing Flight Software and Avionics Verification and Validation Campaign

    NASA Technical Reports Server (NTRS)

    Stehura, Aaron; Rozek, Matthew

    2013-01-01

    The complexity of the Mars Science Laboratory (MSL) mission presented the Entry, Descent, and Landing systems engineering team with many challenges in its Verification and Validation (V&V) campaign. This paper describes some of the logistical hurdles related to managing a complex set of requirements, test venues, test objectives, and analysis products in the implementation of a specific portion of the overall V&V program to test the interaction of flight software with the MSL avionics suite. Application-specific solutions to these problems are presented herein, which can be generalized to other space missions and to similar formidable systems engineering problems.

  8. Avionics System Architecture for the NASA Orion Vehicle

    NASA Technical Reports Server (NTRS)

    Baggerman, Clint; McCabe, Mary; Verma, Dinesh

    2009-01-01

    It has been 30 years since the National Aeronautics and Space Administration (NASA) last developed a crewed spacecraft capable of launch, on-orbit operations, and landing. During that time, aerospace avionics technologies have greatly advanced in capability, and these technologies have enabled integrated avionics architectures for aerospace applications. The inception of NASA s Orion Crew Exploration Vehicle (CEV) spacecraft offers the opportunity to leverage the latest integrated avionics technologies into crewed space vehicle architecture. The outstanding question is to what extent to implement these advances in avionics while still meeting the unique crewed spaceflight requirements for safety, reliability and maintainability. Historically, aircraft and spacecraft have very similar avionics requirements. Both aircraft and spacecraft must have high reliability. They also must have as much computing power as possible and provide low latency between user control and effecter response while minimizing weight, volume, and power. However, there are several key differences between aircraft and spacecraft avionics. Typically, the overall spacecraft operational time is much shorter than aircraft operation time, but the typical mission time (and hence, the time between preventive maintenance) is longer for a spacecraft than an aircraft. Also, the radiation environment is typically more severe for spacecraft than aircraft. A "loss of mission" scenario (i.e. - the mission is not a success, but there are no casualties) arguably has a greater impact on a multi-million dollar spaceflight mission than a typical commercial flight. Such differences need to be weighted when determining if an aircraft-like integrated modular avionics (IMA) system is suitable for a crewed spacecraft. This paper will explore the preliminary design process of the Orion vehicle avionics system by first identifying the Orion driving requirements and the difference between Orion requirements and those of other previous crewed spacecraft avionics systems. Common systems engineering methods will be used to evaluate the value propositions, or the factors that weight most heavily in design consideration, of Orion and other aerospace systems. Then, the current Orion avionics architecture will be presented and evaluated.

  9. State Machine Modeling of the Space Launch System Solid Rocket Boosters

    NASA Technical Reports Server (NTRS)

    Harris, Joshua A.; Patterson-Hine, Ann

    2013-01-01

    The Space Launch System is a Shuttle-derived heavy-lift vehicle currently in development to serve as NASA's premiere launch vehicle for space exploration. The Space Launch System is a multistage rocket with two Solid Rocket Boosters and multiple payloads, including the Multi-Purpose Crew Vehicle. Planned Space Launch System destinations include near-Earth asteroids, the Moon, Mars, and Lagrange points. The Space Launch System is a complex system with many subsystems, requiring considerable systems engineering and integration. To this end, state machine analysis offers a method to support engineering and operational e orts, identify and avert undesirable or potentially hazardous system states, and evaluate system requirements. Finite State Machines model a system as a finite number of states, with transitions between states controlled by state-based and event-based logic. State machines are a useful tool for understanding complex system behaviors and evaluating "what-if" scenarios. This work contributes to a state machine model of the Space Launch System developed at NASA Ames Research Center. The Space Launch System Solid Rocket Booster avionics and ignition subsystems are modeled using MATLAB/Stateflow software. This model is integrated into a larger model of Space Launch System avionics used for verification and validation of Space Launch System operating procedures and design requirements. This includes testing both nominal and o -nominal system states and command sequences.

  10. Structuring Formal Requirements Specifications for Reuse and Product Families

    NASA Technical Reports Server (NTRS)

    Heimdahl, Mats P. E.

    2001-01-01

    In this project we have investigated how formal specifications should be structured to allow for requirements reuse, product family engineering, and ease of requirements change, The contributions of this work include (1) a requirements specification methodology specifically targeted for critical avionics applications, (2) guidelines for how to structure state-based specifications to facilitate ease of change and reuse, and (3) examples from the avionics domain demonstrating the proposed approach.

  11. Dual-Use Space Technology Transfer Conference and Exhibition. Volume 1

    NASA Technical Reports Server (NTRS)

    Krishen, Kumar (Compiler)

    1994-01-01

    This document contains papers presented at the Dual-Use Space Technology Transfer Conference and Exhibition held at the Johnson Space Center February 1-3, 1994. Possible technology transfers covered during the conference were in the areas of information access; innovative microwave and optical applications; materials and structures; marketing and barriers; intelligent systems; human factors and habitation; communications and data systems; business process and technology transfer; software engineering; biotechnology and advanced bioinstrumentation; communications signal processing and analysis; new ways of doing business; medical care; applications derived from control center data systems; human performance evaluation; technology transfer methods; mathematics, modeling, and simulation; propulsion; software analysis and decision tools systems/processes in human support technology; networks, control centers, and distributed systems; power; rapid development perception and vision technologies; integrated vehicle health management; automation technologies; advanced avionics; ans robotics technologies. More than 77 papers, 20 presentations, and 20 exhibits covering various disciplines were presented b experts from NASA, universities, and industry.

  12. 77 FR 59243 - Aviation Rulemaking Advisory Committee Meeting on Transport Airplane and Engine Issues

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-26

    ... Committee Meeting on Transport Airplane and Engine Issues AGENCY: Federal Aviation Administration (FAA), DOT... Rulemaking Advisory Committee (ARAC) to discuss transport airplane and engine (TAE) issues. DATES: The... Prioritization Working Group Transport Canada Report Materials Flammability Working Group Report Avionics...

  13. Advanced software integration: The case for ITV facilities

    NASA Technical Reports Server (NTRS)

    Garman, John R.

    1990-01-01

    The array of technologies and methodologies involved in the development and integration of avionics software has moved almost as rapidly as computer technology itself. Future avionics systems involve major advances and risks in the following areas: (1) Complexity; (2) Connectivity; (3) Security; (4) Duration; and (5) Software engineering. From an architectural standpoint, the systems will be much more distributed, involve session-based user interfaces, and have the layered architectures typified in the layers of abstraction concepts popular in networking. Typified in the NASA Space Station Freedom will be the highly distributed nature of software development itself. Systems composed of independent components developed in parallel must be bound by rigid standards and interfaces, the clean requirements and specifications. Avionics software provides a challenge in that it can not be flight tested until the first time it literally flies. It is the binding of requirements for such an integration environment into the advances and risks of future avionics systems that form the basis of the presented concept and the basic Integration, Test, and Verification concept within the development and integration life cycle of Space Station Mission and Avionics systems.

  14. Acquisition Cycle Time: Defining the Problem

    DTIC Science & Technology

    2016-04-01

    oversight and prescribe a more laissez - faire approach to acquisition. Others diagnose unaffordable ambitions and unnecessarily demanding requirements, and...treated as a subsystem. Systems engineering organizations need to engineer the software/avionics system – a change in leadership technical background

  15. Avionics Integrity Program (AVIP). Volume 1. Procurement Phase Issues - Design, Manufacturing, and Integration

    DTIC Science & Technology

    1984-03-01

    Engineering initiative to develop an orderly plan and procedure to assure that USAF acquire reliable, high quality, supportable avionics with a higher avail...susceptibility te~t~ (radiated and conducted), and emission of radio frequency energy tests."l6) Other electrical stresses can include over/under voltage...jo ints, poor welds, and dielectric defects. Also, instruments with components unable to endu very high temperatures can be safely tested. 1-19

  16. Liquid Rocket Booster (LRB) for the Space Transportion System (STS) systems study. Appendix D: Trade study summary for the liquid rocket booster

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Trade studies plans for a number of elements in the Liquid Rocket Booster (LRB) component of the Space Transportation System (STS) are given in viewgraph form. Some of the elements covered include: avionics/flight control; avionics architecture; thrust vector control studies; engine control electronics; liquid rocket propellants; propellant pressurization systems; recoverable spacecraft; cryogenic tanks; and spacecraft construction materials.

  17. Space tug point design study. Volume 3: Design definition. Part 1: Propulsion and mechanical, avionics, thermal control and electrical power subsystems

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A study was conducted to determine the configuration and performance of a space tug. Details of the space tug systems are presented to include: (1) propulsion systems, (2) avionics, (3) thermal control, and (4) electric power subsystems. The data generated include engineering drawings, schematics, subsystem operation, and component description. Various options investigated and the rational for the point design selection are analyzed.

  18. An Open Avionics and Software Architecture to Support Future NASA Exploration Missions

    NASA Technical Reports Server (NTRS)

    Schlesinger, Adam

    2017-01-01

    The presentation describes an avionics and software architecture that has been developed through NASAs Advanced Exploration Systems (AES) division. The architecture is open-source, highly reliable with fault tolerance, and utilizes standard capabilities and interfaces, which are scalable and customizable to support future exploration missions. Specific focus areas of discussion will include command and data handling, software, human interfaces, communication and wireless systems, and systems engineering and integration.

  19. 2000 Digital Avionics Highlights

    NASA Technical Reports Server (NTRS)

    Polites, Michael E.

    2000-01-01

    This article summarizes the highlights of recent events and developments in digital avionics in commercial aviation, military systems, and space. This article is about 1,200 words long. Information for the article was collected from other NASA centers, DoD, and industry. All information was previously cleared by the originating organizations. Information for the article was also gathered from Aviation Week and Space Technology and similar sources.

  20. Hardware survey for the avionics test bed

    NASA Technical Reports Server (NTRS)

    Cobb, J. M.

    1981-01-01

    A survey of maor hardware items that could possibly be used in the development of an avionics test bed for space shuttle attached or autonomous large space structures was conducted in NASA Johnson Space Center building 16. The results of the survey are organized to show the hardware by laboratory usage. Computer systems in each laboratory are described in some detail.

  1. STS_135_SAIL

    NASA Image and Video Library

    2011-07-12

    JSC2011-E-067676 (12 July 2011) --- A close-up view of controls and displays on the forward flight deck of OV-095 in the Shuttle Avionics Integration Laboratory (SAIL) at the Johnson Space Center in Houston, July 12, 2011. The laboratory is a skeletal avionics version of the shuttle that uses actual orbiter hardware and flight software. Photo credit: NASA Photo/Houston Chronicle, Smiley N. Pool

  2. NASA Hardware Heads to Kennedy For Flight Preparations

    NASA Image and Video Library

    2018-01-24

    The Orion stage adapter will be part of the first integrated flight of NASA's heavy-lift rocket, the Space Launch System, and the Orion spacecraft. The adapter, approximately 5 feet tall and 18 feet in diameter, was designed and built at NASA's Marshall Space Flight Center in Huntsville, Alabama, with advanced friction stir welding technology. It will connect the SLS interim cryogenic propulsion stage to Orion on the first flight that will help engineers check out and verify the agency's new deep-space exploration systems. Inside the adapter, engineers installed special brackets and cabling for the 13 CubeSats that will fly as secondary payloads. The Cubesats are boot-box-sized science and technology investigations that will help pave the way for future human exploration in deep space. The Orion stage adapter flight article recently finished major testing of the avionics system that will deploy the CubeSats. Technicians at NASA's Kennedy Space Center, Florida, will install the secondary payloads and engineers will examine the hardware before it is stacked on the interim cryogenic propulsion stage in the Vehicle Assembly Building prior to launch. For more information about SLS hardware, visit nasa.gov/sls.

  3. Integrated Power, Avionics, and Software (iPAS) Space Telecommunications Radio System (STRS) Radio User's Guide -- Advanced Exploration Systems (AES)

    NASA Technical Reports Server (NTRS)

    Roche, Rigoberto; Shalkhauser, Mary Jo Windmille

    2017-01-01

    The Integrated Power, Avionics and Software (IPAS) software defined radio (SDR) was implemented on the Reconfigurable, Intelligently-Adaptive Communication System (RAICS) platform, for radio development at NASA Johnson Space Center. Software and hardware description language (HDL) code were delivered by NASA Glenn Research Center for use in the IPAS test bed and for development of their own Space Telecommunications Radio System (STRS) waveforms on the RAICS platform. The purpose of this document is to describe how to setup and operate the IPAS STRS Radio platform with its delivered test waveform.

  4. Digital Avionics

    NASA Technical Reports Server (NTRS)

    Koelbl, Terry G.; Ponchak, Denise; Lamarche, Teresa

    2003-01-01

    Digital Avionics activities played an important role in the advancements made in civil aviation, military systems, and space applications. This document profiles advances made in each of these areas by the aerospace industry, NASA centers, and the U.S. military. Emerging communication technologies covered in this document include Internet connectivity onboard aircraft, wireless broadband communication for aircraft, and a mobile router for aircraft to communicate in multiple communication networks over the course of a flight. Military technologies covered in this document include avionics for unmanned combat air vehicles and microsatellites, and head-up displays. Other technologies covered in this document include an electronic flight bag for the Boeing 777, and surveillance systems for managing airport operations.

  5. D-21B RBCC Modification Feasibility Study

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This report presents a feasibility study on the modifications required to re-engine the Lockheed D-21 Drone for use as a NASA RBCC engine. An introduction, background information, engine configuration and performance, propulsion system integration, loads/thermal analysis, avionics/systems, flight test results, costs and work schedule, and some conclusions are presented.

  6. How the Navy Can Use Open Systems Architecture to Revolutionize Capability Acquisition: The Naval OSA Strategy Can Yield Multiple Benefits

    DTIC Science & Technology

    2015-04-30

    and Data Rights Team, which supports the Better Buying Power initiatives. Robert Sweeney—is the Lead Avionics Architect for Naval Air Systems...open architecture strategies for naval aviation. Sweeney was previously employed by Rockwell Collins as a software engineer for avionics . He earned his...the rapid replacement and upgrade of capabilities to address warfighter needs (Assistant Secretary of the Navy for Research, Development, and

  7. New Technologies for Space Avionics, 1993

    NASA Technical Reports Server (NTRS)

    Aibel, David W.; Harris, David R.; Bartlett, Dave; Black, Steve; Campagna, Dave; Fernald, Nancy; Garbos, Ray

    1993-01-01

    The report reviews a 1993 effort that investigated issues associated with the development of requirements, with the practice of concurrent engineering and with rapid prototyping, in the development of a next-generation Reaction Jet Drive Controller. This report details lessons learned, the current status of the prototype, and suggestions for future work. The report concludes with a discussion of the vision of future avionics architectures based on the principles associated with open architectures and integrated vehicle health management.

  8. Power, Avionics and Software Communication Network Architecture

    NASA Technical Reports Server (NTRS)

    Ivancic, William D.; Sands, Obed S.; Bakula, Casey J.; Oldham, Daniel R.; Wright, Ted; Bradish, Martin A.; Klebau, Joseph M.

    2014-01-01

    This document describes the communication architecture for the Power, Avionics and Software (PAS) 2.0 subsystem for the Advanced Extravehicular Mobile Unit (AEMU). The following systems are described in detail: Caution Warn- ing and Control System, Informatics, Storage, Video, Audio, Communication, and Monitoring Test and Validation. This document also provides some background as well as the purpose and goals of the PAS project at Glenn Research Center (GRC).

  9. Aeronautical engineering. A continuing bibliography with indexes

    NASA Technical Reports Server (NTRS)

    1982-01-01

    This bibliography lists 326 reports, articles, and other documents introduced into the NASA scientific and technical information system in January 1982. Topics on aeronautical engineering and aerodynamics such as flight control systems, avionics, computer programs, computational fluid dynamics and composite structures are covered.

  10. 75 FR 64960 - Airworthiness Directives; Bombardier, Inc. Model CL-600-2B19 (Regional Jet Series 100 & 440...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-21

    ... the Regional Jet engine TCGB [throttle control gearbox] P/Ns: 2100140-003, 2100140- 005 & 2100140-007... Viselli, Senior Aviation Safety Engineer, Avionic & Flight Test Branch, ANE-172, FAA, New York Aircraft...: There has been numerous reported failures of the Regional Jet engine TCGB P/Ns: 2100140-003, 2100140-005...

  11. AVION: A detailed report on the preliminary design of a 79-passenger, high-efficiency, commercial transport aircraft

    NASA Technical Reports Server (NTRS)

    Mayfield, William; Perkins, Brett; Rogan, William; Schuessler, Randall; Stockert, Joe

    1990-01-01

    The Avion is the result of an investigation into the preliminary design for a high-efficiency commercial transport aircraft. The Avion is designed to carry 79 passengers and a crew of five through a range of 1,500 nm at 455 kts (M=0.78 at 32,000 ft). It has a gross take-off weight of 77,000 lb and an empty weight of 42,400 lb. Currently there are no American-built aircraft designed to fit the 60 to 90 passenger, short/medium range marketplace. The Avion gathers the premier engineering achievements of flight technology and integrates them into an aircraft which will challenge the current standards of flight efficiency, reliability, and performance. The Avion will increase flight efficiency through reduction of structural weight and the improvement of aerodynamic characteristics and propulsion systems. Its design departs from conventional aircraft design tradition with the incorporation of a three-lifting-surface (or tri-wing) configuration. Further aerodynamic improvements are obtained through modest main wing forward sweeping, variable incidence canards, aerodynamic coupling between the canard and main wing, leading edge extensions, winglets, an aerodynamic tailcone, and a T-tail empennage. The Avion is propelled by propfans, which are one of the most promising developments for raising propulsive efficiencies at high subsonic Mach numbers. Special attention is placed on overall configuration, fuselage layout, performance estimations, component weight estimations, and planform design. Leading U.S. technology promises highly efficient flight for the 21st century; the Avion will fulfill this promise to passenger transport aviation.

  12. Spacelab J air filter debris analysis

    NASA Technical Reports Server (NTRS)

    Obenhuber, Donald C.

    1993-01-01

    Filter debris from the Spacelab module SLJ of STS-49 was analyzed for microbial contamination. Debris for cabin and avionics filters was collected by Kennedy Space Center personnel on 1 Oct. 1992, approximately 5 days postflight. The concentration of microorganisms found was similar to previous Spacelab missions averaging 7.4E+4 CFU/mL for avionics filter debris and 4.5E+6 CFU/mL for the cabin filter debris. A similar diversity of bacterial types was found in the two filters. Of the 13 different bacterial types identified from the cabin and avionics samples, 6 were common to both filters. The overall analysis of these samples as compared to those of previous missions shows no significant differences.

  13. Preliminary Results Obtained in Integrated Safety Analysis of NASA Aviation Safety Program Technologies

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This is a listing of recent unclassified RTO technical publications processed by the NASA Center for AeroSpace Information from January 1, 2001 through March 31, 2001 available on the NASA Aeronautics and Space Database. Contents include 1) Cognitive Task Analysis; 2) RTO Educational Notes; 3) The Capability of Virtual Reality to Meet Military Requirements; 4) Aging Engines, Avionics, Subsystems and Helicopters; 5) RTO Meeting Proceedings; 6) RTO Technical Reports; 7) Low Grazing Angle Clutter...; 8) Verification and Validation Data for Computational Unsteady Aerodynamics; 9) Space Observation Technology; 10) The Human Factor in System Reliability...; 11) Flight Control Design...; 12) Commercial Off-the-Shelf Products in Defense Applications.

  14. Acting Administrator Lightfoot Visits Sierra Nevada Corporation

    NASA Image and Video Library

    2017-04-06

    Associate administrator of NASA's Office of International and Interagency Relations Al Condes, left, acting NASA Deputy Administrator Lesa Roe, second from left, and acting NASA Administrator Robert Lightfoot, center, listen as Jude Vrazel, a senior systems engineer at Sierra Nevada Corporation, right, discusses the Vehicle Avionics Integration Lab (VAIL), Thursday, April 6, 2017 during a visit to Sierra Nevada Corporation in Louisville, Colo. Sierra Nevada Corporation, with their Dream Chaser Cargo System, was one of three companies to be awarded Commercial Resupply Services (CRS-2) contracts designed to obtain cargo delivery services to the space station, disposal of unneeded cargo, and the return of research samples and other cargo from the station back to NASA. Photo Credit: (NASA/Joel Kowsky)

  15. STS_135_SAIL

    NASA Image and Video Library

    2011-07-12

    JSC2011-E-067679 (12 July 2011) --- This is an overall view of the wiring for the simulated shuttle payload bay in the Shuttle Avionics Integration Laboratory (SAIL) at the Johnson Space Center in Houston on July 12, 2011. The laboratory is a skeletal avionics version of the shuttle that uses actual orbiter hardware and flight software. The facility even carries the official orbiter designation as Orbiter Vehicle 095. Photo credit: NASA Photo/Houston Chronicle, Smiley N. Pool

  16. STS_135_SAIL

    NASA Image and Video Library

    2011-07-12

    JSC2011-E-067680 (12 July 2011) --- This is an overall view of the wiring for the simulated shuttle payload bay in the Shuttle Avionics Integration Laboratory (SAIL) at the Johnson Space Center in Houston on July 12, 2011. The laboratory is a skeletal avionics version of the shuttle that uses actual orbiter hardware and flight software. The facility even carries the official orbiter designation as Orbiter Vehicle 095. Photo credit: NASA Photo/Houston Chronicle, Smiley N. Pool

  17. COTSAT Small Spacecraft Cost Optimization for Government and Commercial Use

    NASA Technical Reports Server (NTRS)

    Swank, Aaron J.; Bui, David; Dallara, Christopher; Ghassemieh, Shakib; Hanratty, James; Jackson, Evan; Klupar, Pete; Lindsay, Michael; Ling, Kuok; Mattei, Nicholas; hide

    2009-01-01

    Cost Optimized Test of Spacecraft Avionics and Technologies (COTSAT-1) is an ongoing spacecraft research and development project at NASA Ames Research Center (ARC). The prototype spacecraft, also known as CheapSat, is the first of what could potentially be a series of rapidly produced low-cost spacecraft. The COTSAT-1 team is committed to realizing the challenging goal of building a fully functional spacecraft for $500K parts and $2.0M labor. The project's efforts have resulted in significant accomplishments within the scope of a limited budget and schedule. Completion and delivery of the flight hardware to the Engineering Directorate at NASA Ames occurred in February 2009 and a cost effective qualification program is currently under study. The COTSAT-1 spacecraft is now located at NASA Ames Research Center and is awaiting a cost effective launch opportunity. This paper highlights the advancements of the COTSAT-1 spacecraft cost reduction techniques.

  18. General aviation activity and avionics survey. Annual report for CY81

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwenk, J.C.; Carter, P.W.

    1982-12-01

    This report presents the results and a description of the 1981 General Aviation Activity and Avionics Survey. The survey was conducted during 1982 by the FAA to obtain information on the activity and avionics of the United States registered general aviation aircraft fleet, the dominant component of civil aviation in the U.S. The survey was based on a statistically selected sample of about 8.9 percent of the general aviation fleet and obtained a response rate of 61 percent. Survey results are based upon response but are expanded upward to represent the total population. Survey results revealed that during 1981 anmore » estimated 40.7 million hours of flying time were logged by the 213,226 active general aviation aircraft in the U.S. fleet, yielding a mean annual flight time per aircraft of 188.1 hours. The active aircraft represented about 83 percent of the registered general aviation fleet. The report contains breakdowns of these and other statistics by manufacturer/model group, aircraft type, state and region of based aircraft, and primary use. Also included are fuel consumption, lifetime airframe hours, avionics, and engine hours estimates. In addition, tables are included for detailed analysis of the avionics capabilities of GA fleet.« less

  19. Validation of multiprocessor systems

    NASA Technical Reports Server (NTRS)

    Siewiorek, D. P.; Segall, Z.; Kong, T.

    1982-01-01

    Experiments that can be used to validate fault free performance of multiprocessor systems in aerospace systems integrating flight controls and avionics are discussed. Engineering prototypes for two fault tolerant multiprocessors are tested.

  20. New capabilities for older aircraft: A study of pilot integration of retro-fit digital avionics to analog-instrumented flight decks

    NASA Astrophysics Data System (ADS)

    Breuer, Glynn E.

    The purpose of this study was to determine whether applying Gilbert's Behavior Engineering Model to military tactical aviation organizations would foster effective user integration of retro-fit digital avionics in analog-instrumented flight decks. This study examined the relationship between the reported presence of environmental supports and personal repertory supports as defined by Gilbert, and the reported self-efficacy of users of retro-fit digital avionics to analog flight decks, and examined the efficacious behaviors of users as they attain mastery of the equipment and procedures, and user reported best practices and criteria for masterful performance in the use of retro-fit digital avionics and components. This study used a mixed methodology, using quantitative surveys to measure the perceived level of organizational supports that foster mastery of retro-fit digital avionic components, and qualitative interviews to ascertain the efficacious behaviors and best practices of masterful users of these devices. The results of this study indicate that there is some relationship between the reported presence of organizational supports and personal repertory supports and the reported self-mastery and perceived organizational mastery of retro-fit digital avionics applied to the operation of the research aircraft. The primary recommendation is that unit leadership decide exactly the capabilities desired from retro-fit equipment, publish these standards, ensure training in these standards is effective, and evaluate performance based on these standards. Conclusions indicate that sufficient time and resources are available to the individual within the study population, and the organization as a whole, to apply Gilbert's criteria toward the mastery of retro-fit digital avionics applied to the operation of the research aircraft.

  1. Avionics Systems Laboratory/Building 16. Historical Documentation

    NASA Technical Reports Server (NTRS)

    Slovinac, Patricia; Deming, Joan

    2011-01-01

    As part of this nation-wide study, in September 2006, historical survey and evaluation of NASA-owned and managed facilities that was conducted by NASA s Lyndon B. Johnson Space Center (JSC) in Houston, Texas. The results of this study are presented in a report entitled, "Survey and Evaluation of NASA-owned Historic Facilities and Properties in the Context of the U.S. Space Shuttle Program, Lyndon B. Johnson Space Center, Houston, Texas," prepared in November 2007 by NASA JSC s contractor, Archaeological Consultants, Inc. As a result of this survey, the Avionics Systems Laboratory (Building 16) was determined eligible for listing in the NRHP, with concurrence by the Texas State Historic Preservation Officer (SHPO). The survey concluded that Building 5 is eligible for the NRHP under Criteria A and C in the context of the U.S. Space Shuttle program (1969-2010). Because it has achieved significance within the past 50 years, Criteria Consideration G applies. At the time of this documentation, Building 16 was still used to support the SSP as an engineering research facility, which is also sometimes used for astronaut training. This documentation package precedes any undertaking as defined by Section 106 of the NHPA, as amended, and implemented in 36 CFR Part 800, as NASA JSC has decided to proactively pursue efforts to mitigate the potential adverse affects of any future modifications to the facility. It includes a historical summary of the Space Shuttle program; the history of JSC in relation to the SSP; a narrative of the history of Building 16 and how it supported the SSP; and a physical description of the structure. In addition, photographs documenting the construction and historical use of Building 16 in support of the SSP, as well as photographs of the facility documenting the existing conditions, special technological features, and engineering details, are included. A contact sheet printed on archival paper, and an electronic copy of the work product on CD, are also provided

  2. Hardware Implementation of COTS Avionics System on Unmanned Aerial Vehicle Platforms

    NASA Technical Reports Server (NTRS)

    Yeh, Yoo-Hsiu; Kumar, Parth; Ishihara, Abraham; Ippolito, Corey

    2010-01-01

    Unmanned Aerial Vehicles (UAVs) can serve as low cost and low risk platforms for flight testing in Aeronautics research. The NASA Exploration Aerial Vehicle (EAV) and Experimental Sensor-Controlled Aerial Vehicle (X-SCAV) UAVs were developed in support of control systems research at NASA Ames Research Center. The avionics hardware for both systems has been redesigned and updated, and the structure of the EAV has been further strengthened. Preliminary tests show the avionics operate properly in the new configuration. A linear model for the EAV also was estimated from flight data, and was verified in simulation. These modifications and results prepare the EAV and X-SCAV to be used in a wide variety of flight research projects.

  3. Demonstration Advanced Avionics System (DAAS) function description

    NASA Technical Reports Server (NTRS)

    Bailey, A. J.; Bailey, D. G.; Gaabo, R. J.; Lahn, T. G.; Larson, J. C.; Peterson, E. M.; Schuck, J. W.; Rodgers, D. L.; Wroblewski, K. A.

    1982-01-01

    The Demonstration Advanced Avionics System, DAAS, is an integrated avionics system utilizing microprocessor technologies, data busing, and shared displays for demonstrating the potential of these technologies in improving the safety and utility of general aviation operations in the late 1980's and beyond. Major hardware elements of the DAAS include a functionally distributed microcomputer complex, an integrated data control center, an electronic horizontal situation indicator, and a radio adaptor unit. All processing and display resources are interconnected by an IEEE-488 bus in order to enhance the overall system effectiveness, reliability, modularity and maintainability. A detail description of the DAAS architecture, the DAAS hardware, and the DAAS functions is presented. The system is designed for installation and flight test in a NASA Cessna 402-B aircraft.

  4. Estimation des masses, des centres de gravite ainsi que des moments d'inertie de l'avion cessna citation X

    NASA Astrophysics Data System (ADS)

    Chahbani, Samia

    The masses, centers of gravity and moments of inertia are the main parameters in the three phases of the design of the aircraft. They are of extreme importance in the studies of the stability and proper functioning of the aircraft by modeling and simulation methods. Unfortunately, these data are not always available given the confidentiality of aerospace field. A question arises naturally: How to estimate the mass, center of gravity and moments of inertia of an aircraft based on only its geometry? In this context in which this thesis is realized, the masses are estimated by Raymer`s methods. The aircraft described in procedures based on mechanical techniques engineers are used for determining the centers of gravity. The DATCOM is applied for obtaining moments of inertia. Finally, the results obtained are validated by using the flight simulator at the LARCASE corresponding to Cessna Citation X. we conclude with a representation of an analytical model that sum up the different step to follow up for estimating masses, centers of gravity and moments of inertia for any commercial aircraft.

  5. Demonstration Advanced Avionics System (DAAS) functional description. [Cessna 402B aircraft

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A comprehensive set of general aviation avionics were defined for integration into an advanced hardware mechanization for demonstration in a Cessna 402B aircraft. Block diagrams are shown and system and computer architecture as well as significant hardware elements are described. The multifunction integrated data control center and electronic horizontal situation indicator are discussed. The functions that the DAAS will perform are examined. This function definition is the basis for the DAAS hardware and software design.

  6. 1400144

    NASA Image and Video Library

    2014-03-06

    THE 2013 ASTRONAUT CANDIDATE CLASS VISITED THE THRUST VECTOR CONTROL TEST LAB AT MARSHALL'S PROPULSION RESEARCH DEVELOPMENT LABORATORY WHERE ENGINEERS ARE DEVELOPING AND TESTING THE SPACE LAUNCH SYSTEM'S GUIDANCE, NAVIGATION AND CONTROL SOFTWARE AND AVIONICS HARDWARE.

  7. Sail GTS ground system analysis: Avionics system engineering

    NASA Technical Reports Server (NTRS)

    Lawton, R. M.

    1977-01-01

    A comparison of two different concepts for the guidance, navigation and control test set signal ground system is presented. The first is a concept utilizing a ground plate to which crew station, avionics racks, electrical power distribution system, master electrical common connection assembly and marshall mated elements system grounds are connected by 4/0 welding cable. An alternate approach has an aluminum sheet interconnecting the signal ground reference points between the crew station and avionics racks. The comparison analysis quantifies the differences between the two concepts in terms of dc resistance, ac resistance and inductive reactance. These parameters are figures of merit for ground system conductors in that the system with the lowest impedance is the most effective in minimizing noise voltage. Although the welding cable system is probably adequate, the aluminum sheet system provides a higher probability of a successful system design.

  8. NASA Affordable Vehicle Avionics (AVA). Common Modular Avionics System for Nanolaunchers Offering Affordable Access to Space; [Space Technology: Game Changing Development

    NASA Technical Reports Server (NTRS)

    Aquilina, Rudy

    2017-01-01

    Small satellites are becoming ever more capable of performing valuable missions for both government and commercial customers. However, currently these satellites can be launched affordably only as secondary payloads. This makes it difficult for the small satellite mission to launch when needed, to the desired orbit, and with acceptable risk. What is needed is a class of low-cost launchers, so that launch costs to low-Earth orbit (LEO) are commensurate with payload costs. Several private and government-sponsored launch vehicle developers are working toward just that-the ability to affordably insert small payloads into LEO. But until now, cost of the complex avionics remained disproportionately high. AVA (Affordable Vehicle Avionics) solves this problem. Significant contributors to the cost of launching nanosatellites to orbit are the avionics and software systems that steer and control the launch vehicles, sequence stage separation, deploy payloads, and telemeter data. The high costs of these guidance, navigation and control (GNC) avionics systems are due in part to the current practice of developing unique, single-use hardware and software for each launch. High-performance, high-reliability inertial sensors components with heritage from legacy launchers also contribute to costs-but can low-cost commercial inertial sensors work just as well? NASA Ames Research Center has developed and tested a prototype low-cost avionics package for space launch vehicles that provides complete GNC functionality in a package smaller than a tissue box (100 millimeters by 120 millimeters by 69 millimeters; 4 inches by 4.7 inches by 2.7 inches), with a mass of less than 0.84 kilogram (2 pounds. AVA takes advantage of commercially available, low-cost, mass-produced, miniaturized sensors, filtering their more noisy inertial data with real-time GPS (Global Positioning Satellite) data. The goal of the AVA project is to produce and light-verify a common suite of avionics and software that deliver affordable, capable GNC and telemetry avionics with application to multiple nanolaunch vehicles at 1 percent of the cost of current state-of-the-art avionics.

  9. 75 FR 16902 - Aviation Rulemaking Advisory Committee; Transport Airplane and Engine Issue Area-New Task

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-02

    ..., stall warning standards were enhanced). However, as a result of several recent loss-of-control accidents... Transport Airplane and Engine Issues, under the existing Avionics Systems Harmonization Working Group. The... existing stall warning requirements. The working group will be expected to provide a report that addresses...

  10. A Library of Rad Hard Mixed-Voltage/Mixed-Signal Building Blocks for Integration of Avionics Systems for Deep Space

    NASA Technical Reports Server (NTRS)

    Mojarradi, M. M.; Blaes, B.; Kolawa, E. A.; Blalock, B. J.; Li, H. W.; Buck, K.; Houge, D.

    2001-01-01

    To build the sensor intensive system-on-a-chip for the next generation spacecrafts for deep space, Center for Integration of Space Microsystems at JPL (CISM) takes advantage of the lower power rating and inherent radiation resistance of Silicon on Insulator technology (SOI). We are developing a suite of mixed-voltage and mixed-signal building blocks in Honeywell's SOI process that can enable the rapid integration of the next generation avionics systems with lower power rating, higher reliability, longer life, and enhanced radiation tolerance for spacecrafts such as the Europa Orbiter and Europa Lander. The mixed-voltage building blocks are predominantly for design of adaptive power management systems. Their design centers around an LDMOS structure that is being developed by Honeywell, Boeing Corp, and the University of Idaho. The mixed-signal building blocks are designed to meet the low power, extreme radiation requirement of deep space applications. These building blocks are predominantly used to interface analog sensors to the digital CPU of the next generation avionics system on a chip. Additional information is contained in the original extended abstract.

  11. Applying emerging digital video interface standards to airborne avionics sensor and digital map integrations: benefits outweigh the initial costs

    NASA Astrophysics Data System (ADS)

    Kuehl, C. Stephen

    1996-06-01

    Video signal system performance can be compromised in a military aircraft cockpit management system (CMS) with the tailoring of vintage Electronics Industries Association (EIA) RS170 and RS343A video interface standards. Video analog interfaces degrade when induced system noise is present. Further signal degradation has been traditionally associated with signal data conversions between avionics sensor outputs and the cockpit display system. If the CMS engineering process is not carefully applied during the avionics video and computing architecture development, extensive and costly redesign will occur when visual sensor technology upgrades are incorporated. Close monitoring and technical involvement in video standards groups provides the knowledge-base necessary for avionic systems engineering organizations to architect adaptable and extendible cockpit management systems. With the Federal Communications Commission (FCC) in the process of adopting the Digital HDTV Grand Alliance System standard proposed by the Advanced Television Systems Committee (ATSC), the entertainment and telecommunications industries are adopting and supporting the emergence of new serial/parallel digital video interfaces and data compression standards that will drastically alter present NTSC-M video processing architectures. The re-engineering of the U.S. Broadcasting system must initially preserve the electronic equipment wiring networks within broadcast facilities to make the transition to HDTV affordable. International committee activities in technical forums like ITU-R (former CCIR), ANSI/SMPTE, IEEE, and ISO/IEC are establishing global consensus on video signal parameterizations that support a smooth transition from existing analog based broadcasting facilities to fully digital computerized systems. An opportunity exists for implementing these new video interface standards over existing video coax/triax cabling in military aircraft cockpit management systems. Reductions in signal conversion processing steps, major improvement in video noise reduction, and an added capability to pass audio/embedded digital data within the digital video signal stream are the significant performance increases associated with the incorporation of digital video interface standards. By analyzing the historical progression of military CMS developments, establishing a systems engineering process for CMS design, tracing the commercial evolution of video signal standardization, adopting commercial video signal terminology/definitions, and comparing/contrasting CMS architecture modifications using digital video interfaces; this paper provides a technical explanation on how a systems engineering process approach to video interface standardization can result in extendible and affordable cockpit management systems.

  12. An Integrated Approach to Functional Engineering: An Engineering Database for Harness, Avionics and Software

    NASA Astrophysics Data System (ADS)

    Piras, Annamaria; Malucchi, Giovanni

    2012-08-01

    In the design and development phase of a new program one of the critical aspects is the integration of all the functional requirements of the system and the control of the overall consistency between the identified needs on one side and the available resources on the other side, especially when both the required needs and available resources are not yet consolidated, but they are evolving as the program maturity increases.The Integrated Engineering Harness Avionics and Software database (IDEHAS) is a tool that has been developed to support this process in the frame of the Avionics and Software disciplines through the different phases of the program. The tool is in fact designed to allow an incremental build up of the avionics and software systems, from the description of the high level architectural data (available in the early stages of the program) to the definition of the pin to pin connectivity information (typically consolidated in the design finalization stages) and finally to the construction and validation of the detailed telemetry parameters and commands to be used in the test phases and in the Mission Control Centre. The key feature of this approach and of the associated tool is that it allows the definition and the maintenance / update of all these data in a single, consistent environment.On one side a system level and concurrent approach requires the feasibility to easily integrate and update the best data available since the early stages of a program in order to improve confidence in the consistency and to control the design information.On the other side, the amount of information of different typologies and the cross-relationships among the data imply highly consolidated structures requiring lot of checks to guarantee the data content consistency with negative effects on simplicity and flexibility and often limiting the attention to special needs and to the interfaces with other disciplines.

  13. Orion GN and C Mitigation Efforts for Van Allen Radiation

    NASA Technical Reports Server (NTRS)

    King, Ellis T.; Jackson, Mark

    2013-01-01

    The Orion Crew Module (CM) is NASA's next generation manned space vehicle, scheduled to return humans to lunar orbit in the coming decade. The Orion avionics and GN&C architectures have progressed through a number of project phases and are nearing completion of a major milestone. The first unmanned test mission, dubbed "Exploration Flight Test One" (EFT-1) is scheduled to launch from NASA Kennedy Space Center late next year and provides the first integrated test of all the vehicle systems, avionics and software.

  14. Avionics Simulation, Development and Software Engineering

    NASA Technical Reports Server (NTRS)

    Francis, Ronald C.; Settle, Gray; Tobbe, Patrick A.; Kissel, Ralph; Glaese, John; Blanche, Jim; Wallace, L. D.

    2001-01-01

    This monthly report summarizes the work performed under contract NAS8-00114 for Marshall Space Flight Center in the following tasks: 1) Purchase Order No. H-32831D, Task Order 001A, GPB Program Software Oversight; 2) Purchase Order No. H-32832D, Task Order 002, ISS EXPRESS Racks Software Support; 3) Purchase Order No. H-32833D, Task Order 003, SSRMS Math Model Integration; 4) Purchase Order No. H-32834D, Task Order 004, GPB Program Hardware Oversight; 5) Purchase Order No. H-32835D, Task Order 005, Electrodynamic Tether Operations and Control Analysis; 6) Purchase Order No. H-32837D, Task Order 007, SRB Command Receiver/Decoder; and 7) Purchase Order No. H-32838D, Task Order 008, AVGS/DART SW and Simulation Support

  15. Orion MPCV Service Module Avionics Ring Pallet Testing, Correlation, and Analysis

    NASA Technical Reports Server (NTRS)

    Staab, Lucas; Akers, James; Suarez, Vicente; Jones, Trevor

    2012-01-01

    The NASA Orion Multi-Purpose Crew Vehicle (MPCV) is being designed to replace the Space Shuttle as the main manned spacecraft for the agency. Based on the predicted environments in the Service Module avionics ring, an isolation system was deemed necessary to protect the avionics packages carried by the spacecraft. Impact, sinusoidal, and random vibration testing were conducted on a prototype Orion Service Module avionics pallet in March 2010 at the NASA Glenn Research Center Structural Dynamics Laboratory (SDL). The pallet design utilized wire rope isolators to reduce the vibration levels seen by the avionics packages. The current pallet design utilizes the same wire rope isolators (M6-120-10) that were tested in March 2010. In an effort to save cost and schedule, the Finite Element Models of the prototype pallet tested in March 2010 were correlated. Frequency Response Function (FRF) comparisons, mode shape and frequency were all part of the correlation process. The non-linear behavior and the modeling the wire rope isolators proved to be the most difficult part of the correlation process. The correlated models of the wire rope isolators were taken from the prototype design and integrated into the current design for future frequency response analysis and component environment specification.

  16. Scavenge/remove an AAA (Avionics Air Assembly) filter

    NASA Image and Video Library

    2009-08-25

    ISS020-E-033979 (25 Aug. 2009) --- NASA astronaut Michael Barratt, Expedition 20 flight engineer, works with the Crew Health Care System (CHeCS) rack in the Kibo laboratory of the International Space Station.

  17. 77 FR 60005 - Aviation Rulemaking Advisory Committee Meeting on Transport Airplane and Engine Issues

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-01

    .... Flight Controls Working Group Report. Avionics Systems Harmonization Working Group Report. Aging... contact the person listed in the FOR FURTHER INFORMATION CONTACT section. Sign and oral interpretation, as...

  18. Avionics Architectures for Exploration: Ongoing Efforts in Human Spaceflight

    NASA Technical Reports Server (NTRS)

    Goforth, Montgomery B.; Ratliff, James E.; Hames, Kevin L.; Vitalpur, Sharada V.; Woodman, Keith L.

    2014-01-01

    The field of Avionics is advancing far more rapidly in terrestrial applications than in spaceflight applications. Spaceflight Avionics are not keeping pace with expectations set by terrestrial experience, nor are they keeping pace with the need for increasingly complex automation and crew interfaces as we move beyond Low Earth Orbit. NASA must take advantage of the strides being made by both space-related and terrestrial industries to drive our development and sustaining costs down. This paper describes ongoing efforts by the Avionics Architectures for Exploration (AAE) project chartered by NASA's Advanced Exploration Systems (AES) Program to evaluate new avionic architectures and technologies, provide objective comparisons of them, and mature selected technologies for flight and for use by other AES projects. The AAE project team includes members from most NASA centers, and from industry. It is our intent to develop a common core avionic system that has standard capabilities and interfaces, and contains the basic elements and functionality needed for any spacecraft. This common core will be scalable and tailored to specific missions. It will incorporate hardware and software from multiple vendors, and be upgradeable in order to infuse incremental capabilities and new technologies. It will maximize the use of reconfigurable open source software (e.g., Goddard Space Flight Center's (GSFC's) Core Flight Software (CFS)). Our long-term focus is on improving functionality, reliability, and autonomy, while reducing size, weight, and power. Where possible, we will leverage terrestrial commercial capabilities to drive down development and sustaining costs. We will select promising technologies for evaluation, compare them in an objective manner, and mature them to be available for future programs. The remainder of this paper describes our approach, technical areas of emphasis, integrated test experience and results as of mid-2014, and future plans. As a part of the AES Program, we are encouraged to set aggressive goals and fall short if necessary, rather than to set our sights too low. We are also asked to emphasize providing our personnel with hands-on experience in development, integration, and testing. That we have embraced both of these philosophies will be evident in the descriptions below.

  19. General aviation activity and avionics survey. 1978. Annual summary report cy 1978

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwenk, J.C.

    1980-03-01

    This report presents the results and a description of the 1978 General Aviation Activity and Avionics Survey. The survey was conducted during early 1979 by the FAA to obtain information on the activity and avionics of the United States registered general aviation aircraft fleet, the dominant component of civil aviation in the U.S. The survey was based on a statistically selected sample of about 13.3 percent of the general aviation fleet and obtained a response rate of 74 percent. Survey results are based upon responses but are expanded upward to represent the total population. Survey results revealed that during 1978more » an estimated 39.4 million hours of flying time were logged by the 198,778 active general aviation aircraft in the U.S. fleet, yielding a mean annual flight time per aircraft of 197.7 hours. The active aircraft represented 85 percent of the registered general aviation fleet. The report contains breakdowns of these and other statistics by manufacturer/model group, aircraft type, state and region of based aircraft, and primary use. Also included are fuel consumption, lifetime airframe hours, avionics, and engine hours estimates.« less

  20. KSC-04pd1336

    NASA Image and Video Library

    2004-06-24

    KENNEDY SPACE CENTER, FLA. - Reporters (left) take notes during an informal briefing concerning NASA’s Cassini spacecraft, launched aboard an Air Force Titan IV rocket from Cape Canaveral Air Force Station Oct. 15, 1997. Cassini launch team members at right discussed the challenge and experience of preparing Cassini for launch, integrating it with the Titan IV rocket and the countdown events of launch day. From left are Ron Gillett, NASA Safety and Lead Federal Agency official; Omar Baez, mechanical and propulsion systems engineer; Ray Lugo, NASA launch manager; Chuck Dovale, chief, Avionics Branch; George Haddad, Integration and Ground Systems mechanical engineer; and Ken Carr, Cassini assistant launch site support manager. Approximately 10:36 p.m. EDT, June 30, the Cassini-Huygens spacecraft will arrive at Saturn. After nearly a seven-year journey, it will be the first mission to orbit Saturn. The international cooperative mission plans a four-year tour of Saturn, its rings, icy moons, magnetosphere, and Titan, the planet’s largest moon.

  1. KSC-04pd1335

    NASA Image and Video Library

    2004-06-24

    KENNEDY SPACE CENTER, FLA. - Reporters (bottom) take notes during an informal briefing concerning NASA’s Cassini spacecraft, launched aboard an Air Force Titan IV rocket from Cape Canaveral Air Force Station Oct. 15, 1997. Cassini launch team members seen here discussed the challenge and experience of preparing Cassini for launch, integrating it with the Titan IV rocket and the countdown events of launch day. Facing the camera (from left) are Ron Gillett, NASA Safety and Lead Federal Agency official; Omar Baez, mechanical and propulsion systems engineer; Ray Lugo, NASA launch manager; Chuck Dovale, chief, Avionics Branch; George Haddad, Integration and Ground Systems mechanical engineer; and Ken Carr, Cassini assistant launch site support manager. Approximately 10:36 p.m. EDT, June 30, the Cassini-Huygens spacecraft will arrive at Saturn. After nearly a seven-year journey, it will be the first mission to orbit Saturn. The international cooperative mission plans a four-year tour of Saturn, its rings, icy moons, magnetosphere, and Titan, the planet’s largest moon.

  2. Simulation/Emulation Techniques: Compressing Schedules With Parallel (HW/SW) Development

    NASA Technical Reports Server (NTRS)

    Mangieri, Mark L.; Hoang, June

    2014-01-01

    NASA has always been in the business of balancing new technologies and techniques to achieve human space travel objectives. NASA's Kedalion engineering analysis lab has been validating and using many contemporary avionics HW/SW development and integration techniques, which represent new paradigms to NASA's heritage culture. Kedalion has validated many of the Orion HW/SW engineering techniques borrowed from the adjacent commercial aircraft avionics solution space, inserting new techniques and skills into the Multi - Purpose Crew Vehicle (MPCV) Orion program. Using contemporary agile techniques, Commercial-off-the-shelf (COTS) products, early rapid prototyping, in-house expertise and tools, and extensive use of simulators and emulators, NASA has achieved cost effective paradigms that are currently serving the Orion program effectively. Elements of long lead custom hardware on the Orion program have necessitated early use of simulators and emulators in advance of deliverable hardware to achieve parallel design and development on a compressed schedule.

  3. Micro-Scale Avionics Thermal Management

    NASA Technical Reports Server (NTRS)

    Moran, Matthew E.

    2001-01-01

    Trends in the thermal management of avionics and commercial ground-based microelectronics are converging, and facing the same dilemma: a shortfall in technology to meet near-term maximum junction temperature and package power projections. Micro-scale devices hold the key to significant advances in thermal management, particularly micro-refrigerators/coolers that can drive cooling temperatures below ambient. A microelectromechanical system (MEMS) Stirling cooler is currently under development at the NASA Glenn Research Center to meet this challenge with predicted efficiencies that are an order of magnitude better than current and future thermoelectric coolers.

  4. Assessment Environment for Complex Systems Software Guide

    NASA Technical Reports Server (NTRS)

    2013-01-01

    This Software Guide (SG) describes the software developed to test the Assessment Environment for Complex Systems (AECS) by the West Virginia High Technology Consortium (WVHTC) Foundation's Mission Systems Group (MSG) for the National Aeronautics and Space Administration (NASA) Aeronautics Research Mission Directorate (ARMD). This software is referred to as the AECS Test Project throughout the remainder of this document. AECS provides a framework for developing, simulating, testing, and analyzing modern avionics systems within an Integrated Modular Avionics (IMA) architecture. The purpose of the AECS Test Project is twofold. First, it provides a means to test the AECS hardware and system developed by MSG. Second, it provides an example project upon which future AECS research may be based. This Software Guide fully describes building, installing, and executing the AECS Test Project as well as its architecture and design. The design of the AECS hardware is described in the AECS Hardware Guide. Instructions on how to configure, build and use the AECS are described in the User's Guide. Sample AECS software, developed by the WVHTC Foundation, is presented in the AECS Software Guide. The AECS Hardware Guide, AECS User's Guide, and AECS Software Guide are authored by MSG. The requirements set forth for AECS are presented in the Statement of Work for the Assessment Environment for Complex Systems authored by NASA Dryden Flight Research Center (DFRC). The intended audience for this document includes software engineers, hardware engineers, project managers, and quality assurance personnel from WVHTC Foundation (the suppliers of the software), NASA (the customer), and future researchers (users of the software). Readers are assumed to have general knowledge in the field of real-time, embedded computer software development.

  5. General aviation activity and avionics survey. Annual summary report, CY 1985

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1987-03-01

    This report presents the results and a description of the 1985 General Aviation Activity and Avionics Survey. The survey was conducted during 1986 by the FAA to obtain information on the activity and avionics of the United States registered general aviation aircraft fleet, the dominant component of civil aviation in the U.S. The survey was based on a statistically selected sample of about 10.3 percent of the general aviation fleet. A responses rate of 63.7 percent was obtained. Survey results based upon response but are expanded upward to represent the total population. Survey results revealed that during 1985 an estimatedmore » 34.1 million hours of flying time were logged and 88.7 million operations were performed by the 210,654 active general aviation aircraft in the U.S. fleet. The mean annual flight time per aircraft was 158.2 hours. The active aircraft represented about 77.9 percent of the registered general aviation fleet. The report contains breakdowns of these and other statistics by manufacturer/model group, aircraft, state and region of based aircraft, and primary use. Also included are fuel consumption, lifetime airframe hours, avionics, engine hours, and miles flown estimates, as well as tables for detailed analysis of the avionics capabilities of the general aviation fleet. New to the report this year are estimates of the number of landings, IFR hours flown, and the cost and grade of fuel consumed by the GA fleet.« less

  6. KSC-2012-3641

    NASA Image and Video Library

    2012-07-02

    CAPE CANAVERAL, Fla. – From left, U.S. Senator Bill Nelson, NASA project engineer Trent Smith and NASA astronaut Nicole Stott share a moment of levity in Kennedy Space Center's Operations and Checkout Building high bay following an event marking the arrival of NASA's first space-bound Orion capsule in Florida. Slated for Exploration Flight Test-1, an uncrewed mission planned for 2014, the capsule will travel farther into space than any human spacecraft has gone in more than 40 years. The capsule was shipped to Kennedy from NASA's Michoud Assembly Facility in New Orleans where the crew module pressure vessel was built. The Orion production team will prepare the module for flight at Kennedy by installing heat-shielding thermal protection systems, avionics and other subsystems. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Kim Shiflett

  7. KSC-2013-3767

    NASA Image and Video Library

    2013-10-24

    CAPE CANAVERAL, Fla. – Inside the Orion Test and Launch Control Center at NASA’s Kennedy Space Center in Florida, engineers monitor data for the first Exploration Flight Test 1, or EFT-1, power up test. NASA’s first-ever deep space craft, Orion, was powered on for the first time, marking a major milestone in the final year of preparations for flight. Orion’s avionics system was installed on the crew module and powered up for a series of systems tests. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of Orion, EFT-1, is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: Dimitri Gerondidakis

  8. KSC-2013-3766

    NASA Image and Video Library

    2013-10-24

    CAPE CANAVERAL, Fla. – Inside the Orion Test and Launch Control Center at NASA’s Kennedy Space Center in Florida, an engineer prepares for the first Exploration Flight Test 1, or EFT-1, power up test. NASA’s first-ever deep space craft, Orion, was powered on for the first time, marking a major milestone in the final year of preparations for flight. Orion’s avionics system was installed on the crew module and powered up for a series of systems tests. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of Orion, EFT-1, is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: Dimitri Gerondidakis

  9. KSC-2013-3765

    NASA Image and Video Library

    2013-10-24

    CAPE CANAVERAL, Fla. – Inside the Orion Test and Launch Control Center at NASA’s Kennedy Space Center in Florida, engineers prepare for the first Exploration Flight Test 1, or EFT-1, power up test. NASA’s first-ever deep space craft, Orion, was powered on for the first time, marking a major milestone in the final year of preparations for flight. Orion’s avionics system was installed on the crew module and powered up for a series of systems tests. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of Orion, EFT-1, is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: Dimitri Gerondidakis

  10. KSC-2013-3763

    NASA Image and Video Library

    2013-10-24

    CAPE CANAVERAL, Fla. – Inside the Orion Test and Launch Control Center at NASA’s Kennedy Space Center in Florida, engineers prepare for the first Exploration Flight Test 1, or EFT-1, power up test. NASA’s first-ever deep space craft, Orion, was powered on for the first time, marking a major milestone in the final year of preparations for flight. Orion’s avionics system was installed on the crew module and powered up for a series of systems tests. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of Orion, EFT-1, is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: Dimitri Gerondidakis

  11. KSC-2013-3768

    NASA Image and Video Library

    2013-10-24

    CAPE CANAVERAL, Fla. – Inside the Orion Test and Launch Control Center at NASA’s Kennedy Space Center in Florida, engineers monitor data during the first Exploration Flight Test 1, or EFT-1, power up test. NASA’s first-ever deep space craft, Orion, was powered on for the first time, marking a major milestone in the final year of preparations for flight. Orion’s avionics system was installed on the crew module and powered up for a series of systems tests. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of Orion, EFT-1, is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: Dimitri Gerondidakis

  12. KSC-2013-3764

    NASA Image and Video Library

    2013-10-24

    CAPE CANAVERAL, Fla. – Inside the Orion Test and Launch Control Center at NASA’s Kennedy Space Center in Florida, engineers prepare for the first Exploration Flight Test 1, or EFT-1, power up test. NASA’s first-ever deep space craft, Orion, was powered on for the first time, marking a major milestone in the final year of preparations for flight. Orion’s avionics system was installed on the crew module and powered up for a series of systems tests. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of Orion, EFT-1, is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: Dimitri Gerondidakis

  13. Sporting a fresh paint job, NASA's first Orion full-scale abort flight test crew module awaits avionics and other equipment installation.

    NASA Image and Video Library

    2008-04-01

    A full-scale flight-test mockup of the Constellation program's Orion crew vehicle arrived at NASA's Dryden Flight Research Center in late March 2008 to undergo preparations for the first short-range flight test of the spacecraft's astronaut escape system later that year. Engineers and technicians at NASA's Langley Research Center fabricated the structure, which precisely represents the size, outer shape and mass characteristics of the Orion space capsule. The Orion crew module mockup was ferried to NASA Dryden on an Air Force C-17. After painting in the Edwards Air Force Base paint hangar, the conical capsule was taken to Dryden for installation of flight computers, instrumentation and other electronics prior to being sent to the U.S. Army's White Sands Missile Range in New Mexico for integration with the escape system and the first abort flight test in late 2008. The tests were designed to ensure a safe, reliable method of escape for astronauts in case of an emergency.

  14. An independent review of the Multi-Path Redundant Avionics Suite (MPRAS) architecture assessment and characterization report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, M.R.

    1991-02-01

    In recent years the NASA Langley Research Center has funded several contractors to conduct conceptual designs defining architectures for fault tolerant computer systems. Such a system is referred to as a Multi-Path Redundant Avionics Suite (MPRAS), and would form the basis for avionics systems that would be used in future families of space vehicles in a variety of missions. The principal contractors were General Dynamics, Boeing, and Draper Laboratories. These contractors participated in a series of review meetings, and submitted final reports defining their candidate architectures. NASA then commissioned the Research Triangle Institute (RTI) to perform an assessment of thesemore » architectures to identify strengths and weaknesses of each. This report is a separate, independent review of the RTI assessment, done primarily to assure that the assessment was comprehensive and objective. The report also includes general recommendations relative to further MPRAS development.« less

  15. A fault-tolerant avionics suite for an entry research vehicle

    NASA Technical Reports Server (NTRS)

    Dzwonczyk, Mark; Stone, Howard

    1988-01-01

    A highly-reliable avionics suite has been designed for an Entry Research Vehicle. The autonomous spacecraft would be deployed from the Space Shuttle Orbiter and perform a variety of aerodynamic and propulsive maneuvers which may be required for future space transportation system vehicles. The flight electronics consist of a central fault-tolerant processor, which is resilient to all first failures, reliably cross-strapped to redundant and distributed sets of sensors and effectors. This paper describes the preliminary design and analysis of the architecture which resulted from a fifteen month study by the Charles Stark Draper Laboratory for the NASA Langley Research Center. After a brief introduction to the design task, the architecture of the central flight computer and its interface to the vehicle are discussed. Following this, the method and results of the baseline reliability study for the avionic suite are presented.

  16. A fault-tolerant avionics suite for an entry research vehicle

    NASA Astrophysics Data System (ADS)

    Dzwonczyk, Mark; Stone, Howard

    A highly-reliable avionics suite has been designed for an Entry Research Vehicle. The autonomous spacecraft would be deployed from the Space Shuttle Orbiter and perform a variety of aerodynamic and propulsive maneuvers which may be required for future space transportation system vehicles. The flight electronics consist of a central fault-tolerant processor, which is resilient to all first failures, reliably cross-strapped to redundant and distributed sets of sensors and effectors. This paper describes the preliminary design and analysis of the architecture which resulted from a fifteen month study by the Charles Stark Draper Laboratory for the NASA Langley Research Center. After a brief introduction to the design task, the architecture of the central flight computer and its interface to the vehicle are discussed. Following this, the method and results of the baseline reliability study for the avionic suite are presented.

  17. The Aerospace Safety Advisory panel's report to Doctor Robert A. Frosch, 1977

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Risks attendant to NASA's operations are identified for the following: mission operations; orbiter readiness for orbital flight tests; space shuttle main engine; avionics; thermal projection system; hazard assessment; human error. Past and future projects are assessed.

  18. USAF Development Of Optical Correlation Missile Guidance

    NASA Astrophysics Data System (ADS)

    Kaehr, Ronald; Spector, Marvin

    1980-12-01

    In 1965, the Advanced Development Program (ADP)-679A of the Avionics Laboratory initiated development of guidance systems for stand-off tactical missiles. Employing project engineering support from the Aeronautical Systems Division, WPAFB, the Avionics Laboratory funded multiple terminal guidance concepts and related midcourse navigation technology. Optical correlation techniques which utilize prestored reference information for autonomous target acquisition offered the best near-term opportunity for meeting mission goals. From among the systems studied and flight tested, Aimpoint* optical area guidance provided the best and most consistent performance. Funded development by the Air Force ended in 1974 with a MK-84 guided bomb drop test demonstration at White Sands Missile Range and the subsequent transfer of the tactical missile guidance development charter to the Air Force Armament Laboratory, Eglin AFB. A historical review of optical correlation development within the Avionics Laboratory is presented. Evolution of the Aimpoint system is specifically addressed. Finally, a brief discussion of trends in scene matching technology is presented.

  19. Flight elements: Advanced avionics systems architectures

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Space transportation objectives are associated with transporting material from Earth to orbit, interplanetary travel, and planetary landing. The objectives considered herein are associated with Earth to orbit transportation. Many good avionics architectural features will support all phases of space transportation, but interplanetary transportation poses significantly different problems such as long mission time with high reliability, unattended operation, and many different opportunities such as long nonoperational flight segments that can be used for equipment fault diagnosis and repair. Fault tolerance can be used to permit continued operation with faulty units, not only during launch but also, and perhaps with more impact, during prelaunch activities. Avionics systems are entering a phase of development where the traditional approaches to satisfactory systems based on engineering judgement and thorough testing will alone no longer be adequate to assure that the required system performance can be obtained. A deeper understanding will be required to make the effects of obscure design decisions clear at a level where their impact can be properly judged.

  20. SLS Flight Software Testing: Using a Modified Agile Software Testing Approach

    NASA Technical Reports Server (NTRS)

    Bolton, Albanie T.

    2016-01-01

    NASA's Space Launch System (SLS) is an advanced launch vehicle for a new era of exploration beyond earth's orbit (BEO). The world's most powerful rocket, SLS, will launch crews of up to four astronauts in the agency's Orion spacecraft on missions to explore multiple deep-space destinations. Boeing is developing the SLS core stage, including the avionics that will control vehicle during flight. The core stage will be built at NASA's Michoud Assembly Facility (MAF) in New Orleans, LA using state-of-the-art manufacturing equipment. At the same time, the rocket's avionics computer software is being developed here at Marshall Space Flight Center in Huntsville, AL. At Marshall, the Flight and Ground Software division provides comprehensive engineering expertise for development of flight and ground software. Within that division, the Software Systems Engineering Branch's test and verification (T&V) team uses an agile test approach in testing and verification of software. The agile software test method opens the door for regular short sprint release cycles. The idea or basic premise behind the concept of agile software development and testing is that it is iterative and developed incrementally. Agile testing has an iterative development methodology where requirements and solutions evolve through collaboration between cross-functional teams. With testing and development done incrementally, this allows for increased features and enhanced value for releases. This value can be seen throughout the T&V team processes that are documented in various work instructions within the branch. The T&V team produces procedural test results at a higher rate, resolves issues found in software with designers at an earlier stage versus at a later release, and team members gain increased knowledge of the system architecture by interfacing with designers. SLS Flight Software teams want to continue uncovering better ways of developing software in an efficient and project beneficial manner. Through agile testing, there has been increased value through individuals and interactions over processes and tools, improved customer collaboration, and improved responsiveness to changes through controlled planning. The presentation will describe agile testing methodology as taken with the SLS FSW Test and Verification team at Marshall Space Flight Center.

  1. SLS Intertank Transported to NASA's Barge Pegasus for Shipment, Testing

    NASA Image and Video Library

    2018-02-22

    A structural test version of the intertank for NASA's new heavy-lift rocket, the Space Launch System, is loaded onto the barge Pegasus Feb. 22, at NASA’s Michoud Assembly Facility in New Orleans. NASA engineers and technicians used the agency's new self-propelled modular transporters -- highly specialized, mobile platforms specifically designed to transport SLS hardware -- to transport the critical test hardware to the barge. The intertank is the second piece of structural hardware for the rocket's massive core stage scheduled for delivery to NASA's Marshall Space Flight Center in Huntsville, Alabama, for testing. Engineers at Marshall will push, pull and bend the intertank with millions of pounds of force to ensure the hardware can withstand the forces of launch and ascent. The flight version of the intertank will connect the core stage's two colossal fuel tanks, serve as the upper-connection point for the two solid rocket boosters and house the avionics and electronics that will serve as the "brains" of the rocket. Pegasus, originally used during the Space Shuttle Program, has been redesigned and extended to accommodate the SLS rocket's massive, 212-foot-long core stage -- the backbone of the rocket. The 310-foot-long barge will ferry the core stage elements from Michoud to other NASA centers for tests and launches.

  2. SLS Intertank Transported to NASA's Barge Pegasus for Shipment, testing

    NASA Image and Video Library

    2018-02-22

    A structural test version of the intertank for NASA's new heavy-lift rocket, the Space Launch System, is loaded onto the barge Pegasus Feb. 22, at NASA’s Michoud Assembly Facility in New Orleans. NASA engineers and technicians used the agency's new self-propelled modular transporters -- highly specialized, mobile platforms specifically designed to transport SLS hardware -- to transport the critical test hardware to the barge. The intertank is the second piece of structural hardware for the rocket's massive core stage scheduled for delivery to NASA's Marshall Space Flight Center in Huntsville, Alabama, for testing. Engineers at Marshall will push, pull and bend the intertank with millions of pounds of force to ensure the hardware can withstand the forces of launch and ascent. The flight version of the intertank will connect the core stage's two colossal fuel tanks, serve as the upper-connection point for the two solid rocket boosters and house the avionics and electronics that will serve as the "brains" of the rocket. Pegasus, originally used during the Space Shuttle Program, has been redesigned and extended to accommodate the SLS rocket's massive, 212-foot-long core stage -- the backbone of the rocket. The 310-foot-long barge will ferry the core stage elements from Michoud to other NASA centers for tests and launches.

  3. Silicon Carbide Mixers Demonstrated to Improve the Interference Immunity of Radio-Based Aircraft Avionics

    NASA Technical Reports Server (NTRS)

    Neudeck, Philip G.

    1998-01-01

    Concern over the interference of stray radiofrequency (RF) emissions with key aircraft avionics is evident during takeoff and landing of every commercial flight when the flight attendant requests that all portable electronics be switched off. The operation of key radio-based avionics (such as glide-slope and localizer approach instruments) depends on the ability of front-end RF receivers to detect and amplify desired information signals while rejecting interference from undesired RF sources both inside and outside the aircraft. Incidents where key navigation and approach avionics malfunction because of RF interference clearly represent an increasing threat to flight safety as the radio spectrum becomes more crowded. In an initial feasibility experiment, the U.S. Army Research Laboratory and the NASA Lewis Research Center recently demonstrated the strategic use of silicon carbide (SiC) semiconductor components to significantly reduce the susceptibility of an RF receiver circuit to undesired RF interference. A pair of silicon carbide mixer diodes successfully reduced RF interference (intermodulation distortion) in a prototype receiver circuit by a factor of 10 (20 dB) in comparison to a pair of commercial silicon-based mixer diodes.

  4. Space shuttle main engine definition (phase B). Volume 2: Avionics. [for space shuttle

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The advent of the space shuttle engine with its requirements for high specific impulse, long life, and low cost have dictated a combustion cycle and a closed loop control system to allow the engine components to run close to operating limits. These performance requirements, combined with the necessity for low operational costs, have placed new demands on rocket engine control, system checkout, and diagnosis technology. Based on considerations of precision environment, and compatibility with vehicle interface commands, an electronic control, makes available many functions that logically provide the information required for engine system checkout and diagnosis.

  5. Advanced Aircraft Interfaces: The Machine Side of the Man-Machine Interface (Les Interfaces sur les Avions de Pointe: L’Aspect Machine de l’Interface Homme-Machine)

    DTIC Science & Technology

    1992-10-01

    Manager , Advanced Transport Operating Systems Program Office Langley Research Center Mail Stop 265 Hampton, VA 23665-5225 United States Programme Committee...J.H.Lind, and C.G.Burge Advanced Cockpit - Mission and Image Management 4 by J. Struck Aircrew Acceptance of Automation in the Cockpit 5 by M. Hicks and I...DESIGN CONCEPTS AND TOOLS A Systems Approach to the Advanced Aircraft Man-Machine Interface 23 by F. Armogida Management of Avionics Data in the Cockpit

  6. The NASA Dryden 747 Shuttle Carrier Aircraft crew poses in an engine inlet

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The NASA Dryden 747 Shuttle Carrier Aircraft crew poses in an engine inlet; Standing L to R - aircraft mechanic John Goleno and SCA Team Leader Pete Seidl; Kneeling L to R - aircraft mechanics Todd Weston and Arvid Knutson, and avionics technician Jim Bedard NASA uses two modified Boeing 747 jetliners, originally manufactured for commercial use, as Space Shuttle Carrier Aircraft (SCA). One is a 747-100 model, while the other is designated a 747-100SR (short range). The two aircraft are identical in appearance and in their performance as Shuttle Carrier Aircraft. The 747 series of aircraft are four-engine intercontinental-range swept-wing 'jumbo jets' that entered commercial service in 1969. The SCAs are used to ferry space shuttle orbiters from landing sites back to the launch complex at the Kennedy Space Center, and also to and from other locations too distant for the orbiters to be delivered by ground transportation. The orbiters are placed atop the SCAs by Mate-Demate Devices, large gantry-like structures which hoist the orbiters off the ground for post-flight servicing, and then mate them with the SCAs for ferry flights.

  7. The NASA Dryden 747 Shuttle Carrier Aircraft crew poses in an engine inlet

    NASA Image and Video Library

    2000-02-03

    The NASA Dryden 747 Shuttle Carrier Aircraft crew poses in an engine inlet; Standing L to R - aircraft mechanic John Goleno and SCA Team Leader Pete Seidl; Kneeling L to R - aircraft mechanics Todd Weston and Arvid Knutson, and avionics technician Jim Bedard NASA uses two modified Boeing 747 jetliners, originally manufactured for commercial use, as Space Shuttle Carrier Aircraft (SCA). One is a 747-100 model, while the other is designated a 747-100SR (short range). The two aircraft are identical in appearance and in their performance as Shuttle Carrier Aircraft. The 747 series of aircraft are four-engine intercontinental-range swept-wing "jumbo jets" that entered commercial service in 1969. The SCAs are used to ferry space shuttle orbiters from landing sites back to the launch complex at the Kennedy Space Center, and also to and from other locations too distant for the orbiters to be delivered by ground transportation. The orbiters are placed atop the SCAs by Mate-Demate Devices, large gantry-like structures which hoist the orbiters off the ground for post-flight servicing, and then mate them with the SCAs for ferry flights.

  8. Methode de conception dirigee par les modeles pour les systemes avioniques modulaires integres basee sur une approche de cosimulation

    NASA Astrophysics Data System (ADS)

    Bao, Lin

    In the aerospace industry, with the development of avionic systems becomes more and more complex, the integrated modular avionics (IMA) architecture was proposed to replace its predecessor - the federated architecture, in order to reduce the weight, power consumption and the dimension of the avionics equipment. The research work presented in this thesis, which is considered as a part of the research project AVIO509, aims to propose to the aviation industry a set of time-effective and cost-effective solutions for the development and the functional validation of IMA systems. The proposed methodologies mainly focus on two design flows that are based on: 1) the concept of model-driven engineering design and 2) a cosimulation platform. In the first design flow, the modeling language AADL is used to describe the IMA architecture. The environment OCARINA, a code generator initially designed for POK, was modified so that it can generate avionic applications from an AADL model for the simulator SIMA (an IMA simulator compliant to the ARINC653 standards). In the second design flow, Simulink is used to simulate the external world of IMA module thanks to the availability of avionic library that can offer lots of avionics sensors and actuators, and as well as its effectiveness in creating the Simulink models. The cosimulation platform is composed of two simulators: Simulink for the simulation of peripherals and SIMA for the simulation of IMA module, the latter is considered as an ideal alternative for the super expensive commercial development environment. In order to have a good portability, a SIMA partition is reserved as the role of " adapter " to synchronize the communication between these two simulators via the TCP/IP protocol. When the avionics applications are ported to the implementation platform (such as PikeOS) after the simulation, there is only the " adapter " to be modified because the internal communication and the system configuration are the same. An avionics application was developed as a case study, in order to demonstrate the validation of the proposed design flows. The research presented in this paper is a continuation of project of the AVIO509 research team, and parallelly may be extended in the future work.

  9. World Support Base: Spain

    DTIC Science & Technology

    1987-09-01

    Comments Recommendations Company Reports Def ex AFARMADE (Spanish Association of Arms and Defense Material Makers) CASA ( Construcciones Aeronauticas...of tine avionics and structurai parts for the aircraft. Also, the construction of a factory to bui Id jet engines and a I icense for the... construction of GE’s F404 engine for the F-18 has further enhanced Spain’s defense Industry. The goal of the Spanish defense industrial program Is to reduce

  10. Avionics Collaborative Engineering Technology Delivery Order 0035: Secure Knowledge Management (SKM) Technology Research Roadmap - Technology Trends for Collaborative Information and Knowledge Management Research

    DTIC Science & Technology

    2004-06-01

    such as that represented in the know-how of the master craftsman), and cognitive (know why, perceptions, values, beliefs, and mental models).4... cognitive engineering, educational technology, industrial/organizational psychology, sociology, cultural anthropology, and computational...such as human-human interaction, interface design and evaluation methodology, cognitive models and user models, health and ergonomic studies, empirical

  11. Transforming System Engineering through Model-Centric Engineering

    DTIC Science & Technology

    2015-01-31

    story that is being applied and evolved on Jupiter Europa Orbiter (JEO) project [75], and we summarize some aspects of it here, because it goes beyond...JEO Jupiter Europa Orbiter project at NASA/JPL JSF Joint Strike Fighter JPL Jet Propulsion Laboratory of NASA Linux An operating system created by...Adaptation of Flight-Critical Systems, Digital Avionics Systems Conference, 2009. [75] Rasumussen, R., R. Shishko, Jupiter Europa Orbiter Architecture

  12. Airborne Proximity Warning Instrument Laboratory Tests

    DOT National Transportation Integrated Search

    1977-01-01

    An Airborne Proximity Warning Instrument (APWI) designed and manufactured by Rock Avionics, New York, was subjected to a short laboratory test at the Transportation Systems Center to determine the suitability of this product for further evaluation as...

  13. A Recommended Methodology for Quantifying NDE/NDI Based on Aircraft Engine Experience (Le Projet de Methodologie Pour l’Evaluation du Controle Non- Destructif Fonde sur l’Experience Acquise sur les moteurs d’Avions)

    DTIC Science & Technology

    1993-04-01

    Non-Destructif LECT E Fond6 sur l’Exp6rience Acquise .E Iuu sur les Moteurs dAvions) S JUL The material in this publication was assembled to support a...detection de dtfauts des organes des moteurs . Les confkrences sont destinies a tous ceux qui sont impliquds dans la garantie de la qualitW de fabrication, la...be more of an notches, the specimens should be further issue for the inspection of actual stress cycled to break the crack through any meta tht my

  14. Prototype Common Bus Spacecraft: Hover Test Implementation and Results. Revision, Feb. 26, 2009

    NASA Technical Reports Server (NTRS)

    Hine, Butler Preston; Turner, Mark; Marshall, William S.

    2009-01-01

    In order to develop the capability to evaluate control system technologies, NASA Ames Research Center (Ames) began a test program to build a Hover Test Vehicle (HTV) - a ground-based simulated flight vehicle. The HTV would integrate simulated propulsion, avionics, and sensors into a simulated flight structure, and fly that test vehicle in terrestrial conditions intended to simulate a flight environment, in particular for attitude control. The ultimate purpose of the effort at Ames is to determine whether the low-cost hardware and flight software techniques are viable for future low cost missions. To enable these engineering goals, the project sought to develop a team, processes and procedures capable of developing, building and operating a fully functioning vehicle including propulsion, GN&C, structure, power and diagnostic sub-systems, through the development of the simulated vehicle.

  15. KSC-2012-3603

    NASA Image and Video Library

    2012-07-02

    CAPE CANAVERAL, Fla. – NASA Deputy Director Lori Garver, left, visits NASA's Kennedy Space Center in Florida to participate in an event marking the arrival of NASA's first space-bound Orion capsule at Kennedy. With Garver in Kennedy's Operations and Checkout Building high bay are, from left, U.S. Senator Bill Nelson and Trent Smith, NASA project engineer. Slated for Exploration Flight Test-1, an uncrewed mission planned for 2014, the capsule will travel farther into space than any human spacecraft has gone in more than 40 years. The capsule was shipped to Kennedy from NASA's Michoud Assembly Facility in New Orleans where the crew module pressure vessel was built. The Orion production team will prepare the module for flight at Kennedy by installing heat-shielding thermal protection systems, avionics and other subsystems. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Kim Shiflett

  16. One Idea for a Next Generation Shuttle

    NASA Technical Reports Server (NTRS)

    MacConochie, Ian O.; Cerro, Jeffrey A.

    2004-01-01

    In this configuration, the current Shuttle External Tank serves as core structure for a fully reusable second stage. This stage is equipped with wings, vertical fin, landing gear, and thermal protection. The stage is geometrically identical to (but smaller than) a single stage that has been tested hyper-sonically, super-sonically, and sub-sonically in the NASA Langley Research Center wind tunnels. The three LOX/LH engines that currently serve as main propulsion for the Shuttle Orbiter, serve as main propulsion on the new stage. The new stage is unmanned but is equipped with the avionics needed for automatic maneuvering on orbit and for landing on a runway. Three rails are installed along the top surface of the vehicle for attachment of various payloads. Pay- loads might include third stages with satellites attached, personnel pods, propellants, or other items.

  17. Electronic/electric technology benefits study. [avionics

    NASA Technical Reports Server (NTRS)

    Howison, W. W.; Cronin, M. J.

    1982-01-01

    The benefits and payoffs of advanced electronic/electric technologies were investigated for three types of aircraft. The technologies, evaluated in each of the three airplanes, included advanced flight controls, advanced secondary power, advanced avionic complements, new cockpit displays, and advanced air traffic control techniques. For the advanced flight controls, the near term considered relaxed static stability (RSS) with mechanical backup. The far term considered an advanced fly by wire system for a longitudinally unstable airplane. In the case of the secondary power systems, trades were made in two steps: in the near term, engine bleed was eliminated; in the far term bleed air, air plus hydraulics were eliminated. Using three commercial aircraft, in the 150, 350, and 700 passenger range, the technology value and pay-offs were quantified, with emphasis on the fiscal benefits. Weight reductions deriving from fuel saving and other system improvements were identified and the weight savings were cycled for their impact on TOGW (takeoff gross weight) and upon the performance of the airframes/engines. Maintenance, reliability, and logistic support were the other criteria.

  18. 1401486

    NASA Image and Video Library

    2014-10-27

    DURING THE MARSHALL TECHNOLOGY EXPO, HELD AT THE DAVIDSON CENTER FOR SPACE EXPLORATION, HUNDREDS OF PARTICIPANTS -- INCLUDING AREA HIGH SCHOOL STUDENTS –VISITED DOZENS OF BOOTHS AND EXHIBITS SHOWCASING EMERGING TECHNOLOGIES AND IN-HOUSE CAPABILITIES OF THE MARSHALL CENTER. EXPO PARTICIPANTS INCLUDED NASA TEAM MEMBERS, ALONG WITH AEROSPACE PROFESSIONALS FROM GOVERNMENT, INDUSTRY AND ACADEMIA, ALL INTERESTED IN ADVANCEMENTS WITH PROPULSION, AVIONICS, ADVANCED MANUFACTURING AND MORE.

  19. User type certification for advanced flight control systems

    NASA Technical Reports Server (NTRS)

    Gilson, Richard D.; Abbott, David W.

    1994-01-01

    Advanced avionics through flight management systems (FMS) coupled with autopilots can now precisely control aircraft from takeoff to landing. Clearly, this has been the most important improvement in aircraft since the jet engine. Regardless of the eventual capabilities of this technology, it is doubtful that society will soon accept pilotless airliners with the same aplomb they accept driverless passenger trains. Flight crews are still needed to deal with inputing clearances, taxiing, in-flight rerouting, unexpected weather decisions, and emergencies; yet it is well known that the contribution of human errors far exceed those of current hardware or software systems. Thus human errors remain, and are even increasing in percentage as the largest contributor to total system error. Currently, the flight crew is regulated by a layered system of certification: by operation, e.g., airline transport pilot versus private pilot; by category, e.g., airplane versus helicopter; by class, e.g., single engine land versus multi-engine land; and by type (for larger aircraft and jet powered aircraft), e.g., Boeing 767 or Airbus A320. Nothing in the certification process now requires an in-depth proficiency with specific types of avionics systems despite their prominent role in aircraft control and guidance.

  20. General view of the middeck area looking forward and starboard. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General view of the mid-deck area looking forward and starboard. On the far left of the images are the avionics equipment bays. During missions the forward avionics bays would be fronted by lockers for mission equipment and the flight crew's personal equipment. Sleep stations would be located along the far wall if the orbiter was in a flight ready configuration. The hose and ladder on the right side of the image are pieces of ground support equipment. The hose is part of the climate control apparatus used while orbiters are being processed. The ladder is used to access the inter-deck passage, leading to the flight deck, while the orbiter is in 1g (earth's gravity). This view was taken in the Orbiter Processing Facility at the Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  1. Flexible Rover Architecture for Science Instrument Integration and Testing

    NASA Technical Reports Server (NTRS)

    Bualat, Maria G.; Kobayashi, Linda; Lee, Susan Y.; Park, Eric

    2006-01-01

    At NASA Ames Research Center, the Intelligent Robotics Group (IRG) fields the K9 and K10 class rovers. Both use a mobile robot hardware architecture designed for extensibility and reconfigurability that allows for rapid changes in instrumentation and provides a high degree of modularity. Over the past ssveral years, we have worked with instrument developers at NASA centers, universities, and national laboratories to integrate or partially integrate their instruments onboard the K9 and K10 rovers. Early efforts required considerable interaction to work through integration issues such as power, data protocol and mechanical mounting. These interactions informed the design of our current avionics architecture, and have simplified more recent integration projects. In this paper, we will describe the IRG extensible avionics and software architecture and the effect it has had on our recent instrument integration efforts, including integration of four Mars Instrument Development Program devices.

  2. Space Shuttle Technical Conference, part 1

    NASA Technical Reports Server (NTRS)

    Chaffee, N. (Compiler)

    1985-01-01

    Articles providing a retrospective presentation and documentation of the key scientific and engineering achievements of the Space Shuttle Program are compiled. Topics areas include: (1) integrated avionics; (2) guidance, navigation, and control; (3) aerodynamics; (4) structures; (5) life support; environmental control; and crew station; and (6) ground operations.

  3. Joint Common Architecture Demonstration (JCA Demo) Final Report

    DTIC Science & Technology

    2016-07-28

    approach for implementing open systems [16], formerly known as the Modular Open Systems Approach (MOSA). OSA is a business and technical strategy to... TECHNICAL REPORT RDMR-AD-16-01 JOINT COMMON ARCHITECTURE DEMONSTRATION (JCA DEMO) FINAL REPORT Scott A. Wigginton... Modular Avionics .......................................................................... 5 E. Model-Based Engineering

  4. The Way Ahead For Maritime UAVS

    DTIC Science & Technology

    2006-10-23

    of possible contract winners including Scan Eagle, Silver Fox, Wasp, Coyote and the USMC Tier I winner Dragon Eye. Technical data for these UAVs are...Neptune’s engine and avionics are placed above the waterline and the airframe is sealed for flotation as well as providing corrosion/water intrusion

  5. Development and analysis of a STOL supersonic cruise fighter concept

    NASA Technical Reports Server (NTRS)

    Dollyhigh, S. M.; Foss, W. E., Jr.; Morris, S. J., Jr.; Walkley, K. B.; Swanson, E. E.; Robins, A. W.

    1984-01-01

    The application of advanced and emerging technologies to a fighter aircraft concept is described. The twin-boom fighter (TBF-1) relies on a two dimensional vectoring/reversing nozzle to provide STOL performance while also achieving efficient long range supersonic cruise. A key feature is that the propulsion package is placed so that the nozzle hinge line is near the aircraft center-of-gravity to allow large vector angles and, thus, provide large values of direct lift while minimizing the moments to be trimmed. The configurations name is derived from the long twin booms extending aft of the engine to the twin vertical tails which have a single horizontal tail mounted atop and between them. Technologies utilized were an advanced engine (1985 state-of-the-art), superplastic formed/diffusion bonded titanium structure, advanced controls/avionics/displays, supersonic wing design, and conformal weapons carriage. The integration of advanced technologies into this concept indicate that large gains in takeoff and landing performance, maneuver, acceleration, supersonic cruise speed, and range can be acieved relative to current fighter concepts.

  6. Determination of the flight equipment maintenance costs of commuter airlines

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Labor and materials costs associated with maintaining and operating 12 commuter airlines carrying an average of from 42 to 1,100 passengers daily in a variety of aircraft types were studied to determine the total direct maintenance cost per flight hour for the airframe, engine, and avionics and other instruments. The distribution of maintenance costs are analyzed for two carriers, one using turboprop aircraft and the other using piston engine aircraft.

  7. Reliability and quality EEE parts issues

    NASA Technical Reports Server (NTRS)

    Barney, Dan; Feigenbaum, Irwin

    1990-01-01

    NASA policy and procedures are established which govern the selection, testing, and application of electrical, electronic, and electromechanical (EEE) parts. Recent advances in the state-of-the-art of electronic parts and associated technologies can significantly impact the electronic designs and reliability of NASA space transportation avionics. Significant issues that result from these advances are examined, including: recent advances in microelectronics technology (as applied to or considered for use in NASA projects); electron packaging technology advances (concurrent with, and as a result of, the development of the advanced microelectronic devices); availability of parts used in space avionics; and standardization and integration of parts activities between projects, centers, and contractors.

  8. A study of software standards used in the avionics industry

    NASA Technical Reports Server (NTRS)

    Hayhurst, Kelly J.

    1994-01-01

    Within the past decade, software has become an increasingly common element in computing systems. In particular, the role of software used in the aerospace industry, especially in life- or safety-critical applications, is rapidly expanding. This intensifies the need to use effective techniques for achieving and verifying the reliability of avionics software. Although certain software development processes and techniques are mandated by government regulating agencies, no one methodology has been shown to consistently produce reliable software. The knowledge base for designing reliable software simply has not reached the maturity of its hardware counterpart. In an effort to increase our understanding of software, the Langley Research Center conducted a series of experiments over 15 years with the goal of understanding why and how software fails. As part of this program, the effectiveness of current industry standards for the development of avionics is being investigated. This study involves the generation of a controlled environment to conduct scientific experiments on software processes.

  9. Contributive research in compound semiconductor material and related devices

    NASA Astrophysics Data System (ADS)

    Twist, James R.

    1988-05-01

    The objective of this program was to provide the Electronic Device Branch (AFWAL/AADR) with the support needed to perform state of the art electronic device research. In the process of managing and performing on the project, UES has provided a wide variety of scientific and engineering talent who worked in-house for the Avionics Laboratory. These personnel worked on many different types of research programs from gas phase microwave driven lasers, CVD and MOCVD of electronic materials to Electronic Device Technology for new devices. The fields of research included MBE and theoretical research in this novel growth technique. Much of the work was slanted towards the rapidly developing technology of GaAs and the general thrust of the research that these tasks started has remained constant. This work was started because the Avionics Laboratory saw a chance to advance the knowledge and level of the current device technology by working in the compounds semiconductor field. UES is pleased to have had the opportunity to perform on this program and is looking forward to future efforts with the Avionics Laboratory.

  10. Avionics for a Small Robotic Inspection Spacecraft

    NASA Technical Reports Server (NTRS)

    Abbott, Larry; Shuler, Robert L., Jr.

    2005-01-01

    A report describes the tentative design of the avionics of the Mini-AERCam -- a proposed 7.5-in. (approximately 19-cm)-diameter spacecraft that would contain three digital video cameras to be used in visual inspection of the exterior of a larger spacecraft (a space shuttle or the International Space Station). The Mini-AERCam would maneuver by use of its own miniature thrusters under radio control by astronauts inside the larger spacecraft. The design of the Mini-AERCam avionics is subject to a number of constraints, most of which can be summarized as severely competing requirements to maximize radiation hardness and maneuvering, image-acquisition, and data-communication capabilities while minimizing cost, size, and power consumption. The report discusses the design constraints, the engineering approach to satisfying the constraints, and the resulting iterations of the design. The report places special emphasis on the design of a flight computer that would (1) acquire position and orientation data from a Global Positioning System receiver and a microelectromechanical gyroscope, respectively; (2) perform all flight-control (including thruster-control) computations in real time; and (3) control video, tracking, power, and illumination systems.

  11. The Design of Model-Based Training Programs

    NASA Technical Reports Server (NTRS)

    Polson, Peter; Sherry, Lance; Feary, Michael; Palmer, Everett; Alkin, Marty; McCrobie, Dan; Kelley, Jerry; Rosekind, Mark (Technical Monitor)

    1997-01-01

    This paper proposes a model-based training program for the skills necessary to operate advance avionics systems that incorporate advanced autopilots and fight management systems. The training model is based on a formalism, the operational procedure model, that represents the mission model, the rules, and the functions of a modem avionics system. This formalism has been defined such that it can be understood and shared by pilots, the avionics software, and design engineers. Each element of the software is defined in terms of its intent (What?), the rationale (Why?), and the resulting behavior (How?). The Advanced Computer Tutoring project at Carnegie Mellon University has developed a type of model-based, computer aided instructional technology called cognitive tutors. They summarize numerous studies showing that training times to a specified level of competence can be achieved in one third the time of conventional class room instruction. We are developing a similar model-based training program for the skills necessary to operation the avionics. The model underlying the instructional program and that simulates the effects of pilots entries and the behavior of the avionics is based on the operational procedure model. Pilots are given a series of vertical flightpath management problems. Entries that result in violations, such as failure to make a crossing restriction or violating the speed limits, result in error messages with instruction. At any time, the flightcrew can request suggestions on the appropriate set of actions. A similar and successful training program for basic skills for the FMS on the Boeing 737-300 was developed and evaluated. The results strongly support the claim that the training methodology can be adapted to the cockpit.

  12. Avionics System Architecture for NASA Orion Vehicle

    NASA Technical Reports Server (NTRS)

    Baggerman, Clint

    2010-01-01

    This viewgraph presentation reviews the Orion Crew Exploration Vehicle avionics architecture. The contents include: 1) What is Orion?; 2) Orion Concept of Operations; 3) Orion Subsystems; 4) Orion Avionics Architecture; 5) Orion Avionics-Network; 6) Orion Network Unification; 7) Orion Avionics-Integrity; 8) Orion Avionics-Partitioning; and 9) Orion Avionics-Redundancy.

  13. Practical Application of Finite Element Analysis to Aircraft Structural Design

    DTIC Science & Technology

    1986-08-01

    at the design stage AEROELASTICITE ET OPTIMISATION EN AVANT-PROJET (AA)PETIAU, C; (AB) BOUTIN , D. Avions Marcel Dassault-Breguet Aviation, Saint...Interscience, 1981, p. 431-443. 810000 p. 13 refs 8 In: EN (English) p. 2018 The design complexity and size of convectively-cooled engine and airframe

  14. Fan filter cleaning on the CHeCS AAA in the US Lab

    NASA Image and Video Library

    2009-05-05

    ISS019-E-013710 (5 May 2009) --- Japan Aerospace Exploration Agency (JAXA) astronaut Koichi Wakata, Expedition 19/20 flight engineer, cleans a fan filter on the Crew Health Care System Avionics Air Assembly (CHeCS AAA) in the Destiny laboratory of the International Space Station.

  15. 78 FR 25840 - Installed Systems and Equipment for Use by the Flightcrew

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-03

    ... certified aircraft (examples include updating avionics systems, engines, drag reduction, interior... aircraft systems, equipment, and the aircraft itself, so that they understand the situation better. Active...-1175; Amdt. No. 25-138] RIN 2120-AJ83 Installed Systems and Equipment for Use by the Flightcrew AGENCY...

  16. 75 FR 27857 - Aviation Rulemaking Advisory Committee; Transport Airplane and Engine Issue Area-New Task

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-18

    ... (autopilot) and performance and handling qualities in icing conditions to improve transport airplane... the existing Avionics Systems Harmonization Working Group. The Task ARAC is initially tasked with... working group will be expected to provide a report that addresses the following low speed alerting...

  17. 77 FR 24353 - Airworthiness Directives; Bombardier, Inc. Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-24

    ... by multiple reports of short circuit events during pre- delivery inspections and test flights, one of... during pre-delivery inspections and test flights, one of which resulted in smoke in the cockpit. We are... INFORMATION CONTACT: Assata Dessaline, Aerospace Engineer, Avionics and Flight Test Branch, ANE-172, New York...

  18. Aerial View: SLS Intertank Arrives at Marshall for Critical Structural Testing

    NASA Image and Video Library

    2018-03-08

    A structural test version of the intertank for NASA's new deep-space rocket, the Space Launch System, arrives at NASA’s Marshall Space Flight Center in Huntsville, Alabama, March 4, aboard the barge Pegasus. The intertank is the second piece of structural hardware for the massive SLS core stage built at NASA's Michoud Assembly Facility in New Orleans delivered to Marshall for testing. The structural test article will undergo critical testing as engineers push, pull and bend the hardware with millions of pounds of force to ensure it can withstand the forces of launch and ascent. The test hardware is structurally identical to the flight version of the intertank that will connect the core stage's two colossal propellant tanks, serve as the upper-connection point for the two solid rocket boosters and house critical avionics and electronics. Pegasus, originally used during the Space Shuttle Program, has been redesigned and extended to accommodate the SLS rocket's massive, 212-foot-long core stage -- the backbone of the rocket. The 310-foot-long barge will ferry the flight core stage from Michoud to other NASA centers for tests and launch.

  19. Status of NASA's Space Launch System

    NASA Technical Reports Server (NTRS)

    Honeycutt, John; Lyles, Garry

    2016-01-01

    NASA's Space Launch System (SLS) continued to make significant progress in 2015 and 2016, completing hardware and testing that brings NASA closer to a new era of deep space exploration. Programmatically, SLS completed Critical Design Review (CDR) in 2015. A team of independent reviewers concluded that the vehicle design is technically and programmatically ready to move to Design Certification Review (DCR) and launch readiness in 2018. Just five years after program start, every major element has amassed development and flight hardware and completed key tests that will lead to an accelerated pace of manufacturing and testing in 2016 and 2017. Key to SLS' rapid progress has been the use of existing technologies adapted to the new launch vehicle. The existing fleet of RS-25 engines is undergoing adaptation tests to prove it can meet SLS requirements and environments with minimal change. The four-segment shuttle-era booster has been modified and updated with a fifth propellant segment, new insulation, and new avionics. The Interim Cryogenic Upper Stage is a modified version of an existing upper stage. The first Block I SLS configuration will launch a minimum of 70 metric tons (t) of payload to low Earth orbit (LEO). The vehicle architecture has a clear evolutionary path to more than 100t and, ultimately, to 130t. Among the program's major 2015-2016 accomplishments were two booster qualification hotfire tests, a series of RS-25 adaptation hotfire tests, manufacturing of most of the major components for both core stage test articles and first flight tank, delivery of the Pegasus core stage barge, and the upper stage simulator. Renovations to the B-2 test stand for stage green run testing was completed at NASA Stennis Space Center. This year will see the completion of welding for all qualification and flight EM-1 core stage components and testing of flight avionics, completion of core stage structural test stands, casting of the EM-1 solid rocket motors, additional testing of RS-25 engines and flight engine controllers This paper will discuss these and other technical and programmatic successes and challenges over the past year and provide a preview of work ahead before the first flight of this new capability.

  20. Expedition 25 Soyuz Rollout

    NASA Image and Video Library

    2010-10-04

    The Soyuz TMA-01M spacecraft is rolled out by train to the launch pad at the Baikonur Cosmodrome, Kazakhstan, Tuesday, Oct. 5, 2010. The TMA-01M is a new modified Soyuz vehicle that features upgraded avionics and a digital cockpit display. The crew of Expedition 25 Soyuz Commander Alexander Kaleri, NASA Flight Engineer Scott Kelly and Russian Flight Engineer Oleg Skripochka is scheduled for Friday, Oct. 8, 2010 at 5:10 a.m. Kazakhstan time. Photo Credit (NASA/Carla Cioffi)

  1. Expedition 25 Soyuz Rollout

    NASA Image and Video Library

    2010-10-04

    The Soyuz TMA-01M spacecraft is raised into vertical position at the launch pad of the Baikonur Cosmodrome, Kazakhstan, Tuesday, Oct. 5, 2010. The TMA-01M is a new modified Soyuz vehicle that features upgraded avionics and a digital cockpit display. The crew of Expedition 25 Soyuz Commander Alexander Kaleri, NASA Flight Engineer Scott Kelly and Russian Flight Engineer Oleg Skripochka is scheduled for Friday, Oct. 8, 2010 at 5:10 a.m. Kazakhstan time. Photo Credit: (NASA/Carla Cioffi)

  2. 1400143

    NASA Image and Video Library

    2014-02-28

    From left, Wayne Arrington, a Boeing Company technician, and Steve Presti, a mechanical technician at NASA's Marshall Space Flight Center in Huntsville, Ala., install Developmental Flight Instrumentation Data Acquisition Units in Marshall's Systems Integration and Test Facility. The units are part of NASA's Space Launch System (SLS) core stage avionics, which will guide the biggest, most powerful rocket in history to deep space missions. When completed, the core stage will be more than 200 feet tall and store cryogenic liquid hydrogen and liquid oxygen that will feed the vehicle's RS-25 engines. The hardware, software and operating systems for the SLS are arranged in flight configuration in the facility for testing. The new Data Acquisition Units will monitor vehicle behavior in flight -- like acceleration, thermal environments, shock and vibration. That data will then be used to validate previous ground tests and analyses models that were used in the development of the SLS vehicle.

  3. KSC-2014-4324

    NASA Image and Video Library

    2014-07-24

    CAPE CANAVERAL, Fla. – Inside the Prototype Laboratory at NASA's Kennedy Space Center in Florida, Prital Thakrar, left, design lead and student engineer trainee from the University of Florida in Gainesville, Anthony Bharrat, NASA avionics lead, and Evan Williams, an Education intern from the University of Central Florida, prepare the experiment container for NASA's Exposing Microorganisms in the Stratosphere, or E-MIST, experiment. The container was designed and built at Kennedy. The 80-pound structure features four doors that rotate to expose up to 10 microbial samples each for a predetermined period of time in the Earth's stratosphere. The E-MIST experiment will launch on the exterior of a giant scientific balloon gondola at about 8 a.m. MST on Aug. 24 from Ft. Sumner, New Mexico. It will soar 125,000 feet above the Earth during a 5-hour journey over the desert to understand how spore-forming bacteria, commonly found in spacecraft assembly facilities can survive. Photo credit: NASA/Kim Shiflett

  4. KSC-2014-4325

    NASA Image and Video Library

    2014-07-24

    CAPE CANAVERAL, Fla. – Inside the Prototype Laboratory at NASA's Kennedy Space Center in Florida, Prital Thakrar, left, design lead and student engineer trainee from the University of Florida in Gainesville, Anthony Bharrat, NASA avionics lead, and Evan Williams, an Education intern from the University of Central Florida, prepare the experiment container for NASA's Exposing Microorganisms in the Stratosphere, or E-MIST, experiment. The container was designed and built at Kennedy. The 80-pound structure features four doors that rotate to expose up to 10 microbial samples each for a predetermined period of time in the Earth's stratosphere. The E-MIST experiment will launch on the exterior of a giant scientific balloon gondola at about 8 a.m. MST on Aug. 24 from Ft. Sumner, New Mexico. It will soar 125,000 feet above the Earth during a 5-hour journey over the desert to understand how spore-forming bacteria, commonly found in spacecraft assembly facilities can survive. Photo credit: NASA/Kim Shiflett

  5. Nasa's Experiences Enabling the Capture and Sharing of Technical Expertise Through Communities of Practice

    NASA Astrophysics Data System (ADS)

    Topousis, Daria E.; Dennehy, Cornelius J.; Lebsock, Kenneth L.

    2012-12-01

    Historically, engineers at the National Aeronautics and Space Administration (NASA) had few opportunities or incentives to share their technical expertise across the Agency. Its center- and project-focused culture often meant that knowledge never left organizational and geographic boundaries. The need to develop a knowledge sharing culture became critical as a result of increasingly complex missions, closeout of the Shuttle Program, and a new generation of engineers entering the workforce. To address this need, the Office of the Chief Engineer established communities of practice on the NASA Engineering Network. These communities were strategically aligned with NASA's core competencies in such disciplines as avionics, flight mechanics, life support, propulsion, structures, loads and dynamics, human factors, and guidance, navigation, and control. This paper is a case study of NASA's implementation of a system that would identify and develop communities, from establishing simple websites that compiled discipline-specific resources to fostering a knowledge-sharing environment through collaborative and interactive technologies. It includes qualitative evidence of improved availability and transfer of knowledge. It focuses on capabilities that increased knowledge exchange such as a custom-made Ask An Expert system, community contact lists, publication of key resources, and submission forms that allowed any user to propose content for the sites. It discusses the peer relationships that developed through the communities and the leadership and infrastructure that made them possible.

  6. Health management and controls for earth to orbit propulsion systems

    NASA Technical Reports Server (NTRS)

    Bickford, R. L.

    1992-01-01

    Fault detection and isolation for advanced rocket engine controllers are discussed focusing on advanced sensing systems and software which significantly improve component failure detection for engine safety and health management. Aerojet's Space Transportation Main Engine controller for the National Launch System is the state of the art in fault tolerant engine avionics. Health management systems provide high levels of automated fault coverage and significantly improve vehicle delivered reliability and lower preflight operations costs. Key technologies, including the sensor data validation algorithms and flight capable spectrometers, have been demonstrated in ground applications and are found to be suitable for bridging programs into flight applications.

  7. Enabling the Capture and Sharing of NASA Technical Expertise Through Communities of Practice

    NASA Technical Reports Server (NTRS)

    Topousis, Daria E.; Dennehy, Cornelius J.; Lebsock, Kenneth L.

    2011-01-01

    Historically, engineers at the National Aeronautics and Space Administration (NASA) had few opportunities or incentives to share their technical expertise across the Agency. Its center- and project- focused culture often meant that knowledge never left organizational and geographic boundaries. With increasingly complex missions, the closeout of the Shuttle Program, and a new generation entering the workforce, developing a knowledge sharing culture became critical. To address this need, the Office of the Chief Engineer established communities of practice on the NASA Engineering Network. These communities were strategically aligned with NASA's core competencies in such disciplines as avionics, flight mechanics, life support, propulsion, structures, loads and dynamics, human factors, and guidance, navigation, and control. This paper describes the process used to identify and develop communities, from establishing simple websites that compiled discipline-specific resources to fostering a knowledge-sharing environment through collaborative and interactive technologies. It includes qualitative evidence of improved availability and transfer of knowledge. It focuses on pivotal capabilities that increased knowledge exchange such as a custom-made Ask An Expert system, community contact lists, publication of key resources, and submission forms that allowed any user to propose content for the sites. It discusses the peer relationships that developed through the communities and the leadership and infrastructure that made them possible.

  8. BLDG. 16 - PROGRESS PHOTO (CLEAR LAKE)

    NASA Image and Video Library

    1963-09-25

    S63-17423 (25 Sept. 1963) --- This easterly view documents early construction of the Manned Spacecraft Center in September of 1963. The Avionics Systems Laboratory (Building 16) is in the foreground and the Project Management Building is see in the right background. Photo credit: NASA

  9. Stress Studies at Kennedy Space Center: a Backward and Forward Look

    NASA Technical Reports Server (NTRS)

    Decker, A. I.

    1971-01-01

    Possible relationships between occupational and other stresses on ischemic heart disease are explored. Three procedures were used: (1) double master 2-step test, (2) dynamic ECG technique using avionics equipment, and (3) submaximal stress testing with Marco bicycle ergometer.

  10. Oculometer Measurement of Air Traffic Controller Visual Attention

    DTIC Science & Technology

    1975-02-01

    AD/A-006 965 OCULOMETER MEASUREMENT OF AIR TRAFFIC CONTR OLLER VISUAL ATTENTION Gloria Karsten, et al National Aviation Facilities Experimental Cente...Radiation Center, Lexington, Mass., July 1971. 2. Stell, Kenneth J ., Avionics: Optical Device Studies Flight Displays, Aviation Week and Space Technology

  11. Technical Workshop: Advanced Helicopter Cockpit Design

    NASA Technical Reports Server (NTRS)

    Hemingway, J. C. (Editor); Callas, G. P. (Editor)

    1984-01-01

    Information processing demands on both civilian and military aircrews have increased enormously as rotorcraft have come to be used for adverse weather, day/night, and remote area missions. Applied psychology, engineering, or operational research for future helicopter cockpit design criteria were identified. Three areas were addressed: (1) operational requirements, (2) advanced avionics, and (3) man-system integration.

  12. The BLSTs Role in the Materiel Enterprise

    DTIC Science & Technology

    2016-05-17

    CECOM AVN LAR AMCOM LAR PM UAS CECOM AVN LAR AMCOM LAR PM UAS CECOM AVN LAR PM UAS Ba gr am Sh an k M ar m al Ja la la ba d Legend Coordinating...relationship Administrative control AED = Aviation Engineering Directorate AMCOM = Aviation and Missile Command AVN = Avionics BLST = Brigade logistics

  13. 77 FR 61511 - Airworthiness Directives; Bombardier, Inc. Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-10

    ...;Prices of new books are listed in the first FEDERAL REGISTER issue of each #0;week. #0; #0; #0; #0;#0...: Assata Dessaline, Aerospace Engineer, Avionics and Flight Test Branch, ANE-172, FAA, New York Aircraft Certification Office (ACO), 1600 Stewart Avenue, Suite 410, Westbury, New York 11590; telephone (516) 228-7301...

  14. Space shuttle engineering and operations support. Orbiter to spacelab electrical power interface. Avionics system engineering

    NASA Technical Reports Server (NTRS)

    Emmons, T. E.

    1976-01-01

    The results are presented of an investigation of the factors which affect the determination of Spacelab (S/L) minimum interface main dc voltage and available power from the orbiter. The dedicated fuel cell mode of powering the S/L is examined along with the minimum S/L interface voltage and available power using the predicted fuel cell power plant performance curves. The values obtained are slightly lower than current estimates and represent a more marginal operating condition than previously estimated.

  15. Expedition 25 Soyuz Rollout

    NASA Image and Video Library

    2010-10-04

    A security guard keeps watch as the Soyuz TMA-01M spacecraft is rolled out by train to the launch pad at the Baikonur Cosmodrome, Kazakhstan, Tuesday, Oct. 5, 2010. The TMA-01M is a new modified Soyuz vehicle that features upgraded avionics and a digital cockpit display. The crew of Expedition 25 Soyuz Commander Alexander Kaleri, NASA Flight Engineer Scott Kelly and Russian Flight Engineer Oleg Skripochka is scheduled for Friday, Oct. 8, 2010 at 5:10 a.m. Kazakhstan time. Photo Credit (NASA/Carla Cioffi)

  16. Engineering Effects of Advanced Composite Materials on Avionics.

    DTIC Science & Technology

    1981-07-01

    facilities. 77 zz~J 319 Electromagnetic-Interference Control EDWARD F. VANCE, SENIOR MEMBER, IEEE Abstract-Tbe use of shield topology concepts to design ...34 and "inside" are interchanged in Fig. 8 and A typical interference- control design for controlling both "Zone 1" and "Zone 2" are interchanged in Fig...P1 ’"EMP engineering and design principles." Bell Telephone Lab A systematic approach to interference control has as its NJ. 1975. foundation

  17. STS-135 crew during Rendezvous Training session in Building 16 dome

    NASA Image and Video Library

    2011-03-23

    JSC2011-E-028124 (23 March 2011) --- News media representatives and NASA personnel are pictured during an STS-135 media day event in the Avionics Systems Laboratory at NASA's Johnson Space Center. Photo credit: NASA or National Aeronautics and Space Administration

  18. STS-135 crew during Rendezvous Training session in Building 16 dome

    NASA Image and Video Library

    2011-03-23

    JSC2011-E-028128 (23 March 2011) --- News media representatives and NASA personnel are pictured during an STS-135 media day event in the Avionics Systems Laboratory at NASA's Johnson Space Center. Photo credit: NASA or National Aeronautics and Space Administration

  19. STS-135 crew during Rendezvous Training session in Building 16 dome

    NASA Image and Video Library

    2011-03-23

    JSC2011-E-028125 (23 March 2011) --- News media representatives and NASA personnel are pictured during an STS-135 media day event in the Avionics Systems Laboratory at NASA's Johnson Space Center. Photo credit: NASA or National Aeronautics and Space Administration

  20. Network Extender for MIL-STD-1553 Bus

    NASA Technical Reports Server (NTRS)

    Marcus, Julius; Hanson, T. David

    2003-01-01

    An extender system for MIL-STD-1553 buses transparently couples bus components at multiple developer sites. The bus network extender is a relatively inexpensive system that minimizes the time and cost of integration of avionic systems by providing a convenient mechanism for early testing without the need to transport the usual test equipment and personnel to an integration facility. This bus network extender can thus alleviate overloading of the test facility while enabling the detection of interface problems that can occur during the integration of avionic systems. With this bus extender in place, developers can correct and adjust their own hardware and software before products leave a development site. Currently resident at Johnson Space Center, the bus network extender is used to test the functionality of equipment that, although remotely located, is connected through a MILSTD- 1553 bus. Inasmuch as the standard bus protocol for avionic equipment is that of MIL-STD-1553, companies that supply MIL-STD-1553-compliant equipment to government or industry and that need long-distance communication support might benefit from this network bus extender

  1. Electromagnetic Interference in Implantable Defibrillators in Single-Engine Fixed-Wing Aircraft.

    PubMed

    de Rotte, Alexandra A J; van der Kemp, Peter; Mundy, Peter A; Rienks, Rienk; de Rotte, August A

    2017-01-01

    Little is known about the possible electromagnetic interferences (EMI) in the single-engine fixed-wing aircraft environment with implantable cardio-defibrillators (ICDs). Our hypothesis is that EMI in the cockpit of a single-engine fixed-wing aircraft does not result in erroneous detection of arrhythmias and the subsequent delivery of an inappropriate device therapy. ICD devices of four different manufacturers, incorporated in a thorax phantom, were transported in a Piper Dakota Aircraft with ICAO type designator P28B during several flights. The devices under test were programmed to the most sensitive settings for detection of electromagnetic signals from their environment. After the final flight the devices under test were interrogated with the dedicated programmers in order to analyze the number of tachycardias detected. Cumulative registration time of the devices under test was 11,392 min, with a mean of 2848 min per device. The registration from each one of the devices did not show any detectable "tachycardia" or subsequent inappropriate device therapy. This indicates that no external signals, which could be originating from electromagnetic fields from the aircraft's avionics, were detected by the devices under test. During transport in the cockpit of a single-engine fixed-wing aircraft, the tested ICDs did not show any signs of being affected by electromagnetic fields originating from the avionics of the aircraft. This current study indicates that EMI is not a potential safety issue for transportation of passengers with an ICD implanted in a single-engine fixed-wing aircraft.de Rotte AAJ, van der Kemp P, Mundy PA, Rienks R, de Rotte AA. Electromagnetic interference in implantable defibrillators in single-engine fixed-wing aircraft. Aerosp Med Hum Perform. 2017; 88(1):52-55.

  2. Self-Ratings of Eight Factors of Quality Management at Naval Avionics Center

    DTIC Science & Technology

    1991-12-01

    revised edition, North Rivers Press, Inc., 1986. Ishikawa , Kaoru , What is Total Quality Control? the Japanese Way, Prentice-Hall, Inc., 1985. Jaeger...including such authors as Deming, Juran, Ishikawa , and Crosby. The questionnaire was validated using a sample from private sector organizations in

  3. The Development and Airborne Testing of the PALE Seat.

    DTIC Science & Technology

    1981-06-20

    Development Center 02 Comptroller 10 Directorate Command Projects 20 Systems Directorate 30 Sensors & Avionics Technology Directorate 40 Communication...31. Horten, W.M.: Para volar a bajo precio: el planeador motorizando tipo ala volante. Rev. Nacional de Aeronautics 2:6:70-72, Buenos Aires, 1949. 91

  4. Systems Engineering and Reusable Avionics

    NASA Technical Reports Server (NTRS)

    Conrad, James M.; Murphy, Gloria

    2010-01-01

    One concept for future space flights is to construct building blocks for a wide variety of avionics systems. Once a unit has served its original purpose, it can be removed from the original vehicle and reused in a similar or dissimilar function, depending on the function blocks the unit contains. For example: Once a lunar lander has reached the moon's surface, an engine controller for the Lunar Decent Module would be removed and used for a lunar rover motor control unit or for a Environmental Control Unit for a Lunar Habitat. This senior design project included the investigation of a wide range of functions of space vehicles and possible uses. Specifically, this includes: (1) Determining and specifying the basic functioning blocks of space vehicles. (2) Building and demonstrating a concept model. (3) Showing high reliability is maintained. The specific implementation of this senior design project included a large project team made up of Systems, Electrical, Computer, and Mechanical Engineers/Technologists. The efforts were made up of several sub-groups that each worked on a part of the entire project. The large size and complexity made this project one of the more difficult to manage and advise. Typical projects only have 3-4 students, but this project had 10 students from five different disciplines. This paper describes the difference of this large project compared to typical projects, and the challenges encountered. It also describes how the systems engineering approach was successfully implemented so that the students were able to meet nearly all of the project requirements.

  5. Systems Engineering

    DTIC Science & Technology

    1989-05-01

    Faced with complaints about lengthy and costly developments , rapid obsolescence, and excessive costs of ownership, we have all heard the following...microwave integrated circuits raises similar system and sub-system issues. Microprocessor developments raise new questions regarding the trade-offs between...imply the need for and utilization of more specialists, but future avionics developments will also require systems-oriented engineess. By definition

  6. Annual Report by Aerospace Safety Advisory Panel

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Elements of the shuttle program that directly affect the mission success and crew safety were investigated. These elements included the shuttle orbiter, the main engine, the solid rocket boosters, avionic system, ground support equipment and the approach and landing operations. The thermal protection systems were studied in detail. Crew training and ground simulation test procedures were reviewed.

  7. DARPA Emerging Technologies

    DTIC Science & Technology

    2016-01-01

    development requires wind tunnels and ranges that do not currently exist. Furthermore, continued technology matura- tion is needed for thermal management...designed with conceptual design engine model (at existing technology level), or existing propul- sion system, or modified propulsion system (e.g...internal cameras reading gauges and dials and switch positions , directly tapping into current or future avion- ics service buses and integrating

  8. NASA's Space Launch System: Progress Report

    NASA Technical Reports Server (NTRS)

    Cook, Jerry; Lyles, Garry

    2017-01-01

    After more than four decades exploring the space environment from low Earth orbit and developing long-duration spaceflight operational experience with the International Space Station (ISS), NASA is once again preparing to send explorers into deep space. Development, test and manufacturing is now underway on the launch vehicle, the crew spacecraft and the ground processing and launch facilities to support human and robotic missions to the moon, Mars and the outer solar system. The enabling launch vehicle for these ambitious new missions is the Space Launch System (SLS), managed by NASA's Marshall Space Flight Center (MSFC). Since the program began in 2011, the design has passed Critical Design Review, and extensive development, test and flight hardware has been produced by every major element of the SLS vehicle. Testing continues on engines, boosters, tanks and avionics. While the program has experienced engineering challenges typical of a new development, it continues to make steady progress toward the first SLS mission in roughly two years and a sustained cadence of missions thereafter. This paper will discuss these and other technical and SLS programmatic successes and challenges over the past year and provide a preview of work ahead before first flight.

  9. The X-38 Spacecraft Fault-Tolerant Avionics System

    NASA Technical Reports Server (NTRS)

    Kouba,Coy; Buscher, Deborah; Busa, Joseph

    2003-01-01

    In 1995 NASA began an experimental program to develop a reusable crew return vehicle (CRV) for the International Space Station. The purpose of the CRV was threefold: (i) to bring home an injured or ill crewmember; (ii) to bring home the entire crew if the Shuttle fleet was grounded; and (iii) to evacuate the crew in the case of an imminent Station threat (i.e., fire, decompression, etc). Built at the Johnson Space Center, were two approach and landing prototypes and one spacecraft demonstrator (called V201). A series of increasingly complex ground subsystem tests were completed, and eight successful high-altitude drop tests were achieved to prove the design concept. In this program, an unprecedented amount of commercial-off-the-shelf technology was utilized in this first crewed spacecraft NASA has built since the Shuttle program. Unfortunately, in 2002 the program was canceled due to changing Agency priorities. The vehicle was 80% complete and the program was shut down in such a manner as to preserve design, development, test and engineering data. This paper describes the X-38 V201 fault-tolerant avionics system. Based on Draper Laboratory's Byzantine-resilient fault-tolerant parallel processing system and their "network element" hardware, each flight computer exchanges information on a strict timescale to process input data, compare results, and issue voted vehicle output commands. Major accomplishments achieved in this development include: (i) a space qualified two-fault tolerant design using mostly COTS (hardware and operating system); (ii) a single event upset tolerant network element board, (iii) on-the-fly recovery of a failed processor; (iv) use of synched cache; (v) realignment of memory to bring back a failed channel; (vi) flight code automatically generated from the master measurement list; and (vii) built in-house by a team of civil servants and support contractors. This paper will present an overview of the avionics system and the hardware implementation, as well as the system software and vehicle command & telemetry functions. Potential improvements and lessons learned on this program are also discussed.

  10. 3D scanning and printing of airfoils for modular UAS

    NASA Astrophysics Data System (ADS)

    Dahlgren, Robert P.; Pinsker, Ethan A.; Dary, Omar G.; Ogunbiyi, Joab A.; Mazhari, Arash Alex

    2017-02-01

    The NASA Ames Research Center has been developing small unmanned airborne systems (UAS) based upon remotecontrolled military aircraft such as the RQ-14 DragonEye and RQ-11 Raven manufactured by AeroVironment. The first step is replacing OEM avionics with COTS avionics that do not use military frequencies for command and control. 3D printing and other rapid prototyping techniques are used to graft RQ-14 components into new "FrankenEye" aircraft and RQ-11 components into new "FrankenRaven" airframes. To that end, it is necessary to design new components to concatenate wing sections into elongated wingspans, construct biplane architectures, attach payload pods, and add control surfaces. When making components such as wing splices it is critical that the curvature and angles of the splice identically match the existing wing at the mating surfaces. The RQ-14 has a thick, simple airfoil with a rectangular planform and no twist or dihedral which make splice development straightforward. On the other hand the RQ-11 has a much thinner sailplane-type airfoil having a tapered polyhedral planform. 3D scanning of the Raven wings with a NextEngine scanner could not capture the complex curvature of the high-performance RQ-11 airfoil, resulting in non-matching and even misshapen splice prototypes. To characterize the airfoil a coordinate measuring machine (CMM) was employed to measure the wing's shape, fiducials and mounting features, enabling capture of the subtle curves of the airfoil and the leading and trailing edges with high fidelity. In conclusion, both rapid and traditional techniques are needed to precisely measure and fabricate wing splice components.

  11. April 2017 Marshall Association luncheon with Madison mayor Paul

    NASA Image and Video Library

    2017-03-03

    Markeeva Morgan, SLS avionics subsystem manager at NASA’s Marshall Space Flight Center, speaks to an audience of Marshall team members April 26 at the Overlook at Redstone. Morgan was the introductory speaker for the luncheon meeting of the Marshall Association, the center’s professional, employee service organization.

  12. STS-131 crew member and JAXA astronaut Naoko Yamazaki training SSRMS PROF

    NASA Image and Video Library

    2010-01-15

    JSC2010-E-009784 (15 Jan. 2010) --- Japan Aerospace Exploration Agency (JAXA) astronaut Naoko Yamazaki, STS-131 mission specialist, participates in a simulation exercise using the Space Station Remote Manipulator System (SSRMS) simulator in the Avionics Systems Laboratory at NASA?s Johnson Space Center.

  13. EC95-42939-3

    NASA Image and Video Library

    1995-02-02

    The support crew for the F-16A, the F-16XL no. 1, and the F-16 AFTI are, top row, left to right: Randy Weaver; mechanic, Susan Ligon; mechanic, Bob Garcia; Crew Chief, Rich Kelly; mechanic, Dale Edminister; Avionics Technician. Bottom row, left to right, Art Cope; mechanic, John Huffman; Avionics Technician, Jaime Garcia; Avionics Technician, Don Griffith, Avionics Tech. Co-op student. The F-16A (NASA 516), the only civil registered F-16 in existence, was transferred to Dryden from Langley, and was primarily used in engine tests and for parts. It was subsequently transfered from Dryden. The single-seat F-16XL no. 1 (NASA 849) was most recently used in the Cranked-Arrow Wing Aerodynamics Project (CAWAP) to test boundary layer pressures and distribution. Previously it had been used in a program to investigate the characteristics of sonic booms for NASA's High Speed Research Program. Data from the program will be used in the development of a high speed civilian transport. During the series of sonic boom research flights, the F-16XL was used to probe the shock waves being generated by a NASA SR-71 and record their shape and intensity. The Advanced Fighter Technology Integration (AFTI) F-16 was used to develop and demonstrate technologies to improve navigation and a pilot's ability to find and destroy enemy ground targets day or night, including adverse weather. Earlier research in the joint NASA-Air Force AFTI F-16 program demonstrated voice actuated controls, helmet-mounted sighting and integration of forward-mounted canards with the standard flight control system to achieve uncoupled flight.

  14. EC95-42939-5

    NASA Image and Video Library

    1995-02-02

    The support crew for the F-16A, the F-16XL no. 1, and the F-16 AFTI are, top row, left to right: Randy Weaver; mechanic, Susan Ligon; mechanic, Bob Garcia; Crew Chief, Rich Kelly; mechanic, Dale Edminister; Avionics Technician. Bottom row, left to right, Art Cope; mechanic, John Huffman; Avionics Technician, Jaime Garcia; Avionics Technician, Don Griffith, Avionics Tech. Co-op student. The F-16A (NASA 516), the only civil registered F-16 in existence, was transferred to Dryden from Langley, and was primarily used in engine tests and for parts. It was subsequently transfered from Dryden. The single-seat F-16XL no. 1 (NASA 849) was most recently used in the Cranked-Arrow Wing Aerodynamics Project (CAWAP) to test boundary layer pressures and distribution. Previously it had been used in a program to investigate the characteristics of sonic booms for NASA's High Speed Research Program. Data from the program will be used in the development of a high speed civilian transport. During the series of sonic boom research flights, the F-16XL was used to probe the shock waves being generated by a NASA SR-71 and record their shape and intensity. The Advanced Fighter Technology Integration (AFTI) F-16 was used to develop and demonstrate technologies to improve navigation and a pilot's ability to find and destroy enemy ground targets day or night, including adverse weather. Earlier research in the joint NASA-Air Force AFTI F-16 program demonstrated voice actuated controls, helmet-mounted sighting and integration of forward-mounted canards with the standard flight control system to achieve uncoupled flight.

  15. Multi-Purpose Avionic Architecture for Vision Based Navigation Systems for EDL and Surface Mobility Scenarios

    NASA Astrophysics Data System (ADS)

    Tramutola, A.; Paltro, D.; Cabalo Perucha, M. P.; Paar, G.; Steiner, J.; Barrio, A. M.

    2015-09-01

    Vision Based Navigation (VBNAV) has been identified as a valid technology to support space exploration because it can improve autonomy and safety of space missions. Several mission scenarios can benefit from the VBNAV: Rendezvous & Docking, Fly-Bys, Interplanetary cruise, Entry Descent and Landing (EDL) and Planetary Surface exploration. For some of them VBNAV can improve the accuracy in state estimation as additional relative navigation sensor or as absolute navigation sensor. For some others, like surface mobility and terrain exploration for path identification and planning, VBNAV is mandatory. This paper presents the general avionic architecture of a Vision Based System as defined in the frame of the ESA R&T study “Multi-purpose Vision-based Navigation System Engineering Model - part 1 (VisNav-EM-1)” with special focus on the surface mobility application.

  16. Reuse fo a Cold War Surveillance Drone to Flight Test a NASA Rocket Based Combined Cycle Engine

    NASA Technical Reports Server (NTRS)

    Brown, T. M.; Smith, Norm

    1999-01-01

    Plans for and early feasibility investigations into the modification of a Lockheed D21B drone to flight test the DRACO Rocket Based Combined Cycle (RBCC) engine are discussed. Modifications include the addition of oxidizer tanks, modern avionics systems, actuators, and a vehicle recovery system. Current study results indicate that the D21B is a suitable candidate for this application and will allow demonstrations of all DRACO engine operating modes at Mach numbers between 0.8 and 4.0. Higher Mach numbers may be achieved with more extensive modification. Possible project risks include low speed stability and control, and recovery techniques.

  17. Model-Based Verification and Validation of Spacecraft Avionics

    NASA Technical Reports Server (NTRS)

    Khan, Mohammed Omair

    2012-01-01

    Our simulation was able to mimic the results of 30 tests on the actual hardware. This shows that simulations have the potential to enable early design validation - well before actual hardware exists. Although simulations focused around data processing procedures at subsystem and device level, they can also be applied to system level analysis to simulate mission scenarios and consumable tracking (e.g. power, propellant, etc.). Simulation engine plug-in developments are continually improving the product, but handling time for time-sensitive operations (like those of the remote engineering unit and bus controller) can be cumbersome.

  18. System Software Framework for System of Systems Avionics

    NASA Technical Reports Server (NTRS)

    Ferguson, Roscoe C.; Peterson, Benjamin L; Thompson, Hiram C.

    2005-01-01

    Project Constellation implements NASA's vision for space exploration to expand human presence in our solar system. The engineering focus of this project is developing a system of systems architecture. This architecture allows for the incremental development of the overall program. Systems can be built and connected in a "Lego style" manner to generate configurations supporting various mission objectives. The development of the avionics or control systems of such a massive project will result in concurrent engineering. Also, each system will have software and the need to communicate with other (possibly heterogeneous) systems. Fortunately, this design problem has already been solved during the creation and evolution of systems such as the Internet and the Department of Defense's successful effort to standardize distributed simulation (now IEEE 1516). The solution relies on the use of a standard layered software framework and a communication protocol. A standard framework and communication protocol is suggested for the development and maintenance of Project Constellation systems. The ARINC 653 standard is a great start for such a common software framework. This paper proposes a common system software framework that uses the Real Time Publish/Subscribe protocol for framework-to-framework communication to extend ARINC 653. It is highly recommended that such a framework be established before development. This is important for the success of concurrent engineering. The framework provides an infrastructure for general system services and is designed for flexibility to support a spiral development effort.

  19. Integration of the B-52G Offensive Avionics System (OAS) with the Global Positioning System (GPS)

    NASA Astrophysics Data System (ADS)

    Foote, A. L.; Pluntze, S. C.

    Integration of the B-52G OAS with the GPS has been accomplished by modification of existing OAS software. GPS derived position and velocity data are used to enhance the quality of the OAS inertial and dead reckoning navigation systems. The engineering design and the software development process used to implement this design are presented.

  20. Annual Industrial Capabilities Report to Congress

    DTIC Science & Technology

    2013-10-01

    platform concepts for airframe, propulsion, sensors , weapons integration, avionics, and active and passive survivability features will all be explored...for full integration into the National Airspace System. Greater computing power, combined with developments in miniaturization, sensors , and...the design engineering skills for missile propulsion systems is at risk. The Department relies on the viability of a small number of SRM and turbine

  1. De-Icing of Aircraft Turbine Engine Inlets

    DTIC Science & Technology

    1988-06-01

    W0OO Aviona Marcel Dassault TFE731 -3 tirbolan Falcon 50 Avlons Maircel Dsasaau ATF34A Turbolan Falcon 200 Avian* Marcel Dassault ATF3.6 1b.bolan HU25A...Aviana Maemel Dassault TFE731 -4A Turbolan Falcon 900 Avion@ Marcel Dassault J73D 1Ubots 797 Boeing .1110 )Irbotkn 727 Boeing .1750 TUrbolan 737 Boeing

  2. General view of he forward wall of the mid deck ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General view of he forward wall of the mid deck of the Orbiter Discovery. In this view a majority of wall panels have been removed to reveal the avionics bays in the interstitial space between the mid deck forward wall and the forward bulkhead of the pressurized crew compartment. This photograph was taken at Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  3. Digital avionics systems - Principles and practices (2nd revised and enlarged edition)

    NASA Technical Reports Server (NTRS)

    Spitzer, Cary R.

    1993-01-01

    The state of the art in digital avionics systems is surveyed. The general topics addressed include: establishing avionics system requirements; avionics systems essentials in data bases, crew interfaces, and power; fault tolerance, maintainability, and reliability; architectures; packaging and fitting the system into the aircraft; hardware assessment and validation; software design, assessment, and validation; determining the costs of avionics.

  4. Integrated flight/propulsion control - Adaptive engine control system mode

    NASA Technical Reports Server (NTRS)

    Yonke, W. A.; Terrell, L. A.; Meyers, L. P.

    1985-01-01

    The adaptive engine control system mode (ADECS) which is developed and tested on an F-15 aircraft with PW1128 engines, using the NASA sponsored highly integrated digital electronic control program, is examined. The operation of the ADECS mode, as well as the basic control logic, the avionic architecture, and the airframe/engine interface are described. By increasing engine pressure ratio (EPR) additional thrust is obtained at intermediate power and above. To modulate the amount of EPR uptrim and to prevent engine stall, information from the flight control system is used. The performance benefits, anticipated from control integration are shown for a range of flight conditions and power settings. It is found that at higher altitudes, the ADECS mode can increase thrust as much as 12 percent, which is used for improved acceleration, improved turn rate, or sustained turn angle.

  5. Modular standards for emerging avionics technologies

    NASA Astrophysics Data System (ADS)

    Radcliffe, B.; Boaz, J.

    The present investigation is concerned with modular standards for the integration of new avionics technologies into production aircraft, taking into account also major retrofit programs. It is pointed out that avionics systems are about to undergo drastic changes in the partitioning of functions and judicious sharing of resources. These changes have the potential to significantly improve reliability and maintainability, and to reduce costs. Attention is given to a definition of the modular avionics concept, the existing module program, the development approach, development progress on the modular avionics standard, and the future of avionics installation standards.

  6. Improving geolocation and spatial accuracies with the modular integrated avionics group (MIAG)

    NASA Astrophysics Data System (ADS)

    Johnson, Einar; Souter, Keith

    1996-05-01

    The modular integrated avionics group (MIAG) is a single unit approach to combining position, inertial and baro-altitude/air data sensors to provide optimized navigation, guidance and control performance. Lear Astronics Corporation is currently working within the navigation community to upgrade existing MIAG performance with precise GPS positioning mechanization tightly integrated with inertial, baro and other sensors. Among the immediate benefits are the following: (1) accurate target location in dynamic conditions; (2) autonomous launch and recovery using airborne avionics only; (3) precise flight path guidance; and (4) improved aircraft and payload stability information. This paper will focus on the impact of using the MIAG with its multimode navigation accuracies on the UAV targeting mission. Gimbaled electro-optical sensors mounted on a UAV can be used to determine ground coordinates of a target at the center of the field of view by a series of vector rotation and scaling computations. The accuracy of the computed target coordinates is dependent on knowing the UAV position and the UAV-to-target offset computation. Astronics performed a series of simulations to evaluate the effects that the improved angular and position data available from the MIAG have on target coordinate accuracy.

  7. Acceleration ground test program to verify GAS payload No. 559 structure/support avionics and experiment structural integrity

    NASA Technical Reports Server (NTRS)

    Cassanto, John M.; Cassanto, Valerie A.

    1988-01-01

    Acceleration ground tests were conducted on the Get Away Special (GAS) payload 559 to verify the structural integrity of the structure/support avionics and two of the planned three flight experiments. The ITA (Integrated Test Area) Standardized Experiment Module (ISEM) structure was modified to accommodate the experiments for payload 559. The ISEM avionics consisted of a heavy duty sliver zinc power supply, three orthogonal-mounted low range microgravity accelerometers, a tri-axis high range accelerometer, a solid state recorder/programmer sequencer, and pressure and temperature sensors. The tests were conducted using the Gravitational Plant Physiology Laboratory Centrifuge of the University City Science Center in Philadelphia, PA. The launch-powered flight steady state acceleration profile of the shuttle was simulated from lift-off through jettison of the External Tank (3.0 g's). Additional tests were conducted at twice the nominal powered flight acceleration levels (6 g's) and an over-test condition of four times the powered flight loads to 12.6 g's. The present test program has demonstrated the value of conducting ground tests to verify GAS payload experiment integrity and operation before flying on the shuttle.

  8. Evaluation of Cable Harness Post-Installation Testing. Part B

    NASA Technical Reports Server (NTRS)

    King, M. S.; Iannello, C. J.

    2011-01-01

    The Cable Harness Post-Installation Testing Report was written in response to an action issued by the Ares Project Control Board (PCB). The action for the Ares I Avionics & Software Chief Engineer and the Avionics Integration and Vehicle Systems Test Work Breakdown Structure (WBS) Manager in the Vehicle Integration Office was to develop a set of guidelines for electrical cable harnesses. Research showed that post-installation tests have been done since the Apollo era. For Ares I-X, the requirement for post-installation testing was removed to make it consistent with the avionics processes used on the Atlas V expendable launch vehicle. Further research for the report involved surveying government and private sector launch vehicle developers, military and commercial aircraft, spacecraft developers, and harness vendors. Responses indicated crewed launch vehicles and military aircraft perform post-installation tests. Key findings in the report were as follows: Test requirements identify damage, human-rated vehicles should be tested despite the identification of statistically few failures, data does not support the claim that post-installation testing damages the harness insulation system, and proper planning can reduce overhead associated with testing. The primary recommendation of the report is for the Ares projects to retain the practice of post-fabrication and post-installation cable harness testing.

  9. STS-131 crew member and JAXA astronaut Naoko Yamazaki training SSRMS PROF

    NASA Image and Video Library

    2010-01-15

    JSC2010-E-009785 (15 Jan. 2010) --- Japan Aerospace Exploration Agency (JAXA) astronaut Naoko Yamazaki, STS-131 mission specialist, participates in a simulation exercise using the Space Station Remote Manipulator System (SSRMS) simulator in the Avionics Systems Laboratory at NASA?s Johnson Space Center. Crew instructor Joseph M. Nguyen assisted Yamazaki.

  10. STS-135 crew during Rendezvous Training session in Building 16 dome

    NASA Image and Video Library

    2011-03-23

    JSC2011-E-028126 (23 March 2011) --- NASA astronauts Chris Ferguson, STS-135 commander; Doug Hurley, pilot; and Sandy Magnus, mission specialist, are pictured during an STS-135 media day event in the Avionics Systems Laboratory at NASA's Johnson Space Center. Photo credit: NASA or National Aeronautics and Space Administration

  11. STS-131 crew member and JAXA astronaut Naoko Yamazaki training SSRMS PROF

    NASA Image and Video Library

    2010-01-15

    JSC2010-E-009787 (15 Jan. 2010) --- Japan Aerospace Exploration Agency (JAXA) astronaut Naoko Yamazaki, STS-131 mission specialist, participates in a simulation exercise using the Space Station Remote Manipulator System (SSRMS) simulator in the Avionics Systems Laboratory at NASA?s Johnson Space Center. Crew instructor Joseph M. Nguyen assisted Yamazaki.

  12. Research and technology 1989

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The Marshall Space Flight Center annual report summarizes their advanced studies, research programs, and technological developments. Areas covered include: transportation systems; space systems such as Gravity Probe-B and Gamma Ray Imaging Telescope; data systems; microgravity science; astronomy and astrophysics; solar, magnetospheric, and atomic physics; aeronomy; propulsion; materials and processes; structures and dynamics; automated systems; space systems; and avionics.

  13. Space shuttle navigation analysis. Volume 1: GPS aided navigation

    NASA Technical Reports Server (NTRS)

    Matchett, G. A.; Vogel, M. A.; Macdonald, T. J.

    1980-01-01

    Analytical studies related to space shuttle navigation are presented. Studies related to the addition of NAVSTAR Global Positioning System user equipment to the shuttle avionics suite are presented. The GPS studies center about navigation accuracy covariance analyses for both developmental and operational phases of GPS, as well as for various orbiter mission phases.

  14. Reuse and Interoperability of Avionics for Space Systems

    NASA Technical Reports Server (NTRS)

    Hodson, Robert F.

    2007-01-01

    The space environment presents unique challenges for avionics. Launch survivability, thermal management, radiation protection, and other factors are important for successful space designs. Many existing avionics designs use custom hardware and software to meet the requirements of space systems. Although some space vendors have moved more towards a standard product line approach to avionics, the space industry still lacks similar standards and common practices for avionics development. This lack of commonality manifests itself in limited reuse and a lack of interoperability. To address NASA s need for interoperable avionics that facilitate reuse, several hardware and software approaches are discussed. Experiences with existing space boards and the application of terrestrial standards is outlined. Enhancements and extensions to these standards are considered. A modular stack-based approach to space avionics is presented. Software and reconfigurable logic cores are considered for extending interoperability and reuse. Finally, some of the issues associated with the design of reusable interoperable avionics are discussed.

  15. System Architectural Considerations on Reliable Guidance, Navigation, and Control (GN and C) for Constellation Program (CxP) Spacecraft

    NASA Technical Reports Server (NTRS)

    Dennehy, Cornelius J.

    2010-01-01

    This final report summarizes the results of a comparative assessment of the fault tolerance and reliability of different Guidance, Navigation and Control (GN&C) architectural approaches. This study was proactively performed by a combined Massachusetts Institute of Technology (MIT) and Draper Laboratory team as a GN&C "Discipline-Advancing" activity sponsored by the NASA Engineering and Safety Center (NESC). This systematic comparative assessment of GN&C system architectural approaches was undertaken as a fundamental step towards understanding the opportunities for, and limitations of, architecting highly reliable and fault tolerant GN&C systems composed of common avionic components. The primary goal of this study was to obtain architectural 'rules of thumb' that could positively influence future designs in the direction of an optimized (i.e., most reliable and cost-efficient) GN&C system. A secondary goal was to demonstrate the application and the utility of a systematic modeling approach that maps the entire possible architecture solution space.

  16. Launch Control Network Engineer

    NASA Technical Reports Server (NTRS)

    Medeiros, Samantha

    2017-01-01

    The Spaceport Command and Control System (SCCS) is being built at the Kennedy Space Center in order to successfully launch NASA’s revolutionary vehicle that allows humans to explore further into space than ever before. During my internship, I worked with the Network, Firewall, and Hardware teams that are all contributing to the huge SCCS network project effort. I learned the SCCS network design and the several concepts that are running in the background. I also updated and designed documentation for physical networks that are part of SCCS. This includes being able to assist and build physical installations as well as configurations. I worked with the network design for vehicle telemetry interfaces to the Launch Control System (LCS); this allows the interface to interact with other systems at other NASA locations. This network design includes the Space Launch System (SLS), Interim Cryogenic Propulsion Stage (ICPS), and the Orion Multipurpose Crew Vehicle (MPCV). I worked on the network design and implementation in the Customer Avionics Interface Development and Analysis (CAIDA) lab.

  17. Water Capture Device Signal Integration Board

    NASA Technical Reports Server (NTRS)

    Chamberlin, Kathryn J.; Hartnett, Andrew J.

    2018-01-01

    I am a junior in electrical engineering at Arizona State University, and this is my second internship at Johnson Space Center. I am an intern in the Command and Data Handling Branch of Avionics Division (EV2), my previous internship was also in EV2. During my previous internship I was assigned to the Water Capture Device payload, where I designed a prototype circuit board for the electronics system of the payload. For this internship, I have come back to the Water Capture Device project to further the work on the electronics design I completed previously. The Water Capture Device is an experimental payload to test the functionality of two different phase separators aboard the International Space Station (ISS). A phase separator sits downstream of a condensing heat exchanger (CHX) and separates the water from the air particles for environmental control on the ISS. With changing CHX technology, new phase separators are required. The goal of the project is to develop a test bed for the two phase separators to determine the best solution.

  18. Advanced Avionics and Processor Systems for a Flexible Space Exploration Architecture

    NASA Technical Reports Server (NTRS)

    Keys, Andrew S.; Adams, James H.; Smith, Leigh M.; Johnson, Michael A.; Cressler, John D.

    2010-01-01

    The Advanced Avionics and Processor Systems (AAPS) project, formerly known as the Radiation Hardened Electronics for Space Environments (RHESE) project, endeavors to develop advanced avionic and processor technologies anticipated to be used by NASA s currently evolving space exploration architectures. The AAPS project is a part of the Exploration Technology Development Program, which funds an entire suite of technologies that are aimed at enabling NASA s ability to explore beyond low earth orbit. NASA s Marshall Space Flight Center (MSFC) manages the AAPS project. AAPS uses a broad-scoped approach to developing avionic and processor systems. Investment areas include advanced electronic designs and technologies capable of providing environmental hardness, reconfigurable computing techniques, software tools for radiation effects assessment, and radiation environment modeling tools. Near-term emphasis within the multiple AAPS tasks focuses on developing prototype components using semiconductor processes and materials (such as Silicon-Germanium (SiGe)) to enhance a device s tolerance to radiation events and low temperature environments. As the SiGe technology will culminate in a delivered prototype this fiscal year, the project emphasis shifts its focus to developing low-power, high efficiency total processor hardening techniques. In addition to processor development, the project endeavors to demonstrate techniques applicable to reconfigurable computing and partially reconfigurable Field Programmable Gate Arrays (FPGAs). This capability enables avionic architectures the ability to develop FPGA-based, radiation tolerant processor boards that can serve in multiple physical locations throughout the spacecraft and perform multiple functions during the course of the mission. The individual tasks that comprise AAPS are diverse, yet united in the common endeavor to develop electronics capable of operating within the harsh environment of space. Specifically, the AAPS tasks for the Federal fiscal year of 2010 are: Silicon-Germanium (SiGe) Integrated Electronics for Extreme Environments, Modeling of Radiation Effects on Electronics, Radiation Hardened High Performance Processors (HPP), and and Reconfigurable Computing.

  19. The Multi-User Droplet Combustion Apparatus: the Development and Integration Concept for Droplet Combustion Payloads in the Fluids and Combustion Facility Combustion Integrated Rack

    NASA Astrophysics Data System (ADS)

    Myhre, C. A.

    2002-01-01

    The Multi-user Droplet Combustion Apparatus (MDCA) is a multi-user facility designed to accommodate four different droplet combustion science experiments. The MDCA will conduct experiments using the Combustion Integrated Rack (CIR) of the NASA Glenn Research Center's Fluids and Combustion Facility (FCF). The payload is planned for the International Space Station. The MDCA, in conjunction with the CIR, will allow for cost effective extended access to the microgravity environment, not possible on previous space flights. It is currently in the Engineering Model build phase with a planned flight launch with CIR in 2004. This paper provides an overview of the capabilities and development status of the MDCA. The MDCA contains the hardware and software required to conduct unique droplet combustion experiments in space. It consists of a Chamber Insert Assembly, an Avionics Package, and a multiple array of diagnostics. Its modular approach permits on-orbit changes for accommodating different fuels, fuel flow rates, soot sampling mechanisms, and varying droplet support and translation mechanisms to accommodate multiple investigations. Unique diagnostic measurement capabilities for each investigation are also provided. Additional hardware provided by the CIR facility includes the structural support, a combustion chamber, utilities for the avionics and diagnostic packages, and the fuel mixing capability for PI specific combustion chamber environments. Common diagnostics provided by the CIR will also be utilized by the MDCA. Single combustible fuel droplets of varying sizes, freely deployed or supported by a tether are planned for study using the MDCA. Such research supports how liquid-fuel-droplets ignite, spread, and extinguish under quiescent microgravity conditions. This understanding will help us develop more efficient energy production and propulsion systems on Earth and in space, deal better with combustion generated pollution, and address fire hazards associated with using liquid combustibles on Earth and in space. As a result of the concurrent design process of MDCA and CIR, the MDCA team continues to work closely with the CIR team, developing Integration Agreements and an Interface Control Document during preliminary integration activities. Integrated testing of hardware and software systems will occur at the Engineering Model and Flight Model phases. Because the engineering model is a high fidelity unit, it will be upgraded to a flight equivalent Ground Integration Unit (GIU) when the engineering model phase is completed. The GIU will be available on the ground for troubleshooting of any on-orbit problems. Integrated verification testing will be conducted with the MDCA flight unit and the CIR flight unit. Upon successful testing, the MDCA will be shipped to the Kennedy Space Center for a post-shipment checkout and final turn-over to CIR for final processing and launch to the International Space Station. Once on-orbit, the MDCA is managed from the GRC Telescience Support Center (TSC). The MDCA operations team resides at the TSC. Data is transmitted to the PI's at their home sites by means of TREK workstations, allowing direct interaction between the PI and operations staff to maximum science. Upon completion of a PI's experiment, the MDCA is reconfigured for the next of the three follow-on experiments or ultimately removed from the CIR, placed into stowage, and returned to Earth.

  20. Development and flight test experiences with a flight-crucial digital control system

    NASA Technical Reports Server (NTRS)

    Mackall, Dale A.

    1988-01-01

    Engineers and scientists in the advanced fighter technology integration (AFTI) F-16 program investigated the integration of emerging technologies into an advanced fighter aircraft. AFTI's three major technologies included: flight-crucial digital control, decoupled aircraft flight control, and integration of avionics, flight control, and pilot displays. In addition to investigating improvements in fighter performance, researchers studied the generic problems confronting the designers of highly integrated flight-crucial digital control. An overview is provided of both the advantages and problems of integration digital control systems. Also, an examination of the specification, design, qualification, and flight test life-cycle phase is provided. An overview is given of the fault-tolerant design, multimoded decoupled flight control laws, and integrated avionics design. The approach to qualifying the software and system designs is discussed, and the effects of design choices on system qualification are highlighted.

  1. Review and analysis of avionic helmet-mounted displays

    NASA Astrophysics Data System (ADS)

    Li, Hua; Zhang, Xin; Shi, Guangwei; Qu, Hemeng; Wu, Yanxiong; Zhang, Jianping

    2013-11-01

    With the development of new concepts and principles over the past century, helmet-mounted displays (HMDs) have been widely applied. This paper presents a review of avionic HMDs and shows some areas of active and intensive research. This review is focused on the optical design aspects and is divided into three sections to explore new optical design methods, which include an off-axis design, design with freeform optical surface, and design with holographic optical waveguide technology. Building on the fundamentals of optical design and engineering, the principles section primarily expounds on the five optical system parameters, which include weight, field of view, modulation transfer function, exit pupil size, and eye relief. We summarized the previous design works using new components to achieve compact and lightweight HMDs. Moreover, the paper presents a partial summary of the more notable experimental, prototype, fielded, and future HMD fixed-wing and rotary-wing programs.

  2. Alternate concepts study extension. Volume 2: Part 4: Avionics

    NASA Technical Reports Server (NTRS)

    1971-01-01

    A recommended baseline system is presented along with alternate avionics systems, Mark 2 avionics, booster avionics, and a cost summary. Analyses and discussions are included on the Mark 1 orbiter avionics subsystems, electrical ground support equipment, and the computer programs. Results indicate a need to define all subsystems of the baseline system, an installation study to determine the impact on the crew station, and a study on access for maintenance.

  3. The relationship between an advanced avionic system architecture and the elimination of the need for an Avionics Intermediate Shop (AIS)

    NASA Astrophysics Data System (ADS)

    Abraham, S. J.

    While Avionics Intermediate Shops (AISs) have in the past been required for military aircraft, the emerging VLSI/VHSIC technology has given rise to the possibility of novel, well partitioned avionics system architectures that obviate the high spare parts costs that formerly prompted and justified the existence of an AIS. Future avionics may therefore be adequately and economically supported by a two-level maintenance system. Algebraic generalizations are presented for the analysis of the spares costs implications of alternative design partitioning schemes for future avionics.

  4. DFRC F-16 aircraft fleet and support crew

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The support crew for the F-16A, the F-16XL no. 1, and the F-16 AFTI are, top row, left to right: Randy Weaver; mechanic, Susan Ligon; mechanic, Bob Garcia; Crew Chief, Rich Kelly; mechanic, Dale Edminister; Avionics Technician. Bottom row, left to right, Art Cope; mechanic, John Huffman; Avionics Technician, Jaime Garcia; Avionics Technician, Don Griffith, Avionics Tech. Co-op student. The F-16A (NASA 516), the only civil registered F-16 in existence, was transferred to Dryden from Langley, and is primarily used in engine tests and for parts. Although it is flight-worthy, it is not currently flown at Dryden. The single-seat F-16XL no. 1 (NASA 849) was most recently used in the Cranked-Arrow Wing Aerodynamics Project (CAWAP) to test boundary layer pressures and distribution. Previously it had been used in a program to investigate the characteristics of sonic booms for NASA's High Speed Research Program. Data from the program will be used in the development of a high speed civilian transport. During the series of sonic boom research flights, the F-16XL was used to probe the shock waves being generated by a NASA SR-71 and record their shape and intensity. The Advanced Fighter Technology Integration (AFTI) F-16 was used to develop and demonstrate technologies to improve navigation and a pilot's ability to find and destroy enemy ground targets day or night, including adverse weather. Earlier research in the joint NASA-Air Force AFTI F-16 program demonstrated voice actuated controls, helmet-mounted sighting and integration of forward-mounted canards with the standard flight control system to achieve uncoupled flight.

  5. Fincke unbolts the front panel of the CHeCS Rack for inspection and cleaning during Expedition 9

    NASA Image and Video Library

    2004-09-16

    ISS009-E-23061 (16 September 2004) --- Astronaut Edward M. (Mike) Fincke, Expedition 9 NASA ISS science officer and flight engineer, uses a drill to unfasten a panel on the CHeCS Rack in the Destiny laboratory of the International Space Station (ISS). Fincke was about to perform an inspection of the Avionics Air Assembly.

  6. Proceedings of the 12th Annual Precise Time and Time Interval (PTTI) Applications and Planning Meeting

    NASA Technical Reports Server (NTRS)

    Wardrip, S. C. (Editor)

    1981-01-01

    The meeting gave PTTI managers, systems engineers, and program planners a transparent view of the state-of-the-art, an opportunity to express needs, a view of important future trends, and a review of relevant past accomplishments. The PTTI users were provided with new and useful applications, procedures, and techniques. Emphasis is placed on military applications and avionics.

  7. Development of a Comprehensive Digital Avionics Curriculum for the Aeronautical Engineer

    DTIC Science & Technology

    2006-03-01

    able to analyze and design aircraft and missile guidance and control systems, including feedback stabilization schemes and stochastic processes, using ...Uncertainty modeling for robust control; Robust closed-loop stability and performance; Robust H- infinity control; Robustness check using mu-analysis...Controlled feedback (reduces noise) 3. Statistical group response (reduce pressure toward conformity) When used as a tool to study a complex problem

  8. Software Master Plan. Volume 2. Background (Annexes A-G)

    DTIC Science & Technology

    1990-02-09

    AFLC is also responsible for the support of the Avionics Integration Support Facilities, the pilot training systems support and the Automatic Test ...Deputy Director of Defense Research and Engineering ( Test & Evaluation) ..... ............ A.1.1.3 Office of the Deputy Director of Defense Research and...Department of Defense .... ........ 3 A.3 Operational Test & Evaluation ........ ................. 4 A.4 Office of the Assistant Secretary of Defense

  9. Fiber-Optic Network Architectures for Onboard Avionics Applications Investigated

    NASA Technical Reports Server (NTRS)

    Nguyen, Hung D.; Ngo, Duc H.

    2003-01-01

    This project is part of a study within the Advanced Air Transportation Technologies program undertaken at the NASA Glenn Research Center. The main focus of the program is the improvement of air transportation, with particular emphasis on air transportation safety. Current and future advances in digital data communications between an aircraft and the outside world will require high-bandwidth onboard communication networks. Radiofrequency (RF) systems, with their interconnection network based on coaxial cables and waveguides, increase the complexity of communication systems onboard modern civil and military aircraft with respect to weight, power consumption, and safety. In addition, safety and reliability concerns from electromagnetic interference between the RF components embedded in these communication systems exist. A simple, reliable, and lightweight network that is free from the effects of electromagnetic interference and capable of supporting the broadband communications needs of future onboard digital avionics systems cannot be easily implemented using existing coaxial cable-based systems. Fiber-optical communication systems can meet all these challenges of modern avionics applications in an efficient, cost-effective manner. The objective of this project is to present a number of optical network architectures for onboard RF signal distribution. Because of the emergence of a number of digital avionics devices requiring high-bandwidth connectivity, fiber-optic RF networks onboard modern aircraft will play a vital role in ensuring a low-noise, highly reliable RF communication system. Two approaches are being used for network architectures for aircraft onboard fiber-optic distribution systems: a hybrid RF-optical network and an all-optical wavelength division multiplexing (WDM) network.

  10. Modular avionics packaging standardization

    NASA Astrophysics Data System (ADS)

    Austin, M.; McNichols, J. K.

    The Modular Avionics Packaging (MAP) Program for packaging future military avionics systems with the objective of improving reliability, maintainability, and supportability, and reducing equipment life cycle costs is addressed. The basic MAP packaging concepts called the Standard Avionics Module, the Standard Enclosure, and the Integrated Rack are summarized, and the benefits of modular avionics packaging, including low risk design, technology independence with common functions, improved maintainability and life cycle costs are discussed. Progress made in MAP is briefly reviewed.

  11. Aerodynamic Engine/Airframe Integration for High Performance Aircraft and Missiles (L’Integration Aerodynamique des Moteurs et des Cellules dans les Avions et les Missiles a Hautes Performances)

    DTIC Science & Technology

    1992-09-01

    qui a POUr object d~cvaluer la pertinence du symposium ci Ia mesure dans laquelle il a repondu aux attentes de Ia communautti atirospatiale. a ýtit...testing have progressed steadily in the last 30 years. the context of military and civil engine/airframe integration This paper will focus attention on...events of the early 90s close to our collective and military designs require increased attention to be paid to consciousness, it is clear that a

  12. Liquid booster engine reuse - A recovery system

    NASA Technical Reports Server (NTRS)

    Von Eckroth, Wulf; Rohrkaste, Gary R.; Delurgio, Phillip R.

    1991-01-01

    The paper presents the design of a recovery system for a suborbital payload of an Atlas E rocket. This program utilizes off-the-shelf and previously qualified avionics, flotation, and decelerator systems. A brief history of liquid-engine recoveries is presented first, then the system design utilizing two self-contained structurally-identical pods diametrically mounted to the thrust section is outlined. A mortar-deployed drogue and the main parachute are described, and experimental procedures are considered. Data obtained from one tricluster drop employing a cylindrical test vehicle and helicopter is analyzed, and a satisfactory load balance between the parachutes is observed.

  13. Research and technology, 1990

    NASA Technical Reports Server (NTRS)

    Potter, P. Y.

    1990-01-01

    The annual report of the Marshall Space Flight Center for 1990 is presented. Brief summaries of research are presented for work in the fields of transportation systems, space systems, data systems, microgravity science, astronomy, astrophysics, solar physics, magnetospheric physics, atomic physics, aeronomy, Earth science and applications, propulsion technology, materials and processes, structures and dynamics, automated systems, space systems, and avionics.

  14. Space Tug avionics definition study. Volume 2: Avionics functional requirements

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Flight and ground operational phases of the tug/shuttle system are analyzed to determine the general avionics support functions that are needed during each of the mission phases and sub-phases. Each of these general support functions is then expanded into specific avionics system requirements, which are then allocated to the appropriate avionics subsystems. This process is then repeated at the next lower level of detail where these subsystem requirements are allocated to each of the major components that comprise a subsystem.

  15. 78 FR 65183 - Airworthiness Directives; ATR-GIE Avions de Transport Régional Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-31

    ... Airworthiness Directives; ATR--GIE Avions de Transport R[eacute]gional Airplanes AGENCY: Federal Aviation... airworthiness directive (AD) for certain ATR--GIE Avions de Transport R[eacute]gional Model ATR72-101, -201... service information identified in this AD, contact ATR--GIE Avions de Transport R[eacute]gional, 1, All...

  16. Core Logistics Capability Policy Applied to USAF Combat Aircraft Avionics Software: A Systems Engineering Analysis

    DTIC Science & Technology

    2010-06-01

    cannot make a distinction between software maintenance and development” (Sharma, 2004). ISO /IEC 12207 Software Lifecycle Processes offers a guide to...synopsis of ISO /IEC 12207 , Raghu Singh of the Federal Aviation Administration states “Whenever a software product needs modifications, the development...Corporation. Singh, R. (1998). International Standard ISO /IEC 12207 Software Life Cycle Processes. Washington: Federal Aviation Administration. The Joint

  17. Software for Avionics.

    DTIC Science & Technology

    1983-01-01

    fonctions gfinbrales et lea uti- litaires fournis en particulier grice 41 UNIX, sont intfigrfs aelon divers points de vue: - par leur accas 41 travers le...Are They Really A Problem? Proceedings, 2nd International Conference On Software Engineering, pp 91-68. Long acCA : IEEE Computer Society. Britton...CD The Hague. Nc KLEINSCIIMIDT, M. Dr Fa. LITEF. Poatfach 774. 7800 Freiburg i. Br., Ge KLEMM, R. Dr FGAN- FFM , D 5 307 Watchberg-Werthhoven. Ge KLENK

  18. Industry - Military Energy Symposium, held 21-23 October 1980, San Antonio, Texas

    DTIC Science & Technology

    1980-10-21

    unless the best available technology is applied to many sources including those the size of airports . Further discussion of these issues will hopefully...particularly with naphthenic fuels. A similar weakness applies to correlations of net heat of combustion. Some additional correlating parameters...Viscosity Boost pump power Line size and weight Thermal Stability Gum, deposits, nozzle coking Specific Heat Avionics and engine oil cooling Aromatics

  19. Software Engineering and Its Application to Avionics

    DTIC Science & Technology

    1988-01-01

    34Automated Software Development Methodolgy (ASDM): An Architecture of a Knowledge-Based Expert System," Masters Thesis , Florida Atlantic University, Boca...operating system provides the control semnrim and aplication services within the miltiproossur system. Them processes timt aks up the application sofhwae...as a high-value target may no longer be occupied by the time the film is processed and analyzed. With the high mobility of today’s enemy forces

  20. Definition of avionics concepts for a heavy lift cargo vehicle. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1989-01-01

    A cost effective, multiuser simulation, test, and demonstration facility to support the development of avionics systems for future space vehicles is examined. The technology needs and requirements of future Heavy Lift Cargo Vehicles (HLCVs) are analyzed and serve as the basis for sizing of the avionics facility, although the lab is not limited in use to support of HLCVs. Volume 1 provides a summary of the vehicle avionics trade studies, the avionics lab objectives, a summary of the lab's functional requirements and design, physical facility considerations, and cost estimates.

  1. Laser Spot Center Detection and Comparison Test

    NASA Astrophysics Data System (ADS)

    Zhu, Jun; Xu, Zhengjie; Fu, Deli; Hu, Cong

    2018-04-01

    High efficiency and precision of the pot center detection are the foundations of avionics instrument navigation and optics measurement basis for many applications. It has noticeable impact on overall system performance. Among them, laser spot detection is very important in the optical measurement technology. In order to improve the low accuracy of the spot center position, the algorithm is improved on the basis of the circle fitting. The pretreatment is used by circle fitting, and the improved adaptive denoising filter for TV repair technology can effectively improves the accuracy of the spot center position. At the same time, the pretreatment and de-noising can effectively reduce the influence of Gaussian white noise, which enhances the anti-jamming capability.

  2. The engineering options for mitigating the climate impacts of aviation.

    PubMed

    Williams, Victoria

    2007-12-15

    Aviation is a growing contributor to climate change, with unique impacts due to the altitude of emissions. If existing traffic growth rates continue, radical engineering solutions will be required to prevent aviation becoming one of the dominant contributors to climate change. This paper reviews the engineering options for mitigating the climate impacts of aviation using aircraft and airspace technologies. These options include not only improvements in fuel efficiency, which would reduce carbon dioxide (CO2) emissions, but also measures to reduce non-CO2 impacts including the formation of persistent contrails. Integrated solutions to optimize environmental performance will require changes to airframes, engines, avionics, air traffic control systems and airspace design. While market-based measures, such as offset schemes and emissions trading, receive growing attention, this paper sets out the crucial role of engineering in the challenge to develop a 'green air traffic system'.

  3. Marshall Space Flight Center Faculty Fellowship Program

    NASA Technical Reports Server (NTRS)

    Six, N. F.; Karr, G.

    2017-01-01

    The research projects conducted by the 2016 Faculty Fellows at NASA Marshall Space Flight Center included propulsion studies on propellant issues, and materials investigations involving plasma effects and friction stir welding. Spacecraft Systems research was conducted on wireless systems and 3D printing of avionics. Vehicle Systems studies were performed on controllers and spacecraft instruments. The Science and Technology group investigated additive construction applied to Mars and Lunar regolith, medical uses of 3D printing, and unique instrumentation, while the Test Laboratory measured pressure vessel leakage and crack growth rates.

  4. Generalized Nanosatellite Avionics Testbed Lab

    NASA Technical Reports Server (NTRS)

    Frost, Chad R.; Sorgenfrei, Matthew C.; Nehrenz, Matt

    2015-01-01

    The Generalized Nanosatellite Avionics Testbed (G-NAT) lab at NASA Ames Research Center provides a flexible, easily accessible platform for developing hardware and software for advanced small spacecraft. A collaboration between the Mission Design Division and the Intelligent Systems Division, the objective of the lab is to provide testing data and general test protocols for advanced sensors, actuators, and processors for CubeSat-class spacecraft. By developing test schemes for advanced components outside of the standard mission lifecycle, the lab is able to help reduce the risk carried by advanced nanosatellite or CubeSat missions. Such missions are often allocated very little time for testing, and too often the test facilities must be custom-built for the needs of the mission at hand. The G-NAT lab helps to eliminate these problems by providing an existing suite of testbeds that combines easily accessible, commercial-offthe- shelf (COTS) processors with a collection of existing sensors and actuators.

  5. Advanced Software Techniques for Data Management Systems. Volume 2: Space Shuttle Flight Executive System: Functional Design

    NASA Technical Reports Server (NTRS)

    Pepe, J. T.

    1972-01-01

    A functional design of software executive system for the space shuttle avionics computer is presented. Three primary functions of the executive are emphasized in the design: task management, I/O management, and configuration management. The executive system organization is based on the applications software and configuration requirements established during the Phase B definition of the Space Shuttle program. Although the primary features of the executive system architecture were derived from Phase B requirements, it was specified for implementation with the IBM 4 Pi EP aerospace computer and is expected to be incorporated into a breadboard data management computer system at NASA Manned Spacecraft Center's Information system division. The executive system was structured for internal operation on the IBM 4 Pi EP system with its external configuration and applications software assumed to the characteristic of the centralized quad-redundant avionics systems defined in Phase B.

  6. Generalized approach for identification and evaluation of technology-insertion options for military avionics systems

    NASA Astrophysics Data System (ADS)

    Harkness, Linda L.; Sjoberg, Eric S.

    1996-06-01

    The Georgia Tech Research Institute, sponsored by the Warner Robins Air Logistics Center, has developed an approach for efficiently postulating and evaluating methods for extending the life of radars and other avionics systems. The technique identified specific assemblies for potential replacement and evaluates the system level impact, including performance, reliability and life-cycle cost of each action. The initial impetus for this research was the increasing obsolescence of integrated circuits contained in the AN/APG-63 system. The operational life of military electronics is typically in excess of twenty years, which encompasses several generations of IC technology. GTRI has developed a systems approach to inserting modern technology components into older systems based upon identification of those functions which limit the system's performance or reliability and which are cost drivers. The presentation will discuss the above methodology and a technique for evaluating and ranking the different potential system upgrade options.

  7. Microbiological analysis of debris from Space Transportation System (STS)-55 Spacelab D-2

    NASA Technical Reports Server (NTRS)

    Huff, T. L.

    1994-01-01

    Filter debris from the Spacelab module D-2 of STS-55 was analyzed for microbial contamination. Debris from cabin and avionics filters was collected by Kennedy Space Center personnel on May 8, 1993, 2 days postflight. Debris weights were similar to those of previous Spacelab missions. Approximately 5.1E+5 colony forming units per gram of debris were enumerated from the cabin and avionics filter debris, respectively. these numbers were similar in previous missions for which the entire contents were analyzed without sorting of the material. Bacterial diversity was small compared to previous missions, with no gram negative bacteria isolated. Only one bacterial species, Corynebacterium pseudodiphtheriticum, was not isolated previously by the laboratory from Spacelab debris. This organism is a normal inhabitant of the pharynx. A table listing all species of bacteria isolated by the laboratory from previous Spacelab air filters debris collection is provided.

  8. Definition of avionics concepts for a heavy lift cargo vehicle, volume 2

    NASA Technical Reports Server (NTRS)

    1989-01-01

    A cost effective, multiuser simulation, test, and demonstration facility to support the development of avionics systems for future space vehicles is defined. The technology needs and requirements of future Heavy Lift Cargo Vehicles (HLCVs) are analyzed and serve as the basis for sizing of the avionics facility although the lab is not limited in use to support of HLCVs. Volume 2 is the technical volume and provides the results of the vehicle avionics trade studies, the avionics lab objectives, the lab's functional requirements and design, physical facility considerations, and a summary cost estimate.

  9. NASA Conducts First RS-25 Rocket Engine Test of 2015

    NASA Image and Video Library

    2015-01-09

    From the Press Release: The new year is off to a hot start for NASA's Space Launch System (SLS). The engine that will drive America's next great rocket to deep space blazed through its first successful test Jan. 9 at the agency's Stennis Space Center near Bay St. Louis, Mississippi. The RS-25, formerly the space shuttle main engine, fired up for 500 seconds on the A-1 test stand at Stennis, providing NASA engineers critical data on the engine controller unit and inlet pressure conditions. This is the first hot fire of an RS-25 engine since the end of space shuttle main engine testing in 2009. Four RS-25 engines will power SLS on future missions, including to an asteroid and Mars. "We’ve made modifications to the RS-25 to meet SLS specifications and will analyze and test a variety of conditions during the hot fire series,” said Steve Wofford, manager of the SLS Liquid Engines Office at NASA's Marshall Space Flight Center in Huntsville, Alabama, where the SLS Program is managed. "The engines for SLS will encounter colder liquid oxygen temperatures than shuttle; greater inlet pressure due to the taller core stage liquid oxygen tank and higher vehicle acceleration; and more nozzle heating due to the four-engine configuration and their position in-plane with the SLS booster exhaust nozzles.” The engine controller unit, the "brain" of the engine, allows communication between the vehicle and the engine, relaying commands to the engine and transmitting data back to the vehicle. The controller also provides closed-loop management of the engine by regulating the thrust and fuel mixture ratio while monitoring the engine's health and status. The new controller will use updated hardware and software configured to operate with the new SLS avionics architecture. "This first hot-fire test of the RS-25 engine represents a significant effort on behalf of Stennis Space Center’s A-1 test team," said Ronald Rigney, RS-25 project manager at Stennis. "Our technicians and engineers have been working diligently to design, modify and activate an extremely complex and capable facility in support of RS-25 engine testing." Testing will resume in April after upgrades are completed on the high pressure industrial water system, which provides cool water for the test facility during a hot fire test. Eight tests, totaling 3,500 seconds, are planned for the current development engine. Another development engine later will undergo 10 tests, totaling 4,500 seconds. The second test series includes the first test of new flight controllers, known as green running. The first flight test of the SLS will feature a configuration for a 70-metric-ton (77-ton) lift capacity and carry an uncrewed Orion spacecraft beyond low-Earth orbit to test the performance of the integrated system. As the SLS is upgraded, it will provide an unprecedented lift capability of 130 metric tons (143 tons) to enable missions even farther into our solar system.

  10. FAA Rotorcraft Research, Engineering, and Development Bibliography 1962-1989

    DTIC Science & Technology

    1990-05-01

    Albert G. Delucien) (NTIS: ADA 102 521) FAA/CT-88/10 Digital Systems Validation Handbook - Volume II (R.L. McDowall, Hardy P. Curd, Lloyd N. Popish... Digital Systems in Avionics and Flight Control Applications, Handbook - Volume I, (Ellis F. Hilt, Donald Eldredge, Jeff Webb, Charles Lucius, Michael S...Structure Statistics of Helicopter GPS Navigation with the Magnavox Z-Set (Robert D. Till) FAA/CT-82/115 Handbook - Volume I, Validation of Digital

  11. The Integrated Mission-Planning Station: Functional Requirements, Aviator-Computer Dialogue, and Human Engineering Design Criteria.

    DTIC Science & Technology

    1983-08-01

    AD- R136 99 THE INTEGRATED MISSION-PLNNING STATION: FUNCTIONAL 1/3 REQUIREMENTS AVIATOR-..(U) RNACAPR SCIENCES INC SANTA BARBARA CA S P ROGERS RUG...Continue on reverse side o necess.ar and identify by btock number) Interactive Systems Aviation Control-Display Functional Require- Plan-Computer...Dialogue Avionics Systems ments Map Display Army Aviation Design Criteria Helicopters M4ission Planning Cartography Digital Map Human Factors Navigation

  12. General Aviation Avionics Statistics: 1977.

    DTIC Science & Technology

    1980-06-01

    combustion of fuel, the gases of combustion (or the heated air) being used both to rotate the turbine and to create a thrust-producing engine. Turboprop...cc 0 4) 0 𔃾) cu z 4) 0 a$. .- MCI 1001 APPENDIX D AIRSPACE STRUCTURE 101 APPENDIX D. AIRSPACE STRUCTURE -t FLIO* - -FL450 I ContinentalI Control...Compass 9. Landing gear 4. Tachometer 10. Belts 5. Oil temperature 11. Special equipment for 6. Emergency locator over water flights transmitter

  13. The Use of Modeling for Flight Software Engineering on SMAP

    NASA Technical Reports Server (NTRS)

    Murray, Alexander; Jones, Chris G.; Reder, Leonard; Cheng, Shang-Wen

    2011-01-01

    The Soil Moisture Active Passive (SMAP) mission proposes to deploy an Earth-orbiting satellite with the goal of obtaining global maps of soil moisture content at regular intervals. Launch is currently planned in 2014. The spacecraft bus would be built at the Jet Propulsion Laboratory (JPL), incorporating both new avionics as well as hardware and software heritage from other JPL projects. [4] provides a comprehensive overview of the proposed mission

  14. Annual report to the NASA Administrator by the Aerospace Safety Advisory Panel on the space shuttle program. Part 2: Summary of information developed in the panel's fact-finding activities

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Safety management areas of concern include the space shuttle main engine, shuttle avionics, orbiter thermal protection system, the external tank program, and the solid rocket booster program. The ground test program and ground support equipment system were reviewed. Systems integration and technical 'conscience' were of major priorities for the investigating teams.

  15. STS-2: SAIL non-avionics subsystems math model requirements

    NASA Technical Reports Server (NTRS)

    Bennett, W. P.; Herold, R. W.

    1980-01-01

    Simulation of the STS-2 Shuttle nonavionics subsystems in the shuttle avionics integration laboratory (SAIL) is necessary for verification of the integrated shuttle avionics system. The math model (simulation) requirements for each of the nonavionics subsystems that interfaces with the Shuttle avionics system is documented and a single source document for controlling approved changes (by the SAIL change control panel) to the math models is provided.

  16. Custom avionics-grade AM LCDs for high performance military and avionics applications

    NASA Astrophysics Data System (ADS)

    Niemczyk, James

    2003-09-01

    American Panel Corporation in Alpharetta Georgia and LG-Philips-LCD in Seoul South Korea have a strategic alliance for the design and manufacture of custom AMLCD products targeted for the military vehicle and avionics sector. As part of this relationship, new innovations in AMLCD technology specifically aimed at the rugged and avionics applications have been developed and are now brought to the marketplace

  17. Advanced integrated enhanced vision systems

    NASA Astrophysics Data System (ADS)

    Kerr, J. R.; Luk, Chiu H.; Hammerstrom, Dan; Pavel, Misha

    2003-09-01

    In anticipation of its ultimate role in transport, business and rotary wing aircraft, we clarify the role of Enhanced Vision Systems (EVS): how the output data will be utilized, appropriate architecture for total avionics integration, pilot and control interfaces, and operational utilization. Ground-map (database) correlation is critical, and we suggest that "synthetic vision" is simply a subset of the monitor/guidance interface issue. The core of integrated EVS is its sensor processor. In order to approximate optimal, Bayesian multi-sensor fusion and ground correlation functionality in real time, we are developing a neural net approach utilizing human visual pathway and self-organizing, associative-engine processing. In addition to EVS/SVS imagery, outputs will include sensor-based navigation and attitude signals as well as hazard detection. A system architecture is described, encompassing an all-weather sensor suite; advanced processing technology; intertial, GPS and other avionics inputs; and pilot and machine interfaces. Issues of total-system accuracy and integrity are addressed, as well as flight operational aspects relating to both civil certification and military applications in IMC.

  18. General Aviation Avionics Statistics : 1975

    DOT National Transportation Integrated Search

    1978-06-01

    This report presents avionics statistics for the 1975 general aviation (GA) aircraft fleet and updates a previous publication, General Aviation Avionics Statistics: 1974. The statistics are presented in a capability group framework which enables one ...

  19. KSC-08pd3866

    NASA Image and Video Library

    2008-11-07

    CAPE CANAVERAL, Fla. -- In Building 1555 at Vandenberg Air Force Base in California, ssembly is underway for the Taurus XL rocket that will launch NASA's Orbiting Carbon Observatory, or OCO, spacecraft. Lined up left to right are the Stage 1 and Stage 2 motors, the boattail, the avionics shelf and the Stage 3 motor. The graphite/epoxy boattail structure provides the transition from the smaller diameter of the Stage 2 motor to the larger diameter of the avionics skirt. The avionics skirt, also a graphite/epoxy structure, supports the avionics shelf and carries the primary structural loads from the fairing and payload cone. The aluminum avionics shelf supports the third stage avionics. The OCO is a new Earth-orbiting mission sponsored by NASA's Earth System Science Pathfinder Program. The launch of OCO is targeted for January. Photo credit: NASA/Randy Beaudoin, VAFB

  20. ISHM-oriented adaptive fault diagnostics for avionics based on a distributed intelligent agent system

    NASA Astrophysics Data System (ADS)

    Xu, Jiuping; Zhong, Zhengqiang; Xu, Lei

    2015-10-01

    In this paper, an integrated system health management-oriented adaptive fault diagnostics and model for avionics is proposed. With avionics becoming increasingly complicated, precise and comprehensive avionics fault diagnostics has become an extremely complicated task. For the proposed fault diagnostic system, specific approaches, such as the artificial immune system, the intelligent agents system and the Dempster-Shafer evidence theory, are used to conduct deep fault avionics diagnostics. Through this proposed fault diagnostic system, efficient and accurate diagnostics can be achieved. A numerical example is conducted to apply the proposed hybrid diagnostics to a set of radar transmitters on an avionics system and to illustrate that the proposed system and model have the ability to achieve efficient and accurate fault diagnostics. By analyzing the diagnostic system's feasibility and pragmatics, the advantages of this system are demonstrated.

  1. Avionics systems integration technology

    NASA Technical Reports Server (NTRS)

    Stech, George; Williams, James R.

    1988-01-01

    A very dramatic and continuing explosion in digital electronics technology has been taking place in the last decade. The prudent and timely application of this technology will provide Army aviation the capability to prevail against a numerically superior enemy threat. The Army and NASA have exploited this technology explosion in the development and application of avionics systems integration technology for new and future aviation systems. A few selected Army avionics integration technology base efforts are discussed. Also discussed is the Avionics Integration Research Laboratory (AIRLAB) that NASA has established at Langley for research into the integration and validation of avionics systems, and evaluation of advanced technology in a total systems context.

  2. KSC-08pd3868

    NASA Image and Video Library

    2008-11-07

    CAPE CANAVERAL, Fla. -- In Building 1555 at Vandenberg Air Force Base in California, workers do a fit check on the mating of the Stage 1 to Stage 2 motors for the Taurus XL rocket that will launch NASA's Orbiting Carbon Observatory, or OCO, spacecraft. At right can be seen the avionics shelf. The avionics skirt, a graphite/epoxy structure, supports the avionics shelf and carries the primary structural loads from the fairing and payload cone. The aluminum avionics shelf supports the third stage avionics. The OCO is a new Earth-orbiting mission sponsored by NASA's Earth System Science Pathfinder Program. The launch of OCO is targeted for January. Photo credit: NASA/Randy Beaudoin, VAFB

  3. Rotorcraft digital advanced avionics system (RODAAS) functional description

    NASA Technical Reports Server (NTRS)

    Peterson, E. M.; Bailey, J.; Mcmanus, T. J.

    1985-01-01

    A functional design of a rotorcraft digital advanced avionics system (RODAAS) to transfer the technology developed for general aviation in the Demonstration Advanced Avionics System (DAAS) program to rotorcraft operation was undertaken. The objective was to develop an integrated avionics system design that enhances rotorcraft single pilot IFR operations without increasing the required pilot training/experience by exploiting advanced technology in computers, busing, displays and integrated systems design. A key element of the avionics system is the functionally distributed architecture that has the potential for high reliability with low weight, power and cost. A functional description of the RODAAS hardware and software functions is presented.

  4. Wireless avionics for space applications of fundamental physics

    NASA Astrophysics Data System (ADS)

    Wang, Linna; Zeng, Guiming

    2016-07-01

    Fundamental physics (FP) research in space relies on a strong support of spacecraft. New types of spacecraft including reusable launch vehicles, reentry space vehicles, long-term on-orbit spacecraft or other new type of spacecraft will pave the way for FP missions. In order to test FP theories in space, flight conditions have to be controlled to a very high precision, data collection and handling abilities have to be improved, real-time and reliable communications in critical environments are needed. These challenge the existing avionics of spacecraft. Avionics consists of guidance, navigation & control, TT&C, the vehicle management, etc. Wireless avionics is one of the enabling technologies to address the challenges. Reasons are expatiated of why it is of great advantage. This paper analyses the demands for wireless avionics by reviewing the FP missions and on-board wireless systems worldwide. Main types of wireless communication are presented. Preliminary system structure of wireless avionics are given. The characteristics of wireless network protocols and wireless sensors are introduced. Key technologies and design considerations for wireless avionics in space applications are discussed.

  5. Creating the Future: Research and Technology

    NASA Technical Reports Server (NTRS)

    1998-01-01

    With the many different technical talents, Marshall Space Flight Center (MSFC) continues to be an important force behind many scientific breakthroughs. The MSFC's annual report reviews the technology developments, research in space and microgravity sciences, studies in space system concepts, and technology transfer. The technology development programs include development in: (1) space propulsion and fluid management, (2) structures and dynamics, (3) materials and processes and (4) avionics and optics.

  6. Ares I-X: First Step in a New Era of Exploration

    NASA Technical Reports Server (NTRS)

    Davis, Stephan R.

    2010-01-01

    Since 2005, NASA's Constellation Program has been designing, building, and testing the next generation of launch and space vehicles to carry humans beyond low-Earth orbit (LEO). On October 28, 2009, the Ares Projects successfully launched the first suborbital development flight test of the Ares I crew launch vehicle, Ares I-X, from Kennedy Space Center (KSC). Although the final Constellation Program architecture is under review, data and lessons obtained from Ares I-X can be applied to any launch vehicle. This presentation will discuss the mission background and future impacts of the flight. Ares I is designed to carry up to four astronauts to the International Space Station (ISS). It also can be used with the Ares V cargo launch vehicle for a variety of missions beyond LEO. The Ares I-X development flight test was conceived in 2006 to acquire early engineering, operations, and environment data during liftoff, ascent, and first stage recovery. Engineers are using the test flight data to improve the Ares I design before its critical design review the final review before manufacturing of the flight vehicle begins. The Ares I-X flight test vehicle incorporated a mix of flight and mockup hardware, reflecting a similar length and mass to the operational vehicle. It was powered by a four-segment SRB from the Space Shuttle inventory, and was modified to include a fifth, spacer segment that made the booster approximately the same size as the five-segment SRB. The Ares I-X flight closely approximated flight conditions the Ares I will experience through Mach 4.5, performing a first stage separation at an altitude of 125,000 feet and reaching a maximum dynamic pressure ("Max Q") of approximately 850 pounds per square foot. The Ares I-X Mission Management Office (MMO) was organized functionally to address all the major test elements, including: first stage, avionics, and roll control (Marshall Space Flight Center); upper stage simulator (Glenn Research Center); crew module/launch abort system simulator (Langley Research Center); and ground systems and operations (KSC). Interfaces between vehicle elements and vehicle-ground elements, as well as environment analyses were performed by a systems engineering and integration team at Langley. Experience and lessons learned from these integrated product teams area are already being integrated into the Ares Projects to support the next generation of exploration launch vehicles.

  7. General Aviation Avionics Statistics : 1976

    DOT National Transportation Integrated Search

    1979-11-01

    This report presents avionics statistics for the 1976 general aviation (GA) aircraft fleet and is the third in a series titled "General Aviation Avionics Statistics." The statistics are presented in a capability group framework which enables one to r...

  8. General aviation avionics statistics : 1977.

    DOT National Transportation Integrated Search

    1980-06-01

    This report presents avionics statistics for the 1977 general aviation (GA) aircraft fleet and is the fourth in a series. The statistics are presented in a capability group framework which enables one to relate airborne avionics equipment to the capa...

  9. General Aviation Avionics Statistics : 1979 Data

    DOT National Transportation Integrated Search

    1981-04-01

    This report presents avionics statistics for the 1979 general aviation (GA) aircraft fleet and is the sixth in a series titled General Aviation Avionics Statistics. The statistics preseneted in a capability group framework which enables one to relate...

  10. A study of compositional verification based IMA integration method

    NASA Astrophysics Data System (ADS)

    Huang, Hui; Zhang, Guoquan; Xu, Wanmeng

    2018-03-01

    The rapid development of avionics systems is driving the application of integrated modular avionics (IMA) systems. But meanwhile it is improving avionics system integration, complexity of system test. Then we need simplify the method of IMA system test. The IMA system supports a module platform that runs multiple applications, and shares processing resources. Compared with federated avionics system, IMA system is difficult to isolate failure. Therefore, IMA system verification will face the critical problem is how to test shared resources of multiple application. For a simple avionics system, traditional test methods are easily realizing to test a whole system. But for a complex system, it is hard completed to totally test a huge and integrated avionics system. Then this paper provides using compositional-verification theory in IMA system test, so that reducing processes of test and improving efficiency, consequently economizing costs of IMA system integration.

  11. KSC-08pd3867

    NASA Image and Video Library

    2008-11-07

    CAPE CANAVERAL, Fla. -- In Building 1555 at Vandenberg Air Force Base in California, assembly is underway for the Taurus XL rocket that will launch NASA's Orbiting Carbon Observatory, or OCO, spacecraft. In the foreground at left is the boattail; behind it is the Stage 0 Castor 120 motor. At right near the wall (from left) are the Stage 1 and Stage 2 motors, the avionics shelf and the Stage 3 motor. The graphite/epoxy boattail structure provides the transition from the smaller diameter of the Stage 2 motor to the larger diameter of the avionics skirt. The avionics skirt, also a graphite/epoxy structure, supports the avionics shelf and carries the primary structural loads from the fairing and payload cone. The aluminum avionics shelf supports the third stage avionics. The OCO is a new Earth-orbiting mission sponsored by NASA's Earth System Science Pathfinder Program. The launch of OCO is targeted for January. Photo credit: NASA/Randy Beaudoin, VAFB

  12. Avionics Architectures for Exploration: Building a Better Approach for (Human) Spaceflight Avionics

    NASA Technical Reports Server (NTRS)

    Goforth, Montgomery B.; Ratliff, James E.; Hames, Kevin L.; Vitalpur, Sharada V.

    2014-01-01

    The field of Avionics is advancing far more rapidly in terrestrial applications than in space flight applications. Spaceflight Avionics are not keeping pace with expectations set by terrestrial experience, nor are they keeping pace with the need for increasingly complex automation and crew interfaces as we move beyond Low Earth Orbit. NASA must take advantage of the strides being made by both space-related and terrestrial industries to drive our development and sustaining costs down. This paper describes ongoing efforts by the Avionics Architectures for Exploration (AAE) project chartered by NASA's Advanced Exploration Systems (AES) Program to evaluate new avionic architectures and technologies, provide objective comparisons of them, and mature selected technologies for flight and for use by other AES projects. Results from the AAE project's FY13 efforts are discussed, along with the status of FY14 efforts and future plans.

  13. Interplanetary Radiation and Fault Tolerant Mini-Star Tracker System

    NASA Technical Reports Server (NTRS)

    Rakoczy, John; Paceley, Pete

    2015-01-01

    The Charles Stark Draper Laboratory, Inc. is partnering with the NASA Marshall Space Flight Center (MSFC) Engineering Directorate's Avionics Design Division and Flight Mechanics & Analysis Division to develop and test a prototype small, low-weight, low-power, radiation-hardened, fault-tolerant mini-star tracker (fig. 1). The project is expected to enable Draper Laboratory and its small business partner, L-1 Standards and Technologies, Inc., to develop a new guidance, navigation, and control sensor product for the growing small sat technology market. The project also addresses MSFC's need for sophisticated small sat technologies to support a variety of science missions in Earth orbit and beyond. The prototype star tracker will be tested on the night sky on MSFC's Automated Lunar and Meteor Observatory (ALAMO) telescope. The specific goal of the project is to address the need for a compact, low size, weight, and power, yet radiation hardened and fault tolerant star tracker system that can be used as a stand-alone attitude determination system or incorporated into a complete attitude determination and control system for emerging interplanetary and operational CubeSat and small sat missions.

  14. Hybrid Power Management (HPM)

    NASA Technical Reports Server (NTRS)

    Eichenberg, Dennis J.

    2007-01-01

    The NASA Glenn Research Center s Avionics, Power and Communications Branch of the Engineering and Systems Division initiated the Hybrid Power Management (HPM) Program for the GRC Technology Transfer and Partnership Office. HPM is the innovative integration of diverse, state-of-the-art power devices in an optimal configuration for space and terrestrial applications. The appropriate application and control of the various power devices significantly improves overall system performance and efficiency. The advanced power devices include ultracapacitors and fuel cells. HPM has extremely wide potential. Applications include power generation, transportation systems, biotechnology systems, and space power systems. HPM has the potential to significantly alleviate global energy concerns, improve the environment, and stimulate the economy. One of the unique power devices being utilized by HPM for energy storage is the ultracapacitor. An ultracapacitor is an electrochemical energy storage device, which has extremely high volumetric capacitance energy due to high surface area electrodes, and very small electrode separation. Ultracapacitors are a reliable, long life, maintenance free, energy storage system. This flexible operating system can be applied to all power systems to significantly improve system efficiency, reliability, and performance. There are many existing and conceptual applications of HPM.

  15. NASA Collaborative Design Processes

    NASA Technical Reports Server (NTRS)

    Jones, Davey

    2017-01-01

    This is Block 1, the first evolution of the world's most powerful and versatile rocket, the Space Launch System, built to return humans to the area around the moon. Eventually, larger and even more powerful and capable configurations will take astronauts and cargo to Mars. On the sides of the rocket are the twin solid rocket boosters that provide more than 75 percent during liftoff and burn for about two minutes, after which they are jettisoned, lightening the load for the rest of the space flight. Four RS-25 main engines provide thrust for the first stage of the rocket. These are the world's most reliable rocket engines. The core stage is the main body of the rocket and houses the fuel for the RS-25 engines, liquid hydrogen and liquid oxygen, and the avionics, or "brain" of the rocket. The core stage is all new and being manufactured at NASA's "rocket factory," Michoud Assembly Facility near New Orleans. The Launch Vehicle Stage Adapter, or LVSA, connects the core stage to the Interim Cryogenic Propulsion Stage. The Interim Cryogenic Propulsion Stage, or ICPS, uses one RL-10 rocket engine and will propel the Orion spacecraft on its deep-space journey after first-stage separation. Finally, the Orion human-rated spacecraft sits atop the massive Saturn V-sized launch vehicle. Managed out of Johnson Space Center in Houston, Orion is the first spacecraft in history capable of taking humans to multiple destinations within deep space. 2) Each element of the SLS utilizes collaborative design processes to achieve the incredible goal of sending human into deep space. Early phases are focused on feasibility and requirements development. Later phases are focused on detailed design, testing, and operations. There are 4 basic phases typically found in each phase of development.

  16. Outlook at the Future of the Airline Avionics Industry

    DOT National Transportation Integrated Search

    1998-01-01

    The aviation industry is slowly but surely changing its character. As airlines restructure, what they ask of, and how they relate to their suppliers (including avionics manufacturers) will greatly change as well. The avionics industry is currently fa...

  17. New technologies for space avionics

    NASA Technical Reports Server (NTRS)

    Aibel, David W.; Dingus, Peter; Lanciault, Mark; Hurdlebrink, Debra; Gurevich, Inna; Wenglar, Lydia

    1994-01-01

    This report reviews a 1994 effort that continued 1993 investigations into issues associated with the definition of requirements, with the practice concurrent engineering and rapid prototyping in the context of the development of a prototyping of a next-generation reaction jet driver controller. This report discusses lessons learned, the testing of the current prototype, the details of the current design, and the nature and performance of a mathematical model of the life cycle of a pilot operated valve solenoid.

  18. Rotorcraft Drivetrain Life Safety and Reliability (Cycle de Vie, Securite et Fiabilite des Chaines Dynamiques des Avions a Voilure Tournante)

    DTIC Science & Technology

    1990-06-01

    design and component technologies are reviewed against a background of accident data analysis , resulting in grounds for confidence in higher safety levels...constructors or operators taking voluntary actions based on accident investigations and their own data . Analysis of the CAA Summaty data (Appendix 3...of engines. In the accident data analysis in Appendix 3, insufficient data was available to determine whether rotor configuration or associated

  19. Airborne Navigation Remote Map Reader Evaluation.

    DTIC Science & Technology

    1986-03-01

    EVALUATION ( James C. Byrd Intergrated Controls/Displays Branch SAvionics Systems Division Directorate of Avionics Engineering SMarch 1986 Final Report...Resolution 15 3.2 Accuracy 15 3.3 Symbology 15 3.4 Video Standard 18 3.5 Simulator Control Box 18 3.6 Software 18 3.7 Display Performance 21 3.8 Reliability 24...can be selected depending on the detail required and will automatically be presented at his present position. .The French RMR uses a Flying Spot Scanner

  20. Aerospace Software Engineering for Advanced Systems Architectures (L’Ingenierie des Logiciels Pour les Architectures des Systemes Aerospatiaux)

    DTIC Science & Technology

    1993-11-01

    Eliezer N. Solomon Steve Sedrel Westinghouse Electronic Systems Group P.O. Box 746, MS 432, Baltimore, Maryland 21203-0746, USA SUMMARY The United States...subset of the Joint Intergrated Avionics NewAgentCollection which has four Working Group (JIAWG), Performance parameters: Acceptor, of type Task._D...Published Noember 1993 Distribution and Availability on Back Cover SAGARD-CP54 ADVISORY GROUP FOR AERSACE RESEARCH & DEVELOPMENT 7 RUE ANCELLE 92200

  1. Coverage Metrics for Model Checking

    NASA Technical Reports Server (NTRS)

    Penix, John; Visser, Willem; Norvig, Peter (Technical Monitor)

    2001-01-01

    When using model checking to verify programs in practice, it is not usually possible to achieve complete coverage of the system. In this position paper we describe ongoing research within the Automated Software Engineering group at NASA Ames on the use of test coverage metrics to measure partial coverage and provide heuristic guidance for program model checking. We are specifically interested in applying and developing coverage metrics for concurrent programs that might be used to support certification of next generation avionics software.

  2. Trends in transport aircraft avionics

    NASA Technical Reports Server (NTRS)

    Berkstresser, B. K.

    1973-01-01

    A survey of avionics onboard present commercial transport aircraft was conducted to identify trends in avionics systems characteristics and to determine the impact of technology advances on equipment weight, cost, reliability, and maintainability. Transport aircraft avionics systems are described under the headings of communication, navigation, flight control, and instrumentation. The equipment included in each section is described functionally. However, since more detailed descriptions of the equipment can be found in other sources, the description is limited and emphasis is put on configuration requirements. Since airborne avionics systems must interface with ground facilities, certain ground facilities are described as they relate to the airborne systems, with special emphasis on air traffic control and all-weather landing capability.

  3. CanOpen on RASTA: The Integration of the CanOpen IP Core in the Avionics Testbed

    NASA Astrophysics Data System (ADS)

    Furano, Gianluca; Guettache, Farid; Magistrati, Giorgio; Tiotto, Gabriele; Ortega, Carlos Urbina; Valverde, Alberto

    2013-08-01

    This paper presents the work done within the ESA Estec Data Systems Division, targeting the integration of the CanOpen IP Core with the existing Reference Architecture Test-bed for Avionics (RASTA). RASTA is the reference testbed system of the ESA Avionics Lab, designed to integrate the main elements of a typical Data Handling system. It aims at simulating a scenario where a Mission Control Center communicates with on-board computers and systems through a TM/TC link, thus providing the data management through qualified processors and interfaces such as Leon2 core processors, CAN bus controllers, MIL-STD-1553 and SpaceWire. This activity aims at the extension of the RASTA with two boards equipped with HurriCANe controller, acting as CANOpen slaves. CANOpen software modules have been ported on the RASTA system I/O boards equipped with Gaisler GR-CAN controller and acts as master communicating with the CCIPC boards. CanOpen serves as upper application layer for based on CAN defined within the CAN-in-Automation standard and can be regarded as the definitive standard for the implementation of CAN-based systems solutions. The development and integration of CCIPC performed by SITAEL S.p.A., is the first application that aims to bring the CANOpen standard for space applications. The definition of CANOpen within the European Cooperation for Space Standardization (ECSS) is under development.

  4. NASA Ares I Crew Launch Vehicle Upper Stage Avionics and Software Overview

    NASA Technical Reports Server (NTRS)

    Nola, Charles L.; Blue, Lisa

    2008-01-01

    Building on the heritage of the Saturn and Space Shuttle Programs for the Design, Development, Test, and Evaluation (DDT and E) of avionics and software for NASA's Ares I Crew Launch Vehicle (CLV), the Ares I Upper Stage Element is a vital part of the Constellation Program's transportation system. The Upper Stage Element's Avionics Subsystem is actively proceeding toward its objective of delivering a flight-certified Upper Stage Avionics System for the Ares I CLV.

  5. 1977 General Aviation Activity and Avionics Survey

    DOT National Transportation Integrated Search

    1979-04-01

    This report presents the results and a description of the 1977 General Aviation Activity and Avionics Survey. The survey was conducted during early 1978 by the FAA to obtain information on the activity and avionics of the United States registered gen...

  6. General Aviation Activity and Avionics Survey (Annual Summary Report - 1986 Data)

    DOT National Transportation Integrated Search

    1987-12-01

    This report presents the results and description of the 1986 General Aviation Activity and Avionics Survey. The survey was conducted during 1987 by the FAA to obtain information on the activity and avionics of the United States registered general avi...

  7. VCSEL optical subassembly for avionics fiber optic modules

    NASA Astrophysics Data System (ADS)

    Hager, Harold E.; Chan, Eric Y.; Beranek, Mark W.; Hong, Chi-Shain

    1996-04-01

    With the growing maturation of vertical cavity surface emitting laser (VCSEL) technology as a source of commercial off-the-shelf components, the question of VCSEL suitability for use in avionics-qualifiable fiber-optic systems naturally follows. This paper addresses avionics suitability from two perspectives. First, measured performance and burn-in reliability results, determined from characterization of Honeywell VCSELs, are compared with application-based military and commercial avionics environmental requirements. Second, design guidelines for developing a cost-effective VCSEL optical subassembly (VCSEL/OSA) are outlined.

  8. Recovery of the Space Shuttle Columbia Avionics

    NASA Technical Reports Server (NTRS)

    Hames, Kevin L.

    2003-01-01

    Lessons Learned: a) Avionics data can playa critical role in the investigation of a "close call" or accident. b) Avionics designers should think about the role their systems might play in an investigation. c) Know your data, down to the bit level. d) Know your spacecraft - follow the data. e) Internal placement of circuit cards can affect their survivability. f) Think about how to reconstruct nonvolatile memory (e.g. serialize IC's, etc.) g) Use of external assets can aid in extracting data from avionics.

  9. A Communication Architecture for an Advanced Extravehicular Mobile Unit

    NASA Technical Reports Server (NTRS)

    Ivancic, William D.; Sands, Obed S.; Bakula, Casey J.; Oldham, Daniel R.; Wright, Ted; Bradish, Martin A.; Klebau, Joseph M.

    2014-01-01

    This document describes the communication architecture for the Power, Avionics and Software (PAS) 1.0 subsystem for the Advanced Extravehicular Mobility Unit (AEMU). The following systems are described in detail: Caution Warning and Control System, Informatics, Storage, Video, Audio, Communication, and Monitoring Test and Validation. This document also provides some background as well as the purpose and goals of the PAS subsystem being developed at Glenn Research Center (GRC).

  10. Avionic Architecture for Model Predictive Control Application in Mars Sample & Return Rendezvous Scenario

    NASA Astrophysics Data System (ADS)

    Saponara, M.; Tramutola, A.; Creten, P.; Hardy, J.; Philippe, C.

    2013-08-01

    Optimization-based control techniques such as Model Predictive Control (MPC) are considered extremely attractive for space rendezvous, proximity operations and capture applications that require high level of autonomy, optimal path planning and dynamic safety margins. Such control techniques require high-performance computational needs for solving large optimization problems. The development and implementation in a flight representative avionic architecture of a MPC based Guidance, Navigation and Control system has been investigated in the ESA R&T study “On-line Reconfiguration Control System and Avionics Architecture” (ORCSAT) of the Aurora programme. The paper presents the baseline HW and SW avionic architectures, and verification test results obtained with a customised RASTA spacecraft avionics development platform from Aeroflex Gaisler.

  11. The Core Avionics System for the DLR Compact-Satellite Series

    NASA Astrophysics Data System (ADS)

    Montenegro, S.; Dittrich, L.

    2008-08-01

    The Standard Satellite Bus's core avionics system is a further step in the development line of the software and hardware architecture which was first used in the bispectral infrared detector mission (BIRD). The next step improves dependability, flexibility and simplicity of the whole core avionics system. Important aspects of this concept were already implemented, simulated and tested in other ESA and industrial projects. Therefore we can say the basic concept is proven. This paper deals with different aspects of core avionics development and proposes an extension to the existing core avionics system of BIRD to meet current and future requirements regarding flexibility, availability, reliability of small satellite and the continuous increasing demand of mass memory and computational power.

  12. Use of Soft Computing Technologies For Rocket Engine Control

    NASA Technical Reports Server (NTRS)

    Trevino, Luis C.; Olcmen, Semih; Polites, Michael

    2003-01-01

    The problem to be addressed in this paper is to explore how the use of Soft Computing Technologies (SCT) could be employed to further improve overall engine system reliability and performance. Specifically, this will be presented by enhancing rocket engine control and engine health management (EHM) using SCT coupled with conventional control technologies, and sound software engineering practices used in Marshall s Flight Software Group. The principle goals are to improve software management, software development time and maintenance, processor execution, fault tolerance and mitigation, and nonlinear control in power level transitions. The intent is not to discuss any shortcomings of existing engine control and EHM methodologies, but to provide alternative design choices for control, EHM, implementation, performance, and sustaining engineering. The approaches outlined in this paper will require knowledge in the fields of rocket engine propulsion, software engineering for embedded systems, and soft computing technologies (i.e., neural networks, fuzzy logic, and Bayesian belief networks), much of which is presented in this paper. The first targeted demonstration rocket engine platform is the MC-1 (formerly FASTRAC Engine) which is simulated with hardware and software in the Marshall Avionics & Software Testbed laboratory that

  13. General Aviation Activity and Avionics Survey (Annual Summary Report - 1985 data)

    DOT National Transportation Integrated Search

    1987-03-01

    This report presents the results and a description of the 1985 General Aviation Activity and Avionics Survey. The survey was conducted during 1986 by the FAA to obtain information on the activity and avionics of the United States registered general a...

  14. General aviation activity and avionics survey : annual summary report 1983 data.

    DOT National Transportation Integrated Search

    1984-10-01

    This report presents the results and a description of the 1983 General Aviation Activity and Avionics Survey. The survey was conducted during 1984 by the FAA to obtain information on the activity and avionics of the United States registered general a...

  15. General Aviation Activity and Avionics Survey (Annual Summary Report - 1978 data)

    DOT National Transportation Integrated Search

    1980-03-01

    This report presents the results and a description of the 1978 General Aviation Activity and Avionics Survey. The survey was conducted during early 1979 by the FAA to obtain information on the activity and avionics of the United States registered gen...

  16. General Aviation Activity and Avionics Survey (Annual Summary Report - 1984 data)

    DOT National Transportation Integrated Search

    1985-10-01

    This report presents the results and a description of the 1984 General Aviation Activity and Avionics Survey. The survey was conducted during 1985 by the FAA to obtain information on the activity and avionics of the United States registered general a...

  17. General Aviation Activity and Avionics Survey (Annual Summary Report - 1987 data).

    DOT National Transportation Integrated Search

    1988-11-01

    This report presents the results and a description of the 1987 General Aviation Activity and Avionics Survey. The survey was conducted during 1988 by the FAA to obtain information on the activity and avionics of the United States registered general a...

  18. General Aviation Activity and Avionics Survey (Annual Summary Report - 1982 data).

    DOT National Transportation Integrated Search

    1983-12-01

    This report presents the results and a description of the 1982 General Aviation Activity and Avionics Survey. The survey was conducted during 1983 by the FAA to obtain information on the activity and avionics of the United States registered general a...

  19. Avionic architecture requirements for Space Exploration Initiative systems

    NASA Technical Reports Server (NTRS)

    Herbella, C. G.; Brown, D. C.

    1991-01-01

    The authors discuss NASA's Strategic Avionics Technology Working Group (SATWG) and the results of the first study commissioned by the SATWG, the Space Avionics Requirements Study (SARS). The goal of the SARS task was to show that an open avionics architecture, using modular, standardized components, could be applied across the wide range of systems that comprise the Space Exploration Initiative. The study addressed systems ranging from expendable launch vehicles and the space station to surface systems such as Mars or lunar rovers and habitats. Top-level avionics requirements were derived from characterizations of each of the systems considered. Then a set of avionics subsystems were identified, along with estimates of the numbers and types of modules needed to meet the requirements. Applicability of these results across the infrastructure was then illustrated. In addition to these tasks, critical technologies were identified, characterized, and assessed in terms of their criticality and impact on the program. Design, development, test, and evaluation methods were addressed to identify potential areas of improvement.

  20. Shuttle avionics software trials, tribulations and success

    NASA Technical Reports Server (NTRS)

    Henderson, O. L.

    1985-01-01

    The early problems and the solutions developed to provide the required quality software needed to support the space shuttle engine development program are described. The decision to use a programmable digital control system on the space shuttle engine was primarily based upon the need for a flexible control system capable of supporting the total engine mission on a large complex pump fed engine. The mission definition included all control phases from ground checkout through post shutdown propellant dumping. The flexibility of the controller through reprogrammable software allowed the system to respond to the technical challenges and innovation required to develop both the engine and controller hardware. This same flexibility, however, placed a severe strain on the capability of the software development and verification organization. The overall development program required that the software facility accommodate significant growth in both the software requirements and the number of software packages delivered. This challenge was met by reorganization and evolution in the process of developing and verifying software.

  1. KSC-2011-3201

    NASA Image and Video Library

    2011-05-01

    CAPE CANAVERAL, Fla. -- This diagram of a space shuttle orbiter shows the location of avionics bay 5. Space shuttle Endeavour was scheduled to launch on the STS-134 mission to the International Space Station on April 29, but that attempt was scrubbed to allow engineers to assess an issue associated with failed heaters on a fuel line for Endeavour's auxiliary power unit-1 (APU-1). STS-134 will be the final spaceflight for Endeavour. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts134/index.html. Image credit: NASA

  2. Report to the NASA Administrator by the Aerospace Safety Advisory Panel on the Space Shuttle Program. Part 1: Observations and Conclusions

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Each system was chosen on the basis of its importance with respect to crew safety and mission success. An overview of the systems management is presented. The space shuttle main engine, orbiter thermal protection system, avionics, external tanks and solid rocket boosters were examined. The ground test and ground support equipment programs were studied. Program management was found to have an adequate understanding of the significant ground and flight risks involved.

  3. Aircraft Trajectories Computation-Prediction-Control (La Trajectoire de l’Avion Calcul-Prediction-Controle). Volume 3

    DTIC Science & Technology

    1990-05-01

    et au suivi des trajcctoires d’a&onefs se subdivise en trois parties: (a) un recueil des r~sumis des contributions - le texte integral sera...Organisation for the Safety of Air Navigation EUROCONTROL Engineering Directorate 72, rue de la Loi B- 1040 Bruxelles Belgium PANEL EXECUTIVE From Europe...AIRCRAFT MOTION IN MOVING AIR b R.Brockhaus DETERMINATION DES LOIS DE GUIDAGE QUASI-OPTIMALES EN TEMPS REEL POUR 4 A-3/4 DES TRAJECTOIRES DAVIONS DE COMBAT

  4. Manx: Close air support aircraft preliminary design

    NASA Technical Reports Server (NTRS)

    Amy, Annie; Crone, David; Hendrickson, Heidi; Willis, Randy; Silva, Vince

    1991-01-01

    The Manx is a twin engine, twin tailed, single seat close air support design proposal for the 1991 Team Student Design Competition. It blends advanced technologies into a lightweight, high performance design with the following features: High sensitivity (rugged, easily maintained, with night/adverse weather capability); Highly maneuverable (negative static margin, forward swept wing, canard, and advanced avionics result in enhanced aircraft agility); and Highly versatile (design flexibility allows the Manx to contribute to a truly integrated ground team capable of rapid deployment from forward sites).

  5. AAAIC '88 - Aerospace Applications of Artificial Intelligence; Proceedings of the Fourth Annual Conference, Dayton, OH, Oct. 25-27, 1988. Volumes 1 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, J.R.; Netrologic, Inc., San Diego, CA)

    1988-01-01

    Topics presented include integrating neural networks and expert systems, neural networks and signal processing, machine learning, cognition and avionics applications, artificial intelligence and man-machine interface issues, real time expert systems, artificial intelligence, and engineering applications. Also considered are advanced problem solving techniques, combinational optimization for scheduling and resource control, data fusion/sensor fusion, back propagation with momentum, shared weights and recurrency, automatic target recognition, cybernetics, optical neural networks.

  6. An autonomous payload controller for the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Hudgins, J. I.

    1979-01-01

    The Autonomous Payload Control (APC) system discussed in the present paper was designed on the basis of such criteria as minimal cost of implementation, minimal space required in the flight-deck area, simple operation with verification of the results, minimal additional weight, minimal impact on Orbiter design, and minimal impact on Orbiter payload integration. In its present configuration, the APC provides a means for the Orbiter crew to control as many as 31 autononous payloads. The avionics and human engineering aspects of the system are discussed.

  7. Military display market segment: avionics (Invited Paper)

    NASA Astrophysics Data System (ADS)

    Desjardins, Daniel D.; Hopper, Darrel G.

    2005-05-01

    The military display market is analyzed in terms of one of its segments: avionics. Requirements are summarized for 13 technology-driving parameters for direct-view and virtual-view displays in cockpits and cabins. Technical specifications are discussed for selected programs. Avionics stresses available technology and usually requires custom display designs.

  8. Space Generic Open Avionics Architecture (SGOAA): Overview

    NASA Technical Reports Server (NTRS)

    Wray, Richard B.; Stovall, John R.

    1992-01-01

    A space generic open avionics architecture created for NASA is described. It will serve as the basis for entities in spacecraft core avionics, capable of being tailored by NASA for future space program avionics ranging from small vehicles such as Moon ascent/descent vehicles to large ones such as Mars transfer vehicles or orbiting stations. The standard consists of: (1) a system architecture; (2) a generic processing hardware architecture; (3) a six class architecture interface model; (4) a system services functional subsystem architectural model; and (5) an operations control functional subsystem architectural model.

  9. Strategic avionics technology planning

    NASA Technical Reports Server (NTRS)

    Cox, Kenneth J.; Brown, Don C.

    1991-01-01

    NASA experience in development and insertion of technology into programs had led to a recognition that a Strategic Plan for Avionics is needed for space. In the fall of 1989 an Avionics Technology Symposium was held in Williamsburg, Virginia. In early 1990, as a followon, a NASA wide Strategic Avionics Technology Working Group was chartered by NASA Headquarters. This paper will describe the objectives of this working group, technology bridging, and approaches to incentivize both the federal and commercial sectors to move toward rapidly developed, simple, and reliable systems with low life cycle cost.

  10. HiRel - Reliability/availability integrated workstation tool

    NASA Technical Reports Server (NTRS)

    Bavuso, Salvatore J.; Dugan, Joanne B.

    1992-01-01

    The HiRel software tool is described and demonstrated by application to the mission avionics subsystem of the Advanced System Integration Demonstrations (ASID) system that utilizes the PAVE PILLAR approach. HiRel marks another accomplishment toward the goal of producing a totally integrated computer-aided design (CAD) workstation design capability. Since a reliability engineer generally represents a reliability model graphically before it can be solved, the use of a graphical input description language increases productivity and decreases the incidence of error. The graphical postprocessor module HARPO makes it possible for reliability engineers to quickly analyze huge amounts of reliability/availability data to observe trends due to exploratory design changes. The addition of several powerful HARP modeling engines provides the user with a reliability/availability modeling capability for a wide range of system applications all integrated under a common interactive graphical input-output capability.

  11. Estimation of Airline Benefits from Avionics Upgrade under Preferential Merge Re-sequence Scheduling

    NASA Technical Reports Server (NTRS)

    Kotegawa, Tatsuya; Cayabyab, Charlene Anne; Almog, Noam

    2013-01-01

    Modernization of the airline fleet avionics is essential to fully enable future technologies and procedures for increasing national airspace system capacity. However in the current national airspace system, system-wide benefits gained by avionics upgrade are not fully directed to aircraft/airlines that upgrade, resulting in slow fleet modernization rate. Preferential merge re-sequence scheduling is a best-equipped-best-served concept designed to incentivize avionics upgrade among airlines by allowing aircraft with new avionics (high-equipped) to be re-sequenced ahead of aircraft without the upgrades (low-equipped) at enroute merge waypoints. The goal of this study is to investigate the potential benefits gained or lost by airlines under a high or low-equipped fleet scenario if preferential merge resequence scheduling is implemented.

  12. Case Study of Using High Performance Commercial Processors in Space

    NASA Technical Reports Server (NTRS)

    Ferguson, Roscoe C.; Olivas, Zulema

    2009-01-01

    The purpose of the Space Shuttle Cockpit Avionics Upgrade project (1999 2004) was to reduce crew workload and improve situational awareness. The upgrade was to augment the Shuttle avionics system with new hardware and software. A major success of this project was the validation of the hardware architecture and software design. This was significant because the project incorporated new technology and approaches for the development of human rated space software. An early version of this system was tested at the Johnson Space Center for one month by teams of astronauts. The results were positive, but NASA eventually cancelled the project towards the end of the development cycle. The goal to reduce crew workload and improve situational awareness resulted in the need for high performance Central Processing Units (CPUs). The choice of CPU selected was the PowerPC family, which is a reduced instruction set computer (RISC) known for its high performance. However, the requirement for radiation tolerance resulted in the re-evaluation of the selected family member of the PowerPC line. Radiation testing revealed that the original selected processor (PowerPC 7400) was too soft to meet mission objectives and an effort was established to perform trade studies and performance testing to determine a feasible candidate. At that time, the PowerPC RAD750s were radiation tolerant, but did not meet the required performance needs of the project. Thus, the final solution was to select the PowerPC 7455. This processor did not have a radiation tolerant version, but had some ability to detect failures. However, its cache tags did not provide parity and thus the project incorporated a software strategy to detect radiation failures. The strategy was to incorporate dual paths for software generating commands to the legacy Space Shuttle avionics to prevent failures due to the softness of the upgraded avionics.

  13. Case Study of Using High Performance Commercial Processors in a Space Environment

    NASA Technical Reports Server (NTRS)

    Ferguson, Roscoe C.; Olivas, Zulema

    2009-01-01

    The purpose of the Space Shuttle Cockpit Avionics Upgrade project was to reduce crew workload and improve situational awareness. The upgrade was to augment the Shuttle avionics system with new hardware and software. A major success of this project was the validation of the hardware architecture and software design. This was significant because the project incorporated new technology and approaches for the development of human rated space software. An early version of this system was tested at the Johnson Space Center for one month by teams of astronauts. The results were positive, but NASA eventually cancelled the project towards the end of the development cycle. The goal to reduce crew workload and improve situational awareness resulted in the need for high performance Central Processing Units (CPUs). The choice of CPU selected was the PowerPC family, which is a reduced instruction set computer (RISC) known for its high performance. However, the requirement for radiation tolerance resulted in the reevaluation of the selected family member of the PowerPC line. Radiation testing revealed that the original selected processor (PowerPC 7400) was too soft to meet mission objectives and an effort was established to perform trade studies and performance testing to determine a feasible candidate. At that time, the PowerPC RAD750s where radiation tolerant, but did not meet the required performance needs of the project. Thus, the final solution was to select the PowerPC 7455. This processor did not have a radiation tolerant version, but faired better than the 7400 in the ability to detect failures. However, its cache tags did not provide parity and thus the project incorporated a software strategy to detect radiation failures. The strategy was to incorporate dual paths for software generating commands to the legacy Space Shuttle avionics to prevent failures due to the softness of the upgraded avionics.

  14. The Integrated Safety-Critical Advanced Avionics Communication and Control (ISAACC) System Concept: Infrastructure for ISHM

    NASA Technical Reports Server (NTRS)

    Gwaltney, David A.; Briscoe, Jeri M.

    2005-01-01

    Integrated System Health Management (ISHM) architectures for spacecraft will include hard real-time, critical subsystems and soft real-time monitoring subsystems. Interaction between these subsystems will be necessary and an architecture supporting multiple criticality levels will be required. Demonstration hardware for the Integrated Safety-Critical Advanced Avionics Communication & Control (ISAACC) system has been developed at NASA Marshall Space Flight Center. It is a modular system using a commercially available time-triggered protocol, ?Tp/C, that supports hard real-time distributed control systems independent of the data transmission medium. The protocol is implemented in hardware and provides guaranteed low-latency messaging with inherent fault-tolerance and fault-containment. Interoperability between modules and systems of modules using the TTP/C is guaranteed through definition of messages and the precise message schedule implemented by the master-less Time Division Multiple Access (TDMA) communications protocol. "Plug-and-play" capability for sensors and actuators provides automatically configurable modules supporting sensor recalibration and control algorithm re-tuning without software modification. Modular components of controlled physical system(s) critical to control algorithm tuning, such as pumps or valve components in an engine, can be replaced or upgraded as "plug and play" components without modification to the ISAACC module hardware or software. ISAACC modules can communicate with other vehicle subsystems through time-triggered protocols or other communications protocols implemented over Ethernet, MIL-STD- 1553 and RS-485/422. Other communication bus physical layers and protocols can be included as required. In this way, the ISAACC modules can be part of a system-of-systems in a vehicle with multi-tier subsystems of varying criticality. The goal of the ISAACC architecture development is control and monitoring of safety critical systems of a manned spacecraft. These systems include spacecraft navigation and attitude control, propulsion, automated docking, vehicle health management and life support. ISAACC can integrate local critical subsystem health management with subsystems performing long term health monitoring. The ISAACC system and its relationship to ISHM will be presented.

  15. Reliability, Availability and Maintainability Design Practices Guide. Volume 1,

    DTIC Science & Technology

    1981-03-01

    Experience 7-3-3 Air Force RIV - Avionics 7-3-4 RIW-S Army 7-3-5a The Application of Availability to Linear 7-3-6 Indifference Contracting Improvement...acceptance of the maintain- ability of Air Force ground electronic systems and equipments. Although the notebook is directed at ground electronic systems...conformal coating standardization, a lack of written instructions, and no standardization between fleet activities. The Naval Air Development Center

  16. C-130 Automated Digital Data System (CADDS)

    NASA Technical Reports Server (NTRS)

    Scofield, C. P.; Nguyen, Chien

    1991-01-01

    Real time airborne data acquisition, archiving and distribution on the NASA/Ames Research Center (ARC) C-130 has been improved over the past three years due to the implementation of the C-130 Automated Digital Data System (CADDS). CADDS is a real time, multitasking, multiprocessing ROM-based system. CADDS acquires data from both avionics and environmental sensors inflight for all C-130 data lines. The system also displays the data on video monitors throughout the aircraft.

  17. Advanced Information Processing System (AIPS)-based fault tolerant avionics architecture for launch vehicles

    NASA Technical Reports Server (NTRS)

    Lala, Jaynarayan H.; Harper, Richard E.; Jaskowiak, Kenneth R.; Rosch, Gene; Alger, Linda S.; Schor, Andrei L.

    1990-01-01

    An avionics architecture for the advanced launch system (ALS) that uses validated hardware and software building blocks developed under the advanced information processing system program is presented. The AIPS for ALS architecture defined is preliminary, and reliability requirements can be met by the AIPS hardware and software building blocks that are built using the state-of-the-art technology available in the 1992-93 time frame. The level of detail in the architecture definition reflects the level of detail available in the ALS requirements. As the avionics requirements are refined, the architecture can also be refined and defined in greater detail with the help of analysis and simulation tools. A useful methodology is demonstrated for investigating the impact of the avionics suite to the recurring cost of the ALS. It is shown that allowing the vehicle to launch with selected detected failures can potentially reduce the recurring launch costs. A comparative analysis shows that validated fault-tolerant avionics built out of Class B parts can result in lower life-cycle-cost in comparison to simplex avionics built out of Class S parts or other redundant architectures.

  18. Comparison of custom versus COTS AMLCDs for military and avionic applications

    NASA Astrophysics Data System (ADS)

    Angelo, Van

    1997-07-01

    AMLCD's are currently the flat panel technology of choice for military systems and civil transport avionic applications, both new and retrofit. Historically, military and avionic displays have ben custom designed and have generally been specific to each application. Two recent developments have given display system designers a choice between a custom military/avionic solution or a ruggedized commercial off-the-shelf (COTS) implementation. The first development is the widespread availability of various consumer and automotive AMLCD panels at low prices. The second is the change in the policy of defense departments, notably the US Department of Defense, to procure COTS components instead of developing custom solutions. This paper assesses and analyzes the key differences in characteristics, performance and logistical supportability of military and avionic AMLCD's and presents the tradeoffs involved in making the optimum choice between custom and COTS.

  19. Space Generic Open Avionics Architecture (SGOAA) standard specification

    NASA Technical Reports Server (NTRS)

    Wray, Richard B.; Stovall, John R.

    1994-01-01

    This standard establishes the Space Generic Open Avionics Architecture (SGOAA). The SGOAA includes a generic functional model, processing structural model, and an architecture interface model. This standard defines the requirements for applying these models to the development of spacecraft core avionics systems. The purpose of this standard is to provide an umbrella set of requirements for applying the generic architecture models to the design of a specific avionics hardware/software processing system. This standard defines a generic set of system interface points to facilitate identification of critical services and interfaces. It establishes the requirement for applying appropriate low level detailed implementation standards to those interfaces points. The generic core avionics functions and processing structural models provided herein are robustly tailorable to specific system applications and provide a platform upon which the interface model is to be applied.

  20. Space Shuttle avionics upgrade - Issues and opportunities

    NASA Astrophysics Data System (ADS)

    Swaim, Richard A.; Wingert, William B.

    An overview is conducted of existing Space Shuttle avionics and the possibilities for upgrading the cockpit to reduce costs and increase functionability. The current avionics include five general-purpose computers fitted with multifunction displays, dedicated switches and indicators, and dedicated flight instruments. The operational needs of the Shuttle are reviewed in the light of the avionics and potential upgrades in the form of microprocessors and display systems. The use of better processors can provide hardware support for multitasking and memory management and can reduce the life-cycle cost for software. Some limitations of the current technology are acknowledged including the Shuttle's power budget and structural configuration. A phased infusion of upgraded avionics is proposed that provides a functionally transparent replacement of crew-interface equipment as well as the addition of interface enhancements and the migration of selected functions.

  1. Space Generic Open Avionics Architecture (SGOAA) reference model technical guide

    NASA Technical Reports Server (NTRS)

    Wray, Richard B.; Stovall, John R.

    1993-01-01

    This report presents a full description of the Space Generic Open Avionics Architecture (SGOAA). The SGOAA consists of a generic system architecture for the entities in spacecraft avionics, a generic processing architecture, and a six class model of interfaces in a hardware/software system. The purpose of the SGOAA is to provide an umbrella set of requirements for applying the generic architecture interface model to the design of specific avionics hardware/software systems. The SGOAA defines a generic set of system interface points to facilitate identification of critical interfaces and establishes the requirements for applying appropriate low level detailed implementation standards to those interface points. The generic core avionics system and processing architecture models provided herein are robustly tailorable to specific system applications and provide a platform upon which the interface model is to be applied.

  2. Basic avionics module design for general aviation aircraft

    NASA Technical Reports Server (NTRS)

    Smyth, R. K.; Smyth, D. E.

    1978-01-01

    The design of an advanced digital avionics system (basic avionics module) for general aviation aircraft operated with a single pilot under IFR conditions is described. The microprocessor based system provided all avionic functions, including flight management, navigation, and lateral flight control. The mode selection was interactive with the pilot. The system used a navigation map data base to provide operation in the current and planned air traffic control environment. The system design included software design listings for some of the required modules. The distributed microcomputer uses the IEEE 488 bus for interconnecting the microcomputer and sensors.

  3. Alternate avionics system study and phase B extension

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Results of alternate avionics system studies for the space shuttle are presented that reduce the cost of vehicle avionics without incurring major off-setting costs on the ground. A comprehensive summary is provided of all configurations defined since the completion of the basic Phase B contract and a complete description of the optimized avionics baseline is given. In the new baseline, inflight redundancy management is performed onboard without ground support; utilization of off-the-shelf hardware reduces the cost figure substantially less than for the Phase B baseline. The only functional capability sacrificed in the new approach is automatic landing.

  4. Digital Avionics Information System (DAIS): Impact of DAIS Concept on Life Cycle Cost. Final Report.

    ERIC Educational Resources Information Center

    Goclowski, John C.; And Others

    Designed to identify and quantify the potential impacts of the Digital Avionics Information System (DAIS) on weapon system personnel requirements and life cycle cost (LCC), this study postulated a typical close-air-support (CAS) mission avionics suite to serve as a basis for comparing present day and DAIS configuration specifications. The purpose…

  5. Perspective on intelligent avionics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, H.L.

    1987-01-01

    Technical issues which could potentially limit the capability and acceptibility of expert systems decision-making for avionics applications are addressed. These issues are: real-time AI, mission-critical software, conventional algorithms, pilot interface, knowledge acquisition, and distributed expert systems. Examples from on-going expert system development programs are presented to illustrate likely architectures and applications of future intelligent avionic systems. 13 references.

  6. Definition of avionics concepts for a heavy lift cargo vehicle, appendix A

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The major objective of the study task was to define a cost effective, multiuser simulation, test, and demonstration facility to support the development of avionics systems for future space vehicles. This volume provides the results of the main simulation processor selection study and describes some proof-of-concept demonstrations for the avionics test bed facility.

  7. Nonoperating Failure Rates for Avionics Study.

    DTIC Science & Technology

    1980-04-01

    Missile, 1 August 1973. Temperature Readings at Three Indicated Locations ............................ 3-10 3-7 Operating vs . Nonoperating Failure...Failures vs . Mission Duration for Jet Aircraft Equipment ... ...................... ... 4-39 4-17 Cumulative Total Failures vs . Mission Duration for Jet...AVIONIC EQUIPMENT FIELD CHARACTERISTICS To better understand the type of service exposure avionic equipment must withstand , several aspects of the

  8. 78 FR 42898 - Airworthiness Directives; ATR-GIE Avions de Transport Régional Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-18

    ... identified in this proposed AD, contact ATR-GIE Avions de Transport R[eacute]gional, 1, All[eacute]e Pierre... Transport R[eacute]gional Airplanes AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of...-GIE Avions de Transport R[eacute]gional Model ATR72-101, - 201, -102, -202, -211, -212, and -212A...

  9. Space Shuttle Program Primary Avionics Software System (PASS) Success Legacy -Major Accomplishments and Lessons Learned

    NASA Technical Reports Server (NTRS)

    Orr, James K.

    2010-01-01

    This presentation has shown the accomplishments of the PASS project over three decades and highlighted the lessons learned. Over the entire time, our goal has been to continuously improve our process, implement automation for both quality and increased productivity, and identify and remove all defects due to prior execution of a flawed process in addition to improving our processes following identification of significant process escapes. Morale and workforce instability have been issues, most significantly during 1993 to 1998 (period of consolidation in aerospace industry). The PASS project has also consulted with others, including the Software Engineering Institute, so as to be an early evaluator, adopter, and adapter of state-of-the-art software engineering innovations.

  10. An overview of autonomous rendezvous and docking system technology development

    NASA Astrophysics Data System (ADS)

    Nelson, Kurt D.

    The Centaur upper stage was selected for an airborne avionics modernization program. The parts used in the existing avionics units were obsolete. Continued use of existing hardware would require substantial redesign, yet would result in the use of outdated hardware. Out of date processes, with very expensive and labor intensive technologies, were being used for manufacturing. The Atlas/Centaur avionics were to be procured at a fairly high rate that demanded the use of modern components. The new avionics also reduce size, weight, power, and parts count with a dramatic improvement in reliability. Finally, the cost leverage derived from upgrading the avionics as opposed to any other subsystem for the existing Atlas/Centaur was a very large consideration in the upgrade decision. The upgrade program is a multiyear effort that began in 1989. It includes telemetry, guidance and navigation, control electronics, thrust vector control, and redundancy levels.

  11. National space transportation systems planning

    NASA Technical Reports Server (NTRS)

    Lucas, W. R.

    1985-01-01

    In the fall of 1984, the DOD and NASA had been asked to identify launch vehicle technologies which could be made available for use in 1995 to 2010. The results of the studies of the two groups were integrated, and a consumer report, dated December 1984, was forwarded to the President. Aspects of mission planning and analysis are discussed along with a combined mission model, future launch system requirements, a launch vehicle planning background, Shuttle derivative vehicle program options, payload modularization, launch vehicle technology implications, a new engine program for the mid-1990's. Future launch systems goals are to achieve an order of magnitude reduction in future launch cost and meet the lift requirements and launch rates. Attention is given to an advanced cryogenic engine, advanced LOX/hydrocarbon engine, advanced power systems, aerodynamics/flight mechanics, reentry/recovery systems, avionics/software, advanced manufacturing techniques, autonomous ground and mission operations, advanced structures/materials, and air breathing propulsion.

  12. Workshop on Avionics Corrosion Control: Meeting of the Structures and Materials Panel of AGARD (62nd) Held in Hovik (Norway) on 16-17 April 1986.

    DTIC Science & Technology

    1987-09-01

    CORROSOIN IN AVIONICS AND ASSOCIATED EQUIPMENT; CAUSE. EFFECT AND PREVENTION by R.GIkmte ,m E.GEdpr 4 ROYAL NAVY EXPERIENCE OF CORROSION IN AVIONICS...and the preventative maintenance was the application of copious quantities of petroleum jelly , also known as vaseline. Incidentally, the same mthods

  13. SAR Aircrew--HH-3F Avionics and HH-3F Flight Preparation. ACH3AV-0442. Second Edition, Revised.

    ERIC Educational Resources Information Center

    Coast Guard Inst., Oklahoma City, OK.

    This document contains two U.S. Coast Guard self-study pamphlets that provide training in helicopter flight preparation and avionics duties. Each pamphlet consists of a number of lessons that include objectives, information illustrated with line drawings and/or photographs, and self-quizzes with answers. The avionics course covers the following…

  14. Digital Avionics Information System (DAIS): Development and Demonstration.

    DTIC Science & Technology

    1981-09-01

    advances in technology. The DAIS architecture results in improved reliability and availability of avionics systems while at the same time reducing life ...DAIS) represents a significant advance in the technology of avionics system architecture. DAIS is a total systems concept, exploiting standardization...configurations and fully capable of accommodating new advances in technology. These fundamental system charac- teristics are described in this report; the

  15. Role of neural networks for avionics

    NASA Astrophysics Data System (ADS)

    Bowman, Christopher L.; DeYong, Mark R.; Eskridge, Thomas C.

    1995-08-01

    Neural network (NN) architectures provide a thousand-fold speed-up in computational power per watt along with the flexibility to learn/adapt so as to reduce software life-cycle costs. Thus NNs are posed to provide a key supporting role to meet the avionics upgrade challenge for affordable improved mission capability especially near hardware where flexible and powerful smart processing is needed. This paper summarizes the trends for air combat and the resulting avionics needs. A paradigm for information fusion and response management is then described from which viewpoint the role for NNs as a complimentary technology in meeting these avionics challenges is explained along with the key obstacles for NNs.

  16. Automatic design of IMA systems

    NASA Astrophysics Data System (ADS)

    Salomon, U.; Reichel, R.

    During the last years, the integrated modular avionics (IMA) design philosophy became widely established at aircraft manufacturers, giving rise to a series of new design challenges, most notably the allocation of avionics functions to the various IMA components and the placement of this equipment in the aircraft. This paper presents a modelling approach for avionics that allows automation of some steps of the design process by applying an optimisation algorithm which searches for system configurations that fulfil the safety requirements and have low costs. The algorithm was implemented as a quite sophisticated software prototype, therefore we will also present detailed results of its application to actual avionics systems.

  17. Remarks on Sentinel-1 Avionic SW Qualification

    NASA Astrophysics Data System (ADS)

    Candia, Sante; Pascucci, Dario

    2013-08-01

    The GMES Sentinel-1 Earth Radar Observatory, a projects co-funded by the European Union and the European Space Agency (ESA), is a constellation of C-band radar satellites. The satellites have been conceived to be a continuous and reliable source of C-band SAR imagery for operational application such as mapping of global landmasses, coastal zones and monitoring of shipping routes. ESA is responsible for the development of the Sentinel-1 satellites that are built by an industrial consortium headed by Thales Alenia Space Italy (TASI) as Prime Contractor. TAS-I is also directly responsible for the production of the Spacecraft Bus and the Avionic S/S including the Avionic SW (ASW), which is characterized by: · The high performances of its attitude and orbit determination and control function; · Scheduling of the imaging activity on position basis with high geo-location performances; · High on board autonomy both in routine and contingency situations. This paper is focused on the Sentinel-1 Avionic SW, which has currently been qualified by TAS-I for Flight. It covers both the SW architecture and development process areas: · Avionic SW context; · Avionic SW architecture; · Flexibility of PUS-based on-board autonomy and FDIR; · Validation and Qualification activities;

  18. The single event upset environment for avionics at high latitude

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sims, A.J.; Dyer, C.S.; Peerless, C.L.

    1994-12-01

    Modern avionic systems for civil and military applications are becoming increasingly reliant upon embedded microprocessors and associated memory devices. The phenomenon of single event upset (SEU) is well known in space systems and designers have generally been careful to use SEU tolerant devices or to implement error detection and correction (EDAC) techniques where appropriate. In the past, avionics designers have had no reason to consider SEU effects but is clear that the more prevalent use of memory devices combined with increasing levels of IC integration will make SEU mitigation an important design consideration for future avionic systems. To this end,more » it is necessary to work towards producing models of the avionics SEU environment which will permit system designers to choose components and EDAC techniques which are based on predictions of SEU rates correct to much better than an order of magnitude. Measurements of the high latitude SEU environment at avionics altitude have been made on board a commercial airliner. Results are compared with models of primary and secondary cosmic rays and atmospheric neutrons. Ground based SEU tests of static RAMs are used to predict rates in flight.« less

  19. Waveform Developer's Guide for the Integrated Power, Avionics, and Software (iPAS) Space Telecommunications Radio System (STRS) Radio

    NASA Technical Reports Server (NTRS)

    Shalkhauser, Mary Jo W.; Roche, Rigoberto

    2017-01-01

    The Space Telecommunications Radio System (STRS) provides a common, consistent framework for software defined radios (SDRs) to abstract the application software from the radio platform hardware. The STRS standard aims to reduce the cost and risk of using complex, configurable and reprogrammable radio systems across NASA missions. To promote the use of the STRS architecture for future NASA advanced exploration missions, NASA Glenn Research Center (GRC) developed an STRS-compliant SDR on a radio platform used by the Advance Exploration System program at the Johnson Space Center (JSC) in their Integrated Power, Avionics, and Software (iPAS) laboratory. The iPAS STRS Radio was implemented on the Reconfigurable, Intelligently-Adaptive Communication System (RIACS) platform, currently being used for radio development at JSC. The platform consists of a Xilinx(Trademark) ML605 Virtex(Trademark)-6 FPGA board, an Analog Devices FMCOMMS1-EBZ RF transceiver board, and an Embedded PC (Axiomtek(Trademark) eBox 620-110-FL) running the Ubuntu 12.4 operating system. The result of this development is a very low cost STRS compliant platform that can be used for waveform developments for multiple applications. The purpose of this document is to describe how to develop a new waveform using the RIACS platform and the Very High Speed Integrated Circuits (VHSIC) Hardware Description Language (VHDL) FPGA wrapper code and the STRS implementation on the Axiomtek processor.

  20. Hybrid Power Management Program Evaluated Ultracapacitors for the Next Generation Launch Transportation Project

    NASA Technical Reports Server (NTRS)

    Eichenberg, Dennis J.

    2005-01-01

    The NASA Glenn Research Center initiated baseline testing of ultracapacitors to obtain empirical data in determining the feasibility of using ultracapacitors for the Next Generation Launch Transportation (NGLT) Project. There are large transient loads associated with NGLT that require a very large primary energy source or an energy storage system. The primary power source used for this test was a proton-exchange-membrane (PEM) fuel cell. The energy storage system can consist of batteries, flywheels, or ultracapacitors. Ultracapacitors were used for these tests. NASA Glenn has a wealth of experience in ultracapacitor technology through the Hybrid Power Management (HPM) Program, which the Avionics, Power and Communications Branch of Glenn s Engineering Development Division initiated for the Technology Transfer and Partnership Office. HPM is the innovative integration of diverse, state-ofthe- art power devices in optimal configurations for space and terrestrial applications. The appropriate application and control of the various advanced power devices (such as ultracapacitors and fuel cells) significantly improves overall system performance and efficiency. HPM has extremely wide potential. Applications include power generation, transportation systems, biotechnology systems, and space power systems. HPM has the potential to significantly alleviate global energy concerns, improve the environment, and stimulate the economy.

  1. Mini AERCam Inspection Robot for Human Space Missions

    NASA Technical Reports Server (NTRS)

    Fredrickson, Steven E.; Duran, Steve; Mitchell, Jennifer D.

    2004-01-01

    The Engineering Directorate of NASA Johnson Space Center has developed a nanosatellite-class free-flyer intended for future external inspection and remote viewing of human spacecraft. The Miniature Autonomous Extravehicular Robotic Camera (Mini AERCam) technology demonstration unit has been integrated into the approximate form and function of a flight system. The spherical Mini AERCam free flyer is 7.5 inches in diameter and weighs approximately 10 pounds, yet it incorporates significant additional capabilities compared to the 35 pound, 14 inch AERCam Sprint that flew as a Shuttle flight experiment in 1997. Mini AERCam hosts a full suite of miniaturized avionics, instrumentation, communications, navigation, imaging, power, and propulsion subsystems, including digital video cameras and a high resolution still image camera. The vehicle is designed for either remotely piloted operations or supervised autonomous operations including automatic stationkeeping and point-to-point maneuvering. Mini AERCam is designed to fulfill the unique requirements and constraints associated with using a free flyer to perform external inspections and remote viewing of human spacecraft operations. This paper describes the application of Mini AERCam for stand-alone spacecraft inspection, as well as for roles on teams of humans and robots conducting future space exploration missions.

  2. Computer technology forecast study for general aviation

    NASA Technical Reports Server (NTRS)

    Seacord, C. L.; Vaughn, D.

    1976-01-01

    A multi-year, multi-faceted program is underway to investigate and develop potential improvements in airframes, engines, and avionics for general aviation aircraft. The objective of this study was to assemble information that will allow the government to assess the trends in computer and computer/operator interface technology that may have application to general aviation in the 1980's and beyond. The current state of the art of computer hardware is assessed, technical developments in computer hardware are predicted, and nonaviation large volume users of computer hardware are identified.

  3. Radioactive waste disposal via electric propulsion

    NASA Technical Reports Server (NTRS)

    Burns, R. E.

    1975-01-01

    It is shown that space transportation is a feasible method of removal of radioactive wastes from the biosphere. The high decay heat of the isotopes powers a thermionic generator which provides electrical power for ion thrust engines. The massive shields (used to protect ground and flight personnel) are removed in orbit for subsequent reuse; the metallic fuel provides a shield for the avionics that guides the orbital stage to solar system escape. Performance calculations indicate that 4000 kg. of actinides may be removed per Shuttle flight. Subsidiary problems - such as cooling during ascent - are discussed.

  4. Ares I Ares V Overview

    NASA Technical Reports Server (NTRS)

    Sumrall, Phil

    2009-01-01

    This slide presentation is an overview of the Ares I and Ares V projects. It includes a comparison of the launch vehicles from the Saturn V, the Space Shuttle, and the planned Ares I and Ares V. In order to reduce operating cost, the Ares and V will use much of the same hardware. The elements of the Ares I and V. are reviewed and there is a view of the upper stage avionics. The elements of the J-2X engine to be used on both the Ares I and V are viewed.

  5. 1998 IEEE Aerospace Conference. Proceedings.

    NASA Astrophysics Data System (ADS)

    The following topics were covered: science frontiers and aerospace; flight systems technologies; spacecraft attitude determination and control; space power systems; smart structures and dynamics; military avionics; electronic packaging; MEMS; hyperspectral remote sensing for GVP; space laser technology; pointing, control, tracking and stabilization technologies; payload support technologies; protection technologies; 21st century space mission management and design; aircraft flight testing; aerospace test and evaluation; small satellites and enabling technologies; systems design optimisation; advanced launch vehicles; GPS applications and technologies; antennas and radar; software and systems engineering; scalable systems; communications; target tracking applications; remote sensing; advanced sensors; and optoelectronics.

  6. 2017 Solar Eclipse Event

    NASA Image and Video Library

    2017-06-11

    Sylvester Dorsey III, avionics lead for the Europa Deorbit Stage Team in Marshall's Engineering Directorate, is joined during Marshall's eclipse-viewing event by his three children, from left, Sylvester IV, Sidney and Sakari. Though Huntsville was south of the path of totality, the Dorseys were among those awestruck by the natural phenomenon. The Huntsville area experienced 97 percent occultation, nearly a complete blocking out of the sun by the orbit of Earth's moon. The next opportunity to view a solar eclipse in the eastern and central United States will occur in April 2024.

  7. Developpements numeriques recents realises en aeroelasticite chez Dassault Aviation pour la conception des avions de combat modernes et des avions d’affaires

    DTIC Science & Technology

    2003-03-01

    combat modernes et des avions d’affaires E. Garrigues, Th. Percheron DASSAULT AVIATION DGT/DTA/IAP F-922 14, Saint-Cloud Cedex France 1. Introduction ...de vol, des acedidrations rigides et des rdponses de la structure ( jauges et acedidrations). Struturl Premdicton Grdjustments n~~~ligh Testsn~n Fig4ure

  8. The Conflicting Forces Driving Future Avionics Acquisition (Les Arguments Contradictoires pour les Futurs Achats d’Equipements d’Avionique)

    DTIC Science & Technology

    1991-09-01

    Homogbnes, commo indiqu6 sur Ia figure 3 E~I- ODVE et moteurs (non 6tudi~e ici) EH-2: Interface Syst~mes Avion ISA EH3 ONI (Communications, Navigation...common, modular avionics in both RF and EO sensors, along with The Integrated Core Processing " meta - the sharing of aperture and receiver electronics

  9. Constraint based scheduling for the Goddard Space Flight Center distributed Active Archive Center's data archive and distribution system

    NASA Technical Reports Server (NTRS)

    Short, Nick, Jr.; Bedet, Jean-Jacques; Bodden, Lee; Boddy, Mark; White, Jim; Beane, John

    1994-01-01

    The Goddard Space Flight Center (GSFC) Distributed Active Archive Center (DAAC) has been operational since October 1, 1993. Its mission is to support the Earth Observing System (EOS) by providing rapid access to EOS data and analysis products, and to test Earth Observing System Data and Information System (EOSDIS) design concepts. One of the challenges is to ensure quick and easy retrieval of any data archived within the DAAC's Data Archive and Distributed System (DADS). Over the 15-year life of EOS project, an estimated several Petabytes (10(exp 15)) of data will be permanently stored. Accessing that amount of information is a formidable task that will require innovative approaches. As a precursor of the full EOS system, the GSFC DAAC with a few Terabits of storage, has implemented a prototype of a constraint-based task and resource scheduler to improve the performance of the DADS. This Honeywell Task and Resource Scheduler (HTRS), developed by Honeywell Technology Center in cooperation the Information Science and Technology Branch/935, the Code X Operations Technology Program, and the GSFC DAAC, makes better use of limited resources, prevents backlog of data, provides information about resources bottlenecks and performance characteristics. The prototype which is developed concurrently with the GSFC Version 0 (V0) DADS, models DADS activities such as ingestion and distribution with priority, precedence, resource requirements (disk and network bandwidth) and temporal constraints. HTRS supports schedule updates, insertions, and retrieval of task information via an Application Program Interface (API). The prototype has demonstrated with a few examples, the substantial advantages of using HTRS over scheduling algorithms such as a First In First Out (FIFO) queue. The kernel scheduling engine for HTRS, called Kronos, has been successfully applied to several other domains such as space shuttle mission scheduling, demand flow manufacturing, and avionics communications scheduling.

  10. Crew Exploration Vehicle (CEV) Avionics Integration Laboratory (CAIL) Independent Analysis

    NASA Technical Reports Server (NTRS)

    Davis, Mitchell L.; Aguilar, Michael L.; Mora, Victor D.; Regenie, Victoria A.; Ritz, William F.

    2009-01-01

    Two approaches were compared to the Crew Exploration Vehicle (CEV) Avionics Integration Laboratory (CAIL) approach: the Flat-Sat and Shuttle Avionics Integration Laboratory (SAIL). The Flat-Sat and CAIL/SAIL approaches are two different tools designed to mitigate different risks. Flat-Sat approach is designed to develop a mission concept into a flight avionics system and associated ground controller. The SAIL approach is designed to aid in the flight readiness verification of the flight avionics system. The approaches are complimentary in addressing both the system development risks and mission verification risks. The following NESC team findings were identified: The CAIL assumption is that the flight subsystems will be matured for the system level verification; The Flat-Sat and SAIL approaches are two different tools designed to mitigate different risks. The following NESC team recommendation was provided: Define, document, and manage a detailed interface between the design and development (EDL and other integration labs) to the verification laboratory (CAIL).

  11. Application of industry-standard guidelines for the validation of avionics software

    NASA Technical Reports Server (NTRS)

    Hayhurst, Kelly J.; Shagnea, Anita M.

    1990-01-01

    The application of industry standards to the development of avionics software is discussed, focusing on verification and validation activities. It is pointed out that the procedures that guide the avionics software development and testing process are under increased scrutiny. The DO-178A guidelines, Software Considerations in Airborne Systems and Equipment Certification, are used by the FAA for certifying avionics software. To investigate the effectiveness of the DO-178A guidelines for improving the quality of avionics software, guidance and control software (GCS) is being developed according to the DO-178A development method. It is noted that, due to the extent of the data collection and configuration management procedures, any phase in the life cycle of a GCS implementation can be reconstructed. Hence, a fundamental development and testing platform has been established that is suitable for investigating the adequacy of various software development processes. In particular, the overall effectiveness and efficiency of the development method recommended by the DO-178A guidelines are being closely examined.

  12. An Analysis of the Modes and States for Generic Avionics

    NASA Technical Reports Server (NTRS)

    Wray, Richard B.

    1993-01-01

    The objective of this study was to develop a topology for describing the behavior of mission, vehicle and system/substem entities in new flight vehicle designs based on the use of open standards. It also had to define and describe the modes and states which may be used in generic avionics behavioral descriptions, describe their interrelationships, and establish a method for applying generic avionics to actual flight vehicle designs.

  13. Highly Efficient Transmitter for High Peak to Average Power Ratio (PAPR) Waveforms

    DTIC Science & Technology

    2011-01-19

    on the modulated signal topology. N00039-10-C-0071 Page 1 ACRONYM DESCRIPTION FREQUENCY Lower Upper MHz MHz ACAS Avionics Identification ...450 GSM Global Mobile Communications 380 921 HAVE QUICK Military Aircraft Radio 225 400 IFF Avionics Identification . Collision Avoidance and...Channel Ground Air Radio System 30 88 TCAS Avionics Identification , Collision Avoidance and Traffic Alert 1030 1090 VIII Air Traffic Control (Civilian

  14. Customer Avionics Interface Development and Analysis (CAIDA): Software Developer for Avionics Systems

    NASA Technical Reports Server (NTRS)

    Mitchell, Sherry L.

    2018-01-01

    The Customer Avionics Interface Development and Analysis (CAIDA) supports the testing of the Launch Control System (LCS), NASA's command and control system for the Space Launch System (SLS), Orion Multi-Purpose Crew Vehicle (MPCV), and ground support equipment. The objective of the semester-long internship was to support day-to-day operations of CAIDA and help prepare for verification and validation of CAIDA software.

  15. Advanced Launch System Multi-Path Redundant Avionics Architecture Analysis and Characterization

    NASA Technical Reports Server (NTRS)

    Baker, Robert L.

    1993-01-01

    The objective of the Multi-Path Redundant Avionics Suite (MPRAS) program is the development of a set of avionic architectural modules which will be applicable to the family of launch vehicles required to support the Advanced Launch System (ALS). To enable ALS cost/performance requirements to be met, the MPRAS must support autonomy, maintenance, and testability capabilities which exceed those present in conventional launch vehicles. The multi-path redundant or fault tolerance characteristics of the MPRAS are necessary to offset a reduction in avionics reliability due to the increased complexity needed to support these new cost reduction and performance capabilities and to meet avionics reliability requirements which will provide cost-effective reductions in overall ALS recurring costs. A complex, real-time distributed computing system is needed to meet the ALS avionics system requirements. General Dynamics, Boeing Aerospace, and C.S. Draper Laboratory have proposed system architectures as candidates for the ALS MPRAS. The purpose of this document is to report the results of independent performance and reliability characterization and assessment analyses of each proposed candidate architecture and qualitative assessments of testability, maintainability, and fault tolerance mechanisms. These independent analyses were conducted as part of the MPRAS Part 2 program and were carried under NASA Langley Research Contract NAS1-17964, Task Assignment 28.

  16. Early Impacts of a Human-in-the-Loop Evaluation in a Space Vehicle Mock-up Facility

    NASA Technical Reports Server (NTRS)

    Byrne, Vicky; Vos, Gordon; Whitmore, Mihriban

    2008-01-01

    The development of a new space vehicle, the Orion Crew Exploration Vehicle (CEV), provides Human Factors engineers an excellent opportunity to have an impact early in the design process. This case study highlights a Human-in-the-Loop (HITL) evaluation conducted in a Space Vehicle Mock-Up Facility and will describe the human-centered approach and how the findings are impacting design and operational concepts early in space vehicle design. The focus of this HITL evaluation centered on the activities that astronaut crewmembers would be expected to perform within the functional internal volume of the Crew Module (CM) of the space vehicle. The primary objective was to determine if there are aspects of a baseline vehicle configuration that would limit or prevent the performance of dynamically volume-driving activities (e.g. six crewmembers donning their suits in an evacuation scenario). A second objective was to step through concepts of operations for known systems and evaluate them in integrated scenarios. The functional volume for crewmember activities is closely tied to every aspect of system design (e.g. avionics, safety, stowage, seats, suits, and structural support placement). As this evaluation took place before the Preliminary Design Review of the space vehicle with some designs very early in the development, it was not meant to determine definitely that the crewmembers could complete every activity, but rather to provide inputs that could improve developing designs and concepts of operations definition refinement.

  17. Aerothermodynamic Flight Simulation Capabilities for Aerospace Vehicles

    NASA Technical Reports Server (NTRS)

    Miller, Charles G.

    1998-01-01

    Aerothermodynamics, encompassing aerodynamics, aeroheating, and fluid dynamics and physical processes, is the genesis for the design and development of advanced space transportation vehicles and provides crucial information to other disciplines such as structures, materials, propulsion, avionics, and guidance, navigation and control. Sources of aerothermodynamic information are ground-based facilities, Computational Fluid Dynamic (CFD) and engineering computer codes, and flight experiments. Utilization of this aerothermodynamic triad provides the optimum aerothermodynamic design to safely satisfy mission requirements while reducing design conservatism, risk and cost. The iterative aerothermodynamic process for initial screening/assessment of aerospace vehicle concepts, optimization of aerolines to achieve/exceed mission requirements, and benchmark studies for final design and establishment of the flight data book are reviewed. Aerothermodynamic methodology centered on synergism between ground-based testing and CFD predictions is discussed for various flow regimes encountered by a vehicle entering the Earth s atmosphere from low Earth orbit. An overview of the resources/infrastructure required to provide accurate/creditable aerothermodynamic information in a timely manner is presented. Impacts on Langley s aerothermodynamic capabilities due to recent programmatic changes such as Center reorganization, downsizing, outsourcing, industry (as opposed to NASA) led programs, and so forth are discussed. Sample applications of these capabilities to high Agency priority, fast-paced programs such as Reusable Launch Vehicle (RLV)/X-33 Phases I and 11, X-34, Hyper-X and X-38 are presented and lessons learned discussed. Lastly, enhancements in ground-based testing/CFD capabilities necessary to partially/fully satisfy future requirements are addressed.

  18. Test results of a resonant integrated microbeam sensor (RIMS) for acoustic emission monitoring

    NASA Astrophysics Data System (ADS)

    Schoess, Jeffrey N.; Zook, J. David

    1998-07-01

    An acoustic emission (AE) sensor has been developed by Honeywell Technology Center for avionics, industrial control, and military applications. The AE sensor design is based on an integrated silicon microstructure, a resonant microbeam with micron-level feature size, and frequency sensitivity up to 500 kHz. The AE sensor has been demonstrated successfully in the laboratory test environment to sense and characterize a simulated AE even for structural fatigue crack monitoring applications. The technical design approach and laboratory test results are presented.

  19. MAS Bulletin. Papers Presented at Advisory Group for Aerospace Research and Development (AGARD) Symposium on Machine Intelligence for Aerospace Electronic Systems.

    DTIC Science & Technology

    1991-08-01

    neural networks, and machine learning . This list ie not all 9. Future ESM Systems and the Potential for Neural Processing inclusive. This research could...U.S. CAPT James M. Skinner , USAF, Air Force Space Technology 17. Development of Tactical Doecisiont Akid. Center, and Prof. Georg* F. Luger...ntegrat11111ng Macine I~1e900enc Into the Co~pi to Aid t" Pilot 26. Integrated Communications, Navigatlion. Ideintiflocation Avionics Dr. Edward J

  20. NASA Dryden technicians work on a fit-check mockup in preparation for systems installation work on an Orion boilerplate crew capsule for launch abort testing.

    NASA Image and Video Library

    2008-01-24

    NASA Dryden technicians work on a fit-check mockup in preparation for systems installation work on an Orion boilerplate crew capsule for launch abort testing. A mockup Orion crew module has been constructed by NASA Dryden Flight Research Center's Fabrication Branch. The mockup is being used to develop integration procedures for avionics and instrumentation in advance of the arrival of the first abort flight test article.

  1. NASA Dryden technicians take measurements inside a fit-check mockup for prior to systems installation on a boilerplate Orion launch abort test crew capsule.

    NASA Image and Video Library

    2008-01-24

    NASA Dryden technicians take measurements inside a fit-check mockup for prior to systems installation on a boilerplate Orion launch abort test crew capsule. A mockup Orion crew module has been constructed by NASA Dryden Flight Research Center's Fabrication Branch. The mockup is being used to develop integration procedures for avionics and instrumentation in advance of the arrival of the first abort flight test article.

  2. Business Case Analysis for the Versatile Depot Automated Test Station Used in the USAF Warner Robins Air Logistics Center Maintenance Depot

    DTIC Science & Technology

    2008-06-01

    executes the avionics test) can run on the new ATS thus creating the common ATS framework . The system will also enable numerous new functional...Enterprise-level architecture that reflects corporate DoD priorities and requirements for business systems, and provides a common framework to ensure that...entire Business Mission Area (BMA) of the DoD. The BEA also contains a set of integrated Department of Defense Architecture Framework (DoDAF

  3. Optical system design, analysis, and production; Proceedings of the Meeting, Geneva, Switzerland, April 19-22, 1983

    NASA Astrophysics Data System (ADS)

    Rogers, P. J.; Fischer, R. E.

    1983-01-01

    Topics considered include: optical system requirements, analysis, and system engineering; optical system design using microcomputers and minicomputers; optical design theory and computer programs; optical design methods and computer programs; optical design methods and philosophy; unconventional optical design; diffractive and gradient index optical system design; optical production and system integration; and optical systems engineering. Particular attention is given to: stray light control as an integral part of optical design; current and future directions of lens design software; thin-film technology in the design and production of optical systems; aspherical lenses in optical scanning systems; the application of volume phase holograms to avionic displays; the effect of lens defects on thermal imager performance; and a wide angle zoom for the Space Shuttle.

  4. Flight Guidance System Requirements Specification

    NASA Technical Reports Server (NTRS)

    Miller, Steven P.; Tribble, Alan C.; Carlson, Timothy M.; Danielson, Eric J.

    2003-01-01

    This report describes a requirements specification written in the RSML-e language for the mode logic of a Flight Guidance System of a typical regional jet aircraft. This model was created as one of the first steps in a five-year project sponsored by the NASA Langley Research Center, Rockwell Collins Inc., and the Critical Systems Research Group of the University of Minnesota to develop new methods and tools to improve the safety of avionics designs. This model will be used to demonstrate the application of a variety of methods and techniques, including safety analysis of system and subsystem requirements, verification of key properties using theorem provers and model checkers, identification of potential sources mode confusion in system designs, partitioning of applications based on the criticality of system hazards, and autogeneration of avionics quality code. While this model is representative of the mode logic of a typical regional jet aircraft, it does not describe an actual or planned product. Several aspects of a full Flight Guidance System, such as recovery from failed sensors, have been omitted, and no claims are made regarding the accuracy or completeness of this specification.

  5. A knowledge-based flight status monitor for real-time application in digital avionics systems

    NASA Technical Reports Server (NTRS)

    Duke, E. L.; Disbrow, J. D.; Butler, G. F.

    1989-01-01

    The Dryden Flight Research Facility of the National Aeronautics and Space Administration (NASA) Ames Research Center (Ames-Dryden) is the principal NASA facility for the flight testing and evaluation of new and complex avionics systems. To aid in the interpretation of system health and status data, a knowledge-based flight status monitor was designed. The monitor was designed to use fault indicators from the onboard system which are telemetered to the ground and processed by a rule-based model of the aircraft failure management system to give timely advice and recommendations in the mission control room. One of the important constraints on the flight status monitor is the need to operate in real time, and to pursue this aspect, a joint research activity between NASA Ames-Dryden and the Royal Aerospace Establishment (RAE) on real-time knowledge-based systems was established. Under this agreement, the original LISP knowledge base for the flight status monitor was reimplemented using the intelligent knowledge-based system toolkit, MUSE, which was developed under RAE sponsorship. Details of the flight status monitor and the MUSE implementation are presented.

  6. Aeronautical satellite antenna steering using magnetic field sensors

    NASA Technical Reports Server (NTRS)

    Sydor, John; Dufour, Martial

    1993-01-01

    Designers of aeronautical satellite terminals are often faced with the problem of steering a directive antenna from an airplane or helicopter. This problem is usually solved by using aircraft orientation information derived from inertial sensors on-board the aircraft in combination with satellite ephemeris information calculated from geographic coordinates. This procedure works well but relies heavily on avionics that are external to the terminal. For the majority of small aircraft and helicopters which will form the bulk of future aeronautical satcom users, such avionics either do not exist or are difficult for the satellite terminal to interface with. At the Communications Research Center (CRC), work has been undertaken to develop techniques that use the geomagnetic field and satellite antenna pointing vectors (both of which are stationary in a local geographical area) to track the position of a satellite relative to a moving platform such as an aircraft. The performance of this technique is examined and a mathematical steering transformation is developed within this paper. Details are given regarding the experimental program that will be undertaken to test the concepts proposed herein.

  7. Space-Shuttle Emulator Software

    NASA Technical Reports Server (NTRS)

    Arnold, Scott; Askew, Bill; Barry, Matthew R.; Leigh, Agnes; Mermelstein, Scott; Owens, James; Payne, Dan; Pemble, Jim; Sollinger, John; Thompson, Hiram; hide

    2007-01-01

    A package of software has been developed to execute a raw binary image of the space shuttle flight software for simulation of the computational effects of operation of space shuttle avionics. This software can be run on inexpensive computer workstations. Heretofore, it was necessary to use real flight computers to perform such tests and simulations. The package includes a program that emulates the space shuttle orbiter general- purpose computer [consisting of a central processing unit (CPU), input/output processor (IOP), master sequence controller, and buscontrol elements]; an emulator of the orbiter display electronics unit and models of the associated cathode-ray tubes, keyboards, and switch controls; computational models of the data-bus network; computational models of the multiplexer-demultiplexer components; an emulation of the pulse-code modulation master unit; an emulation of the payload data interleaver; a model of the master timing unit; a model of the mass memory unit; and a software component that ensures compatibility of telemetry and command services between the simulated space shuttle avionics and a mission control center. The software package is portable to several host platforms.

  8. Solving Autonomy Technology Gaps through Wireless Technology and Orion Avionics Architectural Principles

    NASA Astrophysics Data System (ADS)

    Black, Randy; Bai, Haowei; Michalicek, Andrew; Shelton, Blaine; Villela, Mark

    2008-01-01

    Currently, autonomy in space applications is limited by a variety of technology gaps. Innovative application of wireless technology and avionics architectural principles drawn from the Orion crew exploration vehicle provide solutions for several of these gaps. The Vision for Space Exploration envisions extensive use of autonomous systems. Economic realities preclude continuing the level of operator support currently required of autonomous systems in space. In order to decrease the number of operators, more autonomy must be afforded to automated systems. However, certification authorities have been notoriously reluctant to certify autonomous software in the presence of humans or when costly missions may be jeopardized. The Orion avionics architecture, drawn from advanced commercial aircraft avionics, is based upon several architectural principles including partitioning in software. Robust software partitioning provides "brick wall" separation between software applications executing on a single processor, along with controlled data movement between applications. Taking advantage of these attributes, non-deterministic applications can be placed in one partition and a "Safety" application created in a separate partition. This "Safety" partition can track the position of astronauts or critical equipment and prevent any unsafe command from executing. Only the Safety partition need be certified to a human rated level. As a proof-of-concept demonstration, Honeywell has teamed with the Ultra WideBand (UWB) Working Group at NASA Johnson Space Center to provide tracking of humans, autonomous systems, and critical equipment. Using UWB the NASA team can determine positioning to within less than one inch resolution, allowing a Safety partition to halt operation of autonomous systems in the event that an unplanned collision is imminent. Another challenge facing autonomous systems is the coordination of multiple autonomous agents. Current approaches address the issue as one of networking and coordination of multiple independent units, each with its own mission. As a proof-of-concept Honeywell is developing and testing various algorithms that lead to a deterministic, fault tolerant, reliable wireless backplane. Just as advanced avionics systems control several subsystems, actuators, sensors, displays, etc.; a single "master" autonomous agent (or base station computer) could control multiple autonomous systems. The problem is simplified to controlling a flexible body consisting of several sensors and actuators, rather than one of coordinating multiple independent units. By filling technology gaps associated with space based autonomous system, wireless technology and Orion architectural principles provide the means for decreasing operational costs and simplifying problems associated with collaboration of multiple autonomous systems.

  9. Nils Larson

    NASA Image and Video Library

    2007-03-16

    Nils Larson is a research pilot in the Flight Crew Branch of NASA's Dryden Flight Research Center, Edwards, Calif. Larson joined NASA in February 2007 and will fly the F-15, F-18, T-38 and ER-2. Prior to joining NASA, Larson was on active duty with the U.S. Air Force. He has accumulated more that 4,900 hours of military and civilian flight experience in more than 70 fixed and rotary winged aircraft. Larson completed undergraduate pilot training at Williams Air Force Base, Chandler, Ariz., in 1987. He remained at Williams as a T-37 instructor pilot. In 1991, Larson was assigned to Beale Air Force Base, Calif., as a U-2 pilot. He flew 88 operational missions from Korea, Saudi Arabia, the United Kingdom, Panama and other locations. Larson graduated from the U.S. Air Force Test Pilot School at Edwards Air Force Base, Calif., in Class 95A. He became a flight commander and assistant operations officer for the 445th squadron at Edwards. He flew the radar, avionics integration and engine tests in F-15 A-D, the early flights of the glass cockpit T-38C and airworthiness flights of the Coast Guard RU-38. He was selected to serve as an Air Force exchange instructor at the U.S. Naval Test Pilot School, Patuxent River, Md. He taught systems and fixed-wing flight test and flew as an instructor pilot in the F-18, T-2, U-6A Beaver and X-26 Schweizer sailplane. Larson commanded U-2 operations for Warner Robins Air Logistics Center's Detachment 2 located in Palmdale, Calif. In addition to flying the U-2, Larson supervised the aircraft's depot maintenance and flight test. He was the deputy group commander for the 412th Operations Group at Edwards before retiring from active duty in 2007 with the rank of lieutenant colonel. His first experience with NASA was at the Glenn Research Center, Cleveland, where he served a college summer internship working on arcjet engines. Larson is a native of Bethany, W.Va,, and received his commission from the U.S. Air Force Academy in 1986 with a

  10. Lean spacecraft avionics trade study

    NASA Technical Reports Server (NTRS)

    Main, John A.

    1994-01-01

    Spacecraft design is generally an exercise in design trade-offs: fuel vs. weight, power vs. solar cell area, radiation exposure vs. shield weight, etc. Proper analysis of these trades is critical in the development of lightweight, efficient, 'lean' satellites. The modification of the launch plans for the Magnetosphere Imager (MI) to a Taurus launcher from the much more powerful Delta has forced a reduction in spacecraft weight availability into the mission orbit from 1300 kg to less than 500 kg. With weight now a driving factor it is imperative that the satellite design be extremely efficient and lean. The accuracy of engineering trades now takes on an added importance. An understanding of spacecraft subsystem interactions is critical in the development of a good spacecraft design, yet it is a challenge to define these interactions while the design is immature. This is currently an issue in the development of the preliminary design of the MI. The interaction and interfaces between this spacecraft and the instruments it carries are currently unclear since the mission instruments are still under development. It is imperative, however, to define these interfaces so that avionics requirements ideally suited to the mission's needs can be determined.

  11. The implementation of fail-operative functions in integrated digital avionics systems

    NASA Technical Reports Server (NTRS)

    Osoer, S. S.

    1976-01-01

    System architectures which incorporate fail operative flight guidance functions within a total integrated avionics complex are described. It is shown that the mixture of flight critical and nonflight critical functions within a common computer complex is an efficient solution to the integration of navigation, guidance, flight control, display, and flight management. Interfacing subsystems retain autonomous capability to avoid vulnerability to total avionics system shutdown as a result of only a few failures.

  12. Software fault tolerance for real-time avionics systems

    NASA Technical Reports Server (NTRS)

    Anderson, T.; Knight, J. C.

    1983-01-01

    Avionics systems have very high reliability requirements and are therefore prime candidates for the inclusion of fault tolerance techniques. In order to provide tolerance to software faults, some form of state restoration is usually advocated as a means of recovery. State restoration can be very expensive for systems which utilize concurrent processes. The concurrency present in most avionics systems and the further difficulties introduced by timing constraints imply that providing tolerance for software faults may be inordinately expensive or complex. A straightforward pragmatic approach to software fault tolerance which is believed to be applicable to many real-time avionics systems is proposed. A classification system for software errors is presented together with approaches to recovery and continued service for each error type.

  13. HH-65A Dolphin digital integrated avionics

    NASA Technical Reports Server (NTRS)

    Huntoon, R. B.

    1984-01-01

    Communication, navigation, flight control, and search sensor management are avionics functions which constitute every Search and Rescue (SAR) operation. Routine cockpit duties monopolize crew attention during SAR operations and thus impair crew effectiveness. The United States Coast Guard challenged industry to build an avionics system that automates routine tasks and frees the crew to focus on the mission tasks. The HH-64A SAR avionics systems of communication, navigation, search sensors, and flight control have existed independently. On the SRR helicopter, the flight management system (FMS) was introduced. H coordinates or integrates these functions. The pilot interacts with the FMS rather than the individual subsystems, using simple, straightforward procedures to address distinct mission tasks and the flight management system, in turn, orchestrates integrated system response.

  14. Investigation of HZETRN 2010 as a Tool for Single Event Effect Qualification of Avionics Systems

    NASA Technical Reports Server (NTRS)

    Rojdev, Kristina; Koontz, Steve; Atwell, William; Boeder, Paul

    2014-01-01

    NASA's future missions are focused on long-duration deep space missions for human exploration which offers no options for a quick emergency return to Earth. The combination of long mission duration with no quick emergency return option leads to unprecedented spacecraft system safety and reliability requirements. It is important that spacecraft avionics systems for human deep space missions are not susceptible to Single Event Effect (SEE) failures caused by space radiation (primarily the continuous galactic cosmic ray background and the occasional solar particle event) interactions with electronic components and systems. SEE effects are typically managed during the design, development, and test (DD&T) phase of spacecraft development by using heritage hardware (if possible) and through extensive component level testing, followed by system level failure analysis tasks that are both time consuming and costly. The ultimate product of the SEE DD&T program is a prediction of spacecraft avionics reliability in the flight environment produced using various nuclear reaction and transport codes in combination with the component and subsystem level radiation test data. Previous work by Koontz, et al.1 utilized FLUKA, a Monte Carlo nuclear reaction and transport code, to calculate SEE and single event upset (SEU) rates. This code was then validated against in-flight data for a variety of spacecraft and space flight environments. However, FLUKA has a long run-time (on the order of days). CREME962, an easy to use deterministic code offering short run times, was also compared with FLUKA predictions and in-flight data. CREME96, though fast and easy to use, has not been updated in several years and underestimates secondary particle shower effects in spacecraft structural shielding mass. Thus, this paper will investigate the use of HZETRN 20103, a fast and easy to use deterministic transport code, similar to CREME96, that was developed at NASA Langley Research Center primarily for flight crew ionizing radiation dose assessments. HZETRN 2010 includes updates to address secondary particle shower effects more accurately, and might be used as another tool to verify spacecraft avionics system reliability in space flight SEE environments.

  15. PIK-20 and LRV Vehicles Parked on Ramp

    NASA Technical Reports Server (NTRS)

    1981-01-01

    This photo shows NASA's PIK-20 motor-glider sailplane on the ramp at the Dryden Flight Research Center, Edwards, California. Next to the PIK-20 is the Low Reynolds Number Vehicle (LRV) remotely-piloted research vehicle. The PIK-20E was a sailplane flown at NASA's Ames-Dryden Flight Research Facility (now Dryden Flight Research Center, Edwards, California) beginning in 1981. The vehicle, bearing NASA tail number 803, was used as a research vehicle on projects calling for high lift-over-drag and low-speed performance. Later NASA used the PIK-20E to study the flow of fluids over the aircraft's surface at various speeds and angles of attack as part of a study of airflow efficiency over lifting surfaces. The single-seat aircraft was used to begin developing procedures for collecting sailplane glide performance data in a program carried out by Ames-Dryden. It was also used to study high-lift aerodynamics and laminar flow on high-lift airfoils. Built by Eiri-Avion in Finland, the PIK-20E is a sailplane with a two-cylinder 43-horsepower, retractable engine. It is made of carbon fiber with sandwich construction. In this unique configuration, it takes off and climbs to altitude on its own. After reaching the desired altitude, the engine is shut down and folded back into the fuselage and the aircraft is then operated as a conventional sailplane. Construction of the PIK-20E series was rather unusual. The factory used high-temperature epoxies cured in an autoclave, making the structure resistant to deformation with age. Unlike today's normal practice of laying glass over gelcoat in a mold, the PIK-20E was built without gelcoat. The finish is the result of smooth glass lay-up, a small amount of filler, and an acrylic enamel paint. The sailplane was 21.4 feet long and had a wingspan of 49.2 feet. It featured a wooden, fixed-pitch propeller, a roomy cockpit, wingtip wheels, and a steerable tailwheel.

  16. PIK-20 Aircraft in Flight

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This photo shows NASA's PIK-20E motor-glider sailplane during a research flight from the Ames-Dryden Flight Research Facility (later, the Dryden Flight Research Center), Edwards, California, in 1991. The PIK-20E was a sailplane flown at NASA's Ames-Dryden Flight Research Facility (now Dryden Flight Research Center, Edwards, California) beginning in 1981. The vehicle, bearing NASA tail number 803, was used as a research vehicle on projects calling for high lift-over-drag and low-speed performance. Later NASA used the PIK-20E to study the flow of fluids over the aircraft's surface at various speeds and angles of attack as part of a study of airflow efficiency over lifting surfaces. The single-seat aircraft was used to begin developing procedures for collecting sailplane glide performance data in a program carried out by Ames-Dryden. It was also used to study high-lift aerodynamics and laminar flow on high-lift airfoils. Built by Eiri-Avion in Finland, the PIK-20E is a sailplane with a two-cylinder 43-horsepower, retractable engine. It is made of carbon fiber with sandwich construction. In this unique configuration, it takes off and climbs to altitude on its own. After reaching the desired altitude, the engine is shut down and folded back into the fuselage and the aircraft is then operated as a conventional sailplane. Construction of the PIK-20E series was rather unusual. The factory used high-temperature epoxies cured in an autoclave, making the structure resistant to deformation with age. Unlike today's normal practice of laying glass over gelcoat in a mold, the PIK-20E was built without gelcoat. The finish is the result of smooth glass lay-up, a small amount of filler, and an acrylic enamel paint. The sailplane was 21.4 feet long and had a wingspan of 49.2 feet. It featured a wooden, fixed-pitch propeller, a roomy cockpit, wingtip wheels, and a steerable tailwheel.

  17. AFTI/F16 Automated Maneuvering Attack System Test Reports/Special Technologies and Outlook.

    DTIC Science & Technology

    1986-07-11

    Multiplex Data Bus A-A Air-To-Air A-S Air-to-Surface AFTI Advanced Fighter Technology Integration SYSTEM DESIGN AGL Above-Ground-Level AMAS Automated...Maneuvering Attack System Design requirements for the AFTI/F-16 are driven AMUX Avionics Multiplex Data Bus by realistic air combat scenarios and are...the avionics subsystem IFIM and avionics systems are single-thread, much of the sensed various flight control sensors. Additionally, along with data

  18. Development of Avionics Installation Interface Standards. Revision.

    DTIC Science & Technology

    1981-08-01

    requirements for new avionics in the Navy during the period 1985 to 1990, however, will be the F-18 programa , which is design-committed (and which will probably...programs that will continue late into the 1980s. Avionics programs currently in development will establish a de facto func- tional baseline as well...the equip- ment, appropriate sensors must be included at the cooling-air inlet to de - tect air-flow conditions directly, or to detect excessive heat

  19. A method of distributed avionics data processing based on SVM classifier

    NASA Astrophysics Data System (ADS)

    Guo, Hangyu; Wang, Jinyan; Kang, Minyang; Xu, Guojing

    2018-03-01

    Under the environment of system combat, in order to solve the problem on management and analysis of the massive heterogeneous data on multi-platform avionics system, this paper proposes a management solution which called avionics "resource cloud" based on big data technology, and designs an aided decision classifier based on SVM algorithm. We design an experiment with STK simulation, the result shows that this method has a high accuracy and a broad application prospect.

  20. Study objectives: Will commercial avionics do the job? Improvements needed?

    NASA Technical Reports Server (NTRS)

    Nasr, Hatem

    1992-01-01

    Improvements in commercial avionics are covered in a viewgraph format. Topics include the following: computer architecture, user requirements, Boeing 777 aircraft, cost effectiveness, and implemention.

  1. Guidelines for application of fluorescent lamps in high-performance avionic backlight systems

    NASA Astrophysics Data System (ADS)

    Syroid, Daniel D.

    1997-07-01

    Fluorescent lamps have proven to be well suited for use in high performance avionic backlight systems as demonstrated by numerous production applications for both commercial and military cockpit displays. Cockpit display applications include: Boeing 777, new 737s, F-15, F-16, F-18, F-22, C- 130, Navy P3, NASA Space Shuttle and many others. Fluorescent lamp based backlights provide high luminance, high lumen efficiency, precision chromaticity and long life for avionic active matrix liquid crystal display applications. Lamps have been produced in many sizes and shapes. Lamp diameters range from 2.6 mm to over 20 mm and lengths for the larger diameter lamps range to over one meter. Highly convoluted serpentine lamp configurations are common as are both hot and cold cathode electrode designs. This paper will review fluorescent lamp operating principles, discuss typical requirements for avionic grade lamps, compare avionic and laptop backlight designs and provide guidelines for the proper application of lamps and performance choices that must be made to attain optimum system performance considering high luminance output, system efficiency, dimming range and cost.

  2. Hypervelocity impact testing of the Space Station utility distribution system carrier

    NASA Technical Reports Server (NTRS)

    Lazaroff, Scott

    1993-01-01

    A two-phase, joint JSC and McDonnell Douglas Aerospace-Huntington Beach hypervelocity impact (HVI) test program was initiated to develop an improved understanding of how meteoroid and orbital debris (M/OD) impacts affect the Space Station Freedom (SSF) avionic and fluid lines routed in the Utility Distribution System (UDS) carrier. This report documents the first phase of the test program which covers nonpowered avionic line segment and pressurized fluid line segment HVI testing. From these tests, a better estimation of avionic line failures is approximately 15 failures per year and could very well drop to around 1 or 2 avionic line failures per year (depending upon the results of the second phase testing of the powered avionic line at White Sands). For the fluid lines, the initial McDonnell Douglas analysis calculated 1 to 2 line failures over a 30 year period. The data obtained from these tests indicate the number of predicted fluid line failures increased slightly to as many as 3 in the first 10 years and up to 15 for the entire 30 year life of SSF.

  3. COLUMBUS as Engineering Testbed for Communications and Multimedia Equipment

    NASA Astrophysics Data System (ADS)

    Bank, C.; Anspach von Broecker, G. O.; Kolloge, H.-G.; Richters, M.; Rauer, D.; Urban, G.; Canovai, G.; Oesterle, E.

    2002-01-01

    The paper presents ongoing activities to prepare COLUMBUS for communications and multimedia technology experiments. For this purpose, Astrium SI, Bremen, has studied several options how to best combine the given system architecture with flexible and state-of-the-art interface avionics and software. These activities have been conducted in coordination with, and partially under contract of, DLR and ESA/ESTEC. Moreover, Astrium SI has realized three testbeds for multimedia software and hardware testing under own funding. The experimental core avionics unit - about a half double rack - establishes the core of a new multi-user experiment facility for this type of investigation onboard COLUMBUS, which shall be available to all users of COLUMBUS. It allows for the connection of 2nd generation payload, that is payload requiring broadband data transfer and near-real-time access by the Principal Investigator on ground, to test highly interactive and near-realtime payload operation. The facility is also foreseen to test new equipment to provide the astronauts onboard the ISS/COLUMBUS with bi- directional hi-fi voice and video connectivity to ground, private voice coms and e-mail, and a multimedia workstation for ops training and recreation. Connection to an appropriate Wide Area Network (WAN) on Earth is possible. The facility will include a broadband data transmission front-end terminal, which is mounted externally on the COLUMBUS module. This Equipment provides high flexibility due to the complete transparent transmit and receive chains, the steerable multi-frequency antenna system and its own thermal and power control and distribution. The Equipment is monitored and controlled via the COLUMBUS internal facility. It combines several new hardware items, which are newly developed for the next generation of broadband communication satellites and operates in Ka -Band with the experimental ESA data relay satellite ARTEMIS. The equipment is also TDRSS compatible; the open loop antenna tracking system employing star sensors enables usability with any other GEO data relay satellite system. In order to be prepared for the upcoming telecom standards for ground distribution of spacecraft generated data, the interface avionics allows for testing ATM-based data formatting and routing. Three testbeds accompany these studies and designs: i)a cable-and-connector testbed measures the signal characteristics for data transfer of up to 200 Mbps through the ii)an avionics &embedded software testbed prepares for data formatting, routing, and storage in CCSDS and ATM; iii)a software testbed tests newly developed S/W man-machine interfaces and simulates bandwidth limitations, on- This makes COLUMBUS a true technology testbed for a variety of engineering topics: - application of terrestrial standard data formats for broadband, near-real-time applications in space - qualification &test of off-the-shelf multimedia equipment in manned spacecraft - secure data transmission in flexible VPNs - in-orbit demonstration of advanced data transmission technology - elaboration of efficient crew and ground operations and training procedures - evaluation of personalized displays (S/W HFI) for long-duration space missions

  4. KSC-2012-3609

    NASA Image and Video Library

    2012-07-02

    CAPE CANAVERAL, Fla. – U.S. Senator Bill Nelson, center, takes questions from the media in Kennedy Space Center's Operations and Checkout Building high bay following an event marking the arrival in Florida of NASA's first space-bound Orion capsule. NASA Deputy Director Lori Garver and Kennedy Space Center Director Robert Cabana talk nearby. Slated for Exploration Flight Test-1, an uncrewed mission planned for 2014, the capsule will travel farther into space than any human spacecraft has gone in more than 40 years. The capsule was shipped to Kennedy from NASA's Michoud Assembly Facility in New Orleans where the crew module pressure vessel was built. The Orion production team will prepare the module for flight at Kennedy by installing heat-shielding thermal protection systems, avionics and other subsystems. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Kim Shiflett

  5. KSC-2012-3608

    NASA Image and Video Library

    2012-07-02

    CAPE CANAVERAL, Fla. – U.S. Senator Bill Nelson, center, takes questions from the media in Kennedy Space Center's Operations and Checkout Building high bay following an event marking the arrival in Florida of NASA's first space-bound Orion capsule. NASA Deputy Director Lori Garver and Kennedy Space Center Director Robert Cabana talk nearby. Slated for Exploration Flight Test-1, an uncrewed mission planned for 2014, the capsule will travel farther into space than any human spacecraft has gone in more than 40 years. The capsule was shipped to Kennedy from NASA's Michoud Assembly Facility in New Orleans where the crew module pressure vessel was built. The Orion production team will prepare the module for flight at Kennedy by installing heat-shielding thermal protection systems, avionics and other subsystems. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Kim Shiflett

  6. Hardware Interface Description for the Integrated Power, Avionics, and Software (iPAS) Space Telecommunications Radio Ssystem (STRS) Radio

    NASA Technical Reports Server (NTRS)

    Shalkhauser, Mary Jo W.; Roche, Rigoberto

    2017-01-01

    The Space Telecommunications Radio System (STRS) provides a common, consistent framework for software defined radios (SDRs) to abstract the application software from the radio platform hardware. The STRS standard aims to reduce the cost and risk of using complex, configurable and reprogrammable radio systems across NASA missions. To promote the use of the STRS architecture for future NASA advanced exploration missions, NASA Glenn Research Center (GRC) developed an STRS-compliant SDR on a radio platform used by the Advance Exploration System program at the Johnson Space Center (JSC) in their Integrated Power, Avionics, and Software (iPAS) laboratory. The iPAS STRS Radio was implemented on the Reconfigurable, Intelligently-Adaptive Communication System (RIACS) platform, currently being used for radio development at JSC. The platform consists of a Xilinx ML605 Virtex-6 FPGA board, an Analog Devices FMCOMMS1-EBZ RF transceiver board, and an Embedded PC (Axiomtek eBox 620-110-FL) running the Ubuntu 12.4 operating system. Figure 1 shows the RIACS platform hardware. The result of this development is a very low cost STRS compliant platform that can be used for waveform developments for multiple applications.The purpose of this document is to describe how to develop a new waveform using the RIACS platform and the Very High Speed Integrated Circuits (VHSIC) Hardware Description Language (VHDL) FPGA wrapper code and the STRS implementation on the Axiomtek processor.

  7. Functional design to support CDTI/DABS flight experiments

    NASA Technical Reports Server (NTRS)

    Goka, T.

    1982-01-01

    The objectives of this project are to: (1) provide a generalized functional design of CDTI avionics using the FAA developd DABS/ATARS ground system as the 'traffic sensor', (2) specify software modifications and/or additions to the existing DABS/ATARS ground system to support CDTI avionics, (3) assess the existing avionics of a NASA research aircraft in terms of CDTI applications, and (4) apply the generalized functional design to provide research flight experiment capability. DABS Data Link Formats are first specified for CDTI flight experiments. The set of CDTI/DABS Format specifications becomes a vehicle to coordinate the CDTI avionics and ground system designs, and hence, to develop overall system requirements. The report is the first iteration of a system design and development effort to support eventual CDTI flight test experiments.

  8. Technical highlights in general aviation

    NASA Technical Reports Server (NTRS)

    Stickle, J. W.

    1977-01-01

    Improvements in performance, safety, efficiency, and emissions control in general aviation craft are reviewed. While change is slow, the U.S. industries still account for the bulk (90%) of the world's general aviation fleet. Advances in general aviation aerodynamics, structures and materials, acoustics, avionics, and propulsion are described. Supercritical airfoils, drag reduction design, stall/spin studies, crashworthiness and passenger safety, fiberglass materials, flight noise abatement, interior noise and vibration reduction, navigation systems, quieter and cleaner (reciprocating, turboprop, turbofan) engines, and possible benefits of the Global Position Satellite System to general aviation navigation are covered in the discussion. Some of the developments are illustrated.

  9. Avionics test bed development plan

    NASA Technical Reports Server (NTRS)

    Harris, L. H.; Parks, J. M.; Murdock, C. R.

    1981-01-01

    A development plan for a proposed avionics test bed facility for the early investigation and evaluation of new concepts for the control of large space structures, orbiter attached flex body experiments, and orbiter enhancements is presented. A distributed data processing facility that utilizes the current laboratory resources for the test bed development is outlined. Future studies required for implementation, the management system for project control, and the baseline system configuration are defined. A background analysis of the specific hardware system for the preliminary baseline avionics test bed system is included.

  10. Avionics Box Cold Plate Damage Prevention

    NASA Technical Reports Server (NTRS)

    Stambolian, Damon; Larcher, Steven; Henderson, Gena; Tran, Donald

    2011-01-01

    Over the years there have been several occurrences of damage to Space Shuttle Orbiter cold plates during removal and replacement of avionics boxes. Thus a process improvement team was put together to determine ways to prevent these kinds of damage. From this effort there were many solutions including, protective covers, training, and improved operations instructions. The focus of this paper is to explain the cold plate damage problem and the corrective actions for preventing future damage to aerospace avionics cold plate designs.

  11. Space Transportation Avionics Technology Symposium. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The focus of the symposium was to examine existing and planned avionics technology processes and products and to recommend necessary changes for strengthening priorities and program emphases. Innovative changes in avionics technology development and design processes, identified during the symposium, are needed to support the increasingly complex, multi-vehicle, integrated, autonomous space-based systems. Key technology advances make such a major initiative viable at this time: digital processing capabilities, integrated on-board test/checkout methods, easily reconfigurable laboratories, and software design and production techniques.

  12. Space Transportation Avionics Technology Symposium. Volume 2: Conference Proceedings

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The focus of the symposium was to examine existing and planned avionics technology processes and products and to recommend necessary changes for strengthening priorities and program emphases. Innovative changes in avionics technology development and design processes are needed to support the increasingly complex, multi-vehicle, integrated, autonomous space-based systems. Key technology advances make such a major initiative viable at this time: digital processing capabilities, integrated on-board test/checkout methods, easily reconfigurable laboratories, and software design and production techniques.

  13. Avionics Reliability, Its Techniques and Related Disciplines.

    DTIC Science & Technology

    1979-10-01

    USAF F-16s. C.J.P.Haynes, UK You said that if one of the 5 nations consumes more than its fair share of the combined spares pool then the item manager ... MANAGEMENT OF THE AVIONIC SYSTEM OF A MILITARY STRIKE AIRCRAFT by A.P.White and J.D.Pavier 29 SESSION IV - SOFTWARE RELIABILITY’ INTRODUCTION TO...ASPECT by D.J.Harris 37 SESSION V - AVIONICS LOGISTICS SUPPORT ASPECTS INTEGRATED LOGISTICS SUPPORT ADDS ANOTHER DIMENSION TO MATRIX MANAGEMENT by

  14. The Design, Development and Testing of Complex Avionics Systems: Conference Proceedings Held at the Avionics Panel Symposium in Las Vegas, Nevada on 27 April-1 May 1987

    DTIC Science & Technology

    1987-12-01

    Normally, the system is decomposed into manageable parts with accurately defined interfaces. By rigidly controlling this process, aerospace companies have...Reference A CHANGE IN SYSTEM DESIGN EMPHASIS: FROM MACHINE TO MAN by M.L.Metersky and J.L.Ryder 16 SESSION I1 - MANAGING THE FUl URE SYSTEM DESIGN...PROCESS MANAGING ADVANCED AVIONIC SYSTEM DESIGN by P.Simons 17 ERGONOMIE PSYCHOSENSORIELLE DES COCKPITS, INTERET DES SYSTEMES INFORMATIQUES INTELLIGENTS

  15. Organization and use of a Software/Hardware Avionics Research Program (SHARP)

    NASA Technical Reports Server (NTRS)

    Karmarkar, J. S.; Kareemi, M. N.

    1975-01-01

    The organization and use is described of the software/hardware avionics research program (SHARP) developed to duplicate the automatic portion of the STOLAND simulator system, on a general-purpose computer system (i.e., IBM 360). The program's uses are: (1) to conduct comparative evaluation studies of current and proposed airborne and ground system concepts via single run or Monte Carlo simulation techniques, and (2) to provide a software tool for efficient algorithm evaluation and development for the STOLAND avionics computer.

  16. B-1B Avionics/Automatic Test Equipment: Maintenance Queueing Analysis.

    DTIC Science & Technology

    1983-12-01

    analysis (which is logistics terminology for an avionics/ATE queueing analysis). To allow each vendor the opportunity to perform such an analysis...for system performance measures may be found for the queueing system in Figure 7. This is due to the preemptive blocking caused by ATE failures. The...D-R14l1i75 B-iB AVIONICS/AUTOMPTIC TEST EQUIPMENT: MRINTENRNCE 1/2 QUEUEING RNRLYSIS(U) RIP FORCE INST OF TECH HRIGHT-PRTTERSON RFB OH SCHOOL OF

  17. Space Shuttle Program Primary Avionics Software System (PASS) Success Legacy - Quality and Reliability Date

    NASA Technical Reports Server (NTRS)

    Orr, James K.; Peltier, Daryl

    2010-01-01

    Thsi slide presentation reviews the avionics software system on board the space shuttle, with particular emphasis on the quality and reliability. The Primary Avionics Software System (PASS) provides automatic and fly-by-wire control of critical shuttle systems which executes in redundant computers. Charts given show the number of space shuttle flights vs time, PASS's development history, and other charts that point to the reliability of the system's development. The reliability of the system is also compared to predicted reliability.

  18. Cockpit avionics integration and automation

    NASA Technical Reports Server (NTRS)

    Pischke, Keith M.

    1990-01-01

    Information on cockpit avionics integration and automation is given in viewgraph form, with a number of photographs. The benefits of cockpit integration are listed. The MD-11 flight guidance/flight deck system is illustrated.

  19. Evaluation of the efficiency and fault density of software generated by code generators

    NASA Technical Reports Server (NTRS)

    Schreur, Barbara

    1993-01-01

    Flight computers and flight software are used for GN&C (guidance, navigation, and control), engine controllers, and avionics during missions. The software development requires the generation of a considerable amount of code. The engineers who generate the code make mistakes and the generation of a large body of code with high reliability requires considerable time. Computer-aided software engineering (CASE) tools are available which generates code automatically with inputs through graphical interfaces. These tools are referred to as code generators. In theory, code generators could write highly reliable code quickly and inexpensively. The various code generators offer different levels of reliability checking. Some check only the finished product while some allow checking of individual modules and combined sets of modules as well. Considering NASA's requirement for reliability, an in house manually generated code is needed. Furthermore, automatically generated code is reputed to be as efficient as the best manually generated code when executed. In house verification is warranted.

  20. Automated Test Environment for a Real-Time Control System

    NASA Technical Reports Server (NTRS)

    Hall, Ronald O.

    1994-01-01

    An automated environment with hardware-in-the-loop has been developed by Rocketdyne Huntsville for test of a real-time control system. The target system of application is the man-rated real-time system which controls the Space Shuttle Main Engines (SSME). The primary use of the environment is software verification and validation, but it is also useful for evaluation and analysis of SSME avionics hardware and mathematical engine models. It provides a test bed for the integration of software and hardware. The principles and skills upon which it operates may be applied to other target systems, such as those requiring hardware-in-the-loop simulation and control system development. Potential applications are in problem domains demanding highly reliable software systems requiring testing to formal requirements and verifying successful transition to/from off-nominal system states.

  1. KSC-2012-3612

    NASA Image and Video Library

    2012-07-02

    CAPE CANAVERAL, Fla. – U.S. Senator Bill Nelson, center, talks to the media in Kennedy Space Center's Operations and Checkout Building high bay following an event marking the arrival in Florida of NASA's first space-bound Orion capsule, behind him. Slated for Exploration Flight Test-1, an uncrewed mission planned for 2014, the capsule will travel farther into space than any human spacecraft has gone in more than 40 years. The capsule was shipped to Kennedy from NASA's Michoud Assembly Facility in New Orleans where the crew module pressure vessel was built. The Orion production team will prepare the module for flight at Kennedy by installing heat-shielding thermal protection systems, avionics and other subsystems. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Kim Shiflett

  2. KSC-2012-3626

    NASA Image and Video Library

    2012-07-02

    CAPE CANAVERAL, Fla. – NASA Kennedy Space Center Director Robert Cabana addresses the audience assembled in Kennedy Space Center's Operations and Checkout Building high bay for an event marking the arrival of NASA's first space-bound Orion capsule in Florida. Slated for Exploration Flight Test-1, an uncrewed mission planned for 2014, the capsule will travel farther into space than any human spacecraft has gone in more than 40 years. The capsule was shipped to Kennedy from NASA's Michoud Assembly Facility in New Orleans where the crew module pressure vessel was built. The Orion production team will prepare the module for flight at Kennedy by installing heat-shielding thermal protection systems, avionics and other subsystems. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Kim Shiflett

  3. Orion Ammonia Boiler System Preflight Test Preparations

    NASA Technical Reports Server (NTRS)

    Levitt, Julia L.

    2017-01-01

    The Environmental Controls and Life Support Systems (ECLSS) branch at Kennedy Space Center (KSC) is currently undergoing preparations for ground testing of the Orion Multi-Purpose Crew Vehicle (MPCV) to prepare its subsystems for EM-1 (Exploration Mission-1). EM-1, Orions second unmanned flight, is a three-week long lunar mission during which the vehicle will complete a 6-day retrograde lunar orbit before returning to Earth. This paper focuses on the work done during the authors 16-week internship with the Mechanical Engineering Branch of KSCs Engineering Directorate. The authors project involved assisting with the preparations for testing the Orion MPCVs ammonia boiler system. The purpose of the ammonia boiler system is to keep the spacecraft sufficiently cool during the reentry portion of its mission, from service module (SM) separation to post-landing. This system is critical for keeping both the spacecraft (avionics and electronics) and crew alive during reentry, thus a successful test of the system is essential to the success of EM-1. XXXX The author was able to draft a detailed outline of the procedure for the ammonia system functional test. More work will need to be done on the vehicle power-up and power-down portions of the procedure, but the ammonia system testing portion of the procedure is thorough and includes vehicle test configurations, vehicle commands, and GSE. The author was able to compile a substantial list of questions regarding the ammonia system functional test with the help of her mentors. A significant number of these questions were answered in the teleconferences with Lockheed Martin.

  4. Spacelab system analysis: A study of the Marshall Avionics System Testbed (MAST)

    NASA Astrophysics Data System (ADS)

    Ingels, Frank M.; Owens, John K.; Daniel, Steven P.; Ahmad, F.; Couvillion, W.

    1988-09-01

    An analysis of the Marshall Avionics Systems Testbed (MAST) communications requirements is presented. The average offered load for typical nodes is estimated. Suitable local area networks are determined.

  5. Spacelab system analysis: A study of the Marshall Avionics System Testbed (MAST)

    NASA Technical Reports Server (NTRS)

    Ingels, Frank M.; Owens, John K.; Daniel, Steven P.; Ahmad, F.; Couvillion, W.

    1988-01-01

    An analysis of the Marshall Avionics Systems Testbed (MAST) communications requirements is presented. The average offered load for typical nodes is estimated. Suitable local area networks are determined.

  6. Space shuttle low cost/risk avionics study

    NASA Technical Reports Server (NTRS)

    1971-01-01

    All work breakdown structure elements containing any avionics related effort were examined for pricing the life cycle costs. The analytical, testing, and integration efforts are included for the basic onboard avionics and electrical power systems. The design and procurement of special test equipment and maintenance and repair equipment are considered. Program management associated with these efforts is described. Flight test spares and labor and materials associated with the operations and maintenance of the avionics systems throughout the horizontal flight test are examined. It was determined that cost savings can be achieved by using existing hardware, maximizing orbiter-booster commonality, specifying new equipments to MIL quality standards, basing redundancy on cost effective analysis, minimizing software complexity and reducing cross strapping and computer-managed functions, utilizing compilers and floating point computers, and evolving the design as dictated by the horizontal flight test schedules.

  7. Rendezvous strategy impacts on CTV avionics design, system reliability requirements, and available collision avoidance maneuvers

    NASA Technical Reports Server (NTRS)

    Donovan, William J.; Davis, John E.

    1991-01-01

    Rockwell International is conducting an ongoing program to develop avionics architectures that provide high intrinsic value while meeting all mission objectives. Studies are being conducted to determine alternative configurations that have low life-cycle cost and minimum development risk, and that minimize launch delays while providing the reliability level to assure a successful mission. This effort is based on four decades of providing ballistic missile avionics to the United States Air Force and has focused on the requirements of the NASA Cargo Transfer Vehicle (CTV) program in 1991. During the development of architectural concepts it became apparent that rendezvous strategy issues have an impact on the architecture of the avionics system. This is in addition to the expected impact on propulsion and electrical power duration, flight profiles, and trajectory during approach.

  8. Projection display technology for avionics applications

    NASA Astrophysics Data System (ADS)

    Kalmanash, Michael H.; Tompkins, Richard D.

    2000-08-01

    Avionics displays often require custom image sources tailored to demanding program needs. Flat panel devices are attractive for cockpit installations, however recent history has shown that it is not possible to sustain a business manufacturing custom flat panels in small volume specialty runs. As the number of suppliers willing to undertake this effort shrinks, avionics programs unable to utilize commercial-off-the-shelf (COTS) flat panels are placed in serious jeopardy. Rear projection technology offers a new paradigm, enabling compact systems to be tailored to specific platform needs while using a complement of COTS components. Projection displays enable improved performance, lower cost and shorter development cycles based on inter-program commonality and the wide use of commercial components. This paper reviews the promise and challenges of projection technology and provides an overview of Kaiser Electronics' efforts in developing advanced avionics displays using this approach.

  9. Review of the evolution of display technologies for next-generation aircraft

    NASA Astrophysics Data System (ADS)

    Tchon, Joseph L.; Barnidge, Tracy J.

    2015-05-01

    Advancements in electronic display technologies have provided many benefits for military avionics. The modernization of legacy tanker transport aircraft along with the development of next-generation platforms, such as the KC-46 aerial refueling tanker, offers a timeline of the evolution of avionics display approaches. The adaptation of advanced flight displays from the Boeing 787 for the KC-46 flight deck also provides examples of how avionics display solutions may be leveraged across commercial and military flight decks to realize greater situational awareness and improve overall mission effectiveness. This paper provides a review of the display technology advancements that have led to today's advanced avionics displays for the next-generation KC-46 tanker aircraft. In particular, progress in display operating modes, backlighting, packaging, and ruggedization will be discussed along with display certification considerations across military and civilian platforms.

  10. Next generation space interconnect research and development in space communications

    NASA Astrophysics Data System (ADS)

    Collier, Charles Patrick

    2017-11-01

    Interconnect or "bus" is one of the critical technologies in design of spacecraft avionics systems that dictates its architecture and complexity. MIL-STD-1553B has long been used as the avionics backbone technology. As avionics systems become more and more capable and complex, however, limitations of MIL-STD-1553B such as insufficient 1 Mbps bandwidth and separability have forced current avionics architects and designers to use combination of different interconnect technologies in order to meet various requirements: CompactPCI is used for backplane interconnect; LVDS or RS422 is used for low and high-speed direct point-to-point interconnect; and some proprietary interconnect standards are designed for custom interfaces. This results in a very complicated system that consumes significant spacecraft mass and power and requires extensive resources in design, integration and testing of spacecraft systems.

  11. An assessment of General Aviation utilization of advanced avionics technology

    NASA Technical Reports Server (NTRS)

    Quinby, G. F.

    1980-01-01

    Needs of the general aviation industry for services and facilities which might be supplied by NASA were examined. In the data collection phase, twenty-one individuals from nine manufacturing companies in general aviation were interviewed against a carefully prepared meeting format. General aviation avionics manufacturers were credited with a high degree of technology transfer from the forcing industries such as television, automotive, and computers and a demonstrated ability to apply advanced technology such as large scale integration and microprocessors to avionics functions in an innovative and cost effective manner. The industry's traditional resistance to any unnecessary regimentation or standardization was confirmed. Industry's self sufficiency in applying advanced technology to avionics product development was amply demonstrated. NASA research capability could be supportive in areas of basic mechanics of turbulence in weather and alternative means for its sensing.

  12. Vertical Guidance Performance Analysis of the L1–L5 Dual-Frequency GPS/WAAS User Avionics Sensor

    PubMed Central

    Jan, Shau-Shiun

    2010-01-01

    This paper investigates the potential vertical guidance performance of global positioning system (GPS)/wide area augmentation system (WAAS) user avionics sensor when the modernized GPS and Galileo are available. This paper will first investigate the airborne receiver code noise and multipath (CNMP) confidence (σair). The σair will be the dominant factor in the availability analysis of an L1–L5 dual-frequency GPS/WAAS user avionics sensor. This paper uses the MATLAB Algorithm Availability Simulation Tool (MAAST) to determine the required values for the σair, so that an L1–L5 dual-frequency GPS/WAAS user avionics sensor can meet the vertical guidance requirements of APproach with Vertical guidance (APV) II and CATegory (CAT) I over conterminous United States (CONUS). A modified MAAST that includes the Galileo satellite constellation is used to determine under what user configurations WAAS could be an APV II system or a CAT I system over CONUS. Furthermore, this paper examines the combinations of possible improvements in signal models and the addition of Galileo to determine if GPS/WAAS user avionics sensor could achieve 10 m Vertical Alert Limit (VAL) within the service volume. Finally, this paper presents the future vertical guidance performance of GPS user avionics sensor for the United States’ WAAS, Japanese MTSAT-based satellite augmentation system (MSAS) and European geostationary navigation overlay service (EGNOS). PMID:22319263

  13. Packing the PLSS

    NASA Technical Reports Server (NTRS)

    Jennings, Mallory

    2011-01-01

    NASA Engineers design spacesuits for ultimate protection and functionality in the extreme environment of space. The spacesuit is often referred to as a "personal spacecraft" because it provides the astronaut with everything he or she needs to survive and work in space outside of the vehicle or habitat. The systems within the spacesuit include the pressure garment system (PGS), the Portable Life Support System (PLSS), and the power, avionics, and software (PAS) system. These elements are necessary to protect crewmembers and allow them to work effectively in the pressure and temperature extremes of space environments. Development of the spacesuit system is necessary to support future human extravehicular exploration activities to Lunar, Martian, microgravity, and possibly other space destinations. Although all the systems that makeup the space suit are important, the PLSS is one of the most complex. The PLSS provides the life support needed by the astronaut and consists of the oxygen (O2) subsystem, ventilation subsystem, and thermal control subsystem. Within each subsystem, there are many different components, a few of which are explained as follows. The oxygen tanks hold the oxygen that the crewmember uses to breath and pressurizes the suit. The primary oxygen tank is responsible during normal operations and the secondary oxygen tank kicks on in the case of an emergency. The Rapid Cycle Amine (RCA) canister is used to remove the carbon dioxide (CO2) and extra humidity in the crewmember's ventilation/breathing gas. The fan moves the oxygen around the suit. Suit Water Membrane Evaporator (SWME) is used within the thermal control loop to cool the water that is used to maintain a comfortable temperature for both the crew member and the other equipment inside the suit. Another component is the battery, which supplies the power needed to operate all these and the many other pieces. The battery is one of the biggest and heavies components within the PLSS. These are just a few of the components that encompass the PLSS. Each component has a weight and a certain volume that the NASA Engineers must take into account when building the PLSS, because the weight and volumes affect the crewmembers center of gravity (CG). [See the Notes Section for the link to an Apollo video that demonstrates the issues some of the crewmembers had picking up tools and dealing with center of gravity/tools on the surface of the Moon.] In this activity, students will simulate engineering design techniques that NASA Engineers and Designers are currently implementing to configuring the components within the PLSS. Through testing, students will consider the comfort, mobility, and center of gravity for their test subjects and how that changes after adjusting the placement of their simulated PLSS components.

  14. Installation of new Generation General Purpose Computer (GPC) compact unit

    NASA Technical Reports Server (NTRS)

    1991-01-01

    In the Kennedy Space Center's (KSC's) Orbiter Processing Facility (OPF) high bay 2, Spacecraft Electronics technician Ed Carter (right), wearing clean suit, prepares for (26864) and installs (26865) the new Generation General Purpose Computer (GPC) compact IBM unit in Atlantis', Orbiter Vehicle (OV) 104's, middeck avionics bay as Orbiter Systems Quality Control technician Doug Snider looks on. Both men work for NASA contractor Lockheed Space Operations Company. All three orbiters are being outfitted with the compact IBM unit, which replaces a two-unit earlier generation computer.

  15. Definition, analysis and development of an optical data distribution network for integrated avionics and control systems. Part 2: Component development and system integration

    NASA Technical Reports Server (NTRS)

    Yen, H. W.; Morrison, R. J.

    1984-01-01

    Fiber optic transmission is emerging as an attractive concept in data distribution onboard civil aircraft. Development of an Optical Data Distribution Network for Integrated Avionics and Control Systems for commercial aircraft will provide a data distribution network that gives freedom from EMI-RFI and ground loop problems, eliminates crosstalk and short circuits, provides protection and immunity from lightning induced transients and give a large bandwidth data transmission capability. In addition there is a potential for significantly reducing the weight and increasing the reliability over conventional data distribution networks. Wavelength Division Multiplexing (WDM) is a candidate method for data communication between the various avionic subsystems. With WDM all systems could conceptually communicate with each other without time sharing and requiring complicated coding schemes for each computer and subsystem to recognize a message. However, the state of the art of optical technology limits the application of fiber optics in advanced integrated avionics and control systems. Therefore, it is necessary to address the architecture for a fiber optics data distribution system for integrated avionics and control systems as well as develop prototype components and systems.

  16. Avionics Maintenance Technology Program Standards.

    ERIC Educational Resources Information Center

    Georgia Univ., Athens. Dept. of Vocational Education.

    This publication contains statewide standards for the avionics maintenance technology program in Georgia. The standards are divided into the following categories: foundations, diploma/degree (philosophy, purpose, goals, program objectives, availability, evaluation); admissions, diploma/degree (admission requirements, provisional admission…

  17. Predicting Cost/Reliability/Maintainability of Advanced General Aviation Avionics Equipment

    NASA Technical Reports Server (NTRS)

    Davis, M. R.; Kamins, M.; Mooz, W. E.

    1978-01-01

    A methodology is provided for assisting NASA in estimating the cost, reliability, and maintenance (CRM) requirements for general avionics equipment operating in the 1980's. Practical problems of predicting these factors are examined. The usefulness and short comings of different approaches for modeling coast and reliability estimates are discussed together with special problems caused by the lack of historical data on the cost of maintaining general aviation avionics. Suggestions are offered on how NASA might proceed in assessing cost reliability CRM implications in the absence of reliable generalized predictive models.

  18. Payload accommodations. Avionics payload support architecture

    NASA Technical Reports Server (NTRS)

    Creasy, Susan L.; Levy, C. D.

    1990-01-01

    Concepts for vehicle and payload avionics architectures for future NASA programs, including the Assured Shuttle Access program, Space Station Freedom (SSF), Shuttle-C, Advanced Manned Launch System (AMLS), and the Lunar/Mars programs are discussed. Emphasis is on the potential available to increase payload services which will be required in the future, while decreasing the operational cost/complexity by utilizing state of the art advanced avionics systems and a distributed processing architecture. Also addressed are the trade studies required to determine the optimal degree of vehicle (NASA) to payload (customer) separation and the ramifications of these decisions.

  19. Space Generic Open Avionics Architecture (SGOAA) standard specification

    NASA Technical Reports Server (NTRS)

    Wray, Richard B.; Stovall, John R.

    1993-01-01

    The purpose of this standard is to provide an umbrella set of requirements for applying the generic architecture interface model to the design of a specific avionics hardware/software system. This standard defines a generic set of system interface points to facilitate identification of critical interfaces and establishes the requirements for applying appropriate low level detailed implementation standards to those interface points. The generic core avionics system and processing architecture models provided herein are robustly tailorable to specific system applications and provide a platform upon which the interface model is to be applied.

  20. Space shuttle avionics system

    NASA Technical Reports Server (NTRS)

    Hanaway, John F.; Moorehead, Robert W.

    1989-01-01

    The Space Shuttle avionics system, which was conceived in the early 1970's and became operational in the 1980's represents a significant advancement of avionics system technology in the areas of systems and redundacy management, digital data base technology, flight software, flight control integration, digital fly-by-wire technology, crew display interface, and operational concepts. The origins and the evolution of the system are traced; the requirements, the constraints, and other factors which led to the final configuration are outlined; and the functional operation of the system is described. An overall system block diagram is included.

  1. Dhaksha, the Unmanned Aircraft System in its New Avatar-Automated Aerial Inspection of INDIA'S Tallest Tower

    NASA Astrophysics Data System (ADS)

    Kumar, K. S.; Rasheed, A. Mohamed; Krishna Kumar, R.; Giridharan, M.; Ganesh

    2013-08-01

    DHAKSHA, the unmanned aircraft system (UAS), developed after several years of research by Division of Avionics, Department of Aerospace Engineering, MIT Campus of Anna University has recently proved its capabilities during May 2012 Technology demonstration called UAVforge organised by Defence Research Project Agency, Department of Defence, USA. Team Dhaksha with its most stable design outperformed all the other contestants competing against some of the best engineers from prestigi ous institutions across the globe like Middlesex University from UK, NTU and NUS from Singapore, Tudelft Technical University, Netherlands and other UAV industry participants in the world's toughest UAV challenge. This has opened up an opportunity for Indian UAVs making a presence in the international scenario as well. In furtherance to the above effort at Fort Stewart military base at Georgia,USA, with suitable payloads, the Dhaksha team deployed the UAV in a religious temple festival during November 2012 at Thiruvannamalai District for Tamil Nadu Police to avail the instant aerial imagery services over the crowd of 10 lakhs pilgrims and also about the investigation of the structural strength of the India's tallest structure, the 300 m RCC tower during January 2013. The developed system consists of a custom-built Rotary Wing model with on-board navigation, guidance and control systems (NGC) and ground control station (GCS), for mission planning, remote access, manual overrides and imagery related computations. The mission is to fulfill the competition requirements by using an UAS capable of providing complete solution for the stated problem. In this work the effort to produce multirotor unmanned aerial systems (UAS) for civilian applications at the MIT, Avionics Laboratory is presented

  2. An integrated approach to system design, reliability, and diagnosis

    NASA Technical Reports Server (NTRS)

    Patterson-Hine, F. A.; Iverson, David L.

    1990-01-01

    The requirement for ultradependability of computer systems in future avionics and space applications necessitates a top-down, integrated systems engineering approach for design, implementation, testing, and operation. The functional analyses of hardware and software systems must be combined by models that are flexible enough to represent their interactions and behavior. The information contained in these models must be accessible throughout all phases of the system life cycle in order to maintain consistency and accuracy in design and operational decisions. One approach being taken by researchers at Ames Research Center is the creation of an object-oriented environment that integrates information about system components required in the reliability evaluation with behavioral information useful for diagnostic algorithms. Procedures have been developed at Ames that perform reliability evaluations during design and failure diagnoses during system operation. These procedures utilize information from a central source, structured as object-oriented fault trees. Fault trees were selected because they are a flexible model widely used in aerospace applications and because they give a concise, structured representation of system behavior. The utility of this integrated environment for aerospace applications in light of our experiences during its development and use is described. The techniques for reliability evaluation and failure diagnosis are discussed, and current extensions of the environment and areas requiring further development are summarized.

  3. FTMP (Fault Tolerant Multiprocessor) programmer's manual

    NASA Technical Reports Server (NTRS)

    Feather, F. E.; Liceaga, C. A.; Padilla, P. A.

    1986-01-01

    The Fault Tolerant Multiprocessor (FTMP) computer system was constructed using the Rockwell/Collins CAPS-6 processor. It is installed in the Avionics Integration Research Laboratory (AIRLAB) of NASA Langley Research Center. It is hosted by AIRLAB's System 10, a VAX 11/750, for the loading of programs and experimentation. The FTMP support software includes a cross compiler for a high level language called Automated Engineering Design (AED) System, an assembler for the CAPS-6 processor assembly language, and a linker. Access to this support software is through an automated remote access facility on the VAX which relieves the user of the burden of learning how to use the IBM 4381. This manual is a compilation of information about the FTMP support environment. It explains the FTMP software and support environment along many of the finer points of running programs on FTMP. This will be helpful to the researcher trying to run an experiment on FTMP and even to the person probing FTMP with fault injections. Much of the information in this manual can be found in other sources; we are only attempting to bring together the basic points in a single source. If the reader should need points clarified, there is a list of support documentation in the back of this manual.

  4. An integrated approach to system design, reliability, and diagnosis

    NASA Astrophysics Data System (ADS)

    Patterson-Hine, F. A.; Iverson, David L.

    1990-12-01

    The requirement for ultradependability of computer systems in future avionics and space applications necessitates a top-down, integrated systems engineering approach for design, implementation, testing, and operation. The functional analyses of hardware and software systems must be combined by models that are flexible enough to represent their interactions and behavior. The information contained in these models must be accessible throughout all phases of the system life cycle in order to maintain consistency and accuracy in design and operational decisions. One approach being taken by researchers at Ames Research Center is the creation of an object-oriented environment that integrates information about system components required in the reliability evaluation with behavioral information useful for diagnostic algorithms. Procedures have been developed at Ames that perform reliability evaluations during design and failure diagnoses during system operation. These procedures utilize information from a central source, structured as object-oriented fault trees. Fault trees were selected because they are a flexible model widely used in aerospace applications and because they give a concise, structured representation of system behavior. The utility of this integrated environment for aerospace applications in light of our experiences during its development and use is described. The techniques for reliability evaluation and failure diagnosis are discussed, and current extensions of the environment and areas requiring further development are summarized.

  5. SMART: The Future of Spaceflight Avionics

    NASA Technical Reports Server (NTRS)

    Alhorn, Dean C.; Howard, David E.

    2010-01-01

    A novel avionics approach is necessary to meet the future needs of low cost space and lunar missions that require low mass and low power electronics. The current state of the art for avionics systems are centralized electronic units that perform the required spacecraft functions. These electronic units are usually custom-designed for each application and the approach compels avionics designers to have in-depth system knowledge before design can commence. The overall design, development, test and evaluation (DDT&E) cycle for this conventional approach requires long delivery times for space flight electronics and is very expensive. The Small Multi-purpose Advanced Reconfigurable Technology (SMART) concept is currently being developed to overcome the limitations of traditional avionics design. The SMART concept is based upon two multi-functional modules that can be reconfigured to drive and sense a variety of mechanical and electrical components. The SMART units are key to a distributed avionics architecture whereby the modules are located close to or right at the desired application point. The drive module, SMART-D, receives commands from the main computer and controls the spacecraft mechanisms and devices with localized feedback. The sensor module, SMART-S, is used to sense the environmental sensors and offload local limit checking from the main computer. There are numerous benefits that are realized by implementing the SMART system. Localized sensor signal conditioning electronics reduces signal loss and overall wiring mass. Localized drive electronics increase control bandwidth and minimize time lags for critical functions. These benefits in-turn reduce the main processor overhead functions. Since SMART units are standard flight qualified units, DDT&E is reduced and system design can commence much earlier in the design cycle. Increased production scale lowers individual piece part cost and using standard modules also reduces non-recurring costs. The benefit list continues, but the overall message is already evident: the SMART concept is an evolution in spacecraft avionics. SMART devices have the potential to change the design paradigm for future satellites, spacecraft and even commercial applications.

  6. KSC-2012-3610

    NASA Image and Video Library

    2012-07-02

    CAPE CANAVERAL, Fla. – U.S. Senator Bill Nelson, center, takes questions from the media in Kennedy Space Center's Operations and Checkout Building high bay following an event marking the arrival in Florida of NASA's first space-bound Orion capsule. Behind Nelson, NASA's Orion Program Manager Mark Geyer talks to NASA Deputy Director Lori Garver and Kennedy Space Center Director Robert Cabana. Slated for Exploration Flight Test-1, an uncrewed mission planned for 2014, the capsule will travel farther into space than any human spacecraft has gone in more than 40 years. The capsule was shipped to Kennedy from NASA's Michoud Assembly Facility in New Orleans where the crew module pressure vessel was built. The Orion production team will prepare the module for flight at Kennedy by installing heat-shielding thermal protection systems, avionics and other subsystems. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Kim Shiflett

  7. KSC-2012-3602

    NASA Image and Video Library

    2012-07-02

    CAPE CANAVERAL, Fla. – Dignitaries turn out for an event marking the arrival of NASA's first space-bound Orion capsule at NASA's Kennedy Space Center in Florida. In Kennedy's Operations and Checkout Building Mission Briefing Room are, from left, Nicholas Cummings, chief of Operations Integration, Ground Systems Development and Operations Program U.S. Senator Bill Nelson Johnson Space Center Director Michael Coats and Kennedy Space Center Director Robert Cabana. Slated for Exploration Flight Test-1, an uncrewed mission planned for 2014, the capsule will travel farther into space than any human spacecraft has gone in more than 40 years. The capsule was shipped to Kennedy from NASA's Michoud Assembly Facility in New Orleans where the crew module pressure vessel was built. The Orion production team will prepare the module for flight at Kennedy by installing heat-shielding thermal protection systems, avionics and other subsystems. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Kim Shiflett

  8. Air Data Report Improves Flight Safety

    NASA Technical Reports Server (NTRS)

    2007-01-01

    NASA's Aviation Safety Program in the NASA Aeronautics Research Mission Directorate, which seeks to make aviation safer by developing tools for flight data analysis and interpretation and then by transferring these tools to the aviation industry, sponsored the development of Morning Report software. The software, created at Ames Research Center with the assistance of the Pacific Northwest National Laboratory, seeks to detect atypicalities without any predefined parameters-it spots deviations and highlights them. In 2004, Sagem Avionics Inc. entered a licensing agreement with NASA for the commercialization of the Morning Report software, and also licensed the NASA Aviation Data Integration System (ADIS) tool, which allows for the integration of data from disparate sources into the flight data analysis process. Sagem Avionics incorporated the Morning Report tool into its AGS product, a comprehensive flight operations monitoring system that helps users detect irregular or divergent practices, technical flaws, and problems that might develop when aircraft operate outside of normal procedures. Sagem developed AGS in collaboration with airlines, so that the system takes into account their technical evolutions and needs, and each airline is able to easily perform specific treatments and to build its own flight data analysis system. Further, the AGS is designed to support any aircraft and flight data recorders.

  9. NASA's 3D Flight Computer for Space Applications

    NASA Technical Reports Server (NTRS)

    Alkalai, Leon

    2000-01-01

    The New Millennium Program (NMP) Integrated Product Development Team (IPDT) for Microelectronics Systems was planning to validate a newly developed 3D Flight Computer system on its first deep-space flight, DS1, launched in October 1998. This computer, developed in the 1995-97 time frame, contains many new computer technologies previously never used in deep-space systems. They include: advanced 3D packaging architecture for future low-mass and low-volume avionics systems; high-density 3D packaged chip-stacks for both volatile and non-volatile mass memory: 400 Mbytes of local DRAM memory, and 128 Mbytes of Flash memory; high-bandwidth Peripheral Component Interface (Per) local-bus with a bridge to VME; high-bandwidth (20 Mbps) fiber-optic serial bus; and other attributes, such as standard support for Design for Testability (DFT). Even though this computer system did not complete on time for delivery to the DS1 project, it was an important development along a technology roadmap towards highly integrated and highly miniaturized avionics systems for deep-space applications. This continued technology development is now being performed by NASA's Deep Space System Development Program (also known as X2000) and within JPL's Center for Integrated Space Microsystems (CISM).

  10. Overview of Avionics and Electrical Ground Support Equipment

    NASA Technical Reports Server (NTRS)

    Clarke, Sean C.

    2011-01-01

    Presents an overview of the Crew Module Avionics and the associated Electrical Ground Support Equipment for the Pad Abort 1 flight test of the Orion Program. A limited selection of the technical challenges and solutions are highlighted.

  11. General Aviation Avionics Statistics : 1974

    DOT National Transportation Integrated Search

    1977-08-01

    The primary objectives of this study were to (1) provide a framework for viewing the general aviation (GA) aircraft fleet, which would relate airborne avionics equipment to the capability for an aircraft to perform in the National Airspace System, an...

  12. General Aviation Avionics Statistics : 1978 Data

    DOT National Transportation Integrated Search

    1980-12-01

    The report presents avionics statistics for the 1978 general aviation (GA) aircraft fleet and is the fifth in a series titled "General Aviation Statistics." The statistics are presented in a capability group framework which enables one to relate airb...

  13. Demonstration Advanced Avionics System (DAAS), Phase 1

    NASA Technical Reports Server (NTRS)

    Bailey, A. J.; Bailey, D. G.; Gaabo, R. J.; Lahn, T. G.; Larson, J. C.; Peterson, E. M.; Schuck, J. W.; Rodgers, D. L.; Wroblewski, K. A.

    1981-01-01

    Demonstration advanced anionics system (DAAS) function description, hardware description, operational evaluation, and failure mode and effects analysis (FMEA) are provided. Projected advanced avionics system (PAAS) description, reliability analysis, cost analysis, maintainability analysis, and modularity analysis are discussed.

  14. Air Force highly integrated photonics program: development and demonstration of an optically transparent fiber optic network for avionics applications

    NASA Astrophysics Data System (ADS)

    Whaley, Gregory J.; Karnopp, Roger J.

    2010-04-01

    The goal of the Air Force Highly Integrated Photonics (HIP) program is to develop and demonstrate single photonic chip components which support a single mode fiber network architecture for use on mobile military platforms. We propose an optically transparent, broadcast and select fiber optic network as the next generation interconnect on avionics platforms. In support of this network, we have developed three principal, single-chip photonic components: a tunable laser transmitter, a 32x32 port star coupler, and a 32 port multi-channel receiver which are all compatible with demanding avionics environmental and size requirements. The performance of the developed components will be presented as well as the results of a demonstration system which integrates the components into a functional network representative of the form factor used in advanced avionics computing and signal processing applications.

  15. Investigation of an advanced fault tolerant integrated avionics system

    NASA Technical Reports Server (NTRS)

    Dunn, W. R.; Cottrell, D.; Flanders, J.; Javornik, A.; Rusovick, M.

    1986-01-01

    Presented is an advanced, fault-tolerant multiprocessor avionics architecture as could be employed in an advanced rotorcraft such as LHX. The processor structure is designed to interface with existing digital avionics systems and concepts including the Army Digital Avionics System (ADAS) cockpit/display system, navaid and communications suites, integrated sensing suite, and the Advanced Digital Optical Control System (ADOCS). The report defines mission, maintenance and safety-of-flight reliability goals as might be expected for an operational LHX aircraft. Based on use of a modular, compact (16-bit) microprocessor card family, results of a preliminary study examining simplex, dual and standby-sparing architectures is presented. Given the stated constraints, it is shown that the dual architecture is best suited to meet reliability goals with minimum hardware and software overhead. The report presents hardware and software design considerations for realizing the architecture including redundancy management requirements and techniques as well as verification and validation needs and methods.

  16. HLLV avionics requirements study and electronic filing system database development

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This final report provides a summary of achievements and activities performed under Contract NAS8-39215. The contract's objective was to explore a new way of delivering, storing, accessing, and archiving study products and information and to define top level system requirements for Heavy Lift Launch Vehicle (HLLV) avionics that incorporate Vehicle Health Management (VHM). This report includes technical objectives, methods, assumptions, recommendations, sample data, and issues as specified by DPD No. 772, DR-3. The report is organized into two major subsections, one specific to each of the two tasks defined in the Statement of Work: the Index Database Task and the HLLV Avionics Requirements Task. The Index Database Task resulted in the selection and modification of a commercial database software tool to contain the data developed during the HLLV Avionics Requirements Task. All summary information is addressed within each task's section.

  17. Human Exploration and Avionic Technology Challenges

    NASA Technical Reports Server (NTRS)

    Benjamin, Andrew L.

    2005-01-01

    For this workshop, I will identify critical avionic gaps, enabling technologies, high-pay off investment opportunities, promising capabilities, and space applications for human lunar and Mars exploration. Key technology disciplines encompass fault tolerance, miniaturized instrumentation sensors, MEMS-based guidance, navigation, and controls, surface communication networks, and rendezvous and docking. Furthermore, I will share bottom-up strategic planning relevant to manned mission -driven needs. Blending research expertise, facilities, and personnel with internal NASA is vital to stimulating collaborative technology solutions that achieve NASA grand vision. Retaining JSC expertise in unique and critical areas is paramount to our long-term success. Civil servants will maintain key roles in setting technology agenda, ensuring quality results, and integrating technologies into avionic systems and manned missions. Finally, I will present to NASA, academia, and the aerospace community some on -going and future advanced avionic technology programs and activities that are relevant to our mission goals and objectives.

  18. Analysis of Autopilot Behavior

    NASA Technical Reports Server (NTRS)

    Sherry, Lance; Polson, Peter; Feay, Mike; Palmer, Everett; Null, Cynthia H. (Technical Monitor)

    1998-01-01

    Aviation and cognitive science researchers have identified situations in which the pilot's expectations for behavior of autopilot avionics are not matched by the actual behavior of the avionics. These "automation surprises" have been attributed to differences between the pilot's model of the behavior of the avionics and the actual behavior encoded in the avionics software. A formal technique is described for the analysis and measurement of the behavior of the cruise pitch modes of a modern Autopilot. The analysis characterizes the behavior of the Autopilot as situation-action rules. The behavior of the cruise pitch mode logic for a contemporary modern Autopilot was found to include 177 rules, including Level Change (23), Vertical Speed (16), Altitude Capture (50), and Altitude Hold (88). These rules are determined based on the values of 62 inputs. Analysis of the rule-based model also shed light on the factors cited in the literature as contributors to "automation surprises."

  19. A Framework for Assessing the Reusability of Hardware (Reusable Rocket Engines)

    NASA Technical Reports Server (NTRS)

    Childress-Thompson, Rhonda; Thomas, Dale; Farrington, Philip

    2016-01-01

    Within the past few years, there has been a renewed interest in reusability as it applies to space flight hardware. Commercial companies such as Space Exploration Technologies Corporation (SpaceX), Blue Origin, and United Launch Alliance (ULA) are pursuing reusable hardware. Even foreign companies are pursuing this option. The Indian Space Research Organization (ISRO) launched a reusable space plane technology demonstrator and Airbus Defense and Space is planning to recover the main engines and avionics from its Advanced Expendable Launcher with Innovative engine Economy [1] [2]. To date, the Space Shuttle remains as the only Reusable Launch (RLV) to have flown repeated missions and the Space Shutte Main Engine (SSME) is the only demonstrated reusable engine. Whether the hardware being considered for reuse is a launch vehicle (fully reusable), a first stage (partially reusable), or a booster engine (single component), the overall governing process is the same; it must be recovered and recertified for flight. Therefore, there is a need to identify the key factors in determining the reusability of flight hardware. This paper begins with defining reusability to set the context, addresses the significance of reuse, and discusses areas that limit successful implementation. Finally, this research identifies the factors that should be considered when incorporating reuse.

  20. Successful marriage: American Panel Corporation and LG Philips LCD custom-designed avionic, shipboard, and rugged ground vehicle display modules from a consumer-oriented fabrication facility

    NASA Astrophysics Data System (ADS)

    Dunn, William; Garrett, Kimberly S.

    2001-09-01

    American panel corporation (APC) believes the use of custom designed (instead of ruggedized commercial) AMLCD cells is the only way to meet the specific environmental and performance requirements of the military/commercial avionic, shipboard and rugged ground vehicle markets. The APC/LG.Philips LCD (LG) custom approach mitigates risk to the end-user in many ways. As a part of the APC/LG long- term agreement LG has committed to provide module level equivalent (form, fit and function equivalent) panels for a period of ten years. No other commercial glass manufacturer has provided such an agreement. With the use of LG's commercial production manufacturing capabilities, APC/LG can provide the opportunity to procure a lifetime buy for any program with delivery of the entire lot within six months of order placement. This ensures that the entire production program will receive identical glass for every unit. The APC/LG relationship works where others have failed due to the number of years spent cultivating the mutual trust and respect necessary for establishing such a partnership, LG's interest in capturing the market share of this niche application, and the magnitude of the initial up-front investment by APC in engineering, tooling, facilities, production equipment, and LCD cell inventory.

Top