Joint Ventures: An Experiment in Community/Professional Co-Framing in K-12 Education
ERIC Educational Resources Information Center
Public Agenda, 2014
2014-01-01
What happens when local school leaders sit down to talk with teachers, parents, and other members of the community about the ends and means of local education? Can people bringing different perspectives and experiences to the issue agree on top goals for their communities? Can they settle on needed changes and decide what signifies genuine…
NASA Astrophysics Data System (ADS)
Vassiliev, Dmitri
2017-04-01
We consider an infinite three-dimensional elastic continuum whose material points experience no displacements, only rotations. This framework is a special case of the Cosserat theory of elasticity. Rotations of material points are described mathematically by attaching to each geometric point an orthonormal basis that gives a field of orthonormal bases called the coframe. As the dynamical variables (unknowns) of our theory, we choose the coframe and a density. We write down the general dynamic variational functional for our rotational theory of elasticity, assuming our material to be physically linear but the kinematic model geometrically nonlinear. Allowing geometric nonlinearity is natural when dealing with rotations because rotations in dimension three are inherently nonlinear (rotations about different axes do not commute) and because there is no reason to exclude from our study large rotations such as full turns. The main result of the talk is an explicit construction of a class of time-dependent solutions that we call plane wave solutions; these are travelling waves of rotations. The existence of such explicit closed-form solutions is a non-trivial fact given that our system of Euler-Lagrange equations is highly nonlinear. We also consider a special case of our rotational theory of elasticity which in the stationary setting (harmonic time dependence and arbitrary dependence on spatial coordinates) turns out to be equivalent to a pair of massless Dirac equations. The talk is based on the paper [1]. [1] C.G.Boehmer, R.J.Downes and D.Vassiliev, Rotational elasticity, Quarterly Journal of Mechanics and Applied Mathematics, 2011, vol. 64, p. 415-439. The paper is a heavily revised version of preprint https://arxiv.org/abs/1008.3833
Quantum gravity model with fundamental spinor fields
NASA Astrophysics Data System (ADS)
Obukhov, Yu. N.; Hehl, F. W.
2014-01-01
We discuss the possibility that gravitational potentials (metric, coframe and connection) may emerge as composite fields from more fundamental spinor constituents. We use the formalism of Poincaré gauge gravity as an appropriate theoretical scheme for the rigorous development of such an approach. We postulate the constitutive relations of an elastic Cosserat type continuum that models spacetime. These generalized Hooke and MacCullagh type laws consistently take into account the translational and Lorentz rotational deformations, respectively. The resulting theory extends the recently proposed Diakonov model. An intriguing feature of our theory is that in the lowest approximation it reproduces Heisenberg's nonlinear spinor model.
A Tractable Numerical Model for Exploring Nonadiabatic Quantum Dynamics
ERIC Educational Resources Information Center
Camrud, Evan; Turner, Daniel B.
2017-01-01
Numerous computational and spectroscopic studies have demonstrated the decisive role played by nonadiabatic coupling in photochemical reactions. Nonadiabatic coupling drives photochemistry when potential energy surfaces are nearly degenerate at avoided crossings or truly degenerate at unavoided crossings. The dynamics induced by nonadiabatic…
Mitchell, Paul; Bressler, Neil; Doan, Quan V; Dolan, Chantal; Ferreira, Alberto; Osborne, Aaron; Rochtchina, Elena; Danese, Mark; Colman, Shoshana; Wong, Tien Y
2014-01-01
Intravitreal injections of anti-vascular endothelial growth factor agents, such as ranibizumab, have significantly improved the management of neovascular age-related macular degeneration. This study used patient-level simulation modelling to estimate the number of individuals in Australia who would have been likely to avoid legal blindness or visual impairment due to neovascular age-related macular degeneration over a 2-year period as a result of intravitreal ranibizumab injections. The modelling approach used existing data for the incidence of neovascular age-related macular degeneration in Australia and outcomes from ranibizumab trials. Blindness and visual impairment were defined as visual acuity in the better-seeing eye of worse than 6/60 or 6/12, respectively. In 2010, 14,634 individuals in Australia were estimated to develop neovascular age-related macular degeneration who would be eligible for ranibizumab therapy. Without treatment, 2246 individuals would become legally blind over 2 years. Monthly 0.5 mg intravitreal ranibizumab would reduce incident blindness by 72% (95% simulation interval, 70-74%). Ranibizumab given as needed would reduce incident blindness by 68% (64-71%). Without treatment, 4846 individuals would become visually impaired over 2 years; this proportion would be reduced by 37% (34-39%) with monthly intravitreal ranibizumab, and by 28% (23-33%) with ranibizumab given as needed. These data suggest that intravitreal injections of ranibizumab, given either monthly or as needed, can substantially lower the number of cases of blindness and visual impairment over 2 years after the diagnosis of neovascular age-related macular degeneration.
Recombination-generation currents in degenerate semiconductors
NASA Technical Reports Server (NTRS)
Von Roos, O.
1978-01-01
The classical Shockley-Read-Hall theory of free carrier recombination and generation via traps is extended to degenerate semiconductors. A concise and simple expression is found which avoids completely the concept of a Fermi level, a concept which is alien to nonequilibrium situations. Assumptions made in deriving the recombination generation current are carefully delineated and are found to be basically identical to those made in the original theory applicable to nondegenerate semiconductors.
Physical stress, mass, and energy for non-relativistic matter
NASA Astrophysics Data System (ADS)
Geracie, Michael; Prabhu, Kartik; Roberts, Matthew M.
2017-06-01
For theories of relativistic matter fields there exist two possible definitions of the stress-energy tensor, one defined by a variation of the action with the coframes at fixed connection, and the other at fixed torsion. These two stress-energy tensors do not necessarily coincide and it is the latter that corresponds to the Cauchy stress measured in the lab. In this note we discuss the corresponding issue for non-relativistic matter theories. We point out that while the physical non-relativistic stress, momentum, and mass currents are defined by a variation of the action at fixed torsion, the energy current does not admit such a description and is naturally defined at fixed connection. Any attempt to define an energy current at fixed torsion results in an ambiguity which cannot be resolved from the background spacetime data or conservation laws. We also provide computations of these quantities for some simple non-relativistic actions.
Degenerate higher derivative theories beyond Horndeski: evading the Ostrogradski instability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Langlois, David; Noui, Karim, E-mail: langlois@apc.univ-paris7.fr, E-mail: karim.noui@lmpt.univ-tours.fr
2016-02-01
Theories with higher order time derivatives generically suffer from ghost-like instabilities, known as Ostrogradski instabilities. This fate can be avoided by considering ''degenerate'' Lagrangians, whose kinetic matrix cannot be inverted, thus leading to constraints between canonical variables and a reduced number of physical degrees of freedom. In this work, we derive in a systematic way the degeneracy conditions for scalar-tensor theories that depend quadratically on second order derivatives of a scalar field. We thus obtain a classification of all degenerate theories within this class of scalar-tensor theories. The quartic Horndeski Lagrangian and its extension beyond Horndeski belong to these degeneratemore » cases. We also identify new families of scalar-tensor theories with the property that they are degenerate despite the nondegeneracy of the purely scalar part of their Lagrangian.« less
Rojas-Fernandez, Carlos H; Tyber, Kevin
2017-03-01
To briefly review age-related macular degeneration (AMD), the main findings from the Age Related Eye Disease Study (AREDS) report number 8 on the use of nutritional supplements for AMD, and to focus on data suggesting that supplement use should be guided using genetic testing of AMD risk genes. A literature search (January 2001 through October 26, 2016) was conducted using MEDLINE and the following MeSH terms: Antioxidants/therapeutic use, Genotype, Macular Degeneration/drug therapy, Macular degeneration/genetics, Dietary Supplements, Proteins/genetics, and Zinc Compounds/therapeutic use. Bibliographies of publications identified were also reviewed. English-language studies assessing AREDS supplement response in patients with AMD in relation to complement factor H gene ( CFH) and age-related maculopathy susceptibility 2 gene ( ARMS2) risk alleles were evaluated. Three of the 4 studies demonstrated a treatment interaction between ARMS2 and CFH genotypes and a differential response to supplements. The fourth study documented an interaction for the CFH genotype only. Reported response interactions included attenuated response, no response, and good response, whereas a subset showed increased progression of AMD. Conversely, one study reported no interactions between CFH and ARMS2 risk alleles and response to supplements. The weight of the evidence supports using genetic testing to guide selection of ocular vitamin use. This approach will avoid using supplements that could speed the progression of AMD in vulnerable patients, avoid using supplements that will have little to no effect in others, and result in appropriately using supplements in those that are likely to derive meaningful benefits.
Target space pseudoduality in supersymmetric sigma models on symmetric spaces
NASA Astrophysics Data System (ADS)
Sarisaman, Mustafa
We discuss the target space pseudoduality in supersymmetric sigma models on symmetric spaces. We first consider the case where sigma models based on real compact connected Lie groups of the same dimensionality and give examples using three dimensional models on target spaces. We show explicit construction of nonlocal conserved currents on the pseudodual manifold. We then switch the Lie group valued pseudoduality equations to Lie algebra valued ones, which leads to an infinite number of pseudoduality equations. We obtain an infinite number of conserved currents on the tangent bundle of the pseudo-dual manifold. Since pseudoduality imposes the condition that sigma models pseudodual to each other are based on symmetric spaces with opposite curvatures (i.e. dual symmetric spaces), we investigate pseudoduality transformation on the symmetric space sigma models in the third chapter. We see that there can be mixing of decomposed spaces with each other, which leads to mixings of the following expressions. We obtain the pseudodual conserved currents which are viewed as the orthonormal frame on the pullback bundle of the tangent space of G˜ which is the Lie group on which the pseudodual model based. Hence we obtain the mixing forms of curvature relations and one loop renormalization group beta function by means of these currents. In chapter four, we generalize the classical construction of pseudoduality transformation to supersymmetric case. We perform this both by component expansion method on manifold M and by orthonormal coframe method on manifold SO( M). The component method produces the result that pseudoduality transformation is not invertible at all points and occurs from all points on one manifold to only one point where riemann normal coordinates valid on the second manifold. Torsion of the sigma model on M must vanish while it is nonvanishing on M˜, and curvatures of the manifolds must be constant and the same because of anticommuting grassmann numbers. We obtain the similar results with the classical case in orthonormal coframe method. In case of super WZW sigma models pseudoduality equations result in three different pseudoduality conditions; flat space, chiral and antichiral pseudoduality. Finally we study the pseudoduality transformations on symmetric spaces using two different methods again. These two methods yield similar results to the classical cases with the exception that commuting bracket relations in classical case turns out to be anticommuting ones because of the appearance of grassmann numbers. It is understood that constraint relations in case of non-mixing pseudoduality are the remnants of mixing pseudoduality. Once mixing terms are included in the pseudoduality the constraint relations disappear.
Re-do aortic root replacement after an allograft aortic root replacement.
Vrtik, Marian; Tesar, Peter J
2009-10-01
Structural degeneration of allograft aortic root is a global process. In addition to valvular degeneration, the allograft wall calcification poses a risk of systemic calcific embolization and late phase anastomotic aneurysm formation and rupture (anecdotal). Furthermore, the valve annulus is often small, and the tissues are rigid making the implantation of an adequately sized prosthesis within the allograft wall difficult. To avoid these issues, we routinely perform re-do aortic root replacement with either a mechanical valve conduit or bio-root composite graft. The technique has been successfully used in 22 consecutive patients with no operative mortality and minimal morbidity.
Bone marrow–derived stem cells preserve cone vision in retinitis pigmentosa
Smith, Lois E.H.
2004-01-01
Retinitis pigmentosa is a heritable group of blinding diseases resulting from loss of photoreceptors, primarily rods and secondarily cones, that mediate central vision. Loss of retinal vasculature is a presumed metabolic consequence of photoreceptor degeneration. A new study shows that autologous bone marrow–derived lineage-negative hematopoietic stem cells, which incorporate into the degenerating blood vessels in two murine models of retinitis pigmentosa, rd1 and rd10, prevent cone loss. The use of autologous bone marrow might avoid problems with rejection while preserving central cone vision in a wide variety of genetically disparate retinal degenerative diseases. PMID:15372096
Chandran, Jonathan James; Anderson, Gail; Kennedy, Andrew; Kohn, Michael; Clarke, Simon
2015-12-01
Avoidant/restrictive food intake disorder (ARFID) is a potentially lethal eating disorder. This case example of a male, G, aged 17 years with ARFID illustrates the multiplicity of health problems related to nutritional deficiencies which may develop in an adolescent of normal weight. Of particular concern was the diagnosis of subacute combined degeneration (SCD) of the spinal cord and the real possibility that G may have irreversible damage to his spinal cord. To our knowledge, this is the first reported case of a patient with SCD of the spinal cord due to ARFID. The adolescent was found to be deficient in Vitamin A, E, K, D, B12, and folate. Management required vitamin replacement, initial nasogastric feeding and the slow introduction of a varied diet. This patient will require long term rehabilitation. Medical practitioners need to be attuned to abnormal eating patterns in children and adolescents and refer for specialist care early. © 2015 Wiley Periodicals, Inc.
Avoiding Degeneracy in Multidimensional Unfolding by Penalizing on the Coefficient of Variation
ERIC Educational Resources Information Center
Busing, Frank M. T. A.; Groenen, Patrick J. K.; Heiser, Willem J.
2005-01-01
Multidimensional unfolding methods suffer from the degeneracy problem in almost all circumstances. Most degeneracies are easily recognized: the solutions are perfect but trivial, characterized by approximately equal distances between points from different sets. A definition of an absolutely degenerate solution is proposed, which makes clear that…
Homogeneous, anisotropic three-manifolds of topologically massive gravity
NASA Astrophysics Data System (ADS)
Nutku, Y.; Baekler, P.
1989-10-01
We present a new class of exact solutions of Deser, Jackiw, and Templeton's theory (DJT) of topologically massive gravity which consists of homogeneous, anisotropic manifolds. In these solutions the coframe is given by the left-invariant 1-forms of 3-dimensional Lie algebras up to constant scale factors. These factors are fixed in terms of the DJT coupling constant μ which is the constant of proportionality between the Einstein and Cotton tensors in 3-dimensions. Differences between the scale factors result in anisotropy which is a common feature of topologically massive 3-manifolds. We have found that only Bianchi Types VI, VIII, and IX lead to nontrivial solutions. Among these, a Bianchi Type IX, squashed 3-sphere solution of the Euclideanized DJT theory has finite action. Bianchi Type VIII, IX solutions can variously be embedded in the de Sitter/anti-de Sitter space. That is, some DJT 3-manifolds that we shall present here can be regarded as the basic constituent of anti-de Sitter space which is the ground state solution in higher dimensional generalization of Einstein's general relativity.
Homogeneous, anisotropic three-manifolds of topologically massive gravity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nutku, Y.; Baekler, P.
1989-10-01
We present a new class of exact solutions of Deser, Jackiw, and Templeton's theory (DJT) of topologically massive gravity which consists of homogeneous, anisotropic manifolds. In these solutions the coframe is given by the left-invariant 1-forms of 3-dimensional Lie algebras up to constant scale factors. These factors are fixed in terms of the DJT coupling constant {mu}m which is the constant of proportionality between the Einstein and Cotton tensors in 3-dimensions. Differences between the scale factors result in anisotropy which is a common feature of topologically massive 3-manifolds. We have found that only Bianchi Types VI, VIII, and IX leadmore » to nontrivial solutions. Among these, a Bianchi Type IX, squashed 3-sphere solution of the Euclideanized DJT theory has finite action, Bianchi Type VIII, IX solutions can variously be embedded in the de Sitter/anti-de Sitter space. That is, some DJT 3-manifolds that we shall present here can be regarded as the basic constitent of anti-de Sitter space which is the ground state solution in higher dimensional generalizations of Einstein's general relativity. {copyright} 1989 Academic Press, Inc.« less
Drosophila melanogaster White Mutant w1118 Undergo Retinal Degeneration
Ferreiro, María José; Pérez, Coralia; Marchesano, Mariana; Ruiz, Santiago; Caputi, Angel; Aguilera, Pedro; Barrio, Rosa; Cantera, Rafael
2018-01-01
Key scientific discoveries have resulted from genetic studies of Drosophila melanogaster, using a multitude of transgenic fly strains, the majority of which are constructed in a genetic background containing mutations in the white gene. Here we report that white mutant flies from w1118 strain undergo retinal degeneration. We observed also that w1118 mutants have progressive loss of climbing ability, shortened life span, as well as impaired resistance to various forms of stress. Retinal degeneration was abolished by transgenic expression of mini-white+ in the white null background w1118. We conclude that beyond the classical eye-color phenotype, mutations in Drosophila white gene could impair several biological functions affecting parameters like mobility, life span and stress tolerance. Consequently, we suggest caution and attentiveness during the interpretation of old experiments employing white mutant flies and when planning new ones, especially within the research field of neurodegeneration and neuroprotection. We also encourage that the use of w1118 strain as a wild-type control should be avoided. PMID:29354028
Drosophila melanogaster White Mutant w 1118 Undergo Retinal Degeneration.
Ferreiro, María José; Pérez, Coralia; Marchesano, Mariana; Ruiz, Santiago; Caputi, Angel; Aguilera, Pedro; Barrio, Rosa; Cantera, Rafael
2017-01-01
Key scientific discoveries have resulted from genetic studies of Drosophila melanogaster , using a multitude of transgenic fly strains, the majority of which are constructed in a genetic background containing mutations in the white gene. Here we report that white mutant flies from w 1118 strain undergo retinal degeneration. We observed also that w 1118 mutants have progressive loss of climbing ability, shortened life span, as well as impaired resistance to various forms of stress. Retinal degeneration was abolished by transgenic expression of mini-white + in the white null background w 1118 . We conclude that beyond the classical eye-color phenotype, mutations in Drosophila white gene could impair several biological functions affecting parameters like mobility, life span and stress tolerance. Consequently, we suggest caution and attentiveness during the interpretation of old experiments employing white mutant flies and when planning new ones, especially within the research field of neurodegeneration and neuroprotection. We also encourage that the use of w 1118 strain as a wild-type control should be avoided.
Metal Alloy Compositions And Process Background Of The Invention
Flemings, Merton C.; Martinez-Ayers, Raul A.; de Figueredo, Anacleto M.; Yurko, James A.
2003-11-11
A skinless metal alloy composition free of entrapped gas and comprising primary solid discrete degenerate dendrites homogeneously dispersed within a secondary phase is formed by a process wherein the metal alloy is heated in a vessel to render it a liquid. The liquid is then rapidly cooled while vigorously agitating it under conditions to avoid entrapment of gas while forming solid nuclei homogeneously distributed in the liquid. Agitation then is ceased when the liquid contains a small fraction solid or the liquid-solid alloy is removed from the source of agitation while cooling is continued to form the primary solid discrete degenerate dendrites in liquid secondary phase. The solid-liquid mixture then can be formed such as by casting.
Hamiltonian formulation of the KdV equation
NASA Astrophysics Data System (ADS)
Nutku, Y.
1984-06-01
We consider the canonical formulation of Whitham's variational principle for the KdV equation. This Lagrangian is degenerate and we have found it necessary to use Dirac's theory of constrained systems in constructing the Hamiltonian. Earlier discussions of the Hamiltonian structure of the KdV equation were based on various different decompositions of the field which is avoided by this new approach.
Explaining the Effect of a Grid by Using an Optical Analog to an X-ray Radiographic Imaging System
ERIC Educational Resources Information Center
Honnicke, M. G.; Gavinho, L.; Cusatis, C.
2008-01-01
Compton scattering and diffuse scattering degenerate the contrast in radiographic images. To avoid such scattering effects, a grid, between the patient and the film is currently used to improve the image quality. Teaching this topic to medical physics students requires demonstration experiments. In this paper, an optical analog to an x-ray…
Blood biomarkers of Hikikomori, a severe social withdrawal syndrome.
Hayakawa, Kohei; Kato, Takahiro A; Watabe, Motoki; Teo, Alan R; Horikawa, Hideki; Kuwano, Nobuki; Shimokawa, Norihiro; Sato-Kasai, Mina; Kubo, Hiroaki; Ohgidani, Masahiro; Sagata, Noriaki; Toda, Hiroyuki; Tateno, Masaru; Shinfuku, Naotaka; Kishimoto, Junji; Kanba, Shigenobu
2018-02-13
Hikikomori, a severe form of social withdrawal syndrome, is a growing social issue in Japan and internationally. The pathophysiology of hikikomori has not yet been elucidated and an effective treatment remains to be established. Recently, we revealed that avoidant personality disorder is the most common comorbidity of hikikomori. Thus, we have postulated that avoidant personality is the personality underpinning hikikomori. First, we herein show relationships between avoidant personality traits, blood biomarkers, hikikomori-related psychological features, and behavioural characteristics assessed by a trust game in non-hikikomori volunteers. Avoidant personality traits were negatively associated with high-density lipoprotein cholesterol (HDL-C) and uric acid (UA) in men, and positively associated with fibrin degeneration products (FDP) and high sensitivity C-reactive protein (hsCRP) in women. Next, we recruited actual individuals with hikikomori, and compared avoidant personality traits, blood biomarkers, and psychological features between individuals with hikikomori and age-matched healthy controls. Individuals with hikikomori had higher avoidant personality scores in both sexes, and showed lower serum UA levels in men and lower HDL-C levels in women compared with healthy controls. This is the first report showing possible blood biomarkers for hikikomori, and opens the door to clarify the underlying biological pathophysiology of hikikomori.
Development of Multistep and Degenerate Variational Integrators for Applications in Plasma Physics
NASA Astrophysics Data System (ADS)
Ellison, Charles Leland
Geometric integrators yield high-fidelity numerical results by retaining conservation laws in the time advance. A particularly powerful class of geometric integrators is symplectic integrators, which are widely used in orbital mechanics and accelerator physics. An important application presently lacking symplectic integrators is the guiding center motion of magnetized particles represented by non-canonical coordinates. Because guiding center trajectories are foundational to many simulations of magnetically confined plasmas, geometric guiding center algorithms have high potential for impact. The motivation is compounded by the need to simulate long-pulse fusion devices, including ITER, and opportunities in high performance computing, including the use of petascale resources and beyond. This dissertation uses a systematic procedure for constructing geometric integrators --- known as variational integration --- to deliver new algorithms for guiding center trajectories and other plasma-relevant dynamical systems. These variational integrators are non-trivial because the Lagrangians of interest are degenerate - the Euler-Lagrange equations are first-order differential equations and the Legendre transform is not invertible. The first contribution of this dissertation is that variational integrators for degenerate Lagrangian systems are typically multistep methods. Multistep methods admit parasitic mode instabilities that can ruin the numerical results. These instabilities motivate the second major contribution: degenerate variational integrators. By replicating the degeneracy of the continuous system, degenerate variational integrators avoid parasitic mode instabilities. The new methods are therefore robust geometric integrators for degenerate Lagrangian systems. These developments in variational integration theory culminate in one-step degenerate variational integrators for non-canonical magnetic field line flow and guiding center dynamics. The guiding center integrator assumes coordinates such that one component of the magnetic field is zero; it is shown how to construct such coordinates for nested magnetic surface configurations. Additionally, collisional drag effects are incorporated in the variational guiding center algorithm for the first time, allowing simulation of energetic particle thermalization. Advantages relative to existing canonical-symplectic and non-geometric algorithms are numerically demonstrated. All algorithms have been implemented as part of a modern, parallel, ODE-solving library, suitable for use in high-performance simulations.
Dunn, Sara L; Wilkinson, Jeremy Mark; Crawford, Aileen; Bunning, Rowena A D; Le Maitre, Christine L
2016-01-01
Introduction: Cannabinoids have shown to reduce joint damage in animal models of arthritis and reduce matrix metalloproteinase expression in primary human osteoarthritic (OA) chondrocytes. The actions of cannabinoids are mediated by a number of receptors, including cannabinoid receptors 1 and 2 (CB1 and CB2), G-protein-coupled receptors 55 and 18 (GPR55 and GPR18), transient receptor potential vanilloid-1 (TRPV1), and peroxisome proliferator-activated receptors alpha and gamma (PPARα and PPARγ). However, to date very few studies have investigated the expression and localization of these receptors in human chondrocytes, and expression during degeneration, and thus their potential in clinical applications is unknown. Methods: Human articular cartilage from patients with symptomatic OA was graded histologically and the expression and localization of cannabinoid receptors within OA cartilage and underlying bone were determined immunohistochemically. Expression levels across regions of cartilage and changes with degeneration were investigated. Results: Expression of all the cannabinoid receptors investigated was observed with no change with grade of degeneration seen in the expression of CB1, CB2, GPR55, PPARα, and PPARγ. Conversely, the number of chondrocytes within the deep zone of cartilage displaying immunopositivity for GPR18 and TRPV1 was significantly decreased in degenerate cartilage. Receptor expression was higher in chondrocytes than in osteocytes in the underlying bone. Conclusions: Chondrocytes from OA joints were shown to express a wide range of cannabinoid receptors even in degenerate tissues, demonstrating that these cells could respond to cannabinoids. Cannabinoids designed to bind to receptors inhibiting the catabolic and pain pathways within the arthritic joint, while avoiding psychoactive effects, could provide potential arthritis therapies.
Haarmann-Stemmann, Thomas; Boege, Fritz; Krutmann, Jean
2013-04-01
In this issue, Matsuda et al. demonstrate the protective effect of mild heat preconditioning on UVB-induced photoaging in SKH-1 hairless mice. Mild heat exposure stimulates the upregulation of HSP70 chaperones, which inhibit the activities of matrix-degenerating enzymes, thereby avoiding wrinkle formation. This newly identified heat-mediated process of adaptation to UVB radiation exposure opens new opportunities to slow extrinsic skin aging.
Cellular regeneration strategies for macular degeneration: past, present and future.
Chichagova, Valeria; Hallam, Dean; Collin, Joseph; Zerti, Darin; Dorgau, Birthe; Felemban, Majed; Lako, Majlinda; Steel, David H
2018-05-01
Despite considerable effort and significant therapeutic advances, age-related macular degeneration (AMD) remains the commonest cause of blindness in the developed world. Progressive late-stage AMD with outer retinal degeneration currently has no proven treatment. There has been significant interest in the possibility that cellular treatments may slow or reverse visual loss in AMD. A number of modes of action have been suggested, including cell replacement and rescue, as well as immune modulation to delay the neurodegenerative process. Their appeal in this enigmatic disease relate to their generic, non-pathway-specific effects. The outer retina in particular has been at the forefront of developments in cellular regenerative therapies being surgically accessible, easily observable, as well as having a relatively simple architecture. Both the retinal pigment epithelium (RPE) and photoreceptors have been considered for replacement therapies as both sheets and cell suspensions. Studies using autologous RPE, and to a lesser extent, foetal retina, have shown proof of principle. A wide variety of cell sources have been proposed with pluripotent stem cell-derived cells currently holding the centre stage. Recent early-phase trials using these cells for RPE replacement have met safety endpoints and hinted at possible efficacy. Animal studies have confirmed the promise that photoreceptor replacement, even in a completely degenerated outer retina may restore some vision. Many challenges, however, remain, not least of which include avoiding immune rejection, ensuring long-term cellular survival and maximising effect. This review provides an overview of progress made, ongoing studies and challenges ahead.
The new methods of treatment for age-related macular degeneration using the ultra-short pulsed laser
NASA Astrophysics Data System (ADS)
Iwamoto, Yumiko; Awazu, Kunio; Suzuki, Sachiko; Ohshima, Tetsuro; Sawa, Miki; Sakaguchi, Hirokazu; Tano, Yasuo; Ohji, Masahito
2007-02-01
The non-invasive methods of treatments have been studying for the improvement of quality of life (QOL) of patients undergoing treatment. A photodynamic therapy (PDT) is one of the non-invasive treatments. PDT is the methods of treatment using combination of a laser and a photosensitizer. PDT has few risks for patients. Furthermore, PDT enables function preservation of a disease part. PDT has been used for early cancer till now, but in late years it is applied for age-related macular degeneration (AMD). AMD is one of the causes of vision loss in older people. However, PDT for AMD does not produce the best improvement in visual acuity. The skin photosensivity by an absorption characteristic of a photosensitizer is avoided. We examined new PDT using combination of an ultra-short pulsed laser and indocyanine green (ICG).
Tremouilhac, C; Hamy, A; De Ferron, E; Paineau, J; Visset, J
1996-01-01
Subacute paraneoplastic cerebellar degeneration (SPCD) is a cerebellar syndrome associated with an identifiable or occult carcinoma without direct involvement of the nervous system by the cancer. This subacute syndrome is due to an extensive Purkinje cell destruction by anti-Purkinje cells autoantibodies. Some of them are specific for example "anti-YO" antibodies in gynecologic cancer situations. We report the case of a 50-year-old woman who presented an ovarien carcinoma revealed by a SPCD associated to an anti-Purkinje cell autoantibody "anti-YO" and to another unidentified autoantibody. Despite the treatment of the carcinoma, the invaliding SPCD did not regress. The diagnosis of SPCD requires identification and early treatment of the carcinoma, giving the patient the best chances for cure and avoiding major neurologic effects.
Use of antidementia drugs in frontotemporal lobar degeneration.
López-Pousa, Secundino; Calvó-Perxas, Laia; Lejarreta, Saioa; Cullell, Marta; Meléndez, Rosa; Hernández, Erélido; Bisbe, Josep; Perkal, Héctor; Manzano, Anna; Roig, Anna Maria; Turró-Garriga, Oriol; Vilalta-Franch, Joan; Garre-Olmo, Josep
2012-06-01
Clinical evidence indicates that acetylcholinesterase inhibitors (AChEIs) are not efficacious to treat frontotemporal lobar degeneration (FTLD). The British Association for Psychopharmacology recommends avoiding the use of AChEI and memantine in patients with FTLD. Cross-sectional design using 1092 cases with Alzheimer's disease (AD) and 64 cases with FTLD registered by the Registry of Dementias of Girona. Bivariate analyses were performed, and binary logistic regressions were used to detect variables associated with antidementia drugs consumption. The AChEIs were consumed by 57.6% and 42.2% of the patients with AD and FTLD, respectively. Memantine was used by 17.2% and 10.9% of patients with AD and FTLD, respectively. Binary logistic regressions yielded no associations with antidementia drugs consumption. There is a discrepancy regarding clinical practice and the recommendations based upon clinical evidence. The increased central nervous system drug use detected in FTLD requires multicentric studies aiming at finding the best means to treat these patients.
Water avoidance stress induces frequency through cyclooxygenase-2 expression: a bladder rat model.
Yamamoto, Keisuke; Takao, Tetsuya; Nakayama, Jiro; Kiuchi, Hiroshi; Okuda, Hidenobu; Fukuhara, Shinichiro; Yoshioka, Iwao; Matsuoka, Yasuhiro; Miyagawa, Yasushi; Tsujimura, Akira; Nonomura, Norio
2012-02-01
Water avoidance stress is a potent psychological stressor and it is associated with visceral hyperalgesia, which shows degeneration of the urothelial layer mimicking interstitial cystitis. Cyclooxygenase-2 inhibitors have been recognized to ameliorate frequency both in clinical and experimental settings. We investigated the voiding pattern and cyclooxygenase-2 expression in a rat bladder model of water avoidance stress. After being subjected to water avoidance stress or a sham procedure, rats underwent metabolic cage analysis and cystometrography. Real time reverse transcription polymerase chain reaction was carried out to examine cyclooxygenase-2 messenger ribonucleic acid in bladders of rats. Protein expression of cyclooxygenase-2 was analyzed with immunohistochemistry and western blotting. Furthermore, the effects of the cyclooxygenase-2 inhibitor, etodolac, were investigated by carrying out cystometrography, immunohistochemistry and western blotting. Metabolic cage analysis and cystometrography showed significantly shorter intervals and less volume of voiding in water avoidance stress rats. Significantly higher expression of cyclooxygenase-2 messenger ribonucleic acid was verified by reverse transcription polymerase chain reaction. Immunohistochemistry and western blotting showed significantly higher cyclooxygenase-2 protein levels in water avoidance stress bladders. Furthermore, immunohistochemistry showed high cyclooxygenase-2 expression exclusively in smooth muscle cells. All water avoidance stress-induced changes were reduced by cyclooxygenase-2 inhibitor pretreatment. Chronic stress might cause frequency through cyclooxygenase-2 gene upregulation in bladder smooth muscle cells. Further study of cyclooxygenase-2 in the water avoidance stress bladder might provide novel therapeutic modalities for interstitial cystitis. © 2011 The Japanese Urological Association.
Diffusion on an Ising chain with kinks
NASA Astrophysics Data System (ADS)
Hamma, Alioscia; Mansour, Toufik; Severini, Simone
2009-07-01
We count the number of histories between the two degenerate minimum energy configurations of the Ising model on a chain, as a function of the length n and the number d of kinks that appear above the critical temperature. This is equivalent to count permutations of length n avoiding certain subsequences depending on d. We give explicit generating functions and compute the asymptotics. The setting considered has a role when describing dynamics induced by quantum Hamiltonians with deconfined quasi-particles.
Granovsky, Alexander A
2011-06-07
The distinctive desirable features, both mathematically and physically meaningful, for all partially contracted multi-state multi-reference perturbation theories (MS-MR-PT) are explicitly formulated. The original approach to MS-MR-PT theory, called extended multi-configuration quasi-degenerate perturbation theory (XMCQDPT), having most, if not all, of the desirable properties is introduced. The new method is applied at the second order of perturbation theory (XMCQDPT2) to the 1(1)A(')-2(1)A(') conical intersection in allene molecule, the avoided crossing in LiF molecule, and the 1(1)A(1) to 2(1)A(1) electronic transition in cis-1,3-butadiene. The new theory has several advantages compared to those of well-established approaches, such as second order multi-configuration quasi-degenerate perturbation theory and multi-state-second order complete active space perturbation theory. The analysis of the prevalent approaches to the MS-MR-PT theory performed within the framework of the XMCQDPT theory unveils the origin of their common inherent problems. We describe the efficient implementation strategy that makes XMCQDPT2 an especially useful general-purpose tool in the high-level modeling of small to large molecular systems. © 2011 American Institute of Physics
Immune allied genetic algorithm for Bayesian network structure learning
NASA Astrophysics Data System (ADS)
Song, Qin; Lin, Feng; Sun, Wei; Chang, KC
2012-06-01
Bayesian network (BN) structure learning is a NP-hard problem. In this paper, we present an improved approach to enhance efficiency of BN structure learning. To avoid premature convergence in traditional single-group genetic algorithm (GA), we propose an immune allied genetic algorithm (IAGA) in which the multiple-population and allied strategy are introduced. Moreover, in the algorithm, we apply prior knowledge by injecting immune operator to individuals which can effectively prevent degeneration. To illustrate the effectiveness of the proposed technique, we present some experimental results.
Treadmill performance of mice with cerebellar lesions: 1. Purkinje cell degeneration mutant mice.
Le Marec, N; Lalonde, R
1998-02-01
The purpose of this study was to evaluate the sensorimotor skills of a spontaneous mouse mutant, Purkinje cell degeneration (PCD), marked by selective cerebellar cortical atrophy on a treadmill activated at 1 of 2 speeds and at 1 of 3 slopes, requiring forward movements to avoid footshocks. There was no difference in latencies before falling from the belt between PCD mutants and controls during acquisition. However, PCD mutants were impaired on the fast treadmill during retention, implicating the cerebellum in the memory of a motor skill. During acquisition of the slow treadmill task at the 2 lowest slopes of inclination, PCD mutants spent more time walking than controls, an indication of a decreased ability of coordinating whole body movements. The same pattern of higher walking time on the slow treadmill in PCD mutants was evident during retention. These results indicate that the cerebellar cortex is involved in the acquisition and the retention of a task requiring equilibrium.
Kirberger, Steven E; Maltseva, Sofia D; Manulik, Joseph C; Einstein, Samuel A; Weegman, Bradley P; Garwood, Michael; Pomerantz, William C K
2017-06-01
19 F MRI is valuable for in vivo imaging due to the only trace amounts of fluorine in biological systems. Because of the low sensitivity of MRI however, designing new fluorochemicals remains a significant challenge for achieving sufficient 19 F signal. Here, we describe a new class of high-signal, water-soluble fluorochemicals as 19 F MRI imaging agents. A polyamide backbone is used for tuning the proteolytic stability to avoid retention within the body, which is a limitation of current state-of-the-art perfluorochemicals. We show that unstructured peptides containing alternating N-ϵ-trifluoroacetyllysine and lysine provide a degenerate 19 F NMR signal. 19 F MRI phantom images provide sufficient contrast at micromolar concentrations, showing promise for eventual clinical applications. Finally, the degenerate high signal characteristics were retained when conjugated to a large protein, indicating potential for in vivo targeting applications, including molecular imaging and cell tracking. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Deora, Surender; Shah, Sanjay C; Patel, Tejas M
2015-01-01
Percutaneous coronary interventions (PCIs) of saphenous vein grafts (SVGs) is challenging and is associated with adverse short- and long-term clinical outcome as compared to native coronary arteries. SVG perforation is rare but catastrophic and needs immediate attention. Various factors predisposing for SVG perforation are old degenerated graft, ulcerated plaque, severe fibrotic, or calcified lesion necessitating high pressure balloon or stent inflation, use of intravascular ultrasound (IVUS) or other atheroablative devices. Management includes prolonged balloon occlusion, reversal of anticoagulation, use of covered stent, and emergency pericadiocentesis if required.
2014-01-01
Background Glutamate, the main excitatory neurotransmitter, is involved in learning and memory processes but at higher concentration results excitotoxic causing degeneration and neuronal death. Adenosine is a nucleoside that exhibit neuroprotective effects by modulating of glutamate release. Hypoxic and related oxidative conditions, in which adenosine and metabotropic glutamate receptors are involved, have been demonstrated to contribute to neurodegenerative processes occurring in certain human pathologies. Results Human neuroblastoma cells (SH-SY5Y) were used to evaluate the long time (24, 48 and 72 hours) effects of a [60]fullerene hydrosoluble derivative (t3ss) as potential inhibitor of hypoxic insult. Low oxygen concentration (5% O2) caused cell death, which was avoided by t3ss exposure in a concentration dependent manner. In addition, gene expression analysis by real time PCR of adenosine A1, A2A and A2B and metabotropic glutamate 1 and 5 receptors revealed that t3ss significantly increased A1 and mGlu1 expression in hypoxic conditions. Moreover, t3ss prevented the hypoxia-induced increase in A2A mRNA expression. Conclusions As t3ss causes overexpression of adenosine A1 and metabotropic glutamate receptors which have been shown to be neuroprotective, our results point to a radical scavenger protective effect of t3ss through the enhancement of these neuroprotective receptors expression. Therefore, the utility of these nanoparticles as therapeutic target to avoid degeneration and cell death of neurodegenerative diseases is suggested. PMID:25123848
Mitchell, P; Korobelnik, J-F; Lanzetta, P; Holz, F G; Prünte, C; Schmidt-Erfurth, U; Tano, Y; Wolf, S
2010-01-01
Neovascular age-related macular degeneration (AMD) has a poor prognosis if left untreated, frequently resulting in legal blindness. Ranibizumab is approved for treating neovascular AMD. However, further guidance is needed to assist ophthalmologists in clinical practice to optimise treatment outcomes. An international retina expert panel assessed evidence available from prospective, multicentre studies evaluating different ranibizumab treatment schedules (ANCHOR, MARINA, PIER, SAILOR, SUSTAIN and EXCITE) and a literature search to generate evidence-based and consensus recommendations for treatment indication and assessment, retreatment and monitoring. Ranibizumab is indicated for choroidal neovascular lesions with active disease, the clinical parameters of which are outlined. Treatment initiation with three consecutive monthly injections, followed by continued monthly injections, has provided the best visual-acuity outcomes in pivotal clinical trials. If continued monthly injections are not feasible after initiation, a flexible strategy appears viable, with monthly monitoring of lesion activity recommended. Initiation regimens of fewer than three injections have not been assessed. Continuous careful monitoring with flexible retreatment may help avoid vision loss recurring. Standardised biomarkers need to be determined. Evidence-based guidelines will help to optimise treatment outcomes with ranibizumab in neovascular AMD.
Wald, Naama; Alroy, Maya; Botzman, Maya; Margalit, Hanah
2012-01-01
Synonymous codons are unevenly distributed among genes, a phenomenon termed codon usage bias. Understanding the patterns of codon bias and the forces shaping them is a major step towards elucidating the adaptive advantage codon choice can confer at the level of individual genes and organisms. Here, we perform a large-scale analysis to assess codon usage bias pattern of pyrimidine-ending codons in highly expressed genes in prokaryotes. We find a bias pattern linked to the degeneracy of the encoded amino acid. Specifically, we show that codon-pairs that encode two- and three-fold degenerate amino acids are biased towards the C-ending codon while codons encoding four-fold degenerate amino acids are biased towards the U-ending codon. This codon usage pattern is widespread in prokaryotes, and its strength is correlated with translational selection both within and between organisms. We show that this bias is associated with an improved correspondence with the tRNA pool, avoidance of mis-incorporation errors during translation and moderate stability of codon–anticodon interaction, all consistent with more efficient translation. PMID:22581775
Focal damage to macaque photoreceptors produces persistent visual loss
Strazzeri, Jennifer M.; Hunter, Jennifer J.; Masella, Benjamin D.; Yin, Lu; Fischer, William S.; DiLoreto, David A.; Libby, Richard T.; Williams, David R.; Merigan, William H.
2014-01-01
Insertion of light-gated channels into inner retina neurons restores neural light responses, light evoked potentials, visual optomotor responses and visually-guided maze behavior in mice blinded by retinal degeneration. This method of vision restoration bypasses damaged outer retina, providing stimulation directly to retinal ganglion cells in inner retina. The approach is similar to that of electronic visual protheses, but may offer some advantages, such as avoidance of complex surgery and direct targeting of many thousands of neurons. However, the promise of this technique for restoring human vision remains uncertain because rodent animal models, in which it has been largely developed, are not ideal for evaluating visual perception. On the other hand, psychophysical vision studies in macaque can be used to evaluate different approaches to vision restoration in humans. Furthermore, it has not been possible to test vision restoration in macaques, the optimal model for human-like vision, because there has been no macaque model of outer retina degeneration. In this study, we describe development of a macaque model of photoreceptor degeneration that can in future studies be used to test restoration of perception by visual prostheses. Our results show that perceptual deficits caused by focal light damage are restricted to locations at which photoreceptors are damaged, that optical coherence tomography (OCT) can be used to track such lesions, and that adaptive optics retinal imaging, which we recently used for in vivo recording of ganglion cell function, can be used in future studies to examine these lesions. PMID:24316158
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anton, Luis; MartI, Jose M; Ibanez, Jose M
2010-05-01
We obtain renormalized sets of right and left eigenvectors of the flux vector Jacobians of the relativistic MHD equations, which are regular and span a complete basis in any physical state including degenerate ones. The renormalization procedure relies on the characterization of the degeneracy types in terms of the normal and tangential components of the magnetic field to the wave front in the fluid rest frame. Proper expressions of the renormalized eigenvectors in conserved variables are obtained through the corresponding matrix transformations. Our work completes previous analysis that present different sets of right eigenvectors for non-degenerate and degenerate states, andmore » can be seen as a relativistic generalization of earlier work performed in classical MHD. Based on the full wave decomposition (FWD) provided by the renormalized set of eigenvectors in conserved variables, we have also developed a linearized (Roe-type) Riemann solver. Extensive testing against one- and two-dimensional standard numerical problems allows us to conclude that our solver is very robust. When compared with a family of simpler solvers that avoid the knowledge of the full characteristic structure of the equations in the computation of the numerical fluxes, our solver turns out to be less diffusive than HLL and HLLC, and comparable in accuracy to the HLLD solver. The amount of operations needed by the FWD solver makes it less efficient computationally than those of the HLL family in one-dimensional problems. However, its relative efficiency increases in multidimensional simulations.« less
Spontaneous Achilles tendon rupture in alkaptonuria
Alajoulin, Omar A.; Alsbou, Mohammed S.; Ja’afreh, Somayya O.; Kalbouneh, Heba M.
2015-01-01
Alkaptonuria (AKU) is a rare inborn metabolic disease characterized by accumulation of homogentisic acid (HGA). Excretion of HGA in urine causes darkening of urine and its deposition in connective tissues causes dark pigmentation (ochronosis), early degeneration of articular cartilage, weakening of the tendons, and subsequent rupture. In this case report, we present a rare case of a patient presented with unilateral spontaneous rupture of Achilles tendon due to AKU. The patient developed most of the orthopedic manifestations of the disease earlier than typical presentations. Alkaptonuria patients should avoid strenuous exercises and foot straining especially in patients developing early orthopedic manifestations. PMID:26620992
Spontaneous Achilles tendon rupture in alkaptonuria.
Alajoulin, Omar A; Alsbou, Mohammed S; Ja'afreh, Somayya O; Kalbouneh, Heba M
2015-12-01
Alkaptonuria (AKU) is a rare inborn metabolic disease characterized by accumulation of homogentisic acid (HGA). Excretion of HGA in urine causes darkening of urine and its deposition in connective tissues causes dark pigmentation (ochronosis), early degeneration of articular cartilage, weakening of the tendons, and subsequent rupture. In this case report, we present a rare case of a patient presented with unilateral spontaneous rupture of Achilles tendon due to AKU. The patient developed most of the orthopedic manifestations of the disease earlier than typical presentations. Alkaptonuria patients should avoid strenuous exercises and foot straining especially in patients developing early orthopedic manifestations.
Lara, Kelly A; Chua, Rochelle Anne; Vo, Trung D
2018-05-01
Autogenous arteriovenous fistula (AVF) is the primary recommended access for hemodialysis. Long-term use will not uncommonly result in AVF aneurysmal degeneration. Aneurysm-associated complications encompass pain, skin ulceration, infection, thrombosis, cannulation difficulties, and life-threatening bleeding. Various methods to repair aneurysmal AVFs have been described. However, there may be circumstances when this is not possible and require insertion of a temporary hemodialysis catheter (HDC) until a new arteriovenous access is created. We describe a case series of creating a new simultaneous AVF while continuing to use the primary failing aneurysmal AVF to avoid placement of an HDC. Once the new AVF becomes operational, the primary aneurysmal AVF can be abandoned. Six patients underwent simultaneous new AVF creation, 4 ipsilateral, and 2 contralateral. None of the patients developed symptomatic steal syndrome or congestive heart failure. Five of 6 patients had successful usage of the new AVF, and subsequently underwent ligation and excision of the aneurysmal AVF, thus avoiding a temporary HDC. Close monitoring for skin compromise and bleeding in the aneurysmal AVF is recommended while the new AVF matures. Copyright © 2018 Elsevier Inc. All rights reserved.
Making Sense of Low Back Pain and Pain-Related Fear.
Bunzli, Samantha; Smith, Anne; Schütze, Robert; Lin, Ivan; O'Sullivan, Peter
2017-09-01
Synopsis Pain-related fear is implicated in the transition from acute to chronic low back pain and the persistence of disabling low back pain, making it a key target for physical therapy intervention. The current understanding of pain-related fear is that it is a psychopathological problem, whereby people who catastrophize about the meaning of pain become trapped in a vicious cycle of avoidance behavior, pain, and disability, as recognized in the fear-avoidance model. However, there is evidence that pain-related fear can also be seen as a common-sense response to deal with low back pain, for example, when one is told that one's back is vulnerable, degenerating, or damaged. In this instance, avoidance is a common-sense response to protect a "damaged" back. While the fear-avoidance model proposes that when someone first develops low back pain, the confrontation of normal activity in the absence of catastrophizing leads to recovery, the pathway to recovery for individuals trapped in the fear-avoidance cycle is less clear. Understanding pain-related fear from a common-sense perspective enables physical therapists to offer individuals with low back pain and high fear a pathway to recovery by altering how they make sense of their pain. Drawing on a body of published work exploring the lived experience of pain-related fear in people with low back pain, this clinical commentary illustrates how Leventhal's common-sense model may assist physical therapists to understand the broader sense-making processes involved in the fear-avoidance cycle, and how they can be altered to facilitate fear reduction by applying strategies established in the behavioral medicine literature. J Orthop Sports Phys Ther 2017;47(9):628-636. Epub 13 Jul 2017. doi:10.2519/jospt.2017.7434.
Learned arbitrary responses to light in mice without rods or cones
NASA Astrophysics Data System (ADS)
Mrosovsky, N.; Salmon, Peggy
2002-10-01
The aim of this investigation was to discover whether mice lacking classical photoreceptors (rods and cones) can nevertheless be trained to respond to light. Mice with the coneless (cl) transgene have an attenuated diphtheria toxin fused to a cone opsin promotor. Mutant mice homozygous for the retinal degeneration (rd) gene undergo loss of their rods. By mating these two strains, mice lacking both cones and rods can be generated (Lucas et al. 1999). Such coneless-rodless mice were able to use light as a signal to make a behavioural response to avoid impending shock. Nevertheless, especially initially, they used the light as a cue less often than wildtype controls, indicating that normally the rods and cones are used for such responses. However, other photoreceptors are able to take over this role to some extent. When the lights were covered with opaque material, the performance of rodless-coneless mice dropped to chance level, indicating that they had been using the light as a cue for avoidance.
Identification of microRNA precursor with the degenerate K-tuple or Kmer strategy.
Liu, Bin; Fang, Longyun; Wang, Shanyi; Wang, Xiaolong; Li, Hongtao; Chou, Kuo-Chen
2015-11-21
The microRNA (miRNA), a small non-coding RNA molecule, plays an important role in transcriptional and post-transcriptional regulation of gene expression. Its abnormal expression, however, has been observed in many cancers and other disease states, implying that the miRNA molecules are also deeply involved in these diseases, particularly in carcinogenesis. Therefore, it is important for both basic research and miRNA-based therapy to discriminate the real pre-miRNAs from the false ones (such as hairpin sequences with similar stem-loops). Most existing methods in this regard were based on the strategy in which RNA samples were formulated by a vector formed by their Kmer components. But the length of Kmers must be very short; otherwise, the vector's dimension would be extremely large, leading to the "high-dimension disaster" or overfitting problem. Inspired by the concept of "degenerate energy levels" in quantum mechanics, we introduced the "degenerate Kmer" (deKmer) to represent RNA samples. By doing so, not only we can accommodate long-range coupling effects but also we can avoid the high-dimension problem. Rigorous jackknife tests and cross-species experiments indicated that our approach is very promising. It has not escaped our notice that the deKmer approach can also be applied to many other areas of computational biology. A user-friendly web-server for the new predictor has been established at http://bioinformatics.hitsz.edu.cn/miRNA-deKmer/, by which users can easily get their desired results. Copyright © 2015 Elsevier Ltd. All rights reserved.
van de Graaf, Elizabeth S; Despriet, Dominiek D G; Klaver, Caroline C W; Simonsz, Huibert J
2016-05-17
Utility of visual impairment caused by amblyopia is important for the cost-effectiveness of screening for amblyopia (lazy eye, prevalence 3-3.5 %). We previously measured decrease of utility in 35-year-old persons with unilateral persistent amblyopia. The current observational case-control study aimed to measure loss of utility in patients with amblyopia with recent decrease of vision in their better eye. As these patients are rare, the sample was supplemented by patients with bilateral age-related macular degeneration with similar decrease of vision. From our out-patient department, two groups of patients with recent deterioration to bilateral visual acuity less than Snellen 0.5 (bilateral visual impairment, BVI) were recruited, with either persistent amblyopia and age-related macular degeneration (AMB + AMD), or with bilateral age-related macular degeneration (BAMD). To measure utility, the time trade-off method and the standard gamble method were applied through interviews. Correlations were sought between utility values and visual acuity, age and Visual Function Questionnaire-25 scores. Seventeen AMB + AMD patients (mean age 72.9 years), and 63 BAMD patients (mean age 79.6 years) were included in the study. Among AMB + AMD, 80 % were willing to trade lifetime in exchange for cure. The overall mean time trade-off utility was 0.925. Among BAMD, 75 % were willing to trade, utility was 0.917. Among AMB + AMD, 38 % accepted risk of death in exchange for cure, overall mean standard gamble utility was 0.999. Among BAMD, 49 % accepted risk of death, utility was 0.998. Utility was not related to visual acuity but it was to age (p = 0.02). Elderly patients with BVI, caused by persistent amblyopia and age-related macular degeneration (AMD) or by bilateral AMD, had an approximately 8 % loss of TTO utility. Notably, the 8 % loss in elderly with BVI differs little from the 3.7 % loss we found previously in 35-year-old persons with unilateral amblyopia with good vision in the other eye. The moderate impact of BVI in senescence could be explained by adaptation, comorbidity, avoidance of risk and a changed percept of cure.
Dilated contour extraction and component labeling algorithm for object vector representation
NASA Astrophysics Data System (ADS)
Skourikhine, Alexei N.
2005-08-01
Object boundary extraction from binary images is important for many applications, e.g., image vectorization, automatic interpretation of images containing segmentation results, printed and handwritten documents and drawings, maps, and AutoCAD drawings. Efficient and reliable contour extraction is also important for pattern recognition due to its impact on shape-based object characterization and recognition. The presented contour tracing and component labeling algorithm produces dilated (sub-pixel) contours associated with corresponding regions. The algorithm has the following features: (1) it always produces non-intersecting, non-degenerate contours, including the case of one-pixel wide objects; (2) it associates the outer and inner (i.e., around hole) contours with the corresponding regions during the process of contour tracing in a single pass over the image; (3) it maintains desired connectivity of object regions as specified by 8-neighbor or 4-neighbor connectivity of adjacent pixels; (4) it avoids degenerate regions in both background and foreground; (5) it allows an easy augmentation that will provide information about the containment relations among regions; (6) it has a time complexity that is dominantly linear in the number of contour points. This early component labeling (contour-region association) enables subsequent efficient object-based processing of the image information.
Koo, Taeyoung; Park, Sung Wook; Jo, Dong Hyun; Kim, Daesik; Kim, Jin Hyoung; Cho, Hee-Yeon; Kim, Jeungeun; Kim, Jeong Hun; Kim, Jin-Soo
2018-05-10
LbCpf1, derived from Lachnospiraceae bacterium ND2006, is a CRISPR RNA-guided endonuclease and holds promise for therapeutic applications. Here we show that LbCpf1 can be used for therapeutic gene editing in a mouse model of age-related macular degeneration (AMD). The intravitreal delivery of LbCpf1, targeted to two angiogenesis-associated genes encoding vascular endothelial growth factor A (Vegfa) and hypoxia inducing factor 1a (Hif1a), using adeno-associated virus, led to efficient gene disruption with no apparent off-target effects in the retina and retinal pigment epithelium (RPE) cells. Importantly, LbCpf1 targeted to Vegfa or Hif1a in RPE cells reduced the area of laser-induced choroidal neovascularization as efficiently as aflibercept, an anti-VEGF drug currently used in the clinic, without inducing cone dysfunction. Unlike aflibercept, LbCpf1 targeted to Vegfa or Hif1a achieved a long-term therapeutic effect on CNV, potentially avoiding repetitive injections. Taken together, these results indicate that LbCpf1-mediated in vivo genome editing to ablate pathologic angiogenesis provides an effective strategy for the treatment of AMD and other neovascularization-associated diseases.
Angiogenesis in the degeneration of the lumbar intervertebral disc
David, Gh; Iencean, SM; Mohan, A
2010-01-01
The goal of the study is to show the histological and biochemical changes that indicate the angiogenesis of the intervertebral disc in lumbar intervertebral disc hernia and the existence of epidemiological correlations between these changes and the risk factors of lumbar intervertebral disc hernia, as well as the patient's quality of life (QOL). We have studied 50 patients aged between 18 and 73 years old, who have undergone lumbar intervertebral disc hernia surgery, making fibroblast growth factor and vascular endothelial growth factor level measurements, as elements in the process of appreciating the disc angiogenesis. Also, pre–surgery and post–surgery QOL has been measured, as well as the intensity of the pain syndrome. We have identified factors capable of stimulating vascular endothelial growth (VEGF, FGF–2) for the examined disc material, but histological examination did not show angiogenesis. The process of angiogenesis at the degenerated intervertebral disc level affects the patient's quality of life both pre and postoperatively, and may be a predictive factor for the post–operative results. Patients can prevent the appearance of angiogenesis type degenerative processes of the intervertebral disc by avoiding angiogenesis correlated factors (weight control, physical effort, and smoking). PMID:20968201
Nutritional and Lifestyle Interventions for Age-Related Macular Degeneration: A Review
Carneiro, Ângela
2017-01-01
Age-related macular degeneration (AMD) is the leading cause of blindness in the developed world. In this narrative review, we will summarize the nutritional interventions evaluated in numerous observational studies and a few randomized clinical trials. The AREDS and AREDS2 studies demonstrated that supplements including vitamins C and E, beta-carotene, and zinc may reduce the progression to advanced AMD, in some patients, by 25% in five years. This is one of the few nutritional supplements known to have beneficial effects in any eye disease. Lutein/zeaxanthin supplementation may have beneficial effects in some individuals whereas omega-3 fatty acids supplementation needs to be further investigated and supported by more evidence. Genetic factors may explain the different patterns of response and explain differences found among individuals. More importantly, a combination of lifestyle behaviors such as the avoidance of smoking, physical activity, and the adoption of a healthy dietary pattern like the Mediterranean diet was associated with a lower prevalence of AMD. The adoption of these lifestyles may reduce the prevalence of the early stages of AMD and decrease the number of individuals who develop advanced AMD and consequently the onerous and climbing costs associated with the treatment of this disease. PMID:28154734
X-82 to Treat Age-related Macular Degeneration
2018-05-30
Age-Related Macular Degeneration (AMD); Macular Degeneration; Exudative Age-related Macular Degeneration; AMD; Macular Degeneration, Age-related, 10; Eye Diseases; Retinal Degeneration; Retinal Diseases
NASA Astrophysics Data System (ADS)
Chen, Jeng-Tzong; Lee, Jia-Wei
2013-09-01
In this paper, we focus on the water wave scattering by an array of four elliptical cylinders. The null-field boundary integral equation method (BIEM) is used in conjunction with degenerate kernels and eigenfunctions expansion. The closed-form fundamental solution is expressed in terms of the degenerate kernel containing the Mathieu and the modified Mathieu functions in the elliptical coordinates. Boundary densities are represented by using the eigenfunction expansion. To avoid using the addition theorem to translate the Mathieu functions, the present approach can solve the water wave problem containing multiple elliptical cylinders in a semi-analytical manner by introducing the adaptive observer system. Regarding water wave problems, the phenomena of numerical instability of fictitious frequencies may appear when the BIEM/boundary element method (BEM) is used. Besides, the near-trapped mode for an array of four identical elliptical cylinders is observed in a special layout. Both physical (near-trapped mode) and mathematical (fictitious frequency) resonances simultaneously appear in the present paper for a water wave problem by an array of four identical elliptical cylinders. Two regularization techniques, the combined Helmholtz interior integral equation formulation (CHIEF) method and the Burton and Miller approach, are adopted to alleviate the numerical resonance due to fictitious frequency.
Vossler, John D; Min Ju, Young; Williams, J Koudy; Goldstein, Steven; Hamlin, James; Lee, Sang Jin; Yoo, James J; Atala, Anthony
2015-09-03
The long term efficacy of tissue based heart valve grafts may be limited by progressive degeneration characterized by immune mediated inflammation and calcification. To avoid this degeneration, decellularized heart valves with functionalized surfaces capable of rapid in vivo endothelialization have been developed. The aim of this study is to examine the capacity of CD133 antibody-conjugated valve tissue to capture circulating endothelial progenitor cells (EPCs). Decellularized human pulmonary valve tissue was conjugated with CD133 antibody at varying concentrations and exposed to CD133 expressing NTERA-2 cl.D1 (NT2) cells in a microflow chamber. The amount of CD133 antibody conjugated on the valve tissue surface and the number of NT2 cells captured in the presence of shear stress was measured. Both the amount of CD133 antibody conjugated to the valve leaflet surface and the number of adherent NT2 cells increased as the concentration of CD133 antibody present in the surface immobilization procedure increased. The data presented in this study support the hypothesis that the rate of CD133(+) cell adhesion in the presence of shear stress to decellularized heart valve tissue functionalized by CD133 antibody conjugation increases as the quantity of CD133 antibody conjugated to the tissue surface increases.
Indian hedgehog contributes to human cartilage endplate degeneration.
Wang, Shaowei; Yang, Kun; Chen, Shuai; Wang, Jiying; Du, Guoqing; Fan, Shunwu; Wei, Lei
2015-08-01
To determine the role of Indian hedgehog (Ihh) signaling in human cartilage endplate (CEP) degeneration. CEP-degenerated tissues from patients with Modic I or II changes (n = 9 and 45, respectively) and normal tissues from vertebral burst fracture patients (n = 17) were collected. Specimens were either cut into slices for organ culture ex vivo or digested to isolate chondrocytes for cell culture in vitro. Ihh expression and the effect of Ihh on cartilage degeneration were determined by investigating degeneration markers in this study. Ihh expression and cartilage degeneration markers significantly increased in the Modic I and II groups. The expression of cartilage degeneration markers was positively correlated with degeneration severity. Gain-of-function for Ihh promoted expression of cartilage degeneration markers in vitro, while loss-of-function for Ihh inhibited their expression both in vitro and ex vivo. These findings demonstrated that Ihh promotes CEP degeneration. Blocking Ihh pathway has potential clinical usage for attenuating CEP degeneration.
Oocyte Degeneration Associated with Follicle Cells in Female Mactra chinensis (Bivalvia: Mactridae)
Kim, Sung Han; Chung, Ee-Yung; Lee, Ki-Young
2014-01-01
Ultrastructural studies of oocyte degeneration in the oocyte, and the functions of follicle cells during oocyte degeneration are described to clarify the reproductive mechanism on oocyte degeneration of Mactra chinensis using cytological methods. Commonly, the follicle cells are attached to the oocyte. Follicle cells play an important role in oocyte degeneration. In particular, the functions of follicle cells during oocyte degeneration are associated with phagocytosis and the intracellular digestion of products. In this study, morphologically similar degenerated phagosomes (various lysosomes), which were observed in the degenerated oocytes, appeared in the follicle cells. After the spawning of the oocytes, the follicle cells were involved in oocyte degeneration through phagocytosis by phagolysosomes. Therefore, it can be assumed that follicle cells reabsorb phagosomes from degenerated oocytes. In this study, the presence of lipid granules, which occurred from degenerating yolk granules, gradually increased in degenerating oocytes. The function of follicle cells can accumulate reserves of lipid granules and glycogen in the cytoplasm, which can be employed by the vitellogenic oocyte. Based on observations of follicle cells attached to degenerating oocytes after spawning, the follicle cells of this species are involved in the lysosomal induction of oocyte degeneration for the reabsorption of phagosomes (phagolysosomes) in the cytoplasm for nutrient storage, as seen in other bivalves. PMID:25949203
On the heteroclinic connection problem for multi-well gradient systems
NASA Astrophysics Data System (ADS)
Zuniga, Andres; Sternberg, Peter
2016-10-01
We revisit the existence problem of heteroclinic connections in RN associated with Hamiltonian systems involving potentials W :RN → R having several global minima. Under very mild assumptions on W we present a simple variational approach to first find geodesics minimizing length of curves joining any two of the potential wells, where length is computed with respect to a degenerate metric having conformal factor √{ W}. Then we show that when such a minimizing geodesic avoids passing through other wells of the potential at intermediate times, it gives rise to a heteroclinic connection between the two wells. This work improves upon the approach of [22] and represents a more geometric alternative to the approaches of e.g. [5,10,14,17] for finding such connections.
Le Maitre, Christine Lyn; Hoyland, Judith Alison; Freemont, Anthony J
2007-01-01
Low back pain is a common and debilitating disorder. Current evidence implicates intervertebral disc (IVD) degeneration and herniation as major causes, although the pathogenesis is poorly understood. While several cytokines have been implicated in the process of IVD degeneration and herniation, investigations have predominately focused on Interleukin 1 (IL-1) and tumor necrosis factor alpha (TNFα). However, to date no studies have investigated the expression of these cytokines simultaneously in IVD degeneration or herniation, or determined which may be the predominant cytokine associated with these disease states. Using quantitative real time PCR and immunohistochemistry we investigated gene and protein expression for IL-1β, TNFα and their receptors in non-degenerate, degenerate and herniated human IVDs. IL-1β gene expression was observed in a greater proportion of IVDs than TNFα (79% versus 59%). Degenerate and herniated IVDs displayed higher levels of both cytokines than non-degenerate IVDs, although in degenerate IVDs higher levels of IL-1β gene expression (1,300 copies/100 ng cDNA) were observed compared to those of TNFα (250 copies of TNFα/100 ng cDNA). Degenerate IVDs showed ten-fold higher IL-1 receptor gene expression compared to non-degenerate IVDs. In addition, 80% of degenerate IVD cells displayed IL-1 receptor immunopositivity compared to only 30% of cells in non-degenerate IVDs. However, no increase in TNF receptor I gene or protein expression was observed in degenerate or herniated IVDs compared to non-degenerate IVDs. We have demonstrated that although both cytokines are produced by human IVD cells, IL-1β is expressed at higher levels and in more IVDs, particularly in more degenerate IVDs (grades 4 to 12). Importantly, this study has highlighted an increase in gene and protein production for the IL-1 receptor type I but not the TNF receptor type I in degenerate IVDs. The data thus suggest that although both cytokines may be involved in the pathogenesis of IVD degeneration, IL-1 may have a more significant role than TNFα, and thus may be a better target for therapeutic intervention. PMID:17688691
Gilbert, Hamish T. J.; Nagra, Navraj S.; Freemont, Anthony J.; Millward-Sadler, Sarah J.; Hoyland, Judith A.
2013-01-01
Intervertebral disc (IVD) cells derived from degenerate tissue respond aberrantly to mechanical stimuli, potentially due to altered mechanotransduction pathways. Elucidation of the altered, or alternative, mechanotransduction pathways operating with degeneration could yield novel targets for the treatment of IVD disease. Our aim here was to investigate the involvement of RGD-recognising integrins and associated signalling molecules in the response to cyclic tensile strain (CTS) of human annulus fibrosus (AF) cells derived from non-degenerate and degenerate IVDs. AF cells from non-degenerate and degenerate human IVDs were cyclically strained with and without function blocking RGD – peptides with 10% strain, 1.0 Hz for 20 minutes using a Flexercell® strain device. QRT-PCR and Western blotting were performed to analyse gene expression of type I collagen and ADAMTS -4, and phosphorylation of focal adhesion kinase (FAK), respectively. The response to 1.0 Hz CTS differed between the two groups of AF cells, with decreased ADAMTS -4 gene expression and decreased type I collagen gene expression post load in AF cells derived from non-degenerate and degenerate IVDs, respectively. Pre-treatment of non-degenerate AF cells with RGD peptides prevented the CTS-induced decrease in ADAMTS -4 gene expression, but caused an increase in expression at 24 hours, a response not observed in degenerate AF cells where RGD pre-treatment failed to inhibit the mechano-response. In addition, FAK phosphorylation increased in CTS stimulated AF cells derived from non-degenerate, but not degenerate IVDs, with RGD pre-treatment inhibiting the CTS – dependent increase in phosphorylated FAK. Our findings suggest that RGD -integrins are involved in the 1.0 Hz CTS – induced mechano-response observed in AF cells derived from non-degenerate, but not degenerate IVDs. This data supports our previous work, suggesting an alternative mechanotransduction pathway may be operating in degenerate AF cells. PMID:24039840
Relationship of Tear Size and Location to Fatty Degeneration of the Rotator Cuff
Kim, H. Mike; Dahiya, Nirvikar; Teefey, Sharlene A.; Keener, Jay D.; Galatz, Leesa M.; Yamaguchi, Ken
2010-01-01
Background: Fatty degeneration of the rotator cuff muscles may have detrimental effects on both anatomical and functional outcomes following shoulder surgery. The purpose of this study was to investigate the relationship between tear geometry and muscle fatty degeneration in shoulders with a deficient rotator cuff. Methods: Ultrasonograms of both shoulders of 262 patients were reviewed to assess the type of rotator cuff tear and fatty degeneration in the supraspinatus and infraspinatus muscles. The 251 shoulders with a full-thickness tear underwent further evaluation for tear size and location. The relationship of tear size and location to fatty degeneration of the supraspinatus and infraspinatus muscles was investigated with use of statistical comparisons and regression models. Results: Fatty degeneration was found almost exclusively in shoulders with a full-thickness rotator cuff tear. Of the 251 shoulders with a full-thickness tear, eighty-seven (34.7%) had fatty degeneration in either the supraspinatus or infraspinatus, or both. Eighty-two (32.7%) of the 251 full-thickness tears had a distance of 0 mm between the biceps tendon and anterior margin of the tear. Ninety percent of the full-thickness tears with fatty degeneration in both muscles had a distance of 0 mm posterior from the biceps, whereas only 9% of those without fatty degeneration had a distance of 0 mm. Tears with fatty degeneration had significantly greater width and length than those without fatty degeneration (p < 0.0001). Tears with fatty degeneration had a significantly shorter distance posterior from the biceps than those without fatty degeneration (p < 0.0001). The distance posterior from the biceps was found to be the most important predictor for supraspinatus fatty degeneration, whereas tear width and length were found to be the most important predictors for infraspinatus fatty degeneration. Conclusions: Fatty degeneration of the rotator cuff muscles is closely associated with tear size and location. The finding of this study suggests that the integrity of the anterior supraspinatus tendon is important to the development of fatty degeneration. Patients with full-thickness tears that extend through this area may benefit from earlier surgical intervention if fatty degeneration has not already occurred. Additionally, the findings suggest the importance of secure fixation and healing of the anterior aspect of the supraspinatus with surgical repair. PMID:20360505
Automatic multiresolution age-related macular degeneration detection from fundus images
NASA Astrophysics Data System (ADS)
Garnier, Mickaël.; Hurtut, Thomas; Ben Tahar, Houssem; Cheriet, Farida
2014-03-01
Age-related Macular Degeneration (AMD) is a leading cause of legal blindness. As the disease progress, visual loss occurs rapidly, therefore early diagnosis is required for timely treatment. Automatic, fast and robust screening of this widespread disease should allow an early detection. Most of the automatic diagnosis methods in the literature are based on a complex segmentation of the drusen, targeting a specific symptom of the disease. In this paper, we present a preliminary study for AMD detection from color fundus photographs using a multiresolution texture analysis. We analyze the texture at several scales by using a wavelet decomposition in order to identify all the relevant texture patterns. Textural information is captured using both the sign and magnitude components of the completed model of Local Binary Patterns. An image is finally described with the textural pattern distributions of the wavelet coefficient images obtained at each level of decomposition. We use a Linear Discriminant Analysis for feature dimension reduction, to avoid the curse of dimensionality problem, and image classification. Experiments were conducted on a dataset containing 45 images (23 healthy and 22 diseased) of variable quality and captured by different cameras. Our method achieved a recognition rate of 93:3%, with a specificity of 95:5% and a sensitivity of 91:3%. This approach shows promising results at low costs that in agreement with medical experts as well as robustness to both image quality and fundus camera model.
Essential protective role of tumor necrosis factor receptor 2 in neurodegeneration
Dong, Yun; Fischer, Roman; Naudé, Petrus J. W.; Maier, Olaf; Nyakas, Csaba; Duffey, Maëlle; Van der Zee, Eddy A.; Dekens, Doortje; Douwenga, Wanda; Herrmann, Andreas; Guenzi, Eric; Kontermann, Roland E.; Pfizenmaier, Klaus; Eisel, Ulrich L. M.
2016-01-01
Despite the recognized role of tumor necrosis factor (TNF) in inflammation and neuronal degeneration, anti-TNF therapeutics failed to treat neurodegenerative diseases. Animal disease models had revealed the antithetic effects of the two TNF receptors (TNFR) in the central nervous system, whereby TNFR1 has been associated with inflammatory degeneration and TNFR2 with neuroprotection. We here show the therapeutic potential of selective inhibition of TNFR1 and activation of TNFR2 by ATROSAB, a TNFR1-selective antagonistic antibody, and EHD2-scTNFR2, an agonistic TNFR2-selective TNF, respectively, in a mouse model of NMDA-induced acute neurodegeneration. Coadministration of either ATROSAB or EHD2-scTNFR2 into the magnocellular nucleus basalis significantly protected cholinergic neurons and their cortical projections against cell death, and reverted the neurodegeneration-associated memory impairment in a passive avoidance paradigm. Simultaneous blocking of TNFR1 and TNFR2 signaling, however, abrogated the therapeutic effect. Our results uncover an essential role of TNFR2 in neuroprotection. Accordingly, the therapeutic activity of ATROSAB is mediated by shifting the balance of the antithetic activity of endogenous TNF toward TNFR2, which appears essential for neuroprotection. Our data also explain earlier results showing that complete blocking of TNF activity by anti-TNF drugs was detrimental rather than protective and argue for the use of next-generation TNFR-selective TNF therapeutics as an effective approach in treating neurodegenerative diseases. PMID:27791020
Essential protective role of tumor necrosis factor receptor 2 in neurodegeneration.
Dong, Yun; Fischer, Roman; Naudé, Petrus J W; Maier, Olaf; Nyakas, Csaba; Duffey, Maëlle; Van der Zee, Eddy A; Dekens, Doortje; Douwenga, Wanda; Herrmann, Andreas; Guenzi, Eric; Kontermann, Roland E; Pfizenmaier, Klaus; Eisel, Ulrich L M
2016-10-25
Despite the recognized role of tumor necrosis factor (TNF) in inflammation and neuronal degeneration, anti-TNF therapeutics failed to treat neurodegenerative diseases. Animal disease models had revealed the antithetic effects of the two TNF receptors (TNFR) in the central nervous system, whereby TNFR1 has been associated with inflammatory degeneration and TNFR2 with neuroprotection. We here show the therapeutic potential of selective inhibition of TNFR1 and activation of TNFR2 by ATROSAB, a TNFR1-selective antagonistic antibody, and EHD2-scTNF R2 , an agonistic TNFR2-selective TNF, respectively, in a mouse model of NMDA-induced acute neurodegeneration. Coadministration of either ATROSAB or EHD2-scTNF R2 into the magnocellular nucleus basalis significantly protected cholinergic neurons and their cortical projections against cell death, and reverted the neurodegeneration-associated memory impairment in a passive avoidance paradigm. Simultaneous blocking of TNFR1 and TNFR2 signaling, however, abrogated the therapeutic effect. Our results uncover an essential role of TNFR2 in neuroprotection. Accordingly, the therapeutic activity of ATROSAB is mediated by shifting the balance of the antithetic activity of endogenous TNF toward TNFR2, which appears essential for neuroprotection. Our data also explain earlier results showing that complete blocking of TNF activity by anti-TNF drugs was detrimental rather than protective and argue for the use of next-generation TNFR-selective TNF therapeutics as an effective approach in treating neurodegenerative diseases.
Randomized controlled trial of anterior-chamber intraocular lenses in Nepal: long-term follow-up.
Evans, J. R.; Henning, A.; Pradhan, D.; Foster, A.; Lagnado, R.; Poulson, A.; Johnson, G. J.; Wormald, R. P.
2000-01-01
Most of the estimated 20 million people who are blind with cataracts live in rural areas of developing countries, where expert surgical resources are scarce. We have studied the use of multiflex open-loop anterior-chamber intraocular lenses (ACIOL) in high-volume low-cost surgery. Between 1992 and 1995, a total of 2000 people attending Lahan Eye Hospital, Nepal, with bilateral cataracts reducing vision to < or = 6/36 were randomly allocated to receive intracapsular extraction (ICCE) with aphakic spectacles, or ICCE with an ACIOL. We re-examined the cohort (1305/2000, 65%) between November 1996 and April 1997 and report the findings in this article. There were 13 new cases of poor visual outcome (best corrected vision < 6/60) arising after one year: 9 in the ACIOL group and 4 in the control group; odds ratio 2.1 (95% confidence interval, 0.59-9.55). The causes of poor outcome were as follows: ACIOL group--retinal detachment (4 cases), cystoid macular oedema (2), epiretinal membrane (1), age-related macular degeneration (1), and late endophthalmitis (1); control group--retinal detachment (2 cases), late endophthalmitis (1), and primary open-angle glaucoma with age-related macular degeneration (1). In rural areas of developing countries, well-manufactured multiflex open-loop ACIOLs can be implanted safely by experienced ophthalmologists after routine ICCE, avoiding the disadvantages of aphakic spectacle correction. PMID:10812737
Gil, Pedro; Gil, João; Oliveira, Nuno; Laíns, Inês; Camilo, Eduardo Nery Rossi; Fonseca, Cristina; Raimundo, Miguel; Cachulo, Maria da Luz; Silva, Rufino
2018-05-07
To investigate the influence of the vitreoretinal interface on the outcomes of different ranibizumab regimens for exudative age-related macular degeneration. We conducted a retrospective subanalysis of 2 prospective clinical trials. Patients were treated with ranibizumab for 12 months according to 3 different regimens: pro-re-nata (PRN), treat and extend (T&E), and monthly. Vitreoretinal interface was assessed for absence (group ON) or presence (group OFF) of posterior vitreous detachment (PVD). We included 64 eyes from 64 patients. Visual improvement was poorer for group ON (0.3 ± 10.7 letters) than for group OFF (9.2 ± 13.3; p = 0.007). A significant difference in letters of improvement between groups was observed in the PRN cohort (ON: -5.0 ± 12.9; OFF: 11.4 ± 11.9; p = 0.003), but not in the cohorts with monthly (ON: 5.7 ± 7.8; OFF: 7.9 ± 15.2; p = 0.735) or T&E (ON: 4.3 ± 4.3; OFF: 7.8 ± 11.1; p = 0.424) treatment. The negative impact of absence of PVD is regimen dependent, with monthly dosing providing similar outcomes to PVD patients. In the absence of PVD (group ON), PRN should be avoided, and T&E might be an alternative. © 2018 S. Karger AG, Basel.
Lorach, Henri; Goetz, Georges; Mandel, Yossi; Lei, Xin; Kamins, Theodore I.; Mathieson, Keith; Huie, Philip; Dalal, Roopa; Harris, James S.; Palanker, Daniel
2014-01-01
Summary Loss of photoreceptors during retinal degeneration leads to blindness, but information can be reintroduced into the visual system using electrical stimulation of the remaining retinal neurons. Subretinal photovoltaic arrays convert pulsed illumination into pulsed electric current to stimulate the inner retinal neurons. Since required irradiance exceeds the natural luminance levels, an invisible near-infrared (915nm) light is used to avoid photophobic effects. We characterized the thresholds and dynamic range of cortical responses to prosthetic stimulation with arrays of various pixel sizes and with different number of photodiodes. Stimulation thresholds for devices with 140µm pixels were approximately half those of 70µm pixels, and with both pixel sizes, thresholds were lower with 2 diodes than with 3 diodes per pixel. In all cases these thresholds were more than two orders of magnitude below the ocular safety limit. At high stimulation frequencies (>20Hz), the cortical response exhibited flicker fusion. Over one order of magnitude of dynamic range could be achieved by varying either pulse duration or irradiance. However, contrast sensitivity was very limited. Cortical responses could be detected even with only a few illuminated pixels. Finally, we demonstrate that recording of the corneal electric potential in response to patterned illumination of the subretinal arrays allows monitoring the current produced by each pixel, and thereby assessing the changes in the implant performance over time. PMID:25255990
Degenerate Cauchy numbers of the third kind.
Pyo, Sung-Soo; Kim, Taekyun; Rim, Seog-Hoon
2018-01-01
Since Cauchy numbers were introduced, various types of Cauchy numbers have been presented. In this paper, we define degenerate Cauchy numbers of the third kind and give some identities for the degenerate Cauchy numbers of the third kind. In addition, we give some relations between four kinds of the degenerate Cauchy numbers, the Daehee numbers and the degenerate Bernoulli numbers.
Macular degeneration is a disease of the retina that affects the macula in the back of the eye. ... see fine details. There are two types of macular degeneration, dry and wet. Dry macular degeneration is more ...
Innovative Chimney-Graft Technique for Endovascular Repair of a Pararenal Abdominal Aortic Aneurysm
Galiñanes, Edgar Luis; Hernandez-Vila, Eduardo A.
2015-01-01
After abdominal aortic aneurysm repair, progressive degeneration of the aneurysm can be challenging to treat. Multiple comorbidities and previous operations place such patients at high risk for repeat surgery. Endovascular repair is a possible alternative; however, challenging anatomy can push the limits of available technology. We describe the case of a 71-year-old man who presented with a 5.3-cm pararenal aneurysm 4 years after undergoing open abdominal aortic aneurysm repair. To avoid reoperation, we excluded the aneurysm by endovascular means, using visceral-artery stenting, a chimney-graft technique. Low-profile balloons on a monorail system enabled the rapid exchange of coronary wires via a buddy-wire technique. This novel approach facilitated stenting and simultaneous angioplasty of multiple visceral vessels and the abdominal aorta. PMID:25873796
Innovative chimney-graft technique for endovascular repair of a pararenal abdominal aortic aneurysm.
Galiñanes, Edgar Luis; Hernandez-Vila, Eduardo A; Krajcer, Zvonimir
2015-02-01
After abdominal aortic aneurysm repair, progressive degeneration of the aneurysm can be challenging to treat. Multiple comorbidities and previous operations place such patients at high risk for repeat surgery. Endovascular repair is a possible alternative; however, challenging anatomy can push the limits of available technology. We describe the case of a 71-year-old man who presented with a 5.3-cm pararenal aneurysm 4 years after undergoing open abdominal aortic aneurysm repair. To avoid reoperation, we excluded the aneurysm by endovascular means, using visceral-artery stenting, a chimney-graft technique. Low-profile balloons on a monorail system enabled the rapid exchange of coronary wires via a buddy-wire technique. This novel approach facilitated stenting and simultaneous angioplasty of multiple visceral vessels and the abdominal aorta.
NASA Astrophysics Data System (ADS)
Shiozaki, Toru; Győrffy, Werner; Celani, Paolo; Werner, Hans-Joachim
2011-08-01
The extended multireference quasi-degenerate perturbation theory, proposed by Granovsky [J. Chem. Phys. 134, 214113 (2011)], is combined with internally contracted multi-state complete active space second-order perturbation theory (XMS-CASPT2). The first-order wavefunction is expanded in terms of the union of internally contracted basis functions generated from all the reference functions, which guarantees invariance of the theory with respect to unitary rotations of the reference functions. The method yields improved potentials in the vicinity of avoided crossings and conical intersections. The theory for computing nuclear energy gradients for MS-CASPT2 and XMS-CASPT2 is also presented and the first implementation of these gradient methods is reported. A number of illustrative applications of the new methods are presented.
Yee, A; Lam, M P Y; Tam, V; Chan, W C W; Chu, I K; Cheah, K S E; Cheung, K M C; Chan, D
2016-03-01
Intervertebral disc degeneration (IDD) can lead to symptomatic conditions including sciatica and back pain. The purpose of this study is to understand the extracellular matrix (ECM) changes in disc biology through comparative proteomic analysis of degenerated and non-degenerated human intervertebral disc (IVD) tissues of different ages. Seven non-degenerated (11-46 years of age) and seven degenerated (16-53 years of age) annulus fibrosus (AF) and nucleus pulposus (NP) samples were used. Proteins were extracted using guanidine hydrochloride, separated from large proteoglycans (PGs) by caesium chloride (CsCl) density gradient ultracentrifugation, and identified using liquid chromatography (LC) coupled with tandem mass spectrometry (MS/MS). For quantitative comparison, proteins were labeled with iTRAQ reagents. Collagen fibrils in the NP were assessed using scanning electron microscopy (SEM). In the AF, quantitative analysis revealed increased levels of HTRA1, COMP and CILP in degeneration when compared with samples from older individuals. Fibronectin showed increment with age and degeneration. In the NP, more CILP and CILP2 were present in degenerated samples of younger individuals. Reduced protein solubility was observed in degenerated and older non-degenerated samples correlated with an accumulation of type I collagen in the insoluble fibers. Characterization of collagen fibrils in the NP revealed smaller mean fibril diameters and decreased porosity in the degenerated samples. Our study identified distinct matrix changes associated with aging and degeneration in the intervertebral discs (IVDs). The nature of the ECM changes, together with observed decreased in solubility and changes in fibril diameter is consistent with a fibrotic-like environment. Copyright © 2015 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
Richardson, Stephen M; Doyle, Paul; Minogue, Ben M; Gnanalingham, Kanna; Hoyland, Judith A
2009-01-01
Introduction Matrix metalloproteinases (MMPs) are known to be involved in the degradation of the nucleus pulposus (NP) during intervertebral disc (IVD) degeneration. This study investigated MMP-10 (stromelysin-2) expression in the NP during IVD degeneration and correlated its expression with pro-inflammatory cytokines and molecules involved in innervation and nociception during degeneration which results in low back pain (LBP). Methods Human NP tissue was obtained at postmortem (PM) from patients without a history of back pain and graded as histologically normal or degenerate. Symptomatic degenerate NP samples were also obtained at surgery for LBP. Expression of MMP-10 mRNA and protein was analysed using real-time polymerase chain reaction and immunohistochemistry. Gene expression for pro-inflammatory cytokines interleukin-1 (IL-1) and tumour necrosis factor-alpha (TNF-α), nerve growth factor (NGF) and the pain-associated neuropeptide substance P were also analysed. Correlations between MMP-10 and IL-1, TNF-α and NGF were assessed along with NGF with substance P. Results MMP-10 mRNA was significantly increased in surgical degenerate NP when compared to PM normal and PM degenerate samples. MMP-10 protein was also significantly higher in degenerate surgical NP samples compared to PM normal. IL-1 and MMP-10 mRNA demonstrated a significant correlation in surgical degenerate samples, while TNF-α was not correlated with MMP-10 mRNA. NGF was significantly correlated with both MMP-10 and substance P mRNA in surgical degenerate NP samples. Conclusions MMP-10 expression is increased in the symptomatic degenerate IVD, where it may contribute to matrix degradation and initiation of nociception. Importantly, this study suggests differences in the pathways involved in matrix degradation between painful and pain-free IVD degeneration. PMID:19695094
Richardson, Stephen M; Doyle, Paul; Minogue, Ben M; Gnanalingham, Kanna; Hoyland, Judith A
2009-01-01
Matrix metalloproteinases (MMPs) are known to be involved in the degradation of the nucleus pulposus (NP) during intervertebral disc (IVD) degeneration. This study investigated MMP-10 (stromelysin-2) expression in the NP during IVD degeneration and correlated its expression with pro-inflammatory cytokines and molecules involved in innervation and nociception during degeneration which results in low back pain (LBP). Human NP tissue was obtained at postmortem (PM) from patients without a history of back pain and graded as histologically normal or degenerate. Symptomatic degenerate NP samples were also obtained at surgery for LBP. Expression of MMP-10 mRNA and protein was analysed using real-time polymerase chain reaction and immunohistochemistry. Gene expression for pro-inflammatory cytokines interleukin-1 (IL-1) and tumour necrosis factor-alpha (TNF-alpha), nerve growth factor (NGF) and the pain-associated neuropeptide substance P were also analysed. Correlations between MMP-10 and IL-1, TNF-alpha and NGF were assessed along with NGF with substance P. MMP-10 mRNA was significantly increased in surgical degenerate NP when compared to PM normal and PM degenerate samples. MMP-10 protein was also significantly higher in degenerate surgical NP samples compared to PM normal. IL-1 and MMP-10 mRNA demonstrated a significant correlation in surgical degenerate samples, while TNF-alpha was not correlated with MMP-10 mRNA. NGF was significantly correlated with both MMP-10 and substance P mRNA in surgical degenerate NP samples. MMP-10 expression is increased in the symptomatic degenerate IVD, where it may contribute to matrix degradation and initiation of nociception. Importantly, this study suggests differences in the pathways involved in matrix degradation between painful and pain-free IVD degeneration.
Le Maitre, Christine Lyn; Freemont, Anthony John; Hoyland, Judith Alison
2007-01-01
Current evidence implicates intervertebral disc degeneration as a major cause of low back pain, although its pathogenesis is poorly understood. Numerous characteristic features of disc degeneration mimic those seen during ageing but appear to occur at an accelerated rate. We hypothesised that this is due to accelerated cellular senescence, which causes fundamental changes in the ability of disc cells to maintain the intervertebral disc (IVD) matrix, thus leading to IVD degeneration. Cells isolated from non-degenerate and degenerate human tissue were assessed for mean telomere length, senescence-associated β-galactosidase (SA-β-gal), and replicative potential. Expression of P16INK4A (increased in cellular senescence) was also investigated in IVD tissue by means of immunohistochemistry. RNA from tissue and cultured cells was used for real-time polymerase chain reaction analysis for matrix metalloproteinase-13, ADAMTS 5 (a disintegrin and metalloprotease with thrombospondin motifs 5), and P16INK4A. Mean telomere length decreased with age in cells from non-degenerate tissue and also decreased with progressive stages of degeneration. In non-degenerate discs, there was an age-related increase in cellular expression of P16INK4A. Cells from degenerate discs (even from young patients) exhibited increased expression of P16INK4A, increased SA-β-gal staining, and a decrease in replicative potential. Importantly, there was a positive correlation between P16INK4A and matrix-degrading enzyme gene expression. Our findings indicate that disc cell senescence occurs in vivo and is accelerated in IVD degeneration. Furthermore, the senescent phenotype is associated with increased catabolism, implicating cellular senescence in the pathogenesis of IVD degeneration. PMID:17498290
Walraevens, Joris; Liu, Baoge; Meersschaert, Joke; Demaerel, Philippe; Delye, Hans; Depreitere, Bart; Vander Sloten, Jos; Goffin, Jan
2009-03-01
Degeneration of intervertebral discs and facet joints is one of the most frequently encountered spinal disorders. In order to describe and quantify degeneration and evaluate a possible relationship between degeneration and biomechanical parameters, e.g., the intervertebral range of motion and intradiscal pressure, a scoring system for degeneration is mandatory. However, few scoring systems for the assessment of degeneration of the cervical spine exist. Therefore, two separate objective scoring systems to qualitatively and quantitatively assess the degree of cervical intervertebral disc and facet joint degeneration were developed and validated. The scoring system for cervical disc degeneration consists of three variables which are individually scored on neutral lateral radiographs: "height loss" (0-4 points), "anterior osteophytes" (0-3 points) and "endplate sclerosis" (0-2 points). The scoring system for facet joint degeneration consists of four variables which are individually scored on neutral computed tomography scans: "hypertrophy" (0-2 points), "osteophytes" (0-1 point), "irregularity" on the articular surface (0-1 point) and "joint space narrowing" (0-1 point). Each variable contributes with varying importance to the overall degeneration score (max 9 points for the scoring system of cervical disc degeneration and max 5 points for facet joint degeneration). Degeneration of 20 discs and facet joints of 20 patients was blindly assessed by four raters: two neurosurgeons (one senior and one junior) and two radiologists (one senior and one junior), firstly based on first subjective impression and secondly using the scoring systems. Measurement errors and inter- and intra-rater agreement were determined. The measurement error of the scoring system for cervical disc degeneration was 11.1 versus 17.9% of the subjective impression results. This scoring system showed excellent intra-rater agreement (ICC = 0.86, 0.75-0.93) and excellent inter-rater agreement (ICC = 0.78, 0.64-0.88). Surgeons as well as radiologists and seniors as well as juniors obtained excellent inter- and intra-rater agreement. The measurement error of the scoring system for cervical facet joint degeneration was 20.1 versus 24.2% of the subjective impression results. This scoring system showed good intra-rater agreement (ICC = 0.71, 0.42-0.89) and fair inter-rater agreement (ICC = 0.49, 0.26-0.74). Both scoring systems fulfilled the criteria for recommendation proposed by Kettler and Wilke. Our scoring systems can be reliable and objective tools for assessing cervical disc and facet joint degeneration. Moreover, the scoring system of cervical disc degeneration was shown to be experience- and discipline-independent.
Makino, Hiroto; Seki, Shoji; Yahara, Yasuhito; Shiozawa, Shunichi; Aikawa, Yukihiko; Motomura, Hiraku; Nogami, Makiko; Watanabe, Kenta; Sainoh, Takeshi; Ito, Hisakatsu; Tsumaki, Noriyuki; Kawaguchi, Yoshiharu; Yamazaki, Mitsuaki; Kimura, Tomoatsu
2017-12-05
Intervertebral disc (IVD) degeneration is a major cause of low back pain. The transcription factor c-Fos/Activator Protein-1 (AP-1) controls the expression of inflammatory cytokines and matrix metalloproteinases (MMPs) that contribute to the pathogenesis IVD degeneration. We investigated the effects of inhibition of c-Fos/AP-1 on IVD degeneration and associated pain. A selective inhibitor, T-5224, significantly suppressed the interleukin-1β-induced up-regulation of Mmp-3, Mmp-13 and Adamts-5 transcription in human nucleus pulposus cells and in a mouse explant culture model of IVD degeneration. We used a tail disc percutaneous needle puncture method to further assess the effects of oral administration of T-5224 on IVD degeneration. Analysis of disc height, T2-magnetic resonance imaging (MRI) findings, and histology revealed that IVD degeneration was significantly mitigated by T-5224. Further, oral administration of T-5224 ameliorated pain as indicated by the extended tail-flick latency in response to heat stimulation of rats with needle-puncture-induced IVD degeneration. These findings suggest that the inhibition of c-Fos/AP-1 prevents disc degeneration and its associated pain and that T-5224 may serve as a drug for the prevention of IVD degeneration.
Schraermeyer, U; Thumann, G; Luther, T; Kociok, N; Armhold, S; Kruttwig, K; Andressen, C; Addicks, K; Bartz-Schmidt, K U
2001-01-01
The Royal College of Surgeons (RCS) rat is an animal model for retinal degeneration such as the age-related macular degeneration. The RCS rat undergoes a progressive retinal degeneration during the early postnatal period. A potential treatment to prevent this retinal degeneration is the transplantation into the subretinal space of cells that would replace functions of the degenerating retinal pigment epithelium (RPE) cells or may form neurotrophic factors. In this study we have investigated the potential of subretinally transplanted embryonic stem cells to prevent the genetically determined photoreceptor cell degeneration in the RCS rat. Embryonic stem cells from the inner cell mass of the mouse blastocyst were allowed to differentiate to neural precursor cells in vitro and were then transplanted into the subretinal space of 20-day-old RCS rats. Transplanted and sham-operated rats were sacrificed 2 months following cell transplantation. The eyes were enucleated and photoreceptor degeneration was quantified by analyzing and determining the thickness of the outer nuclear layer by light and electron microscopy. In the eyes transplanted with embryonic cells up to 8 rows of photoreceptor cell nuclei were observed, whereas in nontreated control eyes the outer nuclear layer had degenerated completely. Transplantation of embryonic stem cells appears to delay photoreceptor cell degeneration in RCS rats.
Human disc degeneration is associated with increased MMP 7 expression.
Le Maitre, C L; Freemont, A J; Hoyland, J A
2006-01-01
During intervertebral disc (IVD) degeneration, normal matrix synthesis decreases and degradation of disc matrix increases. A number of proteases that are increased during disc degeneration are thought to be involved in its pathogenesis. Matrix metalloproteinase 7 (MMP 7) (Matrilysin, PUMP-1) is known to cleave the major matrix molecules found within the IVD, i.e., the proteoglycan aggrecan and collagen type II. To date, however, it is not known how its expression changes with degeneration or its exact location. We investigated the localization of MMP 7 in human, histologically graded, nondegenerate, degenerated and prolapsed discs to ascertain whether MMP 7 is up-regulated during disc degeneration. Samples of human IVD tissue were fixed in neutral buffered formalin, embedded in paraffin, and sections stained with hematoxylin and eosin to score the degree of morphological degeneration. Immunohistochemistry was performed to localize MMP 7 in 41 human IVDs with varying degrees of degeneration. We found that the chondrocyte-like cells of the nucleus pulposus and inner annulus fibrosus were MMP 7 immunopositive; little immunopositivity was observed in the outer annulus. Nondegenerate discs showed few immunopositive cells. A significant increase in the proportion of MMP 7 immunopositive cells was seen in the nucleus pulposus of discs classified as showing intermediate levels of degeneration and a further increase was seen in discs with severe degeneration. Prolapsed discs showed more MMP 7 immunopositive cells compared to nondegenerated discs, but fewer than those seen in cases of severe degeneration.
MRI evaluation of spontaneous intervertebral disc degeneration in the alpaca cervical spine.
Stolworthy, Dean K; Bowden, Anton E; Roeder, Beverly L; Robinson, Todd F; Holland, Jacob G; Christensen, S Loyd; Beatty, Amanda M; Bridgewater, Laura C; Eggett, Dennis L; Wendel, John D; Stieger-Vanegas, Susanne M; Taylor, Meredith D
2015-12-01
Animal models have historically provided an appropriate benchmark for understanding human pathology, treatment, and healing, but few animals are known to naturally develop intervertebral disc degeneration. The study of degenerative disc disease and its treatment would greatly benefit from a more comprehensive, and comparable animal model. Alpacas have recently been presented as a potential large animal model of intervertebral disc degeneration due to similarities in spinal posture, disc size, biomechanical flexibility, and natural disc pathology. This research further investigated alpacas by determining the prevalence of intervertebral disc degeneration among an aging alpaca population. Twenty healthy female alpacas comprised two age subgroups (5 young: 2-6 years; and 15 older: 10+ years) and were rated according to the Pfirrmann-grade for degeneration of the cervical intervertebral discs. Incidence rates of degeneration showed strong correlations with age and spinal level: younger alpacas were nearly immune to developing disc degeneration, and in older animals, disc degeneration had an increased incidence rate and severity at lower cervical levels. Advanced disc degeneration was present in at least one of the cervical intervertebral discs of 47% of the older alpacas, and it was most common at the two lowest cervical intervertebral discs. The prevalence of intervertebral disc degeneration encourages further investigation and application of the lower cervical spine of alpacas and similar camelids as a large animal model of intervertebral disc degeneration. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
Deletion of Sarm1 gene is neuroprotective in two models of peripheral neuropathy.
Turkiew, Elliot; Falconer, Debbie; Reed, Nicole; Höke, Ahmet
2017-09-01
Distal axon degeneration seen in many peripheral neuropathies is likely to share common molecular mechanisms with Wallerian degeneration. Although several studies in mouse models of peripheral neuropathy showed prevention of axon degeneration in the slow Wallerian degeneration (Wlds) mouse, the role of a recently identified player in Wallerian degeneration, Sarm1, has not been explored extensively. In this study, we show that mice lacking the Sarm1 gene are resistant to distal axonal degeneration in a model of chemotherapy induced peripheral neuropathy caused by paclitaxel and a model of high fat diet induced putative metabolic neuropathy. This study extends the role of Sarm1 to axon degeneration seen in peripheral neuropathies and identifies it as a likely target for therapeutic development. © 2017 Peripheral Nerve Society.
Associations between Rs4244285 and Rs762551 gene polymorphisms and age-related macular degeneration.
Stasiukonyte, Neringa; Liutkeviciene, Rasa; Vilkeviciute, Alvita; Banevicius, Mantas; Kriauciuniene, Loresa
2017-01-01
Age-related macular degeneration is the leading cause of blindness in elderly individuals in developed countries. The etiology and pathophysiology of age-related macular degeneration have not been elucidated yet. Knowing that the main pathological change of age-related macular degeneration is formation of drusen containing about 40% of lipids, there have been attempts to find associations between age-related macular degeneration and genes controlling lipid metabolism. To determine the frequency of CYP2C19 (G681A) Rs4244285 and CYP1A2 (-163C>A) Rs762551 genotypes in patients with age-related macular degeneration. The study enrolled 150 patients with early age-related macular degeneration and 296 age- and gender-matched healthy controls. The genotyping of Rs4244285 and Rs762551 was carried out by using the real-time polymerase chain reaction method. The CYP1A2 (-163C>A) Rs762551 C/C genotype was more frequently detected in patients with age-related macular degeneration than in the control group (32.7% vs. 21.6%, p = 0.011) and was associated with an increased risk of developing early age-related macular degeneration (OR = 1.759, 95% CI: 1.133-2.729; p = 0.012). The CYP1A2 (-163C>A) Rs762551 C/A genotype was more frequently documented in the control group compared with patients with age-related macular degeneration (46.3% vs. 30.7%, p = 0.002) and was associated with a decreased risk of having age-related macular degeneration (OR = 0.580. 95% CI: 0.362-0.929, p = 0.023) in the co-dominant model. The study showed that the CYP1A2 (-163C>A) Rs762551 C/C genotype was associated with an increased risk of age-related macular degeneration.
Davies, B M; Atkinson, R A; Ludwinski, F; Freemont, A J; Hoyland, J A; Gnanalingham, K K
2016-08-01
Clinically, magnetic resonance (MR) imaging is the most effective non-invasive tool for assessing IVD degeneration. Histological examination of the IVD provides a more detailed assessment of the pathological changes at a tissue level. However, very few reports have studied the relationship between these techniques. Identifying a relationship may allow more detailed staging of IVD degeneration, of importance in targeting future regenerative therapies. To investigate the relationship between MR and histological grading of IVD degeneration in the cervical and lumbar spine in patients undergoing discectomy. Lumbar (N = 99) and cervical (N = 106) IVD samples were obtained from adult patients undergoing discectomy surgery for symptomatic IVD herniation and graded to ascertain a histological grade of degeneration. The pre-operative MR images from these patients were graded for the degree of IVD (MR grade) and vertebral end-plate degeneration (Modic Changes, MC). The relationship between histological and MR grades of degeneration were studied. In lumbar and cervical IVD the majority of samples (93%) exhibited moderate levels of degeneration (ie MR grades 3-4) on pre-operative MR scans. Histologically, most specimens displayed moderate to severe grades of degeneration in lumbar (99%) and cervical spine (93%). MR grade was weakly correlated with patient age in lumbar and cervical study groups. MR and histological grades of IVD degeneration did not correlate in lumbar or cervical study groups. MC were more common in the lumbar than cervical spine (e.g. 39 versus 20% grade 2 changes; p < 0.05), but failed to correlate with MR or histological grades for degeneration. In this surgical series, the resected IVD tissue displayed moderate to severe degeneration, but there is no correlation between MR and histological grades using a qualitative classification system. There remains a need for a quantitative, non-invasive, pre-clinical measure of IVD degeneration that correlates with histological changes seen in the IVD.
The role of interleukin-1 in the pathogenesis of human Intervertebral disc degeneration
Le Maitre, Christine Lyn; Freemont, Anthony J; Hoyland, Judith Alison
2005-01-01
In this study, we investigated the hypotheses that in human intervertebral disc (IVD) degeneration there is local production of the cytokine IL-1, and that this locally produced cytokine can induce the cellular and matrix changes of IVD degeneration. Immunohistochemistry was used to localize five members of the IL-1 family (IL-1α, IL-1β, IL-1Ra (IL-1 receptor antagonist), IL-1RI (IL-1 receptor, type I), and ICE (IL-1β-converting enzyme)) in non-degenerate and degenerate human IVDs. In addition, cells derived from non-degenerate and degenerate human IVDs were challenged with IL-1 agonists and the response was investigated using real-time PCR for a number of matrix-degrading enzymes, matrix proteins, and members of the IL-1 family. This study has shown that native disc cells from non-degenerate and degenerate discs produced the IL-1 agonists, antagonist, the active receptor, and IL-1β-converting enzyme. In addition, immunopositivity for these proteins, with the exception of IL-1Ra, increased with severity of degeneration. We have also shown that IL-1 treatment of human IVD cells resulted in increased gene expression for the matrix-degrading enzymes (MMP 3 (matrix metalloproteinase 3), MMP 13 (matrix metalloproteinase 13), and ADAMTS-4 (a disintegrin and metalloproteinase with thrombospondin motifs)) and a decrease in the gene expression for matrix genes (aggrecan, collagen II, collagen I, and SOX6). In conclusion we have shown that IL-1 is produced in the degenerate IVD. It is synthesized by native disc cells, and treatment of human disc cells with IL-1 induces an imbalance between catabolic and anabolic events, responses that represent the changes seen during disc degeneration. Therefore, inhibiting IL-1 could be an important therapeutic target for preventing and reversing disc degeneration. PMID:15987475
Singh, Shailender; Dallenga, Tobias; Winkler, Anne; Roemer, Shanu; Maruschak, Brigitte; Siebert, Heike; Brück, Wolfgang; Stadelmann, Christine
2017-03-17
Axonal damage and loss substantially contribute to the incremental accumulation of clinical disability in progressive multiple sclerosis. Here, we assessed the amount of Wallerian degeneration in brain tissue of multiple sclerosis patients in relation to demyelinating lesion activity and asked whether a transient blockade of Wallerian degeneration decreases axonal loss and clinical disability in a mouse model of inflammatory demyelination. Wallerian degeneration and acute axonal damage were determined immunohistochemically in the periplaque white matter of multiple sclerosis patients with early actively demyelinating lesions, chronic active lesions, and inactive lesions. Furthermore, we studied the effects of Wallerian degeneration blockage on clinical severity, inflammatory pathology, acute axonal damage, and long-term axonal loss in experimental autoimmune encephalomyelitis using Wallerian degeneration slow (Wld S ) mutant mice. The highest numbers of axons undergoing Wallerian degeneration were found in the perilesional white matter of multiple sclerosis patients early in the disease course and with actively demyelinating lesions. Furthermore, Wallerian degeneration was more abundant in patients harboring chronic active as compared to chronic inactive lesions. No co-localization of neuropeptide Y-Y1 receptor, a bona fide immunohistochemical marker of Wallerian degeneration, with amyloid precursor protein, frequently used as an indicator of acute axonal transport disturbance, was observed in human and mouse tissue, indicating distinct axon-degenerative processes. Experimentally, a delay of Wallerian degeneration, as observed in Wld S mice, did not result in a reduction of clinical disability or acute axonal damage in experimental autoimmune encephalomyelitis, further supporting that acute axonal damage as reflected by axonal transport disturbances does not share common molecular mechanisms with Wallerian degeneration. Furthermore, delaying Wallerian degeneration did not result in a net rescue of axons in late lesion stages of experimental autoimmune encephalomyelitis. Our data indicate that in multiple sclerosis, ongoing demyelination in focal lesions is associated with axonal degeneration in the perilesional white matter, supporting a role for focal pathology in diffuse white matter damage. Also, our results suggest that interfering with Wallerian degeneration in inflammatory demyelination does not suffice to prevent acute axonal damage and finally axonal loss.
The burden of age-related macular degeneration: a value-based analysis.
Brown, Melissa M; Brown, Gary C; Sharma, Sanjay; Stein, Joshua D; Roth, Zachary; Campanella, Joseph; Beauchamp, George R
2006-06-01
The quality-of-life loss and the financial consequences associated with age-related macular degeneration are assessed. The quality-of-life loss associated with macular degeneration is markedly underestimated by the general public, nonophthalmic physicians, and ophthalmologists who treat patients with this condition. Mild age-related macular degeneration causes a 17% decrement in the quality of life of the average patient, similar to that encountered with moderate cardiac angina or symptomatic human immunodeficiency virus syndrome. Moderate age-related macular degeneration causes a 40% decrease in the average patient's quality of life, similar to that associated with severe cardiac angina or renal dialysis. Very severe age-related macular degeneration causes a large 63% decrease in the average patient's quality of life, similar to that encountered with end-stage prostatic cancer or a catastrophic stroke that leaves a person bedridden, incontinent and requiring constant nursing care. The return on investment is high for both treatment with current age-related macular degeneration therapies and the research costs invested in the development of age-related macular degeneration treatment modalities. Age-related macular degeneration is a major public health problem that has a devastating effect upon patients and marked adverse financial consequences for the economy.
Macular Degeneration: An Overview.
ERIC Educational Resources Information Center
Chalifoux, L. M.
1991-01-01
This article presents information on macular degeneration for professionals helping persons with this disease adjust to their visual loss. It covers types of macular degeneration, the etiology of the disease, and its treatment. Also considered are psychosocial problems and other difficulties that persons with age-related macular degeneration face.…
Gilbert, Hamish T J; Hodson, Nathan; Baird, Pauline; Richardson, Stephen M; Hoyland, Judith A
2016-11-17
The aetiology of intervertebral disc (IVD) degeneration remains poorly understood. Painful IVD degeneration is associated with an acidic intradiscal pH but the response of NP cells to this aberrant microenvironmental factor remains to be fully characterised. The aim here was to address the hypothesis that acidic pH, similar to that found in degenerate IVDs, leads to the altered cell/functional phenotype observed during IVD degeneration, and to investigate the involvement of acid-sensing ion channel (ASIC) -3 in the response. Human NP cells were treated with a range of pH, from that of a non-degenerate (pH 7.4 and 7.1) through to mildly degenerate (pH 6.8) and severely degenerate IVD (pH 6.5 and 6.2). Increasing acidity of pH caused a decrease in cell proliferation and viability, a shift towards matrix catabolism and increased expression of proinflammatory cytokines and pain-related factors. Acidic pH resulted in an increase in ASIC-3 expression. Importantly, inhibition of ASIC-3 prevented the acidic pH induced proinflammatory and pain-related phenotype in NP cells. Acidic pH causes a catabolic and degenerate phenotype in NP cells which is inhibited by blocking ASIC-3 activity, suggesting that this may be a useful therapeutic target for treatment of IVD degeneration.
The role of microglia in synaptic stripping and synaptic degeneration: a revised perspective
Hugh Perry, V; O'Connor, Vincent
2010-01-01
Chronic neurodegenerative diseases of the CNS (central nervous system) are characterized by the loss of neurons. There is, however, growing evidence to show that an early stage of this process involves degeneration of presynaptic terminals prior to the loss of the cell body. Synaptic plasticity in CNS pathology has been associated with microglia and the phenomenon of synaptic stripping. We review here the evidence for the involvement of microglia in synaptic stripping and synapse degeneration and we conclude that this is a case of guilt by association. In disease models of chronic neurodegeneration, there is no evidence that microglia play an active role in either synaptic stripping or synapse degeneration, but the degeneration of the synapse and the envelopment of a degenerating terminal appears to be a neuron autonomous event. We highlight here some of the gaps in our understanding of synapse degeneration in chronic neurodegenerative disease. PMID:20967131
Revealing the nonadiabatic nature of dark energy perturbations from galaxy clustering data
NASA Astrophysics Data System (ADS)
Velten, Hermano; Fazolo, Raquel
2017-10-01
We study structure formation using relativistic cosmological linear perturbation theory in the presence of intrinsic and relative (with respect to matter) nonadiabatic dark energy perturbations. For different dark energy models we assess the impact of nonadiabaticity on the matter growth promoting a comparison with growth rate data. The dark energy models studied lead to peculiar signatures of the (non)adiabatic nature of dark energy perturbations in the evolution of the f σ8(z ) observable. We show that nonadiabatic dark energy models become close to be degenerated with respect to the Λ CDM model at first order in linear perturbations. This would avoid the identification of the nonadiabatic nature of dark energy using current available data. Therefore, such evidence indicates that new probes are necessary to reveal the nonadiabatic features in the dark energy sector.
Adaptive Discrete Hypergraph Matching.
Yan, Junchi; Li, Changsheng; Li, Yin; Cao, Guitao
2018-02-01
This paper addresses the problem of hypergraph matching using higher-order affinity information. We propose a solver that iteratively updates the solution in the discrete domain by linear assignment approximation. The proposed method is guaranteed to converge to a stationary discrete solution and avoids the annealing procedure and ad-hoc post binarization step that are required in several previous methods. Specifically, we start with a simple iterative discrete gradient assignment solver. This solver can be trapped in an -circle sequence under moderate conditions, where is the order of the graph matching problem. We then devise an adaptive relaxation mechanism to jump out this degenerating case and show that the resulting new path will converge to a fixed solution in the discrete domain. The proposed method is tested on both synthetic and real-world benchmarks. The experimental results corroborate the efficacy of our method.
Detection of singlet oxygen that uses fluorescence probe APF
NASA Astrophysics Data System (ADS)
Iwamoto, Yumiko; Awazu, Kunio
2006-04-01
The non-invasive methods of treatments have been studying for the improvement of quality of life (QOL) of patients undergoing treatment. A photodynamic therapy (PDT) is one of the non-invasive treatments. PDT is the method of treatment using interactions of a laser and a photosensitizer. PDT has few risks for patients. Furthermore, PDT enables function preservation of a disease part. PDT has been used for early cancer till now, but in late years it is applied for age-related macular degeneration (AMD). AMD is one of the causes of vision loss in older people. However, PDT for AMD does not produce the best improvement in visual acuity. The skin photosensivity by an absorption characteristic of a photosensitizer is avoided. We examined new PDT using combination of an ultra-short pulsed laser and indocyanine green (ICG).
Li, Hongying; Liang, Yuxiang; Chiu, Kin; Yuan, Qiuju; Lin, Bin; Chang, Raymond Chuen-Chung; So, Kwok-Fai
2013-01-01
Our group has shown that the polysaccharides extracted from Lycium barbarum (LBP) are neuroprotective for retinal ganglion cells (RGCs) in different animal models. Protecting RGCs from secondary degeneration is a promising direction for therapy in glaucoma management. The complete optic nerve transection (CONT) model can be used to study primary degeneration of RGCs, while the partial optic nerve transection (PONT) model can be used to study secondary degeneration of RGCs because primary degeneration of RGCs and secondary degeneration can be separated in location in the same retina in this model; in other situations, these types of degeneration can be difficult to distinguish. In order to examine which kind of degeneration LBP could delay, both CONT and PONT models were used in this study. Rats were fed with LBP or vehicle daily from 7 days before surgery until sacrifice at different time-points and the surviving numbers of RGCs were evaluated. The expression of several proteins related to inflammation, oxidative stress, and the c-jun N-terminal kinase (JNK) pathways were detected with Western-blot analysis. LBP did not delay primary degeneration of RGCs after either CONT or PONT, but it did delay secondary degeneration of RGCs after PONT. We found that LBP appeared to exert these protective effects by inhibiting oxidative stress and the JNK/c-jun pathway and by transiently increasing production of insulin-like growth factor-1 (IGF-1). This study suggests that LBP can delay secondary degeneration of RGCs and this effect may be linked to inhibition of oxidative stress and the JNK/c-jun pathway in the retina. PMID:23894366
Tamoxifen Provides Structural and Functional Rescue in Murine Models of Photoreceptor Degeneration
Wang, Xu; Ma, Wenxin; Gonzalez, Shaimar R.; Kretschmer, Friedrich; Badea, Tudor C.
2017-01-01
Photoreceptor degeneration is a cause of irreversible vision loss in incurable blinding retinal diseases including retinitis pigmentosa (RP) and atrophic age-related macular degeneration. We found in two separate mouse models of photoreceptor degeneration that tamoxifen, a selective estrogen receptor modulator and a drug previously linked with retinal toxicity, paradoxically provided potent neuroprotective effects. In a light-induced degeneration model, tamoxifen prevented onset of photoreceptor apoptosis and atrophy and maintained near-normal levels of electroretinographic responses. Rescue effects were correlated with decreased microglial activation and inflammatory cytokine production in the retina in vivo and a reduction of microglia-mediated toxicity to photoreceptors in vitro, indicating a microglia-mediated mechanism of rescue. Tamoxifen also rescued degeneration in a genetic (Pde6brd10) model of RP, significantly improving retinal structure, electrophysiological responses, and visual behavior. These prominent neuroprotective effects warrant the consideration of tamoxifen as a drug suitable for being repurposed to treat photoreceptor degenerative disease. SIGNIFICANCE STATEMENT Photoreceptor degeneration is a cause of irreversible blindness in a number of retinal diseases such as retinitis pigmentosa (RP) and atrophic age-related macular degeneration. Tamoxifen, a selective estrogen receptor modulator approved for the treatment of breast cancer and previously linked to a low incidence of retinal toxicity, was unexpectedly found to exert marked protective effects against photoreceptor degeneration. Structural and functional protective effects were found for an acute model of light-induced photoreceptor injury and for a genetic model for RP. The mechanism of protection involved the modulation of microglial activation and the production of inflammatory cytokines, highlighting the role of inflammatory mechanisms in photoreceptor degeneration. Tamoxifen may be suitable for clinical study as a potential treatment for diseases involving photoreceptor degeneration. PMID:28235894
Kawasaki, Fumiko; Koonce, Noelle L; Guo, Linda; Fatima, Shahroz; Qiu, Catherine; Moon, Mackenzie T; Zheng, Yunzhen; Ordway, Richard W
2016-09-01
Cell and tissue degeneration, and the development of degenerative diseases, are influenced by genetic and environmental factors that affect protein misfolding and proteotoxicity. To better understand the role of the environment in degeneration, we developed a genetic model for heat shock (HS)-stress-induced degeneration in Drosophila This model exhibits a unique combination of features that enhance genetic analysis of degeneration and protection mechanisms involving environmental stress. These include cell-type-specific failure of proteostasis and degeneration in response to global stress, cell-nonautonomous interactions within a simple and accessible network of susceptible cell types, and precise temporal control over the induction of degeneration. In wild-type flies, HS stress causes selective loss of the flight ability and degeneration of three susceptible cell types comprising the flight motor: muscle, motor neurons and associated glia. Other motor behaviors persist and, accordingly, the corresponding cell types controlling leg motor function are resistant to degeneration. Flight motor degeneration was preceded by a failure of muscle proteostasis characterized by diffuse ubiquitinated protein aggregates. Moreover, muscle-specific overexpression of a small heat shock protein (HSP), HSP23, promoted proteostasis and protected muscle from HS stress. Notably, neurons and glia were protected as well, indicating that a small HSP can mediate cell-nonautonomous protection. Cell-autonomous protection of muscle was characterized by a distinct distribution of ubiquitinated proteins, including perinuclear localization and clearance of protein aggregates associated with the perinuclear microtubule network. This network was severely disrupted in wild-type preparations prior to degeneration, suggesting that it serves an important role in muscle proteostasis and protection. Finally, studies of resistant leg muscles revealed that they sustain proteostasis and the microtubule cytoskeleton after HS stress. These findings establish a model for genetic analysis of degeneration and protection mechanisms involving contributions of environmental factors, and advance our understanding of the protective functions and therapeutic potential of small HSPs. © 2016. Published by The Company of Biologists Ltd.
[CORRELATION OF LUMBAR FACET JOINT DEGENERATION AND SPINE-PELVIC SAGITTAL BALANCE].
Lo, Xin; Zhang, Bin; Liu, Yuan; Dai, Min
2015-08-01
To investigate the relationship between lumbar facet joint degeneration of each segment and spine-pelvic sagittal balance parameters. A retrospective analysis was made the clinical data of 120 patients with lumbar degenerative disease, who accorded with the inclusion criteria between June and November 2014. There were 58 males and 62 females with an average age of 53 years (range, 24-77 years). The disease duration ranged from 3 to 96 months (mean, 6.6 months). Affected segments included L3,4 in 32 cases, L4,5 in 47 cases, and L5, S1 in 52 cases. The CT and X-ray films of the lumbar vertebrae were taken. The facet joint degeneration was graded based on the grading system of Pathria. The spine-pelvic sagittal balance parameters were measured, including lumbar lordosis (LL), upper lumbar lordosis (ULL), lower lumbar lordosis (LLL), pelvic incidence (PI), pelvic tilt (PT), and sacral slope (SS). According to normal range of PI, the patients were divided into 3 groups: group A (PI was less than normal range), group B (PI was within normal range), and group C (PI was more than normal range). The facet joint degeneration was compared; according to the facet joint degeneration degree, the patients were divided into group N (mild degeneration group) and group M (serious degeneration group) to observe the relationship of lumbar facet joint degeneration of each segment and spine-pelvic sagittal balance parameters. At L4,5 and L5, S1, facet joint degeneration showed significant difference among groups A, B, and C (P < 0.05), more serious facet joint degeneration was observed in group C; no significant difference was found in facet joint degeneration at L3,4 (P > 0.05). There was no significant difference in the other spine-pelvic sagittal balance parameters between groups N and M at each segment (P > 0.05) except for PT (P < 0.05). PI of more than normal range may lead to or aggravate lumbar facet joint degeneration at L4,5 and L5, Si; PT and PI are significantly associated with facet joint degeneration at the lower lumbar spine.
Heterotopic Pancreas: Histopathologic Features, Imaging Findings, and Complications.
Rezvani, Maryam; Menias, Christine; Sandrasegaran, Kumaresan; Olpin, Jeffrey D; Elsayes, Khaled M; Shaaban, Akram M
2017-01-01
Heterotopic pancreas is a congenital anomaly in which pancreatic tissue is anatomically separate from the main gland. The most common locations of this displacement include the upper gastrointestinal tract-specifically, the stomach, duodenum, and proximal jejunum. Less common sites are the esophagus, ileum, Meckel diverticulum, biliary tree, mesentery, and spleen. Uncomplicated heterotopic pancreas is typically asymptomatic, with the lesion being discovered incidentally during an unrelated surgery, during an imaging examination, or at autopsy. The most common computed tomographic appearance of heterotopic pancreas is that of a small oval intramural mass with microlobulated margins and an endoluminal growth pattern. The attenuation and enhancement characteristics of these lesions parallel their histologic composition. Acinus-dominant lesions demonstrate avid homogeneous enhancement after intravenous contrast material administration, whereas duct-dominant lesions are hypovascular and heterogeneous. At magnetic resonance imaging, the heterotopic pancreas is isointense to the orthotopic pancreas, with characteristic T1 hyperintensity and early avid enhancement after intravenous gadolinium-based contrast material administration. Heterotopic pancreatic tissue has a rudimentary ductal system in which an orifice is sometimes visible at imaging as a central umbilication of the lesion. Complications of heterotopic pancreas include pancreatitis, pseudocyst formation, malignant degeneration, gastrointestinal bleeding, bowel obstruction, and intussusception. Certain complications may be erroneously diagnosed as malignancy. Paraduodenal pancreatitis is thought to be due to cystic degeneration of heterotopic pancreatic tissue in the medial wall of the duodenum. Recognizing the characteristic imaging features of heterotopic pancreas aids in differentiating it from cancer and thus in avoiding unnecessary surgery. © RSNA, 2017.
White, Michael A.; Kitano, Jun; Peichel, Catherine L.
2015-01-01
Sex chromosomes are subject to unique evolutionary forces that cause suppression of recombination, leading to sequence degeneration and the formation of heteromorphic chromosome pairs (i.e., XY or ZW). Although progress has been made in characterizing the outcomes of these evolutionary processes on vertebrate sex chromosomes, it is still unclear how recombination suppression and sequence divergence typically occur and how gene dosage imbalances are resolved in the heterogametic sex. The threespine stickleback fish (Gasterosteus aculeatus) is a powerful model system to explore vertebrate sex chromosome evolution, as it possesses an XY sex chromosome pair at relatively early stages of differentiation. Using a combination of whole-genome and transcriptome sequencing, we characterized sequence evolution and gene expression across the sex chromosomes. We uncovered two distinct evolutionary strata that correspond with known structural rearrangements on the Y chromosome. In the oldest stratum, only a handful of genes remain, and these genes are under strong purifying selection. By comparing sex-linked gene expression with expression of autosomal orthologs in an outgroup, we show that dosage compensation has not evolved in threespine sticklebacks through upregulation of the X chromosome in males. Instead, in the oldest stratum, the genes that still possess a Y chromosome allele are enriched for genes predicted to be dosage sensitive in mammals and yeast. Our results suggest that dosage imbalances may have been avoided at haploinsufficient genes by retaining function of the Y chromosome allele through strong purifying selection. PMID:25818858
The Age-Related Eye Disease 2 Study: Micronutrients in the Treatment of Macular Degeneration123
Gorusupudi, Aruna; Nelson, Kelly; Bernstein, Paul S
2017-01-01
Age-related macular degeneration (AMD) is one of the leading causes of vision loss in the elderly. With an increasingly aged population worldwide, the need for the prevention of AMD is rising. Multiple studies investigating AMD with the use of animal models and cell culture have identified oxidative stress–related retinal damage as an important contributing factor. In general, diet is an excellent source of the antioxidants, vitamins, and minerals necessary for healthy living; moreover, the general public is often receptive to recommendations made by physicians and health care workers regarding diet and supplements as a means of empowering themselves to avoid common and worrisome ailments such as AMD, which has made epidemiologists and clinicians enthusiastic about dietary intervention studies. A wide variety of nutrients, such as minerals, vitamins, ω-3 (n–3) fatty acids, and various carotenoids, have been associated with reducing the risk of AMD. Initial results from the Age-Related Eye Disease Study (AREDS) indicated that supplementation with antioxidants (β-carotene and vitamins C and E) and zinc was associated with a reduced risk of AMD progression. The AREDS2 follow-up study, designed to improve upon the earlier formulation, tested the addition of lutein, zeaxanthin, and ω-3 fatty acids. In this review, we examine the science behind the nutritional factors included in these interventional studies and the reasons for considering their inclusion to lower the rate of AMD progression. PMID:28096126
The Age-Related Eye Disease 2 Study: Micronutrients in the Treatment of Macular Degeneration.
Gorusupudi, Aruna; Nelson, Kelly; Bernstein, Paul S
2017-01-01
Age-related macular degeneration (AMD) is one of the leading causes of vision loss in the elderly. With an increasingly aged population worldwide, the need for the prevention of AMD is rising. Multiple studies investigating AMD with the use of animal models and cell culture have identified oxidative stress-related retinal damage as an important contributing factor. In general, diet is an excellent source of the antioxidants, vitamins, and minerals necessary for healthy living; moreover, the general public is often receptive to recommendations made by physicians and health care workers regarding diet and supplements as a means of empowering themselves to avoid common and worrisome ailments such as AMD, which has made epidemiologists and clinicians enthusiastic about dietary intervention studies. A wide variety of nutrients, such as minerals, vitamins, ω-3 (n-3) fatty acids, and various carotenoids, have been associated with reducing the risk of AMD. Initial results from the Age-Related Eye Disease Study (AREDS) indicated that supplementation with antioxidants (β-carotene and vitamins C and E) and zinc was associated with a reduced risk of AMD progression. The AREDS2 follow-up study, designed to improve upon the earlier formulation, tested the addition of lutein, zeaxanthin, and ω-3 fatty acids. In this review, we examine the science behind the nutritional factors included in these interventional studies and the reasons for considering their inclusion to lower the rate of AMD progression. © 2017 American Society for Nutrition.
Purmessur, Devina; Freemont, Anthony J; Hoyland, Judith A
2008-01-01
Introduction The neurotrophins nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) have been identified in the human intervertebral disc (IVD) and have been implicated in the mechanisms associated with nerve ingrowth and nociception in degeneration of the IVD. The aim of the current study was to investigate an association between neurotrophin expression in the IVD and the severity of disc degeneration, including the effect of disc-related proinflammatory cytokines on neurotrophin and neuropeptide expression in cells derived from the human IVD. Methods Immunohistochemical analysis was performed to examine the expression of NGF, BDNF and their high-affinity receptors Trk-A and Trk-B in human IVD samples, divided into three categories: non-degenerate, moderate degeneration and severe degeneration. In order to study the effect of disc-related cytokines on neurotrophin/neuropeptide gene expression, nucleus pulposus cells derived from non-degenerate and degenerate IVD samples were seeded in alginate and were stimulated with either IL-1β or TNFα for 48 hours. RNA was extracted, cDNA was synthesised and quantitative real-time PCR was performed to examine the expression of NGF, BDNF and substance P. Results Immunohistochemistry showed expression of NGF and BDNF in the native chondrocyte-like cells in all regions of the IVD and in all grades of degeneration. Interestingly only BDNF significantly increased with the severity of degeneration (P < 0.05). Similar expression was observed for Trk-A and Trk-B, although no association with disease severity was demonstrated. In cultured human nucleus pulposus cells, stimulation with IL-1β led to significant increases in NGF and BDNF gene expression (P < 0.05). Treatment with TNFα was associated with an upregulation of substance P expression only. Conclusion Our findings show that both the annulus fibrosus and nucleus pulposus cells of the IVD express the neurotrophins NGF and BDNF, factors that may influence and enhance innervation and pain in the degenerate IVD. Expression of Trk-A and Trk-B by cells of the nondegenerate and degenerate IVD suggests an autocrine role for neurotrophins in regulation of disc cell biology. Furthermore, modulation of neurotrophin expression by IL-1β and modulation of substance P expression by TNFα, coupled with their increased expression in the degenerate IVD, highlights novel roles for these cytokines in regulating nerve ingrowth in the degenerate IVD and associated back pain. PMID:18727839
Protective effects of chlorogenic acid in 3-nitropropionic acid induced toxicity and genotoxicity.
Alarcón-Herrera, Norberto; Flores-Maya, Saúl; Bellido, Belén; García-Bores, Ana M; Mendoza, Ernesto; Ávila-Acevedo, Guillermo; Hernández-Echeagaray, Elizabeth
2017-11-01
Mitochondrial inhibition with the toxin 3-Nitropropionic acid (3-NP) has been used to study the underlying mechanisms in striatal neurodegeneration, but few experiments have evaluated its toxicity and genotoxicity of in vivo administration. Furthermore, different antioxidant molecules may prevent degeneration induced by the toxic effects of 3-NP. Therefore, the purpose of this study was to evaluate the toxicity and genotoxicity induced by 3-NP (15 mg/kg) in the micronuclei assay method; also, we assessed chlorogenic acid (CGA, 100 mg/kg) for its anti-toxic and anti-genotoxic effect in damage produced by in vivo treatment with 3-NP. 3-NP induced toxicity and genotoxicity. CGA administered as a co-treatment with 3-NP (3-NP + CA) reduced toxicity by 32.76%, as a pre-treatment for 5 days only, followed by 3-NP treatment (P/CA, 3-NP) inhibiting toxicity by 24.04%, or as a pre-treatment, plus a co-treatment with 3-NP (P/CA, 3-NP + CA) avoided any toxic effect. CGA alone did not exhibit any toxic effect. Only P/CGA, 3-NP + CGA group, avoided toxicity and genotoxicity, suggesting that CGA could be suitable to prevent, reduce or delay toxicity and cell death. Copyright © 2017 Elsevier Ltd. All rights reserved.
Degenerate r-Stirling Numbers and r-Bell Polynomials
NASA Astrophysics Data System (ADS)
Kim, T.; Yao, Y.; Kim, D. S.; Jang, G.-W.
2018-01-01
The purpose of this paper is to exploit umbral calculus in order to derive some properties, recurrence relations, and identities related to the degenerate r-Stirling numbers of the second kind and the degenerate r-Bell polynomials. Especially, we will express the degenerate r-Bell polynomials as linear combinations of many well-known families of special polynomials.
Evolution of Degenerate Space-Time from Non-Degenerate Initial Value in Ashtekar's Formalism
NASA Astrophysics Data System (ADS)
Ma, Yongge; Liang, Canbin
1998-09-01
The possibility of evolving a degenerate space-time from non-degenerate initial value in Ashtekar's formalism is considered in a constructed example. It is found that this possibility could be realized in the time evolution given by Ashtekar's equations, but the topology change of space makes it fail to be a Cauchy evolution.
Locally Learning Biomedical Data Using Diffusion Frames
2012-01-01
age - related macular degeneration (AMD) patients. All eye- related data were collected by our collaborators at the...in Table 2. 6.2. Age - related macular degeneration Age - related macular degeneration is the most common cause of blindness among the elderly population...maculopathy and age - related macular degeneration . The international ARM epidemiological study group. Surv. Ophthalmol. 39, 367–374.
Washington, Ilyas; Saad, Leonide
2016-01-01
One of the earliest events preceding several forms of retinal degeneration is the formation and accumulation of vitamin A dimers in the retinal pigment epithelium (RPE) and underlying Bruch's membrane (BM). Such degenerations include Stargardt disease, Best disease, forms of retinitis pigmentosa, and age-related macular degeneration (AMD). Since their discovery in the 1990's, dimers of vitamin A, have been postulated as chemical triggers driving retinal senescence and degeneration. There is evidence to suggest that the rate at which vitamin A dimerizes and the eye's response to the dimerization products may dictate the retina's lifespan. Here, we present outstanding questions, finding the answers to which may help to elucidate the role of vitamin A dimerization in retinal degeneration.
Formation of Degenerate Band Gaps in Layered Systems
Ignatov, Anton I.; Merzlikin, Alexander M.; Levy, Miguel; Vinogradov, Alexey P.
2012-01-01
In the review, peculiarities of spectra of one-dimensional photonic crystals made of anisotropic and/or magnetooptic materials are considered. The attention is focused on band gaps of a special type—the so called degenerate band gaps which are degenerate with respect to polarization. Mechanisms of formation and properties of these band gaps are analyzed. Peculiarities of spectra of photonic crystals that arise due to the linkage between band gaps are discussed. Particularly, it is shown that formation of a frozen mode is caused by linkage between Brillouin and degenerate band gaps. Also, existence of the optical Borrmann effect at the boundaries of degenerate band gaps and optical Tamm states at the frequencies of degenerate band gaps are analyzed. PMID:28817024
Rhee, Wootack; Ha, Seongil; Lim, Jae Hyeon; Jang, Il Tae
2014-01-01
Objective Using alendronate after spinal fusion is a controversial issue due to the inhibition of osteoclast mediated bone resorption. In addition, there are an increasing number of reports that the endplate degeneration influences the lumbar spinal fusion. The object of this retrospective controlled study was to evaluate how the endplate degeneration and the bisphosphonate medication influence the spinal fusion through radiographic evaluation. Methods In this study, 44 patients who underwent single-level posterior lumbar interbody fusion (PLIF) using cage were examined from April 2007 to March 2009. All patients had been diagnosed as osteoporosis and would be recommended for alendronate medication. Endplate degeneration is categorized by the Modic changes. The solid fusion is defined if there was bridging bone between the vertebral bodies, either within or external to the cage on the plain X-ray and if there is less than 5° of angular difference in dynamic X-ray. Results In alendronate group, fusion was achieved in 66.7% compared to 73.9% in control group (no medication). Alendronate did not influence the fusion rate of PLIF. However, there was the statistical difference of fusion rate between the endplate degeneration group and the group without endplate degeneration. A total of 52.4% of fusion rate was seen in the endplate degeneration group compared to 91.3% in the group without endplate degeneration. The endplate degeneration suppresses the fusion process of PLIF. Conclusion Alendronate does not influence the fusion process in osteoporotic patients. The endplate degeneration decreases the fusion rate. PMID:25620981
Oxygen-induced retinopathy in mice with retinal photoreceptor cell degeneration.
Zhang, Qian; Zhang, Zuo-Ming
2014-04-25
It is reported that retinal neovascularization seems to rarely co-exist with retinitis pigmentosa in patients and in some mouse models; however, it is not widely acknowledged as a universal phenomenon in all strains of all animal species. We aimed to further explore this phenomenon with an oxygen-induced retinopathy model in mice with retinal photoreceptor cell degeneration. Oxygen-induced retinopathy of colored and albino mice with rapid retinal degeneration were compared to homologous wild-type mice. The retinas were analyzed using high-molecular-weight FITC-dextran stained flat-mount preparation, hematoxylin and eosin (H&E) stained cross-sections, an immunohistochemical test for vascular endothelial growth factor (VEGF) distribution and Western blotting for VEGF expression after exposure to hyperoxia between postnatal days 17 (P17) and 21. Leakage and areas of non-perfusion of the retinal blood vessels were alleviated in the retinal degeneration mice. The number of preretinal vascular endothelial cell nuclei in the retinal degeneration mice was smaller than that in the homologous wild-type mice after exposure to hyperoxia (P<0.01). The degree of oxygen-induced retinopathy was positively correlated with the VEGF expression level. However, the VEGF expression level was lower in the retinal degeneration mice. Proliferative retinopathy occurred in mice with rapid retinal degeneration, but retinal photoreceptor cell degeneration could partially restrain the retinal neovascularization in this rapid retinal degeneration mouse model. Copyright © 2014 Elsevier Inc. All rights reserved.
Ye, Dongping; Liang, Weiguo; Dai, Libing; Zhou, Longqiang; Yao, Yicun; Zhong, Xin; Chen, Honghui; Xu, Jiake
2015-05-01
Degeneration of the intervertebral disc (IVD) is a major chronic medical condition associated with back pain. To better understand the pathogenesis of IVD degeneration, we performed comparative and quantitative proteomic analyses of normal and degenerated human annulus fibrosus (AF) cells and identified proteins that are differentially expressed between them. Annulus fibrosus cells were isolated and cultured from patients with lumbar disc herniation (the experimental group, degenerated AF cells) and scoliosis patients who underwent orthopaedic surgery (the control group, normal AF cells). Comparative proteomic analyses of normal and degenerated cultured AF cells were carried out using 2-D electrophoresis, mass spectrometric analyses, and database searching. Quantitative analyses of silver-stained 2-D electrophoresis gels of normal and degenerated cultured AF cells identified 10 protein spots that showed the most altered differential expression levels between the two groups. Among these, three proteins were decreased, including heat shock cognate 71-kDa protein, glucose-6-phosphate 1-dehydrogenase, and protocadherin-23, whereas seven proteins were increased, including guanine nucleotide-binding protein G(i) subunit α-2, superoxide dismutase, transmembrane protein 51, adenosine receptor A3, 26S protease regulatory subunit 8, lipid phosphate phosphatase-related protein, and fatty acyl-crotonic acid reductase 1. These differentially expressed proteins might be involved in the pathophysiological process of IVD degeneration and have potential values as biomarkers of the degeneration of IVD. © 2015 Wiley Publishing Asia Pty Ltd.
MedlinePlus Videos and Cool Tools
... center of the field of vision. Macular degeneration results from a partial breakdown of the insulating layer ... of blood vessels behind the retina. Macular degeneration results in the loss of central vision only.
Voorhees, Jaymie R.; Genova, Rachel M.; Britt, Jeremiah K.; McDaniel, Latisha; Harper, Matthew M.
2016-01-01
Abstract Axonal degeneration is a prominent feature of many forms of neurodegeneration, and also an early event in blast-mediated traumatic brain injury (TBI), the signature injury of soldiers in Iraq and Afghanistan. It is not known, however, whether this axonal degeneration is what drives development of subsequent neurologic deficits after the injury. The Wallerian degeneration slow strain (WldS) of mice is resistant to some forms of axonal degeneration because of a triplicated fusion gene encoding the first 70 amino acids of Ufd2a, a ubiquitin-chain assembly factor, that is linked to the complete coding sequence of nicotinamide mononucleotide adenylyltransferase 1 (NMAT1). Here, we demonstrate that resistance of WldS mice to axonal degeneration after blast-mediated TBI is associated with preserved function in hippocampal-dependent spatial memory, cerebellar-dependent motor balance, and retinal and optic nerve–dependent visual function. Thus, early axonal degeneration is likely a critical driver of subsequent neurobehavioral complications of blast-mediated TBI. Future therapeutic strategies targeted specifically at mitigating axonal degeneration may provide a uniquely beneficial approach to treating patients suffering from the effects of blast-mediated TBI. PMID:27822499
Yang, Lili; Mu, Liangshan; Huang, Kaiyu; Zhang, Tianyi; Mei, Zihan; Zeng, Wenrong; He, Jiawei; Chen, Wei; Liu, Xiaozheng; Ye, Xinjian; Yan, Zhihan
2016-12-13
The relationship between abdominal adiposity and disc degeneration remains largely uninvestigated. Here, we investigated the association between abdominal adipose tissue thickness and lumbar disc degeneration in a cross-sectional study of 2415 participants from The Second Affiliated Hospital of Wenzhou Medical University. All subjects were scanned with a 3T Magnetic Resonance Imaging system to evaluate the degree of lumbar disc degeneration. Multiple logistic regression analysis revealed that men in the highest quartiles for abdominal diameter (AD), sagittal diameter (SAD), and ventral subcutaneous thickness (VST) were at higher odds ratio for severe lumbar disc degeneration than men in the lowest quartiles. The adjusted model revealed that women in the highest quartiles for AD and SAD were also at higher odds ratio for severe lumbar disc degeneration than women in the lowest quartiles. Our results suggest that abdominal obesity might be one of underlying mechanisms of lumbar disc degeneration, and preventive strategies including weight control could be useful to reduce the incidence of lumbar disc degeneration. Prospective studies are needed to this confirm these results and to identify more deeper underlying mechanisms.
Yin, Terry C; Voorhees, Jaymie R; Genova, Rachel M; Davis, Kevin C; Madison, Ashley M; Britt, Jeremiah K; Cintrón-Pérez, Coral J; McDaniel, Latisha; Harper, Matthew M; Pieper, Andrew A
2016-01-01
Axonal degeneration is a prominent feature of many forms of neurodegeneration, and also an early event in blast-mediated traumatic brain injury (TBI), the signature injury of soldiers in Iraq and Afghanistan. It is not known, however, whether this axonal degeneration is what drives development of subsequent neurologic deficits after the injury. The Wallerian degeneration slow strain ( WldS ) of mice is resistant to some forms of axonal degeneration because of a triplicated fusion gene encoding the first 70 amino acids of Ufd2a, a ubiquitin-chain assembly factor, that is linked to the complete coding sequence of nicotinamide mononucleotide adenylyltransferase 1 (NMAT1). Here, we demonstrate that resistance of WldS mice to axonal degeneration after blast-mediated TBI is associated with preserved function in hippocampal-dependent spatial memory, cerebellar-dependent motor balance, and retinal and optic nerve-dependent visual function. Thus, early axonal degeneration is likely a critical driver of subsequent neurobehavioral complications of blast-mediated TBI. Future therapeutic strategies targeted specifically at mitigating axonal degeneration may provide a uniquely beneficial approach to treating patients suffering from the effects of blast-mediated TBI.
NASA Astrophysics Data System (ADS)
Zaman, D. M. S.; Amina, M.; Dip, P. R.; Mamun, A. A.
2017-11-01
The basic properties of planar and non-planar (spherical and cylindrical) nucleus-acoustic (NA) shock structures (SSs) in a strongly coupled self-gravitating degenerate quantum plasma system (containing strongly coupled non-relativistically degenerate heavy nuclear species, weakly coupled non-relativistically degenerate light nuclear species, and inertialess non-/ultra-relativistically degenerate electrons) have been investigated. The generalized quantum hydrodynamic model and the reductive perturbation method have been used to derive the modified Burgers equation. It is shown that the strong correlation among heavy nuclear species acts as the source of dissipation and is responsible for the formation of the NA SSs with positive (negative) electrostatic (self-gravitational) potential. It is also observed that the effects of non-/ultra-relativistically degenerate electron pressure, dynamics of non-relativistically degenerate light nuclear species, spherical geometry, etc., significantly modify the basic features of the NA SSs. The applications of our results in astrophysical compact objects like white dwarfs and neutron stars are briefly discussed.
High Resolution Qualitative and Quantitative MR Evaluation of the Glenoid Labrum
Iwasaki, Kenyu; Tafur, Monica; Chang, Eric Y.; SherondaStatum; Biswas, Reni; Tran, Betty; Bae, Won C.; Du, Jiang; Bydder, Graeme M.; Chung, Christine B.
2015-01-01
Objective To implement qualitative and quantitative MR sequences for the evaluation of labral pathology. Methods Six glenoid labra were dissected and the anterior and posterior portions were divided into normal, mildly degenerated, or severely degenerated groups using gross and MR findings. Qualitative evaluation was performed using T1-weighted, proton density-weighted (PD), spoiled gradient echo (SPGR) and ultra-short echo time (UTE) sequences. Quantitative evaluation included T2 and T1rho measurements as well as T1, T2*, and T1rho measurements acquired with UTE techniques. Results SPGR and UTE sequences best demonstrated labral fiber structure. Degenerated labra had a tendency towards decreased T1 values, increased T2/T2* values and increased T1 rho values. T2* values obtained with the UTE sequence allowed for delineation between normal, mildly degenerated and severely degenerated groups (p<0.001). Conclusion Quantitative T2* measurements acquired with the UTE technique are useful for distinguishing between normal, mildly degenerated and severely degenerated labra. PMID:26359581
On the existence of solutions to a one-dimensional degenerate nonlinear wave equation
NASA Astrophysics Data System (ADS)
Hu, Yanbo
2018-07-01
This paper is concerned with the degenerate initial-boundary value problem to the one-dimensional nonlinear wave equation utt =((1 + u) aux) x which arises in a number of various physical contexts. The global existence of smooth solutions to the degenerate problem was established under relaxed conditions on the initial-boundary data by the characteristic decomposition method. Moreover, we show that the solution is uniformly C 1 , α continuous up to the degenerate boundary and the degenerate curve is C 1 , α continuous for α ∈ (0 , min a/1+a, 1/1+a).
Some Remarks on Space-Time Decompositions, and Degenerate Metrics, in General Relativity
NASA Astrophysics Data System (ADS)
Bengtsson, Ingemar
Space-time decomposition of the Hilbert-Palatini action, written in a form which admits degenerate metrics, is considered. Simple numerology shows why D = 3 and 4 are singled out as admitting a simple phase space. The canonical structure of the degenerate sector turns out to be awkward. However, the real degenerate metrics obtained as solutions are the same as those that occur in Ashtekar's formulation of complex general relativity. An exact solution of Ashtekar's equations, with degenerate metric, shows that the manifestly four-dimensional form of the action, and its 3 + 1 form, are not quite equivalent.
Kanna, Rishi M; Shetty, Ajoy Prasad; Rajasekaran, S
2014-02-01
Existing research on lumbar disc degeneration has remained inconclusive regarding its etiology, pathogenesis, symptomatology, prevention, and management. Degenerative disc disease (DDD) and disc prolapse (DP) are common diseases affecting the lumbar discs. Although they manifest clinically differently, existing studies on disc degeneration have included patients with both these features, leading to wide variations in observations. The possible relationship or disaffect between DDD and DP is not fully evaluated. To analyze the patterns of lumbar disc degeneration in patients with chronic back pain and DDD and those with acute DP. Prospective, magnetic resonance imaging-based radiological study. Two groups of patients (aged 20-50 years) were prospectively studied. Group 1 included patients requiring a single level microdiscectomy for acute DP. Group 2 included patients with chronic low back pain and DDD. Discs were assessed by magnetic resonance imaging through Pfirmann grading, Schmorl nodes, Modic changes, and the total end-plate damage score for all the five lumbar discs. Group 1 (DP) had 91 patients and group 2 (DDD) had 133 patients. DP and DDD patients differed significantly in the number, extent, and severity of degeneration. DDD patients had a significantly higher number of degenerated discs than DP patients (p<.000). The incidence of multilevel and pan-lumbar degeneration was also significantly higher in DDD group. The pattern of degeneration also differed in both the groups. DDD patients had predominant upper lumbar involvement, whereas DP patients had mainly lower lumbar degeneration. Modic changes were more common in DP patients, especially at the prolapsed level. Modic changes were present in 37% of prolapsed levels compared with 9.9% of normal discs (p<.00). The total end-plate damage score had a positive correlation with disc degeneration in both the groups. Further the mean total end-plate damage score at prolapsed level was also significantly higher. The results suggest that patients with disc prolapse, and those with back pain with DDD are clinically and radiologically different groups of patients with varying patterns, severity, and extent of disc degeneration. This is the first study in literature to compare and identify significant differences in these two commonly encountered patient groups. In patients with single-level DP, the majority of the other discs are nondegenerate, the lower lumbar spine is predominantly involved and the end-plate damage is higher. Patients with back pain and DDD have larger number of degenerate discs, early multilevel degeneration, and predominant upper lumbar degeneration. The knowledge that these two groups of patients are different clinically and radiologically is critical for our improved understanding of the disease and for future studies on disc degeneration and disc prolapse. Copyright © 2014 Elsevier Inc. All rights reserved.
Does corticobasal degeneration exist? A clinicopathological re-evaluation.
Ling, Helen; O'Sullivan, Sean S; Holton, Janice L; Revesz, Tamas; Massey, Luke A; Williams, David R; Paviour, Dominic C; Lees, Andrew J
2010-07-01
The pathological findings of corticobasal degeneration are associated with several distinct clinical syndromes, and the corticobasal syndrome has been linked with a number of diverse pathologies. We have reviewed all the archival cases in the Queen Square Brain Bank for Neurological Disorders over a 20-year period with either a clinical diagnosis of corticobasal syndrome or pathological diagnosis of corticobasal degeneration in an attempt to identify the main diagnostic pitfalls. Of 19 pathologically confirmed corticobasal degeneration cases, only five had been diagnosed correctly in life (sensitivity=26.3%) and four of these had received an alternative earlier diagnosis. All five of these had a unilateral presentation, clumsy useless limb, limb apraxia and myoclonus, four had cortical sensory impairment and focal limb dystonia and three had an alien limb. Eight cases of corticobasal degeneration had been clinically diagnosed as progressive supranuclear palsy, all of whom had vertical supranuclear palsy and seven had falls within the first 2 years. On the other hand, of 21 cases with a clinical diagnosis of corticobasal syndrome, only five had corticobasal degeneration pathology, giving a positive predictive value of 23.8%; six others had progressive supranuclear palsy pathology, five had Alzheimer's disease and the remaining five had other non-tau pathologies. Corticobasal degeneration can present very commonly with a clinical picture closely resembling classical progressive supranuclear palsy or Richardson's syndrome, and we propose the term corticobasal degeneration-Richardson's syndrome for this subgroup. Cases of corticobasal degeneration-Richardson's syndrome have delayed onset of vertical supranuclear gaze palsy (>3 years after onset of first symptom) and the infrequent occurrence of predominant downgaze abnormalities, both of which can be helpful pointers to their underlying corticobasal degeneration pathology. Fourty-two per cent of corticobasal degeneration cases presented clinically with a progressive supranuclear palsy phenotype and 29% of cases with corticobasal syndrome had underlying progressive supranuclear palsy pathology. In contrast, in the Queen Square Brain Bank archival collection, corticobasal syndrome is a rare clinical presentation of progressive supranuclear palsy occurring in only 6 of the 179 pathologically diagnosed progressive supranuclear palsy cases (3%). Despite these diagnostic difficulties we conclude that corticobasal degeneration is a discrete clinicopathological entity but with a broader clinical spectrum than was originally proposed.
Yamagishi, Yuya; Tessier-Lavigne, Marc
2015-01-01
Calcium is a key regulator of axon degeneration caused by trauma and disease, but its specific spatial and temporal dynamics in injured axons remain unclear. To clarify the function of calcium in axon degeneration, we observed calcium dynamics in single injured neurons in live zebrafish larvae and tested the temporal requirement for calcium in zebrafish neurons and cultured mouse DRG neurons. Using laser axotomy to induce Wallerian degeneration (WD) in zebrafish peripheral sensory axons, we monitored calcium dynamics from injury to fragmentation, revealing two stereotyped phases of axonal calcium influx. First, axotomy triggered a transient local calcium wave originating at the injury site. This initial calcium wave only disrupted mitochondria near the injury site and was not altered by expression of the protective WD slow (WldS) protein. Inducing multiple waves with additional axotomies did not change the kinetics of degeneration. In contrast, a second phase of calcium influx occurring minutes before fragmentation spread as a wave throughout the axon, entered mitochondria, and was abolished by WldS expression. In live zebrafish, chelating calcium after the first wave, but before the second wave, delayed the progress of fragmentation. In cultured DRG neurons, chelating calcium early in the process of WD did not alter degeneration, but chelating calcium late in WD delayed fragmentation. We propose that a terminal calcium wave is a key instructive component of the axon degeneration program. SIGNIFICANCE STATEMENT Axon degeneration resulting from trauma or neurodegenerative disease can cause devastating deficits in neural function. Understanding the molecular and cellular events that execute axon degeneration is essential for developing treatments to address these conditions. Calcium is known to contribute to axon degeneration, but its temporal requirements in this process have been unclear. Live calcium imaging in severed zebrafish neurons and temporally controlled pharmacological treatments in both zebrafish and cultured mouse sensory neurons revealed that axonal calcium influx late in the degeneration process regulates axon fragmentation. These findings suggest that temporal considerations will be crucial for developing treatments for diseases associated with axon degeneration. PMID:26558774
Pan, Jianjiang; Lu, Xuan; Yang, Ge; Han, Yongmei; Tong, Xiang; Wang, Yue
2017-12-01
A sample of 512 Chinese was studied and we observed that greater disc degeneration on MRI was associated with greater spine DXA BMD. Yet, this association may be confounded by facet joint osteoarthritis. BMD may not be a risk factor for lumbar disc degeneration in Chinese. Evidence suggested that lumbar vertebral bone and intervertebral disc interact with each other in multiple ways. The current paper aims to determine the association between bone mineral density (BMD) and lumbar disc degeneration using a sample of Chinese. We studied 165 patients with back disorders and 347 general subjects from China. All subjects had lumbar spine magnetic resonance (MR) imaging and dual- energy X-ray absorptiometry (DXA) spine BMD studies, and a subset of general subjects had additional hip BMD measurements. On T2-weighted MR images, Pfirrmann score was used to evaluate the degree of lumbar disc degeneration and facet joint osteoarthritis was assessed as none, slight-moderate, and severe. Regression analyses were used to examine the associations between lumbar and hip BMD and disc degeneration, adjusting for age, gender, body mass index (BMI), lumbar region, and facet joint osteoarthritis. Greater facet joint osteoarthritis was associated with greater spine BMD (P < 0.01) in both patients and general subjects. For general subjects, greater spine BMD was associated with severe disc degeneration, controlling for age, gender, BMI, and lumbar region. When facet joint osteoarthritis entered the regression model, however, greater spine BMD was associated with greater facet joint osteoarthritis (P < 0.01) but not greater disc degeneration (P > 0.05). No statistical association was observed between spine BMD and lumbar disc degeneration in patients with back disorders (P > 0.05), and between hip BMD and disc degeneration in general subjects (P > 0.05). BMD may not be a risk factor for lumbar disc degeneration in Chinese. Facet joint osteoarthritis inflates DXA spine BMD measurements and therefore, may confound the association between spine BMD and disc degeneration.
[Pharmacological therapy of age-related macular degeneration based on etiopathogenesis].
Fischer, Tamás
2015-11-15
It is of great therapeutic significance that disordered function of the vascular endothelium which supply the affected ocular structures plays a major role in the pathogenesis and development of age-related macular degeneration. Chronic inflammation is closely linked to diseases associated with endothelial dysfunction, and age-related macular degeneration is accompanied by a general inflammatory response. According to current concept, age-related macular degeneration is a local manifestation of systemic vascular disease. This recognition could have therapeutic implications because restoration of endothelial dysfunction can restabilize the condition of chronic vascular disease including age-related macular degeneration as well. Restoration of endothelial dysfunction by pharmaacological or non pharmacological interventions may prevent the development or improve endothelial dysfunction, which result in prevention or improvement of age related macular degeneration as well. Medicines including inhibitors of the renin-angiotensin system (converting enzyme inhibitors, angiotensin-receptor blockers and renin inhibitors), statins, acetylsalicylic acid, trimetazidin, third generation beta-blockers, peroxisome proliferator-activated receptor gamma agonists, folate, vitamin D, melatonin, advanced glycation end-product crosslink breaker alagebrium, endothelin-receptor antagonist bosentan, coenzyme Q10; "causal" antioxidant vitamins, N-acetyl-cysteine, resveratrol, L-arginine, serotonin receptor agonists, tumor necrosis factor-alpha blockers, specific inhibitor of the complement alternative pathway, curcumin and doxycyclin all have beneficial effects on endothelial dysfunction. Restoration of endothelial dysfunction can restabilize chronic vascular disease including age-related macular degeneration as well. Considering that the human vascular system is consubstantial, medicines listed above should be given to patients (1) who have no macular degeneration but have risk factors for the disease and are older than 50 years; (2) who have been diagnosed with unilateral age-related macular degeneration in order to prevent damage of the contralateral eye; (3) who have bilateral age-related macular degeneration in order to avert deterioration and in the hope of a potential improvement. However, randomised prospective clinical trials are still needed to elucidate the potential role of these drug treatments in the prevention and treatment of age-related macular degeneration.
... developing macular degeneration. Include fish in your diet. Omega-3 fatty acids, which are found in fish, may ... macular degeneration. Nuts, such as walnuts, also contain omega-3 fatty acids. By Mayo Clinic Staff . Mayo Clinic ...
Guo, Li-Xin; Fan, Wei
2017-09-01
The objective of this study was to investigate the effect of single-level disc degeneration on dynamic response of the whole lumbar spine to vertical whole body vibration that is typically present when driving vehicles. Ligamentous finite element models of the lumbar L1-S1 motion segment in different grades of degeneration (healthy, mild, and moderate) at the L4-L5 level were developed with consideration of changing disc height and material properties of the nucleus pulpous. All models were loaded with a compressive follower preload of 400 N and a sinusoidal vertical vibration load of ±40 N. After transient dynamic analyses, computational results for the 3 models in terms of disc bulge, von-Mises stress in annulus ground substance, and nucleus pressure were plotted as a function of time and compared. All the predicted results showed a cyclic response with time. At the degenerated L4-L5 disc level, as degeneration progressed, maximum value of the predicted response showed a decrease in disc bulge and von-Mises stress in annulus ground substance but a slight increase in nucleus pressure, and their vibration amplitudes were all decreased. At the adjacent levels of the degenerated disc, there was a slight decrease in maximum value and vibration amplitude of these predicted responses with the degeneration. The results indicated that single-level disc degeneration can alter vibration characteristics of the whole lumbar spine especially for the degenerated disc level, and increasing the degeneration did not deteriorate the effect of vertical vibration on the spine. Copyright © 2017 Elsevier Inc. All rights reserved.
Cideciyan, Artur V; Jacobson, Samuel G; Beltran, William A; Sumaroka, Alexander; Swider, Malgorzata; Iwabe, Simone; Roman, Alejandro J; Olivares, Melani B; Schwartz, Sharon B; Komáromy, András M; Hauswirth, William W; Aguirre, Gustavo D
2013-02-05
Leber congenital amaurosis (LCA) associated with retinal pigment epithelium-specific protein 65 kDa (RPE65) mutations is a severe hereditary blindness resulting from both dysfunction and degeneration of photoreceptors. Clinical trials with gene augmentation therapy have shown partial reversal of the dysfunction, but the effects on the degeneration are not known. We evaluated the consequences of gene therapy on retinal degeneration in patients with RPE65-LCA and its canine model. In untreated RPE65-LCA patients, there was dysfunction and degeneration of photoreceptors, even at the earliest ages. Examined serially over years, the outer photoreceptor nuclear layer showed progressive thinning. Treated RPE65-LCA showed substantial visual improvement in the short term and no detectable decline from this new level over the long term. However, retinal degeneration continued to progress unabated. In RPE65-mutant dogs, the first one-quarter of their lifespan showed only dysfunction, and there was normal outer photoreceptor nuclear layer thickness retina-wide. Dogs treated during the earlier dysfunction-only stage showed improved visual function and dramatic protection of treated photoreceptors from degeneration when measured 5-11 y later. Dogs treated later during the combined dysfunction and degeneration stage also showed visual function improvement, but photoreceptor loss continued unabated, the same as in human RPE65-LCA. The results suggest that, in RPE65 disease treatment, protection from visual function deterioration cannot be assumed to imply protection from degeneration. The effects of gene augmentation therapy are complex and suggest a need for a combinatorial strategy in RPE65-LCA to not only improve function in the short term but also slow retinal degeneration in the long term.
Lv, Xin; Liu, Yuan; Zhou, Song; Wang, Qiang; Gu, Houyun; Fu, Xiaoxing; Ding, Yi; Zhang, Bin; Dai, Min
2016-08-15
Sagittal spinopelvic alignment changes associated with degenerative facet joint arthritis have been assessed in a few studies. It has been documented that patients with facet joint degeneration have higher pelvic incidence, but the relationship between facet joint degeneration and other sagittal spinopelvic alignment parameters is still disputed. Our purpose was to evaluate the correlation between the features of sagittal spinopelvic alignment and facet joint degeneration. Imaging data of 140 individuals were retrospectively analysed. Lumbar lordosis, pelvic tilt (PT), pelvic incidence (PI), sacral slope, and height of the lumbar intervertebral disc were measured on lumbar X-ray plates. Grades of facet joint degeneration were evaluated from the L2 to S1 on CT scans. Spearman's rank correlation coefficient and Student's t-test were used for statistical analyses, and a P-value <0.05 was considered statistically significant. PI was positively associated with degeneration of the facet joint at lower lumbar levels (p < 0.001 r = 0.50 at L5/S1 and P = 0.002 r = 0.25 at L4/5). A significant increase of PT was found in the severe degeneration group compared with the mild degeneration group: 22.0° vs 15.7°, P = 0.034 at L2/3;21.4°vs 15.1°, P = 0.006 at L3/4; 21.0° vs 13.5°, P = 0.000 at L4/5; 20.8° vs 12.1°, P = 0.000 at L5/S1. Our results indicate that a high PI is a predisposing factor for facet joint degeneration at the lower lumbar spine, and that severe facet joint degeneration may accompany with greater PT at lumbar spine.
... You are here Home Listen Retinal Diseases Macular Degeneration Age-related macular degeneration (AMD) is a retinal degenerative disease that causes ... is the most common form of inherited juvenile macular degeneration. The progressive vision loss associated with Stargardt disease ...
Anomalous skin effects in a weakly magnetized degenerate electron plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abbas, G., E-mail: gohar.abbas@gcu.edu.pk; Sarfraz, M.; Shah, H. A.
2014-09-15
Fully relativistic analysis of anomalous skin effects for parallel propagating waves in a weakly magnetized degenerate electron plasma is presented and a graphical comparison is made with the results obtained using relativistic Maxwellian distribution function [G. Abbas, M. F. Bashir, and G. Murtaza, Phys. Plasmas 18, 102115 (2011)]. It is found that the penetration depth for R- and L-waves for degenerate case is qualitatively small in comparison with the Maxwellian plasma case. The quantitative reduction due to weak magnetic field in the skin depth in R-wave for degenerate plasma is large as compared to the non-degenerate one. By ignoring themore » ambient magnetic field, previous results for degenerate field free case are salvaged [A. F. Alexandrov, A. S. Bogdankevich, and A. A. Rukhadze, Principles of Plasma Electrodynamics (Springer-Verlag, Berlin/Heidelberg, 1984), p. 90].« less
Ozkok, Ahmet; Sigford, Douglas K; Tezel, Tongalp H
2016-11-01
To test define characteristic fundus autofluorescence patterns of different exudative age-related macular degeneration subtypes. Cross-sectional study. Fifty-two patients with choroidal neovascularization because of three different neovascular age-related macular degeneration subtypes were included in the study. Macular and peripheral fundus autofluorescence patterns of study subjects were compared in a masked fashion. Fundus autofluorescence patterns of all three neovascular age-related macular degeneration subtypes revealed similar patterns. However, peripapillary hypo-autofluorescence was more common among patients with polypoidal choroidal vasculopathy (88.2%) compared with patients with retinal angiomatous proliferation (12.5%) and patients without retinal angiomatous proliferation and polypoidal choroidal vasculopathy (21.1%) (P < 0.0001). Presence of peripapillary fundus autofluorescence defects in neovascular age-related macular degeneration maybe suggestive of polypoidal choroidal vasculopathy as a variant of neovascular age-related macular degeneration.
Mathematical models of retinitis pigmentosa: The oxygen toxicity hypothesis.
Roberts, Paul A; Gaffney, Eamonn A; Luthert, Philip J; Foss, Alexander J E; Byrne, Helen M
2017-07-21
The group of genetically mediated diseases, known collectively as retinitis pigmentosa (RP), cause retinal degeneration and, hence, loss of vision. The most common inherited retinal degeneration, RP is currently untreatable. The retina detects light using cells known as photoreceptors, of which there are two types: rods and cones. In RP, genetic mutations cause patches of photoreceptors to degenerate and typically directly affect either rods or cones, but not both. During disease progression, degenerate patches spread and the unaffected photoreceptor type also begins to degenerate. The cause underlying these phenomena is currently unknown. The oxygen toxicity hypothesis proposes that secondary photoreceptor loss is due to hyperoxia (toxically high oxygen levels), which results from the decrease in oxygen uptake following the initial loss of photoreceptors. In this paper, we construct mathematical models, formulated as 1D systems of partial differential equations, to investigate this hypothesis. Using a combination of numerical simulations, asymptotic analysis and travelling wave analysis, we find that degeneration may spread due to hyperoxia, and generate spatio-temporal patterns of degeneration similar to those seen in vivo. We determine the conditions under which a degenerate patch will spread and show that the wave speed of degeneration is a monotone decreasing function of the local photoreceptor density. Lastly, the effects of treatment with antioxidants and trophic factors, and of capillary loss, upon the dynamics of photoreceptor loss and recovery are considered. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.
Ilharreborde, Brice
2018-02-01
In the last decade, spine surgeons have been impacted by the "sagittal plane analysis revolution". Significant correlations have been found in adult spinal deformity (ASD) between sagittal lumbo-pelvic parameters and functional outcomes, but most of them do not apply in adolescent idiopathic scoliosis (AIS). Meanwhile, instrumentation and reduction strategies have considerably evolved. This paper aims to describe the preoperative sagittal alignment in AIS, and to report literature evidence regarding the influence of postoperative sagittal balance on complication rates, low back pain incidence and disc degeneration. A bibliographic search in Medline and Google database from 1984 to May 2017 was performed. The keywords included 'adolescent idiopathic scoliosis', 'adult scoliosis', 'sagittal alignment', 'proximal junctional kyphosis', 'distal junctional kyphosis', 'outcomes', 'low back pain' and 'complication', used individually or in combination. Algorithms of sagittal balance analysis and treatment decision have been reported in ASD, but the clinical situation is very different in children. Sagittal alignment greatly varies in AIS among the various Lenke types. Most patients are clinically balanced before surgery, but the spinal harmony is altered, with overgrowth of the anterior column and global sagittal flattening (undersestimated in 2D). The exact role of pelvic incidence and whether or not patients also use pelvic compensation to maintain balance still require further clarification. The incidence of radiological junctional failures remains highly variable, depending on definitions, cohort size and follow-up. Preoperative hyperkyphosis seems to be a consistent and relevant risk factor. Current literature does not support the recent trend to save motion segments (selective fusion), and no significant association was found between the distal level of fusion and the incidence of low back pain. Postoperative sagittal alignment seems to be more important than LIV selection to avoid disc degeneration at mid-term follow-up. It is clear now that sagittal alignment plays a major role in clinical outcomes and should not be neglected in AIS. Seven key guidelines that should be considered for each patient before surgery are reported (Table 2). Personalized planning using 3D technology is gaining popularity and might help in the future reducing complications.
Neuroimmunomodulation and Aging.
Gemma, Carmelina
2010-12-01
Inflammation is by definition a protective phase of the immune response. The very first goal of inflammation is destroying and phagocytosing infected or damaged cells to avoid the spread of the pathogen or of the damage to neighboring, healthy, cells. However, we now know that during many chronic neurological disorders, inflammation and degeneration always coexist at certain time points. For example, inflammation comes first in multiple sclerosis, but degeneration follows, while in Alzheimer's or Parkinson's disease degeneration starts and inflammation is secondary. Either way these are the two pathological detectable problems. The central nervous system (CNS) has long been viewed as exempt from the effects of the immune system. The brain has physical barriers for protection, and it is now clear that cells in the nervous system respond to inflammation and injury in unique ways. In recent years, researchers have presented evidence supporting the idea that in the CNS there is an ongoing protective inflammatory mechanism, which involves macrophage, monocytes, T cells, regulatory T-cells, effector T cells and many others; these, in turn, promote repair mechanisms in the brain not only during inflammatory, and degenerative disorders but also in healthy people. This "repair mechanism" can be considered as an intrinsic part of the physiological activities of the brain. It is now well known that the microenvironment of the brain is a crucial player in determining the relative contribution of the two different outcomes. Failure of molecular and cellular mechanisms sustaining the "brain-repair programme" might be, at least in part, a cause of neurological disorders. Today, the neurotoxic and neuroprotective roles of the innate immune reactions in aging, brain injury, ischemia, autoimmune and neurodegenerative disorders of the CNS are widely investigated and highly debated research topics. Nevertheless, several issues remain to be elucidated, notably the earlier cellular events that initiate dysregulation of brain inflammatory pathways. If these inflammatory processes could be identified and harnessed, then cognitive function may be protected during aging and age-related neurodegenerative diseases through early interventions directed against the negative consequences of inflammation. This commentary highlights the major issues/opinions presented by experts on the involvement of the brain immune system in aging and age-related diseases in a special edition of the journal Aging and Disease.
Karan, G; Lillo, C; Yang, Z; Cameron, D J; Locke, K G; Zhao, Y; Thirumalaichary, S; Li, C; Birch, D G; Vollmer-Snarr, H R; Williams, D S; Zhang, K
2005-03-15
Macular degeneration is a heterogeneous group of disorders characterized by photoreceptor degeneration and atrophy of the retinal pigment epithelium (RPE) in the central retina. An autosomal dominant form of Stargardt macular degeneration (STGD) is caused by mutations in ELOVL4, which is predicted to encode an enzyme involved in the elongation of long-chain fatty acids. We generated transgenic mice expressing a mutant form of human ELOVL4 that causes STGD. In these mice, we show that accumulation by the RPE of undigested phagosomes and lipofuscin, including the fluorophore, 2-[2,6-dimethyl-8-(2,6,6-trimethyl-1-cyclohexen-1-yl)-1E,3E,5E,7E-octatetraenyl]-1-(2-hyydroxyethyl)-4-[4-methyl-6-(2,6,6,-trimethyl-1-cyclohexen-1-yl)-1E,3E,5E-hexatrienyl]-pyridinium (A2E) is followed by RPE atrophy. Subsequently, photoreceptor degeneration occurs in the central retina in a pattern closely resembling that of human STGD and age-related macular degeneration. The ELOVL4 transgenic mice thus provide a good model for both STGD and dry age-related macular degeneration, and represent a valuable tool for studies on therapeutic intervention in these forms of blindness.
Coupled modes in magnetized dense plasma with relativistic-degenerate electrons
NASA Astrophysics Data System (ADS)
Khan, S. A.
2012-01-01
Low frequency electrostatic and electromagnetic waves are investigated in ultra-dense quantum magnetoplasma with relativistic-degenerate electron and non-degenerate ion fluids. The dispersion relation is derived for mobile as well as immobile ions by employing hydrodynamic equations for such plasma under the influence of electromagnetic forces and pressure gradient of relativistic-degenerate Fermi gas of electrons. The result shows the coexistence of shear Alfven and ion modes with relativistically modified dispersive properties. The relevance of results to the dense degenerate plasmas of astrophysical origin (for instance, white dwarf stars) is pointed out with brief discussion on ultra-relativistic and non-relativistic limits.
Consequences of Neurite Transection In Vitro
Cengiz, Nurettin; Erdoğan, Ender; Him, Aydın; Oğuz, Elif Kaval
2012-01-01
Abstract In order to quantify degenerative and regenerative changes and analyze the contribution of multiple factors to the outcome after neurite transection, we cultured adult mouse dorsal root ganglion neurons, and with a precise laser beam, we transected the nerve fibers they extended. Cell preparations were continuously visualized for 24 h with time-lapse microscopy. More distal cuts caused a more elongated field of degeneration, while thicker neurites degenerated faster than thinner ones. Transected neurites degenerated more if the uncut neurites of the same neuron simultaneously degenerated. If any of these uncut processes regenerated, the transected neurites underwent less degeneration. Regeneration of neurites was limited to distal cuts. Unipolar neurons had shorter regeneration than multipolar ones. Branching slowed the regenerative process, while simultaneous degeneration of uncut neurites increased it. Proximal lesions, small neuronal size, and extensive and rapid neurite degeneration were predictive of death of an injured neuron, which typically displayed necrotic rather than apoptotic form. In conclusion, this in vitro model proved useful in unmasking many new aspects and correlates of mechanically-induced neurite injury. PMID:20121423
Morphological Asymmetry of the Superior Cervical Facets from C3 through C7 due to Degeneration.
Van Vlasselaer, Nicolas; Van Roy, Peter; Cattrysse, Erik
2017-01-01
Knowledge about facet morphology has already been discussed extensively in literature but is limited regarding asymmetry and its relation to facet degeneration. Facet dimensions, surface area, curvature, and degeneration of the superior facets were measured in 85 dried human vertebrae from the anatomical collection of the Vrije Universiteit Brussel. The vertebrae were analysed using the Microscribe G2X digitizer (Immersion Co., San Jose, CA) and a grading system for the evaluation of cervical facet degeneration. Coordinates were processed mathematically to evaluate articular tropism. The statistical analysis includes the paired t -test and the Pearson correlation. On average, no systematic differences between the left and right facets were found concerning morphology and degeneration. However, there were significant differences regardless of the side-occurrence. There was a significant correlation between the dimensions of the total facet surface and the degree of degeneration but not for the recognizable joint surface. Facet tropism of the upper joint facets occurred often in the cervical spine but without side preference. A bigger difference in degeneration asymmetry was associated with a bigger difference in facet joint dimension asymmetry.
New GABA modulators protect photoreceptor cells from light-induced degeneration in mouse models.
Schur, Rebecca M; Gao, Songqi; Yu, Guanping; Chen, Yu; Maeda, Akiko; Palczewski, Krzysztof; Lu, Zheng-Rong
2018-01-24
No clinically approved therapies are currently available that prevent the onset of photoreceptor death in retinal degeneration. Signaling between retinal neurons is regulated by the release and uptake of neurotransmitters, wherein GABA is the main inhibitory neurotransmitter. In this work, novel 3-chloropropiophenone derivatives and the clinical anticonvulsants tiagabine and vigabatrin were tested to modulate GABA signaling and protect against light-induced retinal degeneration. Abca4 -/- Rdh8 -/- mice, an accelerated model of retinal degeneration, were exposed to intense light after prophylactic injections of one of these compounds. Imaging and functional assessments of the retina indicated that these compounds successfully protected photoreceptor cells from degeneration to maintain a full-visual-field response. Furthermore, these compounds demonstrated a strong safety profile in wild-type mice and did not compromise visual function or damage the retina, despite repeated administration. These results indicate that modulating inhibitory GABA signaling can offer prophylactic protection against light-induced retinal degeneration.-Schur, R. M., Gao, S., Yu, G., Chen, Y., Maeda, A., Palczewski, K., Lu, Z.-R. New GABA modulators protect photoreceptor cells from light-induced degeneration in mouse models.
NASA Astrophysics Data System (ADS)
Cho, Alice; Ratliff, Charles; Sampath, Alapakkam; Weiland, James
2016-04-01
Objective. Here we investigate ganglion cell physiology in healthy and degenerating retina to test its influence on threshold to electrical stimulation. Approach. Age-related Macular Degeneration and Retinitis Pigmentosa cause blindness via outer retinal degeneration. Inner retinal pathways that transmit visual information to the central brain remain intact, so direct electrical stimulation from prosthetic devices offers the possibility for visual restoration. Since inner retinal physiology changes during degeneration, we characterize physiological properties and responses to electrical stimulation in retinal ganglion cells (RGCs) of both wild type mice and the rd10 mouse model of retinal degeneration. Main results. Our aggregate results support previous observations that elevated thresholds characterize diseased retinas. However, a physiology-driven classification scheme reveals distinct sub-populations of ganglion cells with thresholds either normal or strongly elevated compared to wild-type. When these populations are combined, only a weakly elevated threshold with large variance is observed. The cells with normal threshold are more depolarized at rest and exhibit periodic oscillations. Significance. During degeneration, physiological changes in RGCs affect the threshold stimulation currents required to evoke action potentials.
Ardeljan, Daniel; Wang, Yujuan; Park, Stanley; Shen, Defen; Chu, Xi Kathy; Yu, Cheng-Rong; Abu-Asab, Mones; Tuo, Jingsheng; Eberhart, Charles G; Olsen, Timothy W; Mullins, Robert F; White, Gary; Wadsworth, Sam; Scaria, Abraham; Chan, Chi-Chao
2014-01-01
Age-related macular degeneration (AMD) is a common yet complex retinal degeneration that causes irreversible central blindness in the elderly. Pathology is widely believed to follow loss of retinal pigment epithelium (RPE) and photoreceptor degeneration. Here we report aberrant expression of interleukin-17A (IL17A) and the receptor IL17RC in the macula of AMD patients. In vitro, IL17A induces RPE cell death characterized by the accumulation of cytoplasmic lipids and autophagosomes with subsequent activation of pro-apoptotic Caspase-3 and Caspase-9. This pathology is reduced by siRNA knockdown of IL17RC. IL17-dependent retinal degeneration in a mouse model of focal retinal degeneration can be prevented by gene therapy with adeno-associated virus vector encoding soluble IL17 receptor. This intervention rescues RPE and photoreceptors in a MAPK-dependent process. The IL17 pathway plays a key role in RPE and photoreceptor degeneration and could hold therapeutic potential in AMD.
PARTICLE FILTERING WITH SEQUENTIAL PARAMETER LEARNING FOR NONLINEAR BOLD fMRI SIGNALS.
Xia, Jing; Wang, Michelle Yongmei
Analyzing the blood oxygenation level dependent (BOLD) effect in the functional magnetic resonance imaging (fMRI) is typically based on recent ground-breaking time series analysis techniques. This work represents a significant improvement over existing approaches to system identification using nonlinear hemodynamic models. It is important for three reasons. First, instead of using linearized approximations of the dynamics, we present a nonlinear filtering based on the sequential Monte Carlo method to capture the inherent nonlinearities in the physiological system. Second, we simultaneously estimate the hidden physiological states and the system parameters through particle filtering with sequential parameter learning to fully take advantage of the dynamic information of the BOLD signals. Third, during the unknown static parameter learning, we employ the low-dimensional sufficient statistics for efficiency and avoiding potential degeneration of the parameters. The performance of the proposed method is validated using both the simulated data and real BOLD fMRI data.
Characteristics of laser beam focusing with single spherical mirrors during laser treatment
NASA Astrophysics Data System (ADS)
Borkin, A. G.; Drobyazko, S. V.; Kosheleva, G. A.; Pavlovich, Yu. V.; Senatorov, Yu. M.; Fromm, V. A.; Kurchatov, I. V.
1988-04-01
Focusing of a laser beam with a single spherical mirror is analyzed, such a mirror being combined with a rotatable annular plane mirror in a coaxial configuration. Its focal length must be sufficiently large to ensure adequately high power density and to avoid shielding. When the distance from mirror to laser cavity is too large, then the laser beam may degenerate into a nonannular one and its focusing without loss may become unattainable. Tilting the spherical mirror will make this possible, even when the laser beam is not annular, if astigmatism as well as spherical aberration are minimized. Such a focusing mirror made of metal is theoretically shown to be much more effective than a focusing lens made of KC1 crystal; this has been confirmed experimentally in a CO sub 2 laser facility for perforation of tubular seperator meshes.
AxiaLIF system: minimally invasive device for presacral lumbar interbody spinal fusion
Rapp, Steven M; Miller, Larry E; Block, Jon E
2011-01-01
Lumbar fusion is commonly performed to alleviate chronic low back and leg pain secondary to disc degeneration, spondylolisthesis with or without concomitant lumbar spinal stenosis, or chronic lumbar instability. However, the risk of iatrogenic injury during traditional anterior, posterior, and transforaminal open fusion surgery is significant. The axial lumbar interbody fusion (AxiaLIF) system is a minimally invasive fusion device that accesses the lumbar (L4–S1) intervertebral disc spaces via a reproducible presacral approach that avoids critical neurovascular and musculoligamentous structures. Since the AxiaLIF system received marketing clearance from the US Food and Drug Administration in 2004, clinical studies of this device have reported high fusion rates without implant subsidence, significant improvements in pain and function, and low complication rates. This paper describes the design and approach of this lumbar fusion system, details the indications for use, and summarizes the clinical experience with the AxiaLIF system to date. PMID:22915939
AxiaLIF system: minimally invasive device for presacral lumbar interbody spinal fusion.
Rapp, Steven M; Miller, Larry E; Block, Jon E
2011-01-01
Lumbar fusion is commonly performed to alleviate chronic low back and leg pain secondary to disc degeneration, spondylolisthesis with or without concomitant lumbar spinal stenosis, or chronic lumbar instability. However, the risk of iatrogenic injury during traditional anterior, posterior, and transforaminal open fusion surgery is significant. The axial lumbar interbody fusion (AxiaLIF) system is a minimally invasive fusion device that accesses the lumbar (L4-S1) intervertebral disc spaces via a reproducible presacral approach that avoids critical neurovascular and musculoligamentous structures. Since the AxiaLIF system received marketing clearance from the US Food and Drug Administration in 2004, clinical studies of this device have reported high fusion rates without implant subsidence, significant improvements in pain and function, and low complication rates. This paper describes the design and approach of this lumbar fusion system, details the indications for use, and summarizes the clinical experience with the AxiaLIF system to date.
Photochemical restoration of visual responses in blind mice
Polosukhina, Aleksandra; Litt, Jeffrey; Tochitsky, Ivan; Nemargut, Joseph; Sychev, Yivgeny; De Kouchkovsky, Ivan; Huang, Tracy; Borges, Katharine; Trauner, Dirk; Van Gelder, Russell N.; Kramer, Richard H.
2012-01-01
Summary Retinitis pigmentosa (RP) and age-related macular degeneration (AMD) are degenerative blinding diseases caused by the death of rods and cones, leaving the remainder of the visual system intact but largely unable to respond to light. Here we show that, AAQ, a synthetic small molecule photoswitch, can restore light sensitivity to the retina and behavioral responses in vivo in mouse models of RP without exogenous gene delivery. Brief application of AAQ bestows prolonged light sensitivity on multiple types of retinal neurons, resulting in synaptically amplified responses and center-surround antagonism in arrays of retinal ganglion cells (RGCs). Intraocular injection of AAQ restores the pupillary light reflex and locomotory light avoidance responses in mice lacking retinal photoreceptors, indicating reconstitution of light signaling to brain circuits. AAQ and related photoswitch molecules present a new drug strategy for restoring retinal function in degenerative blinding diseases. PMID:22841312
Ocular manifestations of gravity inversion.
Friberg, T R; Weinreb, R N
To determine the ocular manifestations of inverting the human body into a head-down vertical position, we evaluated normal volunteers with applanation tonometry, fundus photography, fluorescein angiography, and ophthalmodynamometry. Compared with data obtained in the sitting position, the intraocular pressure more than doubled on inversion (35.6 +/- 4 v 14.1 +/- 2.8 mm Hg, n = 16), increasing to levels well within the glaucomatous range. Pressures in the central retinal artery underwent similar increases, while the caliber of the retinal arterioles decreased substantially. External ocular findings associated with gravity inversion included orbital congestion, conjunctival hyperemia, petechiae of the eyelids, excessive tearing (epiphora), and subconjunctival hemorrhage. We suggest that patients with retinal vascular abnormalities, macular degeneration, ocular hypertension, glaucoma, and similar disorders refrain from inversion altogether. Whether normal individuals will suffer irreversible damage from inversion is uncertain, but it seems prudent to recommend that prolonged periods of inverted posturing be avoided.
Autophagy and Its Impact on Neurodegenerative Diseases: New Roles for TDP-43 and C9orf72
Budini, Mauricio; Buratti, Emanuele; Morselli, Eugenia; Criollo, Alfredo
2017-01-01
Autophagy is a catabolic mechanism where intracellular material is degraded by vesicular structures called autophagolysosomes. Autophagy is necessary to maintain the normal function of the central nervous system (CNS), avoiding the accumulation of misfolded and aggregated proteins. Consistently, impaired autophagy has been associated with the pathogenesis of various neurodegenerative diseases. The proteins TAR DNA-binding protein-43 (TDP-43), which regulates RNA processing at different levels, and chromosome 9 open reading frame 72 (C9orf72), probably involved in membrane trafficking, are crucial in the development of neurodegenerative diseases such as Amyotrophic lateral sclerosis (ALS) and Frontotemporal Lobar Degeneration (FTLD). Additionally, recent studies have identified a role for these proteins in the control of autophagy. In this manuscript, we review what is known regarding the autophagic mechanism and discuss the involvement of TDP-43 and C9orf72 in autophagy and their impact on neurodegenerative diseases. PMID:28611593
Autophagy and Its Impact on Neurodegenerative Diseases: New Roles for TDP-43 and C9orf72.
Budini, Mauricio; Buratti, Emanuele; Morselli, Eugenia; Criollo, Alfredo
2017-01-01
Autophagy is a catabolic mechanism where intracellular material is degraded by vesicular structures called autophagolysosomes. Autophagy is necessary to maintain the normal function of the central nervous system (CNS), avoiding the accumulation of misfolded and aggregated proteins. Consistently, impaired autophagy has been associated with the pathogenesis of various neurodegenerative diseases. The proteins TAR DNA-binding protein-43 (TDP-43), which regulates RNA processing at different levels, and chromosome 9 open reading frame 72 (C9orf72), probably involved in membrane trafficking, are crucial in the development of neurodegenerative diseases such as Amyotrophic lateral sclerosis (ALS) and Frontotemporal Lobar Degeneration (FTLD). Additionally, recent studies have identified a role for these proteins in the control of autophagy. In this manuscript, we review what is known regarding the autophagic mechanism and discuss the involvement of TDP-43 and C9orf72 in autophagy and their impact on neurodegenerative diseases.
Excimer laser annealing: A gold process for CZ silicon junction formation
NASA Technical Reports Server (NTRS)
Wong, David C.; Bottenberg, William R.; Byron, Stanley; Alexander, Paul
1987-01-01
A cold process using an excimer laser for junction formation in silicon has been evaluated as a way to avoid problems associated with thermal diffusion. Conventional thermal diffusion can cause bulk precipitation of SiOx and SiC or fail to completely activate the dopant, leaving a degenerate layer at the surface. Experiments were conducted to determine the feasibility of fabricating high quality p-n junctions using a pulsed excimer laser for junction formation at remelt temperature with ion-implanted surfaces. Solar-cell efficiency exceeding 16 percent was obtained using Czochralski single-crystal silicon without benefit of back surface field or surface passivation. Characterization shows that the formation of uniform, shallow junctions (approximately 0.25 micron) by excimer laser scanning preserves the minority carrier lifetime that leads to high current collection. However, the process is sensitive to initial surface conditions and handling parameters that drive the cost up.
A new way to make Thorne-Zytkow objects
NASA Technical Reports Server (NTRS)
Leonard, Peter J. T.; Hills, Jack G.; Dewey, Rachel J.
1994-01-01
We have found a new way to make Thorne-Zytkow objects, which are massive stars with degenerate neutron cores. The asymmetric kick given to the neutron star formed when the primary of a massive tight binary system explodes as a supernova sometimes has the appropriate direction and amplitude to place the newly formed neutron star into a bound orbit with a pericenter distance smaller than the radius of the secondary. Consequently, the neutron star becomes embedded in the secondary. Thorne-Zytkow objects are expected to look like extreme M-type supergiants, assuming that they can avoid a runaway neutrino instability. Accretion onto the embedded neutron star will produce either an isolated, spun-up neutron star (possibly a short-period pulsar) or a black hole. Whether neutron star or black hole remnants predominate depends on the lifetime of Thorne-Zytkow objects, the accretion rates involved, and the maximum neutron star mass, none of which are definitively understood.
Kinetic treatment of nonlinear magnetized plasma motions - General geometry and parallel waves
NASA Technical Reports Server (NTRS)
Khabibrakhmanov, I. KH.; Galinskii, V. L.; Verheest, F.
1992-01-01
The expansion of kinetic equations in the limit of a strong magnetic field is presented. This gives a natural description of the motions of magnetized plasmas, which are slow compared to the particle gyroperiods and gyroradii. Although the approach is 3D, this very general result is used only to focus on the parallel propagation of nonlinear Alfven waves. The derivative nonlinear Schroedinger-like equation is obtained. Two new terms occur compared to earlier treatments, a nonlinear term proportional to the heat flux along the magnetic field line and a higher-order dispersive term. It is shown that kinetic description avoids the singularities occurring in magnetohydrodynamic or multifluid approaches, which correspond to the degenerate case of sound speeds equal to the Alfven speed, and that parallel heat fluxes cannot be neglected, not even in the case of low parallel plasma beta. A truly stationary soliton solution is derived.
Gene expression profiling in the hippocampus of learned helpless and nonhelpless rats.
Kohen, R; Kirov, S; Navaja, G P; Happe, H Kevin; Hamblin, M W; Snoddy, J R; Neumaier, J F; Petty, F
2005-01-01
In the learned helplessness (LH) animal model of depression, failure to attempt escape from avoidable environmental stress, LH, indicates behavioral despair, whereas nonhelpless (NH) behavior reflects behavioral resilience to the effects of environmental stress. Comparing hippocampal gene expression with large-scale oligonucleotide microarrays, we found that stress-resilient (NH) rats, although behaviorally indistinguishable from controls, showed a distinct gene expression profile compared to LH, sham stressed, and naïve control animals. Genes that were confirmed as differentially expressed in the NH group by quantitative PCR strongly correlated in their levels of expression across all four animal groups. Differential expression could not be confirmed at the protein level. We identified several shared degenerate sequence motifs in the 3' untranslated region (3'UTR) of differentially expressed genes that could be a factor in this tight correlation of expression levels among differentially expressed genes.
NASA Astrophysics Data System (ADS)
Wang, Hongxiang; Wang, Qi; Bai, Lin; Ji, Yuefeng
2018-01-01
A scheme is proposed to realize the all-optical phase regeneration of four-channel quadrature phase shift keying (QPSK) signal based on phase-sensitive amplification. By utilizing conjugate pump and common pump in a highly nonlinear optical fiber, degenerate four-wave mixing process is observed, and QPSK signals are regenerated. The number of waves is reduced to decrease the cross talk caused by undesired nonlinear interaction during the coherent superposition process. In addition, to avoid the effect of overlapping frequency, frequency spans between pumps and signals are set to be nonintegral multiples. Optical signal-to-noise ratio improvement is validated by bit error rate measurements. Compared with single-channel regeneration, multichannel regeneration brings 0.4-dB OSNR penalty when the value of BER is 10-3, which shows the cross talk in regeneration process is negligible.
On thermal corrections to near-threshold annihilation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Seyong; Laine, M., E-mail: skim@sejong.ac.kr, E-mail: laine@itp.unibe.ch
2017-01-01
We consider non-relativistic ''dark'' particles interacting through gauge boson exchange. At finite temperature, gauge exchange is modified in many ways: virtual corrections lead to Debye screening; real corrections amount to frequent scatterings of the heavy particles on light plasma constituents; mixing angles change. In a certain temperature and energy range, these effects are of order unity. Taking them into account in a resummed form, we estimate the near-threshold spectrum of kinetically equilibrated annihilating TeV scale particles. Weakly bound states are shown to 'melt' below freeze-out, whereas with attractive strong interactions, relevant e.g. for gluinos, bound states boost the annihilation ratemore » by a factor 4 ... 80 with respect to the Sommerfeld estimate, thereby perhaps helping to avoid overclosure of the universe. Modestly non-degenerate dark sector masses and a way to combine the contributions of channels with different gauge and spin structures are also discussed.« less
Spectral thresholds in macular degeneration.
Alvarez, S L; King-Smith, P E; Bhargava, S K
1983-01-01
Spectral sensitivities were measured in 18 normal eyes, 9 eyes in patients with senile macular degeneration, 4 patients with Stargardt's juvenile macular degeneration (JMD), and 2 patients without conclusive signs--that is, genetic or morphological abnormalities--to indicate the cause of loss of central vision. Spectral sensitivity, testing for which included measurements on white, yellow, purple, and blue backgrounds, is here used as an aid in differential diagnosis for cases of macular degeneration. PMID:6871142
Ryu, Robert; Techy, Fernando; Varadarajan, Ravikumar; Amirouche, Farid
2016-02-01
To study effects (stress loads) of lumbar fusion on the remaining segments (adjacent or not) of the lumbar spine in the setting of degenerated adjacent discs. A lumbar spine finite element model was built and validated. The full model of the lumbar spine was a parametric finite element model of segments L 1-5 . Numerous hypothetical combinations of one-level lumbar spine fusion and one-level disc degeneration were created. These models were subjected to 10 Nm flexion and extension moments and the stresses on the endplates and consequently on the intervertebral lumbar discs measured. These values were compared to the stresses on healthy lumbar spine discs under the same load and fusion scenarios. Increased stress at endplates was observed only in the settings of L4-5 fusion and L3-4 disc degeneration (8% stress elevation at L2,3 in flexion or extension, and 25% elevation at L3,4 in flexion only). All other combinations showed less endplate stress than did the control model. For fusion at L3-4 and degeneration at L4-5 , the stresses in the endplates at the adjacent level inferior to the fused disc decreased for both loading disc height reductions. Stresses in flexion decreased after fusion by 29.5% and 25.8% for degeneration I and II, respectively. Results for extension were similar. For fusion at L2-3 and degeneration at L4-5 , stresses in the endplates decreased more markedly at the degenerated (30%), than at the fused level (14%) in the presence of 25% disc height reduction and 10 Nm flexion, whereas in extension stresses decreased more at the fused (24.3%) than the degenerated level (5.86%). For fusion at L3-4 and degeneration at L2-3 , there were no increases in endplate stress in any scenario. For fusion at L4-5 and degeneration at L3-4 , progression of degeneration from I to II had a significant effect only in flexion. A dramatic increase in stress was noted in the endplates of the degenerated disc (L3-4 ) in flexion for degeneration II. Stresses are greater in flexion at the endplates of L3-4 and in flexion and extension at L2-3 in the presence of L3-4 disc disease and L4-5 fusion than in the control group. In all other combinations of fusion and disc disease, endplate stress was less for all levels tested than in the control model. © 2016 Chinese Orthopaedic Association and John Wiley & Sons Australia, Ltd.
Waldenberg, Christian; Hebelka, Hanna; Brisby, Helena; Lagerstrand, Kerstin Magdalena
2018-05-01
Magnetic resonance imaging (MRI) is the best diagnostic imaging method for low back pain. However, the technique is currently not utilized in its full capacity, often failing to depict painful intervertebral discs (IVDs), potentially due to the rough degeneration classification system used clinically today. MR image histograms, which reflect the IVD heterogeneity, may offer sensitive imaging biomarkers for IVD degeneration classification. This study investigates the feasibility of using histogram analysis as means of objective and continuous grading of IVD degeneration. Forty-nine IVDs in ten low back pain patients (six males, 25-69 years) were examined with MRI (T2-weighted images and T2-maps). Each IVD was semi-automatically segmented on three mid-sagittal slices. Histogram features of the IVD were extracted from the defined regions of interest and correlated to Pfirrmann grade. Both T2-weighted images and T2-maps displayed similar histogram features. Histograms of well-hydrated IVDs displayed two separate peaks, representing annulus fibrosus and nucleus pulposus. Degenerated IVDs displayed decreased peak separation, where the separation was shown to correlate strongly with Pfirrmann grade (P < 0.05). In addition, some degenerated IVDs within the same Pfirrmann grade displayed diametrically different histogram appearances. Histogram features correlated well with IVD degeneration, suggesting that IVD histogram analysis is a suitable tool for objective and continuous IVD degeneration classification. As histogram analysis revealed IVD heterogeneity, it may be a clinical tool for characterization of regional IVD degeneration effects. To elucidate the usefulness of histogram analysis in patient management, IVD histogram features between asymptomatic and symptomatic individuals needs to be compared.
Death Receptor 6 Promotes Wallerian Degeneration in Peripheral Axons.
Gamage, Kanchana K; Cheng, Irene; Park, Rachel E; Karim, Mardeen S; Edamura, Kazusa; Hughes, Christopher; Spano, Anthony J; Erisir, Alev; Deppmann, Christopher D
2017-03-20
Axon degeneration during development is required to sculpt a functional nervous system and is also a hallmark of pathological insult, such as injury [1, 2]. Despite similar morphological characteristics, very little overlap in molecular mechanisms has been reported between pathological and developmental degeneration [3-5]. In the peripheral nervous system (PNS), developmental axon pruning relies on receptor-mediated extrinsic degeneration mechanisms to determine which axons are maintained or degenerated [5-7]. Receptors have not been implicated in Wallerian axon degeneration; instead, axon autonomous, intrinsic mechanisms are thought to be the primary driver for this type of axon disintegration [8-10]. Here we survey the role of neuronally expressed, paralogous tumor necrosis factor receptor super family (TNFRSF) members in Wallerian degeneration. We find that an orphan receptor, death receptor 6 (DR6), is required to drive axon degeneration after axotomy in sympathetic and sensory neurons cultured in microfluidic devices. We sought to validate these in vitro findings in vivo using a transected sciatic nerve model. Consistent with the in vitro findings, DR6 -/- animals displayed preserved axons up to 4 weeks after injury. In contrast to phenotypes observed in Wld s and Sarm1 -/- mice, preserved axons in DR6 -/- animals display profound myelin remodeling. This indicates that deterioration of axons and myelin after axotomy are mechanistically distinct processes. Finally, we find that JNK signaling after injury requires DR6, suggesting a link between this novel extrinsic pathway and the axon autonomous, intrinsic pathways that have become established for Wallerian degeneration. Copyright © 2017 Elsevier Ltd. All rights reserved.
The first rapid assessment of avoidable blindness (RAAB) in Thailand.
Isipradit, Saichin; Sirimaharaj, Maytinee; Charukamnoetkanok, Puwat; Thonginnetra, Oraorn; Wongsawad, Warapat; Sathornsumetee, Busaba; Somboonthanakij, Sudawadee; Soomsawasdi, Piriya; Jitawatanarat, Umapond; Taweebanjongsin, Wongsiri; Arayangkoon, Eakkachai; Arame, Punyawee; Kobkoonthon, Chinsuchee; Pangputhipong, Pannet
2014-01-01
The majority of vision loss is preventable or treatable. Population surveys are crucial for planning, implementation, and monitoring policies and interventions to eliminate avoidable blindness and visual impairments. This is the first rapid assessment of avoidable blindness (RAAB) study in Thailand. A cross-sectional study of a population in Thailand age 50 years old or over aimed to assess the prevalence and causes of blindness and visual impairments. Using the Thailand National Census 2010 as the sampling frame, a stratified four-stage cluster sampling based on a probability proportional to size was conducted in 176 enumeration areas from 11 provinces. Participants received comprehensive eye examination by ophthalmologists. The age and sex adjusted prevalence of blindness (presenting visual acuity (VA) <20/400), severe visual impairment (VA <20/200 but ≥20/400), and moderate visual impairment (VA <20/70 but ≥20/200) were 0.6% (95% CI: 0.5-0.8), 1.3% (95% CI: 1.0-1.6), 12.6% (95% CI: 10.8-14.5). There was no significant difference among the four regions of Thailand. Cataract was the main cause of vision loss accounted for 69.7% of blindness. Cataract surgical coverage in persons was 95.1% for cut off VA of 20/400. Refractive errors, diabetic retinopathy, glaucoma, and corneal opacities were responsible for 6.0%, 5.1%, 4.0%, and 2.0% of blindness respectively. Thailand is on track to achieve the goal of VISION 2020. However, there is still much room for improvement. Policy refinements and innovative interventions are recommended to alleviate blindness and visual impairments especially regarding the backlog of blinding cataract, management of non-communicative, chronic, age-related eye diseases such as glaucoma, age-related macular degeneration, and diabetic retinopathy, prevention of childhood blindness, and establishment of a robust eye health information system.
Rapid Assessment of Avoidable Blindness and Diabetic Retinopathy in Gilan Province, Iran.
Katibeh, Marzieh; Behboudi, Hassan; Moradian, Siamak; Alizadeh, Yousef; Beiranvand, Ramin; Sabbaghi, Hamideh; Ahmadieh, Hamid
2017-12-01
To conduct an assessment of avoidable blindness and diabetic retinopathy (DR) in Gilan, 2014. A cross-sectional population-based survey was performed on a representative sample of urban and rural individuals aged ≥50 years of the province. Blindness was defined as presenting visual acuity (PVA) <3/60 in the better eye. Moderate visual impairment (MVI) and severe visual impairment (SVI) were defined as 6/60 ≤ PVA <6/18 and 3/60 ≤ PVA <6/60 in the better eye, respectively. Diabetes mellitus (DM) was determined based on random blood sugar (RBS) levels ≥200 mg/dL or a previous diagnosis. We used the Scottish grading system to grade DR. We invited 2975 individuals from 85 clusters. Age- and sex-adjusted prevalence and 95% confidence interval (CI) of blindness, SVI, MVI, and DM in 2587 participants (response rate: 86.9%) were 1.5% (95% CI: 1.1-2.0), 1.5% (95% CI: 0.9-2.0), 11.3% (95% CI: 9.9-12.7) and 21.4% (95% CI: 19.2-23.7), respectively. The leading causes of blindness were cataract (47.1%), age-related macular degeneration (14.7%) and DR (8.8%). Cataract surgery (CS) coverage was 69.3%. The main challenges for CS were cost and unawareness. The outcome of CS was good in 66.9% of operated eyes. Any DR and/or maculopathy were observed in 25.3% (95% CI: 21.0-29.5) of subjects including 12.6% (95% CI: 9.7-15.6) sight-threatening DR. In previously known DM cases, 215 (41.7%) had never undergone an eye examination for DR. The proportion of avoidable blindness and DR is considerable in Gilan Province.
Arbitrary electron acoustic waves in degenerate dense plasmas
NASA Astrophysics Data System (ADS)
Rahman, Ata-ur; Mushtaq, A.; Qamar, A.; Neelam, S.
2017-05-01
A theoretical investigation is carried out of the nonlinear dynamics of electron-acoustic waves in a collisionless and unmagnetized plasma whose constituents are non-degenerate cold electrons, ultra-relativistic degenerate electrons, and stationary ions. A dispersion relation is derived for linear EAWs. An energy integral equation involving the Sagdeev potential is derived, and basic properties of the large amplitude solitary structures are investigated in such a degenerate dense plasma. It is shown that only negative large amplitude EA solitary waves can exist in such a plasma system. The present analysis may be important to understand the collective interactions in degenerate dense plasmas, occurring in dense astrophysical environments as well as in laser-solid density plasma interaction experiments.
Progress toward the maintenance and repair of degenerating retinal circuitry.
Vugler, Anthony A
2010-01-01
Retinal diseases such as age-related macular degeneration and retinitis pigmentosa remain major causes of severe vision loss in humans. Clinical trials for treatment of retinal degenerations are underway and advancements in our understanding of retinal biology in health/disease have implications for novel therapies. A review of retinal biology is used to inform a discussion of current strategies to maintain/repair neural circuitry in age-related macular degeneration, retinitis pigmentosa, and Type 2 Leber congenital amaurosis. In age-related macular degeneration/retinitis pigmentosa, a progressive loss of rods/cones results in corruption of bipolar cell circuitry, although retinal output neurons/photoreceptive melanopsin cells survive. Visual function can be stabilized/enhanced after treatment in age-related macular degeneration, but in advanced degenerations, reorganization of retinal circuitry may preclude attempts to restore cone function. In Type 2 Leber congenital amaurosis, useful vision can be restored by gene therapy where central cones survive. Remarkable progress has been made in restoring vision to rodents using light-responsive ion channels inserted into bipolar cells/retinal ganglion cells. Advances in genetic, cellular, and prosthetic therapies show varying degrees of promise for treating retinal degenerations. While functional benefits can be obtained after early therapeutic interventions, efforts should be made to minimize circuitry changes as soon as possible after rod/cone loss. Advances in retinal anatomy/physiology and genetic technologies should allow refinement of future reparative strategies.
Ikenaka, Kensuke; Kawai, Kaori; Katsuno, Masahisa; Huang, Zhe; Jiang, Yue-Mei; Iguchi, Yohei; Kobayashi, Kyogo; Kimata, Tsubasa; Waza, Masahiro; Tanaka, Fumiaki; Mori, Ikue; Sobue, Gen
2013-01-01
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the progressive loss of motor neurons. We previously showed that the expression of dynactin 1, an axon motor protein regulating retrograde transport, is markedly reduced in spinal motor neurons of sporadic ALS patients, although the mechanisms by which decreased dynactin 1 levels cause neurodegeneration have yet to be elucidated. The accumulation of autophagosomes in degenerated motor neurons is another key pathological feature of sporadic ALS. Since autophagosomes are cargo of dynein/dynactin complexes and play a crucial role in the turnover of several organelles and proteins, we hypothesized that the quantitative loss of dynactin 1 disrupts the transport of autophagosomes and induces the degeneration of motor neuron. In the present study, we generated a Caenorhabditis elegans model in which the expression of DNC-1, the homolog of dynactin 1, is specifically knocked down in motor neurons. This model exhibited severe motor defects together with axonal and neuronal degeneration. We also observed impaired movement and increased number of autophagosomes in the degenerated neurons. Furthermore, the combination of rapamycin, an activator of autophagy, and trichostatin which facilitates axonal transport dramatically ameliorated the motor phenotype and axonal degeneration of this model. Thus, our results suggest that decreased expression of dynactin 1 induces motor neuron degeneration and that the transport of autophagosomes is a novel and substantial therapeutic target for motor neuron degeneration. PMID:23408943
Retrograde and Wallerian Axonal Degeneration Occur Synchronously after Retinal Ganglion Cell Axotomy
Kanamori, Akiyasu; Catrinescu, Maria-Magdalena; Belisle, Jonathan M.; Costantino, Santiago; Levin, Leonard A.
2013-01-01
Axonal injury and degeneration are pivotal pathological events in diseases of the nervous system. In the past decade, it has been recognized that the process of axonal degeneration is distinct from somal degeneration and that axoprotective strategies may be distinct from those that protect the soma. Preserving the cell body via neuroprotection cannot improve function if the axon is damaged, because the soma is still disconnected from its target. Therefore, understanding the mechanisms of axonal degeneration is critical for developing new therapeutic interventions for axonal disease treatment. We combined in vivo imaging with a multilaser confocal scanning laser ophthalmoscope and in vivo axotomy with a diode-pumped solid-state laser to assess the time course of Wallerian and retrograde degeneration of unmyelinated retinal ganglion cell axons in living rats for 4 weeks after intraretinal axotomy. Laser injury resulted in reproducible axon loss both distal and proximal to the site of injury. Longitudinal polarization-sensitive imaging of axons demonstrated that Wallerian and retrograde degeneration occurred synchronously. Neurofilament immunostaining of retinal whole-mounts confirmed axonal loss and demonstrated sparing of adjacent axons to the axotomy site. In vivo fluorescent imaging of axonal transport and photobleaching of labeled axons demonstrated that the laser axotomy model did not affect adjacent axon function. These results are consistent with a shared mechanism for Wallerian and retrograde degeneration. PMID:22642911
Ernest Borgnine Lays it on the Line Hollywood Hero Focuses on Macular Degeneration
... it on the Line Hollywood Hero Focuses on Macular Degeneration Past Issues / Summer 2008 Table of Contents For ... going strong at 91, and speaking out on macular degeneration for the National Eye Institute. Photo courtesy of ...
NASA Technical Reports Server (NTRS)
Lin, S. S.; Lauer, M. S.; Asher, C. R.; Cosgrove, D. M.; Blackstone, E.; Thomas, J. D.; Garcia, M. J.
2001-01-01
OBJECTIVES: We sought to develop and validate a model that estimates the risk of obstructive coronary artery disease in patients undergoing operations for mitral valve degeneration and to demonstrate its potential clinical utility. METHODS: A total of 722 patients (67% men; age, 61 +/- 12 years) without a history of myocardial infarction, ischemic electrocardiographic changes, or angina who underwent routine coronary angiography before mitral valve prolapse operations between 1989 and 1996 were analyzed. A bootstrap-validated logistic regression model on the basis of clinical risk factors was developed to identify low-risk (< or =5%) patients. Obstructive coronary atherosclerosis was defined as 50% or more luminal narrowing in one or more major epicardial vessels, as determined by means of coronary angiography. RESULTS: One hundred thirty-nine (19%) patients had obstructive coronary atherosclerosis. Independent predictors of coronary artery disease include age, male sex, hypertension, diabetes mellitus,and hyperlipidemia. Two hundred twenty patients were designated as low risk according to the logistic model. Of these patients, only 3 (1.3%) had single-vessel disease, and none had multivessel disease. The model showed good discrimination, with an area under the receiver-operating characteristic curve of 0.84. Cost analysis indicated that application of this model could safely eliminate 30% of coronary angiograms, corresponding to cost savings of $430,000 per 1000 patients without missing any case of high-risk coronary artery disease. CONCLUSION: A model with standard clinical predictors can reliably estimate the prevalence of obstructive coronary atherosclerosis in patients undergoing mitral valve prolapse operations. This model can identify low-risk patients in whom routine preoperative angiography may be safely avoided.
Gaub, Benjamin M.; Berry, Michael H.; Holt, Amy E.; Reiner, Andreas; Kienzler, Michael A.; Dolgova, Natalia; Nikonov, Sergei; Aguirre, Gustavo D.; Beltran, William A.; Flannery, John G.; Isacoff, Ehud Y.
2014-01-01
Most inherited forms of blindness are caused by mutations that lead to photoreceptor cell death but spare second- and third-order retinal neurons. Expression of the light-gated excitatory mammalian ion channel light-gated ionotropic glutamate receptor (LiGluR) in retinal ganglion cells (RGCs) of the retina degeneration (rd1) mouse model of blindness was previously shown to restore some visual functions when stimulated by UV light. Here, we report restored retinal function in visible light in rodent and canine models of blindness through the use of a second-generation photoswitch for LiGluR, maleimide-azobenzene-glutamate 0 with peak efficiency at 460 nm (MAG0460). In the blind rd1 mouse, multielectrode array recordings of retinal explants revealed robust and uniform light-evoked firing when LiGluR-MAG0460 was targeted to RGCs and robust but diverse activity patterns in RGCs when LiGluR-MAG0460 was targeted to ON-bipolar cells (ON-BCs). LiGluR-MAG0460 in either RGCs or ON-BCs of the rd1 mouse reinstated innate light-avoidance behavior and enabled mice to distinguish between different temporal patterns of light in an associative learning task. In the rod-cone dystrophy dog model of blindness, LiGluR-MAG0460 in RGCs restored robust light responses to retinal explants and intravitreal delivery of LiGluR and MAG0460 was well tolerated in vivo. The results in both large and small animal models of photoreceptor degeneration provide a path to clinical translation. PMID:25489083
Photovoltaic restoration of sight in rodents with retinal degeneration (Conference Presentation)
NASA Astrophysics Data System (ADS)
Palanker, Daniel V.
2017-02-01
To restore vision in patients who lost their photoreceptors due to retinal degeneration, we developed a photovoltaic subretinal prosthesis which converts light into pulsed electric current, stimulating the nearby inner retinal neurons. Visual information is projected onto the retina by video goggles using pulsed near-infrared ( 900nm) light. This design avoids the use of bulky electronics and wiring, thereby greatly reducing the surgical complexity. Optical activation of the photovoltaic pixels allows scaling the implants to thousands of electrodes, and multiple modules can be tiled under the retina to expand the visual field. We found that similarly to normal vision, retinal response to prosthetic stimulation exhibits flicker fusion at high frequencies (>20Hz), adaptation to static images, and non-linear summation of subunits in the receptive fields. Photovoltaic arrays with 70um pixels restored visual acuity up to a single pixel pitch, which is only two times lower than natural acuity in rats. If these results translate to human retina, such implants could restore visual acuity up to 20/250. With eye scanning and perceptual learning, human patients might even cross the 20/200 threshold of legal blindness. In collaboration with Pixium Vision, we are preparing this system (PRIMA) for a clinical trial. To further improve visual acuity, we are developing smaller pixels - down to 40um, and on 3-D interface to improve proximity to the target neurons. Scalability, ease of implantation and tiling of these wireless modules to cover a large visual field, combined with high resolution opens the door to highly functional restoration of sight.
Le Maitre, Christine L; Richardson, Stephen M A; Baird, Pauline; Freemont, Anthony J; Hoyland, Judith A
2005-12-01
Low back pain (LBP) is a common, debilitating and economically important disorder. Current evidence implicates loss of intervertebral disc (IVD) matrix consequent upon 'degeneration' as a major cause of LBP. Degeneration of the IVD involves increases in degradative enzymes and decreases in the extracellular matrix (ECM) component in a process that is controlled by a range of cytokines and growth factors. Studies have suggested using anabolic growth factors to regenerate the normal matrix of the IVD, hence restoring disc height and reversing degenerative disc disease. However, for such therapies to be successful it is vital that the target cells (i.e. the disc cells) express the appropriate receptors. This immunohistochemical study has for the first time investigated the expression and localization of four potentially beneficial growth factor receptors (i.e. TGFbetaRII, BMPRII, FGFR3 and IGFRI) in non-degenerate and degenerate human IVDs. Receptor expression was quantified across regions of the normal and degenerate disc and showed that cells of the nucleus pulposus (NP) and inner annulus fibrosus (IAF) expressed significantly higher levels of the four growth factor receptors investigated. There were no significant differences between the four growth factor expression in non-degenerate and degenerate biopsies. However, expression of TGFbetaRII, FGFR3 and IGFRI, but not BMP RII, were observed in the ingrowing blood vessels that characterize part of the disease aetiology. In conclusion, this study has demonstrated the expression of the four growth factor receptors at similar levels in the chondrocyte-like cells of the NP and IAF in both non-degenerate and degenerate discs, implicating a role in normal disc homeostasis and suggesting that the application of these growth factors to the degenerate human IVD would stimulate matrix production. However, the expression of some of the growth factor receptors on ingrowing blood vessels might be problematic in a therapeutic approach. Copyright 2005 Pathological Society of Great Britain and Ireland.
Skalicky, Simon E; Fenwick, Eva; Martin, Keith R; Crowston, Jonathan; Goldberg, Ivan; McCluskey, Peter
2016-07-01
The aim of the study is to measure the impact of age-related macular degeneration on vision-related activity limitation and preference-based status for glaucoma patients. This was a cross-sectional study. Two-hundred glaucoma patients of whom 73 had age-related macular degeneration were included in the research. Sociodemographic information, visual field parameters and visual acuity were collected. Age-related macular degeneration was scored using the Age-Related Eye Disease Study system. The Rasch-analysed Glaucoma Activity Limitation-9 and the Visual Function Questionnaire Utility Index measured vision-related activity limitation and preference-based status, respectively. Regression models determined factors predictive of vision-related activity limitation and preference-based status. Differential item functioning compared Glaucoma Activity Limitation-9 item difficulty for those with and without age-related macular degeneration. Mean age was 73.7 (±10.1) years. Lower better eye mean deviation (β: 1.42, 95% confidence interval: 1.24-1.63, P < 0.001) and age-related macular degeneration (β: 1.26 95% confidence interval: 1.10-1.44, P = 0.001) were independently associated with worse vision-related activity limitation. Worse eye visual acuity (β: 0.978, 95% confidence interval: 0.961-0.996, P = 0.018), high risk age-related macular degeneration (β: 0.981, 95% confidence interval: 0.965-0.998, P = 0.028) and severe glaucoma (β: 0.982, 95% confidence interval: 0.966-0.998, P = 0.032) were independently associated with worse preference-based status. Glaucoma patients with age-related macular degeneration found using stairs, walking on uneven ground and judging distances of foot to step/curb significantly more difficult than those without age-related macular degeneration. Vision-related activity limitation and preference-based status are negatively impacted by severe glaucoma and age-related macular degeneration. Patients with both conditions perceive increased difficulty walking safely compared with patients with glaucoma alone. © 2015 Royal Australian and New Zealand College of Ophthalmologists.
Identification of Degenerate Nuclei and Development of a SCAR Marker for Flammulina velutipes
Kim, Sun Young; Kim, Kyung-Hee; Im, Chak Han; Ali, Asjad; Lee, Chang Yun; Kong, Won-Sik; Ryu, Jae-San
2014-01-01
Flammulina velutipes is one of the major edible mushrooms in the world. Recently, abnormalities that have a negative impact on crop production have been reported in this mushroom. These symptoms include slow vegetative growth, a compact mycelial mat, and few or even no fruiting bodies. The morphologies and fruiting capabilities of monokaryons of wild-type and degenerate strains that arose through arthrospore formation were investigated through test crossing. Only one monokaryotic group of the degenerate strains and its hybrid strains showed abnormal phenotypes. Because the monokaryotic arthrospore has the same nucleus as the parent strain, these results indicated that only one aberrant nucleus of the two nuclei in the degenerate strain was responsible for the degeneracy. A sequence-characterized amplified region marker that is linked to the degenerate monokaryon was identified based on a polymorphic sequence that was generated using random primers. Comparative analyses revealed the presence of a degenerate-specific genomic region in a telomere, which arose via the transfer of a genomic fragment harboring a putative helicase gene. Our findings have narrowed down the potential molecular targets responsible for this phenotype for future studies and have provided a marker for the detection of degenerate strains. PMID:25221949
Axonal Degeneration Is Mediated by the Mitochondrial Permeability Transition Pore
Barrientos, Sebastian A.; Martinez, Nicolas W.; Yoo, Soonmoon; Jara, Juan S.; Zamorano, Sebastian; Hetz, Claudio; Twiss, Jeffery L.; Alvarez, Jaime; Court, Felipe A.
2011-01-01
Axonal degeneration is an active process that has been associated with neurodegenerative conditions triggered by mechanical, metabolic, infectious, toxic, hereditary and inflammatory stimuli. This degenerative process can cause permanent loss of function, so it represents a focus for neuroprotective strategies. Several signaling pathways are implicated in axonal degeneration, but identification of an integrative mechanism for this self-destructive process has remained elusive. Here, we show that rapid axonal degeneration triggered by distinct mechanical and toxic insults is dependent on the activation of the mitochondrial permeability transition pore (mPTP). Both pharmacological and genetic targeting of cyclophilin D, a functional component of the mPTP, protects severed axons and vincristine-treated neurons from axonal degeneration in ex vivo and in vitro mouse and rat model systems. These effects were observed in axons from both the peripheral and central nervous system. Our results suggest that the mPTP is a key effector of axonal degeneration, upon which several independent signaling pathways converge. Since axonal and synapse degeneration are increasingly considered early pathological events in neurodegeneration, our work identifies a potential target for therapeutic intervention in a wide variety of conditions that lead to loss of axons and subsequent functional impairment. PMID:21248121
Morphological Asymmetry of the Superior Cervical Facets from C3 through C7 due to Degeneration
Van Roy, Peter
2017-01-01
Introduction Knowledge about facet morphology has already been discussed extensively in literature but is limited regarding asymmetry and its relation to facet degeneration. Method Facet dimensions, surface area, curvature, and degeneration of the superior facets were measured in 85 dried human vertebrae from the anatomical collection of the Vrije Universiteit Brussel. The vertebrae were analysed using the Microscribe G2X digitizer (Immersion Co., San Jose, CA) and a grading system for the evaluation of cervical facet degeneration. Coordinates were processed mathematically to evaluate articular tropism. The statistical analysis includes the paired t-test and the Pearson correlation. Results On average, no systematic differences between the left and right facets were found concerning morphology and degeneration. However, there were significant differences regardless of the side-occurrence. There was a significant correlation between the dimensions of the total facet surface and the degree of degeneration but not for the recognizable joint surface. Conclusions Facet tropism of the upper joint facets occurred often in the cervical spine but without side preference. A bigger difference in degeneration asymmetry was associated with a bigger difference in facet joint dimension asymmetry. PMID:29359153
Rastogi, Neelesh; Smith, R Theodore
2016-01-01
Age-related macular degeneration is the leading cause of adult blindness in the developed world. Thus, major endeavors to understand the risk factors and pathogenesis of this disease have been undertaken. Reticular macular disease is a proposed subtype of age-related macular degeneration correlating histologically with subretinal drusenoid deposits located between the retinal pigment epithelium and the inner segment ellipsoid zone. Reticular lesions are more prevalent in females and in older age groups and are associated with a higher mortality rate. Risk factors for developing age-related macular degeneration include hypertension, smoking, and angina. Several genes related to increased risk for age-related macular degeneration and reticular macular disease are also associated with cardiovascular disease. Better understanding of the clinical and genetic risk factors for age-related macular degeneration and reticular macular disease has led to the hypothesis that these eye diseases are systemic. A systemic origin may help to explain why reticular disease is diagnosed more frequently in females as males suffer cardiovascular mortality at an earlier age, before the age of diagnosis of reticular macular disease and age-related macular degeneration. Copyright © 2015 Elsevier Inc. All rights reserved.
Machalińska, Anna
2013-01-01
Age-related macular degeneration is the leading cause of irreversible visual impairment and disability among the elderly in developed countries. There is compelling evidence that atherosclerosis and age-related macular degeneration share a similar pathogenic process. The association between atherosclerosis and age-related macular degeneration has been inferred from histological, biochemical and epidemiological studies. Many published data indicate that drusen are similar in molecular composition to plaques in atherosclerosis. Furthermore, a great body of evidence has emerged over the past decade that implicates the chronic inflammatory processes in the pathogenesis and progression of both disorders. We speculate that vascular atherosclerosis and age-related macular degeneration may represent different manifestations of the same disease induced by a pathologic tissue response to the damage caused by oxidative stress and local ischemia. In this review, we characterise in detail a strong association between age-related macular degeneration and atherosclerosis development, and we postulate the hypothesis that age-related macular degeneration is a local manifestation of a systemic disease. This provides a new approach for understanding the aspects of pathogenesis and might improve the prevention and treatment of both diseases which both result from ageing of the human body.
[Tauopathy and Alzheimer disease: a full degenerating process].
Buée, Luc; Delacourte, André
2006-12-01
Neurofibrillary degeneration is well correlated to the clinical signs of Alzheimer disease. However, the amyloid cascade is so well established in the scientific and medical community that the role of neurofibrillary degeneration in Alzheimer's disease etiopathogenesis is often underestimated. However, neuronal vulnerability is clearly a key factor for facilitating the amyloid pathology which allows the propagation of the degenerating process. In the present work, the role of tau pathology as both diagnostic marker and therapeutic target is highlighted in Alzheimer disease and related disorders.
[Current concepts in pathogenesis of age-related macular degeneration].
Kubicka-Trząska, Agnieszka; Karska-Basta, Izabella; Romanowska-Dixon, Bożena
2014-01-01
Age-related macular degeneration is the leading cause of central blindness in elderly population of the western world. The pathogenesis of this disease, likely multifactorial, is not well known, although a number of theories have been put forward, including oxidative stress, genetic interactions, hemodynamic imbalance, immune and inflammatory processes. The understanding of age-related macular degeneration pathogenesis will give rise to new approaches in prevention and treatment of the early and late stages of both atrophic and neovascular age-related macular degeneration.
NASA Astrophysics Data System (ADS)
Chattopadhyay, Sudip; Pahari, Dola; Mukherjee, Debashis; Mahapatra, Uttam Sinha
2004-04-01
The traditional multireference (MR) coupled-cluster (CC) methods based on the effective Hamiltonian are often beset by the problem of intruder states, and are not suitable for studying potential energy surface (PES) involving real or avoided curve crossing. State-specific MR-based approaches obviate this limitation. The state-specific MRCC (SS-MRCC) method developed some years ago [Mahapatra et al., J. Chem. Phys. 110, 6171 (1999)] can handle quasidegeneracy of varying degrees over a wide range of PES, including regions of real or avoided curve-crossing. Motivated by its success, we have suggested and explored in this paper a suite of physically motivated coupled electron-pair approximations (SS-MRCEPA) like methods, which are designed to capture the essential strength of the parent SS-MRCC method without significant sacrificing its accuracy. These SS-MRCEPA theories, like their CC counterparts, are based on complete active space, treat all the reference functions on the same footing and provide a description of potentially uniform precision of PES of states with varying MR character. The combining coefficients of the reference functions are self-consistently determined along with the cluster amplitudes themselves. The newly developed SS-MRCEPA methods are size-extensive, and are also size-consistent with localized orbitals. Among the various versions, there are two which are invariant with respect to the restricted rotations among doubly occupied and active orbitals separately. Similarity of performance of this latter and the noninvariant versions at the crossing points of the degenerate orbitals imply that the all the methods presented are rather robust with respect to the rotations among degenerate orbitals. Illustrative numerical applications are presented for PES of the ground state of a number of difficult test cases such as the model H4, H8 problems, the insertion of Be into H2, and Li2, where intruders exist and for a state of a molecule such as CH2, with pronounced MR character. Results obtained with SS-MRCEPA methods are found to be comparable in accuracy to the parent SS-MRCC and FCI/large scale CI results throughout the PES, which indicates the efficacy of our SS-MRCEPA methods over a wide range of geometries, despite their neglect of a host of complicated nonlinear terms, even when the traditional MR-based methods based on effective Hamiltonians fail due to intruders.
Lou, Chao; Xiang, Guangheng; Weng, Qiaoyou; Chen, Zhaojie; Chen, Deheng; Wang, Qingqing; Zhang, Di; Zhou, Bin; He, Dengwei; Chen, Hongliang
2016-11-01
The purpose of this study was to investigate the association between menopause and severity of knee joint cartilage degeneration using a magnetic resonance imaging-based six-level grading system, with six cartilage surfaces, the medial and lateral femoral condyle, the femoral trochlea, the medial and lateral tibia plateau, and the patella. The study cohort comprised 860 healthy women (age 36-83 y), and 5,160 cartilage surfaces were analyzed. Age, weight, height, age at natural menopause, and years since menopause (YSM) were obtained. Cartilage degeneration was assessed using a magnetic resonance imaging-based six-level grading system. After removing the age, height, and weight effects, postmenopausal women had more severe cartilage degeneration than pre- and perimenopausal women (P < 0.001). A positive trend was observed between YSM and severity of cartilage degeneration (P < 0.05). Postmenopausal women were divided into seven subgroups by every five YSM. When YSM was less than 25 years, the analysis of covariance indicated a significant difference in medial tibia plateau, medial femoral condyle, trochlea, patella, and total surfaces (P < 0.05 or 0.01) between every two groups. When YSM was more than 25 years, the significant difference, however, disappeared in these four surfaces (P > 0.05). No significant difference was observed in lateral tibia plateau and lateral femoral condyle in postmenopausal women. Menopause is associated with cartilage degeneration of knee joint. After menopause, cartilage showed progressive severe degeneration that occurred in the first 25 YSM, suggesting estrogen deficiency might be a risk factor of cartilage degeneration of the knee joint. Further studies are needed to investigate whether age or menopause plays a more important role in the progression of cartilage degeneration in the knee joint.
A systematic review of definitions and classification systems of adjacent segment pathology.
Kraemer, Paul; Fehlings, Michael G; Hashimoto, Robin; Lee, Michael J; Anderson, Paul A; Chapman, Jens R; Raich, Annie; Norvell, Daniel C
2012-10-15
Systematic review. To undertake a systematic review to determine how "adjacent segment degeneration," "adjacent segment disease," or clinical pathological processes that serve as surrogates for adjacent segment pathology are classified and defined in the peer-reviewed literature. Adjacent segment degeneration and adjacent segment disease are terms referring to degenerative changes known to occur after reconstructive spine surgery, most commonly at an immediately adjacent functional spinal unit. These can include disc degeneration, instability, spinal stenosis, facet degeneration, and deformity. The true incidence and clinical impact of degenerative changes at the adjacent segment is unclear because there is lack of a universally accepted classification system that rigorously addresses clinical and radiological issues. A systematic review of the English language literature was undertaken and articles were classified using the Grades of Recommendation Assessment, Development, and Evaluation criteria. RESULTS.: Seven classification systems of spinal degeneration, including degeneration at the adjacent segment, were identified. None have been evaluated for reliability or validity specific to patients with degeneration at the adjacent segment. The ways in which terms related to adjacent segment "degeneration" or "disease" are defined in the peer-reviewed literature are highly variable. On the basis of the systematic review presented in this article, no formal classification system for either cervical or thoracolumbar adjacent segment disorders currently exists. No recommendations regarding the use of current classification of degeneration at any segments can be made based on the available literature. A new comprehensive definition for adjacent segment pathology (ASP, the now preferred terminology) has been proposed in this Focus Issue, which reflects the diverse pathology observed at functional spinal units adjacent to previous spinal reconstruction and balances detailed stratification with clinical utility. A comprehensive classification system is being developed through expert opinion and will require validation as well as peer review. Strength of Statement: Strong.
A Transcriptional Program for Arbuscule Degeneration during AM Symbiosis Is Regulated by MYB1.
Floss, Daniela S; Gomez, S Karen; Park, Hee-Jin; MacLean, Allyson M; Müller, Lena M; Bhattarai, Kishor K; Lévesque-Tremblay, Veronique; Maldonado-Mendoza, Ignacio E; Harrison, Maria J
2017-04-24
During the endosymbiosis formed between plants and arbuscular mycorrhizal (AM) fungi, the root cortical cells are colonized by branched hyphae called arbuscules, which function in nutrient exchange with the plant [1]. Despite their positive function, arbuscules are ephemeral structures, and their development is followed by a degeneration phase, in which the arbuscule and surrounding periarbuscular membrane and matrix gradually disappear from the root cell [2, 3]. Currently, the root cell's role in this process and the underlying regulatory mechanisms are unknown. Here, by using a Medicago truncatula pt4 mutant in which arbuscules degenerate prematurely [4], we identified arbuscule degeneration-associated genes, of which 38% are predicted to encode secreted hydrolases, suggesting a role in disassembly of the arbuscule and interface. Through RNAi and analysis of an insertion mutant, we identified a symbiosis-specific MYB-like transcription factor (MYB1) that suppresses arbuscule degeneration in mtpt4. In myb1, expression of several degeneration-associated genes is reduced. Conversely, in roots constitutively overexpressing MYB1, expression of degeneration-associated genes is increased and subsequent development of symbiosis is impaired. MYB1-regulated gene expression is enhanced by DELLA proteins and is dependent on NSP1 [5], but not NSP2 [6]. Furthermore, MYB1 interacts with DELLA and NSP1. Our data identify a transcriptional program for arbuscule degeneration and reveal that its regulators include MYB1 in association with two transcriptional regulators, NSP1 and DELLA, both of which function in preceding phases of the symbiosis. We propose that the combinatorial use of transcription factors enables the sequential expression of transcriptional programs for arbuscule development and degeneration. Copyright © 2017 Elsevier Ltd. All rights reserved.
Rico, Andreu; Sabater, Consuelo; Castillo, María-Ángeles
2016-05-01
The toxicity of five pesticides typically used in rice farming (trichlorfon, dimethoate, carbendazim, tebuconazole and prochloraz) was evaluated on different lethal and sub-lethal endpoints of the earthworm Eisenia fetida. The evaluated endpoints included: avoidance behaviour after an exposure period of 2 days; and mortality, weight loss, enzymatic activities (cholinesterase, lactate dehydrogenase and alkaline phosphatase) and histopathological effects after an exposure period of 14 days. Carbendazim was found to be highly toxic to E. fetida (LC50=2mg/kg d.w.), significantly reducing earthworm weight and showing an avoidance response at soil concentrations that are close to those predicted in rice-fields and in surrounding ecosystems. The insecticide dimethoate showed a moderate acute toxicity (LC50=28mg/kg d.w.), whereas the rest of tested pesticides showed low toxicity potential (LC50 values above 100mg/kg d.w.). For these pesticides, however, weight loss was identified as a sensitive endpoint, with NOEC values approximately 2 times or lower than the calculated LC10 values. The investigated effects on the enzymatic activities of E. fetida and the observed histopathological alterations (longitudinal and circular muscle lesions, edematous tissues, endothelial degeneration and necrosis) proved to be sensitive biomarkers to monitor pesticide contamination and are proposed as alternative measures to evaluate pesticide risks on agro-ecosystems. Copyright © 2016 Elsevier Inc. All rights reserved.
Compression etiology in tendinopathy.
Almekinders, Louis C; Weinhold, Paul S; Maffulli, Nicola
2003-10-01
Recent studies have emphasized that the etiology of tendinopathy is not as simple as was once thought. The etiology is likely to be multifactorial. Etiologic factors may include some of the traditional factors such as overuse, inflexibility, and equipment problems; however, other factors need to be considered as well, such as age-related tendon degeneration and biomechanical considerations as outlined in this article. More research is needed to determine the significance of stress-shielding and compression in tendinopathy. If they are confirmed to play a role, this finding may significantly alter our approach in both prevention and in treatment through exercise therapy. The current biomechanical studies indicate that certain joint positions are more likely to place tensile stress on the area of the tendon commonly affected by tendinopathy. These joint positions seem to be different than the traditional positions for stretching exercises used for prevention and rehabilitation of tendinopathic conditions. Incorporation of different joint positions during stretching exercises may exert more uniform, controlled tensile stress on these affected areas of the tendon and avoid stresshielding. These exercises may be able to better maintain the mechanical strength of that region of the tendon and thereby avoid injury. Alternatively, they could more uniformly stress a healing area of the tendon in a controlled manner, and thereby stimulate healing once an injury has occurred. Additional work will have to prove if a change in rehabilitation exercises is more efficacious that current techniques.
Mechanisms of Distal Axonal Degeneration in Peripheral Neuropathies
Cashman, Christopher R.; Höke, Ahmet
2015-01-01
Peripheral neuropathy is a common complication of a variety of diseases and treatments, including diabetes, cancer chemotherapy, and infectious causes (HIV, hepatitis C, and Campylobacter jejuni). Despite the fundamental difference between these insults, peripheral neuropathy develops as a combination of just six primary mechanisms: altered metabolism, covalent modification, altered organelle function and reactive oxygen species formation, altered intracellular and inflammatory signaling, slowed axonal transport, and altered ion channel dynamics and expression. All of these pathways converge to lead to axon dysfunction and symptoms of neuropathy. The detailed mechanisms of axon degeneration itself have begun to be elucidated with studies of animal models with altered degeneration kinetics, including the slowed Wallerian degeneration (Wlds) and Sarmknockout animal models. These studies have shown axonal degeneration to occur througha programmed pathway of injury signaling and cytoskeletal degradation. Insights into the common disease insults that converge on the axonal degeneration pathway promise to facilitate the development of therapeutics that may be effective against other mechanisms of neurodegeneration. PMID:25617478
Notochord Cells in Intervertebral Disc Development and Degeneration
McCann, Matthew R.; Séguin, Cheryle A.
2016-01-01
The intervertebral disc is a complex structure responsible for flexibility, multi-axial motion, and load transmission throughout the spine. Importantly, degeneration of the intervertebral disc is thought to be an initiating factor for back pain. Due to a lack of understanding of the pathways that govern disc degeneration, there are currently no disease-modifying treatments to delay or prevent degenerative disc disease. This review presents an overview of our current understanding of the developmental processes that regulate intervertebral disc formation, with particular emphasis on the role of the notochord and notochord-derived cells in disc homeostasis and how their loss can result in degeneration. We then describe the role of small animal models in understanding the development of the disc and their use to interrogate disc degeneration and associated pathologies. Finally, we highlight essential development pathways that are associated with disc degeneration and/or implicated in the reparative response of the tissue that might serve as targets for future therapeutic approaches. PMID:27252900
Reprogramming the metabolome rescues retinal degeneration.
Park, Karen Sophia; Xu, Christine L; Cui, Xuan; Tsang, Stephen H
2018-05-01
Metabolomics studies in the context of ophthalmology have largely focused on identifying metabolite concentrations that characterize specific retinal diseases. Studies involving mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy have shown that individuals suffering from retinal diseases exhibit metabolic profiles that markedly differ from those of control individuals, supporting the notion that metabolites may serve as easily identifiable biomarkers for specific conditions. An emerging branch of metabolomics resulting from biomarker studies, however, involves the study of retinal metabolic dysfunction as causes of degeneration. Recent publications have identified a number of metabolic processes-including but not limited to glucose and oxygen metabolism-that, when perturbed, play a role in the degeneration of photoreceptor cells. As a result, such studies have led to further research elucidating methods for prolonging photoreceptor survival in an effort to halt degeneration in its early stages. This review will explore the ways in which metabolomics has deepened our understanding of the causes of retinal degeneration and discuss how metabolomics can be used to prevent retinal degeneration from progressing to its later disease stages.
A neuroprotective agent that inactivates prodegenerative TrkA and preserves mitochondria
Feinberg, Konstantin; Kolaj, Adelaida; Wu, Chen; Grinshtein, Natalie; Krieger, Jonathan R.; Moran, Michael F.; Rubin, Lee L.
2017-01-01
Axon degeneration is an early event and pathological in neurodegenerative conditions and nerve injuries. To discover agents that suppress neuronal death and axonal degeneration, we performed drug screens on primary rodent neurons and identified the pan-kinase inhibitor foretinib, which potently rescued sympathetic, sensory, and motor wt and SOD1 mutant neurons from trophic factor withdrawal-induced degeneration. By using primary sympathetic neurons grown in mass cultures and Campenot chambers, we show that foretinib protected neurons by suppressing both known degenerative pathways and a new pathway involving unliganded TrkA and transcriptional regulation of the proapoptotic BH3 family members BimEL, Harakiri,and Puma, culminating in preservation of mitochondria in the degenerative setting. Foretinib delayed chemotherapy-induced and Wallerian axonal degeneration in culture by preventing axotomy-induced local energy deficit and preserving mitochondria, and peripheral Wallerian degeneration in vivo. These findings identify a new axon degeneration pathway and a potentially clinically useful therapeutic drug. PMID:28877995
DeLucca, John F.; Peloquin, John M.; Smith, Lachlan J.; Wright, Alexander C.; Vresilovic, Edward J.; Elliott, Dawn M.
2017-01-01
Geometry is an important indicator of disc mechanical function and degeneration. While the geometry and associated degenerative changes in the nucleus pulposus and the annulus fibrosus are well-defined, the geometry of the cartilage endplate (CEP) and its relationship to disc degeneration are unknown. The objectives of this study were to quantify CEP geometry in three dimensions using an MRI FLASH imaging sequence and evaluate relationships between CEP geometry and age, degeneration, spinal level, and overall disc geometry. To do so, we assessed the MRI-based measurements for accuracy and repeatability. Next, we measured CEP geometry across a larger sample set and correlated CEP geometric parameters to age, disc degeneration, level, and disc geometry. The MRI-based measures resulted in thicknesses (0.3–1 mm) that are comparable to prior measurements of CEP thickness. CEP thickness was greatest at the anterior/posterior (A/P) margins and smallest in the center. The CEP A/P thickness, axial area, and lateral width decreased with age but were not related to disc degeneration. Age-related, but not degeneration-related, changes in geometry suggest that the CEP may not follow the progression of disc degeneration. Ultimately, if the CEP undergoes significant geometric changes with aging and if these can be related to low back pain, a clinically feasible translation of the FLASH MRI-based measurement of CEP geometry presented in this study may prove a useful diagnostic tool. PMID:27232974
A disease-specific metabolic brain network associated with corticobasal degeneration
Niethammer, Martin; Tang, Chris C.; Feigin, Andrew; Allen, Patricia J.; Heinen, Lisette; Hellwig, Sabine; Amtage, Florian; Hanspal, Era; Vonsattel, Jean Paul; Poston, Kathleen L.; Meyer, Philipp T.; Leenders, Klaus L.
2014-01-01
Corticobasal degeneration is an uncommon parkinsonian variant condition that is diagnosed mainly on clinical examination. To facilitate the differential diagnosis of this disorder, we used metabolic brain imaging to characterize a specific network that can be used to discriminate corticobasal degeneration from other atypical parkinsonian syndromes. Ten non-demented patients (eight females/two males; age 73.9 ± 5.7 years) underwent metabolic brain imaging with 18F-fluorodeoxyglucose positron emission tomography for atypical parkinsonism. These individuals were diagnosed clinically with probable corticobasal degeneration. This diagnosis was confirmed in the three subjects who additionally underwent post-mortem examination. Ten age-matched healthy subjects (five females/five males; age 71.7 ± 6.7 years) served as controls for the imaging studies. Spatial covariance analysis was applied to scan data from the combined group to identify a significant corticobasal degeneration-related metabolic pattern that discriminated (P < 0.001) the patients from the healthy control group. This pattern was characterized by bilateral, asymmetric metabolic reductions involving frontal and parietal cortex, thalamus, and caudate nucleus. These pattern-related changes were greater in magnitude in the cerebral hemisphere opposite the more clinically affected body side. The presence of this corticobasal degeneration-related metabolic topography was confirmed in two independent testing sets of patient and control scans, with elevated pattern expression (P < 0.001) in both disease groups relative to corresponding normal values. We next determined whether prospectively computed expression values for this pattern accurately discriminated corticobasal degeneration from multiple system atrophy and progressive supranuclear palsy (the two most common atypical parkinsonian syndromes) on a single case basis. Based upon this measure, corticobasal degeneration was successfully distinguished from multiple system atrophy (P < 0.001) but not progressive supranuclear palsy, presumably because of the overlap (∼24%) that existed between the corticobasal degeneration- and the progressive supranuclear palsy-related metabolic topographies. Nonetheless, excellent discrimination between these disease entities was achieved by computing hemispheric asymmetry scores for the corticobasal degeneration-related pattern on a prospective single scan basis. Indeed, a logistic algorithm based on the asymmetry scores combined with separately computed expression values for a previously validated progressive supranuclear palsy-related pattern provided excellent specificity (corticobasal degeneration: 92.7%; progressive supranuclear palsy: 94.1%) in classifying 58 testing subjects. In conclusion, corticobasal degeneration is associated with a reproducible disease-related metabolic covariance pattern that may help to distinguish this disorder from other atypical parkinsonian syndromes. PMID:25208922
A disease-specific metabolic brain network associated with corticobasal degeneration.
Niethammer, Martin; Tang, Chris C; Feigin, Andrew; Allen, Patricia J; Heinen, Lisette; Hellwig, Sabine; Amtage, Florian; Hanspal, Era; Vonsattel, Jean Paul; Poston, Kathleen L; Meyer, Philipp T; Leenders, Klaus L; Eidelberg, David
2014-11-01
Corticobasal degeneration is an uncommon parkinsonian variant condition that is diagnosed mainly on clinical examination. To facilitate the differential diagnosis of this disorder, we used metabolic brain imaging to characterize a specific network that can be used to discriminate corticobasal degeneration from other atypical parkinsonian syndromes. Ten non-demented patients (eight females/two males; age 73.9 ± 5.7 years) underwent metabolic brain imaging with (18)F-fluorodeoxyglucose positron emission tomography for atypical parkinsonism. These individuals were diagnosed clinically with probable corticobasal degeneration. This diagnosis was confirmed in the three subjects who additionally underwent post-mortem examination. Ten age-matched healthy subjects (five females/five males; age 71.7 ± 6.7 years) served as controls for the imaging studies. Spatial covariance analysis was applied to scan data from the combined group to identify a significant corticobasal degeneration-related metabolic pattern that discriminated (P < 0.001) the patients from the healthy control group. This pattern was characterized by bilateral, asymmetric metabolic reductions involving frontal and parietal cortex, thalamus, and caudate nucleus. These pattern-related changes were greater in magnitude in the cerebral hemisphere opposite the more clinically affected body side. The presence of this corticobasal degeneration-related metabolic topography was confirmed in two independent testing sets of patient and control scans, with elevated pattern expression (P < 0.001) in both disease groups relative to corresponding normal values. We next determined whether prospectively computed expression values for this pattern accurately discriminated corticobasal degeneration from multiple system atrophy and progressive supranuclear palsy (the two most common atypical parkinsonian syndromes) on a single case basis. Based upon this measure, corticobasal degeneration was successfully distinguished from multiple system atrophy (P < 0.001) but not progressive supranuclear palsy, presumably because of the overlap (∼ 24%) that existed between the corticobasal degeneration- and the progressive supranuclear palsy-related metabolic topographies. Nonetheless, excellent discrimination between these disease entities was achieved by computing hemispheric asymmetry scores for the corticobasal degeneration-related pattern on a prospective single scan basis. Indeed, a logistic algorithm based on the asymmetry scores combined with separately computed expression values for a previously validated progressive supranuclear palsy-related pattern provided excellent specificity (corticobasal degeneration: 92.7%; progressive supranuclear palsy: 94.1%) in classifying 58 testing subjects. In conclusion, corticobasal degeneration is associated with a reproducible disease-related metabolic covariance pattern that may help to distinguish this disorder from other atypical parkinsonian syndromes. © The Author (2014). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Bessler, Neil M
2004-08-01
To provide broad clinical experience and to gather safety data on photodynamic therapy with verteporfin (Visudyne, Novartis AG, Basel, Switzerland), also termed verteporfin therapy, in patients with predominantly classic subfoveal choroidal neovascularization (CNV) secondary to age-related macular degeneration (AMD). The Verteporfin in Age-related Macular Degeneration (VAM) Study was designed to provide expanded access to verteporfin therapy after beneficial results for these cases were reported but before regulatory approval in North America. This open-label multicenter study from September 1999 through June 2000 enrolled among 222 centers patients 50 years or older in the United States, or 40 years or older in Canada, with age-related macular degeneration and subfoveal CNV with a lesion composition that was predominantly classic CNV on fluorescein angiography. Corrected visual acuity with habitual eyewear in the office setting was 20/40 to 20/200, inclusive. All patients received verteporfin therapy and returned for follow-up every 3 months. At those follow-up examinations, additional courses of treatment were recommended if any fluorescein leakage from CNV was identified. Safety information was collected from patient self-reporting, questioning (in person and by telephone), and physician evaluation. Safety was assessed by evaluating the effect of treatment on corrected distance visual acuity and by evaluating adverse events. A total of 4,435 patients were enrolled of whom 4,051 (91%) completed the study after receiving 6,701 treatments. Most patients received only one treatment in VAM before regulatory approval of verteporfin in the United States and Canada. Three hundred patients (6.8%) experienced an adverse event considered by the treating ophthalmologist to be associated with treatment, including 115 (2.6%) with abnormal or decreased vision, of whom 25 (0.6%) experienced acute severe visual acuity decrease, and 14 (0.3%) with transient infusion-related back pain. Patients were advised to avoid exposure to direct sunlight for 24 hours; however, after verteporfin administration only 2 (0.05%) reported a photosensitivity reaction. An additional course of verteporfin therapy was administered to 1,739 of 2,314 patients (75.2%) who had a month 3 examination that was not their close-out visit and 177 of 266 (66.5%) who had a month 6 examination that was not their close-out visit. Verteporfin therapy exhibited no additional or new safety concerns. The therapy associated with a low incidence of adverse events when expanded access was provided in a large, open-label, multicenter study, including a low incidence (0.05%) of reported photosensitivity reactions despite a short photosensitivity protection period (24 hours) following verteporfin administration.
9 CFR 311.35 - Muscular inflammation, degeneration, or infiltration.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 9 Animals and Animal Products 2 2011-01-01 2011-01-01 false Muscular inflammation, degeneration, or infiltration. 311.35 Section 311.35 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE... PARTS § 311.35 Muscular inflammation, degeneration, or infiltration. (a) If muscular lesions are found...
9 CFR 311.35 - Muscular inflammation, degeneration, or infiltration.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 9 Animals and Animal Products 2 2014-01-01 2014-01-01 false Muscular inflammation, degeneration, or infiltration. 311.35 Section 311.35 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE... PARTS § 311.35 Muscular inflammation, degeneration, or infiltration. (a) If muscular lesions are found...
9 CFR 311.35 - Muscular inflammation, degeneration, or infiltration.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 9 Animals and Animal Products 2 2012-01-01 2012-01-01 false Muscular inflammation, degeneration, or infiltration. 311.35 Section 311.35 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE... PARTS § 311.35 Muscular inflammation, degeneration, or infiltration. (a) If muscular lesions are found...
9 CFR 311.35 - Muscular inflammation, degeneration, or infiltration.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Muscular inflammation, degeneration, or infiltration. 311.35 Section 311.35 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE... PARTS § 311.35 Muscular inflammation, degeneration, or infiltration. (a) If muscular lesions are found...
9 CFR 311.35 - Muscular inflammation, degeneration, or infiltration.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 9 Animals and Animal Products 2 2013-01-01 2013-01-01 false Muscular inflammation, degeneration, or infiltration. 311.35 Section 311.35 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE... PARTS § 311.35 Muscular inflammation, degeneration, or infiltration. (a) If muscular lesions are found...
Observation of a Degenerate Fermi Gas Trapped by a Bose-Einstein Condensate
NASA Astrophysics Data System (ADS)
DeSalvo, B. J.; Patel, Krutik; Johansen, Jacob; Chin, Cheng
2017-12-01
We report on the formation of a stable quantum degenerate mixture of fermionic 6Li and bosonic 133Cs in an optical trap by sympathetic cooling near an interspecies Feshbach resonance. New regimes of quantum degenerate Bose-Fermi mixtures are identified. With moderate attractive interspecies interactions, we show that a degenerate Fermi gas of Li can be fully confined in a Cs Bose-Einstein condensate without external potentials. For stronger attraction where mean-field collapse is expected, no such instability is observed. Potential mechanisms to explain this phenomenon are discussed.
Managing abnormal eating behaviours in frontotemporal lobar degeneration patients with topiramate.
Shinagawa, Shunichiro; Tsuno, Norifumi; Nakayama, Kazuhiko
2013-03-01
Abnormal eating behaviours are specific to frontotemporal lobar degeneration and increase caregiver burden. Topiramate, an anticonvulsant, suppresses cravings for alcohol and other substances and is a potential treatment for binge eating. However, there are few reports on topiramate efficacy for abnormal eating behaviours in frontotemporal lobar degeneration patients. We present three Japanese frontotemporal lobar degeneration patients with abnormal eating behaviours. Topiramate was effective, especially for compulsive eating, in cases with distinct lobar atrophy, but not for all abnormal eating behaviours. © 2013 The Authors. Psychogeriatrics © 2013 Japanese Psychogeriatric Society.
Guillery, R W; Cavalcante, L A
1995-03-01
The rates at which the crossed and the uncrossed components of the retinofugal pathway degenerate in Didelphis has been studied by light and electron microscopical methods. We have found that in Didelphis, as in Monodelphis the two components can be clearly distinguished at the level of the chiasm. However, in contrast to the situation previously described for Monodelphis, where the uncrossed component degenerates more rapidly than the crossed, both components degenerate at the same rate.
Hokkoku, Keiichi; Matsukura, Kiyoshi; Uchida, Yudai; Kuwabara, Midori; Furukawa, Yuichi; Tsukamoto, Hiroshi; Hatanaka, Yuki; Sonoo, Masahiro
2017-10-01
In chronic inflammatory demyelinating polyneuropathy (CIDP), exclusion of secondary axonal degeneration is challenging with conventional methods such as nerve conduction study (NCS), needle electromyography, and nerve biopsy. Increased echo intensity (EI) and decreased muscle thickness (MT) identified on muscle ultrasound (MUS) examination represent muscle denervation due to axonal degeneration in neurogenic disorders, suggesting MUS as a new tool to detect secondary axonal degeneration in patients with CIDP. EI and MT of abductor pollicis brevis, abductor digiti minimi, and first dorsal interosseous muscles were measured in 16 CIDP patients. Raw values were converted into z -scores using data from 60 normal controls (NCs). Six of 45 muscles showed abnormally high EI and low MT, suggesting denervation following secondary axonal degeneration. These six muscles belonged to two patients with long disease history, unresponsiveness to treatment, and long interval from onset to initial therapy. There were no significant differences in EI and MT ( p = .23 and .67, respectively) between the CIDP and NC groups, although NCS results revealed obvious demyelinating abnormalities in all CIDP patients, suggesting the fact that muscle structures will be preserved, and EI and MT will not change unless secondary axonal degeneration occurs in CIDP. MUS is a promising tool for evaluating secondary axonal degeneration in patients with CIDP.
The prevalence of sacroiliac joint degeneration in asymptomatic adults.
Eno, Jonathan-James T; Boone, Christopher R; Bellino, Michael J; Bishop, Julius A
2015-06-03
Degenerative changes of the sacroiliac joint have been implicated as a cause of lower back pain in adults. The purpose of this study was to determine the prevalence of sacroiliac joint degeneration in asymptomatic patients. Five hundred consecutive pelvic computed tomography (CT) scans, made at a tertiary-care medical center, of patients with no history of pain in the lower back or pelvic girdle were retrospectively reviewed and analyzed for degenerative changes of the sacroiliac joint. After exclusion criteria were applied, 373 CT scans (746 sacroiliac joints) were evaluated for degenerative changes. Regression analysis was used to determine the association between age and the degree of sacroiliac joint degeneration. The prevalence of sacroiliac joint degeneration was 65.1%, with substantial degeneration occurring in 30.5% of asymptomatic subjects. The prevalence steadily increased with age, with 91% of subjects in the ninth decade of life displaying degenerative changes. Radiographic evidence of sacroiliac joint degeneration is highly prevalent in the asymptomatic population and is associated with age. Caution must be exercised when attributing lower back or pelvic girdle pain to sacroiliac joint degeneration seen on imaging. Prognostic Level IV. See Instructions for Authors for a complete description of levels of evidence. Copyright © 2015 by The Journal of Bone and Joint Surgery, Incorporated.
NASA Astrophysics Data System (ADS)
Mononen, Mika E.; Tanska, Petri; Isaksson, Hanna; Korhonen, Rami K.
2016-02-01
We present a novel algorithm combined with computational modeling to simulate the development of knee osteoarthritis. The degeneration algorithm was based on excessive and cumulatively accumulated stresses within knee joint cartilage during physiological gait loading. In the algorithm, the collagen network stiffness of cartilage was reduced iteratively if excessive maximum principal stresses were observed. The developed algorithm was tested and validated against experimental baseline and 4-year follow-up Kellgren-Lawrence grades, indicating different levels of cartilage degeneration at the tibiofemoral contact region. Test groups consisted of normal weight and obese subjects with the same gender and similar age and height without osteoarthritic changes. The algorithm accurately simulated cartilage degeneration as compared to the Kellgren-Lawrence findings in the subject group with excess weight, while the healthy subject group’s joint remained intact. Furthermore, the developed algorithm followed the experimentally found trend of cartilage degeneration in the obese group (R2 = 0.95, p < 0.05 experiments vs. model), in which the rapid degeneration immediately after initiation of osteoarthritis (0-2 years, p < 0.001) was followed by a slow or negligible degeneration (2-4 years, p > 0.05). The proposed algorithm revealed a great potential to objectively simulate the progression of knee osteoarthritis.
Sun, Yubo; Scannell, Brian P; Honeycutt, Patrick R; Mauerhan, David R; H, James Norton; Hanley Jr, Edward N
2015-01-01
Osteoarthritis is a joint disease involved in articular cartilage, subchondral bone, meniscus and synovial membrane. This study sought to examine cartilage degeneration, subchondral bone mineral density (BMD) and meniscal mineral density (MD) in male Hartley, female Hartley and female strain 13 guinea pigs to determine the association of cartilage degeneration with subchondral BMD and meniscal MD. Cartilage degeneration, subchondral BMD and meniscal MD in 12 months old guinea pigs were examined with histochemistry, X-ray densitometry and calcium analysis. We found that male Hartley guinea pigs had more severe cartilage degeneration, subchondral BMD and meniscal MD than female Hartley guinea pigs, but not female strain 13 guinea pigs. Female strain 13 guinea pigs had more severe cartilage degeneration and higher subchondral BMD, but not meniscal MD, than female Hartley guinea pigs. These findings indicate that higher subchondral BMD, not meniscal MD, is associated with more severe cartilage degeneration in the guinea pigs and suggest that abnormal subchondral BMD may be a therapeutic target for OA treatment. These findings also indicate that the pathogenesis of OA in the male guinea pigs and female guinea pigs are different. Female strain 13 guinea pig may be used to study female gender-specific pathogenesis of OA. PMID:26401159
Li, Li-Sheng; Lu, Yan-Liu; Nie, Jing; Xu, Yun-Yan; Zhang, Wei; Yang, Wen-Jin; Gong, Qi-Hai; Lu, Yuan-Fu; Lu, Yang; Shi, Jing-Shan
2017-04-01
Axonal degeneration is a pathological symbol in the early stage of Alzheimer's disease (AD), which can be triggered by amyloid-β (Aβ) peptide deposition. Growing evidence indicates that deficit of autophagy eventually leads to the axonal degeneration. Our previous studies have shown that Dendrobium nobile Lindl alkaloid (DNLA) had protective effect on neuron impairment in vivo and in vitro; however, the underlying mechanisms is still unclear. We exposed cultured hippocampus neurons to Aβ 25-35 to investigate the effect of DNLA in vitro. Axonal degeneration was evaluated by immunofluorescence staining and MTT assay. Neurons overexpressing GFP-LC3B were used to measure the formation of autophagosome. Autophagosome-lysosome fusion, the lysosomal pH, and cathepsin activity were assessed to reflect autophagy process. Proteins of interest were analyzed by Western blot. DNLA pretreatment significantly inhibited axonal degeneration induced by Aβ 25-35 peptide in vitro. Further studies revealed DNLA treatment increased autophagic flux through promoting formation and degradation of autophagosome in hippocampus neurons. Moreover, enhancement of autophagic flux was responsible for the protective effects of DNLA on axonal degeneration. DNLA prevents Aβ 25-35 -induced axonal degeneration via activation of autophagy process and could be a novel therapeutic target. © 2017 John Wiley & Sons Ltd.
Le Maitre, Christine Lyn; Frain, Jennie; Fotheringham, Andrew P; Freemont, Anthony J; Hoyland, Judith Alison
2008-01-01
The intervertebral disc (IVD) is one of the body's most important load-bearing structures with the major mechanical force experienced in the nucleus pulposus (NP) being hydrostatic pressure (HP). Physiological levels of HP have an anabolic effect on IVD matrix metabolism in cells derived from non-degenerate animal and herniated IVD while excessive HP has a catabolic effect. However, no studies have investigated the response of non-degenerate and degenerate human disc cells derived from non-herniated discs to HP. Here we investigate the effect of physiological HP on such cells using a novel loading rig. Human IVD cells (both NP and AF) cultured in alginate were subjected to dynamic HP (0.8-1.7 MPa 0.5 Hz) for 2 h. Cell viability was assessed, RNA extracted and qRT-PCR for 18 s, c-fos, Sox-9, collagen type II, aggrecan and MMP-3 performed. Cell viability was unaffected by the loading regime. In non-degenerate NP cells, HP increased c-fos, aggrecan, Sox-9 and collagen type II (significantly so in the case of c-fos and aggrecan), but not MMP-3 gene expression. In contrast, application of HP to AF or degenerate NP cells had no effect on target gene expression. Our data shows that cells obtained from the healthy NP respond to dynamic HP by up-regulating genes indicative of healthy matrix homeostasis. However, responses differed in degenerate NP cells suggesting that an altered mechanotransduction pathway may be operational.
Association of HTRA1 rs11200638 with age-related macular degeneration (AMD) in Brazilian patients.
Lana, Tamires Prates; da Silva Costa, Sueli Matilde; Ananina, Galina; Hirata, Fábio Endo; Rim, Priscila Hae Hyun; Medina, Flávio MacCord; de Vasconcellos, José Paulo Cabral; de Melo, Mônica Barbosa
2018-01-01
Age-related macular degeneration is a multifactorial disease that can lead to vision impairment in older individuals. Although the etiology of age-related macular degeneration remains unknown, risk factors include age, ethnicity, smoking, hypertension, obesity, and genetic factors. Two main loci have been identified through genome-wide association studies, on chromosomes 1 and 10. Among the variants located at the 10q26 region, rs11200638, located at the HTRA1 gene promoter, has been associated with age-related macular degeneration in several populations and is considered the main polymorphism. We conducted a replication case-control study to analyze the frequency and participation of rs11200638 in the etiology of age-related macular degeneration in a sample of patients and controls from the State of São Paulo, Brazil, through polymerase chain reaction and enzymatic digestion. The frequency of the A allele was 57.60% in patients with age-related macular degeneration and 36.45% in controls (p value < 1e-07), representing a 2.369-fold higher risk factor for the disease. Both the AA and AG genotypes were observed more frequently in the age-related macular degeneration group compared to the control group (p = 1.21 e-07 and 0.0357, respectively). No statistically significant results were observed after stratification in dry versus wet types or advanced versus non-advanced forms. To our knowledge, this is the first time the association between rs11200638 and overall age-related macular degeneration has been reported in South America.
Asymptotic regimes for the electrical and thermal conductivities in dense plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Faussurier, G., E-mail: gerald.faussurier@cea.fr; Blancard, C.
2015-04-15
We study the asymptotic regimes for the electrical and thermal conductivities in dense plasmas obtained by combining the Chester–Thellung–Kubo–Greenwood approach and the Kramers approximation [Faussurier et al., Phys. Plasmas 21, 092706 (2014)]. Non-degenerate and degenerate situations are considered. The Wiedemann–Franz law is obtained in the degenerate case.
Blank, Thomas; Goldmann, Tobias; Koch, Mirja; Amann, Lukas; Schön, Christian; Bonin, Michael; Pang, Shengru; Prinz, Marco; Burnet, Michael; Wagner, Johanna E; Biel, Martin; Michalakis, Stylianos
2017-01-01
Retinitis pigmentosa (RP) denotes a family of inherited blinding eye diseases characterized by progressive degeneration of rod and cone photoreceptors in the retina. In most cases, a rod-specific genetic defect results in early functional loss and degeneration of rods, which is followed by degeneration of cones and loss of daylight vision at later stages. Microglial cells, the immune cells of the central nervous system, are activated in retinas of RP patients and in several RP mouse models. However, it is still a matter of debate whether activated microglial cells may be responsible for the amplification of the typical degenerative processes. Here, we used Cngb1 -/- mice, which represent a slow degenerative mouse model of RP, to investigate the extent of microglia activation in retinal degeneration. With a combination of FACS analysis, immunohistochemistry and gene expression analysis we established that microglia in the Cngb1 -/- retina were already activated in an early, predegenerative stage of the disease. The evidence available so far suggests that early retinal microglia activation represents a first step in RP, which might initiate or accelerate photoreceptor degeneration.
Degeneration of Bethe subalgebras in the Yangian of gl_n
NASA Astrophysics Data System (ADS)
Ilin, Aleksei; Rybnikov, Leonid
2018-04-01
We study degenerations of Bethe subalgebras B( C) in the Yangian Y(gl_n), where C is a regular diagonal matrix. We show that closure of the parameter space of the family of Bethe subalgebras, which parameterizes all possible degenerations, is the Deligne-Mumford moduli space of stable rational curves \\overline{M_{0,n+2}}. All subalgebras corresponding to the points of \\overline{M_{0,n+2}} are free and maximal commutative. We describe explicitly the "simplest" degenerations and show that every degeneration is the composition of the simplest ones. The Deligne-Mumford space \\overline{M_{0,n+2}} generalizes to other root systems as some De Concini-Procesi resolution of some toric variety. We state a conjecture generalizing our results to Bethe subalgebras in the Yangian of arbitrary simple Lie algebra in terms of this De Concini-Procesi resolution.
Intracellular calcium release through IP3R or RyR contributes to secondary axonal degeneration.
Orem, Ben C; Pelisch, Nicolas; Williams, Joshua; Nally, Jacqueline M; Stirling, David P
2017-10-01
Severed CNS axons often retract or dieback away from the injury site and fail to regenerate. The precise mechanisms underlying acute axonal dieback and secondary axonal degeneration remain poorly understood. Here we investigate the role of Ca 2+ store mediated intra-axonal Ca 2+ release in acute axonal dieback and secondary axonal degeneration. To differentiate between primary (directly transected) and "bystander" axonal injury (axons spared by the initial injury but then succumb to secondary degeneration) in real-time we use our previously published highly focal laser-induced spinal cord injury (LiSCI) ex vivo model. Ascending spinal cord dorsal column axons that express YFP were severed using an 800 nm laser pulse while being imaged continuously using two-photon excitation microscopy. We inhibited two major intra-axonal Ca 2+ store channels, ryanodine receptors (RyR) and IP 3 R, with ryanodine or 2-APB, respectively, to individually determine their role in axonal dieback and secondary axonal degeneration. Each antagonist was dissolved in artificial CSF and applied 1h post-injury alone or in combination, and continuously perfused for the remainder of the imaging session. Initially following LiSCI, transected axons retracted equal distances both distal and proximal to the lesion. However, by 4h after injury, the distal axonal segments that are destined for Wallerian degeneration had significantly retracted further than their proximal counterparts. We also found that targeting either RyR or IP 3 R using pharmacological and genetic approaches significantly reduced proximal axonal dieback and "bystander" secondary degeneration of axons compared to vehicle controls at 6h post-injury. Combined treatment effects on secondary axonal degeneration were similar to either drug in isolation. Together, these results suggest that intra-axonal Ca 2+ store mediated Ca 2+ release through RyR or IP 3 R contributes to secondary axonal degeneration following SCI. Copyright © 2017 Elsevier Inc. All rights reserved.
Self-reported optometric practise patterns in age-related macular degeneration.
Ly, Angelica; Nivison-Smith, Lisa; Zangerl, Barbara; Assaad, Nagi; Kalloniatis, Michael
2017-11-01
The use of advanced imaging in clinical practice is emerging and the use of this technology by optometrists in assessing patients with age-related macular degeneration is of interest. Therefore, this study explored contemporary, self-reported patterns of practice regarding age-related macular degeneration diagnosis and management using a cross-sectional survey of optometrists in Australia and New Zealand. Practising optometrists were surveyed on four key areas, namely, demographics, clinical skills and experience, assessment and management of age-related macular degeneration. Questions pertaining to self-rated competency, knowledge and attitudes used a five-point Likert scale. Completed responses were received from 127 and 87 practising optometrists in Australia and New Zealand, respectively. Advanced imaging showed greater variation in service delivery than traditional techniques (such as slitlamp funduscopy) and trended toward optical coherence tomography, which was routinely performed in age-related macular degeneration by 49 per cent of respondents. Optical coherence tomography was also associated with higher self-rated competency, knowledge and perceived relevance to practice than other modalities. Most respondents (93 per cent) indicated that they regularly applied patient symptoms, case history, visual function results and signs from traditional testing, when queried about their management of patients with age-related macular degeneration. Over half (63 per cent) also considered advanced imaging, while 31 per cent additionally considered all of these as well as the disease stage and clinical guidelines. Contrary to the evidence base, 68 and 34 per cent rated nutritional supplements as highly relevant or relevant in early age-related macular degeneration and normal aging changes, respectively. These results highlight the emergence of multimodal and advanced imaging (especially optical coherence tomography) in the assessment of age-related macular degeneration by optometrists. Clinically significant variations in self-rated test competency and the understanding regarding nutritional supplements for different stages of age-related macular degeneration suggest that further work to up-skill optometrists may be required. © 2017 Optometry Australia.
Bilateral aniridia lenticular coloboma and snowflake retinal degeneration.
Doganay, Selim; Emre, Sinan; Firat, Penpegül
2009-01-01
A 6-year-old boy presented with bilateral aniridia associated with lens coloboma and snowflake retinal degeneration. Ophthalmologic examination revealed bilateral corneal peripheral epithelial thickening and aniridia. Additionally, the patient had lenticular coloboma and snowflake retinal degeneration in both eyes. Intraocular pressure was 22 mm Hg bilaterally. The patient also had pendular nystagmus. Uncorrected visual acuity was counting fingers at 2 meters for both eyes, but improved to 0.2 and 0.05, respectively, with correction. Congenital aniridia has been reported with various ophthalmic pathologies, but this is the first case to display bilateral lenticular coloboma and snowflake retinal degeneration associated with aniridia.
Cystic adventitial degeneration: ectopic ganglia from adjacent joint capsules.
Ortmann, J; Widmer, M K; Gretener, S; Do, D D; Willenberg, T; Daliri, A; Baumgartner, I
2009-11-01
Cystic adventitial degeneration is a rare non-atherosclerotic cause of peripheral arterial occlusive disease, mainly seen in young men without other evidence of vascular disease. Diagnosis will be established by clinical findings and by ultrasound or angiography and can be treated by excision or enucleation of the affected arterial segment or by percutaneous ultrasound-guided aspiration. However, the etiology of adventitial cysts remains unknown. We report a case of cystic adventitial degeneration showing a connection between the joint capsule and the adventitial cyst, supporting the theory that cystic adventitial degeneration may represent ectopic ganglia from adjacent joint capsules.
Mononen, Mika E.; Tanska, Petri; Isaksson, Hanna; Korhonen, Rami K.
2016-01-01
We present a novel algorithm combined with computational modeling to simulate the development of knee osteoarthritis. The degeneration algorithm was based on excessive and cumulatively accumulated stresses within knee joint cartilage during physiological gait loading. In the algorithm, the collagen network stiffness of cartilage was reduced iteratively if excessive maximum principal stresses were observed. The developed algorithm was tested and validated against experimental baseline and 4-year follow-up Kellgren-Lawrence grades, indicating different levels of cartilage degeneration at the tibiofemoral contact region. Test groups consisted of normal weight and obese subjects with the same gender and similar age and height without osteoarthritic changes. The algorithm accurately simulated cartilage degeneration as compared to the Kellgren-Lawrence findings in the subject group with excess weight, while the healthy subject group’s joint remained intact. Furthermore, the developed algorithm followed the experimentally found trend of cartilage degeneration in the obese group (R2 = 0.95, p < 0.05; experiments vs. model), in which the rapid degeneration immediately after initiation of osteoarthritis (0–2 years, p < 0.001) was followed by a slow or negligible degeneration (2–4 years, p > 0.05). The proposed algorithm revealed a great potential to objectively simulate the progression of knee osteoarthritis. PMID:26906749
Counting Patterns in Degenerated Sequences
NASA Astrophysics Data System (ADS)
Nuel, Grégory
Biological sequences like DNA or proteins, are always obtained through a sequencing process which might produce some uncertainty. As a result, such sequences are usually written in a degenerated alphabet where some symbols may correspond to several possible letters (ex: IUPAC DNA alphabet). When counting patterns in such degenerated sequences, the question that naturally arises is: how to deal with degenerated positions ? Since most (usually 99%) of the positions are not degenerated, it is considered harmless to discard the degenerated positions in order to get an observation, but the exact consequences of such a practice are unclear. In this paper, we introduce a rigorous method to take into account the uncertainty of sequencing for biological sequences (DNA, Proteins). We first introduce a Forward-Backward approach to compute the marginal distribution of the constrained sequence and use it both to perform a Expectation-Maximization estimation of parameters, as well as deriving a heterogeneous Markov distribution for the constrained sequence. This distribution is hence used along with known DFA-based pattern approaches to obtain the exact distribution of the pattern count under the constraints. As an illustration, we consider a EST dataset from the EMBL database. Despite the fact that only 1% of the positions in this dataset are degenerated, we show that not taking into account these positions might lead to erroneous observations, further proving the interest of our approach.
[Mechanical behavior of the subchondral bone in the experimentally induced osteoarthritis].
Miyanaga, Y
1979-06-01
In order to evaluate the role of the subchondral bone (cancellous bone) in the development and progression of the joint degeneration, osteoarthritis of the knee joint was produced experimentally in the rabbits and viscoelasticity and strength of the subchondral bone from the femoral medial condyle have been investigated along with the pathological, histological study of the joint. The viscoelastic spectrometer and the Instron type testing machine were used. As the first change after operation, osteophyte formation around the joint margin has been observed before the initiation of the degeneration of articular cartilage and there is a possibility that mechanical properties of subchondral bone such as high deformability and low elasticity to the mechanism of osteophyte formation. Subchondral bone softening with marked increase of ultimate strain and phase lag, marked decrease of compressive elastic modulus and ultimate stress precedes or occurs concurrently with the degeneration of the articular cartilage. These facts indicate the relationship between the mechanical properties of the subchondral bone and joint degeneration. Once the joint degeneration starts, degeneration continues progressively while the subchondral bone tends to become brittle. These changes may be considered as a kind of functional adaptation to the damage or denudation of articular cartilage. It is postulated that some architectural changes of the subchondral bone may provide alterations of the mechanical properties. Biomechanical roles of the subchondral bone is suggested as one of the factors in the joint degeneration.
Grimm, Christian; Wenzel, Andreas; Stanescu, Dinu; Samardzija, Marijana; Hotop, Svenja; Groszer, Mathias; Naash, Muna; Gassmann, Max; Remé, Charlotte
2010-01-01
Elevation of erythropoietin (Epo) concentrations by hypoxic preconditioning or application of recombinant human Epo (huEpo) protects the mouse retina against light-induced degeneration by inhibiting photoreceptor cell apoptosis. Because photoreceptor apoptosis is also the common path to cell loss in retinal dystrophies such as retinitis pigmentosa (RP), we tested whether high levels of huEpo would reduce apoptotic cell death in two mouse models of human RP. We combined the two respective mutant mouse lines with a transgenic line (tg6) that constitutively overexpresses huEpo mainly in neural tissues. Transgenic expression of huEpo caused constitutively high levels of Epo in the retina and protected photoreceptors against light-induced degeneration; however, the presence of high levels of huEpo did not affect the course or the extent of retinal degeneration in a light-independent (rd1) and a light-accelerated (VPP) mouse model of RP. Similarly, repetitive intraperitoneal injections of recombinant huEpo did not protect the retina in the rd1 and the VPP mouse. Lack of neuroprotection by Epo in the two models of inherited retinal degeneration was not caused by adaptational downregulation of Epo receptor. Our results suggest that apoptotic mechanisms during acute, light-induced photoreceptor cell death differ from those in genetically based retinal degeneration. Therapeutic intervention with cell death in inherited retinal degeneration may therefore require different drugs and treatments. PMID:15215287
ERIC Educational Resources Information Center
Kawahira, Kazumi; Noma, Tomokazu; Iiyama, Junichi; Etoh, Seiji; Ogata, Atsuko; Shimodozono, Megumi
2009-01-01
Corticobasal degeneration is a progressive neurological disorder characterized by a combination of parkinsonism and cortical dysfunction such as limb kinetic apraxia, alien limb phenomenon, and dementia. To study the effect of repetitive facilitation exercise (RFE) in a patient with corticobasal degeneration, we used a newly designed facilitation…
Zhou, Xiaopeng; Wang, Jingkai; Fang, Weijing; Tao, Yiqing; Zhao, Tengfei; Xia, Kaishun; Liang, Chengzhen; Hua, Jianming; Li, Fangcai; Chen, Qixin
2018-04-15
Nucleus pulposus (NP) degeneration is usually the origin of intervertebral disc degeneration and consequent lower back pain. Although adipose-derived stem cell (ADSC)-based therapy is regarded to be promising for the treatment of degenerated NP, there is a lack of viable cell carriers to transplant ADSCs into the NP while maintaining cell function. In this study, we developed a type II collagen/chondroitin sulfate (CS) composite hydrogel-like ADSC (CCSA) delivery system with genipin as the cross-linking agent. The induction effect of the scaffold on ADSC differentiation was studied in vitro, and a rat coccygeal vertebrae degeneration model was used to investigate the regenerative effect of the CCSA system on the degenerated NP in vivo. The results showed that the CCSA delivery system cross-linked with 0.02% genipin was biocompatible and promoted the expressions of NP-specific genes. After the injection of the CCSA system, the disc height, water content, extracellular matrix synthesis, and structure of the degenerated NP were partly restored. Our CCSA delivery system uses minimally invasive approaches to promote the regeneration of degenerated NP and provides an exciting new avenue for the treatment of degenerative disc disease. Nucleus pulposus (NP) degeneration is usually the origin of intervertebral disc degeneration and consequent lower back pain. Stem cell-based tissue engineering is a promising method in NP regeneration, but there is a lack of viable cell carriers to transplant ADSCs into the NP while maintaining cell function. In this study, we developed a type II collagen/chondroitin sulfate (CS) composite hydrogel-like ADSC (CCSA) delivery system with genipin as the cross-linking agent. Although several research groups have studied the fabrication of injectable hydrogel with biological matrix, our study differs from other works. We chose type II collagen and CS, the two primary native components in the NP, as the main materials and combined them according to the natural ratio of collagen and sGAG in the NP. The delivery system is preloaded with ADSCs and can be injected into the NP with a needle, followed by in situ gelation. Genipin is used as a cross-linker to improve the bio-stability of the scaffold, with low cytotoxicity. We investigated the stimulatory effects of our scaffold on the differentiation of ADSCs in vitro and the regenerative effect of the CCSA delivery system on degenerated NP in vivo. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Maimon, Roy; Ionescu, Ariel; Bonnie, Avichai; Sweetat, Sahar; Wald-Altman, Shane; Inbar, Shani; Gradus, Tal; Trotti, Davide; Weil, Miguel; Behar, Oded; Perlson, Eran
2018-06-13
Axon degeneration and disruption of neuromuscular junctions (NMJs) are key events in amyotrophic lateral sclerosis (ALS) pathology. Although the disease's etiology is not fully understood, it is thought to involve a non-cell-autonomous mechanism and alterations in RNA metabolism. Here, we identified reduced levels of miR126-5p in presymptomatic ALS male mice models, and an increase in its targets: axon destabilizing Type 3 Semaphorins and their coreceptor Neuropilins. Using compartmentalized in vitro cocultures, we demonstrated that myocytes expressing diverse ALS-causing mutations promote axon degeneration and NMJ dysfunction, which were inhibited by applying Neuropilin1 blocking antibody. Finally, overexpressing miR126-5p is sufficient to transiently rescue axon degeneration and NMJ disruption both in vitro and in vivo Thus, we demonstrate a novel mechanism underlying ALS pathology, in which alterations in miR126-5p facilitate a non-cell-autonomous mechanism of motor neuron degeneration in ALS. SIGNIFICANCE STATEMENT Despite some progress, currently no effective treatment is available for amyotrophic lateral sclerosis (ALS). We suggest a novel regulatory role for miR126-5p in ALS and demonstrate, for the first time, a mechanism by which alterations in miR126-5p contribute to axon degeneration and NMJ disruption observed in ALS. We show that miR126-5p is altered in ALS models and that it can modulate Sema3 and NRP protein expression. Furthermore, NRP1 elevations in motor neurons and muscle secretion of Sema3A contribute to axon degeneration and NMJ disruption in ALS. Finally, overexpressing miR126-5p is sufficient to transiently rescue NMJ disruption and axon degeneration both in vitro and in vivo . Copyright © 2018 Maimon et al.
Wishart, Thomas M; Rooney, Timothy M; Lamont, Douglas J; Wright, Ann K; Morton, A Jennifer; Jackson, Mandy; Freeman, Marc R; Gillingwater, Thomas H
2012-01-01
Degeneration of synaptic and axonal compartments of neurons is an early event contributing to the pathogenesis of many neurodegenerative diseases, but the underlying molecular mechanisms remain unclear. Here, we demonstrate the effectiveness of a novel "top-down" approach for identifying proteins and functional pathways regulating neurodegeneration in distal compartments of neurons. A series of comparative quantitative proteomic screens on synapse-enriched fractions isolated from the mouse brain following injury identified dynamic perturbations occurring within the proteome during both initiation and onset phases of degeneration. In silico analyses highlighted significant clustering of proteins contributing to functional pathways regulating synaptic transmission and neurite development. Molecular markers of degeneration were conserved in injury and disease, with comparable responses observed in synapse-enriched fractions isolated from mouse models of Huntington's disease (HD) and spinocerebellar ataxia type 5. An initial screen targeting thirteen degeneration-associated proteins using mutant Drosophila lines revealed six potential regulators of synaptic and axonal degeneration in vivo. Mutations in CALB2, ROCK2, DNAJC5/CSP, and HIBCH partially delayed injury-induced neurodegeneration. Conversely, mutations in DNAJC6 and ALDHA1 led to spontaneous degeneration of distal axons and synapses. A more detailed genetic analysis of DNAJC5/CSP mutants confirmed that loss of DNAJC5/CSP was neuroprotective, robustly delaying degeneration in axonal and synaptic compartments. Our study has identified conserved molecular responses occurring within synapse-enriched fractions of the mouse brain during the early stages of neurodegeneration, focused on functional networks modulating synaptic transmission and incorporating molecular chaperones, cytoskeletal modifiers, and calcium-binding proteins. We propose that the proteins and functional pathways identified in the current study represent attractive targets for developing therapeutics aimed at modulating synaptic and axonal stability and neurodegeneration in vivo.
The two "rules of speciation" in species with young sex chromosomes.
Filatov, Dmitry A
2018-05-21
The two "rules of speciation," Haldane's rule (HR) and the large-X effect (LXE), are thought to be caused by recessive species incompatibilities exposed in the phenotype due to the hemizygosity of X-linked genes in the heterogametic sex. Thus, the reports of HR and the LXE in species with recently evolved non- or partially degenerate Y-chromosomes, such as Silene latifolia and its relatives, were surprising. Here, I argue that rapid species-specific degeneration of Y-linked genes and associated adjustment of expression of X-linked gametologs (dosage compensation) may lead to rapid evolution of sex-linked species incompatibilities. This process is likely to be too slow in species with old degenerate Y-chromosomes (e.g., in mammals), but Y-degeneration in species with young gene-rich sex chromosomes may be fast enough to play a significant role in speciation. To illustrate this point, I report the analysis of Y-degeneration and the associated evolution of gene expression on the X-chromosome of S. latifolia and Silene dioica, a close relative that shares the same recently evolved sex chromosomes. Despite the recent (≤1MY) divergence of the two species, ~7% of Y-linked genes have undergone degeneration in one but not the other species. This species-specific degeneration appears to drive faster expression divergence of X-linked genes, which may account for HR and the LXE reported for these species. Furthermore, I suggest that "exposure" of autosomal or sex-linked recessive species incompatibilities in the haploid plant gametophyte may mimic the presence of HR in plants. Both haploid expression and species-specific Y-degeneration need to receive more attention if we are to understand the role of these processes in speciation. © 2018 John Wiley & Sons Ltd.
Le Maitre, Christine L; Freemont, Anthony J; Hoyland, Judith A
2006-01-01
Conventional therapies for low back pain (LBP) are purely symptomatic and do not target the cause of LBP, which in approximately 40% of cases is caused by degeneration of the intervertebral disc (DIVD). Targeting therapies to inhibit the process of degeneration would be a potentially valuable treatment for LBP. There is increasing evidence for a role for IL-1 in DIVD. A natural inhibitor of IL-1 exists, IL-1Ra, which would be an ideal molecular target for inhibiting IL-1-mediated effects involved in DIVD and LBP. In this study, the feasibility of ex vivo gene transfer of IL-1Ra to the IVD was investigated. Monolayer and alginate cultures of normal and degenerate human intervertebral disc (IVD) cells were infected with an adenoviral vector carrying the IL-1Ra gene (Ad-IL-1Ra) and protein production measured using an enzyme-linked immunosorbent assay. The ability of these infected cells to inhibit the effects of IL-1 was also investigated. In addition, normal and degenerate IVD cells infected with Ad-IL-1Ra were injected into degenerate disc tissue explants and IL-1Ra production in these discs was assessed. This demonstrated that both nucleus pulposus and annulus fibrosus cells infected with Ad-IL-1Ra produced elevated levels of IL-1Ra for prolonged time periods, and these infected cells were resistant to IL-1. When the infected cells were injected into disc explants, IL-1Ra protein expression was increased which was maintained for 2 weeks of investigation. This in vitro study has shown that the use of ex vivo gene transfer to degenerate disc tissue is a feasible therapy for the inhibition of IL-1-mediated events during disc degeneration. PMID:16436110
Liebensteiner, Michael C; Nogler, Michael; Giesinger, Johannes M; Lechner, Ricarda; Lenze, Florian; Thaler, Martin
2015-01-01
The purpose of this study is to investigate whether inconsistently reported factors influence the health-related quality of life (HRQOL) outcome of partial meniscectomy. Short Form 36 (SF-36) data on 216 patients were retrospectively analysed for the influence of the factors age, gender and degree of cartilage degeneration. Mixed linear models were applied for univariate and multivariate analyses. All SF-36 scales, including the psychosocial scales, showed a significant improvement from pre- to post-operative (p < 0.001). The factor 'degree of cartilage degeneration' was found to significantly influence post-surgical improvement of the SF-36 'physical component summary' score. Patients with mild cartilage degeneration benefited significantly more from surgery than did patients with advanced cartilage degeneration (p = 0.011). Older patients had significantly lower scores on each subscale, but showed no significant age-time interaction, that is, no association was seen between age and the degree of improvement. No effect was determined for the variable gender. The findings of the current study can be interpreted to show that arthroscopic partial meniscectomy significantly improves HRQOL, even in mental or psychosocial dimensions of HRQOL. Not age but the degree of cartilage degeneration influences the HRQOL gain that can be expected. The factor gender has no effect on HRQOL. The findings of our study influence our daily routine, in that we take the degree of cartilage degeneration and not age as predictive value for the success to be anticipated from the procedure. Concerning the preoperative consenting, it is important to mention that advanced cartilage degeneration is a predictor of a less favourable outcome. IV.
Strategies to Improve Efficiency and Specificity of Degenerate Primers in PCR.
Campos, Maria Jorge; Quesada, Alberto
2017-01-01
PCR with degenerate primers can be used to identify the coding sequence of an unknown protein or to detect a genetic variant within a gene family. These primers, which are complex mixtures of slightly different oligonucleotide sequences, can be optimized to increase the efficiency and/or specificity of PCR in the amplification of a sequence of interest by the introduction of mismatches with the target sequence and balancing their position toward the primers 5'- or 3'-ends. In this work, we explain in detail examples of rational design of primers in two different applications, including the use of specific determinants at the 3'-end, to: (1) improve PCR efficiency with coding sequences for members of a protein family by fully degeneration at a core box of conserved genetic information, with the reduction of degeneration at the 5'-end, and (2) optimize specificity of allelic discrimination of closely related orthologous by 5'-end degenerate primers.
NASA Astrophysics Data System (ADS)
Sultana, S.; Schlickeiser, R.
2018-05-01
Fully nonlinear features of heavy ion-acoustic solitary waves (HIASWs) have been investigated in an astrophysical degenerate relativistic quantum plasma (ADRQP) containing relativistically degenerate electrons and non-relativistically degenerate light ion species, and non-degenerate heavy ion species. The pseudo-energy balance equation is derived from the fluid dynamical equations by adopting the well-known Sagdeev-potential approach, and the properties of arbitrary amplitude HIASWs are examined. The small amplitude limit for the propagation of HIASWs is also recovered. The basic features (width, amplitude, polarity, critical Mach number, speed, etc.) of HIASWs are found to be significantly modified by the relativistic effect of the electron species, and also by the variation of the number density of electron, light ion, and heavy ion species. The basic properties of HIASWs, that may propagated in some realistic astrophysical plasma systems (e.g., in white dwarfs), are briefly discussed.
Anasagasti, Ander; Ezquerra-Inchausti, Maitane; Barandika, Olatz; Muñoz-Culla, Maider; Caffarel, María M; Otaegui, David; López de Munain, Adolfo; Ruiz-Ederra, Javier
2018-05-01
The aim of this study was to identify differentially expressed microRNAs (miRNAs) that might play an important role in the etiology of retinal degeneration in a genetic mouse model of retinitis pigmentosa (rd10 mice) at initial stages of the disease. miRNAs-mRNA interaction networks were generated for analysis of biological pathways involved in retinal degeneration. Of more than 1900 miRNAs analyzed, we selected 19 miRNAs on the basis of (1) a significant differential expression in rd10 retinas compared with control samples and (2) an inverse expression relationship with predicted mRNA targets involved in biological pathways relevant to retinal biology and/or degeneration. Seven of the selected miRNAs have been associated with retinal dystrophies, whereas, to our knowledge, nine have not been previously linked to any disease. This study contributes to our understanding of the etiology and progression of retinal degeneration.
Yonemoto, Yumiko; Morishita, Seita; Fukumoto, Masanori; Mimura, Masashi; Sato, Takaki; Kida, Teruyo; Kojima, Shota; Oku, Hidehiro; Sugasawa, Jun; Ikeda, Tsunehiko
2018-06-01
The aim of this study was to report a case of Down syndrome (DS) complicated with bilateral retinal detachment (RD) due to unusual retinal degeneration. A 9-year-old girl complained of bilateral visual disturbance during a follow-up examination for myopia and strabismus. Slit-lamp examination revealed moderate posterior subcapsular cataract in both eyes. B-mode echography showed bilateral bullous RD; however, it was difficult to detect the causal retinal breaks due to poor mydriasis. For treatment, the patient underwent bilateral lensectomy, vitrectomy, and silicone oil tamponade. Intraoperative findings revealed symmetrical retinal breaks and unusual caterpillar-like retinal degeneration on the upper temporal side of both eyes. Three months later, the patient underwent bilateral silicone oil removal and intraocular lens implantation. In this case, the retinal degeneration was morphologically different from retinal lattice degeneration, thus suggesting that it might be involved in the onset of DS-related bilateral RD.
Opie, Nicholas L; Ayton, Lauren N; Apollo, Nicholas V; Ganesan, Kumaravelu; Guymer, Robyn H; Luu, Chi D
2014-06-01
Retinitis pigmentosa affects over 1.5 million people worldwide and is a leading cause of vision loss and blindness. While retinal prostheses have shown some success in restoring basic levels of vision, only generic, "one-size-fits-all" devices are currently being implanted. In this study, we used optical coherence tomography scans of the degenerated retina from 88 patients with retinitis pigmentosa to generate models of retinal thickness and curvature for the design of customized implants. We found the average retinal thickness at the fovea to be 152.9 ± 61.3 μm, increasing to a maximum retinal thickness of 250.9 ± 57.5 μm at a nasal eccentricity of 5°. These measures could be used to assist the development of custom-made penetrating electrodes to enhance and optimize epiretinal prostheses. From the retinal thickness measurements, we determined that the optimal length of penetrating electrodes to selectively stimulate retinal ganglion cell bodies and interneuron axons in the ganglion cell layer should be 30-100 μm, and to preferentially stimulate interneurons in the inner nuclear layer, electrodes should be 100-200 μm long. Electrodes greater than 200 μm long had the potential to penetrate through the retina into the choroid, which could cause devastating complications to the eye and should be avoided. The two- and three-dimensional models of retinal thickness developed in this study can be used to design patient-specific epiretinal implants that will help with safety and to optimize the efficacy of neuronal stimulation, ensuring the best functional performance of the device for patients. Copyright © 2014 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
Expression of VGLUTs contributes to degeneration and acquisition of learning and memory.
Cheng, Xiao-Rui; Yang, Yong; Zhou, Wen-Xia; Zhang, Yong-Xiang
2011-03-01
Vesicular glutamate transporters (VGLUTs), which include VGLUT1, VGLUT2 and VGLUT3, are responsible for the uploading of L-glutamate into synaptic vesicles. The expression pattern of VGLUTs determines the level of synaptic vesicle filling (i.e., glutamate quantal size) and directly influences glutamate receptors and glutamatergic synaptic transmission; thus, VGLUTs may play a key role in learning and memory in the central nervous system. To determine whether VGLUTs contribute to the degeneration or acquisition of learning and memory, we used an animal model for the age-related impairment of learning and memory, senescence-accelerated mouse/prone 8 (SAMP8). KM mice were divided into groups based on their learning and memory performance in a shuttle-box test. The expression of VGLUTs and synaptophysin (Syp) mRNA and protein in the cerebral cortex and hippocampus were investigated with real-time fluorescence quantitative PCR and western blot, respectively. Our results demonstrate that, in the cerebral cortex, protein expression of VGLUT1, VGLUT2, VGLUT3 and Syp was decreased in SAMP8 with age and increased in KM mice, which displayed an enhanced capacity for learning and memory. The protein expression of VGLUT2 and Syp was decreased in the hippocampus of SAMP8 with aging. The expression level of VGLUT1 and VGLUT2 proteins were highest in KM mouse group with a 76-100% avoidance score in the shuttle-box test. These data demonstrate that protein expression of VGLUT1, VGLUT2 and Syp decreases age-dependently in SAMP8 and increases in a learning- and memory-dependent manner in KM mice. Correlation analysis indicated the protein expression of VGLUT1, VGLUT2 and Syp has a positive correlation with the capacity of learning and memory. Copyright © 2011 Elsevier Inc. All rights reserved.
Asymptomatic snowflake degeneration in a polymethyl methacrylate (PMMA) intraocular lens implant.
Tan, Lee T; Shuttleworth, Garry N
2008-01-01
Snowflake degeneration is a late complication of polymethyl methacrylate (PMMA) intraocular lens implants. We report a case of asymptomatic advanced snowflake opacification presenting 13 years after implantation who maintained a visual acuity of 6/6. This report serves to illustrate the variability of the clinical effects of snowflake degeneration, which do not necessarily correlate with slit-lamp appearances.
[Vitreomacular adhesion in HD-OCT images in the age-related macular degeneration].
Latalska, Małgorzata; Swiech-Zubilewicz, Anna; Mackiewicz, Jerzy
2013-01-01
The aim of this study was to evaluate an incidence of the vitreomacular adhesion in patients with age-related macular degeneration. We examined 472 eyes in 241 patients (136 W/ 105 M) in age of 54-92 years (mean 62.6 years +/- 8.5) with dry or wet age-related macular degeneration using Cirrus HD-OCT (Zeiss) macular cube 512x128 program or 5-line pro-gram. Vitreomacular adhesion was observed in 139 eyes with dry age-related macular degeneration (29.4%, p=0.000*), in 101 eyes with drusen (21.4%, p=0.000*), in 38 eyes with retinal pigment epithelium alterations (8%, p=0.202), in 278 eyes with wet age-related macular degeneration (58.9%, p=0.001*), in 21 eyes with pigment epithelial detachment (4.4%, p=0.303), in 161 eyes with choroidal neovascularzation (34. 1%, p=0.031*/ and in 96 eyes with scar (20.4%, p=0.040*). Probably, vitreomacular adhesion alone is not able to induce age-related macular degeneration, but it may be associated with choroidal neovascularization development, it can contribute to exudate formation and choroidal neovascularization, it may induces or sustains a chronic low-grade inflammation in the macula region.
Fankhauser, Franz Ii; Ott, Maria; Munteanu, Mihnea
2016-01-01
Photon-correlation spectroscopy (PCS) (quasi-elastic light scattering spectroscopy, dynamic light scattering spectroscopy) allows the non-invasively reveal of local dynamics and local heterogeneities of macromolecular systems. The capability of this technique to diagnose the retinal pathologies by in-vivo investigations of spatial anomalies of retinas displaying non-exudative senile macular degeneration was evaluated. Further, the potential use of the technique for the diagnosis of the macular degeneration was analyzed and displayed by the Receiver Operating Curve (ROC). The maculae and the peripheral retina of 73 normal eyes and of 26 eyes afflicted by an early stage of non-exudative senile macular degeneration were characterized by time-correlation functions and analyzed in terms of characteristic decay times and apparent size distributions. The characteristics of the obtained time-correlation functions of the eyes afflicted with nonexudative macular degeneration and of normal eyes differed significantly, which could be referred to a significant change of the nano- and microstructure of the investigated pathologic maculas. Photon-correlation spectroscopy is able to assess the macromolecular and microstructural aberrations in the macula afflicted by non-exudative, senile macular degeneration. It has been demonstrated that macromolecules of this disease show a characteristic abnormal behavior in the macula.
Rapid Y degeneration and dosage compensation in plant sex chromosomes
Papadopulos, Alexander S. T.; Chester, Michael; Ridout, Kate; Filatov, Dmitry A.
2015-01-01
The nonrecombining regions of animal Y chromosomes are known to undergo genetic degeneration, but previous work has failed to reveal large-scale gene degeneration on plant Y chromosomes. Here, we uncover rapid and extensive degeneration of Y-linked genes in a plant species, Silene latifolia, that evolved sex chromosomes de novo in the last 10 million years. Previous transcriptome-based studies of this species missed unexpressed, degenerate Y-linked genes. To identify sex-linked genes, regardless of their expression, we sequenced male and female genomes of S. latifolia and integrated the genomic contigs with a high-density genetic map. This revealed that 45% of Y-linked genes are not expressed, and 23% are interrupted by premature stop codons. This contrasts with X-linked genes, in which only 1.3% of genes contained stop codons and 4.3% of genes were not expressed in males. Loss of functional Y-linked genes is partly compensated for by gene-specific up-regulation of X-linked genes. Our results demonstrate that the rate of genetic degeneration of Y-linked genes in S. latifolia is as fast as in animals, and that the evolutionary trajectories of sex chromosomes are similar in the two kingdoms. PMID:26438872
Kanaan, Nicholas M.; Pigino, Gustavo F.; Brady, Scott T.; Lazarov, Orly; Binder, Lester I.; Morfini, Gerardo A.
2012-01-01
Alzheimer’s disease (AD) is characterized by progressive, age-dependent degeneration of neurons in the central nervous system. A large body of evidence indicates that neurons affected in AD follow a dying-back pattern of degeneration, where abnormalities in synaptic function and axonal connectivity long precede somatic cell death. Mechanisms underlying dying-back degeneration of neurons in AD remain elusive but several have been proposed, including deficits in fast axonal transport (FAT). Accordingly, genetic evidence linked alterations in FAT to dying-back degeneration of neurons, and FAT defects have been widely documented in various AD models. In light of these findings, we discuss experimental evidence linking several AD-related pathogenic polypeptides to aberrant activation of signaling pathways involved in the phosphoregulation of microtubule-based motor proteins. While each pathway appears to affect FAT in a unique manner, in the context of AD, many of these pathways might work synergistically to compromise the delivery of molecular components critical for the maintenance and function of synapses and axons. Therapeutic approaches aimed at preventing FAT deficits by normalizing the activity of specific protein kinases may help prevent degeneration of vulnerable neurons in AD. PMID:22721767
NASA Astrophysics Data System (ADS)
Mamun, A. A.
2018-02-01
A general (but realistic) self-gravitating degenerate quantum plasma system (SG-DQPS) containing inertialess degenerate electron species, inertial degenerate light, and heavy ion/nucleus species is considered to examine the possibility for the existence of degenerate pressure driven self-gravito-acoustic (DPD-SGA) solitary waves (SWs) formed in such a SG-DQPS. The pseudo-potential approach, which is valid for the arbitrary amplitude DPD-SGA SWs, is employed. It is found that depending on the value of the number density of heavy ion/nucleus species, the SG-DQPS under consideration supports the existence of positive or the coexistence of positive and negative DPD-SGA SWs. The basic features (polarity, amplitude, and width) of both positive and negative DPD-SGA SWs are found to be significantly modified by the dynamics of heavy ion/nucleus species. The theoretical investigation presented here is so general that it can be applied not only in astrophysical SG-DQPSs (such as white dwarf and neutron star SG-DQPSs), but also in laboratory SG-DQPSs (viz., solid density and laser-produced SG-DQPSs) to identify the salient features of the DPD-SGA SWs formed in them.
Topological invariants measured for Abelian and non-Abelian monopole fields
NASA Astrophysics Data System (ADS)
Sugawa, Seiji; Salces Carcoba, Francisco; Perry, Abigail; Yue, Yuchen; Putra, Andika; Spielman, Ian
2016-05-01
Understanding the topological nature of physical systems is an important topic in contemporary physics, ranging from condensed matter to high energy. In this talk, I will present experiments measuring the 1st and 2nd Chern number in a four-level quantum system both with degenerate and non-degenerate energies. We engineered the system's Hamiltonian by coupling hyperfine ground states of rubidium-87 Bose-Einstein condensates with rf and microwave fields. We non-adiabatically drove the system and measured the linear response to obtain the local (non-Abelian) Berry curvatures. Then, the Chern numbers were evaluated on (hyper-)spherical manifolds in parameter space. We obtain Chern numbers close to unity for both the 1st and the 2nd Chern numbers. The non-zero Chern number can be interpreted as monopole residing inside the manifold. For our system, the monopoles correspond to a Dirac monopole for non-degenerate spectra and a Yang monopole for our degenerate case. We also show how the dynamical evolution under non-Abelian gauge field emerged in degenerate quantum system is different from non-degenerate case by showing path-dependent acquisition of non-Abelian geometric phase and Wilson loops.
López-Leal, Rodrigo; Diaz, Paula; Court, Felipe A
2018-01-01
Sensory neurons from dorsal root ganglion efficiently regenerate after peripheral nerve injuries. These neurons are widely used as a model system to study degenerative mechanisms of the soma and axons, as well as regenerative axonal growth in the peripheral nervous system. This chapter describes techniques associated to the study of axonal degeneration and regeneration using explant cultures of dorsal root ganglion sensory neurons in vitro in the presence or absence of Schwann cells. Schwann cells are extremely important due to their involvement in tissue clearance during axonal degeneration as well as their known pro-regenerative effect during regeneration in the peripheral nervous system. We describe methods to induce and study axonal degeneration triggered by axotomy (mechanical separation of the axon from its soma) and treatment with vinblastine (which blocks axonal transport), which constitute clinically relevant mechanical and toxic models of axonal degeneration. In addition, we describe three different methods to evaluate axonal regeneration using quantitative methods. These protocols constitute a valuable tool to analyze in vitro mechanisms associated to axonal degeneration and regeneration of sensory neurons and the role of Schwann cells in these processes.
Inoue, Yuji; Iriyama, Aya; Ueno, Shuji; Takahashi, Hidenori; Kondo, Mineo; Tamaki, Yasuhiro; Araie, Makoto; Yanagi, Yasuo
2007-08-01
Because there is no effective treatment for this retinal degeneration, potential application of cell-based therapy has attracted considerable attention. Several investigations support that bone marrow mesenchymal stem cells (MSCs) can be used for a broad spectrum of indications. Bone marrow MSCs exert their therapeutic effect in part by secreting trophic factors to promote cell survival. The current study investigates whether bone marrow MSCs secrete factor(s) to promote photoreceptor cell survival and whether subretinal transplantation of bone marrow MSCs promotes photoreceptor survival in a retinal degeneration model using Royal College of Surgeons (RCS) rats. In vitro, using mouse retinal cell culture, it was demonstrated that the conditioned medium of the MSCs delays photoreceptor cell apoptosis, suggesting that the secreted factor(s) from the MSCs promote photoreceptor cell survival. In vivo, the MSCs were injected into the subretinal space of the RCS rats and histological analysis, real-time RT-PCR and electrophysiological analysis demonstrated that the subretinal transplantation of MSCs delays retinal degeneration and preserves retinal function in the RCS rats. These results suggest that MSC is a useful cell source for cell-replacement therapy for some forms of retinal degeneration.
Ramakrishna, Vivek A S; Chamoli, Uphar; Viglione, Luke L; Tsafnat, Naomi; Diwan, Ashish D
2018-04-02
Spondylolytic (or lytic) spondylolisthesis is often associated with disc degeneration at the index-level; however, it is not clear if disc degeneration is the cause or the consequence of lytic spondylolisthesis. The main objective of this computed tomography based finite element modelling study was to examine the role of different grades of disc degeneration in the progression of a bilateral L5-lytic defect to spondylolisthesis. High-resolution computed tomography data of the lumbosacral spine from an anonymised healthy male subject (26 years old) were segmented to build a 3D-computational model of an INTACT L1-S1 spine. The INTACT model was manipulated to generate four more models representing a bilateral L5-lytic defect and the following states of the L5-S1 disc: nil degeneration (NOR LYTIC), mild degeneration (M-DEG LYTIC), mild degeneration with 50% disc height collapse (M-DEG-COL LYTIC), and severe degeneration with 50% disc height collapse(S-COL LYTIC). The models were imported into a finite element modelling software for pre-processing, running nonlinear-static solves, and post-processing of the results. Compared with the baseline INTACT model, M-DEG LYTIC model experienced the greatest increase in kinematics (Fx range of motion: 73% ↑, Fx intervertebral translation: 53%↑), shear stresses in the annulus (Fx anteroposterior: 163%↑, Fx posteroanterior: 31%↑), and strain in the iliolumbar ligament (Fx: 90%↑). The S-COL LYTIC model experienced a decrease in mobility (Fx range of motion: 48%↓, Fx intervertebral translation: 69%↓) and an increase in normal stresses in the annulus (Fx Tensile: 170%↑; Fx Compressive: 397%↑). No significant difference in results was noted between M-DEG-COL LYTIC and S-COL LYTIC models. In the presence of a bilateral L5 spondylolytic defect, a mildly degenerate index-level disc experienced greater intervertebral motions and shear stresses compared with a severely degenerate index-level disc in flexion and extension bending motions. Disc height collapse, with or without degenerative changes in the stiffness properties of the disc, is one of the plausible re-stabilisation mechanisms available to the L5-S1 motion segment to mitigate increased intervertebral motions and shear stresses due to a bilateral L5 lytic defect.
The bovine patella as a model of early osteoarthritis.
Hargrave-Thomas, E J; Thambyah, A; McGlashan, S R; Broom, N D
2013-12-01
The bovine patella model has been used extensively for studying important structure-function aspects of articular cartilage, including its degeneration. However, the degeneration seen in this model has, to our knowledge, never been adequately compared with human osteoarthritis (OA). In this study, bovine patellae displaying normal to severely degenerate states were compared with human tissue displaying intact cartilage to severe OA. Comparisons of normal and OA features were made with histological scoring, morphometric measurements, and qualitative observations. Differential interference contrast microscopy was used to image early OA changes in the articular cartilage matrix and to investigate whether this method provided comparable quality of visualisation of key structural features with standard histology. The intact bovine cartilage was found to be similar to healthy human cartilage and the degenerate bovine cartilage resembled the human OA tissues with regard to structural disruption, cellularity changes, and staining loss. The extent of degeneration in the bovine tissues matched the mild to moderate range of human OA tissues; however, no bovine samples exhibited late-stage OA. Additionally, in both bovine and human tissues, cartilage degeneration was accompanied by calcified cartilage thickening, tidemark duplication, and the advancement of the cement line by protrusions of bony spicules into the calcified cartilage. This comparison of degeneration in the bovine and human tissues suggests a common pathway for the progression of OA and thus the bovine patella is proposed to be an appropriate model for investigating the structural changes associated with early OA. © 2013 Anatomical Society.
Degenerate pressure driven modified nucleus-acoustic waves in degenerate plasmas
NASA Astrophysics Data System (ADS)
Mamun, A. A.
2018-02-01
The existence of degenerate pressure driven modified nucleus-acoustic (DPDMNA) waves propagating in a cold degenerate quantum plasma (DQP) system [containing cold inertialess degenerate electron species (DES), cold inertial non-degenerate light nucleus species (LNS), and stationary heavy nucleus species (HNS)] is predicted for the first time. The DPDMNA waves (in which the mass density of the cold LNS provides the inertia and the cold inertialess DES gives rise to the restoring force) are new since they completely disappear if the degenerate pressure of the cold DES is neglected. It is found that the phase speed (Vp) of the DPDMNA waves decreases with the rise of the charge number density of the stationary HNS for both non-relativistic and ultra-relativistic DES, and that the ultra-relativistic DES does not have any effect on Vp when β = 1, where β = Λc/Λe with Λ e = ne 0 - 1 / 3 being the average inter-electron distance in the DQP system and Λc being the constant (˜10-10 cm) for the DES. However, the ultra-relativistic DES does have quite a significant effect on Vp for β ≫ 1 and β ≪ 1, and the ultra-relativistic effect significantly enhances (reduces) Vp for β ≫ 1 (β ≪ 1). The DPDMNA waves and their dispersion properties are expected to be useful in understanding the basic features of the electrostatic perturbation mode in space and laboratory DQP systems.
The bovine patella as a model of early osteoarthritis
Hargrave-Thomas, E J; Thambyah, A; McGlashan, S R; Broom, N D
2013-01-01
The bovine patella model has been used extensively for studying important structure–function aspects of articular cartilage, including its degeneration. However, the degeneration seen in this model has, to our knowledge, never been adequately compared with human osteoarthritis (OA). In this study, bovine patellae displaying normal to severely degenerate states were compared with human tissue displaying intact cartilage to severe OA. Comparisons of normal and OA features were made with histological scoring, morphometric measurements, and qualitative observations. Differential interference contrast microscopy was used to image early OA changes in the articular cartilage matrix and to investigate whether this method provided comparable quality of visualisation of key structural features with standard histology. The intact bovine cartilage was found to be similar to healthy human cartilage and the degenerate bovine cartilage resembled the human OA tissues with regard to structural disruption, cellularity changes, and staining loss. The extent of degeneration in the bovine tissues matched the mild to moderate range of human OA tissues; however, no bovine samples exhibited late-stage OA. Additionally, in both bovine and human tissues, cartilage degeneration was accompanied by calcified cartilage thickening, tidemark duplication, and the advancement of the cement line by protrusions of bony spicules into the calcified cartilage. This comparison of degeneration in the bovine and human tissues suggests a common pathway for the progression of OA and thus the bovine patella is proposed to be an appropriate model for investigating the structural changes associated with early OA. PMID:24111904
Ofri, Ron; Reilly, Christopher M; Maggs, David J; Fitzgerald, Paul G; Shilo-Benjamini, Yael; Good, Kathryn L; Grahn, Robert A; Splawski, Danielle D; Lyons, Leslie A
2015-08-01
A form of retinal degeneration suspected to be hereditary was discovered in a family of Bengal cats. A breeding colony was established to characterize disease progression clinically, electrophysiologically, and morphologically, and to investigate the mode of inheritance. Affected and related cats were donated by owners for breeding trials and pedigree analysis. Kittens from test and complementation breedings underwent ophthalmic and neuro-ophthalmic examinations and ERG, and globes were evaluated using light microscopy. Pedigree analysis, along with test and complementation breedings, indicated autosomal recessive inheritance and suggested that this disease is nonallelic to a retinal degeneration found in Persian cats. Mutation analysis confirmed the disease is not caused by CEP290 or CRX variants found predominantly in Abyssinian and Siamese cats. Ophthalmoscopic signs of retinal degeneration were noted at 9 weeks of age and became more noticeable over the next 4 months. Visual deficits were behaviorally evident by 1 year of age. Electroretinogram demonstrated reduced rod and cone function at 7 and 9 weeks of age, respectively. Rod responses were mostly extinguished at 14 weeks of age; cone responses were minimal by 26 weeks. Histologic degeneration was first observed at 8 weeks, evidenced by reduced photoreceptor numbers, then rapid deterioration of the photoreceptor layer and, subsequently, severe outer retinal degeneration. A recessively inherited primary photoreceptor degeneration was characterized in the Bengal cat. The disease is characterized by early onset, with histologic, ophthalmoscopic, and electrophysiological signs evident by 2 months of age, and rapid progression to blindness.
NASA Astrophysics Data System (ADS)
Dowling, Paul; Culligan, Kevin; Ohlendieck, Kay
2002-02-01
Unique unaffected skeletal muscle fibres, unlike necrotic torso and limb muscles, may pave the way for a more detailed understanding of the molecular pathogenesis of inherited neuromuscular disorders and help to develop new treatment strategies for muscular dystrophies. The sparing of extraocular muscle in Duchenne muscular dystrophy is mostly attributed to the special protective properties of extremely fast-twitching small-diameter fibres, but here we show that distal muscles also represent a particular phenotype that is more resistant to necrosis. Immunoblot analysis of membranes isolated from the well established dystrophic animal model mdx shows that, in contrast to dystrophic limb muscles, the toe musculature exhibits an up-regulation of the autosomal dystrophin homologue utrophin and a concomitant rescue of dystrophin-associated glycoproteins. Thus distal mdx muscle groups provide a cellular system that naturally avoids myofibre degeneration which might be useful in the search for naturally occurring compensatory mechanisms in inherited skeletal muscle diseases.
Seitner, Maximilian J; Abdi, Mehdi; Ridolfo, Alessandro; Hartmann, Michael J; Weig, Eva M
2017-06-23
We study locking phenomena of two strongly coupled, high quality factor nanomechanical resonator modes to a common parametric drive at a single drive frequency in different parametric driving regimes. By controlled dielectric gradient forces we tune the resonance frequencies of the flexural in-plane and out-of-plane oscillation of the high stress silicon nitride string through their mutual avoided crossing. For the case of the strong common parametric drive signal-idler generation via nondegenerate parametric two-mode oscillation is observed. Broadband frequency tuning of the very narrow linewidth signal and idler resonances is demonstrated. When the resonance frequencies of the signal and idler get closer to each other, partial injection locking, injection pulling, and complete injection locking to half of the drive frequency occurs depending on the pump strength. Furthermore, satellite resonances, symmetrically offset from the signal and idler by their beat note, are observed, which can be attributed to degenerate four-wave mixing in the highly nonlinear mechanical oscillations.
Boszotta, H; Wendrinsky, R; Sauer, G
1988-02-01
The arthroscopic examination of every recent haemarthrosis of the knee, even in cases without clinically obvious instability has increased the number of primary diagnosed ruptures of the LCA in the last years. The most frequent lesion of the LCA was the proximal rupture. The usual methods for the operative treatment of the ruptured LCA require the opening of the knee joint and cause the weakening of hamstrings, with all disadvantages connected with these procedures. Basing on the experiences in arthroscopic surgery of meniscal lesions and the good results of alloplastic augmentation an new method of arthroscopic refixation and augmentation of the torn LCA has been developed. The use of an arthroscopic meniscal stitcher enables anatomically exact reconstruction of the torn ligament through a femoral tunnel. Augmentation by an LAD-band (Kennedy) or Trevira band (Hoechst) allows postoperative functional treatment, avoiding atrophic degeneration of muscles and loss of mobility by immobilisation. Postoperative pain is reduced to a minimum compared to conventional technics. The period of rehabilitation is considerably shortened.
Li, Jin; Liu, Zilong; Liu, Si
2017-02-20
In on-board photographing processes of satellite cameras, the platform vibration can generate image motion, distortion, and smear, which seriously affect the image quality and image positioning. In this paper, we create a mathematical model of a vibrating modulate transfer function (VMTF) for a remote-sensing camera. The total MTF of a camera is reduced by the VMTF, which means the image quality is degraded. In order to avoid the degeneration of the total MTF caused by vibrations, we use an Mn-20Cu-5Ni-2Fe (M2052) manganese copper alloy material to fabricate a vibration-isolation mechanism (VIM). The VIM can transform platform vibration energy into irreversible thermal energy with its internal twin crystals structure. Our experiment shows the M2052 manganese copper alloy material is good enough to suppress image motion below 125 Hz, which is the vibration frequency of satellite platforms. The camera optical system has a higher MTF after suppressing the vibration of the M2052 material than before.
Sensor fusion of cameras and a laser for city-scale 3D reconstruction.
Bok, Yunsu; Choi, Dong-Geol; Kweon, In So
2014-11-04
This paper presents a sensor fusion system of cameras and a 2D laser sensorfor large-scale 3D reconstruction. The proposed system is designed to capture data on afast-moving ground vehicle. The system consists of six cameras and one 2D laser sensor,and they are synchronized by a hardware trigger. Reconstruction of 3D structures is doneby estimating frame-by-frame motion and accumulating vertical laser scans, as in previousworks. However, our approach does not assume near 2D motion, but estimates free motion(including absolute scale) in 3D space using both laser data and image features. In orderto avoid the degeneration associated with typical three-point algorithms, we present a newalgorithm that selects 3D points from two frames captured by multiple cameras. The problemof error accumulation is solved by loop closing, not by GPS. The experimental resultsshow that the estimated path is successfully overlaid on the satellite images, such that thereconstruction result is very accurate.
Fukui, Daisuke; Nagano, Masashi; Nakamura, Ryohei; Bando, Gen; Nakata, Shinichi; Kosuge, Masao; Sakamoto, Hideyuki; Matsui, Motozumi; Yanagawa, Yojiro; Takahashi, Yoshiyuki
2013-10-01
Artificial insemination (AI) can help to avoid inbreeding and genetic degeneration for sustaining genetically healthy populations of endangered species in captivity. Collection of a sufficient quantity of viable sperm is an essential first step in the AI process. In the present study, we examined the effects of frequent electroejaculation on semen characteristics in a Siberian tiger. We collected semen in all 17 trials during 6 breeding seasons (6 years). The mean number of sperm and the percentage of motile sperm were 294.3 ± 250.2 × 10⁶/ejaculate and 82.4 ± 11.4%, respectively. The number of motile sperm tended to increase during frequent electroejaculation in the same breeding season. Semen collection by electroejaculation can be performed effectively up to the fourth sequential ejaculate, which contained the most sperm in the study. In conclusion, frequent collection of sperm by electroejaculation from tigers may be effective for collection of a large number of motile sperm.
The degenerate parametric oscillator and Ince's equation
NASA Astrophysics Data System (ADS)
Cordero-Soto, Ricardo; Suslov, Sergei K.
2011-01-01
We construct Green's function for the quantum degenerate parametric oscillator in the coordinate representation in terms of standard solutions of Ince's equation in a framework of a general approach to variable quadratic Hamiltonians. Exact time-dependent wavefunctions and their connections with dynamical invariants and SU(1, 1) group are also discussed. An extension to the degenerate parametric oscillator with time-dependent amplitude and phase is also mentioned.
An Unconventional Approach to Reducing Retinal Degeneration After Traumatic Ocular Injury
2017-09-01
AWARD NUMBER: W81XWH-15-1-0138 TITLE: An Unconventional Approach to Reducing Retinal Degeneration After Traumatic Ocular Injury PRINCIPAL...2015 - 30 Jun 2017 4. TITLE AND SUBTITLE An Unconventional Approach to Reducing Retinal Degeneration After Traumatic Ocular Injury 5 a . CONTRACT...optic confocal microscope system , test it, and establish protocols for the first successful in vivo retinal microvessel and pericyte advanced
Lou, Chao; Chen, Hongliang; Mei, Liangwei; Yu, Weiyang; Zhu, Kejun; Liu, Feijun; Chen, Zhenzhong; Xiang, Guangheng; Chen, Minjiang; Weng, Qiaoyou; He, Dengwei
2017-10-01
The aim of this study was to revisit and further investigate the association between menopause and disc degeneration in the lumbar spine using a magnetic resonance imaging-based eight-level grading system. This study cohort comprised of 1,566 women and 1,382 age-matched men who were admitted for low back pain from June 2013 to October 2016. Data on age, weight, height, body mass index, age at natural menopause, and years since menopause (YSM) were obtained. Lumbar disc degeneration was assessed using a magnetic resonance imaging-based eight-level grading system. After adjustment for the confounding factors of age, height, and weight, young age-matched men were more susceptible to disc degeneration than premenopausal women (P < 0.05). However, after menopause, postmenopausal women had a significant tendency to develop more severe disc degeneration than their age-matched men (P < 0.05), and also compared with premenopausal and perimenopausal women (P < 0.01). Postmenopausal women were divided into nine subgroups by every 5 YSM. When YSM was less than 15 years, a positive trend was observed between YSM and severity of disc degeneration, respectively, at L1/L2 (r = 0.241), L2/L3 (r = 0.193), L3/L4 (r = 0.191), L4/L5 (r = 0.165), L5/S1 (r = 0.153), and all lumbar discs (r = 0.237) (P < 0.05 or 0.01). The analysis of covariance indicated a significant difference in each disc level (P < 0.05 or 0.01) between every two groups. When YSM was more than 15 years, the significant difference, however, disappeared in each disc level (P > 0.05). Menopause is associated with lumbar disc degeneration. The association occurred in the first 15 YSM, suggesting estrogen deficiency might be a risk factor of disc degeneration of the lumbar spine. Further studies need to be carried out for deciding whether age or menopause plays a more important role in the progression of disc degeneration in the lumbar spine.
Assessment of Intervertebral Disc Degeneration Based on Quantitative MRI Analysis: an in vivo study
Grunert, Peter; Hudson, Katherine D.; Macielak, Michael R.; Aronowitz, Eric; Borde, Brandon H.; Alimi, Marjan; Njoku, Innocent; Ballon, Douglas; Tsiouris, Apostolos John; Bonassar, Lawrence J.; Härtl, Roger
2015-01-01
Study design Animal experimental study Objective To evaluate a novel quantitative imaging technique for assessing disc degeneration. Summary of Background Data T2-relaxation time (T2-RT) measurements have been used to quantitatively assess disc degeneration. T2 values correlate with the water content of inter vertebral disc tissue and thereby allow for the indirect measurement of nucleus pulposus (NP) hydration. Methods We developed an algorithm to subtract out MRI voxels not representing NP tissue based on T2-RT values. Filtered NP voxels were used to measure nuclear size by their amount and nuclear hydration by their mean T2-RT. This technique was applied to 24 rat-tail intervertebral discs’ (IVDs), which had been punctured with an 18-gauge needle according to different techniques to induce varying degrees of degeneration. NP voxel count and average T2-RT were used as parameters to assess the degeneration process at 1 and 3 months post puncture. NP voxel counts were evaluated against X-ray disc height measurements and qualitative MRI studies based on the Pfirrmann grading system. Tails were collected for histology to correlate NP voxel counts to histological disc degeneration grades and to NP cross-sectional area measurements. Results NP voxel count measurements showed strong correlations to qualitative MRI analyses (R2=0.79, p<0.0001), histological degeneration grades (R2=0.902, p<0.0001) and histological NP cross-sectional area measurements (R2=0.887, p<0.0001). In contrast to NP voxel counts, the mean T2-RT for each punctured group remained constant between months 1 and 3. The mean T2-RTs for the punctured groups did not show a statistically significant difference from those of healthy IVDs (63.55ms ±5.88ms month 1 and 62.61ms ±5.02ms) at either time point. Conclusion The NP voxel count proved to be a valid parameter to quantitatively assess disc degeneration in a needle puncture model. The mean NP T2-RT does not change significantly in needle-puncture induced degenerated IVDs. IVDs can be segmented into different tissue components according to their innate T2-RT. PMID:24384655
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vollmar, R.
A small adhesive glass capsule with a removable 0.5-mm thick layer of Pb is used for protection of the sensitive portions of the eye (cornea, lens, etc.) during Sr/sup 90/ BETA irradiation. The capsule need not be fitted optically to the eye surface. Bremstrahlung from the Pb amounts to less than 1% of the 500- r single dose applied during 25 sec with a 40 mC/cm/sup 2/ applicator. Radiation losses between the applicator and the eye surface are minimal. The method has been used to reduce vascular invasion of the cornea and cloudiness of transplants, marginal ulcerations in senile degeneration,more » chronic lymphocytic conjunctival hyperplasia, growing conjunctival nevus in children, and conjunctival melanoma. A combined treatment of the conjunctival bulba and tarsi was used for diseased conditions such as chronic lymphocytic conjunctival hyperplasia or laminar melanosis of the conjunctiva. Large capsules with portions of the edges removed are utilized for segmental irradiation of pterygium to avoid damage and appearance of late radiation effects in other portions of the eye. A large assortment of eye capsules is necessary to provide for the wide variety of sizes of individual conjunctiva. Use of eye capsules avoids damage to the lens that may otherwise receive as much as 10% of the surface beta dosage. This could bring about cataract formation as a later radiation injury. (BBB)« less
Huh, Eugene; Kim, Hyo Geun; Park, Hanbyeol; Kang, Min Seo; Lee, Bongyong; Oh, Myung Sook
2014-05-01
Cognitive impairment is a result of dementia of diverse causes, such as cholinergic dysfunction and Alzheimer's disease (AD). Houttuynia cordata Thunb. (Saururaceae) has long been used as a traditional herbal medicine. It has biological activities including protective effects against amyloid beta (Aβ) toxicity, via regulation of calcium homeostasis, in rat hippocampal cells. To extend previous reports, we investigated the effects of water extracts of H. cordata herb (HCW) on tauopathies, also involving calcium influx. We then confirmed the effects of HCW in improving memory impairment and neuronal damage in mice with Aβ-induced neurotoxicity. We also investigated the effects of HCW against scopolamine-induced cholinergic dysfunction in mice. In primary neuronal cells, HCW inhibited the phosphorylation of tau by regulating p25/p35 expression in Aβ-induced neurotoxicity. In mice with Aβ-induced neurotoxicity, HCW improved cognitive impairment, as assessed with behavioral tasks, such as novel object recognition, Y-maze, and passive avoidance tasks. HCW also inhibited the degeneration of neurons in the CA3 region of the hippocampus in Aβ-induced neurotoxicity. Moreover, HCW, which had an IC50 value of 79.7 μg/ml for acetylcholinesterase inhibition, ameliorated scopolamine-induced cognitive impairment significantly in Y-maze and passive avoidance tasks. These results indicate that HCW improved cognitive impairment, due to cholinergic dysfunction, with inhibitory effects against tauopathies and cholinergic antagonists, suggesting that HCW may be an interesting candidate to investigate for the treatment of AD.
Huh, Eugene; Kim, Hyo Geun; Park, Hanbyeol; Kang, Min Seo; Lee, Bongyong; Oh, Myung Sook
2014-01-01
Cognitive impairment is a result of dementia of diverse causes, such as cholinergic dysfunction and Alzheimer’s disease (AD). Houttuynia cordata Thunb. (Saururaceae) has long been used as a traditional herbal medicine. It has biological activities including protective effects against amyloid beta (Aβ) toxicity, via regulation of calcium homeostasis, in rat hippocampal cells. To extend previous reports, we investigated the effects of water extracts of H. cordata herb (HCW) on tauopathies, also involving calcium influx. We then confirmed the effects of HCW in improving memory impairment and neuronal damage in mice with Aβ-induced neurotoxicity. We also investigated the effects of HCW against scopolamine-induced cholinergic dysfunction in mice. In primary neuronal cells, HCW inhibited the phosphorylation of tau by regulating p25/p35 expression in Aβ-induced neurotoxicity. In mice with Aβ-induced neurotoxicity, HCW improved cognitive impairment, as assessed with behavioral tasks, such as novel object recognition, Y-maze, and passive avoidance tasks. HCW also inhibited the degeneration of neurons in the CA3 region of the hippocampus in Aβ-induced neurotoxicity. Moreover, HCW, which had an IC50 value of 79.7 μg/ml for acetylcholinesterase inhibition, ameliorated scopolamine-induced cognitive impairment significantly in Y-maze and passive avoidance tasks. These results indicate that HCW improved cognitive impairment, due to cholinergic dysfunction, with inhibitory effects against tauopathies and cholinergic antagonists, suggesting that HCW may be an interesting candidate to investigate for the treatment of AD. PMID:25009697
Human Disc Nucleus Properties and Vertebral Endplate Permeability
Rodriguez, Azucena G.; Slichter, Chloe K.; Acosta, Frank L.; Rodriguez-Soto, Ana E.; Burghardt, Andrew J.; Majumdar, Sharmila; Lotz, Jeffrey C.
2010-01-01
Study of human cadaveric discs quantifying endplate permeability and porosity and correlating these with measures of disc quality: cell density, proteoglycan content, and overall degeneration. Permeability and porosity increased with age and were not correlated with cell density or overall degeneration, suggesting that endplate calcification may not accelerate disc degeneration. Study Design Experimental quantification of relationships between vertebral endplate morphology, permeability, disc cell density, glycosaminoglycan content and degeneration in samples harvested from human cadaveric spines. Objective To test the hypothesis that variation in endplate permeability and porosity contribute to changes in intervertebral disc cell density and overall degeneration. Summary of Background Data Cells within the intervertebral disc are dependent on diffusive exchange with capillaries in the adjacent vertebral bone. Previous findings suggest that blocked routes of transport negatively affect disc quality, yet there are no quantitative relationships between human vertebral endplate permeability, porosity, cell density and disc degeneration. Such relationships would be valuable for clarifying degeneration risk factors, and patient features that may impede efforts at disc tissue engineering. Methods Fifty-one motion segments were harvested from 13 frozen cadaveric human lumbar spines (32 to 85 years) and classified for degeneration using the MRI-based Pfirrmann scale. A cylindrical core was harvested from the center of each motion segment that included vertebral bony and cartilage endplates along with adjacent nucleus tissue. The endplate mobility, a type of permeability, was measured directly using a custom-made permeameter before and after the cartilage endplate was removed. Cell density within the nucleus tissue was estimated using the picogreen method while the nuclear GAG content was quantified using the DMMB technique. Specimens were imaged at 8 μm resolution using microCT, bony porosity was calculated. Analysis of variance, linear regression, and multiple comparison tests were used to analyze the data. Results Nucleus cell density increased as the disc height decreased (R2=0.13; p=0.01) but was not related to subchondral bone porosity (p>0.5), total mobility (p>0.4) or age (p>0.2). When controlling for disc height however, a significant, negative effect of age on cell density was observed (p=0.03). In addition to this, GAG content decreased with age non-linearly (R2=0.83, p<0.0001) and a cell function measurement, GAGs/cell decreased with degeneration (R2=0.24; p<0.0001). Total mobility (R2=0.14; p<0.01) and porosity (R2=0.1, p<0.01) had a positive correlation with age. Conclusion Although cell density increased with degeneration, cell function indicated that GAGs/cell decreased. Since permeability and porosity increase with age and degeneration, this implies that cell dysfunction, rather than physical barriers to transport, accelerate disc disease. PMID:21240044
Quantization with maximally degenerate Poisson brackets: the harmonic oscillator!
NASA Astrophysics Data System (ADS)
Nutku, Yavuz
2003-07-01
Nambu's construction of multi-linear brackets for super-integrable systems can be thought of as degenerate Poisson brackets with a maximal set of Casimirs in their kernel. By introducing privileged coordinates in phase space these degenerate Poisson brackets are brought to the form of Heisenberg's equations. We propose a definition for constructing quantum operators for classical functions, which enables us to turn the maximally degenerate Poisson brackets into operators. They pose a set of eigenvalue problems for a new state vector. The requirement of the single-valuedness of this eigenfunction leads to quantization. The example of the harmonic oscillator is used to illustrate this general procedure for quantizing a class of maximally super-integrable systems.
Lever, E G; Elwes, R D; Williams, A; Reynolds, E H
1986-01-01
Subacute combined degeneration of the cord is a rare complication of folate deficiency. Disturbance of methylation reactions in nervous tissue probably underlie subacute combined degeneration of the cord arising from folate as well as vitamin B12 deficiency. Methyl tetrahydrofolate is the form in which folic acid is transported into the CNS. Therefore methyl tetrahydrofolate treatment of the neurological and psychiatric manifestations of folate deficiency would seem to be theoretically advantageous. A case of subacute combined degeneration of the cord due to dietary folate deficiency and associated with an organic brain syndrome is reported. There was striking haematological, neurological and psychiatric response to methyl folate treatment. PMID:3783183
NASA Astrophysics Data System (ADS)
Brill, Nicolai; Wirtz, Mathias; Merhof, Dorit; Tingart, Markus; Jahr, Holger; Truhn, Daniel; Schmitt, Robert; Nebelung, Sven
2016-07-01
Polarization-sensitive optical coherence tomography (PS-OCT) is a light-based, high-resolution, real-time, noninvasive, and nondestructive imaging modality yielding quasimicroscopic cross-sectional images of cartilage. As yet, comprehensive parameterization and quantification of birefringence and tissue properties have not been performed on human cartilage. PS-OCT and algorithm-based image analysis were used to objectively grade human cartilage degeneration in terms of surface irregularity, tissue homogeneity, signal attenuation, as well as birefringence coefficient and band width, height, depth, and number. Degeneration-dependent changes were noted for the former three parameters exclusively, thereby questioning the diagnostic value of PS-OCT in the assessment of human cartilage degeneration.
Kyger, Madison; Worley, Aneta; Adamus, Grazyna
2012-01-01
Autoimmunity may contribute to retinal degeneration. The studies examined the evolution of autoimmune responses against retina in naïve dystrophic RCS rats over the course of retinal degeneration. We showed that anti-retinal autoantibodies and T cells are generated in response to the availability of antigenic material released from dying photoreceptor cells during retinal degeneration but with distinctive activation trends. Passive transfer of anti-retinal antibodies enhanced disease progression by disrupting the BRB, upregulating MCP-1, attracting blood macrophages into retina, and augmenting apoptotic photoreceptor cell death. Our findings directly link anti-retinal autoantibodies to activated macrophage entry and their possible role in neurodegeneration. PMID:23110938
A Layered Approach to Raising Public Awareness of Macular Degeneration in Australia
Heraghty, Julie; Cummins, Robert
2012-01-01
Between 2007 and 2011, the Australian Macular Degeneration Foundation conducted a multifaceted campaign to increase public awareness of macular degeneration. Regular national polls conducted by an independent social research company have shown that awareness of macular degeneration increased from 47% to 80% in Australians aged 16 years or older and from 58% to 92% in those aged 50 years or older. The percentage of people aged 50 years or older who reported having had their macula checked in the 2 years prior to the survey increased from 33% to 70% from 2007 to 2011. Other measures, including analysis of Medicare data, have confirmed the success of the campaign. PMID:22813341
Anasagasti, Ander; Ezquerra-Inchausti, Maitane; Barandika, Olatz; Muñoz-Culla, Maider; Caffarel, María M.; Otaegui, David; López de Munain, Adolfo
2018-01-01
Purpose The aim of this study was to identify differentially expressed microRNAs (miRNAs) that might play an important role in the etiology of retinal degeneration in a genetic mouse model of retinitis pigmentosa (rd10 mice) at initial stages of the disease. Methods miRNAs–mRNA interaction networks were generated for analysis of biological pathways involved in retinal degeneration. Results Of more than 1900 miRNAs analyzed, we selected 19 miRNAs on the basis of (1) a significant differential expression in rd10 retinas compared with control samples and (2) an inverse expression relationship with predicted mRNA targets involved in biological pathways relevant to retinal biology and/or degeneration. Seven of the selected miRNAs have been associated with retinal dystrophies, whereas, to our knowledge, nine have not been previously linked to any disease. Conclusions This study contributes to our understanding of the etiology and progression of retinal degeneration. PMID:29847644
Singh, Satyendra K; Singh, Aloukick K; Prasad, Kashi N; Singh, Amrita; Singh, Avinash; Rai, Ravi P; Tripathi, Mukesh; Gupta, Rakesh K; Husain, Nuzhat
2015-11-30
Neurocysticercosis (NCC) is a parasitic infection of central nervous system (CNS). Expression of adhesion molecules, chemokines and matrix metalloproteinases (MMPs) were investigated on brain tissues surrounding viable (n=15) and degenerating cysticerci (n=15) of Taenia solium in swine by real-time RT-PCR and ELISA. Gelatin gel zymography was performed for MMPs activity. ICAM-1 (intercellular adhesion molecule-1), E-selectin, MIP-1α (macrophage inflammatory protein-1α), Eotaxin-1 and RANTES (regulated on activation, normal T cell expressed and secreted) were associated with degenerating cysticerci (cysts). However, VCAM-1 (vascular cell adhesion molecule-1), MCP-1 (monocyte chemotactic protein-1), MMP-2 and MMP-9 were associated with both viable and degenerating cysts. In conclusion, viable and degenerating cysticerci have different immune molecule profiles and role of these molecules in disease pathogenesis needs to be investigated. Copyright © 2015 Elsevier B.V. All rights reserved.
Treatment of Macular Degeneration with Sildenafil: Results of a Two-Year Trial.
Coleman, D Jackson; Lee, Winston; Chang, Stanley; Silverman, Ronald H; Lloyd, Harriet O; Daly, Suzanne; Tsang, Stephen H
2018-04-25
To evaluate PDE5/6 inhibition with sildenafil to reduce choroidal ischemia and treat age-related macular degeneration. Sildenafil was prescribed to treat participants with macular degenerations or macular dystrophies measured by spectral-domain optical coherence tomography, color fundus photography, enhanced depth imaging, and best-corrected visual acuity. No change in calcified drusen was noted. Vitelliform-type soft drusen were not substantially changed. A participant with Best vitelliform macular dystrophy had a significant improvement in vision as well as in photoreceptor and ellipsoid layers. Our research supports sildenafil as a safe treatment for age-related and vitelliform macular degenerations. Thickened Bruch's membrane reduces the beneficial effect of perfusion increase, but all eyes appear to benefit from PDE6. Notably, maintenance or improvement in the photoreceptor layer may be the most significant result of sildenafil and is consistent with PDE6 inhibition. Thus, sil-denafil treatment of macular degeneration offers significant potential for vision retention and recovery. © 2018 S. Karger AG, Basel.
Monitoring peripheral nerve degeneration in ALS by label-free stimulated Raman scattering imaging
NASA Astrophysics Data System (ADS)
Tian, Feng; Yang, Wenlong; Mordes, Daniel A.; Wang, Jin-Yuan; Salameh, Johnny S.; Mok, Joanie; Chew, Jeannie; Sharma, Aarti; Leno-Duran, Ester; Suzuki-Uematsu, Satomi; Suzuki, Naoki; Han, Steve S.; Lu, Fa-Ke; Ji, Minbiao; Zhang, Rosanna; Liu, Yue; Strominger, Jack; Shneider, Neil A.; Petrucelli, Leonard; Xie, X. Sunney; Eggan, Kevin
2016-10-01
The study of amyotrophic lateral sclerosis (ALS) and potential interventions would be facilitated if motor axon degeneration could be more readily visualized. Here we demonstrate that stimulated Raman scattering (SRS) microscopy could be used to sensitively monitor peripheral nerve degeneration in ALS mouse models and ALS autopsy materials. Three-dimensional imaging of pre-symptomatic SOD1 mouse models and data processing by a correlation-based algorithm revealed that significant degeneration of peripheral nerves could be detected coincidentally with the earliest detectable signs of muscle denervation and preceded physiologically measurable motor function decline. We also found that peripheral degeneration was an early event in FUS as well as C9ORF72 repeat expansion models of ALS, and that serial imaging allowed long-term observation of disease progression and drug effects in living animals. Our study demonstrates that SRS imaging is a sensitive and quantitative means of measuring disease progression, greatly facilitating future studies of disease mechanisms and candidate therapeutics.
Kam, Chee Zhou; Kueh, Ahmad Beng Hong
2013-01-01
A laminated composite plate element with an interface description is developed using the finite element approach to investigate the bending performance of two-layer cross-ply laminated composite plates in presence of a diagonally perturbed localized interfacial degeneration between laminae. The stiffness of the laminate is expressed through the assembly of the stiffnesses of lamina sub-elements and interface element, the latter of which is formulated adopting the well-defined virtually zero-thickness concept. To account for the extent of both shear and axial weak bonding, a degeneration ratio is introduced in the interface formulation. The model has the advantage of simulating a localized weak bonding at arbitrary locations, with various degeneration areas and intensities, under the influence of numerous boundary conditions since the interfacial description is expressed discretely. Numerical results show that the bending behavior of laminate is significantly affected by the aforementioned parameters, the greatest effect of which is experienced by those with a localized total interface degeneration, representing the case of local delamination.
Spectroscopic observations of cool degenerate star candidates
NASA Technical Reports Server (NTRS)
Hintzen, P.
1986-01-01
Spectroscopic observations are reported for 23 Luyten Half-Second degenerate star candidates and for 13 Luyten-Palomar common proper-motion pairs containing possible degenerate star components. Twenty-five degenerate stars are identified, 20 of which lack previous spectroscopy. Most of these stars are cool - Luyten color class g or later. One star, LP 77-57, shows broad continuum depressions similar to those in LHS 1126, which Liebert and Dahn attributed to pressure-shifted C2. A second degenerate star, LHS 290, exhibits apparent strong Swan bands which are blueshifted about 75 A. Further observations, including polarimetry and photometry, are required to appraise the spectroscopic peculiarities of these stars. Finally, five cool, sharp-lined DA white dwarfs have been observed to detect lines of metals and to determine line strengths. None of these DAs show signs of Mg b or the G band, and four show no evidence of Ca II K. The attempt to detect Ca MI in the fifth star, G199-71, was inconclusive.
Phagocyte dysfunction, tissue aging and degeneration
2013-01-01
Immunologically-silent phagocytosis of apoptotic cells is critical to maintaining tissue homeostasis and innate immune balance. Aged phagocytes reduce their functional activity, leading to accumulation of unphagocytosed debris, chronic sterile inflammation and exacerbation of tissue aging and damage. Macrophage dysfunction plays an important role in immunosenescence. Microglial dysfunction has been linked to age-dependent neurodegenerations. Retinal pigment epithelial (RPE) cell dysfunction has been implicated in the pathogenesis of age-related macular degeneration (AMD). Despite several reports on the characterization of aged phagocytes, the role of phagocyte dysfunction in tissue aging and degeneration is yet to be fully appreciated. Lack of knowledge of molecular mechanisms by which aging reduces phagocyte function has hindered our capability to exploit the therapeutic potentials of phagocytosis for prevention or delay of tissue degeneration. This review summarizes our current knowledge of phagocyte dysfunction in aged tissues and discusses possible links to age-related diseases. We highlight the challenges to decipher the molecular mechanisms, present new research approaches and envisage future strategies to prevent phagocyte dysfunction, tissue aging and degeneration. PMID:23748186
[Depression in Patients with Age-Related Macular Degeneration].
Narváez, Yamile Reveiz; Gómez-Restrepo, Carlos
2012-09-01
Age-related macular degeneration is a cause for disability in the elderly since it greatly affects their quality of life and increases depression likelihood. This article discusses the negative effect depression has on patients with age-related macular degeneration and summarizes the interventions available for decreasing their depression index. Copyright © 2012 Asociación Colombiana de Psiquiatría. Publicado por Elsevier España. All rights reserved.
Visual Function Changes after Laser Exposure.
1984-04-01
degeneration induced by prolonged exposure to flourescent light. Using the ERG as a criterion response Noell et al (5) showed that the damage action...without photoreceptors. Exp Neurol 1972;34:446-454 15. Bennett 11H, Dyer RF, Dunn JD. Light-induced retinal degeneration : effect upon light-dark...20. Lemmon V, Anderson VV. Behavioral effects of retinal degeneration . Exp Neurol 1979;63:35-49 21. Wright A, Sperling HG. Psychophysical biochemical
Degenerated uterine fibroid mimicking hydrometra: fallacy in CT
Tok, CH; Bux, SI; Mohamed, SI; Lim, BK
2006-01-01
Fibroids are the commonest uterine neoplasms, occurring in 20% - 30% of women of reproductive age. In women who have pelvic masses of unknown cause, unusual manifestations of fibroids such as necrosis or degeneration may simulate a carcinoma or hydrometra resulting in problems with image interpretation. We report a case of an unsuspected large degenerated uterine fibroid in a lady mistakenly diagnosed as hydrometra on computed tomography scanning. PMID:21614328
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liang, Weiguo, E-mail: liangweiguo@tom.com; Fang, Dejian; Ye, Dongping
2014-07-11
Highlights: • ERK5 involved in NP cells. • ERK5 involved in NP tissue. • It was important modulator. - Abstract: Extracellular-signal-regulated kinase 5 (ERK5) is a member of the mitogen-activated protein kinase (MAPK) family and regulates a wide variety of cellular processes such as proliferation, differentiation, necrosis, apoptosis and degeneration. However, the expression of ERK5 and its role in degenerated human nucleus pulposus (NP) is hitherto unknown. In this study, we observed the differential expression of ERK5 in normal and degenerated human nucleus pulposus tissues by using immunohistochemical staining and Western blot. Treatment of NP cells with Pro-inflammatory cytokine, TNF-αmore » decreased ERK5 gene expression as well as NP marker gene expression; including the type II collagen and aggrecan. Suppression of ERK5 gene expression in NP cells by ERK5 siRNA resulted in decreased gene expression of type II collagen and aggrecan. Furthermore, inhibition of ERK5 activation by BIX02188 (5 μM) decreased the gene expression of type II collagen and aggrecan in NP cells. Our results document the expression of ERK5 in degenerated nucleus pulposus tissues, and suggest a potential involvement of ERK5 in human degenerated nucleus pulposus.« less
Cruce, W L
1975-01-01
Descending fiber projections to the lizard spinal cord were studied using anterograde axonal degeneration. Following hemisection of the cord at the first spinal segment, degeneration was found in the white and gray matter as far down as the 31st (caudal) segment. Degenerating fibers in the white matter were confined to the ipsilateral side and were found in the medial longitudinal fasiculus and the outer half ot the lateral and ventral funiculi. Degeneration was more intense in the dorsolateral and ventromedial funiculi than in the ventrolateral funiculus. In the gray matter, REXED's criteria were applied to Nissl-stained material to delimit boundaries of ten laminae. Degeneration of suprospinal axons was most intense in the medial part of VII, dorsal and ventral commissures to ramify contralaterally in the medial part of VII, in VII, and in medial IX. No degeneration was present in the lateral part of the spinal gray on the contralateral side. In Golgi-stained material, dendrites of lateral IX cells were seen to extend into lamina VII, the dorsolateral part of VII, and the lateral funiculus. Thus, fibers of the ventromedial supraspinal pathway may make axodendritic contact with motoneurons of lateral IX as well as medial IX, ipsilaterally. In addition, there is a possibility of a crossed connection to contralateral motoneurons.
Glial degeneration with oxidative damage drives neuronal demise in MPSII disease
Zalfa, Cristina; Verpelli, Chiara; D'Avanzo, Francesca; Tomanin, Rosella; Vicidomini, Cinzia; Cajola, Laura; Manara, Renzo; Sala, Carlo; Scarpa, Maurizio; Vescovi, Angelo Luigi; De Filippis, Lidia
2016-01-01
Mucopolysaccharidosis type II (MPSII) is a lysosomal storage disorder due to the deficit of the iduronate 2-sulfatase (IDS) enzyme, causing progressive neurodegeneration in patients. Neural stem cells (NSCs) derived from the IDS-ko mouse can recapitulate MPSII pathogenesis in vitro. In differentiating IDS-ko NSCs and in the aging IDS-ko mouse brain, glial degeneration precedes neuronal degeneration. Here we show that pure IDS-ko NSC-derived astrocytes are selectively able to drive neuronal degeneration when cocultured with healthy neurons. This phenotype suggests concurrent oxidative damage with metabolic dysfunction. Similar patterns were observed in murine IDS-ko animals and in human MPSII brains. Most importantly, the mutant phenotype of IDS-ko astrocytes was reversed by low oxygen conditions and treatment with vitamin E, which also reversed the toxic effect on cocultured neurons. Moreover, at very early stages of disease we detected in vivo the development of a neuroinflammatory background that precedes astroglial degeneration, thus suggesting a novel model of MPSII pathogenesis, with neuroinflammation preceding glial degeneration, which is finally followed by neuronal death. This hypothesis is also consistent with the progression of white matter abnormalities in MPSII patients. Our study represents a novel breakthrough in the elucidation of MPSII brain pathogenesis and suggests the antioxidant molecules as potential therapeutic tools to delay MPSII onset and progression. PMID:27512952
Weber, Kathryn T; Jacobsen, Timothy D; Maidhof, Robert; Virojanapa, Justin; Overby, Chris; Bloom, Ona; Quraishi, Shaheda; Levine, Mitchell; Chahine, Nadeen O
2015-03-01
Low back pain is a leading cause of disability worldwide and the second most common cause of physician visits. There are many causes of back pain, and among them, disc herniation and intervertebral disc degeneration are the most common diagnoses and targets for intervention. Currently, clinical treatment outcomes are not strongly correlated with diagnoses, emphasizing the importance for characterizing more completely the mechanisms of degeneration and their relationships with symptoms. This review covers recent studies elucidating cellular and molecular changes associated with disc mechanobiology, as it relates to degeneration and regeneration. Specifically, we review findings on the biochemical changes in disc diseases, including cytokines, chemokines, and proteases; advancements in disc disease diagnostics using imaging modalities; updates on studies examining the response of the intervertebral disc to injury; and recent developments in repair strategies, including cell-based repair, biomaterials, and tissue engineering. Findings on the effects of the omega-6 fatty acid, linoleic acid, on nucleus pulposus tissue engineering are presented. Studies described in this review provide greater insights into the pathogenesis of disc degeneration and may define new paradigms for early or differential diagnostics of degeneration using new techniques such as systemic biomarkers. In addition, research on the mechanobiology of disease enriches the development of therapeutics for disc repair, with potential to diminish pain and disability associated with disc degeneration.
LONGITUDINAL STRUCTURAL CHANGES IN LATE-ONSET RETINAL DEGENERATION.
Cukras, Catherine; Flamendorf, Jason; Wong, Wai T; Ayyagari, Radha; Cunningham, Denise; Sieving, Paul A
2016-12-01
To characterize longitudinal structural changes in early stages of late-onset retinal degeneration to investigate pathogenic mechanisms. Two affected siblings, both with a S163R missense mutation in the causative gene C1QTNF5, were followed for 8+ years. Color fundus photos, fundus autofluorescence images, near-infrared reflectance fundus images, and spectral domain optical coherence tomography scans were acquired during follow-up. Both patients, aged 45 and 50 years, had good visual acuities (>20/20) in the context of prolonged dark adaptation. Baseline color fundus photography demonstrated yellow-white, punctate lesions in the temporal macula that correlated with a reticular pattern on fundus autofluorescence and near-infrared reflectance imaging. Baseline spectral domain optical coherence tomography imaging revealed subretinal deposits that resemble reticular pseudodrusen described in age-related macular degeneration. During follow-up, these affected areas developed confluent thickening of the retinal pigment epithelial layer and disruption of the ellipsoid zone of photoreceptors before progressing to overt retinal pigment epithelium and outer retinal atrophy. Structural changes in early stages of late-onset retinal degeneration, revealed by multimodal imaging, resemble those of reticular pseudodrusen observed in age-related macular degeneration and other retinal diseases. Longitudinal follow-up of these lesions helps elucidate their progression to frank atrophy and may lend insight into the pathogenic mechanisms underlying diverse retinal degenerations.
Histological and reference system for the analysis of mouse intervertebral disc.
Tam, Vivian; Chan, Wilson C W; Leung, Victor Y L; Cheah, Kathryn S E; Cheung, Kenneth M C; Sakai, Daisuke; McCann, Matthew R; Bedore, Jake; Séguin, Cheryle A; Chan, Danny
2018-01-01
A new scoring system based on histo-morphology of mouse intervertebral disc (IVD) was established to assess changes in different mouse models of IVD degeneration and repair. IVDs from mouse strains of different ages, transgenic mice, or models of artificially induced IVD degeneration were assessed. Morphological features consistently observed in normal, and early/later stages of degeneration were categorized into a scoring system focused on nucleus pulposus (NP) and annulus fibrosus (AF) changes. "Normal NP" exhibited a highly cellularized cell mass that decreased with natural ageing and in disc degeneration. "Normal AF" consisted of distinct concentric lamellar structures, which was disrupted in severe degeneration. NP/AF clefts indicated more severe changes. Consistent scores were obtained between experienced and new users. Altogether, our scoring system effectively differentiated IVD changes in various strains of wild-type and genetically modified mice and in induced models of IVD degeneration, and is applicable from the post-natal stage to the aged mouse. This scoring tool and reference resource addresses a pressing need in the field for studying IVD changes and cross-study comparisons in mice, and facilitates a means to normalize mouse IVD assessment between different laboratories. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:233-243, 2018. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
Iezzi, Raymond; Guru, Bharath R; Glybina, Inna V; Mishra, Manoj K; Kennedy, Alexander; Kannan, Rangaramanujam M
2012-01-01
Retinal neuroinflammation, mediated by activated microglia, plays a key role in the pathogenesis of photoreceptor and retinal pigment epithelial cell loss in age-related macular degeneration and retinitis pigmentosa. Targeted drug therapy for attenuation of neuroinflammation in the retina was explored using hydroxyl-terminated polyamidoamine (PAMAM) dendrimer-drug conjugate nanodevices. We show that, upon intravitreal administration, PAMAM dendrimers selectively localize within activated outer retinal microglia in two rat models of retinal degeneration, but not in the retina of healthy controls. This pathology-dependent biodistribution was exploited for drug delivery, by covalently conjugating fluocinolone acetonide to the dendrimer. The conjugate released the drug in a sustained manner over 90 days. In vivo efficacy was assessed using the Royal College of Surgeons (RCS) rat retinal degeneration model over a four-week period when peak retinal degeneration occurs. One intravitreal injection of 1 μg of FA conjugated to 7 μg of the dendrimer was able to arrest retinal degeneration, preserve photoreceptor outer nuclear cell counts, and attenuate activated microglia, for an entire month. These studies suggest that PAMAM dendrimers (with no targeting ligands) have an intrinsic ability to selectively localize in activated microglia, and can deliver drugs inside these cells for a sustained period for the treatment of retinal neuroinflammation. Copyright © 2011 Elsevier Ltd. All rights reserved.
Sequential involvement of the nervous system in subacute combined degeneration.
Minn, Yang-Ki; Kim, Seung-Min; Kim, Se-Hoon; Kwon, Ki-Han; Sunwoo, Il-Nam
2012-03-01
Subacute combined degeneration (SCD) involves progressive degeneration of the spinal cord, optic nerve, and peripheral nerves. Vitamin B12 (VB12) is a co-factor in myelin synthesis. Because each cell that constitutes the myelin component in the central nervous system and peripheral nervous system is different, it is improbable that these cells undergo simultaneous degeneration. However, the sequence of degeneration in SCD has not been established. In this study, we analysed medical records and electrophysiological data of patients who showed neurological symptoms and whose serum VB12 levels were lower than 200 pg/mL. We enrolled 49 patients in this study. Their mean VB12 level was 68.3 pg/mL. Somatosensory evoked potential (SEP) study showed abnormal findings in 38 patients. Of the 40 patients who underwent visual evoked potential (VEP) study, 14 showed abnormal responses. Eighteen patients showed abnormal findings on a nerve conduction study (NCS). In this study, abnormal posterior tibial nerve SEPs only were seen in 16 patients, median nerve SEPs only were seen in 3 patients, abnormal VEPs only in two, and abnormal NCS responses in one patient. No patient complained of cognitive symptoms. In SCD, degeneration appears to progress in the following order: lower spinal cord, cervical spinal cord, peripheral nerve/optic nerve, and finally, the brain.
Zuo, Xialin; Hou, Qinghua; Jin, Jizi; Zhan, Lixuan; Li, Xinyu; Sun, Weiwen; Lin, Kunqin; Xu, En
2016-09-01
Secondary degeneration in areas beyond ischemic foci can inhibit poststroke recovery. The cysteine protease Cathepsin B (CathB) regulates cell death and intracellular protein catabolism. To investigate the roles of CathB in the development of secondary degeneration in the ventroposterior nucleus (VPN) of the ipsilateral thalamus after focal cerebral infarction, infarct volumes, immunohistochemistry and immunofluorescence, and Western blotting analyses were conducted in a distal middle cerebral artery occlusion (dMCAO) stroke model in adult rats. We observed marked neuron loss and gliosis in the ipsilateral thalamus after dMCAO, and the expression of CathB and cleaved caspase-3 in the VPN was significantly upregulated; glial cells were the major source of CathB. Although it had no effect on infarct volume, delayed intracerebroventricular treatment with the membrane-permeable CathB inhibitor CA-074Me suppressed the expression of CathB and cleaved caspase-3 in ipsilateral VPN and accordingly alleviated the secondary degeneration. These data indicate that CathB mediates a novel mechanism of secondary degeneration in the VPN of the ipsilateral thalamus after focal cortical infarction and suggest that CathB might be a therapeutic target for the prevention of secondary degeneration in patients after stroke. © 2016 American Association of Neuropathologists, Inc. All rights reserved.
Glial degeneration with oxidative damage drives neuronal demise in MPSII disease.
Zalfa, Cristina; Verpelli, Chiara; D'Avanzo, Francesca; Tomanin, Rosella; Vicidomini, Cinzia; Cajola, Laura; Manara, Renzo; Sala, Carlo; Scarpa, Maurizio; Vescovi, Angelo Luigi; De Filippis, Lidia
2016-08-11
Mucopolysaccharidosis type II (MPSII) is a lysosomal storage disorder due to the deficit of the iduronate 2-sulfatase (IDS) enzyme, causing progressive neurodegeneration in patients. Neural stem cells (NSCs) derived from the IDS-ko mouse can recapitulate MPSII pathogenesis in vitro. In differentiating IDS-ko NSCs and in the aging IDS-ko mouse brain, glial degeneration precedes neuronal degeneration. Here we show that pure IDS-ko NSC-derived astrocytes are selectively able to drive neuronal degeneration when cocultured with healthy neurons. This phenotype suggests concurrent oxidative damage with metabolic dysfunction. Similar patterns were observed in murine IDS-ko animals and in human MPSII brains. Most importantly, the mutant phenotype of IDS-ko astrocytes was reversed by low oxygen conditions and treatment with vitamin E, which also reversed the toxic effect on cocultured neurons. Moreover, at very early stages of disease we detected in vivo the development of a neuroinflammatory background that precedes astroglial degeneration, thus suggesting a novel model of MPSII pathogenesis, with neuroinflammation preceding glial degeneration, which is finally followed by neuronal death. This hypothesis is also consistent with the progression of white matter abnormalities in MPSII patients. Our study represents a novel breakthrough in the elucidation of MPSII brain pathogenesis and suggests the antioxidant molecules as potential therapeutic tools to delay MPSII onset and progression.
Degeneration of the long biceps tendon: comparison of MRI with gross anatomy and histology.
Buck, Florian M; Grehn, Holger; Hilbe, Monika; Pfirrmann, Christian W A; Manzanell, Silvana; Hodler, Jürg
2009-11-01
The objective of our study was to relate alterations in biceps tendon diameter and signal on MR images to gross anatomy and histology. T1-weighted, T2-weighted fat-saturated, and proton density-weighted fat-saturated spin-echo sequences were acquired in 15 cadaveric shoulders. Biceps tendon diameter (normal, flattened, thickened, and partially or completely torn) and signal intensity (compared with bone, fat, muscle, and joint fluid) were graded by two readers independently and in a blinded fashion. The distance of tendon abnormalities from the attachment at the glenoid were noted in millimeters. MRI findings were related to gross anatomic and histologic findings. On the basis of gross anatomy, there were six normal, five flattened, two thickened, and two partially torn tendons. Reader 1 graded nine diameter changes correctly, missed two, and incorrectly graded four. The corresponding values for reader 2 were seven, one, and five, respectively, with kappa = 0.75. Histology showed mucoid degeneration (n = 13), lipoid degeneration (n = 7), and fatty infiltration (n = 6). At least one type of abnormality was found in each single tendon. Mucoid degeneration was hyperintense compared with fatty infiltration on T2-weighted fat-saturated images and hyperintense compared with magic-angle artifacts on proton density-weighted fat-saturated images. MRI-based localization of degeneration agreed well with histologic findings. Diameter changes are specific but not sensitive in diagnosing tendinopathy of the biceps tendon. Increased tendon signal is most typical for mucoid degeneration but should be used with care as a sign of tendon degeneration.
Why do some intervertebral discs degenerate, when others (in the same spine) do not?
Adams, Michael A; Lama, Polly; Zehra, Uruj; Dolan, Patricia
2015-03-01
This review suggests why some discs degenerate rather than age normally. Intervertebral discs are avascular pads of fibrocartilage that allow movement between vertebral bodies. Human discs have a low cell density and a limited ability to adapt to mechanical demands. With increasing age, the matrix becomes yellowed, fibrous, and brittle, but if disc structure remains intact, there is little impairment in function, and minimal ingrowth of blood vessels or nerves. Approximately half of old lumbar discs degenerate in the sense of becoming physically disrupted. The posterior annulus and lower lumbar discs are most affected, presumably because they are most heavily loaded. Age and genetic inheritance can weaken discs to such an extent that they are physically disrupted during everyday activities. Damage to the endplate or annulus typically decompresses the nucleus, concentrates stress within the annulus, and allows ingrowth of nerves and blood vessels. Matrix disruption progresses by mechanical and biological means. The site of initial damage leads to two disc degeneration "phenotypes": endplate-driven degeneration is common in the upper lumbar and thoracic spine, and annulus-driven degeneration is common at L4-S1. Discogenic back pain can be initiated by tissue disruption, and amplified by inflammation and infection. Healing is possible in the outer annulus only, where cell density is highest. We conclude that some discs degenerate because they are disrupted by excessive mechanical loading. This can occur without trauma if tissues are weakened by age and genetic inheritance. Moderate mechanical loading, in contrast, strengthens all spinal tissues, including discs. © 2014 Wiley Periodicals, Inc.
Ofri, Ron; Reilly, Christopher M.; Maggs, David J.; Fitzgerald, Paul G.; Shilo-Benjamini, Yael; Good, Kathryn L.; Grahn, Robert A.; Splawski, Danielle D.; Lyons, Leslie A.
2015-01-01
Purpose A form of retinal degeneration suspected to be hereditary was discovered in a family of Bengal cats. A breeding colony was established to characterize disease progression clinically, electrophysiologically, and morphologically, and to investigate the mode of inheritance. Methods Affected and related cats were donated by owners for breeding trials and pedigree analysis. Kittens from test and complementation breedings underwent ophthalmic and neuro-ophthalmic examinations and ERG, and globes were evaluated using light microscopy. Results Pedigree analysis, along with test and complementation breedings, indicated autosomal recessive inheritance and suggested that this disease is nonallelic to a retinal degeneration found in Persian cats. Mutation analysis confirmed the disease is not caused by CEP290 or CRX variants found predominantly in Abyssinian and Siamese cats. Ophthalmoscopic signs of retinal degeneration were noted at 9 weeks of age and became more noticeable over the next 4 months. Visual deficits were behaviorally evident by 1 year of age. Electroretinogram demonstrated reduced rod and cone function at 7 and 9 weeks of age, respectively. Rod responses were mostly extinguished at 14 weeks of age; cone responses were minimal by 26 weeks. Histologic degeneration was first observed at 8 weeks, evidenced by reduced photoreceptor numbers, then rapid deterioration of the photoreceptor layer and, subsequently, severe outer retinal degeneration. Conclusions A recessively inherited primary photoreceptor degeneration was characterized in the Bengal cat. The disease is characterized by early onset, with histologic, ophthalmoscopic, and electrophysiological signs evident by 2 months of age, and rapid progression to blindness. PMID:26258614
Fischer, Tamás
2015-07-12
It has a great therapeutic significance that the disorder of the vascular endothelium, which supplies the affected ocular structures, plays a major role in the development of age-related macular degeneration. Chronic inflammation is closely linked to diseases associated with endothelial dysfuncition and age-related macular degeneration is accompanied by a general inflammatory response. The vascular wall including those in chorioids may be activated by several repeated and/or prolonged mechanical, physical, chemical, microbiological, immunologic and genetic factors causing a protracted host defence response with a consequent vascular damage, which leads to age-related macular degeneration. Based on this concept, age-related macular degeneration is a local manifestation of the systemic vascular disease. This recognition should have therapeutic implications because restoration of endothelial dysfunction can stabilize the condition of chronic vascular disease including age-related macular degeneration, as well. Restoration of endothelial dysfunction by non-pharmacological or pharmacological interventions may prevent the development or improve endothelial dysfunction resulting in prevention or improvement of age-related macular degeneration. Non-pharmacological interventions which may have beneficial effect in endothelial dysfunction include (1) smoking cessation; (2) reduction of increased body weight; (3) adequate physical activity; (4) appropriate diet (a) proper dose of flavonoids, polyphenols and kurcumin; (b) omega-3 long-chain polyunsaturated fatty acids: docosahexaenoic acid and eicosapentaenoic acid; (c) carotenoids, lutein and zeaxanthins), (d) management of dietary glycemic index, (e) caloric restriction, and (5) elimination of stressful lifestyle. Non-pharmacological interventions should be preferable even if medicaments are also used for the treatment of endothelial dysfunction.
Degeneration of serotonergic neurons in amyotrophic lateral sclerosis: a link to spasticity.
Dentel, Christel; Palamiuc, Lavinia; Henriques, Alexandre; Lannes, Béatrice; Spreux-Varoquaux, Odile; Gutknecht, Lise; René, Frédérique; Echaniz-Laguna, Andoni; Gonzalez de Aguilar, Jose-Luis; Lesch, Klaus Peter; Meininger, Vincent; Loeffler, Jean-Philippe; Dupuis, Luc
2013-02-01
Spasticity is a common and disabling symptom observed in patients with central nervous system diseases, including amyotrophic lateral sclerosis, a disease affecting both upper and lower motor neurons. In amyotrophic lateral sclerosis, spasticity is traditionally thought to be the result of degeneration of the upper motor neurons in the cerebral cortex, although degeneration of other neuronal types, in particular serotonergic neurons, might also represent a cause of spasticity. We performed a pathology study in seven patients with amyotrophic lateral sclerosis and six control subjects and observed that central serotonergic neurons suffer from a degenerative process with prominent neuritic degeneration, and sometimes loss of cell bodies in patients with amyotrophic lateral sclerosis. Moreover, distal serotonergic projections to spinal cord motor neurons and hippocampus systematically degenerated in patients with amyotrophic lateral sclerosis. In SOD1 (G86R) mice, a transgenic model of amyotrophic lateral sclerosis, serotonin levels were decreased in brainstem and spinal cord before onset of motor symptoms. Furthermore, there was noticeable atrophy of serotonin neuronal cell bodies along with neuritic degeneration at disease onset. We hypothesized that degeneration of serotonergic neurons could underlie spasticity in amyotrophic lateral sclerosis and investigated this hypothesis in vivo using tail muscle spastic-like contractions in response to mechanical stimulation as a measure of spasticity. In SOD1 (G86R) mice, tail muscle spastic-like contractions were observed at end-stage. Importantly, they were abolished by 5-hydroxytryptamine-2b/c receptors inverse agonists. In line with this, 5-hydroxytryptamine-2b receptor expression was strongly increased at disease onset. In all, we show that serotonergic neurons degenerate during amyotrophic lateral sclerosis, and that this might underlie spasticity in mice. Further research is needed to determine whether inverse agonists of 5-hydroxytryptamine-2b/c receptors could be of interest in treating spasticity in patients with amyotrophic lateral sclerosis.
Kuisma, Mari; Karppinen, Jaro; Haapea, Marianne; Niinimäki, Jaakko; Ojala, Risto; Heliövaara, Markku; Korpelainen, Raija; Kaikkonen, Kaisu; Taimela, Simo; Natri, Antero; Tervonen, Osmo
2008-04-16
Modic changes are bone marrow lesions visible in magnetic resonance imaging (MRI), and they are assumed to be associated with symptomatic intervertebral disc disease, especially changes located at L5-S1. Only limited information exists about the determinants of Modic changes. The objective of this study was to evaluate the determinants of vertebral endplate (Modic) changes, and whether they are similar for Modic changes and severe disc degeneration focusing on L5-S1 level. 228 middle-aged male workers (159 train engineers and 69 sedentary factory workers) from northern Finland underwent sagittal T1- and T2-weighted MRI. Modic changes and disc degeneration were analyzed from the scans. The participants responded to a questionnaire including items of occupational history and lifestyle factors. Logistic regression analysis was used to evaluate the associations between selected determinants (age, lifetime exercise, weight-related factors, fat percentage, smoking, alcohol use, lifetime whole-body vibration) and Modic type I and II changes, and severe disc degeneration (= grade V on Pfirrmann's classification). The prevalences of the Modic changes and severe disc degeneration were similar in the occupational groups. Age was significantly associated with all degenerative changes. In the age-adjusted analyses, only weight-related determinants (BMI, waist circumference) were associated with type II changes. Exposure to whole-body vibration, besides age, was the only significant determinant for severe disc degeneration. In the multivariate model, BMI was associated with type II changes at L5-S1 (OR 2.75 per one SD = 3 unit increment in BMI), and vibration exposure with severe disc degeneration at L5-S1 (OR 1.08 per one SD = 11-year increment in vibration exposure). Besides age, weight-related factors seem important in the pathogenesis of Modic changes, whereas whole-body vibration was the only significant determinant of severe disc degeneration.
Kuisma, Mari; Karppinen, Jaro; Haapea, Marianne; Niinimäki, Jaakko; Ojala, Risto; Heliövaara, Markku; Korpelainen, Raija; Kaikkonen, Kaisu; Taimela, Simo; Natri, Antero; Tervonen, Osmo
2008-01-01
Background Modic changes are bone marrow lesions visible in magnetic resonance imaging (MRI), and they are assumed to be associated with symptomatic intervertebral disc disease, especially changes located at L5-S1. Only limited information exists about the determinants of Modic changes. The objective of this study was to evaluate the determinants of vertebral endplate (Modic) changes, and whether they are similar for Modic changes and severe disc degeneration focusing on L5-S1 level. Methods 228 middle-aged male workers (159 train engineers and 69 sedentary factory workers) from northern Finland underwent sagittal T1- and T2-weighted MRI. Modic changes and disc degeneration were analyzed from the scans. The participants responded to a questionnaire including items of occupational history and lifestyle factors. Logistic regression analysis was used to evaluate the associations between selected determinants (age, lifetime exercise, weight-related factors, fat percentage, smoking, alcohol use, lifetime whole-body vibration) and Modic type I and II changes, and severe disc degeneration (= grade V on Pfirrmann's classification). Results The prevalences of the Modic changes and severe disc degeneration were similar in the occupational groups. Age was significantly associated with all degenerative changes. In the age-adjusted analyses, only weight-related determinants (BMI, waist circumference) were associated with type II changes. Exposure to whole-body vibration, besides age, was the only significant determinant for severe disc degeneration. In the multivariate model, BMI was associated with type II changes at L5-S1 (OR 2.75 per one SD = 3 unit increment in BMI), and vibration exposure with severe disc degeneration at L5-S1 (OR 1.08 per one SD = 11-year increment in vibration exposure). Conclusion Besides age, weight-related factors seem important in the pathogenesis of Modic changes, whereas whole-body vibration was the only significant determinant of severe disc degeneration. PMID:18416819
Prospectives for Gene Therapy of Retinal Degenerations
Thumann, Gabriele
2012-01-01
Retinal degenerations encompass a large number of diseases in which the retina and associated retinal pigment epithelial (RPE) cells progressively degenerate leading to severe visual disorders or blindness. Retinal degenerations can be divided into two groups, a group in which the defect has been linked to a specific gene and a second group that has a complex etiology that includes environmental and genetic influences. The first group encompasses a number of relatively rare diseases with the most prevalent being Retinitis pigmentosa that affects approximately 1 million individuals worldwide. Attempts have been made to correct the defective gene by transfecting the appropriate cells with the wild-type gene and while these attempts have been successful in animal models, human gene therapy for these inherited retinal degenerations has only begun recently and the results are promising. To the second group belong glaucoma, age-related macular degeneration (AMD) and diabetic retinopathy (DR). These retinal degenerations have a genetic component since they occur more often in families with affected probands but they are also linked to environmental factors, specifically elevated intraocular pressure, age and high blood sugar levels respectively. The economic and medical impact of these three diseases can be assessed by the number of individuals affected; AMD affects over 30 million, DR over 40 million and glaucoma over 65 million individuals worldwide. The basic defect in these diseases appears to be the relative lack of a neurogenic environment; the neovascularization that often accompanies these diseases has suggested that a decrease in pigment epithelium-derived factor (PEDF), at least in part, may be responsible for the neurodegeneration since PEDF is not only an effective neurogenic and neuroprotective agent but also a potent inhibitor of neovascularization. In the last few years inhibitors of vascularization, especially antibodies against vascular endothelial cell growth factors (VEGF), have been used to prevent the neovascularization that accompanies AMD and DR resulting in the amelioration of vision in a significant number of patients. In animal models it has been shown that transfection of RPE cells with the gene for PEDF and other growth factors can prevent or slow degeneration. A limited number of studies in humans have also shown that transfection of RPE cells in vivo with the gene for PEDF is effective in preventing degeneration and restore vision. Most of these studies have used virally mediated gene delivery with all its accompanying side effects and have not been widely used. New techniques using non-viral protocols that allow efficient delivery and permanent integration of the transgene into the host cell genome offer novel opportunities for effective treatment of retinal degenerations. PMID:23372421
The First Rapid Assessment of Avoidable Blindness (RAAB) in Thailand
Isipradit, Saichin; Sirimaharaj, Maytinee; Charukamnoetkanok, Puwat; Thonginnetra, Oraorn; Wongsawad, Warapat; Sathornsumetee, Busaba; Somboonthanakij, Sudawadee; Soomsawasdi, Piriya; Jitawatanarat, Umapond; Taweebanjongsin, Wongsiri; Arayangkoon, Eakkachai; Arame, Punyawee; Kobkoonthon, Chinsuchee; Pangputhipong, Pannet
2014-01-01
Background The majority of vision loss is preventable or treatable. Population surveys are crucial for planning, implementation, and monitoring policies and interventions to eliminate avoidable blindness and visual impairments. This is the first rapid assessment of avoidable blindness (RAAB) study in Thailand. Methods A cross-sectional study of a population in Thailand age 50 years old or over aimed to assess the prevalence and causes of blindness and visual impairments. Using the Thailand National Census 2010 as the sampling frame, a stratified four-stage cluster sampling based on a probability proportional to size was conducted in 176 enumeration areas from 11 provinces. Participants received comprehensive eye examination by ophthalmologists. Results The age and sex adjusted prevalence of blindness (presenting visual acuity (VA) <20/400), severe visual impairment (VA <20/200 but ≥20/400), and moderate visual impairment (VA <20/70 but ≥20/200) were 0.6% (95% CI: 0.5–0.8), 1.3% (95% CI: 1.0–1.6), 12.6% (95% CI: 10.8–14.5). There was no significant difference among the four regions of Thailand. Cataract was the main cause of vision loss accounted for 69.7% of blindness. Cataract surgical coverage in persons was 95.1% for cut off VA of 20/400. Refractive errors, diabetic retinopathy, glaucoma, and corneal opacities were responsible for 6.0%, 5.1%, 4.0%, and 2.0% of blindness respectively. Conclusion Thailand is on track to achieve the goal of VISION 2020. However, there is still much room for improvement. Policy refinements and innovative interventions are recommended to alleviate blindness and visual impairments especially regarding the backlog of blinding cataract, management of non-communicative, chronic, age-related eye diseases such as glaucoma, age-related macular degeneration, and diabetic retinopathy, prevention of childhood blindness, and establishment of a robust eye health information system. PMID:25502762
76 FR 72207 - Government-Owned Inventions; Availability for Licensing
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-22
... ocular diseases including diabetic retinopathy, retinal vein occlusion, and macular degeneration. The... Macular degeneration Diabetic retinopathy Retinal vein occlusion Competitive Advantages: Small sample...
Biological Applications and Effects of Optical Masers.
1984-06-01
term ocular effects of optical radiation on aging and macular degeneration is discussed and a final draft of the report of the Working Group assessing...exposure to short wavelength light on aging and degeneration of the retina and lens leading to degenerative maculopathies and senile cataract. Dr. Ham...chaired the Working Group assigned the task of assessing light damage to the RPE and its possible relationship to aging and macular degeneration of the
Wavelength-doubling optical parametric oscillator
Armstrong, Darrell J [Albuquerque, NM; Smith, Arlee V [Albuquerque, NM
2007-07-24
A wavelength-doubling optical parametric oscillator (OPO) comprising a type II nonlinear optical medium for generating a pair of degenerate waves at twice a pump wavelength and a plurality of mirrors for rotating the polarization of one wave by 90 degrees to produce a wavelength-doubled beam with an increased output energy by coupling both of the degenerate waves out of the OPO cavity through the same output coupler following polarization rotation of one of the degenerate waves.
Probing the degenerate states of V-point singularities.
Ram, B S Bhargava; Sharma, Anurag; Senthilkumaran, Paramasivam
2017-09-15
V-points are polarization singularities in spatially varying linearly polarized optical fields and are characterized by the Poincare-Hopf index η. Each V-point singularity is a superposition of two oppositely signed orbital angular momentum states in two orthogonal spin angular momentum states. Hence, a V-point singularity has zero net angular momentum. V-points with given |η| have the same (amplitude) intensity distribution but have four degenerate polarization distributions. Each of these four degenerate states also produce identical diffraction patterns. Hence to distinguish these degenerate states experimentally, we present in this Letter a method involving a combination of polarization transformation and diffraction. This method also shows the possibility of using polarization singularities in place of phase singularities in optical communication and quantum information processing.
Sphericity determination using resonant ultrasound spectroscopy
Dixon, Raymond D.; Migliori, Albert; Visscher, William M.
1994-01-01
A method is provided for grading production quantities of spherical objects, such as roller balls for bearings. A resonant ultrasound spectrum (RUS) is generated for each spherical object and a set of degenerate sphere-resonance frequencies is identified. From the degenerate sphere-resonance frequencies and known relationships between degenerate sphere-resonance frequencies and Poisson's ratio, a Poisson's ratio can be determined, along with a "best" spherical diameter, to form spherical parameters for the sphere. From the RUS, fine-structure resonant frequency spectra are identified for each degenerate sphere-resonance frequency previously selected. From each fine-structure spectrum and associated sphere parameter values an asphericity value is determined. The asphericity value can then be compared with predetermined values to provide a measure for accepting or rejecting the sphere.
Sphericity determination using resonant ultrasound spectroscopy
Dixon, R.D.; Migliori, A.; Visscher, W.M.
1994-10-18
A method is provided for grading production quantities of spherical objects, such as roller balls for bearings. A resonant ultrasound spectrum (RUS) is generated for each spherical object and a set of degenerate sphere-resonance frequencies is identified. From the degenerate sphere-resonance frequencies and known relationships between degenerate sphere-resonance frequencies and Poisson's ratio, a Poisson's ratio can be determined, along with a 'best' spherical diameter, to form spherical parameters for the sphere. From the RUS, fine-structure resonant frequency spectra are identified for each degenerate sphere-resonance frequency previously selected. From each fine-structure spectrum and associated sphere parameter values an asphericity value is determined. The asphericity value can then be compared with predetermined values to provide a measure for accepting or rejecting the sphere. 14 figs.
Agi, Jorge; Kasahara, Niro; Lottenberg, Claudio Luiz
2018-06-07
To evaluate the quality of online information on age-related macular degeneration available in Portuguese. The search term "age-related macular degeneration" was used to browse the web using four different search engines. The first 40 websites appearing on match lists provided by each search engine were recorded and those listed in at least three tab pages selected. The Sandvik Severity Index was used as to assess website quality. Quality of information available on selected websites was rated average (mean Sandvik Score 7.08±2.23). Most websites disseminating information about age-related macular degeneration were of average quality. The need to readjust web-based information to target lay public and promote increased understanding was emphasized.
Kyger, Madison; Worley, Aneta; Adamus, Grazyna
2013-01-15
Autoimmunity may contribute to retinal degeneration. The studies examined the evolution of autoimmune responses against retina in naïve dystrophic RCS rats over the course of retinal degeneration. We showed that anti-retinal autoantibodies and T cells are generated in response to the availability of antigenic material released from dying photoreceptor cells during retinal degeneration but with distinctive activation trends. Passive transfer of anti-retinal antibodies enhanced disease progression by disrupting the BRB, upregulating MCP-1, attracting blood macrophages into retina, and augmenting apoptotic photoreceptor cell death. Our findings directly link anti-retinal autoantibodies to activated macrophage entry and their possible role in neurodegeneration. Copyright © 2012 Elsevier B.V. All rights reserved.
Kong, Min Ho; Hymanson, Henry J; Song, Kwan Young; Chin, Dong Kyu; Cho, Yong Eun; Yoon, Do Heum; Wang, Jeffrey C
2009-04-01
The authors conducted a retrospective observational study using kinetic MR imaging to investigate the relationship between instability, abnormal sagittal segmental motion, and radiographic variables consisting of intervertebral disc degeneration, facet joint osteoarthritis (FJO), degeneration of the interspinous ligaments, ligamentum flavum hypertrophy (LFH), and the status of the paraspinal muscles. Abnormal segmental motion, defined as > 10 degrees angulation and > 3 mm of translation in the sagittal plane, was investigated in 1575 functional spine units (315 patients) in flexion, neutral, and extension postures using kinetic MR imaging. Each segment was assessed based on the extent of disc degeneration (Grades I-V), FJO (Grades 1-4), interspinous ligament degeneration (Grades 1-4), presence of LFH, and paraspinal muscle fatty infiltration observed on kinetic MR imaging. These factors are often noted in patients with degenerative disease, and there are grading systems to describe these changes. For the first time, the authors attempted to address the relationship between these radiographic observations and the effects on the motion and instability of the functional spine unit. The prevalence of abnormal translational motion was significantly higher in patients with Grade IV degenerative discs and Grade 3 arthritic facet joints (p < 0.05). In patients with advanced disc degeneration and FJO, there was a lesser amount of motion in both segmental translation and angulation when compared with lower grades of degeneration, and this difference was statistically significant for angular motion (p < 0.05). Patients with advanced degenerative Grade 4 facet joint arthritis had a significantly lower percentage of abnormal angular motion compared to patients with normal facet joints (p < 0.001). The presence of LFH was strongly associated with abnormal translational and angular motion. Grade 4 interspinous ligament degeneration and the presence of paraspinal muscle fatty infiltration were both significantly associated with excessive abnormal angular motion (p < 0.05). This kinetic MR imaging analysis showed that the lumbar functional unit with more disc degeneration, FJO, and LFH had abnormal sagittal plane translation and angulation. These findings suggest that abnormal segmental motion noted on kinetic MR images is closely associated with disc degeneration, FJO, and the pathological characteristics of interspinous ligaments, ligamentum flavum, and paraspinal muscles. Kinetic MR imaging in patients with mechanical back pain may prove a valuable source of information about the stability of the functional spine unit by measuring abnormal segmental motion and grading of radiographic parameters simultaneously.
Degree of tendon degeneration and stage of rotator cuff disease.
Jo, Chris Hyunchul; Shin, Won Hyoung; Park, Ji Wan; Shin, Ji Sun; Kim, Ji Eun
2017-07-01
While tendon degeneration has been known to be an important cause of rotator cuff disease, few studies have objectively proven the association of tendon degeneration and rotator cuff disease. The purpose of this study was to investigate changes of tendon degeneration with respect to the stage of rotator cuff disease. A total of 48 patients were included in the study: 12 with tendinopathy, 12 with a partial-thickness tear (pRCT), 12 with a full-thickness tear (fRCT), and 12 as the control. A full-thickness supraspinatus tendon sample was harvested en bloc from the middle portion between the lateral edge and the musculotendinous junction of the tendon using a biopsy punch with a diameter of 3 mm. Harvested samples were evaluated using a semi-quantitative grading scale with 7 parameters after haematoxylin and eosin staining. There was no significant difference in age, gender, symptom duration, and Kellgren-Lawrence grade between the groups except for the global fatty degeneration index. All of the seven parameters were significantly different between the groups and could be categorized as follows: early responders (fibre structure and arrangement), gradual responder (rounding of the nuclei), after-tear responders (cellularity, vascularity, and stainability), and late responder (hyalinization). The total degeneration scores were not significantly different between the control (6.08 ± 1.16) and tendinopathy (6.67 ± 1.83) (n.s.). However, the score of pRCT group (10.42 ± 1.31) was greater than that of tendinopathy (P < 0.001), and so was the score of fRCT (12.33 ± 1.15) than that of pRCT (p = 0.009). This study showed that the degeneration of supraspinatus tendon increases as the stage of rotator cuff disease progresses from tendinopathy to pRCT, and then to fRCT. The degree of degeneration of tendinopathy was not different from that of normal but aged tendons, and significant tendon degeneration began from the stage of pRCT. The clinical relevance of the study is that strategies and goals of the treatment for rotator cuff disease should be specific to its stage, in order to prevent disease progression for tendinopathy and pRCT, as well to restore the structural integrity for fRCT. Diagnostic, Level I.
Crowson, Daisy; Barrett, Spencer C H; Wright, Stephen I
2017-05-01
Sex chromosomes are unique regions of the genome, with a host of properties that distinguish them from autosomes and from each other. Although there is extensive theory describing sex chromosome formation and subsequent degeneration of the Y chromosome, the relative importance of processes governing degeneration is poorly understood. In particular, it is not known whether degeneration occurs solely as a direct result of inefficient selection due to loss of recombination, or whether adaptive gene silencing on the Y chromosome results in most degeneration occurring neutrally. We used comparative transcriptome data from two related annual plants with highly heteromorphic sex chromosomes, Rumex rothschildianus and Rumex hastatulus, to investigate the patterns and processes underlying Y chromosome degeneration. The rate of degeneration varied greatly between the two species. In R. rothschildianus, we infer widespread gene loss, higher than previously reported for any plant. Gene loss was not random: genes with lower constraint and those not expressed during the haploid phase were more likely to be lost. There was indirect evidence of adaptive evolution on the Y chromosome from the over-expression of Y alleles in certain genes with sex-biased gene expression. There was no complete dosage compensation, but there was evidence for targeted dosage compensation occurring in more selectively constrained genes. Overall, our results are consistent with selective interference playing the dominant role in the degeneration of the Y chromosome, rather than adaptive gene silencing. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Articular cartilage degeneration classification by means of high-frequency ultrasound.
Männicke, N; Schöne, M; Oelze, M; Raum, K
2014-10-01
To date only single ultrasound parameters were regarded in statistical analyses to characterize osteoarthritic changes in articular cartilage and the potential benefit of using parameter combinations for characterization remains unclear. Therefore, the aim of this work was to utilize feature selection and classification of a Mankin subset score (i.e., cartilage surface and cell sub-scores) using ultrasound-based parameter pairs and investigate both classification accuracy and the sensitivity towards different degeneration stages. 40 punch biopsies of human cartilage were previously scanned ex vivo with a 40-MHz transducer. Ultrasound-based surface parameters, as well as backscatter and envelope statistics parameters were available. Logistic regression was performed with each unique US parameter pair as predictor and different degeneration stages as response variables. The best ultrasound-based parameter pair for each Mankin subset score value was assessed by highest classification accuracy and utilized in receiver operating characteristics (ROC) analysis. The classifications discriminating between early degenerations yielded area under the ROC curve (AUC) values of 0.94-0.99 (mean ± SD: 0.97 ± 0.03). In contrast, classifications among higher Mankin subset scores resulted in lower AUC values: 0.75-0.91 (mean ± SD: 0.84 ± 0.08). Variable sensitivities of the different ultrasound features were observed with respect to different degeneration stages. Our results strongly suggest that combinations of high-frequency ultrasound-based parameters exhibit potential to characterize different, particularly very early, degeneration stages of hyaline cartilage. Variable sensitivities towards different degeneration stages suggest that a concurrent estimation of multiple ultrasound-based parameters is diagnostically valuable. In-vivo application of the present findings is conceivable in both minimally invasive arthroscopic ultrasound and high-frequency transcutaneous ultrasound. Copyright © 2014 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
Zou, Qingliang; Gang, Kai; Yang, Qifen; Liu, Xiaolin; Tang, Xuemei; Lu, Huiqiang; He, Jianbo; Luo, Lingfei
2018-06-05
Degenerative diseases of organs lead to their impaired function. The cellular and molecular mechanisms underlying organ degeneration are therefore of great research and clinical interest but are currently incompletely characterized. Here, using a forward-genetic screen for genes regulating liver development and function in zebrafish, we identified a cq5 mutant that exhibited a liver-degeneration phenotype at 5 days post-fertilization, the developmental stage at which a functional liver develops. Positional cloning revealed that the liver degeneration was caused by a single point mutation in the gene zinc finger CCCH-type containing 8 (zc3h8), changing a highly conserved histidine to glutamine at position 353 of the Zc3h8 protein. The zc3h8 mutation-induced liver degeneration in the mutant was accompanied by reduced proliferation, increased apoptosis, and macrophage phagocytosis of hepatocytes. Transcriptional profile analyses revealed up-regulation and activation of both pro-inflammatory cytokines and the NF-κB signaling pathway in the zc3h8 mutant. Suppression of NF-κB signaling activity efficiently rescued the pro-inflammatory cytokine response as well as the inflammation-mediated liver degeneration phenotype of the mutant. Of note, the zc3h8 mutation induced degeneration of several other organs, including the gut and exocrine pancreas, indicating that Zc3h8 is a general repressor of inflammation in zebrafish. Collectively, our findings demonstrate that Zc3h8 maintains organ homeostasis by inhibiting the NF-κB-mediated inflammatory response in zebrafish and that Zc3h8 dysfunction causes degeneration of multiple organs, including the liver, gut, and pancreas. Copyright © 2018, The American Society for Biochemistry and Molecular Biology.
Munarriz, Pablo M; Paredes, Igor; Alén, José F; Castaño-Leon, Ana M; Cepeda, Santiago; Hernandez-Lain, Aurelio; Lagares, Alfonso
The use of histological degeneration scores in surgically-treated herniated lumbar discs is not common in clinical practice and its use has been primarily restricted to research. The objective of this study is to evaluate if there is an association between a higher grade of histological degeneration when compared with clinical or radiological parameters. Retrospective consecutive analysis of 122 patients who underwent single-segment lumbar disc herniation surgery. Clinical information was available on all patients, while the histological study and preoperative magnetic resonance imaging were also retrieved for 75 patients. Clinical variables included age, duration of symptoms, neurological deficits, or affected deep tendon reflex. The preoperative magnetic resonance imaging was evaluated using Modic and Pfirrmann scores for the affected segment by 2 independent observers. Histological degeneration was evaluated using Weiler's score; the presence of inflammatory infiltrates and neovascularization, not included in the score, were also studied. Correlation and chi-square tests were used to assess the association between histological variables and clinical or radiological variables. Interobserver agreement was also evaluated for the MRI variables using weighted kappa. No statistically significant correlation was found between histological variables (histological degeneration score, inflammatory infiltrates or neovascularization) and clinical or radiological variables. Interobserver agreement for radiological scores resulted in a kappa of 0.79 for the Pfirrmann scale and 0.65 for the Modic scale, both statistically significant. In our series of patients, we could not demonstrate any correlation between the degree of histological degeneration or the presence of inflammatory infiltrates when compared with radiological degeneration scales or clinical variables such as the patient's age or duration of symptoms. Copyright © 2017 Sociedad Española de Neurocirugía. Publicado por Elsevier España, S.L.U. All rights reserved.
Yue, Bin; Lin, Yazhou; Ma, Xuexiao; Zhang, Guoqing; Chen, Bohua
2016-11-01
The aim of the current study was to use gene therapy to attenuate or reverse the degenerative process within the intervertabral disc. The effect of survivin gene therapy via lentiviral vector transfection on the course of intervertebral disc degeneration was investigated in the current study in an in vivo rabbit model. A total of 15 skeletally mature female New Zealand White rabbits were randomly divided into three groups: Punctured blank control group (group A, n=5), punctured empty vector control group (group B, n=5) and the treatment group (group C, n=5). Computed tomography‑guided puncture was performed at the L3‑L4 and L4‑L5 discs, in accordance with a previously validated rabbit annulotomy model for intervertebral disc degeneration. After 3 weeks, a lentiviral vector (LV) carrying survivin was injected into the nucleus pulposus. The results demonstrated that through magnetic resonance imaging, histology, gene expression, protein content and apoptosis analyses, group A and B were observed to exhibit disc degeneration, which increased over time, and no significant difference was observed between the two groups (P>0.05). However, there was reduced disc degeneration in group C compared with the punctured control groups, and the difference was statistically significant (P<0.05). Overall, the results of the present study demonstrated that injection of the LV carrying survivin into punctured rabbit intervertebral discs acted to delay changes associated with the degeneration of the discs. Although data from animal models should be extrapolated to the human condition with caution, the present study suggests potential for the use of gene therapy to decelerate disc degeneration.
HIF-1α stabilization reduces retinal degeneration in a mouse model of retinitis pigmentosa.
Olivares-González, Lorena; Martínez-Fernández de la Cámara, Cristina; Hervás, David; Millán, José María; Rodrigo, Regina
2018-05-01
Retinitis pigmentosa (RP) is a group of inherited retinal dystrophies characterized by progressive and irreversible loss of vision due to rod and cone degeneration. Evidence suggests that an inappropriate oxygen level could contribute to its pathogenesis. Rod cell death could increase oxygen concentration, reduce hypoxia-inducible factor 1 (HIF-1α) and contribute to cone cell death. The purposes of this study were: 1) to analyze the temporal profile of HIF-1α, its downstream effectors VEGF, endothelin-1 (ET-1), iNOS, and glucose transporter 1 (GLUT1), and neuroinflammation in retinas of the murine model of rd10 ( retinal degeneration 10) mice with RP; 2) to study oxygen bioavailability in these retinas; and 3) to investigate how stabilizing HIF-1α proteins with dimethyloxaloglycine (DMOG), a prolyl hydroxylase inhibitor, affects retinal degeneration, neuroinflammation, and antioxidant response in rd10 mice. A generalized down-regulation of HIF-1α and its downstream targets was detected in parallel with reactive gliosis, suggesting high oxygen levels during retinal degeneration. At postnatal d 18, DMOG treatment reduced photoreceptor cell death and glial activation. In summary, retinas of rd10 mice seem to be exposed to a hyperoxic environment even at early stages of degeneration. HIF-1α stabilization could have a temporal neuroprotective effect on photoreceptor cell survival, glial activation, and antioxidant response at early stages of RP.-Olivares-González, L., Martínez-Fernández de la Cámara, C., Hervás, D., Millán, J. M., Rodrigo, R. HIF-1α stabilization reduces retinal degeneration in a mouse model of retinitis pigmentosa.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fujimura, Masatake, E-mail: fujimura@nimd.go.jp; Usuki, Fusako; Kawamura, Miwako
Methylmercury (MeHg) is an environmental neurotoxicant which induces neuropathological changes in both the central nervous and peripheral sensory nervous systems. Our recent study demonstrated that down-regulation of Ras-related C3 botulinum toxin substrate 1 (Rac1), which is known to promote neuritic extension, preceded MeHg-induced damage in cultured cortical neurons, suggesting that MeHg-mediated axonal degeneration is due to the disturbance of neuritic extension. Therefore we hypothesized that MeHg-induced axonal degeneration might be caused by neuritic extension/retraction incoordination. This idea brought our attention to the Ras homolog gene (Rho)/Rho-associated coiled coil-forming protein kinase (ROCK) pathway because it has been known to be associatedmore » with the development of axon and apoptotic neuronal cell death. Here we show that inhibition of the Rho/ROCK pathway prevents MeHg-intoxication both in vitro and in vivo. A Rho inhibitor, C3 toxin, and 2 ROCK inhibitors, Fasudil and Y-27632, significantly protected against MeHg-induced axonal degeneration and apoptotic neuronal cell death in cultured cortical neuronal cells exposed to 100 nM MeHg for 3 days. Furthermore, Fasudil partially prevented the loss of large pale neurons in dorsal root ganglia, axonal degeneration in dorsal spinal root nerves, and vacuolar degeneration in the dorsal columns of the spinal cord in MeHg-intoxicated model rats (20 ppm MeHg in drinking water for 28 days). Hind limb crossing sign, a characteristic MeHg-intoxicated sign, was significantly suppressed in this model. The results suggest that inhibition of the Rho/ROCK pathway rescues MeHg-mediated neuritic extension/retraction incoordination and is effective for the prevention of MeHg-induced axonal degeneration and apoptotic neuronal cell death.« less
Nikkhoo, Mohammad; Khalaf, Kinda; Kuo, Ya-Wen; Hsu, Yu-Chun; Haghpanahi, Mohammad; Parnianpour, Mohamad; Wang, Jaw-Lin
2015-01-01
The risk of low back pain resulted from cyclic loadings is greater than that resulted from prolonged static postures. Disk degeneration results in degradation of disk solid structures and decrease of water contents, which is caused by activation of matrix digestive enzymes. The mechanical responses resulted from internal solid-fluid interactions of degenerative disks to cyclic loadings are not well studied yet. The fluid-solid interactions in disks can be evaluated by mathematical models, especially the poroelastic finite element (FE) models. We developed a robust disk poroelastic FE model to analyze the effect of degeneration on solid-fluid interactions within disk subjected to cyclic loadings at different loading frequencies. A backward analysis combined with in vitro experiments was used to find the elastic modulus and hydraulic permeability of intact and enzyme-induced degenerated porcine disks. The results showed that the averaged peak-to-peak disk deformations during the in vitro cyclic tests were well fitted with limited FE simulations and a quadratic response surface regression for both disk groups. The results showed that higher loading frequency increased the intradiscal pressure, decreased the total fluid loss, and slightly increased the maximum axial stress within solid matrix. Enzyme-induced degeneration decreased the intradiscal pressure and total fluid loss, and barely changed the maximum axial stress within solid matrix. The increase of intradiscal pressure and total fluid loss with loading frequency was less sensitive after the frequency elevated to 0.1 Hz for the enzyme-induced degenerated disk. Based on this study, it is found that enzyme-induced degeneration decreases energy attenuation capability of disk, but less change the strength of disk.
Quantitative OCT and MRI biomarkers for the differentiation of cartilage degeneration.
Nebelung, Sven; Brill, Nicolai; Tingart, Markus; Pufe, Thomas; Kuhl, Christiane; Jahr, Holger; Truhn, Daniel
2016-04-01
To evaluate the usefulness of quantitative parameters obtained by optical coherence tomography (OCT) and magnetic resonance imaging (MRI) in the comprehensive assessment of human articular cartilage degeneration. Human osteochondral samples of variable degeneration (n = 45) were obtained from total knee replacements and assessed by MRI sequences measuring T1, T1ρ, T2 and T2* relaxivity and by OCT-based quantification of irregularity (OII, optical irregularity index), homogeneity (OHI, optical homogeneity index]) and attenuation (OAI, optical attenuation index]). Samples were also assessed macroscopically (Outerbridge classification) and histologically (Mankin classification) as grade-0 (Mankin scores 0-4)/grade-I (scores 5-8)/grade-II (scores 9-10)/grade-III (score 11-14). After data normalisation, differences between Mankin grades and correlations between imaging parameters were assessed using ANOVA and Tukey's post-hoc test and Spearman's correlation coefficients, respectively. Sensitivities and specificities in the detection of Mankin grade-0 were calculated. Significant degeneration-related increases were found for T2 and OII and decreases for OAI, while T1, T1ρ, T2* or OHI did not reveal significant changes in relation to degeneration. A number of significant correlations between imaging parameters and histological (sub)scores were found, in particular for T2 and OII. Sensitivities and specificities in the detection of Mankin grade-0 were highest for OHI/T1 and OII/T1ρ, respectively. Quantitative OCT and MRI techniques seem to complement each other in the comprehensive assessment of cartilage degeneration. Sufficiently large structural and compositional changes in the extracellular matrix may thus be parameterized and quantified, while the detection of early degeneration remains challenging.
Yoon, Kyoung Ho; Tak, Dae Hyun; Ko, Taeg Su; Park, Sang Eon; Nam, Juhyun; Lee, Sang Hak
2017-03-01
The purpose of this study was to evaluate the prevalence and risk factor of cartilage degeneration of the patellofemoral joint (PFJ) that was diagnosed by second-look arthroscopy. One-hundred and seven patients who underwent ACL reconstruction were evaluated by preoperative MRI, postoperative MRI and second-look arthroscopy. Severity of infrapatellar fat pad (IPFP) fibrosis was evaluated by MRI at an average of 26months after ACL reconstruction. Cartilage degeneration was assessed by second-look arthroscopy at 29months. Twenty-five patients (24.0%) showed cartilage degeneration of the PFJ in second-look arthroscopy. Patients were divided into three groups according to severity of IPFP fibrosis of postoperative MRI (i.e. Group A, focal and incomplete band fibrosis, n=69; Group B, complete band fibrosis, n=31; and Group C, diffuse and infiltrated fibrosis, n=7). Cartilage degeneration of the PFJ was significantly worsened with more fibrosis formation of the IPFP (P<0.001). Other factors for instabilities (BMI, age, concomitant meniscal procedure, time from injury to reconstruction, severity of IPFP fibrosis at preoperative MRI and clinical scores) were not correlated with cartilage degeneration of the PFJ. The multivariate logistic regression analysis of degeneration of the PFJ after ACL reconstruction identified more severe fibrosis tissue formation of the IPFP and initial cartilage defect as significant predictors. More extensive fibrosis of the IPFP and initial cartilage defect may be related to further degenerative changes of the PFJ. Other factors did not affect cartilage degeneration of the PFJ, although the muscle strength, the individual activity level or the rehabilitation protocol was not evaluated in the short-term follow-up period. Copyright © 2016 Elsevier B.V. All rights reserved.
Nikkhoo, Mohammad; Khalaf, Kinda; Kuo, Ya-Wen; Hsu, Yu-Chun; Haghpanahi, Mohammad; Parnianpour, Mohamad; Wang, Jaw-Lin
2015-01-01
The risk of low back pain resulted from cyclic loadings is greater than that resulted from prolonged static postures. Disk degeneration results in degradation of disk solid structures and decrease of water contents, which is caused by activation of matrix digestive enzymes. The mechanical responses resulted from internal solid–fluid interactions of degenerative disks to cyclic loadings are not well studied yet. The fluid–solid interactions in disks can be evaluated by mathematical models, especially the poroelastic finite element (FE) models. We developed a robust disk poroelastic FE model to analyze the effect of degeneration on solid–fluid interactions within disk subjected to cyclic loadings at different loading frequencies. A backward analysis combined with in vitro experiments was used to find the elastic modulus and hydraulic permeability of intact and enzyme-induced degenerated porcine disks. The results showed that the averaged peak-to-peak disk deformations during the in vitro cyclic tests were well fitted with limited FE simulations and a quadratic response surface regression for both disk groups. The results showed that higher loading frequency increased the intradiscal pressure, decreased the total fluid loss, and slightly increased the maximum axial stress within solid matrix. Enzyme-induced degeneration decreased the intradiscal pressure and total fluid loss, and barely changed the maximum axial stress within solid matrix. The increase of intradiscal pressure and total fluid loss with loading frequency was less sensitive after the frequency elevated to 0.1 Hz for the enzyme-induced degenerated disk. Based on this study, it is found that enzyme-induced degeneration decreases energy attenuation capability of disk, but less change the strength of disk. PMID:25674562
Cuevas, P; Outeiriño, L A; Azanza, C; Giménez-Gallego, G
2013-01-01
Among the age-related diseases that affect vision, age-related macular degeneration is the most frequent cause of blindness in patients older than 60 years. In this communication, we report the full anatomical and functional recovery of a patient diagnosed with wet age-related macular degeneration 1 year after a single intravitreal injection of dobesilate. PMID:24225910
Nonexistence of degenerate horizons in static vacua and black hole uniqueness
NASA Astrophysics Data System (ADS)
Khuri, Marcus; Woolgar, Eric
2018-02-01
We show that in any spacetime dimension D ≥ 4, degenerate components of the event horizon do not exist in static vacuum configurations with positive cosmological constant. We also show that without a cosmological constant asymptotically flat solutions cannot possess a degenerate horizon component. Several independent proofs are presented. One proof follows easily from differential geometry in the near-horizon limit, while others use Bakry-Émery-Ricci bounds for static Einstein manifolds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGuire, R.E.; Sullivan, L.S.; Daiger, S.P.
1995-07-01
Retinitis pigmentosa is the name given to a heterogeneous group of hereditary retinal degenerations characterized by progressive visual field loss, pigmentary changes of the retina, abnormal electroretinograms, and, frequently, night blindness. In this study, we investigated a family with dominant cone-rod degeneration, a variant form of retinitis pigmentosa. We used microsatellite markers to test for linkage to the disease locus and exluded all mapped autosomal loci. However, a marker from the short arm of the X chromosome, DXS989, showed 0% recombination to the disease locus, with a maximum lod (log-odds) score of 3.3. On the basis of this marker, themore » odds favoring X-linked dominant versus autosomal dominant inheritance are > 10{sup 5}:1. Haplotype analysis using an additional nine microsatellite markers places the disease locus in the Xp22.13-p22.11 region and excludes other X-linked disease loci causing retinal degeneration. The clinical expression of the retinal degeneration is consistent with X-linked dominant inheritance with milder, variable effects of Lyonization affecting expression in females. On the basis of these data we propose that this family has a novel form of dominant, X-linked cone-rod degeneration with the gene symbol {open_quotes}RP15{close_quotes}. 17 refs., 2 figs., 4 tabs.« less
NASA Astrophysics Data System (ADS)
Mahmood, S.; Sadiq, Safeer; Haque, Q.; Ali, Munazza Z.
2016-06-01
The obliquely propagating arbitrary amplitude electrostatic wave is studied in a dense magnetized plasma having singly and doubly charged helium ions with nonrelativistic and ultrarelativistic degenerate electrons pressures. The Fermi temperature for ultrarelativistic degenerate electrons described by N. M. Vernet [(Cambridge University Press, Cambridge, 2007), p. 57] is used to define ion acoustic speed in ultra-dense plasmas. The pseudo-potential approach is used to solve the fully nonlinear set of dynamic equations for obliquely propagating electrostatic waves in a dense magnetized plasma containing helium ions. The upper and lower Mach number ranges for the existence of electrostatic solitons are found which depends on the obliqueness of the wave propagation with respect to applied magnetic field and charge number of the helium ions. It is found that only compressive (hump) soliton structures are formed in all the cases and only subsonic solitons are formed for a singly charged helium ions plasma case with nonrelativistic degenerate electrons. Both subsonic and supersonic soliton hump structures are formed for doubly charged helium ions with nonrelativistic degenerate electrons and ultrarelativistic degenerate electrons plasma case containing singly as well as doubly charged helium ions. The effect of propagation direction on the soliton amplitude and width of the electrostatic waves is also presented. The numerical plots are also shown for illustration using dense plasma parameters of a compact star (white dwarf) from literature.
Qualls, Laura G; Hammill, Bradley G; Wang, Fang; Lad, Eleonora M; Schulman, Kevin A; Cousins, Scott W; Curtis, Lesley H
2013-04-01
To examine associations between newly diagnosed neovascular age-related macular degeneration and direct medical costs. This retrospective observational study matched 23,133 Medicare beneficiaries diagnosed with neovascular age-related macular degeneration between 2004 and 2008 with a control group of 92,532 beneficiaries on the basis of age, sex, and race. The index date for each case-control set corresponded to the first diagnosis for the case. Main outcome measures were total costs per patient and age-related macular degeneration-related costs per case 1 year before and after the index date. Mean cost per case in the year after diagnosis was $12,422, $4,884 higher than the year before diagnosis. Postindex costs were 41% higher for cases than controls after adjustment for preindex costs and comorbid conditions. Age-related macular degeneration-related costs represented 27% of total costs among cases in the postindex period and were 50% higher for patients diagnosed in 2008 than in 2004. This increase was attributable primarily to the introduction of intravitreous injections of vascular endothelial growth factor antagonists. Intravitreous injections averaged $203 for patients diagnosed in 2004 and $2,749 for patients diagnosed in 2008. Newly diagnosed neovascular age-related macular degeneration was associated with a substantial increase in total medical costs. Costs increased over time, reflecting growing use of anti-vascular endothelial growth factor therapies.
String Vessel Formation is Increased in the Brain of Parkinson Disease.
Yang, Panzao; Pavlovic, Darja; Waldvogel, Henry; Dragunow, Mike; Synek, Beth; Turner, Clinton; Faull, Richard; Guan, Jian
2015-01-01
String vessels are collapsed basement membrane without endothelium and have no function in circulation. String vessel formation contributes to vascular degeneration in Alzheimer disease. By comparing to age-matched control cases we have recently reported endothelial degeneration in brain capillaries of human Parkinson disease (PD). Current study evaluated changes of basement membrane of capillaries, string vessel formation and their association with astrocytes, blood-brain-barrier integrity and neuronal degeneration in PD. Brain tissue from human cases of PD and age-matched controls was used. Immunohistochemical staining for collagen IV, GFAP, NeuN, tyrosine hydroxylase, fibrinogen and Factor VIII was evaluated by image analysis in the substantia nigra, caudate nucleus and middle frontal gyrus. While the basement-membrane-associated vessel density was similar between the two groups, the density of string vessels was significantly increased in the PD cases, particularly in the substantia nigra. Neuronal degeneration was found in all brain regions. Astrocytes and fibrinogen were increased in the caudate nuclei of PD cases compared with control cases. Endothelial degeneration and preservation of basement membrane result in an increase of string vessel formation in PD. The data may suggest a possible role for cerebral hypoperfusion in the neuronal degeneration characteristic of PD, which needs further investigation. Elevated astrocytosis in the caudate nucleus of PD cases could be associated with disruption of the blood-brain barrier in this brain region.
Permissive role for mGlu1 metabotropic glutamate receptors in excitotoxic retinal degeneration.
Liberatore, Francesca; Bucci, Domenico; Mascio, Giada; Madonna, Michele; Di Pietro, Paola; Beneventano, Martina; Puliti, Alda Maria; Battaglia, Giuseppe; Bruno, Valeria; Nicoletti, Ferdinando; Romano, Maria Rosaria
2017-11-05
Neuroprotection is an unmet need in eye disorders characterized by retinal ganglion cell (RGC) death, such as prematurity-induced retinal degeneration, glaucoma, and age-related macular degeneration. In all these disorders excitotoxicity is a prominent component of neuronal damage, but clinical data discourage the development of NMDA receptor antagonists as neuroprotectants. Here, we show that activation of mGlu1 metabotropic glutamate receptors largely contributes to excitotoxic degeneration of RGCs. Mice at postnatal day 9 were challenged with a toxic dose of monosodium glutamate (MSG, 3g/kg), which caused the death of >70% of Brn-3a + RGCs. Systemic administration of the mGlu1 receptor negative allosteric modulator (NAM), JNJ16259685 (2.5mg/kg, s.c.), was largely protective against MSG-induced RGC death. This treatment did not cause changes in motor behavior in the pups. We also injected MSG to crv4 mice, which lack mGlu1 receptors because of a recessive mutation of the gene encoding the mGlu1 receptor. MSG did not cause retinal degeneration in crv4 mice, whereas it retained its toxic activity in their wild-type littermates. These findings demonstrate that mGlu1 receptors play a key role in excitotoxic degeneration of RGCs, and encourage the study of mGlu1 receptor NAMs in models of retinal neurodegeneration. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.
Sequential Involvement of the Nervous System in Subacute Combined Degeneration
Minn, Yang-Ki; Kim, Seung-Min; Kim, Se-Hoon; Kwon, Ki-Han
2012-01-01
Purpose Subacute combined degeneration (SCD) involves progressive degeneration of the spinal cord, optic nerve, and peripheral nerves. Vitamin B12 (VB12) is a co-factor in myelin synthesis. Because each cell that constitutes the myelin component in the central nervous system and peripheral nervous system is different, it is improbable that these cells undergo simultaneous degeneration. However, the sequence of degeneration in SCD has not been established. Materials and Methods In this study, we analysed medical records and electrophysiological data of patients who showed neurological symptoms and whose serum VB12 levels were lower than 200 pg/mL. Results We enrolled 49 patients in this study. Their mean VB12 level was 68.3 pg/mL. Somatosensory evoked potential (SEP) study showed abnormal findings in 38 patients. Of the 40 patients who underwent visual evoked potential (VEP) study, 14 showed abnormal responses. Eighteen patients showed abnormal findings on a nerve conduction study (NCS). In this study, abnormal posterior tibial nerve SEPs only were seen in 16 patients, median nerve SEPs only were seen in 3 patients, abnormal VEPs only in two, and abnormal NCS responses in one patient. No patient complained of cognitive symptoms. Conclusion In SCD, degeneration appears to progress in the following order: lower spinal cord, cervical spinal cord, peripheral nerve/optic nerve, and finally, the brain. PMID:22318813
Degeneracy-Driven Self-Structuring Dynamics in Selective Repertoires
Atamas, Sergei P.; Bell, Jonathan
2013-01-01
Numerous biological interactions, such as interactions between T cell receptors or antibodies with antigens, interactions between enzymes and substrates, or interactions between predators and prey are often not strictly specific. In such less specific, or “sloppy,” systems, referred to here as degenerate systems, a given unit of a diverse resource (antigens, enzymatic substrates, prey) is at risk of being recognized and consumed by multiple consumers (lymphocytes, enzymes, predators). In this study, we model generalized degenerate consumer-resource systems of Lotka–Volterra and Verhulst types. In the degenerate systems of Lotka–Volterra, there is a continuum of types of consumer and resource based on variation of a single trait (characteristic, or preference). The consumers experience competition for a continuum of resource types. This non-local interaction system is modeled with partial differential-integral equations and shows spontaneous self-structuring of the consumer population that depends on the degree of interaction degeneracy between resource and consumer, but does not mirror the distribution of resource. We also show that the classical Verhulst (i.e. logistic) single population model can be generalized to a degenerate model, which shows qualitative behavior similar to that in the degenerate Lotka–Volterra model. These results provide better insight into the dynamics of selective systems in biology, suggesting that adaptation of degenerate repertoires is not a simple “mirroring” of the environment by the “fittest” elements of population. PMID:19337776
Degeneracy-driven self-structuring dynamics in selective repertoires.
Atamas, Sergei P; Bell, Jonathan
2009-08-01
Numerous biological interactions, such as interactions between T cell receptors or antibodies with antigens, interactions between enzymes and substrates, or interactions between predators and prey are often not strictly specific. In such less specific, or "sloppy," systems, referred to here as degenerate systems, a given unit of a diverse resource (antigens, enzymatic substrates, prey) is at risk of being recognized and consumed by multiple consumers (lymphocytes, enzymes, predators). In this study, we model generalized degenerate consumer-resource systems of Lotka-Volterra and Verhulst types. In the degenerate systems of Lotka-Volterra, there is a continuum of types of consumer and resource based on variation of a single trait (characteristic, or preference). The consumers experience competition for a continuum of resource types. This non-local interaction system is modeled with partial differential-integral equations and shows spontaneous self-structuring of the consumer population that depends on the degree of interaction degeneracy between resource and consumer, but does not mirror the distribution of resource. We also show that the classical Verhulst (i.e. logistic) single population model can be generalized to a degenerate model, which shows qualitative behavior similar to that in the degenerate Lotka-Volterra model. These results provide better insight into the dynamics of selective systems in biology, suggesting that adaptation of degenerate repertoires is not a simple "mirroring" of the environment by the "fittest" elements of population.
Light-evoked currents in retinal ganglion cells from dystrophic RCS rats.
Liu, Kang; Wang, Yi; Yin, Zhengqin; Weng, Chuanhuang
2013-01-01
To study the electrophysiological properties of the light-evoked currents in ganglion cells in situations of retinal degeneration. We investigated light-evoked currents in ganglion cells by performing whole-cell patch-clamp recordings from ganglion cells using a retina-stretched preparation from Royal College of Surgeons (RCS) rats, a model of retinal degeneration and congenic controls at different ages. Pharmacological inhibitors of the AMPA receptor (NBQX), GABA receptor (BMI), and sodium channels (TTX) were used to identify the components of the light-evoked currents in ON, OFF and ON-OFF retinal ganglion cells. We found that the light-evoked currents in ganglion cells from control rats were inhibited by NBQX, BMI and TTX, suggesting that AMPA receptors, GABA receptors and sodium channels contribute to these currents in ganglion cells. However, only AMPA receptor-mediated currents were recorded in RCS rats. Light-evoked inward currents were absent in the majority of ganglion cells from RCS rats, particularly at the later stages of retinal degeneration. At earlier stages of retinal degeneration, we found that both the timing and amplitude of light-evoked currents are significantly different in ganglion cells from RCS and control rats. Our study furthers the understanding of the electrophysiological characteristics of retinal ganglion cells during retinal degeneration, and provides insight into the optimal timing for the treatment of retinal degeneration. Copyright © 2013 S. Karger AG, Basel.
Roddy, Gavin W; Rosa Jr, Robert H; Youn Oh, Joo; Ylostalo, Joni H; Bartosh, Thomas J; Choi, Hosoon; Lee, Ryang Hwa; Yasumura, Douglas; Ahern, Kelly; Nielsen, Gregory; Matthes, Michael T; LaVail, Matthew M; Prockop, Darwin J
2012-01-01
Oxidative stress and photoreceptor apoptosis are prominent features of many forms of retinal degeneration (RD) for which there are currently no effective therapies. We previously observed that mesenchymal stem/stromal cells reduce apoptosis by being activated to secrete stanniocalcin-1 (STC-1), a multifunctional protein that reduces oxidative stress by upregulating mitochondrial uncoupling protein-2 (UCP-2). Therefore, we tested the hypothesis that intravitreal injection of STC-1 can rescue photoreceptors. We first tested STC-1 in the rhodopsin transgenic rat characterized by rapid photoreceptor loss. Intravitreal STC-1 decreased the loss of photoreceptor nuclei and transcripts and resulted in measurable retinal function when none is otherwise present in this rapid degeneration. We then tested STC-1 in the Royal College of Surgeons (RCS) rat characterized by a slower photoreceptor degeneration. Intravitreal STC-1 reduced the number of pyknotic nuclei in photoreceptors, delayed the loss of photoreceptor transcripts, and improved function of rod photoreceptors. Additionally, STC-1 upregulated UCP-2 and decreased levels of two protein adducts generated by reactive oxygen species (ROS). Microarrays from the two models demonstrated that STC-1 upregulated expression of a similar profile of genes for retinal development and function. The results suggested that intravitreal STC-1 is a promising therapy for various forms of RD including retinitis pigmentosa and atrophic age-related macular degeneration (AMD). PMID:22294148
Human Cartilage Endplate Permeability Varies with Degeneration and Intervertebral Disc Site
DeLucca, John F.; Cortes, Daniel H.; Jacobs, Nathan T.; Vresilovic, Edward J.; Duncan, Randall L.; Elliott, Dawn M.
2016-01-01
Despite the critical functions the human cartilage endplate (CEP) plays in the intervertebral disc, little is known about its structural and mechanical properties and their changes with degeneration. Quantifying these changes with degeneration is important for understanding how the CEP contributes to the function and pathology of the disc. Therefore the objectives of this study were to quantify the effect of disc degeneration on human CEP mechanical properties, determine the influence of superior and inferior disc site on mechanics and composition, and simulate the role of collagen fibers in CEP and disc mechanics using a validated finite element model. Confined compression data and biochemical composition data were used in a biphasic-swelling model to calculate compressive extrafibrillar elastic and permeability properties. Tensile properties were obtained by applying published tensile test data to an ellipsoidal fiber distribution. Results showed that with degeneration CEP permeability decreased 50–60% suggesting that transport is inhibited in the degenerate disc. CEP fibers are organized parallel to the vertebrae and nucleus pulposus and may contribute to large shear strains (0.1–0.2) and delamination failure of the CEP commonly seen in herniated disc tissue. Fiber-reinforcement also reduces CEP axial strains thereby enhancing fluid flux by a factor of 1.8. Collectively, these results suggest that the structure and mechanics of the CEP may play critical roles in the solute transport and disc mechanics. PMID:26874969
2018-04-16
Dementia; Alzheimer Disease; Parkinson Disease; Lewy Body Disease; Parkinson-Dementia Syndrome; Frontotemporal Degeneration; Semantic Dementia; Progressive Nonfluent Aphasia; Progressive Supranuclear Palsy; Corticobasal Degeneration; Multiple System Atrophy; Mild Cognitive Impairment
Biological treatment strategies for disc degeneration: potentials and shortcomings
Nerlich, Andreas G.; Boos, Norbert
2006-01-01
Recent advances in molecular biology, cell biology and material sciences have opened a new emerging field of techniques for the treatment of musculoskeletal disorders. These new treatment modalities aim for biological repair of the affected tissues by introducing cell-based tissue replacements, genetic modifications of resident cells or a combination thereof. So far, these techniques have been successfully applied to various tissues such as bone and cartilage. However, application of these treatment modalities to cure intervertebral disc degeneration is in its very early stages and mostly limited to experimental studies in vitro or in animal studies. We will discuss the potential and possible shortcomings of current approaches to biologically cure disc degeneration by gene therapy or tissue engineering. Despite the increasing number of studies examining the therapeutic potential of biological treatment strategies, a practicable solution to routinely cure disc degeneration might not be available in the near future. However, knowledge gained from these attempts might be applied in a foreseeable future to cure the low back pain that often accompanies disc degeneration and therefore be beneficial for the patient. PMID:16983559
NASA Astrophysics Data System (ADS)
Huang, Rui; Jin, Chunhua; Mei, Ming; Yin, Jingxue
2018-01-01
This paper deals with the existence and stability of traveling wave solutions for a degenerate reaction-diffusion equation with time delay. The degeneracy of spatial diffusion together with the effect of time delay causes us the essential difficulty for the existence of the traveling waves and their stabilities. In order to treat this case, we first show the existence of smooth- and sharp-type traveling wave solutions in the case of c≥c^* for the degenerate reaction-diffusion equation without delay, where c^*>0 is the critical wave speed of smooth traveling waves. Then, as a small perturbation, we obtain the existence of the smooth non-critical traveling waves for the degenerate diffusion equation with small time delay τ >0 . Furthermore, we prove the global existence and uniqueness of C^{α ,β } -solution to the time-delayed degenerate reaction-diffusion equation via compactness analysis. Finally, by the weighted energy method, we prove that the smooth non-critical traveling wave is globally stable in the weighted L^1 -space. The exponential convergence rate is also derived.
NASA Technical Reports Server (NTRS)
Hintzen, Paul; Oswalt, Terry D.; Liebert, James; Sion, Edward M.
1989-01-01
During the course of a spectroscopic study of Luyten common proper motion (CPM) stars, spectrophotometric observations have been obtained of three binaries containing degenerate stars with estimated absolute magnitudes M(V) of about 16. Each of the three pairs consists of a yellow degenerate star primary and a DC 13 + secondary 1.4-2.3 mag fainter. One of the primary stars is spectral class DC 7, another is a sharp-lined DA 8, and the third shows peculiar broad absorption features which we interpret as pressure-shifted C2 Swan bands. The LP 701 - 69/70 system has survived for over 8 billion years without disruption by passing stars, despite its 1500 a.u. orbital major axis. The three cool degenerate companions nearly double the available sample of stars at the low-luminosity terminus of the white dwarf cooling sequence. These findings appear consistent with the conclusion that degenerate stars in the old disk population have not had time to evolve to a luminosity fainter than M(V) about 16.2.
Crumbs regulates rhodopsin transport by interacting with and stabilizing myosin V
Shevchenko, Anna
2011-01-01
The evolutionarily conserved Crumbs (Crb) complex is crucial for photoreceptor morphogenesis and homeostasis. Loss of Crb results in light-dependent retinal degeneration, which is prevented by feeding mutant flies carotenoid-deficient medium. This suggests a defect in rhodopsin 1 (Rh1) processing, transport, and/or signaling, causing degeneration; however, the molecular mechanism of this remained elusive. In this paper, we show that myosin V (MyoV) coimmunoprecipitated with the Crb complex and that loss of crb led to severe reduction in MyoV levels, which could be rescued by proteasomal inhibition. Loss of MyoV in crb mutant photoreceptors was accompanied by defective transport of the MyoV cargo Rh1 to the light-sensing organelle, the rhabdomere. This resulted in an age-dependent accumulation of Rh1 in the photoreceptor cell (PRC) body, a well-documented trigger of degeneration. We conclude that Crb protects against degeneration by interacting with and stabilizing MyoV, thereby ensuring correct Rh1 trafficking. Our data provide, for the first time, a molecular mechanism for the light-dependent degeneration of PRCs observed in crb mutant retinas. PMID:22105348
Cesare Lombroso: an anthropologist between evolution and degeneration.
Mazzarello, Paolo
2011-01-01
Cesare Lombroso (1835-1909) was a prominent Italian medical doctor and intellectual in the second half of the nineteenth century. He became world famous for his theory that criminality, madness and genius were all sides of the same psychobiological condition: an expression of degeneration, a sort of regression along the phylogenetic scale, and an arrest at an early stage of evolution. Degeneration affected criminals especially, in particular the "born delinquent" whose development had stopped at an early stage, making them the most "atavistic" types of human being. Lombroso also advocated the theory that genius was closely linked with madness. A man of genius was a degenerate, an example of retrograde evolution in whom madness was a form of "biological compensation" for excessive intellectual development. To confirm this theory, in August 1897, Lombroso, while attending the Twelfth International Medical Congress in Moscow, decided to meet the great Russian writer Lev Tolstoy in order to directly verify, in him, his theory of degeneration in the genius. Lombroso's anthropological ideas fuelled a heated debate on the biological determinism of human behaviour.
NASA Astrophysics Data System (ADS)
Huang, Rui; Jin, Chunhua; Mei, Ming; Yin, Jingxue
2018-06-01
This paper deals with the existence and stability of traveling wave solutions for a degenerate reaction-diffusion equation with time delay. The degeneracy of spatial diffusion together with the effect of time delay causes us the essential difficulty for the existence of the traveling waves and their stabilities. In order to treat this case, we first show the existence of smooth- and sharp-type traveling wave solutions in the case of c≥c^* for the degenerate reaction-diffusion equation without delay, where c^*>0 is the critical wave speed of smooth traveling waves. Then, as a small perturbation, we obtain the existence of the smooth non-critical traveling waves for the degenerate diffusion equation with small time delay τ >0. Furthermore, we prove the global existence and uniqueness of C^{α ,β }-solution to the time-delayed degenerate reaction-diffusion equation via compactness analysis. Finally, by the weighted energy method, we prove that the smooth non-critical traveling wave is globally stable in the weighted L^1-space. The exponential convergence rate is also derived.
T1ρ MRI Quantification of Arthroscopically-Confirmed Cartilage Degeneration
Witschey, Walter RT; Borthakur, Arijitt; Fenty, Matt; Kneeland, J Bruce; Lonner, Jess H; McArdle, Erin L.; Sochor, Matt; Reddy, Ravinder
2010-01-01
9 asymptomatic subjects and 6 patients underwent T1ρ MRI to determine whether Outerbridge grade 1 or 2 cartilage degeneration observed during arthroscopy could be detected noninvasively. MRI was performed 2–3 months post-arthroscopy using sagittal T1-weighted and axial and coronal T1ρ MRI from which spatial T1ρ relaxation maps were calculated from segmented T1-weighted images. Median T1ρ relaxation times of patients with arthroscopically documented cartilage degeneration and asymptomatic subjects were significantly different (p < 0.001) and median T1ρ exceeded asymptomatic articular cartilage median T1ρ by 2.5 to 9.2 ms. In 8 observations of mild cartilage degeneration at arthroscopy (Outerbridge grades 1 and 2), mean compartment T1ρ was elevated in 5, but in all observations, large foci of increased T1ρ were observed. It was determined that T1ρ could detect some, but not all, Outerbridge grade 1 and 2 cartilage degeneration but that a larger patient population is needed to determine the sensitivity to these changes. PMID:20432308
Dystonia and Cerebellar Degeneration in the Leaner Mouse Mutant
Raike, Robert S.; Hess, Ellen J.; Jinnah, H.A.
2015-01-01
Cerebellar degeneration is traditionally associated with ataxia. Yet, there are examples of both ataxia and dystonia occurring in individuals with cerebellar degeneration. There is also substantial evidence suggesting that cerebellar dysfunction alone may cause dystonia. The types of cerebellar defects that may cause ataxia, dystonia, or both have not been delineated. In the current study, we explored the relationship between cerebellar degeneration and dystonia using the leaner mouse mutant. Leaner mice have severe dystonia that is associated with dysfunctional and degenerating cerebellar Purkinje cells. Whereas the density of Purkinje cells was not significantly reduced in 4 week-old leaner mice, approximately 50% of the neurons were lost by 34 weeks of age. On the other hand, the dystonia and associated functional disability became significantly less severe during this same interval. In other words, dystonia improved as Purkinje cells were lost, suggesting that dysfunctional Purkinje cells, rather than Purkinje cell loss, contribute to the dystonia. These results provide evidence that distorted cerebellar function may cause dystonia and support the concept that different types of cerebellar defects can have different functional consequences. PMID:25791619
NASA Astrophysics Data System (ADS)
Wang, Kuyu; Wu, Jianping; Day, Robert; Kirk, Thomas Brett; Hu, Xiaozhi
2016-09-01
Utilizing a laser scanning confocal microscope system, the refractive indices of articular cartilage (AC) with mechanical or biochemical degenerations were characterized to investigate whether potential correlations exist between refractive index (RI) and cartilage degeneration. The cartilage samples collected from the medial femoral condyles of kangaroo knees were mechanically degenerated under different loading patterns or digested in trypsin solution with different concentrations. The sequences of RI were then measured from cartilage surface to deep region and the fluctuations of RI were quantified considering combined effects of fluctuating frequency and amplitude. The compositional and microstructural alterations of cartilage samples were assessed with histological methods. Along with the loss of proteoglycans, the average RI of cartilage increased and the local fluctuation of RI became stronger. Short-term high-speed test induced little influence to both the depth fluctuation and overall level of RI. Long-term low-speed test increased the fluctuation of RI but the average RI was barely changed. The results substantially demonstrate that RI of AC varies with both compositional and structural alterations and is potentially an indicator for the degeneration of AC.
Retinal Remodeling in the Tg P347L Rabbit, a Large-Eye Model of Retinal Degeneration
Jones, Bryan William; Kondo, Mineo; Terasaki, Hiroko; Watt, Carl Brock; Rapp, Kevin; Anderson, James; Lin, Yanhua; Shaw, Marguerite Victoria; Yang, Jia-Hui; Marc, Robert Edward
2013-01-01
Retinitis pigmentosa (RP) is an inherited blinding disease characterized by progressive loss of retinal photo-receptors. There are numerous rodent models of retinal degeneration, but most are poor platforms for interventions that will translate into clinical practice. The rabbit possesses a number of desirable qualities for a model of retinal disease including a large eye and an existing and substantial knowledge base in retinal circuitry, anatomy, and ophthalmology. We have analyzed degeneration, remodeling, and reprogramming in a rabbit model of retinal degeneration, expressing a rhodopsin proline 347 to leucine transgene in a TgP347L rabbit as a powerful model to study the pathophysiology and treatment of retinal degeneration. We show that disease progression in the TgP347L rabbit closely tracks human cone-sparing RP, including the cone-associated preservation of bipolar cell signaling and triggering of reprogramming. The relatively fast disease progression makes the TgP347L rabbit an excellent model for gene therapy, cell biological intervention, progenitor cell transplantation, surgical interventions, and bionic prosthetic studies. PMID:21681749
Identification of Age-Related Macular Degeneration Using OCT Images
NASA Astrophysics Data System (ADS)
Arabi, Punal M., Dr; Krishna, Nanditha; Ashwini, V.; Prathibha, H. M.
2018-02-01
Age-related Macular Degeneration is the most leading retinal disease in the recent years. Macular degeneration occurs when the central portion of the retina, called macula deteriorates. As the deterioration occurs with the age, it is commonly referred as Age-related Macular Degeneration. This disease can be visualized by several imaging modalities such as Fundus imaging technique, Optical Coherence Tomography (OCT) technique and many other. Optical Coherence Tomography is the widely used technique for screening the Age-related Macular Degeneration disease, because it has an ability to detect the very minute changes in the retina. The Healthy and AMD affected OCT images are classified by extracting the Retinal Pigmented Epithelium (RPE) layer of the images using the image processing technique. The extracted layer is sampled, the no. of white pixels in each of the sample is counted and the mean value of the no. of pixels is calculated. The average mean value is calculated for both the Healthy and the AMD affected images and a threshold value is fixed and a decision rule is framed to classify the images of interest. The proposed method showed an accuracy of 75%.
Phagocyte dysfunction, tissue aging and degeneration.
Li, Wei
2013-09-01
Immunologically-silent phagocytosis of apoptotic cells is critical to maintaining tissue homeostasis and innate immune balance. Aged phagocytes reduce their functional activity, leading to accumulation of unphagocytosed debris, chronic sterile inflammation and exacerbation of tissue aging and damage. Macrophage dysfunction plays an important role in immunosenescence. Microglial dysfunction has been linked to age-dependent neurodegenerations. Retinal pigment epithelial (RPE) cell dysfunction has been implicated in the pathogenesis of age-related macular degeneration (AMD). Despite several reports on the characterization of aged phagocytes, the role of phagocyte dysfunction in tissue aging and degeneration is yet to be fully appreciated. Lack of knowledge of molecular mechanisms by which aging reduces phagocyte function has hindered our capability to exploit the therapeutic potentials of phagocytosis for prevention or delay of tissue degeneration. This review summarizes our current knowledge of phagocyte dysfunction in aged tissues and discusses possible links to age-related diseases. We highlight the challenges to decipher the molecular mechanisms, present new research approaches and envisage future strategies to prevent phagocyte dysfunction, tissue aging and degeneration. Copyright © 2013 Elsevier B.V. All rights reserved.
Congenital Head Nodding and Nystagmus with Cerebrocerebellar Degeneration
ERIC Educational Resources Information Center
Kalyanaraman, K.; And Others
1973-01-01
Reported are three case histories of children with congenital head nodding and nystagmus (rhytmic oscillation of the eyeballs) associated with brain degeneration and motor and mental retardation. (DB)
STUDIES UPON THE EFFECT OF LIGHT ON BLOOD AND TISSUE CELLS
Earle, W. R.
1928-01-01
1. An extreme and rapid degeneration which occurred in tissue cultures of leucocytes from the blood of cats, guinea pigs, and rabbits, is described in detail. 2. This degeneration was found to appear in the culture when the cells were planted in any of the culture media tried, some of which were autogenous heparin plasma, autogenous plasma, autogenous serum, Tyrode solution, and mixtures of these with embryo juice. 3. The specific cellular changes which occurred are described for the different leucocytes. In general, there was first a latent period during which no change could be observed in the cell. Following this there was a period of stimulation during which the motion of the cell was greatly accelerated. This second stage has been observed in all cells except the lymphocyte, in which it may possibly occur to a slight degree. Finally there was the terminal stage, the stage of degeneration, in which the cell rounded up, lost its motility, and either became badly swollen or else underwent a more or less complete coagulation. 4. The factor causing this degeneration was found to be exposure of the culture to light, as, for example, during microscopic examination. 5. By a reduction of the infrared part of the spectrum, it was indicated that the effect was not due to a heat coagulation of the cells. 6. This degeneration was also found to occur in the complete absence of ultra-violet wave-lengths. 7. Further, it was shown that this degeneration was caused by light which lay within each of the three wave-length zones (1) 430µµ to 550µµ; infra-red; (2) 475µµ to 630µµ; 690µµ to infra-red; (3) 600µµ to infra-red. 8. No indication was given as to whether all regions of these zones were active in causing the degeneration, or whether the active rays are limited to certain wave-length bands lying within these zones. 9. This degeneration of the leucocytes under the action of light was also found to occur upon irradiation of hanging drops of whole blood. This is interpreted as showing conclusively that the degeneration was not dependent upon the additional factors of centrifugation, continued lowering of temperature, or the presence of abnormal saline solution. 10. It was noted, however, that the leucocytes in hanging drop cultures required a markedly longer time for their degeneration under the action of light than did the leucocytes in cultures prepared from the buffy coat and inoculated in serum. This is considered as possibly due, either to injury to the cell during centrifugation and subsequent handling, or to some action of the red blood cells present in large amounts in the hanging drops of whole blood. 11. In these hanging drop cultures of whole blood degeneration of the leucocytes was also found to occur when the light reaching the culture was first freed from the larger part of its infra-red and from all of its ultra-violet. 12. It was also shown that the same degeneration was produced by wave-lengths of light lying within each of the three wave-length zones defined in Section 6 of this summary. PMID:19869498
4-Repeat Tauopathy Neuroimaging Initiative - Cycle 2
2018-05-01
Corticobasal Degeneration (CBD); Corticobasal Syndrome (CBS); Cortical-basal Ganglionic Degeneration (CBGD); Progressive Supranuclear Palsy (PSP); Nonfluent Variant Primary Progressive Aphasia (nfvPPA); Oligosymptomatic/Variant Progressive Supranuclear Palsy (o/vPSP)
NASA Technical Reports Server (NTRS)
Cooke, K. L.; Meyer, K. R.
1966-01-01
Extension of problem of singular perturbation for linear scalar constant coefficient differential- difference equation with single retardation to several retardations, noting degenerate equation solution
... other retinopathy High blood pressure Inflammation or edema Macular degeneration Microaneurysms -- enlargement of capillaries in the retina Tumors ... Eye Problems Read more Eye Diseases Read more Macular Degeneration Read more A.D.A.M., Inc. is ...
Dysli, Chantal; Dysli, Muriel; Zinkernagel, Martin S; Enzmann, Volker
2016-12-01
Fluorescence lifetime imaging ophthalmoscopy (FLIO) was used to investigate retinal autofluorescence lifetimes in mouse models of pharmacologically induced retinal degeneration over time. Sodium iodate (NaIO 3 , 35 mg/kg intravenously) was used to induce retinal pigment epithelium (RPE) degeneration with subsequent loss of photoreceptors (PR) whereas N-methyl-N-nitrosourea (MNU, 45 mg/kg intraperitoneally) was employed for degeneration of the photoreceptor cell layer alone. All mice were measured at day 3, 7, 14, and 28 after the respective injection of NaIO 3 , MNU or NaCl (control). Fluorescence lifetime imaging was performed using a fluorescence lifetime imaging ophthalmoscope (Heidelberg Engineering, Heidelberg, Germany). Fluorescence was excited at 473 nm and fluorescence lifetimes were measured in a short and a long spectral channel (498-560 nm and 560-720 nm). Corresponding optical coherence tomography (OCT) images were consecutively acquired and histology was performed at the end of the experiments. Segmentation of OCT images and histology verified the cell type-specific degeneration process over time. Retinal autofluorescence lifetimes increased from day 3 to day 28 in mice after NaIO 3 treatment. Finally, at day 28, fluorescence lifetimes were prolonged by 8% in the short and 61% in the long spectral channel compared to control animals (p = 0.21 and p = 0.004, respectively). In mice after MNU treatment, the mean retinal autofluorescence lifetimes were already decreased at day 3 and retinal lifetimes were finally shortened by 27% in the short and 51% in the long spectral channel at day 28 (p = 0.0028). In conclusion, degeneration of the RPE with subsequent photoreceptor degeneration by NaIO 3 lead to longer mean fluorescence lifetimes of the retina compared to control mice, whereas during specific degeneration of the photoreceptor layer induced by MNU shorter lifetimes were measured. Therefore, short retinal fluorescence lifetimes may originate from the RPE and may be modified by the overlaying retinal layers. Copyright © 2016 Elsevier Ltd. All rights reserved.
Zhang, Bin; Nardi, Francesco; Hull-Sanders, Helen; Wan, Xuanwu; Liu, Yinghong
2014-01-01
The complete 16,043 bp mitochondrial genome (mitogenome) of Bactrocera minax (Diptera: Tephritidae) has been sequenced. The genome encodes 37 genes usually found in insect mitogenomes. The mitogenome information for B. minax was compared to the homologous sequences of Bactrocera oleae, Bactrocera tryoni, Bactrocera philippinensis, Bactrocera carambolae, Bactrocera papayae, Bactrocera dorsalis, Bactrocera correcta, Bactrocera cucurbitae and Ceratitis capitata. The analysis indicated the structure and organization are typical of, and similar to, the nine closely related species mentioned above, although it contains the lowest genome-wide A+T content (67.3%). Four short intergenic spacers with a high degree of conservation among the nine tephritid species mentioned above and B. minax were observed, which also have clear counterparts in the control regions (CRs). Correlation analysis among these ten tephritid species revealed close positive correlation between the A+T content of zero-fold degenerate sites (P0FD), the ratio of nucleotide substitution frequency at P0FD sites to all degenerate sites (zero-fold degenerate sites, two-fold degenerate sites and four-fold degenerate sites) and amino acid sequence distance (ASD) were found. Further, significant positive correlation was observed between the A+T content of four-fold degenerate sites (P4FD) and the ratio of nucleotide substitution frequency at P4FD sites to all degenerate sites; however, we found significant negative correlation between ASD and the A+T content of P4FD, and the ratio of nucleotide substitution frequency at P4FD sites to all degenerate sites. A higher nucleotide substitution frequency at non-synonymous sites compared to synonymous sites was observed in nad4, the first time that has been observed in an insect mitogenome. A poly(T) stretch at the 5′ end of the CR followed by a [TA(A)]n-like stretch was also found. In addition, a highly conserved G+A-rich sequence block was observed in front of the poly(T) stretch among the ten tephritid species and two tandem repeats were present in the CR. PMID:24964138
Totonchy, Mariam B.; Tamura, Deborah; Pantell, Matthew S.; Zalewski, Christopher; Bradford, Porcia T.; Merchant, Saumil N.; Nadol, Joseph; Khan, Sikandar G.; Schiffmann, Raphael; Pierson, Tyler Mark; Wiggs, Edythe; Griffith, Andrew J.; DiGiovanna, John J.; Brewer, Carmen C.
2013-01-01
To assess the role of DNA repair in maintenance of hearing function and neurological integrity, we examined hearing status, neurological function, DNA repair complementation group and history of acute burning on minimal sun exposure in all patients with xeroderma pigmentosum, who had at least one complete audiogram, examined at the National Institutes of Health from 1971 to 2012. Seventy-nine patients, aged 1–61 years, were diagnosed with xeroderma pigmentosum (n = 77) or xeroderma pigmentosum/Cockayne syndrome (n = 2). A total of 178 audiograms were included. Clinically significant hearing loss (>20 dB) was present in 23 (29%) of 79 patients. Of the 17 patients with xeroderma pigmentosum-type neurological degeneration, 13 (76%) developed hearing loss, and all 17 were in complementation groups xeroderma pigmentosum type A or type D and reported acute burning on minimal sun exposure. Acute burning on minimal sun exposure without xeroderma pigmentosum-type neurological degeneration was present in 18% of the patients (10/55). Temporal bone histology in a patient with severe xeroderma pigmentosum-type neurological degeneration revealed marked atrophy of the cochlear sensory epithelium and neurons. The 19-year mean age of detection of clinically significant hearing loss in the patients with xeroderma pigmentosum with xeroderma pigmentosum-type neurological degeneration was 54 years younger than that predicted by international norms. The four frequency (0.5/1/2/4 kHz) pure-tone average correlated with degree of neurodegeneration (P < 0.001). In patients with xeroderma pigmentosum, aged 4–30 years, a four-frequency pure-tone average ≥10 dB hearing loss was associated with a 39-fold increased risk (P = 0.002) of having xeroderma pigmentosum-type neurological degeneration. Severity of hearing loss parallels neurological decline in patients with xeroderma pigmentosum-type neurological degeneration. Audiometric findings, complementation group, acute burning on minimal sun exposure and age were important predictors of xeroderma pigmentosum-type neurological degeneration. These results provide evidence that DNA repair is critical in maintaining neurological integrity of the auditory system. PMID:23365097
Totonchy, Mariam B; Tamura, Deborah; Pantell, Matthew S; Zalewski, Christopher; Bradford, Porcia T; Merchant, Saumil N; Nadol, Joseph; Khan, Sikandar G; Schiffmann, Raphael; Pierson, Tyler Mark; Wiggs, Edythe; Griffith, Andrew J; DiGiovanna, John J; Kraemer, Kenneth H; Brewer, Carmen C
2013-01-01
To assess the role of DNA repair in maintenance of hearing function and neurological integrity, we examined hearing status, neurological function, DNA repair complementation group and history of acute burning on minimal sun exposure in all patients with xeroderma pigmentosum, who had at least one complete audiogram, examined at the National Institutes of Health from 1971 to 2012. Seventy-nine patients, aged 1-61 years, were diagnosed with xeroderma pigmentosum (n = 77) or xeroderma pigmentosum/Cockayne syndrome (n = 2). A total of 178 audiograms were included. Clinically significant hearing loss (>20 dB) was present in 23 (29%) of 79 patients. Of the 17 patients with xeroderma pigmentosum-type neurological degeneration, 13 (76%) developed hearing loss, and all 17 were in complementation groups xeroderma pigmentosum type A or type D and reported acute burning on minimal sun exposure. Acute burning on minimal sun exposure without xeroderma pigmentosum-type neurological degeneration was present in 18% of the patients (10/55). Temporal bone histology in a patient with severe xeroderma pigmentosum-type neurological degeneration revealed marked atrophy of the cochlear sensory epithelium and neurons. The 19-year mean age of detection of clinically significant hearing loss in the patients with xeroderma pigmentosum with xeroderma pigmentosum-type neurological degeneration was 54 years younger than that predicted by international norms. The four frequency (0.5/1/2/4 kHz) pure-tone average correlated with degree of neurodegeneration (P < 0.001). In patients with xeroderma pigmentosum, aged 4-30 years, a four-frequency pure-tone average ≥10 dB hearing loss was associated with a 39-fold increased risk (P = 0.002) of having xeroderma pigmentosum-type neurological degeneration. Severity of hearing loss parallels neurological decline in patients with xeroderma pigmentosum-type neurological degeneration. Audiometric findings, complementation group, acute burning on minimal sun exposure and age were important predictors of xeroderma pigmentosum-type neurological degeneration. These results provide evidence that DNA repair is critical in maintaining neurological integrity of the auditory system.
... testing. AMSLER GRID TEST This test helps detect macular degeneration . This is a disease that causes blurred vision, ... exam. People who are at risk of developing macular degeneration may be told by their ophthalmologist to perform ...
... linked to UV exposure, such as cataracts and macular degeneration: A cataract is an eye condition in which ... lens of the eye becomes clouded, impairing vision. Macular degeneration is an eye disease in which the macula ( ...
... eye ( chemical burns or sports injuries) Diabetes Glaucoma Macular degeneration The type of partial vision loss may differ, ... tunnel vision and missing areas of vision With macular degeneration, the side vision is normal but the central ...
... in older adults, including: Cataracts Glaucoma Age-related macular degeneration (AMD) Diabetic eye disease Low vision Dry eye ... for glaucoma Some people who have age-related macular degeneration If you don’t have insurance, look for ...
NASA Astrophysics Data System (ADS)
Sultana, S.; Islam, S.; Mamun, A. A.; Schlickeiser, R.
2018-01-01
A theoretical and numerical investigation has been carried out on amplitude modulated heavy nucleus-acoustic envelope solitons (HNAESs) in a degenerate relativistic quantum plasma (DRQP) system containing relativistically degenerate electrons and light nuclei, and non-degenerate mobile heavy nuclei. The cubic nonlinear Schrödinger equation, describing the nonlinear dynamics of the heavy nucleus-acoustic waves (HNAWs), is derived by employing a multi-scale perturbation technique. The dispersion relation for the HNAWs is derived, and the criteria for the occurrence of modulational instability of the HNAESs are analyzed. The localized structures (viz., envelope solitons and associated rogue waves) are found to be formed in the DRQP system under consideration. The basic features of the amplitude modulated HNAESs and associated rogue waves formed in realistic DRQP systems are briefly discussed.
Finite-time blow-up for quasilinear degenerate Keller-Segel systems of parabolic-parabolic type
NASA Astrophysics Data System (ADS)
Hashira, Takahiro; Ishida, Sachiko; Yokota, Tomomi
2018-05-01
This paper deals with the quasilinear degenerate Keller-Segel systems of parabolic-parabolic type in a ball of RN (N ≥ 2). In the case of non-degenerate diffusion, Cieślak-Stinner [3,4] proved that if q > m + 2/N, where m denotes the intensity of diffusion and q denotes the nonlinearity, then there exist initial data such that the corresponding solution blows up in finite time. As to the case of degenerate diffusion, it is known that a solution blows up if q > m + 2/N (see Ishida-Yokota [13]); however, whether the blow-up time is finite or infinite has been unknown. This paper gives an answer to the unsolved problem. Indeed, the finite-time blow-up of energy solutions is established when q > m + 2/N.
Tolmachova, Tanya; Anders, Ross; Abrink, Magnus; Bugeon, Laurence; Dallman, Margaret J.; Futter, Clare E.; Ramalho, José S.; Tonagel, Felix; Tanimoto, Naoyuki; Seeliger, Mathias W.; Huxley, Clare; Seabra, Miguel C.
2006-01-01
Choroideremia (CHM) is an X-linked degeneration of the retinal pigment epithelium (RPE), photoreceptors, and choroid, caused by loss of function of the CHM/REP1 gene. REP1 is involved in lipid modification (prenylation) of Rab GTPases, key regulators of intracellular vesicular transport and organelle dynamics. To study the pathogenesis of CHM and to develop a model for assessing gene therapy, we have created a conditional mouse knockout of the Chm gene. Heterozygous-null females exhibit characteristic hallmarks of CHM: progressive degeneration of the photoreceptors, patchy depigmentation of the RPE, and Rab prenylation defects. Using tamoxifen-inducible and tissue-specific Cre expression in combination with floxed Chm alleles, we show that CHM pathogenesis involves independently triggered degeneration of photoreceptors and the RPE, associated with different subsets of defective Rabs. PMID:16410831
Dwarfism and age-associated spinal degeneration of heterozygote cmd mice defective in aggrecan
Watanabe, Hideto; Nakata, Ken; Kimata, Koji; Nakanishi, Isao; Yamada, Yoshihiko
1997-01-01
Mouse cartilage matrix deficiency (cmd) is an autosomal recessive disorder caused by a genetic defect of aggrecan, a large chondroitin sulfate proteoglycan in cartilage. The homozygotes (−/−) are characterized by cleft palate and short limbs, tail, and snout. They die just after birth because of respiratory failure, and the heterozygotes (+/−) appear normal at birth. Here we report that the heterozygotes show dwarfism and develop spinal misalignment with age. Within 19 months of age, they exhibit spastic gait caused by misalignment of the cervical spine and die because of starvation. Histological examination revealed a high incidence of herniation and degeneration of vertebral discs. Electron microscopy showed a degeneration of disc chondrocytes in the heterozygotes. These findings may facilitate the identification of mutations in humans predisposed to spinal degeneration. PMID:9192671
QUANTITATIVE MAGNETIC RESONANCE IMAGING OF ARTICULAR CARTILAGE AND ITS CLINICAL APPLICATIONS
Li, Xiaojuan; Majumdar, Sharmila
2013-01-01
Cartilage is one of the most essential tissues for healthy joint function and is compromised in degenerative and traumatic joint diseases. There have been tremendous advances during the past decade using quantitative MRI techniques as a non-invasive tool for evaluating cartilage, with a focus on assessing cartilage degeneration during osteoarthritis (OA). In this review, after a brief overview of cartilage composition and degeneration, we discuss techniques that grade and quantify morphologic changes as well as the techniques that quantify changes in the extracellular matrix. The basic principles, in vivo applications, advantages and challenges for each technique are discussed. Recent studies using the OA Initiative (OAI) data are also summarized. Quantitative MRI provides non-invasive measures of cartilage degeneration at the earliest stages of joint degeneration, which is essential for efforts towards prevention and early intervention in OA. PMID:24115571
NASA Astrophysics Data System (ADS)
Swanson, William H.; Fish, Gary E.
1995-10-01
Reduced foveal cone optical density in diseased eyes with normal acuity can affect color matches. Using field diameters of 1 deg, 2 deg, 4 deg, and 8 deg, we measured mean color-match midpoints and match widths in patients who had good acuity and who hereditary macular degeneration ( n=12 ), retinitis pigmentosa ( n=19 ), and glaucoma ( n=18 ). Results were compared with those for normal observers of comparable ages. Mean color-match midpoints were abnormal only for the population with hereditary macular degeneration, indicating a reduction in cone optical density in the central 4 deg. Mean color-match widths were enlarged for both hereditary macular degeneration and retinitis pigmentosa, a result consistent with a reduction in the number of foveal cones. chromatic discrimination, macular degeneration, retinitis pigmentosa, glaucoma.
High-Resolution Laser Spectroscopy of Free Radicals in Nearly Degenerate Electronic States
NASA Astrophysics Data System (ADS)
Liu, Jinjun
2017-06-01
Rovibronic structure of molecules in orbitally degenerate electronic states including Renner-Teller (RT) and Jahn-Teller (JT) active molecules has been extensively studied. Less is known about rotational structure of polyatomic molecules in nearly degenerate states, especially those with low (e.g., C_s) symmetry that are subject to the pseudo-Jahn-Teller (pJT) effect. In the case of free radicals, the unpaired electron further complicates energy levels by inducing spin-orbit (SO) and spin-rotation (SR) splittings. Asymmetric deuteration or methyl substitution of C_{3v} free radicals such as CH_3O, CaCH_3, and CaOCH_3 lowers the molecular symmetry, lifts the vibronic degeneracy, and reduces the JT effect to the pJT effect. New spectroscopic models are required to reproduce the rovibronic structure and simulate the experimentally obtained spectra of pJT-active free radicals. It has been found that rotational and fine-structure analysis of spectra involving nearly degenerate states may aid in vibronic analysis and interpretation of effective molecular constants. Especially, SO and Coriolis interactions that couple the two states can be determined accurately from fitting the experimental spectra. Coupling between the two electronic states also affects the intensities of rotational and vibronic transitions. The study on free radicals in nearly degenerate states provides a promising avenue of research which may bridge the gap between symmetry-induced degenerate states and the Born-Oppenheimer (BO) limit of unperturbed electronic states.
Wang, Junhua; Westenskow, Peter D.; Fang, Mingliang; Friedlander, Martin
2016-01-01
Photoreceptor degeneration is characteristic of vision-threatening diseases including age-related macular degeneration. Photoreceptors are metabolically demanding cells in the retina, but specific details about their metabolic behaviours are unresolved. The quantitative metabolomics of retinal degeneration could provide valuable insights and inform future therapies. Here, we determined the metabolomic ‘fingerprint’ of healthy and dystrophic retinas in rat models using optimized metabolite extraction techniques. A number of classes of metabolites were consistently dysregulated during degeneration: vitamin A analogues, fatty acid amides, long-chain polyunsaturated fatty acids, acyl carnitines and several phospholipid species. For the first time, a distinct temporal trend of several important metabolites including DHA (4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoic acid), all-trans-retinal and its toxic end-product N-retinyl-N-retinylidene-ethanolamine were observed between healthy and dystrophic retinas. In this study, metabolomics was further used to determine the temporal effects of the therapeutic intervention of grafting stem cell-derived retinal pigment epithelium (RPE) in dystrophic retinas, which significantly prevented photoreceptor atrophy in our previous studies. The result revealed that lipid levels such as phosphatidylethanolamine in eyes were restored in those animals receiving the RPE grafts. In conclusion, this study provides insight into the metabolomics of retinal degeneration, and further understanding of the efficacy of RPE transplantation. This article is part of the themed issue ‘Quantitative mass spectrometry’. PMID:27644974
Patay, Z; Enterkin, J; Harreld, J H; Yuan, Y; Löbel, U; Rumboldt, Z; Khan, R; Boop, F
2014-04-01
Posterior fossa syndrome is a severe postoperative complication occurring in up to 29% of children undergoing posterior fossa tumor resection; it is most likely caused by bilateral damage to the proximal efferent cerebellar pathways, whose fibers contribute to the Guillain-Mollaret triangle. When the triangle is disrupted, hypertrophic olivary degeneration develops. We hypothesized that MR imaging patterns of inferior olivary nucleus changes reflect patterns of damage to the proximal efferent cerebellar pathways and show association with clinical findings, in particular the presence or absence of posterior fossa syndrome. We performed blinded, randomized longitudinal MR imaging analyses of the inferior olivary nuclei of 12 children with and 12 without posterior fossa syndrome after surgery for midline intraventricular tumor in the posterior fossa. The Fisher exact test was performed to investigate the association between posterior fossa syndrome and hypertrophic olivary degeneration on MR imaging. The sensitivity and specificity of MR imaging findings of bilateral hypertrophic olivary degeneration for posterior fossa syndrome were measured. Of the 12 patients with posterior fossa syndrome, 9 had bilateral inferior olivary nucleus abnormalities. The 12 patients without posterior fossa syndrome had either unilateral or no inferior olivary nucleus abnormalities. The association of posterior fossa syndrome and hypertrophic olivary degeneration was statistically significant (P < .0001). Hypertrophic olivary degeneration may be a surrogate imaging indicator for damage to the contralateral proximal efferent cerebellar pathway. In the appropriate clinical setting, bilateral hypertrophic olivary degeneration may be a sensitive and specific indicator of posterior fossa syndrome.
Papah, Michael B; Brannick, Erin M; Schmidt, Carl J; Abasht, Behnam
2017-12-01
Wooden Breast Disease (WBD), a myopathy that frequently affects modern broiler chickens, is a disorder that has been associated with significant economic losses in the poultry industry. To examine tissue changes associated with the onset and early pathogenesis of this disorder, a time-series experiment was conducted using chickens from a high-breast-muscle-yield, purebred commercial broiler line. Birds were raised for up to seven weeks, with a subset of birds sampled weekly. Breast muscle tissues were extracted at necropsy and processed for analysis by light microscopy and transmission electron microscopy. Histologic presentation indicated localized phlebitis with lipogranulomas in Week 1, focal single-myofibril degeneration in Week 2 preceding an inflammatory response that started in Week 3. Lesions in Week 4 were characterized by multifocal to diffuse muscle fibre degeneration, necrosis, interstitial oedema accompanied by increased lipid and inflammatory cell infiltration. Lesions in Weeks 5-7 revealed diffuse muscle degeneration, necrosis, fibrosis and fatty infiltration with lipogranulomas. Ultrastructural examination showed myofibrillar splitting and degeneration, irregular, displaced and degenerated Z-lines, mitochondrial degeneration and interstitial fibrosis with dense regular collagen fibres. This study, therefore, demonstrates that WBD exhibits an earlier onset in modern broilers than when detectable by clinical examination. Further, this study shows that the disease assumes a progressive course with acute vasculitis, lipid deposition and myodegeneration occurring in the earlier stages, followed by a chronic fibrotic phase.
Kijowski, Richard; Blankenbaker, Donna; Stanton, Paul; Fine, Jason; De Smet, Arthur
2006-12-01
To correlate radiographic findings of osteoarthritis on axial knee radiographs with arthroscopic findings of articular cartilage degeneration within the patellofemoral joint in patients with chronic knee pain. The study group consisted of 104 patients with osteoarthritis of the patellofemoral joint and 30 patients of similar age with no osteoarthritis of the patellofemoral joint. All patients in the study group had an axial radiograph of the knee performed prior to arthroscopic knee surgery. At the time of arthroscopy, each articular surface of the patellofemoral joint was graded using the Noyes classification system. Two radiologists retrospectively reviewed the knee radiographs to determine the presence of marginal osteophytes, joint-space narrowing, subchondral sclerosis, and subchondral cysts. The sensitivity and specificity of the various radiographic features of osteoarthritis for the detection of articular cartilage degeneration within the patellofemoral joint were determined. The sensitivity of marginal osteophytes, joint-space narrowing, subchondral sclerosis, and subchondral cysts for the detection of articular cartilage degeneration within the patellofemoral joint was 73%, 37%, 4%, and 0% respectively. The specificity of marginal osteophytes, joint-space narrowing, subchondral sclerosis, and subchondral cysts for the detection of articular cartilage degeneration within the patellofemoral joint was 67%, 90%, 100%, and 100% respectively. Marginal osteophytes were the most sensitive radiographic feature for the detection of articular cartilage degeneration within the patellofemoral joint. Joint-space narrowing, subchondral sclerosis, and subchondral cysts were insensitive radiographic features of osteoarthritis, and rarely occurred in the absence of associated osteophyte formation.
Human cartilage endplate permeability varies with degeneration and intervertebral disc site.
DeLucca, John F; Cortes, Daniel H; Jacobs, Nathan T; Vresilovic, Edward J; Duncan, Randall L; Elliott, Dawn M
2016-02-29
Despite the critical functions the human cartilage endplate (CEP) plays in the intervertebral disc, little is known about its structural and mechanical properties and their changes with degeneration. Quantifying these changes with degeneration is important for understanding how the CEP contributes to the function and pathology of the disc. Therefore the objectives of this study were to quantify the effect of disc degeneration on human CEP mechanical properties, determine the influence of superior and inferior disc site on mechanics and composition, and simulate the role of collagen fibers in CEP and disc mechanics using a validated finite element model. Confined compression data and biochemical composition data were used in a biphasic-swelling model to calculate compressive extrafibrillar elastic and permeability properties. Tensile properties were obtained by applying published tensile test data to an ellipsoidal fiber distribution. Results showed that with degeneration CEP permeability decreased 50-60% suggesting that transport is inhibited in the degenerate disc. CEP fibers are organized parallel to the vertebrae and nucleus pulposus and may contribute to large shear strains (0.1-0.2) and delamination failure of the CEP commonly seen in herniated disc tissue. Fiber-reinforcement also reduces CEP axial strains thereby enhancing fluid flux by a factor of 1.8. Collectively, these results suggest that the structure and mechanics of the CEP may play critical roles in the solute transport and disc mechanics. Copyright © 2016 Elsevier Ltd. All rights reserved.
Mutations in ABCR (ABCA4) in patients with Stargardt macular degeneration or cone-rod degeneration.
Briggs, C E; Rucinski, D; Rosenfeld, P J; Hirose, T; Berson, E L; Dryja, T P
2001-09-01
To determine the spectrum of ABCR mutations associated with Stargardt macular degeneration and cone-rod degeneration (CRD). One hundred eighteen unrelated patients with recessive Stargardt macular degeneration and eight with recessive CRD were screened for mutations in ABCR (ABCA4) by single-strand conformation polymorphism analysis. Variants were characterized by direct genomic sequencing. Segregation analysis was performed on the families of 20 patients in whom at least two or more likely pathogenic sequence changes were identified. The authors found 77 sequence changes likely to be pathogenic: 21 null mutations (15 novel), 55 missense changes (26 novel), and one deletion of a consensus glycosylation site (also novel). Fifty-two patients with Stargardt macular degeneration (44% of those screened) and five with CRD each had two of these sequence changes or were homozygous for one of them. Segregation analyses in the families of 19 of these patients were informative and revealed that the index cases and all available affected siblings were compound heterozygotes or homozygotes. The authors found one instance of an apparently de novo mutation, Ile824Thr, in a patient. Thirty-seven (31%) of the 118 patients with Stargardt disease and one with CRD had only one likely pathogenic sequence change. Twenty-nine patients with Stargardt disease (25%) and two with CRD had no identified sequence changes. This report of 42 novel mutations brings the growing number of identified likely pathogenic sequence changes in ABCR to approximately 250.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahmood, S., E-mail: shahzadm100@gmail.com; Sadiq, Safeer; Haque, Q.
2016-06-15
The obliquely propagating arbitrary amplitude electrostatic wave is studied in a dense magnetized plasma having singly and doubly charged helium ions with nonrelativistic and ultrarelativistic degenerate electrons pressures. The Fermi temperature for ultrarelativistic degenerate electrons described by N. M. Vernet [(Cambridge University Press, Cambridge, 2007), p. 57] is used to define ion acoustic speed in ultra-dense plasmas. The pseudo-potential approach is used to solve the fully nonlinear set of dynamic equations for obliquely propagating electrostatic waves in a dense magnetized plasma containing helium ions. The upper and lower Mach number ranges for the existence of electrostatic solitons are found whichmore » depends on the obliqueness of the wave propagation with respect to applied magnetic field and charge number of the helium ions. It is found that only compressive (hump) soliton structures are formed in all the cases and only subsonic solitons are formed for a singly charged helium ions plasma case with nonrelativistic degenerate electrons. Both subsonic and supersonic soliton hump structures are formed for doubly charged helium ions with nonrelativistic degenerate electrons and ultrarelativistic degenerate electrons plasma case containing singly as well as doubly charged helium ions. The effect of propagation direction on the soliton amplitude and width of the electrostatic waves is also presented. The numerical plots are also shown for illustration using dense plasma parameters of a compact star (white dwarf) from literature.« less
Vugler, Anthony A; Coffey, Peter J
2003-11-01
The retinae of dystrophic Royal College of Surgeons (RCS) rats exhibit progressive photoreceptor degeneration accompanied by pathology of ganglion cells. To date, little work has examined the consequences of retinal degeneration for central visual structures in dystrophic rats. Here, we use immunohistochemistry for calretinin (CR) to label retinal afferents in the superior colliculus (SC), lateral geniculate nucleus, and olivary pretectal nucleus of RCS rats aged between 2 and 26 months of age. Early indications of fiber loss in the medial dystrophic SC were apparent between 9 and 13 months. Quantitative methods reveal a significant reduction in the level of CR immunoreactivity in visual layers of the medial dystrophic SC at 13 months (P < 0.02). In dystrophic animals aged 19-26 months the loss of CR fibers in SC was dramatic, with well-defined patches of fiber degeneration predominating in medial aspects of the structure. This fiber degeneration in SC was accompanied by increased detection of cells immunoreactive for CR. In several animals, regions of fiber loss were also found to contain strongly parvalbumin-immunoreactive cells. Loss of CR fibers was also observed in the lateral geniculate nucleus and olivary pretectal nucleus. Patterns of fiber loss in the dystrophic SC compliment reports of ganglion cell degeneration in these animals and the response of collicular neurons to degeneration is discussed in terms of plasticity of the dystrophic visual system and properties of calcium binding proteins.
Potential public health impact of Age-Related Eye Disease Study results: AREDS report no. 11.
Bressler, Neil M; Bressler, Susan B; Congdon, Nathan G; Ferris, Frederick L; Friedman, David S; Klein, Ronald; Lindblad, Anne S; Milton, Roy C; Seddon, Johanna M
2003-11-01
To estimate the potential public health impact of the findings of the Age-Related Eye Disease Study (AREDS) on reducing the number of persons developing advanced age-related macular degeneration (AMD) during the next 5 years in the United States. The AREDS clinical trial provides estimates of AMD progression rates and of reduction in risk of developing advanced AMD when a high-dose nutritional supplement of antioxidants and zinc is used. These results are applied to estimates of the US population at risk, to estimate the number of people who would potentially avoid advanced AMD during 5 years if those at risk were to take a supplement such as that used in AREDS. An estimated 8 million persons at least 55 years old in the United States have monocular or binocular intermediate AMD or monocular advanced AMD. They are considered to be at high risk for advanced AMD and are those for whom the AREDS formulation should be considered. Of these people, 1.3 million would develop advanced AMD if no treatment were given to reduce their risk. If all of these people at risk received supplements such as those used in AREDS, more than 300,000 (95% confidence interval, 158,000-487,000) of them would avoid advanced AMD and any associated vision loss during the next 5 years. If people at high risk for advanced AMD received supplements such as those suggested by AREDS results, the potential impact on public health in the United States would be considerable during the next 5 years.
Imaging and quantifying ganglion cells and other transparent neurons in the living human retina.
Liu, Zhuolin; Kurokawa, Kazuhiro; Zhang, Furu; Lee, John J; Miller, Donald T
2017-11-28
Ganglion cells (GCs) are fundamental to retinal neural circuitry, processing photoreceptor signals for transmission to the brain via their axons. However, much remains unknown about their role in vision and their vulnerability to disease leading to blindness. A major bottleneck has been our inability to observe GCs and their degeneration in the living human eye. Despite two decades of development of optical technologies to image cells in the living human retina, GCs remain elusive due to their high optical translucency. Failure of conventional imaging-using predominately singly scattered light-to reveal GCs has led to a focus on multiply-scattered, fluorescence, two-photon, and phase imaging techniques to enhance GC contrast. Here, we show that singly scattered light actually carries substantial information that reveals GC somas, axons, and other retinal neurons and permits their quantitative analysis. We perform morphometry on GC layer somas, including projection of GCs onto photoreceptors and identification of the primary GC subtypes, even beneath nerve fibers. We obtained singly scattered images by: ( i ) marrying adaptive optics to optical coherence tomography to avoid optical blurring of the eye; ( ii ) performing 3D subcellular image registration to avoid motion blur; and ( iii ) using organelle motility inside somas as an intrinsic contrast agent. Moreover, through-focus imaging offers the potential to spatially map individual GCs to underlying amacrine, bipolar, horizontal, photoreceptor, and retinal pigment epithelium cells, thus exposing the anatomical substrate for neural processing of visual information. This imaging modality is also a tool for improving clinical diagnosis and assessing treatment of retinal disease. Copyright © 2017 the Author(s). Published by PNAS.
Chagnon, Amélie; Aubin, Carl-Eric; Villemure, Isabelle
2010-11-01
Spine degeneration is a pathology that will affect 80% of the population. Since the intervertebral disks play an important role in transmitting loads through the spine, the aim of this study was to evaluate the biomechanical impact of disk properties on the load carried by healthy (Thompson grade I) and degenerated (Thompson grades III and IV) disks. A three-dimensional parametric poroelastic finite element model of the L4/L5 motion segment was developed. Grade I, grade II, and grade IV disks were modeled by altering the biomechanical properties of both the annulus and nucleus. Models were validated using published creep experiments, in which a constant compressive axial stress of 0.35 MPa was applied for 4 h. Pore pressure (PP) and effective stress (S(E)) were analyzed as a function of time following loading application (1 min, 5 min, 45 min, 125 min, and 245 min) and discal region along the midsagittal profile for each disk grade. A design of experiments was further implemented to analyze the influence of six disk parameters (disk height (H), fiber proportion (%F), drained Young's modulus (E(a),E(n)), and initial permeability (k(a),k(n)) of both the annulus and nucleus) on load-sharing for disk grades I and IV. Simulations of grade I, grade III, and grade IV disks agreed well with the available published experimental data. Disk height (H) had a significant influence (p<0.05) on the PP and S(E) during the entire loading history for both healthy and degenerated disk models. Young's modulus of the annulus (E(a)) significantly affected not only S(E) in the annular region for both disk grades in the initial creep response but also S(E) in the nucleus zone for degenerated disks with further creep response. The nucleus and annulus permeabilities had a significant influence on the PP distribution for both disk grades, but this effect occurred at earlier stages of loading for degenerated than for healthy disk models. This is the first study that investigates the biomechanical influence of both geometrical and material disk properties on the load transfer of healthy and degenerated disks. Disk height is a significant parameter for both healthy and degenerated disks during the entire loading. Changes in the annulus stiffness, as well as in the annulus and nucleus permeability, control load-sharing in different ways for healthy and degenerated disks.
Ubiquitin–Synaptobrevin Fusion Protein Causes Degeneration of Presynaptic Motor Terminals in Mice
Liu, Yun; Li, Hongqiao; Sugiura, Yoshie; Han, Weiping; Gallardo, Gilbert; Khvotchev, Mikhail; Zhang, Yinan; Kavalali, Ege T.; Südhof, Thomas C.
2015-01-01
Protein aggregates containing ubiquitin (Ub) are commonly observed in neurodegenerative disorders, implicating the involvement of the ubiquitin proteasome system (UPS) in their pathogenesis. Here, we aimed to generate a mouse model for monitoring UPS function using a green fluorescent protein (GFP)-based substrate that carries a “noncleavable” N-terminal ubiquitin moiety (UbG76V). We engineered transgenic mice expressing a fusion protein, consisting of the following: (1) UbG76V, GFP, and a synaptic vesicle protein synaptobrevin-2 (UbG76V-GFP-Syb2); (2) GFP-Syb2; or (3) UbG76V-GFP-Syntaxin1, all under the control of a neuron-specific Thy-1 promoter. As expected, UbG76V-GFP-Syb2, GFP-Syb2, and UbG76V-GFP-Sytaxin1 were highly expressed in neurons, such as motoneurons and motor nerve terminals of the neuromuscular junction (NMJ). Surprisingly, UbG76V-GFP-Syb2 mice developed progressive adult-onset degeneration of motor nerve terminals, whereas GFP-Syb2 and UbG76V-GFP-Syntaxin1 mice were normal. The degeneration of nerve terminals in UbG76V-GFP-Syb2 mice was preceded by a progressive impairment of synaptic transmission at the NMJs. Biochemical analyses demonstrated that UbG76V-GFP-Syb2 interacted with SNAP-25 and Syntaxin1, the SNARE partners of synaptobrevin. Ultrastructural analyses revealed a marked reduction in synaptic vesicle density, accompanying an accumulation of tubulovesicular structures at presynaptic nerve terminals. These morphological defects were largely restricted to motor nerve terminals, as the ultrastructure of motoneuron somata appeared to be normal at the stages when synaptic nerve terminals degenerated. Furthermore, synaptic vesicle endocytosis and membrane trafficking were impaired in UbG76V-GFP-Syb2 mice. These findings indicate that UbG76V-GFP-Syb2 may compete with endogenous synaptobrevin, acting as a gain-of-function mutation that impedes SNARE function, resulting in the depletion of synaptic vesicles and degeneration of the nerve terminals. SIGNIFICANCE STATEMENT Degeneration of motor nerve terminals occurs in amyotrophic lateral sclerosis (ALS) patients as well as in mouse models of ALS, leading to progressive paralysis. What causes a motor nerve terminal to degenerate remains unknown. Here we report on transgenic mice expressing a ubiquitinated synaptic vesicle protein (UbG76V-GFP-Syb2) that develop progressive degeneration of motor nerve terminals. These mice may serve as a model for further elucidating the underlying cellular and molecular mechanisms of presynaptic nerve terminal degeneration. PMID:26290230
NASA Astrophysics Data System (ADS)
Sultana, S.; Schlickeiser, R.
2018-02-01
A three component degenerate relativistic quantum plasma (consisting of relativistically degenerate electrons, nondegenerate inertial light nuclei, and stationary heavy nuclei) is considered to model the linear wave and also the electrostatic solitary waves in the light nuclei-scale length. A well-known normal mode analysis is employed to investigate the linear wave properties. A mechanical-motion analog (Sagdeev-type) pseudo-potential approach, which reveals the existence of large amplitude solitary excitations, is adopted to study the nonlinear wave properties. Only the positive potential solitary excitations are found to exist in the plasma medium under consideration. The basic properties of the arbitrary amplitude electrostatic acoustic modes in the light nuclei-scale length and their existence domain in terms of soliton speed (Mach number) are examined. The modifications of solitary wave characteristics and their existence domain with the variation of different key plasma configuration parameters (e.g., electrons degeneracy parameter, inertial light nuclei number density, and degenerate electron number density) are also analyzed. Our results, which may be helpful to explain the basic features of the nonlinear wave propagation in multi-component degenerate quantum plasmas, in connection with astrophysical compact objects (e.g., white dwarfs) are briefly discussed.
Yi, Jung-Sun; Lee, Soon-Keum; Sato, Taka-Aki; Koh, Jae-Young
2003-08-21
Zinc induces in cultured cortical neurons both p75(NTR) and p75(NTR)-associated death executor (NADE), which together contribute to caspase-dependent neuronal apoptosis. Since zinc neurotoxicity may contribute to neuronal death following seizures, we examined whether p75(NTR) and NADE are co-induced also in rat hippocampal neurons degenerating after seizures. Staining of brain sections with a zinc-specific fluorescent dye (N-(6-methoxy-8-quinolyl)-p-carboxybenzoylsulphonamide) and acid fuchsin revealed zinc accumulation in degenerating neuronal cell bodies in CA1 and CA3 of hippocampus 24 h after kainate injection. Both anti-p75(NTR) and anti-NADE immunoreactivities appeared in zinc-accumulating/degenerating neurons in both areas. Intraventricular injection of CaEDTA, without altering the severity or time course of kainate-induced seizures, markedly attenuated the induction of p75(NTR)/NADE in hippocampus, which correlated with the decrease of caspase-3 activation and zinc accumulation/cell death. The present study has demonstrated that p75(NTR) and NADE are co-induced in neurons degenerating after kainate-induced seizures in rats, likely in a zinc-dependent manner.
Murase, E; Siegelman, E S; Outwater, E K; Perez-Jaffe, L A; Tureck, R W
1999-01-01
Leiomyomas are the most common uterine neoplasm and are composed of smooth muscle with varying amounts of fibrous connective tissue. As leiomyomas enlarge, they may outgrow their blood supply, resulting in various types of degeneration: hyaline or myxoid degeneration, calcification, cystic degeneration, and red degeneration. Leiomyomas are classified as submucosal, intramural, or subserosal; the latter may become pedunculated and simulate ovarian neoplasms. Although most leiomyomas are asymptomatic, patients may present with abnormal uterine bleeding, pressure on adjacent organs, pain, infertility, or a palpable abdominalpelvic mass. Magnetic resonance (MR) imaging is the most accurate imaging technique for detection and localization of leiomyomas. On T2-weighted images, nondegenerated leiomyomas appear as well-circumscribed masses of decreased signal intensity; however, cellular leiomyomas can have relatively higher signal intensity on T2-weighted images and demonstrate enhancement on contrast material-enhanced images. Degenerated leiomyomas have variable appearances on T2-weighted images and contrast-enhanced images. The differential diagnosis of leiomyomas includes adenomyosis, solid adnexal mass, focal myometrial contraction, and uterine leiomyosarcoma. For patients with symptoms, medical or surgical treatment may be indicated. MR imaging also has a role in treatment of leiomyomas by assisting in surgical planning and monitoring the response to medical therapy.
Relativistic many-body XMCD theory including core degenerate effects
NASA Astrophysics Data System (ADS)
Fujikawa, Takashi
2009-11-01
A many-body relativistic theory to analyze X-ray Magnetic Circular Dichroism (XMCD) spectra has been developed on the basis of relativistic quantum electrodynamic (QED) Keldysh Green's function approach. This theoretical framework enables us to handle relativistic many-body effects in terms of correlated nonrelativistic Green's function and relativistic correction operator Q, which naturally incorporates radiation field screening and other optical field effects in addition to electron-electron interactions. The former can describe the intensity ratio of L2/L3 which deviates from the statistical weight (branching ratio) 1/2. In addition to these effects, we consider the degenerate or nearly degenerate effects of core levels from which photoelectrons are excited. In XPS spectra, for example in Rh 3d sub level excitations, their peak shapes are quite different: This interesting behavior is explained by core-hole moving after the core excitation. We discuss similar problems in X-ray absorption spectra in particular excitation from deep 2p sub levels which are degenerate in each sub levels and nearly degenerate to each other in light elements: The hole left behind is not frozen there. We derive practical multiple scattering formulas which incorporate all those effects.
Seiler, Gabriela S; Häni, Hansjürg; Busato, André R; Lang, Johann
2002-01-01
To evaluate the possible association between facet joint geometry and intervertebral disk degeneration in German Shepherd Dogs. 25 German Shepherd Dogs and 11 control dogs of similar body weight and condition. Facet joint angles in the caudal portion of the lumbar region of the vertebral column (L5-S1) were measured by use of computed tomography, and the intervertebral discs were evaluated microscopically. The relationship between facet joint geometry and disk degeneration was evaluated by use of statistical methods. German Shepherd Dogs had significantly more facet joint tropism than control dogs, but an association with disk degeneration was not found. However, German Shepherd Dogs had a different facet joint conformation, with more sagittally oriented facet joints at L5-L6 and L6-L7 and a larger angle difference between the lumbar and lumbosacral facet joints, compared with control dogs. A large difference between facet joint angles at L6-L7 and L7-S1 in German Shepherd Dogs may be associated with the frequent occurrence of lumbosacral disk degeneration in this breed.
Oliveira, Thalita E S; Michelazzo, Mariana M Z; Fernandes, Thiago; de Oliveira, Admilton G; Leme, Raquel A; Alfieri, Alice F; Alfieri, Amauri A; Headley, Selwyn A
2017-11-29
Epidemic Transient Neonatal Losses (ETNL) is a disease of piglets caused by Senecavirus A (SVA) in which the method of dissemination and associated lesions are not well-defined. This study investigated the possible SVA-induced lesions by examining spontaneous infections in newborn piglets. Histopathology revealed ballooning degeneration of transitional epithelium, nonsuppurative meningoencephalitis, plexus choroiditis, and atrophic enteritis. RT-PCR identified SVA in all tissues evaluated and sequencing confirmed these results. Positive immunoreactivity to SVA was observed in endothelial and epithelial tissues of all organs evaluated. Semithin analysis revealed vacuolization of apical enterocytes of the small intestine, balloon degeneration and necrosis of endothelial cells of the choroid plexus (CP) and nonsuppurative choroid plexitis. Ultrathin evaluation demonstrated hydropic degeneration of apical enterocytes, degeneration and necrosis of endothelium of CP fenestrated capillaries, degeneration of ependymocytes associated with intralesional viral particles. It is proposed that SVA initially infects apical enterocytes of newborn piglets and probably enters the circulatory system with entry to the brain via the CP, by first producing an initial inflammatory reaction, with subsequent encephalitic dissemination. Consequently, SVA probably uses an enteric-neurological method of dissemination.
Mitofusin2 mutations disrupt axonal mitochondrial positioning and promote axon degeneration
Misko, Albert; Sasaki, Yo; Tuck, Elizabeth; Milbrandt, Jeffrey; Baloh, Robert H.
2012-01-01
Summary Alterations in mitochondrial dynamics (fission, fusion and movement) are implicated in many neurodegenerative diseases, from rare genetic disorders such as Charcot-Marie-Tooth disease, to common conditions including Alzheimer’s disease. However, the relationship between altered mitochondrial dynamics and neurodegeneration is incompletely understood. Here we show that disease associated MFN2 proteins suppressed both mitochondrial fusion and transport, and produced classic features of segmental axonal degeneration without cell body death, including neurofilament filled swellings, loss of calcium homeostasis, and accumulation of reactive oxygen species. By contrast, depletion of Opa1 suppressed mitochondrial fusion while sparing transport, and did not induce axonal degeneration. Axon degeneration induced by mutant MFN2 proteins correlated with the disruption of the proper mitochondrial positioning within axons, rather than loss of overall mitochondrial movement, or global mitochondrial dysfunction. We also found that augmenting expression of MFN1 rescued the axonal degeneration caused by MFN2 mutants, suggesting a possible therapeutic strategy for Charcot-Marie-Tooth disease. These experiments provide evidence that the ability of mitochondria to sense energy requirements and localize properly within axons is key to maintaining axonal integrity, and may be a common pathway by which disruptions in axonal transport contribute to neurodegeneration. PMID:22442078
Sörensen, Silvia; White, Katherine; Mak, Wingyun; Zanibbi, Katherine; Tang, Wan; O'Hearn, Amanda; Hegel, Mark T
2015-05-01
Age-related Macular Degeneration (AMD) is the leading cause of irreversible and predictable blindness among older adults with serious physical and mental health consequences. Visual impairment is associated with negative future outlook and depression and has serious consequences for older adults' quality of life and, by way of depression, on long-term survival. Psychosocial interventions have the potential to alleviate and prevent depression symptoms among older AMD patients. We describe the protocol of the Macular Degeneration and Aging Study, a randomized clinical trial of a psychosocial Preventive Problem-Solving Intervention. The intervention is aimed at enhancing well-being and future planning among older adults with macular degeneration by increasing preparation for future care. Adequate randomization and therapeutic fidelity were achieved. Current retention rates were acceptable, given the vulnerability of the population. Acceptability (adherence and satisfaction) was high. Given the high public health significance and impact on quality of life among older adults with vision loss, this protocol contributes a valid test of a promising intervention for maintaining mental and physical health in this population. Copyright © 2015 Elsevier Inc. All rights reserved.
[Disease perception in patients with wet age-related macular degeneration].
Kostadinov, F; Valmaggia, C
2015-04-01
The disease perception of the patients treated with intravitreal injections of anti-vascular endothelial growth factor due to wet age-related macular degeneration was investigated. 177 questionnaires focusing on the development of the perceived visual acuity and the quality of life were evaluated. The subgroup 1 included 125 patients (70.6%) with a unilateral wet age-related macular degeneration. The subgroup 2 included 52 patients (29.4%) with a bilateral wet age-related macular degeneration. Patients would almost always recommend the therapy to a friend (97.2%). The critical remarks are related to the uncertain course of the disease (22.8%) and the uncertain duration of the treatment (19%). There was a discrepancy between the measured visual outcome and the perceived one in 5.6% in the subgroup 1, and in 38.5% in the subgroup 2. This difference was statistically significant (chi-square test with p<0.01). The treatment of wet age-related macular degeneration with intravitreal injections of anti-vascular endothelial growth factor is judged positively. Binocular affected patients have a higher disease perception and therefore a poorer self-assessment of their visual acuity and their quality of life compared with monocular affected patients. Georg Thieme Verlag KG Stuttgart · New York.
... has a hereditary component. Researchers have identified several genes related to developing the condition. Smoking. Smoking cigarettes or being regularly exposed to smoke significantly increases your risk of macular degeneration. Obesity. Research indicates that being obese increases the chance ...
Knobbe, Chris A; Stojanoska, Marija
2017-11-01
Age-related macular degeneration (AMD) is the leading cause of irreversible vision loss and blindness in developed nations. AMD is anticipated to affect 196 million people worldwide, by 2020. However, the etiology of this disease remains unknown. Aging, genetic, and environmental influences have generally been implicated as major etiologic factors. We sought to examine the hypothesis that consumption of the 'displacing foods of modern commerce,' which equate to processed, nutrient-deficient and potentially toxic foods, may be the primary and proximate cause of AMD. To evaluate this hypothesis, we ran correlative AMD prevalence data against well-known proxy markers of processed food consumption, namely, sugar and vegetable oils, in 25 nations. In twenty-one nations, published studies provided AMD prevalence data and in four Pacific Island nations, practicing ophthalmologists in the regions completed retrospective chart analyses to estimate AMD prevalence in their respective regions. To estimate AMD prevalence historically, an extensive review of published papers and ophthalmic literature was completed. This review indicates that, between the years 1851 and 1930, AMD was a medical rarity worldwide, which then rose modestly in prevalence in the 1930s in the U.S. and U.K, finally elevating to epidemic proportions by 1975 in the U.S. Numerous developed nations have followed suit in recent decades. Simultaneously, between approximately 1880 and 2009, processed, nutrient-deficient foods gradually supplanted and displaced whole, unprocessed, nutrient-dense foods in developed nations, such that by 2009, 63 percent of the American diet was made up of nutrient-deficient foods in the form of refined white flour, added sugars, vegetable oils, and artificially created trans fats. The correlative data in 25 nations shows that increasing sugar and polyunsaturated vegetable oil consumption is invariably associated with new onset or rising prevalence of AMD, generally within about 30-40years of the beginning of increasing consumption of these proxy marker processed food components. The correlative data also demonstrates that, when consumption of sugar is moderate, but "harmful vegetable oil" consumption remains extremely low or absent, the prevalence of AMD remains rare. This study supports the hypothesis that the 'displacing foods of modern commerce,' which equate to processed, nutrient-deficient, and potentially toxic foods, are the primary and proximate cause of AMD. This study also supports the conclusion that macular degeneration is entirely preventable, through ancestral dietary strategy and avoidance of processed foods. Finally, this research has implications for patients with existing early and intermediate stages of AMD. Copyright © 2017 Elsevier Ltd. All rights reserved.
Role of Mitochondrial Oxidative Stress in Spaceflight-Induced Tissue Degeneration
NASA Technical Reports Server (NTRS)
Torres, Samantha M.; Schreurs, Ann-Sofie; Truong, Tiffany A.; Tahimic, Candice; Globus, Ruth
2017-01-01
Microgravity and ionizing radiation in the spaceflight environment poses multiple challenges to homeostasis and may contribute to cellular stress. Effects may include increased generation of reactive oxygen species (ROS), DNA damage and repair error, cell cycle arrest, cell senescence or death. Our central hypothesis is that prolonged exposure to the spaceflight environment leads to the excess production of ROS and oxidative damage, culminating in accelerated tissue degeneration. The main goal of this project is to determine the importance of cellular redox defense for physiological adaptations and tissue degeneration in the space environment.
NASA Astrophysics Data System (ADS)
Noureen, S.; Abbas, G.; Sarfraz, M.
2018-01-01
The study of relativistic degenerate plasmas is important in many astrophysical and laboratory environments. Using linearized relativistic Vlasov-Maxwell equations, a generalized expression for the plasma conductivity tensor is derived. Employing Fermi-Dirac distribution at zero temperature, the dispersion relation of the extraordinary mode in a relativistic degenerate electron plasma is investigated. The propagation characteristics are examined in different relativistic density ranges. The shifting of cutoff points due to relativistic effects is observed analytically and graphically. Non-relativistic and ultra-relativistic limiting cases are also presented.
Coherent frequency division with a degenerate synchronously pumped optical parametric oscillator.
Wan, Chenchen; Li, Peng; Ruehl, Axel; Hartl, Ingmar
2018-03-01
Synchronously pumped optical parametric oscillators (OPOs) are important tools for frequency comb (FC) generation in the mid-IR spectral range, where few suitable laser gain materials exist. For degenerate OPOs, self-phase-locking to the pump FC has been demonstrated. Here, we present a phase noise study of the carrier envelope offset frequency, revealing a -6 dB reduction compared to the pump FC over a wide Fourier frequency range. These results demonstrate that a degenerate OPO can be an ideal coherent frequency divider without any excess noise.
Isomonodromy for the Degenerate Fifth Painlevé Equation
NASA Astrophysics Data System (ADS)
Acosta-Humánez, Primitivo B.; van der Put, Marius; Top, Jaap
2017-05-01
This is a sequel to papers by the last two authors making the Riemann-Hilbert correspondence and isomonodromy explicit. For the degenerate fifth Painlevé equation, the moduli spaces for connections and for monodromy are explicitly computed. It is proven that the extended Riemann-Hilbert morphism is an isomorphism. As a consequence these equations have the Painlevé property and the Okamoto-Painlevé space is identified with a moduli space of connections. Using MAPLE computations, one obtains formulas for the degenerate fifth Painlevé equation, for the Bäcklund transformations.
Wallerian demyelination: chronicle of a cellular cataclysm.
Tricaud, Nicolas; Park, Hwan Tae
2017-11-01
Wallerian demyelination is characteristic of peripheral nerve degeneration after traumatic injury. After axonal degeneration, the myelinated Schwann cell undergoes a stereotypical cellular program that results in the disintegration of the myelin sheath, a process termed demyelination. In this review, we chronologically describe this program starting from the late and visible features of myelin destruction and going backward to the initial molecular steps that trigger the nuclear reprogramming few hours after injury. Wallerian demyelination is a wonderful model for myelin degeneration occurring in the diverse forms of demyelinating peripheral neuropathies that plague human beings.
Briaire, Jeroen J; Frijns, Johan H M
2006-04-01
Cochlear implant research endeavors to optimize the spatial selectivity, threshold and dynamic range with the objective of improving the speech perception performance of the implant user. One of the ways to achieve some of these goals is by electrode design. New cochlear implant electrode designs strive to bring the electrode contacts into close proximity to the nerve fibers in the modiolus: this is done by placing the contacts on the medial side of the array and positioning the implant against the medial wall of scala tympani. The question remains whether this is the optimal position for a cochlea with intact neural fibers and, if so, whether it is also true for a cochlea with degenerated neural fibers. In this study a computational model of the implanted human cochlea is used to investigate the optimal position of the array with respect to threshold, dynamic range and spatial selectivity for a cochlea with intact nerve fibers and for degenerated nerve fibers. In addition, the model is used to evaluate the predictive value of eCAP measurements for obtaining peri-operative information on the neural status. The model predicts improved threshold, dynamic range and spatial selectivity for the peri-modiolar position at the basal end of the cochlea, with minimal influence of neural degeneration. At the apical end of the array (1.5 cochlear turns), the dynamic range and the spatial selectivity are limited due to the occurrence of cross-turn stimulation, with the exception of the condition without neural degeneration and with the electrode array along the lateral wall of scala tympani. The eCAP simulations indicate that a large P(0) peak occurs before the N(1)P(1) complex when the fibers are not degenerated. The absence of this peak might be used as an indicator for neural degeneration.
[In situ analysis of pathomechanisms of human intervertebral disc degeneration].
Weiler, C
2013-11-01
Low back pain is one of the major causes of pain and disability in the western world, with a constantly rising life-time prevalence of approximately 60-85 %. Degeneration of the intervertebral disc is believed to be a major cause of low back pain. Semiquantitative macroscopic and microscopic changes of the intervertebral disc were assessed and classified. Furthermore additional methods, such as immunohistochemistry, in situ hybridization and in situ zymography were used to analyze phenotypic cellular and matrix changes. We have developed and tested a practicable, valid and reliable histological classification system for lumbar discs which can serve as a morphological reference framework to allow more sophisticated molecular biological studies on the pathogenesis of ageing and degeneration of discs. Secondly, we were able to demonstrate that intrinsic (genetic) and extrinsic (e.g. overweight) factors have a profound effect on the process of disc degeneration. Cells with a notochord-like phenotype are present in a considerable fraction of adult lumbar intervertebral discs. The presence of these cells is associated with distinct features of (early) age-related disc degeneration. During the process of disc degeneration, the intervertebral disc shows a progressive and significant reduction in height due to tissue resorption. This matrix loss is related to an imbalance between matrix synthesis and degradation. During this process an inflammatory reaction takes place and resident disc cells are causatively involved. In summary, disc degeneration is a multifactorial disease with a strong intrinsic (hereditary) and extrinsic (e.g. mechanical factors) background. The process starts as early as in the second decade of life and shows high interindividual differences. The loss of regenerative capacity in the intervertebral disc is probably related to the loss of stem cells, e.g. notochord-like cells. Resident disc cells are involved in the inflammatory reaction with increased matrix degradation, resorption and reduced matrix synthesis.
Zhou, HaoWei; Hou, ShuXun; Shang, WeiLin; Wu, WenWen; Cheng, Yao; Mei, Fang; Peng, BaoGan
2007-04-15
A new in vivo sheep model was developed that produced disc degeneration through the injection of 5-bromodeoxyuridine (BrdU) into the intervertebral disc. This process was studied using magnetic resonance imaging (MRI), radiography, CT/discogram, histology, and biochemistry. To develop a sheep model of intervertebral disc degeneration that more faithfully mimics the pathologic hallmarks of human intervertebral disc degeneration. Recent studies have shown age-related alterations in proteoglycan structure and organization in human intervertebral discs. An animal model that involves the use of age-related changes in disc cells can be beneficial over other more invasive degenerative models that involves directly damaging the matrix of disc tissue. Twelve sheep were injected with BrdU or vehicle (phosphate-buffered saline) into the central region of separate lumbar discs. Intact discs were used as controls. At the 2-, 6-, 10-, and 14-week time points, discs underwent MRI, radiography, histology, and biochemical analyses. A CT/discogram study was performed at the 14-week time point. MRI demonstrated a progressive loss of T2-weighted signal intensity at BrdU-injected discs over the 14-week study period. Radiograph findings included osteophyte and disc space narrowing formed by 10 weeks post-BrdU treatment. CT discography demonstrated internal disc disruption in several BrdU-treated discs at the 14-week time point. Histology showed a progressive loss of the normal architecture and cell density of discs from the 2-week time point to the 14-week time point. A progressive loss of cell proliferation capacity, water content, and proteoglycans was also documented. BrdU injection into the central region of sheep discs resulted in degeneration of intervertebral discs. This progressive, degenerative process was confirmed using MRI, histology, and by observing changes in biochemistry. Degeneration occurred in a manner that was similar to that observed in human disc degeneration.
Di Pierdomenico, Johnny; García-Ayuso, Diego; Pinilla, Isabel; Cuenca, Nicolás; Vidal-Sanz, Manuel; Agudo-Barriuso, Marta; Villegas-Pérez, María P.
2017-01-01
To study the course of photoreceptor cell death and macro and microglial reactivity in two rat models of retinal degeneration with different etiologies. Retinas from P23H-1 (rhodopsin mutation) and Royal College of Surgeon (RCS, pigment epithelium malfunction) rats and age-matched control animals (Sprague-Dawley and Pievald Viro Glaxo, respectively) were cross-sectioned at different postnatal ages (from P10 to P60) and rhodopsin, L/M- and S-opsin, ionized calcium-binding adapter molecule 1 (Iba1), glial fibrillary acid protein (GFAP), and proliferating cell nuclear antigen (PCNA) proteins were immunodetected. Photoreceptor nuclei rows and microglial cells in the different retinal layers were quantified. Photoreceptor degeneration starts earlier and progresses quicker in P23H-1 than in RCS rats. In both models, microglial cell activation occurs simultaneously with the initiation of photoreceptor death while GFAP over-expression starts later. As degeneration progresses, the numbers of microglial cells increase in the retina, but decreasing in the inner retina and increasing in the outer retina, more markedly in RCS rats. Interestingly, and in contrast with healthy animals, microglial cells reach the outer nuclei and outer segment layers. The higher number of microglial cells in dystrophic retinas cannot be fully accounted by intraretinal migration and PCNA immunodetection revealed microglial proliferation in both models but more importantly in RCS rats. The etiology of retinal degeneration determines the initiation and pattern of photoreceptor cell death and simultaneously there is microglial activation and migration, while the macroglial response is delayed. The actions of microglial cells in the degeneration cannot be explained only in the basis of photoreceptor death because they participate more actively in the RCS model. Thus, the retinal degeneration caused by pigment epithelium malfunction is more inflammatory and would probably respond better to interventions by inhibiting microglial cells. PMID:28321183
Qin, Liya; Crews, Fulton T
2014-01-01
Background Wernicke's encephalopathy-Korsakoff syndrome (WE-KS) is common in alcoholics, caused by thiamine deficiency (TD; vitamin B1) and associated with lesions to the thalamus (THAL). Although TD alone can cause WE, the high incidence in alcoholism suggests that TD and ethanol (EtOH) interact. Methods Mice in control, TD, or EtOH groups alone or combined were studied after 5 or 10 days of treatment. THAL and entorhinal cortex (ENT) histochemistry and mRNA were assessed. Results Combined EtOH-TD treatment for 5 days (EtOH-TD5) showed activated microglia, proinflammatory gene induction and THAL neurodegeneration that was greater than that found with TD alone (TD5), whereas 10 days resulted in marked THAL degeneration and microglial-neuroimmune activation in both groups. In contrast, 10 days of TD did not cause ENT degeneration. Interestingly, in ENT, TD10 activated microglia and astrocytes more than EtOH-TD10. In THAL, multiple astrocytic markers were lost consistent with glial cell loss. TD blocks glucose metabolism more than acetate. Acetate derived from hepatic EtOH metabolism is transported by monocarboxylic acid transporters (MCT) into both neurons and astrocytes that use acetyl-CoA synthetase (AcCoAS) to generate cellular energy from acetate. MCT and AcCoAS expression in THAL is lower than ENT prompting the hypothesis that focal THAL degeneration is related to insufficient MCT and AcCoAS in THAL. To test this hypothesis, we administered glycerin triacetate (GTA) to increase blood acetate and found it protected the THAL from TD-induced degeneration. Conclusions Our findings suggest that EtOH potentiates TD-induced THAL degeneration through neuroimmune gene induction. The findings support the hypothesis that TD deficiency inhibits global glucose metabolism and that a reduced ability to process acetate for cellular energy results in THAL focal degeneration in alcoholics contributing to the high incidence of Wernicke-Korsakoff syndrome in alcoholism. PMID:24117525
Iron homeostasis and toxicity in retinal degeneration.
He, Xining; Hahn, Paul; Iacovelli, Jared; Wong, Robert; King, Chih; Bhisitkul, Robert; Massaro-Giordano, Mina; Dunaief, Joshua L
2007-11-01
Iron is essential for many metabolic processes but can also cause damage. As a potent generator of hydroxyl radical, the most reactive of the free radicals, iron can cause considerable oxidative stress. Since iron is absorbed through diet but not excreted except through menstruation, total body iron levels buildup with age. Macular iron levels increase with age, in both men and women. This iron has the potential to contribute to retinal degeneration. Here we present an overview of the evidence suggesting that iron may contribute to retinal degenerations. Intraocular iron foreign bodies cause retinal degeneration. Retinal iron buildup resulting from hereditary iron homeostasis disorders aceruloplasminemia, Friedreich's ataxia, and panthothenate kinase-associated neurodegeneration cause retinal degeneration. Mice with targeted mutation of the iron exporter ceruloplasmin have age-dependent retinal iron overload and a resulting retinal degeneration with features of age-related macular degeneration (AMD). Post mortem retinas from patients with AMD have more iron and the iron carrier transferrin than age-matched controls. Over the past 10 years much has been learned about the intricate network of proteins involved in iron handling. Many of these, including transferrin, transferrin receptor, divalent metal transporter-1, ferritin, ferroportin, ceruloplasmin, hephaestin, iron-regulatory protein, and histocompatibility leukocyte antigen class I-like protein involved in iron homeostasis (HFE) have been found in the retina. Some of these proteins have been found in the cornea and lens as well. Levels of the iron carrier transferrin are high in the aqueous and vitreous humors. The functions of these proteins in other tissues, combined with studies on cultured ocular tissues, genetically engineered mice, and eye exams on patients with hereditary iron diseases provide clues regarding their ocular functions. Iron may play a role in a broad range of ocular diseases, including glaucoma, cataract, AMD, and conditions causing intraocular hemorrhage. While iron deficiency must be prevented, the therapeutic potential of limiting iron-induced ocular oxidative damage is high. Systemic, local, or topical iron chelation with an expanding repertoire of drugs has clinical potential.
... by small or absent brain stem nuclei that control the cranial nerves; Group II, characterized by loss and degeneration of neurons ... by small or absent brain stem nuclei that control the cranial nerves; Group II, characterized by loss and degeneration of neurons ...
Cortical-basal ganglionic degeneration.
Riley, D E; Lang, A E; Lewis, A; Resch, L; Ashby, P; Hornykiewicz, O; Black, S
1990-08-01
We report our experience with 15 patients believed to have cortical-basal ganglionic degeneration. The clinical picture is distinctive, comprising features referable to both cortical and basal ganglionic dysfunction. Characteristic manifestations include cortical sensory loss, focal reflex myoclonus, "alien limb" phenomena, apraxia, rigidity and akinesia, a postural-action tremor, limb dystonia, hyperreflexia, and postural instability. The asymmetry of symptoms and signs is often striking. Brain imaging may demonstrate greater abnormalities contralateral to the more affected side. Postmortem studies in 2 patients revealed the characteristic pathologic features of swollen, poorly staining (achromatic) neurons and degeneration of cerebral cortex and substantia nigra. Biochemical analysis of 1 brain showed a severe, diffuse loss of dopamine in the striatum. This condition is more frequent than previously believed, and the diagnosis can be predicted during life on the basis of clinical findings. However, as with other "degenerative" diseases of the nervous system, a definitive diagnosis of cortical-basal ganglionic degeneration requires confirmation by autopsy.
The role of platelet-rich plasma in rotator cuff repair.
Mei-Dan, Omer; Carmont, Michael R
2011-09-01
The shoulder is a common source of disability resulting from traumatic and degenerate tears of the rotator cuff, subacromial impingement, and osteoarthritis. Nonoperative management has focused on treatment of the predisposing factors, the use of analgesics and anti-inflammatory medication usually in association with local anesthetic and steroid injections. Surgical intervention allows debridement of the degenerate cuff and partial thickness cuff tears, subacromial bursitis, impinging bone spurs and osteophytes together with rotator cuff repairs. Repairs of degenerate and torn tissue are often prone to failure due to many intrinsic and extrinsic factors. It is assumed that some biological therapies might improve clinical, mechanical, and histologic outcomes. Injections of platelet-rich plasma (PRP) have led to reduced pain and improved recovery in other degenerate pathologies areas together with the restoration of function. This study reviews the current literature on PRP and in particular discusses its relevance in the treatment of rotator cuff tears.
Valdés-Sánchez, Lourdes; De la Cerda, Berta; Diaz-Corrales, Francisco J; Massalini, Simone; Chakarova, Christina F; Wright, Alan F; Bhattacharya, Shomi S
2013-04-15
Ataxia-telangiectasia and Rad3 (ATR), a sensor of DNA damage, is associated with the regulation and control of cell division. ATR deficit is known to cause Seckel syndrome, characterized by severe proportionate short stature and microcephaly. We used a mouse model for Seckel disease to study the effect of ATR deficit on retinal development and function and we have found a new role for ATR, which is critical for the postnatal development of the photoreceptor (PR) layer in mouse retina. The structural and functional characterization of the ATR(+/s) mouse retinas displayed a specific, severe and early degeneration of rod and cone cells resembling some characteristics of human retinal degenerations. A new localization of ATR in the cilia of PRs and the fact that mutant mice have shorter cilia suggests that the PR degeneration here described results from a ciliary defect.
ALS-associated mutant FUS induces selective motor neuron degeneration through toxic gain of function
Sharma, Aarti; Lyashchenko, Alexander K.; Lu, Lei; Nasrabady, Sara Ebrahimi; Elmaleh, Margot; Mendelsohn, Monica; Nemes, Adriana; Tapia, Juan Carlos; Mentis, George Z.; Shneider, Neil A.
2016-01-01
Mutations in FUS cause amyotrophic lateral sclerosis (ALS), including some of the most aggressive, juvenile-onset forms of the disease. FUS loss-of-function and toxic gain-of-function mechanisms have been proposed to explain how mutant FUS leads to motor neuron degeneration, but neither has been firmly established in the pathogenesis of ALS. Here we characterize a series of transgenic FUS mouse lines that manifest progressive, mutant-dependent motor neuron degeneration preceded by early, structural and functional abnormalities at the neuromuscular junction. A novel, conditional FUS knockout mutant reveals that postnatal elimination of FUS has no effect on motor neuron survival or function. Moreover, endogenous FUS does not contribute to the onset of the ALS phenotype induced by mutant FUS. These findings demonstrate that FUS-dependent motor degeneration is not due to loss of FUS function, but to the gain of toxic properties conferred by ALS mutations. PMID:26842965
NASA Astrophysics Data System (ADS)
Hong, Woo-Pyo; Jung, Young-Dae
2018-03-01
The effects of quantum statistical degeneracy pressure on the propagation of the quantum space charge wave are investigated in a cylindrically bounded plasma waveguide filled with relativistically degenerate quantum Fermi-Dirac plasmas and the relativistic ion wake field. The results show that the domain of the degenerate parameter for the resonant beam instability significantly increases with an increase of the scaled beam velocity. It is found that the instability domain of the wave number increases with an increase of the degenerate parameter. It is also found that the growth rate for the resonant beam instability decreases with an increase of the degenerate parameter. In addition, it is shown that the lowest harmonic mode provides the maximum value of the growth rates. Moreover, it is shown that the instability domain of the wave number decreases with an increase of the beam velocity.
Arnold, Edith; Thebault, Stéphanie; Baeza-Cruz, German; Arredondo Zamarripa, David; Adán, Norma; Quintanar-Stéphano, Andrés; Condés-Lara, Miguel; Rojas-Piloni, Gerardo; Binart, Nadine; Martínez de la Escalera, Gonzalo; Clapp, Carmen
2014-01-29
Retinal degeneration is characterized by the progressive destruction of retinal cells, causing the deterioration and eventual loss of vision. We explored whether the hormone prolactin provides trophic support to retinal cells, thus protecting the retina from degenerative pressure. Inducing hyperprolactinemia limited photoreceptor apoptosis, gliosis, and changes in neurotrophin expression, and it preserved the photoresponse in the phototoxicity model of retinal degeneration, in which continuous exposure of rats to bright light leads to retinal cell death and retinal dysfunction. In this model, the expression levels of prolactin receptors in the retina were upregulated. Moreover, retinas from prolactin receptor-deficient mice exhibited photoresponsive dysfunction and gliosis that correlated with decreased levels of retinal bFGF, GDNF, and BDNF. Collectively, these data unveiled prolactin as a retinal trophic factor that may regulate glial-neuronal cell interactions and is a potential therapeutic molecule against retinal degeneration.
Engqvist, Martin K M; Nielsen, Jens
2015-08-21
The Ambiguous Nucleotide Tool (ANT) is a desktop application that generates and evaluates degenerate codons. Degenerate codons are used to represent DNA positions that have multiple possible nucleotide alternatives. This is useful for protein engineering and directed evolution, where primers specified with degenerate codons are used as a basis for generating libraries of protein sequences. ANT is intuitive and can be used in a graphical user interface or by interacting with the code through a defined application programming interface. ANT comes with full support for nonstandard, user-defined, or expanded genetic codes (translation tables), which is important because synthetic biology is being applied to an ever widening range of natural and engineered organisms. The Python source code for ANT is freely distributed so that it may be used without restriction, modified, and incorporated in other software or custom data pipelines.
NASA Astrophysics Data System (ADS)
Suzuki, Yoshi-Ichi
2018-04-01
The photoelectron asymmetry parameter β, which characterizes the direction of electrons ejected from a randomly oriented molecular ensemble by linearly polarized light, is investigated for degenerate orbitals. We show that β is totally symmetric under the symmetry operation of the point group of a molecule, and it has mixed properties under time reversal. Therefore, all degenerate molecular orbitals, except for the case of degeneracy due to time reversal, have the same β (Wigner-Eckart theorem). The exceptions are e-type complex orbitals of the Cn, Sn, Cnh, T, and Th point groups, and calculations on boric acid (C3h symmetry) are performed as an example. However, including those point groups, all degenerate orbitals have the same β if those orbitals are real. We discuss the implications of this operator formalism for molecular alignment and photoelectron circular dichroism.
Activation of Müller cells occurs during retinal degeneration in RCS rats.
Zhao, Tong Tao; Tian, Chun Yu; Yin, Zheng Qin
2010-01-01
Müller cells can be activated and included in different functions under many kinds of pathological conditions, however, the status of Müller cells in retinitis pigmentosa are still unknown. Using immunohistochemisty, Western blots and co-culture, we found that Müller cells RCS rats, a classic model of RP, could be activated during the progression of retinal degeneration. After being activated at early stage, Müller cells began to proliferate and hypertrophy, while at later stages, they formed a local 'glial seal' in the subretinal space. As markers of Müller cells activation, the expression of GFAP and ERK increased significantly with progression of retinal degeneration. Co-cultures of normal rat Müller cells and mixed RCS rat retinal cells show that Müller cells significantly increase GFAP and ERK in response to diffusable factors from the degenerting retina, which implies that Müller cells activation is a secondary response to retinal degeneration.
Prophylactic laser in age-related macular degeneration: the past, the present and the future.
Findlay, Quan; Jobling, Andrew I; Vessey, Kirstan A; Greferath, Ursula; Phipps, Joanna A; Guymer, Robyn H; Fletcher, Erica L
2018-05-01
The presence of drusen in the posterior eye is a hallmark feature of the early stages of age-related macular degeneration and their size is an indicator of risk of progression to vision-threatening forms of the disease. Since the initial observations that laser treatment can resolve drusen, there has been great interest in whether laser treatment can be used to reduce the progression of age-related macular degeneration. In this article, we review the development of lasers for the treatment of those with age-related macular degeneration. We provide an overview of the clinical trial results that demonstrated drusen resolution but that had mixed effects on progression of disease. In addition, we provide a summary of the recent developments in pulsed lasers that are designed to reduce the energy applied to the posterior eye to provide the therapeutic effects of conventional continuous wave lasers while reducing the secondary tissue effects.
Sharma, Aarti; Lyashchenko, Alexander K; Lu, Lei; Nasrabady, Sara Ebrahimi; Elmaleh, Margot; Mendelsohn, Monica; Nemes, Adriana; Tapia, Juan Carlos; Mentis, George Z; Shneider, Neil A
2016-02-04
Mutations in FUS cause amyotrophic lateral sclerosis (ALS), including some of the most aggressive, juvenile-onset forms of the disease. FUS loss-of-function and toxic gain-of-function mechanisms have been proposed to explain how mutant FUS leads to motor neuron degeneration, but neither has been firmly established in the pathogenesis of ALS. Here we characterize a series of transgenic FUS mouse lines that manifest progressive, mutant-dependent motor neuron degeneration preceded by early, structural and functional abnormalities at the neuromuscular junction. A novel, conditional FUS knockout mutant reveals that postnatal elimination of FUS has no effect on motor neuron survival or function. Moreover, endogenous FUS does not contribute to the onset of the ALS phenotype induced by mutant FUS. These findings demonstrate that FUS-dependent motor degeneration is not due to loss of FUS function, but to the gain of toxic properties conferred by ALS mutations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Xia-Ji, E-mail: xiajiliu@swin.edu.au; Hu, Hui, E-mail: hhu@swin.edu.au
2014-12-15
We theoretically investigate first and second sound of a two-dimensional (2D) atomic Bose gas in harmonic traps by solving Landau’s two-fluid hydrodynamic equations. For an isotropic trap, we find that first and second sound modes become degenerate at certain temperatures and exhibit typical avoided crossings in mode frequencies. At these temperatures, second sound has significant density fluctuation due to its hybridization with first sound and has a divergent mode frequency towards the Berezinskii–Kosterlitz–Thouless (BKT) transition. For a highly anisotropic trap, we derive the simplified one-dimensional hydrodynamic equations and discuss the sound-wave propagation along the weakly confined direction. Due to themore » universal jump of the superfluid density inherent to the BKT transition, we show that the first sound velocity exhibits a kink across the transition. These predictions might be readily examined in current experimental setups for 2D dilute Bose gases with a sufficiently large number of atoms, where the finite-size effect due to harmonic traps is relatively weak.« less
Muscle Co-activation: Definitions, Mechanisms, and Functions.
Latash, Mark L
2018-03-28
The phenomenon of agonist-antagonist muscle co-activation is discussed with respect to its consequences for movement mechanics (such as increasing joint apparent stiffness, facilitating faster movements, and effects on action stability), implication for movement optimization, and involvement of different neurophysiological structures. Effects of co-activation on movement stability are ambiguous and depend on the effector representing a kinematic chain with a fixed origin or free origin. Further, co-activation is discussed within the framework of the equilibrium-point hypothesis and the idea of hierarchical control with spatial referent coordinates. Relations of muscle co-activation to changes in one of the basic commands, the c-command, are discussed and illustrated. A hypothesis is suggested that agonist-antagonist co-activation reflects a deliberate neural control strategy to preserve effector-level control and avoid making it degenerate and facing the necessity to control at the level of signals to individual muscles. This strategy, in particular, allows stabilizing motor actions by co-varied adjustments in spaces of control variables. This hypothesis is able to account for higher levels of co-activation in young healthy persons performing challenging tasks and across various populations with movement impairments.
Mass eigenstates in bimetric theory with matter coupling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmidt-May, Angnis, E-mail: angnis.schmidt-may@fysik.su.se
2015-01-01
In this paper we study the ghost-free bimetric action extended by a recently proposed coupling to matter through a composite metric. The equations of motion for this theory are derived using a method which avoids varying the square-root matrix that appears in the matter coupling. We make an ansatz for which the metrics are proportional to each other and find that it can solve the equations provided that one parameter in the action is fixed. In this case, the proportional metrics as well as the effective metric that couples to matter solve Einstein's equations of general relativity including a mattermore » source. Around these backgrounds we derive the quadratic action for perturbations and diagonalize it into generalized mass eigenstates. It turns out that matter only interacts with the massless spin-2 mode whose equation of motion has exactly the form of the linearized Einstein equations, while the field with Fierz-Pauli mass term is completely decoupled. Hence, bimetric theory, with one parameter fixed such that proportional solutions exist, is degenerate with general relativity up to linear order around these backgrounds.« less
Intravitreal steroids for the treatment of retinal diseases.
Sarao, Valentina; Veritti, Daniele; Boscia, Francesco; Lanzetta, Paolo
2014-01-01
Diabetic macular edema (DME), pseudophakic cystoid macular edema (CME), age-related macular degeneration (AMD), retinal vascular occlusion (RVO), and uveitis are ocular conditions related to severe visual impairment worldwide. Corticosteroids have been widely used in the treatment of these retinal diseases, due to their well-known antiangiogenic, antiedematous, and anti-inflammatory properties. Intravitreal steroids have emerged as novel and essential tools in the ophthalmologist's armamentarium, allowing for maximization of drug efficacy and limited risk of systemic side effects. Recent advances in ocular drug delivery methods led to the development of intraocular implants, which help to provide prolonged treatment with controlled drug release. Moreover, they may add some potential advantages over traditional intraocular injections by delivering certain rates of drug directly to the site of action, amplifying the drug's half-life, contributing in the minimization of peak plasma levels of the drug, and avoiding the side effects associated with repeated intravitreal injections. The purpose of this review is to provide an update on the use of intravitreal steroids as a treatment option for a variety of retinal diseases and to review the current literature considering their properties, safety, and adverse events.
Dark Energy after GW170817 and GRB170817A.
Creminelli, Paolo; Vernizzi, Filippo
2017-12-22
The observation of GW170817 and its electromagnetic counterpart implies that gravitational waves travel at the speed of light, with deviations smaller than a few×10^{-15}. We discuss the consequences of this experimental result for models of dark energy and modified gravity characterized by a single scalar degree of freedom. To avoid tuning, the speed of gravitational waves must be unaffected not only for our particular cosmological solution but also for nearby solutions obtained by slightly changing the matter abundance. For this to happen, the coefficients of various operators must satisfy precise relations that we discuss both in the language of the effective field theory of dark energy and in the covariant one, for Horndeski, beyond Horndeski, and degenerate higher-order theories. The simplification is dramatic: of the three functions describing quartic and quintic beyond Horndeski theories, only one remains and reduces to a standard conformal coupling to the Ricci scalar for Horndeski theories. We show that the deduced relations among operators do not introduce further tuning of the models, since they are stable under quantum corrections.
New Technologies for Surgery of the Congenital Cardiac Defect
Kalfa, David; Bacha, Emile
2013-01-01
The surgical repair of complex congenital heart defects frequently requires additional tissue in various forms, such as patches, conduits, and valves. These devices often require replacement over a patient’s lifetime because of degeneration, calcification, or lack of growth. The main new technologies in congenital cardiac surgery aim at, on the one hand, avoiding such reoperations and, on the other hand, improving long-term outcomes of devices used to repair or replace diseased structural malformations. These technologies are: 1) new patches: CorMatrix® patches made of decellularized porcine small intestinal submucosa extracellular matrix; 2) new devices: the Melody® valve (for percutaneous pulmonary valve implantation) and tissue-engineered valved conduits (either decellularized scaffolds or polymeric scaffolds); and 3) new emerging fields, such as antenatal corrective cardiac surgery or robotically assisted congenital cardiac surgical procedures. These new technologies for structural malformation surgery are still in their infancy but certainly present great promise for the future. But the translation of these emerging technologies to routine health care and public health policy will also largely depend on economic considerations, value judgments, and political factors. PMID:23908869
Negative βhCG and Molar Pregnancy: The Hook Effect.
Lobo Antunes, Isabel; Curado, Joana; Quintas, Ana; Pereira, Alcides
2017-09-29
Molar pregnancy, included in gestational trophoblastic disease, is a benign pathology with ability to metastasize, usually occurring with excessively high βhCG levels. Clinical scenario is usually a woman in extremes of reproductive age presenting with amenorrhoea, pain and vaginal blood loss; signs derived from high βhCG levels may be present (hyperthyroidism, hyperemesis). Diagnosis is based on a positive pregnancy test - usually a qualitative urinary test. The limitation of this test results from its inability to become positive in presence of markedly high levels of βhCG, saturating the antigens used - known as the 'hook effect'. With the widespread use of gynaecological ultrasound cases of molar pregnancy have been diagnosed in timely fashion. We describe a case referred as a degenerating fibroid, with a negative urinary pregnancy test. Transvaginal ultrasound was highly suggestive of molar pregnancy, which was confirmed with a quantitative βhCG test, allowing for timely treatment. The importance of a high index of suspicion for this pathology is tremendous to avoid the devastating consequences of a delayed diagnosis.
Adaptive enhancement for nonuniform illumination images via nonlinear mapping
NASA Astrophysics Data System (ADS)
Wang, Yanfang; Huang, Qian; Hu, Jing
2017-09-01
Nonuniform illumination images suffer from degenerated details because of underexposure, overexposure, or a combination of both. To improve the visual quality of color images, underexposure regions should be lightened, whereas overexposure areas need to be dimmed properly. However, discriminating between underexposure and overexposure is troublesome. Compared with traditional methods that produce a fixed demarcation value throughout an image, the proposed demarcation changes as local luminance varies, thus is suitable for manipulating complicated illumination. Based on this locally adaptive demarcation, a nonlinear modification is applied to image luminance. Further, with the modified luminance, we propose a nonlinear process to reconstruct a luminance-enhanced color image. For every pixel, this nonlinear process takes the luminance change and the original chromaticity into account, thus trying to avoid exaggerated colors at dark areas and depressed colors at highly bright regions. Finally, to improve image contrast, a local and image-dependent exponential technique is designed and applied to the RGB channels of the obtained color image. Experimental results demonstrate that our method produces good contrast and vivid color for both nonuniform illumination images and images with normal illumination.
Resonant enhancement in leptogenesis
NASA Astrophysics Data System (ADS)
Dev, P. S. B.; Garny, M.; Klaric, J.; Millington, P.; Teresi, D.
2018-02-01
Vanilla leptogenesis within the type I seesaw framework requires the mass scale of the right-handed neutrinos to be above 109 GeV. This lower bound can be avoided if at least two of the sterile states are almost mass degenerate, which leads to an enhancement of the decay asymmetry. Leptogenesis models that can be tested in current and upcoming experiments often rely on this resonant enhancement, and a systematic and consistent description is therefore necessary for phenomenological applications. In this paper, we give an overview of different methods that have been used to study the saturation of the resonant enhancement when the mass difference becomes comparable to the characteristic width of the Majorana neutrinos. In this limit, coherent flavor transitions start to play a decisive role, and off-diagonal correlations in flavor space have to be taken into account. We compare various formalisms that have been used to describe the resonant regime and discuss under which circumstances the resonant enhancement can be captured by simplified expressions for the CP asymmetry. Finally, we briefly review some of the phenomenological aspects of resonant leptogenesis.
Dark Energy after GW170817 and GRB170817A
NASA Astrophysics Data System (ADS)
Creminelli, Paolo; Vernizzi, Filippo
2017-12-01
The observation of GW170817 and its electromagnetic counterpart implies that gravitational waves travel at the speed of light, with deviations smaller than a few ×10-15 . We discuss the consequences of this experimental result for models of dark energy and modified gravity characterized by a single scalar degree of freedom. To avoid tuning, the speed of gravitational waves must be unaffected not only for our particular cosmological solution but also for nearby solutions obtained by slightly changing the matter abundance. For this to happen, the coefficients of various operators must satisfy precise relations that we discuss both in the language of the effective field theory of dark energy and in the covariant one, for Horndeski, beyond Horndeski, and degenerate higher-order theories. The simplification is dramatic: of the three functions describing quartic and quintic beyond Horndeski theories, only one remains and reduces to a standard conformal coupling to the Ricci scalar for Horndeski theories. We show that the deduced relations among operators do not introduce further tuning of the models, since they are stable under quantum corrections.
Effects of chronic ingestion of South Louisiana crude oil on mallard ducklings
Szaro, Robert C.; Dieter, M.P.; Heinz, G.H.; Ferrell, J.F.
1978-01-01
South Louisiana crude oil was fed to duckling mallards (Anas platyrhynchos) in concentrations of 0.025, 0.25, 2.5, and 5.0% of the diet from hatching to 8 weeks of age to assess the effects of chronic oil ingestion during early development. Growth was depressed in birds receiving a diet containing 5% oil but there was no oil-related mortality. Diets containing 0.25, 2.5, and 5.0% oil impaired avoidance behavior of 6-day-old mallard ducklings when compared with controls or ducklings fed 0.025% oil, but had no effect on open-field behavior of 7-day-old ducklings. Liver hypertrophy and splenic atrophy were gross evidence of the pathological effects of oil in birds on the 2.5 and 5.0% oil diets. Biochemical lesions that occurred included elevation of plasma alanine aminotransferase and ornithine carbamyl transferase activity. Hepatocyte hypertrophy and bile duct proliferation in the liver were noted in birds fed the 2.5 and 5.0% oil diets and tubular inflammation and degeneration in the kidney were noted in birds fed the 5.0% oil diet.
Specific T-cell activation in an unspecific T-cell repertoire.
Van Den Berg, Hugo A; Molina-París, Carmen; Sewell, Andrew K
2011-01-01
T-cells are a vital type of white blood cell that circulate around our bodies, scanning for cellular abnormalities and infections. They recognise disease-associated antigens via a surface receptor called the T-cell antigen receptor (TCR). If there were a specific TCR for every single antigen, no mammal could possibly contain all the T-cells it needs. This is clearly absurd and suggests that T-cell recognition must, to the contrary, be highly degenerate. Yet highly promiscuous TCRs would appear to be equally impossible: they are bound to recognise self as well as non-self antigens. We review how contributions from mathematical analysis have helped to resolve the paradox of the promiscuous TCR. Combined experimental and theoretical work shows that TCR degeneracy is essentially dynamical in nature, and that the T-cell can differentially adjust its functional sensitivity to the salient epitope, "tuning up" sensitivity to the antigen associated with disease and "tuning down" sensitivity to antigens associated with healthy conditions. This paradigm of continual modulation affords the TCR repertoire, despite its limited numerical diversity, the flexibility to respond to almost any antigenic challenge while avoiding autoimmunity.
The behavior of chronic cats with lesions in the frontal association cortex.
Warren, J M; Warren, H B; Akert, K
1972-01-01
Cats with lesions in the proreal and anterior sigmoid gyri and substantial but subtotal degeneration in the mediodorsal thalamic nucleus were studied for 6 years post-operatively. The control group consisted of normal cats matched for age and previous experience. The results reported here and in Warren's previous progress report indicate that frontal cortical lesions result in several behavioral changes in cats which are like those seen in rhesus monkeys after frontal ablations: impairments in discrimination reversal, double alternation and active avoidance learning, retardation in the rate of habituation to novel neutral stimuli, and a decrease in aggression in competitive social situations. Cats with larger frontal lesions made more errors in reversal learning than cats with smaller lesions. Frontal cats, unlike frontal rhesus monkeys, are not hyperactive post-operatively and retain some capacity for learning delayed response in the WGTA. It is impossible at present to tell whether these discrepancies reflect species differences in the organization of the frontal lobe system or whether the frontal cortex spared in this series of cats is sufficient to mediate delayed response and to prevent the occurrence of hyperactivity.
Simple-MSSM: a simple and efficient method for simultaneous multi-site saturation mutagenesis.
Cheng, Feng; Xu, Jian-Miao; Xiang, Chao; Liu, Zhi-Qiang; Zhao, Li-Qing; Zheng, Yu-Guo
2017-04-01
To develop a practically simple and robust multi-site saturation mutagenesis (MSSM) method that enables simultaneously recombination of amino acid positions for focused mutant library generation. A general restriction enzyme-free and ligase-free MSSM method (Simple-MSSM) based on prolonged overlap extension PCR (POE-PCR) and Simple Cloning techniques. As a proof of principle of Simple-MSSM, the gene of eGFP (enhanced green fluorescent protein) was used as a template gene for simultaneous mutagenesis of five codons. Forty-eight randomly selected clones were sequenced. Sequencing revealed that all the 48 clones showed at least one mutant codon (mutation efficiency = 100%), and 46 out of the 48 clones had mutations at all the five codons. The obtained diversities at these five codons are 27, 24, 26, 26 and 22, respectively, which correspond to 84, 75, 81, 81, 69% of the theoretical diversity offered by NNK-degeneration (32 codons; NNK, K = T or G). The enzyme-free Simple-MSSM method can simultaneously and efficiently saturate five codons within one day, and therefore avoid missing interactions between residues in interacting amino acid networks.
Secondary damage in the spinal cord after motor cortex injury in rats.
Weishaupt, Nina; Silasi, Gergely; Colbourne, Frederick; Fouad, Karim
2010-08-01
When neurons within the motor cortex are fatally injured, their axons, many of which project into the spinal cord, undergo wallerian degeneration. Pathological processes occurring downstream of the cortical damage have not been extensively studied. We created a focal forelimb motor cortex injury in rats and found that axons from cell bodies located in the hindlimb motor cortex (spared by the cortical injury) become secondarily damaged in the spinal cord. To assess axonal degeneration in the spinal cord, we quantified silver staining in the corticospinal tract (CST) at 1 week and 4 weeks after the injury. We found a significant increase in silver deposition at the thoracic spinal cord level at 4 weeks compared to 1 week post-injury. At both time points, no degenerating neurons could be found in the hindlimb motor cortex. In a separate experiment, we showed that direct injury of neurons within the hindlimb motor cortex caused marked silver deposition in the thoracic CST at 1 week post-injury, and declined thereafter. Therefore, delayed axonal degeneration in the thoracic spinal cord after a focal forelimb motor cortex injury is indicative of secondary damage at the spinal cord level. Furthermore, immunolabeling of spinal cord sections showed that a local inflammatory response dominated by partially activated Iba-1-positive microglia is mounted in the CST, a viable mechanism to cause the observed secondary degeneration of fibers. In conclusion, we demonstrate that following motor cortex injury, wallerian degeneration of axons in the spinal cord leads to secondary damage, which is likely mediated by inflammatory processes.
Sasaki, Yo; Araki, Toshiyuki; Milbrandt, Jeffrey
2006-08-16
Axonal degeneration occurs in many neurodegenerative diseases and after traumatic injury and is a self-destructive program independent from programmed cell death. Previous studies demonstrated that overexpression of nicotinamide mononucleotide adenylyltransferase 1 (Nmnat1) or exogenous application of nicotinamide adenine dinucleotide (NAD) can protect axons of cultured dorsal root ganglion (DRG) neurons from degeneration caused by mechanical or neurotoxic injury. In mammalian cells, NAD can be synthesized from multiple precursors, including tryptophan, nicotinic acid, nicotinamide, and nicotinamide riboside (NmR), via multiple enzymatic steps. To determine whether other components of these NAD biosynthetic pathways are capable of delaying axonal degeneration, we overexpressed each of the enzymes involved in each pathway and/or exogenously administered their respective substrates in DRG cultures and assessed their capacity to protect axons after axotomy. Among the enzymes tested, Nmnat1 had the strongest protective effects, whereas nicotinamide phosphoribosyl transferase and nicotinic acid phosphoribosyl transferase showed moderate protective activity in the presence of their substrates. Strong axonal protection was also provided by Nmnat3, which is predominantly located in mitochondria, and an Nmnat1 mutant localized to the cytoplasm, indicating that the subcellular location of NAD production is not crucial for protective activity. In addition, we showed that exogenous application of the NAD precursors that are the substrates of these enzymes, including nicotinic acid mononucleotide, nicotinamide mononucleotide, and NmR, can also delay axonal degeneration. These results indicate that stimulation of NAD biosynthetic pathways via a variety of interventions may be useful in preventing or delaying axonal degeneration.
Kuboyama, Tomoharu; Hirotsu, Keisuke; Arai, Tetsuya; Yamasaki, Hiroo; Tohda, Chihiro
2017-01-01
Memory impairments in Alzheimer’s disease (AD) occur due to degenerated axons and disrupted neural networks. Since only limited recovery is possible after the destruction of neural networks, preventing axonal degeneration during the early stages of disease progression is necessary to prevent AD. Polygalae Radix (roots of Polygala tenuifolia; PR) is a traditional herbal medicine used for sedation and amnesia. In this study, we aimed to clarify and analyze the preventive effects of PR against memory deficits in a transgenic AD mouse model, 5XFAD. 5XFAD mice demonstrated memory deficits at the age of 5 months. Thus, the water extract of Polygalae Radix (PR extract) was orally administered to 4-month-old 5XFAD mice that did not show signs of memory impairment. After consecutive administrations for 56 days, the PR extract prevented cognitive deficit and axon degeneration associated with the accumulation of amyloid β (Aβ) plaques in the perirhinal cortex of the 5XFAD mice. PR extract did not influence the formation of Aβ plaques in the brain of the 5XFAD mice. In cultured neurons, the PR extract prevented axonal growth cone collapse and axonal atrophy induced by Aβ. Additionally, it prevented Aβ-induced endocytosis at the growth cone of cultured neurons. Our previous study reported that endocytosis inhibition was enough to prevent Aβ-induced growth cone collapse, axonal degeneration, and memory impairments. Therefore, the PR extract possibly prevented axonal degeneration and memory impairment by inhibiting endocytosis. PR is the first preventive drug candidate for AD that inhibits endocytosis in neurons. PMID:29184495
Kassed, C A; Willing, A E; Garbuzova-Davis, S; Sanberg, P R; Pennypacker, K R
2002-08-01
The roles of activated NF-kappaB subunits in the CNS remain to be discerned. Members of this family of transcription factors are essential to diverse physiological processes and can be activated by pathogens, stress, pharmacological agents, and trauma. We are particularly interested in long-term NF-kappaB activation and its involvement in neuroplastic changes in the brain resulting from acquisition of memory as well as injury. Here, we use lesioning by the limbic-specific neurotoxicant trimethyltin (TMT) as a model in which to examine activation of the NF-kappaB p50 subunit before, during, and after neuronal degeneration. Neurons in wild-type mice that survived TMT-induced injury contained activated p50 and did not label with Fluoro-Jade, a histochemical marker of degenerating neurons. Granule cells of the wild-type dentate gyrus subregion, an area particularly vulnerable to TMT-induced degeneration, contained less activated p50 protein than CA regions. We compared the extent of degeneration in wild-type and p50-null mice and found a fivefold increase in death of hippocampal neurons in mice lacking p50. The hippocampus is key to processes of learning and memory, and NF-kappaB has reported involvement in these processes. The enhanced hippocampal degeneration in p50-null mice prompted us to evaluate their basal learning abilities, and we discovered that difficulties in task acquisition were an additional consequence of p50 ablation. These results indicate that absence of p50 negatively modulates learning ability as well as hippocampal responsiveness to brain injury after a chemical-induced lesion.
Water maze performance of aged Sprague-Dawley rats in relation to retinal morphologic measures.
Spencer, R L; O'Steen, W K; McEwen, B S
1995-06-01
The spatial learning ability of aged male and female Sprague-Dawley rats was assessed using the Morris water maze. To determine the influence of age-related visual deficits on performance levels, retinal morphologic measures were correlated with water maze performance for each rat. Rats were first trained on the water maze task at 21 months of age and were retrained 3 or 4 times at 6-week intervals. After the last training session the rats were killed and their eyes were removed for histopathologic and morphometric evaluation of the retinas. There was a large degree of retinal degeneration in all of the aged Sprague-Dawley rats with an average decrease in the thickness of the retinal outer nuclear layer (photoreceptor nuclei containing layer) of 85% in old males and 95% in old females. Some rats, however, had less degeneration of the retinas than others, and the degree of retinal degeneration was strongly related to performance levels on the water maze task. Among the aged rats in this study with the least retinal degeneration, there was little evidence for a subset of rats that were unable, with extensive training, to learn a platform position. Of the 41 rats with the least retinal degeneration (out of a total of 81), only one was a clear non-learner on the water maze task, whereas, of the 27 rats with the most retinal degeneration, 20 were non-learners. These results illustrate the potentially serious confounding effects of deteriorating visual ability on attempts to assess cognitive functioning of aged albino rats on tasks requiring utilization of visual cues.
Lev, Dorit; Michelson-Kerman, Marina; Vinkler, Chana; Blumkin, Lubov; Shalev, Stavit A; Lerman-Sagie, Tally
2008-03-01
Despite major recent advances in our understanding of developmental cerebellar disorders, classification and delineation of these disorders remains difficult. The term pontocerebellar hypoplasia is used when there is a structural defect, originating in utero of both pons and cerebellar hemispheres. The term olivopontocerebellar atrophy is used when the disorder starts later in life and the process is a primary degeneration of cerebellar neurons. Pontocerebellar hypoplasia type 1 is associated with spinal anterior horn cell degeneration, congenital contractures, microcephaly, polyhydramnion and respiratory insufficiency leading to early death. However, anterior horn cell degeneration has also been described in cases with later onset pontocerebellar atrophy and recently the spectrum has even been further extended to include the association of anterior horn cell degeneration and cerebellar atrophy without pontine involvement. We describe two siblings from a consanguineous Moslem Arabic family who presented with progressive degeneration of both the cerebellum and the anterior horn cells. The patients presented after 1 year of age with a slow neurodegenerative course that included both cognitive and motor functions. There is considerable phenotypic variability; the sister shows a much milder course. Both children are still alive at 6 and 9 years. The sister could still crawl and speak two word sentences at the age of 3 years while the brother was bedridden and only uttered guttural sounds at the same age. Our cases further extend the phenotype of the cerebellar syndromes with anterior horn cell involvement to include a childhood onset and protracted course and further prove that this neurodegenerative disorder may start in utero or later in life.
Xu, Xiao-Jian; Wang, Shu-Min; Jin, Ying; Hu, Yun-Tao; Feng, Kang; Ma, Zhi-Zhong
2017-10-01
Retinitis pigmentosa (RP) comprises a group of incurable inherited retinal degenerations. Targeting common processes, instead of mutation-specific treatment, has proven to be an innovative strategy to combat debilitating retinal degeneration. Growing evidence indicates that melatonin possesses a potent activity against neurodegenerative disorders by mitigating cell damage associated with apoptosis and inflammation. Given the pleiotropic role of melatonin in central nervous system, the aim of the present study was to investigate whether melatonin would afford protection against retinal degeneration in autosomal recessive RP (arRP). Rd10, a well-characterized murine model of human arRP, received daily intraperitoneal injection of melatonin (15 mg/kg) between postnatal day (P) 13 and P30. Retinas treated with melatonin or vehicle were harvested for analysis at P30 and P45, respectively. The findings showed that melatonin could dampen the photoreceptors death and delay consequent retinal degeneration. We also observed that melatonin weakened the expression of glial fibrillary acidic protein (GFAP) in Müller cells. Additionally, melatonin could alleviate retinal inflammatory response visualized by IBA1 staining, which was further corroborated by downregulation of inflammation-related genes, such as tumor necrosis factor alpha (Tnf-α), chemokine (C-C motif) ligand 2 (Ccl2), and chemokine (C-X-C motif) ligand 10 (Cxcl10). These data revealed that melatonin could ameliorate retinal degeneration through potentially attenuating apoptosis, reactive gliosis, and microglial activation in rd10 mice. Moreover, these results suggest melatonin as a promising agent improving photoreceptors survival in human RP. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Lumbar Disc Degenerative Disease: Disc Degeneration Symptoms and Magnetic Resonance Image Findings
Saleem, Shafaq; Rehmani, Muhammad Asim Khan; Raees, Aisha; Alvi, Arsalan Ahmad; Ashraf, Junaid
2013-01-01
Study Design Cross sectional and observational. Purpose To evaluate the different aspects of lumbar disc degenerative disc disease and relate them with magnetic resonance image (MRI) findings and symptoms. Overview of Literature Lumbar disc degenerative disease has now been proven as the most common cause of low back pain throughout the world. It may present as disc herniation, lumbar spinal stenosis, facet joint arthropathy or any combination. Presenting symptoms of lumbar disc degeneration are lower back pain and sciatica which may be aggravated by standing, walking, bending, straining and coughing. Methods This study was conducted from January 2012 to June 2012. Study was conducted on the diagnosed patients of lumbar disc degeneration. Diagnostic criteria were based upon abnormal findings in MRI. Patients with prior back surgery, spine fractures, sacroiliac arthritis, metabolic bone disease, spinal infection, rheumatoid arthritis, active malignancy, and pregnancy were excluded. Results During the targeted months, 163 patients of lumbar disc degeneration with mean age of 43.92±11.76 years, came into Neurosurgery department. Disc degeneration was most commonly present at the level of L4/L5 105 (64.4%).Commonest types of disc degeneration were disc herniation 109 (66.9%) and lumbar spinal stenosis 37 (22.7%). Spondylolisthesis was commonly present at L5/S1 10 (6.1%) and associated mostly with lumbar spinal stenosis 7 (18.9%). Conclusions Results reported the frequent occurrence of lumbar disc degenerative disease in advance age. Research efforts should endeavor to reduce risk factors and improve the quality of life. PMID:24353850
Akil, Omar; Sun, Ying; Vijayakumar, Sarath; Zhang, Wujuan; Ku, Tiffany; Lee, Chi-Kyou; Jones, Sherri; Grabowski, Gregory A; Lustig, Lawrence R
2015-02-18
Saposin B (Sap B) is an essential activator protein for arylsulfatase A in the hydrolysis of sulfatide, a lipid component of myelin. To study Sap B's role in hearing and balance, a Sap B-deficient (B(-/-)) mouse was evaluated. At both light and electron microscopy (EM) levels, inclusion body accumulation was seen in satellite cells surrounding spiral ganglion (SG) neurons from postnatal month 1 onward, progressing into large vacuoles preceding satellite cell degeneration, and followed by SG degeneration. EM also revealed reduced or absent myelin sheaths in SG neurons from postnatal month 8 onwards. Hearing loss was initially seen at postnatal month 6 and progressed thereafter for frequency-specific stimuli, whereas click responses became abnormal from postnatal month 13 onward. The progressive hearing loss correlated with the accumulation of inclusion bodies in the satellite cells and their subsequent degeneration. Outer hair cell numbers and efferent function measures (distortion product otoacoustic emissions and contralateral suppression) were normal in the B(-/-) mice throughout this period. Alcian blue staining of SGs demonstrated that these inclusion bodies corresponded to sulfatide accumulation. In contrast, changes in the vestibular system were much milder, but caused severe physiologic deficits. These results demonstrate that loss of Sap B function leads to progressive sulfatide accumulation in satellite cells surrounding the SG neurons, leading to satellite cell degeneration and subsequent SG degeneration with a resultant loss of hearing. Relative sparing of the efferent auditory and vestibular neurons suggests that alternate glycosphingolipid metabolic pathways predominate in these other systems. Copyright © 2015 the authors 0270-6474/15/353263-13$15.00/0.
An absence of ex-companion stars in the type Ia supernova remnant SNR 0509-67.5.
Schaefer, Bradley E; Pagnotta, Ashley
2012-01-11
A type Ia supernova is thought to begin with the explosion of a white dwarf star. The explosion could be triggered by the merger of two white dwarfs (a 'double-degenerate' origin), or by mass transfer from a companion star (the 'single-degenerate' path). The identity of the progenitor is still controversial; for example, a recent argument against the single-degenerate origin has been widely rejected. One way to distinguish between the double- and single-degenerate progenitors is to look at the centre of a known type Ia supernova remnant to see whether any former companion star is present. A likely ex-companion star for the progenitor of the supernova observed by Tycho Brahe has been identified, but that claim is still controversial. Here we report that the central region of the supernova remnant SNR 0509-67.5 (the site of a type Ia supernova 400 ± 50 years ago, based on its light echo) in the Large Magellanic Cloud contains no ex-companion star to a visual magnitude limit of 26.9 (an absolute magnitude of M(V) = +8.4) within a region of radius 1.43 arcseconds. (This corresponds to the 3σ maximum distance to which a companion could have been 'kicked' by the explosion.) This lack of any ex-companion star to deep limits rules out all published single-degenerate models for this supernova. The only remaining possibility is that the progenitor of this particular type Ia supernova was a double-degenerate system.
Fischer, Tamás
2015-03-01
The wall of blood vessels including those in choroids may be harmed by several repeated and/or prolonged mechanical, physical, chemical, microbiological, immunologic, and genetic impacts (risk factors), which may trigger a protracted response, the so-called host defense response. As a consequence, pathological changes resulting in vascular injury (e. g. atherosclerosis, age-related macular degeneration) may be evolved. Risk factors can also act directly on the endothelium through an increased production of reactive oxygen species promoting an endothelial activation, which leads to endothelial dysfunction, the onset of vascular disease. Thus, endothelial dysfunction is a link between the harmful stimulus and vascular injury; any kind of harmful stimuli may trigger the defensive chain that results in inflammation that may lead to vascular injury. It has been shown that even early age-related macular degeneration is associated with the presence of diffuse arterial disease and patients with early age-related macular degeneration demonstrate signs of systemic and retinal vascular alterations. Chronic inflammation, a feature of AMD, is tightly linked to diseases associated with ED: AMD is accompanied by a general inflammatory response, in the form of complement system activation, similar to that observed in degenerative vascular diseases such as atherosclerosis. All these facts indicate that age-related macular degeneration may be a vascular disease (or part of a systemic vasculopathy). This recognition could have therapeutic implications because restoration of endothelial dysfunction may prevent the development or improve vascular disease resulting in prevention or improvement of age-related macular degeneration as well.
... happens when the light-sensitive cells in the macula slowly break down. Your gradually lose your central vision. A common early symptom is that straight lines appear crooked. Regular comprehensive eye exams can detect macular degeneration before the disease causes vision loss. Treatment can ...
Transcorneal Electrical Stimulation Therapy for Retinal Disease
2012-05-03
Retinitis Pigmentosa; Macula Off; Primary Open Angle Glaucoma; Hereditary Macular Degeneration; Treated Retina Detachment; Retinal Artery Occlusion; Retinal Vein Occlusion; Non-Arthritic-Anterior-Ischemic Optic-Neuropathy; Hereditary Autosomal Dominant Optic Atrophy; Dry Age Related Macular Degeneration; Ischemic Macula Edema
Keep Your Vision Healthy: Learn About Comprehensive Dilated Eye Exams
... risk for glaucoma, age-related macular degeneration, and diabetic retinopathy—the most common cause of vision loss from ... to these areas may be a sign of diabetic retinopathy, glaucoma, or age-related macular degeneration. Tonometry measures ...
Stem Cell Ophthalmology Treatment Study II
2018-02-01
Retinal Disease; Age-Related Macular Degeneration; Retinitis Pigmentosa; Stargardt Disease; Optic Neuropathy; Nonarteritic Ischemic Optic Neuropathy; Optic Atrophy; Optic Nerve Disease; Glaucoma; Leber Hereditary Optic Neuropathy; Blindness; Vision Loss Night; Vision Loss Partial; Vision, Low; Retinopathy; Maculopathy; Macular Degeneration; Retina Atrophy
Differential Modulation of Retinal Degeneration by Ccl2 and Cx3cr1 Chemokine Signalling
Luhmann, Ulrich F. O.; Lange, Clemens A.; Robbie, Scott; Munro, Peter M. G.; Cowing, Jill A.; Armer, Hannah E. J.; Luong, Vy; Carvalho, Livia S.; MacLaren, Robert E.; Fitzke, Frederick W.; Bainbridge, James W. B.; Ali, Robin R.
2012-01-01
Microglia and macrophages are recruited to sites of retinal degeneration where local cytokines and chemokines determine protective or neurotoxic microglia responses. Defining the role of Ccl2-Ccr2 and Cx3cl1-Cx3cr1 signalling for retinal pathology is of particular interest because of its potential role in age-related macular degeneration (AMD). Ccl2, Ccr2, and Cx3cr1 signalling defects impair macrophage trafficking, but have, in several conflicting studies, been reported to show different degrees of age-related retinal degeneration. Ccl2/Cx3cr1 double knockout (CCDKO) mice show an early onset retinal degeneration and have been suggested as a model for AMD. In order to understand phenotypic discrepancies in different chemokine knockout lines and to study how defects in Ccl2 and/or Cx3cr1 signalling contribute to the described early onset retinal degeneration, we defined primary and secondary pathological events in CCDKO mice. To control for genetic background variability, we compared the original phenotype with that of single Ccl2, Cx3cr1 and Ccl2/Cx3cr1 double knockout mice obtained from backcrosses of CCDKO with C57Bl/6 mice. We found that the primary pathological event in CCDKO mice develops in the inferior outer nuclear layer independently of light around postnatal day P14. RPE and vascular lesions develop secondarily with increasing penetrance with age and are clinically similar to retinal telangiectasia not to choroidal neovascularisation. Furthermore, we provide evidence that a third autosomal recessive gene causes the degeneration in CCDKO mice and in all affected re-derived lines and subsequently demonstrated co-segregation of the naturally occurring RD8 mutation in the Crb1 gene. By comparing CCDKO mice with re-derived CCl2−/−/Crb1Rd8/RD8, Cx3cr1−/−/Crb1Rd8/RD8 and CCl2−/−/Cx3cr1−/−/Crb1Rd8/RD8 mice, we observed a differential modulation of the retinal phenotype by genetic background and both chemokine signalling pathways. These findings indicate that CCDKO mice are not a model of AMD, but a model for an inherited retinal degeneration that is differentially modulated by Ccl2-Ccr2 and Cx3cl1-Cx3cr1 chemokine signalling. PMID:22545116
Lei, Tao; Liu, Yaming; Wang, Hui; Xu, Jiaxin; Ma, Qinghua; Wang, Linfeng; Shen, Yong
2016-06-01
Bryan cervical disc arthroplasty has been reported with satisfactory short- and medium-term clinical results. However, the long-term clinical and radiographic outcomes are seldom reported. The purpose of this study was to compare the eight-year follow-up results in patients who underwent Bryan disc arthroplasty with patients received ACDF, and assess the incidence of heterotopic ossification (HO) and its effect on clinical outcome and mobility of the device. Thirty-one patients underwent Bryan disc arthroplasty, and 35 patients underwent ACDF were included in the study. The Japanese Orthopedic Association (JOA) scores, neck disability index (NDI), visual analogue scale (VAS) of neck and arm pain, and the radiographs were used to evaluate the outcomes. The heterotopic ossification (HO) was determined by CT scan and was classified into three subgroups to compare the related effect. Adjacent segment degeneration (ASD) was also observed. At final follow-up, there were no significant differences in JOA scores between two groups, but the improvement in NDI and neck or arm VAS were significantly greater in the Bryan disc cohort. The range of motion at the index level was 7.0° in Bryan group, while 100 % bone fusion were achieved in ACDF group. HO was observed in 18 (51.4 %) levels. There were more restricted movement of the prosthesis and slight higher rate of axial pain in patients with severe-HO (grade III and IV). Fourteen (28.6 %) levels developed ASD in Bryan group, which was significantly lower than that (58.6 %) in ACDF group. At eight year follow-up, the clinical and radiographic outcomes of Bryan cervical disc arthroplasty compared favorably to those of ACDF. It avoided accelerated adjacent segment degeneration by preserving motion. However, severe HO restricted the ROM of the index levels and maybe associated with post-operative axial pain.
Technical pitfalls and tips for the valve-in-valve procedure
2017-01-01
Transcatheter aortic valve implantation (TAVI) has emerged as a viable treatment modality for patients with severe aortic valve stenosis and multiple co-morbidities. More recent indications include the use of transcatheter heart valves (THV) to treat degenerated bioprosthetic surgical heart valves (SHV), which are failing due to stenosis or regurgitation. Valve-in-valve (VIV) procedures in the aortic position have been performed with a variety of THV devices, although the balloon-expandable SAPIEN valve platform (Edwards Lifesciences Ltd, Irvine, CA, USA) and self-expandable CoreValve platform (Medtronic Inc., MN, USA) have been used in majority of the patients. VIV treatment is appealing as it is less invasive than conventional surgery but optimal patient selection is vital to avoid complications such as malposition, residual high gradients and coronary obstruction. To minimize the risk of complications, thorough procedural planning is critical. The first step is identification of the degenerated SHV, including its model, size, fluoroscopic appearance. Although label size and stent internal diameter (ID) are provided by the manufacturer, it is important to note the true ID. The true ID is the ID of a SHV after the leaflets are mounted and helps determine the optimal size of THV. The second step is to determine the type and size of the THV. Although this is determined in the majority of the cases by user preference, in certain situations one THV may be more suitable than another. As the procedure is performed under fluoroscopy, the third step is to become familiarized with the fluoroscopic appearance of both the SHV and THV. This helps to determine the landmarks for optimal positioning, which in turn determines the gradients and fixation. The fourth step is to assess the risk of coronary obstruction. This is performed with either aortic root angiography or ECG-gated computerised tomography (CT). Finally, the route of approach must be carefully planned. Once these aspects are addressed, the procedure can be performed efficiently with a low risk of complications. PMID:29062752
NASA Astrophysics Data System (ADS)
Issaei, Ali; Szczygiel, Lukasz; Hossein-Javaheri, Nima; Young, Mei; Molday, L. L.; Molday, R. S.; Sarunic, M. V.
2011-03-01
Scanning Laser Ophthalmoscopy (SLO) and Coherence Tomography (OCT) are complimentary retinal imaging modalities. Integration of SLO and OCT allows for both fluorescent detection and depth- resolved structural imaging of the retinal cell layers to be performed in-vivo. System customization is required to image rodents used in medical research by vision scientists. We are investigating multimodal SLO/OCT imaging of a rodent model of Stargardt's Macular Dystrophy which is characterized by retinal degeneration and accumulation of toxic autofluorescent lipofuscin deposits. Our new findings demonstrate the ability to track fundus autofluorescence and retinal degeneration concurrently.
NASA Astrophysics Data System (ADS)
Tung, J. C.; Hsieh, Y. H.; Liang, H. C.; Su, K. W.; Huang, K. F.; Chen, Y. F.
2017-04-01
We originally perform an analytical form to explore the influence of the astigmatism on the degenerate effect in nearly hemispherical cavities. The frequency spectrum near hemispherical cavities clearly reveals that not only the difference of cavity lengths between each degeneracies but also frequency gaps have significant difference from non-hemispherical cavities. We further thoroughly demonstrate the laser experiment under the condition of nearly hemispherical cavities to confirm the theoretical exploration that the transverse topology of three-dimensional (3D) structured light in the degenerate cavities is well localized on the Lissajous curves.
Fin degeneration of young-of-the-year Alosa pseudoharengus (Clupeidae) in southern Lake Michigan
Brown, Edward H.; Norden, Carroll R.
1970-01-01
Young-of-the-year alewives, Alosa pseudoharengus, with extremely shortened caudal fins were observed at four locations in southern Lake Michigan between 1964 and 1968. Some of the fins appeared stunted or underdeveloped, but microscopic examination revealed a deterioration of the fins and not an ontogenetic abnormality. Deterioration of the caudal fin was frequently accompanied by degeneration of the dorsal and anal fins. Degenerate fins were not found on other species nor on older alewives, with the exception of one known yearling alewife at Waukegan and possibly a few of the larger fish at Milwaukee.
Computation of Matrix Chain Products. Part I, Part II.
1981-09-01
vertex V in Corollary 4, not all the n-3 arcs gen - y erated by the algorithm are potential h-arcs. However, it is not difficult to verify that the...degenerated potential h-arc, V -V (V < V.). The upper subpolygon is a fanc i c 1 Fan(wlwd.... I .) and the lower subpolygon is a fan Fan(wI1w2 w,w i,w 3...arc hl, V12 as a degenerated arc h , and V as a degenerated arc h9 . The father-son relationship still holds for the h-arcs in a gen - eral polygon, and
N=2 gauge theories and degenerate fields of Toda theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kanno, Shoichi; Matsuo, Yutaka; Shiba, Shotaro
We discuss the correspondence between degenerate fields of the W{sub N} algebra and punctures of Gaiotto's description of the Seiberg-Witten curve of N=2 superconformal gauge theories. Namely, we find that the type of degenerate fields of the W{sub N} algebra, with null states at level one, is classified by Young diagrams with N boxes, and that the singular behavior of the Seiberg-Witten curve near the puncture agrees with that of W{sub N} generators. We also find how to translate mass parameters of the gauge theory to the momenta of the Toda theory.
NASA Astrophysics Data System (ADS)
Schmitteckert, Peter
2018-04-01
We present an infinite lattice density matrix renormalization group sweeping procedure which can be used as a replacement for the standard infinite lattice blocking schemes. Although the scheme is generally applicable to any system, its main advantages are the correct representation of commensurability issues and the treatment of degenerate systems. As an example we apply the method to a spin chain featuring a highly degenerate ground-state space where the new sweeping scheme provides an increase in performance as well as accuracy by many orders of magnitude compared to a recently published work.
The nature of apraxia in corticobasal degeneration.
Leiguarda, R; Lees, A J; Merello, M; Starkstein, S; Marsden, C D
1994-04-01
Although apraxia is one of the most frequent signs in corticobasal degeneration, the phenomenology of this disorder has not been formally examined. Hence 10 patients with corticobasal degeneration were studied with a standardised evaluation for different types of apraxia. To minimise the confounding effects of the primary motor disorder, apraxia was assessed in the least affected limb. Whereas none of the patients showed buccofacial apraxia, seven showed deficits on tests of ideomotor apraxia and movement imitation, four on tests of sequential arm movements (all of whom had ideomotor apraxia), and three on tests of ideational apraxia (all of whom had ideomotor apraxia). Ideomotor apraxia significantly correlated with deficit in both the mini mental state examination and in a task sensitive to frontal lobe dysfunction (picture arrangement). Two of the three patients with ideomotor apraxia and ideational apraxia showed severe cognitive impairments. The alien limb behaviour was present only in patients with ideomotor apraxia. In conclusion, ideomotor apraxia is the most frequent type of apraxia in corticobasal degeneration, and may be due to dysfunction of the supplementary motor area. There is a subgroup of patients with corticobasal degeneration who have a severe apraxia (ideomotor and ideational apraxia), which correlates with global cognitive impairment, and may result from additional parietal or diffuse cortical damage.
The nature of apraxia in corticobasal degeneration.
Leiguarda, R; Lees, A J; Merello, M; Starkstein, S; Marsden, C D
1994-01-01
Although apraxia is one of the most frequent signs in corticobasal degeneration, the phenomenology of this disorder has not been formally examined. Hence 10 patients with corticobasal degeneration were studied with a standardised evaluation for different types of apraxia. To minimise the confounding effects of the primary motor disorder, apraxia was assessed in the least affected limb. Whereas none of the patients showed buccofacial apraxia, seven showed deficits on tests of ideomotor apraxia and movement imitation, four on tests of sequential arm movements (all of whom had ideomotor apraxia), and three on tests of ideational apraxia (all of whom had ideomotor apraxia). Ideomotor apraxia significantly correlated with deficit in both the mini mental state examination and in a task sensitive to frontal lobe dysfunction (picture arrangement). Two of the three patients with ideomotor apraxia and ideational apraxia showed severe cognitive impairments. The alien limb behaviour was present only in patients with ideomotor apraxia. In conclusion, ideomotor apraxia is the most frequent type of apraxia in corticobasal degeneration, and may be due to dysfunction of the supplementary motor area. There is a subgroup of patients with corticobasal degeneration who have a severe apraxia (ideomotor and ideational apraxia), which correlates with global cognitive impairment, and may result from additional parietal or diffuse cortical damage. PMID:8163995
NASA Astrophysics Data System (ADS)
Chowdury, Amdad; Krolikowski, Wieslaw; Akhmediev, N.
2017-10-01
We present one- and two-breather solutions of the fourth-order nonlinear Schrödinger equation. With several parameters to play with, the solution may take a variety of forms. We consider most of these cases including the general form and limiting cases when the modulation frequencies are 0 or coincide. The zero-frequency limit produces a combination of breather-soliton structures on a constant background. The case of equal modulation frequencies produces a degenerate solution that requires a special technique for deriving. A zero-frequency limit of this degenerate solution produces a rational second-order rogue wave solution with a stretching factor involved. Taking, in addition, the zero limit of the stretching factor transforms the second-order rogue waves into a soliton. Adding a differential shift in the degenerate solution results in structural changes in the wave profile. Moreover, the zero-frequency limit of the degenerate solution with differential shift results in a rogue wave triplet. The zero limit of the stretching factor in this solution, in turn, transforms the triplet into a singlet plus a low-amplitude soliton on the background. A large value of the differential shift parameter converts the triplet into a pure singlet.
Chowdury, Amdad; Krolikowski, Wieslaw; Akhmediev, N
2017-10-01
We present one- and two-breather solutions of the fourth-order nonlinear Schrödinger equation. With several parameters to play with, the solution may take a variety of forms. We consider most of these cases including the general form and limiting cases when the modulation frequencies are 0 or coincide. The zero-frequency limit produces a combination of breather-soliton structures on a constant background. The case of equal modulation frequencies produces a degenerate solution that requires a special technique for deriving. A zero-frequency limit of this degenerate solution produces a rational second-order rogue wave solution with a stretching factor involved. Taking, in addition, the zero limit of the stretching factor transforms the second-order rogue waves into a soliton. Adding a differential shift in the degenerate solution results in structural changes in the wave profile. Moreover, the zero-frequency limit of the degenerate solution with differential shift results in a rogue wave triplet. The zero limit of the stretching factor in this solution, in turn, transforms the triplet into a singlet plus a low-amplitude soliton on the background. A large value of the differential shift parameter converts the triplet into a pure singlet.
Rogue waves driven by polarization instabilities in a long ring fiber oscillator
NASA Astrophysics Data System (ADS)
Kolpakov, S. A.; Kbashi, Hani; Sergeyev, Sergey
2017-05-01
We present an experimental and theoretical results of a study of a complex nonlinear polarization dynamics in a passively self-mode-locked erbium-doped fiber oscillator implemented in a ring configuration and operating near lasing threshold. The theoretical model consists of seven coupled non-linear equations and takes into account both orthogonal states of polarizations in the fiber. The experiment confirmed the existence of seven eigenfrequencies, predicted by the model due to polarization instability near lasing threshold. By adjusting the state of polarization of the pump and in-cavity birefringence we changed some eigenfrequencies from being different (non-degenerate state) to matching (degenerate state). The non-degenerate states of oscillator lead to the L-shaped probability distribution function and true rogue wave regime with a positive dominant Lyapunov exponent value between 1.4 and 2.6. Small detuning from partially degenerate case also leads to L-shaped probability distribution function with the tail trespassing eight standard deviations threshold, giving periodic patterns of pulses along with positive dominant Lyapunov exponent of a filtered signal between 0.6 and 3.2. The partial degeneration, in turn, guides to quasi-symmetric distribution and the value of dominant Lyapunov exponent of 42 which is a typical value for systems with a source of the strongly nonhomogeneous external noise.
Multi-Disciplinary, Multi-Fidelity Discrete Data Transfer Using Degenerate Geometry Forms
NASA Technical Reports Server (NTRS)
Olson, Erik D.
2016-01-01
In a typical multi-fidelity design process, different levels of geometric abstraction are used for different analysis methods, and transitioning from one phase of design to the next often requires a complete re-creation of the geometry. To maintain consistency between lower-order and higher-order analysis results, Vehicle Sketch Pad (OpenVSP) recently introduced the ability to generate and export several degenerate forms of the geometry, representing the type of abstraction required to perform low- to medium-order analysis for a range of aeronautical disciplines. In this research, the functionality of these degenerate models was extended, so that in addition to serving as repositories for the geometric information that is required as input to an analysis, the degenerate models can also store the results of that analysis mapped back onto the geometric nodes. At the same time, the results are also mapped indirectly onto the nodes of lower-order degenerate models using a process called aggregation, and onto higher-order models using a process called disaggregation. The mapped analysis results are available for use by any subsequent analysis in an integrated design and analysis process. A simple multi-fidelity analysis process for a single-aisle subsonic transport aircraft is used as an example case to demonstrate the value of the approach.
Kraepelin and degeneration theory.
Hoff, Paul
2008-06-01
Emil Kraepelin's contribution to the clinical and scientific field of psychiatry is recognized world-wide. In recent years, however, there have been a number of critical remarks on his acceptance of degeneration theory in particular and on his political opinion in general, which was said to have carried "overtones of proto-fascism" by Michael Shepherd [28]. The present paper discusses the theoretical cornerstones of Kraepelinian psychiatry with regard to their relevance for Kraepelin's attitude towards degeneration theory. This theory had gained wide influence not only in scientific, but also in philosophical and political circles in the last decades of the nineteenth century. There is no doubt that Kraepelin, on the one hand, accepted and implemented degeneration theory into the debate on etiology and pathogenesis of mental disorders. On the other hand, it is not appropriate to draw a simple and direct line from early versions of degeneration theory to the crimes of psychiatrists and politicians during the rule of national socialism. What we need, is a differentiated view, since this will be the only scientific one. Much research needs to be done here in the future, and such research will surely have a significant impact not only on the historical field, but also on the continuous debate about psychiatry, neuroscience and neurophilosophy.
Ecological transition predictably associated with gene degeneration.
Wessinger, Carolyn A; Rausher, Mark D
2015-02-01
Gene degeneration or loss can significantly contribute to phenotypic diversification, but may generate genetic constraints on future evolutionary trajectories, potentially restricting phenotypic reversal. Such constraints may manifest as directional evolutionary trends when parallel phenotypic shifts consistently involve gene degeneration or loss. Here, we demonstrate that widespread parallel evolution in Penstemon from blue to red flowers predictably involves the functional inactivation and degeneration of the enzyme flavonoid 3',5'-hydroxylase (F3'5'H), an anthocyanin pathway enzyme required for the production of blue floral pigments. Other types of genetic mutations do not consistently accompany this phenotypic shift. This pattern may be driven by the relatively large mutational target size of degenerative mutations to this locus and the apparent lack of associated pleiotropic effects. The consistent degeneration of F3'5'H may provide a mechanistic explanation for the observed asymmetry in the direction of flower color evolution in Penstemon: Blue to red transitions are common, but reverse transitions have not been observed. Although phenotypic shifts in this system are likely driven by natural selection, internal constraints may generate predictable genetic outcomes and may restrict future evolutionary trajectories. © The Author 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Hafler, Brian P.; Klein, Zoe A.; Zhou, Z. Jimmy; Strittmatter, Stephen M.
2014-01-01
Prior investigations have shown that patients with neuronal ceroid lipofuscinosis (NCL) develop neurodegeneration characterized by vision loss, motor dysfunction, seizures, and often early death. Neuropathological analysis of patients with NCL shows accumulation of intracellular autofluorescent storage material, lipopigment, throughout neurons in the central nervous system including in the retina. A recent study of a sibling pair with adult onset NCL and retinal degeneration showed linkage to the region of the progranulin (GRN) locus and a homozygous mutation was demonstrated in GRN. In particular, the sibling pair with a mutation in GRN developed retinal degeneration and optic atrophy. This locus for this form of adult onset neuronal ceroid lipofuscinosis was designated neuronal ceroid lipofuscinosis-11 (CLN11). Based on these clinical observations, we wished to determine whether Grn-null mice develop accumulation of autofluorescent particles and retinal degeneration. Retinas of both wild-type and Progranulin deficient mice were examined by immunostaining and autofluorescence. Accumulation of autofluorescent material was present in Progranulin deficient mice at 12 months. Degeneration of multiple classes of neurons including photoreceptors and retinal ganglion cells was noted in mice at 12 and 18 months. Our data shows that Grn−/− mice develop degenerative pathology similar to features of human CLN11. PMID:25234724
Parainflammation, chronic inflammation, and age-related macular degeneration.
Chen, Mei; Xu, Heping
2015-11-01
Inflammation is an adaptive response of the immune system to noxious insults to maintain homeostasis and restore functionality. The retina is considered an immune-privileged tissue as a result of its unique anatomic and physiologic properties. During aging, the retina suffers from a low-grade chronic oxidative insult, which sustains for decades and increases in level with advancing age. As a result, the retinal innate-immune system, particularly microglia and the complement system, undergoes low levels of activation (parainflammation). In many cases, this parainflammatory response can maintain homeostasis in the healthy aging eye. However, in patients with age-related macular degeneration, this parainflammatory response becomes dysregulated and contributes to macular damage. Factors contributing to the dysregulation of age-related retinal parainflammation include genetic predisposition, environmental risk factors, and old age. Dysregulated parainflammation (chronic inflammation) in age-related macular degeneration damages the blood retina barrier, resulting in the breach of retinal-immune privilege, leading to the development of retinal lesions. This review discusses the basic principles of retinal innate-immune responses to endogenous chronic insults in normal aging and in age-related macular degeneration and explores the difference between beneficial parainflammation and the detrimental chronic inflammation in the context of age-related macular degeneration. © Society for Leukocyte Biology.
Tocotrienol prevents AAPH-induced neurite degeneration in neuro2a cells.
Fukui, Koji; Sekiguchi, Hidekazu; Takatsu, Hirokatsu; Koike, Taisuke; Koike, Tatsuro; Urano, Shiro
2013-01-01
Reactive oxygen species induce neurite degeneration before inducing cell death. However, the degenerative mechanisms have not yet been elucidated. While tocotrienols have a known neuroprotective function, the underlying mechanism remains unclear and may or may not involve antioxidant action. In this study, we hypothesize that free radical-derived membrane injury is one possible mechanism for inducing neurite degeneration. Therefore, we examined the potential neuroprotective effect of tocotrienols mediated through its antioxidant activity. Mouse neuroblastoma neuro2a cells were used to examine the effect of the water-soluble free radical generator 2,2'-azobis(2-methylpropionamide) dihydrochloride (AAPH) on neurite dynamics. After 24 hours of AAPH treatment, cell viability, neurite number, and the number of altered neurites were measured in the presence or absence of α-tocotrienol. Treatment of neuro2a cells with a low concentration of AAPH induces neurite degeneration, but not cell death. Treatment with 5 µM α-tocotrienol significantly inhibited neurite degeneration in AAPH-treated neuro2a cells. Furthermore, morphological changes in AAPH-treated neuro2a cells were similar to those observed with colchicine treatment. α-Tocotrienol may scavenge AAPH-derived free radicals and alkoxyl radicals that are generated from AAPH-derived peroxyl radicals on cell membranes. Therefore, α-tocotrienol may have a neuroprotective effect mediated by its antioxidant activity.
TGF-β1 is critical for Wallerian degeneration after rat sciatic nerve injury.
Li, M; Zhang, P; Li, H; Zhu, Y; Cui, S; Yao, D
2015-01-22
Wallerian degeneration (WD) is a process of axonal degeneration distal to the injury site followed by a robust regenerative response. It involves degeneration and regeneration which can be directly induced by nerve injury and activated by transcription factors. Although WD has been studied extensively, the precise mechanisms of transcription factors regulating WD are still elusive. In this study, we reported the effect of transforming growth factor-β1 (TGF-β1) on WD after rat sciatic nerve injury. The data showed that TGF-β1 may express in injured rat sciatic nerve and cultured Schwann cells (SCs). Knock down of TGF-β1 expressions resulted in the reduction of SC proliferation and apoptosis, up regulation of cytokines and Smad2, 4. Enhanced expression of TGF-β1 could promote SC proliferation and apoptosis, down regulation of cytokines and Smad2, 4. Altered expressions of TGF-β1 may affect Smad and AKT but not c-Jun and extracellular regulated protein kinase (ERK) pathways. Our results revealed the role of TGF-β1 on WD and provided the basis for the molecular mechanisms of TGF-β1-regulated nerve degeneration and/or regeneration. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.
Conradi, Lenard; Kloth, Benjamin; Seiffert, Moritz; Schirmer, Johannes; Koschyk, Dietmar; Blankenberg, Stefan; Reichenspurner, Hermann; Diemert, Patrick; Treede, Hendrik
2014-12-01
Recently, the feasibility of valve-in-valve procedures using current first-generation transcatheter heart valves (THV) in cases of structural valve degeneration has been reported as an alternative to conventional open repeat valve replacement. By design, certain biological valve xenografts carry a high risk of coronary ostia occlusion due to lateral displacement of leaflets after valve-in-valve procedures. In the present report we aimed to prove feasibility and safety of transapical valve-in-valve implantation of the JenaValve THV in two cases of degenerated Mitroflow bioprostheses. We herein report two cases of successful transapical valve-in-valve procedures using a JenaValve THV implanted in Sorin Mitroflow bioprostheses for structural valve degeneration. Both patients were alive and in good clinical condition at 30 days from the procedure. However, increased transvalvular gradients were noted in both cases. Transcatheter valve-in-valve implantation of a JenaValve THV is a valid alternative for patients with degenerated Mitroflow bioprostheses of sufficient size and in the presence of short distances to the coronary ostia who are too ill for conventional repeat open heart surgery. Increased pressure gradients have to be expected and weighed against the disadvantages of other treatment options when planning such a procedure.
Calpains mediate axonal cytoskeleton disintegration during Wallerian degeneration
Ma, Marek; Ferguson, Toby A.; Schoch, Kathleen M.; Li, Jian; Qian, Yaping; Shofer, Frances S.; Saatman, Kathryn E.; Neumar, Robert W.
2013-01-01
In both the central nervous system (CNS) and peripheral nervous system (PNS), transected axons undergo Wallerian degeneration. Even though Augustus Waller first described this process after transection of axons in 1850, the molecular mechanisms may be shared, at least in part, by many human diseases. Early pathology includes failure of synaptic transmission, target denervation, and granular disintegration of the axonal cytoskeleton (GDC). The Ca2+-dependent proteases calpains have been implicated in GDC but causality has not been established. To test the hypothesis that calpains play a causal role in axonal and synaptic degeneration in vivo, we studied transgenic mice that express human calpastatin (hCAST), the endogenous calpain inhibitor, in optic and sciatic nerve axons. Five days after optic nerve transection and 48 hours after sciatic nerve transection, robust neurofilament proteolysis observed in wild-type controls was reduced in hCAST transgenic mice. Protection of the axonal cytoskeleton in sciatic nerves of hCAST mice was nearly complete 48 hours post-transection. In addition, hCAST expression preserved the morphological integrity of neuromuscular junctions. However, compound muscle action potential amplitudes after nerve transection were similar in wild-type and hCAST mice. These results, in total, provide direct evidence that calpains are responsible for the morphological degeneration of the axon and synapse during Wallerian degeneration. PMID:23542511
Degenerate mixing of plasma waves on cold, magnetized single-species plasmas
NASA Astrophysics Data System (ADS)
Anderson, M. W.; O'Neil, T. M.; Dubin, D. H. E.; Gould, R. W.
2011-10-01
In the cold-fluid dispersion relation ω =ωp/[1+(k⊥/kz)2]1/2 for Trivelpiece-Gould waves on an infinitely long magnetized plasma cylinder, the transverse and axial wavenumbers appear only in the combination k⊥/kz. As a result, for any frequency ω <ωp, there are infinitely many degenerate waves, all having the same value of k⊥/kz. On a cold finite-length plasma column, these degenerate waves reflect into one another at the ends; thus, each standing-wave normal mode of the bounded plasma is a mixture of many degenerate waves, not a single standing wave as is often assumed. A striking feature of the many-wave modes is that the short-wavelength waves often add constructively along resonance cones given by dz /dr=±(ωp2/ω2-1)1/2. Also, the presence of short wavelengths in the admixture for a predominantly long-wavelength mode enhances the viscous damping beyond what the single-wave approximation would predict. Here, numerical solutions are obtained for modes of a cylindrical plasma column with rounded ends. Exploiting the fact that the modes of a spheroidal plasma are known analytically (the Dubin modes), a perturbation analysis is used to investigate the mixing of low-order, nearly degenerate Dubin modes caused by small deformations of a plasma spheroid.
NASA Astrophysics Data System (ADS)
Hollmach, Julia; Schweizer, Julia; Steiner, Gerald; Knels, Lilla; Funk, Richard H. W.; Thalheim, Silko; Koch, Edmund
2011-07-01
Retinal diseases like age-related macular degeneration have become an important cause of visual loss depending on increasing life expectancy and lifestyle habits. Due to the fact that no satisfying treatment exists, early diagnosis and prevention are the only possibilities to stop the degeneration. The protein cytochrome c (cyt c) is a suitable marker for degeneration processes and apoptosis because it is a part of the respiratory chain and involved in the apoptotic pathway. The determination of the local distribution and oxidative state of cyt c in living cells allows the characterization of cell degeneration processes. Since cyt c exhibits characteristic absorption bands between 400 and 650 nm wavelength, uv/vis in situ spectroscopic imaging was used for its characterization in retinal ganglion cells. The large amount of data, consisting of spatial and spectral information, was processed by multivariate data analysis. The challenge consists in the identification of the molecular information of cyt c. Baseline correction, principle component analysis (PCA) and cluster analysis (CA) were performed in order to identify cyt c within the spectral dataset. The combination of PCA and CA reveals cyt c and its oxidative state. The results demonstrate that uv/vis spectroscopic imaging in conjunction with sophisticated multivariate methods is a suitable tool to characterize cyt c under in situ conditions.
The synaptic terminations of certain midbrain-olivary fibers in the opossum.
King, J S; Hamos, J E; Maley, B E
1978-11-15
The nuclear origin and distribution of midbrain-olivary fibers has been described in a previous study utilizing axonal transport techniques (Linauts and Martin, '78a). The present report extends their results to the electron microscopic level and details the postsynaptic distribution of such fibers. Lesions within the ventral periaqueductal grey and adjacent tegmentum, the red nucleus or the nucleus subparafascicularis result in electron dense axon terminals within the olive at survival times of 48, 72 and 96 hours. At 72 hours, many degenerating presynaptic profiles shrink, become irregular in shape and are totally or partially surrounded by glial processes. The principal olivary nucleus contains the majority of these profiles. However, the subparafascicular terminals are more abundant in the rostral and intermediate parts of the medial accessory nucleus and the rubral terminals are concentrated within the dorsal lamella of the principal nucleus. The nuclear location of the degenerating terminals was determined by examination of 1 micrometer plastic sections cut in the transverse plane from each block face prior to thin sectioning. Degenerating terminals were counted in three cases, one from each of the three lesion sites described above. When taken together these cases show that just over 50% of the degenerating terminals are presynaptic to spiny appendages and are located within the synaptic clusters (glomeruli) described previously (King, '76). The percentage of degenerating terminals in the glomeruli increases to 70% when the lesion is in the ventral periaqueductal grey and adjacent tegmentum. The remaining degenerating terminals contact dendritic shafts outside the astrocytic boundaries of the synaptic clusters. The synpatic vesicle populations within the degenerating terminals vary with the location of the lesion. Lesions in the ventral periaqueductal grey and the adjacent tegmentum result in the degeneration of terminals with either clear spherical vesicles or endings with both clear spherical vesicles and a variable number of large dense core vesicles. In contrast, the primary degenerative changes that occur after destruction of the red nucleus or the nucleus subparafascicularis are in terminals with clear spherical vesicles. When the synaptic complex was present in the plane of section, regardless of the site of the lesion, the degenerating terminals could be classified as Gray's type I. Thus, we have demonstrated that afferents from the mesencephalon terminate within synpatic clusters located in the principal and medial accessory (part A) subnuclei of the inferior olive. Although the mesencephalic afferents have multiple origins (Linauts and Martin, '78a), many of their synaptic terminals contact spiny appendages within the synaptic clusters. This postsynaptic site also receives cerebellar terminals (King et al., '76). The origin of presynaptic profiles within the synaptic clusters that contain clear pleomorphlic vesicles is yet to be determined.
van Wyk, Michiel; Schneider, Sabine; Kleinlogel, Sonja
2015-01-01
Recent advances in optogenetics and gene therapy have led to promising new treatment strategies for blindness caused by retinal photoreceptor loss. Preclinical studies often rely on the retinal degeneration 1 (rd1 or Pde6b(rd1)) retinitis pigmentosa (RP) mouse model. The rd1 founder mutation is present in more than 100 actively used mouse lines. Since secondary genetic traits are well-known to modify the phenotypic progression of photoreceptor degeneration in animal models and human patients with RP, negligence of the genetic background in the rd1 mouse model is unwarranted. Moreover, the success of various potential therapies, including optogenetic gene therapy and prosthetic implants, depends on the progress of retinal degeneration, which might differ between rd1 mice. To examine the prospect of phenotypic expressivity in the rd1 mouse model, we compared the progress of retinal degeneration in two common rd1 lines, C3H/HeOu and FVB/N. We followed retinal degeneration over 24 weeks in FVB/N, C3H/HeOu, and congenic Pde6b(+) seeing mouse lines, using a range of experimental techniques including extracellular recordings from retinal ganglion cells, PCR quantification of cone opsin and Pde6b transcripts, in vivo flash electroretinogram (ERG), and behavioral optokinetic reflex (OKR) recordings. We demonstrated a substantial difference in the speed of retinal degeneration and accompanying loss of visual function between the two rd1 lines. Photoreceptor degeneration and loss of vision were faster with an earlier onset in the FVB/N mice compared to C3H/HeOu mice, whereas the performance of the Pde6b(+) mice did not differ significantly in any of the tests. By postnatal week 4, the FVB/N mice expressed significantly less cone opsin and Pde6b mRNA and had neither ERG nor OKR responses. At 12 weeks of age, the retinal ganglion cells of the FVB/N mice had lost all light responses. In contrast, 4-week-old C3H/HeOu mice still had ERG and OKR responses, and we still recorded light responses from C3H/HeOu retinal ganglion cells until the age of 24 weeks. These results show that genetic background plays an important role in the rd1 mouse pathology. Analogous to human RP, the mouse genetic background strongly influences the rd1 phenotype. Thus, different rd1 mouse lines may follow different timelines of retinal degeneration, making exact knowledge of genetic background imperative in all studies that use rd1 models.
PHAGOCYTOSIS BY RETINAL PIGMENT EPITHELIAL CELLS IN VITRO IS AFFECTED BY EXPOSURE TO PESTICIDES.
Purpose:Agricultural and occupational exposures to the fungicides benomyl and captan and the insecticide fenthion have been associated with retinal degeneration. Exposure to insecticides has also been associated with pigmentary changes of the retina. Because retinal degeneration ...
Exponential Mixing of the 3D Stochastic Navier-Stokes Equations Driven by Mildly Degenerate Noises
DOE Office of Scientific and Technical Information (OSTI.GOV)
Albeverio, Sergio; Debussche, Arnaud, E-mail: arnaud.debussche@bretagne.ens-cachan.fr; Xu Lihu, E-mail: Lihu.Xu@brunel.ac.uk
2012-10-15
We prove the strong Feller property and exponential mixing for 3D stochastic Navier-Stokes equation driven by mildly degenerate noises (i.e. all but finitely many Fourier modes being forced) via a Kolmogorov equation approach.
Heat capacity of free electrons at the degenerate-nondegenerate transition
NASA Astrophysics Data System (ADS)
Nimtz, G.; Stadler, J. P.
1985-04-01
In this Brief Report the heat capacity of an electron gas at the degenerate-nondegenerate transition is presented. The values are deduced from hot-carrier data of InSb with ~=1014 electrons/cm3 determined by Maneval, Zylberstejn, and Budd.
Gene-diet interactions in age-related macular degeneration
USDA-ARS?s Scientific Manuscript database
Age-related macular degeneration (AMD) is a prevalent blinding disease, accounting for roughly 50% of blindness in developed nations. Very significant advances have been made in terms of discovering genetic susceptibilities to AMD as well as dietary risk factors. To date, nutritional supplementation...
Ho, Chi Yd; Lek, Jia J; Aung, Khin Z; McGuinness, Myra B; Luu, Chi D; Guymer, Robyn H
2018-05-07
We thank Invernizzi, Nguyen and Gillies 1 for their interest in our paper "Relationship between reticular pseudodrusen and choroidal thickness in intermediate age-related macular degeneration". 2 . This article is protected by copyright. All rights reserved.
Brouilly, Nicolas; Lecroisey, Claire; Martin, Edwige; Pierson, Laura; Mariol, Marie-Christine; Qadota, Hiroshi; Labouesse, Michel; Streichenberger, Nathalie; Mounier, Nicole; Gieseler, Kathrin
2015-11-15
Duchenne muscular dystrophy (DMD) is a genetic disease characterized by progressive muscle degeneration due to mutations in the dystrophin gene. In spite of great advances in the design of curative treatments, most patients currently receive palliative therapies with steroid molecules such as prednisone or deflazacort thought to act through their immunosuppressive properties. These molecules only slightly slow down the progression of the disease and lead to severe side effects. Fundamental research is still needed to reveal the mechanisms involved in the disease that could be exploited as therapeutic targets. By studying a Caenorhabditis elegans model for DMD, we show here that dystrophin-dependent muscle degeneration is likely to be cell autonomous and affects the muscle cells the most involved in locomotion. We demonstrate that muscle degeneration is dependent on exercise and force production. Exhaustive studies by electron microscopy allowed establishing for the first time the chronology of subcellular events occurring during the entire process of muscle degeneration. This chronology highlighted the crucial role for dystrophin in stabilizing sarcomeric anchoring structures and the sarcolemma. Our results suggest that the disruption of sarcomeric anchoring structures and sarcolemma integrity, observed at the onset of the muscle degeneration process, triggers subcellular consequences that lead to muscle cell death. An ultra-structural analysis of muscle biopsies from DMD patients suggested that the chronology of subcellular events established in C. elegans models the pathogenesis in human. Finally, we found that the loss of sarcolemma integrity was greatly reduced after prednisone treatment suggesting a role for this molecule in plasma membrane stabilization. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Baudouin, Christophe; Denoyer, Alexandre; Desbenoit, Nicolas; Hamm, Gregory; Grise, Alice
2012-01-01
Purpose: Long-term antiglaucomatous drug administration may cause irritation, dry eye, allergy, subconjunctival fibrosis, or increased risk of glaucoma surgery failure, potentially due to the preservative benzalkonium chloride (BAK), whose toxic, proinflammatory, and detergent effects have extensively been shown experimentally. We hypothesize that BAK also influences trabecular meshwork (TM) degeneration. Methods: Trabecular specimens were examined using immunohistology and reverse transcriptase–polymerase chain reaction. A trabecular cell line was stimulated by BAK and examined for apoptosis, oxidative stress, fractalkine and SDF-1 expression, and modulation of their receptors. An experimental model was developed with BAK subconjunctival injections to induce TM degeneration. Mass spectrometry (MS) imaging assessed BAK penetration after repeated instillations in rabbit eyes. Results: Trabecular specimens showed extremely low densities of trabecular cells and presence of cells expressing fractalkine and fractalkine receptor and their respective mRNAs. Benzalkonium in vitro induced apoptosis, oxidative stress, and fractalkine expression and inhibited the protective chemokine SDF-1 and Bcl2, also inducing a sustained intraocular pressure (IOP) increase, with dramatic apoptosis of trabecular cells and reduction of aqueous outflow. MS imaging showed that BAK could access the TM at measurable levels after repeated instillations. Conclusion: BAK enhances all characteristics of TM degeneration typical of glaucoma—trabecular apoptosis, oxidative stress, induction of inflammatory chemokines—and causes degeneration in acute experimental conditions, potentially mimicking long-term accumulation. BAK was also shown to access the TM after repeated instillations. These findings support the hypothesis that antiglaucoma medications, through toxicity of their preservative, may cause further long-term trabecular degeneration and therefore enhance outflow resistance, reducing the impact of IOP-lowering agents. PMID:23818734
Activity-dependent degeneration of axotomized neuromuscular synapses in WldS mice
Brown, R.; Hynes-Allen, A.; Swan, A.J.; Dissanayake, K.N.; Gillingwater, T.H.; Ribchester, R.R.
2015-01-01
Activity and disuse of synapses are thought to influence progression of several neurodegenerative diseases in which synaptic degeneration is an early sign. Here we tested whether stimulation or disuse renders neuromuscular synapses more or less vulnerable to degeneration, using axotomy as a robust trigger. We took advantage of the slow synaptic degeneration phenotype of axotomized neuromuscular junctions in flexor digitorum brevis (FDB) and deep lumbrical (DL) muscles of Wallerian degeneration-Slow (WldS) mutant mice. First, we maintained ex vivo FDB and DL nerve-muscle explants at 32 °C for up to 48 h. About 90% of fibers from WldS mice remained innervated, compared with about 36% in wild-type muscles at the 24-h checkpoint. Periodic high-frequency nerve stimulation (100 Hz: 1 s/100 s) reduced synaptic protection in WldS preparations by about 50%. This effect was abolished in reduced Ca2+ solutions. Next, we assayed FDB and DL innervation after 7 days of complete tetrodotoxin (TTX)-block of sciatic nerve conduction in vivo, followed by tibial nerve axotomy. Five days later, only about 9% of motor endplates remained innervated in the paralyzed muscles, compared with about 50% in 5 day-axotomized muscles from saline-control-treated WldS mice with no conditioning nerve block. Finally, we gave mice access to running wheels for up to 4 weeks prior to axotomy. Surprisingly, exercising WldS mice ad libitum for 4 weeks increased about twofold the amount of subsequent axotomy-induced synaptic degeneration. Together, the data suggest that vulnerability of mature neuromuscular synapses to axotomy, a potent neurodegenerative trigger, may be enhanced bimodally, either by disuse or by hyperactivity. PMID:25617654
Age-related memory decline is associated with vascular and microglial degeneration in aged rats.
Zhang, Rong; Kadar, Tamar; Sirimanne, Ernest; MacGibbon, Alastair; Guan, Jian
2012-12-01
The hippocampus processes memory is an early target of aging-related biological and structural lesions, leading to memory decline. With absent neurodegeneration in the hippocampus, which identified in rodent model of normal aging the pathology underlying age-related memory impairment is not complete. The effective glial-vascular networks are the key for maintaining neuronal functions. The changes of glial cells and cerebral capillaries with age may contribute to memory decline. Thus we examined age associated changes in neurons, glial phenotypes and microvasculature in the hippocampus of aged rats with memory decline. Young adult (6 months) and aged (35 months) male rats (Fisher/Norway-Brown) were used. To evaluate memory, four days of acquisition phase of Morris water maze tasks were carried out in both age groups and followed by a probe trial 2 h after the acquisition. The brains were then collected for analysis using immunochemistry. The aged rats showed a delayed latency (p<0.001) and longer swimming path (p<0.001) to locate a hidden platform. They also spent less time in and made delayed and fewer entries into the correct quadrant during the probe trial. Without seen neuronal degeneration, the aged rats with memory impairments have displayed dopamine depletion, profound vascular and microglial degeneration with reduced vascular endothelial growth factor and elevated GFAP expression in the hippocampus. The data indicate the memory decline with age is associated with neuronal dysfunction, possibly due to impaired glial-vascular-neuronal networks, but not neuronal degeneration. Glial and vascular degeneration found in aged rats may represent early event of aging pathology prior to neuronal degeneration. Copyright © 2012 Elsevier B.V. All rights reserved.
Wang, Shaowei; Wei, Xiaochun; Sun, Xiaojuan; Chen, Chongwei; Zhou, Jingming; Zhang, Ge; Wu, Heng; Guo, Baosheng; Wei, Lei
2018-01-01
Cartilage degeneration affects millions of people but preventing its degeneration is a big challenge. Although RNA interference (RNAi) has been used in human trials via silencing specific genes, the cartilage RNAi has not been possible to date because the cartilage is an avascular and very dense tissue with very low permeability. The objective of this study was to develop and validate a novel lipid nanoparticle (LNP)-siRNA delivery system that can prevent cartilage degeneration by knocking down specific genes. LNP transfection efficiency was evaluated in vitro and ex vivo. Indian Hedgehog ( Ihh ) has been correlated with cartilage degeneration. The in vivo effects of LNP-Ihh siRNA complexes on cartilage degeneration were evaluated in a rat model of surgery-induced osteoarthritis (OA). In vitro, 100% of chondrocytes were transfected with siRNA in the LNP-siRNA group. In accordance with the cell culture results, red positive signals could be detected even in the deep layer of cartilage tissue cultures treated by LNP-beacon. In vivo data showed that LNP is specific for cartilage, since positive signals were detected by fluorescence molecular tomography and confocal microscopy in joint cartilage injected with LNP-beacon, but not on the surface of the synovium. In the rat model of OA, intraarticular injection of LNP-Ihh siRNA attenuated OA progression, and PCR results showed LNP-Ihh siRNA exerted a positive impact on anabolic metabolism and negative impact on catabolic metabolism. This study demonstrates that our LNP-RNAi delivery system has a significantly chondroprotective effect that attenuates cartilage degeneration and holds great promise as a powerful tool for treatment of cartilage diseases by knocking down specific genes.
Wang, Ya Liang; Zhang, Yu Ping; Xiang, Jing; Wang, Lei; Chen, Hui Zhe; Zhang, Yi Kai; Zhang, Wen Qian; Zhu, De Feng
2017-11-01
In this study, three rice varieties, including three-line hybrid indica rice Wuyou308 and Tianyouhuazhan, and inbred indica rice Huanghuazhan were used to investigate the effects of air temperature and solar radiation on rice growth duration and spikelet differentiation and degeneration. Ten sowing-date treatments were conducted in this field experiment. The results showed that the growth duration of three indica rice varieties were more sensitive to air temperature than to day-length. With average temperature increase of 1 ℃, panicle initiation advanced 1.5 days, but the panicle growth duration had no significant correlation with the temperature and day-length. The number of spikelets and differentiated spikelets revealed significant differences among different sowing dates. Increases in average temperature, maximum temperature, minimum temperature, effective accumulated temperature, temperature gap and the solar radiation benefited dry matter accumulation and spikelet differentiation of all varieties. With increases of effective accumulated temperature, diurnal temperature gap and solar radiation by 50 ℃, 1 ℃, 50 MJ·m -2 during panicle initiation stage, the number of differentiated spikelets increased 10.5, 14.3, 17.1 respectively. The rate of degenerated spikelets had a quadratic correlation with air temperature, extreme high and low temperature aggravated spikelets degeneration, and low temperature stress made worse effect than high temperature stress. The rate of spikelet degeneration dramatically rose with the temperature falling below the critical temperature, the critical effective accumulated temperature, daily average temperature, daily maximum temperature and minimum temperature during panicle initiation were 550-600 ℃, 24.0-26.0 ℃, 32.0-34.0 ℃, 21.0-23.0 ℃, respectively. In practice, the natural condition of appropriate high temperature, large diurnal temperature gap and strong solar radiation were conducive to spikelet differentiation, and hindered the spikelet degeneration.
Hanneken, Anne; Neikirk, Thomas; Johnson, Jennifer; Kono, Masahiro
2017-08-01
To test the hypothesis that delayed dark adaptation in patients with macular degeneration is due to an excess of free unliganded opsin (apo-opsin) and a deficiency of the visual chromophore, 11 -cis retinal, in rod outer segments. A total of 50 human autopsy eyes were harvested from donors with and without macular degeneration within 2-24 hrs. postmortem. Protocols were developed which permitted dark adaptation of normal human eyes after death and enucleation. Biochemical methods of purifying rod outer segments were optimized and the concentration of rhodopsin and apo-opsin was measured with UV-visible scanning spectroscopy. The presence of apo-opsin was calculated by measuring the difference in the rhodopsin absorption spectra before and after the addition of 11 -cis retinal. A total of 20 normal eyes and 16 eyes from donors with early, intermediate and advanced stages of macular degeneration were included in the final analysis. Dark adaptation was achieved by harvesting whole globes in low light, transferring into dark (light-proof) canisters and dissecting the globes using infrared light and image converters for visualization. Apo-opsin was readily detected in positive controls after the addition of 11 -cis retinal. Normal autopsy eyes showed no evidence of apo-opsin. Eyes with macular degeneration also showed no evidence of apo-opsin, regardless of the severity of disease. Methods have been developed to study dark adaptation in human autopsy eyes. Eyes with age-related macular degeneration do not show a deficiency of 11 -cis retinal or an excess of apo-opsin within rod outer segments.
Ulvi, Hızır; Demir, Recep; Aygül, Recep; Kotan, Dilcan; Calik, Muhammet; Aydin, Mehmet Dumlu
2013-12-30
Phrenic nerves have important roles on the management of respiration rhythm. Diaphragm paralysis is possible in phrenic nerve roots ischemia in subarachnoid hemorrhage (SAH). We examined whether there is a relationship between phrenic nerve root ischemia and respiratory disturbances in SAH. This study was conducted on 5 healthy control and 14 rabbits with experimentally induced SAH by injecting autologous blood into their cisterna magna. Animals were followed up via monitors for detecting the heart and respiration rhythms for 20 days and then decapitaed by humanely. Normal and degenerated neuron densities of phrenic nerve root at the level of C4 dorsal root ganglia (C4DRG) were estimated by Stereological methods. Between the mean numerical density of degenerated neurons of C4DRG and respiratory rate/minute of groups were compared statistically. Phrenic nerve roots, artery and diaphragm muscles degeneration was detected in respiratory arrest developed animals. The mean neuronal density of C4DRG was 13272 ±1201/mm3 with a mean respiration rate of 23 ±4/min in the control group. The mean degenerated neuron density was 2.240 ±450/mm(3) and respiration rhythm was 31 ±6/min in survivors. But, the mean degenerated neuron density was 5850 ±650/mm(3) and mean respiration rhythm was 34 ±7/min in respiratory arrest developed animals (n = 7). A linear relationship was noticed between the degenerated neuron density of C4DRG and respiraton rate (r = -0.758; p < 0.001). Phrenic nerve root ischemia may be an important factor in respiration rhythms deteriorations in SAH which has not been mentioned in the literature.
Foldager, Casper Bindzus; Toh, Wei Seong; Gomoll, Andreas H; Olsen, Bjørn Reino; Spector, Myron
2014-04-01
The objective of the present study was to investigate the presence and distribution of 2 basement membrane (BM) molecules, laminin and collagen type IV, in healthy and degenerative cartilage tissues. Normal and degenerated tissues were obtained from goats and humans, including articular knee cartilage, the intervertebral disc, and meniscus. Normal tissue was also obtained from patella-tibial enthesis in goats. Immunohistochemical analysis was performed using anti-laminin and anti-collagen type IV antibodies. Human and goat skin were used as positive controls. The percentage of cells displaying the pericellular presence of the protein was graded semiquantitatively. When present, laminin and collagen type IV were exclusively found in the pericellular matrix, and in a discrete layer on the articulating surface of normal articular cartilage. In normal articular (hyaline) cartilage in the human and goat, the proteins were found co-localized pericellularly. In contrast, in human osteoarthritic articular cartilage, collagen type IV but not laminin was found in the pericellular region. Nonpathological fibrocartilaginous tissues from the goat, including the menisci and the enthesis, were also positive for both laminin and collagen type IV pericellularly. In degenerated fibrocartilage, including intervertebral disc, as in degenerated hyaline cartilage only collagen type IV was found pericellularly around chondrocytes but with less intense staining than in non-degenerated tissue. In calcified cartilage, some cells were positive for laminin but not type IV collagen. We report differences in expression of the BM molecules, laminin and collagen type IV, in normal and degenerative cartilaginous tissues from adult humans and goats. In degenerative tissues laminin is depleted from the pericellular matrix before collagen type IV. The findings may inform future studies of the processes underlying cartilage degeneration and the functional roles of these 2 extracellular matrix proteins, normally associated with BM.
A Large Animal Model that Recapitulates the Spectrum of Human Intervertebral Disc Degeneration
Gullbrand, Sarah E.; Malhotra, Neil R.; Schaer, Thomas P.; Zawacki, Zosia; Martin, John T.; Bendigo, Justin R.; Milby, Andrew H.; Dodge, George R.; Vresilovic, Edward J.; Elliott, Dawn M.; Mauck, Robert L.; Smith, Lachlan J.
2016-01-01
Objective The objective of this study was to establish a large animal model that recapitulates the spectrum of intervertebral disc degeneration that occurs in humans and which is suitable for pre-clinical evaluation of a wide range of experimental therapeutics. Design Degeneration was induced in the lumbar intervertebral discs of large frame goats by either intradiscal injection of chondroitinase ABC (ChABC) over a range of dosages (0.1U, 1U or 5U) or subtotal nucleotomy. Radiographs were used to assess disc height changes over 12 weeks. Degenerative changes to the discs and endplates were assessed via magnetic resonance imaging (MRI), semi-quantitative histological grading, micro-computed tomography (µCT), and measurement of disc biomechanical properties. Results Degenerative changes were observed for all interventions that ranged from mild (0.1U ChABC) to moderate (1U ChABC and nucleotomy) to severe (5U ChABC). All groups showed progressive reductions in disc height over 12 weeks. Histological scores were significantly increased in the 1U and 5U ChABC groups. Reductions in T2 and T1ρ, and increased Pfirrmann grade were observed on MRI. Resorption and remodeling of the cortical boney endplate adjacent to ChABC injected discs also occurred. Spine segment range of motion was greater and compressive modulus was lower in 1U ChABC and nucleotomy discs compared to intact. Conclusions A large animal model of disc degeneration was established that recapitulates the spectrum of structural, compositional and biomechanical features of human disc degeneration. This model may serve as a robust platform for evaluating the efficacy of therapeutics targeted towards varying degrees of disc degeneration. PMID:27568573
Garland, Donita L.; Fernandez-Godino, Rosario; Kaur, Inderjeet; Speicher, Kaye D.; Harnly, James M.; Lambris, John D.; Speicher, David W.; Pierce, Eric A.
2014-01-01
Macular degenerations, inherited and age related, are important causes of vision loss. Human genetic studies have suggested perturbation of the complement system is important in the pathogenesis of age-related macular degeneration. The mechanisms underlying the involvement of the complement system are not understood, although complement and inflammation have been implicated in drusen formation. Drusen are an early clinical hallmark of inherited and age-related forms of macular degeneration. We studied one of the earliest stages of macular degeneration which precedes and leads to the formation of drusen, i.e. the formation of basal deposits. The studies were done using a mouse model of the inherited macular dystrophy Doyne Honeycomb Retinal Dystrophy/Malattia Leventinese (DHRD/ML) which is caused by a p.Arg345Trp mutation in EFEMP1. The hallmark of DHRD/ML is the formation of drusen at an early age, and gene targeted Efemp1R345W/R345W mice develop extensive basal deposits. Proteomic analyses of Bruch's membrane/choroid and Bruch's membrane in the Efemp1R345W/R345W mice indicate that the basal deposits comprise normal extracellular matrix (ECM) components present in abnormal amounts. The proteomic analyses also identified significant changes in proteins with immune-related function, including complement components, in the diseased tissue samples. Genetic ablation of the complement response via generation of Efemp1R345W/R345W:C3−/− double-mutant mice inhibited the formation of basal deposits. The results demonstrate a critical role for the complement system in basal deposit formation, and suggest that complement-mediated recognition of abnormal ECM may participate in basal deposit formation in DHRD/ML and perhaps other macular degenerations. PMID:23943789
A novel therapeutic strategy for cartilage diseases based on lipid nanoparticle-RNAi delivery system
Wang, Shaowei; Wei, Xiaochun; Sun, Xiaojuan; Chen, Chongwei; Zhou, Jingming; Zhang, Ge; Wu, Heng; Guo, Baosheng
2018-01-01
Background Cartilage degeneration affects millions of people but preventing its degeneration is a big challenge. Although RNA interference (RNAi) has been used in human trials via silencing specific genes, the cartilage RNAi has not been possible to date because the cartilage is an avascular and very dense tissue with very low permeability. Purpose The objective of this study was to develop and validate a novel lipid nanoparticle (LNP)-siRNA delivery system that can prevent cartilage degeneration by knocking down specific genes. Methods LNP transfection efficiency was evaluated in vitro and ex vivo. Indian Hedgehog (Ihh) has been correlated with cartilage degeneration. The in vivo effects of LNP-Ihh siRNA complexes on cartilage degeneration were evaluated in a rat model of surgery-induced osteoarthritis (OA). Results In vitro, 100% of chondrocytes were transfected with siRNA in the LNP-siRNA group. In accordance with the cell culture results, red positive signals could be detected even in the deep layer of cartilage tissue cultures treated by LNP-beacon. In vivo data showed that LNP is specific for cartilage, since positive signals were detected by fluorescence molecular tomography and confocal microscopy in joint cartilage injected with LNP-beacon, but not on the surface of the synovium. In the rat model of OA, intraarticular injection of LNP-Ihh siRNA attenuated OA progression, and PCR results showed LNP-Ihh siRNA exerted a positive impact on anabolic metabolism and negative impact on catabolic metabolism. Conclusion This study demonstrates that our LNP-RNAi delivery system has a significantly chondroprotective effect that attenuates cartilage degeneration and holds great promise as a powerful tool for treatment of cartilage diseases by knocking down specific genes. PMID:29440889
The human first carpometacarpal joint: osteoarthritic degeneration and 3-dimensional modeling.
Kovler, Maksim; Lundon, Katie; McKee, Nancy; Agur, Anne
2004-01-01
The purpose of this study was to gain insight into potential mechanical factors contributing to osteoarthritis of the human first carpometacarpal joint (CMC). This was accomplished by creating three-dimensional (3-D) computer models of the articular surfaces of CMC joints of older humans and by determining their locus of cartilage degeneration. The research questions of this study were: 1) What is the articular wear pattern of cartilage degeneration in CMC osteoarthritis?, (2) Are there significant topographic differences in joint area and contour between the joints of males and females?, and 3) Are there measurable bony joint recesses consistently found within the joint? The articular surfaces of 25 embalmed cadaveric joints (from 13 cadavers) were graded for degree of osteoarthritis, and the location of degeneration was mapped using a dissection microscope. The surfaces of 14 mildly degenerated joints were digitized and reconstructed as 3-D computer models using the Microscribe 3D-X Digitizer and the Rhinoceros 2.0 NURBS Modeling Software. This technology provided accurate and reproducible information on joint area and topography. The dorsoradial trapezial region was found to be significantly more degenerated than other quadrants in both males and females. Mean trapezial articular surface area was 197 mm 2 in males and 160 mm(2) in females; the respective mean areas for the metacarpal were 239 mm(2) in males and 184 mm(2) in females. Joints of females were found to be significantly more concave in radioulnar profile than those of males. Three bony joint recesses were consistently found, two in the radial and ulnar aspects of the trapezium and the third in the palmar surface of the metacarpal.
Ethanol Exposure Causes Muscle Degeneration in Zebrafish
Coffey, Elizabeth C.; Pasquarella, Maggie E.; Goody, Michelle F.
2018-01-01
Alcoholic myopathies are characterized by neuromusculoskeletal symptoms such as compromised movement and weakness. Although these symptoms have been attributed to neurological damage, EtOH may also target skeletal muscle. EtOH exposure during zebrafish primary muscle development or adulthood results in smaller muscle fibers. However, the effects of EtOH exposure on skeletal muscle during the growth period that follows primary muscle development are not well understood. We determined the effects of EtOH exposure on muscle during this phase of development. Strikingly, muscle fibers at this stage are acutely sensitive to EtOH treatment: EtOH induces muscle degeneration. The severity of EtOH-induced muscle damage varies but muscle becomes more refractory to EtOH as muscle develops. NF-kB induction in muscle indicates that EtOH triggers a pro-inflammatory response. EtOH-induced muscle damage is p53-independent. Uptake of Evans blue dye shows that EtOH treatment causes sarcolemmal instability before muscle fiber detachment. Dystrophin-null sapje mutant zebrafish also exhibit sarcolemmal instability. We tested whether Trichostatin A (TSA), which reduces muscle degeneration in sapje mutants, would affect EtOH-treated zebrafish. We found that TSA and EtOH are a lethal combination. EtOH does, however, exacerbate muscle degeneration in sapje mutants. EtOH also disrupts adhesion of muscle fibers to their extracellular matrix at the myotendinous junction: some detached muscle fibers retain beta-Dystroglycan indicating failure of muscle end attachments. Overexpression of Paxillin, which reduces muscle degeneration in zebrafish deficient for beta-Dystroglycan, is not sufficient to rescue degeneration. Taken together, our results suggest that EtOH exposure has pleiotropic deleterious effects on skeletal muscle. PMID:29615556
Are consistent equal-weight particle filters possible?
NASA Astrophysics Data System (ADS)
van Leeuwen, P. J.
2017-12-01
Particle filters are fully nonlinear data-assimilation methods that could potentially change the way we do data-assimilation in highly nonlinear high-dimensional geophysical systems. However, the standard particle filter in which the observations come in by changing the relative weights of the particles is degenerate. This means that one particle obtains weight one, and all other particles obtain a very small weight, effectively meaning that the ensemble of particles reduces to that one particle. For over 10 years now scientists have searched for solutions to this problem. One obvious solution seems to be localisation, in which each part of the state only sees a limited number of observations. However, for a realistic localisation radius based on physical arguments, the number of observations is typically too large, and the filter is still degenerate. Another route taken is trying to find proposal densities that lead to more similar particle weights. There is a simple proof, however, that shows that there is an optimum, the so-called optimal proposal density, and that optimum will lead to a degenerate filter. On the other hand, it is easy to come up with a counter example of a particle filter that is not degenerate in high-dimensional systems. Furthermore, several particle filters have been developed recently that claim to have equal or equivalent weights. In this presentation I will show how to construct a particle filter that is never degenerate in high-dimensional systems, and how that is still consistent with the proof that one cannot do better than the optimal proposal density. Furthermore, it will be shown how equal- and equivalent-weights particle filters fit within this framework. This insight will then lead to new ways to generate particle filters that are non-degenerate, opening up the field of nonlinear filtering in high-dimensional systems.
Yolas, Coskun; Kanat, Ayhan; Aydin, Mehmet Dumlu; Turkmenoglu, Osman Nuri; Gundogdu, Cemal
2014-01-15
The glossopharyngeal nerves (GPNs) and carotid bodies (CBs) have an important role in the continuation of the cerebral autoregulation and cardiorespiratory functions. The relationship between degenerative injury of CB and the GPN in subarachnoid hemorrhage (SAH) was studied. Twenty rabbits were included in this study. Five of them (n=5) were used as control group. The remaining animals (n=15) were exposed to experimental SAH. In the six animals of the SAH group, severe signs of illness were observed, and these six animals were killed in the first week after SAH. Others animals (n=9) were followed for 20 days and then sacrificed. GPNs and CBs were examined and, the live and degenerated GPN axon number, and of CB neuron numbers were stereologically estimated. The mean number of live neurons in CBs was 4206.67±148.35 and live axons of GPNs were 1211.66±14.29 in the animals of the control group. The number of degenerated neurons of CBs was 2065±110.27 and the number of degenerated axons of GPNs was 530.83±43.48 in early killed animals with SAH. The number of degenerated neurons of CBs and the number of degenerated axons of GPNs were found as 1013.89±4184 and 2270.5±134.38 in the living animals with SAH, respectively. High number of degenerated axons of GPN and neurons of CBs of the early killed animals suggest that the mortality in early SAH might be due to GPNs injury secondary to compression of their axons or supplying vessels by the probably herniated brainstem, and secondary denervation injury of CBs, and lung. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Rotenstreich, Ygal; Tzameret, Adi; Kalish, Sapir E.; Belkin, Michael; Meir, Amilia; Treves, Avraham J.; Nagler, Arnon; Sher, Ifat
2015-03-01
Incurable retinal degenerations affect millions worldwide. Stem cell transplantation rescued visual functions in animal models of retinal degeneration. In those studies cells were transplanted in subretinal "blebs", limited number of cells could be injected and photoreceptor rescue was restricted to areas in proximity to the injection sites. We developed a minimally-invasive surgical platform for drug and cell delivery in a thin layer across the subretina and extravascular spaces of the choroid. The novel system is comprised of a syringe with a blunt-tipped needle and an adjustable separator. Human bone marrow mesenchymal stem cells (hBM-MSCs) were transplanted in eyes of RCS rats and NZW rabbits through a longitudinal triangular scleral incision. No immunosuppressants were used. Retinal function was determined by electroretinogram analysis and retinal structure was determined by histological analysis and OCT. Transplanted cells were identified as a thin layer across the subretina and extravascular spaces of the choroid. In RCS rats, cell transplantation delayed photoreceptor degeneration across the entire retina and significantly enhanced retinal functions. No retinal detachment or choroidal hemorrhages were observed in rabbits following transplantation. This novel platform opens a new avenue for drug and cell delivery, placing the transplanted cells in close proximity to the damaged RPE and retina as a thin layer, across the subretina and thereby slowing down cell death and photoreceptor degeneration, without retinal detachment or choroidal hemorrhage. This new transplantation system may increase the therapeutic effect of other cell-based therapies and therapeutic agents. This study is expected to directly lead to phase I/II clinical trials for autologous hBM-MSCs transplantation in retinal degeneration patients.
Baudouin, Christophe; Denoyer, Alexandre; Desbenoit, Nicolas; Hamm, Gregory; Grise, Alice
2012-12-01
Long-term antiglaucomatous drug administration may cause irritation, dry eye, allergy, subconjunctival fibrosis, or increased risk of glaucoma surgery failure, potentially due to the preservative benzalkonium chloride (BAK), whose toxic, proinflammatory, and detergent effects have extensively been shown experimentally. We hypothesize that BAK also influences trabecular meshwork (TM) degeneration. Trabecular specimens were examined using immunohistology and reverse transcriptase-polymerase chain reaction. A trabecular cell line was stimulated by BAK and examined for apoptosis, oxidative stress, fractalkine and SDF-1 expression, and modulation of their receptors. An experimental model was developed with BAK subconjunctival injections to induce TM degeneration. Mass spectrometry (MS) imaging assessed BAK penetration after repeated instillations in rabbit eyes. Trabecular specimens showed extremely low densities of trabecular cells and presence of cells expressing fractalkine and fractalkine receptor and their respective mRNAs. Benzalkonium in vitro induced apoptosis, oxidative stress, and fractalkine expression and inhibited the protective chemokine SDF-1 and Bcl2, also inducing a sustained intraocular pressure (IOP) increase, with dramatic apoptosis of trabecular cells and reduction of aqueous outflow. MS imaging showed that BAK could access the TM at measurable levels after repeated instillations. BAK enhances all characteristics of TM degeneration typical of glaucoma-trabecular apoptosis, oxidative stress, induction of inflammatory chemokines-and causes degeneration in acute experimental conditions, potentially mimicking long-term accumulation. BAK was also shown to access the TM after repeated instillations. These findings support the hypothesis that antiglaucoma medications, through toxicity of their preservative, may cause further long-term trabecular degeneration and therefore enhance outflow resistance, reducing the impact of IOP-lowering agents.
Bernard-Marissal, Nathalie; Médard, Jean-Jacques; Azzedine, Hamid; Chrast, Roman
2015-04-01
Mutations in Sigma 1 receptor (SIGMAR1) have been previously identified in patients with amyotrophic lateral sclerosis and disruption of Sigmar1 in mouse leads to locomotor deficits. However, cellular mechanisms underlying motor phenotypes in human and mouse with disturbed SIGMAR1 function have not been described so far. Here we used a combination of in vivo and in vitro approaches to investigate the role of SIGMAR1 in motor neuron biology. Characterization of Sigmar1(-/-) mice revealed that affected animals display locomotor deficits associated with muscle weakness, axonal degeneration and motor neuron loss. Using primary motor neuron cultures, we observed that pharmacological or genetic inactivation of SIGMAR1 led to motor neuron axonal degeneration followed by cell death. Disruption of SIGMAR1 function in motor neurons disturbed endoplasmic reticulum-mitochondria contacts, affected intracellular calcium signalling and was accompanied by activation of endoplasmic reticulum stress and defects in mitochondrial dynamics and transport. These defects were not observed in cultured sensory neurons, highlighting the exacerbated sensitivity of motor neurons to SIGMAR1 function. Interestingly, the inhibition of mitochondrial fission was sufficient to induce mitochondria axonal transport defects as well as axonal degeneration similar to the changes observed after SIGMAR1 inactivation or loss. Intracellular calcium scavenging and endoplasmic reticulum stress inhibition were able to restore mitochondrial function and consequently prevent motor neuron degeneration. These results uncover the cellular mechanisms underlying motor neuron degeneration mediated by loss of SIGMAR1 function and provide therapeutically relevant insight into motor neuronal diseases. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Fluorophilia: Fluorophore-containing compounds adhere non-specifically to injured neurons
Hawkins, Bridget E.; Frederickson, Christopher J.; DeWitt, Douglas S.; Prough, Donald S.
2012-01-01
Ionic (free) zinc (Zn2+) is implicated in apoptotic neuronal degeneration and death. In our attempt to examine the effects of Zn2+ in neurodegeneration following brain injury, we serendipitously discovered that injured neurons bind fluorescein moieties, either alone or as part of an indicator dye, in histologic sections. This phenomenon, that we have termed “fluorophilia”, is analogous to the ability of degenerating neuronal somata and axons to bind silver ions (argyrophilia — the basis of silver degeneration stains). To provide evidence that fluorophilia occurs in sections of brain tissue, we used a wide variety of indicators such as Fluoro-Jade (FJ), a slightly modified fluorescein sold as a marker for degenerating neurons; Newport Green, a fluorescein-containing Zn2+ probe; Rhod-5N, a rhodamine-containing Ca2+ probe; and plain fluorescein. All yielded remarkably similar staining of degenerating neurons in the traumatic brain-injured tissue with the absence of staining in our sham-injured brains. Staining of presumptive injured neurons by these agents was not modified when Zn2+ in the brain section was removed by prior chelation with EDTA or TPEN, whereas staining by a non-fluorescein containing Zn2+ probe, N-(6-methoxy-8-quinolyl)-p-toluenesulfonamide (TSQ), was suppressed by prior chelation. Thus, certain fluorophore-containing compounds nonspecifically stain degenerating neuronal tissue in histologic sections and may not reflect the presence of Zn2+. This may be of concern to researchers using indicator dyes to detect metals in brain tissue sections. Further experiments may be advised to clarify whether Zn2+-binding dyes bind more specifically in intact neurons in culture or organotypic slices. PMID:22137653
Superior cervical gangliectomy induces non-exudative age-related macular degeneration in mice.
Dieguez, Hernán H; Romeo, Horacio E; González Fleitas, María F; Aranda, Marcos L; Milne, Georgia A; Rosenstein, Ruth E; Dorfman, Damián
2018-02-07
Non-exudative age-related macular degeneration, a prevalent cause of blindness, is a progressive and degenerative disease characterized by alterations in Bruch's membrane, retinal pigment epithelium, and photoreceptors exclusively localized in the macula. Although experimental murine models exist, the vast majority take a long time to develop retinal alterations and, in general, these alterations are ubiquitous, with many resulting from non-eye-specific genetic manipulations; additionally, most do not always reproduce the hallmarks of human age-related macular degeneration. Choroid vessels receive sympathetic innervation from the superior cervical ganglion, which, together with the parasympathetic system, regulates blood flow into the choroid. Choroid blood flow changes have been involved in age-related macular degeneration development and progression. At present, no experimental models take this factor into account. The aim of this work was to analyze the effect of superior cervical gangliectomy (also known as ganglionectomy) on the choroid, Bruch's membrane, retinal pigment epithelium and retina. Adult male C57BL/6J mice underwent unilateral superior cervical gangliectomy and a contralateral sham procedure. Although superior cervical gangliectomy induced ubiquitous choroid and choriocapillaris changes, it induced Bruch's membrane thickening, loss of retinal pigment epithelium melanin content and retinoid isomerohydrolase, the appearance of drusen-like deposits, and retinal pigment epithelium and photoreceptor atrophy, exclusively localized in the temporal side. Moreover, superior cervical gangliectomy provoked a localized increase in retinal pigment epithelium and photoreceptor apoptosis, and a decline in photoreceptor electroretinographic function. Therefore, superior cervical gangliectomy recapitulated the main features of human non-exudative age-related macular degeneration, and could become a new experimental model of dry age-related macular degeneration, and a useful platform for developing new therapies. © 2018. Published by The Company of Biologists Ltd.
Exploring Nonconvex, Crossed and Degenerate Polygons
ERIC Educational Resources Information Center
Contreras, Jose N.
2004-01-01
An exploration of nonconvex, crossed, and degenerate polygons (NCCDPs) are described with the help of examples with pedagogical tips and recommendations that are found useful when teaching the mathematical process of extending geometric patterns to NCCDPs. The study concludes that investigating such extensions with interactive geometry software…
Protect Your Eyes: Age-Related Macular Degeneration (AMD) Facts and Prevention Tips
PROTECT YOUR EYES Age-Related Macular Degeneration ( AMD ) FACTS & PREVENTION TIPS A LEADING CAUSE OF VISION LOSS IN THE U.S . AMD is a ... Black 2% Other 89% White As the population ages, the number of cases is expected to increase ...
Problem-Solving Test: The Effect of Synonymous Codons on Gene Expression
ERIC Educational Resources Information Center
Szeberenyi, Jozsef
2009-01-01
Terms to be familiar with before you start to solve the test: the genetic code, codon, degenerate codons, protein synthesis, aminoacyl-tRNA, anticodon, antiparallel orientation, wobble, unambiguous codons, ribosomes, initiation, elongation and termination of translation, peptidyl transferase, translocation, degenerate oligonucleotides, green…
Study of degenerate four-quark states with SU(2) lattice Monte Carlo techniques
NASA Astrophysics Data System (ADS)
Green, A. M.; Lukkarinen, J.; Pennanen, P.; Michael, C.
1996-01-01
The energies of four-quark states are calculated for geometries in which the quarks are situated on the corners of a series of tetrahedra and also for geometries that correspond to gradually distorting these tetrahedra into a plane. The interest in tetrahedra arises because they are composed of three degenerate partitions of the four quarks into two two-quark color singlets. This is an extension of earlier work showing that geometries with two degenerate partitions (e.g., squares) experience a large binding energy. It is now found that even larger binding energies do not result, but that for the tetrahedra the ground and first excited states become degenerate in energy. The calculation is carried out using SU(2) for static quarks in the quenched approximation with β=2.4 on a 163×32 lattice. The results are analyzed using the correlation matrix between different Euclidean times and the implications of these results are discussed for a model based on two-quark potentials.
Universal Scaling Laws in the Dynamics of a Homogeneous Unitary Bose Gas
NASA Astrophysics Data System (ADS)
Eigen, Christoph; Glidden, Jake A. P.; Lopes, Raphael; Navon, Nir; Hadzibabic, Zoran; Smith, Robert P.
2017-12-01
We study the dynamics of an initially degenerate homogeneous Bose gas after an interaction quench to the unitary regime at a magnetic Feshbach resonance. As the cloud decays and heats, it exhibits a crossover from degenerate- to thermal-gas behavior, both of which are characterized by universal scaling laws linking the particle-loss rate to the total atom number N . In the degenerate and thermal regimes, the per-particle loss rate is ∝N2 /3 and N26 /9, respectively. The crossover occurs at a universal kinetic energy per particle and at a universal time after the quench, in units of energy and time set by the gas density. By slowly sweeping the magnetic field away from the resonance and creating a mixture of atoms and molecules, we also map out the dynamics of correlations in the unitary gas, which display a universal temporal scaling with the gas density, and reach a steady state while the gas is still degenerate.
Hirashima, Hiroto; Ohkuchi, Akihide; Usui, Rie; Kijima, Shigeyoshi; Matsubara, Shigeki
2018-03-08
Degeneration of adenomyosis during pregnancy and the post-partum period is very rare. A 42-year-old Japanese parous woman with four normal-term deliveries, who presented with abdominal pain and fever at 22 weeks of gestation with transient increases of the white blood cell count and C-reactive protein, demonstrated sustained inflammation after cesarean section at 29 weeks of gestation due to the occurrence of gestational hypertension with late deceleration. The noncontrast-enhanced magnetic resonance imaging (MRI) at 22 weeks demonstrated a poorly demarcated hypointense area at the posterior uterine wall on T1- and T2-weighted imaging. The 2nd MRI 2 weeks after the cesarean section showed hypointensity on a T1-weighted image and hyperintensity on a T2-weighted image, allowing confirmation of the diagnosis of degeneration of adenomyosis. Repeated MRIs were clinically useful to diagnose the degeneration of adenomyosis. © 2018 Japan Society of Obstetrics and Gynecology.
Ultrastructure of Prototheca zopfii in bovine granulomatous mastitis.
Cheville, N F; McDonald, J; Richard, J
1984-05-01
Mammary glands from cows with protothecal mastitis were examined by light and electron microscopy at 6, 13, 20, and greater than 180 days after infection. With increasing time, there were increases in severity of granulomatous inflammation, number of endospores and sporangia, and ratio of degenerate to intact algae. Algae were found in macrophages but were not seen in neutrophils, epithelial cells, or myoepithelial cells. Macrophages containing algae were markedly enlarged, chiefly from reduplication of the Golgi complex and its associated vesicles. Intracellular algae were degenerate and consisted of intact cell wall profiles which contained membrane fragments but lacked nuclei and cytoplasmic organelles. Degenerate algae in vitro had thin cell walls and did not undergo internal lysis. Cell wall material of intracellular algae stained as an acidic, nonsulfated, carboxylated glycoprotein. These findings suggest that intracellular Prototheca zopfii degenerate by progressive lysis of internal organelles with persistence of cell wall glycans and that development of aberrant cell wall forms occurs as a defective response by host macrophages.
Comparison of Spectral Linewidths for Quantum Degenerate Bosons and Fermions
NASA Astrophysics Data System (ADS)
Notermans, R. P. M. J. W.; Rengelink, R. J.; Vassen, W.
2016-11-01
We observe a dramatic difference in optical line shapes of a 4He Bose-Einstein condensate and a 3He degenerate Fermi gas by measuring the 1557-nm 2 3S -2 1S magnetic dipole transition (8 Hz natural linewidth) in an optical dipole trap. The 15 kHz FWHM condensate line shape is only broadened by mean field interactions, whereas the degenerate Fermi gas line shape is broadened to 75 kHz FWHM due to the effect of Pauli exclusion on the spatial and momentum distributions. The asymmetric optical line shapes are observed in excellent agreement with line shape models for the quantum degenerate gases. For 4He a triplet-singlet s -wave scattering length a =+50 (10 )stat(43 )systa0 is extracted. The high spectral resolution reveals a doublet in the absorption spectrum of the BEC, and this effect is understood by the presence of a weak optical lattice in which a degeneracy of the lattice recoil and the spectroscopy photon recoil leads to Bragg-like scattering.
Primary amines protect against retinal degeneration in mouse models of retinopathies
Maeda, Akiko; Golczak, Marcin; Chen, Yu; Okano, Kiichiro; Kohno, Hideo; Shiose, Satomi; Ishikawa, Kaede; Harte, William; Palczewska, Grazyna; Maeda, Tadao; Palczewski, Krzysztof
2011-01-01
Vertebrate vision is initiated by photoisomerization of the visual pigment chromophore, 11-cis-retinal, and is maintained by continuous regeneration of this retinoid through a series of reactions termed the retinoid cycle. However, toxic side reaction products, especially those involving reactive aldehyde groups of the photoisomered product, all-trans-retinal, can cause severe retinal pathology. Here we lowered peak concentrations of free all-trans-retinal with primary amine-containing FDA-approved drugs that did not inhibit chromophore regeneration in mouse models of retinal degeneration. Schiff base adducts between all-trans-retinal and these amines were identified by mass spectrometry. Adducts were observed in mouse eyes only when an experimental drug protected the retina from degeneration in both short-term and long-term treatment experiments. This study demonstrates a molecular basis of all-trans-retinal-induced retinal pathology and identifies an assemblage of FDA-approved compounds with protective effects against this pathology in a mouse model that displays features of Stargardt’s and age-related retinal degeneration. PMID:22198730
Essuman, Kow; Summers, Daniel W; Sasaki, Yo; Mao, Xianrong; DiAntonio, Aaron; Milbrandt, Jeffrey
2017-03-22
Axonal degeneration is an early and prominent feature of many neurological disorders. SARM1 is the central executioner of the axonal degeneration pathway that culminates in depletion of axonal NAD + , yet the identity of the underlying NAD + -depleting enzyme(s) is unknown. Here, in a series of experiments using purified proteins from mammalian cells, bacteria, and a cell-free protein translation system, we show that the SARM1-TIR domain itself has intrinsic NADase activity-cleaving NAD + into ADP-ribose (ADPR), cyclic ADPR, and nicotinamide, with nicotinamide serving as a feedback inhibitor of the enzyme. Using traumatic and vincristine-induced injury models in neurons, we demonstrate that the NADase activity of full-length SARM1 is required in axons to promote axonal NAD + depletion and axonal degeneration after injury. Hence, the SARM1 enzyme represents a novel therapeutic target for axonopathies. Moreover, the widely utilized TIR domain is a protein motif that can possess enzymatic activity. Copyright © 2017 Elsevier Inc. All rights reserved.
Universal Scaling Laws in the Dynamics of a Homogeneous Unitary Bose Gas.
Eigen, Christoph; Glidden, Jake A P; Lopes, Raphael; Navon, Nir; Hadzibabic, Zoran; Smith, Robert P
2017-12-22
We study the dynamics of an initially degenerate homogeneous Bose gas after an interaction quench to the unitary regime at a magnetic Feshbach resonance. As the cloud decays and heats, it exhibits a crossover from degenerate- to thermal-gas behavior, both of which are characterized by universal scaling laws linking the particle-loss rate to the total atom number N. In the degenerate and thermal regimes, the per-particle loss rate is ∝N^{2/3} and N^{26/9}, respectively. The crossover occurs at a universal kinetic energy per particle and at a universal time after the quench, in units of energy and time set by the gas density. By slowly sweeping the magnetic field away from the resonance and creating a mixture of atoms and molecules, we also map out the dynamics of correlations in the unitary gas, which display a universal temporal scaling with the gas density, and reach a steady state while the gas is still degenerate.
Nonlinear ion-acoustic cnoidal waves in a dense relativistic degenerate magnetoplasma.
El-Shamy, E F
2015-03-01
The complex pattern and propagation characteristics of nonlinear periodic ion-acoustic waves, namely, ion-acoustic cnoidal waves, in a dense relativistic degenerate magnetoplasma consisting of relativistic degenerate electrons and nondegenerate cold ions are investigated. By means of the reductive perturbation method and appropriate boundary conditions for nonlinear periodic waves, a nonlinear modified Korteweg-de Vries (KdV) equation is derived and its cnoidal wave is analyzed. The various solutions of nonlinear ion-acoustic cnoidal and solitary waves are presented numerically with the Sagdeev potential approach. The analytical solution and numerical simulation of nonlinear ion-acoustic cnoidal waves of the nonlinear modified KdV equation are studied. Clearly, it is found that the features (amplitude and width) of nonlinear ion-acoustic cnoidal waves are proportional to plasma number density, ion cyclotron frequency, and direction cosines. The numerical results are applied to high density astrophysical situations, such as in superdense white dwarfs. This research will be helpful in understanding the properties of compact astrophysical objects containing cold ions with relativistic degenerate electrons.