Sample records for avoid falling prey

  1. Prey-mediated avoidance of an intraguild predator by its intraguild prey

    USGS Publications Warehouse

    Wilson, R.R.; Blankenship, T.L.; Hooten, M.B.; Shivik, J.A.

    2010-01-01

    Intraguild (IG) predation is an important factor influencing community structure, yet factors allowing coexistence of IG predator and IG prey are not well understood. The existence of spatial refuges for IG prey has recently been noted for their importance in allowing coexistence. However, reduction in basal prey availability might lead IG prey to leave spatial refuges for greater access to prey, leading to increased IG predation and fewer opportunities for coexistence. We determined how the availability of prey affected space-use patterns of bobcats (Lynx rufus, IG prey) in relation to coyote space-use patterns (Canis latrans, IG predators). We located animals from fall 2007 to spring 2009 and estimated bobcat home ranges and core areas seasonally. For each bobcat relocation, we determined intensity of coyote use, distance to water, small mammal biomass, and mean small mammal biomass of the home range during the season the location was collected. We built generalized linear mixed models and used Akaike Information Criteria to determine which factors best predicted bobcat space use. Coyote intensity was a primary determinant of bobcat core area location. In bobcat home ranges with abundant prey, core areas occurred where coyote use was low, but shifted to areas intensively used by coyotes when prey declined. High spatial variability in basal prey abundance allowed some bobcats to avoid coyotes while at the same time others were forced into more risky areas. Our results suggest that multiple behavioral strategies associated with spatial variation in basal prey abundance likely allow IG prey and IG predators to coexist. ?? 2010 Springer-Verlag.

  2. Falling Victim to Wasps in the Air: A Fate Driven by Prey Flight Morphology?

    PubMed Central

    Ballesteros, Yolanda; Polidori, Carlo; Tormos, José; Baños-Picón, Laura; Asís, Josep D.

    2016-01-01

    In prey-predator systems where the interacting individuals are both fliers, the flight performance of both participants heavily influences the probability of success of the predator (the prey is captured) and of the prey (the predator is avoided). While the flight morphology (an estimate of flight performance) of predatory wasps has rarely been addressed as a factor that may contribute to explain prey use, how the flight morphology of potential prey influences the output of predator-prey encounters has not been studied. Here, we hypothesized that flight morphology associated with flight ability (flight muscle mass to body mass ratio (FMR) and body mass to wing area ratio (wing loading, WL)) of Diptera affect their probability of being captured by specialized Diptera-hunting wasps (Bembix merceti and B. zonata), predicting a better manoeuvrability and acceleration capacity achieved by higher FMR and lower WL, and flight speed achieved by higher WL. In addition, wasp species with better flight morphology should be less limited by an advantageous Diptera flight morphology. Overall, the abundance of dipterans in the environment explained an important part of the observed variance in prey capture rate. However, it was not the only factor shaping prey capture. First, higher prey abundance was associated with greater capture rate for one species (B. merceti), although not for the other one. Second, the interaction observed between the environmental dipteran availability and dipteran WL for B. zonata suggests that greater dipteran WL (this probably meaning high cruising speed) decreased the probability of being captured, as long as fly abundance was high in the environment. Third, greater dipteran FMR (which likely means high manoeuvrability and acceleration capacity) helped to reduce predation by B. merceti if, again, dipterans were abundant in the environment. Wasp WL only varied with body mass but not between species, thereby hardly accounting for inter-specific differences in the wasps’ predatory patterns. However, the greater FMR of B. zonata, which implies better flight performance and greater load-lifting capacity, may explain why the capture rate in the two wasp species is affected by different factor interactions. In conclusion, although prey availability remains the primary factor shaping prey use, prey flight morphology seems to gain an additional role under conditions of abundant prey, when wasps can avoid flies with better flight ability. PMID:27046238

  3. Population and behavioural responses of native prey to alien predation.

    PubMed

    Kovacs, Eszter Krasznai; Crowther, Mathew S; Webb, Jonathan K; Dickman, Christopher R

    2012-04-01

    The introduction of invasive alien predators often has catastrophic effects on populations of naïve native prey, but in situations where prey survive the initial impact a predator may act as a strong selective agent for prey that can discriminate and avoid it. Using two common species of Australian small mammals that have persisted in the presence of an alien predator, the European red fox Vulpes vulpes, for over a century, we hypothesised that populations of both would perform better where the activity of the predator was low than where it was high and that prey individuals would avoid signs of the predator's presence. We found no difference in prey abundance in sites with high and low fox activity, but survival of one species-the bush rat Rattus fuscipes-was almost twofold higher where fox activity was low. Juvenile, but not adult rats, avoided fox odour on traps, as did individuals of the second prey species, the brown antechinus, Antechinus stuartii. Both species also showed reduced activity at foraging trays bearing fox odour in giving-up density (GUD) experiments, although GUDs and avoidance of fox odour declined over time. Young rats avoided fox odour more strongly where fox activity was high than where it was low, but neither adult R. fuscipes nor A. stuartii responded differently to different levels of fox activity. Conservation managers often attempt to eliminate alien predators or to protect predator-naïve prey in protected reserves. Our results suggest that, if predator pressure can be reduced, otherwise susceptible prey may survive the initial impact of an alien predator, and experience selection to discriminate cues to its presence and avoid it over the longer term. Although predator reduction is often feasible, identifying the level of reduction that will conserve prey and allow selection for avoidance remains an important challenge.

  4. Prey selection by the Lake Superior fish community

    USGS Publications Warehouse

    Isaac, Edmund J.; Hrabik, Thomas R.; Stockwell, Jason D.; Gamble, Allison E.

    2012-01-01

    Mysis diluviana is an important prey item to the Lake Superior fish community as found through a recent diet study. We further evaluated this by relating the quantity of prey found in fish diets to the quantity of prey available to fish, providing insight into feeding behavior and prey preferences. We describe the seasonal prey selection of major fish species collected across 18 stations in Lake Superior in spring, summer, and fall of 2005. Of the major nearshore fish species, bloater (Coregonus hoyi), rainbow smelt (Osmerus mordax), and lake whitefish (Coregonus clupeaformis) consumed Mysis, and strongly selected Mysis over other prey items each season. However, lake whitefish also selected Bythotrephes in the fall when Bythotrephes were numerous. Cisco (Coregonus artedi), a major nearshore and offshore species, fed largely on calanoid copepods, and selected calanoid copepods (spring) and Bythotrephes (summer and fall). Cisco also targeted prey similarly across bathymetric depths. Other major offshore fish species such as kiyi (Coregonus kiyi) and deepwater sculpin (Myoxocephalus thompsoni) fed largely on Mysis, with kiyi targeting Mysis exclusively while deepwater sculpin did not prefer any single prey organism. The major offshore predator siscowet lake trout (Salvelinus namaycush siscowet) consumed deepwater sculpin and coregonines, but selected deepwater sculpin and Mysis each season, with juveniles having a higher selection for Mysis than adults. Our results suggest that Mysis is not only a commonly consumed prey item, but a highly preferred prey item for pelagic, benthic, and piscivorous fishes in nearshore and offshore waters of Lake Superior.

  5. Assassin bug uses aggressive mimicry to lure spider prey.

    PubMed

    Wignall, Anne E; Taylor, Phillip W

    2011-05-07

    Assassin bugs (Stenolemus bituberus) hunt web-building spiders by invading the web and plucking the silk to generate vibrations that lure the resident spider into striking range. To test whether vibrations generated by bugs aggressively mimic the vibrations generated by insect prey, we compared the responses of spiders to bugs with how they responded to prey, courting male spiders and leaves falling into the web. We also analysed the associated vibrations. Similar spider orientation and approach behaviours were observed in response to vibrations from bugs and prey, whereas different behaviours were observed in response to vibrations from male spiders and leaves. Peak frequency and duration of vibrations generated by bugs were similar to those generated by prey and courting males. Further, vibrations from bugs had a temporal structure and amplitude that were similar to vibrations generated by leg and body movements of prey and distinctly different to vibrations from courting males or leaves, or prey beating their wings. To be an effective predator, bugs do not need to mimic the full range of prey vibrations. Instead bugs are general mimics of a subset of prey vibrations that fall within the range of vibrations classified by spiders as 'prey'.

  6. Modeling the Fear Effect in Predator-Prey Interactions with Adaptive Avoidance of Predators.

    PubMed

    Wang, Xiaoying; Zou, Xingfu

    2017-06-01

    Recent field experiments on vertebrates showed that the mere presence of a predator would cause a dramatic change of prey demography. Fear of predators increases the survival probability of prey, but leads to a cost of prey reproduction. Based on the experimental findings, we propose a predator-prey model with the cost of fear and adaptive avoidance of predators. Mathematical analyses show that the fear effect can interplay with maturation delay between juvenile prey and adult prey in determining the long-term population dynamics. A positive equilibrium may lose stability with an intermediate value of delay and regain stability if the delay is large. Numerical simulations show that both strong adaptation of adult prey and the large cost of fear have destabilizing effect while large population of predators has a stabilizing effect on the predator-prey interactions. Numerical simulations also imply that adult prey demonstrates stronger anti-predator behaviors if the population of predators is larger and shows weaker anti-predator behaviors if the cost of fear is larger.

  7. Predator–prey interactions mediated by prey personality and predator hunting mode

    PubMed Central

    Belgrad, Benjamin A.; Griffen, Blaine D.

    2016-01-01

    Predator–prey interactions are important drivers in structuring ecological communities. However, despite widespread acknowledgement that individual behaviours and predator species regulate ecological processes, studies have yet to incorporate individual behavioural variations in a multipredator system. We quantified a prevalent predator avoidance behaviour to examine the simultaneous roles of prey personality and predator hunting mode in governing predator–prey interactions. Mud crabs, Panopeus herbstii, reduce their activity levels and increase their refuge use in the presence of predator cues. We measured mud crab mortality and consistent individual variations in the strength of this predator avoidance behaviour in the presence of predatory blue crabs, Callinectes sapidus, and toadfish, Opsanus tau. We found that prey personality and predator species significantly interacted to affect mortality with blue crabs primarily consuming bold mud crabs and toadfish preferentially selecting shy crabs. Additionally, the strength of the predator avoidance behaviour depended upon the predation risk from the predator species. Consequently, the personality composition of populations and predator hunting mode may be valuable predictors of both direct and indirect predator–prey interaction strength. These findings support theories postulating mechanisms for maintaining intraspecies diversity and have broad implications for community dynamics. PMID:27075257

  8. Predator-prey interactions mediated by prey personality and predator hunting mode.

    PubMed

    Belgrad, Benjamin A; Griffen, Blaine D

    2016-04-13

    Predator-prey interactions are important drivers in structuring ecological communities. However, despite widespread acknowledgement that individual behaviours and predator species regulate ecological processes, studies have yet to incorporate individual behavioural variations in a multipredator system. We quantified a prevalent predator avoidance behaviour to examine the simultaneous roles of prey personality and predator hunting mode in governing predator-prey interactions. Mud crabs, Panopeus herbstii, reduce their activity levels and increase their refuge use in the presence of predator cues. We measured mud crab mortality and consistent individual variations in the strength of this predator avoidance behaviour in the presence of predatory blue crabs, Callinectes sapidus, and toadfish, Opsanus tau We found that prey personality and predator species significantly interacted to affect mortality with blue crabs primarily consuming bold mud crabs and toadfish preferentially selecting shy crabs. Additionally, the strength of the predator avoidance behaviour depended upon the predation risk from the predator species. Consequently, the personality composition of populations and predator hunting mode may be valuable predictors of both direct and indirect predator-prey interaction strength. These findings support theories postulating mechanisms for maintaining intraspecies diversity and have broad implications for community dynamics. © 2016 The Author(s).

  9. Do lions Panthera leo actively select prey or do prey preferences simply reflect chance responses via evolutionary adaptations to optimal foraging?

    PubMed

    Hayward, Matt W; Hayward, Gina J; Tambling, Craig J; Kerley, Graham I H

    2011-01-01

    Research on coursing predators has revealed that actions throughout the predatory behavioral sequence (using encounter rate, hunting rate, and kill rate as proxy measures of decisions) drive observed prey preferences. We tested whether similar actions drive the observed prey preferences of a stalking predator, the African lion Panthera leo. We conducted two 96 hour, continuous follows of lions in Addo Elephant National Park seasonally from December 2003 until November 2005 (16 follows), and compared prey encounter rate with prey abundance, hunt rate with prey encounter rate, and kill rate with prey hunt rate for the major prey species in Addo using Jacobs' electivity index. We found that lions encountered preferred prey species far more frequently than expected based on their abundance, and they hunted these species more frequently than expected based on this higher encounter rate. Lions responded variably to non-preferred and avoided prey species throughout the predatory sequence, although they hunted avoided prey far less frequently than expected based on the number of encounters of them. We conclude that actions of lions throughout the predatory behavioural sequence, but particularly early on, drive the prey preferences that have been documented for this species. Once a hunt is initiated, evolutionary adaptations to the predator-prey interactions drive hunting success.

  10. Rapid depth perception in hunting archerfish II. An analysis of potential cues.

    PubMed

    Reinel, Caroline P; Schuster, Stefan

    2018-05-24

    Based on the initial movement of falling prey hunting archerfish select a C-start that turns them right to where their prey is going to land and lends the speed to arrive simultaneously with prey. Our preceding study suggested that the information sampled in less than 100 ms also includes the initial height of falling prey. Here we examine which cues the fish might be using to gauge height so quickly. First, we show that binocular cues are not required: C-starts that either could or could not have used binocular information were equally fast and precise. Next, we explored whether the fish were using simplifying assumptions about the absolute size of their prey or its distance from a structured background. However, experiments with unexpected changes from the standard conditions failed to cause any errors. We then tested the hypothesis that the fish might infer depth from accommodation or from cues related to blurring in the image of their falling prey. However, the fish determined also the height of 'fake-flies' correctly, whose image could never be focused and whose combined size and degree of blurring should have mislead the fish. Our findings are not compatible with the view that the fish uses a flexible combination of cues. They also do not support the view that height is gauged relative to structures in the vicinity of starting prey. We suggest that the fish use an elaborate analysis of looming to rapidly gauge initial height. © 2018. Published by The Company of Biologists Ltd.

  11. Do Lions Panthera leo Actively Select Prey or Do Prey Preferences Simply Reflect Chance Responses via Evolutionary Adaptations to Optimal Foraging?

    PubMed Central

    Hayward, Matt W.; Hayward, Gina J.; Tambling, Craig J.; Kerley, Graham I. H.

    2011-01-01

    Research on coursing predators has revealed that actions throughout the predatory behavioral sequence (using encounter rate, hunting rate, and kill rate as proxy measures of decisions) drive observed prey preferences. We tested whether similar actions drive the observed prey preferences of a stalking predator, the African lion Panthera leo. We conducted two 96 hour, continuous follows of lions in Addo Elephant National Park seasonally from December 2003 until November 2005 (16 follows), and compared prey encounter rate with prey abundance, hunt rate with prey encounter rate, and kill rate with prey hunt rate for the major prey species in Addo using Jacobs' electivity index. We found that lions encountered preferred prey species far more frequently than expected based on their abundance, and they hunted these species more frequently than expected based on this higher encounter rate. Lions responded variably to non-preferred and avoided prey species throughout the predatory sequence, although they hunted avoided prey far less frequently than expected based on the number of encounters of them. We conclude that actions of lions throughout the predatory behavioural sequence, but particularly early on, drive the prey preferences that have been documented for this species. Once a hunt is initiated, evolutionary adaptations to the predator-prey interactions drive hunting success. PMID:21915261

  12. Attracting predators without falling prey: chemical camouflage protects honeydew-producing treehoppers from ant predation.

    PubMed

    Silveira, Henrique C P; Oliveira, Paulo S; Trigo, José R

    2010-02-01

    Predaceous ants are dominant organisms on foliage and represent a constant threat to herbivorous insects. The honeydew of sap-feeding hemipterans has been suggested to appease aggressive ants, which then begin tending activities. Here, we manipulated the cuticular chemical profiles of freeze-dried insect prey to show that chemical background matching with the host plant protects Guayaquila xiphias treehoppers against predaceous Camponotus crassus ants, regardless of honeydew supply. Ant predation is increased when treehoppers are transferred to a nonhost plant with which they have low chemical similarity. Palatable moth larvae manipulated to match the chemical background of Guayaquila's host plant attracted lower numbers of predatory ants than unchanged controls. Although aggressive tending ants can protect honeydew-producing hemipterans from natural enemies, they may prey on the trophobionts under shortage of alternative food resources. Thus chemical camouflage in G. xiphias allows the trophobiont to attract predaceous bodyguards at reduced risk of falling prey itself.

  13. Spatial avoidance to experimental increase of intermittent and continuous sound in two captive harbour porpoises.

    PubMed

    Kok, Annebelle C M; Engelberts, J Pamela; Kastelein, Ronald A; Helder-Hoek, Lean; Van de Voorde, Shirley; Visser, Fleur; Slabbekoorn, Hans

    2018-02-01

    The continuing rise in underwater sound levels in the oceans leads to disturbance of marine life. It is thought that one of the main impacts of sound exposure is the alteration of foraging behaviour of marine species, for example by deterring animals from a prey location, or by distracting them while they are trying to catch prey. So far, only limited knowledge is available on both mechanisms in the same species. The harbour porpoise (Phocoena phocoena) is a relatively small marine mammal that could quickly suffer fitness consequences from a reduction of foraging success. To investigate effects of anthropogenic sound on their foraging efficiency, we tested whether experimentally elevated sound levels would deter two captive harbour porpoises from a noisy pool into a quiet pool (Experiment 1) and reduce their prey-search performance, measured as prey-search time in the noisy pool (Experiment 2). Furthermore, we tested the influence of the temporal structure and amplitude of the sound on the avoidance response of both animals. Both individuals avoided the pool with elevated sound levels, but they did not show a change in search time for prey when trying to find a fish hidden in one of three cages. The combination of temporal structure and SPL caused variable patterns. When the sound was intermittent, increased SPL caused increased avoidance times. When the sound was continuous, avoidance was equal for all SPLs above a threshold of 100 dB re 1 μPa. Hence, we found no evidence for an effect of sound exposure on search efficiency, but sounds of different temporal patterns did cause spatial avoidance with distinct dose-response patterns. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Nonselective Harvesting of a Prey-Predator Fishery with Gompertz Law of Growth

    ERIC Educational Resources Information Center

    Purohit, D.; Chaudhuri, K. S.

    2002-01-01

    This paper develops a mathematical model for the nonselective harvesting of a prey-predator system in which both the prey and the predator obey the Gompertz law of growth and some prey avoid predation by hiding. The steady states of the system are determined, and the dynamical behaviour of both species is examined. The possibility of existence of…

  15. Consequences of stage-structured predators: cannibalism, behavioral effects, and trophic cascades.

    PubMed

    Rudolf, Volker H W

    2007-12-01

    Cannibalistic and asymmetrical behavioral interactions between stages are common within stage-structured predator populations. Such direct interactions between predator stages can result in density- and trait-mediated indirect interactions between a predator and its prey. A set of structured predator-prey models is used to explore how such indirect interactions affect the dynamics and structure of communities. Analyses of the separate and combined effects of stage-structured cannibalism and behavior-mediated avoidance of cannibals under different ecological scenarios show that both cannibalism and behavioral avoidance of cannibalism can result in short- and long-term positive indirect connections between predator stages and the prey, including "apparent mutualism." These positive interactions alter the strength of trophic cascades such that the system's dynamics are determined by the interaction between bottom-up and top-down effects. Contrary to the expectation of simpler models, enrichment increases both predator and prey abundance in systems with cannibalism or behavioral avoidance of cannibalism. The effect of behavioral avoidance of cannibalism, however, depends on how strongly it affects the maturation rate of the predator. Behavioral interactions between predator stages reduce the short-term positive effect of cannibalism on the prey density, but can enhance its positive long-term effects. Both interaction types reduce the destabilizing effect of enrichment. These results suggest that inconsistencies between data and simple models can be resolved by accounting for stage-structured interactions within and among species.

  16. The role of tragus on echolocating bat, Eptesicus fuscus

    NASA Astrophysics Data System (ADS)

    Chiu, Chen; Moss, Cynthia

    2005-04-01

    Echolocating bats produce ultrasonic vocal signals and utilize the returning echoes to detect, localize and track prey, and also to avoid obstacles. The pinna and tragus, two major components of the bats external ears, play important roles in filtering returning echoes. The tragus is generally believed to play a role in vertical sound localization. The purpose of this study is to further examine how manipulation of the tragus affects a free-flying bat's prey capture and obstacle avoidance behavior. The first part of this study involved a prey capture experiment, and the bat was trained to catch the tethered mealworms in a large room. The second experiment involved obstacle avoidance, and the bat's task was to fly through the largest opening from a horizontal wire array without touching the wires. In both experiments, the bat performed the tasks under three different conditions: with intact tragus, tragus-deflection and recovery from tragus-deflection. Significantly lower performance was observed in both experiments when tragi were glued down. However, the bat adjusted quickly and returned to baseline performance a few days after the manipulation. The results suggest that tragus-deflection does have effects on both the prey capture and obstacle avoidance behavior. [Work supported by NSF.

  17. Growth characteristics and otolith analysis on age-0 American shad

    USGS Publications Warehouse

    Sauter, Sally T.; Wetzel, Lisa A.

    2011-01-01

    Otolith microstructure analysis provides useful information on the growth history of fish (Campana and Jones 1992, Bang and Gronkjaer 2005). Microstructure analysis can be used to construct the size-at-age growth trajectory of fish, determine daily growth rates, and estimate hatch date and other ecologically important life history events (Campana and Jones 1992, Tonkin et al. 2008). This kind of information can be incorporated into bioenergetics modeling, providing necessary data for estimating prey consumption, and guiding the development of empirically-based modeling scenarios for hypothesis testing. For example, age-0 American shad co-occur with emigrating juvenile fall Chinook salmon originating from Hanford Reach and the Snake River in the lower Columbia River reservoirs during the summer and early fall. The diet of age-0 American shad appears to overlap with that of juvenile fall Chinook salmon (Chapter 1, this reoprt), but juvenile fall Chinook salmon are also known to feed on age-0 American shad in the reservoirs (USGS unpublished data). Abundant, energy-dense age-0 American shad may provide juvenile fall Chinook salmon opportunities for rapid growth during the time period when large number of age-0 American shad are available. Otolith analysis of hatch dates and the growth curve of age-0 American shad could be used to identify when eggs, larvae, and juveniles of specific size classes are temporally available as food for fall Chinook salmon in the lower Columbia River reservoirs. This kind of temporally and spatially explicit life history information is important to include in bioenergetics modeling scenarios. Quantitive estimates of prey consumption could be used with spatially-explicit estimates of prey abundance to construct a quantitative assessment of the age-0 American shad impact on a reservoir food web.


    Analysis of the age-0 American shad growth trajectory or individual growth records may show evidence of differential growth rates over time that may be linked to environmental conditions such as water temperature (Leach and Houde 1999, Meekan et al. 2003), size-selective mortality (Folkvord et al. 1997), developmental changes in metabolic rate (Bang and Gronkjaer 2005, Bochdanksy et al. 2005), feeding ability (Schmitt and Holbrook 1984, Luecke 1986, Johnson and Dropkin 1995, Johnson and Dropkin 1996), and intra- and inter-specific competition (Crecco and Savoy 1987, Marchand and Boisclair 1998, Gadomski and Wagner 2009). For example, environmental conditions associated with John Day reservoir may eliminate or reduce the availability of many aquatic and terrestrial insect prey types (Rondorf et al. 1990). Many juvenile fishes, including age-0 American shad and juvenile fall Chinook salmon may be foraging on limited insect prey in John Day Reservoir (Gadomski and Wagner 2009). Because larger insect prey has higher energy densities than most zooplankton prey, and insect availability may be limited in John Day reservoir, the growth of American shad may be constrained once fish grow to a size where they could exploit larger, more energy-dense insect prey (Mayer and Wahl 1997).


    Similarly, as age-0 American shad grow, they are able to forage on larger zooplankton with higher energy densities than smaller individuals of the same species, or other smaller-bodied zooplankton species (Schael et al. 1991, Mayer and Wahl 1997). Intra- and inter-specific demand for larger-bodied and higher energy zooplankton prey may reduce the availability of these prey items (Tabor et al. 1996). Constrained growth increments on the otolith microstructure of juvenile American shad or other planktivorous fish could help identify important interactions between fishes that may be linked to the year class strength of age-0 American shad and prey partitioning in John Day reservoir.


    The objective of this study was to determine time of hatch and size-at-age of age-0 American shad in lower Columbia River reservoirs for use with the American shad and fall Chinook salmon bioenergetic models. Size-at-age data on age-0 American shad can be used to generate quantitative estimates of prey consumption with the American shad bioenergetics model. Otolith microstructure analysis was used to provide reference points on the temporal availability of early life stages and sizes of American shad in the reservoir (Limburg 1996a,b, Limburg et al. 1999). Additional analyses on the age-0 American shad growth trajectory in John Day reservoir may reveal differential growth patterns during the early life history of these fish that are linked to developmental differences between individual fish, transient environmental conditions, or food web constraints (Limburg 1996a).

  18. The Impact of Detoxification Costs and Predation Risk on Foraging: Implications for Mimicry Dynamics

    PubMed Central

    Skelhorn, John; Rowe, Candy; Ruxton, Graeme D.; Higginson, Andrew D.

    2017-01-01

    Prey often evolve defences to deter predators, such as noxious chemicals including toxins. Toxic species often advertise their defence to potential predators by distinctive sensory signals. Predators learn to associate toxicity with the signals of these so-called aposematic prey, and may avoid them in future. In turn, this selects for mildly toxic prey to mimic the appearance of more toxic prey. Empirical evidence shows that mimicry could be either beneficial (‘Mullerian’) or detrimental (‘quasi-Batesian’) to the highly toxic prey, but the factors determining which are unknown. Here, we use state-dependent models to explore how tri-trophic interactions could influence the evolution of prey defences. We consider how predation risk affects predators’ optimal foraging strategies on aposematic prey, and explore the resultant impact this has on mimicry dynamics between unequally defended species. In addition, we also investigate how the potential energetic cost of metabolising a toxin can alter the benefits to eating toxic prey and thus impact on predators’ foraging decisions. Our model predicts that both how predators perceive their own predation risk, and the cost of detoxification, can have significant, sometimes counterintuitive, effects on the foraging decisions of predators. For example, in some conditions predators should: (i) avoid prey they know to be undefended, (ii) eat more mildly toxic prey as detoxification costs increase, (iii) increase their intake of highly toxic prey as the abundance of undefended prey increases. These effects mean that the relationship between a mimic and its model can qualitatively depend on the density of alternative prey and the cost of metabolising toxins. In addition, these effects are mediated by the predators’ own predation risk, which demonstrates that, higher trophic levels than previously considered can have fundamental impacts on interactions among aposematic prey species. PMID:28045959

  19. Coyote (Canis latrans) mammalian prey diet shifts in response to seasonal vegetation change.

    PubMed

    Seamster, Virginia A; Waits, Lisette P; Macko, Stephen A; Shugart, Herman H

    2014-01-01

    Drylands typically have strong seasonal variation in rainfall and primary productivity. This study examines the effects of seasonal change in grass-derived resource availability on the base of the food chain of a mammalian predator. Seasonal changes in live grass cover were measured in two vegetation types at the Sevilleta National Wildlife Refuge in central New Mexico, USA. Non-invasive genetic sampling of scat was used to identify individuals in the local coyote (Canis latrans) population. Stable carbon and nitrogen isotope analysis of hair removed from scats of 45 different coyotes was used to assess seasonal variation in the diet of mammalian coyote prey that came from C4 grasses. Live grass cover increased from the spring to the summer and fall; contribution of C4 grasses to the diet of mammalian coyote prey increased from the summer to the fall and was higher in grassland areas. There were significant differences in the seasonal patterns in the prey diet between grassland and shrubland areas.

  20. Spatial and temporal avoidance of risk within a large carnivore guild.

    PubMed

    Dröge, Egil; Creel, Scott; Becker, Matthew S; M'soka, Jassiel

    2017-01-01

    Within a large carnivore guild, subordinate competitors (African wild dog, Lycaon pictus , and cheetah, Acinonyx jubatus ) might reduce the limiting effects of dominant competitors (lion, Panthera leo , and spotted hyena, Crocuta crocuta ) by avoiding them in space, in time, or through patterns of prey selection. Understanding how these competitors cope with one other can inform strategies for their conservation. We tested how mechanisms of niche partitioning promote coexistence by quantifying patterns of prey selection and the use of space and time by all members of the large carnivore guild within Liuwa Plain National Park in western Zambia. Lions and hyenas specialized on wildebeest, whereas wild dogs and cheetahs selected broader diets including smaller and less abundant prey. Spatially, cheetahs showed no detectable avoidance of areas heavily used by dominant competitors, but wild dogs avoided areas heavily used by lions. Temporally, the proportion of kills by lions and hyenas did not detectably differ across four time periods (day, crepuscular, early night, and late night), but wild dogs and especially cheetahs concentrated on time windows that avoided nighttime hunting by lions and hyenas. Our results provide new insight into the conditions under which partitioning may not allow for coexistence for one subordinate species, the African wild dog, while it does for cheetah. Because of differences in responses to dominant competitors, African wild dogs may be more prone to competitive exclusion (local extirpation), particularly in open, uniform ecosystems with simple (often wildebeest dominated) prey communities, where spatial avoidance is difficult.

  1. Toxin constraint explains diet choice, survival and population dynamics in a molluscivore shorebird

    PubMed Central

    van Gils, Jan A.; van der Geest, Matthijs; Leyrer, Jutta; Oudman, Thomas; Lok, Tamar; Onrust, Jeroen; de Fouw, Jimmy; van der Heide, Tjisse; van den Hout, Piet J.; Spaans, Bernard; Dekinga, Anne; Brugge, Maarten; Piersma, Theunis

    2013-01-01

    Recent insights suggest that predators should include (mildly) toxic prey when non-toxic food is scarce. However, the assumption that toxic prey is energetically as profitable as non-toxic prey misses the possibility that non-toxic prey have other ways to avoid being eaten, such as the formation of an indigestible armature. In that case, predators face a trade-off between avoiding toxins and minimizing indigestible ballast intake. Here, we report on the trophic interactions between a shorebird (red knot, Calidris canutus canutus) and its two main bivalve prey, one being mildly toxic but easily digestible, and the other being non-toxic but harder to digest. A novel toxin-based optimal diet model is developed and tested against an existing one that ignores toxin constraints on the basis of data on prey abundance, diet choice, local survival and numbers of red knots at Banc d'Arguin (Mauritania) over 8 years. Observed diet and annual survival rates closely fit the predictions of the toxin-based model, with survival and population size being highest in years when the non-toxic prey is abundant. In the 6 of 8 years when the non-toxic prey is not abundant enough to satisfy the energy requirements, red knots must rely on the toxic alternative. PMID:23740782

  2. Fruit or aposematic insect? Context-dependent colour preferences in domestic chicks.

    PubMed Central

    Gamberale-Stille, G.; Tullberg, B. S.

    2001-01-01

    Colours are common stimuli in signalling systems. Requirements to function well as a signal sometimes conflict between different signallers, and the same colour stimulus is used to convey completely different messages to the same receiver. Fruits and aposematic insects both use red coloration as a signal, in the former case to signal profitability and in the latter case as a warning signal. In two experiments, we investigated whether the domestic chick, an omnivorous predator, differed in its unconditioned preference or avoidance of red and green stimuli depending on whether or not the stimulus was an insect. The experiments were designed as preference tests between red and green painted prey. The prey were live insects and artificial fruits (experiment 1), and, to investigate the effect of movement, live and dead insects (experiment 2). The chicks did not show any difference in pecking preference between red and green when fruit-like stimuli were used, but when the prey were insects, green prey were strongly preferred to red prey, and prey movement did not affect this bias. Thus, young chicks may recognize prey as insects and then discriminate between different prey colorations, or one type of food may elicit an unlearned colour preference-avoidance response that is absent with another type of food. PMID:11749705

  3. Toxin constraint explains diet choice, survival and population dynamics in a molluscivore shorebird.

    PubMed

    van Gils, Jan A; van der Geest, Matthijs; Leyrer, Jutta; Oudman, Thomas; Lok, Tamar; Onrust, Jeroen; de Fouw, Jimmy; van der Heide, Tjisse; van den Hout, Piet J; Spaans, Bernard; Dekinga, Anne; Brugge, Maarten; Piersma, Theunis

    2013-07-22

    Recent insights suggest that predators should include (mildly) toxic prey when non-toxic food is scarce. However, the assumption that toxic prey is energetically as profitable as non-toxic prey misses the possibility that non-toxic prey have other ways to avoid being eaten, such as the formation of an indigestible armature. In that case, predators face a trade-off between avoiding toxins and minimizing indigestible ballast intake. Here, we report on the trophic interactions between a shorebird (red knot, Calidris canutus canutus) and its two main bivalve prey, one being mildly toxic but easily digestible, and the other being non-toxic but harder to digest. A novel toxin-based optimal diet model is developed and tested against an existing one that ignores toxin constraints on the basis of data on prey abundance, diet choice, local survival and numbers of red knots at Banc d'Arguin (Mauritania) over 8 years. Observed diet and annual survival rates closely fit the predictions of the toxin-based model, with survival and population size being highest in years when the non-toxic prey is abundant. In the 6 of 8 years when the non-toxic prey is not abundant enough to satisfy the energy requirements, red knots must rely on the toxic alternative.

  4. Trends in Rainbow Trout recruitment, abundance, survival, and growth during a boom-and-bust cycle in a tailwater fishery

    USGS Publications Warehouse

    Korman, Josh; Yard, Micheal D.; Kennedy, Theodore A.

    2017-01-01

    Data from a large-scale mark-recapture study was used in an open population model to determine the cause for long-term trends in growth and abundance of a Rainbow Trout Oncorhynchus mykiss population in the tailwater of Glen Canyon Dam, AZ. Reduced growth affected multiple life stages and processes causing negative feedbacks that regulated the abundance of the population, including: higher mortality of larger fish; lower rates of recruitment (young of year) in years when growth was reduced; and lower rates of sexual maturation the following year. High and steady flows during spring and summer of 2011 resulted in very large recruitment event. The population declined 10-fold by 2016 due a combination of lower recruitment and reduced survival of larger trout. Survival rates for trout ≥ 225 mm in 2014, 2015, and 2016 were 11%, 21%, and 22% lower than average survival rates between 2012 and 2013, respectively. Abundance at the end of the study would have been three- to five-fold higher had survival rates for larger trout remained at the elevated levels estimated for 2012 and 2013. Growth declined between 2012 and 2014 owing to reduced prey availability, which led to very poor fish condition by fall of 2014 (~0.9-0.95). Poor condition in turn resulted in low survival rates of larger fish during fall of 2014 and winter of 2015, which contributed to the population collapse. In Glen Canyon, large recruitment events driven by high flows can lead to increases in the population that cannot be sustained due to limitations in prey supply. In the absence of being able to regulate prey supply, flows which reduce the probability of large recruitment events can be used to avoid boom-and-bust population cycles. Our study demonstrates that mark-recapture is a very informative approach for understanding the dynamics of tailwater trout populations.

  5. Avoidance response of juvenile Pacific treefrogs to chemical cues of introduced predatory bullfrogs.

    PubMed

    Chivers, D P; Wildy, E L; Kiesecker, J M; Blaustein, A R

    2001-08-01

    Bullfrogs (Rana catesbeiana), native to eastern North America, were introduced into Oregon in the 1930's. Bullfrogs are highly efficient predators that are known to eat a variety of prey including other amphibians. In laboratory experiments, we investigated whether juvenile Pacific treefrogs (Hyla regilla) recognize adult bullfrogs as a predatory threat. The ability of prey animals to acquire recognition of an introduced predator has important implications for survival of the prey. We found that treefrogs from a population that co-occurred with bullfrogs showed a strong avoidance of chemical cues of bullfrogs. In contrast, treefrogs from a population that did not co-occur with bullfrogs, did not respond to the bullfrog cues. Additional experiments showed that both populations of treefrogs use chemical cues to mediate predation risk. Treefrogs from both populations avoided chemical alarm cues from injured conspecifics.

  6. Fall-related activity avoidance in relation to a history of falls or near falls, fear of falling and disease severity in people with Parkinson's disease.

    PubMed

    Kader, Manzur; Iwarsson, Susanne; Odin, Per; Nilsson, Maria H

    2016-06-02

    There is limited knowledge concerning fall-related activity avoidance in people with Parkinson's disease (PD); such knowledge would be of importance for the development of more efficient PD-care and rehabilitation. This study aimed to examine how fall-related activity avoidance relates to a history of self-reported falls/near falls and fear of falling (FOF) as well as to disease severity in people with PD. Data were collected from 251 (61 % men) participants with PD; their median (min-max) age and PD duration were 70 (45-93) and 8 (1-43) years, respectively. A self-administered postal survey preceded a home visit which included observations, clinical tests and interview-administered questionnaires. Fall-related activity avoidance was assessed using the modified Survey of Activities and Fear of Falling in the Elderly (mSAFFE) as well as by using a dichotomous (Yes/No) question. Further dichotomous questions concerned: the presence of FOF and the history (past 6 months) of falls or near falls, followed by stating the number of incidents. Disease severity was assessed according to the Hoehn and Yahr (HY) stages. In the total sample (n = 251), 41 % of the participants reported fall-related activity avoidance; the median mSAFFE score was 22. In relation to a history of fall, the proportions of participants (p < 0.001) that reported fall-related activity avoidance were: non-fallers (30 %), single fallers (50 %) and recurrent fallers, i.e. ≥ 2 falls (57 %). Among those that reported near falls (but no falls), 51 % (26 out of 51) reported fall-related activity avoidance. Of those that reported FOF, 70 % reported fall-related activity avoidance. Fall-related activity avoidance ranged from 24 % in the early PD-stage (HY I) to 74 % in the most severe stages (HY IV-V). Results indicate that fall-related activity avoidance may be related to a history of self-reported falls/near falls, FOF and disease severity in people with PD. Importantly, fall-related activity avoidance is reported among those that do not fall and already in mild PD-stages (HY I-II). Although further studies are needed, our findings indicate that fall-related activity avoidance needs to be addressed early in order to prevent sedentary behavior and participation restrictions.

  7. Diel and seasonal variation in food habits of Atlantic salmon parr in a small stream

    USGS Publications Warehouse

    Grader, M.; Letcher, B.H.

    2006-01-01

    The diel and seasonal food habits of young-of-year (YOY) and post-young-of-year (PYOY) Atlantic salmon (Salmo salar) parr were assayed over the course of 11 months in the West Brook, Massachusetts USA. Gut fullness of YOY salmon did not vary significantly among months. PYOY salmon exhibited significant seasonal differences in gut fullness, with peak fullness occurring in the spring and late fall. Significant diel differences in PYOY gut fullness occurred in June and April, with peak fullness always occurring at dawn. Prey composition varied substantially among months. Dominant prey items of PYOY salmon were baetid mayflies in June, July, and August, limnephilid caddisflies in October and November, and ephemerellid mayflies in February and April. Few differences in prey composition between PYOY and YOY salmon were observed. Fish growth was unrelated to prey availability, but gut fullness explained up to 97% of growth variation across seasons. Results suggest that spring and fall are critical periods of feeding for PYOY salmon and that diel feeding intensity shifts seasonally.

  8. Seasonal food habits of introduced blue catfish in Lake Oconee, Georgia

    USGS Publications Warehouse

    Jennings, Cecil A.; Mitchell, Geoffrey E.; Nelson, Chris

    2018-01-01

    Blue catfish (Ictalurus furcatus) are native to the Coosa River drainage in northwest Georgia but have been widely introduced outside of this range including Lake Oconee, a 7677-ha impoundment on the Oconee River in central Georgia. Blue catfish abundance and growth rates have increased dramatically since their introduction in Lake Oconee, but their food habits are unknown. Therefore, food habits of blue catfish in this impoundment were determined by examining the stomachs of 808 specimens in the reservoir’s upper and lower regions across all seasons from summer 2012 to summer 2013. Diet was summarized using the Relative Importance of specific prey by weight. In the upper region of the reservoir, Asian clams (Corbicula fluminea) were the dominant prey item during the summer (75.7%), fall (66.4%), and winter (37.6%); whereas crappie (Pomoxis spp.) was the dominant prey item in the spring (38.7%). Asian clams also were the dominant prey items in the lower region during the fall (68.4%), winter (33.9%), and spring (36.4%). Blue catfish seemed to feed opportunistically on seasonally abundant prey items in both the upper riverine and lower lacustrine portions of the reservoir. Of the many sportfishes in the reservoir, only crappie was an important prey item, and then only in the upper region during the spring. Our results do not support concerns that blue catfish are an apex predator that would decimate the sportfish assemblage in this recently colonized reservoir.

  9. Growth characteristics and Otolith analysis on Age-0 American Shad

    USGS Publications Warehouse

    Sauter, Sally T.; Wetzel, Lisa A.

    2011-01-01

    Otolith microstructure analysis provides useful information on the growth history of fish (Campana and Jones 1992, Bang and Gronkjaer 2005). Microstructure analysis can be used to construct the size-at-age growth trajectory of fish, determine daily growth rates, and estimate hatch date and other ecologically important life history events (Campana and Jones 1992, Tonkin et al. 2008). This kind of information can be incorporated into bioenergetics modeling, providing necessary data for estimating prey consumption, and guiding the development of empirically-based modeling scenarios for hypothesis testing. For example, age-0 American shad co-occur with emigrating juvenile fall Chinook salmon originating from Hanford Reach and the Snake River in the lower Columbia River reservoirs during the summer and early fall. The diet of age-0 American shad appears to overlap with that of juvenile fall Chinook salmon (Chapter 1, this report), but juvenile fall Chinook salmon are also known to feed on age-0 American shad in the reservoirs (USGS unpublished data). Abundant, energy-dense age-0 American shad may provide juvenile fall Chinook salmon opportunities for rapid growth during the time period when large numbers of age-0 American shad are available. Otolith analysis of hatch dates and the growth curve of age-0 American shad could be used to identify when eggs, larvae, and juveniles of specific size classes are temporally available as food for fall Chinook salmon in the lower Columbia River reservoirs. This kind of temporally and spatially explicit life history information is important to include in bioenergetics modeling scenarios. Quantitative estimates of prey consumption could be used with spatially-explicit estimates of prey abundance to construct a quantitative assessment of the age-0 American shad impact on a reservoir food web.

  10. Red trap colour of the carnivorous plant Drosera rotundifolia does not serve a prey attraction or camouflage function

    PubMed Central

    Foot, G.; Rice, S. P.; Millett, J.

    2014-01-01

    The traps of many carnivorous plants are red in colour. This has been widely hypothesized to serve a prey attraction function; colour has also been hypothesized to function as camouflage, preventing prey avoidance. We tested these two hypotheses in situ for the carnivorous plant Drosera rotundifolia. We conducted three separate studies: (i) prey attraction to artificial traps to isolate the influence of colour; (ii) prey attraction to artificial traps on artificial backgrounds to control the degree of contrast and (iii) observation of prey capture by D. rotundifolia to determine the effects of colour on prey capture. Prey were not attracted to green traps and were deterred from red traps. There was no evidence that camouflaged traps caught more prey. For D. rotundifolia, there was a relationship between trap colour and prey capture. However, trap colour may be confounded with other leaf traits. Thus, we conclude that for D. rotundifolia, red trap colour does not serve a prey attraction or camouflage function. PMID:24740904

  11. Red trap colour of the carnivorous plant Drosera rotundifolia does not serve a prey attraction or camouflage function.

    PubMed

    Foot, G; Rice, S P; Millett, J

    2014-01-01

    The traps of many carnivorous plants are red in colour. This has been widely hypothesized to serve a prey attraction function; colour has also been hypothesized to function as camouflage, preventing prey avoidance. We tested these two hypotheses in situ for the carnivorous plant Drosera rotundifolia. We conducted three separate studies: (i) prey attraction to artificial traps to isolate the influence of colour; (ii) prey attraction to artificial traps on artificial backgrounds to control the degree of contrast and (iii) observation of prey capture by D. rotundifolia to determine the effects of colour on prey capture. Prey were not attracted to green traps and were deterred from red traps. There was no evidence that camouflaged traps caught more prey. For D. rotundifolia, there was a relationship between trap colour and prey capture. However, trap colour may be confounded with other leaf traits. Thus, we conclude that for D. rotundifolia, red trap colour does not serve a prey attraction or camouflage function.

  12. Intraguild interactions between the predatory mites Neoseiulus californicus and Phytoseiulus persimilis.

    PubMed

    Cakmak, Ibrahim; Janssen, Arne; Sabelis, Maurice W

    2006-01-01

    Species at the same trophic level may interact through competition for food, but can also interact through intraguild predation. Intraguild predation is widespread at the second and third trophic level and the effects may cascade down to the plant level. The effects of intraguild predation can be modified by antipredator behaviour in the intraguild prey. We studied intraguild predation and antipredator behaviour in two species of predatory mite, Neoseiulus californicus and Phytoseiulus persimilis, which are both used for control of the two-spotted spider mite in greenhouse and outdoor crops. Using a Y-tube olfactometer, we assessed in particular whether each of the two predators avoids odours emanating from prey patches occupied by the heterospecific predator. Furthermore, we measured the occurrence and rate of intraguild predation of different developmental stages of P. persimilis and N. californicus on bean leaves in absence or in presence of the shared prey. Neither of the two predator species avoided prey patches with the heterospecific competitor, both when inexperienced with the other predator and when experienced with prey patches occupied by the heterospecific predator. Intraguild experiments showed that N. californicus is a potential intraguild predator of P. persimilis. However, P. persimilis did not suffer much from intraguild predation as long as the shared prey was present. This is probably because N. californicus prefers to feed on two-spotted spider mites rather than on its intraguild prey.

  13. Feeding State Modulates Behavioral Choice and Processing of Prey Stimuli in the Zebrafish Tectum.

    PubMed

    Filosa, Alessandro; Barker, Alison J; Dal Maschio, Marco; Baier, Herwig

    2016-05-04

    Animals use the sense of vision to scan their environment, respond to threats, and locate food sources. The neural computations underlying the selection of a particular behavior, such as escape or approach, require flexibility to balance potential costs and benefits for survival. For example, avoiding novel visual objects reduces predation risk but negatively affects foraging success. Zebrafish larvae approach small, moving objects ("prey") and avoid large, looming objects ("predators"). We found that this binary classification of objects by size is strongly influenced by feeding state. Hunger shifts behavioral decisions from avoidance to approach and recruits additional prey-responsive neurons in the tectum, the main visual processing center. Both behavior and tectal function are modulated by signals from the hypothalamic-pituitary-interrenal axis and the serotonergic system. Our study has revealed a neuroendocrine mechanism that modulates the perception of food and the willingness to take risks in foraging decisions. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Evolutionary Responses to Invasion: Cane Toad Sympatric Fish Show Enhanced Avoidance Learning

    PubMed Central

    Caller, Georgina; Brown, Culum

    2013-01-01

    The introduced cane toad (Bufo marinus) poses a major threat to biodiversity due to its lifelong toxicity. Several terrestrial native Australian vertebrates are adapting to the cane toad’s presence and lab trials have demonstrated that repeated exposure to B. marinus can result in learnt avoidance behaviour. Here we investigated whether aversion learning is occurring in aquatic ecosystems by comparing cane toad naïve and sympatric populations of crimson spotted rainbow fish (Melanotaenia duboulayi). The first experiment indicated that fish from the sympatric population had pre-existing aversion to attacking cane toad tadpoles but also showed reduced attacks on native tadpoles. The second experiment revealed that fish from both naïve and sympatric populations learned to avoid cane toad tadpoles following repeated, direct exposure. Allopatric fish also developed a general aversion to tadpoles. The aversion learning abilities of both groups was examined using an experiment involving novel distasteful prey items. While both populations developed a general avoidance of edible pellets in the presence of distasteful pellets, only the sympatric population significantly reduced the number of attacks on the novel distasteful prey item. These results indicate that experience with toxic prey items over multiple generations can enhance avoidance leaning capabilities via natural selection. PMID:23372788

  15. C. elegans avoids toxin-producing Streptomyces using a seven transmembrane domain chemosensory receptor

    PubMed Central

    Tran, Alan; Tang, Angelina; O'Loughlin, Colleen T; Jimenez, Vanessa; Pyle, Jacqueline; Tsujimoto, Bryan; Wellbrook, Christopher; Vargas, Christopher; Duong, Alex; Ali, Nebat; Matthews, Sarah Y; Levinson, Samantha; Woldemariam, Sarah; Khuri, Sami; Bremer, Martina; Eggers, Daryl K; L'Etoile, Noelle

    2017-01-01

    Predators and prey co-evolve, each maximizing their own fitness, but the effects of predator–prey interactions on cellular and molecular machinery are poorly understood. Here, we study this process using the predator Caenorhabditis elegans and the bacterial prey Streptomyces, which have evolved a powerful defense: the production of nematicides. We demonstrate that upon exposure to Streptomyces at their head or tail, nematodes display an escape response that is mediated by bacterially produced cues. Avoidance requires a predicted G-protein-coupled receptor, SRB-6, which is expressed in five types of amphid and phasmid chemosensory neurons. We establish that species of Streptomyces secrete dodecanoic acid, which is sensed by SRB-6. This behavioral adaptation represents an important strategy for the nematode, which utilizes specialized sensory organs and a chemoreceptor that is tuned to recognize the bacteria. These findings provide a window into the molecules and organs used in the coevolutionary arms race between predator and potential prey. PMID:28873053

  16. Selective Predation of a Stalking Predator on Ungulate Prey

    PubMed Central

    Heurich, Marco; Zeis, Klara; Küchenhoff, Helmut; Müller, Jörg; Belotti, Elisa; Bufka, Luděk; Woelfing, Benno

    2016-01-01

    Prey selection is a key factor shaping animal populations and evolutionary dynamics. An optimal forager should target prey that offers the highest benefits in terms of energy content at the lowest costs. Predators are therefore expected to select for prey of optimal size. Stalking predators do not pursue their prey long, which may lead to a more random choice of prey individuals. Due to difficulties in assessing the composition of available prey populations, data on prey selection of stalking carnivores are still scarce. We show how the stalking predator Eurasian lynx (Lynx lynx) selects prey individuals based on species identity, age, sex and individual behaviour. To address the difficulties in assessing prey population structure, we confirm inferred selection patterns by using two independent data sets: (1) data of 387 documented kills of radio-collared lynx were compared to the prey population structure retrieved from systematic camera trapping using Manly’s standardized selection ratio alpha and (2) data on 120 radio-collared roe deer were analysed using a Cox proportional hazards model. Among the larger red deer prey, lynx selected against adult males—the largest and potentially most dangerous prey individuals. In roe deer lynx preyed selectively on males and did not select for a specific age class. Activity during high risk periods reduced the risk of falling victim to a lynx attack. Our results suggest that the stalking predator lynx actively selects for size, while prey behaviour induces selection by encounter and stalking success rates. PMID:27548478

  17. Snake River fall Chinook salmon life history investigations: Annual report 2011 (April 2011 - March 2012)

    USGS Publications Warehouse

    Tiffan, Kenneth F.; Connor, William P.; Bellgraph, Brian J.; Kock, Tobias J.; Mullins, Frank; Steinhorst, R. Kirk; Christiansen, Helena E.; McCormick, Stephen D.; Ortega, Lori A.; Carter, Kathleen M.; Arntzen, Evan V.; Klett, Katherine J.C.; Deng, Z. Daniel; Abel, Tylor K.; Linley, Timothy J.; Cullinan, Valerie I.; St John, Scott J.; Erhardt, John M.; Bickford, Brad; Schmidt, Amanda; Rhodes, Tobyn N.

    2013-01-01

    Chapter Four – We conducted monthly beam trawling in Lower Granite and Little Goose reservoirs to describe the seasonal abundance of benthic epifauna that are potentially important as prey to juvenile fall Chinook salmon. The predominant taxa collected were Siberian prawns, the opossum shrimp Neomysis mercedis, and the amphipod Corophium sp. Prawns were relatively abundant at shallow sites in both reservoirs in June, but were more abundant at deep sites in lower and middle reservoir reaches in autumn. Prawn densities were commonly <0.2/m2. Prawn length-frequency data indicated that there were at least two size classes. Juvenile prawns present in shallow water more often than adult prawns, which were generally only found in deep water by autumn. Ovigerous prawns had an average of 171 eggs, which represented about 11.5% of their body weight. Limited diet analyses suggested that prawns consumed Corophium, Neomysis, and aquatic insects. Neomysis dominated all catches both in terms of abundance and biomass, and they were more abundant in Lower Granite compared to Little Goose reservoir. Neomysis were more abundant at shallow sites than at deep sites. Corophium were present in our collections but were never abundant, probably because our trawl was not effective at capturing them. The caloric content of prawns (4,782 Kcal), Neomysis (4,962 Kcal), and Corophium (4,926 Kcal) indicates that these prey would be energetically profitable for juvenile salmon. Subyearling fall Chinook salmon prey heavily on Neomysis and Corophium at times, but the importance of prawns as prey is uncertain.

  18. Nowhere to hide: Effects of linear features on predator-prey dynamics in a large mammal system.

    PubMed

    DeMars, Craig A; Boutin, Stan

    2018-01-01

    Rapid landscape alteration associated with human activity is currently challenging the evolved dynamical stability of many predator-prey systems by forcing species to behaviourally respond to novel environmental stimuli. In many forested systems, linear features (LFs) such as roads, pipelines and resource exploration lines (i.e. seismic lines) are a ubiquitous form of landscape alteration that have been implicated in altering predator-prey dynamics. One hypothesized effect is that LFs facilitate predator movement into and within prey refugia, thereby increasing predator-prey spatial overlap. We evaluated this hypothesis in a large mammal system, focusing on the interactions between boreal woodland caribou (Rangifer tarandus caribou) and their two main predators, wolves (Canis lupus) and black bears (Ursus americanus), during the calving season of caribou. In this system, LFs extend into and occur within peatlands (i.e. bogs and nutrient-poor fens), a habitat type highly used by caribou due to its refugia effects. Using resource selection analyses, we found that LFs increased predator selection of peatlands. Female caribou appeared to respond by avoiding LFs and areas with high LF density. However, in our study area, most caribou cannot completely avoid exposure to LFs and variation in female response had demographic effects. In particular, increasing proportional use of LFs by females negatively impacted survival of their neonate calves. Collectively, these results demonstrate how LFs can reduce the efficacy of prey refugia. Mitigating such effects will require limiting or restoring LFs within prey refugia, although the effectiveness of mitigation efforts will depend upon spatial scale, which in turn will be influenced by the life-history traits of predator and prey. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.

  19. Ultrasonic predator-prey interactions in water-convergent evolution with insects and bats in air?

    PubMed

    Wilson, Maria; Wahlberg, Magnus; Surlykke, Annemarie; Madsen, Peter Teglberg

    2013-01-01

    Toothed whales and bats have independently evolved biosonar systems to navigate and locate and catch prey. Such active sensing allows them to operate in darkness, but with the potential cost of warning prey by the emission of intense ultrasonic signals. At least six orders of nocturnal insects have independently evolved ears sensitive to ultrasound and exhibit evasive maneuvers when exposed to bat calls. Among aquatic prey on the other hand, the ability to detect and avoid ultrasound emitting predators seems to be limited to only one subfamily of Clupeidae: the Alosinae (shad and menhaden). These differences are likely rooted in the different physical properties of air and water where cuticular mechanoreceptors have been adapted to serve as ultrasound sensitive ears, whereas ultrasound detection in water have called for sensory cells mechanically connected to highly specialized gas volumes that can oscillate at high frequencies. In addition, there are most likely differences in the risk of predation between insects and fish from echolocating predators. The selection pressure among insects for evolving ultrasound sensitive ears is high, because essentially all nocturnal predation on flying insects stems from echolocating bats. In the interaction between toothed whales and their prey the selection pressure seems weaker, because toothed whales are by no means the only marine predators placing a selection pressure on their prey to evolve specific means to detect and avoid them. Toothed whales can generate extremely intense sound pressure levels, and it has been suggested that they may use these to debilitate prey. Recent experiments, however, show that neither fish with swim bladders, nor squid are debilitated by such signals. This strongly suggests that the production of high amplitude ultrasonic clicks serve the function of improving the detection range of the toothed whale biosonar system rather than debilitation of prey.

  20. Prey Foraging Under Sublethal Lambda-Cyhalothrin Exposure on Pyrethroid-Susceptible and -Resistant Lady Beetles (Eriopis connexa (Coleoptera: Coccinelidae)).

    PubMed

    D'Ávila, V A; Reis, L C; Barbosa, W F; Cutler, G C; Torres, J B; Guedes, R N C

    2018-05-28

    Sublethal insecticide exposure may affect foraging of insects, including natural enemies, although the subject is usually neglected. The lady beetle Eriopis connexa (Germar, 1824) (Coleoptera: Coccinelidae) is an important predator of aphids with existing pyrethroid-resistant populations that are undergoing scrutiny for potential use in pest management systems characterized by frequent insecticide use. However, the potential effect of sublethal pyrethroid exposure on this predator's foraging activity has not yet been assessed and may compromise its use in biological control. Therefore, our objective was to assess the effect of sublethal lambda-cyhalothrin exposure on three components of the prey foraging activity (i.e., walking, and prey searching and handling), in both pyrethroid-susceptible and -resistant adults of E. connexa. Both lady beetle populations exhibited similar walking patterns without insecticide exposure in noncontaminated arenas, but in partially contaminated arenas walking differed between strains, such that the resistant insects exhibited greater walking activity. Behavioral avoidance expressed as repellence to lambda-cyhalothrin was not observed for either the susceptible or resistant populations of E. connexa, but the insecticide caused avoidance by means of inducing irritability in 40% of the individuals, irrespective of the strain. Insects remained in the insecticide-contaminated portion of the arena for extended periods resulting in greater exposure. Although lambda-cyhalothrin exposure did not affect prey searching by susceptible lady beetles, prey searching was extended for exposed resistant predators. In contrast, prey handling was not affected by population or by lambda-cyhalothrin exposure. Thus, sublethal exposure to the insecticide in conjunction with the insect resistance profile can affect prey foraging with pyrethroid-exposed resistant predators exhibiting longer prey searching time associated with higher walking activity reducing its predatory performance.

  1. Climate-induced trends in predator–prey synchrony differ across life-history stages of an anadromous salmonid

    USGS Publications Warehouse

    Bell, Donovan A.; Kovach, Ryan; Vulstek, Scott C.; Joyce, John E.; Tallmon, David A.

    2017-01-01

    Differential climate-induced shifts in phenology can create mismatches between predators and prey, but few studies have examined predator–prey mismatch across multiple life-history stages. We used long-term data from a warming stream with shifting salmonid migration timings to quantify intra-annual migration synchrony between predatory Dolly Varden (Salvelinus malma) and Pacific salmon prey and examined how predator–prey synchrony has been influenced by climate change. We demonstrate that Dolly Varden have become increasingly mismatched with spring downstream migrations of abundant pink salmon (Oncorhynchus gorbuscha) juveniles. However, Dolly Varden have remained matched with fall upstream migrations of spawning Pacific salmon, including coho (Oncorhynchus kisutch), sockeye (Oncorhynchus nerka), and pink salmon. Downstream predator–prey migration synchrony decreased over time and with higher temperatures, particularly with pink salmon. In contrast, upstream migration synchrony was temporally stable and increased with rising temperatures. Differing trends in Dolly Varden predator–prey synchrony may be explained by the direct use of salmon to cue upstream migration, but not downstream migration. Overall, we show that climate change can have differing impacts on predator–prey synchrony across life-history stages.

  2. Induced changes in island fox (Urocyon littoralis) activity do not mitigate the extinction threat posed by a novel predator.

    PubMed

    Hudgens, Brian R; Garcelon, David K

    2011-03-01

    Prey response to novel predators influences the impacts on prey populations of introduced predators, bio-control efforts, and predator range expansion. Predicting the impacts of novel predators on native prey requires an understanding of both predator avoidance strategies and their potential to reduce predation risk. We examine the response of island foxes (Urocyon littoralis) to invasion by golden eagles (Aquila chrysaetos). Foxes reduced daytime activity and increased night time activity relative to eagle-naïve foxes. Individual foxes reverted toward diurnal tendencies following eagle removal efforts. We quantified the potential population impact of reduced diurnality by modeling island fox population dynamics. Our model predicted an annual population decline similar to what was observed following golden eagle invasion and predicted that the observed 11% reduction in daytime activity would not reduce predation risk sufficiently to reduce extinction risk. The limited effect of this behaviorally plastic predator avoidance strategy highlights the importance of linking behavioral change to population dynamics for predicting the impact of novel predators on resident prey populations.

  3. Detection and avoidance of a carnivore odor by prey

    PubMed Central

    Ferrero, David M.; Lemon, Jamie K.; Fluegge, Daniela; Pashkovski, Stan L.; Korzan, Wayne J.; Datta, Sandeep Robert; Spehr, Marc; Fendt, Markus; Liberles, Stephen D.

    2011-01-01

    Predator–prey relationships provide a classic paradigm for the study of innate animal behavior. Odors from carnivores elicit stereotyped fear and avoidance responses in rodents, although sensory mechanisms involved are largely unknown. Here, we identified a chemical produced by predators that activates a mouse olfactory receptor and produces an innate behavioral response. We purified this predator cue from bobcat urine and identified it to be a biogenic amine, 2-phenylethylamine. Quantitative HPLC analysis across 38 mammalian species indicates enriched 2-phenylethylamine production by numerous carnivores, with some producing >3,000-fold more than herbivores examined. Calcium imaging of neuronal responses in mouse olfactory tissue slices identified dispersed carnivore odor-selective sensory neurons that also responded to 2-phenylethylamine. Two prey species, rat and mouse, avoid a 2-phenylethylamine odor source, and loss-of-function studies involving enzymatic depletion of 2-phenylethylamine from a carnivore odor indicate it to be required for full avoidance behavior. Thus, rodent olfactory sensory neurons and chemosensory receptors have the capacity for recognizing interspecies odors. One such cue, carnivore-derived 2-phenylethylamine, is a key component of a predator odor blend that triggers hard-wired aversion circuits in the rodent brain. These data show how a single, volatile chemical detected in the environment can drive an elaborate danger-associated behavioral response in mammals. PMID:21690383

  4. Testing the nutritional-limitation, predator-avoidance, and storm-avoidance hypotheses for restricted sea otter habitat use in the Aleutian Islands, Alaska

    USGS Publications Warehouse

    Stewart, Nathan L.; Konar, Brenda; Tinker, M. Tim

    2015-01-01

    Sea otters (Enhydra lutris) inhabiting the Aleutian Islands have stabilized at low abundance levels following a decline and currently exhibit restricted habitat-utilization patterns. Possible explanations for restricted habitat use by sea otters can be classified into two fundamentally different processes, bottom-up and top-down forcing. Bottom-up hypotheses argue that changes in the availability or nutritional quality of prey resources have led to the selective use of habitats that support the highest quality prey. In contrast, top-down hypotheses argue that increases in predation pressure from killer whales have led to the selective use of habitats that provide the most effective refuge from killer whale predation. A third hypothesis suggests that current restricted habitat use is based on a need for protection from storms. We tested all three hypotheses for restricted habitat use by comparing currently used and historically used sea otter foraging locations for: (1) prey availability and quality, (2) structural habitat complexity, and (3) exposure to prevailing storms. Our findings suggest that current use is based on physical habitat complexity and not on prey availability, prey quality, or protection from storms, providing further evidence for killer whale predation as a cause for restricted sea otter habitat use in the Aleutian Islands.

  5. Testing the nutritional-limitation, predator-avoidance, and storm-avoidance hypotheses for restricted sea otter habitat use in the Aleutian Islands, Alaska.

    PubMed

    Stewart, Nathan L; Konar, Brenda; Tinker, M Tim

    2015-03-01

    Sea otters (Enhydra lutris) inhabiting the Aleutian Islands have stabilized at low abundance levels following a decline and currently exhibit restricted habitat-utilization patterns. Possible explanations for restricted habitat use by sea otters can be classified into two fundamentally different processes, bottom-up and top-down forcing. Bottom-up hypotheses argue that changes in the availability or nutritional quality of prey resources have led to the selective use of habitats that support the highest quality prey. In contrast, top-down hypotheses argue that increases in predation pressure from killer whales have led to the selective use of habitats that provide the most effective refuge from killer whale predation. A third hypothesis suggests that current restricted habitat use is based on a need for protection from storms. We tested all three hypotheses for restricted habitat use by comparing currently used and historically used sea otter foraging locations for: (1) prey availability and quality, (2) structural habitat complexity, and (3) exposure to prevailing storms. Our findings suggest that current use is based on physical habitat complexity and not on prey availability, prey quality, or protection from storms, providing further evidence for killer whale predation as a cause for restricted sea otter habitat use in the Aleutian Islands.

  6. Survival of the stillest: predator avoidance in shark embryos.

    PubMed

    Kempster, Ryan M; Hart, Nathan S; Collin, Shaun P

    2013-01-01

    Sharks use highly sensitive electroreceptors to detect the electric fields emitted by potential prey. However, it is not known whether prey animals are able to modulate their own bioelectrical signals to reduce predation risk. Here, we show that some shark (Chiloscyllium punctatum) embryos can detect predator-mimicking electric fields and respond by ceasing their respiratory gill movements. Despite being confined to the small space within the egg case, where they are vulnerable to predators, embryonic sharks are able to recognise dangerous stimuli and react with an innate avoidance response. Knowledge of such behaviours, may inform the development of effective shark repellents.

  7. Minimizing predation risk in a landscape of multiple predators: effects on the spatial distribution of African ungulates.

    PubMed

    Thaker, Maria; Vanak, Abi T; Owen, Cailey R; Ogden, Monika B; Niemann, Sophie M; Slotow, Rob

    2011-02-01

    Studies that focus on single predator-prey interactions can be inadequate for understanding antipredator responses in multi-predator systems. Yet there is still a general lack of information about the strategies of prey to minimize predation risk from multiple predators at the landscape level. Here we examined the distribution of seven African ungulate species in the fenced Karongwe Game Reserve (KGR), South Africa, as a function of predation risk from all large carnivore species (lion, leopard, cheetah, African wild dog, and spotted hyena). Using observed kill data, we generated ungulate-specific predictions of relative predation risk and of riskiness of habitats. To determine how ungulates minimize predation risk at the landscape level, we explicitly tested five hypotheses consisting of strategies that reduce the probability of encountering predators, and the probability of being killed. All ungulate species avoided risky habitats, and most selected safer habitats, thus reducing their probability of being killed. To reduce the probability of encountering predators, most of the smaller prey species (impala, warthog, waterbuck, kudu) avoided the space use of all predators, while the larger species (wildebeest, zebra, giraffe) only avoided areas where lion and leopard space use were high. The strength of avoidance for the space use of predators generally did not correspond to the relative predation threat from those predators. Instead, ungulates used a simpler behavioral rule of avoiding the activity areas of sit-and-pursue predators (lion and leopard), but not those of cursorial predators (cheetah and African wild dog). In general, selection and avoidance of habitats was stronger than avoidance of the predator activity areas. We expect similar decision rules to drive the distribution pattern of ungulates in other African savannas and in other multi-predator systems, especially where predators differ in their hunting modes.

  8. Hunting-mediated predator facilitation and superadditive mortality in a European ungulate.

    PubMed

    Gehr, Benedikt; Hofer, Elizabeth J; Pewsner, Mirjam; Ryser, Andreas; Vimercati, Eric; Vogt, Kristina; Keller, Lukas F

    2018-01-01

    Predator-prey theory predicts that in the presence of multiple types of predators using a common prey, predator facilitation may result as a consequence of contrasting prey defense mechanisms, where reducing the risk from one predator increases the risk from the other. While predator facilitation is well established in natural predator-prey systems, little attention has been paid to situations where human hunters compete with natural predators for the same prey. Here, we investigate hunting-mediated predator facilitation in a hunter-predator-prey system. We found that hunter avoidance by roe deer ( Capreolus capreolus ) exposed them to increase predation risk by Eurasian lynx ( Lynx lynx ). Lynx responded by increasing their activity and predation on deer, providing evidence that superadditive hunting mortality may be occurring through predator facilitation. Our results reveal a new pathway through which human hunters, in their role as top predators, may affect species interactions at lower trophic levels and thus drive ecosystem processes.

  9. Bt Crops Producing Cry1Ac, Cry2Ab and Cry1F Do Not Harm the Green Lacewing, Chrysoperla rufilabris

    PubMed Central

    Tian, Jun-Ce; Wang, Xiang-Ping; Long, Li-Ping; Romeis, Jörg; Naranjo, Steven E.; Hellmich, Richard L.; Wang, Ping; Earle, Elizabeth D.; Shelton, Anthony M.

    2013-01-01

    The biological control function provided by natural enemies is regarded as a protection goal that should not be harmed by the application of any new pest management tool. Plants producing Cry proteins from the bacterium, Bacillus thuringiensis (Bt), have become a major tactic for controlling pest Lepidoptera on cotton and maize and risk assessment studies are needed to ensure they do not harm important natural enemies. However, using Cry protein susceptible hosts as prey often compromises such studies. To avoid this problem we utilized pest Lepidoptera, cabbage looper (Trichoplusia ni) and fall armyworm (Spodoptera frugiperda), that were resistant to Cry1Ac produced in Bt broccoli (T. ni), Cry1Ac/Cry2Ab produced in Bt cotton (T. ni), and Cry1F produced in Bt maize (S. frugiperda). Larvae of these species were fed Bt plants or non-Bt plants and then exposed to predaceous larvae of the green lacewing Chrysoperla rufilabris. Fitness parameters (larval survival, development time, fecundity and egg hatch) of C. rufilabris were assessed over two generations. There were no differences in any of the fitness parameters regardless if C. rufilabris consumed prey (T. ni or S. frugiperda) that had consumed Bt or non-Bt plants. Additional studies confirmed that the prey contained bioactive Cry proteins when they were consumed by the predator. These studies confirm that Cry1Ac, Cry2Ab and Cry1F do not pose a hazard to the important predator C. rufilabris. This study also demonstrates the power of using resistant hosts when assessing the risk of genetically modified plants on non-target organisms. PMID:23544126

  10. Nonconsumptive predator-driven mortality causes natural selection on prey.

    PubMed

    Siepielski, Adam M; Wang, Jason; Prince, Garrett

    2014-03-01

    Predators frequently exert natural selection through differential consumption of their prey. However, predators may also cause prey mortality through nonconsumptive effects, which could cause selection if different prey phenotypes are differentially susceptible to this nonconsumptive mortality. Here we present an experimental test of this hypothesis, which reveals that nonconsumptive mortality imposed by predatory dragonflies causes selection on their damselfly prey favoring increased activity levels. These results are consistent with other studies of predator-driven selection, however, they reveal that consumption alone is not the only mechanism by which predators can exert selection on prey. Uncovering this mechanism also suggests that prey defensive traits may represent adaptations to not only avoid being consumed, but also for dealing with other sources of mortality caused by predators. Demonstrating selection through both consumptive and nonconsumptive predator mortality provides us with insight into the diverse effects of predators as an evolutionary force. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.

  11. Behavioral Hypervolumes of Predator Groups and Predator-Predator Interactions Shape Prey Survival Rates and Selection on Prey Behavior

    PubMed Central

    Pruitt, Jonathan N.; Howell, Kimberly A.; Gladney, Shaniqua J.; Yang, Yusan; Lichtenstein, James L. L.; Spicer, Michelle Elise; Echeverri, Sebastian A.; Pinter-Wollman, Noa

    2017-01-01

    Predator-prey interactions often vary on the basis of the traits of the individual predators and prey involved. Here we examine whether the multidimensional behavioral diversity of predator groups shapes prey mortality rates and selection on prey behavior. We ran individual sea stars (Pisaster ochraceus) through three behavioral assays to characterize individuals’ behavioral phenotype along three axes. We then created groups that varied in the volume of behavioral space that they occupied. We further manipulated the ability of predators to interact with one another physically via the addition of barriers. Prey snails (Chlorostome funebralis) were also run through an assay to evaluate their predator avoidance behavior before their use in mesocosm experiments. We then subjected pools of prey to predator groups and recorded the number of prey consumed and their behavioral phenotypes. We found that predator-predator interactions changed survival selection on prey traits: when predators were prevented from interacting, more fearful snails had higher survival rates, whereas prey fearfulness had no effect on survival when predators were free to interact. We also found that groups of predators that occupied a larger volume in behavioral trait space consumed 35% more prey snails than homogeneous predator groups. Finally, we found that behavioral hypervolumes were better predictors of prey survival rates than single behavioral traits or other multivariate statistics (i.e., principal component analysis). Taken together, predator-predator interactions and multidimensional behavioral diversity determine prey survival rates and selection on prey traits in this system. PMID:28221831

  12. Behavioral Hypervolumes of Predator Groups and Predator-Predator Interactions Shape Prey Survival Rates and Selection on Prey Behavior.

    PubMed

    Pruitt, Jonathan N; Howell, Kimberly A; Gladney, Shaniqua J; Yang, Yusan; Lichtenstein, James L L; Spicer, Michelle Elise; Echeverri, Sebastian A; Pinter-Wollman, Noa

    2017-03-01

    Predator-prey interactions often vary on the basis of the traits of the individual predators and prey involved. Here we examine whether the multidimensional behavioral diversity of predator groups shapes prey mortality rates and selection on prey behavior. We ran individual sea stars (Pisaster ochraceus) through three behavioral assays to characterize individuals' behavioral phenotype along three axes. We then created groups that varied in the volume of behavioral space that they occupied. We further manipulated the ability of predators to interact with one another physically via the addition of barriers. Prey snails (Chlorostome funebralis) were also run through an assay to evaluate their predator avoidance behavior before their use in mesocosm experiments. We then subjected pools of prey to predator groups and recorded the number of prey consumed and their behavioral phenotypes. We found that predator-predator interactions changed survival selection on prey traits: when predators were prevented from interacting, more fearful snails had higher survival rates, whereas prey fearfulness had no effect on survival when predators were free to interact. We also found that groups of predators that occupied a larger volume in behavioral trait space consumed 35% more prey snails than homogeneous predator groups. Finally, we found that behavioral hypervolumes were better predictors of prey survival rates than single behavioral traits or other multivariate statistics (i.e., principal component analysis). Taken together, predator-predator interactions and multidimensional behavioral diversity determine prey survival rates and selection on prey traits in this system.

  13. Territory surveillance and prey management: Wolves keep track of space and time.

    PubMed

    Schlägel, Ulrike E; Merrill, Evelyn H; Lewis, Mark A

    2017-10-01

    Identifying behavioral mechanisms that underlie observed movement patterns is difficult when animals employ sophisticated cognitive-based strategies. Such strategies may arise when timing of return visits is important, for instance to allow for resource renewal or territorial patrolling. We fitted spatially explicit random-walk models to GPS movement data of six wolves ( Canis lupus ; Linnaeus, 1758) from Alberta, Canada to investigate the importance of the following: (1) territorial surveillance likely related to renewal of scent marks along territorial edges, to reduce intraspecific risk among packs, and (2) delay in return to recently hunted areas, which may be related to anti-predator responses of prey under varying prey densities. The movement models incorporated the spatiotemporal variable "time since last visit," which acts as a wolf's memory index of its travel history and is integrated into the movement decision along with its position in relation to territory boundaries and information on local prey densities. We used a model selection framework to test hypotheses about the combined importance of these variables in wolf movement strategies. Time-dependent movement for territory surveillance was supported by all wolf movement tracks. Wolves generally avoided territory edges, but this avoidance was reduced as time since last visit increased. Time-dependent prey management was weak except in one wolf. This wolf selected locations with longer time since last visit and lower prey density, which led to a longer delay in revisiting high prey density sites. Our study shows that we can use spatially explicit random walks to identify behavioral strategies that merge environmental information and explicit spatiotemporal information on past movements (i.e., "when" and "where") to make movement decisions. The approach allows us to better understand cognition-based movement in relation to dynamic environments and resources.

  14. A comparison of food habits and prey preferences of Amur tiger (Panthera tigris altaica Temminck, 1844) at the southwest Primorskii Krai in Russia and Hunchun in China.

    PubMed

    Gu, Jiayin; Yu, Lan; Hua, Yan; Ning, Yao; Heng, Bao; Qi, Jinzhe; Long, Zexv; Yao, Mingyuan; Huang, Chong; Li, Zhilin; Lang, Jianming; Jiang, Guangshun; Ma, Jianzhang

    2018-05-03

    A small, isolated Amur tiger population is living at the southwest Primorskii Krai in Russia and Hunchun in China region. Many of them with "dual nationality" cross the border frequently. Formulating effective conservation strategies requires a clear understanding of tiger food requirements in both Russia and China sides, while Russia side already have clear results of it. We used scat analysis combined with data on the abundance of four prey species to estimate Amur tiger diet and prey preferences in Hunchun. We examined 53 tiger samples from 2011-2016 and found that tigers preyed on 12 species (11 species in winter), four of which were domestic animals with 33.58% biomass contribution, and got the first record that Amur tiger eat lynx in this area. Tigers showed a strong preference for wild boar (Jacobs index: +0.849), which were also the most frequently consumed prey, and a strong avoidance to roe deer (Jacobs index: -0.693). On the Russian side, domestic animals (just dog) were rarely found in tiger scat, and tiger did not show strong avoidance to roe deer, but to sika deer. We also found red deer footprints during winter surveys and that tigers ate red deer on the Chinese side, while there was no record of red deer on the Russian side. Reducing or eliminating human disturbance, such as grazing, is essential to recovering tiger prey and habitat in this area and the Sino-Russia joint ungulate annual survey is indispensable for prey estimates of this small, isolated Amur tiger population. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  15. Piscivore diet response to a collapse in pelagic prey populations

    USGS Publications Warehouse

    Zeug, Steven; Feyrer, Frederick; Brodsky, Annie; Melgo, Jenny

    2017-01-01

    Pelagic fish populations in the upper San Francisco Estuary have experienced significant declines since the turn of the century; a pattern known as the pelagic organism decline (POD). This study investigated food habits of piscivorous fishes over two consecutive fall seasons following the decline of pelagic fish prey. Specifically, this study addressed the contribution of pelagic versus benthic prey to piscivorous fish diets, including the frequency of predation on special-status pelagic species, and the spatial variability in prey consumption. The piscivore community was dominated by Striped Bass and also included small numbers of Sacramento Pikeminnow and Largemouth Bass. Overall, pelagic prey items contributed less than 10% of the diet by weight in both years, whereas pre-POD studies gleaned from the literature found contributions of 39–100%, suggesting a major switch from pelagic to benthic prey resources. Between-year variation in piscivore diets reflected differences in environmental conditions associated with variation in freshwater outflow. No special status fish species were detected in any of the piscivore stomachs examined. The consequences of this pelagic to benthic diet shift warrants further investigation to understand its ecological relevance.

  16. Consequences of seasonal variation in reservoir water level for predatory fishes: linking visual foraging and prey densities

    USGS Publications Warehouse

    Klobucar, Stephen L.; Budy, Phaedra

    2016-01-01

    In reservoirs, seasonal drawdown can alter the physical environment and may influence predatory fish performance. We investigated the performance of lake trout (Salvelinus namaycush) in a western reservoir by coupling field measurements with visual foraging and bioenergetic models at four distinct states (early summer, mid-summer, late summer, and fall). The models suggested that lake trout prey, juvenile kokanee (Oncorhynchus nerka), are limited seasonally by suitable temperature and dissolved oxygen. Accordingly, prey densities were greatest in late summer when reservoir volume was lowest and fish were concentrated by stratification. Prey encounter rates (up to 68 fish·day−1) and predator consumption are also predicted to be greatest during late summer. However, our models suggested that turbidity negatively correlates with prey detection and consumption across reservoir states. Under the most turbid conditions, lake trout did not meet physiological demands; however, during less turbid periods, predator consumption reached maximum bioenergetic efficiency. Overall, our findings demonstrate that rapid reservoir fluctuations and associated abiotic conditions can influence predator–prey interactions, and our models describe the potential impacts of water level fluctuation on valuable sport fishes.

  17. Interspecific differences in susceptibility to competition and predation in a species-pair of larval amphibians

    USGS Publications Warehouse

    Walls, S.C.; Taylor, D.G.; Wilson, C.M.

    2002-01-01

    Fundamental issues in the study of predator-prey interactions include addressing how prey coexist with their predators and, moreover, whether predators promote coexistence among competing prey. We conducted a series of laboratory experiments with a freshwater assemblage consisting of two predators that differed in their foraging modes (a crayfish, Procambarus sp., and the western mosquitofish, Gambusia affinis) and their prospective anuran prey (tadpoles of the narrow-mouthed toad, Gastrophryne carolinensis, and the squirrel treefrog, Hyla squirella). We examined whether competition occurs within and between these two prey species and, if so, whether the non-lethal presence of predators alters the outcome of competitive interactions. We also asked whether the two species of prey differ in their susceptibility to the two types of predators and whether interspecific differences in predator avoidance behavior might account for this variation. Our results indicated that Gastrophryne was a stronger competitor than Hyla; at high densities, Gastrophryne reduced the body size of both congeners and conspecifics, as well as the proportion of surviving conspecifics that metamorphosed. However, the presence of mosquitofish did not alter the outcome of this competition, nor did either type of predator affect the density-dependent responses of Gastrophryne. In laboratory foraging trials, the number of tadpoles of each prey species that was killed, but not completely consumed by mosquitofish, was similar for Gastrophryne and Hyla. Yet, significantly more individuals of Gastrophryne than of Hyla were the first prey eaten by mosquitofish; there was no difference in the number of individuals of each species eaten by crayfish. Overall, more individuals of Gastrophryne than of Hyla were killed and completely eaten by mosquitofish at the end of the experiment. The two species of prey did not differ in their spatial avoidance of either type of predator, suggesting that this behavior did not play a significant role in the differential vulnerability of the prey to predation. By reducing the abundance of G. carolinensis, the potential exists for predators, such as mosquitofish, to ameliorate this species' competitive impact on other species. In this way, predators may promote coexistence of species within some assemblages of amphibians.

  18. A community-level evaluation of the impact of prey behavioural and ecological characteristics on predator diet composition.

    PubMed

    Shultz, Susanne; Noë, Ronald; McGraw, W Scott; Dunbar, R I M

    2004-04-07

    Although predation avoidance is the most commonly invoked explanation for vertebrate social evolution, there is little evidence that individuals in larger groups experience lower predation rates than those in small groups. We compare the morphological and behavioural traits of mammal prey species in the Taï forest, Ivory Coast, with the diet preferences of three of their non-human predators: leopards, chimpanzees and African crowned eagles. Individual predators show marked differences in their predation rates on prey species of different body sizes, but clear patterns with prey behaviour were apparent only when differences in prey habitat use were incorporated into the analyses. Leopard predation rates are highest for terrestrial species living in smaller groups, whereas eagle predation rates are negatively correlated with group size only among arboreal prey. When prey predation rates are summed over all three predators, terrestrial species incur higher predation rates than arboreal species and, within both categories, predation rates decline with increasing prey group size and decreasing density of groups in the habitat. These results reveal that it is necessary to consider anti-predator strategies in the context of a dynamic behavioural interaction between predators and prey.

  19. Ultrasonic predator–prey interactions in water–convergent evolution with insects and bats in air?

    PubMed Central

    Wilson, Maria; Wahlberg, Magnus; Surlykke, Annemarie; Madsen, Peter Teglberg

    2013-01-01

    Toothed whales and bats have independently evolved biosonar systems to navigate and locate and catch prey. Such active sensing allows them to operate in darkness, but with the potential cost of warning prey by the emission of intense ultrasonic signals. At least six orders of nocturnal insects have independently evolved ears sensitive to ultrasound and exhibit evasive maneuvers when exposed to bat calls. Among aquatic prey on the other hand, the ability to detect and avoid ultrasound emitting predators seems to be limited to only one subfamily of Clupeidae: the Alosinae (shad and menhaden). These differences are likely rooted in the different physical properties of air and water where cuticular mechanoreceptors have been adapted to serve as ultrasound sensitive ears, whereas ultrasound detection in water have called for sensory cells mechanically connected to highly specialized gas volumes that can oscillate at high frequencies. In addition, there are most likely differences in the risk of predation between insects and fish from echolocating predators. The selection pressure among insects for evolving ultrasound sensitive ears is high, because essentially all nocturnal predation on flying insects stems from echolocating bats. In the interaction between toothed whales and their prey the selection pressure seems weaker, because toothed whales are by no means the only marine predators placing a selection pressure on their prey to evolve specific means to detect and avoid them. Toothed whales can generate extremely intense sound pressure levels, and it has been suggested that they may use these to debilitate prey. Recent experiments, however, show that neither fish with swim bladders, nor squid are debilitated by such signals. This strongly suggests that the production of high amplitude ultrasonic clicks serve the function of improving the detection range of the toothed whale biosonar system rather than debilitation of prey. PMID:23781206

  20. Moving to stay in place: behavioral mechanisms for coexistence of African large carnivores.

    PubMed

    Vanak, Abi Tamim; Fortin, Daniel; Thaker, Maria; Ogden, Monika; Owen, Cailey; Greatwood, Sophie; Slotow, Rob

    2013-11-01

    Most ecosystems have multiple predator species that not only compete for shared prey, but also pose direct threats to each other. These intraguild interactions are key drivers of carnivore community structure, with ecosystem-wide cascading effects. Yet, behavioral mechanisms for coexistence of multiple carnivore species remain poorly understood. The challenges of studying large, free-ranging carnivores have resulted in mainly coarse-scale examination of behavioral strategies without information about all interacting competitors. We overcame some of these challenges by examining the concurrent fine-scale movement decisions of almost all individuals of four large mammalian carnivore species in a closed terrestrial system. We found that the intensity ofintraguild interactions did not follow a simple hierarchical allometric pattern, because spatial and behavioral tactics of subordinate species changed with threat and resource levels across seasons. Lions (Panthera leo) were generally unrestricted and anchored themselves in areas rich in not only their principal prey, but also, during periods of resource limitation (dry season), rich in the main prey for other carnivores. Because of this, the greatest cost (potential intraguild predation) for subordinate carnivores was spatially coupled with the highest potential benefit of resource acquisition (prey-rich areas), especially in the dry season. Leopard (P. pardus) and cheetah (Acinonyx jubatus) overlapped with the home range of lions but minimized their risk using fine-scaled avoidance behaviors and restricted resource acquisition tactics. The cost of intraguild competition was most apparent for cheetahs, especially during the wet season, as areas with energetically rewarding large prey (wildebeest) were avoided when they overlapped highly with the activity areas of lions. Contrary to expectation, the smallest species (African wild dog, Lycaon pictus) did not avoid only lions, but also used multiple tactics to minimize encountering all other competitors. Intraguild competition thus forced wild dogs into areas with the lowest resource availability year round. Coexistence of multiple carnivore species has typically been explained by dietary niche separation, but our multi-scaled movement results suggest that differences in resource acquisition may instead be a consequence of avoiding intraguild competition. We generate a more realistic representation of hierarchical behavioral interactions that may ultimately drive spatially explicit trophic structures of multi-predator communities.

  1. Predator identity and time of day interact to shape the risk-reward trade-off for herbivorous coral reef fishes.

    PubMed

    Catano, Laura B; Barton, Mark B; Boswell, Kevin M; Burkepile, Deron E

    2017-03-01

    Non-consumptive effects (NCEs) of predators occur as prey alters their habitat use and foraging decisions to avoid predation. Although NCEs are recognized as being important across disparate ecosystems, the factors influencing their strength and importance remain poorly understood. Ecological context, such as time of day, predator identity, and prey condition, may modify how prey species perceive and respond to risk, thereby altering NCEs. To investigate how predator identity affects foraging of herbivorous coral reef fishes, we simulated predation risk using fiberglass models of two predator species (grouper Mycteroperca bonaci and barracuda Sphyraena barracuda) with different hunting modes. We quantified how predation risk alters herbivory rates across space (distance from predator) and time (dawn, mid-day, and dusk) to examine how prey reconciles the conflicting demands of avoiding predation vs. foraging. When we averaged the effect of both predators across space and time, they suppressed herbivory similarly. Yet, they altered feeding differently depending on time of day and distance from the model. Although feeding increased strongly with increasing distance from the predators particularly during dawn, we found that the barracuda model suppressed herbivory more strongly than the grouper model during mid-day. We suggest that prey hunger level and differences in predator hunting modes could influence these patterns. Understanding how context mediates NCEs provides insight into the emergent effects of predator-prey interactions on food webs. These insights have broad implications for understanding how anthropogenic alterations to predator abundances can affect the spatial and temporal dynamics of important ecosystem processes.

  2. Sequential assessment of prey through the use of multiple sensory cues by an eavesdropping bat

    NASA Astrophysics Data System (ADS)

    Page, Rachel A.; Schnelle, Tanja; Kalko, Elisabeth K. V.; Bunge, Thomas; Bernal, Ximena E.

    2012-06-01

    Predators are often confronted with a broad diversity of potential prey. They rely on cues associated with prey quality and palatability to optimize their hunting success and to avoid consuming toxic prey. Here, we investigate a predator's ability to assess prey cues during capture, handling, and consumption when confronted with conflicting information about prey quality. We used advertisement calls of a preferred prey item (the túngara frog) to attract fringe-lipped bats, Trachops cirrhosus, then offered palatable, poisonous, and chemically manipulated anurans as prey. Advertisement calls elicited an attack response, but as bats approached, they used additional sensory cues in a sequential manner to update their information about prey size and palatability. While both palatable and poisonous small anurans were readily captured, large poisonous toads were approached but not contacted suggesting the use of echolocation for assessment of prey size at close range. Once prey was captured, bats used chemical cues to make final, post-capture decisions about whether to consume the prey. Bats dropped small, poisonous toads as well as palatable frogs coated in toad toxins either immediately or shortly after capture. Our study suggests that echolocation and chemical cues obtained at close range supplement information obtained from acoustic cues at long range. Updating information about prey quality minimizes the occurrence of costly errors and may be advantageous in tracking temporal and spatial fluctuations of prey and exploiting novel food sources. These findings emphasize the sequential, complex nature of prey assessment that may allow exploratory and flexible hunting behaviors.

  3. Benthic response to water quality and biotic pressures in lower south San Francisco Bay, Alviso Slough, and Coyote Creek

    USGS Publications Warehouse

    Parchaso, Francis; Thompson, Janet K.; Crauder, Jeff S.; Anduaga, Rosa I.; Pearson, Sarah A.

    2015-12-22

    Bivalve biomass is elevated in summer and fall relative to the spring and winter except in Artesian Slough, where bivalves did not establish a signifcant presence. Presence of certain species contributes to the prey value of the community to predators. Potamocorbula amurensis is a shallow-burrowing bivalve and hence is easy prey for bottom-feeding predators. In contrast, Macoma petalum is a deposit feeder and can burrow deeper into the substrate than Potamocorbula amurensis, making it harder to be preyed upon. The quantitative importance of such predator-prey relationships on phytoplankton dynamics requires further investigation. There were also more amphipods in the sloughs in March 2014; this group is another potential contributor to the benthic-pelagic biomass balance. There is no observed reason for Artesian Slough to have low bivalve biomass values and high amphipod abundances. 

  4. Predator-prey interactions in the plankton: larval fish feeding on evasive copepods

    PubMed Central

    Jackson, James M.; Lenz, Petra H.

    2016-01-01

    Capture success and prey selectivity were investigated in clownfish Amphiprion ocellaris larvae using videography. Three prey types were tested using developmental stages (nauplii, copepodites and adults) of the copepod Parvocalanus crassirostris. Predatory abilities improved rapidly between days 1 and 14 post-hatch. Initially, capture success was limited to nauplii with few attacks on larger stages. Captures of copepodites were first observed at 3 dph, and of adults at 8 dph. Consistent strikes at the larger prey were observed on the day prior to successful captures (2 dph for copepodites, 7 dph for adults). Difference in capture success between nauplii and adults at 8 dph was an order of magnitude. Differences in capture success among prey types persisted but decreased to three-fold by 14 dph. Younger A. ocellaris attacked nauplii preferentially and avoided adult prey. Strike selectivity declined with age, and no selectivity was observed after 10 dph. However, numerically 50% of the ingested prey were still nauplii at 14 dph under the experimental conditions. PMID:27658849

  5. Predator-prey interactions in the plankton: larval fish feeding on evasive copepods.

    PubMed

    Jackson, James M; Lenz, Petra H

    2016-09-23

    Capture success and prey selectivity were investigated in clownfish Amphiprion ocellaris larvae using videography. Three prey types were tested using developmental stages (nauplii, copepodites and adults) of the copepod Parvocalanus crassirostris. Predatory abilities improved rapidly between days 1 and 14 post-hatch. Initially, capture success was limited to nauplii with few attacks on larger stages. Captures of copepodites were first observed at 3 dph, and of adults at 8 dph. Consistent strikes at the larger prey were observed on the day prior to successful captures (2 dph for copepodites, 7 dph for adults). Difference in capture success between nauplii and adults at 8 dph was an order of magnitude. Differences in capture success among prey types persisted but decreased to three-fold by 14 dph. Younger A. ocellaris attacked nauplii preferentially and avoided adult prey. Strike selectivity declined with age, and no selectivity was observed after 10 dph. However, numerically 50% of the ingested prey were still nauplii at 14 dph under the experimental conditions.

  6. Predator-prey interactions in the plankton: larval fish feeding on evasive copepods

    NASA Astrophysics Data System (ADS)

    Jackson, James M.; Lenz, Petra H.

    2016-09-01

    Capture success and prey selectivity were investigated in clownfish Amphiprion ocellaris larvae using videography. Three prey types were tested using developmental stages (nauplii, copepodites and adults) of the copepod Parvocalanus crassirostris. Predatory abilities improved rapidly between days 1 and 14 post-hatch. Initially, capture success was limited to nauplii with few attacks on larger stages. Captures of copepodites were first observed at 3 dph, and of adults at 8 dph. Consistent strikes at the larger prey were observed on the day prior to successful captures (2 dph for copepodites, 7 dph for adults). Difference in capture success between nauplii and adults at 8 dph was an order of magnitude. Differences in capture success among prey types persisted but decreased to three-fold by 14 dph. Younger A. ocellaris attacked nauplii preferentially and avoided adult prey. Strike selectivity declined with age, and no selectivity was observed after 10 dph. However, numerically 50% of the ingested prey were still nauplii at 14 dph under the experimental conditions.

  7. Disentangling taste and toxicity in aposematic prey

    PubMed Central

    Holen, Øistein Haugsten

    2013-01-01

    Many predators quickly learn to avoid attacking aposematic prey. If the prey vary in toxicity, the predators may alternatively learn to capture and taste-sample prey carefully before ingesting or rejecting them (go-slow behaviour). An increase in prey toxicity is generally thought to decrease predation on prey populations. However, while prey with a higher toxin load are more harmful to ingest, they may also be easier to recognize and reject owing to greater distastefulness, which can facilitate a taste-sampling foraging strategy. Here, the classic diet model is used to study the separate effects of taste and toxicity on predator preferences. The taste-sampling process is modelled using signal detection theory. The model is applicable to automimicry and Batesian mimicry. It shows that when the defensive toxin is sufficiently distasteful, a mimicry complex may be less profitable to the predator and better protected against predation if the models are moderately toxic than if they are highly toxic. Moreover, taste mimicry can reduce the profitability of the mimicry complex and increase protection against predation. The results are discussed in relation to the selection pressures acting on prey defences and the evolution of mimicry. PMID:23256198

  8. Disentangling taste and toxicity in aposematic prey.

    PubMed

    Holen, Øistein Haugsten

    2013-02-22

    Many predators quickly learn to avoid attacking aposematic prey. If the prey vary in toxicity, the predators may alternatively learn to capture and taste-sample prey carefully before ingesting or rejecting them (go-slow behaviour). An increase in prey toxicity is generally thought to decrease predation on prey populations. However, while prey with a higher toxin load are more harmful to ingest, they may also be easier to recognize and reject owing to greater distastefulness, which can facilitate a taste-sampling foraging strategy. Here, the classic diet model is used to study the separate effects of taste and toxicity on predator preferences. The taste-sampling process is modelled using signal detection theory. The model is applicable to automimicry and batesian mimicry. It shows that when the defensive toxin is sufficiently distasteful, a mimicry complex may be less profitable to the predator and better protected against predation if the models are moderately toxic than if they are highly toxic. Moreover, taste mimicry can reduce the profitability of the mimicry complex and increase protection against predation. The results are discussed in relation to the selection pressures acting on prey defences and the evolution of mimicry.

  9. THE EXECUTION OF PLANNED DETOURS BY SPIDER-EATING PREDATORS

    PubMed Central

    Cross, Fiona R.; Jackson, Robert R.

    2016-01-01

    Many spiders from the salticid subfamily Spartaeinae specialize at preying on other spiders and they adopt complex strategies when targeting these dangerous prey. We tested 15 of these spider-eating spartaeine species for the capacity to plan detours ahead of time. Each trial began with the test subject on top of a tower from which it could view two boxes: one containing prey and the other not containing prey. The distance between the tower and the boxes was too far to reach by leaping and the tower sat on a platform surrounded by water. As the species studied are known to avoid water, the only way they could reach the prey without getting wet was by taking one of two circuitous walkways from the platform: one leading to the prey (‘correct’) and one not leading to the prey (‘incorrect’). After leaving the tower, the test subject could not see the prey and sometimes it had to walk past the incorrect walkway before reaching the correct walkway. Yet all 15 species chose the correct walkway significantly more often than the incorrect walkway. We propose that these findings exemplify genuine cognition based on representation. PMID:26781057

  10. Multi-species consumer jams and the fall of guarded corals to crown-of-thorns seastar outbreaks

    PubMed Central

    Kayal, Mohsen; Ballard, Jane; Adjeroud, Mehdi

    2018-01-01

    Outbreaks of predatory crown-of-thorns seastars (COTS) can devastate coral reef ecosystems, yet some corals possess mutualistic guardian crabs that defend against COTS attacks. However, guarded corals do not always survive COTS outbreaks, with the ecological mechanisms sealing the fate of these corals during COTS infestations remaining unknown. In August 2008 in Moorea (17.539° S, 149.830° W), French Polynesia, an unusually dense multi-species aggregation of predators was observed feeding upon guarded corals following widespread coral decline due to COTS predation. Concurrent assaults from these amplified, mixed-species predator guilds likely overwhelm mutualistic crab defense, ultimately leading to the fall of guarded corals. Our observations indicate that guarded corals can sustain devastating COTS attacks for an extended duration, but eventually concede to intensifying assaults from diverse predators that aggregate in high numbers as alternative prey decays. The fall of guarded corals is therefore suggested to be ultimately driven by an indirect trophic cascade that leads to amplified attacks from diverse starving predators following prey decline, rather than COTS assaults alone. PMID:29487739

  11. Predator size divergence depends on community context.

    PubMed

    Okuzaki, Yutaka; Sota, Teiji

    2018-05-09

    Body size is a multi-functional trait related to various fitness components, but the relative importance of different selection pressures is seldom resolved. In Carabus japonicus beetles, of which the larvae exclusively prey on earthworms, adult body size is related to the presence/absence of a larger congener and habitat temperature. In sympatry, C. japonicus consistently exhibits smaller body size which is effective for avoiding interspecific mating, but in allopatry, it shows size variation unrelated to temperature. Here, we show that this predator-size variation is attributed to prey-size variation, associated with high phylogenetic diversity in earthworm communities. In allopatry, the predator size was larger where larger prey occurred. Larger adult size may have been selected because larger females produce larger larvae, which can subdue larger prey. Thus, in the absence of a larger congener, variation in prey body size had a pronounced effect on geographic body size divergence in C. japonicus. © 2018 John Wiley & Sons Ltd/CNRS.

  12. Can species-specific prey responses to chemical cues explain prey susceptibility to predation?

    PubMed

    Šmejkal, Marek; Ricard, Daniel; Sajdlová, Zuzana; Čech, Martin; Vejřík, Lukáš; Blabolil, Petr; Vejříková, Ivana; Prchalová, Marie; Vašek, Mojmír; Souza, Allan T; Brönmark, Christer; Peterka, Jiří

    2018-05-01

    The perception of danger represents an essential ability of prey for gaining an informational advantage over their natural enemies. Especially in complex environments or at night, animals strongly rely on chemoreception to avoid predators. The ability to recognize danger by chemical cues and subsequent adaptive responses to predation threats should generally increase prey survival. Recent findings suggest that European catfish ( Silurus glanis ) introduction induce changes in fish community and we tested whether the direction of change can be attributed to differences in chemical cue perception. We tested behavioral response to chemical cues using three species of freshwater fish common in European water: rudd ( Scardinius erythrophthalmus ), roach ( Rutilus rutilus ), and perch ( Perca fluviatilis ). Further, we conducted a prey selectivity experiment to evaluate the prey preferences of the European catfish. Roach exhibited the strongest reaction to chemical cues, rudd decreased use of refuge and perch did not alter any behavior in the experiment. These findings suggest that chemical cue perception might be behind community data change and we encourage collecting more community data of tested prey species before and after European catfish introduction to test the hypothesis. We conclude that used prey species can be used as a model species to verify whether chemical cue perception enhances prey survival.

  13. Do lizards and snakes really differ in their ability to take large prey? A study of relative prey mass and feeding tactics in lizards.

    PubMed

    Shine, Richard; Thomas, Jai

    2005-07-01

    Adaptations of snakes to overpower and ingest relatively large prey have attracted considerable research, whereas lizards generally are regarded as unable to subdue or ingest such large prey items. Our data challenge this assumption. On morphological grounds, most lizards lack the highly kinetic skulls that facilitate prey ingestion in macrostomate snakes, but (1) are capable of reducing large items into ingestible-sized pieces, and (2) have much larger heads relative to body length than do snakes. Thus, maximum ingestible prey size might be as high in some lizards as in snakes. Also, the willingness of lizards to tackle very large prey items may have been underestimated. Captive hatchling scincid lizards (Bassiana duperreyi) offered crickets of a range of relative prey masses (RPMs) attacked (and sometimes consumed parts of) crickets as large as or larger than their own body mass. RPM affected foraging responses: larger crickets were less likely to be attacked (especially on the abdomen), more likely to be avoided, and less likely to provide significant nutritional benefit to the predator. Nonetheless, lizards successfully attacked and consumed most crickets < or =35% of the predator's own body mass, representing RPM as high as for most prey taken by snakes. Thus, although lizards lack the impressive cranial kinesis or prey-subduction adaptations of snakes, at least some lizards are capable of overpowering and ingesting prey items as large as those consumed by snakes of similar body sizes.

  14. A five-week exercise program can reduce falls and improve obstacle avoidance in the elderly.

    PubMed

    Weerdesteyn, Vivian; Rijken, Hennie; Geurts, Alexander C H; Smits-Engelsman, Bouwien C M; Mulder, Theo; Duysens, Jacques

    2006-01-01

    Falls in the elderly are a major health problem. Although exercise programs have been shown to reduce the risk of falls, the optimal exercise components, as well as the working mechanisms that underlie the effectiveness of these programs, have not yet been established. To test whether the Nijmegen Falls Prevention Program was effective in reducing falls and improving standing balance, balance confidence, and obstacle avoidance performance in community-dwelling elderly people. A total of 113 elderly with a history of falls participated in this study (exercise group, n = 79; control group, n = 28; dropouts before randomization, n = 6). Exercise sessions were held twice weekly for 5 weeks. Pre- and post-intervention fall monitoring and quantitative motor control assessments were performed. The outcome measures were the number of falls, standing balance and obstacle avoidance performance, and balance confidence scores. The number of falls in the exercise group decreased by 46% (incidence rate ratio (IRR) 0.54, 95% confidence interval (CI) 0.36-0.79) compared to the number of falls during the baseline period and by 46% (IRR 0.54, 95% CI 0.34-0.86) compared to the control group. Obstacle avoidance success rates improved significantly more in the exercise group (on average 12%) compared to the control group (on average 6%). Quiet stance and weight-shifting measures did not show significant effects of exercise. The exercise group also had a 6% increase of balance confidence scores. The Nijmegen Falls Prevention Program was effective in reducing the incidence of falls in otherwise healthy elderly. There was no evidence of improved control of posture as a mechanism underlying this result. In contrast, an obstacle avoidance task indicated that subjects improved their performance. Laboratory obstacle avoidance tests may therefore be better instruments to evaluate future fall prevention studies than posturographic balance assessments. Copyright (c) 2006 S. Karger AG, Basel.

  15. Activity levels of bats and katydids in relation to the lunar cycle.

    PubMed

    Lang, Alexander B; Kalko, Elisabeth K V; Römer, Heinrich; Bockholdt, Cecile; Dechmann, Dina K N

    2006-01-01

    Animals are exposed to many conflicting ecological pressures, and the effect of one may often obscure that of another. A likely example of this is the so-called "lunar phobia" or reduced activity of bats during full moon. The main reason for lunar phobia was thought to be that bats adjust their activity to avoid predators. However, bats can be prey, but many are carnivorous and therefore predators themselves. Thus, they are likely to be influenced by prey availability as well as predation risk. We investigated the activity patterns of the perch-hunting Lophostoma silvicolum and one of its main types of prey, katydids, to assess the influence of the former during different phases of the lunar cycle on a gleaning insectivorous bat. To avoid sampling bias, we used sound recordings and two different capture methods for the katydids, as well as video monitoring and radio-telemetry for the bats. Both, bats and katydids were significantly more active during the dark periods associated with new moon compared to bright periods around the full moon. We conclude that foraging activity of L. silvicolum is probably influenced by prey availability to a large extent and argue that generally the causes of lunar phobia are species-specific.

  16. An objective approach to determining the weight ranges of prey preferred by and accessible to the five large African carnivores.

    PubMed

    Clements, Hayley S; Tambling, Craig J; Hayward, Matt W; Kerley, Graham I H

    2014-01-01

    Broad-scale models describing predator prey preferences serve as useful departure points for understanding predator-prey interactions at finer scales. Previous analyses used a subjective approach to identify prey weight preferences of the five large African carnivores, hence their accuracy is questionable. This study uses a segmented model of prey weight versus prey preference to objectively quantify the prey weight preferences of the five large African carnivores. Based on simulations of known predator prey preference, for prey species sample sizes above 32 the segmented model approach detects up to four known changes in prey weight preference (represented by model break-points) with high rates of detection (75% to 100% of simulations, depending on number of break-points) and accuracy (within 1.3±4.0 to 2.7±4.4 of known break-point). When applied to the five large African carnivores, using carnivore diet information from across Africa, the model detected weight ranges of prey that are preferred, killed relative to their abundance, and avoided by each carnivore. Prey in the weight ranges preferred and killed relative to their abundance are together termed "accessible prey". Accessible prey weight ranges were found to be 14-135 kg for cheetah Acinonyx jubatus, 1-45 kg for leopard Panthera pardus, 32-632 kg for lion Panthera leo, 15-1600 kg for spotted hyaena Crocuta crocuta and 10-289 kg for wild dog Lycaon pictus. An assessment of carnivore diets throughout Africa found these accessible prey weight ranges include 88±2% (cheetah), 82±3% (leopard), 81±2% (lion), 97±2% (spotted hyaena) and 96±2% (wild dog) of kills. These descriptions of prey weight preferences therefore contribute to our understanding of the diet spectrum of the five large African carnivores. Where datasets meet the minimum sample size requirements, the segmented model approach provides a means of determining, and comparing, the prey weight range preferences of any carnivore species.

  17. Indirect evolutionary rescue: prey adapts, predator avoids extinction

    PubMed Central

    Yamamichi, Masato; Miner, Brooks E

    2015-01-01

    Recent studies have increasingly recognized evolutionary rescue (adaptive evolution that prevents extinction following environmental change) as an important process in evolutionary biology and conservation science. Researchers have concentrated on single species living in isolation, but populations in nature exist within communities of interacting species, so evolutionary rescue should also be investigated in a multispecies context. We argue that the persistence or extinction of a focal species can be determined solely by evolutionary change in an interacting species. We demonstrate that prey adaptive evolution can prevent predator extinction in two-species predator–prey models, and we derive the conditions under which this indirect evolutionary interaction is essential to prevent extinction following environmental change. A nonevolving predator can be rescued from extinction by adaptive evolution of its prey due to a trade-off for the prey between defense against predation and population growth rate. As prey typically have larger populations and shorter generations than their predators, prey evolution can be rapid and have profound effects on predator population dynamics. We suggest that this process, which we term ‘indirect evolutionary rescue’, has the potential to be critically important to the ecological and evolutionary responses of populations and communities to dramatic environmental change. PMID:26366196

  18. Evolutionary implications of the form of predator generalization for aposematic signals and mimicry in prey.

    PubMed

    Ruxton, Graeme D; Franks, Dan W; Balogh, Alexandra C V; Leimar, Olof

    2008-11-01

    Generalization is at the heart of many aspects of behavioral ecology; for foragers it can be seen as an essential feature of learning about potential prey, because natural populations of prey are unlikely to be perfectly homogenous. Aposematic signals are considered to aid predators in learning to avoid a class of defended prey. Predators do this by generalizing between the appearance of prey they have previously sampled and the appearance of prey they subsequently encounter. Mimicry arises when such generalization occurs between individuals of different species. Our aim here is to explore whether the specific shape of the generalization curve can be expected to be important for theoretical predictions relating to the evolution of aposematism and mimicry. We do this by a reanalysis and development of the models provided in two recent papers. We argue that the shape of the generalization curve, in combination with the nature of genetic and phenotypic variation in prey traits, can have evolutionary significance under certain delineated circumstances. We also demonstrate that the process of gradual evolution of Müllerian mimicry proposed by Fisher is particularly efficient in populations with a rich supply of standing genetic variation in mimetic traits.

  19. A snail-eating snake recognizes prey handedness.

    PubMed

    Danaisawadi, Patchara; Asami, Takahiro; Ota, Hidetoshi; Sutcharit, Chirasak; Panha, Somsak

    2016-04-05

    Specialized predator-prey interactions can be a driving force for their coevolution. Southeast Asian snail-eating snakes (Pareas) have more teeth on the right mandible and specialize in predation on the clockwise-coiled (dextral) majority in shelled snails by soft-body extraction. Snails have countered the snakes' dextral-predation by recurrent coil reversal, which generates diverse counterclockwise-coiled (sinistral) prey where Pareas snakes live. However, whether the snake predator in turn evolves any response to prey reversal is unknown. We show that Pareas carinatus living with abundant sinistrals avoids approaching or striking at a sinistral that is more difficult and costly to handle than a dextral. Whenever it strikes, however, the snake succeeds in predation by handling dextral and sinistral prey in reverse. In contrast, P. iwasakii with little access to sinistrals on small peripheral islands attempts and frequently misses capturing a given sinistral. Prey-handedness recognition should be advantageous for right-handed snail-eating snakes where frequently encountering sinistrals. Under dextral-predation by Pareas snakes, adaptive fixation of a prey population for a reversal gene instantaneously generates a sinistral species because interchiral mating is rarely possible. The novel warning, instead of sheltering, effect of sinistrality benefitting both predators and prey could further accelerate single-gene ecological speciation by left-right reversal.

  20. Depredation of common eider, Somateria mollissima, nests on a central Beaufort Sea barrier island: A case where no one wins

    USGS Publications Warehouse

    Reed, J.A.; Lacroix, D.L.; Flint, Paul L.

    2007-01-01

    Along the central Beaufort Sea, Pacific Common Eiders (Somateria mollissima v-nigra) nest on unvegetated, barrier islands; often near nesting Glaucous Gulls (Larus hyperboreus). Nest-site choice likely reflects a strategy of predator avoidance: nesting on islands to avoid mammalian predators and near territorial gulls to avoid other avian predators. We observed a nesting colony of Common Eiders from first nest initiation through nesting termination on Egg Island near Prudhoe Bay, Alaska (2002 - 2003). Resident gulls depredated many eider nests, mostly during initiation. All nests failed when an Arctic Fox (Alopex lagopus) visited the island and flushed hens from their nests, exposing the eggs to depredation by the fox and gulls (resident and non-resident). Common Eiders actively defended nests from gulls, but not from foxes. Likely all three species (i.e., eiders, gulls, and foxes) ultimately achieved negligible benefit from their nest-site selection or predatory activity: (a) island nesting provided no safety from mammalian predators for eiders or gulls, (b) for Common Eiders, nesting near gulls increased egg loss, (c) for Glaucous Gulls, nesting near colonial eiders may have reduced nest success by attracting the fox, and (d) for Arctic Foxes, the depredation was of questionable value, as most eggs were cached and probably not recoverable (due to damage from fall storms). Thus, the predator-prey interactions we observed appear to be a case where little or no fitness advantage was realized by any of the species involved.

  1. Musculoskeletal anatomy of the Eurasian lynx, Lynx lynx (Carnivora: Felidae) forelimb: Adaptations to capture large prey?

    PubMed

    Viranta, Suvi; Lommi, Hanna; Holmala, Katja; Laakkonen, Juha

    2016-06-01

    Mammalian carnivores adhere to two different feeding strategies relative to their body masses. Large carnivores prey on animals that are the same size or larger than themselves, whereas small carnivores prey on smaller vertebrates and invertebrates. The Eurasian lynx (Lynx lynx) falls in between these two categories. Lynx descend from larger forms that were probably large prey specialists, but during the Pleistocene became predators of small prey. The modern Eurasian lynx may be an evolutionary reversal toward specializing in large prey again. We hypothesized that the musculoskeletal anatomy of lynx should show traits for catching large prey. To test our hypothesis, we dissected the forelimb muscles of six Eurasian lynx individuals and compared our findings to results published for other felids. We measured the bones and compared their dimensions to the published material. Our material displayed a well-developed pectoral girdle musculature with some uniquely extensive muscle attachments. The upper arm musculature resembled that of the pantherine felids and probably the extinct sabertooths, and also the muscles responsible for supination and pronation were similar to those in large cats. The muscles controlling the pollex were well-developed. However, skeletal indices were similar to those of small prey predators. Our findings show that lynx possess the topographic pattern of muscle origin and insertion like in large felids. J. Morphol. 277:753-765, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  2. Assessing diet compositions of Lake Ontario predators using fatty acid profiles of prey fishes

    USGS Publications Warehouse

    Happell, Austin; Pattridge, Robert; Rinchard, Jacques; Walsh, Maureen

    2017-01-01

    Fatty acid profiles are used in food web studies to assess trophic interactions between predator and prey. The present study provides the first comprehensive fatty acid dataset for important prey and predator species in Lake Ontario. Three major prey fish (alewife, rainbow smelt, and round goby) were collected at three sites along the southern shore of Lake Ontario during the spring and fall of 2013, and predator species were collected in similar locations during the summer of 2013. Fatty acid compositions were compared among all prey species, all predator species, and information from both predator and prey was used to infer foraging differences among predators. Seasonal differences in fatty acids were found within each prey species studied. Differences among prey species were greater than any spatio-temporal differences detected within species. Fatty acids of predators revealed species-specific differences that matched known foraging habits. Chinook and Coho salmon, which are known to select alewife as their dominant prey item, had relatively little variation in fatty acid profiles. Conversely, brown trout, lake trout, yellow perch and esocids had highly variable fatty acid profiles and likely highly variable diet compositions. In general, our data suggested three dominant foraging patterns: 1) diet composed of nearly exclusively alewife for Chinook and Coho Salmon; 2) a mixed diet of alewife and round goby for brown and lake trout, and both rock and smallmouth bass; 3) a diet that is likely comprised of forage fishes other than those included in our study for northern pike and chain pickerel.

  3. Foraging and metabolic consequences of semi-anadromy for an endangered estuarine fish.

    PubMed

    Hammock, Bruce G; Slater, Steven B; Baxter, Randall D; Fangue, Nann A; Cocherell, Dennis; Hennessy, April; Kurobe, Tomofumi; Tai, Christopher Y; Teh, Swee J

    2017-01-01

    Diadromy affords fish access to productive ecosystems, increasing growth and ultimately fitness, but it is unclear whether these advantages persist for species migrating within highly altered habitat. Here, we compared the foraging success of wild Delta Smelt-an endangered, zooplanktivorous, annual, semi-anadromous fish that is endemic to the highly altered San Francisco Estuary (SFE)-collected from freshwater (<0.55 psu) and brackish habitat (≥0.55 psu). Stomach fullness, averaged across three generations of wild Delta Smelt sampled from juvenile through adult life stages (n = 1,318), was 1.5-fold higher in brackish than in freshwater habitat. However, salinity and season interacted, with higher fullness (1.7-fold) in freshwater than in brackish habitat in summer, but far higher fullness in brackish than freshwater habitat during fall/winter and winter/spring (1.8 and 2.0-fold, respectively). To examine potential causes of this interaction we compared mesozooplankton abundance, collected concurrently with the Delta Smelt, in freshwater and brackish habitat during summer and fall/winter, and the metabolic rate of sub-adult Delta Smelt acclimated to salinities of 0.4, 2.0, and 12.0 psu in a laboratory experiment. A seasonal peak in mesozooplankton density coincided with the summer peak in Delta Smelt foraging success in freshwater, and a pronounced decline in freshwater mesozooplankton abundance in the fall coincided with declining stomach fullness, which persisted for the remainder of the year (fall, winter and spring). In brackish habitat, greater foraging 'efficiency' (prey items in stomachs/mesozooplankton abundance) led to more prey items per fish and generally higher stomach fullness (i.e., a higher proportion of mesozooplankton detected in concurrent trawls were eaten by fish in brackish habitat). Delta Smelt exhibited no difference in metabolic rate across the three salinities, indicating that metabolic responses to salinity are unlikely to have caused the stomach fullness results. Adult migration and freshwater spawning therefore places young fish in a position to exploit higher densities of prey in freshwater in the late spring/summer, and subsequent movement downstream provides older fish more accessible prey in brackish habitat. Thus, despite endemism to a highly-altered estuary, semi-anadromy provided substantial foraging benefits to Delta Smelt, consistent with other temperate migratory fish.

  4. Foraging and metabolic consequences of semi-anadromy for an endangered estuarine fish

    PubMed Central

    Slater, Steven B.; Baxter, Randall D.; Fangue, Nann A.; Cocherell, Dennis; Hennessy, April; Kurobe, Tomofumi; Tai, Christopher Y.; Teh, Swee J.

    2017-01-01

    Diadromy affords fish access to productive ecosystems, increasing growth and ultimately fitness, but it is unclear whether these advantages persist for species migrating within highly altered habitat. Here, we compared the foraging success of wild Delta Smelt—an endangered, zooplanktivorous, annual, semi-anadromous fish that is endemic to the highly altered San Francisco Estuary (SFE)—collected from freshwater (<0.55 psu) and brackish habitat (≥0.55 psu). Stomach fullness, averaged across three generations of wild Delta Smelt sampled from juvenile through adult life stages (n = 1,318), was 1.5-fold higher in brackish than in freshwater habitat. However, salinity and season interacted, with higher fullness (1.7-fold) in freshwater than in brackish habitat in summer, but far higher fullness in brackish than freshwater habitat during fall/winter and winter/spring (1.8 and 2.0-fold, respectively). To examine potential causes of this interaction we compared mesozooplankton abundance, collected concurrently with the Delta Smelt, in freshwater and brackish habitat during summer and fall/winter, and the metabolic rate of sub-adult Delta Smelt acclimated to salinities of 0.4, 2.0, and 12.0 psu in a laboratory experiment. A seasonal peak in mesozooplankton density coincided with the summer peak in Delta Smelt foraging success in freshwater, and a pronounced decline in freshwater mesozooplankton abundance in the fall coincided with declining stomach fullness, which persisted for the remainder of the year (fall, winter and spring). In brackish habitat, greater foraging ‘efficiency’ (prey items in stomachs/mesozooplankton abundance) led to more prey items per fish and generally higher stomach fullness (i.e., a higher proportion of mesozooplankton detected in concurrent trawls were eaten by fish in brackish habitat). Delta Smelt exhibited no difference in metabolic rate across the three salinities, indicating that metabolic responses to salinity are unlikely to have caused the stomach fullness results. Adult migration and freshwater spawning therefore places young fish in a position to exploit higher densities of prey in freshwater in the late spring/summer, and subsequent movement downstream provides older fish more accessible prey in brackish habitat. Thus, despite endemism to a highly-altered estuary, semi-anadromy provided substantial foraging benefits to Delta Smelt, consistent with other temperate migratory fish. PMID:28291808

  5. Evidence of hypoxic foraging forays by yellow perch (Perca flavescens) and potential consequences for prey consumption

    USGS Publications Warehouse

    Roberts, James J.; Grecay, Paul A.; Ludsin, Stuart A.; Pothoven, Steve A.; Vanderploeg, Henry A.; Höök, Tomas O.

    2012-01-01

    Previous studies in a variety of ecosystems have shown that ecologically and economically important benthic and bentho-pelagic fishes avoid hypoxic (−1) habitats by moving vertically or horizontally to more oxygenated areas. While avoidance of hypoxic conditions generally leads to a complete shift away from preferred benthic prey, some individual fish continue to consume benthic prey items in spite of bottom hypoxia, suggesting complex habitat utilisation and foraging patterns. For example, Lake Erie yellow perch (Perca flavescens) continue to consume benthic prey, despite being displaced vertically and horizontally by hypolimnetic hypoxia. We hypothesised that hypolimnetic hypoxia can negatively affect yellow perch by altering their distribution and inducing energetically expensive foraging behaviour. To test this hypothesis, we used drifting hydroacoustics and trawl sampling to quantify water column distribution, sub-daily vertical movement and foraging behaviour of yellow perch within hypoxic and normoxic habitats of Lake Erie’s central basin during August-September 2007. We also investigated the effects of rapid changes in ambient oxygen conditions on yellow perch consumption potential by exposing yellow perch to various static and fluctuating oxygen conditions in a controlled laboratory experiment. Our results indicate that, while yellow perch in general avoid hypoxic conditions, some individuals undertake foraging forays into hypoxic habitats where they experience greater fluctuations in abiotic conditions (pressure, temperature and oxygen concentration) than at normoxic sites. However, laboratory results suggest short-term exposure to low oxygen conditions did not negatively impact consumption potential of yellow perch. Detailed understanding of sub-daily individual behaviours may be crucial for determining interactive individual- and ecosystem-level effects of stressors such as hypoxia.

  6. Changing patterns in coastal cutthroat trout (Oncorhynchus clarki clarki) diet and prey in a gradient of deciduous canopies

    USGS Publications Warehouse

    Romero, N.; Gresswell, R.E.; Li, J.L.

    2005-01-01

    We examined the influence of riparian vegetation patterns on coastal cutthroat trout Oncorhynchus clarki clarki diet and prey from the summer of 2001 through the spring of 2002. Benthic and drifting invertebrates, allochthonous prey, and fish diet were collected from deciduous, conifer, and mixed sections of three Oregon coastal watersheds. The nine sites were best characterized as a continuum of deciduous cover, and shrub cover and proportion of deciduous canopy were positively correlated (r = 0.74). Most sources of prey (benthic invertebrate biomass, allochthonous invertebrate inputs, aquatic and total invertebrate drift) and aquatic prey ingested by coastal cutthroat trout were greater where shrub cover was more abundant. Only aquatic drift, total invertebrate drift, and allochthonous invertebrates were positively correlated with deciduous vegetation. Compared with coniferous sites, allochthonous invertebrates under deciduous and mixed canopies were almost 30% more abundant. Stream discharge likely influenced seasonal fluxes of aquatic invertebrate biomass in the benthos and drift. Aquatic insects dominated gut contents during this study; however, terrestrial prey were most common in the diet during the summer and fall. In the Pacific northwest, systematic removal of deciduous riparian vegetation to promote conifers may have unintended consequences on food resources of coastal cutthroat trout and aquatic food web interactions. ?? 2005 NRC.

  7. Regional and Seasonal Diet of the Western Burrowing Owl in South-Central Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Derek B. Hall, Paul D. Greger, Jeffrey R. Rosier

    2009-04-01

    We examined diets of Western Burrowing Owls (Athene cunicularia hypugaea) based on contents of pellets and large prey remains collected year-round at burrows in each of the 3 regions in south central Nevada (Mojave Desert, Great Basin Desert, and Transition region). The most common prey items, based on percent frequency of occurrence, were crickets and grasshoppers, beetles, rodents, sun spiders, and scorpions. The most common vertebrate prey was kangaroo rats (Dipodomys spp.). True bugs (Hemiptera), scorpions, and western harvest mice (Reithrodontomys megalotis) occurred most frequently in pellets from the Great Basin Desert region. Kangaroo rats (Dipodomys spp.) and pocket micemore » (Perognathinae) were the most important vertebrate prey items in the Transition and Mojave Desert regions, respectively. Frequency of occurrence of any invertebrate prey was high (>80%) in samples year-round but dropped in winter samples, with scorpions and sun spiders exhibiting the steepest declines. Frequency of occurrence of any vertebrate prey peaked in spring samples, was intermediate for winter and summer samples, and was lowest in fall samples. With the possible exception of selecting for western harvest mice in the Great Basin Desert region, Western Burrowing Owls in our study appeared to be opportunistic foragers with a generalist feeding strategy.« less

  8. Native prey distribution and migration mediates wolf (Canis lupus) predation on domestic livestock in the Greater Yellowstone Ecosystem

    USGS Publications Warehouse

    Nelson, Abigail A.; Kauffman, Matthew J.; Middleton, A.D.; Jimenez, M.D.; McWhirter, D. E.; Gerow, K.

    2016-01-01

    Little research has evaluated how the migration and distribution of native prey influence patterns of livestock depredation by large carnivores. Previous research suggests that the presence of native prey can increase depredation rates by attracting predators (prey tracking hypothesis). Alternatively, the absence of native prey may facilitate predation on livestock (prey scarcity hypothesis). In this study, we evaluated support for these competing hypotheses through analysis of 4 years of cattle (Bos taurus L., 1758) depredation data (n = 39 kills), 2 years of summer and fall wolf (Canis lupus L., 1758) predation and tracking data (n = 4 wolves), and 3 years of elk (Cervus elaphus L., 1758) movement data (n = 70 elk). We used logistic regression to compare the relative influence of landscape features and elk distribution on the risk of livestock depredation in areas with migratory and resident elk. Cattle depredations occurred in habitats with increased encounter rates between wolves and livestock. In resident elk areas, depredation sites were associated with elk distribution and open roads. In migratory elk areas, depredation sites were associated with wolf dens, streams, and open habitat. Patterns of carnivore–livestock conflicts are complex, and using ungulate distribution data can predict and minimize such instances.

  9. Net trophic transfer efficiency of PCBs to Lake Michigan coho salmon from their prey

    USGS Publications Warehouse

    Madenjian, Charles P.; Elliott, Robert F.; Schmidt, Larry J.; DeSorcie, Timothy J.; Hesselberg, Robert J.; Quintal, Richard T.; Begnoche, Linda J.; Bouchard, Patrick M.; Holey, Mark E.

    1998-01-01

    Most of the polychlorinated biphenyl (PCB) body burden accumulated by coho salmon (Oncorhynchus kisutch) from the Laurentian Great Lakes is from their food. We used diet information, PCB determinations in both coho salmon and their prey, and bioenergetics modeling to estimate the efficiency with which Lake Michigan coho salmon retain PCBs from their food. Our estimate was the most reliable estimate to date because (a) the coho salmon and prey fish sampled during our study were sampled in spring, summer, and fall from various locations throughout the lake, (b) detailed measurements were made on the PCB concentrations of both coho salmon and prey fish over wide ranges in fish size, and (c) coho salmon diet was analyzed in detail from April through November over a wide range of salmon size from numerous locations throughout the lake. We estimated that coho salmon from Lake Michigan retain 50% of the PCBs that are contained within their food.

  10. Swimming and feeding of mixotrophic biflagellates

    NASA Astrophysics Data System (ADS)

    Dölger, Julia; Nielsen, Lasse Tor; Kiørboe, Thomas; Andersen, Anders

    2017-01-01

    Many unicellular flagellates are mixotrophic and access resources through both photosynthesis and prey capture. Their fitness depends on those processes as well as on swimming and predator avoidance. How does the flagellar arrangement and beat pattern of the flagellate affect swimming speed, predation risk due to flow-sensing predators, and prey capture? Here, we describe measured flows around two species of mixotrophic, biflagellated haptophytes with qualitatively different flagellar arrangements and beat patterns. We model the near cell flows using two symmetrically arranged point forces with variable position next to a no-slip sphere. Utilizing the observations and the model we find that puller force arrangements favour feeding, whereas equatorial force arrangements favour fast and quiet swimming. We determine the capture rates of both passive and motile prey, and we show that the flow facilitates transport of captured prey along the haptonema structure. We argue that prey capture alone cannot fulfil the energy needs of the observed species, and that the mixotrophic life strategy is essential for survival.

  11. Dense white trichome production by plants as possible mimicry of arthropod silk or fungal hyphae that deter herbivory.

    PubMed

    Yamazaki, Kazuo; Lev-Yadun, Simcha

    2015-01-07

    Some spiders are well-known to mimic flowers or other plant surfaces in order to be cryptic to both their prey and their predators. We propose that dense, thread-like white trichomes of some plants from Estonia, Greece, Israel and Japan visually mimic spider webs, lepidopteran and spider-mite web nests and plant-pathogenic fungi, and that it may result in reduced herbivory, since various herbivores avoid spider- or other arthropod webs to circumvent predation or toxic attacks, or refrain from colonizing plants that have already been occupied by other herbivores and pathogens. Spiders and other web-forming arthropods are also the prey of certain vertebrate predators and wasps, and therefore such predators may be attracted to these web-like plant structures and prey on the invertebrate herbivores occupying them. We do not dismiss the possibility that these web-like structures may also have other defensive or physiological functions or that they are not classic mimics but rather exploit the herbivore׳s perceptual state concerning the avoidance of potentially risky objects. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Seasonal habitat use and selection by grizzly bears in Northern British Columbia

    USGS Publications Warehouse

    Milakovic, B.; Parker, K.L.; Gustine, D.D.; Lay, R.J.; Walker, A.B.D.; Gillingham, M.P.

    2012-01-01

    We defined patterns of habitat use and selection by female grizzly bears (Ursus arctos) in the Besa-Prophet watershed of northern British Columbia. We fitted 13 adult females with Geographic Positioning System (GPS) radio-collars and monitored them between 2001 and 2004. We examined patterns of habitat selection by grizzly bears relative to topographical attributes and 3 potential surrogates of food availability: land-cover class, vegetation biomass or quality (as measured by the Normalized Difference Vegetation Index), and selection value for prey species themselves (moose [Alces alces], elk [Cervus elaphus], woodland caribou [Rangifer tarandus], Stone's sheep [Ovis dalli stonei]). Although vegetation biomass and quality, and selection values for prey were important in seasonal selection by some individual bears, land-cover class, elevation, aspect, and vegetation diversity most influenced patterns of habitat selection across grizzly bears, which rely on availability of plant foods and encounters with ungulate prey. Grizzly bears as a group avoided conifer stands and areas of low vegetation diversity, and selected for burned land-cover classes and high vegetation diversity across seasons. They also selected mid elevations from what was available within seasonal ranges. Quantifying relative use of different attributes helped place selection patterns within the context of the landscape. Grizzly bears used higher elevations (1,595??31 m SE) in spring and lower elevations (1,436??27 m) in fall; the range of average elevations used among individuals was highest (500 m) during the summer. During all seasons, grizzly bears most frequented aspects with high solar gain. Use was distributed across 10 land-cover classes and depended on season. Management and conservation actions must maintain a diverse habitat matrix distributed across a large elevational gradient to ensure persistence of grizzly bears as levels of human access increase in the northern Rocky Mountains. ?? 2011 The Wildlife Society. Copyright ?? The Wildlife Society, 2011.

  13. A minimal model of predator–swarm interactions

    PubMed Central

    Chen, Yuxin; Kolokolnikov, Theodore

    2014-01-01

    We propose a minimal model of predator–swarm interactions which captures many of the essential dynamics observed in nature. Different outcomes are observed depending on the predator strength. For a ‘weak’ predator, the swarm is able to escape the predator completely. As the strength is increased, the predator is able to catch up with the swarm as a whole, but the individual prey is able to escape by ‘confusing’ the predator: the prey forms a ring with the predator at the centre. For higher predator strength, complex chasing dynamics are observed which can become chaotic. For even higher strength, the predator is able to successfully capture the prey. Our model is simple enough to be amenable to a full mathematical analysis, which is used to predict the shape of the swarm as well as the resulting predator–prey dynamics as a function of model parameters. We show that, as the predator strength is increased, there is a transition (owing to a Hopf bifurcation) from confusion state to chasing dynamics, and we compute the threshold analytically. Our analysis indicates that the swarming behaviour is not helpful in avoiding the predator, suggesting that there are other reasons why the species may swarm. The complex shape of the swarm in our model during the chasing dynamics is similar to the shape of a flock of sheep avoiding a shepherd. PMID:24598204

  14. A minimal model of predator-swarm interactions.

    PubMed

    Chen, Yuxin; Kolokolnikov, Theodore

    2014-05-06

    We propose a minimal model of predator-swarm interactions which captures many of the essential dynamics observed in nature. Different outcomes are observed depending on the predator strength. For a 'weak' predator, the swarm is able to escape the predator completely. As the strength is increased, the predator is able to catch up with the swarm as a whole, but the individual prey is able to escape by 'confusing' the predator: the prey forms a ring with the predator at the centre. For higher predator strength, complex chasing dynamics are observed which can become chaotic. For even higher strength, the predator is able to successfully capture the prey. Our model is simple enough to be amenable to a full mathematical analysis, which is used to predict the shape of the swarm as well as the resulting predator-prey dynamics as a function of model parameters. We show that, as the predator strength is increased, there is a transition (owing to a Hopf bifurcation) from confusion state to chasing dynamics, and we compute the threshold analytically. Our analysis indicates that the swarming behaviour is not helpful in avoiding the predator, suggesting that there are other reasons why the species may swarm. The complex shape of the swarm in our model during the chasing dynamics is similar to the shape of a flock of sheep avoiding a shepherd.

  15. Metamorphosing reef fishes avoid predator scent when choosing a home.

    PubMed

    Vail, Alexander L; McCormick, Mark I

    2011-12-23

    Most organisms possess anti-predator adaptations to reduce their risk of being consumed, but little is known of the adaptations prey employ during vulnerable life-history transitions when predation pressures can be extreme. We demonstrate the use of a transition-specific anti-predator adaptation by coral reef fishes as they metamorphose from pelagic larvae to benthic juveniles, when over half are consumed within 48 h. Our field experiment shows that naturally settling damselfish use olfactory, and most likely innate, predator recognition to avoid settling to habitat patches manipulated to emit predator odour. Settlement to patches emitting predator odour was on average 24-43% less than to control patches. Evidence strongly suggests that this avoidance of sedentary and patchily distributed predators by nocturnal settlers will gain them a survival advantage, but also lead to non-lethal predator effects: the costs of exhibiting anti-predator adaptations. Transition-specific anti-predator adaptations, such as demonstrated here, may be widespread among organisms with complex life cycles and play an important role in prey population dynamics.

  16. Risky Business: Do Native Rodents Use Habitat and Odor Cues to Manage Predation Risk in Australian Deserts?

    PubMed Central

    Spencer, Emma E.; Crowther, Mathew S.; Dickman, Christopher R.

    2014-01-01

    In open, arid environments with limited shelter there may be strong selection on small prey species to develop behaviors that facilitate predator avoidance. Here, we predicted that rodents should avoid predator odor and open habitats to reduce their probability of encounter with potential predators, and tested our predictions using a native Australian desert rodent, the spinifex hopping-mouse (Notomys alexis). We tested the foraging and movement responses of N. alexis to non-native predator (fox and cat) odor, in sheltered and open macro- and microhabitats. Rodents did not respond to predator odor, perhaps reflecting the inconsistent selection pressure that is imposed on prey species in the desert environment due to the transience of predator-presence. However, they foraged primarily in the open and moved preferentially across open sand. The results suggest that N. alexis relies on escape rather than avoidance behavior when managing predation risk, with its bipedal movement probably allowing it to exploit open environments most effectively. PMID:24587396

  17. Risky business: do native rodents use habitat and odor cues to manage predation risk in Australian deserts?

    PubMed

    Spencer, Emma E; Crowther, Mathew S; Dickman, Christopher R

    2014-01-01

    In open, arid environments with limited shelter there may be strong selection on small prey species to develop behaviors that facilitate predator avoidance. Here, we predicted that rodents should avoid predator odor and open habitats to reduce their probability of encounter with potential predators, and tested our predictions using a native Australian desert rodent, the spinifex hopping-mouse (Notomys alexis). We tested the foraging and movement responses of N. alexis to non-native predator (fox and cat) odor, in sheltered and open macro- and microhabitats. Rodents did not respond to predator odor, perhaps reflecting the inconsistent selection pressure that is imposed on prey species in the desert environment due to the transience of predator-presence. However, they foraged primarily in the open and moved preferentially across open sand. The results suggest that N. alexis relies on escape rather than avoidance behavior when managing predation risk, with its bipedal movement probably allowing it to exploit open environments most effectively.

  18. Transient recovery dynamics of a predator-prey system under press and pulse disturbances.

    PubMed

    Karakoç, Canan; Singer, Alexander; Johst, Karin; Harms, Hauke; Chatzinotas, Antonis

    2017-04-04

    Species recovery after disturbances depends on the strength and duration of disturbance, on the species traits and on the biotic interactions with other species. In order to understand these complex relationships, it is essential to understand mechanistically the transient dynamics of interacting species during and after disturbances. We combined microcosm experiments with simulation modelling and studied the transient recovery dynamics of a simple microbial food web under pulse and press disturbances and under different predator couplings to an alternative resource. Our results reveal that although the disturbances affected predator and prey populations by the same mortality, predator populations suffered for a longer time. The resulting diminished predation stress caused a temporary phase of high prey population sizes (i.e. prey release) during and even after disturbances. Increasing duration and strength of disturbances significantly slowed down the recovery time of the predator prolonging the phase of prey release. However, the additional coupling of the predator to an alternative resource allowed the predator to recover faster after the disturbances thus shortening the phase of prey release. Our findings are not limited to the studied system and can be used to understand the dynamic response and recovery potential of many natural predator-prey or host-pathogen systems. They can be applied, for instance, in epidemiological and conservational contexts to regulate prey release or to avoid extinction risk of the top trophic levels under different types of disturbances.

  19. Predaceous diving beetle, Dytiscus sharpi sharpi (Coleoptera: Dytiscidae) larvae avoid cannibalism by recognizing prey.

    PubMed

    Inoda, Toshio

    2012-09-01

    Larvae of diving beetles such as the various Dytiscus species (Coleoptera: Dytiscidae) are carnivorous and usually prey on other aquatic animals. Cannibalism among larvae of Dytiscus sharpi sharpi (Wehncke) was observed to begin when they were starved for more than two days under artificial breeding conditions. However, the 2-day starved larvae did not show cannibalism in the presence of intact, motionless, frozen tadpoles, or frozen shrimps. The beetle larvae attacked and captured intact tadpoles faster (15 sec) than other motionless and frozen tadpoles (120 sec), indicating that prey movement was an important factor in stimulating feeding behavior in larvae. Prey density does not have an effect on larval cannibalism. In cases in which preys are present at lower densities than that of larvae, a group of beetle larvae frequently fed on single prey. This feeding behavior, therefore, provides direct evidence of self-other recognition at the species level. Using two traps in one aquarium that allows the larvae to detect only prey smell, one containing tadpoles and another empty, the beetle larvae were attracted to the trap with tadpoles at high frequency, but not to the empty trap. In another experiment, the beetle larvae were not attracted to the trap containing a beetle larva. These results suggest that the larvae of D. sharpi sharpi are capable of recognizing prey scent, which enables the promotion of foraging behavior and the prevention of cannibalism.

  20. Complexity of the prey spectrum of Agaronia propatula (Caenogastropoda: Olividae), a dominant predator in sandy beach ecosystems of Pacific Central America

    PubMed Central

    Robinson, Nathan J.

    2018-01-01

    Olivid gastropods of the genus Agaronia are dominant predators within invertebrate communities on sandy beaches throughout Pacific Central America. At Playa Grande, on the Pacific Coast of Costa Rica, we observed 327 natural predation events by Agaronia propatula. For each predation event, we documented prey taxa and body size of both predator and prey. The relationship between predator and prey size differed for each of the four main prey taxa: bivalves, crustaceans, heterospecific gastropods, and conspecific gastropods (representing cannibalism). For bivalve prey, there was increased variance in prey size with increasing predator size. Crustaceans were likely subdued only if injured or otherwise incapacitated. Heterospecific gastropods (mostly Olivella semistriata) constituted half of all prey items, but were only captured by small and intermediately sized A. propatula. Large O. semistriata appeared capable of avoiding predation by A. propatula. Cannibalism was more prevalent among large A. propatula than previously estimated. Our findings suggested ontogenetic niche shifts in A. propatula and a significant role of cannibalism in its population dynamics. Also indicated were size-dependent defensive behavior in some prey taxa and a dynamic, fine-scale zonation of the beach. The unexpected complexity of the trophic relations of A. propatula was only revealed though analysis of individual predation events. This highlights the need for detailed investigations into the trophic ecology of marine invertebrates to understand the factors driving ecosystem structuring in sandy beaches. PMID:29736346

  1. Predation among armored arachnids: Bothriurus bonariensis (Scorpions, Bothriuridae) versus four species of harvestmen (Harvestmen, Gonyleptidae).

    PubMed

    Albín, Andrea; Toscano-Gadea, Carlos A

    2015-12-01

    Natural selection shapes prey-predator relationships and their behavioral adaptations, which seek to maximize capture success in the predator and avoidance in the prey. We tested the ability of adults of the scorpion Bothriurus bonariensis (Bothriuridae) to prey on synchronous and sympatric adults harvestmen of Acanthopachylus aculeatus, Discocyrtus prospicuus, Parampheres bimaculatus and Pachyloides thorellii (Gonyleptidae). In 72.5% of the cases B. bonariensis tried to prey on the harvestmen. The most successful captures occurred in the trials against A. aculeatus and D. prospicuus. In all the successful attacks the scorpions stung the prey between the chelicerae and consumed them, starting by the anterior portion of their bodies. The harvestmen used different defensive strategies such as fleeing before or after contact with the predator, exudating of chemical substances or staying still at the scorpion's touch. When scorpions contacted the chemical substances secreted by the harvestmen, they immediately rubbed the affected appendix against the substrate. However, exudating of chemical substances did not prevent, in any case, predation on the harvestmen. This is the first study showing the ability of scorpions to prey on different species of harvestmen, as well as the capture and defensive behaviors used by the predator and the prey. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Species profiles: Life histories and environmental requirements of coastal fishes and invertebrates (South Atlantic): Bluefish

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oliver, J.D.; Van Den Avyle, M.J.; Bozeman, E.L. Jr.

    1989-04-01

    Species profiles are literature summaries of the life history, distribution, and environmental requirements of coastal fishes and invertebrates. Profiles are prepared to assist with environmental impact assessment. The bluefish (Pomatomus saltatrix) is a valuable recreational and commercial fish on the Atlantic coast. In the South Atlantic Region the recreational catch exceeds the commercial catch. The bluefish is a migratory pelagic fish that generally travels northward in spring and summer and southward in fall and winter along the Atlantic seaboard. In the South Atlantic Region, spawning occurs primarily during spring waters just shoreward of the Gulf Stream form southern North Carolinamore » to Florida. Most larvae are carried northward by the Gulf Stream and are dispersed over the continental slope of the Middle Atlantic Region. Adult bluefish inhabit nearshore areas in the South Atlantic Region during their southerly migration in fall and winter. Larval bluefish eat mostly copepods, cladocerans, and invertebrate eggs; juveniles eat larger invertebrates and fishes. Adult bluefish eat fishes and seem to prefer schooling coastal species. Bluefish have been reported to avoid areas of low dissolved oxygen. Water turbidity may affect feeding because bluefish rely on vision to locate prey. Environmental disturbances which affect the dissolved oxygen concentration or turbidity of estuarine and nearshore waters may, therefore, affect bluefish distribution and feeding. 40 refs., 4 figs., 2 tabs.« less

  3. Interspecific variation in prey capture behavior by co-occurring Nepenthes pitcher plants

    PubMed Central

    Chin, Lijin; Chung, Arthur YC; Clarke, Charles

    2014-01-01

    Pitcher plants of the genus Nepenthes capture a wide range of arthropod prey for nutritional benefit, using complex combinations of visual and olfactory signals and gravity-driven pitfall trapping mechanisms. In many localities throughout Southeast Asia, several Nepenthes different species occur in mixed populations. Often, the species present at any given location have strongly divergent trap structures and preliminary surveys indicate that different species trap different combinations of arthropod prey, even when growing at the same locality. On this basis, it has been proposed that co-existing Nepenthes species may be engaged in niche segregation with regards to arthropod prey, avoiding direct competition with congeners by deploying traps that have modifications that enable them to target specific prey types. We examined prey capture among 3 multi-species Nepenthes populations in Borneo, finding that co-existing Nepenthes species do capture different combinations of prey, but that significant interspecific variations in arthropod prey combinations can often be detected only at sub-ordinal taxonomic ranks. In all lowland Nepenthes species examined, the dominant prey taxon is Formicidae, but montane Nepenthes trap few (or no) ants and 2 of the 3 species studied have evolved to target alternative sources of nutrition, such as tree shrew feces. Using similarity and null model analyses, we detected evidence for niche segregation with regards to formicid prey among 5 lowland, sympatric Nepenthes species in Sarawak. However, we were unable to determine whether these results provide support for the niche segregation hypothesis, or whether they simply reflect unquantified variation in heterogeneous habitats and/or ant communities in the study sites. These findings are used to propose improvements to the design of field experiments that seek to test hypotheses about targeted prey capture patterns in Nepenthes. PMID:24481246

  4. Interspecific variation in prey capture behavior by co-occurring Nepenthes pitcher plants: evidence for resource partitioning or sampling-scheme artifacts?

    PubMed

    Chin, Lijin; Chung, Arthur Y C; Clarke, Charles

    2014-01-01

    Pitcher plants of the genus Nepenthes capture a wide range of arthropod prey for nutritional benefit, using complex combinations of visual and olfactory signals and gravity-driven pitfall trapping mechanisms. In many localities throughout Southeast Asia, several Nepenthes different species occur in mixed populations. Often, the species present at any given location have strongly divergent trap structures and preliminary surveys indicate that different species trap different combinations of arthropod prey, even when growing at the same locality. On this basis, it has been proposed that co-existing Nepenthes species may be engaged in niche segregation with regards to arthropod prey, avoiding direct competition with congeners by deploying traps that have modifications that enable them to target specific prey types. We examined prey capture among 3 multi-species Nepenthes populations in Borneo, finding that co-existing Nepenthes species do capture different combinations of prey, but that significant interspecific variations in arthropod prey combinations can often be detected only at sub-ordinal taxonomic ranks. In all lowland Nepenthes species examined, the dominant prey taxon is Formicidae, but montane Nepenthes trap few (or no) ants and 2 of the 3 species studied have evolved to target alternative sources of nutrition, such as tree shrew feces. Using similarity and null model analyses, we detected evidence for niche segregation with regards to formicid prey among 5 lowland, sympatric Nepenthes species in Sarawak. However, we were unable to determine whether these results provide support for the niche segregation hypothesis, or whether they simply reflect unquantified variation in heterogeneous habitats and/or ant communities in the study sites. These findings are used to propose improvements to the design of field experiments that seek to test hypotheses about targeted prey capture patterns in Nepenthes.

  5. The multiple disguises of spiders: web colour and decorations, body colour and movement

    PubMed Central

    Théry, Marc; Casas, Jérôme

    2008-01-01

    Diverse functions have been assigned to the visual appearance of webs, spiders and web decorations, including prey attraction, predator deterrence and camouflage. Here, we review the pertinent literature, focusing on potential camouflage and mimicry. Webs are often difficult to detect in a heterogeneous visual environment. Static and dynamic web distortions are used to escape visual detection by prey, although particular silk may also attract prey. Recent work using physiological models of vision taking into account visual environments rarely supports the hypothesis of spider camouflage by decorations, but most often the prey attraction and predator confusion hypotheses. Similarly, visual modelling shows that spider coloration is effective in attracting prey but not in conveying camouflage. Camouflage through colour change might be used by particular crab spiders to hide from predator or prey on flowers of different coloration. However, results obtained on a non-cryptic crab spider suggest that an alternative function of pigmentation may be to avoid UV photodamage through the transparent cuticle. Numerous species are clearly efficient locomotory mimics of ants, particularly in the eyes of their predators. We close our paper by highlighting gaps in our knowledge. PMID:18990672

  6. Evasive mimicry: when (if ever) could mimicry based on difficulty of capture evolve?

    PubMed

    Ruxton, G D; Speed, M; Sherratt, T N

    2004-10-22

    We elucidate the conditions under which an easy-to-catch edible prey species may evolve to resemble another edible species that is much more difficult to capture ('evasive Batesian mimicry'), and the conditions under which two or more edible but hard-to-catch species evolve a common resemblance ('evasive Mullerian mimicry'). Using two complementary mathematical models, we argue that both phenomena are logically possible but that several factors will limit the prevalence of these forms of mimicry in nature. Evasive Batesian mimicry is most likely to arise when it is costly in time or energy for the predator species to pursue evasive prey, when mimics are encountered less frequently than evasive models and where there are abundant alternative prey. Evasive Mullerian mimicry, by contrast, is most likely to arise when evasive prey species differ in abundance, predators are slow to learn to avoid evasive prey and evading capture is costly to the prey. Unequivocal evidence for evasive Batesian or Mullerian mimicry has not yet been demonstrated in the field, and we argue that more empirical work is needed to test whether putative examples are indeed a result of selection to signal difficulty of capture.

  7. Testing the Prey-Trap Hypothesis at Two Wildlife Conservancies in Kenya.

    PubMed

    Dupuis-Desormeaux, Marc; Davidson, Zeke; Mwololo, Mary; Kisio, Edwin; Taylor, Sam; MacDonald, Suzanne E

    2015-01-01

    Protecting an endangered and highly poached species can conflict with providing an open and ecologically connected landscape for coexisting species. In Kenya, about half of the black rhino (Diceros bicornis) live in electrically fenced private conservancies. Purpose-built fence-gaps permit some landscape connectivity for elephant while restricting rhino from escaping. We monitored the usage patterns at these gaps by motion-triggered cameras and found high traffic volumes and predictable patterns of prey movement. The prey-trap hypothesis (PTH) proposes that predators exploit this predictable prey movement. We tested the PTH at two semi-porous reserves using two different methods: a spatial analysis and a temporal analysis. Using spatial analysis, we mapped the location of predation events with GPS and looked for concentration of kill sites near the gaps as well as conducting clustering and hot spot analysis to determine areas of statistically significant predation clustering. Using temporal analysis, we examined the time lapse between the passage of prey and predator and searched for evidence of active prey seeking and/or predator avoidance. We found no support for the PTH and conclude that the design of the fence-gaps is well suited to promoting connectivity in these types of conservancies.

  8. Snow Leopard and Himalayan Wolf: Food Habits and Prey Selection in the Central Himalayas, Nepal.

    PubMed

    Chetri, Madhu; Odden, Morten; Wegge, Per

    2017-01-01

    Top carnivores play an important role in maintaining energy flow and functioning of the ecosystem, and a clear understanding of their diets and foraging strategies is essential for developing effective conservation strategies. In this paper, we compared diets and prey selection of snow leopards and wolves based on analyses of genotyped scats (snow leopards n = 182, wolves n = 57), collected within 26 sampling grid cells (5×5 km) that were distributed across a vast landscape of ca 5000 km2 in the Central Himalayas, Nepal. Within the grid cells, we sampled prey abundances using the double observer method. We found that interspecific differences in diet composition and prey selection reflected their respective habitat preferences, i.e. snow leopards significantly preferred cliff-dwelling wild ungulates (mainly bharal, 57% of identified material in scat samples), whereas wolves preferred typically plain-dwellers (Tibetan gazelle, kiang and argali, 31%). Livestock was consumed less frequently than their proportional availability by both predators (snow leopard = 27%; wolf = 24%), but significant avoidance was only detected among snow leopards. Among livestock species, snow leopards significantly preferred horses and goats, avoided yaks, and used sheep as available. We identified factors influencing diet composition using Generalized Linear Mixed Models. Wolves showed seasonal differences in the occurrence of small mammals/birds, probably due to the winter hibernation of an important prey, marmots. For snow leopard, occurrence of both wild ungulates and livestock in scats depended on sex and latitude. Wild ungulates occurrence increased while livestock decreased from south to north, probably due to a latitudinal gradient in prey availability. Livestock occurred more frequently in scats from male snow leopards (males: 47%, females: 21%), and wild ungulates more frequently in scats from females (males: 48%, females: 70%). The sexual difference agrees with previous telemetry studies on snow leopards and other large carnivores, and may reflect a high-risk high-gain strategy among males.

  9. Snow Leopard and Himalayan Wolf: Food Habits and Prey Selection in the Central Himalayas, Nepal

    PubMed Central

    Odden, Morten; Wegge, Per

    2017-01-01

    Top carnivores play an important role in maintaining energy flow and functioning of the ecosystem, and a clear understanding of their diets and foraging strategies is essential for developing effective conservation strategies. In this paper, we compared diets and prey selection of snow leopards and wolves based on analyses of genotyped scats (snow leopards n = 182, wolves n = 57), collected within 26 sampling grid cells (5×5 km) that were distributed across a vast landscape of ca 5000 km2 in the Central Himalayas, Nepal. Within the grid cells, we sampled prey abundances using the double observer method. We found that interspecific differences in diet composition and prey selection reflected their respective habitat preferences, i.e. snow leopards significantly preferred cliff-dwelling wild ungulates (mainly bharal, 57% of identified material in scat samples), whereas wolves preferred typically plain-dwellers (Tibetan gazelle, kiang and argali, 31%). Livestock was consumed less frequently than their proportional availability by both predators (snow leopard = 27%; wolf = 24%), but significant avoidance was only detected among snow leopards. Among livestock species, snow leopards significantly preferred horses and goats, avoided yaks, and used sheep as available. We identified factors influencing diet composition using Generalized Linear Mixed Models. Wolves showed seasonal differences in the occurrence of small mammals/birds, probably due to the winter hibernation of an important prey, marmots. For snow leopard, occurrence of both wild ungulates and livestock in scats depended on sex and latitude. Wild ungulates occurrence increased while livestock decreased from south to north, probably due to a latitudinal gradient in prey availability. Livestock occurred more frequently in scats from male snow leopards (males: 47%, females: 21%), and wild ungulates more frequently in scats from females (males: 48%, females: 70%). The sexual difference agrees with previous telemetry studies on snow leopards and other large carnivores, and may reflect a high-risk high-gain strategy among males. PMID:28178279

  10. Assessing the Role of Livestock in Big Cat Prey Choice Using Spatiotemporal Availability Patterns

    PubMed Central

    Ghoddousi, Arash; Soofi, Mahmood; Kh. Hamidi, Amirhossein; Lumetsberger, Tanja; Egli, Lukas; Khorozyan, Igor; Kiabi, Bahram H.; Waltert, Matthias

    2016-01-01

    Livestock is represented in big cat diets throughout the world. Husbandry approaches aim to reduce depredation, which may influence patterns of prey choice, but whether felids have a preference for livestock or not often remains unclear as most studies ignore livestock availability. We assessed prey choice of the endangered Persian leopard (Panthera pardus saxicolor) in Golestan National Park, Iran, where conflict over livestock depredation occurs. We analyzed leopard diet (77 scats) and assessed wild and domestic prey abundance by line transect sampling (186 km), camera-trapping (2777 camera days), double-observer point-counts (64 scans) and questionnaire surveys (136 respondents). Based on interviews with 18 shepherds, we estimated monthly grazing time outside six villages with 96 conflict cases to obtain a small livestock (domestic sheep and goat) availability coefficient. Using this coefficient, which ranged between 0.40 and 0.63 for different villages, we estimated the numbers of sheep and goats available to leopard depredation. Leopard diet consisted mainly of wild boar (Sus scrofa) (50.2% biomass consumed), but bezoar goat (Capra aegagrus) was the most preferred prey species (Ij = 0.73), whereas sheep and goats were avoided (Ij = -0.54). When absolute sheep and goat numbers (~11250) were used instead of the corrected ones (~6392), avoidance of small livestock appeared to be even stronger (Ij = -0.71). We suggest that future assessments of livestock choice by felids should incorporate such case-specific corrections for spatiotemporal patterns of availability, which may vary with husbandry methods. Such an approach increases our understanding of human-felid conflict dynamics and the role of livestock in felid diets. PMID:27064680

  11. An Objective Approach to Determining the Weight Ranges of Prey Preferred by and Accessible to the Five Large African Carnivores

    PubMed Central

    Clements, Hayley S.; Tambling, Craig J.; Hayward, Matt W.; Kerley, Graham I. H.

    2014-01-01

    Broad-scale models describing predator prey preferences serve as useful departure points for understanding predator-prey interactions at finer scales. Previous analyses used a subjective approach to identify prey weight preferences of the five large African carnivores, hence their accuracy is questionable. This study uses a segmented model of prey weight versus prey preference to objectively quantify the prey weight preferences of the five large African carnivores. Based on simulations of known predator prey preference, for prey species sample sizes above 32 the segmented model approach detects up to four known changes in prey weight preference (represented by model break-points) with high rates of detection (75% to 100% of simulations, depending on number of break-points) and accuracy (within 1.3±4.0 to 2.7±4.4 of known break-point). When applied to the five large African carnivores, using carnivore diet information from across Africa, the model detected weight ranges of prey that are preferred, killed relative to their abundance, and avoided by each carnivore. Prey in the weight ranges preferred and killed relative to their abundance are together termed “accessible prey”. Accessible prey weight ranges were found to be 14–135 kg for cheetah Acinonyx jubatus, 1–45 kg for leopard Panthera pardus, 32–632 kg for lion Panthera leo, 15–1600 kg for spotted hyaena Crocuta crocuta and 10–289 kg for wild dog Lycaon pictus. An assessment of carnivore diets throughout Africa found these accessible prey weight ranges include 88±2% (cheetah), 82±3% (leopard), 81±2% (lion), 97±2% (spotted hyaena) and 96±2% (wild dog) of kills. These descriptions of prey weight preferences therefore contribute to our understanding of the diet spectrum of the five large African carnivores. Where datasets meet the minimum sample size requirements, the segmented model approach provides a means of determining, and comparing, the prey weight range preferences of any carnivore species. PMID:24988433

  12. Ants and antlions: The impact of ecology, coevolution and learning on an insect predator-prey relationship.

    PubMed

    Hollis, Karen L

    2017-06-01

    A behavioural ecological approach to the relationship between pit-digging larval antlions and their common prey, ants, provides yet another example of how the specific ecological niche that species inhabit imposes selection pressures leading to unique behavioural adaptations. Antlions rely on multiple strategies to capture prey with a minimal expenditure of energy and extraordinary efficiency while ants employ several different strategies for avoiding capture, including rescue of trapped nestmates. Importantly, both ants and antlions rely heavily on their capacity for learning, a tool that sometimes is overlooked in predator-prey relationships, leading to the implicit assumption that behavioural adaptations are the result of fixed, hard-wired responses. Nonetheless, like hard-wired responses, learned behaviour, too, is uniquely adapted to the ecological niche, a reminder that the expression of associative learning is species-specific. Beyond the study of ants and antlions, per se, this particular predator-prey relationship reveals the important role that the capacity to learn plays in coevolutionary arms races. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. The Functional Significance of Aposematic Signals: Geographic Variation in the Responses of Widespread Lizard Predators to Colourful Invertebrate Prey

    PubMed Central

    Tseng, Hui-Yun; Lin, Chung-Ping; Hsu, Jung-Ya; Pike, David A.; Huang, Wen-San

    2014-01-01

    Conspicuous colouration can evolve as a primary defence mechanism that advertises unprofitability and discourages predatory attacks. Geographic overlap is a primary determinant of whether individual predators encounter, and thus learn to avoid, such aposematic prey. We experimentally tested whether the conspicuous colouration displayed by Old World pachyrhynchid weevils (Pachyrhynchus tobafolius and Kashotonus multipunctatus) deters predation by visual predators (Swinhoe’s tree lizard; Agamidae, Japalura swinhonis). During staged encounters, sympatric lizards attacked weevils without conspicuous patterns at higher rates than weevils with intact conspicuous patterns, whereas allopatric lizards attacked weevils with intact patterns at higher rates than sympatric lizards. Sympatric lizards also attacked masked weevils at lower rates, suggesting that other attributes of the weevils (size/shape/smell) also facilitate recognition. Allopatric lizards rapidly learned to avoid weevils after only a single encounter, and maintained aversive behaviours for more than three weeks. The imperfect ability of visual predators to recognize potential prey as unpalatable, both in the presence and absence of the aposematic signal, may help explain how diverse forms of mimicry exploit the predator’s visual system to deter predation. PMID:24614681

  14. Personality matters: individual variation in reactions of naive bird predators to aposematic prey.

    PubMed

    Exnerová, Alice; Svádová, Katerina Hotová; Fucíková, Eva; Drent, Pieter; Stys, Pavel

    2010-03-07

    Variation in reactions to aposematic prey is common among conspecific individuals of bird predators. It may result from different individual experience but it also exists among naive birds. This variation may possibly be explained by the effect of personality--a complex of correlated, heritable behavioural traits consistent across contexts. In the great tit (Parus major), two extreme personality types have been defined. 'Fast' explorers are bold, aggressive and routine-forming; 'slow' explorers are shy, non-aggressive and innovative. Influence of personality type on unlearned reaction to aposematic prey, rate of avoidance learning and memory were tested in naive, hand-reared great tits from two opposite lines selected for exploration (slow against fast). The birds were subjected to a sequence of trials in which they were offered aposematic adult firebugs (Pyrrhocoris apterus). Slow birds showed a greater degree of unlearned wariness and learned to avoid the firebugs faster than fast birds. Although birds of both personality types remembered their experience, slow birds were more cautious in the memory test. We conclude that not only different species but also populations of predators that differ in proportions of personality types may have different impacts on survival of aposematic insects under natural conditions.

  15. Hunted Woolly Monkeys (Lagothrix poeppigii) Show Threat-Sensitive Responses to Human Presence

    PubMed Central

    Papworth, Sarah; Milner-Gulland, E. J.; Slocombe, Katie

    2013-01-01

    Responding only to individuals of a predator species which display threatening behaviour allows prey species to minimise energy expenditure and other costs of predator avoidance, such as disruption of feeding. The threat sensitivity hypothesis predicts such behaviour in prey species. If hunted animals are unable to distinguish dangerous humans from non-dangerous humans, human hunting is likely to have a greater effect on prey populations as all human encounters should lead to predator avoidance, increasing stress and creating opportunity costs for exploited populations. We test the threat sensitivity hypothesis in wild Poeppigi's woolly monkeys (Lagothrix poeppigii) in Yasuní National Park, Ecuador, by presenting human models engaging in one of three behaviours “hunting”, “gathering” or “researching”. These experiments were conducted at two sites with differing hunting pressures. Visibility, movement and vocalisations were recorded and results from two sites showed that groups changed their behaviours after being exposed to humans, and did so in different ways depending on the behaviour of the human model. Results at the site with higher hunting pressure were consistent with predictions based on the threat sensitivity hypothesis. Although results at the site with lower hunting pressure were not consistent with the results at the site with higher hunting pressure, groups at this site also showed differential responses to different human behaviours. These results provide evidence of threat-sensitive predator avoidance in hunted primates, which may allow them to conserve both time and energy when encountering humans which pose no threat. PMID:23614003

  16. Top predators negate the effect of mesopredators on prey physiology.

    PubMed

    Palacios, Maria M; Killen, Shaun S; Nadler, Lauren E; White, James R; McCormick, Mark I

    2016-07-01

    Predation theory and empirical evidence suggest that top predators benefit the survival of resource prey through the suppression of mesopredators. However, whether such behavioural suppression can also affect the physiology of resource prey has yet to be examined. Using a three-tier reef fish food web and intermittent-flow respirometry, our study examined changes in the metabolic rate of resource prey exposed to combinations of mesopredator and top predator cues. Under experimental conditions, the mesopredator (dottyback, Pseudochromis fuscus) continuously foraged and attacked resource prey (juveniles of the damselfish Pomacentrus amboinensis) triggering an increase in prey O2 uptake by 38 ± 12·9% (mean ± SE). The visual stimulus of a top predator (coral trout, Plectropomus leopardus) restricted the foraging activity of the mesopredator, indirectly allowing resource prey to minimize stress and maintain routine O2 uptake. Although not as strong as the effect of the top predator, the sight of a large non-predator species (thicklip wrasse, Hemigymnus melapterus) also reduced the impact of the mesopredator on prey metabolic rate. We conclude that lower trophic-level species can benefit physiologically from the presence of top predators through the behavioural suppression that top predators impose on mesopredators. By minimizing the energy spent on mesopredator avoidance and the associated stress response to mesopredator attacks, prey may be able to invest more energy in foraging and growth, highlighting the importance of the indirect, non-consumptive effects of top predators in marine food webs. © 2016 The Authors. Journal of Animal Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society.

  17. Integration of multiple intraguild predator cues for oviposition decisions by a predatory mite

    PubMed Central

    Walzer, Andreas; Schausberger, Peter

    2012-01-01

    In mutual intraguild predation (IGP), the role of individual guild members is strongly context dependent and, during ontogeny, can shift from an intraguild (IG) prey to a food competitor or to an IG predator. Consequently, recognition of an offspring's predator is more complex for IG than classic prey females. Thus, IG prey females should be able to modulate their oviposition decisions by integrating multiple IG predator cues and by experience. Using a guild of plant-inhabiting predatory mites sharing the spider mite Tetranychus urticae as prey and passing through ontogenetic role shifts in mutual IGP, we assessed the effects of single and combined direct cues of the IG predator Amblyseius andersoni (eggs and traces left by a female on the substrate) on prey patch selection and oviposition behaviour of naïve and IG predator-experienced IG prey females of Phytoseiulus persimilis. The IG prey females preferentially resided in patches without predator cues when the alternative patch contained traces of predator females or the cue combination. Preferential egg placement in patches without predator cues was only apparent in the choice situation with the cue combination. Experience increased the responsiveness of females exposed to the IG predator cue combination, indicated by immediate selection of the prey patch without predator cues and almost perfect oviposition avoidance in patches with the cue combination. We argue that the evolution of the ability of IG prey females to evaluate offspring's IGP risk accurately is driven by the irreversibility of oviposition and the functionally complex relationships between predator guild members. PMID:23264692

  18. Predator-Prey Dynamics in the Mesopelagic: Odontocete Foraging Ecology and Anti-predator Behavior of Prey

    NASA Astrophysics Data System (ADS)

    Benoit-Bird, K. J.

    2016-02-01

    We explored the behavior of Risso's dolphins foraging in scattering layers off California using an integrated approach comprising echosounders deployed in a deep-diving autonomous underwater vehicle, ship based acoustics, visual observations, direct prey sampling, and animal-borne tags on deep-diving predators. We identified three distinct prey layers: a persistent layer around 425 m, a vertically migrating layer around 300 m, and a layer intermittently present near 50 m, all of which were used by individual tagged animals. Active acoustic measurements demonstrated that Risso's dolphins dove to discrete prey layers throughout the day and night with only slightly higher detection rates at night. Dolphins were detected in all three layers during the day with over half of detections in the middle layer, 20% of detections in the deepest layer, and 10% falling outside the main layers. Dolphins were found less frequently in areas where the shallow, intermittent layer was absent, suggesting that this layer, while containing the smallest prey and the lowest densities of squid, was an important component of their foraging strategy. The deepest layer was targeted equally both during the day and at night. Using acoustic data collected from the AUV, we found layers were made up of distinct, small patches of animals of similar size and taxonomy adjacent to contrasting patches. Squid made up over 70% of the patches in which dolphins were found and more than 95% of those in deep water. Squid targeted by dolphins in deep water were also relatively large, indicating significant benefit from these relatively rare, physically demanding dives. Within these patches, prey formed tighter aggregations when Risso's dolphins were present. Careful integration of a suite of traditional and novel tools is providing insight into the ecology and dynamics of predator and prey in the mesopelagic.

  19. Natural aversive learning in Tetramorium ants reveals ability to form a generalizable memory of predators' pit traps.

    PubMed

    Hollis, Karen L; McNew, Kelsey; Sosa, Talisa; Harrsch, Felicia A; Nowbahari, Elise

    2017-06-01

    Many species of ants fall prey to pit-digging larval antlions (Myrmeleon spp.), extremely sedentary predators that wait, nearly motionless at the bottom of their pit traps, for prey to stumble inside. Previous research, both in the field and laboratory, has demonstrated a remarkable ability of these ants to rescue trapped nestmates, thus sabotaging antlions' attempts to capture them. Here we show that pavement ants, Tetramorium sp. E, an invasive species and a major threat to biodiversity, possess yet another, more effective, antipredator strategy, namely the ability to learn to avoid antlion traps following a single successful escape from a pit. More importantly, we show that this learned antipredator behavior, an example of natural aversive learning in insects, is more complicated than a single cue-to-consequence form of associative learning. That is, pavement ants were able to generalize, after one experience, from the learned characteristics of the pit and its specific location, to other pits and other contexts that differed in many features. Such generalization, often described as a lack of precise stimulus control, nonetheless would be especially adaptive in nature, enabling ants to negotiate antlions' pit fields, which contain a hundred or more pits within a few centimetres of one another. Indeed, the ability to generalize in exactly this way almost certainly is responsible for the sudden, and heretofore inexplicable, behavioural modifications of ants in response to an invasion of antlions in the vicinity of an ant colony. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Temporal and sex-specific variability in Rhinoceros Auklet diet in the central California Current system

    NASA Astrophysics Data System (ADS)

    Carle, Ryan D.; Beck, Jessie N.; Calleri, David M.; Hester, Michelle M.

    2015-06-01

    We used stable isotopes (δ15N and δ13C) and compared prey provided to chicks by each sex to evaluate seasonal and sex-specific diets in Rhinoceros Auklets (Cerorhinca monocerata) in the central California Current system during 2012-2013. Mixing models indicated northern anchovy (Engraulis mordax) were important prey for adults during fall/winter and juvenile rockfishes (Sebastes spp.) were important prey during incubation both years. Adult trophic level increased between incubation and chick-rearing periods in both years. During 2012, δ15N and δ13C of chick-rearing males and females differed significantly; mixing models indicated that females ate more Pacific saury (Cololabis saira) and less market squid (Doryteuthis opalescens) than males. Likewise, females delivered significantly more Pacific saury and less market squid to chicks than males during 2012. Chick growth (g d- 1) and chick survival to fledging were significantly lower during 2012 than 2013, likely because chicks were fed lesser quality prey or fed less frequently in 2012. Lesser body mass of females during incubation in 2012 indicated sex-specific diet differences may have been related to female energetic constraints. The observed variability in Rhinoceros Auklet diet underscores the importance of managing multiple prey populations in this system so that generalist predators have sufficient resources through changing conditions.

  1. Temperature effects induced by climate change on the growth and consumption by salmonines in Lakes Michigan and Huron

    USGS Publications Warehouse

    Kao, Yu-Chun; Madenjian, Charles P.; Bunnell, David B.; Lofgren, Brent M.; Perroud, Marjorie

    2015-01-01

    We used bioenergetics models to investigate temperature effects induced by climate change on the growth and consumption by Chinook salmon Oncorhynchus tshawytscha, lake trout Salvelinus namaycush, and steelhead O. mykiss in Lakes Michigan and Huron. We updated biological inputs to account for recent changes in the food webs and used temperature inputs in response to regional climate observed in the baseline period (1964–1993) and projected in the future period (2043–2070).Bioenergetics simulations were run across multiple age-classes and across all four seasons in different scenarios of prey availability. Due to the increased capacity of prey consumption, future growth and consumption by these salmonines were projected to increase substantially when prey availability was not limited. When prey consumption remained constant, future growth of these salmonines was projected to decrease in most cases but increase in some cases where the increase in metabolic cost can be compensated by the decrease in waste (egestion and excretion) loss. Consumption by these salmonines was projected to increase the most during spring and fall when prey energy densities are relatively high. Such seasonality benefits their future growth through increasing annual gross energy intake. Our results indicated that lake trout and steelhead would be better adapted to the warming climate than Chinook salmon. To maintain baseline growth into the future, an increase of 10 % in baseline prey consumption was required for Chinook salmon but considerably smaller increases, or no increases, in prey consumption were needed by lake trout and steelhead.

  2. Shared Decisions, Empowerment, and Ethics: A Mission Impossible for District Leaders?

    ERIC Educational Resources Information Center

    Goens, George A.

    1996-01-01

    Collaborative organizations can fall prey to bureaucratic evasions and ethical pitfalls, such as self-protection, self-righteousness, and self-deception. Superintendents must actively work to improve children's conditions and embody ethical practices. They should demonstrate trust and openness, define what is ethical, examine agendas, share…

  3. New parasitoid-predator associations: female parasitoids do not avoid competition with generalist predators when sharing invasive prey

    NASA Astrophysics Data System (ADS)

    Chailleux, Anaïs; Wajnberg, Eric; Zhou, Yuxiang; Amiens-Desneux, Edwige; Desneux, Nicolas

    2014-12-01

    Optimal habitat selection is essential for species survival in ecosystems, and interspecific competition is a key ecological mechanism for many observed species association patterns. Specialized animal species are commonly affected by resource and interference competition with generalist and/or omnivorous competitors, so avoidance behavior could be expected. We hypothesize that specialist species may exploit broad range cues from such potential resource competitors (i.e., cues possibly common to various generalist and/or omnivorous predators) to avoid costly competition regarding food or reproduction, even in new species associations. We tested this hypothesis by studying short-term interactions between a native larval parasitoid and a native generalist omnivorous predator recently sharing the same invasive host/prey, the leaf miner Tuta absoluta. We observed a strong negative effect of kleptoparasitism (food resource stealing) instead of classical intraguild predation on immature parasitoids. There was no evidence that parasitoid females avoided the omnivorous predator when searching for oviposition sites, although we studied both long- and short-range known detection mechanisms. Therefore, we conclude that broad range cue avoidance may not exist in our biological system, probably because it would lead to too much oviposition site avoidance which would not be an efficient and, thus, beneficial strategy. If confirmed in other parasitoids or specialist predators, our findings may have implications for population dynamics, especially in the current context of increasing invasive species and the resulting creation of many new species associations.

  4. Prey size diversity hinders biomass trophic transfer and predator size diversity promotes it in planktonic communities

    PubMed Central

    García-Comas, Carmen; Sastri, Akash R.; Ye, Lin; Chang, Chun-Yi; Lin, Fan-Sian; Su, Min-Sian; Gong, Gwo-Ching; Hsieh, Chih-hao

    2016-01-01

    Body size exerts multiple effects on plankton food-web interactions. However, the influence of size structure on trophic transfer remains poorly quantified in the field. Here, we examine how the size diversity of prey (nano-microplankton) and predators (mesozooplankton) influence trophic transfer efficiency (using biomass ratio as a proxy) in natural marine ecosystems. Our results support previous studies on single trophic levels: transfer efficiency decreases with increasing prey size diversity and is enhanced with greater predator size diversity. We further show that communities with low nano-microplankton size diversity and high mesozooplankton size diversity tend to occur in warmer environments with low nutrient concentrations, thus promoting trophic transfer to higher trophic levels in those conditions. Moreover, we reveal an interactive effect of predator and prey size diversities: the positive effect of predator size diversity becomes influential when prey size diversity is high. Mechanistically, the negative effect of prey size diversity on trophic transfer may be explained by unicellular size-based metabolic constraints as well as trade-offs between growth and predation avoidance with size, whereas increasing predator size diversity may enhance diet niche partitioning and thus promote trophic transfer. These findings provide insights into size-based theories of ecosystem functioning, with implications for ecosystem predictive models. PMID:26865298

  5. Predator-Prey Interactions Shape Thermal Patch Use in a Newt Larvae-Dragonfly Nymph Model

    PubMed Central

    Gvoždík, Lumír; Černická, Eva; Van Damme, Raoul

    2013-01-01

    Thermal quality and predation risk are considered important factors influencing habitat patch use in ectothermic prey. However, how the predator’s food requirement and the prey’s necessity to avoid predation interact with their respective thermoregulatory strategies remains poorly understood. The recently developed ‘thermal game model’ predicts that in the face of imminent predation, prey should divide their time equally among a range of thermal patches. In contrast, predators should concentrate their hunting activities towards warmer patches. In this study, we test these predictions in a laboratory setup and an artificial environment that mimics more natural conditions. In both cases, we scored thermal patch use of newt larvae (prey) and free-ranging dragonfly nymphs (predators). Similar effects were seen in both settings. The newt larvae spent less time in the warm patch if dragonfly nymphs were present. The patch use of the dragonfly nymphs did not change as a function of prey availability, even when the nymphs were starved prior to the experiment. Our behavioral observations partially corroborate predictions of the thermal game model. In line with asymmetric fitness pay-offs in predator-prey interactions (the ‘life-dinner’ principle), the prey’s thermal strategy is more sensitive to the presence of predators than vice versa. PMID:23755175

  6. Oxytocin tempers calculated greed but not impulsive defense in predator-prey contests.

    PubMed

    De Dreu, Carsten K W; Scholte, H Steven; van Winden, Frans A A M; Ridderinkhof, K Richard

    2015-05-01

    Human cooperation and competition is modulated by oxytocin, a hypothalamic neuropeptide that functions as both hormone and neurotransmitter. Oxytocin's functions can be captured in two explanatory yet largely contradictory frameworks: the fear-dampening (FD) hypothesis that oxytocin has anxiolytic effects and reduces fear-motivated action; and the social approach/avoidance (SAA) hypothesis that oxytocin increases cooperative approach and facilitates protection against aversive stimuli and threat. We tested derivations from both frameworks in a novel predator-prey contest game. Healthy males given oxytocin or placebo invested as predator to win their prey's endowment, or as prey to protect their endowment against predation. Neural activity was registered using 3T-MRI. In prey, (fear-motivated) investments were fast and conditioned on the amygdala. Inconsistent with FD, oxytocin did not modulate neural and behavioral responding in prey. In predators, (greed-motivated) investments were slower, and conditioned on the superior frontal gyrus (SFG). Consistent with SAA, oxytocin reduced predator investment, time to decide and activation in SFG. Thus, whereas oxytocin does not incapacitate the impulsive ability to protect and defend oneself, it lowers the greedy and more calculated appetite for coming out ahead. © The Author (2014). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  7. Bottom trawl assessment of Lake Ontario prey fishes

    USGS Publications Warehouse

    Weidel, Brian C.; Connerton, Michael J.; Holden, Jeremy

    2018-01-01

    Managing Lake Ontario fisheries in an ecosystem-context requires prey fish community and population data. Since 1978, multiple annual bottom trawl surveys have quantified prey fish dynamics to inform management relative to published Fish Community Objectives. In 2017, two whole-lake surveys collected 341 bottom trawls (spring: 204, fall: 137), at depths from 8-225m, and captured 751,350 fish from 29 species. Alewife were 90% of the total fish catch while Deepwater Sculpin, Round Goby, and Rainbow Smelt comprised the majority of the remaining total catch (3.8, 3.1, and 1.1% respectively). The adult Alewife abundance index for US waters increased in 2017 relative to 2016, however the index for Canadian waters declined. Adult Alewife condition, assessed by the predicted weight of a 165 mm fish (6.5 inches), declined in 2017 from record high values observed in spring 2016. Spring 2017 Alewife condition was slightly less than the 10-year average, but the fall value was well below the 10-year average, likely due to increased Age-1 Alewife abundance. The Age-1 Alewife abundance index was the highest observed in 40 years, and 8-times higher than the previous year. The Age-1 index estimates Alewife reproductive success the preceding year. The warm summer and winter of 2016 likely contributed to the large year class. In contrast the relatively cool 2017 spring and cold winter may result in a lower than average 2017 year class. Abundance indices for Rainbow Smelt, Cisco, and Emerald Shiner either declined or remained at low levels in 2017. Pelagic prey fish diversity continues to be low since a single species, Alewife, dominates the catch. Deepwater Sculpin were the most abundant benthic prey fish in 2017 because Round Goby abundance declined sharply from 2016. Slimy Sculpin density continued to decline and the 2017 biomass index for US waters was the lowest ever observed. Prior to Round Goby proliferation, juvenile Slimy Sculpin comprised ~10% of the Slimy Sculpin catch, but since 2004, the percent of juveniles within the total catch is less than 0.5%, suggesting Round Goby are limiting Slimy Sculpin reproduction. Despite Slimy Sculpin declines, benthic prey fish community diversity has increased as Deepwater Sculpin and Round Goby comprise more of the community.

  8. Physician alert: the legal risks associated with 'on-call' duties in the USA.

    PubMed

    Paterick, Zachary R; Patel, Nachiket J; Paterick, Timothy Edward

    2018-06-13

    On-call physicians encounter a diverse aggregate of interfaces with sundry persons concerning patient care that may surface potential legal peril. The duties and obligations of an on-call physician, who must act as a fiduciary to all patients, create a myriad of circumstances where there is a risk of falling prey to legal ambiguities. The understanding of the doctor-patient relationship, the obligations of physicians under the Emergency Medical Treatment and Labor Act, the meaning of medical informed consent and the elements of negligence will help physicians avoid the legal risk associated with the various encounters of being on call. After introducing the legal concepts, we will explore the interactions that may put physicians at legal risk and outline how to mitigate that risk. Being on call is time consuming and arduous. While on call, physicians have a duty to act morally and ethically in the best interest of the patients. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  9. Virtual obstacle crossing: Reliability and differences in stroke survivors who prospectively experienced falls or no falls.

    PubMed

    Punt, Michiel; Bruijn, Sjoerd M; Wittink, Harriet; van de Port, Ingrid G; Wubbels, Gijs; van Dieën, Jaap H

    2017-10-01

    Stroke survivors often fall during walking. To reduce fall risk, gait testing and training with avoidance of virtual obstacles is gaining popularity. However, it is unknown whether and how virtual obstacle crossing is associated with fall risk. The present study assessed whether obstacle crossing characteristics are reliable and assessed differences in stroke survivors who prospectively experienced falls or no falls. We recruited twenty-nine community dwelling chronic stroke survivors. Participants crossed five virtual obstacles with increasing lengths. After a break, the test was repeated to assess test-retest reliability. For each obstacle length and trial, we determined; success rate, leading limb preference, pre and post obstacle distance, margins of stability, toe clearance, and crossing step length and speed. Subsequently, fall incidence was monitored using a fall calendar and monthly phone calls over a six-month period. Test-retest reliability was poor, but improved with increasing obstacle-length. Twelve participants reported at least one fall. No association of fall incidence with any of the obstacle crossing characteristics was found. Given the absence of height of the virtual obstacles, obstacle avoidance may have been relatively easy, allowing participants to cross obstacles in multiple ways, increasing variability of crossing characteristics and reducing the association with fall risk. These finding cast some doubt on current protocols for testing and training of obstacle avoidance in stroke rehabilitation. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Prey availability, consumption, and quality contribute to variation in growth of subyearling Chinook Salmon rearing in riverine and reservoir habitats

    USGS Publications Warehouse

    Tiffan, Kenneth F.; Erhardt, John M.; St. John, Scott J.

    2014-01-01

    We examined prey availability, prey consumed, and diet energy content as sources of variation in growth of natural fall Chinook Salmon Oncorhynchus tshawytscha subyearlings rearing in riverine and reservoir habitats in the Snake River. Subyearlings in riverine habitat primarily consumed aquatic insects (e.g., Diptera, Ephemeroptera, Trichoptera), of which a high proportion was represented by adult, terrestrial forms. In the reservoir, subyearlings also consumed aquatic insects but also preyed heavily at times on nonnative lentic amphipods Corophium spp. and the mysid Neomysis mercedis, which were absent in riverine habitats. The availability of prey was typically much higher in the reservoir due to N. mercedis often composing over 90% of the biomass, but when this taxon was removed from consideration, biomass estimates were more often higher in the riverine habitat. Subyearling diets during 2009–2011 were generally 17–40% higher in energy in the riverine habitat than in the reservoir. Observed growth in both length and weight were significantly higher in the riverine habitat than in the reservoir. Little is known about how temporal and spatial changes in the food web in large river landscapes influence populations of native anadromous fishes. Our results provide a glimpse of how the spread and establishment of nonnative prey species can reduce juvenile salmon growth in a large river impoundment, which in turn can affect migration timing and survival.

  11. Natural heterotrophic feeding by a temperate octocoral with symbiotic zooxanthellae: a contribution to understanding the mechanisms of die-off events

    NASA Astrophysics Data System (ADS)

    Coma, Rafel; Llorente-Llurba, Eduard; Serrano, Eduard; Gili, Josep-Maria; Ribes, Marta

    2015-06-01

    Octocorals are among the most emblematic and representative organisms of sublittoral communities in both tropical and temperate seas. Eunicella singularis is the most abundant gorgonian in shallow waters and the only gorgonian with symbiotic zooxanthellae in the Mediterranean Sea. We studied the natural diet and prey capture rate of this species over an annual cycle and characterized prey digestion time over the natural temperature regime. The species captured zooplankton prey between 40 and 920 µm. A mean content of 0.14 ± 0.02 prey polyp-1 was observed throughout the year. The strong pattern of decrease in digestion time with temperature increase (from 25 h at 13 °C to 8 h at 21 °C) allowed us to estimate that the prey capture rate was 0.017 ± 0.002 prey polyp-1 h-1 (mean ± SE); the ingestion rate exhibited a seasonal pattern with higher values in spring (0.007 µg C polyp-1 h-1). Feeding on zooplankton had a low contribution to the respiratory expenses of E. singularis except in early spring. Then, heterotrophic nutrition in the natural environment seems unable to meet basal metabolic requirements, especially in summer and fall. This result, in conjunction with the documented collapse of photosynthetic capacity above a warm temperature threshold, indicates the occurrence of a resource acquisition limitation that may play a role in the repeated summer die-off events of the species.

  12. Effects of mosquito larvicide on mallard ducklings and prey

    USGS Publications Warehouse

    Miles, A.K.; Lawler, S.P.; Dritz, D.; Spring, S.

    2002-01-01

    We determined the effects of a commonly used mosquito (Culicidae) larvicide (California Golden Bear Oil??, also GB-1111) on body mass and survival of mallard (Anas platyrhynchos) ducklings and on target and nontarget invertebrates. Field studies conducted on natural ponds located in salt marshes in south San Francisco Bay indicated that GB-1111 had an initial impact on potential invertebrate prey of birds that dissipated rapidly 3 days post-spray. Over-spray, spray drift, or treatment of more extensive areas would likely delay recovery of nontarget prey. Ducklings held intermittently on the ponds over an 8-day period showed no significant effects of weight loss due to invertebrate prey depletion, although initial effects of exposure to GB-1111 were observed (i.e., matting of feathers and mild hypothermia). These results emphasize the importance of avoiding application of GB-1111 during cold temperatures and adherence to recommended use of this larvicide. Otherwise, GB-1111 had a short-term impact on wetland communities.

  13. Acquired versus innate prey capturing skills in super-precocial live-bearing fish.

    PubMed

    Lankheet, Martin J; Stoffers, Twan; van Leeuwen, Johan L; Pollux, Bart J A

    2016-07-13

    Live-bearing fish start hunting for mobile prey within hours after birth, an example of extreme precociality. Because prenatal, in utero, development of this behaviour is constrained by the lack of free-swimming sensory-motor interactions, immediate success after birth depends on innate, evolutionarily acquired patterns. Optimal performance however requires flexible adjustment to an unpredictable environment. To distinguish innate from postnatally developing patterns we analysed over 2000 prey capture events for 28 metallic livebearers (Girardinus metallicus; Poeciliidae), during their first 3 days after birth. We show that the use of synchronous pectoral fin beats for final acceleration and ingestion is fixed and presumably innate. It allows for direct, symmetrical control of swimming speed and direction, while avoiding head yaw. Eye movements and body curvatures, however, change considerably in the first few days, showing that eye-tail coordination requires postnatal development. The results show how successful prey captures for newborn, live-bearing fish are based on a combination of fixed motor programmes and rapid, postnatal development. © 2016 The Author(s).

  14. Scaling up our understanding of non-consumptive effects in insect systems

    DOE PAGES

    Hermann, Sara L.; Landis, Douglas A.

    2017-04-06

    Here, non-consumptive effects (NCEs) of predators on prey is an important topic in insect ecology with potential applications for pest management. NCEs are changes in prey behavior and physiology that aid in predation avoidance. While NCEs can have positive outcomes for prey survival there may also be negative consequences including increased stress and reduced growth. These effects can cascade through trophic systems influencing ecosystem function. Most NCEs have been studied at small spatial and temporal scales. However, recent studies show promise for the potential to manipulate NCEs for pest management. We suggest the next frontier for NCE studies includes manipulatingmore » the landscape of fear to improve pest control, which requires scaling-up to field and landscape levels, over ecologically relevant time frames.« less

  15. Scaling up our understanding of non-consumptive effects in insect systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hermann, Sara L.; Landis, Douglas A.

    Here, non-consumptive effects (NCEs) of predators on prey is an important topic in insect ecology with potential applications for pest management. NCEs are changes in prey behavior and physiology that aid in predation avoidance. While NCEs can have positive outcomes for prey survival there may also be negative consequences including increased stress and reduced growth. These effects can cascade through trophic systems influencing ecosystem function. Most NCEs have been studied at small spatial and temporal scales. However, recent studies show promise for the potential to manipulate NCEs for pest management. We suggest the next frontier for NCE studies includes manipulatingmore » the landscape of fear to improve pest control, which requires scaling-up to field and landscape levels, over ecologically relevant time frames.« less

  16. Sustainability of virulence in a phage-bacterial ecosystem.

    PubMed

    Heilmann, Silja; Sneppen, Kim; Krishna, Sandeep

    2010-03-01

    Virulent phages and their bacterial hosts represent an unusual sort of predator-prey system where each time a prey is eaten, hundreds of new predators are born. It is puzzling how, despite the apparent effectiveness of the phage predators, they manage to avoid driving their bacterial prey to extinction. Here we consider a phage-bacterial ecosystem on a two-dimensional (2-d) surface and show that homogeneous space in itself enhances coexistence. We analyze different behavioral mechanisms that can facilitate coexistence in a spatial environment. For example, we find that when the latent times of the phage are allowed to evolve, selection favors "mediocre killers," since voracious phage rapidly deplete local resources and go extinct. Our model system thus emphasizes the differences between short-term proliferation and long-term ecosystem sustainability.

  17. An Unprecedented Role Reversal: Ground Beetle Larvae (Coleoptera: Carabidae) Lure Amphibians and Prey upon Them

    PubMed Central

    Wizen, Gil; Gasith, Avital

    2011-01-01

    Amphibians often feed on beetle larvae, including those of ground beetles (Carabidae). Preliminary reports have detailed an unusual trophic interaction in which, in contrast, larvae of the ground beetle Epomis prey upon juvenile and adult amphibians. While it is known that these larvae feed exclusively on amphibians, how the predator-prey encounter occurs to the advantage of the beetle larvae had been unknown to date. Using laboratory observations and controlled experiments, we recorded the feeding behavior of Epomis larvae, as well as the behavior of their amphibian prey. Here we reveal that larvae of two species of Epomis (E. circumscriptus and E. dejeani) lure their potential predator, taking advantage of the amphibian's predation behavior. The Epomis larva combines a sit-and-wait strategy with unique movements of its antennae and mandibles to draw the attention of the amphibian to the presence of a potential prey. The intensity of this enticement increases with decreasing distance between the larva and the amphibian. When the amphibian attacks, the larva almost always manages to avoid the predator's protracted tongue, exploiting the opportunity to attach itself to the amphibian's body and initiate feeding. Our findings suggest that the trophic interaction between Epomis larvae and amphibians is one of the only natural cases of obligatory predator-prey role reversal. Moreover, this interaction involves a small insect larva that successfully lures and preys on a larger vertebrate. Such role reversal is exceptional in the animal world, extending our perspective of co-evolution in the arms race between predator and prey, and suggesting that counterattack defense behavior has evolved into predator-prey role reversal. PMID:21957480

  18. The role of culture and diversity in the prevention of falls among older Chinese people.

    PubMed

    Horton, Khim; Dickinson, Angela

    2011-03-01

    This grounded-theory study explored the perceptions of Chinese older people, living in England, on falls and fear of falling, and identified facilitators and barriers to fall prevention interventions. With a sample of 30 Chinese older people, we conducted two focus groups and 10 in-depth interviews in Mandarin or Cantonese. Interview transcripts, back translated, were analyzed using N6. Constant comparative analysis highlighted a range of health-seeking behaviors after a fall: Chinese older people were reluctant to use formal health services; talking about falls was avoided; older people hid falls from their adult children to avoid worrying them; and fatalistic views about falls and poor knowledge about availability and content of interventions were prevalent. Cost of interventions was important. Chinese older adults valued their independence, and cultural intergenerational relations had an impact on taking action to prevent falls. Cultural diversity affects older adults' acceptance of fall prevention interventions.

  19. [Managing concerns about falls in older people: evaluation of the implementation of an evidence-based program].

    PubMed

    Zijlstra, G A R; Du Moulin, M F M T; van Haastregt, J C M; de Jonge, M; Kempen, G I J M; van der Poel, A

    2013-12-01

    A cognitive behavioral program reduced concerns about falling and related avoidance behavior among older community-dwelling adults in a randomized controlled trial. In the current study we examined the effects and acceptability of the program after nation-wide implementation into home care organizations in The Netherlands. In a one-group pretest-posttest study with data collection before the start of the program and at 2 and 4 months, the effects and acceptability of the program were assessed in 125 community-dwelling older people. The outcomes of the effect evaluation included concerns about falls, related avoidance behavior, falls, fall-related medical attention, feelings of anxiety, symptoms of depression, and loneliness. Pretest-posttest analyses with the Wilcoxon signed-rank test and the paired t-test showed significant improvements at 4 months for concerns about falls, activity avoidance, number of falls in the past 2 months, feelings of anxiety, and symptoms of depression. No significant differences were shown for the other outcomes. After implementation in home care organizations, the outcomes indicate positive program effects on concerns about falls, avoidance behavior, and falls in community-dwelling older people. Given the similarity in results, i.e. between those of the previously performed randomized controlled trial and those of the current pretest-posttest study, we conclude that the program can be successfully implemented in practice. This article is an adjusted, Dutch version of Zijlstra GA, van Haastregt JC, Du Moulin MF, de Jonge MC, van der Poel A, Kempen GI. Effects of the implementation of an evidenc-based program to manage concerns about falls in older adults. The Gerontologist 2013;53(5):839-849; doi: 10.1093/geront/gns142.

  20. Effectiveness of a home-based cognitive behavioral program to manage concerns about falls in community-dwelling, frail older people: results of a randomized controlled trial.

    PubMed

    Dorresteijn, Tanja A C; Zijlstra, G A Rixt; Ambergen, Antonius W; Delbaere, Kim; Vlaeyen, Johan W S; Kempen, Gertrudis I J M

    2016-01-06

    Concerns about falls are common among older people. These concerns, also referred to as fear of falling, can have serious physical and psychosocial consequences, such as functional decline, increased risk of falls, activity restriction, and lower social participation. Although cognitive behavioral group programs to reduce concerns about falls are available, no home-based approaches for older people with health problems, who may not be able to attend such group programs are available yet. The aim of this study was to assess the effectiveness of a home-based cognitive behavioral program on concerns about falls, in frail, older people living in the community. In a randomized controlled trial in the Netherlands, 389 people aged 70 years and older, in fair or poor perceived health, who reported at least some concerns about falls and related activity avoidance were allocated to a control (n = 195) or intervention group (n = 194). The intervention was a home-based, cognitive behavioral program consisting of seven sessions including three home visits and four telephone contacts. The program aims to instill adaptive and realistic views about fall risks via cognitive restructuring and to increase activity and safe behavior using goal setting and action planning and was facilitated by community nurses. Control group participants received usual care. Outcomes at 5 and 12 months follow-up were concerns about falls, activity avoidance due to concerns about falls, disability and falls. At 12 months, the intervention group showed significant lower levels of concerns about falls compared to the control group. Furthermore, significant reductions in activity avoidance, disability and indoor falls were identified in the intervention group compared with the control group. Effect sizes were small to medium. No significant difference in total number of falls was noted between the groups. The home-based, cognitive behavioral program significantly reduces concerns about falls, related activity avoidance, disability and indoor falls in community-living, frail older people. The program may prolong independent living and provides an alternative for those people who are not able or willing to attend group programs. ClinicalTrials.gov, NCT01358032. Registered 17 May 2011.

  1. High Redundancy as well as Complementary Prey Choice Characterize Generalist Predator Food Webs in Agroecosystems.

    PubMed

    Roubinet, Eve; Jonsson, Tomas; Malsher, Gerard; Staudacher, Karin; Traugott, Michael; Ekbom, Barbara; Jonsson, Mattias

    2018-05-23

    Food web structure influences ecosystem functioning and the strength and stability of associated ecosystem services. With their broad diet, generalist predators represent key nodes in the structure of many food webs and they contribute substantially to ecosystem services such as biological pest control. However, until recently it has been difficult to empirically assess food web structure with generalist predators. We utilized DNA-based molecular gut-content analyses to assess the prey use of a set of generalist invertebrate predator species common in temperate agricultural fields. We investigated the degree of specialization of predator-prey food webs at two key stages of the cropping season and analysed the link temperature of different trophic links, to identify non-random predation. We found a low level of specialization in our food webs, and identified warm and cool links which may result from active prey choice or avoidance. We also found a within-season variation in interaction strength between predators and aphid pests which differed among predator species. Our results show a high time-specific functional redundancy of the predator community, but also suggest temporally complementary prey choice due to within-season succession of some predator species.

  2. Oxytocin tempers calculated greed but not impulsive defense in predator–prey contests

    PubMed Central

    Scholte, H. Steven; van Winden, Frans A. A. M.; Ridderinkhof, K. Richard

    2015-01-01

    Human cooperation and competition is modulated by oxytocin, a hypothalamic neuropeptide that functions as both hormone and neurotransmitter. Oxytocin’s functions can be captured in two explanatory yet largely contradictory frameworks: the fear-dampening (FD) hypothesis that oxytocin has anxiolytic effects and reduces fear-motivated action; and the social approach/avoidance (SAA) hypothesis that oxytocin increases cooperative approach and facilitates protection against aversive stimuli and threat. We tested derivations from both frameworks in a novel predator–prey contest game. Healthy males given oxytocin or placebo invested as predator to win their prey’s endowment, or as prey to protect their endowment against predation. Neural activity was registered using 3T-MRI. In prey, (fear-motivated) investments were fast and conditioned on the amygdala. Inconsistent with FD, oxytocin did not modulate neural and behavioral responding in prey. In predators, (greed-motivated) investments were slower, and conditioned on the superior frontal gyrus (SFG). Consistent with SAA, oxytocin reduced predator investment, time to decide and activation in SFG. Thus, whereas oxytocin does not incapacitate the impulsive ability to protect and defend oneself, it lowers the greedy and more calculated appetite for coming out ahead. PMID:25140047

  3. Predator-prey interactions in a changing world: humic stress disrupts predator threat evasion in copepods.

    PubMed

    Santonja, Mathieu; Minguez, Laetitia; Gessner, Mark O; Sperfeld, Erik

    2017-03-01

    Increasing inputs of colored dissolved organic matter (cDOM), which is mainly composed of humic substances (HS), are a widespread phenomenon of environmental change in aquatic ecosystems. This process of brownification alters the chemical conditions of the environment, but knowledge is lacking of whether elevated cDOM and HS levels interfere with the ability of prey species to evade chemical predator cues and thus affect predator-prey interactions. We assessed the effects of acute and prolonged exposure to HS at increasing concentrations on the ability of freshwater zooplankton to avoid predator threat (imposed by fish kairomones) in laboratory trials with two calanoid copepods (Eudiaptomus gracilis and Heterocope appendiculata). Populations of both species clearly avoided water containing fish kairomones. However, the avoidance behavior weakened with increasing HS concentration, suggesting that HS affected the ability of copepods to perceive or respond to the predator cue. The behavioral responses of the two copepod populations to increasing HS concentrations differed, with H. appendiculata being more sensitive than E. gracilis in an acute exposure scenario, whereas E. gracilis responded more strongly after prolonged exposure. Both showed similar physiological impairment after prolonged exposure, as revealed by their oxidative balance as a stress indicator, but mortality increased more strongly for H. appendiculata when the HS concentration increased. These results indicate that reduced predator threat evasion in the presence of cDOM could make copepods more susceptible to predation in future, with variation in the strength of responses among populations leading to changes in zooplankton communities and lake food-web structure.

  4. Aesthetic Inquiry in Education: Community, Transcendence, and the Meaning of Pedagogy

    ERIC Educational Resources Information Center

    Alexander, Hanan A.

    2003-01-01

    What does it mean to understand education as an art, to conceive inquiry in education aesthetically, or to assess pedagogy artistically? Answers to these queries are often grounded in Deweyan instrumentalism, neo-Marxist critical theory, or postmodern skepticism that tend to fall prey to the paradoxes of radical relativism and extreme…

  5. Channel One Online: Advertising Not Educating.

    ERIC Educational Resources Information Center

    Pasnik, Shelley

    Rather than viewing Channel One's World Wide Web site as an authentic news bureau, as the organization claims, it is better understood as an advertising delivery system. The web site is an attempt to expand Channel One's reach into schools, taking advantage of unsuspecting teachers and students who might fall prey to spurious claims. This paper…

  6. Operant Conditioning Concepts in Introductory Psychology Textbooks and Their Companion Web Sites

    ERIC Educational Resources Information Center

    Sheldon, Jane P.

    2002-01-01

    Psychology instructors and textbook authors rate operant conditioning as one of the most essential concepts for students to learn, yet textbook writers, as well as students, can fall prey to misconceptions. This study is a content analysis of the presentation of operant conditioning in introductory psychology textbooks and their companion Web…

  7. Characterizing Variability in the Distribution of High-Frequency Acoustic Backscattering in a Shallow Water Coastal Region

    DTIC Science & Technology

    2005-09-30

    zooplankton prey, and an examination of the genetic composition of krill patches. One manuscript based on a comparison of whale distribution to zooplankton... siphonophores . Similar analyses of multi-frequency volume backscattering data collected in the Gulf of Maine during the falls of 1997-1999 have

  8. Characterizing Variability in the Distribution of High-Frequency Acoustic Backscattering in a Shallow Water Coastal Region

    DTIC Science & Technology

    2006-09-30

    seabirds, seals, and whales) in relation to their zooplankton prey, and an examination of the genetic composition of krill patches. One paper based...gas-bearing siphonophores . Similar analyses of multi-frequency volume backscattering data collected in the Gulf of Maine during the falls of 1997

  9. Seasonal Phenology of Zooplankton Composition in the Southeastern Bering Sea, 2008-2010

    NASA Astrophysics Data System (ADS)

    Eisner, L. B.; Pinchuk, A. I.; Harpold, C.; Siddon, E. C.; Mier, K.

    2016-02-01

    The availability of large crustacean zooplankton prey is critical to the condition and survival of forage fish (e.g., age-0 Walleye Pollock), sea birds, and marine mammals in the eastern Bering Sea. Zooplankton community composition and abundances of large lipid-rich copepods (e.g., Calanus spp.) have been evaluated for single seasons, but few studies have investigated seasonal variations in this region. Here, we investigate seasonal changes in taxa (community structure), stage composition (where appropriate), and diversity from spring through late summer/early fall over three consecutive colder than average years. Zooplankton taxonomic samples were collected with oblique bongo tows over the water column during spring (April-May), mid-summer (June-July) and late summer/early fall (August-September) across the southeastern Bering Sea shelf in 2008-2010. Zooplankton abundances were evaluated by oceanographic region, season and year, and related to water mass characteristics (temperature and salinity) and other environmental drivers. Finally, zooplankton phenology was compared to changes in forage fish composition to determine potential overlap of fish predators and zooplankton prey.

  10. Do predator-prey relationships on the river bed affect fine sediment ingress?

    NASA Astrophysics Data System (ADS)

    Mathers, Kate; Rice, Stephen; Wood, Paul

    2016-04-01

    Ecosystem engineers are organisms that alter their physical environment and thereby influence the flow of resources through ecosystems. In rivers, several ecosystem engineers are also important geomorphological agents that modify fluvial sediment dynamics. By altering channel morphology and bed material characteristics, such modifications can affect the availability of habitats for other organisms, with implications for ecosystem health and wider community composition. In this way geomorphological and ecological systems are intimately interconnected. This paper focuses on one element of this intricate abiotic-biotic coupling: the interaction between fine sediment ingress into the river bed and the predator-prey relationships of aquatic organisms living on and in the river bed. Signal crayfish (Pacifastacus leniusculus) have been shown to modify fine sediment fluxes in rivers, but their effect on fine sediment ingress into riverbeds remains unclear. Many macroinvertebrate taxa have adapted avoidance strategies to avoid predation by crayfish, with one example being the freshwater shrimp (Gammarus pulex) which relies on open interstitial spaces within subsurface sediments as a refuge from crayfish predation. Fine sedimentation that fills gravelly frameworks may preclude access to those spaces, therefore leaving freshwater shrimp susceptible to predation. Ex-situ experiments were conducted which sought to examine: i) if freshwater shrimps and signal crayfish, alone and in combination, influenced fine sediment infiltration rates; and ii) whether modifications to substratum composition, specifically the introduction of fine sediment, modified predator-prey interactions. The results demonstrate that crayfish are significant geomorphic agents and that fine sediment ingress rates were significantly enhanced in their presence compared to control conditions or the presence of only freshwater shrimps. The combination of both organisms (i.e. allowing the interaction between predator and prey) resulted in intermediate fine sediment infiltration rates. The results suggest that reductions in prey availability may enhance crayfish foraging behaviour and therefore their impact on fine sediment ingress into river beds. Consequently, as invading species become more established and prey resources are depleted, the implications of invasive crayfish on fine sediment dynamics may become more prominent. These experiments demonstrate the importance of abiotic-biotic coupling in fluvial systems for both geomorphological and ecological understanding.

  11. Habitat selection by Eurasian lynx (Lynx lynx) is primarily driven by avoidance of human activity during day and prey availability during night.

    PubMed

    Filla, Marc; Premier, Joseph; Magg, Nora; Dupke, Claudia; Khorozyan, Igor; Waltert, Matthias; Bufka, Luděk; Heurich, Marco

    2017-08-01

    The greatest threat to the protected Eurasian lynx ( Lynx lynx ) in Central Europe is human-induced mortality. As the availability of lynx prey often peaks in human-modified areas, lynx have to balance successful prey hunting with the risk of encounters with humans. We hypothesized that lynx minimize this risk by adjusting habitat choices to the phases of the day and over seasons. We predicted that (1) due to avoidance of human-dominated areas during daytime, lynx range use is higher at nighttime, that (2) prey availability drives lynx habitat selection at night, whereas high cover, terrain inaccessibility, and distance to human infrastructure drive habitat selection during the day, and that (3) habitat selection also differs between seasons, with altitude being a dominant factor in winter. To test these hypotheses, we analyzed telemetry data (GPS, VHF) of 10 lynx in the Bohemian Forest Ecosystem (Germany, Czech Republic) between 2005 and 2013 using generalized additive mixed models and considering various predictor variables. Night ranges exceeded day ranges by more than 10%. At night, lynx selected open habitats, such as meadows, which are associated with high ungulate abundance. By contrast, during the day, lynx selected habitats offering dense understorey cover and rugged terrain away from human infrastructure. In summer, land-cover type greatly shaped lynx habitats, whereas in winter, lynx selected lower altitudes. We concluded that open habitats need to be considered for more realistic habitat models and contribute to future management and conservation (habitat suitability, carrying capacity) of Eurasian lynx in Central Europe.

  12. Chronic predation risk reduces escape speed by increasing oxidative damage: a deadly cost of an adaptive antipredator response.

    PubMed

    Janssens, Lizanne; Stoks, Robby

    2014-01-01

    Prey organisms evolved a multitude of plastic responses to avoid being eaten by predators. Besides the evolution of plastic morphological responses to escape predation, prey also evolved a set of physiological stress responses to avoid dying because of chronic predator stress per se due to disruption of cellular homeostasis. As physiological stress theory predicts increased energy consumption and the inhibition of essential nonemergency body functions, we tested whether chronic predation risk may increase oxidative damage thereby generating negative effects on escape performance. Specifically, we evaluated whether predation risk reduces escape swimming speed in damselfly larvae and whether this operates through stress-associated increases in oxidative damage. Counterintuitively and in contrast with many empirical studies, chronic predation risk decreased escape performance. This is however entirely consistent with the expectation of it being a long-term cost of responding to predation risk (e.g. by increasing respiration or upregulating the stress protein levels). The decreased swimming speed could be explained by an increased oxidative damage to proteins, thereby providing one of the poorly studied ecological links between oxidative damage and whole-animal performance. This likely widespread, understudied cost of chronic predation risk may provide an important pathway of non-consumptive predator effects on prey population dynamics. Moreover, it could play an evolutionary role by acting as a selective force causing prey organisms to adjust the magnitude of the physiological stress response and should be considered when evaluating life history trade-offs thought to be mediated by oxidative damage.

  13. Behavioral Response of Corophium volutator to Shorebird Predation in the Upper Bay of Fundy, Canada

    PubMed Central

    MacDonald, Elizabeth C.; Frost, Elisabeth H.; MacNeil, Stephanie M.; Hamilton, Diana J.; Barbeau, Myriam A.

    2014-01-01

    Predator avoidance is an important component of predator-prey relationships and can affect prey availability for foraging animals. Each summer, the burrow-dwelling amphipod Corophium volutator is heavily preyed upon by Semipalmated Sandpipers (Calidris pusilla) on mudflats in the upper Bay of Fundy, Canada. We conducted three complementary studies to determine if adult C. volutator exhibit predator avoidance behavior in the presence of sandpipers. In a field experiment, we monitored vertical distribution of C. volutator adults in bird exclosures and adjacent control plots before sandpipers arrived and during their stopover. We also made polymer resin casts of C. volutator burrows in the field throughout the summer. Finally, we simulated shorebird pecking in a lab experiment and observed C. volutator behavior in their burrows. C. volutator adults were generally distributed deeper in the sediment later in the summer (after sandpipers arrived). In August, this response was detectably stronger in areas exposed to bird predation than in bird exclosures. During peak predator abundance, many C. volutator adults were beyond the reach of feeding sandpipers (>1.5 cm deep). However, burrow depth did not change significantly throughout the summer. Detailed behavioral observations indicated that C. volutator spent more time at the bottom of their burrow when exposed to a simulated predator compared to controls. This observed redistribution suggests that C. volutator adults move deeper into their burrows as an anti-predator response to the presence of sandpipers. This work has implications for predators that feed on burrow-dwelling invertebrates in soft-sediment ecosystems, as density may not accurately estimate prey availability. PMID:25354218

  14. Chronic Predation Risk Reduces Escape Speed by Increasing Oxidative Damage: A Deadly Cost of an Adaptive Antipredator Response

    PubMed Central

    Janssens, Lizanne; Stoks, Robby

    2014-01-01

    Prey organisms evolved a multitude of plastic responses to avoid being eaten by predators. Besides the evolution of plastic morphological responses to escape predation, prey also evolved a set of physiological stress responses to avoid dying because of chronic predator stress per se due to disruption of cellular homeostasis. As physiological stress theory predicts increased energy consumption and the inhibition of essential nonemergency body functions, we tested whether chronic predation risk may increase oxidative damage thereby generating negative effects on escape performance. Specifically, we evaluated whether predation risk reduces escape swimming speed in damselfly larvae and whether this operates through stress-associated increases in oxidative damage. Counterintuitively and in contrast with many empirical studies, chronic predation risk decreased escape performance. This is however entirely consistent with the expectation of it being a long-term cost of responding to predation risk (e.g. by increasing respiration or upregulating the stress protein levels). The decreased swimming speed could be explained by an increased oxidative damage to proteins, thereby providing one of the poorly studied ecological links between oxidative damage and whole-animal performance. This likely widespread, understudied cost of chronic predation risk may provide an important pathway of non-consumptive predator effects on prey population dynamics. Moreover, it could play an evolutionary role by acting as a selective force causing prey organisms to adjust the magnitude of the physiological stress response and should be considered when evaluating life history trade-offs thought to be mediated by oxidative damage. PMID:24968142

  15. Liverwort Mimesis in a Cretaceous Lacewing Larva.

    PubMed

    Liu, Xingyue; Shi, Gongle; Xia, Fangyuan; Lu, Xiumei; Wang, Bo; Engel, Michael S

    2018-05-07

    Camouflage and mimicry are staples among predator-prey interactions, and evolutionary novelties in behavior, anatomy, and physiology that permit such mimesis are rife throughout the biological world [1, 2]. These specializations allow for prey to better evade capture or permit predators to more easily approach their prey, or in some cases, the mimesis can serve both purposes. Despite the importance of mimesis and camouflage in predator-avoidance or hunting strategies, the long-term history of these traits is often obscured by an insufficient fossil record. Here, we report the discovery of Upper Cretaceous (approximately 100 million years old) green lacewing larvae (Chrysopoidea), preserved in amber from northern Myanmar, anatomically modified to mimic coeval liverworts. Chrysopidae are a diverse lineage of lacewings whose larvae usually camouflage themselves with a uniquely constructed packet of exogenous debris, conveying greater stealth upon them as they hunt prey such as aphids as well as evade their own predators [3, 4]. However, no lacewing larvae today mimic their surroundings. While the anatomy of Phyllochrysa huangi gen. et sp. nov. allowed it to avoid detection, the lack of setae or other anatomical elements for entangling debris as camouflage means its sole defense was its mimicry, and it could have been a stealthy hunter like living and other fossil Chrysopoidea or been an ambush predator aided by its disguise. The present fossils demonstrate a hitherto unknown life-history strategy among these "wolf in sheep's clothing" predators, one that apparently evolved from a camouflaging ancestor but did not persist within the lineage. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Distribution and foraging patterns of common loons on Lake Michigan with implications for exposure to type E avian botulism

    USGS Publications Warehouse

    Kenow, Kevin P.; Houdek, Steven C.; Fara, Luke; Gray, Brian R.; Lubinski, Brian R.; Heard, Darryl J.; Meyer, Michael W.; Fox, Timothy J.; Kratt, Robert

    2018-01-01

    Common loons (Gavia immer) staging on the Great Lakes during fall migration are at risk to episodic outbreaks of type E botulism. Information on distribution, foraging patterns, and exposure routes of loons are needed for understanding the physical and ecological factors that contribute to avian botulism outbreaks. Aerial surveys were conducted to document the spatiotemporal distribution of common loons on Lake Michigan during falls 2011–2013. In addition, satellite telemetry and archival geolocator tags were used to determine the distribution and foraging patterns of individual common loons while using Lake Michigan during fall migration. Common loon distribution observed during aerial surveys and movements of individual radiomarked and/or geotagged loons suggest a seasonal pattern of use, with early fall use of Green Bay and northern Lake Michigan followed by a shift in distribution to southern Lake Michigan before moving on to wintering areas. Common loons tended to occupy offshore areas of Lake Michigan and, on average, spent the majority of daylight hours foraging. Dive depths were as deep as 60 m and dive characteristics suggested that loons were primarily foraging on benthic prey. A recent study concluded that round gobies (Neogobius melanostomus) are an important prey item of common loons and may be involved in transmission of botulinum neurotoxin type E. Loon distribution coincides with the distribution of dreissenid mussel biomass, an important food resource for round gobies. Our observations support speculation that energy transfer to higher trophic levels via gobies may occur in deep-water habitats, along with transfer of botulinum neurotoxin.

  17. The Costs of Carnivory

    PubMed Central

    Carbone, Chris; Teacher, Amber; Rowcliffe, J. Marcus

    2007-01-01

    Mammalian carnivores fall into two broad dietary groups: smaller carnivores (<20 kg) that feed on very small prey (invertebrates and small vertebrates) and larger carnivores (>20 kg) that specialize in feeding on large vertebrates. We develop a model that predicts the mass-related energy budgets and limits of carnivore size within these groups. We show that the transition from small to large prey can be predicted by the maximization of net energy gain; larger carnivores achieve a higher net gain rate by concentrating on large prey. However, because it requires more energy to pursue and subdue large prey, this leads to a 2-fold step increase in energy expenditure, as well as increased intake. Across all species, energy expenditure and intake both follow a three-fourths scaling with body mass. However, when each dietary group is considered individually they both display a shallower scaling. This suggests that carnivores at the upper limits of each group are constrained by intake and adopt energy conserving strategies to counter this. Given predictions of expenditure and estimates of intake, we predict a maximum carnivore mass of approximately a ton, consistent with the largest extinct species. Our approach provides a framework for understanding carnivore energetics, size, and extinction dynamics. PMID:17227145

  18. Trophic pathways supporting juvenile Chinook and Coho salmon in the glacial Susitna River, Alaska: patterns of freshwater, marine, and terrestrial resource use across a seasonally dynamic habitat mosaic

    USGS Publications Warehouse

    Rine, Kristin M.; Wipfli, Mark S.; Schoen, Erik R.; Nightengale, Timothy L.; Stricker, Craig A.

    2016-01-01

    Contributions of terrestrial-, freshwater-, and marine-derived prey resources to stream fishes vary over time and space, altering the energy pathways that regulate production. In this study, we determined large-scale use of these resources by juvenile Chinook and coho salmon (Oncorhynchus tshawytscha and Oncorhynchus kisutch, respectively) in the glacial Susitna River, Alaska. We resolved spatial and temporal trophic patterns among multiple macrohabitat types along a 97 km segment of the river corridor via stable isotope and stomach content analyses. Juvenile salmon were supported primarily by freshwater-derived resources and secondarily by marine and terrestrial sources. The relative contribution of marine-derived prey to rearing salmon was greatest in the fall within off-channel macrohabitats, whereas the contributions of terrestrial invertebrate prey were generally greatest during midsummer, across all macrohabitats. No longitudinal (upstream–downstream) diet pattern was discernable. These results highlight large-scale spatial and seasonal patterns of energy flow and the dynamic interplay of pulsed marine and terrestrial prey subsidies to juvenile Chinook and coho salmon in a large, complex, and relatively pristine glacial river.

  19. The effects of predator odors in mammalian prey species: a review of field and laboratory studies.

    PubMed

    Apfelbach, Raimund; Blanchard, Caroline D; Blanchard, Robert J; Hayes, R Andrew; McGregor, Iain S

    2005-01-01

    Prey species show specific adaptations that allow recognition, avoidance and defense against predators. For many mammalian species this includes sensitivity towards predator-derived odors. The typical sources of such odors include predator skin and fur, urine, feces and anal gland secretions. Avoidance of predator odors has been observed in many mammalian prey species including rats, mice, voles, deer, rabbits, gophers, hedgehogs, possums and sheep. Field and laboratory studies show that predator odors have distinctive behavioral effects which include (1) inhibition of activity, (2) suppression of non-defensive behaviors such as foraging, feeding and grooming, and (3) shifts to habitats or secure locations where such odors are not present. The repellent effect of predator odors in the field may sometimes be of practical use in the protection of crops and natural resources, although not all attempts at this have been successful. The failure of some studies to obtain repellent effects with predator odors may relate to (1) mismatches between the predator odors and prey species employed, (2) strain and individual differences in sensitivity to predator odors, and (3) the use of predator odors that have low efficacy. In this regard, a small number of recent studies have suggested that skin and fur-derived predator odors may have a more profound lasting effect on prey species than those derived from urine or feces. Predator odors can have powerful effects on the endocrine system including a suppression of testosterone and increased levels of stress hormones such as corticosterone and ACTH. Inhibitory effects of predator odors on reproductive behavior have been demonstrated, and these are particularly prevalent in female rodent species. Pregnant female rodents exposed to predator odors may give birth to smaller litters while exposure to predator odors during early life can hinder normal development. Recent research is starting to uncover the neural circuitry activated by predator odors, leading to hypotheses about how such activation leads to observable effects on reproduction, foraging and feeding.

  20. Sustainability of Virulence in a Phage-Bacterial Ecosystem ▿ †

    PubMed Central

    Heilmann, Silja; Sneppen, Kim; Krishna, Sandeep

    2010-01-01

    Virulent phages and their bacterial hosts represent an unusual sort of predator-prey system where each time a prey is eaten, hundreds of new predators are born. It is puzzling how, despite the apparent effectiveness of the phage predators, they manage to avoid driving their bacterial prey to extinction. Here we consider a phage-bacterial ecosystem on a two-dimensional (2-d) surface and show that homogeneous space in itself enhances coexistence. We analyze different behavioral mechanisms that can facilitate coexistence in a spatial environment. For example, we find that when the latent times of the phage are allowed to evolve, selection favors “mediocre killers,” since voracious phage rapidly deplete local resources and go extinct. Our model system thus emphasizes the differences between short-term proliferation and long-term ecosystem sustainability. PMID:20071588

  1. Effects of large Saduria entomon (Isopoda) on spatial distribution of their small S. entomon and Monoporeia affinis (Amphipoda) prey.

    PubMed

    Sparrevik, Erik; Leonardsson, Kjell

    1995-02-01

    We performed laboratory experiments to investigate the effects of predator avoidance and numerical effects of predation on spatial distribution of small Saduria entomon (Isopoda) and Monoporeia affinis (Amphipoda), with large S. entomon as predators. The horizontal distribution and mortality of the prey species, separately and together, were studied in aquaria with a spatial horizontal refuge. We also estimated effects of refuge on mortality of small S. entomon and M. affinis by experiments without the refuge net. In addition, we investigated whether predation risk from large S. entomon influenced the swimming activity of M. affinis, to clarify the mechanisms behind the spatial distribution. Both small S. entomon and M. affinis avoided large S. entomon. The avoidance behaviour of M. fffinis contributed about 10 times more to the high proportion in the refuge than numerical effects of predation. Due to the low mortality of small S. entomon the avoidance behaviour of this species was even more important for the spatial distribution. The combined effect of avoidance behaviour and predation in both species was aggregation, producting a positive correlation between the species in density. M. affinis showed two types of avoidance behaviour. In the activity experiments they reduced activity by 36% and buried themselves in the sediment. In the refuge experiments we also observed avoidance behaviour with the emigration rate from the predator compartment being twice the immigration rate. The refuge did not lower predation mortality in M. affinis, probably due to the small scale of the experimental units in relation to the mobility of the species. Predation mortality in small S. entomon was higher in absence of a refuge and especially high in absence of M. affinis.

  2. Vulnerability and behavioral response to ultraviolet radiation in the components of a foliar mite prey-predator system.

    PubMed

    Tachi, Fuyuki; Osakabe, Masahiro

    2012-12-01

    Ambient ultraviolet-B (UVB) radiation impacts plant-dwelling arthropods including herbivorous and predatory mites. However, the effects of UVB on prey-predator systems, such as that between the herbivorous spider mite and predatory phytoseiid mite, are poorly understood. A comparative study was conducted to determine the vulnerability and behavioral responses of these mites to ultraviolet (UV) radiation. First, we analyzed dose-response (cumulative irradiance-mortality) curves for the eggs of phytoseiid mites (Neoseiulus californicus, Neoseiulus womersleyi, and Phytoseiulus persimilis) and the spider mite (Tetranychus urticae) to UVB radiation from a UV lamp. This indicated that the phytoseiid mites were more vulnerable than the spider mite, although P. persimilis was slightly more tolerant than the other two phytoseiid mites. Second, we compared the avoidance behavior of adult female N. californicus and two spider mite species (T. urticae, a lower leaf surface user; Panonychus citri, an upper leaf surface user) in response to solar UV and visible light. N. californicus actively avoided both types of radiation, whereas P. citri showed only minimal avoidance behavior. T. urticae actively avoided UV as well as N. californicus but exhibited a slow response to visible light as well as P. citri. Such variation in vulnerability and avoidance behavior accounts for differences in the species adaptations to solar UVB radiation. This may be the primary factor determining habitat use among these mites on host plant leaves, subsequently affecting accessibility by predators and also intraguild competition.

  3. Vulnerability and behavioral response to ultraviolet radiation in the components of a foliar mite prey-predator system

    NASA Astrophysics Data System (ADS)

    Tachi, Fuyuki; Osakabe, Masahiro

    2012-12-01

    Ambient ultraviolet-B (UVB) radiation impacts plant-dwelling arthropods including herbivorous and predatory mites. However, the effects of UVB on prey-predator systems, such as that between the herbivorous spider mite and predatory phytoseiid mite, are poorly understood. A comparative study was conducted to determine the vulnerability and behavioral responses of these mites to ultraviolet (UV) radiation. First, we analyzed dose-response (cumulative irradiance-mortality) curves for the eggs of phytoseiid mites ( Neoseiulus californicus, Neoseiulus womersleyi, and Phytoseiulus persimilis) and the spider mite ( Tetranychus urticae) to UVB radiation from a UV lamp. This indicated that the phytoseiid mites were more vulnerable than the spider mite, although P. persimilis was slightly more tolerant than the other two phytoseiid mites. Second, we compared the avoidance behavior of adult female N. californicus and two spider mite species ( T. urticae, a lower leaf surface user; Panonychus citri, an upper leaf surface user) in response to solar UV and visible light. N. californicus actively avoided both types of radiation, whereas P. citri showed only minimal avoidance behavior. T. urticae actively avoided UV as well as N. californicus but exhibited a slow response to visible light as well as P. citri. Such variation in vulnerability and avoidance behavior accounts for differences in the species adaptations to solar UVB radiation. This may be the primary factor determining habitat use among these mites on host plant leaves, subsequently affecting accessibility by predators and also intraguild competition.

  4. Energetic requirements of green sturgeon (Acipenser medirostris) feeding on burrowing shrimp (Neotrypaea californiensis) in estuaries: importance of temperature, reproductive investment, and residence time

    USGS Publications Warehouse

    Borin, Joshua M.; Moser, Mary L.; Hansen, Adam G.; Beauchamp, David A.; Corbett, Stephen C.; Dumbauld, Brett R.; Pruitt, Casey; Ruesink, Jennifer L.; Donoghue, Cinde

    2017-01-01

    Habitat use can be complex, as tradeoffs among physiology, resource abundance, and predator avoidance affect the suitability of different environments for different species. Green sturgeon (Acipenser medirostris), an imperiled species along the west coast of North America, undertake extensive coastal migrations and occupy estuaries during the summer and early fall. Warm water and abundant prey in estuaries may afford a growth opportunity. We applied a bioenergetics model to investigate how variation in estuarine temperature, spawning frequency, and duration of estuarine residence affect consumption and growth potential for individual green sturgeon. We assumed that green sturgeon achieve observed annual growth by feeding solely in conditions represented by Willapa Bay, Washington, an estuary annually frequented by green sturgeon and containing extensive tidal flats that harbor a major prey source (burrowing shrimp, Neotrypaea californiensis). Modeled consumption rates increased little with reproductive investment (<0.4%), but responded strongly (10–50%) to water temperature and duration of residence, as higher temperatures and longer residence required greater consumption to achieve equivalent growth. Accordingly, although green sturgeon occupy Willapa Bay from May through September, acoustically-tagged individuals are observed over much shorter durations (34 d + 41 d SD, N = 89). Simulations of <34 d estuarine residence required unrealistically high consumption rates to achieve observed growth, whereas longer durations required sustained feeding, and therefore higher total intake, to compensate for prolonged exposure to warm temperatures. Model results provide a range of per capita consumption rates by green sturgeon feeding in estuaries to inform management decisions regarding resource and habitat protection for this protected species.

  5. Optimal Predator Risk Assessment by the Sonar-Jamming Arctiine Moth Bertholdia trigona

    PubMed Central

    Corcoran, Aaron J.; Wagner, Ryan D.; Conner, William E.

    2013-01-01

    Nearly all animals face a tradeoff between seeking food and mates and avoiding predation. Optimal escape theory holds that an animal confronted with a predator should only flee when benefits of flight (increased survival) outweigh the costs (energetic costs, lost foraging time, etc.). We propose a model for prey risk assessment based on the predator's stage of attack. Risk level should increase rapidly from when the predator detects the prey to when it commits to the attack. We tested this hypothesis using a predator – the echolocating bat – whose active biosonar reveals its stage of attack. We used a prey defense – clicking used for sonar jamming by the tiger moth Bertholdia trigona– that can be readily studied in the field and laboratory and is enacted simultaneously with evasive flight. We predicted that prey employ defenses soon after being detected and targeted, and that prey defensive thresholds discriminate between legitimate predatory threats and false threats where a nearby prey is attacked. Laboratory and field experiments using playbacks of ultrasound signals and naturally behaving bats, respectively, confirmed our predictions. Moths clicked soon after bats detected and targeted them. Also, B. trigona clicking thresholds closely matched predicted optimal thresholds for discriminating legitimate and false predator threats for bats using search and approach phase echolocation – the period when bats are searching for and assessing prey. To our knowledge, this is the first quantitative study to correlate the sensory stimuli that trigger defensive behaviors with measurements of signals provided by predators during natural attacks in the field. We propose theoretical models for explaining prey risk assessment depending on the availability of cues that reveal a predator's stage of attack. PMID:23671686

  6. Males choose to keep their heads: Preference for lower risk females in a praying mantid.

    PubMed

    Avigliano, Esteban; Scardamaglia, Romina C; Gabelli, Fabián M; Pompilio, Lorena

    2016-08-01

    Male reproductive success is obviously mate limited, which implies that males should rarely be choosy. One extreme case of a reproductive (or mating) cost is sexual cannibalism. Recent research has proposed that male mantids (Parastagmatoptera tessellata) are choosy and not complicit in cannibalism and that they modify behavior towards females based on the risk imposed by them. Since female cannibalism depends on females' energetic state (i.e. hunger) we investigated whether male mantids are capable of using environmental cues that provide information regarding the energetic state of females to make their mate choices. Under laboratory conditions, males were confronted individually with three options: a female eating a prey, a female without a prey, and a male eating a prey (as a control for the presence of prey). Each subject comprising a choice was harnessed and placed in the corners of a triangular experimental arena at an equidistant distance from the focal male. The prey was a middle size cricket that subjects ate in approximately twenty minutes. The behavior of focal males was recorded for six hours. Females were under the same deprivation regime and, in line with previous studies, consuming one cricket did not significantly increase females' abdomen girth. Male mantids significantly preferred females that were eating a prey. In all cases choices were made after the females consumed the whole prey. This suggests that males did not use the prey as a direct way to avoid being cannibalized by keeping the female busy. The preference for females that had recently fed may have evolved because of the potential reduction in sexual cannibalism. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Perceptions of balance and falls following a supervised training intervention - a qualitative study of people with Parkinson's disease.

    PubMed

    Leavy, Breiffni; Berntsson, Johan; Franzén, Erika; Skavberg Roaldsen, Kirsti

    2017-12-21

    To explore perceptions of balance and falls among people with mild to moderate Parkinson's disease 3 - 12 months following participation in supervised balance training. This qualitative study used in-depth individual interviews for data collection among 13 people with Parkinson's disease. Interviews were systematically analyzed using qualitative content analysis with an inductive approach. Three main themes arose: Falls - avoided and intended highlights the wide spectrum of fall perceptions, ranging from worse-case scenario to undramatized events; Balance identity incorporates how gradual deterioration in balance served as a reminder of disease progression and how identifying themselves as "aware not afraid" helped certain participants to maintain balance confidence despite everyday activity restriction; Training as treatment recounts how participants used exercise as disease self-management with the aim to maintain independence in daily life. Interpretation of the underlying patterns of these main themes resulted in the overarching theme Training as treatment when battling problems with balance and falls. Whereas certain participants expressed a fear of falling which they managed by activity restriction, others described being confident in their balance despite avoidance of balance-challenging activities. Training was used as treatment to self-manage disease-related balance impairments in order to maintain independence in daily life. Implication for Rehabilitation People with Parkinson's disease require early advice about the positive effects of physical activity as well as strategies for self-management in order to ease the psychological and physical burden of progressive balance impairment. Fear of falling should be investigated alongside activity avoidance in this group in order to provide a more accurate insight into the scope of psychological concerns regarding balance and falls in everyday life. Certain people with Parkinson's disease define their balance according to activities they continue to participate in, while others who express fear-related activity avoidance require help to adapt balance-challenging activities in order to maintain balance confidence and avoid physical inactivity.

  8. Whole Language as an Ecological Phenomenon: On Sustaining the Agonies of Innovative Language Arts Practices.

    ERIC Educational Resources Information Center

    Field, James C.; Jardine, David W.

    In the area of language instruction, a network of ecological relationships exists among the teacher, the child, and the text--the sustaining and nurturing of these relationships is at the heart of whole language instruction. Moreover, this network of relationships falls prey to neither of the unsustainable extremities of "gericentrism"…

  9. College Scholarship Fraud Prevention Act of 2000: Annual Report to Congress. May 2005

    ERIC Educational Resources Information Center

    US Department of Education, 2005

    2005-01-01

    Every year, millions of high school graduates seek ways to finance the rising costs of a college education, at times falling prey to scholarship and financial aid scams. To help students and their families, on November 5, 2000, Congress passed the College Scholarship Fraud Prevention Act of 2000 (Act) to establish stricter sentencing guidelines…

  10. Falling Prey to the Dominant Culture? Demystifying Symbolic Violence against Ethnic Minority Students in Nepal

    ERIC Educational Resources Information Center

    Khanal, Peshal

    2017-01-01

    Nepal's multicultural society is hierarchical and divided along the lines of caste, ethnicity and language and its school system, including curriculum and pedagogy, is influenced greatly by the dominant language and culture. In this context, this article analyses the difficulties and struggle ethnic minority children experience as they move…

  11. College Scholarship Fraud Prevention Act of 2000: Annual Report to Congress. May 2006

    ERIC Educational Resources Information Center

    US Department of Education, 2006

    2006-01-01

    Every year, millions of high school graduates seek ways to finance the rising costs of a college education, at times falling prey to scholarship and financial aid scams. To help students and their families, on November 5, 2000, Congress passed the College Scholarship Fraud Prevention Act of 2000 (Act) to establish stricter sentencing guidelines…

  12. College Scholarship Fraud Prevention Act of 2000: Annual Report to Congress. May 2007

    ERIC Educational Resources Information Center

    US Department of Education, 2007

    2007-01-01

    Every year, millions of high school graduates seek ways to finance the rising costs of a college education, at times falling prey to scholarship and financial aid scams. To help students and their families, on November 5, 2000, Congress passed the College Scholarship Fraud Prevention Act of 2000 (Act) to establish stricter sentencing guidelines…

  13. College Scholarship Fraud Prevention Act of 2000: Annual Report to Congress. 2008

    ERIC Educational Resources Information Center

    US Department of Education, 2008

    2008-01-01

    Every year, millions of high school graduates seek ways to finance the rising costs of a college education, at times falling prey to scholarship and financial aid scams. To help students and their families, on November 5, 2000, Congress passed the College Scholarship Fraud Prevention Act of 2000 (Act) to establish stricter sentencing guidelines…

  14. College Scholarship Fraud Prevention Act of 2000: Annual Report to Congress

    ERIC Educational Resources Information Center

    US Department of Education, 2004

    2004-01-01

    Every year, millions of high school graduates seek ways to finance the rising costs of a college education, at times falling prey to scholarship and financial aid scams. To help students and their families, on November 5, 2000, Congress passed the College Scholarship Fraud Prevention Act of 2000 (Act) to establish stricter sentencing guidelines…

  15. Critical Issues in Causation and Treatment of Autism: Why Fads Continue to Flourish

    ERIC Educational Resources Information Center

    McDonald, Mary E.; Pace, Darra; Blue, Elfreda; Schwartz, Diane

    2012-01-01

    The increasing incidence of autism and the lack of specific answers regarding causation have given rise to unproven educational interventions and medical treatments. Parents of a newly diagnosed child can easily fall prey to interventions that promise cures. These interventions may be harmful and, thus, pose one of the critical issues in special…

  16. Predator-prey coevolution: Australian native bees avoid their spider predators.

    PubMed

    Heiling, A M; Herberstein, M E

    2004-05-07

    Australian crab spiders Thomisus spectabilis manipulate visual flower signals to lure introduced Apis mellifera. We gave Australian native bees, Austroplebia australis, the choice between two white daisies, Chrysanthemum frutescens, one of them occupied by a crab spider. The colour contrast between flowers and spiders affected the behaviour of native bees. Native bees approached spider-occupied flowers more frequently. However, native bees avoided flowers occupied by spiders and landed on vacant flowers more frequently. In contrast to honeybees that did not coevolve with T. spectabilis, Australian native bees show an anti-predatory response to avoid flowers occupied by this predator.

  17. Predator-prey coevolution: Australian native bees avoid their spider predators.

    PubMed Central

    Heiling, A M; Herberstein, M E

    2004-01-01

    Australian crab spiders Thomisus spectabilis manipulate visual flower signals to lure introduced Apis mellifera. We gave Australian native bees, Austroplebia australis, the choice between two white daisies, Chrysanthemum frutescens, one of them occupied by a crab spider. The colour contrast between flowers and spiders affected the behaviour of native bees. Native bees approached spider-occupied flowers more frequently. However, native bees avoided flowers occupied by spiders and landed on vacant flowers more frequently. In contrast to honeybees that did not coevolve with T. spectabilis, Australian native bees show an anti-predatory response to avoid flowers occupied by this predator. PMID:15252982

  18. Experimental Evidence of Threat-Sensitive Collective Avoidance Responses in a Large Wild-Caught Herring School

    PubMed Central

    Rieucau, Guillaume; Boswell, Kevin M.; De Robertis, Alex; Macaulay, Gavin J.; Handegard, Nils Olav

    2014-01-01

    Aggregation is commonly thought to improve animals' security. Within aquatic ecosystems, group-living prey can learn about immediate threats using cues perceived directly from predators, or from collective behaviours, for example, by reacting to the escape behaviours of companions. Combining cues from different modalities may improve the accuracy of prey antipredatory decisions. In this study, we explored the sensory modalities that mediate collective antipredatory responses of herring (Clupea harengus) when in a large school (approximately 60 000 individuals). By conducting a simulated predator encounter experiment in a semi-controlled environment (a sea cage), we tested the hypothesis that the collective responses of herring are threat-sensitive. We investigated whether cues from potential threats obtained visually or from the perception of water displacement, used independently or in an additive way, affected the strength of the collective avoidance reactions. We modified the sensory nature of the simulated threat by exposing the herring to 4 predator models differing in shape and transparency. The collective vertical avoidance response was observed and quantified using active acoustics. The combination of sensory cues elicited the strongest avoidance reactions, suggesting that collective antipredator responses in herring are mediated by the sensory modalities involved during threat detection in an additive fashion. Thus, this study provides evidence for magnitude-graded threat responses in a large school of wild-caught herring which is consistent with the “threat-sensitive hypothesis”. PMID:24489778

  19. Ineffective crypsis in a crab spider: a prey community perspective

    PubMed Central

    Brechbühl, Rolf; Casas, Jérôme; Bacher, Sven

    2010-01-01

    Cryptic coloration is assumed to be beneficial to predators because of an increased encounter rate with unwary prey. This hypothesis is, however, very rarely, if ever, studied in the field. The aim of this study was to quantify the encounter rate and capture success of an ambush predator, in the field, as a function of its level of colour-matching with the background. We used the crab spider Misumena vatia, which varies its body colour and can thereby match the colour of the flower it hunts upon. We carried out a manipulative field experiment using a complete factorial design resulting in six different colour combinations of crab spiders and flowers differing in their degree of colour-matching. A rich and diverse set of naturally occurring insects visited the flowers while we continuously video-recorded the spider's foraging activity. This enabled us to test the crypsis, the spider avoidance and the flower visitor attraction hypotheses, all three supported by previous studies. Flower visitors of different groups either avoided crab spiders independent of colour-matching, such as solitary bees and syrphid flies, or ignored them, such as bumble-bees and honeybees. Moreover, colour-matched spiders did not have a higher encounter rate and capture success compared to the visually apparent ones. Thus, our results support the spider avoidance hypothesis, reject the two other hypotheses and uncovered a fourth behaviour: indifference to predators. Because flower visitors reacted differently, a community approach is mandatory in order to understand the function of background colour-matching in generalist predators. We discuss our results in relation to the size and sociality of the prey and in relation to the functional significance of colour change in this predator. PMID:19889699

  20. Ineffective crypsis in a crab spider: a prey community perspective.

    PubMed

    Brechbühl, Rolf; Casas, Jérôme; Bacher, Sven

    2010-03-07

    Cryptic coloration is assumed to be beneficial to predators because of an increased encounter rate with unwary prey. This hypothesis is, however, very rarely, if ever, studied in the field. The aim of this study was to quantify the encounter rate and capture success of an ambush predator, in the field, as a function of its level of colour-matching with the background. We used the crab spider Misumena vatia, which varies its body colour and can thereby match the colour of the flower it hunts upon. We carried out a manipulative field experiment using a complete factorial design resulting in six different colour combinations of crab spiders and flowers differing in their degree of colour-matching. A rich and diverse set of naturally occurring insects visited the flowers while we continuously video-recorded the spider's foraging activity. This enabled us to test the crypsis, the spider avoidance and the flower visitor attraction hypotheses, all three supported by previous studies. Flower visitors of different groups either avoided crab spiders independent of colour-matching, such as solitary bees and syrphid flies, or ignored them, such as bumble-bees and honeybees. Moreover, colour-matched spiders did not have a higher encounter rate and capture success compared to the visually apparent ones. Thus, our results support the spider avoidance hypothesis, reject the two other hypotheses and uncovered a fourth behaviour: indifference to predators. Because flower visitors reacted differently, a community approach is mandatory in order to understand the function of background colour-matching in generalist predators. We discuss our results in relation to the size and sociality of the prey and in relation to the functional significance of colour change in this predator.

  1. Consequences of the size structure of fish populations for their effects on a generalist avian predator.

    PubMed

    Kloskowski, Janusz

    2011-06-01

    Size-structured interspecific interactions can shift between predation and competition, depending on ontogenetic changes in size relationships. I examined the effects of common carp (Cyprinus carpio), an omnivorous fish, on the reproductive success of the red-necked grebe (Podiceps grisegena), an avian gape-limited predator, along a fish size gradient created by stocking distinct age-cohorts in seminatural ponds. Young-of-the-year (0+) carp were an essential food source for young grebes. Only adult birds were able to consume 1-year-old (1+) fish, while 2-year-old (2+) fish attained a size refuge from grebes. Amphibian larvae were the principal alternative prey to fish, followed by macroinvertebrates, but the abundance of both dramatically decreased along the carp size gradient. Fledging success was 2.8 times greater in ponds with 0+ versus 1+ carp; in ponds with 1+ carp, chicks received on average 2.6-3 times less prey biomass from their parents, and over 1/3 of broods suffered total failure. Breeding birds avoided settling on 2+ ponds. These results show that changes in prey fish size structure can account for shifts from positive trophic effects on the avian predator to a negative impact on the predator's alternative resources. However, competition did not fully explain the decrease in grebe food resources in the presence of large fish, as carp and grebes overlapped little in diet. In experimental cages, 1+ carp totally eliminated young larvae of amphibians palatable to fish. In field conditions, breeding adults of palatable taxa avoided ponds with 1+ and older carp. Non-trophic interactions such as habitat selection by amphibians or macroinvertebrates to avoid large fish may provide an indirect mechanism strengthening the adverse bottom-up effects of fish on birds.

  2. The evolution of Müllerian mimicry

    PubMed Central

    2008-01-01

    It is now 130 years since Fritz Müller proposed an evolutionary explanation for the close similarity of co-existing unpalatable prey species, a phenomenon now known as Müllerian mimicry. Müller’s hypothesis was that unpalatable species evolve a similar appearance to reduce the mortality involved in training predators to avoid them, and he backed up his arguments with a mathematical model in which predators attack a fixed number (n) of each distinct unpalatable type in a given season before avoiding them. Here, I review what has since been discovered about Müllerian mimicry and consider in particular its relationship to other forms of mimicry. Müller’s specific model of associative learning involving a “fixed n” in a given season has not been supported, and several experiments now suggest that two distinct unpalatable prey types may be just as easy to learn to avoid as one. Nevertheless, Müller’s general insight that novel unpalatable forms have higher mortality than common unpalatable forms as a result of predation has been well supported by field experiments. From its inception, there has been a heated debate over the nature of the relationship between Müllerian co-mimics that differ in their level of defence. There is now a growing awareness that this relationship can be mediated by many factors, including synergistic effects between co-mimics that differ in their mode of defence, rates of generalisation among warning signals and concomitant changes in prey density as mimicry evolves. I highlight areas for future enquiry, including the possibility of Müllerian mimicry systems based on profitability rather than unprofitability and the co-evolution of defence. PMID:18542902

  3. The evolution of Müllerian mimicry

    NASA Astrophysics Data System (ADS)

    Sherratt, Thomas N.

    2008-08-01

    It is now 130 years since Fritz Müller proposed an evolutionary explanation for the close similarity of co-existing unpalatable prey species, a phenomenon now known as Müllerian mimicry. Müller’s hypothesis was that unpalatable species evolve a similar appearance to reduce the mortality involved in training predators to avoid them, and he backed up his arguments with a mathematical model in which predators attack a fixed number ( n) of each distinct unpalatable type in a given season before avoiding them. Here, I review what has since been discovered about Müllerian mimicry and consider in particular its relationship to other forms of mimicry. Müller’s specific model of associative learning involving a “fixed n” in a given season has not been supported, and several experiments now suggest that two distinct unpalatable prey types may be just as easy to learn to avoid as one. Nevertheless, Müller’s general insight that novel unpalatable forms have higher mortality than common unpalatable forms as a result of predation has been well supported by field experiments. From its inception, there has been a heated debate over the nature of the relationship between Müllerian co-mimics that differ in their level of defence. There is now a growing awareness that this relationship can be mediated by many factors, including synergistic effects between co-mimics that differ in their mode of defence, rates of generalisation among warning signals and concomitant changes in prey density as mimicry evolves. I highlight areas for future enquiry, including the possibility of Müllerian mimicry systems based on profitability rather than unprofitability and the co-evolution of defence.

  4. Climate change enhances the negative effects of predation risk on an intermediate consumer.

    PubMed

    Miller, Luke P; Matassa, Catherine M; Trussell, Geoffrey C

    2014-12-01

    Predators are a major source of stress in natural systems because their prey must balance the benefits of feeding with the risk of being eaten. Although this 'fear' of being eaten often drives the organization and dynamics of many natural systems, we know little about how such risk effects will be altered by climate change. Here, we examined the interactive consequences of predator avoidance and projected climate warming in a three-level rocky intertidal food chain. We found that both predation risk and increased air and sea temperatures suppressed the foraging of prey in the middle trophic level, suggesting that warming may further enhance the top-down control of predators on communities. Prey growth efficiency, which measures the efficiency of energy transfer between trophic levels, became negative when prey were subjected to predation risk and warming. Thus, the combined effects of these stressors may represent an important tipping point for individual fitness and the efficiency of energy transfer in natural food chains. In contrast, we detected no adverse effects of warming on the top predator and the basal resources. Hence, the consequences of projected warming may be particularly challenging for intermediate consumers residing in food chains where risk dominates predator-prey interactions. © 2014 John Wiley & Sons Ltd.

  5. Predator identity and consumer behavior: differential effects of fish and crayfish on the habitat use of a freshwater snail.

    PubMed

    Turner, Andrew M; Fetterolf, Shelley A; Bernot, Randall J

    1999-02-01

    Predators can alter the outcome of ecological interactions among other members of the food web through their effects on prey behavior. While it is well known that animals often alter their behavior with the imposition of predation risk, we know less about how other features of predators may affect prey behavior. For example, relatively few studies have addressed the effects of predator identity on prey behavior, but such knowledge is crucial to understanding food web interactions. This study contrasts the behavioral responses of the freshwater snail Physellagyrina to fish and crayfish predators. Snails were placed in experimental mesocosms containing caged fish and crayfish, so the only communication between experimental snails and their predators was via non-visual cues. The caged fish and crayfish were fed an equal number of snails, thereby simulating equal prey mortality rates. In the presence of fish, the experimental snails moved under cover, which confers safety from fish predators. However, in the presence of crayfish, snails avoided benthic cover and moved to the water surface. Thus, two species of predators, exerting the same level of mortality on prey, induced very different behavioral responses. We predict that these contrasting behavioral responses to predation risk have important consequences for the interactions between snails and their periphyton resources.

  6. Foraging in the Darkness of the Southern Ocean: Influence of Bioluminescence on a Deep Diving Predator

    PubMed Central

    Vacquié-Garcia, Jade; Royer, François; Dragon, Anne-Cécile; Viviant, Morgane; Bailleul, Frédéric; Guinet, Christophe

    2012-01-01

    How non-echolocating deep diving marine predators locate their prey while foraging remains mostly unknown. Female southern elephant seals (SES) (Mirounga leonina) have vision adapted to low intensity light with a peak sensitivity at 485 nm. This matches the wavelength of bioluminescence produced by a large range of marine organisms including myctophid fish, SES’s main prey. In this study, we investigated whether bioluminescence provides an accurate estimate of prey occurrence for SES. To do so, four SES were satellite-tracked during their post-breeding foraging trip and were equipped with Time-Depth-Recorders that also recorded light levels every two seconds. A total of 3386 dives were processed through a light-treatment model that detected light events higher than ambient level, i.e. bioluminescence events. The number of bioluminescence events was related to an index of foraging intensity for SES dives deep enough to avoid the influence of natural ambient light. The occurrence of bioluminescence was found to be negatively related to depth both at night and day. Foraging intensity was also positively related to bioluminescence both during day and night. This result suggests that bioluminescence likely provides SES with valuable indications of prey occurrence and might be a key element in predator-prey interactions in deep-dark marine environments. PMID:22952706

  7. Effect of a Matter of Balance programme on avoidance behaviour due to fear of falling in older adults.

    PubMed

    Sartor-Glittenberg, Cecelia; Bordenave, Elton; Bay, Curt; Bordenave, Lori; Alexander, Jeffrey L

    2018-05-01

    Fear of falling (FOF) is associated with restricted activities, increased risk of falling, and decreased quality of life. A Matter of Balance (AMOB) is an evidence-based programme designed to decrease FOF. The current study investigated the influence of the AMOB on activity avoidance caused by FOF in older adults using the Fear of Falling Avoidance Behavior Questionnaire (FFABQ), health-related quality of life, and a question regarding concerns about falling. Participants of this quasi-experimental, one-group, pretest-post-test study design were older adults from community sites in the Phoenix, Arizona, metropolitan area. Participants attended the AMOB programme, which consisted of one weekly 2-h session for 8 weeks. At the beginning and end of the programme, participants completed the standard AMOB assessments, the FFABQ, the Centers for Disease Control Core Healthy Days Measure (CDC HRQOL-4), and a question regarding concerns about falling. Sixty-three participants completed the study; their mean ± SD age was 75.3 ± 7.1 years (range: 60.0-90.0 years), and 84.1% were women. The FFABQ scores decreased from baseline (24.4 ± 12.7 points) to post-AMOB (20.1 ± 11.9 points; t = 2.62, P = 0.01). No changes in any of the CDC HRQOL-4 questions were noted (CDC HRQOL-4 question (Q)1 (z = -1.41, P = 0.16), CDC HRQOL-4 Q2 and Q3 summary index (z = -1.60, P = 0.11), and CDC HRQOL-4 Q4 (z = -0.97, P = 0.33)). Concerns about falling decreased from baseline (3.4 ± 0.9 points) to post-AMOB (2.8 ± 0.8 points; z = -4.09, P < 0.001). Avoidance behaviour caused by FOF, as measured by the FFABQ, and concerns about falling decreased in community-dwelling older adults who participated in the AMOB. Findings support the efficacy of the AMOB for reducing both avoidance behaviour caused by FOF and concerns about falling through an approach that combines education and exercise. © 2018 Japanese Psychogeriatric Society.

  8. Behavioral responses of native prey to disparate predators: naiveté and predator recognition.

    PubMed

    Anson, Jennifer R; Dickman, Chris R

    2013-02-01

    It is widely accepted that predator recognition and avoidance are important behaviors in allowing prey to mitigate the impacts of their predators. However, while prey species generally develop anti-predator behaviors through coevolution with predators, they sometimes show accelerated adoption of these behaviors under strong selection pressure from novel species. We used a field manipulation experiment to gauge the ability of the common ringtail possum (Pseudocheirus peregrinus), a semi-arboreal Australian marsupial, to recognize and respond to olfactory cues of different predator archetypes. We predicted that ringtails would display stronger anti-predator behaviors to cues of the invasive European red fox (Vulpes vulpes) in areas where fox impacts had been greatest, and to cues of the native lace monitor (Varanus varius) in areas of sympatry compared with allopatry. We found that ringtails fled quickly and were more alert when exposed to the fecal odors of both predators compared to neutral and pungent control odors, confirming that predator odors are recognized and avoided. However, these aversive responses were similar irrespective of predator presence or level of impact. These results suggest that selection pressure from the fox has been sufficient for ringtails to develop anti-predator behaviors over the few generations since foxes have become established. In contrast, we speculate that aversive responses by ringtails to the lace monitor in areas where this predator is absent reflect recent coexistence of the two species. We conclude that rapid evolution of anti-predator behaviors may occur when selection is strong. The maintenance of these behaviors should allow re-establishment of predator-prey relationships if the interactants regain sympatry via range shifts or management actions to reintroduce them to their former ranges.

  9. Implementing Goal-Directed Foraging Decisions of a Simpler Nervous System in Simulation

    PubMed Central

    Brown, Jeffrey W.; Caetano-Anollés, Derek; Catanho, Marianne; Gribkova, Ekaterina; Ryckman, Nathaniel; Tian, Kun; Voloshin, Mikhail

    2018-01-01

    Economic decisions arise from evaluation of alternative actions in contexts of motivation and memory. In the predatory sea-slug Pleurobranchaea the economic decisions of foraging are found to occur by the workings of a simple, affectively controlled homeostat with learning abilities. Here, the neuronal circuit relations for approach-avoidance choice of Pleurobranchaea are expressed and tested in the foraging simulation Cyberslug. Choice is organized around appetitive state as a moment-to-moment integration of sensation, motivation (satiation/hunger), and memory. Appetitive state controls a switch for approach vs. avoidance turn responses to sensation. Sensory stimuli are separately integrated for incentive value into appetitive state, and for prey location (stimulus place) into mapping motor response. Learning interacts with satiation to regulate prey choice affectively. The virtual predator realistically reproduces the decisions of the real one in varying circumstances and satisfies optimal foraging criteria. The basic relations are open to experimental embellishment toward enhanced neural and behavioral complexity in simulation, as was the ancestral bilaterian nervous system in evolution. PMID:29503862

  10. The use of an in situ portable flume to examine the effect of flow properties on the capture probability of juvenile Atlantic salmon

    NASA Astrophysics Data System (ADS)

    Roy, M. L.; Roy, A. G.; Grant, J. W.

    2013-12-01

    For stream fish, flow properties have been shown to influence energy expenses and habitat selection. Furthermore, flow properties directly influence the velocity of drifting prey items, therefore influencing the probability of fish at catch prey. Flow properties might also have an effect on prey trajectories that can become more unpredictable with increased turbulence. In this study, we combined field and experimental approaches to examine the foraging behaviour and position choice of juvenile Atlantic salmon in various flow conditions. We used an in situ portable flume, which consists in a transparent enclosure (observation section) equipped with hinged doors upstream allowing to funnel the water inside and modify flow properties. Portable flumes have been developed and used to simulate benthic invertebrate drift and sediment transport, but have not been previously been used to examine fish behaviour. Specifically, we tested the predictions that 1) capture probability declined with turbulence, 2) the number of attacks and the proportion of time spent on the substrate decreased with turbulence and 3) parr will preferably selected focal positions with lower turbulence than random locations across the observation section. The portable flume allowed creating four flow treatments on a gradient of mean downstream velocity and turbulence. Fish were fed with brine shrimps and filmed through translucent panels using a submerged camera. Twenty-three juvenile salmon were captured and submitted to each flow treatment for 20 minutes feeding trials. Our results showed high inter-individual variability in the foraging success and time budget within each flow treatment associated to levels of velocity and turbulence. However, the average prey capture probability for the two lower velocity treatments was higher than that for the two higher velocity treatments. An inverse relationship between flow velocity and prey capture probability was observed and might have resulted from a diminution in prey detection distance. Fish preferentially selected focal positions in moderate velocity, and low turbulence areas and avoided the highly turbulent locations. Similarly, selection of average downward velocity and avoidance of upward velocity might be associated to the ease at maintaining position. Considering the streamlined shape providing high hydrodynamism, average vertical velocity might be an important feature driving microhabitat selection. Our results do not rule out the effect of turbulence on fish foraging but rather highlights the need to further investigate this question with a wider range of hydraulic values in order to possibly implement a turbulence-dependent prey capture function that might be useful to mechanistic foraging models.

  11. Larval long-toed salamanders incur nonconsumptive effects in the presence of nonnative trout

    USGS Publications Warehouse

    Kenison, Erin K.; Litt, Andrea R.; Pilliod, David S.; McMahon, Thomas E.

    2016-01-01

    Predators can influence prey directly through consumption or indirectly through nonconsumptive effects (NCEs) by altering prey behavior, morphology, and life history. We investigated whether predator-avoidance behaviors by larval long-toed salamanders (Ambystoma macrodactylum) in lakes with nonnative trout result in NCEs on morphology and development. Field studies in lakes with and without trout were corroborated by experimental enclosures, where prey were exposed only to visual and chemical cues of predators. We found that salamanders in lakes with trout were consistently smaller than in lakes without trout: 38% lower weight, 24% shorter body length, and 29% shorter tail length. Similarly, salamanders in protective enclosures grew 2.9 times slower when exposed to visual and olfactory trout cues than when no trout cues were present. Salamanders in trout-free lakes and enclosures were 22.7 times and 1.48 times, respectively, more likely to metamorphose during the summer season than those exposed to trout in lakes and/or their cues. Observed changes in larval growth rate and development likely resulted from a facultative response to predator-avoidance behavior and demonstrate NCEs occurred even when predation risk was only perceived. Reduced body size and growth, as well as delayed metamorphosis, could have ecological consequences for salamander populations existing with fish if those effects carry-over into lower recruitment, survival, and fecundity.

  12. Human shields mediate sexual conflict in a top predator.

    PubMed

    Steyaert, S M J G; Leclerc, M; Pelletier, F; Kindberg, J; Brunberg, S; Swenson, J E; Zedrosser, A

    2016-06-29

    Selecting the right habitat in a risky landscape is crucial for an individual's survival and reproduction. In predator-prey systems, prey often can anticipate the habitat use of their main predator and may use protective associates (i.e. typically an apex predator) as shields against predation. Although never tested, such mechanisms should also evolve in systems in which sexual conflict affects offspring survival. Here, we assessed the relationship between offspring survival and habitat selection, as well as the use of protective associates, in a system in which sexually selected infanticide (SSI), rather than interspecific predation, affects offspring survival. We used the Scandinavian brown bear (Ursus arctos) population with SSI in a human-dominated landscape as our model system. Bears, especially adult males, generally avoid humans in our study system. We used resource selection functions to contrast habitat selection of GPS-collared mothers that were successful (i.e. surviving litters, n = 19) and unsuccessful (i.e. complete litter loss, n = 11) in keeping their young during the mating season (2005-2012). Habitat selection was indeed a predictor of litter survival. Successful mothers were more likely to use humans as protective associates, whereas unsuccessful mothers avoided humans. Our results suggest that principles of predator-prey and fear ecology theory (e.g. non-consumptive and cascading effects) can also be applied to the context of sexual conflict. © 2016 The Authors.

  13. Adaptive behaviour and multiple equilibrium states in a predator-prey model.

    PubMed

    Pimenov, Alexander; Kelly, Thomas C; Korobeinikov, Andrei; O'Callaghan, Michael J A; Rachinskii, Dmitrii

    2015-05-01

    There is evidence that multiple stable equilibrium states are possible in real-life ecological systems. Phenomenological mathematical models which exhibit such properties can be constructed rather straightforwardly. For instance, for a predator-prey system this result can be achieved through the use of non-monotonic functional response for the predator. However, while formal formulation of such a model is not a problem, the biological justification for such functional responses and models is usually inconclusive. In this note, we explore a conjecture that a multitude of equilibrium states can be caused by an adaptation of animal behaviour to changes of environmental conditions. In order to verify this hypothesis, we consider a simple predator-prey model, which is a straightforward extension of the classic Lotka-Volterra predator-prey model. In this model, we made an intuitively transparent assumption that the prey can change a mode of behaviour in response to the pressure of predation, choosing either "safe" of "risky" (or "business as usual") behaviour. In order to avoid a situation where one of the modes gives an absolute advantage, we introduce the concept of the "cost of a policy" into the model. A simple conceptual two-dimensional predator-prey model, which is minimal with this property, and is not relying on odd functional responses, higher dimensionality or behaviour change for the predator, exhibits two stable co-existing equilibrium states with basins of attraction separated by a separatrix of a saddle point. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. The interaction of spatial scale and predator-prey functional response

    USGS Publications Warehouse

    Blaine, T.W.; DeAngelis, D.L.

    1997-01-01

    Predator-prey models with a prey-dependent functional response have the property that the prey equilibrium value is determined only by predator characteristics. However, in observed natural systems (for instance, snail-periphyton interactions in streams) the equilibrium periphyton biomass has been shown experimentally to be influenced by both snail numbers and levels of available limiting nutrient in the water. Hypothesizing that the observed patchiness in periphyton in streams may be part of the explanation for the departure of behavior of the equilibrium biomasses from predictions of the prey-dependent response of the snail-periphyton system, we developed and analyzed a spatially-explicit model of periphyton in which snails were modeled as individuals in their movement and feeding, and periphyton was modeled as patches or spatial cells. Three different assumptions on snail movement were used: (1) random movement between spatial cells, (2) tracking by snails of local abundances of periphyton, and (3) delayed departure of snails from cells to reduce costs associated with movement. Of these assumptions, only the third strategy, based on an herbivore strategy of staying in one patch until local periphyton biomass concentration falls below a certain threshold amount, produced results in which both periphyton and snail biomass increased with nutrient input. Thus, if data are averaged spatially over the whole system, we expect that a ratio-dependent functional response may be observed if the herbivore behaves according to the third assumption. Both random movement and delayed cell departure had the result that spatial heterogeneity of periphyton increased with nutrient input.

  15. College Scholarship Fraud Prevention Act of 2000: Second Annual Report to Congress. May 2003

    ERIC Educational Resources Information Center

    US Department of Education, 2003

    2003-01-01

    Every year, millions of high school graduates seek ways to finance the rising costs of a college education, at times falling prey to scholarship and financial aid scams. To help students and their families, on November 5, 2000, Congress passed the College Scholarship Fraud Prevention Act of 2000 (Act) to establish stricter sentencing guidelines…

  16. Free Tax Assistance and the Earned Income Tax Credit: Vital Resources for Social Workers and Low-Income Families

    ERIC Educational Resources Information Center

    Lim, Younghee; DeJohn, Tara V.; Murray, Drew

    2012-01-01

    As the United States' economy continues to experience challenges, more families at or near the poverty level fall prey to predatory financial practices. Their vulnerability to these operations is increased by a lack of knowledge of asset-building resources and alternative financial services. This article focuses on Volunteer Income Tax Assistance…

  17. 77 FR 59488 - Endangered and Threatened Wildlife and Plants; Endangered Status for Grotto Sculpin and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-27

    ... Resurgence. Grotto sculpin tend to be associated with a high availability of invertebrate prey, deeper cave... sculpin was assigned an LPN of 2 due to imminent threats of a high magnitude. On May 11, 2004, we received.... 5; Day 2008, p. 12). Overall recapture rates were highest in fall and winter (32 percent each) and...

  18. More Light than Heat: The Current State of Native American Studies

    ERIC Educational Resources Information Center

    Weaver, Jace

    2007-01-01

    The author mentions some of his recent works that he values and uses, without becoming a kind of academic costermonger cataloguing all the produce for sale in the shop. At the same time, he suggests some substantive things, while not falling prey to mere rant. In his books, the author discusses the characteristics of Native American Studies (NAS).…

  19. Seasonal food habits of swift fox (Vulpes velox) in cropland and rangeland landscapes in western Kansas

    USGS Publications Warehouse

    Sovada, M.A.; Roy, C.C.; Telesco, D.J.

    2001-01-01

    Food habits of swift foxes (Vulpes velox) occupying two distinct landscapes (dominated by cropland versus rangeland) in western Kansas were determined by analysis of scats collected in 1993 and 1996. Frequencies of occurrence of prey items in scats were compared between cropland and rangeland areas by season. Overall, the most frequently occurring foods of swift foxes were mammals (92% of all scats) and arthropods (87%), followed by birds (24%), carrion (23%), plants (15%) and reptiles (4%). No differences were detected between landscapes for occurrence of mammals, arthropods or carrion in any season (P ≥ 0.100). Plants, specifically commercial sunflower seeds, were consumed more frequently in cropland than in rangeland in spring (P = 0.004) and fall (P = 0.001). Birds were more common in the swift fox diet in cropland than in rangeland during the fall (P = 0.008), whereas reptiles occurred more frequently in the diet in rangeland than in cropland during spring (P = 0.042). Variation in the diet of the swift fox between areas was most likely due to its opportunistic foraging behavior, resulting in a diet that closely links prey use with availability.

  20. Perspective: the evolution of warning coloration is not paradoxical.

    PubMed

    Marples, Nicola M; Kelly, David J; Thomas, Robert J

    2005-05-01

    Animals that are brightly colored have intrigued scientists since the time of Darwin, because it seems surprising that prey should have evolved to be clearly visible to predators. Often this self-advertisement is explained by the prey being unprofitable in some way, with the conspicuous warning coloration helping to protect the prey because it signals to potential predators that the prey is unprofitable. However, such signals only work in this way once predators have learned to associate the conspicuous color with the unprofitability of the prey. The evolution of warning coloration is still widely considered to be a paradox, because it has traditionally been assumed that the very first brightly colored individuals would be at an immediate selective disadvantage because of their greater conspicuousness to predators that are naive to the meaning of the signal. As a result, it has been difficult to understand how a novel conspicuous color morph could ever avoid extinction for long enough for predators to become educated about the signal. Thus, the traditional view that the evolution of warning coloration is difficult to explain rests entirely on assumptions about the foraging behavior of predators. However, we review recent evidence from a range of studies of predator foraging decisions, which refute these established assumptions. These studies show that: (1) Many predators are so conservative in their food preferences that even very conspicuous novel prey morphs are not necessarily at a selective disadvantage. (2) The survival and spread of novel color morphs can be simulated in field and aviary experiments using real predators (birds) foraging on successive generations of artificial prey populations. This work demonstrates that the foraging preferences of predators can regularly (though not always) result in the increase to fixation of a novel morph appearing in a population of familiar-colored prey. Such fixation events occur even if both novel and familiar prey are fully palatable and despite the novel food being much more conspicuous than the familiar prey. These studies therefore provide strong empirical evidence that conspicuous coloration can evolve readily, and repeatedly, as a result of the conservative foraging decisions of predators.

  1. Feast or flee: bioelectrical regulation of feeding and predator evasion behaviors in the planktonic alveolate Favella sp. (Spirotrichia).

    PubMed

    Echevarria, Michael L; Wolfe, Gordon V; Taylor, Alison R

    2016-02-01

    Alveolate (ciliates and dinoflagellates) grazers are integral components of the marine food web and must therefore be able to sense a range of mechanical and chemical signals produced by prey and predators, integrating them via signal transduction mechanisms to respond with effective prey capture and predator evasion behaviors. However, the sensory biology of alveolate grazers is poorly understood. Using novel techniques that combine electrophysiological measurements and high-speed videomicroscopy, we investigated the sensory biology of Favella sp., a model alveolate grazer, in the context of its trophic ecology. Favella sp. produced frequent rhythmic depolarizations (∼500 ms long) that caused backward swimming and are responsible for endogenous swimming patterns relevant to foraging. Contact of both prey cells and non-prey polystyrene microspheres at the cilia produced immediate mechanostimulated depolarizations (∼500 ms long) that caused backward swimming, and likely underlie aggregative swimming patterns of Favella sp. in response to patches of prey. Contact of particles at the peristomal cavity that were not suitable for ingestion resulted in depolarizations after a lag of ∼600 ms, allowing time for particles to be processed before rejection. Ingestion of preferred prey particles was accompanied by transient hyperpolarizations (∼1 s) that likely regulate this step of the feeding process. Predation attempts by the copepod Acartia tonsa elicited fast (∼20 ms) animal-like action potentials accompanied by rapid contraction of the cell to avoid predation. We have shown that the sensory mechanisms of Favella sp. are finely tuned to the type, location, and intensity of stimuli from prey and predators. © 2016. Published by The Company of Biologists Ltd.

  2. Trunk kinematics and fall risk of older adults: translating biomechanical results to the clinic.

    PubMed

    Grabiner, Mark D; Donovan, Stephanie; Bareither, Mary Lou; Marone, Jane R; Hamstra-Wright, Karrie; Gatts, Strawberry; Troy, Karen L

    2008-04-01

    This paper reviews some of our experiences over nearly 15 years of trying to determine modifiable factors that contribute to the high incidence of fall by older adults. As part of our approach, we have subjected healthy young and older adults to very large postural disturbances during locomotion, in the form of trips and slips, to which rapid compensatory responses have been necessary to avoid falling. For both trips and slips, the ability to limit trunk motion has consistently discriminated older adults who fall from both younger adults and older adults who have been able to avoid falling. We have shown that the ability to limit trunk motion can be rapidly acquired, or learned, by older adults as a result of task-specific training. The learned motor skill has demonstrated short-term retention and has been shown to effectively decrease fall-risk due to trips. Collectively, we believe the works strongly suggests that the traditional exercise-based fall-prevention and whole-body, task-specific training can synergize to reduce falls and fall-related injury in older adults.

  3. Flee or fight: ontogenetic changes in the behavior of cobweb spiders in encounters with spider-hunting wasps.

    PubMed

    Uma, Divya B; Weiss, Martha R

    2012-12-01

    An animal's body size plays a predominant role in shaping its interspecific interactions, and, in encounters between two predators, often determines which shall be predator and which shall be prey. Spiders are top predators of insects, yet can fall prey to mud-dauber wasps that provision their larval nests with paralyzed spiders. Here we examined predator-prey interactions between Chalybion californicum (Saussure) (Sphecidae), a mud-dauber wasp, and Parasteatoda tepidariorum C. L. Koch (Theridiidae), a cobweb spider. We examined whether a spider's size influences its response to an attacking wasp, and report a size-dependent change in spider behavior: small-sized spiders fled, whereas medium- and large-sized spiders fought in response to wasp attacks. From the wasps' perspective, we examined whether spider size influences a wasp's hunting behavior and capture success. We found that wasps commonly approached small spiders, but were much less likely to approach medium and large spiders. However, wasp capture success did not vary with spider size. We also report a strategy used by Chalybion wasps toward cobweb spiders that is consistent with an interpretation of aggressive mimicry.

  4. Effects of competitive prey capture on flight behavior and sonar beam pattern in paired big brown bats, Eptesicus fuscus.

    PubMed

    Chiu, Chen; Reddy, Puduru Viswanadha; Xian, Wei; Krishnaprasad, Perinkulam S; Moss, Cynthia F

    2010-10-01

    Foraging and flight behavior of echolocating bats were quantitatively analyzed in this study. Paired big brown bats, Eptesicus fuscus, competed for a single food item in a large laboratory flight room. Their sonar beam patterns and flight paths were recorded by a microphone array and two high-speed cameras, respectively. Bats often remained in nearly classical pursuit (CP) states when one bat is following another bat. A follower can detect and anticipate the movement of the leader, while the leader has the advantage of gaining access to the prey first. Bats in the trailing position throughout the trial were more successful in accessing the prey. In this study, bats also used their sonar beam to monitor the conspecific's movement and to track the prey. Each bat tended to use its sonar beam to track the prey when it was closer to the worm than to another bat. The trailing bat often directed its sonar beam toward the leading bat in following flight. When two bats flew towards each other, they tended to direct their sonar beam axes away from each other, presumably to avoid signal jamming. This study provides a new perspective on how echolocating bats use their biosonar system to coordinate their flight with conspecifics in a group and how they compete for the same food source with conspecifics.

  5. Combined effects of predator cues and competition define habitat choice and food consumption of amphipod mesograzers.

    PubMed

    Beermann, Jan; Boos, Karin; Gutow, Lars; Boersma, Maarten; Peralta, Ana Carolina

    2018-03-01

    Predation has direct impact on prey populations by reducing prey abundance. In addition, predator presence alone can also have non-consumptive effects on prey species, potentially influencing their interspecific interactions and thus the structure of entire assemblages. The performance of potential prey species may, therefore, depend on both the presence of predators and competitors. We studied habitat use and food consumption of a marine mesograzer, the amphipod Echinogammarus marinus, in the presence/absence of a fish mesopredator and/or an amphipod competitor. The presence of the predator affected both habitat choice and food consumption of the grazer, indicating a trade-off between the use of predator-free space and food acquisition. Without the predator, E. marinus were distributed equally over different microhabitats, whereas in the presence of the predator, most individuals chose a sheltered microhabitat and reduced their food consumption. Furthermore, habitat choice of the amphipods changed in the presence of interspecific competitors, also resulting in reduced feeding rates. The performance of E. marinus is apparently driven by trait-mediated direct and indirect effects caused by the interplay of predator avoidance and competition. This highlights the importance of potential non-consumptive impacts of predators on their prey organisms. The flexible responses of small invertebrate consumers to the combined effects of predation and competition potentially lead to changes in the structure of coastal ecosystems and the multiple species interactions therein.

  6. Evaluating an in-home multicomponent cognitive behavioural programme to manage concerns about falls and associated activity avoidance in frail community-dwelling older people: Design of a randomised control trial [NCT01358032

    PubMed Central

    2011-01-01

    Background Concerns about falls are frequently reported by older people. These concerns can have serious consequences such as an increased risk of falls and the subsequent avoidance of activities. Previous studies have shown the effectiveness of a multicomponent group programme to reduce concerns about falls. However, owing to health problems older people may not be able to attend a group programme. Therefore, we adapted the group approach to an individual in-home programme. Methods/Design A two-group randomised controlled trial has been developed to evaluate the in-home multicomponent cognitive behavioural programme to manage concerns about falls and associated activity avoidance in frail older people living in the community. Persons were eligible for study if they were 70 years of age or over, perceived their general health as fair or poor, had at least some concerns about falls and associated avoidance of activity. After screening for eligibility in a random sample of older people, eligible persons received a baseline assessment and were subsequently allocated to the intervention or control group. Persons assigned to the intervention group were invited to participate in the programme, while those assigned to the control group received care as usual. The programme consists of seven sessions, comprising three home visits and four telephone contacts. The sessions are aimed at instilling adaptive and realistic views about falls, as well as increasing activity and safe behaviour. An effect evaluation, a process evaluation and an economic evaluation are conducted. Follow-up measurements for the effect evaluation are carried out 5 and 12 months after the baseline measurement. The primary outcomes of the effect evaluation are concerns about falls and avoidance of activity as a result of these concerns. Other outcomes are disability and falls. The process evaluation measures: the population characteristics reached; protocol adherence by facilitators; protocol adherence by participants (engagement in exposure and homework); opinions about the programme of participants and facilitators; perceived benefits and achievements; and experienced barriers. The economic evaluation examines the impact on health-care utilisation, as well as related costs. Discussion A total number of 389 participants is included in the study. Final results are expected in 2012. Trial registration NCT01358032 PMID:21933436

  7. Prey composition modulates exposure risk to anticoagulant rodenticides in a sentinel predator, the barn owl.

    PubMed

    Geduhn, Anke; Esther, Alexandra; Schenke, Detlef; Gabriel, Doreen; Jacob, Jens

    2016-02-15

    Worldwide, small rodents are main prey items for many mammalian and avian predators. Some rodent species have pest potential and are managed with anticoagulant rodenticides (ARs). ARs are consumed by target and non-target small mammals and can lead to secondary exposure of predators. The development of appropriate risk mitigation strategies is important and requires detailed knowledge of AR residue pathways. From July 2011 to October 2013 we collected 2397 regurgitated barn owl (Tyto alba) pellets to analyze diet composition of owls on livestock farms in western Germany. 256 of them were fresh pellets that were collected during brodifacoum baiting. Fresh pellets and 742 liver samples of small mammals that were trapped during baiting in the same area were analyzed for residues of ARs. We calculated exposure risk of barn owls to ARs by comparing seasonal diet composition of owls with AR residue patterns in prey species. Risk was highest in autumn, when barn owls increasingly preyed on Apodemus that regularly showed AR residues, sometimes at high concentrations. The major prey species (Microtus spp.) that was consumed most frequently in summer had less potential to contribute to secondary poisoning of owls. There was no effect of AR application on prey composition. We rarely detected ARs in pellets (2 of 256 samples) but 13% of 38 prey individuals in barn owl nests were AR positive and substantiated the expected pathway. AR residues were present in 55% of 11 barn owl carcasses. Fluctuation in non-target small mammal abundance and differences in AR residue exposure patterns in prey species drives exposure risk for barn owls and probably other predators of small mammals. Exposure risk could be minimized through spatial and temporal adaption of AR applications (avoiding long baiting and non-target hot spots at farms) and through selective bait access for target animals. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Predator diversity reduces habitat colonization by mosquitoes and midges.

    PubMed

    Staats, Ethan G; Agosta, Salvatore J; Vonesh, James R

    2016-12-01

    Changes in predator diversity via extinction and invasion are increasingly widespread and can have important ecological and socio-economic consequences. Anticipating and managing these consequences requires understanding how predators shape ecological communities. Previous predator biodiversity research has focused on post-colonization processes. However, predators can also shape communities by altering patterns of prey habitat selection during colonization. The sensitivity of this non-consumptive top down mechanism to changes in predator diversity is largely unexamined. To address this gap, we examined patterns of dipteran oviposition habitat selection in experimental aquatic habitats in response to varied predator species richness while holding predator abundance constant. Caged predators were used in order to disentangle behavioural oviposition responses to predator cues from potential post-oviposition consumption of eggs and larvae. We hypothesized that because increases in predator richness often result in greater prey mortality than would be predicted from independent effects of predators, prey should avoid predator-rich habitats during colonization. Consistent with this hypothesis, predator-rich habitats received 48% fewer dipteran eggs than predicted, including 60% fewer mosquito eggs and 38% fewer midge eggs. Our findings highlight the potentially important links between predator biodiversity, prey habitat selection and the ecosystem service of pest regulation. © 2016 The Author(s).

  9. The scent of wolves: pyrazine analogs induce avoidance and vigilance behaviors in prey

    PubMed Central

    Osada, Kazumi; Miyazono, Sadaharu; Kashiwayanagi, Makoto

    2015-01-01

    The common gray wolf (Canis lupus) is an apex predator located at the top of the food chain in the Northern Hemisphere. It preys on rodents, rabbits, ungulates, and many other kinds of mammal. However, the behavioral evidence for, and the chemical basis of, the fear-inducing impact of wolf urine on prey are unclear. Recently, the pyrazine analogs 2, 6-dimethylpyrazine, 2, 3, 5-trimethylpyrazine and 3-ethyl-2, 5-dimethyl pyrazine were identified as kairomones in the urine of wolves. When mice were confronted with a mixture of purified pyrazine analogs, vigilance behaviors, including freezing and excitation of neurons at the accessory olfactory bulb, were markedly increased. Additionally, the odor of the pyrazine cocktail effectively suppressed the approach of deer to a feeding area, and for those close to the feeding area elicited fear-related behaviors such as the “tail-flag,” “flight,” and “jump” actions. In this review, we discuss the transfer of chemical information from wolf to prey through the novel kairomones identified in wolf urine and also compare the characteristics of wolf kairomones with other predator-produced kairomones that affect rodents. PMID:26500485

  10. College Scholarship Fraud Prevention Act of 2000: First Annual Report to Congress. May 2002

    ERIC Educational Resources Information Center

    US Department of Education, 2002

    2002-01-01

    Every year, millions of high school graduates enter college. The cost of a four-year college education has risen over 600 percent since 1969. Students and their families seek ways to finance the rising costs of a college education, at times falling prey to scholarship and financial aid scams. To help students and their families, on November 5,…

  11. Young Children's Learning and Transfer of Biological Information from Picture Books to Real Animals

    ERIC Educational Resources Information Center

    Ganea, Patricia A.; Ma, Lili; DeLoache, Judy S.

    2011-01-01

    Preschool children (N = 104) read a book that described and illustrated color camouflage in animals (frogs and lizards). Children were then asked to indicate and explain which of 2 novel animals would be more likely to fall prey to a predatory bird. In Experiment 1, 3- and 4-year-olds were tested with pictures depicting animals in camouflage and…

  12. Prey use by dingoes in a contested landscape: Ecosystem service provider or biodiversity threat?

    PubMed

    Morrant, Damian S; Wurster, Christopher M; Johnson, Christopher N; Butler, James R A; Congdon, Bradley C

    2017-11-01

    In Australia, dingoes ( Canis lupus dingo ) have been implicated in the decline and extinction of a number of vertebrate species. The lowland Wet Tropics of Queensland, Australia is a biologically rich area with many species of rainforest-restricted vertebrates that could be threatened by dingoes; however, the ecological impacts of dingoes in this region are poorly understood. We determined the potential threat posed by dingoes to native vertebrates in the lowland Wet Tropics using dingo scat/stomach content and stable isotope analyses of hair from dingoes and potential prey species. Common mammals dominated dingo diets. We found no evidence of predation on threatened taxa or rainforest specialists within our study areas. The most significant prey species were northern brown bandicoots ( Isoodon macrourus ), canefield rats ( Rattus sordidus ), and agile wallabies ( Macropus agilis ). All are common species associated with relatively open grass/woodland habitats. Stable isotope analysis suggested that prey species sourced their nutrients primarily from open habitats and that prey choice, as identified by scat/stomach analysis alone, was a poor indicator of primary foraging habitats. In general, we find that prey use by dingoes in the lowland Wet Tropics does not pose a major threat to native and/or threatened fauna, including rainforest specialists. In fact, our results suggest that dingo predation on "pest" species may represent an important ecological service that outweighs potential biodiversity threats. A more targeted approach to managing wild canids is needed if the ecosystem services they provide in these contested landscapes are to be maintained, while simultaneously avoiding negative conservation or economic impacts.

  13. The foraging ecology of the mountain long-eared bat Plecotus macrobullaris revealed with DNA mini-barcodes.

    PubMed

    Alberdi, Antton; Garin, Inazio; Aizpurua, Ostaizka; Aihartza, Joxerra

    2012-01-01

    Molecular analysis of diet overcomes the considerable limitations of traditional techniques for identifying prey remains in bat faeces. We collected faeces from individual Mountain Long-eared Bats Plecotus macrobullaris trapped using mist nets during the summers of 2009 and 2010 in the Pyrenees. We analysed their diet using DNA mini-barcodes to identify prey species. In addition, we inferred some basic features of the bat's foraging ecology that had not yet been addressed. P. macrobullaris fed almost exclusively on moths (97.8%). As prey we detected one dipteran genus (Tipulidae) and 29 moth taxa: 28 were identified at species level (23 Noctuidae, 1 Crambidae, 1 Geometridae, 1 Pyralidae, 1 Sphingidae, 1 Tortricidae), and one at genus level (Rhyacia sp., Noctuidae). Known ecological information about the prey species allowed us to determine that bats had foraged at elevations between 1,500 and 2,500 m amsl (above mean sea level), mostly in subalpine meadows, followed by other open habitats such as orophilous grasslands and alpine meadows. No forest prey species were identified in the diet. As 96.4% of identified prey species were tympanate moths and no evidence of gleaning behaviour was revealed, we suggest P. macrobullaris probably forages by aerial hawking using faint echolocation pulses to avoid detection by hearing moths. As we could identify 87.8% of the analysed sequences (64.1% of the MOTUs, Molecular Operational Taxonomic Units) at species level, we conclude that DNA mini-barcodes are a very useful tool to analyse the diet of moth-specialist bats.

  14. Avoiding the Flu

    MedlinePlus

    ... of this page please turn Javascript on. Feature: Flu Avoiding the Flu Past Issues / Fall 2009 Table of Contents Children ... help avoid getting and passing on the flu. Influenza (Seasonal) The flu is a contagious respiratory illness ...

  15. Pyrazine Analogues Are Active Components of Wolf Urine That Induce Avoidance and Freezing Behaviours in Mice

    PubMed Central

    Osada, Kazumi; Kurihara, Kenzo; Izumi, Hiroshi; Kashiwayanagi, Makoto

    2013-01-01

    Background The common grey wolf (Canis lupus) is found throughout the entire Northern hemisphere and preys on many kinds of mammals. The urine of the wolf contains a number of volatile constituents that can potentially be used for predator–prey chemosignalling. Although wolf urine is put to practical use to keep rabbits, rodents, deer and so on at bay, we are unaware of any prior behavioural studies or chemical analyses regarding the fear-inducing impact of wolf urine on laboratory mice. Methodology/Principal Findings Three wolf urine samples harvested at different times were used in this study. All of them induced stereotypical fear-associated behaviors (i.e., avoidance and freezing) in female mice. The levels of certain urinary volatiles varied widely among the samples. To identify the volatiles that provoked avoidance and freezing, behavioural, chemical, and immunohistochemical analyses were performed. One of the urine samples (sample C) had higher levels of 2,6-dimethylpyrazine (DMP), trimethylpyrazine (TMP), and 3-ethyl-2,5-dimethyl pyrazine (EDMP) compared with the other two urine samples (samples A and B). In addition, sample C induced avoidance and freezing behaviours more effectively than samples A and B. Moreover, only sample C led to pronounced expression of Fos-immunoreactive cells in the accessory olfactory bulb (AOB) of female mice. Freezing behaviour and Fos immunoreactivity were markedly enhanced when the mice were confronted with a mixture of purified DMP, TMP, and EDMP vs. any one pyrazine alone. Conclusions/Significance The current results suggest that wolf urinary volatiles can engender aversive and fear-related responses in mice. Pyrazine analogues were identified as the predominant active components among these volatiles to induce avoidance and freezing behaviours via stimulation of the murine AOB. PMID:23637901

  16. Disproportionate Declines in Ground-Foraging Insectivorous Birds after Mistletoe Removal

    PubMed Central

    Watson, David M.

    2015-01-01

    Insectivorous birds have been recognized as disproportionately sensitive to land-use intensification and habitat loss, with those species feeding primarily on the ground exhibiting some of the most dramatic declines. Altered litter inputs and availability of epigeic arthropods have been suggested to underlie reduced abundances and shrinking distributions but direct evidence is lacking. I used a patch-scale removal experiment in southern Australia to evaluate whether ground-feeding insectivores are especially vulnerable to altered litter-fall. Building on work demonstrating the importance of mistletoe litter to nutrient dynamics, litter was reduced by removing mistletoe (Loranthaceae) from one set of eucalypt woodlands, responses of birds three years after mistletoe removal compared with otherwise similar control woodlands containing mistletoe. Despite not feeding on mistletoes directly, insectivores exhibited the greatest response to mistletoe removal. Among woodland residents, ground-foraging insectivores showed the most dramatic response; treatment woodlands losing an average of 37.4% of their pre-treatment species richness. Once these 19 species of ground-foraging insectivores were excluded, remaining woodland species showed no significant effect of mistletoe removal. This response reflects greater initial losses in treatment woodlands during the study (which coincided with a severe drought) and double the number of species returning to control woodlands (where mistletoe numbers and litter were not manipulated) post-drought. These findings support the productivity-based explanation of declining insectivores, suggesting diminished litter-fall reduced habitat quality for these birds via decreased availability of their preferred prey. In addition to altered prey availability, interactions between litter-fall and epigeic arthropods exemplify the importance of below-ground / above-ground linkages driving ecosystem function. PMID:26640895

  17. Hiding in Plain Sight: leaf beetles (Chrysomelidae: Galerucinae) use feeding damage as a masquerade decoy

    USDA-ARS?s Scientific Manuscript database

    To avoid detection by predators, many herbivorous insects have evolved an astonishing degree of visual fidelity to inanimate items in their surroundings that renders them cryptic to their enemies. In an evolutionary twist to crypsis, known as masquerade, a predator detects prey, but fails to perceiv...

  18. Prey selection and foraging period of the predaceous rocky intertidal snail, Acanthina punctulata.

    PubMed

    Menge, Jane Lubchenco

    1974-12-01

    The diet and foraging period of the neogastropod Acanthina punctulata were investigated in order to test various aspects of recent optimal foraging strategy models. This intertidal snail is an actively searching predator which preys on snails and barnacles by boring a hole in the shell and rasping out the flesh. Unlike many gastropod predators, Acanthina drill its gastropod prey at a very specific location on the columella, the thickest portion of the shell. Acanthina's foraging period can be interpreted as a compromise between maximizing the energy obtained by feeding and minimizing risk of mortality from exposure to wave action. That foraging period minimizing risk of being dislodged by waves appears to be during low tide when the predators can be in shallow pools. However, prey cannot be captured and consumed during one low tide. Thus Acanthina must be exposed during some high tides, and its strategy appears to be to restrict movement while exposed. Thus search is not initiated during high tide, but drilling and prey consumption are continued during that time. A snail not drilling or consuming prey seeks the protection of crevices or large anemones during high tide. A model is presented to indicate the relative amounts of risk and net energy for Acanthina at successive low and high tides. Predictions from the model, e.g., minimizing search time to avoid being exposed for an additional high tide and no movement during high tide are supported by field data. Acanthina commences foraging at the beginning of low tide, searches initially for preferred prey, but if unsuccessful, settles for a less preferred prey and begins drilling this prey before the end of low tide. Drilling and ingestion of prey occur during the following high and sometimes low tides. These "handling times" take 95% of the total foraging time in the field, while search time takes only 5% (pursuit time is negligible). Drilling alone accounts for 48-70% of the total drilling and eating time. In the laboratory, drilling and eating time for littorine food ranged from 15-60 hrs per item. The time to drill and eat a littorine increases exponentially with prey length. Since handling and processing prey items represents such a large investment of time, Acanthina would be expected to be very selective with respect to choice of prey items. Electivity coefficients from field data suggest that littorines are preferred over barnacles. Acanthina in the laboratory optimizes the amount of biomass ingested per time by choosing larger littorines over smaller ones and by preferring the more readily drilled species.It is suggested that Acanthina obtains information about the range of prey available initially by encountering and evaluating quite a few prey before making a selection, but usually by comparing an item of prey encountered to the prey it recently ingested. This latter method should provide a basis for evaluating prey encountered and has the advantage of reducing search time, the total amount of time spent feeding and thus the high-tide time exposed to wave action.In a similar manner, the decrease in the level of acceptability of prey as search time increases represents a compromise between maximizing energy obtained and minimizing risk from mortality.

  19. Cost-effectiveness of droxidopa in patients with neurogenic orthostatic hypotension: post-hoc economic analysis of Phase 3 clinical trial data.

    PubMed

    François, Clément; Hauser, Robert A; Aballéa, Samuel; Dorey, Julie; Kharitonova, Elizaveta; Hewitt, L Arthur

    2016-01-01

    Falls are associated with neurogenic orthostatic hypotension (nOH) and are an economic burden on the US healthcare system. Droxidopa is approved by the US FDA to treat symptomatic nOH. This study estimates the cost-effectiveness of droxidopa vs standard of care from a US payer perspective. A Markov model was used to predict numbers of falls and treatment responses using data from a randomized, double-blind trial of patients with Parkinson's disease and nOH who received optimized droxidopa therapy or placebo for 8 weeks. The severity of falls, utility values, and injury-related costs were derived from published studies. Model outcomes included number of falls, number of quality-adjusted life-years (QALYs), and direct costs. Incremental cost-effectiveness ratios (ICERs) were calculated. Outcomes were extrapolated over 12 months. Patients receiving droxidopa had fewer falls compared with those receiving standard of care and gained 0.33 QALYs/patient. Estimated droxidopa costs were $30,112, with estimated cost savings resulting from fall avoidance of $14,574 over 12 months. Droxidopa was cost-effective vs standard of care, with ICERs of $47,001/QALY gained, $24,866 per avoided fall with moderate/major injury, and $1559 per avoided fall with no/minor injury. The main drivers were fall probabilities and fear of fall-related inputs. A limitation of the current study is the reliance on falls data from a randomized controlled trial where the placebo group served as the proxy for standard of care. Data from a larger patient population, reflecting 'real-life' patient use and/or comparison with other agents used to treat nOH, would have been a useful complement, but these data were not available. Using Markov modeling, droxidopa appears to be a cost-effective option compared with standard of care in US clinical practice for the treatment of nOH.

  20. Biases in determining the diet of jumbo squid Dosidicus gigas (D' Orbigny 1835) (Cephalopoda: Ommastrephidae) off southern-central Chile (34°S-40°S)

    NASA Astrophysics Data System (ADS)

    Ibáñez, Christian M.; Arancibia, Hugo; Cubillos, Luis A.

    2008-12-01

    The diet of jumbo squid ( Dosidicus gigas) off southern-central Chile is described to examine potential biases in the determination of their main prey. Specimens were collected from catches using different fishing gear (jigging, trawl and purse-seine), from July 2003 to January 2004, and from December 2005 to October 2006. The stomach contents were analyzed in terms of frequency of occurrence, number, and weight of prey items and the diet composition was analyzed using Detrended Correspondence Analysis. In the industrial purse-seine fleet for jack mackerel ( Trachurus murphyi), the dominant prey of D. gigas was T. murphyi. In the industrial mid-trawl fishery for Patagonian grenadier ( Macruronus magellanicus), the dominant species in the diet of D. gigas was M. magellanicus. Similarly, Chilean hake ( Merluccius gayi) was the main prey in the diet of D. gigas obtained in the industrial trawl fishery for Chilean hake; and, in both artisanal fisheries (purse-seine for small pelagics and jigging), small pelagic fish and D. gigas were the main prey in the stomach contents of D. gigas. Cannibalism in D. gigas varied between different fleets and probably is related to stress behavior during fishing. The Detrended Correspondence Analysis ordination showed that the main prey in the diet of D. gigas is associated with the target species of the respective fishery. Consequently, biases are associated with fishing gear, leading to an overestimate in the occurrence of the target species in the diet. We recommend analyzing samples from jigging taken at the same time and place where the trawl and purse-seine fleets are operating to avoid this problem, and the application of new tools like stable isotope, heavy metal, and fatty acid signature analyses.

  1. An adaptable but threatened big cat: density, diet and prey selection of the Indochinese leopard (Panthera pardus delacouri) in eastern Cambodia.

    PubMed

    Rostro-García, Susana; Kamler, Jan F; Crouthers, Rachel; Sopheak, Keo; Prum, Sovanna; In, Visattha; Pin, Chanratana; Caragiulo, Anthony; Macdonald, David W

    2018-02-01

    We studied the Indochinese leopard ( Panthera pardus delacouri ) in eastern Cambodia, in one of the few potentially remaining viable populations in Southeast Asia. The aims were to determine the: (i) current leopard density in Srepok Wildlife Sanctuary (SWS) and (ii) diet, prey selection and predation impact of leopard in SWS. The density, estimated using spatially explicit capture-recapture models, was 1.0 leopard/100 km 2 , 72% lower than an estimate from 2009 at the same site, and one of the lowest densities ever reported in Asia. Dietary analysis of 73 DNA confirmed scats showed leopard consumed 13 prey species, although ungulates comprised 87% of the biomass consumed (BC). The overall main prey (42% BC) was banteng ( Bos javanicus ), making this the only known leopard population whose main prey had adult weight greater than 500 kg. Consumption of wild pig ( Sus scrofa ) was also one of the highest ever reported (22% BC), indicating leopard consistently predated on ungulates with some of the largest adult weights in SWS. There were important differences in diet and prey selection between sexes, as males consumed mostly banteng (62% BC) in proportion to availability, but few muntjac ( Muntiacus vaginalis ; 7% BC), whereas females selectively consumed muntjac (56% BC) and avoided banteng (less than 1% BC). Predation impact was low (0.5-3.2% of populations) for the three ungulate species consumed. We conclude that the Indochinese leopard is an important apex predator in SWS, but this unique population is declining at an alarming rate and will soon be eradicated unless effective protection is provided.

  2. An adaptable but threatened big cat: density, diet and prey selection of the Indochinese leopard (Panthera pardus delacouri) in eastern Cambodia

    PubMed Central

    Kamler, Jan F.; Crouthers, Rachel; Sopheak, Keo; Prum, Sovanna; In, Visattha; Pin, Chanratana; Caragiulo, Anthony; Macdonald, David W.

    2018-01-01

    We studied the Indochinese leopard (Panthera pardus delacouri) in eastern Cambodia, in one of the few potentially remaining viable populations in Southeast Asia. The aims were to determine the: (i) current leopard density in Srepok Wildlife Sanctuary (SWS) and (ii) diet, prey selection and predation impact of leopard in SWS. The density, estimated using spatially explicit capture–recapture models, was 1.0 leopard/100 km2, 72% lower than an estimate from 2009 at the same site, and one of the lowest densities ever reported in Asia. Dietary analysis of 73 DNA confirmed scats showed leopard consumed 13 prey species, although ungulates comprised 87% of the biomass consumed (BC). The overall main prey (42% BC) was banteng (Bos javanicus), making this the only known leopard population whose main prey had adult weight greater than 500 kg. Consumption of wild pig (Sus scrofa) was also one of the highest ever reported (22% BC), indicating leopard consistently predated on ungulates with some of the largest adult weights in SWS. There were important differences in diet and prey selection between sexes, as males consumed mostly banteng (62% BC) in proportion to availability, but few muntjac (Muntiacus vaginalis; 7% BC), whereas females selectively consumed muntjac (56% BC) and avoided banteng (less than 1% BC). Predation impact was low (0.5–3.2% of populations) for the three ungulate species consumed. We conclude that the Indochinese leopard is an important apex predator in SWS, but this unique population is declining at an alarming rate and will soon be eradicated unless effective protection is provided. PMID:29515839

  3. How Can Older Adults Prevent Falls? | NIH MedlinePlus the Magazine

    MedlinePlus

    ... Dr. Richard J. Hodes, Director, National Institute on Aging Take The Right Steps for Safety Most falls and accidents don't "just happen." Here are some steps to avoid falls and broken bones: Stay physically active. Regular exercise makes you stronger. It also helps ...

  4. Status of pelagic prey fishes in Lake Michigan, 2012

    USGS Publications Warehouse

    Warner, David M.; O'Brien, Timothy P.; Farha, Steve A.; Claramunt, Randall M.; Hanson, Dale

    2012-01-01

    Acoustic surveys were conducted in late summer/early fall during the years 1992-1996 and 2001-2012 to estimate pelagic prey fish biomass in Lake Michigan. Midwater trawling during the surveys as well as target strength provided a measure of species and size composition of the fish community for use in scaling acoustic data and providing species-specific abundance estimates. The 2012 survey consisted of 26 acoustic transects (576 km total) and 31 midwater tows. Mean total prey fish biomass was 6.4 kg/ha (relative standard error, RSE = 15%) or 31 kilotonnes (kt = 1,000 metric tons), which was 1.5 times the estimate for 2011 and 22% of the long-term mean. The increase from 2011 resulted from increased biomass of age-0 alewife, age-1 or older alewife, and large bloater. The abundance of the 2012 alewife year class was similar to the average, and this year-class contributed 35% of total alewife biomass (4.9 kg/ha, RSE = 17%), while the 2010 alewife year-class contributed 58%. The 2010 year class made up 89% of age-1 or older alewife biomass. In 2012, alewife comprised 77% of total prey fish biomass, while rainbow smelt and bloater were 4 and 19% of total biomass, respectively. Rainbow smelt biomass in 2012 (0.25 kg/ha, RSE = 17%) was 40% of the rainbow smelt biomass in 2011 and 5% of the long term mean. Bloater biomass was much lower (1.2 kg/ha, RSE = 12%) than in the 1990s, and mean density of small bloater in 2012 (191 fish/ha, RSE = 24%) was lower than peak values observed in 2007-2009. In 2012, pelagic prey fish biomass in Lake Michigan was similar to Lake Superior and Lake Huron. Prey fish biomass remained well below the Fish Community Objectives target of 500-800 kt, and key native species remain absent or rare.

  5. Habitat selection by a focal predator (Canis lupus) in a multiprey ecosystem of the northern Rockies

    USGS Publications Warehouse

    Milakovic, B.; Parker, K.L.; Gustine, D.D.; Lay, R.J.; Walker, A.B.D.; Gillingham, M.P.

    2011-01-01

    Large predators respond to land cover and physiography that maximize the likelihood of encountering prey. Using locations from global positioning system-collared wolves (Canis lupus), we examined whether land cover, vegetation productivity or change, or habitat-selection value for ungulate prey species themselves most influenced patterns of selection by wolves in a large, intact multiprey system of northern British Columbia. Selection models based on land cover, in combination with topographical features, consistently outperformed models based on indexes of vegetation quantity and quality (using normalized difference vegetation index) or on selection value to prey species (moose [Alces americanus], elk [Cervus elaphus], woodland caribou [Rangifer tarandus], and Stone's sheep [Ovis dalli stonei]). Wolves generally selected for shrub communities and high diversity of cover across seasons and avoided conifer stands and non-vegetated areas and west aspects year-round. Seasonal selection strategies were not always reflected in use patterns, which showed highest frequency of use in riparian, shrub, and conifer classes. Patterns of use and selection for individual wolf packs did not always conform to global models, and appeared related to the distribution of land cover and terrain within respective home ranges. Our findings corroborate the biological linkages between wolves and their habitat related to ease of movement and potential prey associations. ?? American 2011 Society of Mammalogists.

  6. Ecological Interactions in Dinosaur Communities: Influences of Small Offspring and Complex Ontogenetic Life Histories

    PubMed Central

    Codron, Daryl; Carbone, Chris; Clauss, Marcus

    2013-01-01

    Because egg-laying meant that even the largest dinosaurs gave birth to very small offspring, they had to pass through multiple ontogenetic life stages to adulthood. Dinosaurs’ successors as the dominant terrestrial vertebrate life form, the mammals, give birth to live young, and have much larger offspring and less complex ontogenetic histories. The larger number of juveniles in dinosaur as compared to mammal ecosystems represents both a greater diversity of food available to predators, and competitors for similar-sized individuals of sympatric species. Models of population abundances across different-sized species of dinosaurs and mammals, based on simulated ecological life tables, are employed to investigate how differences in predation and competition pressure influenced dinosaur communities. Higher small- to medium-sized prey availability leads to a normal body mass-species richness (M-S) distribution of carnivorous dinosaurs (as found in the theropod fossil record), in contrast to the right-skewed M-S distribution of carnivorous mammals (as found living members of the order Carnivora). Higher levels of interspecific competition leads to a left-skewed M-S distribution in herbivorous dinosaurs (as found in sauropods and ornithopods), in contrast to the normal M-S distribution of large herbivorous mammals. Thus, our models suggest that differences in reproductive strategy, and consequently ontogeny, explain observed differences in community structure between dinosaur and mammal faunas. Models also show that the largest dinosaurian predators could have subsisted on similar-sized prey by including younger life stages of the largest herbivore species, but that large predators likely avoided prey much smaller than themselves because, despite predicted higher abundances of smaller than larger-bodied prey, contributions of small prey to biomass intake would be insufficient to satisfy meat requirements. A lack of large carnivores feeding on small prey exists in mammals larger than 21.5 kg, and it seems a similar minimum prey-size threshold could have affected dinosaurs as well. PMID:24204749

  7. Adaptations for Substrate Gleaning in Bats: The Pallid Bat as a Case Study.

    PubMed

    Razak, Khaleel A

    2018-06-06

    Substrate gleaning is a foraging strategy in which bats use a mixture of echolocation, prey-generated sounds, and vision to localize and hunt surface-dwelling prey. Many substrate-gleaning species depend primarily on prey-generated noise to hunt. Use of echolocation is limited to general orientation and obstacle avoidance. This foraging strategy involves a different set of selective pressures on morphology, behavior, and auditory system organization of bats compared to the use of echolocation for both hunting and navigation. Gleaning likely evolved to hunt in cluttered environments and/or as a counterstrategy to reduce detection by eared prey. Gleaning bats simultaneously receive streams of echoes from obstacles and prey-generated noise, and have to segregate these acoustic streams to attend to one or both. Not only do these bats have to be exquisitely sensitive to the soft, low frequency sounds produced by walking/rustling prey, they also have to precisely localize these sounds. Gleaners typically use low intensity echolocation calls. Such stealth echolocation requires a nervous system that is attuned to low intensity sound processing. In addition, landing on the ground to hunt may bring gleaners in close proximity to venomous prey. In fact, at least 2 gleaning bat species are known to hunt highly venomous scorpions. While a number of studies have addressed adaptations for echolocation in bats that hunt in the air, very little is known about the morphological, behavioral, and neural specializations for gleaning in bats. This review highlights the novel insights gleaning bats provide into bat evolution, particularly auditory pathway organization and ion channel structure/function relationships. Gleaning bats are found in multiple families, suggesting convergent evolution of specializations for gleaning as a foraging strategy. However, most of this review is based on recent work on a single species - the pallid bat (Antrozous palli dus) - symptomatic of the fact that more comparative work is needed to identify the mechanisms that facilitate gleaning behavior. © 2018 S. Karger AG, Basel.

  8. Niche overlap, threshold food densities, and limits to prey depletion for a diving duck assemblage in an estuarine bay

    USGS Publications Warehouse

    Lovvorn, James R.; De La Cruz, Susan; Takekawa, John Y.; Shaskey, Laura E.; Richman, Samantha E.

    2013-01-01

    Planning for marine conservation often requires estimates of the amount of habitat needed to support assemblages of interacting species. During winter in subtidal San Pablo Bay, California, the 3 main diving duck species are lesser scaup Aythya affinis (LESC), greater scaup A. marila (GRSC), and surf scoter Melanitta perspicillata (SUSC), which all feed almost entirely on the bivalve Corbula amurensis. Decreased body mass and fat, increased foraging effort, and major departures of these birds appeared to result from food limitation. Broad overlap in prey size, water depth, and location suggested that the 3 species responded similarly to availability of the same prey. However, an energetics model that accounts for differing body size, locomotor mode, and dive behavior indicated that each species will become limited at different stages of prey depletion in the order SUSC, then GRSC, then LESC. Depending on year, 35 to 66% of the energy in Corbula standing stocks was below estimated threshold densities for profitable foraging. Ectothermic predators, especially flounders and sturgeons, could reduce excess carrying capacity for different duck species by 4 to 10%. A substantial quantity of prey above profitability thresholds was not exploited before most ducks left San Pablo Bay. Such pre-depletion departure has been attributed in other taxa to foraging aggression. However, in these diving ducks that showed no overt aggression, this pattern may result from high costs of locating all adequate prey patches, resulting reliance on existing flocks to find food, and propensity to stay near dense flocks to avoid avian predation. For interacting species assemblages, modeling profitability thresholds can indicate the species most vulnerable to food declines. However, estimates of total habitat needed require better understanding of factors affecting the amount of prey above thresholds that is not depleted before the predators move elsewhere.

  9. Ocean acidification affects prey detection by a predatory reef fish.

    PubMed

    Cripps, Ingrid L; Munday, Philip L; McCormick, Mark I

    2011-01-01

    Changes in olfactory-mediated behaviour caused by elevated CO(2) levels in the ocean could affect recruitment to reef fish populations because larval fish become more vulnerable to predation. However, it is currently unclear how elevated CO(2) will impact the other key part of the predator-prey interaction--the predators. We investigated the effects of elevated CO(2) and reduced pH on olfactory preferences, activity levels and feeding behaviour of a common coral reef meso-predator, the brown dottyback (Pseudochromis fuscus). Predators were exposed to either current-day CO(2) levels or one of two elevated CO(2) levels (∼600 µatm or ∼950 µatm) that may occur by 2100 according to climate change predictions. Exposure to elevated CO(2) and reduced pH caused a shift from preference to avoidance of the smell of injured prey, with CO(2) treated predators spending approximately 20% less time in a water stream containing prey odour compared with controls. Furthermore, activity levels of fish was higher in the high CO(2) treatment and feeding activity was lower for fish in the mid CO(2) treatment; indicating that future conditions may potentially reduce the ability of the fish to respond rapidly to fluctuations in food availability. Elevated activity levels of predators in the high CO(2) treatment, however, may compensate for reduced olfactory ability, as greater movement facilitated visual detection of food. Our findings show that, at least for the species tested to date, both parties in the predator-prey relationship may be affected by ocean acidification. Although impairment of olfactory-mediated behaviour of predators might reduce the risk of predation for larval fishes, the magnitude of the observed effects of elevated CO(2) acidification appear to be more dramatic for prey compared to predators. Thus, it is unlikely that the altered behaviour of predators is sufficient to fully compensate for the effects of ocean acidification on prey mortality.

  10. Ecological interactions in dinosaur communities: influences of small offspring and complex ontogenetic life histories.

    PubMed

    Codron, Daryl; Carbone, Chris; Clauss, Marcus

    2013-01-01

    Because egg-laying meant that even the largest dinosaurs gave birth to very small offspring, they had to pass through multiple ontogenetic life stages to adulthood. Dinosaurs' successors as the dominant terrestrial vertebrate life form, the mammals, give birth to live young, and have much larger offspring and less complex ontogenetic histories. The larger number of juveniles in dinosaur as compared to mammal ecosystems represents both a greater diversity of food available to predators, and competitors for similar-sized individuals of sympatric species. Models of population abundances across different-sized species of dinosaurs and mammals, based on simulated ecological life tables, are employed to investigate how differences in predation and competition pressure influenced dinosaur communities. Higher small- to medium-sized prey availability leads to a normal body mass-species richness (M-S) distribution of carnivorous dinosaurs (as found in the theropod fossil record), in contrast to the right-skewed M-S distribution of carnivorous mammals (as found living members of the order Carnivora). Higher levels of interspecific competition leads to a left-skewed M-S distribution in herbivorous dinosaurs (as found in sauropods and ornithopods), in contrast to the normal M-S distribution of large herbivorous mammals. Thus, our models suggest that differences in reproductive strategy, and consequently ontogeny, explain observed differences in community structure between dinosaur and mammal faunas. Models also show that the largest dinosaurian predators could have subsisted on similar-sized prey by including younger life stages of the largest herbivore species, but that large predators likely avoided prey much smaller than themselves because, despite predicted higher abundances of smaller than larger-bodied prey, contributions of small prey to biomass intake would be insufficient to satisfy meat requirements. A lack of large carnivores feeding on small prey exists in mammals larger than 21.5 kg, and it seems a similar minimum prey-size threshold could have affected dinosaurs as well.

  11. Shifts in the diet of Lake Ontario alewife in response to ecosystem change

    USGS Publications Warehouse

    Stewart, T.J.; Sprules, W.G.; O'Gorman, R.

    2009-01-01

    In the 1990s, the Lake Ontario ecosystem was dramatically altered due to continued invasions of exotic species including dreissenid mussels and predatory cladocerans. We describe the diet and biomass of prey in the stomachs of adult (≥ 109 mm TL) and sub-adult (Alosa pseudoharengus) in 2004 and 2005 across seasons and depths and compare our results to data from 1972 to 1988. During 2004 and 2005, adult alewife consumed primarily zooplankton prey at bottom depth zones Mysis at bottom depth zones > 70 m. Mysis dominated the diets of adult alewife in all seasons except during the summer of 2004 when zooplankton dominated. Mysis dominated the diets of sub-adult alewife during early and late spring and zooplankton dominated the diets in summer and fall. Bythotrephes and Cercopagis were observed in the diets of both sub-adult and adult alewife. Diporeia was observed only rarely in adult alewife diets. The biomass of prey in alewife stomachs varied seasonally and increased with bottom depth for adult alewife. Alewife diets in 2004–2005 differed from those in 1972 and 1988 with an increase in the prevalence of Mysis, and a decline in the prevalence of zooplankton. The biomass of prey in adult alewife stomachs declined in 2004 and 2005 compared to 1972 and 1988, at bottom depth zones 70 m suggesting reduced food availability closer to shore. We hypothesize that consumption levels at the shallower depth zones, as indicated by very low biomass of prey in alewife stomachs, may not be sufficient to sustain alewife growth. The increased prevalence of Mysis and common occurrence of predatory cladocerans in the diet of alewife means that alewife have shifted to a higher trophic position.

  12. Status of pelagic prey fishes in Lake Michigan, 2013

    USGS Publications Warehouse

    Warner, David M.; Farha, Steven A.; O'Brien, Timothy P.; Ogilvie, Lynn; Claramunt, Randall M.; Hanson, Dale

    2014-01-01

    Acoustic surveys were conducted in late summer/early fall during the years 1992-1996 and 2001-2013 to estimate pelagic prey fish biomass in Lake Michigan. Midwater trawling during the surveys as well as target strength provided a measure of species and size composition of the fish community for use in scaling acoustic data and providing species-specific abundance estimates. The 2013 survey consisted of 27 acoustic transects (546 km total) and 31 midwater trawl tows. Mean prey fish biomass was 6.1 kg/ha (relative standard error, RSE = 11%) or 29.6 kilotonnes (kt = 1,000 metric tons), which was similar to the estimate in 2012 (31.1 kt) and 23.5% of the long-term (18 years) mean. The numeric density of the 2013 alewife year class was 6% of the time series average and this year-class contributed 4% of total alewife biomass (5.2 kg/ha, RSE = 12%). Alewife ≥age-1 comprised 96% of alewife biomass. In 2013, alewife comprised 86% of total prey fish biomass, while rainbow smelt and bloater were 4 and 10% of total biomass, respectively. Rainbow smelt biomass in 2013 (0.24 kg/ha, RSE = 17%) was essentially identical to the rainbow smelt biomass in 2012 and was 6% of the long term mean. Bloater biomass in 2013 was 0.6 kg/ha, only half the 2012 biomass, and 6% of the long term mean. Mean density of small bloater in 2013 (29 fish/ha, RSE = 29%) was lower than peak values observed in 2007-2009 and was 23% of the time series mean. In 2013, pelagic prey fish biomass in Lake Michigan was similar to Lake Huron, but pelagic community composition differs in the two lakes, with Lake Huron dominated by bloater.

  13. Mammoth grazers on the ocean's minuteness: a review of selective feeding using mucous meshes

    PubMed Central

    2018-01-01

    Mucous-mesh grazers (pelagic tunicates and thecosome pteropods) are common in oceanic waters and efficiently capture, consume and repackage particles many orders of magnitude smaller than themselves. They feed using an adhesive mucous mesh to capture prey particles from ambient seawater. Historically, their grazing process has been characterized as non-selective, depending only on the size of the prey particle and the pore dimensions of the mesh. The purpose of this review is to reverse this assumption by reviewing recent evidence that shows mucous-mesh feeding can be selective. We focus on large planktonic microphages as a model of selective mucus feeding because of their important roles in the ocean food web: as bacterivores, prey for higher trophic levels, and exporters of carbon via mucous aggregates, faecal pellets and jelly-falls. We identify important functional variations in the filter mechanics and hydrodynamics of different taxa. We review evidence that shows this feeding strategy depends not only on the particle size and dimensions of the mesh pores, but also on particle shape and surface properties, filter mechanics, hydrodynamics and grazer behaviour. As many of these organisms remain critically understudied, we conclude by suggesting priorities for future research. PMID:29720410

  14. A simple test of expected utility theory using professional traders.

    PubMed

    List, John A; Haigh, Michael S

    2005-01-18

    We compare behavior across students and professional traders from the Chicago Board of Trade in a classic Allais paradox experiment. Our experiment tests whether independence, a necessary condition in expected utility theory, is systematically violated. We find that both students and professionals exhibit some behavior consistent with the Allais paradox, but the data pattern does suggest that the trader population falls prey to the Allais paradox less frequently than the student population.

  15. Consequences of a refuge for the predator-prey dynamics of a wolf-elk system in Banff National Park, Alberta, Canada.

    PubMed

    Goldberg, Joshua F; Hebblewhite, Mark; Bardsley, John

    2014-01-01

    Refugia can affect predator-prey dynamics via movements between refuge and non-refuge areas. We examine the influence of a refuge on population dynamics in a large mammal predator-prey system. Wolves (Canis lupus) have recolonized much of their former range in North America, and as a result, ungulate prey have exploited refugia to reduce predation risk with unknown impacts on wolf-prey dynamics. We examined the influence of a refuge on elk (Cervus elaphus) and wolf population dynamics in Banff National Park. Elk occupy the Banff townsite with little predation, whereas elk in the adjoining Bow Valley experience higher wolf predation. The Banff refuge may influence Bow Valley predator-prey dynamics through source-sink movements. To test this hypothesis, we used 26 years of wolf and elk population counts and the Delayed Rejection Adaptive Metropolis Markov chain Monte Carlo method to fit five predator-prey models: 1) with no source-sink movements, 2) with elk density-dependent dispersal from the refuge to the non-refuge, 3) with elk predation risk avoidance movements from the non-refuge to the refuge, 4) with differential movement rates between refuge and non-refuge, and 5) with short-term, source-sink wolf movements. Model 1 provided the best fit of the data, as measured by Akaike Information Criterion (AIC). In the top model, Banff and Bow Valley elk had median growth rates of 0.08 and 0.03 (95% credibility intervals [CIs]: 0.027-0.186 and 0.001-0.143), respectively, Banff had a median carrying capacity of 630 elk (95% CI: 471.9-2676.9), Bow Valley elk had a median wolf encounter rate of 0.02 (95% CI: 0.013-0.030), and wolves had a median death rate of 0.23 (95% CI: 0.146-0.335) and a median conversion efficiency of 0.07 (95% CI: 0.031-0.124). We found little evidence for potential source-sink movements influencing the predator-prey dynamics of this system. This result suggests that the refuge was isolated from the non-refuge.

  16. Consequences of a Refuge for the Predator-Prey Dynamics of a Wolf-Elk System in Banff National Park, Alberta, Canada

    PubMed Central

    Goldberg, Joshua F.; Hebblewhite, Mark; Bardsley, John

    2014-01-01

    Refugia can affect predator-prey dynamics via movements between refuge and non-refuge areas. We examine the influence of a refuge on population dynamics in a large mammal predator-prey system. Wolves (Canis lupus) have recolonized much of their former range in North America, and as a result, ungulate prey have exploited refugia to reduce predation risk with unknown impacts on wolf-prey dynamics. We examined the influence of a refuge on elk (Cervus elaphus) and wolf population dynamics in Banff National Park. Elk occupy the Banff townsite with little predation, whereas elk in the adjoining Bow Valley experience higher wolf predation. The Banff refuge may influence Bow Valley predator-prey dynamics through source-sink movements. To test this hypothesis, we used 26 years of wolf and elk population counts and the Delayed Rejection Adaptive Metropolis Markov chain Monte Carlo method to fit five predator-prey models: 1) with no source-sink movements, 2) with elk density-dependent dispersal from the refuge to the non-refuge, 3) with elk predation risk avoidance movements from the non-refuge to the refuge, 4) with differential movement rates between refuge and non-refuge, and 5) with short-term, source-sink wolf movements. Model 1 provided the best fit of the data, as measured by Akaike Information Criterion (AIC). In the top model, Banff and Bow Valley elk had median growth rates of 0.08 and 0.03 (95% credibility intervals [CIs]: 0.027–0.186 and 0.001–0.143), respectively, Banff had a median carrying capacity of 630 elk (95% CI: 471.9–2676.9), Bow Valley elk had a median wolf encounter rate of 0.02 (95% CI: 0.013–0.030), and wolves had a median death rate of 0.23 (95% CI: 0.146–0.335) and a median conversion efficiency of 0.07 (95% CI: 0.031–0.124). We found little evidence for potential source-sink movements influencing the predator-prey dynamics of this system. This result suggests that the refuge was isolated from the non-refuge. PMID:24670632

  17. To kill, stay or flee: the effects of lions and landscape factors on habitat and kill site selection of cheetahs in South Africa.

    PubMed

    Rostro-García, Susana; Kamler, Jan F; Hunter, Luke T B

    2015-01-01

    Understanding how animals utilize available space is important for their conservation, as it provides insight into the ecological needs of the species, including those related to habitat, prey and inter and intraspecific interactions. We used 28 months of radio telemetry data and information from 200 kill locations to assess habitat selection at the 3rd order (selection of habitats within home ranges) and 4th order (selection of kill sites within the habitats used) of a reintroduced population of cheetahs Acinonyx jubatus in Phinda Private Game Reserve, South Africa. Along with landscape characteristics, we investigated if lion Panthera leo presence affected habitat selection of cheetahs. Our results indicated that cheetah habitat selection was driven by a trade-off between resource acquisition and lion avoidance, and the balance of this trade-off varied with scale: more open habitats with high prey densities were positively selected within home ranges, whereas more closed habitats with low prey densities were positively selected for kill sites. We also showed that habitat selection, feeding ecology, and avoidance of lions differed depending on the sex and reproductive status of cheetahs. The results highlight the importance of scale when investigating a species' habitat selection. We conclude that the adaptability of cheetahs, together with the habitat heterogeneity found within Phinda, explained their success in this small fenced reserve. The results provide information for the conservation and management of this threatened species, especially with regards to reintroduction efforts in South Africa.

  18. To Kill, Stay or Flee: The Effects of Lions and Landscape Factors on Habitat and Kill Site Selection of Cheetahs in South Africa

    PubMed Central

    Rostro-García, Susana; Kamler, Jan F.; Hunter, Luke T. B.

    2015-01-01

    Understanding how animals utilize available space is important for their conservation, as it provides insight into the ecological needs of the species, including those related to habitat, prey and inter and intraspecific interactions. We used 28 months of radio telemetry data and information from 200 kill locations to assess habitat selection at the 3rd order (selection of habitats within home ranges) and 4th order (selection of kill sites within the habitats used) of a reintroduced population of cheetahs Acinonyx jubatus in Phinda Private Game Reserve, South Africa. Along with landscape characteristics, we investigated if lion Panthera leo presence affected habitat selection of cheetahs. Our results indicated that cheetah habitat selection was driven by a trade-off between resource acquisition and lion avoidance, and the balance of this trade-off varied with scale: more open habitats with high prey densities were positively selected within home ranges, whereas more closed habitats with low prey densities were positively selected for kill sites. We also showed that habitat selection, feeding ecology, and avoidance of lions differed depending on the sex and reproductive status of cheetahs. The results highlight the importance of scale when investigating a species’ habitat selection. We conclude that the adaptability of cheetahs, together with the habitat heterogeneity found within Phinda, explained their success in this small fenced reserve. The results provide information for the conservation and management of this threatened species, especially with regards to reintroduction efforts in South Africa. PMID:25693067

  19. To dare or not to dare? Risk management by owls in a predator-prey foraging game.

    PubMed

    Embar, Keren; Raveh, Ashael; Burns, Darren; Kotler, Burt P

    2014-07-01

    In a foraging game, predators must catch elusive prey while avoiding injury. Predators manage their hunting success with behavioral tools such as habitat selection, time allocation, and perhaps daring-the willingness to risk injury to increase hunting success. A predator's level of daring should be state dependent: the hungrier it is, the more it should be willing to risk injury to better capture prey. We ask, in a foraging game, will a hungry predator be more willing to risk injury while hunting? We performed an experiment in an outdoor vivarium in which barn owls (Tyto alba) were allowed to hunt Allenby's gerbils (Gerbillus andersoni allenbyi) from a choice of safe and risky patches. Owls were either well fed or hungry, representing the high and low state, respectively. We quantified the owls' patch use behavior. We predicted that hungry owls would be more daring and allocate more time to the risky patches. Owls preferred to hunt in the safe patches. This indicates that owls manage risk of injury by avoiding the risky patches. Hungry owls doubled their attacks on gerbils, but directed the added effort mostly toward the safe patch and the safer, open areas in the risky patch. Thus, owls dared by performing a risky action-the attack maneuver-more times, but only in the safest places-the open areas. We conclude that daring can be used to manage risk of injury and owls implement it strategically, in ways we did not foresee, to minimize risk of injury while maximizing hunting success.

  20. Use of mammal manure by nesting burrowing owls: a test of four functional hypotheses

    USGS Publications Warehouse

    Smith, M.D.; Conway, C.J.

    2007-01-01

    Animals have evolved an impressive array of behavioural traits to avoid depredation. Olfactory camouflage of conspicuous odours is a strategy to avoid depredation that has been implicated only in a few species of birds. Burrowing owls, Athene cunicularia, routinely collect dried manure from mammals and scatter it in their nest chamber, in the tunnel leading to their nest and at the entrance to their nesting burrow. This unusual behaviour was thought to reduce nest depredation by concealing the scent of adults and juveniles, but a recent study suggests that manure functions to attract arthropod prey. However, burrowing owls routinely scatter other materials in the same way that they scatter manure, and this fact seems to be at odds with both of these hypotheses. Thus, we examined the function of this behaviour by testing four alternative hypotheses. We found no support for the widely cited olfactory-camouflage hypothesis (manure did not lower the probability of depredation), or for the mate-attraction hypothesis (males collected manure after, not before, pair formation). Predictions of the burrow-occupied hypothesis (manure indicates occupancy to conspecifics and thereby reduces agonistic interactions) were supported, but results were not statistically significant. Our results also supported several predictions of the prey-attraction hypothesis. Pitfall traps at sampling sites with manure collected more arthropod biomass (of taxa common in the diet of burrowing owls) than pitfall traps at sampling sites without manure. Scattering behaviour of burrowing owls appears to function to attract arthropod prey, but may also signal occupancy of a burrow to conspecifics. ?? 2006 The Association for the Study of Animal Behaviour.

  1. Clam density and scaup feeding behavior in San Pablo Bay, California

    USGS Publications Warehouse

    Poulton, Victoria K.; Lovvorn, James R.; Takekawa, John Y.

    2002-01-01

    San Pablo Bay, in northern San Francisco Bay, California, is an important wintering area for Greater (Aythya marila) and Lesser Scaup (A. affinis). We investigated variation in foraging behavior of scaup among five sites in San Pablo Bay, and whether such variation was related to densities of their main potential prey, the clams Potamocorbula amurensis and Macoma balthica. Time-activity budgets showed that scaup spent most of their time sleeping at some sites, and both sleeping and feeding at other sites, with females feeding more than males. In the first half of the observation period (12 January–5 February 2000), percent time spent feeding increased with increasing density of P. amurensis, but decreased with increasing density of M. balthica (diet studies have shown that scaup ate mostly P. amurensis and little or no M. balthica). Densities of M. balthica stayed about the same between fall and spring benthic samples, while densities of P. amurensis declined dramatically at most sites. In the second half of the observation period (7 February–3 March 2000), percent time feeding was no longer strongly related to P. amurensis densities, and dive durations increased by 14%. These changes probably reflected declines of P. amurensis, perhaps as affected by scaup predation. The large area of potential feeding habitat, and alternative prey elsewhere in the estuary, might have resulted in the low correlations between scaup behavior and prey densities in San Pablo Bay. These low correlations made it difficult to identify specific areas of prey concentrations important to scaup.

  2. The impact of large terrestrial carnivores on Pleistocene ecosystems

    PubMed Central

    Van Valkenburgh, Blaire; Ripple, William J.; Meloro, Carlo; Roth, V. Louise

    2016-01-01

    Large mammalian terrestrial herbivores, such as elephants, have dramatic effects on the ecosystems they inhabit and at high population densities their environmental impacts can be devastating. Pleistocene terrestrial ecosystems included a much greater diversity of megaherbivores (e.g., mammoths, mastodons, giant ground sloths) and thus a greater potential for widespread habitat degradation if population sizes were not limited. Nevertheless, based on modern observations, it is generally believed that populations of megaherbivores (>800 kg) are largely immune to the effects of predation and this perception has been extended into the Pleistocene. However, as shown here, the species richness of big carnivores was greater in the Pleistocene and many of them were significantly larger than their modern counterparts. Fossil evidence suggests that interspecific competition among carnivores was relatively intense and reveals that some individuals specialized in consuming megaherbivores. To estimate the potential impact of Pleistocene large carnivores, we use both historic and modern data on predator–prey body mass relationships to predict size ranges of their typical and maximum prey when hunting as individuals and in groups. These prey size ranges are then compared with estimates of juvenile and subadult proboscidean body sizes derived from extant elephant growth data. Young proboscideans at their most vulnerable age fall within the predicted prey size ranges of many of the Pleistocene carnivores. Predation on juveniles can have a greater impact on megaherbivores because of their long interbirth intervals, and consequently, we argue that Pleistocene carnivores had the capacity to, and likely did, limit megaherbivore population sizes. PMID:26504224

  3. Increasing fall risk awareness using wearables: A fall risk awareness protocol.

    PubMed

    Danielsen, Asbjørn; Olofsen, Hans; Bremdal, Bernt Arild

    2016-10-01

    Each year about a third of elderly aged 65 or older experience a fall. Many of these falls may have been avoided if fall risk assessment and prevention tools where available in a daily living situation. We identify what kind of information is relevant for doing fall risk assessment and prevention using wearable sensors in a daily living environment by investigating current research, distinguishing between prospective and context-aware fall risk assessment and prevention. Based on our findings, we propose a fall risk awareness protocol as a fall prevention tool integrating both wearables and ambient sensing technology into a single platform. Copyright © 2016. Published by Elsevier Inc.

  4. Food habits of Atlantic sturgeon off the central New Jersey coast

    USGS Publications Warehouse

    Johnson, J. H.; Dropkin, D.S.; Warkentine, B.E.; Rachlin, J.W.; Andrews, W.D.

    1997-01-01

    Limited information exists on the marine diet of the Atlantic sturgeon Acipenser oxyrinchus oxyrinchus. We examined the food habits of 275 Atlantic sturgeon (total length, 106-203 cm) caught in the commercial fishery off the coast of New Jersey. Stomachs were provided by fishermen. Significantly more stomachs were empty in the spring than in the fall. Sand and organic debris were a major component in the stomachs (26.3-75.4% by weight). Polycheates were the primary pre group consumed, although the isopod Politolana conchorum was the most important individual prey eaten. Mollusks and fish contributed little to the diet. Some prey taxa (i.e., polychaetes, isopods, amphipods) exhibited seasonal variation in importance in the diet of Atlantic sturgeon. Identification of the offshore diet of Atlantic sturgeon is an important step in developing a better understanding of the life history requirements and marine ecology of this species.

  5. Signal conflict in spider webs driven by predators and prey

    PubMed Central

    Blackledge, T. A.

    1998-01-01

    Variation in the sensory physiologies of organisms can bias the receptions of signals, driving the direction of signal evolution. Sensory drive in the evolution of signals may be particularly important for organisms that confront trade-offs in signal design between the need for conspicuousness to allow effective transfer of information and the need for crypsis of the signal to unintended receivers. Several genera of orb-weaving spiders include conspicuous silk designs, stabilimenta, in the centre of their webs. Stabilimenta can be highly visible signals to predators, warning them of the presence of a noxious, sticky silk web. However, stabilimenta can also be used by prey as a signal in avoidance of webs, creating a trade-off in signal visibility. I argue that the derived spectral properties of stabilimentum silk have resulted in part from this conflict. The innate colour preferences of insects, their ability to learn colours, and the spectral properties of flowers all suggest that the reflectance spectra of stabilimenta renders them relatively cryptic to many insect prey, while maintaining their visibility to vertebrate predators.

  6. Watching from a distance: A robotically controlled laser and real-time subject tracking software for the study of conditioned predator/prey-like interactions.

    PubMed

    Wilson, James C; Kesler, Mitch; Pelegrin, Sara-Lynn E; Kalvi, LeAnna; Gruber, Aaron; Steenland, Hendrik W

    2015-09-30

    The physical distance between predator and prey is a primary determinant of behavior, yet few paradigms exist to study this reliably in rodents. The utility of a robotically controlled laser for use in a predator-prey-like (PPL) paradigm was explored for use in rats. This involved the construction of a robotic two-dimensional gimbal to dynamically position a laser beam in a behavioral test chamber. Custom software was used to control the trajectory and final laser position in response to user input on a console. The software also detected the location of the laser beam and the rodent continuously so that the dynamics of the distance between them could be analyzed. When the animal or laser beam came within a fixed distance the animal would either be rewarded with electrical brain stimulation or shocked subcutaneously. Animals that received rewarding electrical brain stimulation could learn to chase the laser beam, while animals that received aversive subcutaneous shock learned to actively avoid the laser beam in the PPL paradigm. Mathematical computations are presented which describe the dynamic interaction of the laser and rodent. The robotic laser offers a neutral stimulus to train rodents in an open field and is the first device to be versatile enough to assess distance between predator and prey in real time. With ongoing behavioral testing this tool will permit the neurobiological investigation of predator/prey-like relationships in rodents, and may have future implications for prosthetic limb development through brain-machine interfaces. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Predicting the effects of ocean acidification on predator-prey interactions: a conceptual framework based on coastal molluscs.

    PubMed

    Kroeker, Kristy J; Sanford, Eric; Jellison, Brittany M; Gaylord, Brian

    2014-06-01

    The influence of environmental change on species interactions will affect population dynamics and community structure in the future, but our current understanding of the outcomes of species interactions in a high-CO2 world is limited. Here, we draw upon emerging experimental research examining the effects of ocean acidification on coastal molluscs to provide hypotheses of the potential impacts of high-CO2 on predator-prey interactions. Coastal molluscs, such as oysters, mussels, and snails, allocate energy among defenses, growth, and reproduction. Ocean acidification increases the energetic costs of physiological processes such as acid-base regulation and calcification. Impacted molluscs can display complex and divergent patterns of energy allocation to defenses and growth that may influence predator-prey interactions; these include changes in shell properties, body size, tissue mass, immune function, or reproductive output. Ocean acidification has also been shown to induce complex changes in chemoreception, behavior, and inducible defenses, including altered cue detection and predator avoidance behaviors. Each of these responses may ultimately alter the susceptibility of coastal molluscs to predation through effects on predator handling time, satiation, and search time. While many of these effects may manifest as increases in per capita predation rates on coastal molluscs, the ultimate outcome of predator-prey interactions will also depend on how ocean acidification affects the specified predators, which also exhibit complex responses to ocean acidification. Changes in predator-prey interactions could have profound and unexplored consequences for the population dynamics of coastal molluscs in a high-CO2 ocean. © 2014 Marine Biological Laboratory.

  8. The king of snakes: performance and morphology of intraguild predators (Lampropeltis) and their prey (Pantherophis).

    PubMed

    Penning, David A; Moon, Brad R

    2017-03-15

    Across ecosystems and trophic levels, predators are usually larger than their prey, and when trophic morphology converges, predators typically avoid predation on intraguild competitors unless the prey is notably smaller in size. However, a currently unexplained exception occurs in kingsnakes in the genus Lampropeltis Kingsnakes are able to capture, constrict and consume other snakes that are not only larger than themselves but that are also powerful constrictors (such as ratsnakes in the genus Pantherophis ). Their mechanisms of success as intraguild predators on other constrictors remain unknown. To begin addressing these mechanisms, we studied the scaling of muscle cross-sectional area, pulling force and constriction pressure across the ontogeny of six species of snakes ( Lampropeltis californiae , L. getula , L. holbrooki , Pantherophis alleghaniensis , P. guttatus and P. obsoletus ). Muscle cross-sectional area is an indicator of potential force production, pulling force is an indicator of escape performance, and constriction pressure is a measure of prey-handling performance. Muscle cross-sectional area scaled similarly for all snakes, and there was no significant difference in maximum pulling force among species. However, kingsnakes exerted significantly higher pressures on their prey than ratsnakes. The similar escape performance among species indicates that kingsnakes win in predatory encounters because of their superior constriction performance, not because ratsnakes have inferior escape performance. The superior constriction performance by kingsnakes results from their consistent and distinctive coil posture and perhaps from additional aspects of muscle structure and function that need to be tested in future research. © 2017. Published by The Company of Biologists Ltd.

  9. The ability of lizards to identify an artificial Batesian mimic.

    PubMed

    Beneš, Josef; Veselý, Petr

    2017-08-01

    Birds are usually considered the main predators shaping the evolution of aposematic signals and mimicry. Nevertheless, some lizards also represent predominately visually oriented predators, so they may also play an important role in the evolution of aposematism. Despite this fact, experimental evidence regarding the responses of lizards to aposematic prey is very poor compared to such evidence in birds. Lizards possess very similar sensory and cognitive abilities to those of birds and their response to aposematic prey may thus be affected by very similar processes. We investigated the reactions of a lizard, the Gran Canaria skink (Chalcides sexlineatus), to an aposematic prey and its artificial Batesian mimic. Further, we attempted to ascertain whether the lizard's food experience has any effect on its ability to recognise an artificial Batesian mimic, by using two groups of predators differing in their prior experience with the prey from which the mimic was fabricated. The red firebug (Pyrrhocoris apterus) was used as an aposematic model, and the Guyana spotted roach (Blaptica dubia) as the palatable prey from which the mimic was fabricated. The appearance of the roach was modified by a paper sticker placed on its back. The skinks showed a strong aversion towards the model firebug. They also avoided attacking the cockroaches with the firebug pattern sticker. This suggests that a visual rather than a chemical signal is responsible for this aversion. The protection provided by the firebug sticker was even effective when the skinks were familiar with unmodified cockroaches (previous food experience). Copyright © 2017 Elsevier GmbH. All rights reserved.

  10. Limited spatial response to direct predation risk by African herbivores following predator reintroduction.

    PubMed

    Davies, Andrew B; Tambling, Craig J; Kerley, Graham I H; Asner, Gregory P

    2016-08-01

    Predators affect ecosystems not only through direct mortality of prey, but also through risk effects on prey behavior, which can exert strong influences on ecosystem function and prey fitness. However, how functionally different prey species respond to predation risk and how prey strategies vary across ecosystems and in response to predator reintroduction are poorly understood. We investigated the spatial distributions of six African herbivores varying in foraging strategy and body size in response to environmental factors and direct predation risk by recently reintroduced lions in the thicket biome of the Addo Elephant National Park, South Africa, using camera trap surveys, GPS telemetry, kill site locations and Light Detection and Ranging. Spatial distributions of all species, apart from buffalo, were driven primarily by environmental factors, with limited responses to direct predation risk. Responses to predation risk were instead indirect, with species distributions driven by environmental factors, and diel patterns being particularly pronounced. Grazers were more responsive to the measured variables than browsers, with more observations in open areas. Terrain ruggedness was a stronger predictor of browser distributions than was vegetation density. Buffalo was the only species to respond to predator encounter risk, avoiding areas with higher lion utilization. Buffalo therefore behaved in similar ways to when lions were absent from the study area. Our results suggest that direct predation risk effects are relatively weak when predator densities are low and the time since reintroduction is short and emphasize the need for robust, long-term monitoring of predator reintroductions to place such events in the broader context of predation risk effects.

  11. Distribution, Determinants, and Prevention of Falls Among the Elderly in the 2011-2012 California Health Interview Survey.

    PubMed

    Qin, Zijian; Baccaglini, Lorena

    2016-01-01

    Falls in the geriatric population are a major public health issue. With the anticipated aging of the population, falls are expected to increase nationally and globally. We estimated the prevalence and determinants of falls in adults aged ≥65 years and calculated the proportion of elderly who fell and made lifestyle changes as a result of professional recommendations. We included adults aged ≥65 years from the 2011-2012 California Health Interview Survey (CHIS) and categorized them into two groups based on whether or not they had had at least two falls in the previous 12 months. We performed logistic regression analysis adjusted for the complex survey design to determine risk factors for falls and compare the odds of receiving professional recommendations among elderly with vs. without falls. Of an estimated 4.3 million eligible elderly participants in the CHIS (2011-2012), an estimated 527,340 (12.2%) fell multiple times in the previous 12 months. Of those, 204,890 (38.9%) were told how to avoid falls by a physician and 211,355 (40.1%) received medical treatment, although fewer than 41.0% had made related preventive changes to avoid future falls. Falls were associated with older age, less walking, and poorer physical or mental health. Non-Asians had higher odds of falling compared with Asians (adjusted odds ratio = 1.69, 95% confidence interval 1.16, 2.45). Most participants reported changing medications, home, or daily routines on their own initiative rather than after professional recommendations. Patients with a history of falls did not consistently receive professional recommendations on fall prevention-related lifestyle or living condition changes. Given the high likelihood of a serious fall, future interventions should focus on involving primary care physicians in active preventive efforts before a fall occurs.

  12. A simple test of expected utility theory using professional traders

    PubMed Central

    List, John A.; Haigh, Michael S.

    2005-01-01

    We compare behavior across students and professional traders from the Chicago Board of Trade in a classic Allais paradox experiment. Our experiment tests whether independence, a necessary condition in expected utility theory, is systematically violated. We find that both students and professionals exhibit some behavior consistent with the Allais paradox, but the data pattern does suggest that the trader population falls prey to the Allais paradox less frequently than the student population. PMID:15634739

  13. Fear of feces? Trade-offs between disease risk and foraging drive animal activity around raccoon latrines

    USGS Publications Warehouse

    Weinstein, Sara B.; Moura, Chad W.; Mendez, Jon Francis; Lafferty, Kevin D.

    2017-01-01

    Fear of predation alters prey behavior, which can indirectly alter entire landscapes. A parasite-induced ecology of fear might also exist if animals avoid parasite-contaminated resources when infection costs outweigh foraging benefits. To investigate whether animals avoid parasite contaminated sites, and if such avoidance balances disease costs and foraging gains, we monitored animal behavior at raccoon latrines – sites that concentrate both seeds and pathogenic parasite eggs. Using wildlife cameras, we documented over 40 potentially susceptible vertebrate species in latrines and adjacent habitat. Latrine contact rates reflected background activity, diet preferences and disease risk. Disease-tolerant raccoons and rats displayed significant site attraction, while susceptible birds and small mammals avoided these high-risk sites. This suggests that parasites, like predators, might create a landscape of fear for vulnerable hosts. Such non-consumptive parasite effects could alter disease transmission, population dynamics, and even ecosystem structure.

  14. Both Predator and Prey

    PubMed Central

    Löw, Andreas; Lang, Peter J.; Smith, J. Carson; Bradley, Margaret M.

    2013-01-01

    This research examined the psychophysiology of emotional arousal anticipatory to potentially aversive and highly pleasant outcomes. Human brain reactions (event-related potentials) and body reactions (heart rate, skin conductance, the probe startle reflex) were assessed along motivational gradients determined by apparent distance from sites of potential punishment or reward. A predator-prey survival context was simulated using cues that signaled possible money rewards or possible losses; the cues appeared to loom progressively closer to the viewer, until a final step when a rapid key response could ensure reward or avoid a punishing loss. The observed anticipatory response patterns of heightened vigilance and physiological mobilization are consistent with the view that the physiology of emotion is founded on action dispositions that evolved in mammals to facilitate survival by dealing with threats or capturing life-sustaining rewards. PMID:18947351

  15. Effects of roads on habitat quality for bears in the southern Appalachians: A long-term study

    USGS Publications Warehouse

    Reynolds-Hogland, M. J.; Mitchell, M.S.

    2007-01-01

    We tested the hypothesis that gravel roads, not paved roads, had the largest negative effect on habitat quality for a population of American black bears (Ursus americanus) that lived in a protected area, where vehicle collision was a relatively minimal source of mortality. We also evaluated whether road use by bears differed by sex or age and whether annual variation in hard mast productivity affected the way bears used areas near roads. In addition, we tested previous findings regarding the spatial extent to which roads affected bear behavior negatively. Using summer and fall home ranges for 118 black bears living in the Pisgah Bear Sanctuary in western North Carolina during 1981-2001, we estimated both home-range-scale (2nd-order) and within-home-range-scale (3rd-order) selection for areas within 250, 500, 800, and 1,600 m of paved and gravel roads. All bears avoided areas near gravel roads more than they avoided areas near paved roads during summer and fall for 2nd-order selection and during summer for 3rd-order selection. During fall, only adult females avoided areas near gravel roads more than they avoided areas near paved roads for 3rd-order selection. We found a positive relationship between use of roads by adults and annual variability in hard mast productivity. Overall, bears avoided areas within 800 m of gravel roads. Future research should determine whether avoidance of gravel roads by bears affects bear survival. ?? 2007 American Society of Mammalogists.

  16. Behavioral Responses of CD-1 Mice to Six Predator Odor Components.

    PubMed

    Sievert, Thorbjörn; Laska, Matthias

    2016-06-01

    Mammalian prey species are able to detect predator odors and to display appropriate defensive behavior. However, there is only limited knowledge about whether single compounds of predator odors are sufficient to elicit such behavior. Therefore, we assessed if predator-naïve CD-1 mice (n = 60) avoid sulfur-containing compounds that are characteristic components of natural predator odors and/or display other indicators of anxiety. A 2-compartment test arena was used to assess approach/avoidance behavior, general motor activity, and the number of fecal pellets excreted when the animals were presented with 1 of 6 predator odor components in one compartment and a blank control in the other compartment. We found that 2 of the 6 predator odor components (2-propylthietane and 3-methyl-1-butanethiol) were significantly avoided by the mice. The remaining 4 predator odor components (2,2-dimethylthietane, 3-mercapto-3-methylbutan-1-ol, 3-mercapto-3-methylbutyl-1-formate, and methyl-2-phenylethyl sulphide) as well as a nonpredator-associated fruity odor (n-pentyl acetate) were not avoided. Neither the general motor activity nor the number of excreted fecal pellets, both widely used measures of stress- or anxiety-related behavior, were systematically affected by any of the odorants tested. Further, we found that small changes in the molecular structure of a predator odor component can have a marked effect on its behavioral significance as 2-propylthietane was significantly avoided by the mice whereas the structurally related 2,2-dimethylthietane was not. We conclude that sulfur-containing volatiles identified as characteristic components of the urine, feces, and anal gland secretions of mammalian predators can be, but are not necessarily sufficient to elicit defensive behaviors in a mammalian prey species. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. Does Historical Coexistence with Dingoes Explain Current Avoidance of Domestic Dogs? Island Bandicoots Are Naïve to Dogs, unlike Their Mainland Counterparts.

    PubMed

    Frank, Anke S K; Carthey, Alexandra J R; Banks, Peter B

    2016-01-01

    Introduced predators have a global reputation for causing declines and extinctions of native species. Native prey naiveté towards novel predators is thought to be a key reason for predator impacts. However, naiveté is not necessarily forever: where coexistence establishes, it is likely that naiveté will be reduced through adaptation, and the once alien predator will eventually become recognised by prey. For example, native marsupial bandicoots in Sydney avoid backyards with domestic dogs (C. lupus familiaris), but not domestic cats (Felis catus), even though cats and dogs were both introduced about 200 years ago (Carthey and Banks 2012). The authors attributed bandicoots' recognition of dogs to long-term exposure to a close relative of dogs, dingoes that arrived in Australia 4000 years ago. Here, we test a prediction of this hypothesis by taking the study to Tasmania, where dingoes have never been present but where domestic dogs also arrived about 200 years ago. We use a similar survey design to that of Carthey and Banks (2012): asking Hobart residents to report on pet-ownership, bandicoot sightings and scats within their backyards, as well as an array of yard characteristic control variables. We predicted that if long term experience with dingoes enabled mainland bandicoots to recognise domestic dogs, then Tasmanian bandicoots, which are inexperienced with dingoes, would not recognise domestic dogs. Our results indicate that Tasmanian bandicoots are naïve to both dogs and cats after only 200 years of coexistence, supporting our hypothesis and the notion that naiveté in native prey towards alien predators (as observed on the mainland) may eventually be overcome.

  18. Does Historical Coexistence with Dingoes Explain Current Avoidance of Domestic Dogs? Island Bandicoots Are Naïve to Dogs, unlike Their Mainland Counterparts

    PubMed Central

    Carthey, Alexandra J. R.; Banks, Peter B.

    2016-01-01

    Introduced predators have a global reputation for causing declines and extinctions of native species. Native prey naiveté towards novel predators is thought to be a key reason for predator impacts. However, naiveté is not necessarily forever: where coexistence establishes, it is likely that naiveté will be reduced through adaptation, and the once alien predator will eventually become recognised by prey. For example, native marsupial bandicoots in Sydney avoid backyards with domestic dogs (C. lupus familiaris), but not domestic cats (Felis catus), even though cats and dogs were both introduced about 200 years ago (Carthey and Banks 2012). The authors attributed bandicoots’ recognition of dogs to long-term exposure to a close relative of dogs, dingoes that arrived in Australia 4000 years ago. Here, we test a prediction of this hypothesis by taking the study to Tasmania, where dingoes have never been present but where domestic dogs also arrived about 200 years ago. We use a similar survey design to that of Carthey and Banks (2012): asking Hobart residents to report on pet-ownership, bandicoot sightings and scats within their backyards, as well as an array of yard characteristic control variables. We predicted that if long term experience with dingoes enabled mainland bandicoots to recognise domestic dogs, then Tasmanian bandicoots, which are inexperienced with dingoes, would not recognise domestic dogs. Our results indicate that Tasmanian bandicoots are naïve to both dogs and cats after only 200 years of coexistence, supporting our hypothesis and the notion that naiveté in native prey towards alien predators (as observed on the mainland) may eventually be overcome. PMID:27603517

  19. Follow These Step-by-Step Instructions to Prevent Avoidable Tumbles at School.

    ERIC Educational Resources Information Center

    Pater, Robert; And Others

    1987-01-01

    Almost a quarter of disabling work injuries among school employees are caused by slips and falls. Outlines prevention steps and safety programs that can help lower the possibilities of accidents from falls in schools. (MD)

  20. Lake Ontario benthic prey fish assessment, 2014

    USGS Publications Warehouse

    Weidel, Brian C.; Walsh, Maureen

    2015-01-01

    Benthic prey fishes are an important component of the Lake Ontario fish community and serve as vectors that move energy from benthic invertebrates into native and introduced sport fishes. Since the 1970’s, the USGS Lake Ontario Biological Station has assessed benthic fish populations and community dynamics with bottom trawls at depths ranging from 8 m out to depths of 150-225 m along the south and eastern shores of Lake Ontario. From the late 1970’s through the early 2000’s the benthic fish community was dominated by Slimy Sculpin Cottus cognatus, but in 2004 non-native Round Goby Neogobius melanostomus abundance increased and, since then Round Goby have generally been the dominant benthic species. Over the past 10 years the native Deepwater Sculpin Myoxocephalus thompsonii, once considered absent from the lake, have increased. Presently their lake-wide biomass density is equal to, or larger than, Slimy Sculpin. Species-specific assessments found Slimy and Deepwater Sculpin abundance increased slightly in 2014 relative to 2013, while changes in Round Goby abundance differed between spring and fall survey. Recent survey modifications have increased our understanding of benthic prey fish abundance and behavior in Lake Ontario. For instance, increasing the maximum tow depth to 225 m in 2014 improved our understanding of Deepwater Sculpin distribution in this rarely sampled lake habitat.

  1. Science 101: Why Don't Spiders Stick to Their Own Webs?

    ERIC Educational Resources Information Center

    Robertson, Bill

    2011-01-01

    This article explains why spiders don't stick to their webs. Spiders don't get stuck in their own webs (and they aren't immune to their own glue) because they use a combination of sticky and nonsticky threads (different glands for producing those), and the glue is in droplets that the spider can avoid but the prey can't. The spider's nervous…

  2. Tidal regime dictates the cascading consumptive and nonconsumptive effects of multiple predators on a marsh plant.

    PubMed

    Kimbro, David L

    2012-02-01

    Prey perception of predators can dictate how prey behaviorally balance the need to avoid being eaten with the need to consume resources, and this perception and consequent behavior can be strongly influenced by physical processes. Physical factors, however, can also alter the density and diversity of predators that pursue prey. Thus, it remains uncertain to what extent variable risk perception and antipredator behavior vs. variation in predator consumption of prey underlie prey-resource dynamics and give rise to large-scale patterns in natural systems. In an experimental food web where tidal inundation of marsh controls which predators access prey, crab and conch (predators) influenced the survivorship and antipredator behavior of snails (prey) irrespective of whether tidal inundation occurred on a diurnal or mixed semidiurnal schedule. Specifically, cues of either predator caused snails to ascend marsh leaves; snail survivorship was reduced more by unrestrained crabs than by unrestrained conchs; and snail survivorship was lowest with multiple predators than with any single predator despite interference. In contrast to these tidally consistent direct consumptive and nonconsumptive effects, indirect predator effects differed with tidal regime: snail grazing of marsh leaves in the presence of predators increased in the diurnal tide but decreased in the mixed semidiurnal tidal schedule, overwhelming the differences in snail density that resulted from direct predation. In addition, results suggest that snails may increase their foraging to compensate for stress-induced metabolic demand in the presence of predator cues. Patterns from natural marshes spanning a tidal inundation gradient (from diurnal to mixed semidiurnal tides) across 400 km of coastline were consistent with experimental results: despite minimal spatial variation in densities of predators, snails, abiotic stressors, and marsh productivity, snail grazing on marsh plants increased and plant biomass decreased on shorelines exposed to a diurnal tide. Because both the field and experimental results can be explained by tidal-induced variation in risk perception and snail behavior rather than by changes in snail density, this study reinforces the importance of nonconsumptive predator effects in complex natural systems and at large spatial scales.

  3. Effects of habitat composition on the use of resources by the red fox in a semi arid environment of North Africa

    NASA Astrophysics Data System (ADS)

    Dell'Arte, Graziella L.; Leonardi, Giovanni

    2005-09-01

    The red fox Vulpes vulpes is considered an opportunistic predator able to avoid prey shortages by exploiting a wide range of available food resources. However, as predicted by the Resources Dispersion Hypothesis (RDH), the distribution of other key resources such as suitable areas for dens can affect fox populations. Furthermore, in insularity conditions, resources are spatially limited and their availability is greatly influenced by territory sizes and the feeding habits of predators. In this paper we report the spatial use and foraging habits of foxes in three habitats (grassland, cultivation and suburban) of a sub-arid island off north Africa in relation to habitat composition and food availability. We found that diet composition in a gross sense did not differ significantly among habitats, with insects comprising > 48% and fruits 25% of the total prey items. Grasslands offered temporary clumped food resources (e.g. birds) that induced foxes to increase their territory sizes and to enlarge their diet range during prey shortages. Inversely, in cultivated and suburban areas, the main prey (insects) were more evenly distributed, especially in olive groves which constitute the most extensive form of cultivation on the island. In large areas covered by olive trees, the high availability of Coleoptera spp. significantly reduced core areas used by foxes and also distances among dens. Palm groves were patchy on the island but contained high densities of Orthoptera spp. and date fruits which represent alternative food sources. Thus, these patches are attractive foraging places, but a modification of the perimeter of fox territories was necessary for their exploitation. Our study confirmed that in this arid environment, habitat composition per se affected a generalist predator less than the dispersion of its main prey. In addition, the patchy distribution of resources can assume a role in the spacing and feeding behaviours of foxes only in relation to clumped alternative prey types.

  4. Fish diets in a freshwater-deprived semiarid estuary (The Coorong, Australia) as inferred by stable isotope analysis

    NASA Astrophysics Data System (ADS)

    Lamontagne, S.; Deegan, B. M.; Aldridge, K. T.; Brookes, J. D.; Geddes, M. C.

    2016-09-01

    In 2007, high rates of water extraction combined with a regional drought stopped freshwater discharge to the Coorong, a ∼120 km estuarine and coastal lagoon system at the outlet of the River Murray (Australia). The sources of organic matter sustaining the Coorong food web in the absence of river-borne organic matter and nutrient inputs were evaluated by measuring δ13C, δ15N and δ34S in large-bodied fish and their prey. In general, the δ34S of the food web (mean = 11.3‰; range = 4.32-18.9‰) suggested a comparable contribution from autochthonous pelagic (∼21‰) and benthic (<5‰) primary production. A relatively high δ13C in all organisms (-20 to -9.2‰) was also consistent with a dominant contribution from autochtonous sources to the food web. A Bayesian mixing model framework (SIMMR) was used to estimate the diet of large-bodied fish for statistically-determined prey groups based on their similarity in isotopic composition. Argyrosomus japonicus preyed primarily on Fish Group 1 (small pelagic fish like galaxiids and Hyperlophus vittatus), Rhombosolea tapirina on Invertebrate Group 2 (polychaetes like Capitella spp.) but Acanthopagrus butcheri fed on a wide variety of fish and invertebrate groups. A partial switch in diet to other prey groups suggested larger Ar. japonicus fed on larger prey, such as crabs and adult Aldrichetta forsteri. Despite being numerically abundant at the time, Fish Group 2 (benthic species) was a relatively low proportion of large-bodied fish diets. This probably reflected the tendency of some salt-tolerant members of this group (such as Atherinosoma microstoma) to prefer hypersaline habitats, which the large-bodied fish avoided. As the heavily preyed-on Fish Group 1 included species with a marine component to their life-cycle, marine productivity may also help to maintain this estuarine ecosystem in the absence of river-borne organic matter inputs.

  5. A comparison of food habits and prey preference of Amur tiger (Panthera tigris altaica) at three sites in the Russian Far East.

    PubMed

    Kerley, Linda L; Mukhacheva, Anna S; Matyukhina, Dina S; Salmanova, Elena; Salkina, Galina P; Miquelle, Dale G

    2015-07-01

    Prey availability is one of the principal drivers of tiger distribution and abundance. Therefore, formulating effective conservation strategies requires a clear understanding of tiger diet. We used scat analysis in combination with data on the abundance of several prey species to estimate Amur tiger diet and preference at 3 sites in the Russian Far East. We also examined the effect of pseudoreplication on estimates of tiger diet. We collected 770 scats across the 3 sites. Similar to previous studies, we found that tigers primarily preyed on medium to large ungulates, with wild boar, roe, sika and red deer collectively comprising 86.7% of total biomass consumed on average. According to Jacobs' index, tigers preferred wild boar, and avoided sika deer. Variation in preference indices derived from these scat analyses compared to indices derived from kill data appear to be due to adjustments in biomass intake when sex-age of a killed individual is known: a component missing from scat data. Pseudoreplication (multiple samples collected from a single kill site) also skewed results derived from scat analyses. Scat analysis still appears useful in providing insight into the diets of carnivores when the full spectrum of prey species needs to be identified, or when sample sizes from kill data are not sufficient. When sample sizes of kill data are large (as is now possible with GPS-collared animals), kill data adjusted by sex-age categories probably provides the most accurate estimates of prey biomass composition. Our results provide further confirmation of the centrality of medium ungulates, in particular wild boar, to Amur tiger diet, and suggest that the protection of this group of species is critical to Amur tiger conservation. © 2015 International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and Wiley Publishing Asia Pty Ltd.

  6. Avoidance of Heights on the Visual Cliff in Newly Walking Infants

    ERIC Educational Resources Information Center

    Witherington, David C.; Campos, Joseph J.; Anderson, David I.; Lejeune, Laure; Seah, Eileen

    2005-01-01

    Work with infants on the "visual cliff" links avoidance of drop-offs to experience with self-produced locomotion. Adolph's (2002) research on infants' perception of slope and gap traversability suggests that learning to avoid falling down is highly specific to the postural context in which it occurs. Infants, for example, who have…

  7. Spiderweb deformation induced by electrostatically charged insects

    PubMed Central

    Ortega-Jimenez, Victor Manuel; Dudley, Robert

    2013-01-01

    Capture success of spider webs has been associated with their microstructure, ornamentation, and wind-induced vibrations. Indirect evidence suggests that statically charged objects can attract silk thread, but web deformations induced by charged insects have not yet been described. Here, we show under laboratory conditions that electrostatically charged honeybees, green bottle flies, fruit flies, aphids, and also water drops falling near webs of cross-spiders (Araneus diadematus) induce rapid thread deformation that enhances the likelihood of physical contact, and thus of prey capture. PMID:23828093

  8. Uncrackable code for nuclear weapons

    ScienceCinema

    Hart, Mark

    2018-05-11

    Mark Hart, a scientist and engineer in Lawrence Livermore National Laboratory's (LLNL) Defense Technologies Division, has developed a new approach for ensuring nuclear weapons and their components can't fall prey to unauthorized use. The beauty of his approach: Let the weapon protect itself. "Using the random process of nuclear radioactive decay is the gold standard of random number generators," said Mark Hart. "You’d have a better chance of winning both Mega Millions and Powerball on the same day than getting control of IUC-protected components."

  9. Uncrackable code for nuclear weapons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hart, Mark

    Mark Hart, a scientist and engineer in Lawrence Livermore National Laboratory's (LLNL) Defense Technologies Division, has developed a new approach for ensuring nuclear weapons and their components can't fall prey to unauthorized use. The beauty of his approach: Let the weapon protect itself. "Using the random process of nuclear radioactive decay is the gold standard of random number generators," said Mark Hart. "You’d have a better chance of winning both Mega Millions and Powerball on the same day than getting control of IUC-protected components."

  10. Potential direct and indirect effects of climate change on a shallow natural lake fish assemblage

    USGS Publications Warehouse

    Breeggemann, Jason J.; Kaemingk, Mark A.; DeBates, T.J.; Paukert, Craig P.; Krause, J.; Letvin, Alexander P.; Stevens, Tanner M.; Willis, David W.; Chipps, Steven R.

    2015-01-01

    Much uncertainty exists around how fish communities in shallow lakes will respond to climate change. In this study, we modelled the effects of increased water temperatures on consumption and growth rates of two piscivores (northern pike [Esox lucius] and largemouth bass [Micropterus salmoides]) and examined relative effects of consumption by these predators on two prey species (bluegill [Lepomis macrochirus] and yellow perch [Perca flavescens]). Bioenergetics models were used to simulate the effects of climate change on growth and food consumption using predicted 2040 and 2060 temperatures in a shallow Nebraska Sandhill lake, USA. The patterns and magnitude of daily and cumulative consumption during the growing season (April–October) were generally similar between the two predators. However, growth of northern pike was always reduced (−3 to −45% change) compared to largemouth bass that experienced subtle changes (4 to −6% change) in weight by the end of the growing season. Assuming similar population size structure and numbers of predators in 2040–2060, future consumption of bluegill and yellow perch by northern pike and largemouth bass will likely increase (range: 3–24%), necessitating greater prey biomass to meet future energy demands. The timing of increased predator consumption will likely shift towards spring and fall (compared to summer), when prey species may not be available in the quantities required. Our findings suggest that increased water temperatures may affect species at the edge of their native range (i.e. northern pike) and a potential mismatch between predator and prey could exist.

  11. Influences on Bythotrephes longimanus life-history characteristics in the Great Lakes

    USGS Publications Warehouse

    Pothoven, Steven A.; Vanderploeg, Henry A.; Warner, David M.; Schaeffer, Jeffrey S.; Ludsin, Stuart A.; Claramunt, Randall M.; Nalepa, Thomas F.

    2012-01-01

    We compared Bythotrephes population demographics and dynamics to predator (planktivorous fish) and prey (small-bodied crustacean zooplankton) densities at a site sampled through the growing season in Lakes Michigan, Huron, and Erie. Although seasonal average densities of Bythotrephes were similar across lakes (222/m2 Erie, 247/m2 Huron, 162/m2 Michigan), temporal trends in abundance differed among lakes. In central Lake Erie where Bythotrephes' prey assemblage was dominated by small individuals (60%), where planktivorous fish densities were high (14,317/ha), and where a shallow water column limited availability of a deepwater refuge, the Bythotrephes population was characterized by a small mean body size, large broods with small neonates, allocation of length increases mainly to the spine rather than to the body, and a late summer population decline. By contrast, in Lake Michigan where Bythotrephes' prey assemblage was dominated by large individuals (72%) and planktivorous fish densities were lower (5052/ha), the Bythotrephes population was characterized by a large mean body size (i.e., 37–55% higher than in Erie), small broods with large neonates, nearly all growth in body length occurring between instars 1 and 2, and population persistence into fall. Life-history characteristics in Lake Huron tended to be intermediate to those found in Lakes Michigan and Erie, reflecting lower overall prey and predator densities (1224/ha) relative to the other lakes. Because plasticity in life history can affect interactions with other species, our findings point to the need to understand life-history variation among Great Lakes populations to improve our ability to model the dynamics of these ecosystems.

  12. Suitability of Coastal Marshes as Whooping Crane Foraging Habitat in Southwest Louisiana, USA

    USGS Publications Warehouse

    King, Sammy L.; Kang, Sung-Ryong

    2014-01-01

    Foraging habitat conditions (i.e., water depth, prey biomass, digestible energy density) can be a significant predictor of foraging habitat selection by wading birds. Potential foraging habitats of Whooping Cranes (Grus americana) using marshes include ponds and emergent marsh, but the potential prey and energy availability in these habitat types have rarely been studied. In this study, we estimated daily digestible energy density for Whooping Cranes in different marsh and microhabitat types (i.e., pond, flooded emergent marsh). Also, indicator metrics of foraging habitat suitability for Whooping Cranes were developed based on seasonal water depth, prey biomass, and digestible energy density. Seasonal water depth (cm), prey biomass (g wet weight m-2), and digestible energy density (kcal g-1m-2) ranged from 0.0 to 50.2 ± 2.8, 0.0 to 44.8 ± 22.3, and 0.0 to 31.0 ± 15.3, respectively. With the exception of freshwater emergent marsh in summer, all available habitats were capable of supporting one Whooping Crane per 0.1 ha per day. All habitat types in the marshes had relatively higher suitability in spring and summer than in fall and winter. Our study indicates that based on general energy availability, freshwater marshes in the region can support Whooping Cranes in a relatively small area, particularly in spring and summer. In actuality, the spatial density of ponds, the flood depth of the emergent marsh, and the habitat conditions (e.g., vegetation density) between adjacent suitable habitats will constrain suitable habitat and Whooping Crane numbers.

  13. Status of pelagic prey fishes in Lake Michigan, 2015

    USGS Publications Warehouse

    Warner, David M.; Claramunt, Randall M.; Farha, Steve A.; Hanson, Dale; Desorcie, Timothy J.; O'Brien, Timothy P.

    2016-01-01

    Acoustic surveys were conducted in late summer/early fall during the years 1992-1996 and 2001-2015 to estimate pelagic prey fish biomass in Lake Michigan. Midwater trawling during the surveys as well as target strength provided a measure of species and size composition of the fish community for use in scaling acoustic data and providing species-specific abundance estimates. The 2015 survey consisted of 27 acoustic transects (580 km total) and 31 midwater trawl tows. Four additional transects were sampled in Green Bay but were not included in lakewide estimates. Mean prey fish biomass was 4.2 kg/ha [20.3 kilotonnes (kt = 1,000 metric tons)], equivalent to 44.8 million pounds, which was 36% lower than in 2014 (31.7 kt) and 17% of the long-term (20 years) mean. The numeric density of the 2015 alewife yearclass was 25% of the time series average and nearly 9 times the 2014 density. This year-class contributed 8% of total alewife biomass (3.4 kg/ha). In 2015, alewife comprised 82.5% of total prey fish biomass, while rainbow smelt and bloater were <1% and 16.9% of total biomass, respectively. Rainbow smelt biomass in 2015 (0.02 kg/ha) was 74% lower than in 2014, <1% of the long-term mean, and lower than in any previous year. Bloater biomass in 2015 was 0.7 kg/ha and 8% of the long-term mean. Mean density of small bloater in 2015 (489 fish/ha) was slightly lower than peak values observed in 2008-2009 but was more than three times the time series mean (142 fish/ha).

  14. Specificity of learning: why infants fall over a veritable cliff.

    PubMed

    Adolph, K E

    2000-07-01

    Nine-month-old infants were tested at the precipice of safe and risky gaps in the surface of support. Their reaching and avoidance responses were compared in two postures, an experienced sitting posture and a less familiar crawling posture. The babies avoided reaching over risky gaps in the sitting posture but fell into risky gaps while attempting to reach in the crawling posture. This dissociation between developmental changes in posture suggests that (a) each postural milestone represents a different, modularly organized control system and (b) infants' adaptive avoidance responses are based on information about their postural stability relative to the gap size. Moreover, the results belie previous accounts suggesting that avoidance of a disparity in depth of the ground surface depends on general knowledge such as fear of heights, associations between depth information and falling, or knowledge that the body cannot be supported in empty space.

  15. Fine-scale analysis of an assassin bug's behaviour: predatory strategies to bypass the sensory systems of prey

    PubMed Central

    2016-01-01

    Some predators sidestep environments that render them conspicuous to the sensory systems of prey. However, these challenging environments are unavoidable for certain predators. Stenolemus giraffa is an assassin bug that feeds on web-building spiders; the web is the environment in which this predator finds its prey, but it also forms part of its preys' sophisticated sensory apparatus, blurring the distinction between environment and sensory systems. Stenolemus giraffa needs to break threads in the web that obstruct its path to the spiders, and such vibrations can alert the spiders. Using laser vibrometry, this study demonstrates how S. giraffa avoids alerting the spiders during its approach. When breaking threads, S. giraffa attenuates the vibrations produced by holding on to the loose ends of the broken thread and causing them to sag prior to release. In addition, S. giraffa releases the loose ends of a broken thread one at a time (after several seconds or minutes) and in this way spaces out the production of vibrations in time. Furthermore, S. giraffa was found to maximally reduce the amplitude of vibrations when breaking threads that are prone to produce louder vibrations. Finally, S. giraffa preferred to break threads in the presence of wind, suggesting that this araneophagic insect exploits environmental noise that temporarily impairs the spiders' ability to detect vibrations. The predatory behaviour of S. giraffa seems to be adaptated in intricate manner for bypassing the sophisticated sensory systems of web-building spiders. These findings illustrate how the physical characteristics of the environment, along with the sensory systems of prey can shape the predatory strategies of animals. PMID:27853576

  16. Diet composition and terrestrial prey selection of the Laysan teal on Laysan Island

    USGS Publications Warehouse

    Reynolds, M.H.; Slotterback, J.W.; Walters, J.R.

    2006-01-01

    The Laysan teal (Anas laysanensis) is an endangered dabbling duck endemic to the Hawaiian Archipelago but currently restricted to a single breeding population on Laysan Island. We studied its diet using fecal analysis and behavioral observations. Laysan teal fecal samples (N=118) contained prey items in 15 primary prey categories with a mean of 2.9 (range 0-7) taxa per sample. Sixty-two of these fecal samples were quantified with 2,270 prey items identified (mean items per sample 37; range 0-205). Based on fecal analysis and behavioral observations, we learned that the Laysan teal is not strictly a macroinsectivore as previously reported, but consumed seeds, succulent leaves, and algae, in addition to adult and larval diptera, ants, lepidoptera, coleoptera, and Artemia. We compared abundance of invertebrates from two terrestrial foraging substrates, soil and standing vegetation, to the abundance of invertebrate prey items counted in fecal samples collected from these habitats for the same period. In the soil substrate, Laysan teal selected two of the most abundant invertebrates, lepidoptera larvae and coleoptera. In the standing vegetation, Laysan teal selected the most abundant taxa: coleoptera. Amphipods were consumed in proportion to their abundance, and small gastropods (Tornatellides sp.), isopods, and arachnids were avoided or were identified in fecal matter in disproportion to their abundance in the foraging habitat. We compared fecal composition of samples collected in aquatic and terrestrial habitats and detected significant differences in samples' species compositions. The conservation implications of the adult Laysan teal's diet are positive, since results indicate that the Laysan teal are opportunistic insectivores, and exhibit dietary flexibility that includes seeds and other food. Dietary flexibility improves the possibility of successfully reestablishing populations on other predator-free islands.

  17. Phantoms of the forest: legacy risk effects of a regionally extinct large carnivore.

    PubMed

    Sahlén, Ellinor; Noell, Sonja; DePerno, Christopher S; Kindberg, Jonas; Spong, Göran; Cromsigt, Joris P G M

    2016-02-01

    The increased abundance of large carnivores in Europe is a conservation success, but the impact on the behavior and population dynamics of prey species is generally unknown. In Europe, the recolonization of large carnivores often occurs in areas where humans have greatly modified the landscape through forestry or agriculture. Currently, we poorly understand the effects of recolonizing large carnivores on extant prey species in anthropogenic landscapes. Here, we investigated if ungulate prey species showed innate responses to the scent of a regionally exterminated but native large carnivore, and whether the responses were affected by human-induced habitat openness. We experimentally introduced brown bear Ursus arctos scent to artificial feeding sites and used camera traps to document the responses of three sympatric ungulate species. In addition to controls without scent, reindeer scent Rangifer tarandus was used as a noncarnivore, novel control scent. Fallow deer Dama dama strongly avoided areas with bear scent. In the presence of bear scent, all ungulate species generally used open sites more than closed sites, whereas the opposite was observed at sites with reindeer scent or without scent. The opening of forest habitat by human practices, such as forestry and agriculture, creates a larger gradient in habitat openness than available in relatively unaffected closed forest systems, which may create opportunities for prey to alter their habitat selection and reduce predation risk in human-modified systems that do not exist in more natural forest systems. Increased knowledge about antipredator responses in areas subjected to anthropogenic change is important because these responses may affect prey population dynamics, lower trophic levels, and attitudes toward large carnivores. These aspects may be of particular relevance in the light of the increasing wildlife populations across much of Europe.

  18. Fine-scale foraging movements by fish-eating killer whales (Orcinus orca) relate to the vertical distributions and escape responses of salmonid prey (Oncorhynchus spp.).

    PubMed

    Wright, Brianna M; Ford, John K B; Ellis, Graeme M; Deecke, Volker B; Shapiro, Ari Daniel; Battaile, Brian C; Trites, Andrew W

    2017-01-01

    We sought to quantitatively describe the fine-scale foraging behavior of northern resident killer whales ( Orcinus orca ), a population of fish-eating killer whales that feeds almost exclusively on Pacific salmon ( Oncorhynchus spp.). To reconstruct the underwater movements of these specialist predators, we deployed 34 biologging Dtags on 32 individuals and collected high-resolution, three-dimensional accelerometry and acoustic data. We used the resulting dive paths to compare killer whale foraging behavior to the distributions of different salmonid prey species. Understanding the foraging movements of these threatened predators is important from a conservation standpoint, since prey availability has been identified as a limiting factor in their population dynamics and recovery. Three-dimensional dive tracks indicated that foraging ( N  = 701) and non-foraging dives ( N  = 10,618) were kinematically distinct (Wilks' lambda: λ 16  = 0.321, P  < 0.001). While foraging, killer whales dove deeper, remained submerged longer, swam faster, increased their dive path tortuosity, and rolled their bodies to a greater extent than during other activities. Maximum foraging dive depths reflected the deeper vertical distribution of Chinook (compared to other salmonids) and the tendency of Pacific salmon to evade predators by diving steeply. Kinematic characteristics of prey pursuit by resident killer whales also revealed several other escape strategies employed by salmon attempting to avoid predation, including increased swimming speeds and evasive maneuvering. High-resolution dive tracks reconstructed using data collected by multi-sensor accelerometer tags found that movements by resident killer whales relate significantly to the vertical distributions and escape responses of their primary prey, Pacific salmon.

  19. Keeping momentum with a mouthful of water: behavior and kinematics of humpback whale lunge feeding.

    PubMed

    Simon, Malene; Johnson, Mark; Madsen, Peter T

    2012-11-01

    Rorqual baleen whales lunge feed by engulfment of tons of prey-laden water in a large and expandable buccal pouch. According to prior interpretations, feeding rorquals are brought to a near-halt at the end of each lunge by drag forces primarily generated by the open mouth. Accelerating the body from a standstill is energetically costly and is purported to be the key factor determining oxygen consumption in lunge-feeding rorquals, explaining the shorter dive times than expected given their sizes. Here, we use multi-sensor archival tags (DTAGs) sampling at high rates in a fine-scale kinematic study of lunge feeding to examine the sequence of events within lunges and how energy may be expended and conserved in the process of prey capture. Analysis of 479 lunges from five humpback whales reveals that the whales accelerate as they acquire prey, opening their gape in synchrony with strong fluke strokes. The high forward speed (mean depth rate: 2.0±0.32 m s(-1)) during engulfment serves both to corral active prey and to expand the ventral margin of the buccal pouch and so maximize the engulfed water volume. Deceleration begins after mouth opening when the pouch nears full expansion and momentum starts to be transferred to the engulfed water. Lunge-feeding humpback whales time fluke strokes throughout the lunge to impart momentum to the engulfed water mass and so avoid a near or complete stop, but instead continue to glide at ~1-1.5 m s(-1) after the lunge has ended. Subsequent filtration and prey handling appear to take an average of 46 s and are performed in parallel with re-positioning for the next lunge.

  20. Feeding chronology of juvenile piranhas, Pygocentrus notatus, in the Venezuelan llanos

    USGS Publications Warehouse

    Nico, L.G.

    1990-01-01

    During the 1988 rainy season, I studied the 24 h feeding chronology of juvenile (40–68 mm standard length) piranhas, Pygocentrus notatus (Characidae: Serrasalminae) from a natural population inhabiting a small savanna stream in Apure State, Venezuela. Stomach contents analyses, supported by laboratory determinations of digestion rate, showed that these fish are primarily diurnal carnivores. Predatory activity on 4–5 August 1988 increased markedly after sunrise, peaked around 1100 h, and essentially stopped after sunset. Means of stomach content weight-to-fish weight ratios among the periods sampled were significantly different. Small fish were the major prey at all hours (81% of total prey volume). Underlying factors responsible for the observed 24 h feeding patterns were not investigated, but avoidance of predation by adult piranhas, which were very active near sunset, may have been important.

  1. Identifying Variations in Baseline Behavior of Killer Whales (Orcinus orca) to Contextualize Their Responses to Anthropogenic Noise.

    PubMed

    Samarra, Filipa I P; Miller, Patrick J O

    2016-01-01

    Determining the baseline behavior of a whale requires understanding natural variations occurring due to environmental context, such as changes in prey behavior. Killer whales feeding on herring consistently encircle herring schools; however, depth of feeding differs from near the surface in winter to deeper than 10 m in spring and summer. These variations in feeding depth are probably due to the depth of the prey and the balance between the costs and benefits of bringing schools of herring to the surface. Such variation in baseline behavior may incur different energetic costs and consequently change the motivation of whales to avoid a feeding area. Here, we discuss these variations in feeding behavior in the context of exposure to noise and interpret observed responses to simulated navy sonar signals.

  2. Using multiple gears to assess acoustic detectability and biomass of fish species in lake superior

    USGS Publications Warehouse

    Yule, D.L.; Adams, J.V.; Stockwell, J.D.; Gorman, O.T.

    2007-01-01

    Recent predator demand and prey supply studies suggest that an annual daytime bottom trawl survey of Lake Superior underestimates prey fish biomass. A multiple-gear (acoustics, bottom trawl, and midwater trawl) nighttime survey has been recommended, but before abandoning a long-term daytime survey the effectiveness of night sampling of important prey species must be verified. We sampled three bottom depths (30, 60, and 120 m) at a Lake Superior site where the fish community included all commercially and ecologically important species. Day and night samples were collected within 48 h at all depths during eight different periods (one new and one full moon period during both early summer and late summer to early fall over 2 years). Biomass of demersal and benthic species was higher in night bottom trawl samples than in day bottom trawl samples. Night acoustic collections showed that pelagic fish typically occupied water cooler than 15°C and light levels less than 0.001 lx. Using biomass in night bottom trawls and acoustic biomass above the bottom trawl path, we calculated an index of acoustic detectability for each species. Ciscoes Coregonus artedi, kiyis C. kiyi, and rainbow smeltOsmerus mordax left the bottom at night, whereas bloaters C. hoyi stayed nearer the bottom. We compared the biomass of important prey species estimated with two survey types: day bottom trawls and night estimates of the entire water column (bottom trawl biomass plus acoustic biomass). The biomass of large ciscoes (>200 mm) was significantly greater when measured at night than when measured during daylight, but the differences for other sizes of important species did not vary significantly by survey type. Nighttime of late summer is a period when conditions for biomass estimation are largely invariant, and all important prey species can be sampled using a multiple-gear approach.

  3. Status of Pelagic Prey Fishes in Lake Michigan, 2014

    USGS Publications Warehouse

    Warner, David M.; Farha, Steven A.; Claramunt, Randall M.; Hanson, Dale; O'Brien, Timothy P.

    2015-01-01

    Acoustic surveys were conducted in late summer/early fall during the years 1992-1996 and 2001-2014 to estimate pelagic prey fish biomass in Lake Michigan. Midwater trawling during the surveys as well as target strength provided a measure of species and size composition of the fish community for use in scaling acoustic data and providing species-specific abundance estimates. The 2014 survey consisted of 27 acoustic transects (603 km total) and 31 midwater trawl tows. Four additional transects were sampled in Green Bay but were not included in lakewide estimates. Mean prey fish biomass was 6.5 kg/ha [31.7 kilotonnes (kt = 1,000 metric tons)], equivalent to 69.9 million pounds, which was similar to the estimate in 2013 (29.6 kt) and 25% of the long-term (19 years) mean. The numeric density of the 2014 alewife year-class was 3% of the time series average and was the lowest observed in the 19 years of sampling. This year-class contributed <1% of total alewife biomass (4.6 kg/ha). Alewife ≥age-1 comprised 99.5% of alewife biomass. Numeric density of alewife in Green Bay was more than three times that of the main lake. In 2014, alewife comprised 71% of total prey fish biomass, while rainbow smelt and bloater were 1% and 28% of total biomass, respectively. Rainbow smelt biomass in 2014 (0.08 kg/ha) was 66% lower than in 2013, 2% of the long-term mean, and lower than in any previous year. Bloater biomass in 2014 was 1.8 kg/ha, nearly three times more than the 2013 biomass, and 20% of the long-term mean. Mean density of small bloater in 2014 (122 fish/ha) was lower than peak values observed in 2007-2009 but was similar to the time series mean (124 fish/ha). In 2014, pelagic prey fish biomass in Lake Michigan was 71% of that in Lake Huron (all basins), where the community is dominated by bloater.

  4. Ecological niche modeling of sympatric krill predators around Marguerite Bay, Western Antarctic Peninsula

    NASA Astrophysics Data System (ADS)

    Friedlaender, Ari S.; Johnston, David W.; Fraser, William R.; Burns, Jennifer; Halpin, Patrick N.; Costa, Daniel P.

    2011-07-01

    Adélie penguins ( Pygoscelis adeliae), carabeater seals ( Lobodon carcinophagus), humpback ( Megaptera novaeangliae), and minke whales ( Balaenoptera bonaernsis) are found in the waters surrounding the Western Antarctic Peninsula. Each species relies primarily on Antarctic krill ( Euphausia superba) and has physiological constraints and foraging behaviors that dictate their ecological niches. Understanding the degree of ecological overlap between sympatric krill predators is critical to understanding and predicting the impacts on climate-driven changes to the Antarctic marine ecosystem. To explore ecological relationships amongst sympatric krill predators, we developed ecological niche models using a maximum entropy modeling approach (Maxent) that allows the integration of data collected by a variety of means (e.g. satellite-based locations and visual observations). We created spatially explicit probability distributions for the four krill predators in fall 2001 and 2002 in conjunction with a suite of environmental variables. We find areas within Marguerite Bay with high krill predator occurrence rates or biological hot spots. We find the modeled ecological niches for Adélie penguins and crabeater seals may be affected by their physiological needs to haul-out on substrate. Thus, their distributions may be less dictated by proximity to prey and more so by physical features that over time provide adequate access to prey. Humpback and minke whales, being fully marine and having greater energetic demands, occupy ecological niches more directly proximate to prey. We also find evidence to suggest that the amount of overlap between modeled niches is relatively low, even for species with similar energetic requirements. In a rapidly changing and variable environment, our modeling work shows little indication that krill predators maintain similar ecological niches across years around Marguerite Bay. Given the amount of variability in the marine environment around the Antarctic Peninsula and how this affects the local abundance of prey, there may be consequences for krill predators with historically little niche overlap to increase the potential for interspecific competition for shared prey resources.

  5. Free-ranging farm cats: home range size and predation on a livestock unit in Northwest Georgia.

    PubMed

    Kitts-Morgan, Susanna E; Caires, Kyle C; Bohannon, Lisa A; Parsons, Elizabeth I; Hilburn, Katharine A

    2015-01-01

    This study's objective was to determine seasonal and diurnal vs. nocturnal home range size, as well as predation for free-ranging farm cats at a livestock unit in Northwest Georgia. Seven adult cats were tracked with attached GPS units for up to two weeks for one spring and two summer seasons from May 2010 through August 2011. Three and five cats were tracked for up to two weeks during the fall and winter seasons, respectively. Feline scat was collected during this entire period. Cats were fed a commercial cat food daily. There was no seasonal effect (P > 0.05) on overall (95% KDE and 90% KDE) or core home range size (50% KDE). Male cats tended (P = 0.08) to have larger diurnal and nocturnal core home ranges (1.09 ha) compared to female cats (0.64 ha). Reproductively intact cats (n = 2) had larger (P < 0.0001) diurnal and nocturnal home ranges as compared to altered cats. Feline scat processing separated scat into prey parts, and of the 210 feline scats collected during the study, 75.24% contained hair. Of these 158 scat samples, 86 contained non-cat hair and 72 contained only cat hair. Other prey components included fragments of bone in 21.43% of scat and teeth in 12.86% of scat. Teeth were used to identify mammalian prey hunted by these cats, of which the Hispid cotton rat (Sigmodon hispidus) was the primary rodent. Other targeted mammals were Peromyscus sp., Sylvilagus sp. and Microtus sp. Invertebrates and birds were less important as prey, but all mammalian prey identified in this study consisted of native animals. While the free-ranging farm cats in this study did not adjust their home range seasonally, sex and reproductive status did increase diurnal and nocturnal home range size. Ultimately, larger home ranges of free-ranging cats could negatively impact native wildlife.

  6. Free-Ranging Farm Cats: Home Range Size and Predation on a Livestock Unit In Northwest Georgia

    PubMed Central

    Kitts-Morgan, Susanna E.; Caires, Kyle C.; Bohannon, Lisa A.; Parsons, Elizabeth I.; Hilburn, Katharine A.

    2015-01-01

    This study’s objective was to determine seasonal and diurnal vs. nocturnal home range size, as well as predation for free-ranging farm cats at a livestock unit in Northwest Georgia. Seven adult cats were tracked with attached GPS units for up to two weeks for one spring and two summer seasons from May 2010 through August 2011. Three and five cats were tracked for up to two weeks during the fall and winter seasons, respectively. Feline scat was collected during this entire period. Cats were fed a commercial cat food daily. There was no seasonal effect (P > 0.05) on overall (95% KDE and 90% KDE) or core home range size (50% KDE). Male cats tended (P = 0.08) to have larger diurnal and nocturnal core home ranges (1.09 ha) compared to female cats (0.64 ha). Reproductively intact cats (n = 2) had larger (P < 0.0001) diurnal and nocturnal home ranges as compared to altered cats. Feline scat processing separated scat into prey parts, and of the 210 feline scats collected during the study, 75.24% contained hair. Of these 158 scat samples, 86 contained non-cat hair and 72 contained only cat hair. Other prey components included fragments of bone in 21.43% of scat and teeth in 12.86% of scat. Teeth were used to identify mammalian prey hunted by these cats, of which the Hispid cotton rat (Sigmodon hispidus) was the primary rodent. Other targeted mammals were Peromyscus sp., Sylvilagus sp. and Microtus sp. Invertebrates and birds were less important as prey, but all mammalian prey identified in this study consisted of native animals. While the free-ranging farm cats in this study did not adjust their home range seasonally, sex and reproductive status did increase diurnal and nocturnal home range size. Ultimately, larger home ranges of free-ranging cats could negatively impact native wildlife. PMID:25894078

  7. Fall management of eastern gamagrass

    USDA-ARS?s Scientific Manuscript database

    Recent research has suggested that eastern gamagrass (EGG) may be an effective alternative to chopped straw in the blended diets of dairy heifers and cows. Most extension materials discussing appropriate fall management of EGG recommend avoiding harvest within 6 weeks of first frost. Using this guid...

  8. Distribution, Determinants, and Prevention of Falls Among the Elderly in the 2011–2012 California Health Interview Survey

    PubMed Central

    Baccaglini, Lorena

    2016-01-01

    Objectives Falls in the geriatric population are a major public health issue. With the anticipated aging of the population, falls are expected to increase nationally and globally. We estimated the prevalence and determinants of falls in adults aged ≥65 years and calculated the proportion of elderly who fell and made lifestyle changes as a result of professional recommendations. Methods We included adults aged ≥65 years from the 2011–2012 California Health Interview Survey (CHIS) and categorized them into two groups based on whether or not they had had at least two falls in the previous 12 months. We performed logistic regression analysis adjusted for the complex survey design to determine risk factors for falls and compare the odds of receiving professional recommendations among elderly with vs. without falls. Results Of an estimated 4.3 million eligible elderly participants in the CHIS (2011–2012), an estimated 527,340 (12.2%) fell multiple times in the previous 12 months. Of those, 204,890 (38.9%) were told how to avoid falls by a physician and 211,355 (40.1%) received medical treatment, although fewer than 41.0% had made related preventive changes to avoid future falls. Falls were associated with older age, less walking, and poorer physical or mental health. Non-Asians had higher odds of falling compared with Asians (adjusted odds ratio = 1.69, 95% confidence interval 1.16, 2.45). Most participants reported changing medications, home, or daily routines on their own initiative rather than after professional recommendations. Conclusion Patients with a history of falls did not consistently receive professional recommendations on fall prevention-related lifestyle or living condition changes. Given the high likelihood of a serious fall, future interventions should focus on involving primary care physicians in active preventive efforts before a fall occurs. PMID:26957668

  9. Older women's responses and decisions after a fall: The work of getting "back to normal".

    PubMed

    Bergeron, Caroline D; Friedman, Daniela B; Messias, DeAnne K Hilfinger; Spencer, S Melinda; Miller, Susan C

    2016-12-01

    In this descriptive qualitative research, we examined older women's responses and decisions after experiencing a fall. Falls were unexpected, sudden events that heightened these women's awareness of their physical, emotional, spiritual, and social independence. Interviewees reported assessing personal, physical, and emotional needs; feeling burdened by the extra work; trying to get back to normal; seeking and obtaining assistance and spiritual support; avoiding specific people, objects, and places; planning ahead; and putting the fall out of mind. Consideration of older women's post-fall responses and decisions should be incorporated into fall prevention and management programs, services, and clinical recommendations.

  10. Escape and surveillance asymmetries in locusts exposed to a Guinea fowl-mimicking robot predator.

    PubMed

    Romano, Donato; Benelli, Giovanni; Stefanini, Cesare

    2017-10-09

    Escape and surveillance responses to predators are lateralized in several vertebrate species. However, little is known on the laterality of escapes and predator surveillance in arthropods. In this study, we investigated the lateralization of escape and surveillance responses in young instars and adults of Locusta migratoria during biomimetic interactions with a robot-predator inspired to the Guinea fowl, Numida meleagris. Results showed individual-level lateralization in the jumping escape of locusts exposed to the robot-predator attack. The laterality of this response was higher in L. migratoria adults over young instars. Furthermore, population-level lateralization of predator surveillance was found testing both L. migratoria adults and young instars; locusts used the right compound eye to oversee the robot-predator. Right-biased individuals were more stationary over left-biased ones during surveillance of the robot-predator. Individual-level lateralization could avoid predictability during the jumping escape. Population-level lateralization may improve coordination in the swarm during specific group tasks such as predator surveillance. To the best of our knowledge, this is the first report of lateralized predator-prey interactions in insects. Our findings outline the possibility of using biomimetic robots to study predator-prey interaction, avoiding the use of real predators, thus achieving standardized experimental conditions to investigate complex and flexible behaviours.

  11. The predator and prey behaviors of crabs: from ecology to neural adaptations.

    PubMed

    Tomsic, Daniel; Sztarker, Julieta; Berón de Astrada, Martín; Oliva, Damián; Lanza, Estela

    2017-07-01

    Predator avoidance and prey capture are among the most vital of animal behaviors. They require fast reactions controlled by comparatively straightforward neural circuits often containing giant neurons, which facilitates their study with electrophysiological techniques. Naturally occurring avoidance behaviors, in particular, can be easily and reliably evoked in the laboratory, enabling their neurophysiological investigation. Studies in the laboratory alone, however, can lead to a biased interpretation of an animal's behavior in its natural environment. In this Review, we describe current knowledge - acquired through both laboratory and field studies - on the visually guided escape behavior of the crab Neohelice granulata Analyses of the behavioral responses to visual stimuli in the laboratory have revealed the main characteristics of the crab's performance, such as the continuous regulation of the speed and direction of the escape run, or the enduring changes in the strength of escape induced by learning and memory. This work, in combination with neuroanatomical and electrophysiological studies, has allowed the identification of various giant neurons, the activity of which reflects most essential aspects of the crabs' avoidance performance. In addition, behavioral analyses performed in the natural environment reveal a more complex picture: crabs make use of much more information than is usually available in laboratory studies. Moreover, field studies have led to the discovery of a robust visually guided chasing behavior in Neohelice Here, we describe similarities and differences in the results obtained between the field and the laboratory, discuss the sources of any differences and highlight the importance of combining the two approaches. © 2017. Published by The Company of Biologists Ltd.

  12. Warning signals are under positive frequency-dependent selection in nature

    PubMed Central

    Chouteau, Mathieu; Arias, Mónica; Joron, Mathieu

    2016-01-01

    Positive frequency-dependent selection (FDS) is a selection regime where the fitness of a phenotype increases with its frequency, and it is thought to underlie important adaptive strategies resting on signaling and communication. However, whether and how positive FDS truly operates in nature remains unknown, which hampers our understanding of signal diversity. Here, we test for positive FDS operating on the warning color patterns of chemically defended butterflies forming multiple coexisting mimicry assemblages in the Amazon. Using malleable prey models placed in localities showing differences in the relative frequencies of warningly colored prey, we demonstrate that the efficiency of a warning signal increases steadily with its local frequency in the natural community, up to a threshold where protection stabilizes. The shape of this relationship is consistent with the direct effect of the local abundance of each warning signal on the corresponding avoidance knowledge of the local predator community. This relationship, which differs from purifying selection acting on each mimetic pattern, indicates that predator knowledge, integrated over the entire community, is saturated only for the most common warning signals. In contrast, among the well-established warning signals present in local prey assemblages, most are incompletely known to local predators and enjoy incomplete protection. This incomplete predator knowledge should generate strong benefits to life history traits that enhance warning efficiency by increasing the effective frequency of prey visible to predators. Strategies such as gregariousness or niche convergence between comimics may therefore readily evolve through their effects on predator knowledge and warning efficiency. PMID:26858416

  13. A bioenergetics modeling evaluation of top-down control of ruffe in the St. Louis River, western Lake Superior

    USGS Publications Warehouse

    Mayo, Kathleen R.; Selgeby, James H.; McDonald, Michael E.

    1998-01-01

    Ruffe (Gymnocephalus cernuus), were accidentally introduced into the St. Louis River estuary, western Lake Superior, in the mid 1980s and it was feared that they might affect native fish through predation on eggs and competition for forage and habitat. In an effort to control the abundance of ruffe and limit dispersal, a top-down control strategy using predators was implemented in 1989. We used bioenergetics modeling to examine the efficacy of top-down control in the St. Louis River from 1991 to 1994. Five predators--northern pike (Esox lucius), walleye (Stizostedion vitreum vitreum), smallmouth bass (Micropterus dolomieui), brown bullhead (Ictalurus nebulosus), and yellow perch (Perca flavescens)--were modeled to determine their consumption of ruffe and four other native prey species-spottail shiner (Notropis hudsonius), emerald shiner (Notropis atherinoides), yellow perch (Perca flavescens), and black crappie (Pomoxis nigromaculatus). Although predators ate as much as 47% of the ruffe biomass in 1 year, they were not able to halt the increase in ruffe abundance. The St. Louis River is an open system that allows predators to move freely out of the system, and the biomass of managed predators did not increase. A selectivity index showed all five predators selected the native prey and avoided ruffe. The St. Louis River has several predator and prey species creating many complex predator-prey interactions; and top-down control of ruffe by the predators examined in this study did not occur.

  14. Irresistible ants: exposure to novel toxic prey increases consumption over multiple temporal scales.

    PubMed

    Herr, Mark W; Robbins, Travis R; Centi, Alan; Thawley, Christopher J; Langkilde, Tracy

    2016-07-01

    As species become increasingly exposed to novel challenges, it is critical to understand how evolutionary (i.e., generational) and plastic (i.e., within lifetime) responses work together to determine a species' fate or predict its distribution. The introduction of non-native species imposes novel pressures on the native species that they encounter. Understanding how native species exposed to toxic or distasteful invaders change their feeding behavior can provide insight into their ability to cope with these novel threats as well as broader questions about the evolution of this behavior. We demonstrated that native eastern fence lizards do not avoid consuming invasive fire ants following repeated exposure to this toxic prey. Rather fence lizards increased their consumption of these ants following exposure on three different temporal scales. Lizards ate more fire ants when they were exposed to this toxic prey over successive days. Lizards consumed more fire ants if they had been exposed to fire ants as juveniles 6 months earlier. Finally, lizards from populations exposed to fire ants over multiple generations consumed more fire ants than those from fire ant-free areas. These results suggest that the potentially lethal consumption of fire ants may carry benefits resulting in selection for this behavior, and learning that persists long after initial exposure. Future research on the response of native predators to venomous prey over multiple temporal scales will be valuable in determining the long-term effects of invasion by these novel threats.

  15. A review of climate-driven mismatches between interdependent phenophases in terrestrial and aquatic ecosystems.

    PubMed

    Donnelly, Alison; Caffarra, Amelia; O'Neill, Bridget F

    2011-11-01

    Mismatches in phenology between mutually dependent species, resulting from climate change, can have far-reaching consequences throughout an ecosystem at both higher and lower trophic levels. Rising temperatures, due to climate warming, have resulted in advances in development and changes in behaviour of many organisms around the world. However, not all species or phenophases are responding to this increase in temperature at the same rate, thus creating a disruption to previously synchronised interdependent key life-cycle stages. Mismatches have been reported between plants and pollinators, predators and prey, and pests and hosts. Here, we review mismatches between interdependent phenophases at different trophic levels resulting from climate change. We categorized the studies into (1) terrestrial (natural and agricultural) ecosystems, and (2) aquatic (freshwater and marine) ecosystems. As expected, we found reports of 'winners' and 'losers' in each system, such as earlier emergence of prey enabling partial avoidance of predators, potential reductions in crop yield if herbivore pests emerge before their predators and possible declines in marine biodiversity due to disruption in plankton-fish phenologies. Furthermore, in the marine environment rising temperatures have resulted in synchrony in a previously mismatched prey and predator system, resulting in an abrupt population decline in the prey species. The examples reviewed suggest that more research into the complex interactions between species in terrestrial and aquatic ecosystems is necessary to make conclusive predictions of how climate warming may impact the fragile balances within ecosystems in future.

  16. Persistent organic pollutants and stable isotopes in biopsy samples (2004/2006) from Southern Resident killer whales.

    PubMed

    Krahn, Margaret M; Hanson, M Bradley; Baird, Robin W; Boyer, Richard H; Burrows, Douglas G; Emmons, Candice K; Ford, John K B; Jones, Linda L; Noren, Dawn P; Ross, Peter S; Schorr, Gregory S; Collier, Tracy K

    2007-12-01

    "Southern Resident" killer whales include three "pods" (J, K and L) that reside primarily in Puget Sound/Georgia Basin during the spring, summer and fall. This population was listed as "endangered" in the US and Canada following a 20% decline between 1996 and 2001. The current study, using blubber/epidermis biopsy samples, contributes contemporary information about potential factors (i.e., levels of pollutants or changes in diet) that could adversely affect Southern Residents. Carbon and nitrogen stable isotopes indicated J- and L-pod consumed prey from similar trophic levels in 2004/2006 and also showed no evidence for a large shift in the trophic level of prey consumed by L-pod between 1996 and 2004/2006. Sigma PCBs decreased for Southern Residents biopsied in 2004/2006 compared to 1993-1995. Surprisingly, however, a three-year-old male whale (J39) had the highest concentrations of Sigma PBDEs, Sigma HCHs and HCB. POP ratio differences between J- and L-pod suggested that they occupy different ranges in winter.

  17. There is more to life than risk avoidance - elderly people's experiences of falls, fall-injuries and compliant flooring.

    PubMed

    Gustavsson, Johanna; Jernbro, Carolina; Nilson, Finn

    2018-12-01

    Falls are the most common cause of injury in all ages and are especially difficult to prevent among residential care residents. Compliant flooring that absorbs energy generated within the fall, has been proposed as a measure to prevent fall-injury, however little is known regarding the implementation aspects in clinical settings. The aim of this study is to explore the experiences of falls, the risk of fall-injury, prevention in general and specifically compliant flooring as an injury preventative measure amongst frail elderly people living in a residential care facility with compliant flooring. Through this, generate a theory that further explains the underlying barriers of active prevention amongst elderly people. We used the grounded theory method and conducted semi-structured in-depth interviews with eight elderly people in residential care (data collected between February and December 2017). The identified categories were Falling as a part of life, Fearing the consequences and A wish to prevent falls and injuries. Through the results it was clear that There is more to life than risk avoidance, permeated the interviews, therefore forming the grounded theory. The interviewees viewed falls as something common and normal, and were uninterested in focusing on the risk of falls. Although they wanted to prevent falls, it was often difficult to integrate preventative measures into their everyday life. They embraced the idea of an injury-reducing compliant flooring, however their main interests lay elsewhere, preferring to focus on social interaction and issues concerning daily activities. The theory generated in this paper proposes explanations on the obstacles of implementing fall prevention measures in an elderly frail population. The findings give insights as to why interest and compliance for active fall prevention measures are low. We conclude that complaint flooring, from the perspective of the residents, can work well in residential care.

  18. Fall harvest management of eastern gamagrass in central Wisconsin

    USDA-ARS?s Scientific Manuscript database

    Recent research has suggested that eastern gamagrass (EGG) may be an effective alternative to chopped straw in the blended diets of dairy heifers and cows. Extension materials discussing appropriate fall management of EGG often recommend avoiding harvest within six weeks of first frost. However, pre...

  19. Avoiding Low Falling Numbers Problems in Wheat

    USDA-ARS?s Scientific Manuscript database

    The Hagberg-Perten Falling Number (FN) method is used to detect starch degradation due to ''-amylase enzyme activity in wheat meal. Wheat can be severely discounted when the FN is below 300 seconds. Farmers in the northwest wheat-growing states suffered serious economic losses due to widespread pro...

  20. Assessing gait adaptability in people with a unilateral amputation on an instrumented treadmill with a projected visual context.

    PubMed

    Houdijk, Han; van Ooijen, Mariëlle W; Kraal, Jos J; Wiggerts, Henri O; Polomski, Wojtek; Janssen, Thomas W J; Roerdink, Melvyn

    2012-11-01

    Gait adaptability, including the ability to avoid obstacles and to take visually guided steps, is essential for safe movement through a cluttered world. This aspect of walking ability is important for regaining independent mobility but is difficult to assess in clinical practice. The objective of this study was to investigate the validity of an instrumented treadmill with obstacles and stepping targets projected on the belt's surface for assessing prosthetic gait adaptability. This was an observational study. A control group of people who were able bodied (n=12) and groups of people with transtibial (n=12) and transfemoral (n=12) amputations participated. Participants walked at a self-selected speed on an instrumented treadmill with projected visual obstacles and stepping targets. Gait adaptability was evaluated in terms of anticipatory and reactive obstacle avoidance performance (for obstacles presented 4 steps and 1 step ahead, respectively) and accuracy of stepping on regular and irregular patterns of stepping targets. In addition, several clinical tests were administered, including timed walking tests and reports of incidence of falls and fear of falling. Obstacle avoidance performance and stepping accuracy were significantly lower in the groups with amputations than in the control group. Anticipatory obstacle avoidance performance was moderately correlated with timed walking test scores. Reactive obstacle avoidance performance and stepping accuracy performance were not related to timed walking tests. Gait adaptability scores did not differ in groups stratified by incidence of falls or fear of falling. Because gait adaptability was affected by walking speed, differences in self-selected walking speed may have diminished differences in gait adaptability between groups. Gait adaptability can be validly assessed by use of an instrumented treadmill with a projected visual context. When walking speed is taken into account, this assessment provides unique, quantitative information about walking ability in people with a lower-limb amputation.

  1. Express yourself: bold individuals induce enhanced morphological defences

    PubMed Central

    Hulthén, Kaj; Chapman, Ben B.; Nilsson, P. Anders; Hollander, Johan; Brönmark, Christer

    2014-01-01

    Organisms display an impressive array of defence strategies in nature. Inducible defences (changes in morphology and/or behaviour within a prey's lifetime) allow prey to decrease vulnerability to predators and avoid unnecessary costs of expression. Many studies report considerable interindividual variation in the degree to which inducible defences are expressed, yet what underlies this variation is poorly understood. Here, we show that individuals differing in a key personality trait also differ in the magnitude of morphological defence expression. Crucian carp showing risky behaviours (bold individuals) expressed a significantly greater morphological defence response when exposed to a natural enemy when compared with shy individuals. Furthermore, we show that fish of different personality types differ in their behavioural plasticity, with shy fish exhibiting greater absolute plasticity than bold fish. Our data suggest that individuals with bold personalities may be able to compensate for their risk-prone behavioural type by expressing enhanced morphological defences. PMID:24335987

  2. Proteomic analysis of secreted protein induced by a component of prey in pitcher fluid of the carnivorous plant Nepenthes alata.

    PubMed

    Hatano, Naoya; Hamada, Tatsuro

    2012-08-03

    The Nepenthes species are carnivorous plants that have evolved a specialized leaf organ, the 'pitcher', to attract, capture, and digest insects. The digested insects provide nutrients for growth, allowing these plants to grow even in poor soil. Several proteins have been identified in the pitcher fluid, including aspartic proteases (nepenthesin I and II) and pathogenesis-related (PR) proteins (β-1,3-glucanase, class IV chitinase, and thaumatin-like protein). In this study, we collected and concentrated pitcher fluid to identify minor proteins. In addition, we tried to identify the protein secreted in response to trapping the insect. To make a similar situation in which the insect falls into the pitcher, chitin which was a major component of the insect exoskeleton was added to the fluid in the pitcher. Three PR proteins, class III peroxidase (Prx), β-1,3-glucanase, and class III chitinase, were newly identified. Prx was induced after the addition of chitin to the pitcher fluid. Proteins in the pitcher fluid of the carnivorous plant Nepenthes alata probably have two roles in nutrient supply: digestion of prey and the antibacterial effect. These results suggest that the system for digesting prey has evolved from the defense system against pathogens in the carnivorous plant Nepenthes. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. The relationship among oceanography, prey fields, and beaked whale foraging habitat in the Tongue of the Ocean.

    PubMed

    Hazen, Elliott L; Nowacek, Douglas P; St Laurent, Louis; Halpin, Patrick N; Moretti, David J

    2011-04-27

    Beaked whales, specifically Blainville's (Mesoplodon densirostris) and Cuvier's (Ziphius cavirostris), are known to feed in the Tongue of the Ocean, Bahamas. These whales can be reliably detected and often localized within the Atlantic Undersea Test and Evaluation Center (AUTEC) acoustic sensor system. The AUTEC range is a regularly spaced bottom mounted hydrophone array covering >350 nm(2) providing a valuable network to record anthropogenic noise and marine mammal vocalizations. Assessments of the potential risks of noise exposure to beaked whales have historically occurred in the absence of information about the physical and biological environments in which these animals are distributed. In the fall of 2008, we used a downward looking 38 kHz SIMRAD EK60 echosounder to measure prey scattering layers concurrent with fine scale turbulence measurements from an autonomous turbulence profiler. Using an 8 km, 4-leaf clover sampling pattern, we completed a total of 7.5 repeat surveys with concurrently measured physical and biological oceanographic parameters, so as to examine the spatiotemporal scales and relationships among turbulence levels, biological scattering layers, and beaked whale foraging activity. We found a strong correlation among increased prey density and ocean vertical structure relative to increased click densities. Understanding the habitats of these whales and their utilization patterns will improve future models of beaked whale habitat as well as allowing more comprehensive assessments of exposure risk to anthropogenic sound.

  4. The Relationship among Oceanography, Prey Fields, and Beaked Whale Foraging Habitat in the Tongue of the Ocean

    PubMed Central

    Hazen, Elliott L.; Nowacek, Douglas P.; St. Laurent, Louis; Halpin, Patrick N.; Moretti, David J.

    2011-01-01

    Beaked whales, specifically Blainville's (Mesoplodon densirostris) and Cuvier's (Ziphius cavirostris), are known to feed in the Tongue of the Ocean, Bahamas. These whales can be reliably detected and often localized within the Atlantic Undersea Test and Evaluation Center (AUTEC) acoustic sensor system. The AUTEC range is a regularly spaced bottom mounted hydrophone array covering >350 nm2 providing a valuable network to record anthropogenic noise and marine mammal vocalizations. Assessments of the potential risks of noise exposure to beaked whales have historically occurred in the absence of information about the physical and biological environments in which these animals are distributed. In the fall of 2008, we used a downward looking 38 kHz SIMRAD EK60 echosounder to measure prey scattering layers concurrent with fine scale turbulence measurements from an autonomous turbulence profiler. Using an 8 km, 4-leaf clover sampling pattern, we completed a total of 7.5 repeat surveys with concurrently measured physical and biological oceanographic parameters, so as to examine the spatiotemporal scales and relationships among turbulence levels, biological scattering layers, and beaked whale foraging activity. We found a strong correlation among increased prey density and ocean vertical structure relative to increased click densities. Understanding the habitats of these whales and their utilization patterns will improve future models of beaked whale habitat as well as allowing more comprehensive assessments of exposure risk to anthropogenic sound. PMID:21556355

  5. Dissipation processes in the Tongue of the Ocean

    NASA Astrophysics Data System (ADS)

    Hooper V, James A.; Baringer, Molly O.; St. Laurent, Louis C.; Dewar, William K.; Nowacek, Doug

    2016-05-01

    The Tongue of the Ocean (TOTO) region located within the Bahamas archipelago is a relatively understudied region in terms of both its biological and physical oceanographic characteristics. A prey-field mapping cruise took place in the fall between 15 September 2008 and 1 October 2008, consisting of a series of transects and "clovers" to study the spatial and temporal variability. The region is characterized by a deep scattering layer (DSL), which is preyed on by nekton that serves as the food for beaked whale and other whale species. This study marks the first of its kind where concurrent measurements of acoustic backscatter and turbulence have been conducted for a nekton scattering layer well below the euphotic zone. Turbulence data collected from a Deep Microstructure Profiler are compared to biological and shear data collected by a 38 kHz Simrad EK 60 echo sounder and a hydrographic Doppler sonar system, respectively. From these measurements, the primary processes responsible for the turbulent production in the TOTO region are assessed. The DSL around 500 m and a surface scattering layer (SSL) are investigated for raised ɛ values. Strong correlation between turbulence levels and scattering intensity of prey is generally found in the SSL with dissipation levels as large as ˜10-7 W kg-1, 3 orders of magnitude above background levels. In the DSL and during the diel vertical migration, dissipation levels ˜10-8 W kg-1 were observed.

  6. Effectiveness of a combination of cognitive behavioral therapy and task-oriented balance training in reducing the fear of falling in patients with chronic stroke: study protocol for a randomized controlled trial.

    PubMed

    Liu, Tai-Wa; Ng, Gabriel Y F; Ng, Shamay S M

    2018-03-07

    The consequences of falls are devastating for patients with stroke. Balance problems and fear of falling are two major challenges, and recent systematic reviews have revealed that habitual physical exercise training alone cannot reduce the occurrence of falls in stroke survivors. However, recent trials with community-dwelling healthy older adults yielded the promising result that interventions with a cognitive behavioral therapy (CBT) component can simultaneously promote balance and reduce the fear of falling. Therefore, the aim of the proposed clinical trial is to evaluate the effectiveness of a combination of CBT and task-oriented balance training (TOBT) in promoting subjective balance confidence, and thereby reducing fear-avoidance behavior, improving balance ability, reducing fall risk, and promoting independent living, community reintegration, and health-related quality of life of patients with stroke. The study will constitute a placebo-controlled single-blind parallel-group randomized controlled trial in which patients are assessed immediately, at 3 months, and at 12 months. The selected participants will be randomly allocated into one of two parallel groups (the experimental group and the control group) with a 1:1 ratio. Both groups will receive 45 min of TOBT twice per week for 8 weeks. In addition, the experimental group will receive a 45-min CBT-based group intervention, and the control group will receive 45 min of general health education (GHE) twice per week for 8 weeks. The primary outcome measure is subjective balance confidence. The secondary outcome measures are fear-avoidance behavior, balance ability, fall risk, level of activities of daily living, community reintegration, and health-related quality of life. The proposed clinical trial will compare the effectiveness of CBT combined with TOBT and GHE combined with TOBT in promoting subjective balance confidence among chronic stroke patients. We hope our results will provide evidence of a safe, cost-effective, and readily transferrable therapeutic approach to clinical practice that reduces fear-avoidance behavior, improves balance ability, reduces fall risk, promotes independence and community reintegration, and enhances health-related quality of life. ClinicalTrials.gov, NCT02937532 . Registered on 17 October 2016.

  7. Informal payments and the financing of health care in developing and transition countries.

    PubMed

    Lewis, Maureen

    2007-01-01

    Informal, under-the-table payments to public health care providers are increasingly viewed as a critically important source of health care financing in developing and transition countries. With minimal funding levels and limited accountability, publicly financed and delivered care falls prey to illegal payments, which require payments that can exceed 100 percent of a country's median income. Methods to address the abuse include establishing official fees, combined with improved oversight and accountability for public health care providers, and a role for communities in holding providers accountable.

  8. Sensorimotor and Cognitive Predictors of Impaired Gait Adaptability in Older People.

    PubMed

    Caetano, Maria Joana D; Menant, Jasmine C; Schoene, Daniel; Pelicioni, Paulo H S; Sturnieks, Daina L; Lord, Stephen R

    2017-09-01

    The ability to adapt gait when negotiating unexpected hazards is crucial to maintain stability and avoid falling. This study investigated whether impaired gait adaptability in a task including obstacle and stepping targets is associated with cognitive and sensorimotor capacities in older adults. Fifty healthy older adults (74±7 years) were instructed to either (a) avoid an obstacle at usual step distance or (b) step onto a target at either a short or long step distance projected on a walkway two heel strikes ahead and then continue walking. Participants also completed cognitive and sensorimotor function assessments. Stroop test and reaction time performance significantly discriminated between participants who did and did not make stepping errors, and poorer Trail-Making test performance predicted shorter penultimate step length in the obstacle avoidance condition. Slower reaction time predicted poorer stepping accuracy; increased postural sway, weaker quadriceps strength, and poorer Stroop and Trail-Making test performances predicted increased number of steps taken to approach the target/obstacle and shorter step length; and increased postural sway and higher concern about falling predicted slower step velocity. Superior executive function, fast processing speed, and good muscle strength and balance were all associated with successful gait adaptability. Processing speed appears particularly important for precise foot placements; cognitive capacity for step length adjustments; and early and/or additional cognitive processing involving the inhibition of a stepping pattern for obstacle avoidance. This information may facilitate fall risk assessments and fall prevention strategies. © The Author 2016. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Evidence that insect herbivores are deterred by ant pheromones.

    PubMed Central

    Offenberg, Joachim; Nielsen, Mogens Gissel; MacIntosh, Donald J; Havanon, Sopon; Aksornkoae, Sanit

    2004-01-01

    It is well documented that ants can protect plants against insect herbivores, but the underlying mechanisms remain almost undocumented. We propose and test the pheromone avoidance hypothesis--an indirect mechanism where insect herbivores are repelled not only by ants but also by ant pheromones. Herbivores subjected to ant predation will experience a selective advantage if they evolve mechanisms enabling them to avoid feeding within ant territories. Such a mechanism could be based on the ability to detect and evade ant pheromones. Field observations and data from the literature showed that the ant Oecophylla smaragdina distributes persistent pheromones throughout its territory. In addition, a laboratory test showed that the beetle Rhyparida wallacei, which this ant preys on, was reluctant to feed on leaves sampled within ant territories compared with leaves sampled outside territories. Thus, this study provides an example of an ant-herbivore system conforming to the pheromone avoidance hypothesis. PMID:15801596

  10. Can chemical communication be cryptic? Adaptations by herbivores to natural enemies exploiting prey semiochemistry.

    PubMed

    Raffa, Kenneth F; Hobson, Kenneth R; Lafontaine, Sara; Aukema, Brian H

    2007-10-01

    Predators and parasites commonly use chemical cues associated with herbivore feeding and reproduction to locate prey. However, we currently know little about mechanisms by which herbivores may avoid such natural enemies. Pheromones are crucial to many aspects of herbivore life history, so radical alterations of these compounds could be disadvantageous despite their exploitation by predators. Instead, minor modifications in pheromone chemistry may facilitate partial escape while maintaining intraspecific functionality. We tested this hypothesis using Ips pini, an endophytic beetle that develops in the phloem tissue of pine trees. Its predominant predators in the Great Lakes region of North America are Thanasimus dubius and Platysoma cylindrica, both of which are highly attracted to I. pini's pheromones. However, there are significant disparities between prey and predator behaviors that relate to nuances of pheromone chemistry. Thanasimus dubius is most attracted to the (+) stereoisomer of ipsdienol, and P. cylindrica is most attracted to the (-) form; Ips pini prefers racemic mixtures intermediate between each predator's preferences. Further, a component that is inactive by itself, lanierone, greatly synergizes the attraction of I. pini to ipsdienol, but has a weak or no effect on its predators. A temporal component adds to this behavioral disparity: lanierone is most important in the communication of I. pini during periods when its predators are most abundant. The difficulties involved in tracking prey are further compounded by spatial and temporal variation in prey signaling on a local scale. For example, the preferences of I. pini vary significantly among sites only 50 km apart. This chemical crypsis is analogous to morphological forms of camouflage, such as color and mimicry, that are widely recognized as evasive adaptations against visually searching predators. Presumably these relationships are dynamic, with predators and prey shifting responses in microevolutionary time. However, several factors may delay predator counter adaptations. The most important appears to be the availability of alternate prey, specifically I. grandicollis, whose pheromone ipsenol is highly attractive to the above predators but not cross-attractive with I. pini. Consistent with this view, the specialist parasitoid, Tomicobia tibialis, has behavioral preferences for pheromone components that closely correspond with those of I. pini. These results are discussed in terms of population dynamics and coevolutionary theory.

  11. Dietary change of the rock lobster Jasus lalandii after an ‘invasive’ geographic shift: Effects of size, density and food availability

    NASA Astrophysics Data System (ADS)

    Haley, C. N.; Blamey, L. K.; Atkinson, L. J.; Branch, G. M.

    2011-06-01

    During the 1990s the rock lobster Jasus lalandii shifted its focus of distribution south-eastwards along the coast of South Africa, to establish a dense population in an area where it was previously rare. This coincided with a marked decrease in the sea urchin Parechinus angulosus, a preferred prey item of J. lalandii and a vital source of shelter for juveniles of the abalone Haliotis midae. The range expansion of lobsters has thus economic and ecological ripple effects. We determined the diets of small (50-65 mm carapace length) and large (>69 mm CL) rock lobsters from gut content analyses, and compared them between three 'lobster invaded' sites and three adjacent 'non-invaded' sites where densities are still low. At the non-invaded sites, diets were collectively heterogeneous but the dietary breadth of individual lobsters was narrow (in contradiction to generally accepted ecological theory), and the lobsters fed mainly on large, individual, mobile, high-energy prey such as sea urchins and large winkles. Conversely, at invaded sites where lobster densities were high, they consumed predominantly small, colonial or sessile low-energy prey such as sponges, barnacles and foliar algae, and the diet was significantly more uniform among individuals, but broader within individuals. This was a direct result of the contrasting benthic community structure of the two areas, and consequent prey availability - itself caused by differences in intensity of rock-lobster predation. Cannibalism was unexpectedly greater at non-invaded sites, possibly as a result of lobsters being larger there. The diet of small and large lobsters also differed significantly. Large rock lobsters predominantly consumed large individual prey such as lobsters, urchins and crabs, while small rock lobsters ate mainly colonial, sessile prey such as sponges and barnacles, and small prey such as tiny winkles and crustaceans. Dietary selectivity indices revealed that algae and sponges were negatively selected (avoided) in non-invaded areas but positively or neutrally selected in invaded areas. These dietary differences have important ramifications not only for the lobster populations but also for the structure and functioning of the radically different communities that have developed in invaded areas, reflecting a regime shift induced by lobster predation.

  12. Effects of multiple acute stressors on the predator avoidance ability and physiology of juvenile Chinook salmon

    USGS Publications Warehouse

    Mesa, Matthew G.

    1994-01-01

    Northern squaw fish Ptychocheilus oregonensis are the predominant predators of juvenile Pacific salmonids Oncorhynchus spp. in the Columbia River, and their predation rates are greatest just below dams. Because juvenile salmonids are commonly subjected to multiple stressors at dams in the course of their seaward migration, high predation rates below dams may be due in part to an increase in the vulnerability of stressed fish. I conducted laboratory experiments to examine the predator avoidance ability and physiological stress responses of juvenile chinook salmon O. tshawytscha subjected to treatments (stressors) designed to simulate routine hatchery practices (multiple handlings) or dam passage (multiple agitations). Both stressors resulted in lethargic behavior in the fish, and agitation also caused disorieniation and occasional injury. When equal numbers of stressed and unstressed fish were exposed to northern squawfish for up to 1 h, significantly more stressed fish were eaten, but this effect was not evident during longer exposures. The lack of differential predation in trials lasting up to 24 h can be explained by the rapid development of schooling behavior in the prey, but other possibilities exist, such as changing ratios of stressed and unstressed prey over time. Concentrations of plasma cortisol, glucose, and lactate in fish subjected to multiple stressors were similar and sometimes cumulative, returned to prestress levels within 6-24 h, and correlated poorly with predator avoidance ability. My results suggest that juvenile salmonids are capable of avoiding predators within 1 h after being subjected to multiple acute stressors even though physiological homeostasis may be altered for up to 24 h. Therefore, because juvenile salmonids typically reside in lailrace areas for only a short time after dam passage, measures aimed at reducing physical stress or protecting them as they migrate through dam tailraces may help alleviate the relatively intense predation in these areas.

  13. Bed site selection by a subordinate predator: an example with the cougar (Puma concolor) in the Greater Yellowstone Ecosystem.

    PubMed

    Kusler, Anna; Elbroch, L Mark; Quigley, Howard; Grigione, Melissa

    2017-01-01

    As technology has improved, our ability to study cryptic animal behavior has increased. Bed site selection is one such example. Among prey species, bed site selection provides thermoregulatory benefits and mitigates predation risk, and may directly influence survival. We conducted research to test whether a subordinate carnivore also selected beds with similar characteristics in an ecosystem supporting a multi-species guild of competing predators. We employed a model comparison approach in which we tested whether cougar ( Puma concolor ) bed site attributes supported the thermoregulatory versus the predator avoidance hypotheses, or exhibited characteristics supporting both hypotheses. Between 2012-2016, we investigated 599 cougar bed sites in the Greater Yellowstone Ecosystem and examined attributes at two scales: the landscape (second-order, n  = 599) and the microsite (fourth order, n  = 140). At the landscape scale, cougars selected bed sites in winter that supported both the thermoregulatory and predator avoidance hypotheses: bed sites were on steeper slopes but at lower elevations, closer to the forest edge, away from sagebrush and meadow habitat types, and on southern, eastern, and western-facing slopes. In the summer, bed attributes supported the predator avoidance hypothesis over the thermoregulation hypothesis: beds were closer to forest edges, away from sagebrush and meadow habitat classes, and on steeper slopes. At the microsite scale, cougar bed attributes in both the winter and summer supported both the predator avoidance and thermoregulatory hypotheses: they selected bed sites with high canopy cover, high vegetative concealment, and in a rugged habitat class characterized by cliff bands and talus fields. We found that just like prey species, a subordinate predator selected bed sites that facilitated both thermoregulatory and anti-predator functions. In conclusion, we believe that measuring bed site attributes may provide a novel means of measuring the use of refugia by subordinate predators, and ultimately provide new insights into the habitat requirements and energetics of subordinate carnivores.

  14. Effects of Sun-style Tai Chi exercise on physical fitness and fall prevention in fall-prone older adults.

    PubMed

    Choi, Jung Hyun; Moon, Jung-Soon; Song, Rhayun

    2005-07-01

    This paper reports a study to determine changes in the physical fitness (knee and ankle muscle strength, balance, flexibility, and mobility), fall avoidance efficacy, and fall episodes of institutionalized older adults after participating in a 12-week Sun-style Tai Chi exercise programme. Fall prevention has a high priority in health promotion for older people because a fall is associated with serious morbidity in this population. Regular exercise is effective in fall prevention for older adults because of improvements in strength and balance. Tai Chi exercise is considered to offer great potential for health promotion and rehabilitation, particularly in the maintenance of good mental and physical condition in older people. A quasi-experimental design with a non-equivalent control group was used. Data were collected from September 2001 to January 2002. A total of 68 fall-prone older adults with a mean age of 77.8 years participated in the study, and 29 people in the Tai Chi group and 30 controls completed the post-test measures. The Tai Chi exercise programme was provided three times a week for 12 weeks in the experimental group. Data were analysed for group differences using t-tests. At post-test, the experimental group showed significantly improved muscle strength in knee and ankle flexors (P < 0.001) and extensors (P < 0.01), and improved flexibility (P < 0.01) and mobility (P < 0.001) compared with the control group. There was no significant group difference in fall episodes, but the relative risk ratio for the Tai Chi exercise group compared with the control group was 0.62. The experimental group reported significantly more confidence in fall avoidance than did the control group. The findings reveal that Tai Chi exercise programmes can safely improve physical strength and reduce fall risk for fall-prone older adults in residential care facilities.

  15. Predation, Competition, and Abiotic Disturbance: Population Dynamics of Small Mammals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yunger, John A.; /Northern Illinois U. /Northern Illinois U.

    Predation and food availability have been implicated in annual non-cyclic fluctuations of vertebrate prey at mid-latitudes. The timing and magnitude of these factors are unclear due to a lack of large-scale field experiments, little attention to interactions, and a failure to closely link vertebrate predators with their prey. From October 1992 to January 1996, small mammal populations were censused on eight 0.6 ha plots at monthly intervals in a 32-ha prairie restoration at Fermi National Accelerator Laboratory, Illinois. Terrestrial vertebrate predators were excluded after July 1993 from four of the eight plots and canid diets monitored. Both terrestrial and avianmore » vertebrate predators were excluded in March 1994. During 1993 small mammal densities (i.e., Microtus Pennsylvanicus, Peromyscus leucopus, and P. maniculatus) were relatively high. Following peak densities in late summer, Microtus numbers wer 2-3x greater on exclusion plots relative to controls due to preferential selection of Microtus by canids, as reflected in dits. Following an ice-storm and crash in small mammal numbers (particularly Microtus), vertebrate predator exclusion had no detectable effect on P. leucopus numbers, probably due to an abundance of alternative prey (i.e., Sylvilagus floridanus). Meadow vole numbers began to increase in Fall 1995, and a numerical effect of predator exclusion, similar to that in 1993, was observed. Predator exclusion had no detectable effect on the movements and spatial patterns of Microtus during 1993. There was a significant decrease in home range and a significant increase in home range overlap for P. leucopus on the predator exclusion plots. The change in spatial behavior may be due to interspecific competition with Microtus resulting from increased densities on exclusion plots. Thus, predators had an indirect effect on P. leucopus spatial patterns mediated through M. Pennsylvanicus. The role of food limitation was studied using natural and manipulative experiments. Unusually high acorn production in Fall 1994 resulted in increased P. leucopus numbers at one Fermilab site due to immigration since survivorship or reproduction were unaffected. A food supplementation experiment during October 1994-March 1995 induced a strong increase in P. leucopus numbers, due again to immigration, although reproduction also was advanced by two months.« less

  16. Predation, Competition, and Abiotic Disturbance: Population Dynamics of Small Mammals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yunger, John A.

    Predation and food availability have been implicated in annual non-cyclic fluctuations of vertebrate prey at mid-latitudes. The timing and magnitude of these factors are unclear due to a lack of large-scale field experiments, little attention to interactions, and a failure to closely link vertebrate predators with their prey. From October 1992 to January 1996, small mammal populations were censused on eight 0.6 ha plots at monthly intervals in a 32-ha prairie restoration at Fermi National Accelerator Laboratory, Illinois. Terrestrial vertebrate predators were excluded after July 1993 from four of the eight plots and canid diets monitored. Both terrestrial and avianmore » vertebrate predators were excluded in March 1994. During 1993 small mammal densities (i.e., Microtus pennsylvanicus, Peromyscus leucopus, and P. maniculatus) were relatively high. Following peak densities in late summer, Microtus numbers were 2-3x greater on exclusion plots relative to controls due to preferential selection of Microtus by canids, as reflected in diets. Following an ice-storm and crash in small mammal numbers (particularly Microtus), vertebrate predator exclusion had no detectable effect on P. leucopus numbers, probably due to an abundance of alternative prey (i.e., Sylvilagus floridanus). Meadow vole numbers began to increase in Fall 1995, and a numerical effect of predator exclusion, similar to that in 1993, was observed. Predator exclusion had no detectable effect on the movements and spatial patterns of Microtus during 1993. There was a significant decrease in home range and a significant increase in home range overlap for £.. leucopus on the predator exclusion plots. The change in spatial behavior may be due to interspecific competition with Microtus resulting from increased densities on exclusion plots. Thus, predators had an indirect effect on .f.. leucopus spatial patterns mediated through M. pennsylvanicus. The role of food limitation was studied using natural and manipulative experiments. Unusually high acorn production in Fall 1994 resulted in increased f. leucopus numbers at one Fermilab site due to immigration since survivorship or reproduction were unaffected. A food supplementation experiment during October 1994-March 1995 induced a strong increase in f. leucopus numbers, due again to immigration, although reproduction also was advanced by two months.« less

  17. Seasonal marine growth of Bristol Bay sockeye salmon (Oncorhynchus nerka) in relation to competition with Asian pink salmon (O. gorbuscho) and the 1977 ocean regime shift

    USGS Publications Warehouse

    Ruggerone, Gregory T.; Farley, Ed; Nielsen, Jennifer L.; Hagen, Peter

    2005-01-01

    Recent research demonstrated significantly lower growth and survival of Bristol Bay sockeye salmon (Oncorhynchus nerka) during odd-numbered years of their second or third years at sea (1975, 1977, etc.), a trend that was opposite that of Asian pink salmon (O. gorbuscha) abundance. Here we evaluated seasonal growth trends of Kvichak and Egegik river sockeye salmon (Bristol Bay stocks) during even- and odd-numbered years at sea by measuring scale circuli increments within each growth zone of each major salmon age group between 1955 and 2000. First year scale growth was not significantly different between odd- and even-numbered years, but peak growth of age-2. smolts was significantly higher than age-1 smolts. Total second and third year scale growth of salmon was significantly lower during odd- than during even-numbered years. However, reduced scale growth in odd-numbered years began after peak growth in spring and continued through summer and fall even though most pink salmon had left the high seas by late July (10-18% growth reduction in odd vs. even years). The alternating odd and even year growth pattern was consistent before and after the 1977 ocean regime shift. During 1977-2000, when salmon abundance was relatively great, sockeye salmon growth was high during specific seasons compared with that during 1955-1976, that is to say, immediately after entry to Bristol Bay, after peak growth in the first year, during the middle of the second growing season, and during spring of the third season. Growth after the spring peak in the third year at sea was relatively low during 1977-2000. We hypothesize that high consumption rates of prey by pink salmon during spring through mid-July of odd-numbered years, coupled with declining zooplankton biomass during summer and potentially cyclic abundances of squid and other prey, contributed to reduced prey availability and therefore reduced growth of Bristol Bay sockeye salmon during late spring through fall of odd-numbered years.

  18. Anxiety, depression, and fall-related psychological concerns in community-dwelling older people.

    PubMed

    Hull, Samantha L; Kneebone, Ian I; Farquharson, Lorna

    2013-12-01

    Establish the association between affect and fall-related psychological concerns (fear of falling, fall-related self-efficacy, balance confidence, and outcome expectancy). A total of 205 community-dwelling older people (mean age 81, SD 7.5 years) completed the Geriatric Depression Scale-15, Geriatric Anxiety Inventory, Modified Survey of Activities and Fear of Falling, Falls-Efficacy Scale- International, Activity-Specific Balance Confidence Scale, and the Consequences of Falling Scale. Hierarchical regression models showed that anxiety was independently associated with all fall-related psychological concerns; depression was only associated with falls efficacy. Associations between fall-related psychological concerns and age, gender, accommodation,medications, self-rated physical health, falls history, mobility, and sensory aids are also discussed. This is the first study that investigates the association between affect and the four fall-related psychological concerns. Anxiety was a significant factor associated with all four, whereas depression was only associated with activity avoidance. Implications for healthcare providers are discussed. Copyright © 2013 American Association for Geriatric Psychiatry. Published by Elsevier Inc. All rights reserved.

  19. Status and trends of the Lake Huron deepwater demersal fish ommunity, 2008

    USGS Publications Warehouse

    Roseman, Edward F.; O'Brien, Timothy P.; Riley, Stephen C.; Farha, Steve A.; French, John R.

    2009-01-01

    The U.S.Geological Survey Great Lakes Science Center has conducted trawl surveys to assess annual changes in the deepwater demersal fish community of Lake Huron since 1973. Since 1992, surveys have been carried out using a 21 m wing trawl towed on-contour at depths ranging from 9 to 110 m on fixed transects. Sample sites include five ports in U.S. waters with less frequent sampling near Goderich, Ontario. The 2008 fall bottom trawl survey was carried out between October 24 and November 20, 2008 and sampled only the three northern U.S. ports at DeTour, Hammond Bay, and Alpena due to mechanical problems with the research vessel and prolonged periods of bad weather. Therefore, all data presented for 2008 are based on samples collected from these ports. Compared to previous years, alewife populations in Lake Huron remain at low levels after collapsing in 2004. Age-0 alewife density and biomass appears to have increased slightly but overall levels remain near the nadir observed in 2004. Density and biomass of adult and juvenile rainbow smelt showed a decrease from 2007 despite record-high abundance of juveniles observed in 2005, suggesting recruitment was low. Numbers of adult and juvenile bloater were low despite recent high year-classes. Abundances for most other prey species were similar to the low levels observed in 2005 - 2007. We captured one wild juvenile lake trout in 2008 representing the fifth consecutive year that wild lake trout were captured in the survey. Based on pairwise graphical comparisons and nonparametric correlation analyses, dynamics of prey abundance at the three northern ports followed lakewide trends since 1992. Density of benthic macroinvertebrates was at an all-time low in 2008 since sampling began in 2001. The decline in abundance was due to decreases in all taxonomic groups and a large reduction in recruitment of quagga mussels. Density of Diporeia at northern ports in 2008 was the lowest observed. Diporeia were found only at 73-m sites of three ports sampled in northern Lake Huron. While no lakewide estimate of prey biomass was calculated due to the limited spatial scope of the 2008 survey, existing data suggest prey biomass remains depressed. Prey available to salmonids during 2009 will likely be small alewives, small rainbow smelt and small bloaters. Predators in Lake Huron will continue to face potential prey shortages.

  20. Testing the effects of perimeter fencing and elephant exclosures on lion predation patterns in a Kenyan wildlife conservancy

    PubMed Central

    Davidson, Zeke; Pratt, Laura; Mwololo, Mary; MacDonald, Suzanne E.

    2016-01-01

    The use of fences to segregate wildlife can change predator and prey behaviour. Predators can learn to incorporate fencing into their hunting strategies and prey can learn to avoid foraging near fences. A twelve-strand electric predator-proof fence surrounds our study site. There are also porous one-strand electric fences used to create exclosures where elephant (and giraffe) cannot enter in order to protect blocs of browse vegetation for two critically endangered species, the black rhinoceros (Diceros bicornis) and the Grevy’s zebra (Equus grevyi). The denser vegetation in these exclosures attracts both browsing prey and ambush predators. In this study we examined if lion predation patterns differed near the perimeter fencing and inside the elephant exclosures by mapping the location of kills. We used a spatial analysis to compare the predation patterns near the perimeter fencing and inside the exclosures to predation in the rest of the conservancy. Predation was not over-represented near the perimeter fence but the pattern of predation near the fence suggests that fences may be a contributing factor to predation success. Overall, we found that predation was over-represented inside and within 50 m of the exclosures. However, by examining individual exclosures in greater detail using a hot spot analysis, we found that only a few exclosures contained lion predation hot spots. Although some exclosures provide good hunting grounds for lions, we concluded that exclosures did not necessarily create prey-traps per se and that managers could continue to use this type of exclusionary fencing to protect stands of dense vegetation. PMID:26893967

  1. Bare ground as a crucial habitat feature for a rare terrestrially foraging farmland bird of Central Europe

    NASA Astrophysics Data System (ADS)

    Tagmann-Ioset, Aline; Schaub, Michael; Reichlin, Thomas S.; Weisshaupt, Nadja; Arlettaz, Raphaël

    2012-02-01

    Most farmland birds have declined significantly throughout the world due to agricultural intensification. Agri-environmental policies could not halt the decline of ground-foraging insectivorous farmland birds in Europe, indicating a gap in knowledge of species' ecological requirements. This represents a major impediment to the development of efficient, evidence-based agri-environmental measures. Using radio-tracking we studied habitat selection by farmland Hoopoes, a rare terrestrially foraging bird in Central Europe, and assessed habitat preferences of their main prey (Molecrickets), with the aim to identify optimal foraging habitat profiles in order to guide farmland management. Hierarchical logistic regression modelling of habitat descriptors at actual foraging locations vs. random locations within the home ranges of 13 males showed that the availability of bare ground was the principal determinant of foraging activity, with an optimum of 60-70% bare ground at patch scale. This ideal habitat configuration, which facilitates birds' terrestrial hunting, was found primarily in intensively farmed fruit tree plantations which dominated the landscape matrix: this habitat offers extensive strips of bare ground due to systematic removal of ground vegetation along tree rows. In contrast, dense grassland and cropland were avoided. Another important habitat feature was the availability of nongravelly soil, which enabled Hoopoes to probe the earth with their long, curved bill in search of underground invertebrates. The role of Molecrickets, however, appeared secondary to foraging patch selection, suggesting that prey accessibility was per se more important than prey abundance. Creating patches of bare ground within modern farmland where sufficient supplies of suitable invertebrate prey exist will support Hoopoe populations.

  2. Titmouse calling and foraging are affected by head and body orientation of cat predator models and possible experience with real cats.

    PubMed

    Book, D L; Freeberg, Todd M

    2015-09-01

    Although anti-predator behavior systems have been studied in diverse taxa, less is known about how prey species detect and assess the immediate threat posed by a predator based on its behavior. In this study, we evaluated a potential cue that some species may utilize when assessing predation threat-the predator's body and head orientation. We tested the effect of this orientation cue on signaling and predation-risk-sensitive foraging of a prey species, tufted titmice (Baeolophus bicolor). Earlier work revealed sensitivity of titmice and related species to the presence of predator stimuli. Here, we manipulated cat models to face either toward or away from a food source preferred by titmice and then measured titmouse calling and seed-taking behavior. Titmice showed greater feeder avoidance when the cat predator models faced the feeder, compared to when the models faced away from the feeder or when titmice were exposed to control stimuli. Titmouse calling was also sensitive to predator head/body orientation, depending upon whether titmice were from sites where real cats had been observed or not. This study experimentally demonstrated that both calling and foraging of prey species can be affected by the head and body orientation of an important terrestrial predator. Prey species may therefore signal in strategic ways to conspecifics not just about predator presence, but also urgency of threat related to the more subtle cue of the head and body orientation of the predator. These findings hold potential implications for understanding animal cognition and learning processes.

  3. Visual field shape and foraging ecology in diurnal raptors.

    PubMed

    Potier, Simon; Duriez, Olivier; Cunningham, Gregory B; Bonhomme, Vincent; O'Rourke, Colleen; Fernández-Juricic, Esteban; Bonadonna, Francesco

    2018-05-18

    Birds, particularly raptors, are believed to forage primarily using visual cues. However, raptor foraging tactics are highly diverse - from chasing mobile prey to scavenging - which may reflect adaptations of their visual systems. To investigate this, we studied the visual field configuration of 15 species of diurnal Accipitriformes that differ in such tactics, first focusing on the binocular field and blind area by using a single traits approach, and then exploring the shape of the binocular field with morphometric approaches. While the maximum binocular field width did not differ in species of different foraging tactics, the overall shape of their binocular fields did. In particular, raptors chasing terrestrial prey (ground predators) had a more protruding binocular field and a wider blind area above the head than did raptors chasing aerial or aquatic prey and obligate scavengers. Ground predators that forage on mammals from above have a wide but short bill - which increases ingestion rate - and large suborbital ridge to avoid sun glare. This may explain the protruding binocular field and the wide blind area above the head. By contrast, species from the two other groups have long but narrow bills used to pluck, flake or tear food and may need large visual coverage (and reduced suborbital ridges) to increase their foraging efficiency ( e.g. using large visual coverage to follow the escaping prey in three dimensions or detect conspecifics). We propose that binocular field shape is associated with bill and suborbital ridge shape and, ultimately, foraging strategies. © 2018. Published by The Company of Biologists Ltd.

  4. Responses of a top and a meso predator and their prey to moon phases.

    PubMed

    Penteriani, Vincenzo; Kuparinen, Anna; del Mar Delgado, Maria; Palomares, Francisco; López-Bao, José Vicente; Fedriani, José María; Calzada, Javier; Moreno, Sacramento; Villafuerte, Rafael; Campioni, Letizia; Lourenço, Rui

    2013-11-01

    We compared movement patterns and rhythms of activity of a top predator, the Iberian lynx Lynx pardinus, a mesopredator, the red fox Vulpes vulpes, and their shared principal prey, the rabbit Oryctolagus cuniculus, in relation to moon phases. Because the three species are mostly nocturnal and crepuscular, we hypothesized that the shared prey would reduce its activity at most risky moon phases (i.e. during the brightest nights), but that fox, an intraguild prey of lynx, would avoid lynx activity peaks at the same time. Rabbits generally moved further from their core areas on darkest nights (i.e. new moon), using direct movements which minimize predation risk. Though rabbits responded to the increased predation risk by reducing their activity during the full moon, this response may require several days, and the moon effect we observed on the rabbits had, therefore, a temporal gap. Lynx activity patterns may be at least partially mirroring rabbit activity: around new moons, when rabbits moved furthest and were more active, lynxes reduced their travelling distances and their movements were concentrated in the core areas of their home ranges, which generally correspond to areas of high density of rabbits. Red foxes were more active during the darkest nights, when both the conditions for rabbit hunting were the best and lynxes moved less. On the one hand, foxes increased their activity when rabbits were further from their core areas and moved with more discrete displacements; on the other hand, fox activity in relation to the moon seemed to reduce dangerous encounters with its intraguild predator.

  5. Changes in seasonal nearshore zooplankton abundance patterns in Lake Ontario following establishment of the exotic predator Cercopagis pengoi

    USGS Publications Warehouse

    Warner, David M.; Rudstam, Lars G.; Benoit, Hugues; Mills, Edward L.; Johannsson, Ora E.

    2006-01-01

    Cercopagis pengoi, a zooplanktivore first discovered in Lake Ontario in 1998, may reduce availability of prey for planktivorous fish. Cercoapgis pengoi is most abundant in late summer and fall. Therefore, we hypothesized that abundance of small zooplankton (bosminids and cyclopoids) species would decrease at that time. To determine if the establishment of C. pengoi was followed by changes in the zooplankton community, seasonal patterns in nearshore zooplankton collected from May to October 1995–2000 were examined. Early summer density of small zooplankton was similar in all years while late summer and fall densities were significantly lower in 1998–2000 than in 1995–1997. The declines of small zooplankton coincided seasonally with the peak in C. pengoidensity. Other possible causes for the observed changes in small zooplankton are less likely. High levels of fish predation should have resulted in smaller zooplankton in 1998–2000 than in 1995–1997 and larger declines in Daphnia than other groups. This was not observed. There was no significant decline in chlorophyll-a concentrations or changes in temperature between 1995–1997 and 1998–2000. Therefore, the declines in density of small zooplankton were most likely the result of C. pengoi predation. The effect of C. pengoi establishment on alewives is increased competition for zooplankton prey but C. pengoi has replaced a portion of the zooplankton biomass and adult alewife diet formerly dominated by Diacyclops thomasi and Bosmina longirostris.

  6. Antipredator behaviours of a spider mite in response to cues of dangerous and harmless predators.

    PubMed

    Dias, Cleide Rosa; Bernardo, Ana Maria Guimarães; Mencalha, Jussara; Freitas, Caelum Woods Carvalho; Sarmento, Renato Almeida; Pallini, Angelo; Janssen, Arne

    2016-07-01

    Prey are known to invest in costly antipredator behaviour when perceiving cues of dangerous, but not of relatively harmless predators. Whereas most studies investigate one type of antipredator behaviour, we studied several types (changes in oviposition, in escape and avoidance behaviour) in the spider mite Tetranychus evansi in response to cues from two predatory mites. The predator Phytoseiulus longipes is considered a dangerous predator for T. evansi, whereas Phytoseiulus macropilis has a low predation rate on this prey, thus is a much less dangerous predator. Spider mite females oviposited less on leaf disc halves with predator cues than on clean disc halves, independent of the predator species. On entire leaf discs, they laid fewer eggs in the presence of cues of the dangerous predator than on clean discs, but not in the presence of cues of the harmless predator. Furthermore, the spider mites escaped more often from discs with cues of the dangerous predator than from discs without predator cues, but they did not escape more from discs with cues of the harmless predator. The spider mites did not avoid plants with conspecifics and predators. We conclude that the spider mites displayed several different antipredator responses to the same predator species, and that some of these antipredator responses were stronger with cues of dangerous predators than with cues of harmless predators.

  7. Anthropogenic extinction of top carnivores and interspecific animal behaviour: implications of the rapid decoupling of a web involving wolves, bears, moose and ravens.

    PubMed Central

    Berger, J

    1999-01-01

    The recent extinction of grizzly bears (Ursus arctos) and wolves (Canis lupus) by humans from 95-99% of the contiguous USA and Mexico in less than 100 years has resulted in dramatically altered and expanded prey communities. Such rampant ecological change and putative ecological instability has not occurred in North American northern boreal zones. This geographical variation in the loss of large carnivores as a consequence of anthropogenic disturbance offers opportunities for examining the potential consequences of extinction on subtle but important ecological patterns involving behaviour and interspecific ecological interactions. In Alaska, where scavengers and large carnivores are associated with carcasses, field experiments involving sound playback simulations have demonstrated that at least one prey species, moose (Alces alces), is sensitive to the vocalizations of ravens (Corvus corax) and may rely on their cues to avoid predation. However, a similar relationship is absent on a predator-free island in Alaska's Cook Inlet and at two sites in the Jackson Hole region of the Rocky Mountains (USA) where grizzly bears and wolves have been extinct for 50-70 years. While prior study of birds and mammals has demonstrated that prey may retain predator recognition capabilities for thousands of years even after predation as a selective force has been relaxed, the results presented here establish that a desensitization in interspecific responsiveness can also occur in less than ten generations. These results affirm (i) a rapid decoupling in behaviour involving prey and scavengers as a consequence of anthropogenic-caused predator-prey disequilibriums, and (ii) subtle, community-level modifications in terrestrial ecosystems where large carnivores no longer exist. If knowledge about ecological and behavioural processes in extant systems is to be enhanced, the potential effects of recently extinct carnivores must be incorporated into current programmes. PMID:10629976

  8. [Medical popularization and moral therapy in Plutarch's Treatise de tuenda sanitate praecepta (Ygieina paraggelmata)].

    PubMed

    Jori, Alberto

    2007-01-01

    In his treatise De tuenda sanitate praecepta (Ygieina paraggelmata: Prescriptions for Health), the Greek philosopher Plutarch of Chaeronea (b. about 45 A.D., d. about 125 A.D.) pursues two aims, which have a deep pedagogical character and are closely connected. To begin with, he would like to provide both his colleagues, "the philosophers" (the equivalent of today's "intellectuals") and politicians with some sanitary/medical suggestions, so that they may adopt a healthy 'life-style', and consequently avoid disease to the best of their ability. Plutarch thus proposes that "philosophers" be made aware of the opportunity, or better yet, of the necessity of learning some medical notions: in their general education (paideia), his colleagues should allow medicine its adequate space, at least in regard to the practical side of the field which relates to a 'life-regimen'. At the same time, Plutarch wishes to impart a moral teaching: in order to remain in good health we must distance ourselves from irrational impulses and social conventions which induce us to practice detrimental behaviours. In this context, the author stresses the need to respect the principles of moderation--both medical and ethical: those of frugality, self-control, and naturalness. His advice is still valid and effective today. Within the background of Plutarch's treatise there is yet a third, implicit aim: to urge the physicians not to imprison themselves in their professional specialization, but rather to also acquire a philosophical education. Such education would indeed allow them to achieve a whole, "holistic" picture of man, who is at the same time soul and body. Many diseases could in fact be avoided if everyone would practice on himself a sort of "moral therapy", which would prevent the soul from falling prey to those deceptive desires from which "self-destructive" behaviours frequently derive.

  9. Diurnal Cortisol Rhythm Is Associated With Increased Risky Decision Making in Older Adults

    PubMed Central

    Weller, Joshua A.; Buchanan, Tony W.; Shackleford, Crystal; Morganstern, Arielle; Hartman, Joshua J.; Yuska, Jonathan; Denburg, Natalie L.

    2014-01-01

    Although past research has suggested a link between chronic stress and both physical and mental well-being in older adults, less is known about the degree to which neuroendocrine markers of stress are associated with higher-order cognitive processes such as decision-making. In a sample of healthy older adults (55–85 years), we tested the degree to which variation in the diurnal cortisol rhythm, an index of hypothalamic-adrenal-pituitary axis dynamics, was related to differences in risky decision making. We found that diurnal cortisol fall predicted performance on the Cups Task, a risky decision making task that independently tests risk taking to achieve gains and risk taking to avoid losses. For potential gains, we found that greater risk-taking was associated with lower diurnal cortisol fall, independent of age or sex of the participant. For risks to avoid potential losses, we found that lower diurnal fall selectively was associated with suboptimal decision-making for men only. Compared to males with more typical diurnal fall, those who displayed lower diurnal fall made more risky choices and demonstrated lower sensitivity to the expected value of the risky choice. We integrate these results with the extant literature on the effects of stress on cognitive aging. PMID:24955995

  10. Unraveling the association between SSRI use and falls: an experimental study of risk factors for accidental falls in long-term paroxetine users.

    PubMed

    Hegeman, Judith; van den Bemt, Bart; Weerdesteyn, Vivian; Nienhuis, Bart; van Limbeek, Jacques; Duysens, Jacques

    2011-01-01

    Selective serotonin reuptake inhibitors (SSRIs) are widely used to treat depression and are also associated with an increased falls risk. However, the biological mechanism underlying accidental falls with SSRI intake has yet to be elucidated. The present experimental study was designed to investigate whether obstacle avoidance skills in long-term (>90 days), senior paroxetine users (61 ± 5.8 years) are affected during gait, simple and challenging postural balance tasks, as well as during manual reaction time tasks. The performance of the paroxetine users was compared with healthy group-matched controls (60 ± 4.8 years). The results demonstrated impaired postural balance in the paroxetine users, especially during one-legged stance or under various dual-task conditions. Although the deficit in one-legged stance could indicate vestibular involvement, this was deemed unlikely because performance of standing on compliant surface with closed eyes remained unaffected. Paroxetine use also failed to affect manual reaction times or obstacle avoidance performance. It is suggested that paroxetine affects attentional capacities particularly in conjunction with balance control. Compared with healthy seniors, long-term senior users of paroxetine seem to be at an increased risk of falling due to impairments in balance control, especially when attention has to be divided between 2 concurrent activities.

  11. Spring habitat use by stocked one year old European sturgeon Acipenser sturio in the freshwater-oligohaline area of the Gironde estuary

    NASA Astrophysics Data System (ADS)

    Acolas, M. L.; Le Pichon, C.; Rochard, E.

    2017-09-01

    Post release habitat selection was studied on forty eight 10-month-old hatchery reared European sturgeon (mean fork length 31.0 cm ± 3.0) in the tidal part of their native catchment using acoustic telemetry. Most of the fish reached the oligohaline estuary within 2-4 days (70 km downstream the release site). Seventy four percent of the fish migrated rapidly downstream of the estuary into mesohaline waters while 26% selected habitat in the freshwater/oligohaline part of the estuary based on their linearity and residency indices. We focused on individual habitat use of these fish. The home range size (HR) was calculated using two methods: the kernel utilization distribution (KUD) which is driven by the maximum detection location density, and the Brownian Bridge (BB) approach which allows the time component of the trajectory path to be taken into account. The average 50% HR KUD was 5.6 ± 2.7 km2 (range 1.1-10.3 km2) and it was estimated to be 6 times larger using the 50% HR BB method (average reaching 31.9 ± 20.7 km2, range 5.2-77.8 km2). Habitat characterization (available prey, substrate and depth) in the studied area was described and the Ivlev electivity index was calculated using the habitat within the 50% HR BB for each individual. Despite the spatial use of different core areas among the fish tagged, we observed a convergence in habitat preference. For substrates, sturgeons showed avoidance of gravel and large rocks as well as fine and medium gravel. There was a significant preference for sand, silts and clay. For depth, they exhibited a preference firstly for the 5-8 m depth range and secondly for the 2-5 m range, a strong avoidance of depth range 8-20 m and a slight avoidance of shallow (0-2 m) and intertidal areas. For prey, individual variability was high. The most homogenous results were found for annelid polychaeta, with a slight preference for areas with this group of preys which are abundant in the saline estuary. For some individuals, a preference for areas with crustacea or nematodea and avoidance for areas with mollusks, insects or oligochaeta occured. We explain our results in light of foraging behavior and adaptation to the wild environment after captivity. For sturgeon population restoration projects in western Europe, these habitat preferences are key-features needed to evaluate the essential habitat availability for A. sturio juveniles in the tidal area at the front of the freshwater/saline transition waters.

  12. Seasonal changes in infaunal community structure in a hypertrophic brackish canal: Effects of hypoxia, sulfide, and predator-prey interaction.

    PubMed

    Kanaya, Gen; Nakamura, Yasuo; Koizumi, Tomoyoshi; Yamada, Katsumasa

    2015-07-01

    We conducted a one-year survey of macrozoobenthic community structure at 5 stations in a eutrophic canal in inner Tokyo Bay, focusing on the impacts of hypoxia, sediment H2S, and species interaction in the littoral soft-bottom habitats. Complete defaunation or decreasing density of less-tolerant taxa occurred under hypoxia during warmer months, especially at subtidal or sulfidic stations; this was followed by rapid recolonization by opportunistic polychaetes in fall-winter. Sedimentary H2S increased the mortality of macroinvertebrates under hypoxia or delayed population recovery during recolonization. The density of several polychaetes (e.g., Pseudopolydora reticulata) declined in winter, coincident with immigration of the predator Armandia lanceolata. This suggests that absence of A. lanceolata under moderate hypoxia enabled the proliferation of prey taxa. We conclude that oxygen concentration, sediment H2S, and hypoxia-induced changes in species interactions are potential drivers for spatiotemporal changes in macrozoobenthic assemblage structure in hypoxia-prone soft-bottom communities. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. A short-term look at potential changes in Lake Michigan slimy sculpin diets

    USGS Publications Warehouse

    French, John R. P.; Stickel, Richard G.; Stockdale, Beth A.; Black, M. Glen

    2010-01-01

    Diporeia hoyi and Mysis relicta are the most important prey items of slimy sculpins (Cottus cognatus) in the Great Lakes. Slimy sculpins were collected from dreissenid-infested bottoms off seven Lake Michigan ports at depths of 27–73 m in fall 2003 to study their lake-wide diets. Relatively large dreissenid biomass occurred at depths of 37- and 46-m. Quagga mussels (Dreissena bugnesis) composed at least 50% of dreissenid biomass at Manistique, Saugatuck, and Sturgeon Bay. Mysis accounted for 82% of the sculpin diet by dry weight at eastern Lake Michigan while Diporeia composed 54–69% of the diet at western Lake Michigan and dominated the diets of slimy sculpins at all sites deeper than 46 m. In northern Lake Michigan, this diet study in new sites showed that slimy sculpin consumed more prey with low energy contents, especially chironomids, than Mysis and Diporeia in shallow sites (depth <55 m). We recommend diet studies on sedentary benthic fishes to be conducted along perimeters of the Great Lakes to observe changes in their diets that may be impacted by changing benthic macroinvertebrate communities.

  14. Climatic Variables Do Not Directly Predict Spider Richness and Abundance in Semiarid Caatinga Vegetation, Brazil.

    PubMed

    Carvalho, Leonardo S; Sebastian, Nicholas; Araújo, Helder F P; Dias, Sidclay C; Venticinque, Eduardo; Brescovit, Antonio D; Vasconcellos, Alexandre

    2015-02-01

    Spiders are abundant in tropical ecosystems and exert predatory pressure on a wide variety of invertebrate populations and also serve as prey for many others organisms, being part of complex interrelationships influenced directly and indirectly by a myriad of factors. We examined the influence of biotic (i.e., prey availability) and abiotic (i.e., temperature, precipitation, relative humidity, real evapotranspiration) factors on species richness and abundance during a two-year period in the semiarid Caatinga vegetation in northeastern Brazil. Data were analyzed through partial autocorrelation functions, cross correlations, and a path analysis. A total of 2522 spiders were collected with beating tray, pit-fall traps, and malaise traps, comprising 91 species and 34 families. Spider abundance peaked in the rainy season. Our results suggest that total invertebrate abundance has a direct influence on spider richness and abundance, whereas the effects of precipitation were mainly indirectly related to most spider assemblage parameters. The increase in vegetation cover with the rainy season in the Caatinga provides more breeding and foraging sites for spiders and stimulates their activities. Additionally, rainfall in arid and semiarid ecosystems stimulated the activity and reproduction of many herbivore and detritivore invertebrates dependent on plant biomass and necromass consumption, leading to an increase in spider prey availability. © The Author 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Non-indigenous predators threaten ecosystem engineers: Interactive effects of green crab and oyster size on American oyster mortality.

    PubMed

    Pickering, Tyler R; Poirier, Luke A; Barrett, Timothy J; McKenna, Shawn; Davidson, Jeff; Quijón, Pedro A

    2017-06-01

    Non-indigenous green crabs (Carcinus maenas) are emerging as important predators of autogenic engineers like American oysters (Crassostrea virginica) throughout the eastern seaboard of Canada and the United States. To document the spreading distribution of green crabs, we carried out surveys in seven sites of Prince Edward Island during three fall seasons. To assess the potential impact of green crabs on oyster mortality in relation to predator and prey size, we conducted multiple predator-prey manipulations in the field and laboratory. The surveys confirmed an ongoing green crab spread into new productive oyster habitats while rapidly increasing in numbers in areas where crabs had established already. The experiments measured mortality rates on four sizes of oysters exposed to three sizes of crab, and lasted 3-5 days. The outcomes of experiments conducted in Vexar ® bags, laboratory tanks and field cages were consistent and were heavily dependent on both crab size and oyster size: while little predation occurred on large oysters, large and medium green crabs preyed heavily on small sizes. Oysters reached a refuge within the 35-55 mm shell length range; below that range, oysters suffered high mortality due to green crab predation and thus require management measures to enhance their survival. These results are most directly applicable to aquaculture operations and restoration initiatives but have implications for oyster sustainability. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Managing a subsidized predator population: Reducing common raven predation on desert tortoises

    USGS Publications Warehouse

    Boarman, W.I.

    2003-01-01

    Human communities often are an inadvertent source of food, water, and other resources to native species of wildlife. Because these resources are more stable and predictable than those in a natural environment, animals that subsist on them are able to increase in numbers and expand their range, much to the detriment of their competitors and species they prey upon. In the Mojave Desert, common ravens (Corvus corax) have benefited from human-provided resources to increase in population size precipitously in recent years. This trend has caused concern because ravens prey on juvenile desert tortoises (Gopherus agassizii), a federally threatened species. In this paper, I discuss management strategies to reduce raven predation on desert tortoises. The recommendations fall into three categories: (1) managing raven populations by reducing access to anthropogenic resources; (2) removing offending ravens or other birds in specially targeted tortoise management zones; and (3) continuing research on raven ecology, raven behavior, and methods of reducing raven predation on tortoises. I also recommend approaching the problem within an adaptive management framework: management efforts should first be employed as scientific experiments - with replicates and controls - to yield an unbiased assessment of their effectiveness. Furthermore, these strategies should be implemented in concert with actions that reduce other causes of desert tortoise mortality to aid the long-term recovery of their populations. Overall, the approaches outlined in this paper are widely applicable to the management of subsidized predators, particularly where they present a threat to a declining species of prey.

  17. Size Matters: Observed and Modeled Camouflage Response of European Cuttlefish (Sepia officinalis) to Different Substrate Patch Sizes during Movement

    PubMed Central

    Josef, Noam; Berenshtein, Igal; Rousseau, Meghan; Scata, Gabriella; Fiorito, Graziano; Shashar, Nadav

    2017-01-01

    Camouflage is common throughout the phylogenetic tree and is largely used to minimize detection by predator or prey. Cephalopods, and in particular Sepia officinalis cuttlefish, are common models for camouflage studies. Predator avoidance behavior is particularly important in this group of soft-bodied animals that lack significant physical defenses. While previous studies have suggested that immobile cephalopods selectively camouflage to objects in their immediate surroundings, the camouflage characteristics of cuttlefish during movement are largely unknown. In a heterogenic environment, the visual background and substrate feature changes quickly as the animal swim across it, wherein substrate patch is a distinctive and high contrast patch of substrate in the animal's trajectory. In the current study, we examine the effect of substrate patch size on cuttlefish camouflage, and specifically the minimal size of an object for eliciting intensity matching response while moving. Our results indicated that substrate patch size has a positive effect on animal's reflectance change, and that the threshold patch size resulting in camouflage response falls between 10 and 19 cm (width). These observations suggest that the animal's length (7.2–12.3 cm mantle length in our case) serves as a possible threshold filter below which objects are considered irrelevant for camouflage, reducing the frequency of reflectance changes—which may lead to detection. Accordingly, we have constructed a computational model capturing the main features of the observed camouflaging behavior, provided for cephalopod camouflage during movement. PMID:28144221

  18. Size Matters: Observed and Modeled Camouflage Response of European Cuttlefish (Sepia officinalis) to Different Substrate Patch Sizes during Movement.

    PubMed

    Josef, Noam; Berenshtein, Igal; Rousseau, Meghan; Scata, Gabriella; Fiorito, Graziano; Shashar, Nadav

    2016-01-01

    Camouflage is common throughout the phylogenetic tree and is largely used to minimize detection by predator or prey. Cephalopods, and in particular Sepia officinalis cuttlefish, are common models for camouflage studies. Predator avoidance behavior is particularly important in this group of soft-bodied animals that lack significant physical defenses. While previous studies have suggested that immobile cephalopods selectively camouflage to objects in their immediate surroundings, the camouflage characteristics of cuttlefish during movement are largely unknown. In a heterogenic environment, the visual background and substrate feature changes quickly as the animal swim across it, wherein substrate patch is a distinctive and high contrast patch of substrate in the animal's trajectory. In the current study, we examine the effect of substrate patch size on cuttlefish camouflage, and specifically the minimal size of an object for eliciting intensity matching response while moving. Our results indicated that substrate patch size has a positive effect on animal's reflectance change, and that the threshold patch size resulting in camouflage response falls between 10 and 19 cm (width). These observations suggest that the animal's length (7.2-12.3 cm mantle length in our case) serves as a possible threshold filter below which objects are considered irrelevant for camouflage, reducing the frequency of reflectance changes-which may lead to detection. Accordingly, we have constructed a computational model capturing the main features of the observed camouflaging behavior, provided for cephalopod camouflage during movement.

  19. Beware the next big thing.

    PubMed

    Birkinshaw, Julian

    2014-05-01

    Innovative management ideas that bubble up in other companies pose a perennial quandary for leaders: Should you attempt to borrow new ideas, and if so, which ones and how? Even the most promising practices can be disastrous if they're transplanted into the wrong company, writes Julian Birkinshaw of London Business School. Broadly speaking, there are two ways to borrow from innovative companies, he argues. The first, observe and apply, is the most commonly used approach for adopting new management ideas. It can and does work well, but only under Limited sets of circumstances: when the observed practice easily stands alone or involves just a small constellation of supporting behaviors (think of GE's well-regarded succession-planning process) and when a company's management model or way of thinking is very similar to the originator's (think of two software firms that both use the Agile development approach). The second method is to extract a management practice's essential principle-its underlying logic-and ask a series of questions to determine if it is right for your firm, including: How is your company different from the originating firm? Are the goals of the practice important to your organization? Many management innovations are launched with great fanfare, only to fade in popularity. With careful analysis, you can avoid falling prey to this hype cycle. And even if it turns out that a borrowed idea isn't right for you, the analysis will help you better understand your own management models and sharpen your practices.

  20. Plant structure and the searching efficiency of coccinellid larvae.

    PubMed

    Carter, M C; Sutherland, D; Dixon, A F G

    1984-08-01

    | 1. To determine the effect of plant structure on the searching efficiency of Coccinella septempunctata L. larvae, their functional response on pea and bean plants was compared. 2. The attack coefficient a was lower on pea than on bean plants. 3. This was not due to a difference in the coincidence of prey distribution and predator searching effort, but was due to larvae falling off the smooth leaves of pea plants significantly more frequently than off bean plants. 4. It was concluded that plant structure is an important factor in determining the quality of a habitat for coccinellids.

  1. Liberal bias and the five-factor model.

    PubMed

    Charney, Evan

    2015-01-01

    Duarte et al. draw attention to the "embedding of liberal values and methods" in social psychological research. They note how these biases are often invisible to the researchers themselves. The authors themselves fall prey to these "invisible biases" by utilizing the five-factor model of personality and the trait of openness to experience as one possible explanation for the under-representation of political conservatives in social psychology. I show that the manner in which the trait of openness to experience is conceptualized and measured is a particularly blatant example of the very liberal bias the authors decry.

  2. Migration and habitat preferences of Swainson's Hawks at an autumn stopover site in northwestern Texas

    USGS Publications Warehouse

    Littlefield, Carroll D.; Johnson, Douglas H.

    2013-01-01

    Unlike most raptors, the Swainson's Hawk (Buteo swainsoni) migrates long distances between breeding and wintering ranges, which elevates the importance of stopover sites for foraging. We conducted three years of fall surveys in the Southern High Plains of Texas. Migrant Swainson's Hawks moved through the area mostly between July and mid-October, peaking in September. Subadults tended to migrate earlier than adults, and light morphs before dark morphs. Favored foraging habitats included silage corn, green beans, and alfalfa, but the hawks foraged primarily where ongoing agricultural activities disturbed prey and made them more available.

  3. Abstracts for student symposium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldman, B.

    Lawrence Livermore National Laboratory Science and Engineering Research Semester (SERS) students are participants in a national program sponsored by the DOE Office of Energy Research. Presented topics from Fall 1993 include: Laser glass, wiring codes, lead in food and food containers, chromium removal from ground water, fiber optic sensors for ph measurement, CFC replacement, predator/prey simulation, detection of micronuclei in germ cells, DNA conformation, stimulated brillouin scattering, DNA sequencing, evaluation of education programs, neural network analysis of nuclear glass, lithium ion batteries, Indonesian snails, optical switching systems, and photoreceiver design. Individual papers are indexed separately on the Energy Data Base.

  4. Understanding the influence of predation on introduced fishes on juvenile salmonids in the Columbia River Basin: Closing some knowledge gaps. Late summer and fall diet and condition of smallmouth bass, walleye, and channel catfish in the middle Columbia River, USA. Interim Report of Research 2011.

    USGS Publications Warehouse

    Rose, Brien P.; Hansen, Gabriel S.; Weaver,; Ayers, David; Van Dyke, Erick S.; Mesa, Matthew G.

    2012-01-01

    American shad Alosa sapidissima in the middle Columbia River (MCR)—a high energy food available in the summer and fall—may be contributing to the increased growth and enhanced condition of nonnative piscivores. To test this hypothesis we quantified the late summer and autumn diets of smallmouth bass Micropterus dolomieu, walleye Sander vitreus, and channel catfish Ictalurus punctatus in the three lowermost reservoirs on the Columbia River (Bonneville [BON], The Dalles [TDA], and John Day [JDA]). The diet of smallmouth bass (SMB) was fairly similar among reservoirs, with crustaceans (52–82%) and fish (13–38%) being the dominant prey groups by percent mass. Cottidae were usually the dominant fish prey in the diet of SMB at all areas and the contribution of juvenile shad ranged from 0–8.2%. Fish (mostly Cyprinidae and Cottidae) were always the dominant prey item for walleye (WAL) at all areas and at all times, ranging from 70–100% of their diet by mass. Juvenile American shad composed from 10–27% (by mass) of the diet of walleye, depending on area and month. For channel catfish (CHC), the most common prey items consumed were crustaceans (20%–80% by mass) and unidentified items (30%–80%). Fish represented a relatively small component (< 4%) of their diet. We also evaluated the condition of SMB and WAL by determining relative weights (Wr) and hepatosomatic indices (HSI). Mean Wr for SMB greater than 300 mm ranged from 0.89 to 0.94 depending on area and month and showed a significant increase from August to September for fish in BON only. Overall, mean Wr of WAL was similar at all areas, ranging from 0.89–0.91, and increased significantly from September to mid-October and November for fish in TDA only. Overall, mean HSI of SMB ranged from 1.18 to 1.48, did not differ between fish in different reservoirs, and increased significantly from September to mid-October and November for fish from the lower JDA only. Mean HSI of WAL was significantly higher in October and November (0.95±0.24) than in August (0.73±0.22). Collectively, our results are the first to describe the diets of SMB, WAL, and CHC over a large spatial area in the MCR during late summer and fall. Only SMB and WAL consumed relevant amounts (up to 27% by mass for walleye) of American shad, however the influence of this diet item on their condition was not discernible because these fish showed only slight increases in condition indices that did not always correspond to a dietary shift that included an increase in shad consumption, and we could not discount the importance of other prey items. Our results should be useful for future discussions regarding predation and shad management in the Columbia River. 

  5. Predator-induced changes of female mating preferences: innate and experiential effects

    PubMed Central

    2011-01-01

    Background In many species males face a higher predation risk than females because males display elaborate traits that evolved under sexual selection, which may attract not only females but also predators. Females are, therefore, predicted to avoid such conspicuous males under predation risk. The present study was designed to investigate predator-induced changes of female mating preferences in Atlantic mollies (Poecilia mexicana). Males of this species show a pronounced polymorphism in body size and coloration, and females prefer large, colorful males in the absence of predators. Results In dichotomous choice tests predator-naïve (lab-reared) females altered their initial preference for larger males in the presence of the cichlid Cichlasoma salvini, a natural predator of P. mexicana, and preferred small males instead. This effect was considerably weaker when females were confronted visually with the non-piscivorous cichlid Vieja bifasciata or the introduced non-piscivorous Nile tilapia (Oreochromis niloticus). In contrast, predator experienced (wild-caught) females did not respond to the same extent to the presence of a predator, most likely due to a learned ability to evaluate their predators' motivation to prey. Conclusions Our study highlights that (a) predatory fish can have a profound influence on the expression of mating preferences of their prey (thus potentially affecting the strength of sexual selection), and females may alter their mate choice behavior strategically to reduce their own exposure to predators. (b) Prey species can evolve visual predator recognition mechanisms and alter their mate choice only when a natural predator is present. (c) Finally, experiential effects can play an important role, and prey species may learn to evaluate the motivational state of their predators. PMID:21726456

  6. Risk of falls in the rheumatic patient at geriatric age.

    PubMed

    Prusinowska, Agnieszka; Komorowski, Arkadiusz; Sadura-Sieklucka, Teresa; Księżopolska-Orłowska, Krystyna

    2017-01-01

    Evaluating the risk of falling of a geriatric rheumatic patient plays an essential role not only in planning and carrying out the physiotherapeutic process. The consequences of falls may be different and, although they do not always result in serious repercussions such as fractures or injuries, it is sufficient that they generate the fear of falling and cause a significant reduction in physical activity. Assessing functional capacity to define the risk of falling is of utmost importance in the case of patients after joint arthroplasty surgeries. The specificity of rheumatic patient's falls is determined by numerous factors. It is not always possible to avoid them. However, it becomes vital to include fall prevention in the rehabilitation process as well as to prepare the house for the needs of an elderly person so that they are safe and as self-dependent as possible.

  7. Neuroendocrine changes upon exposure to predator odors.

    PubMed

    Hegab, Ibrahim M; Wei, Wanhong

    2014-05-28

    Predator odors are non-intrusive and naturalistic stressors of high ethological relevance in animals. Upon exposure to a predator or its associated cues, robust physiological and molecular anti-predator defensive strategies are elicited thereby allowing prey species to recognize, avoid and defend against a possible predation threat. In this review, we will discuss the nature of neuroendocrine stress responses upon exposure to predator odors. Predator odors can have a profound effect on the endocrine system, including activation of the hypothalamic-pituitary-adrenal axis, and induction of stress hormones such as corticosterone and adrenocorticotropic hormone. On a neural level, short-term exposure to predator odors leads to induction of the c-fos gene, while induction of ΔFosB in a different brain region is detected under chronic predation stress. Future research should aim to elucidate the relationships between neuroendocrine and behavioral outputs to gage the different levels of anti-predator responses in prey species. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Cryptic termites avoid predatory ants by eavesdropping on vibrational cues from their footsteps.

    PubMed

    Oberst, Sebastian; Bann, Glen; Lai, Joseph C S; Evans, Theodore A

    2017-02-01

    Eavesdropping has evolved in many predator-prey relationships. Communication signals of social species may be particularly vulnerable to eavesdropping, such as pheromones produced by ants, which are predators of termites. Termites communicate mostly by way of substrate-borne vibrations, which suggest they may be able to eavesdrop, using two possible mechanisms: ant chemicals or ant vibrations. We observed termites foraging within millimetres of ants in the field, suggesting the evolution of specialised detection behaviours. We found the termite Coptotermes acinaciformis detected their major predator, the ant Iridomyrmex purpureus, through thin wood using only vibrational cues from walking, and not chemical signals. Comparison of 16 termite and ant species found the ants-walking signals were up to 100 times higher than those of termites. Eavesdropping on passive walking signals explains the predator detection and foraging behaviours in this ancient relationship, which may be applicable to many other predator-prey relationships. © 2017 John Wiley & Sons Ltd/CNRS.

  9. An arboreal spider protects its offspring by diving into the water of tank bromeliads.

    PubMed

    Hénaut, Yann; Corbara, Bruno; Azémar, Frédéric; Céréghino, Régis; Dézerald, Olivier; Dejean, Alain

    2018-03-01

    Cupiennius salei (Ctenidae) individuals frequently live in association with tank bromeliads, including Aechmea bracteata, in Quintana Roo (Mexico). Whereas C. salei females without egg sacs hunt over their entire host plant, females carrying egg sacs settle above the A. bracteata reservoirs they have partially sealed with silk. There they avoid predators that use sight to detect their prey, as is known for many bird species. Furthermore, if a danger is more acute, these females dive with their egg sacs into the bromeliad reservoir. An experiment showed that this is not the case for males or females without egg sacs. In addition to the likely abundance of prey found therein, the potential of diving into the tank to protect offspring may explain the close association of this spider with bromeliads. These results show that, although arboreal, C. salei evolved a protective behavior using the water of tank bromeliads to protect offspring. Copyright © 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

  10. Bunch length compression method for free electron lasers to avoid parasitic compressions

    DOEpatents

    Douglas, David R.; Benson, Stephen; Nguyen, Dinh Cong; Tennant, Christopher; Wilson, Guy

    2015-05-26

    A method of bunch length compression method for a free electron laser (FEL) that avoids parasitic compressions by 1) applying acceleration on the falling portion of the RF waveform, 2) compressing using a positive momentum compaction (R.sub.56>0), and 3) compensating for aberration by using nonlinear magnets in the compressor beam line.

  11. Both Palatable and Unpalatable Butterflies Use Bright Colors to Signal Difficulty of Capture to Predators.

    PubMed

    Pinheiro, C E G; Freitas, A V L; Campos, V C; DeVries, P J; Penz, C M

    2016-04-01

    Birds are able to recognize and learn to avoid attacking unpalatable, chemically defended butterflies after unpleasant experiences with them. It has also been suggested that birds learn to avoid prey that are efficient at escaping. This, however, remains poorly documented. Here, we argue that butterflies may utilize a variety of escape tactics against insectivorous birds and review evidence that birds avoid attacking butterflies that are hard to catch. We suggest that signaling difficulty of capture to predators is a widespread phenomenon in butterflies, and this ability may not be limited to palatable butterflies. The possibility that both palatable and unpalatable species signal difficulty of capture has not been fully explored, but helps explain the existence of aposematic coloration and escape mimicry in butterflies lacking defensive chemicals. This possibility may also change the role that putative Müllerian and Batesian mimics play in a variety of classical mimicry rings, thus opening new perspectives in the evolution of mimicry in butterflies.

  12. Ecosystem characteristics and processes facilitating persistent macrobenthic biomass hotspots and associated benthivory in the Pacific Arctic

    NASA Astrophysics Data System (ADS)

    Grebmeier, Jacqueline M.; Bluhm, Bodil A.; Cooper, Lee W.; Danielson, Seth L.; Arrigo, Kevin R.; Blanchard, Arny L.; Clarke, Janet T.; Day, Robert H.; Frey, Karen E.; Gradinger, Rolf R.; Kędra, Monika; Konar, Brenda; Kuletz, Kathy J.; Lee, Sang H.; Lovvorn, James R.; Norcross, Brenda L.; Okkonen, Stephen R.

    2015-08-01

    The northern Bering and Chukchi Seas are areas in the Pacific Arctic characterized by high northward advection of Pacific Ocean water, with seasonal variability in sea ice cover, water mass characteristics, and benthic processes. In this review, we evaluate the biological and environmental factors that support communities of benthic prey on the continental shelves, with a focus on four macrofaunal biomass "hotspots." For the purpose of this study, we define hotspots as macrofaunal benthic communities with high biomass that support a corresponding ecological guild of benthivorous seabird and marine mammal populations. These four benthic hotspots are regions within the influence of the St. Lawrence Island Polynya (SLIP), the Chirikov Basin between St. Lawrence Island and Bering Strait (Chirikov), north of Bering Strait in the southeast Chukchi Sea (SECS), and in the northeast Chukchi Sea (NECS). Detailed benthic macrofaunal sampling indicates that these hotspot regions have been persistent over four decades of sampling due to annual reoccurrence of seasonally consistent, moderate-to-high water column production with significant export of carbon to the underlying sediments. We also evaluate the usage of the four benthic hotspot regions by benthic prey consumers to illuminate predator-prey connectivity. In the SLIP hotspot, spectacled eiders and walruses are important winter consumers of infaunal bivalves and polychaetes, along with epibenthic gastropods and crabs. In the Chirikov hotspot, gray whales have historically been the largest summer consumers of benthic macrofauna, primarily feeding on ampeliscid amphipods in the summer, but they are also foraging further northward in the SECS and NECS hotspots. Areas of concentrated walrus foraging occur in the SLIP hotspot in winter and early spring, the NECS hotspot in summer, and the SECS hotspot in fall. Bottom up forcing by hydrography and food supply to the benthos influences persistence and composition of benthic prey that then influences the distributions of benthivorous upper trophic level populations.

  13. Status of pelagic prey fishes and pelagic macroinvertebrates in Lake Michigan, 2008

    USGS Publications Warehouse

    Warner, David M.; Claramunt, Randall M.; Holuszko, Jeffrey D.; Desorcie, Timothy J.

    2009-01-01

    Acoustic surveys were conducted in late summer/early fall during the years 1992-1996 and 2001-2008 to estimate pelagic prey fish biomass in Lake Michigan. Midwater trawling during the surveys provided a measure of species and size composition of the fish community for use in scaling acoustic data and providing species-specific abundance estimates. In 2005, we began sampling Mysis diluviana during the survey. The 2008 survey provided data from 24 acoustic transects (734 km), 33 midwater tows, and 39 mysid tows. Mean total prey fish biomass was 15.3 kg/ha (relative standard error, RSE = 7.6%) or ~82 kilotonnes (kt, 1,000 metric tons), which was 1.9 times higher than the estimate for 2007 but 78% lower than the long-term mean. The increase from 2007 was because of increased biomass of age-1 and age-3 alewife. The 2008 alewife year-class contributed ~12% of total alewife biomass (11.0 kg/ha, RSE = 9.0%), while the 2007 and 2005 alewife year-classes contributed ~33% and 35%, respectively. In 2008, alewife comprised 72% of total biomass, while rainbow smelt and bloater were 11 and 17% of total biomass, respectively. Rainbow smelt biomass in 2008 (1.6 kg/ha, RSE = 10.6%) was identical to the biomass in 2007 (1.6 kg/ha). Bloater biomass was again much lower (2.6 kg/ha, RSE = 15.2%) than in the 1990s, but mean density of small bloater in 2008 (534 fish/ha, RSE = 10.9) was the highest observed in any acoustic survey on record. Prey fish biomass remained well below the Fish Community Objectives target of 500-800 kt and only alewife and small bloater are above or near long-term mean biomass levels. Mysis diluviana remains relatively abundant. Mean density ranged from 185 ind./m2 (RSE = 6.8%) in 2005 to 112 ind./m2 (RSE = 5.1%) in 2007, but there was not a statistically significant difference among years.

  14. Hard times in the city - attractive nest sites but insufficient food supply lead to low reproduction rates in a bird of prey.

    PubMed

    Sumasgutner, Petra; Nemeth, Erwin; Tebb, Graham; Krenn, Harald W; Gamauf, Anita

    2014-01-01

    Urbanization is a global phenomenon that is encroaching on natural habitats and decreasing biodiversity, although it is creating new habitats for some species. The Eurasian kestrel (Falco tinnunculus) is frequently associated with urbanized landscapes but it is unclear what lies behind the high densities of kestrels in the urban environment. Occupied nest sites in the city of Vienna, Austria were investigated along a gradient of urbanization (percentage of land covered by buildings or used by traffic). Field surveys determined the abundance of potential prey (birds and rodents) and the results were compared to the birds' diets. A number of breeding parameters were recorded over the course of three years. The majority of kestrels breed in semi-natural cavities in historic buildings. Nearest neighbour distances (NND) were smallest and reproductive success lowest in the city centre. Abundance of potential prey was not found to relate to the degree of urbanization but there was a significant shift in the birds' diets from a heavy reliance on rodents in the outskirts of the city to feeding more on small birds in the centre. The use of urban habitats was associated with higher nest failure, partly associated with predation and nest desertion, and with significantly lower hatching rates and smaller fledged broods. High breeding densities in urban habitats do not necessarily correlate with high habitat quality. The high density of kestrel nests in the city centre is probably due to the ready availability of breeding cavities. Highly urbanized areas in Vienna are associated with unexpected costs for the city dwelling-raptor, in terms both of prey availability and of reproductive success. The kestrel appears to be exploiting the urban environment but given the poor reproductive performance of urban kestrels it is likely that the species is falling into an ecological trap.

  15. Hard times in the city – attractive nest sites but insufficient food supply lead to low reproduction rates in a bird of prey

    PubMed Central

    2014-01-01

    Introduction Urbanization is a global phenomenon that is encroaching on natural habitats and decreasing biodiversity, although it is creating new habitats for some species. The Eurasian kestrel (Falco tinnunculus) is frequently associated with urbanized landscapes but it is unclear what lies behind the high densities of kestrels in the urban environment. Results Occupied nest sites in the city of Vienna, Austria were investigated along a gradient of urbanization (percentage of land covered by buildings or used by traffic). Field surveys determined the abundance of potential prey (birds and rodents) and the results were compared to the birds’ diets. A number of breeding parameters were recorded over the course of three years. The majority of kestrels breed in semi-natural cavities in historic buildings. Nearest neighbour distances (NND) were smallest and reproductive success lowest in the city centre. Abundance of potential prey was not found to relate to the degree of urbanization but there was a significant shift in the birds’ diets from a heavy reliance on rodents in the outskirts of the city to feeding more on small birds in the centre. The use of urban habitats was associated with higher nest failure, partly associated with predation and nest desertion, and with significantly lower hatching rates and smaller fledged broods. Conclusions High breeding densities in urban habitats do not necessarily correlate with high habitat quality. The high density of kestrel nests in the city centre is probably due to the ready availability of breeding cavities. Highly urbanized areas in Vienna are associated with unexpected costs for the city dwelling-raptor, in terms both of prey availability and of reproductive success. The kestrel appears to be exploiting the urban environment but given the poor reproductive performance of urban kestrels it is likely that the species is falling into an ecological trap. PMID:24872836

  16. Evolutionary History of Assassin Bugs (Insecta: Hemiptera: Reduviidae): Insights from Divergence Dating and Ancestral State Reconstruction

    PubMed Central

    Hwang, Wei Song; Weirauch, Christiane

    2012-01-01

    Assassin bugs are one of the most successful clades of predatory animals based on their species numbers (∼6,800 spp.) and wide distribution in terrestrial ecosystems. Various novel prey capture strategies and remarkable prey specializations contribute to their appeal as a model to study evolutionary pathways involved in predation. Here, we reconstruct the most comprehensive reduviid phylogeny (178 taxa, 18 subfamilies) to date based on molecular data (5 markers). This phylogeny tests current hypotheses on reduviid relationships emphasizing the polyphyletic Reduviinae and the blood-feeding, disease-vectoring Triatominae, and allows us, for the first time in assassin bugs, to reconstruct ancestral states of prey associations and microhabitats. Using a fossil-calibrated molecular tree, we estimated divergence times for key events in the evolutionary history of Reduviidae. Our results indicate that the polyphyletic Reduviinae fall into 11–14 separate clades. Triatominae are paraphyletic with respect to the reduviine genus Opisthacidius in the maximum likelihood analyses; this result is in contrast to prior hypotheses that found Triatominae to be monophyletic or polyphyletic and may be due to the more comprehensive taxon and character sampling in this study. The evolution of blood-feeding may thus have occurred once or twice independently among predatory assassin bugs. All prey specialists evolved from generalist ancestors, with multiple evolutionary origins of termite and ant specializations. A bark-associated life style on tree trunks is ancestral for most of the lineages of Higher Reduviidae; living on foliage has evolved at least six times independently. Reduviidae originated in the Middle Jurassic (178 Ma), but significant lineage diversification only began in the Late Cretaceous (97 Ma). The integration of molecular phylogenetics with fossil and life history data as presented in this paper provides insights into the evolutionary history of reduviids and clears the way for in-depth evolutionary hypothesis testing in one of the most speciose clades of predators. PMID:23029072

  17. Resource partitioning among top predators in a Miocene food web

    PubMed Central

    Domingo, M. Soledad; Domingo, Laura; Badgley, Catherine; Sanisidro, Oscar; Morales, Jorge

    2013-01-01

    The exceptional fossil sites of Cerro de los Batallones (Madrid Basin, Spain) contain abundant remains of Late Miocene mammals. From these fossil assemblages, we have inferred diet, resource partitioning and habitat of three sympatric carnivorous mammals based on stable isotopes. The carnivorans include three apex predators: two sabre-toothed cats (Felidae) and a bear dog (Amphicyonidae). Herbivore and carnivore carbon isotope (δ13C) values from tooth enamel imply the presence of a woodland ecosystem dominated by C3 plants. δ13C values and mixing-model analyses suggest that the two sabre-toothed cats, one the size of a leopard and the other the size of a tiger, consumed herbivores with similar δ13C values from a more wooded portion of the ecosystem. The two sabre-toothed cats probably hunted prey of different body sizes, and the smaller species could have used tree cover to avoid encounters with the larger felid. For the bear dog, δ13C values are higher and differ significantly from those of the sabre-toothed cats, suggesting a diet that includes prey from more open woodland. Coexistence of the sabre-toothed cats and the bear dog was likely facilitated by prey capture in different portions of the habitat. This study demonstrates the utility of stable isotope analysis for investigating the behaviour and ecology of members of past carnivoran guilds. PMID:23135673

  18. Status of important prey fishes in the U.S. waters of Lake Ontario, 2013: Introduction and methods, alewife, rainbow smelt, sculpins, and round goby

    USGS Publications Warehouse

    Walsh, Maureen; Weidel, Brian C.; Connerton, Michael J.

    2014-01-01

    Lake Ontario has a mean depth of 86 m (282 ft) and a maximum depth of 244 m (801 ft) (Herdendorf 1982). The southern, New York portion of the lake has the deepest water (Figure 1). In New York waters, about 67% of the lake is <160 m (525 ft) deep and about 82% of the lake is <180 m (591 ft) deep. The U.S. Geological Survey (USGS) and New York State Department of Environmental Conservation (NYSDEC) have cooperatively assessed Lake Ontario prey fishes each year since 1978. Bottom trawl assessments were initially focused on Alewife Alosa pseudoharengus (April), Rainbow Smelt Osmerus mordax (June), and Slimy Sculpin Cottus cognatus (October). Seasonal survey timing corresponded to the peak catches in 1972 when collections were made every month May to October (Owens et al. 2003). Twelve transects were established at approximately 25-km intervals along the U.S. shoreline (Figure 2). Alewife assessment was conducted at all transects, Rainbow Smelt assessment at all transects except Fair Haven, and six transects representing eastern, southern, and western lake areas were sampled for Slimy Sculpin (Figure 2). Changes in the Lake Ontario ecosystem (species invasion, oligotrophication, native species rebound) require ongoing evaluation of current methods which sometimes necessitate redistribution of trawl effort, or changes in sampling designs and/or gear. For instance, the spring Alewife assessment is now used also to assess invasive Round Goby Neogobius melanostomus population dynamics. Likewise, the fall benthic fish assessment (formerly sculpin assessment) now also tracks dynamics of the rebounding native Deepwater Sculpin Myoxocephalus thompsonii population, the apparent declining population of Slimy Sculpin, and fall distribution of Round Goby.

  19. Falls risk among a very old home-dwelling population

    PubMed Central

    Iinattiniemi, Sari; Jokelainen, Jari; Luukinen, Heikki

    2009-01-01

    Objective The aim of this prospective study was to examine risk factors of falling in a very old home-dwelling population. Design A prospective study of home-dwelling elderly people. Methods Baseline data were collected by home-nursing staff through postal questionnaires and clinical tests. Data on falls were recorded in telephone interviews every other month during a follow-up of 11 months constituting 494 person years (PY). Negative binomial modeling was used to assess fall risk. Setting General community. Subjects A population sample of home-dwelling subjects aged 85 years or older (n = 555). Main outcome measures Fall rate and risk factors of falls. Results Altogether 512 falls occurred in 273 (49%) subjects, incidence rate 1.03/PY. According to a multivariate model, history of recurrent falling, trouble with vision when moving, use of antipsychotic drug, and feelings of anxiety, nervousness, or fear were independent risk factors for subsequent falls. Conclusion Appropriate care of poor vision and feelings of anxiety, nervousness, or fear, and avoidance of use of antipsychotic drugs might be useful in the prevention of falls among the most elderly home-dwellers. PMID:19065453

  20. Susceptibility of Caenorhabditis elegans to Burkholderia Infection Depends on Prior Diet and Secreted Bacterial Attractants

    PubMed Central

    Cooper, Vaughn S.; Carlson, Wendy A.; LiPuma, John J.

    2009-01-01

    The nematode Caenorhabditis elegans may be killed by certain pathogenic bacteria and thus is a model organism for studying interactions between bacteria and animal hosts. However, growing nematodes on prey bacteria may influence their susceptibility to potential pathogens. A method of axenic nematode culture was developed to isolate and quantify interactions between C. elegans and potentially pathogenic strains of the Burkholderia cepacia complex. Studying these dynamics in liquid solution rather than on agar surfaces minimized nematode avoidance behavior and resolved more differences among isolates. Most isolates of B. cenocepacia, B. ambifaria and B. cepacia caused 60–80% mortality of nematodes after 7 days, whereas isolates of B. multivorans caused less mortality (<25%) and supported nematode reproduction. However, some B. cenocepacia isolates recovered from chronic infections were much less virulent (5–28% mortality). As predicted, prior diet altered the outcome of interactions between nematodes and bacteria. When given the choice between Burkholderia and E. coli as prey on agar, axenically raised nematodes initially preferred most lethal Burkholderia isolates to E. coli as a food source, but this was not the case for nematodes fed E. coli, which avoided toxic Burkholderia. This food preference was associated with the cell-free supernatant and thus secreted compounds likely mediated bacterial-nematode interactions. This model, which isolates interactions between bacteria and nematodes from the effects of prior feeding, demonstrates that bacteria can influence nematode behavior and their susceptibility to pathogens. PMID:19956737

  1. Social learning improves survivorship at a life-history transition.

    PubMed

    Manassa, R P; McCormick, M I

    2013-04-01

    During settlement, one of the main threats faced by individuals relates to their ability to detect and avoid predators. Information on predator identities can be gained either through direct experience or from the observation and/or interaction with others, a process known as social learning. In this form of predator recognition, less experienced individuals learn from experienced members within the social group, without having to directly interact with a predator. In this study, we examined the role of social learning in predator recognition in relation to the survival benefits for the damselfish, Pomacentrus wardi, during their settlement transition. Specifically, our experiments aimed to determine if P. wardi are capable of transmitting the recognition of the odour of a predator, Pseudochromis fuscus, to conspecifics. The experiment also examined whether there was a difference in the rate of survival between individuals that directly learnt the predator odour and those which acquired the information through social learning compared to naïve individuals. Results show that naïve P. wardi are able to learn a predator's identity from experienced individuals via social learning. Furthermore, survival between individuals that directly learnt the predator's identity and those that learnt through social learning did not significantly differ, with fish from both treatments surviving at least five times better than controls. These results demonstrate that experience may play a vital role in determining the outcome of predator-prey interactions, highlighting that social learning improves the ability of prey to avoid and/or escape predation at a life-history transition.

  2. You Can't Reach for the Stars if You are Tripping Over the Ground! (Preventing Slips, Trips, and Falls)

    NASA Technical Reports Server (NTRS)

    Miller, Darcy; Raysich, Mark; Kirkland, Mary

    2016-01-01

    Although there are very few mishaps related to ground, vehicle or payload processing at the Kennedy Space Center (KSC), employees have experienced a significant number of injuries due to slips, trips, and falls outside of performing flight processing operations. Slips, trips, and falls are major causes of occupational injuries at KSC, the National Aeronautics and Space Administration (NASA), and in general industry. To help KSC employees avoid these injuries, and allow them to be fully productive, KSC launched an initiative in 2013 to reduce slips, trips, and falls. This initiative is based on a four-part model focusing on DATA analysis, HAZARD awareness, PREVENTIVE methods, and BALANCE.

  3. Species-specific differences in relative eye size are related to patterns of edge avoidance in an Amazonian rainforest bird community

    PubMed Central

    Martínez-Ortega, Cristina; Santos, Eduardo SA; Gil, Diego

    2014-01-01

    Eye size shows a large degree of variation among species, even after correcting for body size. In birds, relatively larger eyes have been linked to predation risk, capture of mobile prey, and nocturnal habits. Relatively larger eyes enhance visual acuity and also allow birds to forage and communicate in low-light situations. Complex habitats such as tropical rain forests provide a mosaic of diverse lighting conditions, including differences among forest strata and at different distances from the forest edge. We examined in an Amazonian forest bird community whether microhabitat occupancy (defined by edge avoidance and forest stratum) was a predictor of relative eye size. We found that relative eye size increased with edge avoidance, but did not differ according to forest stratum. Nevertheless, the relationship between edge avoidance and relative eye size showed a nonsignificant positive trend for species that inhabit lower forest strata. Our analysis shows that birds that avoid forest edges have larger eyes than those living in lighter parts. We expect that this adaptation may allow birds to increase their active daily period in dim areas of the forest. The pattern that we found raises the question of what factors may limit the evolution of large eyes. PMID:25614788

  4. The Company They Keep and Avoid: Social Goal Orientation as a Predictor of Children's Ethnic Segregation

    ERIC Educational Resources Information Center

    Wilson, Travis M.; Rodkin, Philip C.; Ryan, Allison M.

    2014-01-01

    This study examined whether social goal orientation (i.e., demonstration-approach, demonstration--avoid, and social development goals) predicts changes in ethnic segregation among 4th and 5th grade African American and European American children (n = 713, ages 9-11 years) from fall to spring. Segregation measures were (a) same-ethnicity favoritism…

  5. Shifts in the diets of slimy sculpin (Cottus cognatus) and lake whitefish (Coregonus clupeaformis) in Lake Ontario following the collapse of the burrowing amphipod Diporeia

    USGS Publications Warehouse

    Owens, Randall W.; Dittman, Dawn E.

    2003-01-01

    In Lake Ontario, the diets of slimy sculpin Cottus cognatus and lake whitefish Coregonus clupeaformis shifted from a diet dominated by the burrowing amphipod, Diporeia, and to a lesser extent, Mysis, to a more diverse diet, after Diporeia collapsed, to one dominated by Mysis and prey that were formerly less important or uncommon such as Chironomidae, Oligochaeta, and Ostracoda. Additionally, lake whitefish still preyed on native mollusks like Sphaeriidae and Gastropoda, but also preyed on exotic mollusks, Dreissena spp., which are swallowed intact and subsequently crushed in its muscular stomach. Whether Diporeia was abundant (1992) or scarce (1999), selection indices for Diporeia by slimy sculpins was positive, suggesting that Diporeia was a preferred prey. Unlike lake whitefish, slimy sculpins avoided Dreissena; therefore, energy diverted to Dreissena production was a real loss for slimy sculpins. The shifts in the diet of these benthic fishes corresponded with drastic changes in the benthic community between 1992 and 1999. The collapse of Diporeia, formerly the most abundant macroinvertebrate in the benthic community, along with sharp declines in the abundance of Oligochaeta and Sphaeriidae, coincided with the establishment and rapid expansion of Dreissena bugensis, the quagga mussel, and to a lesser degree Dreissena polymorpha, the zebra mussel. It appears that the Diporeia population first collapsed at depths >70 m in southeastern Lake Ontario by autumn 1992, at shallower depths in the eastern Lake Ontario by 1995, and along the entire south shore line at depths <100 m, and perhaps in some areas >100 m by 1999. In response to the disappearance of Diporeia, populations of two native benthivores, slimy sculpin and lake whitefish, collapsed in eastern Lake Ontario, perhaps due in part to starvation, because Diporeia was their principal prey. Presently, alternative food resources do not appear sufficient to sustain these two benthivores at their former levels of abundance. We do not expect slimy sculpin and lake whitefish to recover unless Diporeia returns to earlier levels of abundance.

  6. Biologically meaningful scents: a framework for understanding predator-prey research across disciplines.

    PubMed

    Parsons, Michael H; Apfelbach, Raimund; Banks, Peter B; Cameron, Elissa Z; Dickman, Chris R; Frank, Anke S K; Jones, Menna E; McGregor, Ian S; McLean, Stuart; Müller-Schwarze, Dietland; Sparrow, Elisa E; Blumstein, Daniel T

    2018-02-01

    Fear of predation is a universal motivator. Because predators hunt using stealth and surprise, there is a widespread ability among prey to assess risk from chemical information - scents - in their environment. Consequently, scents often act as particularly strong modulators of memory and emotions. Recent advances in ecological research and analytical technology are leading to novel ways to use this chemical information to create effective attractants, repellents and anti-anxiolytic compounds for wildlife managers, conservation biologists and health practitioners. However, there is extensive variation in the design, results, and interpretation of studies of olfactory-based risk discrimination. To understand the highly variable literature in this area, we adopt a multi-disciplinary approach and synthesize the latest findings from neurobiology, chemical ecology, and ethology to propose a contemporary framework that accounts for such disparate factors as the time-limited stability of chemicals, highly canalized mechanisms that influence prey responses, and the context within which these scents are detected (e.g. availability of alternative resources, perceived shelter, and ambient physical parameters). This framework helps to account for the wide range of reported responses by prey to predator scents, and explains, paradoxically, how the same individual predator scent can be interpreted as either safe or dangerous to a prey animal depending on how, when and where the cue was deposited. We provide a hypothetical example to illustrate the most common factors that influence how a predator scent (from dingoes, Canis dingo) may both attract and repel the same target organism (kangaroos, Macropus spp.). This framework identifies the catalysts that enable dynamic scents, odours or odorants to be used as attractants as well as deterrents. Because effective scent tools often relate to traumatic memories (fear and/or anxiety) that cause future avoidance, this information may also guide the development of appeasement, enrichment and anti-anxiolytic compounds, and help explain the observed variation in post-traumatic-related behaviours (including post-traumatic stress disorder, PTSD) among diverse terrestrial taxa, including humans. © 2017 Cambridge Philosophical Society.

  7. Spatial interactions between sympatric carnivores: asymmetric avoidance of an intraguild predator.

    PubMed

    Grassel, Shaun M; Rachlow, Janet L; Williams, Christopher J

    2015-07-01

    Interactions between intraguild species that act as both competitors and predator-prey can be especially complex. We studied patterns of space use by the black-footed ferret (Mustela nigripes), a prairie dog (Cynomys spp.) specialist, and the American badger (Taxidea taxus), a larger generalist carnivore that competes for prairie dogs and is known to kill ferrets. We expected that ferrets would spatially avoid badgers because of the risk of predation, that these patterns of avoidance might differ between sexes and age classes, and that the availability of food and space might influence these relationships. We used location data from 60 ferrets and 15 badgers to model the influence of extrinsic factors (prairie dog density and colony size) and intrinsic factors (sex, age) on patterns of space use by ferrets in relation to space use by different sex and age categories of badgers. We documented asymmetric patterns of avoidance of badgers by ferrets based on the sex of both species. Female ferrets avoided adult female badgers, but not male badgers, and male ferrets exhibited less avoidance than female ferrets. Additionally, avoidance decreased with increasing densities of prairie dogs. We suggest that intersexual differences in space use by badgers create varying distributions of predation risk that are perceived by the smaller carnivore (ferrets) and that females respond more sensitively than males to that risk. This work advances understanding about how competing species coexist and suggests that including information on both intrinsic and extrinsic factors might improve our understanding of behavioral interactions between sympatric species.

  8. Holography - Application To Art: Curatorial Observations

    NASA Astrophysics Data System (ADS)

    Dinsmore, Sydney

    1987-06-01

    An exploration of the need to define a specific and critical language to describe the art of holography. Within any discussion of art, critical analysis must maintain an objective openess, particularily when the discourse concerns new media. To apply technological invention to art, new media is often without precedent on which to base criticism and bias. For this reason, holography falls prey to comparative rhetoric and established evaluation of other forms of imaging,as photography emulated the compositional romanticism of painting initially. Isolated and often misunderstood within the context of history, new media vascillates between legitimacy and curiosity in an attempt to create specific parameters to identify perceptual transition.

  9. Visual control of navigation in insects and its relevance for robotics.

    PubMed

    Srinivasan, Mandyam V

    2011-08-01

    Flying insects display remarkable agility, despite their diminutive eyes and brains. This review describes our growing understanding of how these creatures use visual information to stabilize flight, avoid collisions with objects, regulate flight speed, detect and intercept other flying insects such as mates or prey, navigate to a distant food source, and orchestrate flawless landings. It also outlines the ways in which these insights are now being used to develop novel, biologically inspired strategies for the guidance of autonomous, airborne vehicles. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Temporal overlaps of feral cats with prey and competitors in primary and human-altered habitats on Bohol Island, Philippines.

    PubMed

    Bogdan, Vlastimil; Jůnek, Tomáš; Jůnková Vymyslická, Pavla

    2016-01-01

    The vertebrate fauna of the Philippines, known for its diversity and high proportion of endemic species, comprises mainly small- to medium-sized forms with a few large exceptions. As with other tropical ecosystems, the major threats to wildlife are habitat loss, hunting and invasive species, of which the feral cat (Felis catus) is considered the most damaging. Our camera-trapping study focused on a terrestrial vertebrate species inventory on Bohol Island and tempo-spatial co-occurrences of feral cats with their prey and competitors. The survey took place in the Rajah Sikatuna Protected Landscape, and we examined the primary rainforest, its border with agricultural land, and rural areas in the vicinity of villages. Altogether, over 2,885 trap days we captured 30 species of vertebrates-10 mammals (including Sus philippensis), 19 birds and one reptile, Varanus cumingi. We trapped 81.8% of expected vertebrates. Based on the number of events, the most frequent native species was the barred rail (Gallirallus torquatus). The highest overlap in diel activity between cats and potential prey was recorded with rodents in rural areas (Δ = 0.62); the lowest was in the same habitat with ground-dwelling birds (Δ = 0.40). Cat activity was not recorded inside the rainforest; in other habitats their diel activity pattern differed. The cats' activity declined in daylight in the proximity of humans, while it peaked at the transition zone between rainforest and fields. Both rodents and ground-dwelling birds exhibited a shift in activity levels between sites where cats were present or absent. Rodents tend to become active by day in cat-free habitats. No cats' temporal response to co-occurrences of civets (Paradoxurus hermaphroditus and Viverra tangalunga) was found but cats in diel activity avoided domestic dogs (Canis lupus familiaris). Our first insight into the ecology of this invasive predator in the Philippines revealed an avoidance of homogeneous primary rainforest and a tendency to forage close to human settlements in heterogeneous habitats. A detailed further investigation of the composition of the cat's diet, as well as ranging pattern, is still needed.

  11. Temporal overlaps of feral cats with prey and competitors in primary and human-altered habitats on Bohol Island, Philippines

    PubMed Central

    Bogdan, Vlastimil; Jůnková Vymyslická, Pavla

    2016-01-01

    The vertebrate fauna of the Philippines, known for its diversity and high proportion of endemic species, comprises mainly small- to medium-sized forms with a few large exceptions. As with other tropical ecosystems, the major threats to wildlife are habitat loss, hunting and invasive species, of which the feral cat (Felis catus) is considered the most damaging. Our camera-trapping study focused on a terrestrial vertebrate species inventory on Bohol Island and tempo-spatial co-occurrences of feral cats with their prey and competitors. The survey took place in the Rajah Sikatuna Protected Landscape, and we examined the primary rainforest, its border with agricultural land, and rural areas in the vicinity of villages. Altogether, over 2,885 trap days we captured 30 species of vertebrates–10 mammals (including Sus philippensis), 19 birds and one reptile, Varanus cumingi. We trapped 81.8% of expected vertebrates. Based on the number of events, the most frequent native species was the barred rail (Gallirallus torquatus). The highest overlap in diel activity between cats and potential prey was recorded with rodents in rural areas (Δ = 0.62); the lowest was in the same habitat with ground-dwelling birds (Δ = 0.40). Cat activity was not recorded inside the rainforest; in other habitats their diel activity pattern differed. The cats’ activity declined in daylight in the proximity of humans, while it peaked at the transition zone between rainforest and fields. Both rodents and ground-dwelling birds exhibited a shift in activity levels between sites where cats were present or absent. Rodents tend to become active by day in cat-free habitats. No cats’ temporal response to co-occurrences of civets (Paradoxurus hermaphroditus and Viverra tangalunga) was found but cats in diel activity avoided domestic dogs (Canis lupus familiaris). Our first insight into the ecology of this invasive predator in the Philippines revealed an avoidance of homogeneous primary rainforest and a tendency to forage close to human settlements in heterogeneous habitats. A detailed further investigation of the composition of the cat’s diet, as well as ranging pattern, is still needed. PMID:27602271

  12. Improved Training Method for Rapid Rehabilitation of Amputees

    DTIC Science & Technology

    2012-03-01

    amputees must be able to manage uneven terrain, crowded environments, stairs , ramps, and hills. The largest problem for a lower extremity amputee is...objective biomechanical variables that are causally related to the success or failure in avoiding a fall after a trip, objective tests to quantify...crowded environments, stairs , ramps, and hills. The key factor that limits the ability of amputees to achieve maximum functional capabilities is falls

  13. Active Tails Enhance Arboreal Acrobatics in Geckos

    DTIC Science & Technology

    2008-03-18

    the secret to the gecko s arboreal acrobatics includes an active tail. We examine the tail s role during rapid climbing, aerial descent, and gliding. We show that a gecko s tail functions as an emergency fifth leg to prevent falling during rapid climbing. A response initiated by slipping causes the tail tip to push against the vertical surface, thereby preventing pitch-back of the head and upper body. When pitch-back cannot be prevented, geckos avoid falling by placing their tail in a posture similar to a bicycle s kickstand. Should a gecko fall with its back to the

  14. Unexpected diversity in socially synchronized rhythms of shorebirds.

    PubMed

    Bulla, Martin; Valcu, Mihai; Dokter, Adriaan M; Dondua, Alexei G; Kosztolányi, András; Rutten, Anne L; Helm, Barbara; Sandercock, Brett K; Casler, Bruce; Ens, Bruno J; Spiegel, Caleb S; Hassell, Chris J; Küpper, Clemens; Minton, Clive; Burgas, Daniel; Lank, David B; Payer, David C; Loktionov, Egor Y; Nol, Erica; Kwon, Eunbi; Smith, Fletcher; Gates, H River; Vitnerová, Hana; Prüter, Hanna; Johnson, James A; St Clair, James J H; Lamarre, Jean-François; Rausch, Jennie; Reneerkens, Jeroen; Conklin, Jesse R; Burger, Joanna; Liebezeit, Joe; Bêty, Joël; Coleman, Jonathan T; Figuerola, Jordi; Hooijmeijer, Jos C E W; Alves, José A; Smith, Joseph A M; Weidinger, Karel; Koivula, Kari; Gosbell, Ken; Exo, Klaus-Michael; Niles, Larry; Koloski, Laura; McKinnon, Laura; Praus, Libor; Klaassen, Marcel; Giroux, Marie-Andrée; Sládeček, Martin; Boldenow, Megan L; Goldstein, Michael I; Šálek, Miroslav; Senner, Nathan; Rönkä, Nelli; Lecomte, Nicolas; Gilg, Olivier; Vincze, Orsolya; Johnson, Oscar W; Smith, Paul A; Woodard, Paul F; Tomkovich, Pavel S; Battley, Phil F; Bentzen, Rebecca; Lanctot, Richard B; Porter, Ron; Saalfeld, Sarah T; Freeman, Scott; Brown, Stephen C; Yezerinac, Stephen; Székely, Tamás; Montalvo, Tomás; Piersma, Theunis; Loverti, Vanessa; Pakanen, Veli-Matti; Tijsen, Wim; Kempenaers, Bart

    2016-12-01

    The behavioural rhythms of organisms are thought to be under strong selection, influenced by the rhythmicity of the environment. Such behavioural rhythms are well studied in isolated individuals under laboratory conditions, but free-living individuals have to temporally synchronize their activities with those of others, including potential mates, competitors, prey and predators. Individuals can temporally segregate their daily activities (for example, prey avoiding predators, subordinates avoiding dominants) or synchronize their activities (for example, group foraging, communal defence, pairs reproducing or caring for offspring). The behavioural rhythms that emerge from such social synchronization and the underlying evolutionary and ecological drivers that shape them remain poorly understood. Here we investigate these rhythms in the context of biparental care, a particularly sensitive phase of social synchronization where pair members potentially compromise their individual rhythms. Using data from 729 nests of 91 populations of 32 biparentally incubating shorebird species, where parents synchronize to achieve continuous coverage of developing eggs, we report remarkable within- and between-species diversity in incubation rhythms. Between species, the median length of one parent's incubation bout varied from 1-19 h, whereas period length-the time in which a parent's probability to incubate cycles once between its highest and lowest value-varied from 6-43 h. The length of incubation bouts was unrelated to variables reflecting energetic demands, but species relying on crypsis (the ability to avoid detection by other animals) had longer incubation bouts than those that are readily visible or who actively protect their nest against predators. Rhythms entrainable to the 24-h light-dark cycle were less prevalent at high latitudes and absent in 18 species. Our results indicate that even under similar environmental conditions and despite 24-h environmental cues, social synchronization can generate far more diverse behavioural rhythms than expected from studies of individuals in captivity. The risk of predation, not the risk of starvation, may be a key factor underlying the diversity in these rhythms.

  15. Planktivorous auklet Ptychoramphus aleuticus responses to ocean climate, 2005: Unusual atmospheric blocking?

    NASA Astrophysics Data System (ADS)

    Sydeman, William J.; Bradley, Russell W.; Warzybok, Pete; Abraham, Christine L.; Jahncke, Jaime; Hyrenbach, K. David; Kousky, Vernon; Hipfner, J. Mark; Ohman, Mark D.

    2006-10-01

    In spring-summer 2005, anomalous atmospheric-oceanographic coupling caused unprecedented reproductive failures and redistribution of a planktivorous marine bird in both central California (37°N) and southern British Columbia (50°N). At SE Farallon Island, CA, the birds abandoned the breeding colony en masse between 10-20 May, a unique behavioral response; for the first time in 35 years, reproductive success was zero. At Triangle Island, B.C., only 8% of the nesting pairs were successful, the worst year on record. Surveys of birds at sea revealed a peak in relative abundance south of Point Conception (34°N) in summer and fall, suggestive of emigration from the north. Prey (euphausiid crustacean) biomass in the Gulf of the Farallones was reduced, but remained high south of Point Conception. Change in predator and prey may be explained, in part, by unusual atmospheric blocking in the Gulf of Alaska in May, which caused the jet stream to shift southwards resulting in poor upwelling-favorable winds and anomalously warm SST. This study demonstrates the deleterious consequences of this climate event for a top marine predator in the central-northern California Current System.

  16. Dramatic increase in sea otter mortality from white sharks in California

    USGS Publications Warehouse

    Tinker, M. Tim; Hatfield, Brian B.; Harris, Michael D.; Ames, Jack A.

    2016-01-01

    Although southern sea otters (Enhydra lutris nereis) are not considered prey for white sharks (Carcharodon carcharias), sharks do nonetheless bite sea otters. We analyzed spatial and temporal trends in shark bites on sea otters in California, assessing the frequency of shark bite wounds in 1,870 carcasses collected since 1985. The proportion of stranded sea otters having shark bites has increased sharply since 2003, and white shark bites now account for >50% of recovered carcasses. The trend was most pronounced in the southern part of the range, from Estero Bay to Point Conception, where shark bite frequency has increased eightfold. Seasonal trends were also evident: most shark-bitten carcasses are recovered in late summer and fall; however, the period of elevated shark bite frequency has lengthened. The causes of these trends are unclear, but possible contributing factors include increased white shark abundance and/or changes in white shark behavior and distribution. In particular, the spatiotemporal patterns of shark-bitten sea otters match increases in pinniped populations, and the increased availability of marine mammal prey for white sharks may have led to more sharks spending more time in nearshore waters utilized by both sea otters and pinnipeds.

  17. Cue reliability, risk sensitivity and inducible morphological defense in a marine snail.

    PubMed

    Bourdeau, Paul E

    2010-04-01

    Reliable cues that communicate current or future environmental conditions are a requirement for the evolution of adaptive phenotypic plasticity, yet we often do not know which cues are responsible for the induction of particular plastic phenotypes. I examined the single and combined effects of cues from damaged prey and predator cues on the induction of plastic shell defenses and somatic growth in the marine snail Nucella lamellosa. Snails were exposed to chemical risk cues from a factorial combination of damaged prey presented in isolation or consumed by predatory crabs (Cancer productus). Water-borne cues from damaged conspecific and heterospecific snails did not affect plastic shell defenses (shell mass, shell thickness and apertural teeth) or somatic growth in N. lamellosa. Cues released by feeding crabs, independent of prey cue, had significant effects on shell mass and somatic growth, but only crabs consuming conspecific snails induced the full suite of plastic shell defenses in N. lamellosa and induced the greatest response in all shell traits and somatic growth. Thus the relationship between risk cue and inducible morphological defense is dependent on which cues and which morphological traits are examined. Results indicate that cues from damaged conspecifics alone do not trigger a response, but, in combination with predator cues, act to signal predation risk and trigger inducible defenses in this species. This ability to "label" predators as dangerous may decrease predator avoidance costs and highlights the importance of the feeding habits of predators on the expression of inducible defenses.

  18. Defeating crypsis: detection and learning of camouflage strategies.

    PubMed

    Troscianko, Jolyon; Lown, Alice E; Hughes, Anna E; Stevens, Martin

    2013-01-01

    Camouflage is perhaps the most widespread defence against predators in nature and an active area of interdisciplinary research. Recent work has aimed to understand what camouflage types exist (e.g. background matching, disruptive, and distractive patterns) and their effectiveness. However, work has almost exclusively focused on the efficacy of these strategies in preventing initial detection, despite the fact that predators often encounter the same prey phenotype repeatedly, affording them opportunities to learn to find those prey more effectively. The overall value of a camouflage strategy may, therefore, reflect both its ability to prevent detection by predators and resist predator learning. We conducted four experiments with humans searching for hidden targets of different camouflage types (disruptive, distractive, and background matching of various contrast levels) over a series of touch screen trials. As with previous work, disruptive coloration was the most successful method of concealment overall, especially with relatively high contrast patterns, whereas potentially distractive markings were either neutral or costly. However, high contrast patterns incurred faster decreases in detection times over trials compared to other stimuli. In addition, potentially distractive markings were sometimes learnt more slowly than background matching markings, despite being found more readily overall. Finally, learning effects were highly dependent upon the experimental paradigm, including the number of prey types seen and whether subjects encountered targets simultaneously or sequentially. Our results show that the survival advantage of camouflage strategies reflects both their ability to avoid initial detection (sensory mechanisms) and predator learning (perceptual mechanisms).

  19. Bats coordinate sonar and flight behavior as they forage in open and cluttered environments.

    PubMed

    Falk, Benjamin; Jakobsen, Lasse; Surlykke, Annemarie; Moss, Cynthia F

    2014-12-15

    Echolocating bats use active sensing as they emit sounds and listen to the returning echoes to probe their environment for navigation, obstacle avoidance and pursuit of prey. The sensing behavior of bats includes the planning of 3D spatial trajectory paths, which are guided by echo information. In this study, we examined the relationship between active sonar sampling and flight motor output as bats changed environments from open space to an artificial forest in a laboratory flight room. Using high-speed video and audio recordings, we reconstructed and analyzed 3D flight trajectories, sonar beam aim and acoustic sonar emission patterns as the bats captured prey. We found that big brown bats adjusted their sonar call structure, temporal patterning and flight speed in response to environmental change. The sonar beam aim of the bats predicted the flight turn rate in both the open room and the forest. However, the relationship between sonar beam aim and turn rate changed in the forest during the final stage of prey pursuit, during which the bat made shallower turns. We found flight stereotypy developed over multiple days in the forest, but did not find evidence for a reduction in active sonar sampling with experience. The temporal patterning of sonar sound groups was related to path planning around obstacles in the forest. Together, these results contribute to our understanding of how bats coordinate echolocation and flight behavior to represent and navigate their environment. © 2014. Published by The Company of Biologists Ltd.

  20. Bats coordinate sonar and flight behavior as they forage in open and cluttered environments

    PubMed Central

    Falk, Benjamin; Jakobsen, Lasse; Surlykke, Annemarie; Moss, Cynthia F.

    2014-01-01

    Echolocating bats use active sensing as they emit sounds and listen to the returning echoes to probe their environment for navigation, obstacle avoidance and pursuit of prey. The sensing behavior of bats includes the planning of 3D spatial trajectory paths, which are guided by echo information. In this study, we examined the relationship between active sonar sampling and flight motor output as bats changed environments from open space to an artificial forest in a laboratory flight room. Using high-speed video and audio recordings, we reconstructed and analyzed 3D flight trajectories, sonar beam aim and acoustic sonar emission patterns as the bats captured prey. We found that big brown bats adjusted their sonar call structure, temporal patterning and flight speed in response to environmental change. The sonar beam aim of the bats predicted the flight turn rate in both the open room and the forest. However, the relationship between sonar beam aim and turn rate changed in the forest during the final stage of prey pursuit, during which the bat made shallower turns. We found flight stereotypy developed over multiple days in the forest, but did not find evidence for a reduction in active sonar sampling with experience. The temporal patterning of sonar sound groups was related to path planning around obstacles in the forest. Together, these results contribute to our understanding of how bats coordinate echolocation and flight behavior to represent and navigate their environment. PMID:25394632

  1. Advanced autumn migration of sparrowhawk has increased the predation risk of long-distance migrants in Finland.

    PubMed

    Lehikoinen, Aleksi

    2011-01-01

    Predation affects life history traits of nearly all organisms and the population consequences of predator avoidance are often larger than predation itself. Climate change has been shown to cause phenological changes. These changes are not necessarily similar between species and may cause mismatches between prey and predator. Eurasian sparrowhawk Accipiter nisus, the main predator of passerines, has advanced its autumn phenology by about ten days in 30 years due to climate change. However, we do not know if sparrowhawk migrate earlier in response to earlier migration by its prey or if earlier sparrowhawk migration results in changes to predation risk on its prey. By using the median departure date of 41 passerine species I was able to show that early migrating passerines tend to advance, and late migrating species delay their departure, but none of the species have advanced their departure times as much as the sparrowhawk. This has lead to a situation of increased predation risk on early migrating long-distance migrants (LDM) and decreased the overlap of migration season with later departing short-distance migrants (SDM). Findings highlight the growing list of problems of declining LDM populations caused by climate change. On the other hand it seems that the autumn migration may become safer for SDM whose populations are growing. Results demonstrate that passerines show very conservative response in autumn phenology to climate change, and thus phenological mismatches caused by global warming are not necessarily increasing towards the higher trophic levels.

  2. Context-dependent crypsis: a prey's perspective of a color polymorphic predator.

    PubMed

    Rodríguez-Morales, D; Rico-Gray, V; García-Franco, J G; Ajuria-Ibarra, H; Hernández-Salazar, L T; Robledo-Ospina, L E; Rao, D

    2018-05-12

    Many animals use body coloration as a strategy to communicate with conspecifics, prey, and predators. Color is a trade-off for some species, since they should be visible to conspecifics but cryptic to predators and prey. Some flower-dwelling predators, such as crab spiders, are capable of choosing the color of flowers where they ambush flower visitors and pollinators. In order to avoid being captured, visitors evaluate flowers visually before landing. The crab spider Mecaphesa dubia is a polymorphic species (white/purple color morphs), which inhabits the flower heads of a dune plant, Palafoxia lindenii. Using full-spectrum photography of spiders and flowers, we evaluated how honeybees perceived the spiders at different distances. Using visual modeling, we obtained the chromatic and achromatic contrasts of the spiders on flower heads as perceived by honeybees. Purple morphs were found mainly on the receptacle area and white morphs were equally likely to be found in the flowers and receptacle. According to theoretical modeling, white morphs were visible to honeybees from a distance of 10 cm in receptacle area but appeared to be cryptic in the flower area. Purple morphs were cryptic on the receptacle and less so when they were on the flowers. Spiders on flower heads are predicted to be more easily detected by honeybees using chromatic contrast. Our study shows that the conspicuousness of flower dwelling spiders to honeybees depends on the color morph, the distance of observation, and the position of spider on the flower head.

  3. Context-dependent crypsis: a prey's perspective of a color polymorphic predator

    NASA Astrophysics Data System (ADS)

    Rodríguez-Morales, D.; Rico-Gray, V.; García-Franco, J. G.; Ajuria-Ibarra, H.; Hernández-Salazar, L. T.; Robledo-Ospina, L. E.; Rao, D.

    2018-06-01

    Many animals use body coloration as a strategy to communicate with conspecifics, prey, and predators. Color is a trade-off for some species, since they should be visible to conspecifics but cryptic to predators and prey. Some flower-dwelling predators, such as crab spiders, are capable of choosing the color of flowers where they ambush flower visitors and pollinators. In order to avoid being captured, visitors evaluate flowers visually before landing. The crab spider Mecaphesa dubia is a polymorphic species (white/purple color morphs), which inhabits the flower heads of a dune plant, Palafoxia lindenii. Using full-spectrum photography of spiders and flowers, we evaluated how honeybees perceived the spiders at different distances. Using visual modeling, we obtained the chromatic and achromatic contrasts of the spiders on flower heads as perceived by honeybees. Purple morphs were found mainly on the receptacle area and white morphs were equally likely to be found in the flowers and receptacle. According to theoretical modeling, white morphs were visible to honeybees from a distance of 10 cm in receptacle area but appeared to be cryptic in the flower area. Purple morphs were cryptic on the receptacle and less so when they were on the flowers. Spiders on flower heads are predicted to be more easily detected by honeybees using chromatic contrast. Our study shows that the conspicuousness of flower dwelling spiders to honeybees depends on the color morph, the distance of observation, and the position of spider on the flower head.

  4. Seasonal relationships between birds and arthropods in bottomland forest canopy gaps.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowen, Liessa, Thomas

    2004-12-31

    Bowen, Liessa, Thomas. 2004. Seasonal relationships between birds and arthropods in bottomland forest canopy gaps. PhD Dissertation. North Carolina State University. Raleigh, North Carolina. 98pp. I investigated the influence of arthropod availability and vegetation structure on avian habitat use at the center, edge, and adjacent to forest canopy gaps in 2001 and 2002. I used mist-netting and plot counts to estimate abundance of birds using three sizes (0.13, 0.26, and 0.5 ha) of 7-8 year old group-selection timber harvest openings during four seasons (spring migration, breeding, post-breeding, and fall migration) in a bottomland hardwood forest in the Upper Coastal Plainmore » of South Carolina. I used foliage clipping, Malaise trapping, and pitfall trapping to determine arthropod abundance within each habitat, and I used a warm water crop-flush on captured birds to gather information about arthropods eaten. I observed more birds, including forest interior species, forest-edge spedge species, and several individual species, in early-successional canopy gap and gap-edge habitats than in surrounding mature forest during all seasons. I found a significant interaction between season and habitat type for several groups and individual species, suggesting a seasonal shift in habitat use. Captures of all birds, insectivorous birds, foliage- gleaners, ground-gleaners, aerial salliers, Hooded Warbler (Wilsonia citrina), Northern Cardinal (Cardinalis cardinalis), White-eyed Vireo (Vireo griseus), and Black-throated Blue Warbler (Dendroica caerulescens) were positively correlated with understory vegetation density during two or more seasons. I found relationships between insectivorous birds and leaf-dwelling Lepidoptera, insectivorous birds and ground-dwelling arthropods, foliage-gleaning birds and foliage-dwelling arthropods, and aerial salliers and flying arthropods, as well as between individual bird species and arthropods. Relationships were inconsistent, however, with many species being negatively correlated with arthropod abundance. Coleopteran, Lepidopteran, and Aranid prey items represented the greatest proportions of crop-flush samples during all seasons. Proportional consumption of Coleopteran and Hemipteran prey items was higher than their proportional availability, and consumption of Aranid and Hymenopteran prey items was lower than their proportional availability during all seasons. Individual bird species and guilds consistently consumed similar proportions of certain groups of arthropods from spring through fall migration, with no apparent seasonal shift in diet composition. My research suggests that many species of birds selectively choose mid-successional gap and gap-edge habitat over surrounding mature forest during the non-breeding season, and the creation of small canopy gaps within a mature forest may increase local bird species richness. It is less obvious how arthropod availability affects bird habitat use across seasons. A structurally diverse mosaic of habitat types, including regenerating canopy gaps within a mature forest, may provide valuable habitat for birds and a variety of arthropod prey items across multiple seasons.« less

  5. ODOT research news : fall 2004.

    DOT National Transportation Integrated Search

    2004-01-01

    ODOT research newsletter includes: 1) project solicitation and selection. 2) GIS mapping and environmental justice which environmental justice requires ODOT to avoid, minimize, or mitigate disproportionately high and adverse effects of its activities...

  6. Sports and Concussion

    MedlinePlus

    ... this page please turn JavaScript on. Feature: Concussion Sports and Concussion Past Issues / Summer 2015 Table of ... ages—reducing blows to the head by playing sports safely and avoiding falls is vital to a ...

  7. A multi-component cognitive behavioural intervention for the treatment of fear of falling after hip fracture (FIT-HIP): protocol of a randomised controlled trial.

    PubMed

    Scheffers-Barnhoorn, Maaike N; van Haastregt, Jolanda C M; Schols, Jos M G A; Kempen, Gertrudis I J M; van Balen, Romke; Visschedijk, Jan H M; van den Hout, Wilbert B; Dumas, Eve M; Achterberg, Wilco P; van Eijk, Monica

    2017-03-20

    Hip fracture is a common injury in the geriatric population. Despite surgical repair and subsequent rehabilitation programmes, functional recovery is often limited, particularly in individuals with multi-morbidity. This leads to high care dependency and subsequent use of healthcare services. Fear of falling has a negative influence on recovery after hip fracture, due to avoidance of activity and subsequent restriction in mobility. Although fear of falling is highly prevalent after hip fracture, no structured treatment programme is currently available. This trial will evaluate whether targeted treatment of fear of falling in geriatric rehabilitation after hip fracture using a multi-component cognitive behavioural intervention (FIT-HIP), is feasible and (cost) effective in reducing fear of falling and associated activity restriction and thereby improves physical functioning. This multicentre cluster randomised controlled trial will be conducted among older patients with hip fracture and fear of falling who are admitted to a multidisciplinary inpatient geriatric rehabilitation programme in eleven post-acute geriatric rehabilitation units. Fifteen participants will be recruited from each site. Recruitment sites will be allocated by computer randomisation to either the control group, receiving usual care, or to the intervention group receiving the FIT-HIP intervention in addition to usual care. The FIT-HIP intervention is conducted by physiotherapists and will be embedded in usual care. It consists of various elements of cognitive behavioural therapy, including guided exposure to feared activities (that are avoided by the participants). Participants and outcome assessors are blinded to group allocation. Follow-up measurements will be performed at 3 and 6 months after discharge from geriatric rehabilitation. (Cost)-effectiveness and feasibility of the intervention will be evaluated. Primary outcome measures are fear of falling and mobility. Targeted treatment of fear of falling may improve recovery and physical and social functioning after hip fracture, thereby offering benefits for patients and reducing healthcare costs. Results of this study will provide insight into whether fear of falling is modifiable in the (geriatric) rehabilitation after hip fracture and whether the intervention is feasible. Netherlands Trial Register: NTR 5695 .

  8. From repulsion to attraction: species- and spatial context-dependent threat sensitive response of the spider mite Tetranychus urticae to predatory mite cues

    NASA Astrophysics Data System (ADS)

    Fernández Ferrari, M. Celeste; Schausberger, Peter

    2013-06-01

    Prey perceiving predation risk commonly change their behavior to avoid predation. However, antipredator strategies are costly. Therefore, according to the threat-sensitive predator avoidance hypothesis, prey should match the intensity of their antipredator behaviors to the degree of threat, which may depend on the predator species and the spatial context. We assessed threat sensitivity of the two-spotted spider mite, Tetranychus urticae, to the cues of three predatory mites, Phytoseiulus persimilis, Neoseiulus californicus, and Amblyseius andersoni, posing different degrees of risk in two spatial contexts. We first conducted a no-choice test measuring oviposition and activity of T. urticae exposed to chemical traces of predators or traces plus predator eggs. Then, we tested the site preference of T. urticae in choice tests, using artificial cages and leaves. In the no-choice test, T. urticae deposited their first egg later in the presence of cues of P. persimilis than of the other two predators and cue absence, indicating interspecific threat-sensitivity. T. urticae laid also fewer eggs in the presence of cues of P. persimilis and A. andersoni than of N. californicus and cue absence. In the artificial cage test, the spider mites preferred the site with predator traces, whereas in the leaf test, they preferentially resided on leaves without traces. We argue that in a nonplant environment, chemical predator traces do not indicate a risk for T. urticae, and instead, these traces function as indirect habitat cues. The spider mites were attracted to these cues because they associated them with the existence of a nearby host plant.

  9. From repulsion to attraction: species- and spatial context-dependent threat sensitive response of the spider mite Tetranychus urticae to predatory mite cues.

    PubMed

    Fernández Ferrari, M Celeste; Schausberger, Peter

    2013-06-01

    Prey perceiving predation risk commonly change their behavior to avoid predation. However, antipredator strategies are costly. Therefore, according to the threat-sensitive predator avoidance hypothesis, prey should match the intensity of their antipredator behaviors to the degree of threat, which may depend on the predator species and the spatial context. We assessed threat sensitivity of the two-spotted spider mite, Tetranychus urticae, to the cues of three predatory mites, Phytoseiulus persimilis, Neoseiulus californicus, and Amblyseius andersoni, posing different degrees of risk in two spatial contexts. We first conducted a no-choice test measuring oviposition and activity of T. urticae exposed to chemical traces of predators or traces plus predator eggs. Then, we tested the site preference of T. urticae in choice tests, using artificial cages and leaves. In the no-choice test, T. urticae deposited their first egg later in the presence of cues of P. persimilis than of the other two predators and cue absence, indicating interspecific threat-sensitivity. T. urticae laid also fewer eggs in the presence of cues of P. persimilis and A. andersoni than of N. californicus and cue absence. In the artificial cage test, the spider mites preferred the site with predator traces, whereas in the leaf test, they preferentially resided on leaves without traces. We argue that in a nonplant environment, chemical predator traces do not indicate a risk for T. urticae, and instead, these traces function as indirect habitat cues. The spider mites were attracted to these cues because they associated them with the existence of a nearby host plant.

  10. Small is profitable: No support for the optimal foraging theory in sea stars Asterias rubens foraging on the blue edible mussel Mytilus edulis

    NASA Astrophysics Data System (ADS)

    Hummel, Christiaan; Honkoop, Pieter; van der Meer, Jaap

    2011-07-01

    Doubt has been shed recently on the most popular optimal foraging theory stating that predators should maximize prey profitability, i.e., select that prey item that contains the highest energy content per handling time. We hypothesized that sea stars do not forage on blue mussels according to the classical optimal foraging theory but are actively avoiding damage that may be caused by e.g. capture of foraging on too-strong mussel shells, hence the sea stars will have a stronger preference for mussels that are smaller than the most profitable ones. Here we present experimental evidence of the sea star Asterias rubens as a predator that indeed chooses much smaller blue mussels Mytilus edulis to forage on than the most profitable ones. Hence this study does not support the optimal foraging theory. There may be other constraints involved in foraging than just optimizing energy intake, for example predators may also be concerned with preventing potential loss or damage of their foraging instruments.

  11. Low levels of copper reduce the reproductive success of a mobile invertebrate predator.

    PubMed

    Lee, Ka-Man; Johnston, Emma L

    2007-09-01

    Marine organisms that occur in urbanised bays can be exposed to low-level chronic pollution that results in sublethal changes to behavior or reproduction. The effects of low levels of copper on the reproductive success of a mobile invertebrate were assessed. Free living flatworms are common predators of bivalves and barnacles. Flatworms (Stylochus pygmaeus) were exposed to low levels of copper ranging from 0 to 25 microg L(-1) in the presence and absence of their barnacle prey (Balanus variegatus). Flatworms laid fewer egg batches when exposed to copper and the hatching success of the eggs was also reduced. Exposure to 25 microg L(-1) copper for 10 d reduced the reproductive success of flatworms by up to 80%. Results were consistent regardless of the presence or absence of prey (barnacles). Barnacles were only moderately affected by copper but exhibited major avoidance behavior (feeding inhibition) in the presence of flatworm predators. This is the first ecotoxicological study on marine flatworms. Experiments are required to quantify the effects of flatworm predator populations on sessile invertebrate community structure in the field.

  12. Safe caves and dangerous forests? Predation risk may contribute to salamander colonization of subterranean habitats

    NASA Astrophysics Data System (ADS)

    Salvidio, Sebastiano; Palumbi, Giulia; Romano, Antonio; Costa, Andrea

    2017-04-01

    Recent studies suggest that many organisms actively colonize the subterranean environment to avoid climatic stress, exploit new ecological opportunities and reduce competition and predation. Terrestrial salamanders are known to colonize the more stable subterranean habitats mainly to escape external climatic extremes, while the role of predation avoidance remains untested. To better understand the importance of predation, we used clay models of the cave salamander Speleomantes strinatii to compare the predation occurring in woodland and subterranean habitats. Models were positioned in three forests and in three caves in NW Italy. One-hundred eighty-four models were retrieved from the field and 59 (32%) were attacked by predators. Models were attacked on their head more often than expected by chance and, therefore, were perceived by predators as real prey items. In the woodlands, clay models showed a four-time higher probability of being attacked in comparison to caves, suggesting a different level of potential predation risk in these surface habitats. These findings are one of the first experimental evidences that, in terrestrial ecosystems, predation avoidance may contribute to the salamander underground colonization process.

  13. Evaluation of the Frails' Fall Efficacy by Comparing Treatments (EFFECT) on reducing fall and fear of fall in moderately frail older adults: study protocol for a randomised control trial.

    PubMed

    Kwok, Boon Chong; Mamun, Kaysar; Chandran, Manju; Wong, Chek Hooi

    2011-06-18

    Falls are common in frail older adults and often result in injuries and hospitalisation. The Nintendo® Wii™ is an easily available exercise modality in the community which has been shown to improve lower limb strength and balance. However, not much is known on the effectiveness of the Nintendo® Wii™ to improve fall efficacy and reduce falls in a moderately frail older adult. Fall efficacy is the measure of fear of falling in performing various daily activities. Fear contributes to avoidance of activities and functional decline. This randomised active-control trial is a comparison between the Nintendo WiiActive programme against standard gym-based rehabilitation of the older population. Eighty subjects aged above 60, fallers and non-fallers, will be recruited from the hospital outpatient clinic. The primary outcome measure is the Modified Falls Efficacy Scale and the secondary outcome measures are self-reported falls, quadriceps strength, walking agility, dynamic balance and quality of life assessments. The study is the first randomised control trial using the Nintendo Wii as a rehabilitation modality investigating a change in fall efficacy and self-reported falls. Longitudinally, the study will investigate if the interventions can successfully reduce falls and analyse the cost-effectiveness of the programme.

  14. Temperature, Oxygen, and Salt-Sensing Neurons in C. elegans Are Carbon Dioxide Sensors that Control Avoidance Behavior

    PubMed Central

    Bretscher, Andrew Jonathan; Kodama-Namba, Eiji; Busch, Karl Emanuel; Murphy, Robin Joseph; Soltesz, Zoltan; Laurent, Patrick; de Bono, Mario

    2011-01-01

    Summary Homeostatic control of body fluid CO2 is essential in animals but is poorly understood. C. elegans relies on diffusion for gas exchange and avoids environments with elevated CO2. We show that C. elegans temperature, O2, and salt-sensing neurons are also CO2 sensors mediating CO2 avoidance. AFD thermosensors respond to increasing CO2 by a fall and then rise in Ca2+ and show a Ca2+ spike when CO2 decreases. BAG O2 sensors and ASE salt sensors are both activated by CO2 and remain tonically active while high CO2 persists. CO2-evoked Ca2+ responses in AFD and BAG neurons require cGMP-gated ion channels. Atypical soluble guanylate cyclases mediating O2 responses also contribute to BAG CO2 responses. AFD and BAG neurons together stimulate turning when CO2 rises and inhibit turning when CO2 falls. Our results show that C. elegans senses CO2 using functionally diverse sensory neurons acting homeostatically to minimize exposure to elevated CO2. PMID:21435556

  15. Post-fledging movements of white-tailed eagles: Conservation implications for wind-energy development.

    PubMed

    Balotari-Chiebao, Fabio; Villers, Alexandre; Ijäs, Asko; Ovaskainen, Otso; Repka, Sari; Laaksonen, Toni

    2016-11-01

    The presence of poorly sited wind farms raises concerns for wildlife, including birds of prey. Therefore, there is a need to extend the knowledge of the potential human-wildlife conflicts associated with wind energy. Here, we report on the movements and habitat use of post-fledging satellite-tagged white-tailed eagles in Finland, where wind-energy development is expected to increase in the near future. In particular, we examine the probability of a fledgling approaching a hypothetical turbine that is placed at different distances from the nest. We found that this probability is high at short distances but considerably decreases with increasing distances to the nest. A utilisation-availability analysis showed that the coast was the preferred habitat. We argue that avoiding construction between active nests and the shoreline, as well as adopting the currently 2-km buffer zone for turbine deployment, can avoid or minimise potential impacts on post-fledging white-tailed eagles.

  16. Sensorimotor Model of Obstacle Avoidance in Echolocating Bats

    PubMed Central

    Vanderelst, Dieter; Holderied, Marc W.; Peremans, Herbert

    2015-01-01

    Bat echolocation is an ability consisting of many subtasks such as navigation, prey detection and object recognition. Understanding the echolocation capabilities of bats comes down to isolating the minimal set of acoustic cues needed to complete each task. For some tasks, the minimal cues have already been identified. However, while a number of possible cues have been suggested, little is known about the minimal cues supporting obstacle avoidance in echolocating bats. In this paper, we propose that the Interaural Intensity Difference (IID) and travel time of the first millisecond of the echo train are sufficient cues for obstacle avoidance. We describe a simple control algorithm based on the use of these cues in combination with alternating ear positions modeled after the constant frequency bat Rhinolophus rouxii. Using spatial simulations (2D and 3D), we show that simple phonotaxis can steer a bat clear from obstacles without performing a reconstruction of the 3D layout of the scene. As such, this paper presents the first computationally explicit explanation for obstacle avoidance validated in complex simulated environments. Based on additional simulations modelling the FM bat Phyllostomus discolor, we conjecture that the proposed cues can be exploited by constant frequency (CF) bats and frequency modulated (FM) bats alike. We hypothesize that using a low level yet robust cue for obstacle avoidance allows bats to comply with the hard real-time constraints of this basic behaviour. PMID:26502063

  17. Fall Prevention Knowledge, Attitude, and Practices of Community Stakeholders and Older Adults

    PubMed Central

    Laing, Sharon S.; Silver, Ilene F.; York, Sally; Phelan, Elizabeth A.

    2011-01-01

    We assessed knowledge, attitude, and provision of recommended fall prevention (FP) practices by employees of senior-serving organization and participation in FP practices by at-risk elders. The Washington State Department of Health administered structured telephone surveys to 50 employees and 101 elders in Washington State. Only 38% of employees felt “very knowledgeable” about FP, and a majority of their organizations did not regularly offer FP services. Almost half (48%) of seniors sustained a fall within the past 12 months; however, one-third perceived falling to be among their least important health concerns, and most had minimal working knowledge of proven FP practices. Seniors who perceived avoiding falls as important to their well-being were more likely to participate in practices about which they had the least knowledge (risk assessment, medication management). Increased awareness and availability of FP services might help engage older adults in FP practices and reduce the adverse effects of falls. PMID:21915377

  18. Trophic predator-prey relationships promote transport of microplastics compared with the single Hypoaspis aculeifer and Folsomia candida.

    PubMed

    Zhu, Dong; Bi, Qing-Fang; Xiang, Qian; Chen, Qing-Lin; Christie, Peter; Ke, Xin; Wu, Long-Hua; Zhu, Yong-Guan

    2018-04-01

    Although the roles of earthworms and soil collembolans in the transport of microplastics have been studied previously, the effects of the soil biota at different trophic levels and interspecific relationships remain poorly understood. Here, we examine three soil microarthropod species to explore their effects on the transport of microplastics. The selected Folsomia candida and Hypoaspis aculeifer are extensively used model organisms, and Damaeus exspinosus is a common and abundant indigenous species in China. A model food chain (prey-collembolan and predator-mite) was structured to test the role of the predator-prey relationship in the transport of microplastics. Commercial Polyvinyl chloride (PVC) particles (Diameter: 80-250 μm) were selected as the test microplastics, because large amounts of PVC have persisted and accumulated in the environment. Synchronized soil microarthropods were held in plates for seven days to determine the movement of microplastics. The 5000 microplastic particles were carefully placed in the center of each plate prior to the introduction of the animals. Our results clearly show that all three microarthropod species moved and dispersed the microplastics in the plates. The 0.54%, 1.8% and 4.6% of the added microplastic particles were moved by collembolan, predatory mite and oribatid mite, respectively. Soil microarthropods (<0.2 cm) transported microplastic particles up to 9 cm. The avoidance behavior was observed in the collembolans in respect of the microplastics. The predatory -prey relationship did promote the transport of microplastics in the plates, increasing transport by 40% compared with the effects of adding single species (P < .05). Soil microarthropods commonly occur in surface soils (0-5 cm) and, due to their small body size, they can enter soil pores. Our results therefore suggest that the movement of microplastics by soil microarthropods may influence the exposure of other soil biota to microplastics and change the physical properties of soils. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Why are some animal populations unaffected or positively affected by roads?

    PubMed

    Rytwinski, Trina; Fahrig, Lenore

    2013-11-01

    In reviews on effects of roads on animal population abundance we found that most effects are negative; however, there are also many neutral and positive responses [Fahrig and Rytwinski (Ecol Soc 14:21, 2009; Rytwinski and Fahrig (Biol Conserv 147:87-98, 2012)]. Here we use an individual-based simulation model to: (1) confirm predictions from the existing literature of the combinations of species traits and behavioural responses to roads that lead to negative effects of roads on animal population abundance, and (2) improve prediction of the combinations of species traits and behavioural responses to roads that lead to neutral and positive effects of roads on animal population abundance. Simulations represented a typical situation in which road mitigation is contemplated, i.e. rural landscapes containing a relatively low density (up to 1.86 km/km(2)) of high-traffic roads, with continuous habitat between the roads. In these landscapes, the simulations predict that populations of species with small territories and movement ranges, and high reproductive rates, i.e. many small mammals and birds, should not be reduced by roads. Contrary to previous suggestions, the results also predict that populations of species that obtain a resource from roads (e.g. vultures) do not increase with increasing road density. In addition, our simulations support the predation release hypothesis for positive road effects on prey (both small- and large-bodied prey), whereby abundance of a prey species increased with increasing road density due to reduced predation by generalist road-affected predators. The simulations also predict an optimal road density for the large-bodied prey species if it avoids roads or traffic emissions. Overall, the simulation results suggest that in rural landscapes containing high-traffic roads, there are many species for which road mitigation may not be necessary; mitigation efforts should be tailored to the species that show negative population responses to roads.

  20. Influence of the hypogaeic army ant Dorylus (Dichthadia) laevigatus on tropical arthropod communities.

    PubMed

    Berghoff, Stefanie M; Maschwitz, Ulrich; Linsenmair, K Eduard

    2003-03-01

    The majority of army ant species forage hypogaeically. Due to the difficulties in observing these ants, their potential influence on hypogaeic and epigaeic arthropod communities has not yet been investigated. As the first hypogaeically foraging army ant studied in detail, we attracted Dorylus laevigatus to areas monitored for their arthropod diversity. Here, for the first time, the same sites were sampled before and after an army ant raid. Furthermore, interactions between D. laevigatus and the five most common ground-nesting ant species were noted and their life-history traits compared, allowing first inferences on possible mechanisms of their coexistence. The occurrence of D. laevigatus within a study plot had no evident effect on the number of arthropod taxa or individuals collected with epigaeic and hypogaeic pitfall traps. Likewise, juvenile arthropods, which are less mobile and thus are potentially easier prey for D. laevigatus, showed no differences in their collected numbers before and after the army ant had visited a plot. However, significantly fewer ant species were collected with hypogaeic traps after D. laevigatus had been within the study plots, indicating a possible predation of D. laevigatus especially on two Pseudolasius and one Pheidole species. The five most common ground-foraging ant species demonstrated their ability to avoid, kill, and even prey on the army ant. The reaction of Lophomyrmex bedoti towards D. laevigatus indicated the former to be a potential prey species, while Pachycondyla sp. 2 showed signs of "enemy specification." Odontoponera diversus and O. transversa actively preyed on D. laevigatus, while Pheidologeton affinis fought with D. laevigatus over resources. All ant species could co-occur with D. laevigatus at palm oil baits. Adding to the differences detected in previous studies between D. laevigatus and epigaeically foraging army ant species, the occurrence of this hypogaeic army ant seems to have less devastating effects on arthropod community compositions than those of epigaeically mass raiding species.

  1. Spatial interactions between sympatric carnivores: asymmetric avoidance of an intraguild predator

    PubMed Central

    Grassel, Shaun M; Rachlow, Janet L; Williams, Christopher J

    2015-01-01

    Interactions between intraguild species that act as both competitors and predator–prey can be especially complex. We studied patterns of space use by the black-footed ferret (Mustela nigripes), a prairie dog (Cynomys spp.) specialist, and the American badger (Taxidea taxus), a larger generalist carnivore that competes for prairie dogs and is known to kill ferrets. We expected that ferrets would spatially avoid badgers because of the risk of predation, that these patterns of avoidance might differ between sexes and age classes, and that the availability of food and space might influence these relationships. We used location data from 60 ferrets and 15 badgers to model the influence of extrinsic factors (prairie dog density and colony size) and intrinsic factors (sex, age) on patterns of space use by ferrets in relation to space use by different sex and age categories of badgers. We documented asymmetric patterns of avoidance of badgers by ferrets based on the sex of both species. Female ferrets avoided adult female badgers, but not male badgers, and male ferrets exhibited less avoidance than female ferrets. Additionally, avoidance decreased with increasing densities of prairie dogs. We suggest that intersexual differences in space use by badgers create varying distributions of predation risk that are perceived by the smaller carnivore (ferrets) and that females respond more sensitively than males to that risk. This work advances understanding about how competing species coexist and suggests that including information on both intrinsic and extrinsic factors might improve our understanding of behavioral interactions between sympatric species. PMID:26306165

  2. Toddlers at the Table: Avoiding Power Struggles

    MedlinePlus

    ... she refuses. For some kids, dinner becomes a negotiation session from the very start, and parents have ... one bite" but don't fall into the negotiating trap. Prepare and serve healthy meals and let ...

  3. 21 CFR 520.1263c - Lincomycin powder.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... water containing lincomycin. Not for use in layer and breeder chickens. (3) Honey bees—(i) Amount. Mix... the fall and consumed by the bees before the main honey flow begins to avoid contamination of...

  4. 21 CFR 520.1263c - Lincomycin powder.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... water containing lincomycin. Not for use in layer and breeder chickens. (3) Honey bees—(i) Amount. Mix... the fall and consumed by the bees before the main honey flow begins to avoid contamination of...

  5. AAA Foundation for Traffic Safety

    MedlinePlus

    ... of Top Deadly Mistakes Made by Teen Drivers -- AAA AAA: Road debris causes avoidable crashes, deaths Save the ... and 500 deaths! Foundation News Stay Tuned New AAA Foundation for Traffic Safety website coming Fall 2017 ...

  6. "Better safe than sorry": a qualitative content analysis of participant's perspectives of fall-related concerns and balance in older women with osteoporosis after balance training.

    PubMed

    Halvarsson, Alexandra; Ståhle, Agneta; Halén, Carolina; Roaldsen, Kirsti Skavberg

    2015-07-03

    To explore how older women with osteoporosis perceive fall-related concerns and balance in daily life after having participated in balance training. Explorative study. Semi-structured interviews were conducted with 19 women (66-84 years), with osteoporosis recruited from an ongoing RCT; participants were asked about their perceived fall-related concerns and balance. Interviews were taped and transcribed verbatim. Data were analyzed using inductive qualitative content analysis. One underlying theme emerged: "Internalized risk perception related to experience of bodily fragility", and three manifest categories: empowerment, safety and menace. A dynamic process between the categories was found, in which contextual and personal factors influenced perceptions of fall-related concerns and balance, i.e. winter season may lead a person who is highly empowered and/or uses active strategies into a situation of perception of menace and avoidance of activity. To cope with the fragility caused by osteoporosis informants had an internalized risk perception that protected them against possible threats and harm. Informants perceived improved empowerment and self-efficacy after participation in balance training. They resumed activities and became more active and independent in daily life using safety precautions and fall-prevention strategies. Depending on contextual factors, some situations still invoked fear and led to avoidance. Implication for Rehabilitation Risk awareness protecting against possible threats and harms seems to be internalized in older women living with osteoporosis. When designing fall prevention programs, it is important to recognize that contextual and personal factors have a major influence on how older women with osteoporosis perceive fall-related concerns and balance. Perception of fragility and risk seems to be a significant problem for older women with osteoporosis and health-care providers should encourage their patients to participate in tailored balance training programs to overcome these concerns.

  7. Diet dynamics of the juvenile piscivorous fish community in Spirit Lake, Iowa, USA, 1997-1998

    USGS Publications Warehouse

    Pelham, M.E.; Pierce, C.L.; Larscheid, J.G.

    2001-01-01

    We assessed temporal dynamics and variation among species and age-classes in the diets of age 0 and age 1 piscivorous fish species in Spirit Lake, Iowa, USA during 1997 and 1998. Species included walleye Stizostedion vitreum, yellow perch Perca flavescens, smallmouth bass Micropterus dolomieui, largemouth bass Micropterus salmoides, black crappie Pomoxis nigromaculatus and white bass Morone chrysops. Thirty taxa were identified in diets, including 12 species of fish. We found dramatic differences in diets among species, among age-classes within species and over time. Walleye, largemouth bass, smallmouth bass and white bass were piscivorous at age 0. Black crappie began piscivory at age 1. Yellow perch also began piscivory at age 1, but fish were a very small fraction of age-1 diets. The primary temporal pattern, seen in several species and age- classes, was an increase in piscivory from spring to fall. This pattern was due to the lack of small, age-0 prey fish in spring. Although some patterns were evident, the taxonomic composition of the diets of all species was highly variable over time, making generalizations difficult. A surprising result was the absence of yellow perch in the diet of age-0 walleye, despite their abundance in Spirit Lake and prominence in diets of age-1 walleye and other age 1-piscivores. Age-0 yellow perch were consistently too large to be eaten by age-0 piscivores, which preyed primarily on invertebrates and smaller fish such as johnny darters Etheostoma nigrum and age 0 bluegill Lepomis macrochirus. This finding suggests that predator-prey interactions and resulting population dynamics may be quite different in Spirit Lake than in other systems dominated by walleye and yellow perch.

  8. Seasonal presence and potential influence of humpback whales on wintering Pacific herring populations in the Gulf of Alaska

    NASA Astrophysics Data System (ADS)

    Straley, Janice M.; Moran, John R.; Boswell, Kevin M.; Vollenweider, Johanna J.; Heintz, Ron A.; Quinn, Terrance J., II; Witteveen, Briana H.; Rice, Stanley D.

    2018-01-01

    This study addressed the lack of recovery of Pacific herring (Clupea pallasii) in Prince William Sound, Alaska, in relation to humpback whale (Megaptera novaeangliae) predation. As humpback whales rebound from commercial whaling, their ability to influence their prey through top-down forcing increases. We compared the potential influence of foraging humpback whales on three herring populations in the coastal Gulf of Alaska: Prince William Sound, Lynn Canal, and Sitka Sound (133-147°W; 57-61°N) from 2007 to 2009. Information on whale distribution, abundance, diet and the availability of herring as potential prey were used to correlate populations of overwintering herring and humpback whales. In Prince William Sound, the presence of whales coincided with the peak of herring abundance, allowing whales to maximize the consumption of overwintering herring prior to their southern migration. In Lynn Canal and Sitka Sound peak attendance of whales occurred earlier, in the fall, before the herring had completely moved into the areas, hence, there was less opportunity for predation to influence herring populations. North Pacific humpback whales in the Gulf of Alaska may be experiencing nutritional stress from reaching or exceeding carrying capacity, or oceanic conditions may have changed sufficiently to alter the prey base. Intraspecific competition for food may make it harder for humpback whales to meet their annual energetic needs. To meet their energetic demands whales may need to lengthen their time feeding in the northern latitudes or by skipping the annual migration altogether. If humpback whales extended their time feeding in Alaskan waters during the winter months, the result would likely be an increase in herring predation.

  9. Influence of Scale-dependent Processes on Capelin (Mallotus villosus) Distributions in the Gulf of Alaska

    NASA Astrophysics Data System (ADS)

    McGowan, D. W.; Horne, J. K.

    2016-02-01

    As part of the Gulf of Alaska (GOA) Integrated Ecosystem Research Program (GOAIERP), scale-dependent relationships of capelin (Mallotus villosus) densities were quantified as a function of oceanographic gradients, zooplankton prey fields, predators, and a potential competitor (age-0 walleye pollock, Gadus chalcogrammus). Within GOA food webs, capelin occupy an intermediate trophic position as planktivores where they function as both predator and prey; facilitating energy transfer from secondary producers to higher trophic level piscivores. Variability in the distribution of capelin in the GOA has previously been attributed to physical and biological processes that operate across a range of spatial and temporal scales. Capelin distributions were quantified during an acoustic-trawl survey conducted in the summer and fall of 2011 and 2013. Densities were significantly higher in 2013 and primarily concentrated along the edges of shallow submarine banks over the continental shelf east of Kodiak in both years. Wavelet analysis was used to identify scales that maximize variability in capelin distributions. Wavelets decompose a data series in the frequency domain to identify periods that account for variance in the series while retaining nonstationary features that may be biologically meaningful. Variance peaks in capelin densities were identified along most transects at fine- (0.44 to 0.72 km) and coarse- (32.6 to 52.9 km) scales, likely corresponding to aggregation size and the width of banks. Linear and nonlinear models were used to identify factors and interactions that influence capelin distributions at the scale of a predator-prey interaction and at coarser environmental scales. Cross-wavelets measured coherence between capelin and individual factors across a range of scales. Preliminary results indicate that capelin distributions may be influenced by intrusions of cold, nutrient-rich water from the GOA basin on to the shelf.

  10. Feeding habitats of the Gulf sturgeon, Acipenser oxyrinchus desotoi, in the Suwannee and Yellow rivers, Florida, as identified by multiple stable isotope analyses

    USGS Publications Warehouse

    Sulak, Kenneth J.; Berg, James J.; Randall, Michael T.

    2012-01-01

    Stable 13C, 15N, and 34S isotopes were analyzed to define the feeding habitats of Acipenser oxyrinchus desotoi in the Suwannee and Yellow River populations. For the majority (93.9%) of Suwannee subadults and adults, 13C and 34S signatures indicate use of nearshore marine waters as primary winter feeding habitat, probably due to the limiting size of the Suwannee Sound estuary. In the Yellow River population, 13C isotope signatures indicate that adults remain primarily within Pensacola Bay estuary to feed in winter, rather than emigrating to the open Gulf of Mexico. A minor Suwannee River subset (6% of samples), comprised of juveniles and subadults, displayed 13C signatures indicating continued feeding in freshwater during the spring immigration and fall emigration periods. This cannot be interpreted as incidental feeding since it resulted in a 20.5% turnover in tissue δ13C signatures over a 1–3 month period. Cessation of feeding in the general population does not coincide with high river water temperatures. The hypothesis of reduced feeding in freshwater due to localized prey depletion as a result of spatial activity restriction is not supported by the present study. Instead, Suwannee River A. o. desotoi appear to follow two trophic alternatives; 1) complete cessation of feeding immediately upon immigration in spring, continuing through emigration 8–9 months later (the predominant alternative); 2) continued intensive feeding for 1–3 months following immigration, switching to freshwater prey, selected primarily from high trophic levels (i.e., large prey). Stable –34S data verifies that recently immigrated, fully-anadromous A. o. desotoi adults had fed in nearshore marine waters, not offshore waters.

  11. Prey diversity effects on ecosystem functioning depend on consumer identity and prey composition.

    PubMed

    Wohlgemuth, Daniel; Filip, Joanna; Hillebrand, Helmut; Moorthi, Stefanie D

    2017-07-01

    Consumer diversity effects on ecosystem functioning are highly context dependent and are determined by consumer specialization and other consumer and prey specific traits such as growth and grazing rates. Despite complex reciprocal interactions between consumers and their prey, few experimental studies have focused on prey diversity effects on consumer dynamics and trophic transfer. In microbial microcosms, we investigated effects of algal prey diversity (one, two and four species) on the production, evenness and grazing rates of 4 ciliate consumers, differing in grazing preferences and rates. Prey diversity increased prey biovolume in the absence of consumers and had opposing effects on different consumers, depending on their specialization and their preferred prey. Consumers profited from prey mixtures compared to monocultures of non-preferred prey, but responded negatively if preferred prey species were offered together with other species. Prey diversity increased consumer evenness by preventing dominance of specific consumers, demonstrating that the loss of prey species may have cascading effects resulting in reduced consumer diversity. Our study emphasizes that not only the degree of specialization but also the selectivity for certain prey species within the dietary niche may alter the consequences of changing prey diversity in a food web context.

  12. Biomedical Publishing and the Internet

    PubMed Central

    Jacobson, Michael W.

    2000-01-01

    The Internet is challenging traditional publishing patterns. In the biomedical domain, medical journals are providing more and more content online, both free and for a fee. Beyond this, however, a number of commentators believe that traditional notions of copyright and intellectual property ownership are no longer suited to the information age and that ownership of copyright to research reports should be and will be wrested from publishers and returned to authors. In this paper, it is argued that, although the Internet will indeed profoundly affect the distribution of biomedical research results, the biomedical publishing industry is too intertwined with the research establishment and too powerful to fall prey to such a copyright revolution. PMID:10833159

  13. Biomedical publishing and the internet: evolution or revolution?

    PubMed

    Jacobson, M W

    2000-01-01

    The Internet is challenging traditional publishing patterns. In the biomedical domain, medical journals are providing more and more content online, both free and for a fee. Beyond this, however, a number of commentators believe that traditional notions of copyright and intellectual property ownership are no longer suited to the information age and that ownership of copyright to research reports should be and will be wrested from publishers and returned to authors. In this paper, it is argued that, although the Internet will indeed profoundly affect the distribution of biomedical research results, the biomedical publishing industry is too intertwined with the research establishment and too powerful to fall prey to such a copyright revolution.

  14. Dietary lipids and blood cholesterol: quantitative meta-analysis of metabolic ward studies.

    PubMed Central

    Clarke, R.; Frost, C.; Collins, R.; Appleby, P.; Peto, R.

    1997-01-01

    OBJECTIVE: To determine the quantitative importance of dietary fatty acids and dietary cholesterol to blood concentrations of total, low density lipoprotein, and high density lipoprotein cholesterol. DESIGN: Meta-analysis of metabolic ward studies of solid food diets in healthy volunteers. SUBJECTS: 395 dietary experiments (median duration 1 month) among 129 groups of individuals. RESULTS: Isocaloric replacement of saturated fats by complex carbohydrates for 10% of dietary calories resulted in blood total cholesterol falling by 0.52 (SE 0.03) mmol/l and low density lipoprotein cholesterol falling by 0.36 (0.05) mmol/l. Isocaloric replacement of complex carbohydrates by polyunsaturated fats for 5% of dietary calories resulted in total cholesterol falling by a further 0.13 (0.02) mmol/l and low density lipoprotein cholesterol falling by 0.11 (0.02) mmol/l. Similar replacement of carbohydrates by monounsaturated fats produced no significant effect on total or low density lipoprotein cholesterol. Avoiding 200 mg/day dietary cholesterol further decreased blood total cholesterol by 0.13 (0.02) mmol/l and low density lipoprotein cholesterol by 0.10 (0.02) mmol/l. CONCLUSIONS: In typical British diets replacing 60% of saturated fats by other fats and avoiding 60% of dietary cholesterol would reduce blood total cholesterol by about 0.8 mmol/l (that is, by 10-15%), with four fifths of this reduction being in low density lipoprotein cholesterol. PMID:9006469

  15. The many faces of fear: a synthesis of the methodological variation in characterizing predation risk.

    PubMed

    Moll, Remington J; Redilla, Kyle M; Mudumba, Tutilo; Muneza, Arthur B; Gray, Steven M; Abade, Leandro; Hayward, Matt W; Millspaugh, Joshua J; Montgomery, Robert A

    2017-07-01

    Predators affect prey by killing them directly (lethal effects) and by inducing costly antipredator behaviours in living prey (risk effects). Risk effects can strongly influence prey populations and cascade through trophic systems. A prerequisite for assessing risk effects is characterizing the spatiotemporal variation in predation risk. Risk effects research has experienced rapid growth in the last several decades. However, preliminary assessments of the resultant literature suggest that researchers characterize predation risk using a variety of techniques. The implications of this methodological variation for inference and comparability among studies have not been well recognized or formally synthesized. We couple a literature survey with a hierarchical framework, developed from established theory, to quantify the methodological variation in characterizing risk using carnivore-ungulate systems as a case study. Via this process, we documented 244 metrics of risk from 141 studies falling into at least 13 distinct subcategories within three broader categories. Both empirical and theoretical work suggest risk and its effects on prey constitute a complex, multi-dimensional process with expressions varying by spatiotemporal scale. Our survey suggests this multi-scale complexity is reflected in the literature as a whole but often underappreciated in any given study, which complicates comparability among studies and leads to an overemphasis on documenting the presence of risk effects rather than their mechanisms or scale of influence. We suggest risk metrics be placed in a more concrete conceptual framework to clarify inference surrounding risk effects and their cascading effects throughout ecosystems. We recommend studies (i) take a multi-scale approach to characterizing risk; (ii) explicitly consider 'true' predation risk (probability of predation per unit time); and (iii) use risk metrics that facilitate comparison among studies and the evaluation of multiple competing hypotheses. Addressing the pressing questions in risk effects research, including how, to what extent and on what scale they occur, requires leveraging the advantages of the many methods available to characterize risk while minimizing the confusion caused by variability in their application. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.

  16. In the absence of a "landscape of fear": How lions, hyenas, and cheetahs coexist.

    PubMed

    Swanson, Alexandra; Arnold, Todd; Kosmala, Margaret; Forester, James; Packer, Craig

    2016-12-01

    Aggression by top predators can create a "landscape of fear" in which subordinate predators restrict their activity to low-risk areas or times of day. At large spatial or temporal scales, this can result in the costly loss of access to resources. However, fine-scale reactive avoidance may minimize the risk of aggressive encounters for subordinate predators while maintaining access to resources, thereby providing a mechanism for coexistence. We investigated fine-scale spatiotemporal avoidance in a guild of African predators characterized by intense interference competition. Vulnerable to food stealing and direct killing, cheetahs are expected to avoid both larger predators; hyenas are expected to avoid lions. We deployed a grid of 225 camera traps across 1,125 km 2 in Serengeti National Park, Tanzania, to evaluate concurrent patterns of habitat use by lions, hyenas, cheetahs, and their primary prey. We used hurdle models to evaluate whether smaller species avoided areas preferred by larger species, and we used time-to-event models to evaluate fine-scale temporal avoidance in the hours immediately surrounding top predator activity. We found no evidence of long-term displacement of subordinate species, even at fine spatial scales. Instead, hyenas and cheetahs were positively associated with lions except in areas with exceptionally high lion use. Hyenas and lions appeared to actively track each, while cheetahs appear to maintain long-term access to sites with high lion use by actively avoiding those areas just in the hours immediately following lion activity. Our results suggest that cheetahs are able to use patches of preferred habitat by avoiding lions on a moment-to-moment basis. Such fine-scale temporal avoidance is likely to be less costly than long-term avoidance of preferred areas: This may help explain why cheetahs are able to coexist with lions despite high rates of lion-inflicted mortality, and highlights reactive avoidance as a general mechanism for predator coexistence.

  17. Predator and prey functional traits: understanding the adaptive machinery driving predator–prey interactions

    PubMed Central

    Schmitz, Oswald

    2017-01-01

    Predator–prey relationships are a central component of community dynamics. Classic approaches have tried to understand and predict these relationships in terms of consumptive interactions between predator and prey species, but characterizing the interaction this way is insufficient to predict the complexity and context dependency inherent in predator–prey relationships. Recent approaches have begun to explore predator–prey relationships in terms of an evolutionary-ecological game in which predator and prey adapt to each other through reciprocal interactions involving context-dependent expression of functional traits that influence their biomechanics. Functional traits are defined as any morphological, behavioral, or physiological trait of an organism associated with a biotic interaction. Such traits include predator and prey body size, predator and prey personality, predator hunting mode, prey mobility, prey anti-predator behavior, and prey physiological stress. Here, I discuss recent advances in this functional trait approach. Evidence shows that the nature and strength of many interactions are dependent upon the relative magnitude of predator and prey functional traits. Moreover, trait responses can be triggered by non-consumptive predator–prey interactions elicited by responses of prey to risk of predation. These interactions in turn can have dynamic feedbacks that can change the context of the predator–prey interaction, causing predator and prey to adapt their traits—through phenotypically plastic or rapid evolutionary responses—and the nature of their interaction. Research shows that examining predator–prey interactions through the lens of an adaptive evolutionary-ecological game offers a foundation to explain variety in the nature and strength of predator–prey interactions observed in different ecological contexts. PMID:29043073

  18. Predator and prey functional traits: understanding the adaptive machinery driving predator-prey interactions.

    PubMed

    Schmitz, Oswald

    2017-01-01

    Predator-prey relationships are a central component of community dynamics. Classic approaches have tried to understand and predict these relationships in terms of consumptive interactions between predator and prey species, but characterizing the interaction this way is insufficient to predict the complexity and context dependency inherent in predator-prey relationships. Recent approaches have begun to explore predator-prey relationships in terms of an evolutionary-ecological game in which predator and prey adapt to each other through reciprocal interactions involving context-dependent expression of functional traits that influence their biomechanics. Functional traits are defined as any morphological, behavioral, or physiological trait of an organism associated with a biotic interaction. Such traits include predator and prey body size, predator and prey personality, predator hunting mode, prey mobility, prey anti-predator behavior, and prey physiological stress. Here, I discuss recent advances in this functional trait approach. Evidence shows that the nature and strength of many interactions are dependent upon the relative magnitude of predator and prey functional traits. Moreover, trait responses can be triggered by non-consumptive predator-prey interactions elicited by responses of prey to risk of predation. These interactions in turn can have dynamic feedbacks that can change the context of the predator-prey interaction, causing predator and prey to adapt their traits-through phenotypically plastic or rapid evolutionary responses-and the nature of their interaction. Research shows that examining predator-prey interactions through the lens of an adaptive evolutionary-ecological game offers a foundation to explain variety in the nature and strength of predator-prey interactions observed in different ecological contexts.

  19. Predator evasion in zooplankton is suppressed by polyunsaturated fatty acid limitation.

    PubMed

    Brzeziński, Tomasz; von Elert, Eric

    2015-11-01

    Herbivorous zooplankton avoid size-selective predation by vertical migration to a deep, cold water refuge. Adaptation to low temperatures in planktonic poikilotherms depends on essential dietary lipids; the availability of these lipids often limits growth and reproduction of zooplankton. We hypothesized that limitation by essential lipids may affect habitat preferences and predator avoidance behavior in planktonic poikilotherms. We used a liposome supplementation technique to enrich the green alga Scenedesmus obliquus and the cyanobacterium Synecchococcus elongatus with the essential lipids, cholesterol and eicosapentaenoic acid (EPA), and an indoor system with a stratified water-column (plankton organ) to test whether the absence of these selected dietary lipids constrains predator avoidance (habitat preferences) in four species of the key-stone pelagic freshwater grazer Daphnia. We found that the capability of avoiding fish predation through habitat shift to the deeper and colder environment was suppressed in Daphnia unless the diet was supplemented with EPA; however, the availability of cholesterol did not affect habitat preferences of the tested taxa. Thus, their ability to access a predator-free refuge and the outcome of predator-prey interactions depends upon food quality (i.e. the availability of an essential fatty acid). Our results suggest that biochemical food quality limitation, a bottom-up factor, may affect the top-down control of herbivorous zooplankton.

  20. No evidence of nonlinear effects of predator density, refuge availability, or body size of prey on prey mortality rates.

    PubMed

    Simkins, Richard M; Belk, Mark C

    2017-08-01

    Predator density, refuge availability, and body size of prey can all affect the mortality rate of prey. We assume that more predators will lead to an increase in prey mortality rate, but behavioral interactions between predators and prey, and availability of refuge, may lead to nonlinear effects of increased number of predators on prey mortality rates. We tested for nonlinear effects in prey mortality rates in a mesocosm experiment with different size classes of western mosquitofish ( Gambusia affinis ) as the prey, different numbers of green sunfish ( Lepomis cyanellus ) as the predators, and different levels of refuge. Predator number and size class of prey, but not refuge availability, had significant effects on the mortality rate of prey. Change in mortality rate of prey was linear and equal across the range of predator numbers. Each new predator increased the mortality rate by about 10% overall, and mortality rates were higher for smaller size classes. Predator-prey interactions at the individual level may not scale up to create nonlinearity in prey mortality rates with increasing predator density at the population level.

  1. Both psychological factors and physical performance are associated with fall-related concerns.

    PubMed

    Pauelsen, Mascha; Nyberg, Lars; Röijezon, Ulrik; Vikman, Irene

    2017-12-20

    Fall-related concern strongly correlates to activity avoidance in older people. In this complex phenomenon, different terminology and instruments are often used interchangeably. Three main concepts make up fall-related concerns: fear of falling, consequence concern, and falls self-efficacy. It is suggested that fall-related concerns are mediated by psychological and physical factors. Our aims were to describe the prevalence of fall-related concerns and find explanatory factors for its most studied concept-falls self-efficacy-in an older population. We executed a cross-sectional study on a random sample of 153 community-dwelling older people (70 years or older). We used validated and reliable instruments as well as structured interviews to gather data on the three concepts of fall-related concerns and possible mediating factors. We then calculated descriptive statistics on prevalence and regression models for the total group, and men and women, separately. 70% of the total sample (80% of women and 53% of men) reported at least one of the three concepts of fall-related concern. For the total sample, fear of falling, morale, and physical performance were associated factors with falls self-efficacy. For women, the number of prescription medications was added. For men, physical performance and concerns for injury were associated. Fall-related concern is prevalent in large proportions with higher prevalence for women than for men. Important factors are fear of falling, morale, and physical performance. Gender differences in the emergence and variance of fall-related concern and the relation between physical performance and fall-related concern should be targeted in future research endeavors.

  2. Novel Hierarchical Fall Detection Algorithm Using a Multiphase Fall Model.

    PubMed

    Hsieh, Chia-Yeh; Liu, Kai-Chun; Huang, Chih-Ning; Chu, Woei-Chyn; Chan, Chia-Tai

    2017-02-08

    Falls are the primary cause of accidents for the elderly in the living environment. Reducing hazards in the living environment and performing exercises for training balance and muscles are the common strategies for fall prevention. However, falls cannot be avoided completely; fall detection provides an alarm that can decrease injuries or death caused by the lack of rescue. The automatic fall detection system has opportunities to provide real-time emergency alarms for improving the safety and quality of home healthcare services. Two common technical challenges are also tackled in order to provide a reliable fall detection algorithm, including variability and ambiguity. We propose a novel hierarchical fall detection algorithm involving threshold-based and knowledge-based approaches to detect a fall event. The threshold-based approach efficiently supports the detection and identification of fall events from continuous sensor data. A multiphase fall model is utilized, including free fall, impact, and rest phases for the knowledge-based approach, which identifies fall events and has the potential to deal with the aforementioned technical challenges of a fall detection system. Seven kinds of falls and seven types of daily activities arranged in an experiment are used to explore the performance of the proposed fall detection algorithm. The overall performances of the sensitivity, specificity, precision, and accuracy using a knowledge-based algorithm are 99.79%, 98.74%, 99.05% and 99.33%, respectively. The results show that the proposed novel hierarchical fall detection algorithm can cope with the variability and ambiguity of the technical challenges and fulfill the reliability, adaptability, and flexibility requirements of an automatic fall detection system with respect to the individual differences.

  3. Novel Hierarchical Fall Detection Algorithm Using a Multiphase Fall Model

    PubMed Central

    Hsieh, Chia-Yeh; Liu, Kai-Chun; Huang, Chih-Ning; Chu, Woei-Chyn; Chan, Chia-Tai

    2017-01-01

    Falls are the primary cause of accidents for the elderly in the living environment. Reducing hazards in the living environment and performing exercises for training balance and muscles are the common strategies for fall prevention. However, falls cannot be avoided completely; fall detection provides an alarm that can decrease injuries or death caused by the lack of rescue. The automatic fall detection system has opportunities to provide real-time emergency alarms for improving the safety and quality of home healthcare services. Two common technical challenges are also tackled in order to provide a reliable fall detection algorithm, including variability and ambiguity. We propose a novel hierarchical fall detection algorithm involving threshold-based and knowledge-based approaches to detect a fall event. The threshold-based approach efficiently supports the detection and identification of fall events from continuous sensor data. A multiphase fall model is utilized, including free fall, impact, and rest phases for the knowledge-based approach, which identifies fall events and has the potential to deal with the aforementioned technical challenges of a fall detection system. Seven kinds of falls and seven types of daily activities arranged in an experiment are used to explore the performance of the proposed fall detection algorithm. The overall performances of the sensitivity, specificity, precision, and accuracy using a knowledge-based algorithm are 99.79%, 98.74%, 99.05% and 99.33%, respectively. The results show that the proposed novel hierarchical fall detection algorithm can cope with the variability and ambiguity of the technical challenges and fulfill the reliability, adaptability, and flexibility requirements of an automatic fall detection system with respect to the individual differences. PMID:28208694

  4. Characteristics and adaptive strategies linked with falls in stroke survivors from analysis of laboratory-induced falls

    PubMed Central

    Honeycutt, Claire F.; Nevisipour, Masood; Grabiner, Mark D.

    2016-01-01

    Falls are the most common and expensive medical complication in stroke survivors. There is remarkably little information about what factors lead to a fall in stroke survivors. With few exceptions, the falls literature in stroke has focused on relating metrics of static balance and impairment to fall outcomes in the acute care setting or in community. While informative, these studies provide little information about what specific impairments in a stroke-survivor’s response to dynamic balance challenges lead to a fall. We identified the key kinematic characteristics of stroke survivors’ stepping responses following a balance disturbance that are associated with a fall following dynamic balance challenges. Stroke survivors were exposed to posteriorly-directed translations of a treadmill belt that elicited a stepping response. Kinematics were compared between successful and failed recovery attempts (i.e. a fall). We found that the ability to arrest and reverse trunk flexion and the ability to perform an appropriate initial compensatory step were the most critical response contributors to a successful recovery. We also identified 2 compensatory strategies utilized by stroke survivors to avoid a fall. Despite significant post-stroke functional impairments, the biomechanical causes of trip-related falls by stroke survivors appear to be similar to those of unimpaired older adults and lower extremity amputees. However, compensatory strategies (pivot, hopping) were observed. PMID:27614614

  5. Evaluation of the Frails' Fall Efficacy by Comparing Treatments (EFFECT) on reducing fall and fear of fall in moderately frail older adults: study protocol for a randomised control trial

    PubMed Central

    2011-01-01

    Background Falls are common in frail older adults and often result in injuries and hospitalisation. The Nintendo® Wii™ is an easily available exercise modality in the community which has been shown to improve lower limb strength and balance. However, not much is known on the effectiveness of the Nintendo® Wii™ to improve fall efficacy and reduce falls in a moderately frail older adult. Fall efficacy is the measure of fear of falling in performing various daily activities. Fear contributes to avoidance of activities and functional decline. Methods This randomised active-control trial is a comparison between the Nintendo WiiActive programme against standard gym-based rehabilitation of the older population. Eighty subjects aged above 60, fallers and non-fallers, will be recruited from the hospital outpatient clinic. The primary outcome measure is the Modified Falls Efficacy Scale and the secondary outcome measures are self-reported falls, quadriceps strength, walking agility, dynamic balance and quality of life assessments. Discussions The study is the first randomised control trial using the Nintendo Wii as a rehabilitation modality investigating a change in fall efficacy and self-reported falls. Longitudinally, the study will investigate if the interventions can successfully reduce falls and analyse the cost-effectiveness of the programme. Trial registration Australia and New Zealand Clinical Trials Register (ANZCTR): ACTRN12610000576022 PMID:21682909

  6. Prey dispersal rate affects prey species composition and trait diversity in response to multiple predators in metacommunities.

    PubMed

    Howeth, Jennifer G; Leibold, Mathew A

    2010-09-01

    1. Recent studies indicate that large-scale spatial processes can alter local community structuring mechanisms to determine local and regional assemblages of predators and their prey. In metacommunities, this may occur when the functional diversity represented in the regional predator species pool interacts with the rate of prey dispersal among local communities to affect prey species diversity and trait composition at multiple scales. 2. Here, we test for effects of prey dispersal rate and spatially and temporally heterogeneous predation from functionally dissimilar predators on prey structure in pond mesocosm metacommunities. An experimental metacommunity consisted of three pond mesocosm communities supporting two differentially size-selective invertebrate predators and their zooplankton prey. In each metacommunity, two communities maintained constant predation and supported either Gyrinus sp. (Coleoptera) or Notonecta ungulata (Hemiptera) predators generating a spatial prey refuge while the third community supported alternating predation from Gyrinus sp. and N. ungulata generating a temporal prey refuge. Mesocosm metacommunities were connected at either low (0.7% day(-1)) or high (10% day(-1)) planktonic prey dispersal. The diversity, composition and body size of zooplankton prey were measured at local and regional (metacommunity) scales. 3. Metacommunities experiencing the low prey dispersal rate supported the greatest regional prey species diversity (H') and evenness (J'). Neither dispersal rate nor predation regime affected local prey diversity or evenness. The spatial prey refuge at low dispersal maintained the largest difference in species composition and body size diversity between communities under Gyrinus and Notonecta predation, suggesting that species sorting was operating at the low dispersal rate. There was no effect of dispersal rate on species diversity or body size distribution in the temporal prey refuge. 4. The frequency distribution, but not the range, of prey body sizes within communities depended upon prey dispersal rate and predator identity. Taken together, these results demonstrate that prey dispersal rate can moderate the strength of predation to influence prey species diversity and the local frequency distribution of prey traits in metacommunities supporting ecologically different predators.

  7. Trawl-based assessment of Lake Ontario pelagic prey fishes including Alewife and Rainbow Smelt

    USGS Publications Warehouse

    Weidel, Brian C.; Walsh, Maureen; Connerton, Michael J.; Holden, Jeremy P.

    2017-01-01

    Managing Lake Ontario fisheries in an ecosystem-context, requires reliable data on the status and trends of prey fishes that support predator populations. We report on the community and population dynamics of Lake Ontario pelagic prey fishes, based on bottom trawl surveys. We emphasize information that supports the international Lake Ontario Committee’s Fish Community Objectives. In 2016, 142 bottom trawls were collected in U.S. waters, and for the first time 46 trawls were conducted in Canadian waters. A total of 420,386 fish from 24 species were captured. Alewife were 89% of the total fish catch and 93% of the pelagic prey fish catch. The Rainbow Smelt abundance index in U.S. waters increased slightly in 2016 relative to 2015. Interestingly, the Rainbow Smelt abundance index from tows in Canadian waters was 35% higher than the U.S. index. Abundances of Threespine Stickleback and Emerald Shiners in both U.S. and Canadian waters were low in 2016 relative to their peak abundances in the late 1990s, but Cisco abundance indices suggest a recent increase in their abundance. This year, the reported Alewife abundance time series was truncated to only include values since 1997, which were collected with the same trawl and eliminated the need to adjust values for different trawls. The 2016 adult Alewife abundance index was the second lowest abundance ever observed in the time series. This value was expected to decline from the 2015 value since the indices of juvenile Alewife were low in 2014 and the lowest ever observed in 2015. The fall condition index of adult Alewife increased in 2016 and is consistent with lower abundance and reduced competition for zooplankton resources. The 2016 Age-1 Alewife index increased relative to 2014 and 2015, and suggested lake conditions were favorable for Age-1 survival and growth during the summer of 2015 and the 2015-2016 winter. Interestingly, the catch of adult and Age1 Alewife was higher in trawls conducted in Canadian waters relative to U. S. waters. The larger trawl catches in Canadian waters suggest there may be important spatial differences in lake-wide distribution of prey fishes in April when trawling is conducted. Future surveys should to continue to sample at the whole-lake scale to understand the year to year variability in spatial distribution and the physical or biotic factors driving those distribution differences.

  8. Prey size selection and cannibalistic behaviour of juvenile barramundi Lates calcarifer.

    PubMed

    Ribeiro, F F; Qin, J G

    2015-05-01

    This study assessed the cannibalistic behaviour of juvenile barramundi Lates calcarifer and examined the relationship between prey size selection and energy gain of cannibals. Prey handling time and capture success by cannibals were used to estimate the ratio of energy gain to energy cost in prey selection. Cannibals selected smaller prey despite its capability of ingesting larger prey individuals. In behavioural analysis, prey handling time significantly increased with prey size, but it was not significantly affected by cannibal size. Conversely, capture success significantly decreased with the increase of both prey and cannibal sizes. The profitability indices showed that the smaller prey provides the most energy return for cannibals of all size classes. These results indicate that L. calcarifer cannibals select smaller prey for more profitable return. The behavioural analysis, however, indicates that L. calcarifer cannibals attack prey of all size at a similar rate but ingest smaller prey more often, suggesting that prey size selection is passively orientated rather than at the predator's choice. The increase of prey escape ability and morphological constraint contribute to the reduction of intracohort cannibalism as fish grow larger. This study contributes to the understanding of intracohort cannibalism and development of strategies to reduce fish cannibalistic mortalities. © 2015 The Fisheries Society of the British Isles.

  9. Relationship between the use of benzodiazepines and falls in older adults: A systematic review.

    PubMed

    Díaz-Gutiérrez, Mª José; Martínez-Cengotitabengoa, Mónica; Sáez de Adana, Estíbaliz; Cano, Ana Isabel; Martínez-Cengotitabengoa, Maria Teresa; Besga, Ariadna; Segarra, Rafael; González-Pinto, Ana

    2017-07-01

    Falls in the elderly represent a major health problem. The etiology of falls is usually multifactorial. Special attention should be paid on benzodiazepines (BZDs) since they are widely used by older adults. A literature search of the PUBMED and EMBASE databases from January 2007 to February 2017 was conducted using the MeSH terms "benzodiazepines", "elderly" and "falls" or "accidental falls". The systematic review was performed according to PRISMA criteria. Of the 27 references selected for full reading from 235 found, 15 were eliminated and 12 papers were selected for systematic review. Exposure to BZDs was associated with a higher risk of falls in older adults, which is consistent with the results reported in the literature and previous reviews and meta-analyses. BZDs increase the risk of falling when used either as monotherapy or in combined therapies. It is preferable to use short-acting BZDs, to avoid cumulative effects over time predisposing to falls. A high proportion of falls in older adults are related to the use of BZDs. They should be prescribed to older patients in accordance with current clinical guidelines and reviewed over time. BZDs should be prescribed as a short-term therapy and progressively withdrawn. Short-acting BZDs should be the treatment of choice. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Capture success and efficiency of dragonflies pursuing different types of prey.

    PubMed

    Combes, S A; Salcedo, M K; Pandit, M M; Iwasaki, J M

    2013-11-01

    The dynamics of predator-prey interactions vary enormously, due both to the heterogeneity of natural environments and to wide variability in the sensorimotor systems of predator and prey. In addition, most predators pursue a range of different types of prey, and most organisms are preyed upon by a variety of predators. We do not yet know whether predators employ a general kinematic and behavioral strategy, or whether they tailor their pursuits to each type of prey; nor do we know how widely prey differ in their survival strategies and sensorimotor capabilities. To gain insight into these questions, we compared aerial predation in 4 species of libelluid dragonflies pursuing 4 types of dipteran prey, spanning a range of sizes. We quantified the proportion of predation attempts that were successful (capture success), as well as the total time spent and the distance flown in pursuit of prey (capture efficiency). Our results show that dragonfly prey-capture success and efficiency both decrease with increasing size of prey, and that average prey velocity generally increases with size. However, it is not clear that the greater distances and times required for capturing larger prey are due solely to the flight performance (e.g., speed or evasiveness) of the prey, as predicted. Dragonflies initiated pursuits of large prey when they were located farther away, on average, as compared to small prey, and the total distance flown in pursuit was correlated with initial distance to the prey. The greater initial distances observed during pursuits of larger prey may arise from constraints on dragonflies' visual perception; dragonflies typically pursued prey subtending a visual angle of 1°, and rarely pursued prey at visual angles greater than 3°. Thus, dragonflies may be unable to perceive large prey flying very close to their perch (subtending a visual angle greater than 3-4°) as a distinct target. In comparing the performance of different dragonfly species that co-occur in the same habitat, we found significant differences that are not explained by body size, suggesting that some dragonflies may be specialized for pursuing particular types of prey. Our results underscore the importance of performing comparative studies of predator-prey interactions with freely behaving subjects in natural settings, to provide insight into how the behavior of both participants influences the dynamics of the interaction. In addition, it is clear that gaining a full understanding of predator-prey interactions requires detailed knowledge not only of locomotory mechanics and behavior, but also of the sensory capabilities and constraints of both predator and prey.

  11. Trunk structural traits explain habitat use of a tree-dwelling spider (Selenopidae) in a tropical forest

    NASA Astrophysics Data System (ADS)

    Villanueva-Bonilla, German Antonio; Salomão, Adriana Trevizoli; Vasconcellos-Neto, João

    2017-11-01

    Habitat selection by spiders may be strongly influenced by biotic, climatic, and physical factors. However, it has been shown that the selection of habitats by generalist predators (like spiders) is regulated more by the physical structure of the habitat than by prey availability. Yet, the preferences of spiders in relation to plants or plant traits remain poorly explored. In a remnant of the Atlantic forest in Brazil, the spider Selenops cocheleti is frequently detected on the trunks of plants from the Myrtaceae family. Here, we investigated quantitatively and experimentally whether the colonization of trees by S. cocheleti is related to plant species or the presence of specific structures on trunks. We found that S. cocheleti preferentially occurred on plants of the family Myrtaceae. This spider was also strongly associated with trees that have smooth trunks and/or exfoliating bark. Non-Myrtaceae plants that were occupied by this species have exfoliating bark (e.g., Piptadenia gonoacantha) or deep fissures on the trunk (e.g., the exotic species Pinus elliottii). Our results indicate that the selection of host plants by S. cocheleti is not species-specific, but based on the structural characteristics of plants. Trunks with exfoliating bark may benefit spiders by providing shelter against predators and harsh climatic conditions. Smooth surfaces might allow rapid movements, facilitating both attacks on preys and escape from predators. Our study emphasizes the importance of the physical structure of the habitat on spider's distribution. Future studies investigating how specific plant characteristics influence prey acquisition and predator avoidance would improve our understanding of habitat selection by these animals.

  12. Low-level copper exposures increase visibility and vulnerability of juvenile coho salmon to cutthroat trout predators

    USGS Publications Warehouse

    McIntyre, Jenifer K.; Baldwin, David H.; Beauchamp, David A.; Scholz, Nathaniel L.

    2012-01-01

    Copper contamination in surface waters is common in watersheds with mining activities or agricultural, industrial, commercial, and residential human land uses. This widespread pollutant is neurotoxic to the chemosensory systems of fish and other aquatic species. Among Pacific salmonids (), copper-induced olfactory impairment has previously been shown to disrupt behaviors reliant on a functioning sense of smell. For juvenile coho salmon (O. kisutch), this includes predator avoidance behaviors triggered by a chemical alarm cue (conspecific skin extract). However, the survival consequences of this sublethal neurobehavioral toxicity have not been explored. In the present study juvenile coho were exposed to low levels of dissolved copper (5–20 μg/L for 3 h) and then presented with cues signaling the proximity of a predator. Unexposed coho showed a sharp reduction in swimming activity in response to both conspecific skin extract and the upstream presence of a cutthroat trout predator (O. clarki clarki) previously fed juvenile coho. This alarm response was absent in prey fish that were exposed to copper. Moreover, cutthroat trout were more effective predators on copper-exposed coho during predation trials, as measured by attack latency, survival time, and capture success rate. The shift in predator–prey dynamics was similar when predators and prey were co-exposed to copper. Overall, we show that copper-exposed coho are unresponsive to their chemosensory environment, unprepared to evade nearby predators, and significantly less likely to survive an attack sequence. Our findings contribute to a growing understanding of how common environmental contaminants alter the chemical ecology of aquatic communities.

  13. 21 CFR 520.2640 - Tylosin.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... phosphate medicated feed as in § 558.625(f)(1)(vi)(c) of this chapter. (4) Honey bees—(i) Amount. Mix 200... spring or fall and consumed by the bees before the main honey flow begins, to avoid contamination of...

  14. 21 CFR 520.2640 - Tylosin.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... phosphate medicated feed as in § 558.625(f)(1)(vi)(c) of this chapter. (4) Honey bees—(i) Amount. Mix 200... spring or fall and consumed by the bees before the main honey flow begins, to avoid contamination of...

  15. Prevent Back Pain

    MedlinePlus

    ... a week. Stand and sit up straight. Avoid heavy lifting. If you do lift something heavy, bend your knees and keep your back straight. ... an accident, fall, or lifting something that’s too heavy. Acute back pain usually gets better on its ...

  16. Age and growth of alewives in the changing pelagia of Lake Ontario, 1978-1992

    USGS Publications Warehouse

    O'Gorman, Robert; Johannsson, Ora E.; Schneider, Clifford P.

    1997-01-01

    We documented the age and growth of alewives Alosa pseudoharenqus in Lake Ontario during 1978-1992 and determined if growth was affected by intraspecific competition for epilimnetic zooplankton, lake temperature, or demand of salmonine piscivores for prey. Ages of juvenile alewives were determined from scales during 1978-1983, and ages of juvenile and adult alewives were determined from otoliths during 1984-1992. Indices of abundance for alewives were calculated from spring bottom trawl catches in 1978-1992; zooplankton density and epilimnetic temperature were monitored at two stations during 1981-1991; and salmonine demand each year during 1978-1992 was calculated with a simulation model. Although we encountered 11-year-old alewives, few fish lived longer than 7 years, and most fish in the population were younger than 6 years. Mean sizes at ages 1, 2, and 3 in spring averaged 93 mm (5.1 g), 133 mm (17 g), and 149 mm (22 g), but from age 3 to age 8, mean size increased by only 5-7 mm and 2-3 g per year. Female alewives lived longer than male alewives and were always longer than male alewives at age 4 and older. Epilimnetic temperatures were suitable for rapid growth of juvenile alewives each year. Lake temperature had the potential to affect growth of adults but adult growth was not correlated with temperature suitability indices perhaps because temperature regimes differed among lake regions and alewives were mobile. Growth of alewives was not correlated with salmonine demand for prey. Competition for zooplankton among the two youngest alewife cohorts affected growth of age-1 alewives. Zooplankton density declined sharply in 1986, and should it decline again, growth of age-1 alewives will slow, unless numbers of age-0 alewives fall. Whether growth of age-1 fish declines or numbers of age-0 fish fall, the result of another decline in zooplankton density will be a reduction in the production of alewives needed to support piscivores.

  17. Interactions between brown bears and chum salmon at McNeil River, Alaska

    USGS Publications Warehouse

    Peirce, Joshua M.; Otis, Edward O.; Wipfli, Mark S.; Follmann, Erich H.

    2013-01-01

    Predation on returning runs of adult salmon (Oncorhynchus spp.) can have a large influence on their spawning success. At McNeil River State Game Sanctuary (MRSGS), Alaska, brown bears (Ursus arctos) congregate in high numbers annually along the lower McNeil River to prey upon returning adult chum salmon (O. keta). Low chum salmon escapements into McNeil River since the late 1990s have been proposed as a potential factor contributing to concurrent declines in bear numbers. The objective of this study was to determine the extent of bear predation on chum salmon in McNeil River, especially on pre-spawning fish, and use those data to adjust the escapement goal for the river. In 2005 and 2006, 105 chum salmon were radiotagged at the river mouth and tracked to determine cause and location of death. Below the falls, predators consumed 99% of tagged fish, killing 59% of them before they spawned. Subsequently, the escapement goal was nearly doubled to account for this pre-spawning mortality and to ensure enough salmon to sustain both predators and prey. This approach to integrated fish and wildlife management at MRSGS can serve as a model for other systems where current salmon escapement goals may not account for pre-spawning mortality.

  18. Cardiac responses of grey seals during diving at sea.

    PubMed

    Thompson, D; Fedak, M A

    1993-01-01

    Heart rate, swimming speed and diving depth data were collected from free-ranging grey seals, Halichoerus grypus, as they foraged and travelled in the sea around the Hebrides Islands off western Scotland. Information was collected on a tracking yacht using a combination of sonic and radio telemetry. Diving heart rate declined as a function of dive duration. In long dives, grey seals employed extreme bradycardia, with heart rates falling to 4 beats min-1 for extended periods, despite the animal being free to breath at will. This extreme dive response is part of the normal foraging behaviour. Seals spent 89% of the time submerged during bouts of long dives; swimming was restricted to ascent and descent. Dive durations exceeded estimated aerobic dive limit, even assuming resting metabolic rates. These results indicate that behavioural, and possibly cellular, energy-sparing mechanisms play an important role in diving behaviour of grey seals. This has implications not only for studies of mammalian energetics but also for our understanding of the foraging tactics and prey selection of marine mammals. If some seals are using energy-sparing mechanisms to reduce metabolic costs while at depth, they may be forced to wait for and ambush prey rather than to search for and chase it.

  19. Cryptogenic stroke. A non-diagnosis.

    PubMed

    Gutiérrez-Zúñiga, Raquel; Fuentes, Blanca; Díez-Tejedor, Exuperio

    2018-04-30

    The term cryptogenic stroke refers to a stroke for which there is no specific attributable cause after a comprehensive evaluation. However, there are differences between the diagnostic criteria of etiological classifications used in clinical practice. An improvement in diagnostic tools such advances in monitoring for atrial fibrillation, advances in vascular imaging and evidence regarding the implication of patent foramen oval on the risk of stroke specially in young patients are reducing the proportion of stroke patients without etiological diagnosis. We carried out a critical review of the current concept of cryptogenic stroke, as a non-diagnosis, avoiding the simplification of it and reviewing the different entities that could fall under this diagnosis and reviewing the different entities that could fall under this diagnosis; and therefore avoid the same treatment for differents entities with uncertains results. Copyright © 2018 Elsevier España, S.L.U. All rights reserved.

  20. A generalized functional response for predators that switch between multiple prey species.

    PubMed

    van Leeuwen, E; Brännström, Å; Jansen, V A A; Dieckmann, U; Rossberg, A G

    2013-07-07

    We develop a theory for the food intake of a predator that can switch between multiple prey species. The theory addresses empirical observations of prey switching and is based on the behavioural assumption that a predator tends to continue feeding on prey that are similar to the prey it has consumed last, in terms of, e.g., their morphology, defences, location, habitat choice, or behaviour. From a predator's dietary history and the assumed similarity relationship among prey species, we derive a general closed-form multi-species functional response for describing predators switching between multiple prey species. Our theory includes the Holling type II functional response as a special case and makes consistent predictions when populations of equivalent prey are aggregated or split. An analysis of the derived functional response enables us to highlight the following five main findings. (1) Prey switching leads to an approximate power-law relationship between ratios of prey abundance and prey intake, consistent with experimental data. (2) In agreement with empirical observations, the theory predicts an upper limit of 2 for the exponent of such power laws. (3) Our theory predicts deviations from power-law switching at very low and very high prey-abundance ratios. (4) The theory can predict the diet composition of a predator feeding on multiple prey species from diet observations for predators feeding only on pairs of prey species. (5) Predators foraging on more prey species will show less pronounced prey switching than predators foraging on fewer prey species, thus providing a natural explanation for the known difficulties of observing prey switching in the field. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. A single predator multiple prey model with prey mutation

    NASA Astrophysics Data System (ADS)

    Mullan, Rory; Abernethy, Gavin M.; Glass, David H.; McCartney, Mark

    2016-11-01

    A multiple species predator-prey model is expanded with the introduction of a coupled map lattice for the prey, allowing the prey to mutate discretely into other prey species. The model is examined in its single predator, multiple mutating prey form. Two unimodal maps are used for the underlying dynamics of the prey species, with different predation strategies being used. Conclusions are drawn on how varying the control parameters of the model governs the overall behaviour and survival of the species. It is observed that in such a complex system, with multiple mutating prey, a large range of non-linear dynamics is possible.

  2. The scent of danger: arginine as an olfactory cue of reduced predation risk.

    PubMed

    Ferrer, Ryan P; Zimmer, Richard K

    2007-05-01

    Animal perception of chemosensory cues is a function of ecological context. Larvae of the California newt (Taricha torosa), for example, exhibit predator-avoidance behavior in response to a chemical from cannibalistic adults. The poison tetrodotoxin (TTX), well known as an adult chemical defense, stimulates larval escape to refuges. Although they are cannibals, adult newts feed preferentially on worms (Eisenia rosea) over conspecific young. Hence, larval avoidance reactions to TTX are suppressed in the presence of odor from these alternative prey. The free amino acid, arginine, is abundant in fluids emitted by injured worms. Here, we demonstrate that arginine is a natural suppressant of TTX-stimulated larval escape behavior. Compared to a tapwater control, larvae initiated vigorous swimming in response to 10(-7) mol l(-1) TTX. This excitatory response was eliminated when larval nasal cavities were blocked with an inert gel, but not when gel was placed on the forehead (control). In additional trials, a binary mixture of arginine and 10(-7) mol l(-1) TTX failed to induce larval swimming. The inhibitory effect of arginine was, however, dose dependent. An arginine concentration as low as 0.3-times that of TTX was significantly suppressant. Further analysis showed that suppression by arginine of TTX-stimulated behavior was eliminated by altering the positively-charged guanidinium moiety, but not by modifying the carbon chain, carboxyl group, or amine group. These results are best explained by a mechanism of competitive inhibition between arginine and TTX for common, olfactory receptor binding sites. Although arginine alone has no impact on larval behavior, it nevertheless signals active adult predation on alternative prey, and hence, reduced cannibalism risk.

  3. The consequences of lifetime and evolutionary exposure to toxic prey: changes in avoidance behaviour through ontogeny.

    PubMed

    Robbins, T R; Langkilde, T

    2012-10-01

    Responses to novel threats (e.g. invasive species) can involve genetic changes or plastic shifts in phenotype. There is controversy over the relative importance of these processes for species survival of such perturbations, but we are realizing they are not mutually exclusive. Native eastern fence lizards (Sceloporus undulatus) have adapted to top-down predation pressure imposed by the invasive red imported fire ant (Solenopsis invicta) via changes in adult (but not juvenile) lizard antipredator behaviour. Here, we examine the largely ignored, but potentially equally important, bottom-up effect of fire ants as toxic prey for lizards. We test how fire ant consumption (or avoidance) is affected by lifetime (via plasticity) and evolutionary (via natural selection) exposure to fire ants by comparing field-caught and laboratory-reared lizards, respectively, from fire ant-invaded and uninvaded populations. More naive juveniles from invaded populations ate fire ants than did adults, reflecting a natural ontogenetic dietary shift away from ants. Laboratory-reared lizards from the invaded site were less likely to eat fire ants than were those from the uninvaded site, suggesting a potential evolutionary shift in feeding behaviour. Lifetime and evolutionary exposure interacted across ontogeny, however, and field-caught lizards from the invaded site exhibited opposite ontogenetic trends; adults were more likely to eat fire ants than were juveniles. Our results suggest that plastic and evolutionary processes may both play important roles in permitting species survival of novel threats. We further reveal how complex interactions can shape adaptive responses to multimodal impacts imposed by invaders: in our system, fire ants impose stronger bottom-up selection than top-down selection, with each selection regime changing differently across lizard ontogeny. © 2012 The Authors. Journal of Evolutionary Biology © 2012 European Society For Evolutionary Biology.

  4. Falling and fall risk factors in adults with haemophilia: an exploratory study.

    PubMed

    Sammels, M; Vandesande, J; Vlaeyen, E; Peerlinck, K; Milisen, K

    2014-11-01

    Falls are a particular risk in persons with haemophilia (PWH) because of damaged joints, high risk of bleeding, possible impact on the musculoskeletal system and functioning and costs associated with treatment for these fall-related injuries. In addition, fall risk increases with age and PWH are increasingly entering the over 65 age group. The aim of this study was to determine the occurrence of falls during the past year and to explore which fall risk factors are present in community-dwelling PWH. Dutch speaking community-dwelling adults were included from the age of 40 years with severe or moderate haemophilia A or B, independent in their mobility and registered at the University Hospitals Leuven. They were asked to come to the haemophilia centre; otherwise a telephone survey was conducted. Demographic and social variables, medical variables, fall evaluation and clinical variables were queried. From the 89 PWH, 74 (83.1%) participated in the study. Twenty-four (32.4%) fell in the past year, and 10 of them (41.7%) more than once with an average of four falls. Living conditions, physical activity, avoidance of winter sports due to fear of falling, orthopaedic status, urinary incontinence and mobility impairments are potential fall risk factors in adult PWH. This exploratory study indicates that PWH are attentive to falling since they are at higher risk for falls and because of the serious consequences it might have. Screening and fall prevention should be stimulated in the daily practice of haemophilia care. © 2014 John Wiley & Sons Ltd.

  5. Concern about falling in older women with a history of falls: associations with health, functional ability, physical activity and quality of life.

    PubMed

    Patil, Radhika; Uusi-Rasi, Kirsti; Kannus, Pekka; Karinkanta, Saija; Sievänen, Harri

    2014-01-01

    Fear of falling has been linked to activity restriction, functional decline, decreased quality of life and increased risk of falling. Factors that distinguish persons with a high concern about falling from those with low concern have not been systematically studied. This study aimed to expose potential health-related, functional and psychosocial factors that correlate with fear of falling among independently living older women who had fallen in the past year. Baseline data of 409 women aged 70-80 years recruited to a randomised falls prevention trial (DEX) (NCT00986466) were used. Participants were classified according to their level of concern about falling using the Falls Efficacy Scale International (FES-I). Multinomial logistic regression analyses were performed to explore associations between health-related variables, functional performance tests, amount of physical activity, quality of life and FES-I scores. 68% of the participants reported a moderate to high concern (FES-I ≥ 20) about falls. Multinomial logistic regression showed that highly concerned women were significantly more likely to have poorer health and quality of life and lower functional ability. Reported difficulties in instrumental activities of daily living, balance, outdoor mobility and poorer quality of life contributed independently to a greater concern about falling. Concern about falling was highly prevalent in our sample of community-living older women. In particular, poor perceived general health and mobility constraints contributed independently to the difference between high and low concern of falling. Knowledge of these associations may help in developing interventions to reduce fear of falling and activity avoidance in old age.

  6. Multiple proximate and ultimate causes of natal dispersal in white-tailed deer

    USGS Publications Warehouse

    Long, E.S.; Diefenbach, D.R.; Rosenberry, C.S.; Wallingford, B.D.

    2008-01-01

    Proximate and ultimate causes of dispersal in vertebrates vary, and relative importance of these causes is poorly understood. Among populations, inter- and intrasexual social cues for dispersal are thought to reduce inbreeding and local mate competition, respectively, and specific emigration cue may affect dispersal distance, such that inbreeding avoidance dispersal tends to be farther than dispersal to reduce local competition. To investigate potential occurrence of multiple proximate and ultimate causes of dispersal within populations, we radio-marked 363 juvenile male white-tailed deer (Odocoileus virginianus) in 2 study areas in Pennsylvania. Natal dispersal probability and distance were monitored over a 3-year period when large-scale management changes reduced density of adult females and increased density of adult males. Most dispersal (95-97%) occurred during two 12-week periods: spring, when yearling males still closely associate with related females, and prior to fall breeding season, when yearling males closely associate with other breeding-age males. Following changes to sex and age structure that reduced potential for inbreeding and increased potential for mate competition, annual dispersal probability did not change; however, probability of spring dispersal decreased, whereas probability of fall dispersal increased. Spring dispersal distances were greater than fall dispersal distances, suggesting that adaptive inbreeding avoidance dispersal requires greater distance than mate competition dispersal where opposite-sex relatives are philopatric and populations are not patchily distributed. Both inbreeding avoidance and mate competition are important ultimate causes of dispersal of white-tailed deer, but ultimate motivations for dispersal are proximately cued by different social mechanisms and elicit different responses in dispersers.

  7. Age-related changes in gait adaptability in response to unpredictable obstacles and stepping targets.

    PubMed

    Caetano, Maria Joana D; Lord, Stephen R; Schoene, Daniel; Pelicioni, Paulo H S; Sturnieks, Daina L; Menant, Jasmine C

    2016-05-01

    A large proportion of falls in older people occur when walking. Limitations in gait adaptability might contribute to tripping; a frequently reported cause of falls in this group. To evaluate age-related changes in gait adaptability in response to obstacles or stepping targets presented at short notice, i.e.: approximately two steps ahead. Fifty older adults (aged 74±7 years; 34 females) and 21 young adults (aged 26±4 years; 12 females) completed 3 usual gait speed (baseline) trials. They then completed the following randomly presented gait adaptability trials: obstacle avoidance, short stepping target, long stepping target and no target/obstacle (3 trials of each). Compared with the young, the older adults slowed significantly in no target/obstacle trials compared with the baseline trials. They took more steps and spent more time in double support while approaching the obstacle and stepping targets, demonstrated poorer stepping accuracy and made more stepping errors (failed to hit the stepping targets/avoid the obstacle). The older adults also reduced velocity of the two preceding steps and shortened the previous step in the long stepping target condition and in the obstacle avoidance condition. Compared with their younger counterparts, the older adults exhibited a more conservative adaptation strategy characterised by slow, short and multiple steps with longer time in double support. Even so, they demonstrated poorer stepping accuracy and made more stepping errors. This reduced gait adaptability may place older adults at increased risk of falling when negotiating unexpected hazards. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Predation by the isopod Saduria entomon on the amphipods Monoporeia affinis and Pontoporeia femorata: experiments on prey vulnerability.

    PubMed

    Hill, Cathy; Elmgren, Ragnar

    1992-08-01

    Predation by Saduria entomon on the depositfeeding amphipods Monoporeia (=Pontoporeia) affinis and Pontoporeia femorata was studied in laboratory experiments. Prey vulnerabilities were compared in singleprey treatments and in mixed-prey treatments, where the proportions of the two species were varied at one total density. In a pilot experiment, P. femorata was the more vulnerable prey, both in single-prey and mixed-prey treatments. In later experiments, the amphipod species were equally vulnerable in single-prey treatments, while in mixed-prey treatments Saduria preyed preferentially on M. affinis, even when this prey was rare, i.e. it did not "switch". We suggest that the different result in the later experiments may have been due to a change in the search mode of the isopods.

  9. Large orb-webs adapted to maximise total biomass not rare, large prey

    PubMed Central

    Harmer, Aaron M. T.; Clausen, Philip D.; Wroe, Stephen; Madin, Joshua S.

    2015-01-01

    Spider orb-webs are the ultimate anti-ballistic devices, capable of dissipating the relatively massive kinetic energy of flying prey. Increased web size and prey stopping capacity have co-evolved in a number orb-web taxa, but the selective forces driving web size and performance increases are under debate. The rare, large prey hypothesis maintains that the energetic benefits of rare, very large prey are so much greater than the gains from smaller, more common prey that smaller prey are irrelevant for reproduction. Here, we integrate biophysical and ecological data and models to test a major prediction of the rare, large prey hypothesis, that selection should favour webs with increased stopping capacity and that large prey should comprise a significant proportion of prey stopped by a web. We find that larger webs indeed have a greater capacity to stop large prey. However, based on prey ecology, we also find that these large prey make up a tiny fraction of the total biomass (=energy) potentially captured. We conclude that large webs are adapted to stop more total biomass, and that the capacity to stop rare, but very large, prey is an incidental consequence of the longer radial silks that scale with web size. PMID:26374379

  10. What are the Main Physical Functioning Factors Associated With Falls Among Older People With Different Perceived Fall Risk?

    PubMed

    Moreira, Mirian N; Bilton, Tereza L; Dias, Rosangela C; Ferriolli, Eduardo; Perracini, Monica R

    2017-07-01

    Fall risk perceptions may influence the judgement over physical and functional competencies to avoid falls. However, few studies have explored the physical functioning characteristics associated with falls among older people with low perceived fall risk. This study aimed to identify the prevalence of falls and physical functioning factors associated with falling among community-dwelling older adults with low and high perceived fall risk. We conducted a cross-sectional population based study with 773 community-dwelling elders. Perceived fall risk was investigated using Falls Efficacy Scale International. We considered fallers those who reported at least one fall in the previous 12 months. Physical functioning measures used were grip strength, usual gait speed, sit-to-stand test, five step test, timed up and go test, one-legged stance test, anterior and lateral functional reach test. At least one fall was reported by 103 (30%) participants with low perceived fall risk and by 196 (46%) participants with high perceived fall risk. The odds of falling were lower among those with greater grip strength and with a greater stance time in one-legged test, and the odds of falling among elders with high perceived fall risk were higher among those who took more time in performing the five step test. We believe that our results highlight the need of not neglecting the risk of falls among active older adults with low perceived fall risk, particularly in those elders that show reduced stability in a small base of support and a lower leg strength. In addition, we suggest that elders with high perceived fall risk should be assessed using anticipatory postural adjustment tests. Particularly, our results may help physiotherapists to identify eligible elders with different perceptions of fall risk for tailored interventions aimed at reducing falls. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  11. Temperature, oxygen, and salt-sensing neurons in C. elegans are carbon dioxide sensors that control avoidance behavior.

    PubMed

    Bretscher, Andrew Jonathan; Kodama-Namba, Eiji; Busch, Karl Emanuel; Murphy, Robin Joseph; Soltesz, Zoltan; Laurent, Patrick; de Bono, Mario

    2011-03-24

    Homeostatic control of body fluid CO(2) is essential in animals but is poorly understood. C. elegans relies on diffusion for gas exchange and avoids environments with elevated CO(2). We show that C. elegans temperature, O(2), and salt-sensing neurons are also CO(2) sensors mediating CO(2) avoidance. AFD thermosensors respond to increasing CO(2) by a fall and then rise in Ca(2+) and show a Ca(2+) spike when CO(2) decreases. BAG O(2) sensors and ASE salt sensors are both activated by CO(2) and remain tonically active while high CO(2) persists. CO(2)-evoked Ca(2+) responses in AFD and BAG neurons require cGMP-gated ion channels. Atypical soluble guanylate cyclases mediating O(2) responses also contribute to BAG CO(2) responses. AFD and BAG neurons together stimulate turning when CO(2) rises and inhibit turning when CO(2) falls. Our results show that C. elegans senses CO(2) using functionally diverse sensory neurons acting homeostatically to minimize exposure to elevated CO(2). Copyright © 2011 Elsevier Inc. All rights reserved.

  12. A Bunch Compression Method for Free Electron Lasers that Avoids Parasitic Compressions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benson, Stephen V.; Douglas, David R.; Tennant, Christopher D.

    2015-09-01

    Virtually all existing high energy (>few MeV) linac-driven FELs compress the electron bunch length though the use of off-crest acceleration on the rising side of the RF waveform followed by transport through a magnetic chicane. This approach has at least three flaws: 1) it is difficult to correct aberrations--particularly RF curvature, 2) rising side acceleration exacerbates space charge-induced distortion of the longitudinal phase space, and 3) all achromatic "negative compaction" compressors create parasitic compression during the final compression process, increasing the CSR-induced emittance growth. One can avoid these deficiencies by using acceleration on the falling side of the RF waveformmore » and a compressor with M 56>0. This approach offers multiple advantages: 1) It is readily achieved in beam lines supporting simple schemes for aberration compensation, 2) Longitudinal space charge (LSC)-induced phase space distortion tends, on the falling side of the RF waveform, to enhance the chirp, and 3) Compressors with M 56>0 can be configured to avoid spurious over-compression. We will discuss this bunch compression scheme in detail and give results of a successful beam test in April 2012 using the JLab UV Demo FEL« less

  13. Effects of age and lean direction on the threshold of single-step balance recovery in younger, middle-aged and older adults.

    PubMed

    Carbonneau, Evelyne; Smeesters, Cécile

    2014-01-01

    Several studies have quantified and compared balance recovery between healthy younger and older adults, using a variety of large postural perturbations and loss of balance directions. However, to the best of our knowledge, no studies at the threshold of balance recovery, where avoiding a fall is not always possible, have included middle-aged adults. We thus determined the maximum lean angle from which 20 younger, 16 middle-aged and 16 older healthy adults could be suddenly released and still recover balance using a single step for forward, sideways and backward leans. Results showed that the maximum lean angles of younger adults were 23% greater than middle-aged adults and 48% greater than older adults. The maximum lean angles for forward leans were 23% greater than sideways leans and 22% greater than backward leans. These declines with age and lean direction were associated with declines in response initiation, execution and geometry. Finally exponential regressions showed that the critical ages at which the ability to recover balance and avoid a fall significantly decreases were 51.0, 60.6 and 69.9 yrs for forward, sideways and backward leans, respectively. Therefore, we have demonstrated that age affects the ability to recover balance nearly a decade earlier than the rate of falls. Future studies should thus not only include older adults over 65 yrs, but also middle-aged adults under 65 yrs, or recruit all ages from 18 to 85 yrs. Finally, the critical ages identified in this study may justify an earlier screening of aging adults to prevent future falls, especially the first fall. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Report summary. Seniors' Falls in Canada: Second Report: key highlights.

    PubMed

    Stinchcombe, A; Kuran, N; Powell, S

    2014-07-01

    Injury in Canada is a serious public health concern. Injuries are a leading cause of hospitalization for children, young adults and seniors and a major cause of disability and death. Falls remain the leading cause of injury-related hospitalizations among Canadian seniors, and data from the Canadian Community Health Survey - Healthy Aging indicate that 20% of seniors living in the community reported a fall in the previous year, with a higher prevalence among older seniors, i.e., those aged over 80 years. Falls and associated outcomes not only harm the injured individuals but also affect their families, friends and care providers; they also place considerable pressure on the health care system. However, we do know that these personal and economic costs can be avoided through injury prevention activities. The Seniors' Falls in Canada: Second Report provides policy makers, researchers, community programmers and practitioners with current data and trends on falls, injuries and hospitalizations among Canadian adults aged 65 years and over. This report is intended for use in public health research, policy development and practice.

  15. Are all prey created equal? A review and synthesis of differential predation on prey in substandard condition

    USGS Publications Warehouse

    Mesa, Matthew G.; Poe, Thomas P.; Gadomski, Dena M.; Petersen, James H.

    1994-01-01

    Our understanding of predator-prey interactions in fishes has been influenced largely by research assuming that the condition of the participants is normal. However, fish populations today often reside in anthropogenically altered environments and are subjected to many kinds of stressors, which may reduce their ecological performance by adversely affecting their morphology, physiology, or behaviour. One consequence is that either the predator or prey, or both, may be in a substandard condition at the time of an interaction. We reviewed the literature on predator-prey interactions in fishes where substandard prey were used as experimental groups. Although most of this research indicates that such prey are significantly more vulnerable to predation, prey condition has rarely been considered in ecological theory regarding predator-prey interactions. The causal mechanisms for increased vulnerability of substandard prey to predation include a failure to detect predators, lapses in decision-making, poor fast-start performance, inability to shoal effectively, and increased prey conspicuousness. Despite some problems associated with empirical predator-prey studies using substandard prey, their results can have theoretical and applied uses, such as in ecological modelling or justification of corrective measures to be implemented in the wild. There is a need for more corroborative field experimentation, a better understanding of the causal mechanisms behind differential predation, and increased incorporation of prey condition into the research of predator-prey modellers and theoreticians. If the concept of prey condition is considered in predator-prey interactions, our understanding of how such interactions influence the structure and dynamics of fish communities is likely to change, which should prove beneficial to aquatic ecosystems.

  16. Step 4: Get Routine Care to Avoid Problems | NIH MedlinePlus the Magazine

    MedlinePlus

    ... Fall 2014 Table of Contents Accelerating Medicines Partnership (AMP—Part 3 of 4) Type 2 Diabetes The ... organizations have together created the Accelerating Medicines Partnership (AMP) to develop new models for identifying and validating ...

  17. Falling Behind again: White Myths of Black Economics.

    ERIC Educational Resources Information Center

    Hill, Herbert

    1978-01-01

    Although the celebration of Black economic progress is becoming a national political ritual, two major indicators, poverty rates and unemployment data, reveal the deteriorating economic conditions of Blacks. Drastic measures may be necessary to avoid disaster. (Author/WI)

  18. Check for Safety: A Home Fall Prevention Checklist for Older Adults

    MedlinePlus

    ... Avoid going barefoot or wearing slippers. Improve the lighting in your home. Put in brighter light bulbs. ... less to use. It’s safest to have uniform lighting in a room. Add lighting to dark areas. ...

  19. Same-level fall injuries in US workplaces by age group, gender, and industry.

    PubMed

    Scott, Kenneth A; Fisher, Gwenith G; Barón, Anna E; Tompa, Emile; Stallones, Lorann; DiGuiseppi, Carolyn

    2018-02-01

    As the workforce ages, occupational injuries from falls on the same level will increase. Some industries may be more affected than others. We conducted a cross-sectional study using data from the Bureau of Labor Statistics to estimate same-level fall injury incidence rates by age group, gender, and industry for four sectors: 1) healthcare and social assistance; 2) manufacturing; 3) retail; and 4) transportation and warehousing. We calculated rate ratios and rate differences by age group and gender. Same-level fall injury incidence rates increase with age in all four sectors. However, patterns of rate ratios and rate differences vary by age group, gender, and industry. Younger workers, men, and manufacturing workers generally have lower rates. Variation in incidence rates suggests there are unrealized opportunities to prevent same-level fall injuries. Interventions should be evaluated for their effectiveness at reducing injuries, avoiding gender- or age-discrimination and improving work ability. © 2017 Wiley Periodicals, Inc.

  20. Factors associated with the completion of falls prevention program.

    PubMed

    Batra, Anamica; Page, Timothy; Melchior, Michael; Seff, Laura; Vieira, Edgar Ramos; Palmer, Richard C

    2013-12-01

    Falls and fear of falling can affect independence and quality of life of older adults. Falls prevention programs may help avoiding these issues if completed. Understanding factors that are associated with completion of falls prevention programs is important. To reduce fear of falling and increase activity levels, a Matter of Balance (MOB) and un Asunto de Equilibrio (ADE) workshops were offered to 3420 older adults in South Florida between 1 October 2008 and 31 December 2011. Workshops were conducted in English or Spanish over eight, 2-hour sessions. Participants completed a demographic and a pre-post questionnaire. Factors associated with program completion were identified using logistic regression. For MOB, females were more likely to complete the program (OR = 2.076, P = 0.02). For ADE, females, moderate and extreme interference by falls in social activities were found to affect completion (OR = 2.116, P = 0.001; OR = 2.269, P = 0.003 and OR = 4.133, P = 0.008, respectively). Different factors predicted completion of both programs. Awareness of these factors can help lower the attrition rates, increase benefits and cost effectiveness of program. Future research needs to explore why certain groups had a higher likelihood of completing either program.

  1. Zooplankton Distribution and Species Composition Along an Oxygen Gradient in Puget Sound, WA

    NASA Astrophysics Data System (ADS)

    Keister, J. E.; Essington, T.; Li, L.; Horne, J. K.; Sato, M.; Parker-Stetter, S. L.; Moriarty, P.

    2016-02-01

    Low dissolved oxygen (hypoxia) is one of the most pronounced, pervasive, and significant disturbances in marine ecosystems, yet our understanding of its effects is incomplete, particularly with respect to impacts on lower trophic levels. As part of a study of how hypoxia affects predator-prey relationships and energy flow through marine food webs, we are studying relationships between ocean chemistry and zooplankton in Puget Sound, Washington—a deep, seasonally hypoxic fjord in the Pacific Northwest that supports a productive and diverse pelagic community. From summer through fall in two years that differed in the timing and intensity of hypoxia, we conducted multi-frequency bioacoustic surveys, CTD casts, and depth-stratified zooplankton sampling to examine changes in distribution and species composition of animals in relation to oxygen concentrations. We exploited a natural gradient in oxygen along the axis of the fjord by sampling at moderately hypoxic and normoxic sites with otherwise similar hydrography and species composition to disentangle the effects of oxygen from changes in other environmental factors. Our results support the hypothesis that zooplankton species composition and vertical distributions are altered by hypoxia, but only when examined at the species and life-stage level. Relatively few taxa showed clear responses to hypoxia, and bioacoustic backscatter data (which was dominated by adult euphausiids and amphipods) indicated that those taxa were not affected by the levels of hypoxia we observed. Examination of net tow data revealed more subtle changes, including behavioral avoidance of low oxygen by some copepods and young euphausiid life stages. Overall, the high species diversity and relatively low susceptibility of many zooplankton to hypoxia in Puget Sound may confer ecosystem resilience to near-future projected changes in this region.

  2. Seasonally dynamic diel vertical migrations of Mysis diluviana, coregonine fishes, and siscowet lake trout in the pelagia of western Lake Superior

    USGS Publications Warehouse

    Ahrenstorff, Tyler D.; Hrabik, Thomas R.; Stockwell, Jason D.; Yule, Daniel L.; Sass, Greg G.

    2011-01-01

    Diel vertical migrations are common among many aquatic species and are often associated with changing light levels. The underlying mechanisms are generally attributed to optimizing foraging efficiency or growth rates and avoiding predation risk (μ). The objectives of this study were to (1) assess seasonal and interannual changes in vertical migration patterns of three trophic levels in the Lake Superior pelagic food web and (2) examine the mechanisms underlying the observed variability by using models of foraging, growth, and μ. Our results suggest that the opossum shrimp Mysis diluviana, kiyi Coregonus kiyi, and siscowet lake trout Salvelinus namaycush migrate concurrently during each season, but spring migrations are less extensive than summer and fall migrations. In comparison with M. diluviana, kiyis, and siscowets, the migrations by ciscoes C. artedi were not as deep in the water column during the day, regardless of season. Foraging potential and μ probably drive the movement patterns of M. diluviana, while our modeling results indicate that movements by kiyis and ciscoes are related to foraging opportunity and growth potential and receive a lesser influence from μ. The siscowet is an abundant apex predator in the pelagia of Lake Superior and probably undertakes vertical migrations in the water column to optimize foraging efficiency and growth. The concurrent vertical movement patterns of most species are likely to facilitate nutrient transport in this exceedingly oligotrophic ecosystem, and they demonstrate strong linkages between predators and prey. Fishery management strategies should use an ecosystem approach and should consider how altering the densities of long-lived top predators produces cascading effects on the nutrient cycling and energy flow in lower trophic levels.

  3. The Coevolution of "Tyrannosaurus" & Its Prey: Could "Tyrannosaurus" Chase down & Kill a "Triceratops" for Lunch?

    ERIC Educational Resources Information Center

    May, S. Randolph

    2014-01-01

    Students will analyze the coevolution of the predator-prey relationships between "Tyrannosaurus rex" and its prey species using analyses of animal speeds from fossilized trackways, prey-animal armaments, adaptive behaviors, bite marks on prey-animal fossils, predator-prey ratios, and scavenger competition. The students will be asked to…

  4. Comparative growth and development of spiders reared on live and dead prey.

    PubMed

    Peng, Yu; Zhang, Fan; Gui, Shaolan; Qiao, Huping; Hose, Grant C

    2013-01-01

    Scavenging (feeding on dead prey) has been demonstrated across a number of spider families, yet the implications of feeding on dead prey for the growth and development of individuals and population is unknown. In this study we compare the growth, development, and predatory activity of two species of spiders that were fed on live and dead prey. Pardosa astrigera (Lycosidae) and Hylyphantes graminicola (Lyniphiidae) were fed live or dead fruit flies, Drosophila melanogaster. The survival of P. astrigera and H. graminicola was not affected by prey type. The duration of late instars of P. astrigera fed dead prey were longer and mature spiders had less protein content than those fed live prey, whereas there were no differences in the rate of H. graminicola development, but the mass of mature spiders fed dead prey was greater than those fed live prey. Predation rates by P. astrigera did not differ between the two prey types, but H. graminicola had a higher rate of predation on dead than alive prey, presumably because the dead flies were easier to catch and handle. Overall, the growth, development and reproduction of H. graminicola reared with dead flies was better than those reared on live flies, yet for the larger P. astrigera, dead prey may suit smaller instars but mature spiders may be best maintained with live prey. We have clearly demonstrated that dead prey may be suitable for rearing spiders, although the success of the spiders fed such prey appears size- and species specific.

  5. Comparative Growth and Development of Spiders Reared on Live and Dead Prey

    PubMed Central

    Peng, Yu; Zhang, Fan; Gui, Shaolan; Qiao, Huping; Hose, Grant C.

    2013-01-01

    Scavenging (feeding on dead prey) has been demonstrated across a number of spider families, yet the implications of feeding on dead prey for the growth and development of individuals and population is unknown. In this study we compare the growth, development, and predatory activity of two species of spiders that were fed on live and dead prey. Pardosa astrigera (Lycosidae) and Hylyphantes graminicola (Lyniphiidae) were fed live or dead fruit flies, Drosophila melanogaster. The survival of P. astrigera and H. graminicola was not affected by prey type. The duration of late instars of P. astrigera fed dead prey were longer and mature spiders had less protein content than those fed live prey, whereas there were no differences in the rate of H. graminicola development, but the mass of mature spiders fed dead prey was greater than those fed live prey. Predation rates by P. astrigera did not differ between the two prey types, but H. graminicola had a higher rate of predation on dead than alive prey, presumably because the dead flies were easier to catch and handle. Overall, the growth, development and reproduction of H. graminicola reared with dead flies was better than those reared on live flies, yet for the larger P. astrigera, dead prey may suit smaller instars but mature spiders may be best maintained with live prey. We have clearly demonstrated that dead prey may be suitable for rearing spiders, although the success of the spiders fed such prey appears size- and species specific. PMID:24386248

  6. Relationship between location and activity in injurious falls: an exploratory study

    PubMed Central

    2010-01-01

    Background Knowledge about the circumstances under which injurious falls occur could provide healthcare workers with better tools to prevent falls and fall-related injuries. Therefore, we assessed whether older persons who sustain an injurious fall can be classified into specific fall types, based on a combination of fall location and activity up to the moment of the fall. In addition, we assessed whether specific injurious fall types are related to causes of the fall, consequences of the fall, socio-demographic characteristics, and health-related characteristics. Methods An exploratory, cross-sectional study design was used to identify injurious fall types. The study population comprised 333 community-dwelling Dutch elderly people aged 65 years or over who attended an accident and emergency department after a fall. All participants received a self-administered questionnaire after being discharged home. The questionnaire comprised items concerning circumstances of the injurious fall, causes of the fall, consequences of the fall, socio-demographic characteristics and health-related characteristics. Injurious fall types were distinguished by analyzing data by means of HOMALS (homogeneity analysis by means of alternating least squares). Results We identified 4 injurious fall types: 1) Indoor falls related to lavatory visits (hall and bathroom); 2) Indoor falls during other activities of daily living; 3) Outdoor falls near the home during instrumental activities of daily living; 4) Outdoor falls away from home, occurring during walking, cycling, and shopping for groceries. These injurious fall types were significantly related to age, cause of the fall, activity avoidance and daily functioning. Conclusion The face validity of the injurious fall typology is obvious. However, we found no relationship between the injurious fall types and severity of the consequences of the fall. Nevertheless, there appears to be a difference between the prevalence of fractures and the cause of the fall between the injurious fall types. Our data suggests that with regard to prevention of serious injuries, we should pay special attention to outdoor fallers and indoor fallers during lavatory visits. In addition, we should have special attention for causes of the fall. However, the conclusions reached in this exploratory analysis are tentative and need to be validated in a separate dataset. PMID:20565871

  7. Odorous and Non-Fatal Skin Secretion of Adult Wrinkled Frog (Rana rugosa) Is Effective in Avoiding Predation by Snakes

    PubMed Central

    Yoshimura, Yuri; Kasuya, Eiiti

    2013-01-01

    The roles played by nonfatal secretions of adult anurans in the avoidance of predation remain unknown. The adult Wrinkled frog (Rana rugosa) has warty skin with the odorous mucus secretion that is not fatal to the snake Elaphe quadrivirgata. We fed R. rugosa or Fejervarya limnocharis, which resembles R. rugosa in appearance and has mucus secretion, to snakes and compared the snakes’ responses to the frogs. Compared to F. limnocharis, R. rugosa was less frequently bitten or swallowed by snakes. The snakes that bit R. rugosa spat out the frogs and showed mouth opening (gaping) behavior, while the snakes that bit F. limnocharis did not show gaping behavior. We also compared the responses of the snakes to R. rugosa and F. limnocharis secretions. We coated palatable R. japonica with secretions from R. rugosa or F. limnocharis. The frogs coated by R. rugosa secretion were less frequently bitten or swallowed than those coated by F. limnocharis secretion. We concluded that compared to different frog species of similar sizes, the adult R. rugosa was less frequently preyed upon by, and that its skin secretion was effective in avoiding predation by snakes. PMID:24278410

  8. Odorous and non-fatal skin secretion of adult wrinkled frog (Rana rugosa) is effective in avoiding predation by snakes.

    PubMed

    Yoshimura, Yuri; Kasuya, Eiiti

    2013-01-01

    The roles played by nonfatal secretions of adult anurans in the avoidance of predation remain unknown. The adult Wrinkled frog (Rana rugosa) has warty skin with the odorous mucus secretion that is not fatal to the snake Elaphe quadrivirgata. We fed R. rugosa or Fejervarya limnocharis, which resembles R. rugosa in appearance and has mucus secretion, to snakes and compared the snakes' responses to the frogs. Compared to F. limnocharis, R. rugosa was less frequently bitten or swallowed by snakes. The snakes that bit R. rugosa spat out the frogs and showed mouth opening (gaping) behavior, while the snakes that bit F. limnocharis did not show gaping behavior. We also compared the responses of the snakes to R. rugosa and F. limnocharis secretions. We coated palatable R. japonica with secretions from R. rugosa or F. limnocharis. The frogs coated by R. rugosa secretion were less frequently bitten or swallowed than those coated by F. limnocharis secretion. We concluded that compared to different frog species of similar sizes, the adult R. rugosa was less frequently preyed upon by, and that its skin secretion was effective in avoiding predation by snakes.

  9. Seeing is believing: information content and behavioural response to visual and chemical cues

    PubMed Central

    Gonzálvez, Francisco G.; Rodríguez-Gironés, Miguel A.

    2013-01-01

    Predator avoidance and foraging often pose conflicting demands. Animals can decrease mortality risk searching for predators, but searching decreases foraging time and hence intake. We used this principle to investigate how prey should use information to detect, assess and respond to predation risk from an optimal foraging perspective. A mathematical model showed that solitary bees should increase flower examination time in response to predator cues and that the rate of false alarms should be negatively correlated with the relative value of the flower explored. The predatory ant, Oecophylla smaragdina, and the harmless ant, Polyrhachis dives, differ in the profile of volatiles they emit and in their visual appearance. As predicted, the solitary bee Nomia strigata spent more time examining virgin flowers in presence of predator cues than in their absence. Furthermore, the proportion of flowers rejected decreased from morning to noon, as the relative value of virgin flowers increased. In addition, bees responded differently to visual and chemical cues. While chemical cues induced bees to search around flowers, bees detecting visual cues hovered in front of them. These strategies may allow prey to identify the nature of visual cues and to locate the source of chemical cues. PMID:23698013

  10. Spatio-temporal interactions facilitate large carnivore sympatry across a resource gradient

    PubMed Central

    Karanth, K. Ullas; Srivathsa, Arjun; Puri, Mahi; Parameshwaran, Ravishankar; Kumar, N. Samba

    2017-01-01

    Species within a guild vary their use of time, space and resources, thereby enabling sympatry. As intra-guild competition intensifies, such behavioural adaptations may become prominent. We assessed mechanisms of facilitating sympatry among dhole (Cuon alpinus), leopard (Panthera pardus) and tiger (Panthera tigris) in tropical forests of India using camera-trap surveys. We examined population-level temporal, spatial and spatio-temporal segregation among them across four reserves representing a gradient of carnivore and prey densities. Temporal and spatial overlaps were higher at lower prey densities. Combined spatio-temporal overlap was minimal, possibly due to chance. We found fine-scale avoidance behaviours at one high-density reserve. Our results suggest that: (i) patterns of spatial, temporal and spatio-temporal segregation in sympatric carnivores do not necessarily mirror each other; (ii) carnivores are likely to adopt temporal, spatial, and spatio-temporal segregation as alternative mechanisms to facilitate sympatry; and (iii) carnivores show adaptability across a gradient of resource availability, a driver of inter-species competition. We discuss behavioural mechanisms that permit carnivores to co-occupy rather than dominate functional niches, and adaptations to varying intensities of competition that are likely to shape structure and dynamics of carnivore guilds. PMID:28179511

  11. Spatio-temporal interactions facilitate large carnivore sympatry across a resource gradient.

    PubMed

    Karanth, K Ullas; Srivathsa, Arjun; Vasudev, Divya; Puri, Mahi; Parameshwaran, Ravishankar; Kumar, N Samba

    2017-02-08

    Species within a guild vary their use of time, space and resources, thereby enabling sympatry. As intra-guild competition intensifies, such behavioural adaptations may become prominent. We assessed mechanisms of facilitating sympatry among dhole ( Cuon alpinus ), leopard ( Panthera pardus ) and tiger ( Panthera tigris ) in tropical forests of India using camera-trap surveys. We examined population-level temporal, spatial and spatio-temporal segregation among them across four reserves representing a gradient of carnivore and prey densities. Temporal and spatial overlaps were higher at lower prey densities. Combined spatio-temporal overlap was minimal, possibly due to chance. We found fine-scale avoidance behaviours at one high-density reserve. Our results suggest that: (i) patterns of spatial, temporal and spatio-temporal segregation in sympatric carnivores do not necessarily mirror each other; (ii) carnivores are likely to adopt temporal, spatial, and spatio-temporal segregation as alternative mechanisms to facilitate sympatry; and (iii) carnivores show adaptability across a gradient of resource availability, a driver of inter-species competition. We discuss behavioural mechanisms that permit carnivores to co-occupy rather than dominate functional niches, and adaptations to varying intensities of competition that are likely to shape structure and dynamics of carnivore guilds. © 2017 The Author(s).

  12. Empirical evaluation of predator-driven diel vertical migration in Lake Superior

    USGS Publications Warehouse

    Stockwell, J.D.; Hrabik, T.R.; Jensen, O.P.; Yule, D.L.; Balge, M.

    2010-01-01

    Recent studies on Lake Superior suggest that diel vertical migration (DVM) of prey (generalized Coregonus spp.) may be influenced by the density of predatory siscowet (Salvelinus namaycush). We empirically evaluated this hypothesis using data from acoustic, midwater trawl, and bottom trawl sampling at eight Lake Superior sites during three seasons in 2005 and a subset of sites in 2006. We expected the larger-bodied cisco (Coregonus artedi) to exhibit a shallower DVM compared with the smaller-bodied kiyi (Coregonus kiyi). Although DVM of kiyi and cisco were consistent with expectations of DVM as a size-dependent, predator-mediated process, we found no relationship between siscowet density and the magnitude of DVM of either coregonid. Cisco appear to have a size refuge from siscowet predation. Kiyi and siscowet co-occur in demersal habitat > 150 m during the day, where visual predation is unlikely, suggesting predator avoidance is not a factor in the daytime distribution of kiyi. Seasonal patterns of kiyi DVM were consistent with reported DVM of their primary prey Mysis relicta. Our results suggest that consideration of nonvisual foraging, rather than lightbased foraging theory (i.e., the antipredation window), is necessary to understand the processes driving DVM in deepwater systems.

  13. Debunking the viper's strike: harmless snakes kill a common assumption.

    PubMed

    Penning, David A; Sawvel, Baxter; Moon, Brad R

    2016-03-01

    To survive, organisms must avoid predation and acquire nutrients and energy. Sensory systems must correctly differentiate between potential predators and prey, and elicit behaviours that adjust distances accordingly. For snakes, strikes can serve both purposes. Vipers are thought to have the fastest strikes among snakes. However, strike performance has been measured in very few species, especially non-vipers. We measured defensive strike performance in harmless Texas ratsnakes and two species of vipers, western cottonmouths and western diamond-backed rattlesnakes, using high-speed video recordings. We show that ratsnake strike performance matches or exceeds that of vipers. In contrast with the literature over the past century, vipers do not represent the pinnacle of strike performance in snakes. Both harmless and venomous snakes can strike with very high accelerations that have two key consequences: the accelerations exceed values that can cause loss of consciousness in other animals, such as the accelerations experienced by jet pilots during extreme manoeuvres, and they make the strikes faster than the sensory and motor responses of mammalian prey and predators. Both harmless and venomous snakes can strike faster than the blink of an eye and often reach a target before it can move. © 2016 The Author(s).

  14. On the hydrodynamics of archer fish jumping out of the water: Integrating experiments with numerical simulations

    NASA Astrophysics Data System (ADS)

    Sotiropoulos, Fotis; Angelidis, Dionysios; Mendelson, Leah; Techet, Alexandra

    2017-11-01

    Evolution has enabled fish to develop a range of thrust producing mechanisms to allow skillful movement and give them the ability to catch prey or avoid danger. Several experimental and numerical studies have been performed to investigate how complex maneuvers are executed and develop bioinspired strategies for aquatic robot design. We will discuss recent numerical advances toward the development of a computational framework for performing turbulent, two-phase flow, fluid-structure-interaction (FSI) simulations to investigate the dynamics of aquatic jumpers. We will also discuss the integration of such numerics with high-speed imaging and particle image velocimetry data to reconstruct anatomic fish models and prescribe realistic kinematics of fish motion. The capabilities of our method will be illustrated by applying it to simulate the motion of a small scale archer fish jumping out of the water to capture prey. We will discuss the rich vortex dynamics emerging during the hovering, rapid upward and gliding phases. The simulations will elucidate the thrust production mechanisms by the movement of the pectoral and anal fins and we will show that the fins significantly contribute to the rapid acceleration.

  15. Nephila clavipes spiders (Araneae: Nephilidae) keep track of captured prey counts: testing for a sense of numerosity in an orb-weaver.

    PubMed

    Rodríguez, Rafael L; Briceño, R D; Briceño-Aguilar, Eduardo; Höbel, Gerlinde

    2015-01-01

    Nephila clavipes golden orb-web spiders accumulate prey larders on their webs and search for them if they are removed from their web. Spiders that lose larger larders (i.e., spiders that lose larders consisting of more prey items) search for longer intervals, indicating that the spiders form memories of the size of the prey larders they have accumulated, and use those memories to regulate recovery efforts when the larders are pilfered. Here, we ask whether the spiders represent prey counts (i.e., numerosity) or a continuous integration of prey quantity (mass) in their memories. We manipulated larder sizes in treatments that varied in either prey size or prey numbers but were equivalent in total prey quantity (mass). We then removed the larders to elicit searching and used the spiders' searching behavior as an assay of their representations in memory. Searching increased with prey quantity (larder size) and did so more steeply with higher prey counts than with single prey of larger sizes. Thus, Nephila spiders seem to track prey quantity in two ways, but to attend more to prey numerosity. We discuss alternatives for continuous accumulator mechanisms that remain to be tested against the numerosity hypothesis, and the evolutionary and adaptive significance of evidence suggestive of numerosity in a sit-and-wait invertebrate predator.

  16. Free tax assistance and the earned income tax credit: vital resources for social workers and low-income families.

    PubMed

    Lim, Younghee; DeJohn, Tara V; Murray, Drew

    2012-04-01

    As the United States' economy continues to experience challenges, more families at or near the poverty level fall prey to predatory financial practices. Their vulnerability to these operations is increased by a lack of knowledge of asset-building resources and alternative financial services. This article focuses on Volunteer Income Tax Assistance (VITA)--a free income tax preparation program, which is a vital resource available to low-income families. Unfortunately, VITA is largely underused and often unknown to economically strained families and to the social workers and other professionals to whom these families turn for assistance. This article concludes with policy and practice implications for social workers and other professionals engaged in providing services to financially vulnerable families.

  17. Availability and abundance of prey for the red-cockaded woodpecker

    Treesearch

    James L. Hanula; Scott Horn

    2004-01-01

    Over a 10-year period we investigated red-cockaded woodpecker (Picoides borealis) prey use, sources of prey, prey distribution within trees and stands, and how forest management decisions affect prey abundance in South Carolina, Alabama, Georgia, and Florida. Cameras were operated at 31 nest cavities to record nest visits with prey in 4 locations...

  18. A predator equalizes rate of capture of a schooling prey in a patchy environment.

    PubMed

    Vijayan, Sundararaj; Kotler, Burt P; Abramsky, Zvika

    2017-05-01

    Prey individuals are often distributed heterogeneously in the environment, and their abundances and relative availabilities vary among patches. A foraging predator should maximize energetic gains by selectively choosing patches with higher prey density. However, catching behaviorally responsive and group-forming prey in patchy environments can be a challenge for predators. First, they have to identify the profitable patches, and second, they must manage the prey's sophisticated anti-predator behavior. Thus, the forager and its prey have to continuously adjust their behavior to that of their opponent. Given these conditions, the foraging predator's behavior should be dynamic with time in terms of foraging effort and prey capture rates across different patches. Theoretically, the allocation of its time among patches of behaviorally responsive prey should be such that it equalizes its prey capture rates across patches through time. We tested this prediction in a model system containing a predator (little egret) and group-forming prey (common gold fish) in two sets of experiments in which (1) patches (pools) contained equal numbers of prey, or in which (2) patches contained unequal densities of prey. The egret equalized the prey capture rate through time in both equal and different density experiments. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. 3 CFR 8420 - Proclamation 8420 of September 21, 2009. National Farm Safety and Health Week, 2009

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... technology and efficiency, have provided great security to the United States. As they offer great benefits to... particular care to avoid accidents involving children. As the fall harvest season approaches, I encourage...

  20. Let's go beyond taxonomy in diet description: testing a trait-based approach to prey-predator relationships.

    PubMed

    Spitz, Jérôme; Ridoux, Vincent; Brind'Amour, Anik

    2014-09-01

    Understanding 'Why a prey is a prey for a given predator?' can be facilitated through trait-based approaches that identify linkages between prey and predator morphological and ecological characteristics and highlight key functions involved in prey selection. Enhanced understanding of the functional relationships between predators and their prey is now essential to go beyond the traditional taxonomic framework of dietary studies and to improve our knowledge of ecosystem functioning for wildlife conservation and management. We test the relevance of a three-matrix approach in foraging ecology among a marine mammal community in the northeast Atlantic to identify the key functional traits shaping prey selection processes regardless of the taxonomy of both the predators and prey. Our study reveals that prey found in the diet of marine mammals possess functional traits which are directly and significantly linked to predator characteristics, allowing the establishment of a functional typology of marine mammal-prey relationships. We found prey selection of marine mammals was primarily shaped by physiological and morphological traits of both predators and prey, confirming that energetic costs of foraging strategies and muscular performance are major drivers of prey selection in marine mammals. We demonstrate that trait-based approaches can provide a new definition of the resource needs of predators. This framework can be used to anticipate bottom-up effects on marine predator population dynamics and to identify predators which are sensitive to the loss of key prey functional traits when prey availability is reduced. © 2014 The Authors. Journal of Animal Ecology © 2014 British Ecological Society.

  1. Prey vulnerability to peacock cichlids and largemouth bass based on predator gape and prey body depth

    USGS Publications Warehouse

    Hill, Jeffrey E.; Nico, Leo G.; Cichra, Charles E.; Gilbert, Carter R.

    2005-01-01

    The interaction of prey fish body depth and predator gape size may produce prey assemblages dominated by invulnerable prey and excessive prey-to-predator biomass ratios. Peacock cichlids (Cichla ocellaris) were stocked into southeast Florida canals to consume excess prey fish biomass, particularly spotted tilapia (Tilapia mariae). The ecomorphologically similar largemouth bass (Micropterus salmoides) was already present in the canals. We present relations of length-specific gape size for peacock cichlids and largemouth bass. Both predators have broadly overlapping gape size, but largemouth bass ?126 mm total length have slightly larger gape sizes than peacock cichlids of the same length. Also, we experimentally tested the predictions of maximum prey size for peacock cichlids and determined that a simple method of measuring gape size used for largemouth bass also is appropriate for peacock cichlids. Lastly, we determined relations of body depth and length of prey species to investigate relative vulnerability. Using a simple predator-prey model and length frequencies of predators and bluegill (Lepomis macrochirus), redear sunfish (Lepomis microlophus), and spotted tilapia prey, we documented that much of the prey biomass in southeast Florida canals is unavailable for largemouth bass and peacock cichlid predation.

  2. Whale songs lengthen in response to sonar

    NASA Astrophysics Data System (ADS)

    Miller, Patrick J. O.; Biassoni, Nicoletta; Samuels, Amy; Tyack, Peter L.

    2000-06-01

    There is growing concern about the effects of man-made noise on marine life. In particular, marine mammals that use sound to communicate, navigate, and detect predators and prey may try to avoid loud sound sources up to tens of kilometres away. Here, in a study conducted in cooperation with the US Navy, we show that the singing behaviour of male humpback whales was altered when they were exposed to LFA (low-frequency active) sonar. As the song of these whales is associated with reproduction, widespread alteration of their singing behaviour might affect demographic parameters, or it could represent a strategy to compensate for interference from the sonar.

  3. The evolution of trophic transmission

    USGS Publications Warehouse

    Lafferty, Kevin D.

    1999-01-01

    Parasite increased trophic transmission (PITT) is one of the more fascinating tales of parasite evolution. The implications of this go beyond cocktail party anecdotes and science fiction plots as the phenomenon is pervasive and likely to be ecologically and evolutionarily important. Although the subject has already received substantial review, Kevin Lafferty here focuses on evolutionary aspects that have not been fully explored, specifically: (1) How strong should PITT be? (2) How might sexual selection and limb autotomy facilitate PITT? (3) How might infrapopulation regulation in final hosts be important in determining avoidance of infected prey? And (4) what happens when more than one species of parasite is in the same intermediate host?

  4. Increased olfactory search costs change foraging behaviour in an alien mustelid: a precursor to prey switching?

    PubMed

    Price, Catherine J; Banks, Peter B

    2016-09-01

    If generalist predators are to hunt efficiently, they must track the changing costs and benefits of multiple prey types. Decisions to switch from hunting preferred prey to alternate prey have been assumed to be driven by decreasing availability of preferred prey, with less regard for accessibility of alternate prey. Olfactory cues from prey provide information about prey availability and its location, and are exploited by many predators to reduce search costs. We show that stoats Mustela erminea, an alien olfactory predator in New Zealand, are sensitive to the search costs of hunting both their preferred rodent prey (mice) and a less desirable alternate prey (locust). We manipulated search costs for stoats using a novel form of olfactory camouflage of both prey, and found that stoats altered their foraging strategy depending on whether mice were camouflaged or conspicuous, but only when locusts were also camouflaged. Stoats gave up foraging four times more often when both prey were camouflaged, compared to when mice were conspicuous and locusts camouflaged. There were no differences in the foraging strategies used to hunt camouflaged or conspicuous mice when locusts were easy to find. Consequently, camouflaged mice survived longer than conspicuous mice when locusts were hard to find, but not when locusts were easy to find. Our results demonstrate that predators can integrate search costs from multiple prey types when making foraging decisions. Manipulating olfactory search costs to alter foraging strategies offers new methods for understanding the factors that foreshadow prey switching.

  5. Sympatric Masticophis flagellum and Coluber constrictor select vertebrate prey at different levels of taxonomy

    USGS Publications Warehouse

    Halstead, B.J.; Mushinsky, H.R.; McCoy, E.D.

    2008-01-01

    Masticophis flagellum (Coachwhip) and Coluber constrictor (Eastern Racer) are widespread North American snakes with similar foraging modes and habits. Little is known about the selection of prey by either species, and despite their apparently similar foraging habits, comparative studies of the foraging ecology of sympatric M. flagellum and C. constrictor are lacking. We examined the foraging ecology and prey selection of these actively foraging snakes in xeric, open-canopied Florida scrub habitat by defining prey availability separately for each snake to elucidate mechanisms underlying geographic, temporal, and interspecific variation in predator diets. Nineteen percent of M. flagellum and 28% of C. constrictor contained stomach contents, and most snakes contained only one prey item. Mean relative prey mass for both species was less than 10%. Larger C. constrictor consumed larger prey than small individuals, but this relationship disappeared when prey size was scaled to snake size. Masticophis flagellum was selective at the prey category level, and positively selected lizards and mammals; however, within these categories it consumed prey species in proportion to their availability. In contrast, C. constrictor preyed upon prey categories opportunistically, but was selective with regard to species. Specifically, C. constrictor positively selected Hyla femoralis (Pine Woods Treefrog) and negatively selected Bufo querclcus (Oak Toad), B. terrestris (Southern Toad), and Gastrophryne carolinensis (Eastern Narrowmouth Toad). Thus, despite their similar foraging habits, M. flagellum and C. constrictor select different prey and are selective of prey at different levels of taxonomy. ?? 2008 by the American Society of Ichthyologists and Herpetologists.

  6. From cues to signals: evolution of interspecific communication via aposematism and mimicry in a predator-prey system.

    PubMed

    Lehmann, Kenna D S; Goldman, Brian W; Dworkin, Ian; Bryson, David M; Wagner, Aaron P

    2014-01-01

    Current theory suggests that many signaling systems evolved from preexisting cues. In aposematic systems, prey warning signals benefit both predator and prey. When the signal is highly beneficial, a third species often evolves to mimic the toxic species, exploiting the signaling system for its own protection. We investigated the evolutionary dynamics of predator cue utilization and prey signaling in a digital predator-prey system in which prey could evolve to alter their appearance to mimic poison-free or poisonous prey. In predators, we observed rapid evolution of cue recognition (i.e. active behavioral responses) when presented with sufficiently poisonous prey. In addition, active signaling (i.e. mimicry) evolved in prey under all conditions that led to cue utilization. Thus we show that despite imperfect and dishonest signaling, given a high cost of consuming poisonous prey, complex systems of interspecific communication can evolve via predator cue recognition and prey signal manipulation. This provides evidence supporting hypotheses that cues may serve as stepping-stones in the evolution of more advanced communication and signaling systems that incorporate information about the environment.

  7. From Cues to Signals: Evolution of Interspecific Communication via Aposematism and Mimicry in a Predator-Prey System

    PubMed Central

    Lehmann, Kenna D. S.; Goldman, Brian W.; Dworkin, Ian; Bryson, David M.; Wagner, Aaron P.

    2014-01-01

    Current theory suggests that many signaling systems evolved from preexisting cues. In aposematic systems, prey warning signals benefit both predator and prey. When the signal is highly beneficial, a third species often evolves to mimic the toxic species, exploiting the signaling system for its own protection. We investigated the evolutionary dynamics of predator cue utilization and prey signaling in a digital predator-prey system in which prey could evolve to alter their appearance to mimic poison-free or poisonous prey. In predators, we observed rapid evolution of cue recognition (i.e. active behavioral responses) when presented with sufficiently poisonous prey. In addition, active signaling (i.e. mimicry) evolved in prey under all conditions that led to cue utilization. Thus we show that despite imperfect and dishonest signaling, given a high cost of consuming poisonous prey, complex systems of interspecific communication can evolve via predator cue recognition and prey signal manipulation. This provides evidence supporting hypotheses that cues may serve as stepping-stones in the evolution of more advanced communication and signaling systems that incorporate information about the environment. PMID:24614755

  8. Experiences of fear of falling in persons with Parkinson's disease - a qualitative study.

    PubMed

    Jonasson, Stina B; Nilsson, Maria H; Lexell, Jan; Carlsson, Gunilla

    2018-02-06

    Fear of falling is common among persons with Parkinson's disease and is negatively associated with quality of life. However a lack of in-depth understanding of fear of falling as a phenomenon persists. This qualitative study aimed to explore the experiences of fear of falling in persons with Parkinson's disease. Individual interviews were performed with twelve persons with Parkinson's disease (median age 70 years, median Parkinson duration 9 years, 50% women). The interviews were semi-structured and followed a study-specific interview guide. The transcribed interviews were analyzed using qualitative content analysis. Fear of falling was experienced as a disturbing factor in everyday life. It generated a feeling of vulnerability and made daily activities and everyday environments seem potentially hazardous. Persons also missed performing previous activities. The fear of falling was a varying experience, fueled by an awareness of falls and near falls, Parkinson-related symptoms and disabilities, and by others in their environment. The persons adopted different strategies to handle their fear of falling. Activities were adapted, avoided, performed with help, or carried out despite their fear of falling. The experiences of fear of falling were complex, multifaceted and varied over time and in relation to different activities and environments. This indicates that interventions targeting fear of falling need to be individually tailored for persons with Parkinson's disease and should focus on several aspects, such as Parkinson-related symptoms and disabilities, activities and environmental factors. This study provides new information that increases the understanding of fear of falling, which has implications for researchers as well as clinicians working with persons with Parkinson's disease and fear of falling.

  9. Molecular assessment of heterotrophy and prey digestion in zooxanthellate cnidarians.

    PubMed

    Leal, M C; Nejstgaard, J C; Calado, R; Thompson, M E; Frischer, M E

    2014-08-01

    Zooxanthellate cnidarians are trophically complex, relying on both autotrophy and heterotrophy. Although several aspects of heterotrophy have been studied in these organisms, information linking prey capture with digestion is still missing. We used prey-specific PCR-based tools to assess feeding and prey digestion of two zooxanthellate cnidarians - the tropical sea anemone Aiptasia sp. and the scleractinian coral Oculina arbuscula. Prey DNA disappeared rapidly for the initial 1-3 days, whereas complete digestion of prey DNA required up to 10 days in O. arbuscula and 5 or 6 days in Aiptasia sp. depending on prey species. These digestion times are considerably longer than previously reported from microscopy-based examination of zooxanthellate cnidarians and prey DNA breakdown in other marine invertebrates, but similar to prey DNA breakdown reported from terrestrial invertebrates such as heteroptera and spiders. Deprivation of external prey induced increased digestion rates during the first days after feeding in O. arbuscula, but after 6 days of digestion, there were no differences in the remaining prey levels in fed and unfed corals. This study indicates that prey digestion by symbiotic corals may be slower than previously reported and varies with the type of prey, the cnidarian species and its feeding history. These observations have important implications for bioenergetic and trophodynamic studies on zooxanthellate cnidarians. © 2013 John Wiley & Sons Ltd.

  10. Predator-prey interactions, resource depression and patch revisitation

    USGS Publications Warehouse

    Erwin, R.M.

    1989-01-01

    Generalist predators may be confronted by different types of prey in different patches: sedentary and conspicuous, cryptic (with or without refugia), conspicuous and nonsocial, or conspicuous and social. I argue that, where encounter rates with prey are of most importance, patch revisitation should be a profitable tactic where prey have short 'recovery' times (conspicuous, nonsocial prey), or where anti-predator response (e.g. shoaling) may increase conspicuousness. Predictions are made for how temporal changes in prey encounter rates should affect revisit schedules and feeding rates for the 4 different prey types.

  11. Improving the assessment of predator functional responses by considering alternate prey and predator interactions.

    PubMed

    Chan, K; Boutin, S; Hossie, T J; Krebs, C J; O'Donoghue, M; Murray, D L

    2017-07-01

    To improve understanding of the complex and variable patterns of predator foraging behavior in natural systems, it is critical to determine how density-dependent predation and predator hunting success are mediated by alternate prey or predator interference. Despite considerable theory and debate seeking to place predator-prey interactions in a more realistic context, few empirical studies have quantified the role of alternate prey or intraspecific interactions on predator-prey dynamics. We assessed functional responses of two similarly sized, sympatric carnivores, lynx (Lynx canadensis) and coyotes (Canis latrans), foraging on common primary (snowshoe hares; Lepus americanus) and alternate (red squirrels; Tamiasciurus hudsonicus) prey in a natural system. Lynx exhibited a hyperbolic prey-dependent response to changes in hare density, which is characteristic of predators relying primarily on a single prey species. In contrast, the lynx-squirrel response was found to be linear ratio dependent, or inversely dependent on hare density. The coyote-hare and coyote-squirrel interactions also were linear and influenced by predator density. We explain these novel results by apparent use of spatial and temporal refuges by prey, and the likelihood that predators commonly experience interference and lack of satiation when foraging. Our study provides empirical support from a natural predator-prey system that (1) predation rate may not be limited at high prey densities when prey are small or rarely captured; (2) interference competition may influence the predator functional response; and (3) predator interference has a variable role across different prey types. Ultimately, distinct functional responses of predators to different prey types illustrates the complexity associated with predator-prey interactions in natural systems and highlights the need to investigate predator behavior and predation rate in relation to the broader ecological community. © 2017 by the Ecological Society of America.

  12. Food resource partitioning by nine sympatric darter species

    USGS Publications Warehouse

    van Snik, Gray E.; Boltz, J.M.; Kellogg, K.A.; Stauffer, J.R.

    1997-01-01

    We compared the diets among members of the diverse darter community of French Creek, Pennsylvania, in relation to seasonal prey availability, feeding ontogeny, and sex. Prey taxa and size attributes were characterized for nine syntopic darter species; taxon, size, and availability of macroinvertebrate prey were also analyzed from Surber samples. In general, darters fed opportunistically on immature insects; few taxa were consumed in greater proportions than they were found in the environment. Some variation in diet composition was expressed, however, among different life stages and species. Juvenile darters consumed smaller prey and more chironomids than did adults. Etheostoma blennioides and E. zonale consumed the fewest taxa (2-3), whereas E. maculatum, E. variatum, and Percina evides bad the most diverse diets (7-10 taxa). Etheostoma maculatum, E. flabellare, E. variatum, and P. evides consumed larger prey (1-13 mm in standard length), whereas E. blennioides, E. caeruleum, E. camurum, E. tippecanoe, and E. zonale rarely consumed prey longer than 6 mm. Percina evides fed on larger prey, fewer chironomids, and more fish eggs than Etheostoma species. Females consumed more prey than males and overlapped less in diet composition with males during the spawning season than afterwards. Fish diets did not seem related to habitat use. Greater trophic partitioning was observed in April, when prey resources were scarce, than in July, when prey were abundant. Darter species fed opportunistically when prey were dense, whereas they partitioned food resources mainly through the prey size dimension when prey were less abundant. The divergence of darter diets during a period of low food availability may be attributed to interspecific competition. Alternatively, the greater abundance of large prey in April may have facilitated better prey size selectivity, resulting in less overlap among darter species.

  13. Great Lakes prey fish populations: A cross-basin overview of status and trends in 2008

    USGS Publications Warehouse

    Gorman, Owen T.; Bunnell, David B.

    2009-01-01

    Assessments of prey fishes in the Great Lakes have been conducted annually since the 1970s by the Great Lakes Science Center, sometimes assisted by partner agencies. Prey fish assessments differ among lakes in the proportion of a lake covered, seasonal timing, bottom trawl gear used, sampling design, and the manner in which the trawl is towed (across or along bottom contours). Because each assessment is unique in one or more important aspects, a direct comparison of prey fish catches among lakes is problematic. All of the assessments, however, produce indices of abundance or biomass that can be standardized to facilitate comparisons of trends among lakes and to illustrate present status of the populations. We present indices of abundance for important prey fishes in the Great Lakes standardized to the highest value for a time series within each lake: cisco (Coregonus artedi), bloater (C. hoyi), rainbow smelt (Osmerus mordax), and alewife (Alosa pseudoharengus). We also provide indices for round goby (Neogobius melanostomus), an invasive fish presently spreading throughout the basin. Our intent is to provide a short, informal report emphasizing data presentation rather than synthesis; for this reason we intentionally avoid use of tables and cited references.For each lake, standardized relative indices for annual biomass and density estimates of important prey fishes were calculated as the fraction relative to the largest value observed in the times series. To determine whether basin-wide trends were apparent for each species, we first ranked standardized index values within each lake. When comparing ranked index values from three or more lakes, we calculated the Kendall coefficient of concordance (W), which can range from 0 (complete discordance or disagreement among trends) to 1 (complete concordance or agreement among trends). The P-value for W provides the probability of agreement across the lakes. When comparing ranked index values from two lakes, we calculated the Kendall correlation coefficient (τ), which ranges from -1 (inverse association, perfect disagreement) to 1 (direct association, perfect agreement). Here, the P-value for τ provides the probability of either inverse or direct association between the lakes. First, we present trends in relative biomass of age-1 and older prey fishes to show changes in populations within each lake. Then, we present standardized indices of numerical abundance of a single age class to show changes in relative year-class strength within each lake. Indices of year-class strength reliably reflect the magnitude of the cohort size at subsequent ages. However, because of differences in survey timing across lakes, the age class that is used for each species to index year-class strength varies across lakes and, just as surveys differ among lakes, methods for determining fish age-class differ also. For Lake Superior cisco, bloater, smelt, and Lake Michigan alewife, year- class strengths are based on aged fish and age-length keys, and for all other combinations of lakes and species, age-classes are assigned based on fish length cut-offs. Our intent with this report is to provide a cross-lakes view of population trends but not to propose reasons for those trends.

  14. Ecology shapes the evolutionary trade-off between predator avoidance and defence in coral reef butterflyfishes.

    PubMed

    Hodge, Jennifer R; Alim, Chidera; Bertrand, Nick G; Lee, Wesley; Price, Samantha A; Tran, Binh; Wainwright, Peter C

    2018-07-01

    Antipredator defensive traits are thought to trade-off evolutionarily with traits that facilitate predator avoidance. However, complexity and scale have precluded tests of this prediction in many groups, including fishes. Using a macroevolutionary approach, we test this prediction in butterflyfishes, an iconic group of coral reef inhabitants with diverse social behaviours, foraging strategies and antipredator adaptations. We find that several antipredator traits have evolved adaptively, dependent primarily on foraging strategy. We identify a previously unrecognised axis of diversity in butterflyfishes where species with robust morphological defences have riskier foraging strategies and lack sociality, while species with reduced morphological defences feed in familiar territories, have adaptations for quick escapes and benefit from the vigilance provided by sociality. Furthermore, we find evidence for the constrained evolution of fin spines among species that graze solely on corals, highlighting the importance of corals, as both prey and structural refuge, in shaping fish morphology. © 2018 John Wiley & Sons Ltd/CNRS.

  15. Molecular clocks and the early evolution of metazoan nervous systems.

    PubMed

    Wray, Gregory A

    2015-12-19

    The timing of early animal evolution remains poorly resolved, yet remains critical for understanding nervous system evolution. Methods for estimating divergence times from sequence data have improved considerably, providing a more refined understanding of key divergences. The best molecular estimates point to the origin of metazoans and bilaterians tens to hundreds of millions of years earlier than their first appearances in the fossil record. Both the molecular and fossil records are compatible, however, with the possibility of tiny, unskeletonized, low energy budget animals during the Proterozoic that had planktonic, benthic, or meiofaunal lifestyles. Such animals would likely have had relatively simple nervous systems equipped primarily to detect food, avoid inhospitable environments and locate mates. The appearance of the first macropredators during the Cambrian would have changed the selective landscape dramatically, likely driving the evolution of complex sense organs, sophisticated sensory processing systems, and diverse effector systems involved in capturing prey and avoiding predation. © 2015 The Author(s).

  16. Prey and predator emigration responses in the acarine system Tetranychus urticae-Phytoseiulus persimilis.

    PubMed

    Bernstein, C

    1984-01-01

    Some of the processes that influence the emigration of prey and predatory mites from bean plants were investigated experimentally. The emigration of the prey depends on the damage they cause to the plants and on predator density. The predator's emigration rate is a decreasing function of prey density, and does not change (or it slightly decreases) when prey and predator numbers are increased maintaining the same prey/predator ratio. The probability of emigration of the predators is independent of their own density when prey are absent and density dependent when prey density is kep constant. Forty three per cent of the variability in the predator's instantaneous rate of emigration in the different experiments is accounted for by a two parameter negative exponential function of capture rate (number of prey eaten per predator and per unit of time).

  17. To crash or not to crash: how do hoverflies cope with free-fall situations and weightlessness?

    PubMed

    Goulard, Roman; Vercher, Jean-Louis; Viollet, Stéphane

    2016-08-15

    Insects' aptitude to perform hovering, automatic landing and tracking tasks involves accurately controlling their head and body roll and pitch movements, but how this attitude control depends on an internal estimation of gravity orientation is still an open question. Gravity perception in flying insects has mainly been studied in terms of grounded animals' tactile orientation responses, but it has not yet been established whether hoverflies use gravity perception cues to detect a nearly weightless state at an early stage. Ground-based microgravity simulators provide biologists with useful tools for studying the effects of changes in gravity. However, in view of the cost and the complexity of these set-ups, an alternative Earth-based free-fall procedure was developed with which flying insects can be briefly exposed to microgravity under various visual conditions. Hoverflies frequently initiated wingbeats in response to an imposed free fall in all the conditions tested, but managed to avoid crashing only in variably structured visual environments, and only episodically in darkness. Our results reveal that the crash-avoidance performance of these insects in various visual environments suggests the existence of a multisensory control system based mainly on vision rather than gravity perception. © 2016. Published by The Company of Biologists Ltd.

  18. Ecoepidemic predator-prey model with feeding satiation, prey herd behavior and abandoned infected prey.

    PubMed

    Kooi, Bob W; Venturino, Ezio

    2016-04-01

    In this paper we analyse a predator-prey model where the prey population shows group defense and the prey individuals are affected by a transmissible disease. The resulting model is of the Rosenzweig-MacArthur predator-prey type with an SI (susceptible-infected) disease in the prey. Modeling prey group defense leads to a square root dependence in the Holling type II functional for the predator-prey interaction term. The system dynamics is investigated using simulations, classical existence and asymptotic stability analysis and numerical bifurcation analysis. A number of bifurcations, such as transcritical and Hopf bifurcations which occur commonly in predator-prey systems will be found. Because of the square root interaction term there is non-uniqueness of the solution and a singularity where the prey population goes extinct in a finite time. This results in a collapse initiated by extinction of the healthy or susceptible prey and thereafter the other population(s). When also a positive attractor exists this leads to bistability similar to what is found in predator-prey models with a strong Allee effect. For the two-dimensional disease-free (i.e. the purely demographic) system the region in the parameter space where bistability occurs is marked by a global bifurcation. At this bifurcation a heteroclinic connection exists between saddle prey-only equilibrium points where a stable limit cycle together with its basin of attraction, are destructed. In a companion paper (Gimmelli et al., 2015) the same model was formulated and analysed in which the disease was not in the prey but in the predator. There we also observed this phenomenon. Here we extend its analysis using a phase portrait analysis. For the three-dimensional ecoepidemic predator-prey system where the prey is affected by the disease, also tangent bifurcations including a cusp bifurcation and a torus bifurcation of limit cycles occur. This leads to new complex dynamics. Continuation by varying one parameter of the emerging quasi-periodic dynamics from a torus bifurcation can lead to its destruction by a collision with a saddle-cycle. Under other conditions the quasi-periodic dynamics changes gradually in a trajectory that lands on a boundary point where the prey go extinct in finite time after which a total collapse of the three-dimensional system occurs. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Coevolution can reverse predator–prey cycles

    PubMed Central

    Cortez, Michael H.; Weitz, Joshua S.

    2014-01-01

    A hallmark of Lotka–Volterra models, and other ecological models of predator–prey interactions, is that in predator–prey cycles, peaks in prey abundance precede peaks in predator abundance. Such models typically assume that species life history traits are fixed over ecologically relevant time scales. However, the coevolution of predator and prey traits has been shown to alter the community dynamics of natural systems, leading to novel dynamics including antiphase and cryptic cycles. Here, using an eco-coevolutionary model, we show that predator–prey coevolution can also drive population cycles where the opposite of canonical Lotka–Volterra oscillations occurs: predator peaks precede prey peaks. These reversed cycles arise when selection favors extreme phenotypes, predator offense is costly, and prey defense is effective against low-offense predators. We present multiple datasets from phage–cholera, mink–muskrat, and gyrfalcon–rock ptarmigan systems that exhibit reversed-peak ordering. Our results suggest that such cycles are a potential signature of predator–prey coevolution and reveal unique ways in which predator–prey coevolution can shape, and possibly reverse, community dynamics. PMID:24799689

  20. Biomechanics of predator-prey arms race in lion, zebra, cheetah and impala.

    PubMed

    Wilson, Alan M; Hubel, Tatjana Y; Wilshin, Simon D; Lowe, John C; Lorenc, Maja; Dewhirst, Oliver P; Bartlam-Brooks, Hattie L A; Diack, Rebecca; Bennitt, Emily; Golabek, Krystyna A; Woledge, Roger C; McNutt, J Weldon; Curtin, Nancy A; West, Timothy G

    2018-02-08

    The fastest and most manoeuvrable terrestrial animals are found in savannah habitats, where predators chase and capture running prey. Hunt outcome and success rate are critical to survival, so both predator and prey should evolve to be faster and/or more manoeuvrable. Here we compare locomotor characteristics in two pursuit predator-prey pairs, lion-zebra and cheetah-impala, in their natural savannah habitat in Botswana. We show that although cheetahs and impalas were universally more athletic than lions and zebras in terms of speed, acceleration and turning, within each predator-prey pair, the predators had 20% higher muscle fibre power than prey, 37% greater acceleration and 72% greater deceleration capacity than their prey. We simulated hunt dynamics with these data and showed that hunts at lower speeds enable prey to use their maximum manoeuvring capacity and favour prey survival, and that the predator needs to be more athletic than its prey to sustain a viable success rate.

Top