Sample records for axial-vector currents

  1. Vector and Axial-Vector Current Correlators Within the Instanton Model of QCD Vacuum

    NASA Astrophysics Data System (ADS)

    Dorokhov, A. E.

    2005-08-01

    The pion electric polarizability, α {π ^ ± }E , the leading order hadronic contribution to the muon anomalous magnetic moment, aμ hvp(1) , and the ratio of the V - A and V + A correlators are found within the instanton model of QCD vacuum. The results are compared with phenomenological estimates of these quantities from the ALEPH and OPAL data on vector and axial-vector spectral densities.

  2. Polarization observables and T-noninvariance in the weak charged current induced electron proton scattering

    NASA Astrophysics Data System (ADS)

    Fatima, A.; Sajjad Athar, M.; Singh, S. K.

    2018-06-01

    In this work, we have studied the total scattering cross section (σ, differential scattering cross section ( dσ/d Q2) as well as the longitudinal ( P_L(Ee,Q2)), perpendicular ( PP(Ee,Q2)), and transverse ( PT(Ee,Q2)) components of the polarization of the final hadron ( n, Λ and Σ0) produced in the electron proton scattering induced by the weak charged current. We have not assumed T-invariance which allows the transverse component of the hadron polarization perpendicular to the production plane to be non-zero. The numerical results are presented for all the above observables and their dependence on the axial vector form factor and the weak electric form factor are discussed. The present study enables the determination of the axial vector nucleon-hyperon transition form factors at high Q2 in the strangeness sector which can provide a test of the symmetries of the weak hadronic currents like T-invariance and SU(3) symmetry while assuming the hypothesis of conserved vector current and partial conservation of axial vector current.

  3. Weak mixing below the weak scale in dark-matter direct detection

    NASA Astrophysics Data System (ADS)

    Brod, Joachim; Grinstein, Benjamin; Stamou, Emmanuel; Zupan, Jure

    2018-02-01

    If dark matter couples predominantly to the axial-vector currents with heavy quarks, the leading contribution to dark-matter scattering on nuclei is either due to one-loop weak corrections or due to the heavy-quark axial charges of the nucleons. We calculate the effects of Higgs and weak gauge-boson exchanges for dark matter coupling to heavy-quark axial-vector currents in an effective theory below the weak scale. By explicit computation, we show that the leading-logarithmic QCD corrections are important, and thus resum them to all orders using the renormalization group.

  4. Aspects of QCD current algebra on a null plane

    NASA Astrophysics Data System (ADS)

    Beane, S. R.; Hobbs, T. J.

    2016-09-01

    Consequences of QCD current algebra formulated on a light-like hyperplane are derived for the forward scattering of vector and axial-vector currents on an arbitrary hadronic target. It is shown that current algebra gives rise to a special class of sum rules that are direct consequences of the independent chiral symmetry that exists at every point on the two-dimensional transverse plane orthogonal to the lightlike direction. These sum rules are obtained by exploiting the closed, infinite-dimensional algebra satisfied by the transverse moments of null-plane axial-vector and vector charge distributions. In the special case of a nucleon target, this procedure leads to the Adler-Weisberger, Gerasimov-Drell-Hearn, Cabibbo-Radicati and Fubini-Furlan-Rossetti sum rules. Matching to the dispersion-theoretic language which is usually invoked in deriving these sum rules, the moment sum rules are shown to be equivalent to algebraic constraints on forward S-matrix elements in the Regge limit.

  5. Is There Really a Spin Crisis?

    NASA Astrophysics Data System (ADS)

    Qing, Di; Chen, XiangSong; Su, WeiNing; Wang, Fan

    1999-10-01

    The matrix element of quark axial vector current is shown to be different from the nonrelativistic quark spin sum for a nucleon at rest. The nucleon spin content discovered in polarized deep inelastic scattering is shown to be accommodated in a constituent quark model with 15% sea quark component mixing. The relativistic correction and sea quark pair excitation inherently related to quark axial vector current reduce the nucleon axial charge and this reduction is compensated by the relativistic quark orbital angular momentum exactly and in turn keeps the nucleon spin 1/2 untouched. Nucleon tensor charge has similar but smaller relativistic and sea quark pair excitation reduction. The project supported in part by the NSF (19675018), SED and SSTD of China

  6. Axial U(1) current in Grabowska and Kaplan's formulation

    NASA Astrophysics Data System (ADS)

    Hamada, Yu; Kawai, Hikaru

    2017-06-01

    Recently, Grabowska and Kaplan [Phys. Rev. Lett. 116, 211602 (2016); Phys. Rev. D 94, 114504 (2016)] suggested a nonperturbative formulation of a chiral gauge theory, which consists of the conventional domain-wall fermion and a gauge field that evolves by gradient flow from one domain wall to the other. We introduce two sets of domain-wall fermions belonging to complex conjugate representations so that the effective theory is a 4D vector-like gauge theory. Then, as a natural definition of the axial-vector current, we consider a current that generates simultaneous phase transformations for the massless modes in 4 dimensions. However, this current is exactly conserved and does not reproduce the correct anomaly. In order to investigate this point precisely, we consider the mechanism of the conservation. We find that this current includes not only the axial current on the domain wall but also a contribution from the bulk, which is nonlocal in the sense of 4D fields. Therefore, the local current is obtained by subtracting the bulk contribution from it.

  7. Test of SU(3) Symmetry in Hyperon Semileptonic Decays

    NASA Astrophysics Data System (ADS)

    Pham, T. N.

    2015-01-01

    Existing analyzes of baryon semileptonic decays indicate the presence of a small SU(3) symmetry breaking in hyperon semileptonic decays, but to provide evidence for SU(3) symmetry breaking, one would need a relation similar to the Gell-Mann-Okubo (GMO) baryon mass formula which is satisfied to a few percents, showing evidence for a small SU(3) symmetry breaking effect in the GMO mass formula. In this talk, I would like to present a similar GMO relation obtained in a recent work for hyperon semileptonic decay axial vector current matrix elements. Using these generalized GMO relations for the measured axial vector current to vector current form factor ratios, it is shown that SU(3) symmetry breaking in hyperon semileptonic decays is of 5-11% and confirms the validity of the Cabibbo model for hyperon semi-leptonic decays.

  8. Wess-Zumino current and the structure of the decay tau- -->K- pi- K+ nu tau.

    PubMed

    Coan, T E; Gao, Y S; Liu, F; Stroynowski, R; Artuso, M; Boulahouache, C; Blusk, S; Butt, J; Dambasuren, E; Dorjkhaidav, O; Haynes, J; Menaa, N; Mountain, R; Muramatsu, H; Nandakumar, R; Redjimi, R; Sia, R; Skwarnicki, T; Stone, S; Wang, J C; Zhang, Kevin; Mahmood, A H; Csorna, S E; Bonvicini, G; Cinabro, D; Dubrovin, M; Bornheim, A; Lipeles, E; Pappas, S P; Shapiro, A; Weinstein, A J; Briere, R A; Chen, G P; Ferguson, T; Tatishvili, G; Vogel, H; Watkins, M E; Adam, N E; Alexander, J P; Berkelman, K; Boisvert, V; Cassel, D G; Duboscq, J E; Ecklund, K M; Ehrlich, R; Galik, R S; Gibbons, L; Gittelman, B; Gray, S W; Hartill, D L; Heltsley, B K; Hsu, L; Jones, C D; Kandaswamy, J; Kreinick, D L; Kuznetsov, V E; Magerkurth, A; Mahlke-Krüger, H; Meyer, T O; Patterson, J R; Pedlar, T K; Peterson, D; Pivarski, J; Riley, D; Sadoff, A J; Schwarthoff, H; Shepherd, M R; Sun, W M; Thayer, J G; Urner, D; Wilksen, T; Weinberger, M; Athar, S B; Avery, P; Breva-Newell, L; Potlia, V; Stoeck, H; Yelton, J; Eisenstein, B I; Gollin, G D; Karliner, I; Lowrey, N; Naik, P; Sedlack, C; Selen, M; Thaler, J J; Williams, J; Edwards, K W; Besson, D; Gao, K Y; Gong, D T; Kubota, Y; Li, S Z; Poling, R; Scott, A W; Smith, A; Stepaniak, C J; Urheim, J; Metreveli, Z; Seth, K K; Tomaradze, A; Zweber, P; Arms, K; Eckhart, E; Gan, K K; Gwon, C; Severini, H; Skubic, P; Asner, D M; Dytman, S A; Mehrabyan, S; Mueller, J A; Nam, S; Savinov, V; Huang, G S; Miller, D H; Pavlunin, V; Sanghi, B; Shibata, E I; Shipsey, I P J; Adams, G S; Chasse, M; Cummings, J P; Danko, I; Napolitano, J; Cronin-Hennessy, D; Park, C S; Park, W; Thayer, J B; Thorndike, E H

    2004-06-11

    We present the first study of the vector (Wess-Zumino) current in tau(-)-->K-pi-K+nu(tau) decay using data collected with the CLEO III detector at the Cornell Electron Storage Ring. We determine the quantitative contributions to the decay width from the vector and axial vector currents. Within the framework of a model by Kühn and Mirkes, we identify the quantitative contributions to the total decay rate from the intermediate states omegapi, rho(')pi, and K*K.

  9. Perturbative matching of lattice and continuum heavy-light currents with NRQCD heavy quarks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morningstar, C.J.; Shigemitsu, J.

    1999-05-01

    The temporal and spatial components of the heavy-light vector current and the spatial components of the axial-vector current are expressed in terms of lattice-regulated operators suitable for simulations of {ital B} and {ital D} mesons. The currents are constructed by matching the appropriate scattering amplitudes in continuum QCD and a lattice model to one-loop order in perturbation theory. In the lattice theory, the heavy quarks are treated using the nonrelativistic (NRQCD) formulation and the light quarks are described by the tadpole-improved clover action. The light quarks are treated as massless. Our currents include relativistic and discretization corrections through O({alpha}{sub s}/M,a{alpha}{submore » s}), where {ital M} is the heavy-quark mass, {ital a} is the lattice spacing, and {alpha}{sub s} is the QCD coupling. As in our previous construction of the temporal component of the heavy-light axial-vector current, mixing between several lattice operators is encountered at one-loop order, and O(a{alpha}{sub s}) dimension-four improvement terms are identified. {copyright} {ital 1999} {ital The American Physical Society}« less

  10. Axial vector Z‧ and anomaly cancellation

    NASA Astrophysics Data System (ADS)

    Ismail, Ahmed; Keung, Wai-Yee; Tsao, Kuo-Hsing; Unwin, James

    2017-05-01

    Whilst the prospect of new Z‧ gauge bosons with only axial couplings to the Standard Model (SM) fermions is widely discussed, examples of anomaly-free renormalisable models are lacking in the literature. We look to remedy this by constructing several motivated examples. Specifically, we consider axial vectors which couple universally to all SM fermions, as well as those which are generation-specific, leptophilic, and leptophobic. Anomaly cancellation typically requires the presence of new coloured and charged chiral fermions, and we argue that in a large class of models masses of these new states are expected to be comparable to that of the axial vector. Finally, an axial vector mediator could provide a portal between SM and hidden sector states, and we also consider the possibility that the axial vector couples to dark matter. If the dark matter relic density is set due to freeze-out via the axial vector, this strongly constrains the parameter space.

  11. Quantum Monte Carlo calculation of neutral-current ν -12C inclusive quasielastic scattering

    NASA Astrophysics Data System (ADS)

    Lovato, A.; Gandolfi, S.; Carlson, J.; Lusk, Ewing; Pieper, Steven C.; Schiavilla, R.

    2018-02-01

    Quasielastic neutrino scattering is an important aspect of the experimental program to study fundamental neutrino properties including neutrino masses, mixing angles, mass hierarchy, and charge-conjugation parity (CP)- violating phase. Proper interpretation of the experiments requires reliable theoretical calculations of neutrino-nucleus scattering. In this paper we present calculations of response functions and cross sections by neutral-current scattering of neutrinos off 12C. These calculations are based on realistic treatments of nuclear interactions and currents, the latter including the axial, vector, and vector-axial interference terms crucial for determining the difference between neutrino and antineutrino scattering and the CP-violating phase. We find that the strength and energy dependence of two-nucleon processes induced by correlation effects and interaction currents are crucial in providing the most accurate description of neutrino-nucleus scattering in the quasielastic regime.

  12. Dark forces coupled to nonconserved currents

    NASA Astrophysics Data System (ADS)

    Dror, Jeff A.; Lasenby, Robert; Pospelov, Maxim

    2017-10-01

    New light vectors with dimension-4 couplings to Standard Model states have (energy/vectormass)2-enhanced production rates unless the current they couple to is conserved. These processes allow us to derive new constraints on the couplings of such vectors, that are significantly stronger than the previous literature for a wide variety of models. Examples include vectors with axial couplings to quarks and vectors coupled to currents (such as baryon number) that are only broken by the chiral anomaly. Our new limits arise from a range of processes, including rare Z decays and flavor-changing meson decays, and rule out a number of phenomenologically motivated proposals.

  13. Topological responses from chiral anomaly in multi-Weyl semimetals

    NASA Astrophysics Data System (ADS)

    Huang, Ze-Min; Zhou, Jianhui; Shen, Shun-Qing

    2017-08-01

    Multi-Weyl semimetals are a kind of topological phase of matter with discrete Weyl nodes characterized by multiple monopole charges, in which the chiral anomaly, the anomalous nonconservation of an axial current, occurs in the presence of electric and magnetic fields. Electronic transport properties related to the chiral anomaly in the presence of both electromagnetic fields and axial electromagnetic fields in multi-Weyl semimetals are systematically studied. It has been found that the anomalous Hall conductivity has a modification linear in the axial vector potential from inhomogeneous strains. The axial electric field leads to an axial Hall current that is proportional to the distance of Weyl nodes in momentum space. This axial current may generate chirality accumulation of Weyl fermions through delicately engineering the axial electromagnetic fields even in the absence of external electromagnetic fields. Therefore this work provides a nonmagnetic mechanism of generation of chirality accumulation in Weyl semimetals and might shed new light on the application of Weyl semimetals in the emerging field of valleytronics.

  14. New QCD sum rules based on canonical commutation relations

    NASA Astrophysics Data System (ADS)

    Hayata, Tomoya

    2012-04-01

    New derivation of QCD sum rules by canonical commutators is developed. It is the simple and straightforward generalization of Thomas-Reiche-Kuhn sum rule on the basis of Kugo-Ojima operator formalism of a non-abelian gauge theory and a suitable subtraction of UV divergences. By applying the method to the vector and axial vector current in QCD, the exact Weinberg’s sum rules are examined. Vector current sum rules and new fractional power sum rules are also discussed.

  15. Nucleon form factors with 2+1 flavor dynamical domain-wall fermions

    NASA Astrophysics Data System (ADS)

    Yamazaki, Takeshi; Aoki, Yasumichi; Blum, Tom; Lin, Huey-Wen; Ohta, Shigemi; Sasaki, Shoichi; Tweedie, Robert; Zanotti, James

    2009-06-01

    We report our numerical lattice QCD calculations of the isovector nucleon form factors for the vector and axial-vector currents: the vector, induced tensor, axial-vector, and induced pseudoscalar form factors. The calculation is carried out with the gauge configurations generated with Nf=2+1 dynamical domain-wall fermions and Iwasaki gauge actions at β=2.13, corresponding to a cutoff a-1=1.73GeV, and a spatial volume of (2.7fm)3. The up and down-quark masses are varied so the pion mass lies between 0.33 and 0.67 GeV while the strange quark mass is about 12% heavier than the physical one. We calculate the form factors in the range of momentum transfers, 0.26 is required to ensure that finite-volume effects are below 1%.

  16. Quantum Monte Carlo calculation of neutral-current ν - C 12 inclusive quasielastic scattering

    DOE PAGES

    Lovato, A.; Gandolfi, S.; Carlson, J.; ...

    2018-02-28

    Quasielastic neutrino scattering is an important aspect of the experimental program to study fundamental neutrino properties including neutrino masses, mixing angles, the mass hierarchy and CP-violating phase. Proper interpretation of the experiments requires reliable theoretical calculations of neutrino-nucleus scattering. In this paper we present calculations of response functions and cross sections by neutral-current scattering of neutrinos offmore » $$^{12}$$C. These calculations are based on realistic treatments of nuclear interactions and currents, the latter including the axial, vector, and vector-axial interference terms crucial for determining the difference between neutrino and anti-neutrino scattering and the CP-violating phase. Here in this paper, we find that the strength and energy-dependence of two-nucleon processes induced by correlation effects and interaction currents are crucial in providing the most accurate description of neutrino-nucleus scattering in the quasielastic regime.« less

  17. Quantum Monte Carlo calculation of neutral-current ν - C 12 inclusive quasielastic scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lovato, A.; Gandolfi, S.; Carlson, J.

    Quasielastic neutrino scattering is an important aspect of the experimental program to study fundamental neutrino properties including neutrino masses, mixing angles, the mass hierarchy and CP-violating phase. Proper interpretation of the experiments requires reliable theoretical calculations of neutrino-nucleus scattering. In this paper we present calculations of response functions and cross sections by neutral-current scattering of neutrinos offmore » $$^{12}$$C. These calculations are based on realistic treatments of nuclear interactions and currents, the latter including the axial, vector, and vector-axial interference terms crucial for determining the difference between neutrino and anti-neutrino scattering and the CP-violating phase. Here in this paper, we find that the strength and energy-dependence of two-nucleon processes induced by correlation effects and interaction currents are crucial in providing the most accurate description of neutrino-nucleus scattering in the quasielastic regime.« less

  18. Heavy quark form factors at two loops

    NASA Astrophysics Data System (ADS)

    Ablinger, J.; Behring, A.; Blümlein, J.; Falcioni, G.; De Freitas, A.; Marquard, P.; Rana, N.; Schneider, C.

    2018-05-01

    We compute the two-loop QCD corrections to the heavy quark form factors in the case of the vector, axial-vector, scalar and pseudoscalar currents up to second order in the dimensional parameter ɛ =(4 -D )/2 . These terms are required in the renormalization of the higher-order corrections to these form factors.

  19. Realistic model for a fifth force explaining anomaly in Be8* →8Bee+e- decay

    NASA Astrophysics Data System (ADS)

    Gu, Pei-Hong; He, Xiao-Gang

    2017-06-01

    We propose a theoretical model to explain a 6.8 σ anomaly recently reported in the opening angle and invariant mass distributions of e+e- pairs produced in excited Be8* nuclear transition to its ground state 8B e. The anomaly is explained by a fifth force mediated by a 17 MeV X boson through the decay Be8* →8Be X followed by X →e+e-. The X boson comes from extension of the standard model with two additional U(1) gauge symmetries producing a protophobic pure vector current interaction with quarks. The model also contains axial-vector current interaction. Although the existent axial-vector current interactions are strongly constrained by the measurement of parity violation in e-quark scattering, their contributions cancel out in the iso-scalar interaction for Be8* →8Be X. It is remarkable that the model parameters need to explain the anomaly survive all known low energy experimental constraints. The model may also alleviate the long-standing (g - 2)μ anomaly problem and can be probed by the LHCb experiment.

  20. Renormalization of the weak hadronic current in the nuclear medium

    NASA Astrophysics Data System (ADS)

    Siiskonen, T.; Hjorth-Jensen, M.; Suhonen, J.

    2001-05-01

    The renormalization of the weak charge-changing hadronic current as a function of the reaction energy release is studied at the nucleonic level. We have calculated the average quenching factors for each type of current (vector, axial vector, and induced pseudoscalar). The obtained quenching in the axial vector part is, at zero momentum transfer, 19% for the 1s0d shell and 23% in the 1p0f shell. We have extended the calculations also to heavier systems such as 56Ni and 100Sn, where we obtain stronger quenchings, 44% and 59%, respectively. Gamow-Teller-type transitions are discussed, along with the higher-order matrix elements. The quenching factors are constant up to roughly 60 MeV momentum transfer. Therefore the use of energy-independent quenching factors in beta decay is justified. We also found that going beyond the zeroth and first order operators (in inverse nucleon mass) does not give any substantial contribution. The extracted renormalization to the ratio CP/CA at q=100 MeV is -3.5%, -7.1%, -28.6%, and +8.7% for mass 16, 40, 56, and 100, respectively.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moyotl, A.; Rosado, A.; Tavares-Velasco, G.

    The magnetic dipole moment and the electric dipole moment of leptons are calculated under the assumption of lepton flavor violation (LFV) induced by spin-1 unparticles with both vector and axial-vector couplings to leptons, including a CP-violating phase. The experimental limits on the muon magnetic dipole moment and LFV process, such as the decay l{sub i}{sup -}{yields}l{sub j}{sup -}l{sub k}{sup -}l{sub k}{sup +}, are then used to constrain the LFV couplings for particular values of the unparticle operator dimension d{sub U} and the unparticle scale {Lambda}{sub U}, assuming that LFV transitions between the tau and muon leptons are dominant. It ismore » found that the current experimental constraints favor a scenario with dominance of the vector couplings over the axial-vector couplings. We also obtain estimates for the electric dipole moments of the electron and the muon, which are well below the experimental values.« less

  2. Comment on "Chiral gauge field and axial anomaly in a Weyl semimetal"

    NASA Astrophysics Data System (ADS)

    Zhang, Kai; Zhang, Erhu; Zhang, Shengli

    2017-12-01

    In Liu et al. [Phys. Rev. B 87, 235306 (2013), 10.1103/PhysRevB.87.235306], the authors obtain that the cross coupling between vector gauge field and chiral gauge field can lead to the anomaly of vector current. We demonstrate that this anomaly is not a physical effect. On one hand, it can be regulated out by the proper regulation. On the other hand, it leads to unjustifiable results, the breaking of the vector gauge symmetry and the ambiguous boundary current. Moreover, the effects associated with anomaly of vector current are understood by random phase approximation (RPA) in the paper we comment on. We point out that the RPA cannot describe the effects resulting from the quantum anomaly.

  3. Iso-vector form factors of the delta and nucleon in QCD sum rules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ozpineci, A.

    Form factors are important non-perturbative properties of hadrons. They give information about the internal structure of the hadrons. In this work, iso-vector axial-vector and iso-vector tensor form factors of the nucleon and the iso-vector axial-vector {Delta}{yields}N transition form factor calculations in QCD Sum Rules are presented.

  4. Weak interaction probes of light nuclei

    NASA Astrophysics Data System (ADS)

    Towner, I. S.

    1986-03-01

    Experimental evidence for pion enhancement in axial charge transitions as predicted by softpion theorems is reviewed. Corrections from non-soft-pion terms seem to be limited. For transitions involving the space part of the axial-vector current, soft-pion theorems are powerless. Meson-exchange currents then involve a complicated interplay among competing process. Explicit calculations in the hard-pion model for closed-shell-plus (or minus)-one nuclei, A=15 and A= =17, are in reasonable agreement with experiment. Quenching in the off-diagonal spin-flip matrix element is larger than in the diagonal matrix element.

  5. Large-Nc sum rules for charmed baryons at subleading orders

    NASA Astrophysics Data System (ADS)

    Heo, Yonggoo; Lutz, Matthias F. M.

    2018-05-01

    Sum rules for the low-energy constants of the chiral SU(3) Lagrangian with charmed baryons of spin JP=1 /2+ and JP=3 /2+ baryons are derived from large-Nc QCD. We consider the large-Nc operator expansion at subleading orders for current-current correlation functions in the charmed baryon-ground states for two scalar and two axial-vector currents.

  6. Nonperturbative renormalization of the axial current in Nf=3 lattice QCD with Wilson fermions and a tree-level improved gauge action

    NASA Astrophysics Data System (ADS)

    Bulava, John; Della Morte, Michele; Heitger, Jochen; Wittemeier, Christian

    2016-06-01

    We nonperturbatively determine the renormalization factor of the axial vector current in lattice QCD with Nf=3 flavors of Wilson-clover fermions and the tree-level Symanzik-improved gauge action. The (by now standard) renormalization condition is derived from the massive axial Ward identity, and it is imposed among Schrödinger functional states with large overlap on the lowest lying hadronic state in the pseudoscalar channel, in order to reduce kinematically enhanced cutoff effects. We explore a range of couplings relevant for simulations at lattice spacings of ≈0.09 fm and below. An interpolation formula for ZA(g02) , smoothly connecting the nonperturbative values to the 1-loop expression, is provided together with our final results.

  7. Spin polarized phases in strongly interacting matter: Interplay between axial-vector and tensor mean fields

    NASA Astrophysics Data System (ADS)

    Maruyama, Tomoyuki; Nakano, Eiji; Yanase, Kota; Yoshinaga, Naotaka

    2018-06-01

    The spontaneous spin polarization of strongly interacting matter due to axial-vector- and tensor-type interactions is studied at zero temperature and high baryon-number densities. We start with the mean-field Lagrangian for the axial-vector and tensor interaction channels and find in the chiral limit that the spin polarization due to the tensor mean field (U ) takes place first as the density increases for sufficiently strong coupling constants, and then the spin polarization due to the axial-vector mean field (A ) emerges in the region of the finite tensor mean field. This can be understood as making the axial-vector mean-field finite requires a broken chiral symmetry somehow, which is achieved by the finite tensor mean field in the present case. It is also found from the symmetry argument that there appear the type I (II) Nambu-Goldstone modes with a linear (quadratic) dispersion in the spin polarized phase with U ≠0 and A =0 (U ≠0 and A ≠0 ), although these two phases exhibit the same symmetry breaking pattern.

  8. Anomalous current from the covariant Wigner function

    NASA Astrophysics Data System (ADS)

    Prokhorov, George; Teryaev, Oleg

    2018-04-01

    We consider accelerated and rotating media of weakly interacting fermions in local thermodynamic equilibrium on the basis of kinetic approach. Kinetic properties of such media can be described by covariant Wigner function incorporating the relativistic distribution functions of particles with spin. We obtain the formulae for axial current by summation of the terms of all orders of thermal vorticity tensor, chemical potential, both for massive and massless particles. In the massless limit all the terms of fourth and higher orders of vorticity and third order of chemical potential and temperature equal zero. It is shown, that axial current gets a topological component along the 4-acceleration vector. The similarity between different approaches to baryon polarization is established.

  9. Approximate degeneracy of J =1 spatial correlators in high temperature QCD

    NASA Astrophysics Data System (ADS)

    Rohrhofer, C.; Aoki, Y.; Cossu, G.; Fukaya, H.; Glozman, L. Ya.; Hashimoto, S.; Lang, C. B.; Prelovsek, S.

    2017-11-01

    We study spatial isovector meson correlators in Nf=2 QCD with dynamical domain-wall fermions on 3 23×8 lattices at temperatures T =220 - 380 MeV . We measure the correlators of spin-one (J =1 ) operators including vector, axial-vector, tensor and axial-tensor. Restoration of chiral U (1 )A and S U (2 )L×S U (2 )R symmetries of QCD implies degeneracies in vector-axial-vector (S U (2 )L×S U (2 )R) and tensor-axial-tensor (U (1 )A) pairs, which are indeed observed at temperatures above Tc. Moreover, we observe an approximate degeneracy of all J =1 correlators with increasing temperature. This approximate degeneracy suggests emergent S U (2 )CS and S U (4 ) symmetries at high temperatures, that mix left- and right-handed quarks.

  10. Light weakly coupled axial forces: models, constraints, and projections

    DOE PAGES

    Kahn, Yonatan; Krnjaic, Gordan; Mishra-Sharma, Siddharth; ...

    2017-05-01

    Here, we investigate the landscape of constraints on MeV-GeV scale, hidden U(1) forces with nonzero axial-vector couplings to Standard Model fermions. While the purely vector-coupled dark photon, which may arise from kinetic mixing, is a well-motivated scenario, several MeV-scale anomalies motivate a theory with axial couplings which can be UV-completed consistent with Standard Model gauge invariance. Moreover, existing constraints on dark photons depend on products of various combinations of axial and vector couplings, making it difficult to isolate the e ects of axial couplings for particular flavors of SM fermions. We present a representative renormalizable, UV-complete model of a darkmore » photon with adjustable axial and vector couplings, discuss its general features, and show how some UV constraints may be relaxed in a model with nonrenormalizable Yukawa couplings at the expense of fine-tuning. We survey the existing parameter space and the projected reach of planned experiments, brie y commenting on the relevance of the allowed parameter space to low-energy anomalies in π 0 and 8Be* decay.« less

  11. Light weakly coupled axial forces: models, constraints, and projections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kahn, Yonatan; Krnjaic, Gordan; Mishra-Sharma, Siddharth

    Here, we investigate the landscape of constraints on MeV-GeV scale, hidden U(1) forces with nonzero axial-vector couplings to Standard Model fermions. While the purely vector-coupled dark photon, which may arise from kinetic mixing, is a well-motivated scenario, several MeV-scale anomalies motivate a theory with axial couplings which can be UV-completed consistent with Standard Model gauge invariance. Moreover, existing constraints on dark photons depend on products of various combinations of axial and vector couplings, making it difficult to isolate the e ects of axial couplings for particular flavors of SM fermions. We present a representative renormalizable, UV-complete model of a darkmore » photon with adjustable axial and vector couplings, discuss its general features, and show how some UV constraints may be relaxed in a model with nonrenormalizable Yukawa couplings at the expense of fine-tuning. We survey the existing parameter space and the projected reach of planned experiments, brie y commenting on the relevance of the allowed parameter space to low-energy anomalies in π 0 and 8Be* decay.« less

  12. Model independent new physics analysis in Λ _b→ Λ μ ^+μ ^- decay

    NASA Astrophysics Data System (ADS)

    Das, Diganta

    2018-03-01

    We study the rare Λ _b→ Λ μ ^+μ ^- decay in the Standard Model and beyond. Beyond the Standard Model we include new vector and axial-vector operators, scalar and pseudo-scalar operators, and tensor operators in the effective Hamiltonian. Working in the helicity basis and using appropriate parametrization of the Λ _b → Λ hadronic matrix elements, we give expressions of hadronic and leptonic helicity amplitudes and derive expression of double differential branching ratio with respect to dilepton invariant mass squared and cosine of lepton angle. Appropriately integrating the differential branching ratio over the lepton angle, we obtain the longitudinal polarization fraction and the leptonic forward-backward asymmetry and sequentially study the observables in the presence of the new couplings. To analyze the implications of the new vector and axial-vector couplings, we follow the current global fits to b→ sμ ^+μ ^- data. While the impacts of scalar couplings can be significant, exclusive \\bar{B}→ X_sμ ^+μ ^- data imply stringent constraints on the tensor couplings and hence the effects on Λ _b→ Λ μ ^+μ ^- are negligible.

  13. Inclusive τ lepton hadronic decay in vector and axial-vector channels within dispersive approach to QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nesterenko, A. V.

    The dispersive approach to QCD, which properly embodies the intrinsically nonperturbative constraints originating in the kinematic restrictions on relevant physical processes and extends the applicability range of perturbation theory towards the infrared domain, is briefly overviewed. The study of OPAL (update 2012) and ALEPH (update 2014) experimental data on inclusive τ lepton hadronic decay in vector and axial-vector channels within dispersive approach is presented.

  14. 77 FR 4853 - In the Matter of Airbee Wireless, Inc., Axial Vector Engine Corp. (n/k/a Avec Corporation), and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-31

    ... Vector Engine Corp. (n/k/a Avec Corporation), and Exploration Drilling International, Inc.; Order of... securities of Axial Vector Engine Corp. (n/k/a Avec Corporation) because it has not filed any periodic...(k) of the Securities Exchange Act of 1934, that trading in the securities of the above-listed...

  15. Vector and axial-vector decomposition of Einstein's gravitational action

    NASA Astrophysics Data System (ADS)

    Soh, Kwang S.

    1991-08-01

    Vector and axial-vector gravitational fields are introduced to express the Einstein action in the manner of electromagnetism. Their conformal scaling properties are examined, and the resemblance between the general coordinate and electromagnetic gauge transformation is elucidated. The chiral formulation of the gravitational action is constructed. I am deeply grateful to Professor S. Hawking, and Professor G. Lloyd for warm hospitality at DAMTP, and Darwin College, University of Cambridge, respectively. I also appreciate much help received from Dr. Q.-H. Park.

  16. Regularized Biot–Savart Laws for Modeling Magnetic Flux Ropes

    NASA Astrophysics Data System (ADS)

    Titov, Viacheslav S.; Downs, Cooper; Mikić, Zoran; Török, Tibor; Linker, Jon A.; Caplan, Ronald M.

    2018-01-01

    Many existing models assume that magnetic flux ropes play a key role in solar flares and coronal mass ejections (CMEs). It is therefore important to develop efficient methods for constructing flux-rope configurations constrained by observed magnetic data and the morphology of the pre-eruptive source region. For this purpose, we have derived and implemented a compact analytical form that represents the magnetic field of a thin flux rope with an axis of arbitrary shape and circular cross-sections. This form implies that the flux rope carries axial current I and axial flux F, so that the respective magnetic field is the curl of the sum of axial and azimuthal vector potentials proportional to I and F, respectively. We expressed the vector potentials in terms of modified Biot–Savart laws, whose kernels are regularized at the axis in such a way that, when the axis is straight, these laws define a cylindrical force-free flux rope with a parabolic profile for the axial current density. For the cases we have studied so far, we determined the shape of the rope axis by following the polarity inversion line of the eruptions’ source region, using observed magnetograms. The height variation along the axis and other flux-rope parameters are estimated by means of potential-field extrapolations. Using this heuristic approach, we were able to construct pre-eruption configurations for the 2009 February 13 and 2011 October 1 CME events. These applications demonstrate the flexibility and efficiency of our new method for energizing pre-eruptive configurations in simulations of CMEs.

  17. Δ(1232) axial charge and form factors from lattice QCD.

    PubMed

    Alexandrou, Constantia; Gregory, Eric B; Korzec, Tomasz; Koutsou, Giannis; Negele, John W; Sato, Toru; Tsapalis, Antonios

    2011-09-30

    We present the first calculation on the Δ axial vector and pseudoscalar form factors using lattice QCD. Two Goldberger-Treiman relations are derived and examined. A combined chiral fit is performed to the nucleon axial charge, N to Δ axial transition coupling constant and Δ axial charge.

  18. Weak η production off the nucleon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alam, M. Rafi; Athar, M. Sajjad; Alvarez-Ruso, L.

    2015-05-15

    The weak η-meson production off the nucleon induced by (anti)neutrinos is studied at low and intermediate energies, the range of interest for several ongoing and future neutrino experiments. We consider Born diagrams and the excitation of N{sup *} (1535)S{sub 11} and N{sup *} (1650)S{sub 11} resonances. The vector part of the N-S{sub 11} transition form factors has been obtained from the MAID helicity amplitudes while the poorly known axial part is constrained with the help of the partial conservation of the axial current (PCAC) and assuming the pion-pole dominance of the pseudoscalar form factor.

  19. Chiral Magnetic Effect and Anomalous Transport from Real-Time Lattice Simulations

    DOE PAGES

    Müller, Niklas; Schlichting, Sören; Sharma, Sayantan

    2016-09-30

    Here, we present a first-principles study of anomaly induced transport phenomena by performing real-time lattice simulations with dynamical fermions coupled simultaneously to non-Abelian S U ( N c ) and Abelian U ( 1 ) gauge fields. By investigating the behavior of vector and axial currents during a sphaleron transition in the presence of an external magnetic field, we demonstrate how the interplay of the chiral magnetic and chiral separation effect leads to the formation of a propagating wave. Furthermore, we analyze the dependence of the magnitude of the induced vector current and the propagation of the wave on themore » amount of explicit chiral symmetry breaking due to finite quark masses.« less

  20. Vector and Axial-Vector Correlators in AN Instanton-Like Quark Model

    NASA Astrophysics Data System (ADS)

    Dorokhov, Alexander E.

    The behavior of the vector Adler function at spacelike momenta is studied in the framework of a covariant chiral quark model with instanton-like quark-quark interaction. This function describes the transition between the high energy asymptotically free region of almost massless current quarks to the low energy hadronized regime with massive constituent quarks. The model reproduces the Adler function and V-A correlator extracted from the ALEPH and OPAL data on hadronic τ lepton decays, transformed into the Euclidean domain via dispersion relations. The leading order contribution from hadronic part of the photon vacuum polarization to the anomalous magnetic moment of the muon, aμ hvp(1), is estimated.

  1. Axial-vector form factors of the nucleon from lattice QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, Rajan; Jang, Yong-Chull; Lin, Huey-Wen

    In this paper, we present results for the form factors of the isovector axial vector current in the nucleon state using large scale simulations of lattice QCD. The calculations were done using eight ensembles of gauge configurations generated by the MILC collaboration using the HISQ action with 2 + 1 + 1 dynamical flavors. These ensembles span three lattice spacings a ≈ 0.06 , 0.09, and 0.12 fm and light-quark masses corresponding to the pion masses M π ≈ 135, 225, and 310 MeV. High-statistics estimates allow us to quantify systematic uncertainties in the extraction of G A (Q 2)more » and the induced pseudoscalar form factor G P(Q 2) . We perform a simultaneous extrapolation in the lattice spacing, lattice volume and light-quark masses of the axial charge radius r A data to obtain physical estimates. Using the dipole ansatz to fit the Q 2 behavior we obtain r A | dipole = 0.49(3) fm , which corresponds to M A = 1.39(9) GeV , and is consistent with M A = 1.35(17) GeV obtained by the miniBooNE collaboration. The estimate obtained using the z -expansion is r A | z - expansion = 0.46(6) fm, and the combined result is r A | combined = 0.48(4) fm. Analysis of the induced pseudoscalar form factor G P (Q 2) yields low estimates for g* P and g πNN compared to their phenomenological values. To understand these, we analyze the partially conserved axial current (PCAC) relation by also calculating the pseudoscalar form factor. Lastly, we find that these low values are due to large deviations in the PCAC relation between the three form factors, and in the pion-pole dominance hypothesis.« less

  2. Axial-vector form factors of the nucleon from lattice QCD

    DOE PAGES

    Gupta, Rajan; Jang, Yong-Chull; Lin, Huey-Wen; ...

    2017-12-04

    In this paper, we present results for the form factors of the isovector axial vector current in the nucleon state using large scale simulations of lattice QCD. The calculations were done using eight ensembles of gauge configurations generated by the MILC collaboration using the HISQ action with 2 + 1 + 1 dynamical flavors. These ensembles span three lattice spacings a ≈ 0.06 , 0.09, and 0.12 fm and light-quark masses corresponding to the pion masses M π ≈ 135, 225, and 310 MeV. High-statistics estimates allow us to quantify systematic uncertainties in the extraction of G A (Q 2)more » and the induced pseudoscalar form factor G P(Q 2) . We perform a simultaneous extrapolation in the lattice spacing, lattice volume and light-quark masses of the axial charge radius r A data to obtain physical estimates. Using the dipole ansatz to fit the Q 2 behavior we obtain r A | dipole = 0.49(3) fm , which corresponds to M A = 1.39(9) GeV , and is consistent with M A = 1.35(17) GeV obtained by the miniBooNE collaboration. The estimate obtained using the z -expansion is r A | z - expansion = 0.46(6) fm, and the combined result is r A | combined = 0.48(4) fm. Analysis of the induced pseudoscalar form factor G P (Q 2) yields low estimates for g* P and g πNN compared to their phenomenological values. To understand these, we analyze the partially conserved axial current (PCAC) relation by also calculating the pseudoscalar form factor. Lastly, we find that these low values are due to large deviations in the PCAC relation between the three form factors, and in the pion-pole dominance hypothesis.« less

  3. Search for dark matter produced with an energetic jet or a hadronically decaying W or Z boson at $$\\sqrt{s}=13 $$ TeV

    DOE PAGES

    Sirunyan, A. M.; Tumasyan, A.; Adam, W.; ...

    2017-07-05

    A search for dark matter particles is performed using events with large missing transverse momentum, at least one energetic jet, and no leptons, in proton-proton collisions atmore » $$ \\sqrt{s}=13 $$ TeV collected with the CMS detector at the LHC. The data sample corresponds to an integrated luminosity of 12.9 fb -1. The search includes events with jets from the hadronic decays of a W or Z boson. The data are found to be in agreement with the predicted background contributions from standard model processes. The results are presented in terms of simplified models in which dark matter particles are produced through interactions involving a vector, axial-vector, scalar, or pseudoscalar mediator. Vector and axial-vector mediator particles with masses up to 1.95 TeV, and scalar and pseudoscalar mediator particles with masses up to 100 and 430 GeV respectively, are excluded at 95% confidence level. The results are also interpreted in terms of the invisible decays of the Higgs boson, yielding an observed (expected) 95% confidence level upper limit of 0.44 (0.56) on the corresponding branching fraction. The results of this search provide the strongest constraints on the dark matter pair production cross section through vector and axial-vector mediators at a particle collider. When compared to the direct detection experiments, the limits obtained from this search provide stronger constraints for dark matter masses less than 5, 9, and 550 GeV, assuming vector, scalar, and axial-vector mediators, respectively. In conclusion, the search yields stronger constraints for dark matter masses less than 200 GeV, assuming a pseudoscalar mediator, when compared to the indirect detection results from Fermi-LAT.« less

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sirunyan, A. M.; Tumasyan, A.; Adam, W.

    A search for dark matter particles is performed using events with large missing transverse momentum, at least one energetic jet, and no leptons, in proton-proton collisions atmore » $$ \\sqrt{s}=13 $$ TeV collected with the CMS detector at the LHC. The data sample corresponds to an integrated luminosity of 12.9 fb -1. The search includes events with jets from the hadronic decays of a W or Z boson. The data are found to be in agreement with the predicted background contributions from standard model processes. The results are presented in terms of simplified models in which dark matter particles are produced through interactions involving a vector, axial-vector, scalar, or pseudoscalar mediator. Vector and axial-vector mediator particles with masses up to 1.95 TeV, and scalar and pseudoscalar mediator particles with masses up to 100 and 430 GeV respectively, are excluded at 95% confidence level. The results are also interpreted in terms of the invisible decays of the Higgs boson, yielding an observed (expected) 95% confidence level upper limit of 0.44 (0.56) on the corresponding branching fraction. The results of this search provide the strongest constraints on the dark matter pair production cross section through vector and axial-vector mediators at a particle collider. When compared to the direct detection experiments, the limits obtained from this search provide stronger constraints for dark matter masses less than 5, 9, and 550 GeV, assuming vector, scalar, and axial-vector mediators, respectively. In conclusion, the search yields stronger constraints for dark matter masses less than 200 GeV, assuming a pseudoscalar mediator, when compared to the indirect detection results from Fermi-LAT.« less

  5. Nucleon form factors from quenched lattice QCD with domain wall fermions

    NASA Astrophysics Data System (ADS)

    Sasaki, Shoichi; Yamazaki, Takeshi

    2008-07-01

    We present a quenched lattice calculation of the weak nucleon form factors: vector [FV(q2)], induced tensor [FT(q2)], axial vector [FA(q2)] and induced pseudoscalar [FP(q2)] form factors. Our simulations are performed on three different lattice sizes L3×T=243×32, 163×32, and 123×32 with a lattice cutoff of a-1≈1.3GeV and light quark masses down to about 1/4 the strange quark mass (mπ≈390MeV) using a combination of the DBW2 gauge action and domain wall fermions. The physical volume of our largest lattice is about (3.6fm)3, where the finite volume effects on form factors become negligible and the lower momentum transfers (q2≈0.1GeV2) are accessible. The q2 dependences of form factors in the low q2 region are examined. It is found that the vector, induced tensor, and axial-vector form factors are well described by the dipole form, while the induced pseudoscalar form factor is consistent with pion-pole dominance. We obtain the ratio of axial to vector coupling gA/gV=FA(0)/FV(0)=1.219(38) and the pseudoscalar coupling gP=mμFP(0.88mμ2)=8.15(54), where the errors are statistical errors only. These values agree with experimental values from neutron β decay and muon capture on the proton. However, the root mean-squared radii of the vector, induced tensor, and axial vector underestimate the known experimental values by about 20%. We also calculate the pseudoscalar nucleon matrix element in order to verify the axial Ward-Takahashi identity in terms of the nucleon matrix elements, which may be called as the generalized Goldberger-Treiman relation.

  6. Computing the nucleon charge and axial radii directly at Q2=0 in lattice QCD

    NASA Astrophysics Data System (ADS)

    Hasan, Nesreen; Green, Jeremy; Meinel, Stefan; Engelhardt, Michael; Krieg, Stefan; Negele, John; Pochinsky, Andrew; Syritsyn, Sergey

    2018-02-01

    We describe a procedure for extracting momentum derivatives of nucleon matrix elements on the lattice directly at Q2=0 . This is based on the Rome method for computing momentum derivatives of quark propagators. We apply this procedure to extract the nucleon isovector magnetic moment and charge radius as well as the isovector induced pseudoscalar form factor at Q2=0 and the axial radius. For comparison, we also determine these quantities with the traditional approach of computing the corresponding form factors, i.e. GEv(Q2) and GMv(Q2) for the case of the vector current and GPv(Q2) and GAv(Q2) for the axial current, at multiple Q2 values followed by z -expansion fits. We perform our calculations at the physical pion mass using a 2HEX-smeared Wilson-clover action. To control the effects of excited-state contamination, the calculations were done at three source-sink separations and the summation method was used. The derivative method produces results consistent with those from the traditional approach but with larger statistical uncertainties especially for the isovector charge and axial radii.

  7. Minimally doubled fermions at one loop

    NASA Astrophysics Data System (ADS)

    Capitani, Stefano; Weber, Johannes; Wittig, Hartmut

    2009-10-01

    Minimally doubled fermions have been proposed as a cost-effective realization of chiral symmetry at non-zero lattice spacing. Using lattice perturbation theory at one loop, we study their renormalization properties. Specifically, we investigate the consequences of the breaking of hyper-cubic symmetry, which is a typical feature of this class of fermionic discretizations. Our results for the quark self-energy indicate that the four-momentum undergoes a renormalization which is linearly divergent. We also compute renormalization factors for quark bilinears, construct the conserved vector and axial-vector currents and verify that at one loop the renormalization factors of the latter are equal to one.

  8. New methods for B meson decay constants and form factors from lattice NRQCD

    NASA Astrophysics Data System (ADS)

    Hughes, C.; Davies, C. T. H.; Monahan, C. J.; Hpqcd Collaboration

    2018-03-01

    We determine the normalization of scalar and pseudoscalar current operators made from nonrelativistic b quarks and highly improved staggered light quarks in lattice quantum chromodynamics (QCD) through O (αs) and ΛQCD/mb. We use matrix elements of these operators to extract B meson decay constants and form factors, and then compare to those obtained using the standard vector and axial-vector operators. This provides a test of systematic errors in the lattice QCD determination of the B meson decay constants and form factors. We provide a new value for the B and Bs meson decay constants from lattice QCD calculations on ensembles that include u , d , s , and c quarks in the sea and those that have the u /d quark mass going down to its physical value. Our results are fB=0.196 (6 ) GeV , fBs=0.236(7 ) GeV , and fB s/fB=1.207 (7 ), agreeing well with earlier results using the temporal axial current. By combining with these previous results, we provide updated values of fB=0.190 (4 ) GeV , fBs=0.229(5 ) GeV , and fB s/fB=1.206 (5 ).

  9. Constraints on muon-specific dark forces

    NASA Astrophysics Data System (ADS)

    Karshenboim, Savely G.; McKeen, David; Pospelov, Maxim

    2014-10-01

    The recent measurement of the Lamb shift in muonic hydrogen allows for the most precise extraction of the charge radius of the proton which is currently in conflict with other determinations based on e-p scattering and hydrogen spectroscopy. This discrepancy could be the result of some new muon-specific force with O(1-100) MeV force carrier—in this paper we concentrate on vector mediators. Such an explanation faces challenges from the constraints imposed by the g-2 of the muon and electron as well as precision spectroscopy of muonic atoms. In this work we complement the family of constraints by calculating the contribution of hypothetical forces to the muonium hyperfine structure. We also compute the two-loop contribution to the electron parity-violating amplitude due to a muon loop, which is sensitive to the muon axial-vector coupling. Overall, we find that the combination of low-energy constraints favors the mass of the mediator to be below 10 MeV and that a certain degree of tuning is required between vector and axial-vector couplings of new vector particles to muons in order to satisfy constraints from muon g-2. However, we also observe that in the absence of a consistent standard model embedding high-energy weak-charged processes accompanied by the emission of new vector particles are strongly enhanced by (E/mV)2, with E a characteristic energy scale and mV the mass of the mediator. In particular, leptonic W decays impose the strongest constraints on such models completely disfavoring the remainder of the parameter space.

  10. Determination of the axial-vector weak coupling constant with ultracold neutrons.

    PubMed

    Liu, J; Mendenhall, M P; Holley, A T; Back, H O; Bowles, T J; Broussard, L J; Carr, R; Clayton, S; Currie, S; Filippone, B W; García, A; Geltenbort, P; Hickerson, K P; Hoagland, J; Hogan, G E; Hona, B; Ito, T M; Liu, C-Y; Makela, M; Mammei, R R; Martin, J W; Melconian, D; Morris, C L; Pattie, R W; Pérez Galván, A; Pitt, M L; Plaster, B; Ramsey, J C; Rios, R; Russell, R; Saunders, A; Seestrom, S J; Sondheim, W E; Tatar, E; Vogelaar, R B; VornDick, B; Wrede, C; Yan, H; Young, A R

    2010-10-29

    A precise measurement of the neutron decay β asymmetry A₀ has been carried out using polarized ultracold neutrons from the pulsed spallation ultracold neutron source at the Los Alamos Neutron Science Center. Combining data obtained in 2008 and 2009, we report A₀ = -0.119 66±0.000 89{-0.001 40}{+0.001 23}, from which we determine the ratio of the axial-vector to vector weak coupling of the nucleon g{A}/g{V}=-1.275 90{-0.004 45}{+0.004 09}.

  11. 0+ tetraquark states from improved QCD sum rules: delving into X(5568)

    NASA Astrophysics Data System (ADS)

    Zhang, Jian-Rong; Zou, Jing-Lan; Wu, Jin-Yun

    2018-04-01

    In order to investigate the possibility of the recently observed X(5568) being a 0+ tetraquark state, we make an improvement to the study of the related various configuration states in the framework of the QCD sum rules. Particularly, to ensure the quality of the analysis, condensates up to dimension 12 are included to inspect the convergence of operator product expansion (OPE) and improve the final results of the studied states. We note that some condensate contributions could play an important role on the OPE side. By releasing the rigid OPE convergence criterion, we arrive at the numerical value {5.57}-0.23+0.35 {{GeV}} for the scalar-scalar diquark-antidiquark 0+ state, which agrees with the experimental data for the X(5568) and could support its interpretation in terms of a 0+ tetraquark state with the scalar-scalar configuration. The corresponding result for the axial-axial current is calculated to be {5.77}-0.33+0.44 {{GeV}}, which is still consistent with the mass of X(5568) in view of the uncertainty. The feasibility of X(5568) being a tetraquark state with the axial-axial configuration therefore cannot be definitely excluded. For the pseudoscalar-pseudoscalar and the vector-vector cases, their unsatisfactory OPE convergence make it difficult to find reasonable work windows to extract the hadronic information. Supported by National Natural Science Foundation of China (11475258, 11105223, 11675263) and the Project in NUDT for Excellent Youth Talents

  12. Nucleon and Delta axial-vector couplings in 1/N{sub c}-Baryon Chiral Perturbation Theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goity, Jose Luis; Calle Cordon, Alvaro

    In this contribution, baryon axial-vector couplings are studied in the framework of the combined 1/N{sub c} and chiral expansions. This framework is implemented on the basis of the emergent spin-flavor symmetry in baryons at large N{sub c} and HBChPT, and linking both expansions ({xi}-expansion), where 1/N{sub c} is taken to be a quantity order p. The study is carried out including one-loop contributions, which corresponds to order xi to the third for baryon masses and order {xi} square for the axial couplings.

  13. Measurement of the neutrino neutral-current elastic differential cross section on mineral oil at Eν˜1GeV

    NASA Astrophysics Data System (ADS)

    Aguilar-Arevalo, A. A.; Anderson, C. E.; Bazarko, A. O.; Brice, S. J.; Brown, B. C.; Bugel, L.; Cao, J.; Coney, L.; Conrad, J. M.; Cox, D. C.; Curioni, A.; Dharmapalan, R.; Djurcic, Z.; Finley, D. A.; Fleming, B. T.; Ford, R.; Garcia, F. G.; Garvey, G. T.; Grange, J.; Green, C.; Green, J. A.; Hart, T. L.; Hawker, E.; Imlay, R.; Johnson, R. A.; Karagiorgi, G.; Kasper, P.; Katori, T.; Kobilarcik, T.; Kourbanis, I.; Koutsoliotas, S.; Laird, E. M.; Linden, S. K.; Link, J. M.; Liu, Y.; Liu, Y.; Louis, W. C.; Mahn, K. B. M.; Marsh, W.; Mauger, C.; McGary, V. T.; McGregor, G.; Metcalf, W.; Meyers, P. D.; Mills, F.; Mills, G. B.; Monroe, J.; Moore, C. D.; Mousseau, J.; Nelson, R. H.; Nienaber, P.; Nowak, J. A.; Osmanov, B.; Ouedraogo, S.; Patterson, R. B.; Pavlovic, Z.; Perevalov, D.; Polly, C. C.; Prebys, E.; Raaf, J. L.; Ray, H.; Roe, B. P.; Russell, A. D.; Sandberg, V.; Schirato, R.; Schmitz, D.; Shaevitz, M. H.; Shoemaker, F. C.; Smith, D.; Soderberg, M.; Sorel, M.; Spentzouris, P.; Spitz, J.; Stancu, I.; Stefanski, R. J.; Sung, M.; Tanaka, H. A.; Tayloe, R.; Tzanov, M.; van de Water, R. G.; Wascko, M. O.; White, D. H.; Wilking, M. J.; Yang, H. J.; Zeller, G. P.; Zimmerman, E. D.

    2010-11-01

    We report a measurement of the flux-averaged neutral-current elastic differential cross section for neutrinos scattering on mineral oil (CH2) as a function of four-momentum transferred squared, Q2. It is obtained by measuring the kinematics of recoiling nucleons with kinetic energy greater than 50 MeV which are readily detected in MiniBooNE. This differential cross-section distribution is fit with fixed nucleon form factors apart from an axial mass MA that provides a best fit for MA=1.39±0.11GeV. Using the data from the charged-current neutrino interaction sample, a ratio of neutral-current to charged-current quasielastic cross sections as a function of Q2 has been measured. Additionally, single protons with kinetic energies above 350 MeV can be distinguished from neutrons and multiple nucleon events. Using this marker, the strange quark contribution to the neutral-current axial vector form factor at Q2=0, Δs, is found to be Δs=0.08±0.26.

  14. New Methods for B Decay Constants and Form Factors from Lattice NRQCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davies, Christine; Hughes, Ciaran; Monahan, Christopher

    We determine the normalisation of scalar and pseudo scalar current operators made from NonRelativistic QCD (NRQCD) b quarks and Highly Improved Staggered (HISQ) light quarks through O(αs∧QCD/mb). We use matrix elements of these operators to extract B meson decay constants and form factors and compare to those obtained using the standard vector and axial vector operators. We work on MILC second-generation 2+1+1 gluon field configurations, including those with physical light quarks in the sea. This provides a test of systematic uncertainties in these calculations and we find agreement between the results to the 2% level of uncertainty previously quoted.

  15. New methods for B decay constants and form factors from Lattice NRQCD

    NASA Astrophysics Data System (ADS)

    Davies, Christine; Hughes, Ciaran; Monahan, Christopher

    2018-03-01

    We determine the normalisation of scalar and pseudo scalar current operators made from NonRelativistic QCD (NRQCD) b quarks and Highly Improved Staggered (HISQ) light quarks through O(αs∧QCD/mb). We use matrix elements of these operators to extract B meson decay constants and form factors and compare to those obtained using the standard vector and axial vector operators. We work on MILC second-generation 2+1+1 gluon field configurations, including those with physical light quarks in the sea. This provides a test of systematic uncertainties in these calculations and we find agreement between the results to the 2% level of uncertainty previously quoted.

  16. Electromagnetic and axial-vector form factors of the quarks and nucleon

    NASA Astrophysics Data System (ADS)

    Dahiya, Harleen; Randhawa, Monika

    2017-11-01

    In light of the improved precision of the experimental measurements and enormous theoretical progress, the nucleon form factors have been evaluated with an aim to understand how the static properties and dynamical behavior of nucleons emerge from the theory of strong interactions between quarks. We have analyzed the vector and axial-vector nucleon form factors (GE,Mp,n(Q2) and GAp,n(Q2)) using the spin observables in the chiral constituent quark model (χCQM) which has made a significant contribution to the unraveling of the internal structure of the nucleon in the nonperturbative regime. We have also presented a comprehensive analysis of the flavor decomposition of the form factors (GEq(Q2), GMq(Q2) and GAq(Q2) for q = u,d,s) within the framework of χCQM with emphasis on the extraction of the strangeness form factors which are fundamental to determine the spin structure and test the chiral symmetry breaking effects in the nucleon. The Q2 dependence of the vector and axial-vector form factors of the nucleon has been studied using the conventional dipole form of parametrization. The results are in agreement with the available experimental data.

  17. Coherent production of π+ and π- mesons by charged-current interactions of neutrinos and antineutrinos on neon nuclei at the Fermilab Tevatron

    NASA Astrophysics Data System (ADS)

    Aderholz, M.; Aggarwal, M. M.; Akbari, H.; Allport, P. P.; Baba, P. V.; Badyal, S. K.; Barth, M.; Baton, J. P.; Bingham, H. H.; Brucker, E. B.; Burnstein, R. A.; Campbell, R. C.; Cence, R.; Chatterjee, T. K.; Clayton, E. F.; Corrigan, G.; Coutures, C.; de Prospo, D.; Devanand; de Wolf, E.; Faulkner, P. J.; Fretter, W. B.; Gupta, V. K.; Guy, J.; Hanlon, J.; Harigel, G.; Harris, F.; Jabiol, M. A.; Jacques, P.; Jain, V.; Jones, G. T.; Jones, M. D.; Jones, R. W.; Kafka, T.; Kalelkar, M.; Kasper, P.; Kasper, P.; Kaul, G. L.; Kaur, M.; Kohli, J. M.; Koller, E. L.; Krawiec, R. J.; Lauko, M.; Lys, J.; Mann, W. A.; Marage, P.; Milburn, R. H.; Miller, D. B.; Mittra, I. S.; Mobayyen, M. M.; Moreels, J.; Morrison, D. R.; Myatt, G.; Nailor, P.; Naon, R.; Napier, A.; Neveu, M.; Passmore, D.; Peters, M. W.; Peterson, V. Z.; Plano, R.; Rao, N. K.; Rubin, H. A.; Sacton, J.; Saitta, B.; Schmid, P.; Schmitz, N.; Schneps, J.; Sekulin, R.; Sewell, S.; Singh, J. B.; Sood, P. M.; Smart, W.; Stamer, P.; Varvell, K. E.; Venus, W.; Verluyten, L.; Voyvodic, L.; Wachsmuth, H.; Wainstein, S.; Willocq, S.; Wittek, W.; Yost (E632 Collaboration), G. P.

    1989-11-01

    Coherent single-pion production on neon nuclei is studied using the Fermilab 15-ft bubble chamber filled with a heavy Ne-H2 mixture and exposed to the Tevatron neutrino beam. In the neutrino energy range 40-300 GeV, the net signal is 20+/-6 events, giving a corrected rate per charged-current event of (0.26+/-0.10)%. The cross section and kinematic distributions agree with the predictions of a model based on partial conservation of axial-vector current and meson dominance.

  18. New methods for B meson decay constants and form factors from lattice NRQCD

    DOE PAGES

    Hughes, C.; Davies, C. T.H.; Monahan, C. J.

    2018-03-20

    We determine the normalization of scalar and pseudoscalar current operators made from nonrelativistic b quarks and highly improved staggered light quarks in lattice quantum chromodynamics (QCD) through O(α s) and Λ QCD/m b. We use matrix elements of these operators to extract B meson decay constants and form factors, and then compare to those obtained using the standard vector and axial-vector operators. This provides a test of systematic errors in the lattice QCD determination of the B meson decay constants and form factors. We provide a new value for the B and B s meson decay constants from lattice QCDmore » calculations on ensembles that include u, d, s, and c quarks in the sea and those that have the u/d quark mass going down to its physical value. Our results are f B=0.196(6) GeV, f Bs=0.236(7) GeV, and f Bs/f B=1.207(7), agreeing well with earlier results using the temporal axial current. By combining with these previous results, we provide updated values of f B=0.190(4) GeV, f Bs=0.229(5) GeV, and f Bs/f B=1.206(5).« less

  19. New methods for B meson decay constants and form factors from lattice NRQCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hughes, C.; Davies, C. T.H.; Monahan, C. J.

    We determine the normalization of scalar and pseudoscalar current operators made from nonrelativistic b quarks and highly improved staggered light quarks in lattice quantum chromodynamics (QCD) through O(α s) and Λ QCD/m b. We use matrix elements of these operators to extract B meson decay constants and form factors, and then compare to those obtained using the standard vector and axial-vector operators. This provides a test of systematic errors in the lattice QCD determination of the B meson decay constants and form factors. We provide a new value for the B and B s meson decay constants from lattice QCDmore » calculations on ensembles that include u, d, s, and c quarks in the sea and those that have the u/d quark mass going down to its physical value. Our results are f B=0.196(6) GeV, f Bs=0.236(7) GeV, and f Bs/f B=1.207(7), agreeing well with earlier results using the temporal axial current. By combining with these previous results, we provide updated values of f B=0.190(4) GeV, f Bs=0.229(5) GeV, and f Bs/f B=1.206(5).« less

  20. Alterations to the relativistic Love-Franey model and their application to inelastic scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeile, J.R.

    The fictitious axial-vector and tensor mesons for the real part of the relativistic Love-Franey interaction are removed. In an attempt to make up for this loss, derivative couplings are used for the {pi} and {rho} mesons. Such derivative couplings require the introduction of axial-vector and tensor contact term corrections. Meson parameters are then fit to free nucleon-nucleon scattering data. The resulting fits are comparable to those of the relativistic Love-Franey model provided that the contact term corrections are included and the fits are weighted over the physically significant quantity of twice the tensor minus the axial-vector Lorentz invariants. Failure tomore » include contact term corrections leads to poor fits at higher energies. The off-shell behavior of this model is then examined by looking at several applications from inelastic proton-nucleus scattering.« less

  1. Degeneracy of vector-channel spatial correlators in high temperature QCD

    NASA Astrophysics Data System (ADS)

    Rohrhofer, Christian; Aoki, Yasumichi; Cossu, Guido; Fukaya, Hidenori; Glozman, Leonid; Hashimoto, Shoji; Lang, Christian B.; Prelovsek, Sasa

    2018-03-01

    We study spatial isovector meson correlators in Nf = 2 QCD with dynamical domain-wall fermions on 323 × 8 lattices at temperatures up to 380 MeV with various quark masses. We measure the correlators of spin-one isovector operators including vector, axial-vector, tensor and axial-tensor. At temperatures above Tc we observe an approximate degeneracy of the correlators in these channels, which is unexpected because some of them are not related under SU(2)L×SU(2)R nor U(1)A symmetries. The observed approximate degeneracy suggests emergent SU(2)CS (chiral-spin) and SU(4) symmetries at high T.

  2. S parameter and pseudo Nambu-Goldstone boson mass from lattice QCD.

    PubMed

    Shintani, E; Aoki, S; Fukaya, H; Hashimoto, S; Kaneko, T; Matsufuru, H; Onogi, T; Yamada, N

    2008-12-12

    We present a lattice calculation of L10, one of the low-energy constants in chiral perturbation theory, and the charged-neutral pion squared-mass splitting, using dynamical overlap fermion. The exact chiral symmetry of the overlap fermion allows us to reliably extract these quantities from the difference of the vacuum polarization functions for vector and axial-vector currents. In the context of the technicolor models, these two quantities are read as the S parameter and the pseudo Nambu-Goldstone boson mass, respectively, and play an important role in discriminating the models from others. This calculation can serve as a feasibility study of the lattice techniques for more general technicolor gauge theories.

  3. RI/MOM and RI/SMOM renormalization of overlap quark bilinears on domain wall fermion configurations

    NASA Astrophysics Data System (ADS)

    Bi, Yujiang; Cai, Hao; Chen, Ying; Gong, Ming; Liu, Keh-Fei; Liu, Zhaofeng; Yang, Yi-Bo; χ QCD Collaboration

    2018-05-01

    Renormalization constants (RCs) of overlap quark bilinear operators on 2 +1 -flavor domain wall fermion configurations are calculated by using the RI/MOM and RI/SMOM schemes. The scale independent RC for the axial vector current is computed by using a Ward identity. Then the RCs for the quark field and the vector, tensor, scalar, and pseudoscalar operators are calculated in both the RI/MOM and RI/SMOM schemes. The RCs are converted to the MS ¯ scheme and we compare the numerical results from using the two intermediate schemes. The lattice size is 4 83×96 and the inverse spacing 1 /a =1.730 (4 ) GeV .

  4. Regularized Biot-Savart Laws for Modeling Magnetic Configurations with Flux Ropes

    NASA Astrophysics Data System (ADS)

    Titov, V. S.; Downs, C.; Mikic, Z.; Torok, T.; Linker, J.

    2017-12-01

    Many existing models assume that magnetic flux ropes play a key role in solar flares and coronal mass ejections (CMEs). It is therefore important to develop efficient methods for constructing flux-rope configurations constrained by observed magnetic data and the initial morphology of CMEs. For this purpose, we have derived and implemented a compact analytical form that represents the magnetic field of a thin flux rope with an axis of arbitrary shape and a circular cross-section. This form implies that the flux rope carries axial current I and axial flux F, so that the respective magnetic field is the curl of the sum of toroidal and poloidal vector potentials proportional to I and F, respectively. We expressed the vector potentials in terms of modified Biot-Savart laws whose kernels are regularized at the axis in such a way that these laws define a cylindrical force-free flux rope with a parabolic profile of the axial current density, when the axis is straight. For the cases we have studied so far, we determined the shape of the rope axis by following the polarity inversion line of the eruptions' source region, using observed magnetograms. The height variation along the axis and other flux-rope parameters are estimated by means of potential field extrapolations. Using this heuristic approach, we were able to construct pre-eruption configurations for the 2009 February13 and 2011 October 1 CME events. These applications demonstrate the flexibility and efficiency of our new method for energizing pre-eruptive configurations in MHD simulations of CMEs. We discuss possible ways of optimizing the axis paths and other extensions of the method in order to make it more useful and robust. Research supported by NSF, NASA's HSR and LWS Programs, and AFOSR.

  5. Regularized Biot-Savart Laws for Modeling Magnetic Flux Ropes

    NASA Astrophysics Data System (ADS)

    Titov, Viacheslav; Downs, Cooper; Mikic, Zoran; Torok, Tibor; Linker, Jon A.

    2017-08-01

    Many existing models assume that magnetic flux ropes play a key role in solar flares and coronal mass ejections (CMEs). It is therefore important to develop efficient methods for constructing flux-rope configurations constrained by observed magnetic data and the initial morphology of CMEs. As our new step in this direction, we have derived and implemented a compact analytical form that represents the magnetic field of a thin flux rope with an axis of arbitrary shape and a circular cross-section. This form implies that the flux rope carries axial current I and axial flux F, so that the respective magnetic field is a curl of the sum of toroidal and poloidal vector potentials proportional to I and F, respectively. The vector potentials are expressed in terms of Biot-Savart laws whose kernels are regularized at the rope axis. We regularized them in such a way that for a straight-line axis the form provides a cylindrical force-free flux rope with a parabolic profile of the axial current density. So far, we set the shape of the rope axis by tracking the polarity inversion lines of observed magnetograms and estimating its height and other parameters of the rope from a calculated potential field above these lines. In spite of this heuristic approach, we were able to successfully construct pre-eruption configurations for the 2009 February13 and 2011 October 1 CME events. These applications demonstrate that our regularized Biot-Savart laws are indeed a very flexible and efficient method for energizing initial configurations in MHD simulations of CMEs. We discuss possible ways of optimizing the axis paths and other extensions of the method in order to make it more useful and robust.Research supported by NSF, NASA's HSR and LWS Programs, and AFOSR.

  6. Anomalous transport from holography: part II

    NASA Astrophysics Data System (ADS)

    Bu, Yanyan; Lublinsky, Michael; Sharon, Amir

    2017-03-01

    This is a second study of chiral anomaly-induced transport within a holographic model consisting of anomalous U(1)_V× U(1)_A Maxwell theory in Schwarzschild-AdS_5 spacetime. In the first part, chiral magnetic/separation effects (CME/CSE) are considered in the presence of a static spatially inhomogeneous external magnetic field. Gradient corrections to CME/CSE are analytically evaluated up to third order in the derivative expansion. Some of the third order gradient corrections lead to an anomaly-induced negative B^2-correction to the diffusion constant. We also find modifications to the chiral magnetic wave nonlinear in B. In the second part, we focus on the experimentally interesting case of the axial chemical potential being induced dynamically by a constant magnetic and time-dependent electric fields. Constitutive relations for the vector/axial currents are computed employing two different approximations: (a) derivative expansion (up to third order) but fully nonlinear in the external fields, and (b) weak electric field limit but resuming all orders in the derivative expansion. A non-vanishing nonlinear axial current (CSE) is found in the first case. The dependence on magnetic field and frequency of linear transport coefficient functions is explored in the second.

  7. Development of software-hardware complex for investigation of the vector field of speeds in the cyclone-separator

    NASA Astrophysics Data System (ADS)

    Borisov, A.

    2018-05-01

    The current issue of studying the vector velocity field in a cyclone-separator with a screw insert is considered in the article. Modeling of the velocity vector field in SolidWorks was carried out, tangential, axial and radial velocities were investigated. Also, a software and hardware complex was developed that makes it possible to obtain data on the speed inside a cyclone separator. The results of the experiment showed that on flour dusts the efficiency of the cyclone separator in question was more than 99.5%, with an air flow rate of 376 m3 / h, 472 m3 / h and 516 m3 / h, and ΔP less than 600 Pa. The velocity in the inlet branch of the screw insert was 18-20 m / s, and at the exit of the screw insert the airflow velocity is 50-70 m / s.

  8. Baryon chiral perturbation theory combined with the 1 /Nc expansion in SU(3): Framework

    NASA Astrophysics Data System (ADS)

    Fernando, I. P.; Goity, J. L.

    2018-03-01

    Baryon chiral perturbation theory combined with the 1 /Nc expansion is implemented for three flavors. Baryon masses, vector charges and axial vector couplings are studied to one-loop and organized according to the ξ -expansion, in which the 1 /Nc and the low-energy power countings are linked according to 1 /Nc=O (ξ )=O (p ). The renormalization to O (ξ3) necessary for the mentioned observables is provided, along with applications to the baryon masses and axial couplings as obtained in lattice QCD calculations.

  9. Non-stationary measurements of Chiral Magnetic Effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shevchenko, V.I., E-mail: vladimir.i.shevchenko@gmail.com

    2013-12-15

    We discuss the Chiral Magnetic Effect from the quantum theory of measurements point of view for non-stationary measurements. The effect of anisotropy for fluctuations of electric currents in a magnetic field is addressed. It is shown that anisotropy caused by nonzero axial chemical potential is indistinguishable in this framework from anisotropy caused by finite measurement time or finite lifetime of the magnetic field, and in all cases it is related to abelian triangle anomaly. Possible P-odd effects in central heavy-ion collisions (where the Chiral Magnetic Effect is absent) are discussed in this context. This paper is dedicated to the memorymore » of Professor Mikhail Polikarpov (1952–2013). -- Highlights: •Asymmetry in the response function for vector currents of massless fermions in the magnetic field is computed. •Asymmetry caused by axial chemical potential is practically indistinguishable from the one caused by non-stationarity. •The CME current is non-dissipative in the stationary case and dissipative in the non-stationary case. •Importance of studies of P-odd signatures in central collisions is emphasized.« less

  10. IR properties of chiral effects in pionic matter

    NASA Astrophysics Data System (ADS)

    Avdoshkin, A.; Sadofyev, A. V.; Zakharov, V. I.

    2018-04-01

    Chiral effects exhibit peculiar universality in idealized theoretical limits. However, they are known to be infrared sensitive and get modified in more realistic settings. In this work we study how the corresponding conductivities vary with the constituent mass. We concentrate on a pionic realization of chiral effects which provides a better control over infrared properties of the theory. The pionic medium is considered at finite vector and axial isospin chemical potentials in the presence of an external magnetic field. This system supports electric and axial isospin currents along the magnetic field which correspond to chiral magnetic and chiral separation effects. We show that these currents are sensitive to the finite mass of the constituents but the conductivities follow a simple scaling with the corresponding charge densities as one would expect for polarization effects. It is argued that this relation can capture the dependence of chiral effects on other infrared parameters. Finally, we briefly comment on the realization of the 't Hooft matching condition in pionic media at finite densities.

  11. Elastic Gauge Fields in Weyl Semimetals

    NASA Astrophysics Data System (ADS)

    Cortijo, Alberto; Ferreiros, Yago; Landsteiner, Karl; Hernandez Vozmediano, Maria Angeles

    We show that, as it happens in graphene, elastic deformations couple to the electronic degrees of freedom as pseudo gauge fields in Weyl semimetals. We derive the form of the elastic gauge fields in a tight-binding model hosting Weyl nodes and see that this vector electron-phonon coupling is chiral, providing an example of axial gauge fields in three dimensions. As an example of the new response functions that arise associated to these elastic gauge fields, we derive a non-zero phonon Hall viscosity for the neutral system at zero temperature. The axial nature of the fields provides a test of the chiral anomaly in high energy with three axial vector couplings. European Union structural funds and the Comunidad de Madrid MAD2D-CM Program (S2013/MIT-3007).

  12. A Novel Three-Dimensional Vector Analysis of Axial Globe Position in Thyroid Eye Disease

    PubMed Central

    Guo, Jie; Yuan, Yifei; Zhang, Rui; Huang, Wenhu

    2017-01-01

    Purpose. To define a three-dimensional (3D) vector method to describe the axial globe position in thyroid eye disease (TED). Methods. CT data from 59 patients with TED were collected and 3D images were reconstructed. A reference coordinate system was established, and the coordinates of the corneal apex and the eyeball center were calculated to obtain the globe vector EC→. The measurement reliability was evaluated. The parameters of EC→ were analyzed and compared with the results of two-dimensional (2D) CT measurement, Hertel exophthalmometry, and strabismus tests. Results. The reliability of EC→ measurement was excellent. The difference between EC→ and 2D CT measurement was significant (p = 0.003), and EC→ was more consistent with Hertel exophthalmometry than with 2D CT measurement (p < 0.001). There was no significant difference between EC→ and Hirschberg test, and a strong correlation was found between EC→ and synoptophore test. When one eye had a larger deviation angle than its fellow, its corneal apex shifted in the corresponding direction, but the shift of the eyeball center was not significant. The parameters of EC→ were almost perfectly consistent with the geometrical equation. Conclusions. The establishment of a 3D globe vector is feasible and reliable, and it could provide more information in the axial globe position. PMID:28491471

  13. Large-Nc masses of light mesons from QCD sum rules for nonlinear radial Regge trajectories

    NASA Astrophysics Data System (ADS)

    Afonin, S. S.; Solomko, T. D.

    2018-04-01

    The large-Nc masses of light vector, axial, scalar and pseudoscalar mesons are calculated from QCD spectral sum rules for a particular ansatz interpolating the radial Regge trajectories. The ansatz includes a linear part plus exponentially degreasing corrections to the meson masses and residues. The form of corrections was proposed some time ago for consistency with analytical structure of Operator Product Expansion of the two-point correlation functions. We revised that original analysis and found the second solution for the proposed sum rules. The given solution describes better the spectrum of vector and axial mesons.

  14. Flavor changing neutral current transition of B to a1 with light-cone sum rules

    NASA Astrophysics Data System (ADS)

    Momeni, S.; Khosravi, R.; Falahati, F.

    2017-01-01

    The B →a1ℓ+ℓ- decays occur by the electroweak penguin and box diagrams, which can be performed through the flavor changing neutral current (FCNC). We calculate the form factors of the FCNC B →a1 transitions in the light-cone sum rules approach, up to twist-4 distribution amplitudes of the axial vector meson a1. Forward-backward asymmetry, as well as branching ratios of B →a1ℓ+ℓ-, and B →a1γ decays are considered. A comparison is also made between our results and the predictions of other methods.

  15. Measurement of Muon Neutrino Quasielastic Scattering on Carbon

    NASA Astrophysics Data System (ADS)

    Aguilar-Arevalo, A. A.; Bazarko, A. O.; Brice, S. J.; Brown, B. C.; Bugel, L.; Cao, J.; Coney, L.; Conrad, J. M.; Cox, D. C.; Curioni, A.; Djurcic, Z.; Finley, D. A.; Fleming, B. T.; Ford, R.; Garcia, F. G.; Garvey, G. T.; Green, C.; Green, J. A.; Hart, T. L.; Hawker, E.; Imlay, R.; Johnson, R. A.; Kasper, P.; Katori, T.; Kobilarcik, T.; Kourbanis, I.; Koutsoliotas, S.; Laird, E. M.; Link, J. M.; Liu, Y.; Liu, Y.; Louis, W. C.; Mahn, K. B. M.; Marsh, W.; Martin, P. S.; McGregor, G.; Metcalf, W.; Meyers, P. D.; Mills, F.; Mills, G. B.; Monroe, J.; Moore, C. D.; Nelson, R. H.; Nienaber, P.; Ouedraogo, S.; Patterson, R. B.; Perevalov, D.; Polly, C. C.; Prebys, E.; Raaf, J. L.; Ray, H.; Roe, B. P.; Russell, A. D.; Sandberg, V.; Schirato, R.; Schmitz, D.; Shaevitz, M. H.; Shoemaker, F. C.; Smith, D.; Sorel, M.; Spentzouris, P.; Stancu, I.; Stefanski, R. J.; Sung, M.; Tanaka, H. A.; Tayloe, R.; Tzanov, M.; van de Water, R.; Wascko, M. O.; White, D. H.; Wilking, M. J.; Yang, H. J.; Zeller, G. P.; Zimmerman, E. D.

    2008-01-01

    The observation of neutrino oscillations is clear evidence for physics beyond the standard model. To make precise measurements of this phenomenon, neutrino oscillation experiments, including MiniBooNE, require an accurate description of neutrino charged current quasielastic (CCQE) cross sections to predict signal samples. Using a high-statistics sample of νμ CCQE events, MiniBooNE finds that a simple Fermi gas model, with appropriate adjustments, accurately characterizes the CCQE events observed in a carbon-based detector. The extracted parameters include an effective axial mass, MAeff=1.23±0.20GeV, that describes the four-momentum dependence of the axial-vector form factor of the nucleon, and a Pauli-suppression parameter, κ=1.019±0.011. Such a modified Fermi gas model may also be used by future accelerator-based experiments measuring neutrino oscillations on nuclear targets.

  16. Measurement of Muon Antineutrino Quasielastic Scattering on a Hydrocarbon Target at E ν~3.5 GeV

    DOE PAGES

    Fields, L.; Chvojka, J.; Aliaga, L.; ...

    2013-07-11

    We have isolated ν¯ μ charged-current quasielastic (QE) interactions occurring in the segmented scintillator tracking region of the MINERvA detector running in the NuMI neutrino beam at Fermilab. We measure the flux-averaged differential cross section, dσ/dQ², and compare to several theoretical models of QE scattering. Good agreement is obtained with a model where the nucleon axial mass, M A, is set to 0.99 GeV/c² but the nucleon vector form factors are modified to account for the observed enhancement, relative to the free nucleon case, of the cross section for the exchange of transversely polarized photons in electron-nucleus scattering. Our datamore » at higher Q² favor this interpretation over an alternative in which the axial mass is increased.« less

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khachatryan, Vardan

    A search is presented for an excess of events with large missing transverse momentum in association with at least one highly energetic jet, in a data sample of proton-proton collisions at a centre-of-mass energy of 8 TeV. The data correspond to an integrated luminosity of 19.7 inverse femtobarns collected by the CMS experiment at the LHC. The results are interpreted using a set of simplified models for the production of dark matter via a scalar, pseudoscalar, vector, or axial vector mediator. Additional sensitivity is achieved by tagging events consistent with the jets originating from a hadronically decaying vector boson. Thismore » search uses jet substructure techniques to identify hadronically decaying vector bosons in both Lorentz-boosted and resolved scenarios. This analysis yields improvements of 80% in terms of excluded signal cross sections with respect to the previous CMS analysis using the same data set. No significant excess with respect to the standard model expectation is observed and limits are placed on the parameter space of the simplified models. As a result, mediator masses between 80 and 400 GeV in the scalar and pseudoscalar models, and up to 1.5 TeV in the vector and axial vector models, are excluded.« less

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakraborty, Bipasha; Davies, C. T. H.; Donald, G. C.

    Here, we compare correlators for pseudoscalar and vector mesons made from valence strange quarks using the clover quark and highly improved staggered quark (HISQ) formalisms in full lattice QCD. We use fully nonperturbative methods to normalise vector and axial vector current operators made from HISQ quarks, clover quarks and from combining HISQ and clover fields. This allows us to test expectations for the renormalisation factors based on perturbative QCD, with implications for the error budget of lattice QCD calculations of the matrix elements of clover-staggeredmore » $b$-light weak currents, as well as further HISQ calculations of the hadronic vacuum polarisation. We also compare the approach to the (same) continuum limit in clover and HISQ formalisms for the mass and decay constant of the $$\\phi$$ meson. Our final results for these parameters, using single-meson correlators and neglecting quark-line disconnected diagrams are: $$m_{\\phi} =$$ 1.023(5) GeV and $$f_{\\phi} = $$ 0.238(3) GeV in good agreement with experiment. These results come from calculations in the HISQ formalism using gluon fields that include the effect of $u$, $d$, $s$ and $c$ quarks in the sea with three lattice spacing values and $$m_{u/d}$$ values going down to the physical point.« less

  19. Search for dark matter in proton-proton collisions at 8 TeV with missing transverse momentum and vector boson tagged jets

    DOE PAGES

    Khachatryan, Vardan

    2016-12-16

    A search is presented for an excess of events with large missing transverse momentum in association with at least one highly energetic jet, in a data sample of proton-proton collisions at a centre-of-mass energy of 8 TeV. The data correspond to an integrated luminosity of 19.7 inverse femtobarns collected by the CMS experiment at the LHC. The results are interpreted using a set of simplified models for the production of dark matter via a scalar, pseudoscalar, vector, or axial vector mediator. Additional sensitivity is achieved by tagging events consistent with the jets originating from a hadronically decaying vector boson. Thismore » search uses jet substructure techniques to identify hadronically decaying vector bosons in both Lorentz-boosted and resolved scenarios. This analysis yields improvements of 80% in terms of excluded signal cross sections with respect to the previous CMS analysis using the same data set. No significant excess with respect to the standard model expectation is observed and limits are placed on the parameter space of the simplified models. As a result, mediator masses between 80 and 400 GeV in the scalar and pseudoscalar models, and up to 1.5 TeV in the vector and axial vector models, are excluded.« less

  20. Search for dark matter in proton-proton collisions at 8 TeV with missing transverse momentum and vector boson tagged jets

    NASA Astrophysics Data System (ADS)

    CMS Collaboration; Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Erö, J.; Flechl, M.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hartl, C.; Hörmann, N.; Hrubec, J.; Jeitler, M.; König, A.; Krätschmer, I.; Liko, D.; Matsushita, T.; Mikulec, I.; Rabady, D.; Rad, N.; Rahbaran, B.; Rohringer, H.; Schieck, J.; Strauss, J.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Alderweireldt, S.; De Wolf, E. A.; Janssen, X.; Lauwers, J.; Van De Klundert, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Abu Zeid, S.; Blekman, F.; D'Hondt, J.; Daci, N.; De Bruyn, I.; Deroover, K.; Heracleous, N.; Lowette, S.; Moortgat, S.; Moreels, L.; Olbrechts, A.; Python, Q.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Parijs, I.; Brun, H.; Caillol, C.; Clerbaux, B.; De Lentdecker, G.; Delannoy, H.; Fasanella, G.; Favart, L.; Goldouzian, R.; Grebenyuk, A.; Karapostoli, G.; Lenzi, T.; Léonard, A.; Luetic, J.; Maerschalk, T.; Marinov, A.; Randle-conde, A.; Seva, T.; Vander Velde, C.; Vanlaer, P.; Yonamine, R.; Zenoni, F.; Zhang, F.; Cimmino, A.; Cornelis, T.; Dobur, D.; Fagot, A.; Garcia, G.; Gul, M.; Poyraz, D.; Salva, S.; Schöfbeck, R.; Tytgat, M.; Van Driessche, W.; Yazgan, E.; Zaganidis, N.; Bakhshiansohi, H.; Beluffi, C.; Bondu, O.; Brochet, S.; Bruno, G.; Caudron, A.; De Visscher, S.; Delaere, C.; Delcourt, M.; Forthomme, L.; Francois, B.; Giammanco, A.; Jafari, A.; Jez, P.; Komm, M.; Lemaitre, V.; Magitteri, A.; Mertens, A.; Musich, M.; Nuttens, C.; Piotrzkowski, K.; Quertenmont, L.; Selvaggi, M.; Vidal Marono, M.; Wertz, S.; Beliy, N.; Aldá Júnior, W. L.; Alves, F. L.; Alves, G. A.; Brito, L.; Hensel, C.; Moraes, A.; Pol, M. E.; Rebello Teles, P.; Belchior Batista Das Chagas, E.; Carvalho, W.; Chinellato, J.; Custódio, A.; Da Costa, E. M.; Da Silveira, G. G.; De Jesus Damiao, D.; De Oliveira Martins, C.; Fonseca De Souza, S.; Huertas Guativa, L. M.; Malbouisson, H.; Matos Figueiredo, D.; Mora Herrera, C.; Mundim, L.; Nogima, H.; Prado Da Silva, W. L.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.; Ahuja, S.; Bernardes, C. A.; Dogra, S.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Mercadante, P. G.; Moon, C. S.; Novaes, S. F.; Padula, Sandra S.; Romero Abad, D.; Ruiz Vargas, J. C.; Aleksandrov, A.; Hadjiiska, R.; Iaydjiev, P.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Vutova, M.; Dimitrov, A.; Glushkov, I.; Litov, L.; Pavlov, B.; Petkov, P.; Fang, W.; Ahmad, M.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Chen, Y.; Cheng, T.; Jiang, C. H.; Leggat, D.; Liu, Z.; Romeo, F.; Shaheen, S. M.; Spiezia, A.; Tao, J.; Wang, C.; Wang, Z.; Zhang, H.; Zhao, J.; Ban, Y.; Chen, G.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.; Avila, C.; Cabrera, A.; Chaparro Sierra, L. F.; Florez, C.; Gomez, J. P.; González Hernández, C. F.; Ruiz Alvarez, J. D.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Puljak, I.; Ribeiro Cipriano, P. M.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Ferencek, D.; Kadija, K.; Micanovic, S.; Sudic, L.; Susa, T.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.; Finger, M.; Finger, M.; Carrera Jarrin, E.; Abdelalim, A. A.; Mohammed, Y.; Salama, E.; Calpas, B.; Kadastik, M.; Murumaa, M.; Perrini, L.; Raidal, M.; Tiko, A.; Veelken, C.; Eerola, P.; Pekkanen, J.; Voutilainen, M.; Härkönen, J.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Peltola, T.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.; Talvitie, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Ghosh, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Kucher, I.; Locci, E.; Machet, M.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.; Zghiche, A.; Abdulsalam, A.; Antropov, I.; Baffioni, S.; Beaudette, F.; Busson, P.; Cadamuro, L.; Chapon, E.; Charlot, C.; Davignon, O.; Granier de Cassagnac, R.; Jo, M.; Lisniak, S.; Miné, P.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Pigard, P.; Regnard, S.; Salerno, R.; Sirois, Y.; Strebler, T.; Yilmaz, Y.; Zabi, A.; Agram, J.-L.; Andrea, J.; Aubin, A.; Bloch, D.; Brom, J.-M.; Buttignol, M.; Chabert, E. C.; Chanon, N.; Collard, C.; Conte, E.; Coubez, X.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Le Bihan, A.-C.; Merlin, J. A.; Skovpen, K.; Van Hove, P.; Gadrat, S.; Beauceron, S.; Bernet, C.; Boudoul, G.; Bouvier, E.; Carrillo Montoya, C. A.; Chierici, R.; Contardo, D.; Courbon, B.; Depasse, P.; El Mamouni, H.; Fan, J.; Fay, J.; Gascon, S.; Gouzevitch, M.; Grenier, G.; Ille, B.; Lagarde, F.; Laktineh, I. B.; Lethuillier, M.; Mirabito, L.; Pequegnot, A. L.; Perries, S.; Popov, A.; Sabes, D.; Sordini, V.; Vander Donckt, M.; Verdier, P.; Viret, S.; Toriashvili, T.; Tsamalaidze, Z.; Autermann, C.; Beranek, S.; Feld, L.; Heister, A.; Kiesel, M. K.; Klein, K.; Lipinski, M.; Ostapchuk, A.; Preuten, M.; Raupach, F.; Schael, S.; Schomakers, C.; Schulte, J. F.; Schulz, J.; Verlage, T.; Weber, H.; Zhukov, V.; Brodski, M.; Dietz-Laursonn, E.; Duchardt, D.; Endres, M.; Erdmann, M.; Erdweg, S.; Esch, T.; Fischer, R.; Güth, A.; Hamer, M.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Knutzen, S.; Merschmeyer, M.; Meyer, A.; Millet, P.; Mukherjee, S.; Olschewski, M.; Padeken, K.; Pook, T.; Radziej, M.; Reithler, H.; Rieger, M.; Scheuch, F.; Sonnenschein, L.; Teyssier, D.; Thüer, S.; Cherepanov, V.; Flügge, G.; Haj Ahmad, W.; Hoehle, F.; Kargoll, B.; Kress, T.; Künsken, A.; Lingemann, J.; Nehrkorn, A.; Nowack, A.; Nugent, I. M.; Pistone, C.; Pooth, O.; Stahl, A.; Aldaya Martin, M.; Asawatangtrakuldee, C.; Beernaert, K.; Behnke, O.; Behrens, U.; Bin Anuar, A. A.; Borras, K.; Campbell, A.; Connor, P.; Contreras-Campana, C.; Costanza, F.; Diez Pardos, C.; Dolinska, G.; Eckerlin, G.; Eckstein, D.; Eren, E.; Gallo, E.; Garay Garcia, J.; Geiser, A.; Gizhko, A.; Grados Luyando, J. M.; Gunnellini, P.; Harb, A.; Hauk, J.; Hempel, M.; Jung, H.; Kalogeropoulos, A.; Karacheban, O.; Kasemann, M.; Keaveney, J.; Kieseler, J.; Kleinwort, C.; Korol, I.; Krücker, D.; Lange, W.; Lelek, A.; Leonard, J.; Lipka, K.; Lobanov, A.; Lohmann, W.; Mankel, R.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mittag, G.; Mnich, J.; Mussgiller, A.; Ntomari, E.; Pitzl, D.; Placakyte, R.; Raspereza, A.; Roland, B.; Sahin, M. Ö.; Saxena, P.; Schoerner-Sadenius, T.; Seitz, C.; Spannagel, S.; Stefaniuk, N.; Trippkewitz, K. D.; Van Onsem, G. P.; Walsh, R.; Wissing, C.; Blobel, V.; Centis Vignali, M.; Draeger, A. R.; Dreyer, T.; Garutti, E.; Goebel, K.; Gonzalez, D.; Haller, J.; Hoffmann, M.; Junkes, A.; Klanner, R.; Kogler, R.; Kovalchuk, N.; Lapsien, T.; Lenz, T.; Marchesini, I.; Marconi, D.; Meyer, M.; Niedziela, M.; Nowatschin, D.; Ott, J.; Pantaleo, F.; Peiffer, T.; Perieanu, A.; Poehlsen, J.; Sander, C.; Scharf, C.; Schleper, P.; Schmidt, A.; Schumann, S.; Schwandt, J.; Stadie, H.; Steinbrück, G.; Stober, F. M.; Stöver, M.; Tholen, H.; Troendle, D.; Usai, E.; Vanelderen, L.; Vanhoefer, A.; Vormwald, B.; Barth, C.; Baus, C.; Berger, J.; Butz, E.; Chwalek, T.; Colombo, F.; De Boer, W.; Dierlamm, A.; Fink, S.; Friese, R.; Giffels, M.; Gilbert, A.; Goldenzweig, P.; Haitz, D.; Hartmann, F.; Heindl, S. M.; Husemann, U.; Katkov, I.; Lobelle Pardo, P.; Maier, B.; Mildner, H.; Mozer, M. U.; Müller, T.; Müller, Th.; Plagge, M.; Quast, G.; Rabbertz, K.; Röcker, S.; Roscher, F.; Schröder, M.; Shvetsov, I.; Sieber, G.; Simonis, H. J.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weber, M.; Weiler, T.; Williamson, S.; Wöhrmann, C.; Wolf, R.; Anagnostou, G.; Daskalakis, G.; Geralis, T.; Giakoumopoulou, V. A.; Kyriakis, A.; Loukas, D.; Topsis-Giotis, I.; Agapitos, A.; Kesisoglou, S.; Panagiotou, A.; Saoulidou, N.; Tziaferi, E.; Evangelou, I.; Flouris, G.; Foudas, C.; Kokkas, P.; Loukas, N.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Filipovic, N.; Bencze, G.; Hajdu, C.; Hidas, P.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.; Beni, N.; Czellar, S.; Karancsi, J.; Makovec, A.; Molnar, J.; Szillasi, Z.; Bartók, M.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Bahinipati, S.; Choudhury, S.; Mal, P.; Mandal, K.; Nayak, A.; Sahoo, D. K.; Sahoo, N.; Swain, S. K.; Bansal, S.; Beri, S. B.; Bhatnagar, V.; Chawla, R.; Bhawandeep, U.; Kalsi, A. K.; Kaur, A.; Kaur, M.; Kumar, R.; Mehta, A.; Mittal, M.; Singh, J. B.; Walia, G.; Kumar, Ashok; Bhardwaj, A.; Choudhary, B. C.; Garg, R. B.; Keshri, S.; Malhotra, S.; Naimuddin, M.; Nishu, N.; Ranjan, K.; Sharma, R.; Sharma, V.; Bhattacharya, R.; Bhattacharya, S.; Chatterjee, K.; Dey, S.; Dutt, S.; Dutta, S.; Ghosh, S.; Majumdar, N.; Modak, A.; Mondal, K.; Mukhopadhyay, S.; Nandan, S.; Purohit, A.; Roy, A.; Roy, D.; Roy Chowdhury, S.; Sarkar, S.; Sharan, M.; Thakur, S.; Behera, P. K.; Chudasama, R.; Dutta, D.; Jha, V.; Kumar, V.; Mohanty, A. K.; Netrakanti, P. K.; Pant, L. M.; Shukla, P.; Topkar, A.; Aziz, T.; Dugad, S.; Kole, G.; Mahakud, B.; Mitra, S.; Mohanty, G. B.; Parida, B.; Sur, N.; Sutar, B.; Banerjee, S.; Bhowmik, S.; Dewanjee, R. K.; Ganguly, S.; Guchait, M.; Jain, Sa.; Kumar, S.; Maity, M.; Majumder, G.; Mazumdar, K.; Sarkar, T.; Wickramage, N.; Chauhan, S.; Dube, S.; Hegde, V.; Kapoor, A.; Kothekar, K.; Rane, A.; Sharma, S.; Behnamian, H.; Chenarani, S.; Eskandari Tadavani, E.; Etesami, S. M.; Fahim, A.; Khakzad, M.; Mohammadi Najafabadi, M.; Naseri, M.; Paktinat Mehdiabadi, S.; Rezaei Hosseinabadi, F.; Safarzadeh, B.; Zeinali, M.; Felcini, M.; Grunewald, M.; Abbrescia, M.; Calabria, C.; Caputo, C.; Colaleo, A.; Creanza, D.; Cristella, L.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; Miniello, G.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Ranieri, A.; Selvaggi, G.; Silvestris, L.; Venditti, R.; Verwilligen, P.; Abbiendi, G.; Battilana, C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Chhibra, S. S.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Albergo, S.; Chiorboli, M.; Costa, S.; Di Mattia, A.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Gori, V.; Lenzi, P.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Viliani, L.; Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.; Primavera, F.; Calvelli, V.; Ferro, F.; Lo Vetere, M.; Monge, M. R.; Robutti, E.; Tosi, S.; Brianza, L.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Ghezzi, A.; Govoni, P.; Malvezzi, S.; Manzoni, R. A.; Marzocchi, B.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Pigazzini, S.; Ragazzi, S.; Tabarelli de Fatis, T.; Buontempo, S.; Cavallo, N.; De Nardo, G.; Di Guida, S.; Esposito, M.; Fabozzi, F.; Iorio, A. O. M.; Lanza, G.; Lista, L.; Meola, S.; Paolucci, P.; Sciacca, C.; Thyssen, F.; Azzi, P.; Bacchetta, N.; Benato, L.; Bisello, D.; Boletti, A.; Carlin, R.; Carvalho Antunes De Oliveira, A.; Checchia, P.; Dall'Osso, M.; De Castro Manzano, P.; Dorigo, T.; Dosselli, U.; Gasparini, F.; Gasparini, U.; Gozzelino, A.; Lacaprara, S.; Margoni, M.; Meneguzzo, A. T.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Zanetti, M.; Zotto, P.; Zucchetta, A.; Zumerle, G.; Braghieri, A.; Magnani, A.; Montagna, P.; Ratti, S. P.; Re, V.; Riccardi, C.; Salvini, P.; Vai, I.; Vitulo, P.; Alunni Solestizi, L.; Bilei, G. M.; Ciangottini, D.; Fanò, L.; Lariccia, P.; Leonardi, R.; Mantovani, G.; Menichelli, M.; Saha, A.; Santocchia, A.; Androsov, K.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Donato, S.; Fedi, G.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Palla, F.; Rizzi, A.; SavoyNavarro, A.; Spagnolo, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Barone, L.; Cavallari, F.; Cipriani, M.; D'imperio, G.; Del Re, D.; Diemoz, M.; Gelli, S.; Jorda, C.; Longo, E.; Margaroli, F.; Meridiani, P.; Organtini, G.; Paramatti, R.; Preiato, F.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bartosik, N.; Bellan, R.; Biino, C.; Cartiglia, N.; Cenna, F.; Costa, M.; Covarelli, R.; Degano, A.; Demaria, N.; Finco, L.; Kiani, B.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Monteil, E.; Obertino, M. M.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Pinna Angioni, G. L.; Ravera, F.; Romero, A.; Ruspa, M.; Sacchi, R.; Shchelina, K.; Sola, V.; Solano, A.; Staiano, A.; Traczyk, P.; Belforte, S.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; La Licata, C.; Schizzi, A.; Zanetti, A.; Kim, D. H.; Kim, G. N.; Kim, M. S.; Lee, S.; Lee, S. W.; Oh, Y. D.; Sekmen, S.; Son, D. C.; Yang, Y. C.; Lee, A.; Brochero Cifuentes, J. A.; Kim, T. J.; Cho, S.; Choi, S.; Go, Y.; Gyun, D.; Ha, S.; Hong, B.; Jo, Y.; Kim, Y.; Lee, B.; Lee, K.; Lee, K. S.; Lee, S.; Lim, J.; Park, S. K.; Roh, Y.; Almond, J.; Kim, J.; Oh, S. B.; Seo, S. h.; Yang, U. K.; Yoo, H. D.; Yu, G. B.; Choi, M.; Kim, H.; Kim, H.; Kim, J. H.; Lee, J. S. H.; Park, I. C.; Ryu, G.; Ryu, M. S.; Choi, Y.; Goh, J.; Hwang, C.; Lee, J.; Yu, I.; Dudenas, V.; Juodagalvis, A.; Vaitkus, J.; Ahmed, I.; Ibrahim, Z. A.; Komaragiri, J. R.; Md Ali, M. A. B.; Mohamad Idris, F.; Wan Abdullah, W. A. T.; Yusli, M. N.; Zolkapli, Z.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-De La Cruz, I.; Hernandez-Almada, A.; Lopez-Fernandez, R.; Magaña Villalba, R.; Mejia Guisao, J.; Sanchez-Hernandez, A.; Carrillo Moreno, S.; Oropeza Barrera, C.; Vazquez Valencia, F.; Carpinteyro, S.; Pedraza, I.; Salazar Ibarguen, H. A.; Uribe Estrada, C.; Morelos Pineda, A.; Krofcheck, D.; Butler, P. H.; Ahmad, A.; Ahmad, M.; Hassan, Q.; Hoorani, H. R.; Khan, W. A.; Shah, M. A.; Shoaib, M.; Waqas, M.; Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Górski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Zalewski, P.; Bunkowski, K.; Byszuk, A.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Walczak, M.; Bargassa, P.; Beirão Da Cruz E Silva, C.; Di Francesco, A.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Hollar, J.; Leonardo, N.; Lloret Iglesias, L.; Nemallapudi, M. V.; Rodrigues Antunes, J.; Seixas, J.; Toldaiev, O.; Vadruccio, D.; Varela, J.; Vischia, P.; Afanasiev, S.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Lanev, A.; Malakhov, A.; Matveev, V.; Moisenz, P.; Palichik, V.; Perelygin, V.; Shmatov, S.; Shulha, S.; Skatchkov, N.; Smirnov, V.; Voytishin, N.; Zarubin, A.; Chtchipounov, L.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Kuznetsova, E.; Murzin, V.; Oreshkin, V.; Sulimov, V.; Vorobyev, A.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Karneyeu, A.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Pozdnyakov, I.; Safronov, G.; Spiridonov, A.; Toms, M.; Vlasov, E.; Zhokin, A.; Bylinkin, A.; Chistov, R.; Danilov, M.; Rusinov, V.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Rusakov, S. V.; Terkulov, A.; Baskakov, A.; Belyaev, A.; Boos, E.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Miagkov, I.; Obraztsov, S.; Petrushanko, S.; Savrin, V.; Snigirev, A.; Blinov, V.; Skovpen, Y.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Elumakhov, D.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Cirkovic, P.; Devetak, D.; Dordevic, M.; Milosevic, J.; Rekovic, V.; Alcaraz Maestre, J.; Barrio Luna, M.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Escalante Del Valle, A.; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Navarro De Martino, E.; Pérez-Calero Yzquierdo, A.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Soares, M. S.; de Trocóniz, J. F.; Missiroli, M.; Moran, D.; Cuevas, J.; Fernandez Menendez, J.; Gonzalez Caballero, I.; González Fernández, J. R.; Palencia Cortezon, E.; Sanchez Cruz, S.; Suárez Andrés, I.; Vizan Garcia, J. M.; Cabrillo, I. J.; Calderon, A.; Castiñeiras De Saa, J. R.; Curras, E.; Fernandez, M.; Garcia-Ferrero, J.; Gomez, G.; Lopez Virto, A.; Marco, J.; Martinez Rivero, C.; Matorras, F.; Piedra Gomez, J.; Rodrigo, T.; Ruiz-Jimeno, A.; Scodellaro, L.; Trevisani, N.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Bloch, P.; Bocci, A.; Bonato, A.; Botta, C.; Camporesi, T.; Castello, R.; Cepeda, M.; Cerminara, G.; D'Alfonso, M.; d'Enterria, D.; Dabrowski, A.; Daponte, V.; David, A.; De Gruttola, M.; De Guio, F.; De Roeck, A.; Di Marco, E.; Dobson, M.; Dorney, B.; du Pree, T.; Duggan, D.; Dünser, M.; Dupont, N.; Elliott-Peisert, A.; Fartoukh, S.; Franzoni, G.; Fulcher, J.; Funk, W.; Gigi, D.; Gill, K.; Girone, M.; Glege, F.; Gulhan, D.; Gundacker, S.; Guthoff, M.; Hammer, J.; Harris, P.; Hegeman, J.; Innocente, V.; Janot, P.; Kirschenmann, H.; Knünz, V.; Kornmayer, A.; Kortelainen, M. J.; Kousouris, K.; Krammer, M.; Lecoq, P.; Lourenço, C.; Lucchini, M. T.; Malgeri, L.; Mannelli, M.; Martelli, A.; Meijers, F.; Mersi, S.; Meschi, E.; Moortgat, F.; Morovic, S.; Mulders, M.; Neugebauer, H.; Orfanelli, S.; Orsini, L.; Pape, L.; Perez, E.; Peruzzi, M.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Pierini, M.; Racz, A.; Reis, T.; Rolandi, G.; Rovere, M.; Ruan, M.; Sakulin, H.; Sauvan, J. B.; Schäfer, C.; Schwick, C.; Seidel, M.; Sharma, A.; Silva, P.; Simon, M.; Sphicas, P.; Steggemann, J.; Stoye, M.; Takahashi, Y.; Tosi, M.; Treille, D.; Triossi, A.; Tsirou, A.; Veckalns, V.; Veres, G. I.; Wardle, N.; Zagozdzinska, A.; Zeuner, W. D.; Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Rohe, T.; Bachmair, F.; Bäni, L.; Bianchini, L.; Casal, B.; Dissertori, G.; Dittmar, M.; Donegà, M.; Eller, P.; Grab, C.; Heidegger, C.; Hits, D.; Hoss, J.; Kasieczka, G.; Lecomte, P.; Lustermann, W.; Mangano, B.; Marionneau, M.; Martinez Ruiz del Arbol, P.; Masciovecchio, M.; Meinhard, M. T.; Meister, D.; Micheli, F.; Musella, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pata, J.; Pauss, F.; Perrin, G.; Perrozzi, L.; Quittnat, M.; Rossini, M.; Schönenberger, M.; Starodumov, A.; Tavolaro, V. R.; Theofilatos, K.; Wallny, R.; Aarrestad, T. K.; Amsler, C.; Caminada, L.; Canelli, M. F.; De Cosa, A.; Galloni, C.; Hinzmann, A.; Hreus, T.; Kilminster, B.; Lange, C.; Ngadiuba, J.; Pinna, D.; Rauco, G.; Robmann, P.; Salerno, D.; Yang, Y.; Candelise, V.; Doan, T. H.; Jain, Sh.; Khurana, R.; Konyushikhin, M.; Kuo, C. M.; Lin, W.; Lu, Y. J.; Pozdnyakov, A.; Yu, S. S.; Kumar, Arun; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Chen, P. H.; Dietz, C.; Fiori, F.; Hou, W.-S.; Hsiung, Y.; Liu, Y. F.; Lu, R.-S.; Miñano Moya, M.; Paganis, E.; Psallidas, A.; Tsai, J. f.; Tzeng, Y. M.; Asavapibhop, B.; Singh, G.; Srimanobhas, N.; Suwonjandee, N.; Adiguzel, A.; Cerci, S.; Damarseckin, S.; Demiroglu, Z. S.; Dozen, C.; Dumanoglu, I.; Girgis, S.; Gokbulut, G.; Guler, Y.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Kara, O.; Kiminsu, U.; Oglakci, M.; Onengut, G.; Ozdemir, K.; Sunar Cerci, D.; Tali, B.; Topakli, H.; Turkcapar, S.; Zorbakir, I. S.; Zorbilmez, C.; Bilin, B.; Bilmis, S.; Isildak, B.; Karapinar, G.; Yalvac, M.; Zeyrek, M.; Gülmez, E.; Kaya, M.; Kaya, O.; Yetkin, E. A.; Yetkin, T.; Cakir, A.; Cankocak, K.; Sen, S.; Grynyov, B.; Levchuk, L.; Sorokin, P.; Aggleton, R.; Ball, F.; Beck, L.; Brooke, J. J.; Burns, D.; Clement, E.; Cussans, D.; Flacher, H.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Jacob, J.; Kreczko, L.; Lucas, C.; Newbold, D. M.; Paramesvaran, S.; Poll, A.; Sakuma, T.; Seif El Nasr-storey, S.; Smith, D.; Smith, V. J.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Calligaris, L.; Cieri, D.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Williams, T.; Baber, M.; Bainbridge, R.; Buchmuller, O.; Bundock, A.; Burton, D.; Casasso, S.; Citron, M.; Colling, D.; Corpe, L.; Dauncey, P.; Davies, G.; De Wit, A.; Della Negra, M.; Di Maria, R.; Dunne, P.; Elwood, A.; Futyan, D.; Haddad, Y.; Hall, G.; Iles, G.; James, T.; Lane, R.; Laner, C.; Lucas, R.; Lyons, L.; Magnan, A.-M.; Malik, S.; Mastrolorenzo, L.; Nash, J.; Nikitenko, A.; Pela, J.; Penning, B.; Pesaresi, M.; Raymond, D. M.; Richards, A.; Rose, A.; Seez, C.; Summers, S.; Tapper, A.; Uchida, K.; Vazquez Acosta, M.; Virdee, T.; Wright, J.; Zenz, S. C.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leslie, D.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.; Borzou, A.; Call, K.; Dittmann, J.; Hatakeyama, K.; Liu, H.; Pastika, N.; Charaf, O.; Cooper, S. I.; Henderson, C.; Rumerio, P.; Arcaro, D.; Avetisyan, A.; Bose, T.; Gastler, D.; Rankin, D.; Richardson, C.; Rohlf, J.; Sulak, L.; Zou, D.; Benelli, G.; Berry, E.; Cutts, D.; Garabedian, A.; Hakala, J.; Heintz, U.; Hogan, J. M.; Jesus, O.; Laird, E.; Landsberg, G.; Mao, Z.; Narain, M.; Piperov, S.; Sagir, S.; Spencer, E.; Syarif, R.; Breedon, R.; Breto, G.; Burns, D.; Calderon De La Barca Sanchez, M.; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Flores, C.; Funk, G.; Gardner, M.; Ko, W.; Lander, R.; Mclean, C.; Mulhearn, M.; Pellett, D.; Pilot, J.; Ricci-Tam, F.; Shalhout, S.; Smith, J.; Squires, M.; Stolp, D.; Tripathi, M.; Wilbur, S.; Yohay, R.; Cousins, R.; Everaerts, P.; Florent, A.; Hauser, J.; Ignatenko, M.; Saltzberg, D.; Takasugi, E.; Valuev, V.; Weber, M.; Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Hanson, G.; Heilman, J.; Jandir, P.; Kennedy, E.; Lacroix, F.; Long, O. R.; Malberti, M.; Olmedo Negrete, M.; Paneva, M. I.; Shrinivas, A.; Wei, H.; Wimpenny, S.; Yates, B. R.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; Derdzinski, M.; Gerosa, R.; Holzner, A.; Klein, D.; Krutelyov, V.; Letts, J.; Macneill, I.; Olivito, D.; Padhi, S.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Tadel, M.; Vartak, A.; Wasserbaech, S.; Welke, C.; Wood, J.; Würthwein, F.; Yagil, A.; Zevi Della Porta, G.; Bhandari, R.; Bradmiller-Feld, J.; Campagnari, C.; Dishaw, A.; Dutta, V.; Flowers, K.; Franco Sevilla, M.; Geffert, P.; George, C.; Golf, F.; Gouskos, L.; Gran, J.; Heller, R.; Incandela, J.; Mccoll, N.; Mullin, S. D.; Ovcharova, A.; Richman, J.; Stuart, D.; Suarez, I.; West, C.; Yoo, J.; Anderson, D.; Apresyan, A.; Bendavid, J.; Bornheim, A.; Bunn, J.; Chen, Y.; Duarte, J.; Lawhorn, J. M.; Mott, A.; Newman, H. B.; Pena, C.; Spiropulu, M.; Vlimant, J. R.; Xie, S.; Zhu, R. Y.; Andrews, M. B.; Azzolini, V.; Carlson, B.; Ferguson, T.; Paulini, M.; Russ, J.; Sun, M.; Vogel, H.; Vorobiev, I.; Cumalat, J. P.; Ford, W. T.; Jensen, F.; Johnson, A.; Krohn, M.; Mulholland, T.; Stenson, K.; Wagner, S. R.; Alexander, J.; Chaves, J.; Chu, J.; Dittmer, S.; Mcdermott, K.; Mirman, N.; Nicolas Kaufman, G.; Patterson, J. R.; Rinkevicius, A.; Ryd, A.; Skinnari, L.; Soffi, L.; Tan, S. M.; Tao, Z.; Thom, J.; Tucker, J.; Wittich, P.; Zientek, M.; Winn, D.; Abdullin, S.; Albrow, M.; Apollinari, G.; Banerjee, S.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bolla, G.; Burkett, K.; Butler, J. N.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Cremonesi, M.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gottschalk, E.; Gray, L.; Green, D.; Grünendahl, S.; Gutsche, O.; Hare, D.; Harris, R. M.; Hasegawa, S.; Hirschauer, J.; Hu, Z.; Jayatilaka, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Klima, B.; Kreis, B.; Lammel, S.; Linacre, J.; Lincoln, D.; Lipton, R.; Liu, T.; Lopes De Sá, R.; Lykken, J.; Maeshima, K.; Magini, N.; Marraffino, J. M.; Maruyama, S.; Mason, D.; McBride, P.; Merkel, P.; Mrenna, S.; Nahn, S.; Newman-Holmes, C.; O'Dell, V.; Pedro, K.; Prokofyev, O.; Rakness, G.; Ristori, L.; Sexton-Kennedy, E.; Soha, A.; Spalding, W. J.; Spiegel, L.; Stoynev, S.; Strobbe, N.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vernieri, C.; Verzocchi, M.; Vidal, R.; Wang, M.; Weber, H. A.; Whitbeck, A.; Acosta, D.; Avery, P.; Bortignon, P.; Bourilkov, D.; Brinkerhoff, A.; Carnes, A.; Carver, M.; Curry, D.; Das, S.; Field, R. D.; Furic, I. K.; Konigsberg, J.; Korytov, A.; Ma, P.; Matchev, K.; Mei, H.; Milenovic, P.; Mitselmakher, G.; Rank, D.; Shchutska, L.; Sperka, D.; Thomas, L.; Wang, J.; Wang, S.; Yelton, J.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.; Ackert, A.; Adams, J. R.; Adams, T.; Askew, A.; Bein, S.; Diamond, B.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Khatiwada, A.; Prosper, H.; Santra, A.; Weinberg, M.; Baarmand, M. M.; Bhopatkar, V.; Colafranceschi, S.; Hohlmann, M.; Noonan, D.; Roy, T.; Yumiceva, F.; Adams, M. R.; Apanasevich, L.; Berry, D.; Betts, R. R.; Bucinskaite, I.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Kurt, P.; O'Brien, C.; Sandoval Gonzalez, I. D.; Turner, P.; Varelas, N.; Wang, H.; Wu, Z.; Zakaria, M.; Zhang, J.; Bilki, B.; Clarida, W.; Dilsiz, K.; Durgut, S.; Gandrajula, R. P.; Haytmyradov, M.; Khristenko, V.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Snyder, C.; Tiras, E.; Wetzel, J.; Yi, K.; Anderson, I.; Blumenfeld, B.; Cocoros, A.; Eminizer, N.; Fehling, D.; Feng, L.; Gritsan, A. V.; Maksimovic, P.; Osherson, M.; Roskes, J.; Sarica, U.; Swartz, M.; Xiao, M.; Xin, Y.; You, C.; Al-bataineh, A.; Baringer, P.; Bean, A.; Bowen, J.; Bruner, C.; Castle, J.; Kenny, R. P.; Kropivnitskaya, A.; Majumder, D.; Mcbrayer, W.; Murray, M.; Sanders, S.; Stringer, R.; Tapia Takaki, J. D.; Wang, Q.; Ivanov, A.; Kaadze, K.; Khalil, S.; Makouski, M.; Maravin, Y.; Mohammadi, A.; Saini, L. K.; Skhirtladze, N.; Toda, S.; Lange, D.; Rebassoo, F.; Wright, D.; Anelli, C.; Baden, A.; Baron, O.; Belloni, A.; Calvert, B.; Eno, S. C.; Ferraioli, C.; Gomez, J. A.; Hadley, N. J.; Jabeen, S.; Kellogg, R. G.; Kolberg, T.; Kunkle, J.; Lu, Y.; Mignerey, A. C.; Shin, Y. H.; Skuja, A.; Tonjes, M. B.; Tonwar, S. C.; Abercrombie, D.; Allen, B.; Apyan, A.; Barbieri, R.; Baty, A.; Bi, R.; Bierwagen, K.; Brandt, S.; Busza, W.; Cali, I. A.; Demiragli, Z.; Di Matteo, L.; Gomez Ceballos, G.; Goncharov, M.; Hsu, D.; Iiyama, Y.; Innocenti, G. M.; Klute, M.; Kovalskyi, D.; Krajczar, K.; Lai, Y. S.; Lee, Y.-J.; Levin, A.; Luckey, P. D.; Marini, A. C.; Mcginn, C.; Mironov, C.; Narayanan, S.; Niu, X.; Paus, C.; Roland, C.; Roland, G.; Salfeld-Nebgen, J.; Stephans, G. S. F.; Sumorok, K.; Tatar, K.; Varma, M.; Velicanu, D.; Veverka, J.; Wang, J.; Wang, T. W.; Wyslouch, B.; Yang, M.; Zhukova, V.; Benvenuti, A. C.; Chatterjee, R. M.; Evans, A.; Finkel, A.; Gude, A.; Hansen, P.; Kalafut, S.; Kao, S. C.; Kubota, Y.; Lesko, Z.; Mans, J.; Nourbakhsh, S.; Ruckstuhl, N.; Rusack, R.; Tambe, N.; Turkewitz, J.; Acosta, J. G.; Oliveros, S.; Avdeeva, E.; Bartek, R.; Bloom, K.; Bose, S.; Claes, D. R.; Dominguez, A.; Fangmeier, C.; Gonzalez Suarez, R.; Kamalieddin, R.; Knowlton, D.; Kravchenko, I.; Malta Rodrigues, A.; Meier, F.; Monroy, J.; Siado, J. E.; Snow, G. R.; Stieger, B.; Alyari, M.; Dolen, J.; George, J.; Godshalk, A.; Harrington, C.; Iashvili, I.; Kaisen, J.; Kharchilava, A.; Kumar, A.; Parker, A.; Rappoccio, S.; Roozbahani, B.; Alverson, G.; Barberis, E.; Baumgartel, D.; Hortiangtham, A.; Massironi, A.; Morse, D. M.; Nash, D.; Orimoto, T.; Teixeira De Lima, R.; Trocino, D.; Wang, R.-J.; Wood, D.; Bhattacharya, S.; Hahn, K. A.; Kubik, A.; Kumar, A.; Low, J. F.; Mucia, N.; Odell, N.; Pollack, B.; Schmitt, M. H.; Sung, K.; Trovato, M.; Velasco, M.; Dev, N.; Hildreth, M.; Hurtado Anampa, K.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Marinelli, N.; Meng, F.; Mueller, C.; Musienko, Y.; Planer, M.; Reinsvold, A.; Ruchti, R.; Smith, G.; Taroni, S.; Valls, N.; Wayne, M.; Wolf, M.; Woodard, A.; Alimena, J.; Antonelli, L.; Brinson, J.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Francis, B.; Hart, A.; Hill, C.; Hughes, R.; Ji, W.; Liu, B.; Luo, W.; Puigh, D.; Winer, B. L.; Wulsin, H. W.; Cooperstein, S.; Driga, O.; Elmer, P.; Hardenbrook, J.; Hebda, P.; Luo, J.; Marlow, D.; Medvedeva, T.; Mei, K.; Mooney, M.; Olsen, J.; Palmer, C.; Piroué, P.; Stickland, D.; Tully, C.; Zuranski, A.; Malik, S.; Barker, A.; Barnes, V. E.; Folgueras, S.; Gutay, L.; Jha, M. K.; Jones, M.; Jung, A. W.; Jung, K.; Miller, D. H.; Neumeister, N.; Radburn-Smith, B. C.; Shi, X.; Sun, J.; Svyatkovskiy, A.; Wang, F.; Xie, W.; Xu, L.; Parashar, N.; Stupak, J.; Adair, A.; Akgun, B.; Chen, Z.; Ecklund, K. M.; Geurts, F. J. M.; Guilbaud, M.; Li, W.; Michlin, B.; Northup, M.; Padley, B. P.; Redjimi, R.; Roberts, J.; Rorie, J.; Tu, Z.; Zabel, J.; Betchart, B.; Bodek, A.; de Barbaro, P.; Demina, R.; Duh, Y. t.; Ferbel, T.; Galanti, M.; Garcia-Bellido, A.; Han, J.; Hindrichs, O.; Khukhunaishvili, A.; Lo, K. H.; Tan, P.; Verzetti, M.; Chou, J. P.; Contreras-Campana, E.; Gershtein, Y.; Gómez Espinosa, T. A.; Halkiadakis, E.; Heindl, M.; Hidas, D.; Hughes, E.; Kaplan, S.; Kunnawalkam Elayavalli, R.; Kyriacou, S.; Lath, A.; Nash, K.; Saka, H.; Salur, S.; Schnetzer, S.; Sheffield, D.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.; Foerster, M.; Heideman, J.; Riley, G.; Rose, K.; Spanier, S.; Thapa, K.; Bouhali, O.; Celik, A.; Dalchenko, M.; De Mattia, M.; Delgado, A.; Dildick, S.; Eusebi, R.; Gilmore, J.; Huang, T.; Juska, E.; Kamon, T.; Mueller, R.; Pakhotin, Y.; Patel, R.; Perloff, A.; Perniè, L.; Rathjens, D.; Rose, A.; Safonov, A.; Tatarinov, A.; Ulmer, K. A.; Akchurin, N.; Cowden, C.; Damgov, J.; Dragoiu, C.; Dudero, P. R.; Faulkner, J.; Kunori, S.; Lamichhane, K.; Lee, S. W.; Libeiro, T.; Undleeb, S.; Volobouev, I.; Wang, Z.; Delannoy, A. G.; Greene, S.; Gurrola, A.; Janjam, R.; Johns, W.; Maguire, C.; Melo, A.; Ni, H.; Sheldon, P.; Tuo, S.; Velkovska, J.; Xu, Q.; Arenton, M. W.; Barria, P.; Cox, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Li, H.; Neu, C.; Sinthuprasith, T.; Sun, X.; Wang, Y.; Wolfe, E.; Xia, F.; Clarke, C.; Harr, R.; Karchin, P. E.; Lamichhane, P.; Sturdy, J.; Belknap, D. A.; Dasu, S.; Dodd, L.; Duric, S.; Gomber, B.; Grothe, M.; Herndon, M.; Hervé, A.; Klabbers, P.; Lanaro, A.; Levine, A.; Long, K.; Loveless, R.; Ojalvo, I.; Perry, T.; Pierro, G. A.; Polese, G.; Ruggles, T.; Savin, A.; Sharma, A.; Smith, N.; Smith, W. H.; Taylor, D.; Woods, N.

    2016-12-01

    A search is presented for an excess of events with large missing transverse momentum in association with at least one highly energetic jet, in a data sample of proton-proton collisions at a centre-of-mass energy of 8 TeV. The data correspond to an integrated luminosity of 19.7 fb-1 collected by the CMS experiment at the LHC. The results are interpreted using a set of simplified models for the production of dark matter via a scalar, pseudoscalar, vector, or axial vector mediator. Additional sensitivity is achieved by tagging events consistent with the jets originating from a hadronically decaying vector boson. This search uses jet substructure techniques to identify hadronically decaying vector bosons in both Lorentz-boosted and resolved scenarios. This analysis yields improvements of 80% in terms of excluded signal cross sections with respect to the previous CMS analysis using the same data set. No significant excess with respect to the standard model expectation is observed and limits are placed on the parameter space of the simplified models. Mediator masses between 80 and 400 GeV in the scalar and pseudoscalar models, and up to 1.5 TeV in the vector and axial vector models, are excluded. [Figure not available: see fulltext.

  1. Limit on Tensor Currents from Li 8 β Decay

    NASA Astrophysics Data System (ADS)

    Sternberg, M. G.; Segel, R.; Scielzo, N. D.; Savard, G.; Clark, J. A.; Bertone, P. F.; Buchinger, F.; Burkey, M.; Caldwell, S.; Chaudhuri, A.; Crawford, J. E.; Deibel, C. M.; Greene, J.; Gulick, S.; Lascar, D.; Levand, A. F.; Li, G.; Pérez Galván, A.; Sharma, K. S.; Van Schelt, J.; Yee, R. M.; Zabransky, B. J.

    2015-10-01

    In the standard model, the weak interaction is formulated with a purely vector-axial-vector (V -A ) structure. Without restriction on the chirality of the neutrino, the most general limits on tensor currents from nuclear β decay are dominated by a single measurement of the β -ν ¯ correlation in He 6 β decay dating back over a half century. In the present work, the β -ν ¯ -α correlation in the β decay of Li 8 and subsequent α -particle breakup of the Be8 * daughter was measured. The results are consistent with a purely V -A interaction and in the case of couplings to right-handed neutrinos (CT=-CT' ) limits the tensor fraction to |CT/CA|2<0.011 (95.5% C.L.). The measurement confirms the He 6 result using a different nuclear system and employing modern ion-trapping techniques subject to different systematic uncertainties.

  2. Viability of strongly coupled scenarios with a light Higgs-like boson.

    PubMed

    Pich, Antonio; Rosell, Ignasi; Sanz-Cillero, Juan José

    2013-05-03

    We present a one-loop calculation of the oblique S and T parameters within strongly coupled models of electroweak symmetry breaking with a light Higgs-like boson. We use a general effective Lagrangian, implementing the chiral symmetry breaking SU(2)(L) [Symbol: see text]SU(2)(R) → SU(2)(L+R) with Goldstone bosons, gauge bosons, the Higgs-like scalar, and one multiplet of vector and axial-vector massive resonance states. Using a dispersive representation and imposing a proper ultraviolet behavior, we obtain S and T at the next-to-leading order in terms of a few resonance parameters. The experimentally allowed range forces the vector and axial-vector states to be heavy, with masses above the TeV scale, and suggests that the Higgs-like scalar should have a WW coupling close to the standard model one. Our conclusions are generic and apply to more specific scenarios such as the minimal SO(5)/SO(4) composite Higgs model.

  3. Analysis of Z 0 couplings to charged leptons

    NASA Astrophysics Data System (ADS)

    Akrawy, M. Z.; Alexander, G.; Allison, J.; Allport, P. P.; Anderson, K. J.; Armitage, J. C.; Arnison, G. T. J.; Ashton, P.; Azuelos, G.; Baines, J. T. M.; Ball, A. H.; Banks, J.; Barker, G. J.; Barlow, R. J.; Batley, J. R.; Becker, J.; Behnke, T.; Bell, K. W.; Bella, G.; Bethke, S.; Biebel, O.; Binder, U.; Bloodworth, I. J.; Bock, P.; Breuker, H.; Brown, R. M.; Brun, R.; Buijs, A.; Burckhart, H. J.; Capiluppi, P.; Carnegie, R. K.; Carter, A. A.; Carter, J. R.; Chang, C. Y.; Charlton, D. G.; Chrin, J. T. M.; Clarke, P. E. L.; Cohen, I.; Collins, W. J.; Conboy, J. E.; Couch, M.; Coupland, M.; Cuffiani, M.; Dado, S.; Dallavalle, G. M.; Debu, P.; Deninno, M. M.; Dieckmann, A.; Dittmar, M.; Dixit, M. S.; Duchovni, E.; Duerdoth, I. P.; Duerdoth, I. P.; Dumas, D.; El Mamouni, H.; Elcombe, P. A.; Estabrooks, P. G.; Etzion, E.; Fabbri, F.; Farthouat, P.; Fischer, H. M.; Fong, D. G.; French, M. T.; Fukunaga, C.; Gaidot, A.; Ganel, O.; Gary, J. W.; Gascon, J.; Geddes, N. I.; Gee, C. N. P.; Geich-Gimbel, C.; Gensler, S. W.; Gentit, F. X.; Giacomelli, G.; Gibson, V.; Gibson, W. R.; Gillies, J. D.; Goldberg, J.; Goodrick, M. J.; Gorn, W.; Granite, D.; Gross, E.; Grunhaus, J.; Hagedorn, H.; Hagemann, J.; Hansroul, M.; Hargrove, C. K.; Hart, J.; Hattersley, P. M.; Hauschild, M.; Hawkes, C. M.; Heflin, E.; Hemingway, R. J.; Heuer, R. D.; Hill, J. C.; Hillier, S. J.; Ho, C.; Hobbs, J. D.; Hobson, P. R.; Hochman, D.; Holl, B.; Homer, R. J.; Hou, S. R.; Howarth, C. P.; Humbert, R.; Hughes-Jones, R. E.; Igo-Kemenes, P.; Ihssen, H.; Imrie, D. C.; Jawahery, A.; Jeffreys, P. W.; Jeremie, H.; Jimack, M.; Jobes, M.; Jones, R. W. L.; Jovanovic, P.; Karlen, D.; Kawagoe, K.; Kawamoto, T.; Kellogg, R. G.; Kennedy, B. W.; Kleinwort, C.; Klem, D. E.; Knop, G.; Kobayashi, T.; Kokott, T. P.; Köpke, L.; Kowalewski, R.; Kreutzmann, H.; von Krogh, J.; Kroll, J.; Kuwano, M.; Kyberd, P.; Lafferty, G. D.; Lamarche, F.; Larson, W. J.; Layter, J. G.; Le Du, P.; Leblanc, P.; Lee, A. M.; Lehto, M. H.; Lellouch, D.; Lennert, P.; Lessard, L.; Levinson, L.; Lloyd, S. L.; Loebinger, F. K.; Lorah, J. M.; Lorazo, B.; Losty, M. J.; Ludwig, J.; Lupu, N.; Ma, J.; Macbeth, A. A.; Mannelli, M.; Marcellini, S.; Maringer, G.; Martin, A. J.; Martin, J. P.; Mashimo, T.; Mättig, P.; Maur, U.; McMahon, T. J.; McNutt, J. R.; McPherson, A. C.; Meijers, F.; Menszner, D.; Merritt, F. S.; Mes, H.; Michelini, A.; Middleton, R. P.; Mikenberg, G.; Miller, D. J.; Milstene, C.; Minowa, M.; Mohr, W.; Montanari, A.; Mori, T.; Moss, M. W.; Murphy, P. G.; Murray, W. J.; Nellen, B.; Nguyen, H. H.; Nozaki, M.; O'Dowd, A. J. P.; O'Neale, S. W.; O'Neill, B. P.; Oakham, F. G.; Odorici, F.; Ogg, M.; Oh, H.; OregliaP, M. J.; Orito, S.; Pansart, J. P.; Patrick, G. N.; Pawley, S. J.; Pfister, P.; Pilcher, J. E.; Pinfold, J. L.; Plane, D. E.; Poli, B.; Pouladdej, A.; Pritchard, T. W.; Quast, G.; Raab, J.; Redmond, M. W.; Rees, D. L.; Regimbald, M.; Riles, K.; Roach, C. M.; Robins, S. A.; Rollnik, A.; Roney, J. M.; Rossberg, S.; Rossi, A. M.; Routenburg, P.; Runge, K.; Runolfsson, O.; Sanghera, S.; Sansum, R. A.; Sasaki, M.; Saunders, B. J.; Schaile, A. D.; Schaile, O.; Schappert, W.; Scharff-Hansen, P.; von der Schmitt, H.; Schreiber, S.; Schwarz, J.; Shapira, A.; Shen, B. C.; Sherwood, P.; Simon, A.; Singh, P.; Siroli, G. P.; Skuja, A.; Smith, A. M.; Smith, T. J.; Snow, G. A.; Spreadbury, E. J.; Springer, R. W.; Sproston, M.; Stephens, K.; Stier, H. E.; Ströhmer, R.; Strom, D.; Takeda, H.; Takeshita, T.; Tsukamoto, T.; Turner, M. F.; Tysarczyk-Niemeyer, G.; Van den plas, D.; VanDalen, G. J.; Vasseur, G.; Virtue, C. J.; Wagner, A.; Wahl, C.; Ward, C. P.; Ward, D. R.; Waterhouse, J.; Watkins, P. M.; Watson, A. T.; Watson, N. K.; Weber, M.; Weisz, S.; Wells, P. S.; Wermes, N.; Weymann, M.; Wilson, G. W.; Wilson, J. A.; Wingerter, I.; Winterer, V.-H.; Wood, N. C.; Wotton, S.; Wuensch, B.; Wyatt, T. R.; Yaari, R.; Yang, Y.; Yekutieli, G.; Yoshida, T.; Zeuner, W.; Zorn, G. T.; OPAL Collaboration

    1990-09-01

    The couplings of the Z 0 to charged leptons are studied using measurements of the lepton pair cross sections and forward-backward asymmetries at centre of mass energies near to the mass of the Z 0. The data are consistent with lepton universality. Using a parametrisation of the lepton pair differential cross section which assumes that the Z 0 has only vector and axial couplings to leptons, the charged leptonic partial decay width of the Z 0 is determined to be Г ol+ol- = 83.1±1.9 MeV and the square of the product of the effective axial vector and vector coupling constants of the Z 0 to charged leptons to be ǎ2olvˇ2ol = 0.0039± 0.0083 , in agreement with the standard model. A parametrisation in the form of the improved Born approximation gives effective leptonic axial vector and vector coupling constants ǎ2ol = 0.998±0.024 and vˇ2ol = 0.0044±0.0083 . In the framework of the standard model, the values of the parameters ϱ z and sin 2overlineθw are found to be 0.998±0.024 and 0.233 +0.045-0.012 respectively. Using the relationship in the minimal standard model between ϱ z and sin 2overlineθw, the results sin 2overlineθSMw = 0.233 +0.007-0.006 is obtained. Our previously published measurement of the ratio of the hadronic to the leptonic partial width of the Z 0 is update: Rz = 21.72 +0.71-0.65.

  4. Axial field shaping under high-numerical-aperture focusing

    NASA Astrophysics Data System (ADS)

    Jabbour, Toufic G.; Kuebler, Stephen M.

    2007-03-01

    Kant reported [J. Mod. Optics47, 905 (2000)] a formulation for solving the inverse problem of vector diffraction, which accurately models high-NA focusing. Here, Kant's formulation is adapted to the method of generalized projections to obtain an algorithm for designing diffractive optical elements (DOEs) that reshape the axial point-spread function (PSF). The algorithm is applied to design a binary phase-only DOE that superresolves the axial PSF with controlled increase in axial sidelobes. An 11-zone DOE is identified that axially narrows the PSF central lobe by 29% while maintaining the sidelobe intensity at or below 52% of the peak intensity. This DOE could improve the resolution achievable in several applications without significantly complicating the optical system.

  5. Baryon chiral perturbation theory combined with the 1 / N c expansion in SU(3): Framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fernando, I. P.; Goity, J. L.

    Baryon Chiral Perturbation Theory combined with themore » $$1/N_c$$ expansion is implemented for three flavors. Here, Baryon masses, vector charges and axial vector couplings are studied to one-loop and organized according to the $$\\xi$$-expansion, in which the $$1/N_c$$ and the low energy power countings are linked according to $$1/N_c={\\cal{O}}(\\xi)={\\cal{O}}(p)$$. The renormalization to $${\\cal{O}}(\\xi^3)$$ necessary for the mentioned observables is provided, along with applications to the baryon masses and axial couplings as obtained in lattice QCD calculations.« less

  6. Baryon chiral perturbation theory combined with the 1 / N c expansion in SU(3): Framework

    DOE PAGES

    Fernando, I. P.; Goity, J. L.

    2018-03-14

    Baryon Chiral Perturbation Theory combined with themore » $$1/N_c$$ expansion is implemented for three flavors. Here, Baryon masses, vector charges and axial vector couplings are studied to one-loop and organized according to the $$\\xi$$-expansion, in which the $$1/N_c$$ and the low energy power countings are linked according to $$1/N_c={\\cal{O}}(\\xi)={\\cal{O}}(p)$$. The renormalization to $${\\cal{O}}(\\xi^3)$$ necessary for the mentioned observables is provided, along with applications to the baryon masses and axial couplings as obtained in lattice QCD calculations.« less

  7. Torsion axial vector and Yvon-Takabayashi angle: zitterbewegung, chirality and all that

    NASA Astrophysics Data System (ADS)

    Fabbri, Luca; da Rocha, Roldão

    2018-03-01

    We consider propagating torsion as a completion of gravitation in order to describe the dynamics of curved-twisted space-times filled with Dirac spinorial fields; we discuss interesting relationships of the torsion axial vector and the curvature tensor with the Yvon-Takabayashi angle and the module of the spinor field, that is the two degrees of freedom of the spinor field itself: in particular, we shall discuss in what way the torsion axial vector could be seen as the potential of a specific interaction of the Yvon-Takabayashi angle, and therefore as a force between the two chiral projections of the spinor field itself. Chiral interactions of the components of a spinor may render effects of zitterbewegung, as well as effective mass terms and other related features: we shall briefly sketch some of the analogies and differences with the similar but not identical situation given by the Yukawa interaction occurring in the Higgs sector of the standard model. We will provide some overall considerations about general consequences for contemporary physics, consequences that have never been discussed before, so far as we are aware, in the present physics literature.

  8. Anomalous transport from holography. Part I

    NASA Astrophysics Data System (ADS)

    Bu, Yanyan; Lublinsky, Michael; Sharon, Amir

    2016-11-01

    We revisit the transport properties induced by the chiral anomaly in a charged plasma holographically dual to anomalous U(1) V ×U(1) A Maxwell theory in Schwarzschild-AdS5. Off-shell constitutive relations for vector and axial currents are derived using various approximations generalising most of known in the literature anomaly-induced phenomena and revealing some new ones. In a weak external field approximation, the constitutive relations have all-order derivatives resummed into six momenta-dependent transport co-efficient functions: the diffusion, the electric/magnetic conductivity, and three anomaly induced functions. The latter generalise the chiral magnetic and chiral separation effects. Nonlinear transport is studied assuming presence of constant background external fields. The chiral magnetic effect, including all order nonlinearity in magnetic field, is proven to be exact when the magnetic field is the only external field that is turned on. Non-linear corrections to the constitutive relations due to electric and axial external fields are computed.

  9. IR properties of chiral effects in pionic matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Avdoshkin, A.; Sadofyev, A. V.; Zakharov, V. I.

    Chiral effects exhibit peculiar universality in idealized theoretical limits. However, they are known to be infrared sensitive and get modified in more realistic settings. In this work we study how the corresponding conductivities vary with the constituent mass. We concentrate on a pionic realization of chiral effects which provides a better control over infrared properties of the theory. The pionic medium is considered at finite vector and axial isospin chemical potentials in the presence of an external magnetic field. This system supports electric and axial isospin currents along the magnetic field which correspond to chiral magnetic and chiral separation effects.more » We show that these currents are sensitive to the finite mass of the constituents but the conductivities follow a simple scaling with the corresponding charge densities as one would expect for polarization effects. It is argued that this relation can capture the dependence of chiral effects on other infrared parameters. Finally, we briefly comment on the realization of the ’t Hooft matching condition in pionic media at finite densities.« less

  10. IR properties of chiral effects in pionic matter

    DOE PAGES

    Avdoshkin, A.; Sadofyev, A. V.; Zakharov, V. I.

    2018-04-27

    Chiral effects exhibit peculiar universality in idealized theoretical limits. However, they are known to be infrared sensitive and get modified in more realistic settings. In this work we study how the corresponding conductivities vary with the constituent mass. We concentrate on a pionic realization of chiral effects which provides a better control over infrared properties of the theory. The pionic medium is considered at finite vector and axial isospin chemical potentials in the presence of an external magnetic field. This system supports electric and axial isospin currents along the magnetic field which correspond to chiral magnetic and chiral separation effects.more » We show that these currents are sensitive to the finite mass of the constituents but the conductivities follow a simple scaling with the corresponding charge densities as one would expect for polarization effects. It is argued that this relation can capture the dependence of chiral effects on other infrared parameters. Finally, we briefly comment on the realization of the ’t Hooft matching condition in pionic media at finite densities.« less

  11. Wigner functions for fermions in strong magnetic fields

    NASA Astrophysics Data System (ADS)

    Sheng, Xin-li; Rischke, Dirk H.; Vasak, David; Wang, Qun

    2018-02-01

    We compute the covariant Wigner function for spin-(1/2) fermions in an arbitrarily strong magnetic field by exactly solving the Dirac equation at non-zero fermion-number and chiral-charge densities. The Landau energy levels as well as a set of orthonormal eigenfunctions are found as solutions of the Dirac equation. With these orthonormal eigenfunctions we construct the fermion field operators and the corresponding Wigner-function operator. The Wigner function is obtained by taking the ensemble average of the Wigner-function operator in global thermodynamical equilibrium, i.e., at constant temperature T and non-zero fermion-number and chiral-charge chemical potentials μ and μ_5, respectively. Extracting the vector and axial-vector components of the Wigner function, we reproduce the currents of the chiral magnetic and separation effect in an arbitrarily strong magnetic field.

  12. Simulation of Liquid Injection Thrust Vector Control for Mars Ascent Vehicle

    NASA Technical Reports Server (NTRS)

    Gudenkauf, Jared

    2017-01-01

    The Jet Propulsion Laboratory is currently in the initial design phase for a potential Mars Ascent Vehicle; which will be landed on Mars, stay on the surface for period of time, collect samples from the Mars 2020 rover, and then lift these samples into orbit around Mars. The engineers at JPL have down selected to a hybrid wax-based fuel rocket using a liquid oxidizer based on nitrogen tetroxide, or a Mixed Oxide of Nitrogen. To lower the gross lift-off mass of the vehicle the thrust vector control system will use liquid injection of the oxidizer to deflect the thrust of the main nozzle instead of using a gimbaled nozzle. The disadvantage of going with the liquid injection system is the low technology readiness level with a hybrid rocket. Presented in this paper is an effort to simulate the Mars Ascent Vehicle hybrid rocket nozzle and liquid injection thrust vector control system using the computational fluid dynamic flow solver Loci/Chem. This effort also includes determining the sensitivity of the thrust vector control system to a number of different design variables for the injection ports; including axial location, number of adjacent ports, injection angle, and distance between the ports.

  13. Nonperturbative comparison of clover and highly improved staggered quarks in lattice QCD and the properties of the Φ meson

    DOE PAGES

    Chakraborty, Bipasha; Davies, C. T. H.; Donald, G. C.; ...

    2017-10-02

    Here, we compare correlators for pseudoscalar and vector mesons made from valence strange quarks using the clover quark and highly improved staggered quark (HISQ) formalisms in full lattice QCD. We use fully nonperturbative methods to normalise vector and axial vector current operators made from HISQ quarks, clover quarks and from combining HISQ and clover fields. This allows us to test expectations for the renormalisation factors based on perturbative QCD, with implications for the error budget of lattice QCD calculations of the matrix elements of clover-staggeredmore » $b$-light weak currents, as well as further HISQ calculations of the hadronic vacuum polarisation. We also compare the approach to the (same) continuum limit in clover and HISQ formalisms for the mass and decay constant of the $$\\phi$$ meson. Our final results for these parameters, using single-meson correlators and neglecting quark-line disconnected diagrams are: $$m_{\\phi} =$$ 1.023(5) GeV and $$f_{\\phi} = $$ 0.238(3) GeV in good agreement with experiment. These results come from calculations in the HISQ formalism using gluon fields that include the effect of $u$, $d$, $s$ and $c$ quarks in the sea with three lattice spacing values and $$m_{u/d}$$ values going down to the physical point.« less

  14. Study of. nu. d r arrow. mu. sup minus pp sub s and. nu. d r arrow. mu. sup minus. Delta. sup ++ (1232) n sub s using the BNL 7-foot deuterium-filled bubble chamber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kitagaki, T.; Yuta, H.; Tanaka, S.

    1990-09-01

    The weak nucleon axial-vector ({ital F}{sub {ital A}}) and vector ({ital F}{sub {ital V}}) form factors are determined from the momentum-transfer-squared ({ital Q}{sup 2}) distributions using 2538 {mu}{sup {minus}} {ital p} and 1384 {mu}{sup {minus}}{Delta}{sup ++} events. The data were obtained from 1 800 000 pictures taken in the BNL 7-foot deuterium-filled bubble chamber exposed to a wide-band neutrino beam with a mean energy {ital E}{sub {nu}}=1.6 GeV. In the framework of the conventional {ital V}{minus}{ital A} theory with standard assumptions, the value obtained from the {mu}{sup {minus}}{ital p} events for the axial-vector mass {ital M}{sub {ital A}} in themore » pure dipole parameterization is 1.070{sub {minus}0.045}{sup +0.040} GeV and from the {mu}{sup {minus}}{Delta}{sup ++} events is 1.28{sub {minus}0.10}{sup +0.08} GeV. These results are in good agreement with an earlier measurement from this experiment and other recent results. The reaction mechanisms for both processes are compared and found to be very similar. A two-parameter fit for the quasielastic reaction, using dipole forms for {ital F}{sub {ital V}} and {ital F}{sub {ital A}}, yields {ital M}{sub {ital A}}=0.97{sub {minus}0.11}{sup +0.14} GeV and {ital M}{sub {ital V}}=0.89{sub {minus}0.07}{sup +0.04} GeV, which is in good agreement with the conserved-vector-current value of {ital M}{sub {ital V}}=0.84 GeV. Possible deviations from the standard assumptions are also discussed.« less

  15. Vector and axial-vector charmoniumlike states

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Zhu, Shi-Lin

    2011-02-01

    After constructing all the tetraquark interpolating currents with JPC=1-+, 1--, 1++ and 1+- in a systematic way, we investigate the two-point correlation functions to extract the masses of the charmoniumlike states with QCD sum rule. For the 1-- qcq¯c¯ charmoniumlike state, mX=4.6˜4.7GeV, which implies a possible tetraquark interpretation for the state Y(4660). The masses for both the 1++ qcq¯c¯ and scs¯c¯ charmoniumlike states are around 4.0˜4.2GeV, which are slightly above the mass of X(3872). For the 1-+ and 1+- qcq¯c¯ charmoniumlike states, the extracted masses are around 4.5˜4.7GeV and 4.0˜4.2GeV, respectively. As a by-product, the bottomoniumlike states are also studied. We also discuss the possible decay modes and experimental search of the charmoniumlike states.

  16. New limit on possible long-range parity-odd interactions of the neutron from neutron-spin rotation in liquid 4He.

    PubMed

    Yan, H; Snow, W M

    2013-02-22

    Various theories beyond the standard model predict new particles with masses in the sub-eV range with very weak couplings to ordinary matter. A parity-odd interaction between polarized nucleons and unpolarized matter proportional to g(V)g(A)s · p is one such possibility, where s[over →] and p[over →] are the spin and the momentum of the polarized nucleon, and g(V) and g(A) are the vector and axial vector couplings of an interaction induced by the exchange of a new light vector boson. We report a new experimental upper bound on such possible long-range parity-odd interactions of the neutron with nucleons and electrons from a recent search for parity violation in neutron spin rotation in liquid ^{4}He. Our constraint on the product of vector and axial vector couplings of a possible new light vector boson is g(V) g(A)(n) ≤ 10(-32) for an interaction range of 1 m. This upper bound is more than 7 orders of magnitude more stringent than the existing laboratory constraints for interaction ranges below 1 m, corresponding to a broad range of vector boson masses above 10(-6) eV. More sensitive searches for a g(V) g(A)(n) coupling could be performed using neutron spin rotation measurements in heavy nuclei or through analysis of experiments conducted to search for nucleon-nucleon weak interactions and nuclear anapole moments.

  17. Magnetic Catheter Manipulation in the Interventional MRI Environment

    PubMed Central

    Wilson, Mark W.; Martin, Alastair B.; Lillaney, Prasheel; Losey, Aaron D.; Yee, Erin J.; Bernhardt, Anthony; Malba, Vincent; Evans, Lee; Sincic, Ryan; Saeed, Maythem; Arenson, Ronald L.; Hetts, Steven W.

    2013-01-01

    Purpose To evaluate deflection capability of a prototype endovascular catheter, which is remotely magnetically steerable, for use in the interventional MRI environment. Materials and Methods Copper coils were mounted on the tips of commercially available 2.3 – 3.0 Fr microcatheters. The coils were fabricated in a novel manner by plasma vapor deposition of a copper layer followed by laser lithography of the layer into coils. Orthogonal helical (solenoid) and saddle-shaped (Helmholtz) coils were mounted on a single catheter tip. Microcatheters were tested in water bath phantoms in a 1.5T clinical MRI scanner, with variable simultaneous currents applied to the coils. Catheter tip deflection was imaged in the axial plane utilizing a “real-time” steady-state free precession (SSFP) MRI sequence. Degree of deflection and catheter tip orientation were measured for each current application. Results The catheter tip was clearly visible in the longitudinal and axial planes. Magnetic field artifacts were visible when the orthogonal coils at the catheter tip were energized. Variable amounts of current applied to a single coil demonstrated consistent catheter deflection in all water bath experiments. Changing current polarity reversed the observed direction of deflection, whereas current applied to two different coils resulted in deflection represented by the composite vector of individual coil activations. Microcatheter navigation through the vascular phantom was successful through control of applied current to one or more coils. Conclusion Controlled catheter deflection is possible with laser lithographed multi-axis coil tipped catheters in the MRI environment. PMID:23707097

  18. Exotic open-flavor bcq¯q¯, bcs¯s¯ and qcq¯b¯, scs¯b¯ tetraquark states

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Steele, T. G.; Zhu, Shi-Lin

    2014-03-01

    We study the exotic bcq¯q¯, bcs¯s¯ and qcq¯b¯, scs¯b¯ systems by constructing the corresponding tetraquark currents with JP=0+ and 1+. After investigating the two-point correlation functions and the spectral densities, we perform QCD sum rule analysis and extract the masses of these open-flavor tetraquark states. Our results indicate that the masses of both the scalar and axial vector tetraquark states are about 7.1-7.2 GeV for the bcq¯q¯ system and 7.2-7.3 GeV for the bcs¯s¯ system. For the qcq¯b¯ tetraquark states with JP=0+ and 1+, their masses are extracted to be around 7.1 GeV. The masses for the scalar and axial vector scs¯b¯ states are 7.1 and 6.9-7.1 GeV, respectively. The tetraquark states qcq¯b¯ and scs¯b¯ lie below the thresholds of D(*)B(*) and Ds(*)Bs(*) respectively, but they can decay into Bc plus a light meson. However, the tetraquark states bcq¯q¯ and bcs¯s¯ lie below the D(*)B¯(*) and Ds(*)B¯s(*) thresholds, suggesting dominantly weak decay mechanisms.

  19. A Statistical Model of the Fluctuations in the Geomagnetic Field from Paleosecular Variation to Reversal

    PubMed

    Camps; Prevot

    1996-08-09

    The statistical characteristics of the local magnetic field of Earth during paleosecular variation, excursions, and reversals are described on the basis of a database that gathers the cleaned mean direction and average remanent intensity of 2741 lava flows that have erupted over the last 20 million years. A model consisting of a normally distributed axial dipole component plus an independent isotropic set of vectors with a Maxwellian distribution that simulates secular variation fits the range of geomagnetic fluctuations, in terms of both direction and intensity. This result suggests that the magnitude of secular variation vectors is independent of the magnitude of Earth's axial dipole moment and that the amplitude of secular variation is unchanged during reversals.

  20. Wind Magnetic Clouds for the Period 2013 - 2015: Model Fitting, Types, Associated Shock Waves, and Comparisons to Other Periods

    NASA Astrophysics Data System (ADS)

    Lepping, R. P.; Wu, C.-C.; Berdichevsky, D. B.; Szabo, A.

    2018-04-01

    We give the results of parameter fitting of the magnetic clouds (MCs) observed by the Wind spacecraft for the three-year period 2013 to the end of 2015 (called the "Present" period) using the MC model of Lepping, Jones, and Burlaga ( J. Geophys. Res. 95, 11957, 1990). The Present period is almost coincident with the solar maximum of the sunspot number, which has a broad peak starting in about 2012 and extending to almost 2015. There were 49 MCs identified in the Present period. The modeling gives MC quantities such as size, axial attitude, field handedness, axial magnetic-field strength, center time, and closest-approach vector. Derived quantities are also estimated, such as axial magnetic flux, axial current density, and total axial current. Quality estimates are assigned representing excellent, fair/good, and poor. We provide error estimates on the specific fit parameters for the individual MCs, where the poor cases are excluded. Model-fitting results that are based on the Present period are compared to the results of the full Wind mission from 1995 to the end of 2015 (Long-term period), and compared to the results of two other recent studies that encompassed the periods 2007 - 2009 and 2010 - 2012, inclusive. We see that during the Present period, the MCs are, on average, slightly slower, slightly weaker in axial magnetic field (by 8.7%), and larger in diameter (by 6.5%) than those in the Long-term period. However, in most respects, the MCs in the Present period are significantly closer in characteristics to those of the Long-term period than to those of the two recent three-year periods. However, the rate of occurrence of MCs for the Long-term period is 10.3 year^{-1}, whereas this rate for the Present period is 16.3 year^{-1}, similar to that of the period 2010 - 2012. Hence, the MC occurrence rate has increased appreciably in the last six years. MC Type (N-S, S-N, All N, All S, etc.) is assigned to each MC; there is an inordinately large percentage of All S, by about a factor of two compared to that of the Long-term period, indicating many strongly tipped MCs. In 2005, there was a distinct change in variability and average value (viewed at 1/2 year averages) of the duration, MC speed, axial magnetic field strength, axial magnetic flux, and total current to lower values. In the Present period, upstream shocks occur for 43% of the 49 cases; for comparison, the Long-term rate is 56%.

  1. Spin-dependent μ → e conversion

    DOE PAGES

    Cirigliano, Vincenzo; Davidson, Sacha; Kuno, Yoshitaka

    2017-05-22

    The experimental sensitivity to μ→e conversion on nuclei is expected to improve by four orders of magnitude in coming years. Here, we consider the impact of μ→e flavour-changing tensor and axial-vector four-fermion operators which couple to the spin of nucleons. Such operators, which have not previously been considered, contribute to μ→e conversion in three ways: in nuclei with spin they mediate a spin-dependent transition; in all nuclei they contribute to the coherent (A 2-enhanced) spin-independent conversion via finite recoil effects and via loop mixing with dipole, scalar, and vector operators. Furthermore, we estimate the spin-dependent rate in Aluminium (the targetmore » of the upcoming COMET and Mu2e experiments), show that the loop effects give the greatest sensitivity to tensor and axial-vector operators involving first-generation quarks, and discuss the complementarity of the spin-dependent and independent contributions to μ→e conversion.« less

  2. Spin-dependent μ → e conversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cirigliano, Vincenzo; Davidson, Sacha; Kuno, Yoshitaka

    The experimental sensitivity to μ→e conversion on nuclei is expected to improve by four orders of magnitude in coming years. Here, we consider the impact of μ→e flavour-changing tensor and axial-vector four-fermion operators which couple to the spin of nucleons. Such operators, which have not previously been considered, contribute to μ→e conversion in three ways: in nuclei with spin they mediate a spin-dependent transition; in all nuclei they contribute to the coherent (A 2-enhanced) spin-independent conversion via finite recoil effects and via loop mixing with dipole, scalar, and vector operators. Furthermore, we estimate the spin-dependent rate in Aluminium (the targetmore » of the upcoming COMET and Mu2e experiments), show that the loop effects give the greatest sensitivity to tensor and axial-vector operators involving first-generation quarks, and discuss the complementarity of the spin-dependent and independent contributions to μ→e conversion.« less

  3. Interplay and characterization of Dark Matter searches at colliders and in direct detection experiments

    DOE PAGES

    Malik, Sarah A.; McCabe, Christopher; Araujo, Henrique; ...

    2015-05-18

    In our White Paper we present and discuss a concrete proposal for the consistent interpretation of Dark Matter searches at colliders and in direct detection experiments. Furthermore, based on a specific implementation of simplified models of vector and axial-vector mediator exchanges, this proposal demonstrates how the two search strategies can be compared on an equal footing.

  4. Electromagnetic multipole moments of elementary spin-1/2, 1, and 3/2 particles

    NASA Astrophysics Data System (ADS)

    Delgado-Acosta, E. G.; Kirchbach, M.; Napsuciale, M.; Rodríguez, S.

    2012-06-01

    We study multipole decompositions of the electromagnetic currents of spin-1/2, 1, and 3/2 particles described in terms of representation-specific wave equations which are second order in the momenta and which emerge within the recently elaborated Poincaré covariant-projector method, where the respective Lagrangians explicitly depend on the Lorentz group generators of the representations of interest. The currents are then the ordinary linear Noether currents related to phase invariance, and present themselves always as two-terms motion-plus spin-magnetization currents. The spin-magnetization currents appear weighted by the gyromagnetic ratio g, a free parameter in the method which we fix either by unitarity of forward Compton scattering amplitudes in the ultraviolet for spin-1 and spin-3/2, or in the spin-1/2 case, by their asymptotic vanishing, thus ending up in all three cases with the universal g value of g=2. Within the method under discussion, we calculate the electric multipoles of the above spins for the spinor, the four-vector, and the four-vector-spinor representations, and find it favorable in some aspects, specifically in comparison with the conventional Proca and Rarita-Schwinger frameworks. We furthermore attend to the most general non-Lagrangian spin-3/2 currents, which are allowed by Lorentz invariance to be up to third order in the momenta and construct the linear-current equivalent of identical multipole moments of one of them. We conclude that nonlinear non-Lagrangian spin-3/2 currents are not necessarily more general and more advantageous than the linear spin-3/2 Lagrangian current emerging within the covariant-projector formalism. Finally, we test the representation dependence of the multipoles by placing spin-1 and spin-3/2 in the respective (1,0)⊕(0,1) and (3/2,0)⊕(0,3/2) single-spin representations. We observe representation independence of the charge monopoles and the magnetic dipoles, in contrast to the higher multipoles, which turn out to be representation-dependent. In particular, we find the bi-vector (1,0)⊕(0,1) to be characterized by an electric quadrupole moment of opposite sign to the one found in (1/2,1/2), and consequently to the W boson. This observation allows us to explain the positive electric quadrupole moment of the ρ meson extracted from recent analyses of the ρ meson electric form factor. Our finding points toward the possibility that the ρ-meson could transform as part of an antisymmetric tensor with an a1 mesonlike state as its representation companion, a possibility consistent with the empirically established ρ and a1 vector meson dominance of the hadronic vector and axial-vector currents.

  5. Search for low mass vector resonances decaying into quark-antiquark pairs in proton-proton collisions at $$ \\sqrt{s}=13 $$ TeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sirunyan, A. M.; Tumasyan, A.; Adam, W.

    Here, a search for narrow vector resonances decaying into quark-antiquark pairs is presented. The analysis is based on data collected in proton-proton collisions atmore » $$\\sqrt{s} = $$ 13 TeV with the CMS detector at the LHC, corresponding to an integrated luminosity of 35.9 fb$$^{-1}$$. The hypothetical resonance is produced with sufficiently high transverse momentum that its decay products are merged into a single jet with two-prong substructure. A signal would be identified as a peak over a smoothly falling background in the distribution of the invariant mass of the jet, using novel jet substructure techniques. No evidence for such a resonance is observed within the mass range of 50-300 GeV. Upper limits at 95% confidence level are set on the production cross section, and presented in a mass-coupling parameter space. The limits further constrain simplified models of dark matter production involving a mediator interacting between quarks and dark matter particles through a vector or axial-vector current. In the framework of these models, the results are the most sensitive to date, extending for the first time the search region to masses below 100 GeV.« less

  6. Search for low mass vector resonances decaying into quark-antiquark pairs in proton-proton collisions at √{s}=13 TeV

    NASA Astrophysics Data System (ADS)

    Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Ambrogi, F.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Erö, J.; Flechl, M.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Grossmann, J.; Hrubec, J.; Jeitler, M.; König, A.; Krammer, N.; Krätschmer, I.; Liko, D.; Madlener, T.; Mikulec, I.; Pree, E.; Rad, N.; Rohringer, H.; Schieck, J.; Schöfbeck, R.; Spanring, M.; Spitzbart, D.; Waltenberger, W.; Wittmann, J.; Wulz, C.-E.; Zarucki, M.; Chekhovsky, V.; Mossolov, V.; Suarez Gonzalez, J.; De Wolf, E. A.; Di Croce, D.; Janssen, X.; Lauwers, J.; Van De Klundert, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Abu Zeid, S.; Blekman, F.; D'Hondt, J.; De Bruyn, I.; De Clercq, J.; Deroover, K.; Flouris, G.; Lontkovskyi, D.; Lowette, S.; Marchesini, I.; Moortgat, S.; Moreels, L.; Python, Q.; Skovpen, K.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Parijs, I.; Beghin, D.; Brun, H.; Clerbaux, B.; De Lentdecker, G.; Delannoy, H.; Dorney, B.; Fasanella, G.; Favart, L.; Goldouzian, R.; Grebenyuk, A.; Lenzi, T.; Luetic, J.; Maerschalk, T.; Marinov, A.; Seva, T.; Starling, E.; Vander Velde, C.; Vanlaer, P.; Vannerom, D.; Yonamine, R.; Zenoni, F.; Zhang, F.; Cimmino, A.; Cornelis, T.; Dobur, D.; Fagot, A.; Gul, M.; Khvastunov, I.; Poyraz, D.; Roskas, C.; Salva, S.; Tytgat, M.; Verbeke, W.; Zaganidis, N.; Bakhshiansohi, H.; Bondu, O.; Brochet, S.; Bruno, G.; Caputo, C.; Caudron, A.; David, P.; De Visscher, S.; Delaere, C.; Delcourt, M.; Francois, B.; Giammanco, A.; Komm, M.; Krintiras, G.; Lemaitre, V.; Magitteri, A.; Mertens, A.; Musich, M.; Piotrzkowski, K.; Quertenmont, L.; Saggio, A.; Vidal Marono, M.; Wertz, S.; Zobec, J.; Aldá Júnior, W. L.; Alves, F. L.; Alves, G. A.; Brito, L.; Correa Martins Junior, M.; Hensel, C.; Moraes, A.; Pol, M. E.; Rebello Teles, P.; Belchior Batista Das Chagas, E.; Carvalho, W.; Chinellato, J.; Coelho, E.; Da Costa, E. M.; Da Silveira, G. G.; De Jesus Damiao, D.; Fonseca De Souza, S.; Huertas Guativa, L. M.; Malbouisson, H.; Melo De Almeida, M.; Mora Herrera, C.; Mundim, L.; Nogima, H.; Sanchez Rosas, L. J.; Santoro, A.; Sznajder, A.; Thiel, M.; Tonelli Manganote, E. J.; Torres Da Silva De Araujo, F.; Vilela Pereira, A.; Ahuja, S.; Bernardes, C. A.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Mercadante, P. G.; Novaes, S. F.; Padula, Sandra S.; Romero Abad, D.; Ruiz Vargas, J. C.; Aleksandrov, A.; Hadjiiska, R.; Iaydjiev, P.; Misheva, M.; Rodozov, M.; Shopova, M.; Sultanov, G.; Dimitrov, A.; Litov, L.; Pavlov, B.; Petkov, P.; Fang, W.; Gao, X.; Yuan, L.; Ahmad, M.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Chen, Y.; Jiang, C. H.; Leggat, D.; Liao, H.; Liu, Z.; Romeo, F.; Shaheen, S. M.; Spiezia, A.; Tao, J.; Wang, C.; Wang, Z.; Yazgan, E.; Zhang, H.; Zhang, S.; Zhao, J.; Ban, Y.; Chen, G.; Li, J.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.; Avila, C.; Cabrera, A.; Chaparro Sierra, L. F.; Florez, C.; González Hernández, C. F.; Ruiz Alvarez, J. D.; Segura Delgado, M. A.; Courbon, B.; Godinovic, N.; Lelas, D.; Puljak, I.; Ribeiro Cipriano, P. M.; Sculac, T.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Ferencek, D.; Kadija, K.; Mesic, B.; Starodumov, A.; Susa, T.; Ather, M. W.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.; Finger, M.; Finger, M.; Carrera Jarrin, E.; El-khateeb, E.; Elgammal, S.; Ellithi Kamel, A.; Dewanjee, R. K.; Kadastik, M.; Perrini, L.; Raidal, M.; Tiko, A.; Veelken, C.; Eerola, P.; Kirschenmann, H.; Pekkanen, J.; Voutilainen, M.; Havukainen, J.; Heikkilä, J. K.; Järvinen, T.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Laurila, S.; Lehti, S.; Lindén, T.; Luukka, P.; Siikonen, H.; Tuominen, E.; Tuominiemi, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Faure, J. L.; Ferri, F.; Ganjour, S.; Ghosh, S.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Kucher, I.; Leloup, C.; Locci, E.; Machet, M.; Malcles, J.; Negro, G.; Rander, J.; Rosowsky, A.; Sahin, M. Ö.; Titov, M.; Abdulsalam, A.; Amendola, C.; Antropov, I.; Baffioni, S.; Beaudette, F.; Busson, P.; Cadamuro, L.; Charlot, C.; Granier de Cassagnac, R.; Jo, M.; Lisniak, S.; Lobanov, A.; Martin Blanco, J.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Pigard, P.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Stahl Leiton, A. G.; Strebler, T.; Yilmaz, Y.; Zabi, A.; Zghiche, A.; Agram, J.-L.; Andrea, J.; Bloch, D.; Brom, J.-M.; Buttignol, M.; Chabert, E. C.; Chanon, N.; Collard, C.; Conte, E.; Coubez, X.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Jansová, M.; Le Bihan, A.-C.; Tonon, N.; Van Hove, P.; Gadrat, S.; Beauceron, S.; Bernet, C.; Boudoul, G.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fay, J.; Finco, L.; Gascon, S.; Gouzevitch, M.; Grenier, G.; Ille, B.; Lagarde, F.; Laktineh, I. B.; Lethuillier, M.; Mirabito, L.; Pequegnot, A. L.; Perries, S.; Popov, A.; Sordini, V.; Vander Donckt, M.; Viret, S.; Toriashvili, T.; Tsamalaidze, Z.; Autermann, C.; Feld, L.; Kiesel, M. K.; Klein, K.; Lipinski, M.; Preuten, M.; Schomakers, C.; Schulz, J.; Zhukov, V.; Albert, A.; Dietz-Laursonn, E.; Duchardt, D.; Endres, M.; Erdmann, M.; Erdweg, S.; Esch, T.; Fischer, R.; Güth, A.; Hamer, M.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Knutzen, S.; Merschmeyer, M.; Meyer, A.; Millet, P.; Mukherjee, S.; Pook, T.; Radziej, M.; Reithler, H.; Rieger, M.; Scheuch, F.; Teyssier, D.; Thüer, S.; Flügge, G.; Kargoll, B.; Kress, T.; Künsken, A.; Müller, T.; Nehrkorn, A.; Nowack, A.; Pistone, C.; Pooth, O.; Stahl, A.; Aldaya Martin, M.; Arndt, T.; Asawatangtrakuldee, C.; Beernaert, K.; Behnke, O.; Behrens, U.; Bermúdez Martínez, A.; Bin Anuar, A. A.; Borras, K.; Botta, V.; Campbell, A.; Connor, P.; Contreras-Campana, C.; Costanza, F.; Diez Pardos, C.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Eren, E.; Gallo, E.; Garay Garcia, J.; Geiser, A.; Grados Luyando, J. M.; Grohsjean, A.; Gunnellini, P.; Guthoff, M.; Harb, A.; Hauk, J.; Hempel, M.; Jung, H.; Kasemann, M.; Keaveney, J.; Kleinwort, C.; Korol, I.; Krücker, D.; Lange, W.; Lelek, A.; Lenz, T.; Leonard, J.; Lipka, K.; Lohmann, W.; Mankel, R.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mittag, G.; Mnich, J.; Mussgiller, A.; Ntomari, E.; Pitzl, D.; Raspereza, A.; Savitskyi, M.; Saxena, P.; Shevchenko, R.; Spannagel, S.; Stefaniuk, N.; Van Onsem, G. P.; Walsh, R.; Wen, Y.; Wichmann, K.; Wissing, C.; Zenaiev, O.; Aggleton, R.; Bein, S.; Blobel, V.; Centis Vignali, M.; Dreyer, T.; Garutti, E.; Gonzalez, D.; Haller, J.; Hinzmann, A.; Hoffmann, M.; Karavdina, A.; Klanner, R.; Kogler, R.; Kovalchuk, N.; Kurz, S.; Lapsien, T.; Marconi, D.; Meyer, M.; Niedziela, M.; Nowatschin, D.; Pantaleo, F.; Peiffer, T.; Perieanu, A.; Scharf, C.; Schleper, P.; Schmidt, A.; Schumann, S.; Schwandt, J.; Sonneveld, J.; Stadie, H.; Steinbrück, G.; Stober, F. M.; Stöver, M.; Tholen, H.; Troendle, D.; Usai, E.; Vanhoefer, A.; Vormwald, B.; Akbiyik, M.; Barth, C.; Baselga, M.; Baur, S.; Butz, E.; Caspart, R.; Chwalek, T.; Colombo, F.; De Boer, W.; Dierlamm, A.; Faltermann, N.; Freund, B.; Friese, R.; Giffels, M.; Harrendorf, M. A.; Hartmann, F.; Heindl, S. M.; Husemann, U.; Kassel, F.; Kudella, S.; Mildner, H.; Mozer, M. U.; Müller, Th.; Plagge, M.; Quast, G.; Rabbertz, K.; Schröder, M.; Shvetsov, I.; Sieber, G.; Simonis, H. J.; Ulrich, R.; Wayand, S.; Weber, M.; Weiler, T.; Williamson, S.; Wöhrmann, C.; Wolf, R.; Anagnostou, G.; Daskalakis, G.; Geralis, T.; Kyriakis, A.; Loukas, D.; Topsis-Giotis, I.; Karathanasis, G.; Kesisoglou, S.; Panagiotou, A.; Saoulidou, N.; Kousouris, K.; Evangelou, I.; Foudas, C.; Gianneios, P.; Katsoulis, P.; Kokkas, P.; Mallios, S.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Strologas, J.; Triantis, F. A.; Tsitsonis, D.; Csanad, M.; Filipovic, N.; Pasztor, G.; Surányi, O.; Veres, G. I.; Bencze, G.; Hajdu, C.; Horvath, D.; Hunyadi, Á.; Sikler, F.; Veszpremi, V.; Beni, N.; Czellar, S.; Karancsi, J.; Makovec, A.; Molnar, J.; Szillasi, Z.; Bartók, M.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Choudhury, S.; Komaragiri, J. R.; Bahinipati, S.; Bhowmik, S.; Mal, P.; Mandal, K.; Nayak, A.; Sahoo, D. K.; Sahoo, N.; Swain, S. K.; Bansal, S.; Beri, S. B.; Bhatnagar, V.; Chawla, R.; Dhingra, N.; Kalsi, A. K.; Kaur, A.; Kaur, M.; Kaur, S.; Kumar, R.; Kumari, P.; Mehta, A.; Singh, J. B.; Walia, G.; Kumar, Ashok; Shah, Aashaq; Bhardwaj, A.; Chauhan, S.; Choudhary, B. C.; Garg, R. B.; Keshri, S.; Kumar, A.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Sharma, R.; Bhardwaj, R.; Bhattacharya, R.; Bhattacharya, S.; Bhawandeep, U.; Dey, S.; Dutt, S.; Dutta, S.; Ghosh, S.; Majumdar, N.; Modak, A.; Mondal, K.; Mukhopadhyay, S.; Nandan, S.; Purohit, A.; Roy, A.; Roy Chowdhury, S.; Sarkar, S.; Sharan, M.; Thakur, S.; Behera, P. K.; Chudasama, R.; Dutta, D.; Jha, V.; Kumar, V.; Mohanty, A. K.; Netrakanti, P. K.; Pant, L. M.; Shukla, P.; Topkar, A.; Aziz, T.; Dugad, S.; Mahakud, B.; Mitra, S.; Mohanty, G. B.; Sur, N.; Sutar, B.; Banerjee, S.; Bhattacharya, S.; Chatterjee, S.; Das, P.; Guchait, M.; Jain, Sa.; Kumar, S.; Maity, M.; Majumder, G.; Mazumdar, K.; Sarkar, T.; Wickramage, N.; Chauhan, S.; Dube, S.; Hegde, V.; Kapoor, A.; Kothekar, K.; Pandey, S.; Rane, A.; Sharma, S.; Chenarani, S.; Eskandari Tadavani, E.; Etesami, S. M.; Khakzad, M.; Mohammadi Najafabadi, M.; Naseri, M.; Paktinat Mehdiabadi, S.; Rezaei Hosseinabadi, F.; Safarzadeh, B.; Zeinali, M.; Felcini, M.; Grunewald, M.; Abbrescia, M.; Calabria, C.; Colaleo, A.; Creanza, D.; Cristella, L.; De Filippis, N.; De Palma, M.; Errico, F.; Fiore, L.; Iaselli, G.; Lezki, S.; Maggi, G.; Maggi, M.; Miniello, G.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Ranieri, A.; Selvaggi, G.; Sharma, A.; Silvestris, L.; Venditti, R.; Verwilligen, P.; Abbiendi, G.; Battilana, C.; Bonacorsi, D.; Borgonovi, L.; Braibant-Giacomelli, S.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Chhibra, S. S.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Albergo, S.; Costa, S.; Di Mattia, A.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Chatterjee, K.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Lenzi, P.; Meschini, M.; Paoletti, S.; Russo, L.; Sguazzoni, G.; Strom, D.; Viliani, L.; Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.; Primavera, F.; Calvelli, V.; Ferro, F.; Robutti, E.; Tosi, S.; Benaglia, A.; Beschi, A.; Brianza, L.; Brivio, F.; Ciriolo, V.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Ghezzi, A.; Govoni, P.; Malberti, M.; Malvezzi, S.; Manzoni, R. A.; Menasce, D.; Moroni, L.; Paganoni, M.; Pauwels, K.; Pedrini, D.; Pigazzini, S.; Ragazzi, S.; Tabarelli de Fatis, T.; Buontempo, S.; Cavallo, N.; Di Guida, S.; Fabozzi, F.; Fienga, F.; Iorio, A. O. M.; Khan, W. A.; Lista, L.; Meola, S.; Paolucci, P.; Sciacca, C.; Thyssen, F.; Azzi, P.; Bacchetta, N.; Benato, L.; Bisello, D.; Boletti, A.; Carvalho Antunes De Oliveira, A.; Checchia, P.; Dall'Osso, M.; De Castro Manzano, P.; Dorigo, T.; Dosselli, U.; Gasparini, F.; Gozzelino, A.; Lacaprara, S.; Lujan, P.; Margoni, M.; Meneguzzo, A. T.; Pantano, D.; Pozzobon, N.; Ronchese, P.; Rossin, R.; Torassa, E.; Ventura, S.; Zanetti, M.; Zotto, P.; Zumerle, G.; Braghieri, A.; Magnani, A.; Montagna, P.; Ratti, S. P.; Re, V.; Ressegotti, M.; Riccardi, C.; Salvini, P.; Vai, I.; Vitulo, P.; Alunni Solestizi, L.; Biasini, M.; Bilei, G. M.; Cecchi, C.; Ciangottini, D.; Fanò, L.; Leonardi, R.; Manoni, E.; Mantovani, G.; Mariani, V.; Menichelli, M.; Rossi, A.; Santocchia, A.; Spiga, D.; Androsov, K.; Azzurri, P.; Bagliesi, G.; Boccali, T.; Borrello, L.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Fedi, G.; Giannini, L.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Manca, E.; Mandorli, G.; Messineo, A.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Spagnolo, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Barone, L.; Cavallari, F.; Cipriani, M.; Daci, N.; Del Re, D.; Di Marco, E.; Diemoz, M.; Gelli, S.; Longo, E.; Margaroli, F.; Marzocchi, B.; Meridiani, P.; Organtini, G.; Paramatti, R.; Preiato, F.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bartosik, N.; Bellan, R.; Biino, C.; Cartiglia, N.; Cenna, F.; Costa, M.; Covarelli, R.; Degano, A.; Demaria, N.; Kiani, B.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Monteil, E.; Monteno, M.; Obertino, M. M.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Pinna Angioni, G. L.; Ravera, F.; Romero, A.; Ruspa, M.; Sacchi, R.; Shchelina, K.; Sola, V.; Solano, A.; Staiano, A.; Traczyk, P.; Belforte, S.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Zanetti, A.; Kim, D. H.; Kim, G. N.; Kim, M. S.; Lee, J.; Lee, S.; Lee, S. W.; Moon, C. S.; Oh, Y. D.; Sekmen, S.; Son, D. C.; Yang, Y. C.; Lee, A.; Kim, H.; Moon, D. H.; Oh, G.; Brochero Cifuentes, J. A.; Goh, J.; Kim, T. J.; Cho, S.; Choi, S.; Go, Y.; Gyun, D.; Ha, S.; Hong, B.; Jo, Y.; Kim, Y.; Lee, K.; Lee, K. S.; Lee, S.; Lim, J.; Park, S. K.; Roh, Y.; Almond, J.; Kim, J.; Kim, J. S.; Lee, H.; Lee, K.; Nam, K.; Oh, S. B.; Radburn-Smith, B. C.; Seo, S. h.; Yang, U. K.; Yoo, H. D.; Yu, G. B.; Kim, H.; Kim, J. H.; Lee, J. S. H.; Park, I. C.; Choi, Y.; Hwang, C.; Lee, J.; Yu, I.; Dudenas, V.; Juodagalvis, A.; Vaitkus, J.; Ahmed, I.; Ibrahim, Z. A.; Md Ali, M. A. B.; Mohamad Idris, F.; Wan Abdullah, W. A. T.; Yusli, M. N.; Zolkapli, Z.; Reyes-Almanza, R.; Ramirez-Sanchez, G.; Duran-Osuna, M. C.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-De La Cruz, I.; Rabadan-Trejo, R. I.; Lopez-Fernandez, R.; Mejia Guisao, J.; Sanchez-Hernandez, A.; Carrillo Moreno, S.; Oropeza Barrera, C.; Vazquez Valencia, F.; Eysermans, J.; Pedraza, I.; Salazar Ibarguen, H. A.; Uribe Estrada, C.; Morelos Pineda, A.; Krofcheck, D.; Butler, P. H.; Ahmad, A.; Ahmad, M.; Hassan, Q.; Hoorani, H. R.; Saddique, A.; Shah, M. A.; Shoaib, M.; Waqas, M.; Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Górski, M.; Kazana, M.; Nawrocki, K.; Szleper, M.; Zalewski, P.; Bunkowski, K.; Byszuk, A.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Pyskir, A.; Walczak, M.; Bargassa, P.; Beirão Da Cruz E Silva, C.; Di Francesco, A.; Faccioli, P.; Galinhas, B.; Gallinaro, M.; Hollar, J.; Leonardo, N.; Lloret Iglesias, L.; Nemallapudi, M. V.; Seixas, J.; Strong, G.; Toldaiev, O.; Vadruccio, D.; Varela, J.; Afanasiev, S.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Lanev, A.; Malakhov, A.; Matveev, V.; Palichik, V.; Perelygin, V.; Shmatov, S.; Shulha, S.; Skatchkov, N.; Smirnov, V.; Voytishin, N.; Zarubin, A.; Ivanov, Y.; Kim, V.; Kuznetsova, E.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sosnov, D.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Karneyeu, A.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Pozdnyakov, I.; Safronov, G.; Spiridonov, A.; Stepennov, A.; Toms, M.; Vlasov, E.; Zhokin, A.; Aushev, T.; Bylinkin, A.; Chadeeva, M.; Markin, O.; Parygin, P.; Philippov, D.; Polikarpov, S.; Rusinov, V.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Terkulov, A.; Baskakov, A.; Belyaev, A.; Boos, E.; Bunichev, V.; Dubinin, M.; Dudko, L.; Gribushin, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Miagkov, I.; Obraztsov, S.; Petrushanko, S.; Savrin, V.; Snigirev, A.; Blinov, V.; Skovpen, Y.; Shtol, D.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Elumakhov, D.; Godizov, A.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Mandrik, P.; Petrov, V.; Ryutin, R.; Sobol, A.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Cirkovic, P.; Devetak, D.; Dordevic, M.; Milosevic, J.; Rekovic, V.; Alcaraz Maestre, J.; Bachiller, I.; Barrio Luna, M.; Cerrada, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Escalante Del Valle, A.; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Flix, J.; Fouz, M. C.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Moran, D.; Pérez-Calero Yzquierdo, A.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Soares, M. S.; Álvarez Fernández, A.; Albajar, C.; de Trocóniz, J. F.; Missiroli, M.; Cuevas, J.; Erice, C.; Fernandez Menendez, J.; Gonzalez Caballero, I.; González Fernández, J. R.; Palencia Cortezon, E.; Sanchez Cruz, S.; Vischia, P.; Vizan Garcia, J. M.; Cabrillo, I. J.; Calderon, A.; Chazin Quero, B.; Curras, E.; Duarte Campderros, J.; Fernandez, M.; Garcia-Ferrero, J.; Gomez, G.; Lopez Virto, A.; Marco, J.; Martinez Rivero, C.; Martinez Ruiz del Arbol, P.; Matorras, F.; Piedra Gomez, J.; Rodrigo, T.; Ruiz-Jimeno, A.; Scodellaro, L.; Trevisani, N.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Akgun, B.; Auffray, E.; Baillon, P.; Ball, A. H.; Barney, D.; Bendavid, J.; Bianco, M.; Bloch, P.; Bocci, A.; Botta, C.; Camporesi, T.; Castello, R.; Cepeda, M.; Cerminara, G.; Chapon, E.; Chen, Y.; d'Enterria, D.; Dabrowski, A.; Daponte, V.; David, A.; De Gruttola, M.; De Roeck, A.; Deelen, N.; Dobson, M.; du Pree, T.; Dünser, M.; Dupont, N.; Elliott-Peisert, A.; Everaerts, P.; Fallavollita, F.; Franzoni, G.; Fulcher, J.; Funk, W.; Gigi, D.; Gilbert, A.; Gill, K.; Glege, F.; Gulhan, D.; Harris, P.; Hegeman, J.; Innocente, V.; Jafari, A.; Janot, P.; Karacheban, O.; Kieseler, J.; Knünz, V.; Kornmayer, A.; Kortelainen, M. J.; Krammer, M.; Lange, C.; Lecoq, P.; Lourenço, C.; Lucchini, M. T.; Malgeri, L.; Mannelli, M.; Martelli, A.; Meijers, F.; Merlin, J. A.; Mersi, S.; Meschi, E.; Milenovic, P.; Moortgat, F.; Mulders, M.; Neugebauer, H.; Ngadiuba, J.; Orfanelli, S.; Orsini, L.; Pape, L.; Perez, E.; Peruzzi, M.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Pierini, M.; Rabady, D.; Racz, A.; Reis, T.; Rolandi, G.; Rovere, M.; Sakulin, H.; Schäfer, C.; Schwick, C.; Seidel, M.; Selvaggi, M.; Sharma, A.; Silva, P.; Sphicas, P.; Stakia, A.; Steggemann, J.; Stoye, M.; Tosi, M.; Treille, D.; Triossi, A.; Tsirou, A.; Veckalns, V.; Verweij, M.; Zeuner, W. D.; Bertl, W.; Caminada, L.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Rohe, T.; Wiederkehr, S. A.; Backhaus, M.; Bäni, L.; Berger, P.; Bianchini, L.; Casal, B.; Dissertori, G.; Dittmar, M.; Donegà, M.; Dorfer, C.; Grab, C.; Heidegger, C.; Hits, D.; Hoss, J.; Kasieczka, G.; Klijnsma, T.; Lustermann, W.; Mangano, B.; Marionneau, M.; Meinhard, M. T.; Meister, D.; Micheli, F.; Musella, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pata, J.; Pauss, F.; Perrin, G.; Perrozzi, L.; Quittnat, M.; Reichmann, M.; Sanz Becerra, D. A.; Schönenberger, M.; Shchutska, L.; Tavolaro, V. R.; Theofilatos, K.; Vesterbacka Olsson, M. L.; Wallny, R.; Zhu, D. H.; Aarrestad, T. K.; Amsler, C.; Canelli, M. F.; De Cosa, A.; Del Burgo, R.; Donato, S.; Galloni, C.; Hreus, T.; Kilminster, B.; Pinna, D.; Rauco, G.; Robmann, P.; Salerno, D.; Schweiger, K.; Seitz, C.; Takahashi, Y.; Zucchetta, A.; Candelise, V.; Chang, Y. H.; Cheng, K. y.; Doan, T. H.; Jain, Sh.; Khurana, R.; Kuo, C. M.; Lin, W.; Pozdnyakov, A.; Yu, S. S.; Kumar, Arun; Chang, P.; Chao, Y.; Chen, K. F.; Chen, P. H.; Fiori, F.; Hou, W.-S.; Hsiung, Y.; Liu, Y. F.; Lu, R.-S.; Paganis, E.; Psallidas, A.; Steen, A.; Tsai, J. f.; Asavapibhop, B.; Kovitanggoon, K.; Singh, G.; Srimanobhas, N.; Bakirci, M. N.; Bat, A.; Boran, F.; Damarseckin, S.; Demiroglu, Z. S.; Dozen, C.; Eskut, E.; Girgis, S.; Gokbulut, G.; Guler, Y.; Hos, I.; Kangal, E. E.; Kara, O.; Kayis Topaksu, A.; Kiminsu, U.; Oglakci, M.; Onengut, G.; Ozdemir, K.; Polatoz, A.; Tok, U. G.; Topakli, H.; Turkcapar, S.; Zorbakir, I. S.; Zorbilmez, C.; Bilin, B.; Karapinar, G.; Ocalan, K.; Yalvac, M.; Zeyrek, M.; Gülmez, E.; Kaya, M.; Kaya, O.; Tekten, S.; Yetkin, E. A.; Agaras, M. N.; Atay, S.; Cakir, A.; Cankocak, K.; Köseoglu, I.; Grynyov, B.; Levchuk, L.; Ball, F.; Beck, L.; Brooke, J. J.; Burns, D.; Clement, E.; Cussans, D.; Davignon, O.; Flacher, H.; Goldstein, J.; Heath, G. P.; Heath, H. F.; Kreczko, L.; Newbold, D. M.; Paramesvaran, S.; Sakuma, T.; Seif El Nasr-storey, S.; Smith, D.; Smith, V. J.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Calligaris, L.; Cieri, D.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Linacre, J.; Olaiya, E.; Petyt, D.; ShepherdThemistocleous, C. H.; Thea, A.; Tomalin, I. R.; Williams, T.; Auzinger, G.; Bainbridge, R.; Borg, J.; Breeze, S.; Buchmuller, O.; Bundock, A.; Casasso, S.; Citron, M.; Colling, D.; Corpe, L.; Dauncey, P.; Davies, G.; De Wit, A.; Della Negra, M.; Di Maria, R.; Elwood, A.; Haddad, Y.; Hall, G.; Iles, G.; James, T.; Lane, R.; Laner, C.; Lyons, L.; Magnan, A.-M.; Malik, S.; Mastrolorenzo, L.; Matsushita, T.; Nash, J.; Nikitenko, A.; Palladino, V.; Pesaresi, M.; Raymond, D. M.; Richards, A.; Rose, A.; Scott, E.; Seez, C.; Shtipliyski, A.; Summers, S.; Tapper, A.; Uchida, K.; Vazquez Acosta, M.; Virdee, T.; Wardle, N.; Winterbottom, D.; Wright, J.; Zenz, S. C.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Reid, I. D.; Teodorescu, L.; Zahid, S.; Borzou, A.; Call, K.; Dittmann, J.; Hatakeyama, K.; Liu, H.; Pastika, N.; Smith, C.; Bartek, R.; Dominguez, A.; Buccilli, A.; Cooper, S. I.; Henderson, C.; Rumerio, P.; West, C.; Arcaro, D.; Avetisyan, A.; Bose, T.; Gastler, D.; Rankin, D.; Richardson, C.; Rohlf, J.; Sulak, L.; Zou, D.; Benelli, G.; Cutts, D.; Garabedian, A.; Hadley, M.; Hakala, J.; Heintz, U.; Hogan, J. M.; Kwok, K. H. M.; Laird, E.; Landsberg, G.; Lee, J.; Mao, Z.; Narain, M.; Pazzini, J.; Piperov, S.; Sagir, S.; Syarif, R.; Yu, D.; Band, R.; Brainerd, C.; Burns, D.; Calderon De La Barca Sanchez, M.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Flores, C.; Funk, G.; Ko, W.; Lander, R.; Mclean, C.; Mulhearn, M.; Pellett, D.; Pilot, J.; Shalhout, S.; Shi, M.; Smith, J.; Stolp, D.; Tos, K.; Tripathi, M.; Wang, Z.; Bachtis, M.; Bravo, C.; Cousins, R.; Dasgupta, A.; Florent, A.; Hauser, J.; Ignatenko, M.; Mccoll, N.; Regnard, S.; Saltzberg, D.; Schnaible, C.; Valuev, V.; Bouvier, E.; Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Ghiasi Shirazi, S. M. A.; Hanson, G.; Heilman, J.; Karapostoli, G.; Kennedy, E.; Lacroix, F.; Long, O. R.; Olmedo Negrete, M.; Paneva, M. I.; Si, W.; Wang, L.; Wei, H.; Wimpenny, S.; Yates, B. R.; Branson, J. G.; Cittolin, S.; Derdzinski, M.; Gerosa, R.; Gilbert, D.; Hashemi, B.; Holzner, A.; Klein, D.; Kole, G.; Krutelyov, V.; Letts, J.; Macneill, I.; Masciovecchio, M.; Olivito, D.; Padhi, S.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Tadel, M.; Vartak, A.; Wasserbaech, S.; Wood, J.; Würthwein, F.; Yagil, A.; Zevi Della Porta, G.; Amin, N.; Bhandari, R.; Bradmiller-Feld, J.; Campagnari, C.; Dishaw, A.; Dutta, V.; Franco Sevilla, M.; Golf, F.; Gouskos, L.; Heller, R.; Incandela, J.; Ovcharova, A.; Qu, H.; Richman, J.; Stuart, D.; Suarez, I.; Yoo, J.; Anderson, D.; Bornheim, A.; Lawhorn, J. M.; Newman, H. B.; Nguyen, T.; Pena, C.; Spiropulu, M.; Vlimant, J. R.; Xie, S.; Zhang, Z.; Zhu, R. Y.; Andrews, M. B.; Ferguson, T.; Mudholkar, T.; Paulini, M.; Russ, J.; Sun, M.; Vogel, H.; Vorobiev, I.; Weinberg, M.; Cumalat, J. P.; Ford, W. T.; Jensen, F.; Johnson, A.; Krohn, M.; Leontsinis, S.; Mulholland, T.; Stenson, K.; Wagner, S. R.; Alexander, J.; Chaves, J.; Chu, J.; Dittmer, S.; Mcdermott, K.; Mirman, N.; Patterson, J. R.; Quach, D.; Rinkevicius, A.; Ryd, A.; Skinnari, L.; Soffi, L.; Tan, S. M.; Tao, Z.; Thom, J.; Tucker, J.; Wittich, P.; Zientek, M.; Abdullin, S.; Albrow, M.; Alyari, M.; Apollinari, G.; Apresyan, A.; Apyan, A.; Banerjee, S.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bolla, G.; Burkett, K.; Butler, J. N.; Canepa, A.; Cerati, G. B.; Cheung, H. W. K.; Chlebana, F.; Cremonesi, M.; Duarte, J.; Elvira, V. D.; Freeman, J.; Gecse, Z.; Gottschalk, E.; Gray, L.; Green, D.; Grünendahl, S.; Gutsche, O.; Harris, R. M.; Hasegawa, S.; Hirschauer, J.; Hu, Z.; Jayatilaka, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Klima, B.; Kreis, B.; Lammel, S.; Lincoln, D.; Lipton, R.; Liu, M.; Liu, T.; Lopes De Sá, R.; Lykken, J.; Maeshima, K.; Magini, N.; Marraffino, J. M.; Mason, D.; McBride, P.; Merkel, P.; Mrenna, S.; Nahn, S.; O'Dell, V.; Pedro, K.; Prokofyev, O.; Rakness, G.; Ristori, L.; Schneider, B.; Sexton-Kennedy, E.; Soha, A.; Spalding, W. J.; Spiegel, L.; Stoynev, S.; Strait, J.; Strobbe, N.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vernieri, C.; Verzocchi, M.; Vidal, R.; Wang, M.; Weber, H. A.; Whitbeck, A.; Acosta, D.; Avery, P.; Bortignon, P.; Bourilkov, D.; Brinkerhoff, A.; Carnes, A.; Carver, M.; Curry, D.; Field, R. D.; Furic, I. K.; Gleyzer, S. V.; Joshi, B. M.; Konigsberg, J.; Korytov, A.; Kotov, K.; Ma, P.; Matchev, K.; Mei, H.; Mitselmakher, G.; Shi, K.; Sperka, D.; Terentyev, N.; Thomas, L.; Wang, J.; Wang, S.; Yelton, J.; Joshi, Y. R.; Linn, S.; Markowitz, P.; Rodriguez, J. L.; Ackert, A.; Adams, T.; Askew, A.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Kolberg, T.; Martinez, G.; Perry, T.; Prosper, H.; Saha, A.; Santra, A.; Sharma, V.; Yohay, R.; Baarmand, M. M.; Bhopatkar, V.; Colafranceschi, S.; Hohlmann, M.; Noonan, D.; Roy, T.; Yumiceva, F.; Adams, M. R.; Apanasevich, L.; Berry, D.; Betts, R. R.; Cavanaugh, R.; Chen, X.; Evdokimov, O.; Gerber, C. E.; Hangal, D. A.; Hofman, D. J.; Jung, K.; Kamin, J.; Sandoval Gonzalez, I. D.; Tonjes, M. B.; Trauger, H.; Varelas, N.; Wang, H.; Wu, Z.; Zhang, J.; Bilki, B.; Clarida, W.; Dilsiz, K.; Durgut, S.; Gandrajula, R. P.; Haytmyradov, M.; Khristenko, V.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Snyder, C.; Tiras, E.; Wetzel, J.; Yi, K.; Blumenfeld, B.; Cocoros, A.; Eminizer, N.; Fehling, D.; Feng, L.; Gritsan, A. V.; Maksimovic, P.; Mantilla, C.; Roskes, J.; Sarica, U.; Swartz, M.; Xiao, M.; You, C.; Al-bataineh, A.; Baringer, P.; Bean, A.; Boren, S.; Bowen, J.; Castle, J.; Khalil, S.; Kropivnitskaya, A.; Majumder, D.; Mcbrayer, W.; Murray, M.; Royon, C.; Sanders, S.; Schmitz, E.; Tapia Takaki, J. D.; Wang, Q.; Ivanov, A.; Kaadze, K.; Maravin, Y.; Mohammadi, A.; Saini, L. K.; Skhirtladze, N.; Toda, S.; Rebassoo, F.; Wright, D.; Anelli, C.; Baden, A.; Baron, O.; Belloni, A.; Eno, S. C.; Feng, Y.; Ferraioli, C.; Hadley, N. J.; Jabeen, S.; Jeng, G. Y.; Kellogg, R. G.; Kunkle, J.; Mignerey, A. C.; Ricci-Tam, F.; Shin, Y. H.; Skuja, A.; Tonwar, S. C.; Abercrombie, D.; Allen, B.; Azzolini, V.; Barbieri, R.; Baty, A.; Bi, R.; Brandt, S.; Busza, W.; Cali, I. A.; D'Alfonso, M.; Demiragli, Z.; Gomez Ceballos, G.; Goncharov, M.; Hsu, D.; Hu, M.; Iiyama, Y.; Innocenti, G. M.; Klute, M.; Kovalskyi, D.; Lai, Y. S.; Lee, Y.-J.; Levin, A.; Luckey, P. D.; Maier, B.; Marini, A. C.; Mcginn, C.; Mironov, C.; Narayanan, S.; Niu, X.; Paus, C.; Roland, C.; Roland, G.; Salfeld-Nebgen, J.; Stephans, G. S. F.; Tatar, K.; Velicanu, D.; Wang, J.; Wang, T. W.; Wyslouch, B.; Benvenuti, A. C.; Chatterjee, R. M.; Evans, A.; Hansen, P.; Hiltbrand, J.; Kalafut, S.; Kubota, Y.; Lesko, Z.; Mans, J.; Nourbakhsh, S.; Ruckstuhl, N.; Rusack, R.; Turkewitz, J.; Wadud, M. A.; Acosta, J. G.; Oliveros, S.; Avdeeva, E.; Bloom, K.; Claes, D. R.; Fangmeier, C.; Gonzalez Suarez, R.; Kamalieddin, R.; Kravchenko, I.; Monroy, J.; Siado, J. E.; Snow, G. R.; Stieger, B.; Dolen, J.; Godshalk, A.; Harrington, C.; Iashvili, I.; Nguyen, D.; Parker, A.; Rappoccio, S.; Roozbahani, B.; Alverson, G.; Barberis, E.; Freer, C.; Hortiangtham, A.; Massironi, A.; Morse, D. M.; Orimoto, T.; Teixeira De Lima, R.; Trocino, D.; Wamorkar, T.; Wang, B.; Wisecarver, A.; Wood, D.; Bhattacharya, S.; Charaf, O.; Hahn, K. A.; Mucia, N.; Odell, N.; Schmitt, M. H.; Sung, K.; Trovato, M.; Velasco, M.; Bucci, R.; Dev, N.; Hildreth, M.; Hurtado Anampa, K.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Li, W.; Loukas, N.; Marinelli, N.; Meng, F.; Mueller, C.; Musienko, Y.; Planer, M.; Reinsvold, A.; Ruchti, R.; Siddireddy, P.; Smith, G.; Taroni, S.; Wayne, M.; Wightman, A.; Wolf, M.; Woodard, A.; Alimena, J.; Antonelli, L.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Francis, B.; Hart, A.; Hill, C.; Ji, W.; Liu, B.; Luo, W.; Winer, B. L.; Wulsin, H. W.; Cooperstein, S.; Driga, O.; Elmer, P.; Hardenbrook, J.; Hebda, P.; Higginbotham, S.; Kalogeropoulos, A.; Lange, D.; Luo, J.; Marlow, D.; Mei, K.; Ojalvo, I.; Olsen, J.; Palmer, C.; Piroué, P.; Stickland, D.; Tully, C.; Malik, S.; Norberg, S.; Barker, A.; Barnes, V. E.; Das, S.; Folgueras, S.; Gutay, L.; Jha, M. K.; Jones, M.; Jung, A. W.; Khatiwada, A.; Miller, D. H.; Neumeister, N.; Peng, C. C.; Qiu, H.; Schulte, J. F.; Sun, J.; Wang, F.; Xiao, R.; Xie, W.; Cheng, T.; Parashar, N.; Stupak, J.; Chen, Z.; Ecklund, K. M.; Freed, S.; Geurts, F. J. M.; Guilbaud, M.; Kilpatrick, M.; Li, W.; Michlin, B.; Padley, B. P.; Roberts, J.; Rorie, J.; Shi, W.; Tu, Z.; Zabel, J.; Zhang, A.; Bodek, A.; de Barbaro, P.; Demina, R.; Duh, Y. t.; Ferbel, T.; Galanti, M.; Garcia-Bellido, A.; Han, J.; Hindrichs, O.; Khukhunaishvili, A.; Lo, K. H.; Tan, P.; Verzetti, M.; Ciesielski, R.; Goulianos, K.; Mesropian, C.; Agapitos, A.; Chou, J. P.; Gershtein, Y.; Gómez Espinosa, T. A.; Halkiadakis, E.; Heindl, M.; Hughes, E.; Kaplan, S.; Kunnawalkam Elayavalli, R.; Kyriacou, S.; Lath, A.; Montalvo, R.; Nash, K.; Osherson, M.; Saka, H.; Salur, S.; Schnetzer, S.; Sheffield, D.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.; Delannoy, A. G.; Foerster, M.; Heideman, J.; Riley, G.; Rose, K.; Spanier, S.; Thapa, K.; Bouhali, O.; Castaneda Hernandez, A.; Celik, A.; Dalchenko, M.; De Mattia, M.; Delgado, A.; Dildick, S.; Eusebi, R.; Gilmore, J.; Huang, T.; Kamon, T.; Mueller, R.; Pakhotin, Y.; Patel, R.; Perloff, A.; Perniè, L.; Rathjens, D.; Safonov, A.; Tatarinov, A.; Ulmer, K. A.; Akchurin, N.; Damgov, J.; De Guio, F.; Dudero, P. R.; Faulkner, J.; Gurpinar, E.; Kunori, S.; Lamichhane, K.; Lee, S. W.; Libeiro, T.; Mengke, T.; Muthumuni, S.; Peltola, T.; Undleeb, S.; Volobouev, I.; Wang, Z.; Greene, S.; Gurrola, A.; Janjam, R.; Johns, W.; Maguire, C.; Melo, A.; Ni, H.; Padeken, K.; Sheldon, P.; Tuo, S.; Velkovska, J.; Xu, Q.; Arenton, M. W.; Barria, P.; Cox, B.; Hirosky, R.; Joyce, M.; Ledovskoy, A.; Li, H.; Neu, C.; Sinthuprasith, T.; Wang, Y.; Wolfe, E.; Xia, F.; Harr, R.; Karchin, P. E.; Poudyal, N.; Sturdy, J.; Thapa, P.; Zaleski, S.; Brodski, M.; Buchanan, J.; Caillol, C.; Dasu, S.; Dodd, L.; Duric, S.; Gomber, B.; Grothe, M.; Herndon, M.; Hervé, A.; Hussain, U.; Klabbers, P.; Lanaro, A.; Levine, A.; Long, K.; Loveless, R.; Ruggles, T.; Savin, A.; Smith, N.; Smith, W. H.; Taylor, D.; Woods, N.

    2018-01-01

    A search for narrow vector resonances decaying into quark-antiquark pairs is presented. The analysis is based on data collected in proton-proton collisions at √{s}=13 TeV with the CMS detector at the LHC, corresponding to an integrated luminosity of 35.9 fb-1. The hypothetical resonance is produced with sufficiently high transverse momentum that its decay products are merged into a single jet with two-prong substructure. A signal would be identified as a peak over a smoothly falling background in the distribution of the invariant mass of the jet, using novel jet substructure techniques. No evidence for such a resonance is observed within the mass range of 50-300 GeV. Upper limits at 95% confidence level are set on the production cross section, and presented in a mass-coupling parameter space. The limits further constrain simplified models of dark matter production involving a mediator interacting between quarks and dark matter particles through a vector or axial-vector current. In the framework of these models, the results are the most sensitive to date, extending for the first time the search region to masses below 100 GeV. [Figure not available: see fulltext.

  7. Search for low mass vector resonances decaying into quark-antiquark pairs in proton-proton collisions at $$ \\sqrt{s}=13 $$ TeV

    DOE PAGES

    Sirunyan, A. M.; Tumasyan, A.; Adam, W.; ...

    2018-01-22

    Here, a search for narrow vector resonances decaying into quark-antiquark pairs is presented. The analysis is based on data collected in proton-proton collisions atmore » $$\\sqrt{s} = $$ 13 TeV with the CMS detector at the LHC, corresponding to an integrated luminosity of 35.9 fb$$^{-1}$$. The hypothetical resonance is produced with sufficiently high transverse momentum that its decay products are merged into a single jet with two-prong substructure. A signal would be identified as a peak over a smoothly falling background in the distribution of the invariant mass of the jet, using novel jet substructure techniques. No evidence for such a resonance is observed within the mass range of 50-300 GeV. Upper limits at 95% confidence level are set on the production cross section, and presented in a mass-coupling parameter space. The limits further constrain simplified models of dark matter production involving a mediator interacting between quarks and dark matter particles through a vector or axial-vector current. In the framework of these models, the results are the most sensitive to date, extending for the first time the search region to masses below 100 GeV.« less

  8. Chiral symmetry and π - π scattering in the Covariant Spectator Theory

    DOE PAGES

    Biernat, Elmar P.; Peña, M. T.; Ribeiro, J. E.; ...

    2014-11-14

    The π-π scattering amplitude calculated with a model for the quark-antiquark interaction in the framework of the Covariant Spectator Theory (CST) is shown to satisfy the Adler zero constraint imposed by chiral symmetry. The CST formalism is established in Minkowski space and our calculations are performed in momentum space. We prove that the axial-vector Ward-Takahashi identity is satisfied by our model. Then we show that, similarly to what happens within the Bethe-Salpeter formalism, application of the axial-vector Ward Takahashi identity to the CST π-π scattering amplitude allows us to sum the intermediate quark-quark interactions to all orders. Thus, the Adlermore » self-consistency zero for π-π scattering in the chiral limit emerges as the result for this sum.« less

  9. New color-octet axial vector boson revisited

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Hao; Wang Youkai; Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190

    2011-11-01

    In this paper we reexamine how to utilize the previous proposed color-octet axial-vector boson Z{sub C} to explain the 3.4{sigma} anomaly of tt forward-backward (FB) asymmetry A{sub FB} for m{sub tt}>450 GeV observed by CDF. Our numerical results indicate that the best-fit parameters are g{sub A}{sup q}=0.07, g{sub A}{sup Q}=3, and M{sub C}=440 GeV, which are obtained by fitting the mass dependent A{sub FB} and total cross section data provided by a recent CDF measurement. Here g{sub A}{sup q}(g{sub A}{sup Q}) and M{sub C} are the axial couplings among Z{sub C} with the first two (the third) generation quarks, andmore » Z{sub C} mass, respectively. We also calculate one-side forward-backward asymmetry A{sub OFB} for top and bottom quark pair production at the LHC, focusing on the new contributions from Z{sub C}. Our studies show that A{sub OFB} can be utilized to measure the properties of new particle Z{sub C}.« less

  10. Search for neutrinoless double beta decay

    NASA Astrophysics Data System (ADS)

    Ostrovskiy, Igor; O'Sullivan, Kevin

    2016-06-01

    We review current experimental efforts to search for neutrinoless double beta decay (0νββ). A description of the selected leading experiments is given and the strongest recent results are compared in terms of achieved background indexes (BI) and limits on effective Majorana mass. A combined limit is also shown. The second part of the review covers next generation experiments, highlighting the challenges and new technologies that may be necessary to achieve a justifiable discovery potential. A potential synergy with direct dark matter searches, which could be an especially prudent strategy in case the axial vector coupling constant is quenched in 0νββ decay, is emphasized.

  11. Further Comments on a Vanishing Singlet Axial Vector Charge

    NASA Astrophysics Data System (ADS)

    Cheng, T. P.; Kochelev, N. I.; Vento, Vicente

    The recent suggestion of a vanishing flavor-singlet axial-charge of nucleon due to a nontrivial vacuum structure is further amplified. A perturbative QCD discussion, applicable for the heavy quark contributions, relates it to the physics of the decoupling theorem. It is also shown that gA0˜= 0 leads to a negative η‧-meson-quark coupling, which has been found to be compatible with the chiral quark model phenomenology.

  12. Characterising dark matter searches at colliders and direct detection experiments: Vector mediators

    DOE PAGES

    Buchmueller, Oliver; Dolan, Matthew J.; Malik, Sarah A.; ...

    2015-01-09

    We introduce a Minimal Simplified Dark Matter (MSDM) framework to quantitatively characterise dark matter (DM) searches at the LHC. We study two MSDM models where the DM is a Dirac fermion which interacts with a vector and axial-vector mediator. The models are characterised by four parameters: m DM, M med , g DM and g q, the DM and mediator masses, and the mediator couplings to DM and quarks respectively. The MSDM models accurately capture the full event kinematics, and the dependence on all masses and couplings can be systematically studied. The interpretation of mono-jet searches in this framework canmore » be used to establish an equal-footing comparison with direct detection experiments. For theories with a vector mediator, LHC mono-jet searches possess better sensitivity than direct detection searches for light DM masses (≲5 GeV). For axial-vector mediators, LHC and direct detection searches generally probe orthogonal directions in the parameter space. We explore the projected limits of these searches from the ultimate reach of the LHC and multi-ton xenon direct detection experiments, and find that the complementarity of the searches remains. In conclusion, we provide a comparison of limits in the MSDM and effective field theory (EFT) frameworks to highlight the deficiencies of the EFT framework, particularly when exploring the complementarity of mono-jet and direct detection searches.« less

  13. Magnetic catheter manipulation in the interventional MR imaging environment.

    PubMed

    Wilson, Mark W; Martin, Alastair B; Lillaney, Prasheel; Losey, Aaron D; Yee, Erin J; Bernhardt, Anthony; Malba, Vincent; Evans, Lee; Sincic, Ryan; Saeed, Maythem; Arenson, Ronald L; Hetts, Steven W

    2013-06-01

    To evaluate deflection capability of a prototype endovascular catheter, which is remotely magnetically steerable, for use in the interventional magnetic resonance (MR) imaging environment. Copper coils were mounted on the tips of commercially available 2.3-3.0-F microcatheters. The coils were fabricated in a novel manner by plasma vapor deposition of a copper layer followed by laser lithography of the layer into coils. Orthogonal helical (ie, solenoid) and saddle-shaped (ie, Helmholtz) coils were mounted on a single catheter tip. Microcatheters were tested in water bath phantoms in a 1.5-T clinical MR scanner, with variable simultaneous currents applied to the coils. Catheter tip deflection was imaged in the axial plane by using a "real-time" steady-state free precession MR imaging sequence. Degree of deflection and catheter tip orientation were measured for each current application. The catheter tip was clearly visible in the longitudinal and axial planes. Magnetic field artifacts were visible when the orthogonal coils at the catheter tip were energized. Variable amounts of current applied to a single coil demonstrated consistent catheter deflection in all water bath experiments. Changing current polarity reversed the observed direction of deflection, whereas current applied to two different coils resulted in deflection represented by the composite vector of individual coil activations. Microcatheter navigation through the vascular phantom was successful through control of applied current to one or more coils. Controlled catheter deflection is possible with laser lithographed multiaxis coil-tipped catheters in the MR imaging environment. Copyright © 2013 SIR. Published by Elsevier Inc. All rights reserved.

  14. First measurement of the muon neutrino charged current quasielastic double differential cross section

    NASA Astrophysics Data System (ADS)

    Aguilar-Arevalo, A. A.; Anderson, C. E.; Bazarko, A. O.; Brice, S. J.; Brown, B. C.; Bugel, L.; Cao, J.; Coney, L.; Conrad, J. M.; Cox, D. C.; Curioni, A.; Djurcic, Z.; Finley, D. A.; Fleming, B. T.; Ford, R.; Garcia, F. G.; Garvey, G. T.; Grange, J.; Green, C.; Green, J. A.; Hart, T. L.; Hawker, E.; Imlay, R.; Johnson, R. A.; Karagiorgi, G.; Kasper, P.; Katori, T.; Kobilarcik, T.; Kourbanis, I.; Koutsoliotas, S.; Laird, E. M.; Linden, S. K.; Link, J. M.; Liu, Y.; Liu, Y.; Louis, W. C.; Mahn, K. B. M.; Marsh, W.; Mauger, C.; McGary, V. T.; McGregor, G.; Metcalf, W.; Meyers, P. D.; Mills, F.; Mills, G. B.; Monroe, J.; Moore, C. D.; Mousseau, J.; Nelson, R. H.; Nienaber, P.; Nowak, J. A.; Osmanov, B.; Ouedraogo, S.; Patterson, R. B.; Pavlovic, Z.; Perevalov, D.; Polly, C. C.; Prebys, E.; Raaf, J. L.; Ray, H.; Roe, B. P.; Russell, A. D.; Sandberg, V.; Schirato, R.; Schmitz, D.; Shaevitz, M. H.; Shoemaker, F. C.; Smith, D.; Soderberg, M.; Sorel, M.; Spentzouris, P.; Spitz, J.; Stancu, I.; Stefanski, R. J.; Sung, M.; Tanaka, H. A.; Tayloe, R.; Tzanov, M.; van de Water, R. G.; Wascko, M. O.; White, D. H.; Wilking, M. J.; Yang, H. J.; Zeller, G. P.; Zimmerman, E. D.; MiniBooNE Collaboration

    2010-05-01

    A high-statistics sample of charged-current muon neutrino scattering events collected with the MiniBooNE experiment is analyzed to extract the first measurement of the double differential cross section ((d2σ)/(dTμdcos⁡θμ)) for charged-current quasielastic (CCQE) scattering on carbon. This result features minimal model dependence and provides the most complete information on this process to date. With the assumption of CCQE scattering, the absolute cross section as a function of neutrino energy (σ[Eν]) and the single differential cross section ((dσ)/(dQ2)) are extracted to facilitate comparison with previous measurements. These quantities may be used to characterize an effective axial-vector form factor of the nucleon and to improve the modeling of low-energy neutrino interactions on nuclear targets. The results are relevant for experiments searching for neutrino oscillations.

  15. Fluid-gravity model for the chiral magnetic effect.

    PubMed

    Kalaydzhyan, Tigran; Kirsch, Ingo

    2011-05-27

    We consider the STU model as a gravity dual of a strongly coupled plasma with multiple anomalous U(1) currents. In the bulk we add additional background gauge fields to include the effects of external electric and magnetic fields on the plasma. Reducing the number of chemical potentials in the STU model to two and interpreting them as quark and chiral chemical potential, we obtain a holographic description of the chiral magnetic and chiral vortical effects (CME and CVE) in relativistic heavy-ion collisions. These effects formally appear as first-order transport coefficients in the electromagnetic current. We compute these coefficients from our model using fluid-gravity duality. We also find analogous effects in the axial-vector current. Finally, we briefly discuss a variant of our model, in which the CME/CVE is realized in the late-time dynamics of an expanding plasma. © 2011 American Physical Society

  16. Changing Sagittal-Plane Landing Styles to Modulate Impact and Tibiofemoral Force Magnitude and Directions Relative to the Tibia

    PubMed Central

    Shimokochi, Yohei; Ambegaonkar, Jatin P.; Meyer, Eric G.

    2016-01-01

    Context: Ground reaction force (GRF) and tibiofemoral force magnitudes and directions have been shown to affect anterior cruciate ligament loading during landing. However, the kinematic and kinetic factors modifying these 2 forces during landing are unknown. Objective: To clarify the intersegmental kinematic and kinetic links underlying the alteration of the GRF and tibiofemoral force vectors secondary to changes in the sagittal-plane body position during single-legged landing. Design: Crossover study. Setting: Laboratory. Patients or Other Participants: Twenty recreationally active participants (age = 23.4 ± 3.6 years, height = 171.0 ± 9.4 cm, mass = 73.3 ± 12.7 kg). Intervention(s): Participants performed single-legged landings using 3 landing styles: self-selected landing (SSL), body leaning forward and landing on the toes (LFL), and body upright with flat-footed landing (URL). Three-dimensional kinetics and kinematics were recorded. Main Outcome Measure(s): Sagittal-plane tibial inclination and knee-flexion angles, GRF magnitude and inclination angles relative to the tibia, and proximal tibial forces at peak tibial axial forces. Results: The URL resulted in less time to peak tibial axial forces, smaller knee-flexion angles, and greater magnitude and a more anteriorly inclined GRF vector relative to the tibia than did the SSL. These changes led to the greatest peak tibial axial and anterior shear forces in the URL among the 3 landing styles. Conversely, the LFL resulted in longer time to peak tibial axial forces, greater knee-flexion angles, and reduced magnitude and a more posteriorly inclined GRF vector relative to the tibia than the SSL. These changes in LFL resulted in the lowest peak tibial axial and largest posterior shear forces among the 3 landing styles. Conclusions: Sagittal-plane intersegmental kinematic and kinetic links strongly affected the magnitude and direction of GRF and tibiofemoral forces during the impact phase of single-legged landing. Therefore, improving sagittal-plane landing mechanics is important in reducing harmful magnitudes and directions of impact forces on the anterior cruciate ligament. PMID:27723362

  17. Renormalization of minimally doubled fermions

    NASA Astrophysics Data System (ADS)

    Capitani, Stefano; Creutz, Michael; Weber, Johannes; Wittig, Hartmut

    2010-09-01

    We investigate the renormalization properties of minimally doubled fermions, at one loop in perturbation theory. Our study is based on the two particular realizations of Boriçi-Creutz and Karsten-Wilczek. A common feature of both formulations is the breaking of hyper-cubic symmetry, which requires that the lattice actions are supplemented by suitable counterterms. We show that three counterterms are required in each case and determine their coefficients to one loop in perturbation theory. For both actions we compute the vacuum polarization of the gluon. It is shown that no power divergences appear and that all contributions which arise from the breaking of Lorentz symmetry are cancelled by the counterterms. We also derive the conserved vector and axial-vector currents for Karsten-Wilczek fermions. Like in the case of the previously studied Boriçi-Creutz action, one obtains simple expressions, involving only nearest-neighbour sites. We suggest methods how to fix the coefficients of the counterterms non-perturbatively and discuss the implications of our findings for practical simulations.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sirunyan, Albert M; et al.

    A search for dark matter is conducted in events with large missing transverse momentum and a hadronically decaying, Lorentz-boosted top quark. This study is performed using proton-proton collisions at a center-of-mass energy of 13 TeV, in data recorded by the CMS detector in 2016 at the LHC, corresponding to an integrated luminosity of 36 fbmore » $$^{-1}$$. New substructure techniques, including the novel use of energy correlation functions, are utilized to identify the decay products of the top quark. With no significant deviations observed from predictions of the standard model, limits are placed on the production of new heavy bosons coupling to dark matter particles. For a scenario with purely vector-like or purely axial-vector-like flavor changing neutral currents, mediator masses between 0.20 and 1.75 TeV are excluded at 95% confidence level, given a sufficiently small dark matter mass. Scalar resonances decaying into a top quark and a dark matter fermion are excluded for masses below 3.4 TeV, assuming a dark matter mass of 100 GeV.« less

  19. Linear optical response of carbon nanotubes under axial magnetic field

    NASA Astrophysics Data System (ADS)

    Moradian, Rostam; Chegel, Raad; Behzad, Somayeh

    2010-04-01

    We considered single walled carbon naotubes (SWCNTs) as real three dimensional (3D) systems in a cylindrical coordinate. The optical matrix elements and linear susceptibility, χ(ω), in the tight binding approximation in terms of one-dimensional wave vector, kz and subband index, l are calculated. In an external axial magnetic field optical frequency dependence of linear susceptibility are investigated. We found that axial magnetic field has two effects on the imaginary part of the linear susceptibility spectrum, in agreement with experimental results. The first effect is broadening and the second, splitting. Also we found that for all metallic zigzag and armchair SWCNTs, the axial magnetic field leads to the creation of a peak with energy less than 1.5 eV, contrary to what is observed in the absence of a magnetic field.

  20. Conjunct rotation: Codman's paradox revisited.

    PubMed

    Wolf, Sebastian I; Fradet, Laetitia; Rettig, Oliver

    2009-05-01

    This contribution mathematically formalizes Codman's idea of conjunct rotation, a term he used in 1934 to describe a paradoxical phenomenon arising from a closed-loop arm movement. Real (axial) rotation is distinguished from conjunct rotation. For characterizing the latter, the idea of reference vector fields is developed to define the neutral axial position of the humerus for any given orientation of its long axis. This concept largely avoids typical coordinate singularities arising from decomposition of 3D joint motion and therefore can be used for postural (axial) assessment of the shoulder joint both clinically and in sports science in almost the complete accessible range of motion. The concept, even though algebraic rather complex, might help to get an easier and more intuitive understanding of axial rotation of the shoulder in complex movements present in daily life and in sports.

  1. Shrinkage vectors of a flowable composite in artificial cavity models with different boundary conditions: Ceramic and Teflon.

    PubMed

    Kaisarly, Dalia; El Gezawi, Moataz; Xu, Xiaohui; Rösch, Peter; Kunzelmann, Karl-Heinz

    2018-01-01

    Polymerization shrinkage of dental resin composites leads to stress build-up at the tooth-restoration interface that predisposes the restoration to debonding. In contrast to the heterogeneity of enamel and dentin, this study investigated the effect of boundary conditions in artificial cavity models such as ceramic and Teflon. Ceramic serves as a homogenous substrate that provides optimal bonding conditions, which we presented in the form of etched and silanized ceramic in addition to an etched, silanized and bonded ceramic cavity. In contrast, the Teflon cavity presented a non-adhesive boundary condition that provided an exaggerated condition of poor bonding as in the case of contamination during the application procedure or a poor bonding substrate such as sclerotic or deep dentin. The greatest 3D shrinkage vectors and movement in the axial direction were observed in the ceramic cavity with the bonding agent followed by the silanized ceramic cavity, and smallest shrinkage vectors and axial movements were observed in the Teflon cavity. The shrinkage vectors in the ceramic cavities exhibited downward movement toward the cavity bottom with great downward shrinkage of the free surface. The shrinkage vectors in the Teflon cavity pointed towards the center of the restoration with lateral movement greater at one side denoting the site of first detachment from the cavity walls. These results proved that the boundary conditions, in terms of bonding substrates, significantly influenced the shrinkage direction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. The effect of axial crucible rotation on microstructural uniformity during horizontal directional solidification

    NASA Technical Reports Server (NTRS)

    Grugel, R. N.; Kim, Shinwoo; Woodward, Tracey; Wang, T. G.

    1992-01-01

    The effects on microstructure of crucible orientation with respect to the earth's gravitational vector, g, during directional solidification of low-volume fraction copper and aluminum, Pb-Cu, and Sn-Al alloys are examined. It is demonstrated that horizontal alignment (i.e. perpendicular to g) in combination with axial rotation of the crucible during growth is sufficient to negate factors which initiate macrosegregation, e.g. density gradients attributed to temperature and/or compositional differences, and promotes a uniform microstructure.

  3. Search for a Scalar Component in the Weak Interaction

    NASA Astrophysics Data System (ADS)

    Zakoucky, Dalibor; Baczyk, Pavel; Ban, Gilles; Beck, Marcus; Breitenfeldt, Martin; Couratin, Claire; Fabian, Xavier; Finlay, Paul; Flechard, Xavier; Friedag, Peter; Glück, Ferenc; Herlert, Alexander; Knecht, Andreas; Kozlov, Valentin; Lienard, Etienne; Porobic, Tomica; Soti, Gergelj; Tandecki, Michael; Vangorp, Simon; Weinheimer, Christian; Wursten, Elise; Severijns, Nathal

    Weak interactions are described by the Standard Model which uses the basic assumption of a pure "V(ector)-A(xial vector)" character for the interaction. However, after more than half a century of model development and experimental testing of its fundamental ingredients, experimental limits for possible admixtures of scalar and/or tensor interactions are still as high as 7%. The WITCH project (Weak Interaction Trap for CHarged particles) at the isotope separator ISOLDE at CERN is trying to probe the structure of the weak interaction in specific low energy β-decays in order to look for possible scalar or tensor components or at least significantly improve the current experimental limits. This worldwide unique experimental setup consisting of a combination of two Penning ion traps and a retardation spectrometer allows to catch, trap and cool the radioactive nuclei provided by the ISOLDE separator, form a cooled and scattering-free radioactive source of β-decaying nuclei and let these nuclei decay at rest. The precise measurement of the shape of the energy spectrum of the recoiling nuclei, the shape of which is very sensitive to the character of the weak interaction, enables searching for a possible admixture of a scalar/tensor component in the dominant vector/axial vector mode. First online measurements with the isotope 35Ar were performed in 2011 and 2012. The current status of the experiment, the data analysis and results as well as extensive simulations will be presented and discussed.

  4. In vivo photoacoustic tomography of total blood flow and Doppler angle

    NASA Astrophysics Data System (ADS)

    Yao, Junjie; Maslov, Konstantin I.; Wang, Lihong V.

    2012-02-01

    As two hallmarks of cancer, angiogenesis and hypermetabolism are closely related to increased blood flow. Volumetric blood flow measurement is important to understanding the tumor microenvironment and developing new means to treat cancer. Current photoacoustic blood flow estimation methods focus on either the axial or transverse component of the flow vector. Here, we propose a method to compute the total flow speed and Doppler angle by combining the axial and transverse flow measurements. Both the components are measured in M-mode. Collating the A-lines side by side yields a 2D matrix. The columns are Hilbert transformed to compare the phases for the computation of the axial flow. The rows are Fourier transformed to quantify the bandwidth for the computation of the transverse flow. From the axial and transverse flow components, the total flow speed and Doppler angle can be derived. The method has been verified by flowing bovine blood in a plastic tube at various speeds from 0 to 7.5 mm/s and at Doppler angles from 30 to 330°. The measurement error for total flow speed was experimentally determined to be less than 0.3 mm/s; for the Doppler angle, it was less than 15°. In addition, the method was tested in vivo on a mouse ear. The advantage of this method is simplicity: No system modification or additional data acquisition is required to use our existing system. We believe that the proposed method has the potential to be used for cancer angiogenesis and hypermetabolism imaging.

  5. a Holographic Model of Hadrons

    NASA Astrophysics Data System (ADS)

    Stephanov, M. A.

    2007-03-01

    This short talk is based on the work with J. Erlich, E. Katz and D. Son, hep-ph/0501128. Inspired by ideas of gauge/string duality, we propose a five-dimensional framework for modeling low energy properties of QCD. The model naturally incorporates properties of QCD dictated by chiral symmetry, which we demonstrate by deriving the Gell-Mann-Oakes-Renner relationship for the pion mass. The couplings and masses of the infinite towers of vector and axial vector mesons described by the model automatically obey QCD sum rules. The phenomenon of vector-meson dominance is a straightforward consequence of the model.

  6. Is nucleon spin structure inconsistent with the constituent quark model?

    NASA Astrophysics Data System (ADS)

    Qing, Di; Chen, Xiang-Song; Wang, Fan

    1998-12-01

    Proton spin structure discovered in polarized deep inelastic scattering is shown to be consistent with the valence-sea quark mixing constituent quark model. The relativistic correction and quark-antiquark pair creation (annihilation) terms inherently involved in the quark axial vector current suppress the quark spin contribution to the proton spin. The relativistic quark orbital angular momentum provides compensative terms to keep the proton spin 12 untouched. The tensor charge of the proton is predicted to have a similar but smaller suppression. An explanation on why baryon magnetic moments can be parametrized by the naive quark model spin content as well as the spin structure discovered in polarized deep inelastic scattering is given.

  7. Superposition of nonparaxial vectorial complex-source spherically focused beams: Axial Poynting singularity and reverse propagation

    NASA Astrophysics Data System (ADS)

    Mitri, F. G.

    2016-08-01

    In this work, counterintuitive effects such as the generation of an axial (i.e., long the direction of wave motion) zero-energy flux density (i.e., axial Poynting singularity) and reverse (i.e., negative) propagation of nonparaxial quasi-Gaussian electromagnetic (EM) beams are examined. Generalized analytical expressions for the EM field's components of a coherent superposition of two high-order quasi-Gaussian vortex beams of opposite handedness and different amplitudes are derived based on the complex-source-point method, stemming from Maxwell's vector equations and the Lorenz gauge condition. The general solutions exhibiting unusual effects satisfy the Helmholtz and Maxwell's equations. The EM beam components are characterized by nonzero integer degree and order (n ,m ) , respectively, an arbitrary waist w0, a diffraction convergence length known as the Rayleigh range zR, and a weighting (real) factor 0 ≤α ≤1 that describes the transition of the beam from a purely vortex (α =0 ) to a nonvortex (α =1 ) type. An attractive feature for this superposition is the description of strongly focused (or strongly divergent) wave fields. Computations of the EM power density as well as the linear and angular momentum density fluxes illustrate the analysis with particular emphasis on the polarization states of the vector potentials forming the beams and the weight of the coherent beam superposition causing the transition from the vortex to the nonvortex type. Should some conditions determined by the polarization state of the vector potentials and the beam parameters be met, an axial zero-energy flux density is predicted in addition to a negative retrograde propagation effect. Moreover, rotation reversal of the angular momentum flux density with respect to the beam handedness is anticipated, suggesting the possible generation of negative (left-handed) torques. The results are particularly useful in applications involving the design of strongly focused optical laser tweezers, tractor beams, optical spanners, arbitrary scattering, radiation force, angular momentum, and torque in particle manipulation, and other related topics.

  8. ASTROPHYSICS. Exclusion of leptophilic dark matter models using XENON100 electronic recoil data.

    PubMed

    2015-08-21

    Laboratory experiments searching for galactic dark matter particles scattering off nuclei have so far not been able to establish a discovery. We use data from the XENON100 experiment to search for dark matter interacting with electrons. With no evidence for a signal above the low background of our experiment, we exclude a variety of representative dark matter models that would induce electronic recoils. For axial-vector couplings to electrons, we exclude cross sections above 6 × 10(-35) cm(2) for particle masses of m(χ) = 2 GeV/c(2). Independent of the dark matter halo, we exclude leptophilic models as an explanation for the long-standing DAMA/LIBRA signal, such as couplings to electrons through axial-vector interactions at a 4.4σ confidence level, mirror dark matter at 3.6σ, and luminous dark matter at 4.6σ. Copyright © 2015, American Association for the Advancement of Science.

  9. One Solution of the Forward Problem of DC Resistivity Well Logging by the Method of Volume Integral Equations with Allowance for Induced Polarization

    NASA Astrophysics Data System (ADS)

    Kevorkyants, S. S.

    2018-03-01

    For theoretically studying the intensity of the influence exerted by the polarization of the rocks on the results of direct current (DC) well logging, a solution is suggested for the direct inner problem of the DC electric logging in the polarizable model of plane-layered medium containing a heterogeneity by the example of the three-layer model of the hosting medium. Initially, the solution is presented in the form of a traditional vector volume-integral equation of the second kind (IE2) for the electric current density vector. The vector IE2 is solved by the modified iteration-dissipation method. By the transformations, the initial IE2 is reduced to the equation with the contraction integral operator for an axisymmetric model of electrical well-logging of the three-layer polarizable medium intersected by an infinitely long circular cylinder. The latter simulates the borehole with a zone of penetration where the sought vector consists of the radial J r and J z axial (relative to the cylinder's axis) components. The decomposition of the obtained vector IE2 into scalar components and the discretization in the coordinates r and z lead to a heterogeneous system of linear algebraic equations with a block matrix of the coefficients representing 2x2 matrices whose elements are the triple integrals of the mixed derivatives of the second-order Green's function with respect to the parameters r, z, r', and z'. With the use of the analytical transformations and standard integrals, the integrals over the areas of the partition cells and azimuthal coordinate are reduced to single integrals (with respect to the variable t = cos ϕ on the interval [-1, 1]) calculated by the Gauss method for numerical integration. For estimating the effective coefficient of polarization of the complex medium, it is suggested to use the Siegel-Komarov formula.

  10. Inhomogeneous Weyl and Dirac Semimetals: Transport in Axial Magnetic Fields and Fermi Arc Surface States from Pseudo-Landau Levels

    NASA Astrophysics Data System (ADS)

    Grushin, Adolfo G.; Venderbos, Jörn W. F.; Vishwanath, Ashvin; Ilan, Roni

    2016-10-01

    Topological Dirac and Weyl semimetals have an energy spectrum that hosts Weyl nodes appearing in pairs of opposite chirality. Topological stability is ensured when the nodes are separated in momentum space and unique spectral and transport properties follow. In this work, we study the effect of a space-dependent Weyl node separation, which we interpret as an emergent background axial-vector potential, on the electromagnetic response and the energy spectrum of Weyl and Dirac semimetals. This situation can arise in the solid state either from inhomogeneous strain or nonuniform magnetization and can also be engineered in cold atomic systems. Using a semiclassical approach, we show that the resulting axial magnetic field B5 is observable through an enhancement of the conductivity as σ ˜B52 due to an underlying chiral pseudomagnetic effect. We then use two lattice models to analyze the effect of B5 on the spectral properties of topological semimetals. We describe the emergent pseudo-Landau-level structure for different spatial profiles of B5, revealing that (i) the celebrated surface states of Weyl semimetals, the Fermi arcs, can be reinterpreted as n =0 pseudo-Landau levels resulting from a B5 confined to the surface, (ii) as a consequence of position-momentum locking, a bulk B5 creates pseudo-Landau levels interpolating in real space between Fermi arcs at opposite surfaces, and (iii) there are equilibrium bound currents proportional to B5 that average to zero over the sample, which are the analogs of bound currents in magnetic materials. We conclude by discussing how our findings can be probed experimentally.

  11. Single-stage experimental evaluation of tandem-airfoil rotor and stator blading for compressors. Part 7: Data and performance for stage E

    NASA Technical Reports Server (NTRS)

    Cheatham, J. G.

    1974-01-01

    An axial flow compressor stage, having tandem airfoil blading, was designed for zero rotor prewhirl, constant rotor work across the span, and axial discharge flow. The stage was designed to produce a pressure ratio of 1.265 at a rotor tip velocity of 757 ft/sec. The rotor has an inlet hub/tip ratio of 0.8. The design procedure accounted for the rotor inlet boundary layer and included the effects of axial velocity ratio and secondary flow on blade row performance. The objectives of this experimental program were (1) to obtain performance with uniform and distorted inlet flow for comparison with the performance of a stage consisting of single-airfoil blading designed for the same vector diagrams and (2) to evaluate the effectiveness of accounting for the inlet boundary layer, axial velocity ratio, and secondary flows in the stage design.

  12. Axial current generation by P-odd domains in QCD matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iatrakis, Ioannis; Yin, Yi; Lin, Shu

    2015-06-23

    The dynamics of topological domains which break parity (P) and charge-parity (CP) symmetry of QCD are studied. We derive in a general setting that those local domains will generate an axial current and quantify the strength of the induced axial current. Thus, our findings are verified in a top-down holographic model. The relation between the real time dynamics of those local domains and the chiral magnetic field is also elucidated. We finally argue that such an induced axial current would be phenomenologically important in a heavy-ion collisions experiment.

  13. Aerodynamic Design Study of Advanced Multistage Axial Compressor

    NASA Technical Reports Server (NTRS)

    Larosiliere, Louis M.; Wood, Jerry R.; Hathaway, Michael D.; Medd, Adam J.; Dang, Thong Q.

    2002-01-01

    As a direct response to the need for further performance gains from current multistage axial compressors, an investigation of advanced aerodynamic design concepts that will lead to compact, high-efficiency, and wide-operability configurations is being pursued. Part I of this report describes the projected level of technical advancement relative to the state of the art and quantifies it in terms of basic aerodynamic technology elements of current design systems. A rational enhancement of these elements is shown to lead to a substantial expansion of the design and operability space. Aerodynamic design considerations for a four-stage core compressor intended to serve as a vehicle to develop, integrate, and demonstrate aerotechnology advancements are discussed. This design is biased toward high efficiency at high loading. Three-dimensional blading and spanwise tailoring of vector diagrams guided by computational fluid dynamics (CFD) are used to manage the aerodynamics of the high-loaded endwall regions. Certain deleterious flow features, such as leakage-vortex-dominated endwall flow and strong shock-boundary-layer interactions, were identified and targeted for improvement. However, the preliminary results were encouraging and the front two stages were extracted for further aerodynamic trimming using a three-dimensional inverse design method described in part II of this report. The benefits of the inverse design method are illustrated by developing an appropriate pressure-loading strategy for transonic blading and applying it to reblade the rotors in the front two stages of the four-stage configuration. Multistage CFD simulations based on the average passage formulation indicated an overall efficiency potential far exceeding current practice for the front two stages. Results of the CFD simulation at the aerodynamic design point are interrogated to identify areas requiring additional development. In spite of the significantly higher aerodynamic loadings, advanced CFD-based tools were able to effectively guide the design of a very efficient axial compressor under state-of-the-art aeromechanical constraints.

  14. Nonlinear chiral plasma transport in rotating coordinates

    NASA Astrophysics Data System (ADS)

    Dayi, Ömer F.; Kilinçarslan, Eda

    2017-08-01

    The nonlinear transport features of inhomogeneous chiral plasma in the presence of electromagnetic fields, in rotating coordinates are studied within the relaxation time approach. The chiral distribution functions up to second order in the electric field in rotating coordinates and the derivatives of chemical potentials are established by solving the Boltzmann transport equation. First, the vector and axial current densities in the weakly ionized chiral plasma for vanishing magnetic field are calculated. They involve the rotational analogues of the Hall effect as well as several new terms arising from the Coriolis and fictitious centrifugal forces. Then in the short relaxation time regime the angular velocity and electromagnetic fields are treated as perturbations. The current densities are obtained by retaining the terms up to second order in perturbations. The time evolution equations of the inhomogeneous chemical potentials are derived by demanding that collisions conserve the particle number densities.

  15. Optical trapping of core-shell magnetic microparticles by cylindrical vector beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhong, Min-Cheng; Gong, Lei; Li, Di

    2014-11-03

    Optical trapping of core-shell magnetic microparticles is experimentally demonstrated by using cylindrical vector beams. Second, we investigate the optical trapping efficiencies. The results show that radially and azimuthally polarized beams exhibit higher axial trapping efficiencies than the Gaussian beam. Finally, a trapped particle is manipulated to kill a cancer cell. The results make possible utilizing magnetic particles for optical manipulation, which is an important advantage for magnetic particles as labeling agent in targeted medicine and biological analysis.

  16. Nucleon matrix elements with Nf=2+1+1 maximally twisted fermions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simon Dinter, Constantia Alexandrou, Martha Constantinou, Vincent Drach, Karl Jansen, Dru Renner

    2010-06-01

    We present the first lattice calculation of nucleon matrix elements using four dynamical flavors. We use the Nf=2+1+1 maximally twisted mass formulation. The renormalization is performed non-perturbatively in the RI'-MOM scheme and results are given for the vector and axial vector operators with up to one-derivative. Our calculation of the average momentum of the unpolarized non-singlet parton distribution is presented and compared to our previous results obtained from the Nf=2 case.

  17. FIDEP2 User Manual to Micromechanical Models for Thermoviscoplastic Behavior of Metal Matrix Composites

    DTIC Science & Technology

    1998-09-01

    1 .AND. ICOUNT .GT. ISTRAIN )GOTO 55 Add additional terms in equations for interface nodes If radial loading is applied, add term BMAT (NTOT-1) = SR...term in bmat Using Bmat , and the L-U decomposition of Amat determine XSOL, the vector of radial and hoop stresses CALL LUBKSB(AMAT,NRA,LDA,IPVT... BMAT ,XSOL) Compute stresses from the XSOL solution vector Use Boundary conditions S(1,NTOT2) = SR S(2,1) = S(1,1) Compute total axial

  18. Nuclear axial currents in chiral effective field theory

    DOE PAGES

    Baroni, Alessandro; Girlanda, Luca; Pastore, Saori; ...

    2016-01-11

    Two-nucleon axial charge and current operators are derived in chiral effective field theory up to one loop. The derivation is based on time-ordered perturbation theory and accounts for cancellations between the contributions of irreducible diagrams and the contributions owing to nonstatic corrections from energy denominators of reducible diagrams. Ultraviolet divergencies associated with the loop corrections are isolated in dimensional regularization. The resulting axial current is finite and conserved in the chiral limit, while the axial charge requires renormalization. As a result, a complete set of contact terms for the axial charge up to the relevant order in the power countingmore » is constructed.« less

  19. Charge Redistribution from Anomalous Magnetovorticity Coupling

    DOE PAGES

    Hattori, Koichi; Yin, Yi

    2016-10-05

    Here, we investigate novel transport phenomena in a chiral fluid originated from an interplay between a vorticity and strong magnetic field, which induces a redistribution of vector charges in the system and an axial current along the magnetic field. The corresponding transport coefficients are obtained from an energy-shift argument for the chiral fermions in the lowest Landau level due to a spin-vorticity coupling and also from diagrammatic computations on the basis of the linear response theory. Based on consistent results from both methods, we also observe that the transport coefficients are proportional to the anomaly coefficient and are independent ofmore » temperature and chemical potential. Finally, we speculate that these transport phenomena are connected to quantum anomaly.« less

  20. Simple and practical approach for computing the ray Hessian matrix in geometrical optics.

    PubMed

    Lin, Psang Dain

    2018-02-01

    A method is proposed for simplifying the computation of the ray Hessian matrix in geometrical optics by replacing the angular variables in the system variable vector with their equivalent cosine and sine functions. The variable vector of a boundary surface is similarly defined in such a way as to exclude any angular variables. It is shown that the proposed formulations reduce the computation time of the Hessian matrix by around 10 times compared to the previous method reported by the current group in Advanced Geometrical Optics (2016). Notably, the method proposed in this study involves only polynomial differentiation, i.e., trigonometric function calls are not required. As a consequence, the computation complexity is significantly reduced. Five illustrative examples are given. The first three examples show that the proposed method is applicable to the determination of the Hessian matrix for any pose matrix, irrespective of the order in which the rotation and translation motions are specified. The last two examples demonstrate the use of the proposed Hessian matrix in determining the axial and lateral chromatic aberrations of a typical optical system.

  1. Creating a behavioural classification module for acceleration data: using a captive surrogate for difficult to observe species.

    PubMed

    Campbell, Hamish A; Gao, Lianli; Bidder, Owen R; Hunter, Jane; Franklin, Craig E

    2013-12-15

    Distinguishing specific behavioural modes from data collected by animal-borne tri-axial accelerometers can be a time-consuming and subjective process. Data synthesis can be further inhibited when the tri-axial acceleration data cannot be paired with the corresponding behavioural mode through direct observation. Here, we explored the use of a tame surrogate (domestic dog) to build a behavioural classification module, and then used that module to accurately identify and quantify behavioural modes within acceleration collected from other individuals/species. Tri-axial acceleration data were recorded from a domestic dog whilst it was commanded to walk, run, sit, stand and lie-down. Through video synchronisation, each tri-axial acceleration sample was annotated with its associated behavioural mode; the feature vectors were extracted and used to build the classification module through the application of support vector machines (SVMs). This behavioural classification module was then used to identify and quantify the same behavioural modes in acceleration collected from a range of other species (alligator, badger, cheetah, dingo, echidna, kangaroo and wombat). Evaluation of the module performance, using a binary classification system, showed there was a high capacity (>90%) for behaviour recognition between individuals of the same species. Furthermore, a positive correlation existed between SVM capacity and the similarity of the individual's spinal length-to-height above the ground ratio (SL:SH) to that of the surrogate. The study describes how to build a behavioural classification module and highlights the value of using a surrogate for studying cryptic, rare or endangered species.

  2. Emission of neutron–proton and proton–proton pairs in neutrino scattering

    DOE PAGES

    Ruiz Simo, I.; Amaro, J. E.; Barbaro, M. B.; ...

    2016-11-10

    For this paper, we use a recently developed model of relativistic meson-exchange currents to compute the neutron–proton and proton–proton yields in (νμ, μ -)scattering from 12C in the 2p–2h channel. We compute the response functions and cross sections with the relativistic Fermi gas model for different kinematics from intermediate to high momentum transfers. We find a large contribution of neutron–proton configurations in the initial state, as compared to proton–proton pairs. In the case of charge-changing neutrino scattering the 2p–2h cross section of proton–proton emission (i.e.,np in the initial state) is much larger than for neutron–proton emission (i.e.,two neutrons in themore » initial state) by a (ω, q)-dependent factor. The different emission probabilities of distinct species of nucleon pairs are produced in our model only by meson-exchange currents, mainly by the Δ isobar current. We also analyze other effects including exchange contributions and the effect of the axial and vector currents.« less

  3. Effective axial-vector strength and β-decay systematics

    NASA Astrophysics Data System (ADS)

    Delion, D. S.; Suhonen, J.

    2014-09-01

    We use the weak axial-vector coupling strength g_{\\text{A}} as a key parameter to reproduce simultaneously the available data for both the Gamow-Teller \\beta^- and \\beta^+/\\text{EC} decay rates in nine triplets of isobars with mass numbers A=70,78,100,104,106,110,116,128,130 . We use the proton-neutron quasiparticle random-phase approximation (pnQRPA) with schematic dipole interaction containing particle-particle and particle-hole parts with mass-dependent strengths. Our analysis points to a strongly quenched effective value g_{\\text{A}}\\approx 0.3 , with a relative error of 28%. We then perform a systematic computation of 218 experimentally known \\beta^- and \\beta^+/\\text{EC} decays with quite a remarkable success. The presently extracted value of g_{\\text{A}} should be taken as an effective one, specific for a given nuclear theory framework. Present studies suggest that the effective g_{\\text{A}} is suitable for the description of decay transitions to 1^+ states at moderate excitation, below the Gamow-Teller giant resonance region.

  4. Mesonic enhancement of the weak axial charge and its effect on the half-lives and spectral shapes of first-forbidden J+↔J- decays

    NASA Astrophysics Data System (ADS)

    Kostensalo, Joel; Suhonen, Jouni

    2018-06-01

    The effects of the enhancement of the axial-charge matrix element γ5 were studied in medium heavy and heavy nuclei for first-forbidden J+ ↔J- decay transitions using the nuclear shell model. Noticeable dependence on the enhancement ɛMEC of the axial-charge matrix element, as well as on the value of the axial-vector coupling constant gA was found in the spectral shapes of 93Y, 95Sr, and 97Y. The importance of the spectrum of 138Cs in the determination of gA is discussed. Half-life analyses in the A ≈ 95 and A ≈ 135 regions were done, and consistent results gA ≈ 0.90, 0.75, and 0.65, corresponding to the three enhancement scenarios ɛMEC = 1.4, 1.7, and 2.0, were obtained. Connection to the reactor-antineutrino anomaly is pointed out.

  5. Perturbative calculations in space-time having extra dimensions: The 6D single axial box anomaly

    NASA Astrophysics Data System (ADS)

    Fonseca, M. V. S.; Dallabona, G.; Battistel, O. A.

    2014-11-01

    A detailed investigation about the 6D single axial box anomalous amplitude is presented. The superficial degree of divergence involved, in the one-loop perturbative calculations, is quadratic and the corresponding theory is nonrenormalizable. In spite of this, we show that the phenomenon of anomaly can be clearly characterized in a completely analogous way as that of 4D single axial triangle anomaly. The required calculations are made within the context of a novel calculational strategy where the amplitudes are not modified in intermediary steps. Divergent integrals are, in fact, not really solved. Adequate representations for the internal propagators are adopted according to the degree of divergence involved, so that when the last Feynman rule is taken (integration over the loop momentum) all the dependence on the internal (arbitrary) momenta are placed only in finite integrals. In the divergent structures emerging, no physical parameter is present and such objects are not really integrated. Only very general properties are assumed for such quantities which are universal (all space-time dimensions). The consistency of the perturbative calculations fixes some relations among the divergent integrals so that all the potentially ambiguous terms can be automatically removed. In spite of the absence of ambiguities, the emerging results allow us to give a clear and transparent description of the anomaly. The present investigation confirms the point of view stated by the same prescription for the well-known 2D axial-vector (AV) two-point and 4D single (AVV) and triple (AAA) axial-vector anomalies: the anomalous amplitudes need not be assumed as ambiguous quantities to allow an adequate description of the anomalies. We show also that a surprising, but natural, connection between the coupling of fermions with a pseudoscalar tensor field is found. In addition, we show that the crucial mathematical aspects of the problem are deeply related to a recently arisen controversy involving the evaluation of the Higgs Boson decay and the question of unicity in the dimensional regularization.

  6. Probing anomalous $$ t\\overline{t}Z $$ interactions with rare meson decays

    DOE PAGES

    Brod, Joachim; Greljo, Admir; Stamou, Emmanuel; ...

    2015-02-23

    Anomalous couplings of the Z boson to top quarks are only marginally constrained by direct searches and are still sensitive to new particle dynamics at the TeV scale. Employing an effective field theory approach we consider the dimension-six operators which generate deviations from the standard-model vector and axial-vector interactions. We show that rare B and K meson decays together with electroweak precision observables provide strong constraints on these couplings. In addition, we also consider constraints from t-channel single-top production.

  7. Measuring magnetic field vector by stimulated Raman transitions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Wenli; Wei, Rong, E-mail: weirong@siom.ac.cn; Lin, Jinda

    2016-03-21

    We present a method for measuring the magnetic field vector in an atomic fountain by probing the line strength of stimulated Raman transitions. The relative line strength for a Λ-type level system with an existing magnetic field is theoretically analyzed. The magnetic field vector measured by our proposed method is consistent well with that by the traditional bias magnetic field method with an axial resolution of 6.1 mrad and a radial resolution of 0.16 rad. Dependences of the Raman transitions on laser polarization schemes are also analyzed. Our method offers the potential advantages for magnetic field measurement without requiring additional bias fields,more » beyond the limitation of magnetic field intensity, and extending the spatial measurement range. The proposed method can be widely used for measuring magnetic field vector in other precision measurement fields.« less

  8. Improving Extraction Ion Diode Operation By Introducing An Axial Load

    NASA Astrophysics Data System (ADS)

    Vesey, R. A.; Desjarlais, M. P.; Greenly, J. B.

    1997-11-01

    Recent ion diode experiments at Cornell have shown that the presence of an axial current load (in this case an inductive voltage monitor) significantly reduced the electron loss to the anode with some indication of a simultaneous reduction in the beam divergence(J. B. Greenly et al., this conference.). The QUICKSILVER 3D particle-in-cell code has been used to simulate axial loads on the SABRE (6 MV, 250 kA) ion diode at Sandia. Initial results show that an axial load drawing 30% of the total diode current reduces the electron loss by 55% while reducing the ion current by just 15%. With an increased applied magnetic field, the electron loss to the anode face is completely suppressed and ion mode oscillations are strongly damped, albeit with a 40% reduction in the ion current. These results show that further scoping simulations are necessary to understand the mechanism involved and to refine the operating parameters (axial current, B-field, A-K gap) for optimum performance.

  9. Nuclear chiral axial currents and applications to few-nucleon systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baroni, Alessandro

    This Thesis is divided into three main parts. The first part discusses basic aspects of chiral effective field theory and the formalism, based on time ordered perturbation theory, used to to derive the nuclear potentials and currents from the chiral Lagrangians. The second part deals with the actual derivation, up to one loop, of the two-nucleon potential and one- and two-nucleon weak axial charge and current. In both derivations ultraviolet divergences generated by loop corrections are isolated using dimensional regularization. The resulting axial current is finite and conserved in the chiral limit, while the axial charge requires renormalization. A completemore » set of contact terms for the axial charge up to the relevant order in the power counting is constructed. The third part of this Thesis discusses two applications: (i) the calculation of the Gamow-Teller matrix element of tritium, used to constrain the single low-energy constant entering the axial current; (ii) the calculation of neutrino-deuteron inclusive cross sections at low energies. These results have confirmed previous predictions obtained in phenomenological approaches. These latter studies have played an important role in the analysis and interpretation of experiments at the Sudbury Neutrino Observatory.« less

  10. The numerical simulation of a high-speed axial flow compressor

    NASA Technical Reports Server (NTRS)

    Mulac, Richard A.; Adamczyk, John J.

    1991-01-01

    The advancement of high-speed axial-flow multistage compressors is impeded by a lack of detailed flow-field information. Recent development in compressor flow modeling and numerical simulation have the potential to provide needed information in a timely manner. The development of a computer program is described to solve the viscous form of the average-passage equation system for multistage turbomachinery. Programming issues such as in-core versus out-of-core data storage and CPU utilization (parallelization, vectorization, and chaining) are addressed. Code performance is evaluated through the simulation of the first four stages of a five-stage, high-speed, axial-flow compressor. The second part addresses the flow physics which can be obtained from the numerical simulation. In particular, an examination of the endwall flow structure is made, and its impact on blockage distribution assessed.

  11. Axial magnetic field and toroidally streaming fast ions in the dense plasma focus are natural consequences of conservation laws in the curved axisymmetric geometry of the current sheath. II. Towards a first principles theory

    NASA Astrophysics Data System (ADS)

    Auluck, S. K. H.

    2017-11-01

    This paper continues earlier discussion [S. K. H. Auluck, Phys. Plasmas 21, 102515 (2014)] concerning the formulation of conservation laws of mass, momentum, and energy in a local curvilinear coordinate system in the dense plasma focus. This formulation makes use of the revised Gratton-Vargas snowplow model [S. K. H. Auluck, Phys. Plasmas 20, 112501 (2013)], which provides an analytically defined imaginary surface in three dimensions which resembles the experimentally determined shape of the plasma. Unit vectors along the local tangent to this surface, along the azimuth, and along the local normal define a right-handed orthogonal local curvilinear coordinate system. The simplifying assumption that physical quantities have significant variation only along the normal enables writing laws of conservation of mass, momentum, and energy in the form of effectively one-dimensional hyperbolic conservation law equations using expressions for various differential operators derived for this coordinate system. This formulation demonstrates the highly non-trivial result that the axial magnetic field and toroidally streaming fast ions, experimentally observed by multiple prestigious laboratories, are natural consequences of conservation of mass, momentum, and energy in the curved geometry of the dense plasma focus current sheath. The present paper continues the discussion in the context of a 3-region shock structure similar to the one experimentally observed: an unperturbed region followed by a hydrodynamic shock containing some current followed by a magnetic piston. Rankine-Hugoniot conditions are derived, and expressions are obtained for the specific volumes and pressures using the mass-flux between the hydrodynamic shock and the magnetic piston and current fraction in the hydrodynamic shock as unknown parameters. For the special case of a magnetic piston that remains continuously in contact with the fluid being pushed, the theory gives closed form algebraic results for the fraction of current flowing in the hydrodynamic shock, specific volume, pressure, and fluid velocity of the hydrodynamic shock region, the tangential, normal, and azimuthal components of velocity in the magnetized plasma, the density of the magnetized plasma, the normal and tangential components of the magnetic field, and the tangential, normal, and azimuthal components of the electric field. This explains the occurrence of azimuthally streaming high energy deuterons experimentally observed by Frascati and Stuttgart. The expression derived for the azimuthal component of vector potential can serve as the basis for a proposed experimental test of the theory.

  12. Plurigon: three dimensional visualization and classification of high-dimensionality data

    PubMed Central

    Martin, Bronwen; Chen, Hongyu; Daimon, Caitlin M.; Chadwick, Wayne; Siddiqui, Sana; Maudsley, Stuart

    2013-01-01

    High-dimensionality data is rapidly becoming the norm for biomedical sciences and many other analytical disciplines. Not only is the collection and processing time for such data becoming problematic, but it has become increasingly difficult to form a comprehensive appreciation of high-dimensionality data. Though data analysis methods for coping with multivariate data are well-documented in technical fields such as computer science, little effort is currently being expended to condense data vectors that exist beyond the realm of physical space into an easily interpretable and aesthetic form. To address this important need, we have developed Plurigon, a data visualization and classification tool for the integration of high-dimensionality visualization algorithms with a user-friendly, interactive graphical interface. Unlike existing data visualization methods, which are focused on an ensemble of data points, Plurigon places a strong emphasis upon the visualization of a single data point and its determining characteristics. Multivariate data vectors are represented in the form of a deformed sphere with a distinct topology of hills, valleys, plateaus, peaks, and crevices. The gestalt structure of the resultant Plurigon object generates an easily-appreciable model. User interaction with the Plurigon is extensive; zoom, rotation, axial and vector display, feature extraction, and anaglyph stereoscopy are currently supported. With Plurigon and its ability to analyze high-complexity data, we hope to see a unification of biomedical and computational sciences as well as practical applications in a wide array of scientific disciplines. Increased accessibility to the analysis of high-dimensionality data may increase the number of new discoveries and breakthroughs, ranging from drug screening to disease diagnosis to medical literature mining. PMID:23885241

  13. Toward (finally!) ruling out Z and Higgs mediated dark matter models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Escudero, Miguel; Berlin, Asher; Hooper, Dan

    2016-12-01

    In recent years, direct detection, indirect detection, and collider experiments have placed increasingly stringent constraints on particle dark matter, exploring much of the parameter space associated with the WIMP paradigm. In this paper, we focus on the subset of WIMP models in which the dark matter annihilates in the early universe through couplings to either the Standard Model Z or the Standard Model Higgs boson. Considering fermionic, scalar, and vector dark matter candidates within a model-independent context, we find that the overwhelming majority of these dark matter candidates are already ruled out by existing experiments. In the case of Zmore » mediated dark matter, the only scenarios that are not currently excluded are those in which the dark matter is a fermion with an axial coupling and with a mass either within a few GeV of the Z resonance ( m {sub DM} ≅ m {sub Z} /2) or greater than 200 GeV, or with a vector coupling and with m {sub DM} > 6 TeV . Several Higgs mediated scenarios are currently viable if the mass of the dark matter is near the Higgs pole ( m {sub DM} ≅ m {sub H} /2). Otherwise, the only scenarios that are not excluded are those in which the dark matter is a scalar (vector) heavier than 400 GeV (1160 GeV) with a Higgs portal coupling, or a fermion with a pseudoscalar (CP violating) coupling to the Standard Model Higgs boson. With the exception of dark matter with a purely pseudoscalar coupling to the Higgs, it is anticipated that planned direct detection experiments will probe nearly the entire range of models considered in this study.« less

  14. Toward (finally!) ruling out Z and Higgs mediated dark matter models

    DOE PAGES

    Escudero, Miguel; Fermi National Accelerator Lab.; Berlin, Asher; ...

    2016-12-15

    In recent years, direct detection, indirect detection, and collider experiments have placed increasingly stringent constraints on particle dark matter, exploring much of the parameter space associated with the WIMP paradigm. In this paper, we focus on the subset of WIMP models in which the dark matter annihilates in the early universe through couplings to either the Standard Model Z or the Standard Model Higgs boson. Considering fermionic, scalar, and vector dark matter candidates within a model-independent context, we find that the overwhelming majority of these dark matter candidates are already ruled out by existing experiments. In the case of Zmore » mediated dark matter, the only scenarios that are not currently excluded are those in which the dark matter is a fermion with an axial coupling and with a mass either within a few GeV of the Z resonance (m DM ≃ m Z/2) or greater than 200 GeV, or with a vector coupling and with m DM > 6 TeV . Several Higgs mediated scenarios are currently viable if the mass of the dark matter is near the Higgs pole (m DM ≃ m H/2). Otherwise, the only scenarios that are not excluded are those in which the dark matter is a scalar (vector) heavier than 400 GeV (1160 GeV) with a Higgs portal coupling, or a fermion with a pseudoscalar (CP violating) coupling to the Standard Model Higgs boson. Furthermore, with the exception of dark matter with a purely pseudoscalar coupling to the Higgs, it is anticipated that planned direct detection experiments will probe nearly the entire range of models considered in this study.« less

  15. Toward (finally!) ruling out Z and Higgs mediated dark matter models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Escudero, Miguel; Fermi National Accelerator Lab.; Berlin, Asher

    In recent years, direct detection, indirect detection, and collider experiments have placed increasingly stringent constraints on particle dark matter, exploring much of the parameter space associated with the WIMP paradigm. In this paper, we focus on the subset of WIMP models in which the dark matter annihilates in the early universe through couplings to either the Standard Model Z or the Standard Model Higgs boson. Considering fermionic, scalar, and vector dark matter candidates within a model-independent context, we find that the overwhelming majority of these dark matter candidates are already ruled out by existing experiments. In the case of Zmore » mediated dark matter, the only scenarios that are not currently excluded are those in which the dark matter is a fermion with an axial coupling and with a mass either within a few GeV of the Z resonance (m DM ≃ m Z/2) or greater than 200 GeV, or with a vector coupling and with m DM > 6 TeV . Several Higgs mediated scenarios are currently viable if the mass of the dark matter is near the Higgs pole (m DM ≃ m H/2). Otherwise, the only scenarios that are not excluded are those in which the dark matter is a scalar (vector) heavier than 400 GeV (1160 GeV) with a Higgs portal coupling, or a fermion with a pseudoscalar (CP violating) coupling to the Standard Model Higgs boson. Furthermore, with the exception of dark matter with a purely pseudoscalar coupling to the Higgs, it is anticipated that planned direct detection experiments will probe nearly the entire range of models considered in this study.« less

  16. SU-E-J-115: Correlation of Displacement Vector Fields Calculated by Deformable Image Registration Algorithms with Motion Parameters of CT Images with Well-Defined Targets and Controlled-Motion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaskowiak, J; Ahmad, S; Ali, I

    Purpose: To investigate correlation of displacement vector fields (DVF) calculated by deformable image registration algorithms with motion parameters in helical axial and cone-beam CT images with motion artifacts. Methods: A mobile thorax phantom with well-known targets with different sizes that were made from water-equivalent material and inserted in foam to simulate lung lesions. The thorax phantom was imaged with helical, axial and cone-beam CT. The phantom was moved with a cyclic motion with different motion amplitudes and frequencies along the superior-inferior direction. Different deformable image registration algorithms including demons, fast demons, Horn-Shunck and iterative-optical-flow from the DIRART software were usedmore » to deform CT images for the phantom with different motion patterns. The CT images of the mobile phantom were deformed to CT images of the stationary phantom. Results: The values of displacement vectors calculated by deformable image registration algorithm correlated strongly with motion amplitude where large displacement vectors were calculated for CT images with large motion amplitudes. For example, the maximal displacement vectors were nearly equal to the motion amplitudes (5mm, 10mm or 20mm) at interfaces between the mobile targets lung tissue, while the minimal displacement vectors were nearly equal to negative the motion amplitudes. The maximal and minimal displacement vectors matched with edges of the blurred targets along the Z-axis (motion-direction), while DVF’s were small in the other directions. This indicates that the blurred edges by phantom motion were shifted largely to match with the actual target edge. These shifts were nearly equal to the motion amplitude. Conclusions: The DVF from deformable-image registration algorithms correlated well with motion amplitude of well-defined mobile targets. This can be used to extract motion parameters such as amplitude. However, as motion amplitudes increased, image artifacts increased significantly and that limited image quality and poor correlation between the motion amplitude and DVF was obtained.« less

  17. A Model for Axial Magnetic Bearings Including Eddy Currents

    NASA Technical Reports Server (NTRS)

    Kucera, Ladislav; Ahrens, Markus

    1996-01-01

    This paper presents an analytical method of modelling eddy currents inside axial bearings. The problem is solved by dividing an axial bearing into elementary geometric forms, solving the Maxwell equations for these simplified geometries, defining boundary conditions and combining the geometries. The final result is an analytical solution for the flux, from which the impedance and the force of an axial bearing can be derived. Several impedance measurements have shown that the analytical solution can fit the measured data with a precision of approximately 5%.

  18. Parity partners in the baryon resonance spectrum

    DOE PAGES

    Lu, Ya; Chen, Chen; Roberts, Craig D.; ...

    2017-07-28

    Here, we describe a calculation of the spectrum of flavor-SU(3) octet and decuplet baryons, their parity partners, and the radial excitations of these systems, made using a symmetry-preserving treatment of a vector x vector contact interaction as the foundation for the relevant few-body equations. Dynamical chiral symmetry breaking generates nonpointlike diquarks within these baryons and hence, using the contact interaction, flavor-antitriplet scalar, pseudoscalar, vector, and flavor-sextet axial-vector quark-quark correlations can all play active roles. The model yields reasonable masses for all systems studied and Faddeev amplitudes for ground states and associated parity partners that sketch a realistic picture of theirmore » internal structure: ground-state, even-parity baryons are constituted, almost exclusively, from like-parity diquark correlations, but orbital angular momentum plays an important role in the rest-frame wave functions of odd-parity baryons, whose Faddeev amplitudes are dominated by odd-parity diquarks.« less

  19. Parity partners in the baryon resonance spectrum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Ya; Chen, Chen; Roberts, Craig D.

    Here, we describe a calculation of the spectrum of flavor-SU(3) octet and decuplet baryons, their parity partners, and the radial excitations of these systems, made using a symmetry-preserving treatment of a vector x vector contact interaction as the foundation for the relevant few-body equations. Dynamical chiral symmetry breaking generates nonpointlike diquarks within these baryons and hence, using the contact interaction, flavor-antitriplet scalar, pseudoscalar, vector, and flavor-sextet axial-vector quark-quark correlations can all play active roles. The model yields reasonable masses for all systems studied and Faddeev amplitudes for ground states and associated parity partners that sketch a realistic picture of theirmore » internal structure: ground-state, even-parity baryons are constituted, almost exclusively, from like-parity diquark correlations, but orbital angular momentum plays an important role in the rest-frame wave functions of odd-parity baryons, whose Faddeev amplitudes are dominated by odd-parity diquarks.« less

  20. Attitude Estimation for Large Field-of-View Sensors

    NASA Technical Reports Server (NTRS)

    Cheng, Yang; Crassidis, John L.; Markley, F. Landis

    2005-01-01

    The QUEST measurement noise model for unit vector observations has been widely used in spacecraft attitude estimation for more than twenty years. It was derived under the approximation that the noise lies in the tangent plane of the respective unit vector and is axially symmetrically distributed about the vector. For large field-of-view sensors, however, this approximation may be poor, especially when the measurement falls near the edge of the field of view. In this paper a new measurement noise model is derived based on a realistic noise distribution in the focal-plane of a large field-of-view sensor, which shows significant differences from the QUEST model for unit vector observations far away from the sensor boresight. An extended Kalman filter for attitude estimation is then designed with the new measurement noise model. Simulation results show that with the new measurement model the extended Kalman filter achieves better estimation performance using large field-of-view sensor observations.

  1. The Twist Limit for Bipolar Active Regions

    NASA Technical Reports Server (NTRS)

    Moore, Ron; Falconer, David; Gary, Allen

    2008-01-01

    We present new evidence that further supports the standard idea that active regions are emerged magnetic-flux-rope omega loops. When the axial magnetic twist of a cylindrical flux rope exceeds a critical amount, the flux rope becomes unstable to kinking, and the excess axial twist is converted into writhe twist by the kinking. This suggests that, if active regions are emerged omega loops, then (1) no active region should have magnetic twist much above the limit set by kinking, (2) active regions having twist near the limit should often arise from kinked omega loops, and (3) since active regions having large delta sunspots are outstandingly twisted, these arise from kinked omega loops and should have twist near the limit for kinking. From each of 36 vector magnetograms of bipolar active regions, we have measured (1) the total flux of the vertical field above 100 G, (2) the area covered by this flux, and (3) the net electric current that arches over the polarity inversion line. These three quantities yield an estimate of the axial magnetic twist in a simple model cylindrical flux rope that corresponds to the top of the active region s hypothetical omega loop prior to emergence. In all 36 cases, the estimated twist is below the critical limit for kinking. The 11 most twisted active regions (1) have estimated twist within a factor of approx.3 of the limit, and (2) include all of our 6 active regions having large delta sunspots. Thus, our observed twist limit for bipolar active regions is in good accord with active regions being emerged omega loops.

  2. Comparison of scoliosis measurements based on three-dimensional vertebra vectors and conventional two-dimensional measurements: advantages in evaluation of prognosis and surgical results.

    PubMed

    Illés, Tamás; Somoskeöy, Szabolcs

    2013-06-01

    A new concept of vertebra vectors based on spinal three-dimensional (3D) reconstructions of images from the EOS system, a new low-dose X-ray imaging device, was recently proposed to facilitate interpretation of EOS 3D data, especially with regard to horizontal plane images. This retrospective study was aimed at the evaluation of the spinal layout visualized by EOS 3D and vertebra vectors before and after surgical correction, the comparison of scoliotic spine measurement values based on 3D vertebra vectors with measurements using conventional two-dimensional (2D) methods, and an evaluation of horizontal plane vector parameters for their relationship with the magnitude of scoliotic deformity. 95 patients with adolescent idiopathic scoliosis operated according to the Cotrel-Dubousset principle were subjected to EOS X-ray examinations pre- and postoperatively, followed by 3D reconstructions and generation of vertebra vectors in a calibrated coordinate system to calculate vector coordinates and parameters, as published earlier. Differences in values of conventional 2D Cobb methods and methods based on vertebra vectors were evaluated by means comparison T test and relationship of corresponding parameters was analysed by bivariate correlation. Relationship of horizontal plane vector parameters with the magnitude of scoliotic deformities and results of surgical correction were analysed by Pearson correlation and linear regression. In comparison to manual 2D methods, a very close relationship was detectable in vertebra vector-based curvature data for coronal curves (preop r 0.950, postop r 0.935) and thoracic kyphosis (preop r 0.893, postop r 0.896), while the found small difference in L1-L5 lordosis values (preop r 0.763, postop r 0.809) was shown to be strongly related to the magnitude of corresponding L5 wedge. The correlation analysis results revealed strong correlation between the magnitude of scoliosis and the lateral translation of apical vertebra in horizontal plane. The horizontal plane coordinates of the terminal and initial points of apical vertebra vectors represent this (r 0.701; r 0.667). Less strong correlation was detected in the axial rotation of apical vertebras and the magnitudes of the frontal curves (r 0.459). Vertebra vectors provide a key opportunity to visualize spinal deformities in all three planes simultaneously. Measurement methods based on vertebral vectors proved to be just as accurate and reliable as conventional measurement methods for coronal and sagittal plane parameters. In addition, the horizontal plane display of the curves can be studied using the same vertebra vectors. Based on the vertebra vectors data, during the surgical treatment of spinal deformities, the diminution of the lateral translation of the vertebras seems to be more important in the results of the surgical correction than the correction of the axial rotation.

  3. Search for dark matter in events with energetic, hadronically decaying top quarks and missing transverse momentum at √{s}=13 TeV

    NASA Astrophysics Data System (ADS)

    Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Ambrogi, F.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Erö, J.; Flechl, M.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Grossmann, J.; Hrubec, J.; Jeitler, M.; König, A.; Krammer, N.; Krätschmer, I.; Liko, D.; Madlener, T.; Mikulec, I.; Pree, E.; Rad, N.; Rohringer, H.; Schieck, J.; Schöfbeck, R.; Spanring, M.; Spitzbart, D.; Waltenberger, W.; Wittmann, J.; Wulz, C.-E.; Zarucki, M.; Chekhovsky, V.; Mossolov, V.; Suarez Gonzalez, J.; De Wolf, E. A.; Di Croce, D.; Janssen, X.; Lauwers, J.; Van De Klundert, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Abu Zeid, S.; Blekman, F.; D'Hondt, J.; De Bruyn, I.; De Clercq, J.; Deroover, K.; Flouris, G.; Lontkovskyi, D.; Lowette, S.; Marchesini, I.; Moortgat, S.; Moreels, L.; Python, Q.; Skovpen, K.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Parijs, I.; Beghin, D.; Brun, H.; Clerbaux, B.; De Lentdecker, G.; Delannoy, H.; Dorney, B.; Fasanella, G.; Favart, L.; Goldouzian, R.; Grebenyuk, A.; Karapostoli, G.; Lenzi, T.; Luetic, J.; Maerschalk, T.; Marinov, A.; Seva, T.; Starling, E.; Vander Velde, C.; Vanlaer, P.; Vannerom, D.; Yonamine, R.; Zenoni, F.; Zhang, F.; Cimmino, A.; Cornelis, T.; Dobur, D.; Fagot, A.; Gul, M.; Khvastunov, I.; Poyraz, D.; Roskas, C.; Salva, S.; Tytgat, M.; Verbeke, W.; Zaganidis, N.; Bakhshiansohi, H.; Bondu, O.; Brochet, S.; Bruno, G.; Caputo, C.; Caudron, A.; David, P.; De Visscher, S.; Delaere, C.; Delcourt, M.; Francois, B.; Giammanco, A.; Komm, M.; Krintiras, G.; Lemaitre, V.; Magitteri, A.; Mertens, A.; Musich, M.; Piotrzkowski, K.; Quertenmont, L.; Saggio, A.; Vidal Marono, M.; Wertz, S.; Zobec, J.; Beliy, N.; Aldá Júnior, W. L.; Alves, F. L.; Alves, G. A.; Brito, L.; Correa Martins Junior, M.; Hensel, C.; Moraes, A.; Pol, M. E.; Rebello Teles, P.; Belchior Batista Das Chagas, E.; Carvalho, W.; Chinellato, J.; Coelho, E.; Da Costa, E. M.; Da Silveira, G. G.; De Jesus Damiao, D.; Fonseca De Souza, S.; Huertas Guativa, L. M.; Malbouisson, H.; Melo De Almeida, M.; Mora Herrera, C.; Mundim, L.; Nogima, H.; Sanchez Rosas, L. J.; Santoro, A.; Sznajder, A.; Thiel, M.; Tonelli Manganote, E. J.; Torres Da Silva De Araujo, F.; Vilela Pereira, A.; Ahuja, S.; Bernardes, C. A.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Mercadante, P. G.; Novaes, S. F.; Padula, Sandra S.; Romero Abad, D.; Ruiz Vargas, J. C.; Aleksandrov, A.; Hadjiiska, R.; Iaydjiev, P.; Misheva, M.; Rodozov, M.; Shopova, M.; Sultanov, G.; Dimitrov, A.; Glushkov, I.; Litov, L.; Pavlov, B.; Petkov, P.; Fang, W.; Gao, X.; Yuan, L.; Ahmad, M.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Chen, Y.; Jiang, C. H.; Leggat, D.; Liao, H.; Liu, Z.; Romeo, F.; Shaheen, S. M.; Spiezia, A.; Tao, J.; Wang, C.; Wang, Z.; Yazgan, E.; Zhang, H.; Zhang, S.; Zhao, J.; Ban, Y.; Chen, G.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.; Avila, C.; Cabrera, A.; Carrillo Montoya, C. A.; Chaparro Sierra, L. F.; Florez, C.; González Hernández, C. F.; Ruiz Alvarez, J. D.; Segura Delgado, M. A.; Courbon, B.; Godinovic, N.; Lelas, D.; Puljak, I.; Ribeiro Cipriano, P. M.; Sculac, T.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Ferencek, D.; Kadija, K.; Mesic, B.; Starodumov, A.; Susa, T.; Ather, M. W.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.; Finger, M.; Finger, M.; Carrera Jarrin, E.; El-khateeb, E.; Elgammal, S.; Mohamed, A.; Dewanjee, R. K.; Kadastik, M.; Perrini, L.; Raidal, M.; Tiko, A.; Veelken, C.; Eerola, P.; Kirschenmann, H.; Pekkanen, J.; Voutilainen, M.; Havukainen, J.; Heikkilä, J. K.; Järvinen, T.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Laurila, S.; Lehti, S.; Lindén, T.; Luukka, P.; Siikonen, H.; Tuominen, E.; Tuominiemi, J.; Talvitie, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Faure, J. L.; Ferri, F.; Ganjour, S.; Ghosh, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Kucher, I.; Leloup, C.; Locci, E.; Machet, M.; Malcles, J.; Negro, G.; Rander, J.; Rosowsky, A.; Sahin, M. Ö.; Titov, M.; Abdulsalam, A.; Amendola, C.; Antropov, I.; Baffioni, S.; Beaudette, F.; Busson, P.; Cadamuro, L.; Charlot, C.; Granier de Cassagnac, R.; Jo, M.; Lisniak, S.; Lobanov, A.; Martin Blanco, J.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Pigard, P.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Stahl Leiton, A. G.; Strebler, T.; Yilmaz, Y.; Zabi, A.; Zghiche, A.; Agram, J.-L.; Andrea, J.; Bloch, D.; Brom, J.-M.; Buttignol, M.; Chabert, E. C.; Chanon, N.; Collard, C.; Conte, E.; Coubez, X.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Jansová, M.; Le Bihan, A.-C.; Tonon, N.; Van Hove, P.; Gadrat, S.; Beauceron, S.; Bernet, C.; Boudoul, G.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fay, J.; Finco, L.; Gascon, S.; Gouzevitch, M.; Grenier, G.; Ille, B.; Lagarde, F.; Laktineh, I. B.; Lethuillier, M.; Mirabito, L.; Pequegnot, A. L.; Perries, S.; Popov, A.; Sordini, V.; Vander Donckt, M.; Viret, S.; Khvedelidze, A.; Tsamalaidze, Z.; Autermann, C.; Feld, L.; Kiesel, M. K.; Klein, K.; Lipinski, M.; Preuten, M.; Schomakers, C.; Schulz, J.; Zhukov, V.; Albert, A.; Dietz-Laursonn, E.; Duchardt, D.; Endres, M.; Erdmann, M.; Erdweg, S.; Esch, T.; Fischer, R.; Güth, A.; Hamer, M.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Knutzen, S.; Merschmeyer, M.; Meyer, A.; Millet, P.; Mukherjee, S.; Pook, T.; Radziej, M.; Reithler, H.; Rieger, M.; Scheuch, F.; Teyssier, D.; Thüer, S.; Flügge, G.; Kargoll, B.; Kress, T.; Künsken, A.; Müller, T.; Nehrkorn, A.; Nowack, A.; Pistone, C.; Pooth, O.; Stahl, A.; Aldaya Martin, M.; Arndt, T.; Asawatangtrakuldee, C.; Beernaert, K.; Behnke, O.; Behrens, U.; Bermúdez Martínez, A.; Bin Anuar, A. A.; Borras, K.; Botta, V.; Campbell, A.; Connor, P.; Contreras-Campana, C.; Costanza, F.; Diez Pardos, C.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Eren, E.; Gallo, E.; Garay Garcia, J.; Geiser, A.; Gizhko, A.; Grados Luyando, J. M.; Grohsjean, A.; Gunnellini, P.; Guthoff, M.; Harb, A.; Hauk, J.; Hempel, M.; Jung, H.; Kalogeropoulos, A.; Kasemann, M.; Keaveney, J.; Kleinwort, C.; Korol, I.; Krücker, D.; Lange, W.; Lelek, A.; Lenz, T.; Leonard, J.; Lipka, K.; Lohmann, W.; Mankel, R.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mittag, G.; Mnich, J.; Mussgiller, A.; Ntomari, E.; Pitzl, D.; Raspereza, A.; Savitskyi, M.; Saxena, P.; Shevchenko, R.; Spannagel, S.; Stefaniuk, N.; Van Onsem, G. P.; Walsh, R.; Wen, Y.; Wichmann, K.; Wissing, C.; Zenaiev, O.; Aggleton, R.; Bein, S.; Blobel, V.; Centis Vignali, M.; Dreyer, T.; Garutti, E.; Gonzalez, D.; Haller, J.; Hinzmann, A.; Hoffmann, M.; Karavdina, A.; Klanner, R.; Kogler, R.; Kovalchuk, N.; Kurz, S.; Lapsien, T.; Marconi, D.; Meyer, M.; Niedziela, M.; Nowatschin, D.; Pantaleo, F.; Peiffer, T.; Perieanu, A.; Scharf, C.; Schleper, P.; Schmidt, A.; Schumann, S.; Schwandt, J.; Sonneveld, J.; Stadie, H.; Steinbrück, G.; Stober, F. M.; Stöver, M.; Tholen, H.; Troendle, D.; Usai, E.; Vanhoefer, A.; Vormwald, B.; Akbiyik, M.; Barth, C.; Baselga, M.; Baur, S.; Butz, E.; Caspart, R.; Chwalek, T.; Colombo, F.; De Boer, W.; Dierlamm, A.; Faltermann, N.; Freund, B.; Friese, R.; Giffels, M.; Harrendorf, M. A.; Hartmann, F.; Heindl, S. M.; Husemann, U.; Kassel, F.; Kudella, S.; Mildner, H.; Mozer, M. U.; Müller, Th.; Plagge, M.; Quast, G.; Rabbertz, K.; Schröder, M.; Shvetsov, I.; Sieber, G.; Simonis, H. J.; Ulrich, R.; Wayand, S.; Weber, M.; Weiler, T.; Williamson, S.; Wöhrmann, C.; Wolf, R.; Anagnostou, G.; Daskalakis, G.; Geralis, T.; Kyriakis, A.; Loukas, D.; Topsis-Giotis, I.; Karathanasis, G.; Kesisoglou, S.; Panagiotou, A.; Saoulidou, N.; Kousouris, K.; Evangelou, I.; Foudas, C.; Kokkas, P.; Mallios, S.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Strologas, J.; Triantis, F. A.; Csanad, M.; Filipovic, N.; Pasztor, G.; Surányi, O.; Veres, G. I.; Bencze, G.; Hajdu, C.; Horvath, D.; Hunyadi, Á.; Sikler, F.; Veszpremi, V.; Beni, N.; Czellar, S.; Karancsi, J.; Makovec, A.; Molnar, J.; Szillasi, Z.; Bartók, M.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Choudhury, S.; Komaragiri, J. R.; Bahinipati, S.; Bhowmik, S.; Mal, P.; Mandal, K.; Nayak, A.; Sahoo, D. K.; Sahoo, N.; Swain, S. K.; Bansal, S.; Beri, S. B.; Bhatnagar, V.; Chawla, R.; Dhingra, N.; Kalsi, A. K.; Kaur, A.; Kaur, M.; Kaur, S.; Kumar, R.; Kumari, P.; Mehta, A.; Singh, J. B.; Walia, G.; Kumar, Ashok; Shah, Aashaq; Bhardwaj, A.; Chauhan, S.; Choudhary, B. C.; Garg, R. B.; Keshri, S.; Kumar, A.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Sharma, R.; Bhardwaj, R.; Bhattacharya, R.; Bhattacharya, S.; Bhawandeep, U.; Dey, S.; Dutt, S.; Dutta, S.; Ghosh, S.; Majumdar, N.; Modak, A.; Mondal, K.; Mukhopadhyay, S.; Nandan, S.; Purohit, A.; Roy, A.; Roy Chowdhury, S.; Sarkar, S.; Sharan, M.; Thakur, S.; Behera, P. K.; Chudasama, R.; Dutta, D.; Jha, V.; Kumar, V.; Mohanty, A. K.; Netrakanti, P. K.; Pant, L. M.; Shukla, P.; Topkar, A.; Aziz, T.; Dugad, S.; Mahakud, B.; Mitra, S.; Mohanty, G. B.; Sur, N.; Sutar, B.; Banerjee, S.; Bhattacharya, S.; Chatterjee, S.; Das, P.; Guchait, M.; Jain, Sa.; Kumar, S.; Maity, M.; Majumder, G.; Mazumdar, K.; Sarkar, T.; Wickramage, N.; Chauhan, S.; Dube, S.; Hegde, V.; Kapoor, A.; Kothekar, K.; Pandey, S.; Rane, A.; Sharma, S.; Chenarani, S.; Eskandari Tadavani, E.; Etesami, S. M.; Khakzad, M.; Mohammadi Najafabadi, M.; Naseri, M.; Paktinat Mehdiabadi, S.; Rezaei Hosseinabadi, F.; Safarzadeh, B.; Zeinali, M.; Felcini, M.; Grunewald, M.; Abbrescia, M.; Calabria, C.; Colaleo, A.; Creanza, D.; Cristella, L.; De Filippis, N.; De Palma, M.; Errico, F.; Fiore, L.; Iaselli, G.; Lezki, S.; Maggi, G.; Maggi, M.; Miniello, G.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Ranieri, A.; Selvaggi, G.; Sharma, A.; Silvestris, L.; Venditti, R.; Verwilligen, P.; Abbiendi, G.; Battilana, C.; Bonacorsi, D.; Borgonovi, L.; Braibant-Giacomelli, S.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Chhibra, S. S.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Albergo, S.; Costa, S.; Di Mattia, A.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Chatterjee, K.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Lenzi, P.; Meschini, M.; Paoletti, S.; Russo, L.; Sguazzoni, G.; Strom, D.; Viliani, L.; Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.; Primavera, F.; Calvelli, V.; Ferro, F.; Robutti, E.; Tosi, S.; Benaglia, A.; Beschi, A.; Brianza, L.; Brivio, F.; Ciriolo, V.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Ghezzi, A.; Govoni, P.; Malberti, M.; Malvezzi, S.; Manzoni, R. A.; Menasce, D.; Moroni, L.; Paganoni, M.; Pauwels, K.; Pedrini, D.; Pigazzini, S.; Ragazzi, S.; Tabarelli de Fatis, T.; Buontempo, S.; Cavallo, N.; Di Guida, S.; Fabozzi, F.; Fienga, F.; Iorio, A. O. M.; Khan, W. A.; Lista, L.; Meola, S.; Paolucci, P.; Sciacca, C.; Thyssen, F.; Azzi, P.; Bacchetta, N.; Benato, L.; Bisello, D.; Boletti, A.; Carlin, R.; Carvalho Antunes De Oliveira, A.; Checchia, P.; Dall'Osso, M.; De Castro Manzano, P.; Dorigo, T.; Dosselli, U.; Gasparini, F.; Gasparini, U.; Gozzelino, A.; Lacaprara, S.; Lujan, P.; Margoni, M.; Meneguzzo, A. T.; Pozzobon, N.; Ronchese, P.; Rossin, R.; Simonetto, F.; Torassa, E.; Zanetti, M.; Zotto, P.; Braghieri, A.; Magnani, A.; Montagna, P.; Ratti, S. P.; Re, V.; Ressegotti, M.; Riccardi, C.; Salvini, P.; Vai, I.; Vitulo, P.; Alunni Solestizi, L.; Biasini, M.; Bilei, G. M.; Cecchi, C.; Ciangottini, D.; Fanò, L.; Lariccia, P.; Leonardi, R.; Manoni, E.; Mantovani, G.; Mariani, V.; Menichelli, M.; Rossi, A.; Santocchia, A.; Spiga, D.; Androsov, K.; Azzurri, P.; Bagliesi, G.; Boccali, T.; Borrello, L.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Fedi, G.; Giannini, L.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Manca, E.; Mandorli, G.; Messineo, A.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Spagnolo, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Barone, L.; Cavallari, F.; Cipriani, M.; Daci, N.; Del Re, D.; Di Marco, E.; Diemoz, M.; Gelli, S.; Longo, E.; Margaroli, F.; Marzocchi, B.; Meridiani, P.; Organtini, G.; Paramatti, R.; Preiato, F.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bartosik, N.; Bellan, R.; Biino, C.; Cartiglia, N.; Cenna, F.; Costa, M.; Covarelli, R.; Degano, A.; Demaria, N.; Kiani, B.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Monteil, E.; Monteno, M.; Obertino, M. M.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Pinna Angioni, G. L.; Ravera, F.; Romero, A.; Ruspa, M.; Sacchi, R.; Shchelina, K.; Sola, V.; Solano, A.; Staiano, A.; Traczyk, P.; Belforte, S.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Zanetti, A.; Kim, D. H.; Kim, G. N.; Kim, M. S.; Lee, J.; Lee, S.; Lee, S. W.; Moon, C. S.; Oh, Y. D.; Sekmen, S.; Son, D. C.; Yang, Y. C.; Lee, A.; Kim, H.; Moon, D. H.; Oh, G.; Brochero Cifuentes, J. A.; Goh, J.; Kim, T. J.; Cho, S.; Choi, S.; Go, Y.; Gyun, D.; Ha, S.; Hong, B.; Jo, Y.; Kim, Y.; Lee, K.; Lee, K. S.; Lee, S.; Lim, J.; Park, S. K.; Roh, Y.; Almond, J.; Kim, J.; Kim, J. S.; Lee, H.; Lee, K.; Nam, K.; Oh, S. B.; Radburn-Smith, B. C.; Seo, S. h.; Yang, U. K.; Yoo, H. D.; Yu, G. B.; Choi, M.; Kim, H.; Kim, J. H.; Lee, J. S. H.; Park, I. C.; Choi, Y.; Hwang, C.; Lee, J.; Yu, I.; Dudenas, V.; Juodagalvis, A.; Vaitkus, J.; Ahmed, I.; Ibrahim, Z. A.; Md Ali, M. A. B.; Mohamad Idris, F.; Wan Abdullah, W. A. T.; Yusli, M. N.; Zolkapli, Z.; Reyes-Almanza, R.; Ramirez-Sanchez, G.; Duran-Osuna, M. C.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-De La Cruz, I.; Rabadan-Trejo, R. I.; Lopez-Fernandez, R.; Mejia Guisao, J.; Sanchez-Hernandez, A.; Carrillo Moreno, S.; Oropeza Barrera, C.; Vazquez Valencia, F.; Pedraza, I.; Salazar Ibarguen, H. A.; Uribe Estrada, C.; Morelos Pineda, A.; Krofcheck, D.; Butler, P. H.; Ahmad, A.; Ahmad, M.; Hassan, Q.; Hoorani, H. R.; Saddique, A.; Shah, M. A.; Shoaib, M.; Waqas, M.; Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Górski, M.; Kazana, M.; Nawrocki, K.; Szleper, M.; Zalewski, P.; Bunkowski, K.; Byszuk, A.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Pyskir, A.; Walczak, M.; Bargassa, P.; Beirão Da Cruz E Silva, C.; Di Francesco, A.; Faccioli, P.; Galinhas, B.; Gallinaro, M.; Hollar, J.; Leonardo, N.; Lloret Iglesias, L.; Nemallapudi, M. V.; Seixas, J.; Strong, G.; Toldaiev, O.; Vadruccio, D.; Varela, J.; Alexakhin, V.; Bunin, P.; Gavrilenko, M.; Golunov, A.; Golutvin, I.; Gorbounov, N.; Gorbunov, I.; Karjavin, V.; Lanev, A.; Malakhov, A.; Matveev, V.; Palichik, V.; Perelygin, V.; Savina, M.; Shmatov, S.; Shulha, S.; Smirnov, V.; Zarubin, A.; Ivanov, Y.; Kim, V.; Kuznetsova, E.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Karneyeu, A.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Pozdnyakov, I.; Safronov, G.; Spiridonov, A.; Stepennov, A.; Toms, M.; Vlasov, E.; Zhokin, A.; Aushev, T.; Bylinkin, A.; Chistov, R.; Danilov, M.; Parygin, P.; Philippov, D.; Polikarpov, S.; Tarkovskii, E.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Terkulov, A.; Baskakov, A.; Belyaev, A.; Boos, E.; Bunichev, V.; Dubinin, M.; Dudko, L.; Ershov, A.; Klyukhin, V.; Korneeva, N.; Lokhtin, I.; Miagkov, I.; Obraztsov, S.; Perfilov, M.; Savrin, V.; Volkov, P.; Blinov, V.; Shtol, D.; Skovpen, Y.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Elumakhov, D.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Mandrik, P.; Petrov, V.; Ryutin, R.; Sobol, A.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Cirkovic, P.; Devetak, D.; Dordevic, M.; Milosevic, J.; Rekovic, V.; Alcaraz Maestre, J.; Barrio Luna, M.; Cerrada, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Escalante Del Valle, A.; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Flix, J.; Fouz, M. C.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Moran, D.; Yzquierdo, A. Pérez-Calero; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Soares, M. S.; Álvarez Fernández, A.; Albajar, C.; de Trocóniz, J. F.; Missiroli, M.; Cuevas, J.; Erice, C.; Fernandez Menendez, J.; Gonzalez Caballero, I.; González Fernández, J. R.; Palencia Cortezon, E.; Sanchez Cruz, S.; Vischia, P.; Vizan Garcia, J. M.; Cabrillo, I. J.; Calderon, A.; Chazin Quero, B.; Curras, E.; Duarte Campderros, J.; Fernandez, M.; Garcia-Ferrero, J.; Gomez, G.; Lopez Virto, A.; Marco, J.; Martinez Rivero, C.; Martinez Ruiz del Arbol, P.; Matorras, F.; Piedra Gomez, J.; Rodrigo, T.; Ruiz-Jimeno, A.; Scodellaro, L.; Trevisani, N.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Akgun, B.; Auffray, E.; Baillon, P.; Ball, A. H.; Barney, D.; Bendavid, J.; Bianco, M.; Bloch, P.; Bocci, A.; Botta, C.; Camporesi, T.; Castello, R.; Cepeda, M.; Cerminara, G.; Chapon, E.; Chen, Y.; d'Enterria, D.; Dabrowski, A.; Daponte, V.; David, A.; De Gruttola, M.; De Roeck, A.; Deelen, N.; Dobson, M.; du Pree, T.; Dünser, M.; Dupont, N.; Elliott-Peisert, A.; Everaerts, P.; Fallavollita, F.; Franzoni, G.; Fulcher, J.; Funk, W.; Gigi, D.; Gilbert, A.; Gill, K.; Glege, F.; Gulhan, D.; Harris, P.; Hegeman, J.; Innocente, V.; Jafari, A.; Janot, P.; Karacheban, O.; Kieseler, J.; Knünz, V.; Kornmayer, A.; Kortelainen, M. J.; Krammer, M.; Lange, C.; Lecoq, P.; Lourenço, C.; Lucchini, M. T.; Malgeri, L.; Mannelli, M.; Martelli, A.; Meijers, F.; Merlin, J. A.; Mersi, S.; Meschi, E.; Milenovic, P.; Moortgat, F.; Mulders, M.; Neugebauer, H.; Ngadiuba, J.; Orfanelli, S.; Orsini, L.; Pape, L.; Perez, E.; Peruzzi, M.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Pierini, M.; Rabady, D.; Racz, A.; Reis, T.; Rolandi, G.; Rovere, M.; Sakulin, H.; Schäfer, C.; Schwick, C.; Seidel, M.; Selvaggi, M.; Sharma, A.; Silva, P.; Sphicas, P.; Stakia, A.; Steggemann, J.; Stoye, M.; Tosi, M.; Treille, D.; Triossi, A.; Tsirou, A.; Veckalns, V.; Verweij, M.; Zeuner, W. D.; Bertl, W.; Caminada, L.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Rohe, T.; Wiederkehr, S. A.; Backhaus, M.; Bäni, L.; Berger, P.; Bianchini, L.; Casal, B.; Dissertori, G.; Dittmar, M.; Donegà, M.; Dorfer, C.; Grab, C.; Heidegger, C.; Hits, D.; Hoss, J.; Kasieczka, G.; Klijnsma, T.; Lustermann, W.; Mangano, B.; Marionneau, M.; Meinhard, M. T.; Meister, D.; Micheli, F.; Musella, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pata, J.; Pauss, F.; Perrin, G.; Perrozzi, L.; Quittnat, M.; Reichmann, M.; Sanz Becerra, D. A.; Schönenberger, M.; Shchutska, L.; Tavolaro, V. R.; Theofilatos, K.; Vesterbacka Olsson, M. L.; Wallny, R.; Zhu, D. H.; Aarrestad, T. K.; Amsler, C.; Canelli, M. F.; De Cosa, A.; Del Burgo, R.; Donato, S.; Galloni, C.; Hreus, T.; Kilminster, B.; Pinna, D.; Rauco, G.; Robmann, P.; Salerno, D.; Schweiger, K.; Seitz, C.; Takahashi, Y.; Zucchetta, A.; Candelise, V.; Doan, T. H.; Jain, Sh.; Khurana, R.; Kuo, C. M.; Lin, W.; Pozdnyakov, A.; Yu, S. S.; Kumar, Arun; Chang, P.; Chao, Y.; Chen, K. F.; Chen, P. H.; Fiori, F.; Hou, W.-S.; Hsiung, Y.; Liu, Y. F.; Lu, R.-S.; Paganis, E.; Psallidas, A.; Steen, A.; Tsai, J. f.; Asavapibhop, B.; Kovitanggoon, K.; Singh, G.; Srimanobhas, N.; Bat, A.; Boran, F.; Cerci, S.; Damarseckin, S.; Demiroglu, Z. S.; Dozen, C.; Dumanoglu, I.; Girgis, S.; Gokbulut, G.; Guler, Y.; Hos, I.; Kangal, E. E.; Kara, O.; Kayis Topaksu, A.; Kiminsu, U.; Oglakci, M.; Onengut, G.; Ozdemir, K.; Sunar Cerci, D.; Tali, B.; Tok, U. G.; Turkcapar, S.; Zorbakir, I. S.; Zorbilmez, C.; Bilin, B.; Karapinar, G.; Ocalan, K.; Yalvac, M.; Zeyrek, M.; Gülmez, E.; Kaya, M.; Kaya, O.; Tekten, S.; Yetkin, E. A.; Agaras, M. N.; Atay, S.; Cakir, A.; Cankocak, K.; Grynyov, B.; Levchuk, L.; Ball, F.; Beck, L.; Brooke, J. J.; Burns, D.; Clement, E.; Cussans, D.; Davignon, O.; Flacher, H.; Goldstein, J.; Heath, G. P.; Heath, H. F.; Kreczko, L.; Newbold, D. M.; Paramesvaran, S.; Sakuma, T.; Seif El Nasr-storey, S.; Smith, D.; Smith, V. J.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Calligaris, L.; Cieri, D.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Williams, T.; Auzinger, G.; Bainbridge, R.; Borg, J.; Breeze, S.; Buchmuller, O.; Bundock, A.; Casasso, S.; Citron, M.; Colling, D.; Corpe, L.; Dauncey, P.; Davies, G.; De Wit, A.; Della Negra, M.; Di Maria, R.; Elwood, A.; Haddad, Y.; Hall, G.; Iles, G.; James, T.; Lane, R.; Laner, C.; Lyons, L.; Magnan, A.-M.; Malik, S.; Mastrolorenzo, L.; Matsushita, T.; Nash, J.; Nikitenko, A.; Palladino, V.; Pesaresi, M.; Raymond, D. M.; Richards, A.; Rose, A.; Scott, E.; Seez, C.; Shtipliyski, A.; Summers, S.; Tapper, A.; Uchida, K.; Vazquez Acosta, M.; Virdee, T.; Wardle, N.; Winterbottom, D.; Wright, J.; Zenz, S. C.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.; Zahid, S.; Borzou, A.; Call, K.; Dittmann, J.; Hatakeyama, K.; Liu, H.; Pastika, N.; Smith, C.; Bartek, R.; Dominguez, A.; Buccilli, A.; Cooper, S. I.; Henderson, C.; Rumerio, P.; West, C.; Arcaro, D.; Avetisyan, A.; Bose, T.; Gastler, D.; Rankin, D.; Richardson, C.; Rohlf, J.; Sulak, L.; Zou, D.; Benelli, G.; Cutts, D.; Garabedian, A.; Hadley, M.; Hakala, J.; Heintz, U.; Hogan, J. M.; Kwok, K. H. M.; Laird, E.; Landsberg, G.; Lee, J.; Mao, Z.; Narain, M.; Pazzini, J.; Piperov, S.; Sagir, S.; Syarif, R.; Yu, D.; Band, R.; Brainerd, C.; Breedon, R.; Burns, D.; Calderon De La Barca Sanchez, M.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Flores, C.; Funk, G.; Gardner, M.; Ko, W.; Lander, R.; Mclean, C.; Mulhearn, M.; Pellett, D.; Pilot, J.; Shalhout, S.; Shi, M.; Smith, J.; Stolp, D.; Tos, K.; Tripathi, M.; Wang, Z.; Bachtis, M.; Bravo, C.; Cousins, R.; Dasgupta, A.; Florent, A.; Hauser, J.; Ignatenko, M.; Mccoll, N.; Regnard, S.; Saltzberg, D.; Schnaible, C.; Valuev, V.; Bouvier, E.; Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Ghiasi Shirazi, S. M. A.; Hanson, G.; Heilman, J.; Kennedy, E.; Lacroix, F.; Long, O. R.; Olmedo Negrete, M.; Paneva, M. I.; Si, W.; Wang, L.; Wei, H.; Wimpenny, S.; Yates, B. R.; Branson, J. G.; Cittolin, S.; Derdzinski, M.; Gerosa, R.; Gilbert, D.; Hashemi, B.; Holzner, A.; Klein, D.; Kole, G.; Krutelyov, V.; Letts, J.; Macneill, I.; Masciovecchio, M.; Olivito, D.; Padhi, S.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Tadel, M.; Vartak, A.; Wasserbaech, S.; Wood, J.; Würthwein, F.; Yagil, A.; Zevi Della Porta, G.; Amin, N.; Bhandari, R.; Bradmiller-Feld, J.; Campagnari, C.; Dishaw, A.; Dutta, V.; Franco Sevilla, M.; George, C.; Golf, F.; Gouskos, L.; Gran, J.; Heller, R.; Incandela, J.; Ovcharova, A.; Qu, H.; Richman, J.; Stuart, D.; Suarez, I.; Yoo, J.; Anderson, D.; Bornheim, A.; Lawhorn, J. M.; Newman, H. B.; Nguyen, T.; Pena, C.; Spiropulu, M.; Vlimant, J. R.; Xie, S.; Zhang, Z.; Zhu, R. Y.; Andrews, M. B.; Ferguson, T.; Mudholkar, T.; Paulini, M.; Russ, J.; Sun, M.; Vogel, H.; Vorobiev, I.; Weinberg, M.; Cumalat, J. P.; Ford, W. T.; Jensen, F.; Johnson, A.; Krohn, M.; Leontsinis, S.; Mulholland, T.; Stenson, K.; Wagner, S. R.; Alexander, J.; Chaves, J.; Chu, J.; Dittmer, S.; Mcdermott, K.; Mirman, N.; Patterson, J. R.; Quach, D.; Rinkevicius, A.; Ryd, A.; Skinnari, L.; Soffi, L.; Tan, S. M.; Tao, Z.; Thom, J.; Tucker, J.; Wittich, P.; Zientek, M.; Abdullin, S.; Albrow, M.; Alyari, M.; Apollinari, G.; Apresyan, A.; Apyan, A.; Banerjee, S.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bolla, G.; Burkett, K.; Butler, J. N.; Canepa, A.; Cerati, G. B.; Cheung, H. W. K.; Chlebana, F.; Cremonesi, M.; Duarte, J.; Elvira, V. D.; Freeman, J.; Gecse, Z.; Gottschalk, E.; Gray, L.; Green, D.; Grünendahl, S.; Gutsche, O.; Harris, R. M.; Hasegawa, S.; Hirschauer, J.; Hu, Z.; Jayatilaka, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Klima, B.; Kreis, B.; Lammel, S.; Lincoln, D.; Lipton, R.; Liu, M.; Liu, T.; Lopes De Sá, R.; Lykken, J.; Maeshima, K.; Magini, N.; Marraffino, J. M.; Mason, D.; McBride, P.; Merkel, P.; Mrenna, S.; Nahn, S.; O'Dell, V.; Pedro, K.; Prokofyev, O.; Rakness, G.; Ristori, L.; Schneider, B.; Sexton-Kennedy, E.; Soha, A.; Spalding, W. J.; Spiegel, L.; Stoynev, S.; Strait, J.; Strobbe, N.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vernieri, C.; Verzocchi, M.; Vidal, R.; Wang, M.; Weber, H. A.; Whitbeck, A.; Acosta, D.; Avery, P.; Bortignon, P.; Bourilkov, D.; Brinkerhoff, A.; Carnes, A.; Carver, M.; Curry, D.; Field, R. D.; Furic, I. K.; Gleyzer, S. V.; Joshi, B. M.; Konigsberg, J.; Korytov, A.; Kotov, K.; Ma, P.; Matchev, K.; Mei, H.; Mitselmakher, G.; Rank, D.; Shi, K.; Sperka, D.; Terentyev, N.; Thomas, L.; Wang, J.; Wang, S.; Yelton, J.; Joshi, Y. R.; Linn, S.; Markowitz, P.; Rodriguez, J. L.; Ackert, A.; Adams, T.; Askew, A.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Kolberg, T.; Martinez, G.; Perry, T.; Prosper, H.; Saha, A.; Santra, A.; Sharma, V.; Yohay, R.; Baarmand, M. M.; Bhopatkar, V.; Colafranceschi, S.; Hohlmann, M.; Noonan, D.; Roy, T.; Yumiceva, F.; Adams, M. R.; Apanasevich, L.; Berry, D.; Betts, R. R.; Cavanaugh, R.; Chen, X.; Evdokimov, O.; Gerber, C. E.; Hangal, D. A.; Hofman, D. J.; Jung, K.; Kamin, J.; Sandoval Gonzalez, I. D.; Tonjes, M. B.; Trauger, H.; Varelas, N.; Wang, H.; Wu, Z.; Zhang, J.; Bilki, B.; Clarida, W.; Dilsiz, K.; Durgut, S.; Gandrajula, R. P.; Haytmyradov, M.; Khristenko, V.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Snyder, C.; Tiras, E.; Wetzel, J.; Yi, K.; Blumenfeld, B.; Cocoros, A.; Eminizer, N.; Fehling, D.; Feng, L.; Gritsan, A. V.; Maksimovic, P.; Roskes, J.; Sarica, U.; Swartz, M.; Xiao, M.; You, C.; Al-bataineh, A.; Baringer, P.; Bean, A.; Boren, S.; Bowen, J.; Castle, J.; Khalil, S.; Kropivnitskaya, A.; Majumder, D.; Mcbrayer, W.; Murray, M.; Royon, C.; Sanders, S.; Schmitz, E.; Tapia Takaki, J. D.; Wang, Q.; Ivanov, A.; Kaadze, K.; Maravin, Y.; Mohammadi, A.; Saini, L. K.; Skhirtladze, N.; Toda, S.; Rebassoo, F.; Wright, D.; Anelli, C.; Baden, A.; Baron, O.; Belloni, A.; Calvert, B.; Eno, S. C.; Feng, Y.; Ferraioli, C.; Hadley, N. J.; Jabeen, S.; Jeng, G. Y.; Kellogg, R. G.; Kunkle, J.; Mignerey, A. C.; Ricci-Tam, F.; Shin, Y. H.; Skuja, A.; Tonwar, S. C.; Abercrombie, D.; Allen, B.; Azzolini, V.; Barbieri, R.; Baty, A.; Bi, R.; Brandt, S.; Busza, W.; Cali, I. A.; D'Alfonso, M.; Demiragli, Z.; Gomez Ceballos, G.; Goncharov, M.; Hsu, D.; Hu, M.; Iiyama, Y.; Innocenti, G. M.; Klute, M.; Kovalskyi, D.; Lai, Y. S.; Lee, Y.-J.; Levin, A.; Luckey, P. D.; Maier, B.; Marini, A. C.; Mcginn, C.; Mironov, C.; Narayanan, S.; Niu, X.; Paus, C.; Roland, C.; Roland, G.; Salfeld-Nebgen, J.; Stephans, G. S. F.; Tatar, K.; Velicanu, D.; Wang, J.; Wang, T. W.; Wyslouch, B.; Benvenuti, A. C.; Chatterjee, R. M.; Evans, A.; Hansen, P.; Hiltbrand, J.; Kalafut, S.; Kubota, Y.; Lesko, Z.; Mans, J.; Nourbakhsh, S.; Ruckstuhl, N.; Rusack, R.; Turkewitz, J.; Wadud, M. A.; Acosta, J. G.; Oliveros, S.; Avdeeva, E.; Bloom, K.; Claes, D. R.; Fangmeier, C.; Gonzalez Suarez, R.; Kamalieddin, R.; Kravchenko, I.; Monroy, J.; Siado, J. E.; Snow, G. R.; Stieger, B.; Dolen, J.; Godshalk, A.; Harrington, C.; Iashvili, I.; Nguyen, D.; Parker, A.; Rappoccio, S.; Roozbahani, B.; Alverson, G.; Barberis, E.; Hortiangtham, A.; Massironi, A.; Morse, D. M.; Orimoto, T.; Teixeira De Lima, R.; Trocino, D.; Wood, D.; Bhattacharya, S.; Charaf, O.; Hahn, K. A.; Mucia, N.; Odell, N.; Pollack, B.; Schmitt, M. H.; Sung, K.; Trovato, M.; Velasco, M.; Dev, N.; Hildreth, M.; Hurtado Anampa, K.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Loukas, N.; Marinelli, N.; Meng, F.; Mueller, C.; Musienko, Y.; Planer, M.; Reinsvold, A.; Ruchti, R.; Smith, G.; Taroni, S.; Wayne, M.; Wolf, M.; Woodard, A.; Alimena, J.; Antonelli, L.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Francis, B.; Hart, A.; Hill, C.; Ji, W.; Liu, B.; Luo, W.; Winer, B. L.; Wulsin, H. W.; Cooperstein, S.; Driga, O.; Elmer, P.; Hardenbrook, J.; Hebda, P.; Higginbotham, S.; Lange, D.; Luo, J.; Marlow, D.; Mei, K.; Ojalvo, I.; Olsen, J.; Palmer, C.; Piroué, P.; Stickland, D.; Tully, C.; Malik, S.; Norberg, S.; Barker, A.; Barnes, V. E.; Das, S.; Folgueras, S.; Gutay, L.; Jha, M. K.; Jones, M.; Jung, A. W.; Khatiwada, A.; Miller, D. H.; Neumeister, N.; Peng, C. C.; Qiu, H.; Schulte, J. F.; Sun, J.; Wang, F.; Xie, W.; Cheng, T.; Parashar, N.; Stupak, J.; Adair, A.; Chen, Z.; Ecklund, K. M.; Freed, S.; Geurts, F. J. M.; Guilbaud, M.; Kilpatrick, M.; Li, W.; Michlin, B.; Northup, M.; Padley, B. P.; Roberts, J.; Rorie, J.; Shi, W.; Tu, Z.; Zabel, J.; Zhang, A.; Bodek, A.; de Barbaro, P.; Demina, R.; Duh, Y. t.; Ferbel, T.; Galanti, M.; Garcia-Bellido, A.; Han, J.; Hindrichs, O.; Khukhunaishvili, A.; Lo, K. H.; Tan, P.; Verzetti, M.; Ciesielski, R.; Goulianos, K.; Mesropian, C.; Agapitos, A.; Chou, J. P.; Gershtein, Y.; Gómez Espinosa, T. A.; Halkiadakis, E.; Heindl, M.; Hughes, E.; Kaplan, S.; Kunnawalkam Elayavalli, R.; Kyriacou, S.; Lath, A.; Montalvo, R.; Nash, K.; Osherson, M.; Saka, H.; Salur, S.; Schnetzer, S.; Sheffield, D.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.; Delannoy, A. G.; Foerster, M.; Heideman, J.; Riley, G.; Rose, K.; Spanier, S.; Thapa, K.; Bouhali, O.; Castaneda Hernandez, A.; Celik, A.; Dalchenko, M.; De Mattia, M.; Delgado, A.; Dildick, S.; Eusebi, R.; Gilmore, J.; Huang, T.; Kamon, T.; Mueller, R.; Pakhotin, Y.; Patel, R.; Perloff, A.; Perniè, L.; Rathjens, D.; Safonov, A.; Tatarinov, A.; Ulmer, K. A.; Akchurin, N.; Damgov, J.; De Guio, F.; Dudero, P. R.; Faulkner, J.; Gurpinar, E.; Kunori, S.; Lamichhane, K.; Lee, S. W.; Libeiro, T.; Mengke, T.; Muthumuni, S.; Peltola, T.; Undleeb, S.; Volobouev, I.; Wang, Z.; Greene, S.; Gurrola, A.; Janjam, R.; Johns, W.; Maguire, C.; Melo, A.; Ni, H.; Padeken, K.; Sheldon, P.; Tuo, S.; Velkovska, J.; Xu, Q.; Arenton, M. W.; Barria, P.; Cox, B.; Hirosky, R.; Joyce, M.; Ledovskoy, A.; Li, H.; Neu, C.; Sinthuprasith, T.; Wang, Y.; Wolfe, E.; Xia, F.; Harr, R.; Karchin, P. E.; Poudyal, N.; Sturdy, J.; Thapa, P.; Zaleski, S.; Brodski, M.; Buchanan, J.; Caillol, C.; Dasu, S.; Dodd, L.; Duric, S.; Gomber, B.; Grothe, M.; Herndon, M.; Hervé, A.; Hussain, U.; Klabbers, P.; Lanaro, A.; Levine, A.; Long, K.; Loveless, R.; Polese, G.; Ruggles, T.; Savin, A.; Smith, N.; Smith, W. H.; Taylor, D.; Woods, N.

    2018-06-01

    A search for dark matter is conducted in events with large missing transverse momentum and a hadronically decaying, Lorentz-boosted top quark. This study is performed using proton-proton collisions at a center-of-mass energy of 13 TeV, in data recorded by the CMS detector in 2016 at the LHC, corresponding to an integrated luminosity of 36 fb-1. New substructure techniques, including the novel use of energy correlation functions, are utilized to identify the decay products of the top quark. With no significant deviations observed from predictions of the standard model, limits are placed on the production of new heavy bosons coupling to dark matter particles. For a scenario with purely vector-like or purely axial-vector-like flavor changing neutral currents, mediator masses between 0.20 and 1.75 TeV are excluded at 95% confidence level, given a sufficiently small dark matter mass. Scalar resonances decaying into a top quark and a dark matter fermion are excluded for masses below 3.4 TeV, assuming a dark matter mass of 100 GeV.

  4. Search for dark matter in events with energetic, hadronically decaying top quarks and missing transverse momentum at $$ \\sqrt{s}=13 $$ TeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sirunyan, Albert M; et al.

    A search for dark matter is conducted in events with large missing transverse momentum and a hadronically decaying, Lorentz-boosted top quark. This study is performed using proton-proton collisions at a center-of-mass energy of 13 TeV, in data recorded by the CMS detector in 2016 at the LHC, corresponding to an integrated luminosity of 36 fbmore » $$^{-1}$$. New substructure techniques, including the novel use of energy correlation functions, are utilized to identify the decay products of the top quark. With no significant deviations observed from predictions of the standard model, limits are placed on the production of new heavy bosons coupling to dark matter particles. For a scenario with purely vector-like or purely axial-vector-like flavor changing neutral currents, mediator masses between 0.20 and 1.75 TeV are excluded at 95% confidence level, given a sufficiently small dark matter mass. Scalar resonances decaying into a top quark and a dark matter fermion are excluded for masses below 3.4 TeV, assuming a dark matter mass of 100 GeV.« less

  5. Λc→N form factors from lattice QCD and phenomenology of Λc→n ℓ+νℓ and Λc→p μ+μ- decays

    NASA Astrophysics Data System (ADS)

    Meinel, Stefan

    2018-02-01

    A lattice QCD determination of the Λc→N vector, axial vector, and tensor form factors is reported. The calculation was performed with 2 +1 flavors of domain-wall fermions at lattice spacings of a ≈0.11 and 0.085 fm and pion masses in the range 230 MeV ≲mπ≲350 MeV . The form factors are extrapolated to the continuum limit and the physical pion mass using modified z expansions. The rates of the charged-current decays Λc→n e+νe and Λc→n μ+νμ are predicted to be (0.405 ±0.01 6stat±0.02 0syst) |Vc d|2 ps-1 and (0.396 ±0.01 6stat±0.02 0syst) |Vc d|2 ps-1 , respectively. The phenomenology of the rare charm decay Λc→p μ+μ- is also studied. The differential branching fraction, the fraction of longitudinally polarized dimuons, and the forward-backward asymmetry are calculated in the standard model and in an illustrative new-physics scenario.

  6. Load-Unload Response Ratio (LURR), Accelerating Moment/Energy Release (AM/ER) and State Vector Saltation as Precursors to Failure of Rock Specimens

    NASA Astrophysics Data System (ADS)

    Yin, Xiang-Chu; Yu, Huai-Zhong; Kukshenko, Victor; Xu, Zhao-Yong; Wu, Zhishen; Li, Min; Peng, Keyin; Elizarov, Surgey; Li, Qi

    2004-12-01

    In order to verify some precursors such as LURR (Load/Unload Response Ratio) and AER (Accelerating Energy Release) before large earthquakes or macro-fracture in heterogeneous brittle media, four acoustic emission experiments involving large rock specimens under tri-axial stress, have been conducted. The specimens were loaded in two ways: monotonous or cycling. The experimental results confirm that LURR and AER are precursors of macro-fracture in brittle media. A new measure called the state vector has been proposed to describe the damage evolution of loaded rock specimens.

  7. New mathematical definition and calculation of axial rotation of anatomical joints.

    PubMed

    Miyazaki, S; Ishida, A

    1991-08-01

    In the field of joint kinematics, clinical terms such as internal-external, or medical-lateral, rotations are commonly used to express the rotation of a body segment about its own long axis. However, these terms are not defined in a strict mathematical sense. In this paper, a new mathematical definition of axial rotation is proposed and methods to calculate it from the measured Euler angles are given. The definition and methods to calculate it from the measured Euler angles are given. The definition is based on the integration of the component of the angular velocity vector projected onto the long axis of the body segment. First, the absolute axial rotation of a body segment with respect to the stationary coordinate system is defined. This definition is then generalized to give the relative axial rotation of one body segment with respect to the other body segment where the two segments are moving in the three-dimensional space. The well-known Codman's paradox is cited as an example to make clear the difference between the definition so far proposed by other researchers and the new one.

  8. The current impact flux on Mars and its seasonal variation

    NASA Astrophysics Data System (ADS)

    JeongAhn, Youngmin; Malhotra, Renu

    2015-12-01

    We calculate the present-day impact flux on Mars and its variation over the martian year, using the current data on the orbital distribution of known Mars-crossing minor planets. We adapt the Öpik-Wetherill formulation for calculating collision probabilities, paying careful attention to the non-uniform distribution of the perihelion longitude and the argument of perihelion owed to secular planetary perturbations. We find that, at the current epoch, the Mars crossers have an axial distribution of the argument of perihelion, and the mean direction of their eccentricity vectors is nearly aligned with Mars' eccentricity vector. These previously neglected angular non-uniformities have the effect of depressing the mean annual impact flux by a factor of about 2 compared to the estimate based on a uniform random distribution of the angular elements of Mars-crossers; the amplitude of the seasonal variation of the impact flux is likewise depressed by a factor of about 4-5. We estimate that the flux of large impactors (of absolute magnitude H < 16) within ±30° of Mars' aphelion is about three times larger than when the planet is near perihelion. Extrapolation of our results to a model population of meter-size Mars-crossers shows that if these small impactors have a uniform distribution of their angular elements, then their aphelion-to-perihelion impact flux ratio would be 11-15, but if they track the orbital distribution of the large impactors, including their non-uniform angular elements, then this ratio would be about 3. Comparison of our results with the current dataset of fresh impact craters on Mars (detected with Mars-orbiting spacecraft) appears to rule out the uniform distribution of angular elements.

  9. Axial-Current Matrix Elements in Light Nuclei from Lattice QCD

    NASA Astrophysics Data System (ADS)

    Savage, M.; Beane, S.; Chang, E.; Davoudi, Z.; Detmold, W.; Orginos, K.; Shanahan, P.; Tiburzi, B.; Wagman, M.; Winter, F.; Nplqcd Collaboration

    I present results from the first lattice QCD calculations of axial-current matrix elements in light nuclei, performed by the NPLQCD collaboration. Precision calculations of these matrix elements, and the subsequent extraction of multi-nucleon axial-current operators, are essential in refining theoretical predictions of the proton-proton fusion cross section, neutrino-nucleus cross sections and $\\beta\\beta$-decay rates of nuclei. In addition, they are expected to shed light on the phenomenological quenching of $g_A$ that is required in nuclear many-body calculations.

  10. A sky polarization compass in lizards: the central role of the parietal eye.

    PubMed

    Beltrami, G; Bertolucci, C; Parretta, A; Petrucci, F; Foà, A

    2010-06-15

    The present study first examined whether ruin lizards Podarcis sicula are able to orientate using the e-vector direction of polarized light. Ruin lizards were trained and tested indoors, inside a hexagonal Morris water maze, positioned under an artificial light source producing plane polarized light with a single e-vector, which provided an axial cue. Lizards were subjected to axial training by positioning two identical goals in contact with the centre of two opposite side walls of the Morris water maze. Goals were invisible because they were placed just beneath the water surface, and water was rendered opaque. The results showed that the directional choices of lizards meeting learning criteria were bimodally distributed along the training axis, and that after 90 deg rotation of the e-vector direction of polarized light the lizards directional choices rotated correspondingly, producing a bimodal distribution which was perpendicular to the training axis. The present results confirm in ruin lizards results previously obtained in other lizard species showing that these reptiles can use the e-vector direction of polarized light in the form of a sky polarization compass. The second step of the study aimed at answering the still open question of whether functioning of a sky polarization compass would be mediated by the lizard parietal eye. To test this, ruin lizards meeting learning criteria were tested inside the Morris water maze under polarized light after their parietal eyes were painted black. Lizards with black-painted parietal eyes were completely disoriented. Thus, the present data show for the first time that the parietal eye plays a central role in mediating the functioning of a putative sky polarization compass of lizards.

  11. Using relative velocity vectors to reveal axial rotation about the medial and lateral compartment of the knee.

    PubMed

    Anderst, William J; Tashman, Scott

    2010-03-22

    A new technique is presented that utilizes relative velocity vectors between articulating surfaces to characterize internal/external rotation of the tibio-femoral joint during dynamic loading. Precise tibio-femoral motion was determined by tracking the movement of implanted tantalum beads in high-speed biplane X-rays. Three-dimensional, subject-specific CT reconstructions of the femur and tibia, consisting of triangular mesh elements, were positioned in each analyzed frame. The minimum distance between subchondral bone surfaces was recorded for each mesh element comprising each bone surface, and the relative velocity between these opposing closest surface elements was determined in each frame. Internal/external rotation was visualized by superimposing tangential relative velocity vectors onto bone surfaces at each instant. Rotation about medial and lateral compartments was quantified by calculating the angle between these tangential relative vectors within each compartment. Results acquired from 68 test sessions involving 23 dogs indicated a consistent pattern of sequential rotation about the lateral condyle (approximately 60 ms after paw strike) followed by rotation about the medial condyle (approximately 100 ms after paw strike). These results imply that axial knee rotation follows a repeatable pattern within and among subjects. This pattern involves rotation about both the lateral and medial compartments. The technique described can be easily applied to study human knee internal/external rotation during a variety of activities. This information may be useful to define normal and pathologic conditions, to confirm post-surgical restoration of knee mechanics, and to design more realistic prosthetic devices. Furthermore, analysis of joint arthrokinematics, such as those described, may identify changes in joint mechanics associated with joint degeneration. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  12. Axial-Current Matrix Elements in Light Nuclei from Lattice QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Savage, Martin; Shanahan, Phiala E.; Tiburzi, Brian C.

    2016-12-01

    I present results from the first lattice QCD calculations of axial-current matrix elements in light nuclei, performed by the NPLQCD collaboration. Precision calculations of these matrix elements, and the subsequent extraction of multi-nucleon axial-current operators, are essential in refining theoretical predictions of the proton-proton fusion cross section, neutrino-nucleus cross sections andmore » $$\\beta\\beta$$-decay rates of nuclei. In addition, they are expected to shed light on the phenomenological quenching of $$g_A$$ that is required in nuclear many-body calculations.« less

  13. Quasi Three-Body Decay of D Meson

    NASA Astrophysics Data System (ADS)

    Estabar, T.; Mehraban, H.

    2018-04-01

    The aim of this work is to provide a phenomenological analysis of the contribution of D 0 meson to {\\bar{K}}* {(892)}0{π }+{π }-({\\bar{K}}* {(892)}0\\to {π }+{K}-), K ‑ π + ω (ω → π + π ‑ π 0) and K ‑ π + ø (ø(1020) → K+ K ‑) quasi-three-body decays. The analysis of mentioned multi-body decays is such as to factorize into the three-body decay and several channels observed. Hadronic three-body decays receive both resonant and non-resonant contribution. Based on the factorization method, there are tree and emission annihilation diagrams for these decay modes. In the case of D 0 to vector pseudoscalar states appeared in factored terms, the matrix elements of the vector and axial vector currents between the D 0 and PV mesons can be computed by using D *+ pole. Considering the non-resonant and resonant amplitude in our computation, the theoretical values of the branching ratio are (9.78±0.46)×10‑3, (2.74±0.17)×10‑2, and (3.53±0.23)×10‑5, while the experimental results of them are (9.9±2.3)×10‑3, (2.7±0.5)×10‑2, and (4±1.7)×10‑5 respectively. Comparing computational analysis values with experimental values show that our results are in approximately agreement with them.

  14. Algorithms for Computing the Magnetic Field, Vector Potential, and Field Derivatives for a Thin Solenoid with Uniform Current Density

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walstrom, Peter Lowell

    A numerical algorithm for computing the field components B r and B z and their r and z derivatives with open boundaries in cylindrical coordinates for radially thin solenoids with uniform current density is described in this note. An algorithm for computing the vector potential A θ is also described. For the convenience of the reader, derivations of the final expressions from their defining integrals are given in detail, since their derivations are not all easily found in textbooks. Numerical calculations are based on evaluation of complete elliptic integrals using the Bulirsch algorithm cel. The (apparently) new feature of themore » algorithms described in this note applies to cases where the field point is outside of the bore of the solenoid and the field-point radius approaches the solenoid radius. Since the elliptic integrals of the third kind normally used in computing B z and A θ become infinite in this region of parameter space, fields for points with the axial coordinate z outside of the ends of the solenoid and near the solenoid radius are treated by use of elliptic integrals of the third kind of modified argument, derived by use of an addition theorem. Also, the algorithms also avoid the numerical difficulties the textbook solutions have for points near the axis arising from explicit factors of 1/r or 1/r 2 in the some of the expressions.« less

  15. Polarization Control with Plasmonic Antenna Tips: A Universal Approach to Optical Nanocrystallography and Vector-Field Imaging

    NASA Astrophysics Data System (ADS)

    Park, Kyoung-Duck; Raschke, Markus B.

    2018-05-01

    Controlling the propagation and polarization vectors in linear and nonlinear optical spectroscopy enables to probe the anisotropy of optical responses providing structural symmetry selective contrast in optical imaging. Here we present a novel tilted antenna-tip approach to control the optical vector-field by breaking the axial symmetry of the nano-probe in tip-enhanced near-field microscopy. This gives rise to a localized plasmonic antenna effect with significantly enhanced optical field vectors with control of both \\textit{in-plane} and \\textit{out-of-plane} components. We use the resulting vector-field specificity in the symmetry selective nonlinear optical response of second-harmonic generation (SHG) for a generalized approach to optical nano-crystallography and -imaging. In tip-enhanced SHG imaging of monolayer MoS$_2$ films and single-crystalline ferroelectric YMnO$_3$, we reveal nano-crystallographic details of domain boundaries and domain topology with enhanced sensitivity and nanoscale spatial resolution. The approach is applicable to any anisotropic linear and nonlinear optical response, and provides for optical nano-crystallographic imaging of molecular or quantum materials.

  16. Semi-analytical integration of the Earth's precession-nutation based on the GCRS coordinates of the CIP unit vector

    NASA Astrophysics Data System (ADS)

    Capitaine, N.; Folgueira, M.

    2012-12-01

    In a previous paper (Capitaine et al. 2006), referred here as Paper I, we demonstrated the possibility of integrating the Earth's rotational motion in terms of the coordinates (X, Y ) of the celestial intermediate pole (CIP) unit vector in the Geocentric celestial reference system (GCRS). Here, we report on the approach that has been followed for solving the equations in the case of an axially symmetric rigid Earth and the semi-analytical (X, Y ) solution obtained from the expression of the external torque acting on the Earth derived from the most complete semi-analytical solutions for the Earth, Moon and planets.

  17. Muon pair production at 52 GeV le radical s le 57 GeV using the AMY Detector at TRISTAN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bacala, A.M.

    1989-01-01

    The reaction e{sup +}e{sup {minus}} {yields} {mu}{sup +}{mu}{sup {minus}} has been observed by the AMY Detector at 52 GeV {le} {radical}s {le} 57 GeV at the TRISTAN storage ring in Tsukuba, Japan. With an integrated luminosity of 18.6 pb{sup {minus}1}, this presents a new test of the standard model of the electroweak interactions in this previously unexplored energy region. The forward-backward charge asymmetry and the cross-section calculated at the various energies show agreement with the standard model predictions. The products of the vector and the axial-vector coupling constants of the electron and muon extracted from these measurements are also consistentmore » with theory. The data were combined at the average energy of {radical}s = 55.2 GeV. The measured asymmetry and cross-section are -34.4 {+-} 7.7% and 29.7 {+-} 2.1 pb respectively. This is in agreement with the standard model prediction of -28.3% for the asymmetry and 29.5 pb for the cross-section. The product of the axial couplings, g{sup e}{sub A}g{sup {mu}}{sub A} = 0.29 {+-} 0.07, and the product of the vector couplings, g{sup e}{sub V}g{sup {mu}}{sub V} = 0.01 {+-} 0.06, agree with the standard model predictions of 0.25 and .002 for these respective constants.« less

  18. Black hole perturbation under a 2 +2 decomposition in the action

    NASA Astrophysics Data System (ADS)

    Ripley, Justin L.; Yagi, Kent

    2018-01-01

    Black hole perturbation theory is useful for studying the stability of black holes and calculating ringdown gravitational waves after the collision of two black holes. Most previous calculations were carried out at the level of the field equations instead of the action. In this work, we compute the Einstein-Hilbert action to quadratic order in linear metric perturbations about a spherically symmetric vacuum background in Regge-Wheeler gauge. Using a 2 +2 splitting of spacetime, we expand the metric perturbations into a sum over scalar, vector, and tensor spherical harmonics, and dimensionally reduce the action to two dimensions by integrating over the two sphere. We find that the axial perturbation degree of freedom is described by a two-dimensional massive vector action, and that the polar perturbation degree of freedom is described by a two-dimensional dilaton massive gravity action. Varying the dimensionally reduced actions, we rederive covariant and gauge-invariant master equations for the axial and polar degrees of freedom. Thus, the two-dimensional massive vector and massive gravity actions we derive by dimensionally reducing the perturbed Einstein-Hilbert action describe the dynamics of a well-studied physical system: the metric perturbations of a static black hole. The 2 +2 formalism we present can be generalized to m +n -dimensional spacetime splittings, which may be useful in more generic situations, such as expanding metric perturbations in higher dimensional gravity. We provide a self-contained presentation of m +n formalism for vacuum spacetime splittings.

  19. Prediction of shear critical behavior of high-strength reinforced concrete columns using finite element methods

    NASA Astrophysics Data System (ADS)

    Alrasyid, Harun; Safi, Fahrudin; Iranata, Data; Chen-Ou, Yu

    2017-11-01

    This research shows the prediction of shear behavior of High-Strength Reinforced Concrete Columns using Finite-Element Method. The experimental data of nine half scale high-strength reinforced concrete were selected. These columns using specified concrete compressive strength of 70 MPa, specified yield strength of longitudinal and transverse reinforcement of 685 and 785 MPa, respectively. The VecTor2 finite element software was used to simulate the shear critical behavior of these columns. The combination axial compression load and monotonic loading were applied at this prediction. It is demonstrated that VecTor2 finite element software provides accurate prediction of load-deflection up to peak at applied load, but provide similar behavior at post peak load. The shear strength prediction provide by VecTor 2 are slightly conservative compare to test result.

  20. Deduction of two-dimensional blood flow vector by dual angle diverging waves from a cardiac sector probe

    NASA Astrophysics Data System (ADS)

    Maeda, Moe; Nagaoka, Ryo; Ikeda, Hayato; Yaegashi, So; Saijo, Yoshifumi

    2018-07-01

    Color Doppler method is widely used for noninvasive diagnosis of heart diseases. However, the method can measure one-dimensional (1D) blood flow velocity only along an ultrasonic beam. In this study, diverging waves with two different angles were irradiated from a cardiac sector probe to estimate a two-dimensional (2D) blood flow vector from each velocity measured with the angles. The feasibility of the proposed method was evaluated in experiments using flow poly(vinyl alcohol) (PVA) gel phantoms. The 2D velocity vectors obtained with the proposed method were compared with the flow vectors obtained with the particle image velocimetry (PIV) method. Root mean square errors of the axial and lateral components were 11.3 and 29.5 mm/s, respectively. The proposed method was also applied to echo data from the left ventricle of the heart. The inflow from the mitral valve in diastole and the ejection flow concentrating in the aorta in systole were visualized.

  1. Observations of nonlinear and nonuniform kink dynamics in a laboratory flux rope

    NASA Astrophysics Data System (ADS)

    Sears, J.; Intrator, T.; Feng, Y.; Swan, H.; Gao, K.; Chapdelaine, L.

    2013-12-01

    A plasma column with axial magnetic field and current has helically twisted field lines. When current density in the column exceeds the kink instability threshold this magnetic configuration becomes unstable. Flux ropes in the solar wind and some solar prominences exhibit this topology, with their dynamics strongly and nonlinearly coupled to the ratio of axial current to magnetic field. The current-driven kink mode is ubiquitous in laboratory plasmas and well suited to laboratory study. In the Reconnection Scaling Experiment (RSX), nonlinear stability properties beyond the simple perturbative kink model are observed and readily diagnosed. We use a plasma gun to generate a single plasma column 0.50 m in length, in which we then drive an axial plasma current at the limit of marginal kink stability. With plasma current maintained at this threshold, we observe a deformation to a new dynamic equilibrium with finite gyration amplitude, where the currents and magnetic fields that support the force balance have surprising axial structure. Three dimensional measurements of magnetic field, plasma density, plasma potential, and ion flow velocity in the deformed plasma column show variation in the axial direction of the instability parameter and in the terms of the momentum equation. Likewise the pitch of the kink is measured to be nonuniform over the column length. In addition there is a return current antiparallel to the driven plasma current at distances up to 0.30 m from the gun that also modifies the force balance. These axial inhomogeneities, which are not considered in the model of an ideal kink, may be the terms that allow the deformed equilibrium of the RSX plasma to exist. Supported by DOE Office of Fusion Energy Sciences under LANS contract DE-AC52-06NA25369, NASA Geospace NNHIOA044I, Basic. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  2. Annular Internal-External-Expansion Rocket Nozzles for Large Booster Applications

    NASA Technical Reports Server (NTRS)

    Connors, James F.; Cubbison, Robert W.; Mitchell, Glenn A.

    1961-01-01

    For large-thrust booster applications, annular rocket nozzles employing both internal and external expansion are investigated. In these nozzles, free-stream air flows through the center as well as around the outside of the exiting jet. Flaps for deflecting the rocket exhaust are incorporated on the external-expansion surface for thrust-vector control. In order to define nozzle off-design performance, thrust vectoring effectiveness, and external stream effects, an experimental investigation was conducted on two annular nozzles with area ratios of 15 and 25 at Mach 0, 2, and 3 in the Lewis 10- by 10-foot wind tunnel. Air, pressurized to 600 pounds per square inch absolute, was used to simulate the exhaust flow. For a nozzle-pressure-ratio range of 40 to 1000, the ratio of actual to ideal thrust was essentially constant at 0.98 for both nozzles. Compared with conventional convergent-divergent configurations on hypothetical boost missions, the performance gains of the annular nozzle could yield significant orbital payload increases (possibly 8 to 17 percent). A single flap on the external-expansion surface of the area-ratio-25 annular nozzle produced a side force equal to 4 percent of the axial force with no measurable loss in axial thrust.

  3. Two-Dimensional Analysis of Conical Pulsed Inductive Plasma Thruster Performance

    NASA Technical Reports Server (NTRS)

    Hallock, A. K.; Polzin, K. A.; Emsellem, G. D.

    2011-01-01

    A model of the maximum achievable exhaust velocity of a conical theta pinch pulsed inductive thruster is presented. A semi-empirical formula relating coil inductance to both axial and radial current sheet location is developed and incorporated into a circuit model coupled to a momentum equation to evaluate the effect of coil geometry on the axial directed kinetic energy of the exhaust. Inductance measurements as a function of the axial and radial displacement of simulated current sheets from four coils of different geometries are t to a two-dimensional expression to allow the calculation of the Lorentz force at any relevant averaged current sheet location. This relation for two-dimensional inductance, along with an estimate of the maximum possible change in gas-dynamic pressure as the current sheet accelerates into downstream propellant, enables the expansion of a one-dimensional circuit model to two dimensions. The results of this two-dimensional model indicate that radial current sheet motion acts to rapidly decouple the current sheet from the driving coil, leading to losses in axial kinetic energy 10-50 times larger than estimations of the maximum available energy in the compressed propellant. The decreased available energy in the compressed propellant as compared to that of other inductive plasma propulsion concepts suggests that a recovery in the directed axial kinetic energy of the exhaust is unlikely, and that radial compression of the current sheet leads to a loss in exhaust velocity for the operating conditions considered here.

  4. Measurement of the β-asymmetry parameter of Cu67 in search for tensor-type currents in the weak interaction

    NASA Astrophysics Data System (ADS)

    Soti, G.; Wauters, F.; Breitenfeldt, M.; Finlay, P.; Herzog, P.; Knecht, A.; Köster, U.; Kraev, I. S.; Porobic, T.; Prashanth, P. N.; Towner, I. S.; Tramm, C.; Zákoucký, D.; Severijns, N.

    2014-09-01

    Background: Precision measurements at low energy search for physics beyond the standard model in a way complementary to searches for new particles at colliders. In the weak sector the most general β-decay Hamiltonian contains, besides vector and axial-vector terms, also scalar, tensor, and pseudoscalar terms. Current limits on the scalar and tensor coupling constants from neutron and nuclear β decay are on the level of several percent. Purpose: Extracting new information on tensor coupling constants by measuring the β-asymmetry parameter in the pure Gamow-Teller decay of Cu67, thereby testing the V-A structure of the weak interaction. Method: An iron sample foil into which the radioactive nuclei were implanted was cooled down to mK temperatures in a 3He-4He dilution refrigerator. An external magnetic field of 0.1 T, in combination with the internal hyperfine magnetic field, oriented the nuclei. The anisotropic β radiation was observed with planar high-purity germanium detectors operating at a temperature of about 10 K. An on-line measurement of the β asymmetry of Cu68 was performed as well for normalization purposes. Systematic effects were investigated using geant4 simulations. Results: The experimental value, Ã=0.587(14), is in agreement with the standard model value of 0.5991(2) and is interpreted in terms of physics beyond the standard model. The limits obtained on possible tensor-type charged currents in the weak interaction Hamiltonian are -0.045<(CT+CT')/CA<0.159 (90% C.L.). Conclusions: The obtained limits are comparable to limits from other correlation measurements in nuclear β decay and contribute to further constraining tensor coupling constants.

  5. Heavy and Light Quarks with Lattice Chiral Fermions

    NASA Astrophysics Data System (ADS)

    Liu, K. F.; Dong, S. J.

    The feasibility of using lattice chiral fermions which are free of O(a) errors for both the heavy and light quarks is examined. The fact that the effective quark propagators in these fermions have the same form as that in the continuum with the quark mass being only an additive parameter to a chirally symmetric anti-Hermitian Dirac operator is highlighted. This implies that there is no distinction between the heavy and light quarks and no mass dependent tuning of the action or operators as long as the discretization error O(m2a2) is negligible. Using the overlap fermion, we find that the O(m2a2) (and O(ma2)) errors in the dispersion relations of the pseudoscalar and vector mesons and the renormalization of the axial-vector current and scalar density are small. This suggests that the applicable range of ma may be extended to ~0.56 with only 5% error, which is a factor of ~2.4 larger than the corresponding range of the improved Wilson action. We show that the generalized Gell-Mann-Oakes-Renner relation with unequal masses can be utilized to determine the finite ma corrections in the renormalization of the matrix elements for the heavy-light decay constants and semileptonic decay constants of the B/D meson.

  6. First demonstration of simultaneous measurement of beam current, beam position, and beam tilt on induction linac using combined B-dot monitor

    NASA Astrophysics Data System (ADS)

    He, Xiaozhong; Pang, Jian; Chen, Nan; Li, Qin; Dai, Wenhua; Ma, Chaofan; Zhao, Liangchao; Gao, Feng; Dai, Zhiyong

    2017-06-01

    The authors previously reported that the axial B-dots can be used to directly measure the beam tilt and demonstrated that the axial B-dots are applicable to a coaxial calibration stand. In this study, a combined B-dot monitor composed of four axial B-dot loops and four azimuthal ones is tested for the simultaneous measurement of the time-varying beam current, beam offset, and beam tilt at the output of the injector of the DRAGON-I induction linac. In the experiments, the beam offset and beam tilt at the position of the monitor are proportionally adjusted using a pair of steering coils. Eight waveforms acquired from the B-dot monitor are analyzed to reconstruct the time-varying beam current, beam offset, and beam tilt. The original signals of both the azimuthal B-dot and the axial B-dot ports change significantly with respect to the current applied to the steering coils. The measured beam tilt is linearly dependent on the current applied to the steering coils and agrees well with the measured beam offset.

  7. Measurement of partonic nuclear effects in deep-inelastic neutrino scattering using MINERvA

    NASA Astrophysics Data System (ADS)

    Mousseau, J.; Wospakrik, M.; Aliaga, L.; Altinok, O.; Bellantoni, L.; Bercellie, A.; Betancourt, M.; Bodek, A.; Bravar, A.; Budd, H.; Cai, T.; Carneiro, M. F.; Christy, M. E.; Chvojka, J.; da Motta, H.; Devan, J.; Dytman, S. A.; Díaz, G. A.; Eberly, B.; Felix, J.; Fields, L.; Fine, R.; Gago, A. M.; Galindo, R.; Gallagher, H.; Ghosh, A.; Golan, T.; Gran, R.; Harris, D. A.; Higuera, A.; Hurtado, K.; Kiveni, M.; Kleykamp, J.; Kordosky, M.; Le, T.; Maher, E.; Manly, S.; Mann, W. A.; Marshall, C. M.; Martinez Caicedo, D. A.; McFarland, K. S.; McGivern, C. L.; McGowan, A. M.; Messerly, B.; Miller, J.; Mislivec, A.; Morfín, J. G.; Naples, D.; Nelson, J. K.; Norrick, A.; Nuruzzaman; Osta, J.; Paolone, V.; Park, J.; Patrick, C. E.; Perdue, G. N.; Rakotondravohitra, L.; Ramirez, M. A.; Ransome, R. D.; Ray, H.; Ren, L.; Rimal, D.; Rodrigues, P. A.; Ruterbories, D.; Schellman, H.; Schmitz, D. W.; Solano Salinas, C. J.; Tagg, N.; Tice, B. G.; Valencia, E.; Walton, T.; Wolcott, J.; Zavala, G.; Zhang, D.; Minerν A Collaboration

    2016-04-01

    The MINERvA Collaboration reports a novel study of neutrino-nucleus charged-current deep inelastic scattering (DIS) using the same neutrino beam incident on targets of polystyrene, graphite, iron, and lead. Results are presented as ratios of C, Fe, and Pb to CH. The ratios of total DIS cross sections as a function of neutrino energy and flux-integrated differential cross sections as a function of the Bjorken scaling variable x are presented in the neutrino-energy range of 5-50 GeV. Based on the predictions of charged-lepton scattering ratios, good agreement is found between the data and prediction at medium x and low neutrino energy. However, the ratios appear to be below predictions in the vicinity of the nuclear shadowing region, x <0.1 . This apparent deficit, reflected in the DIS cross-section ratio at high Eν, is consistent with previous MINERvA observations [B. Tice et al. (MINERvA Collaboration), Phys. Rev. Lett. 112, 231801 (2014).] and with the predicted onset of nuclear shadowing with the axial-vector current in neutrino scattering.

  8. Measurement of partonic nuclear effects in deep-inelastic neutrino scattering using MINERvA

    DOE PAGES

    Mousseau, J.

    2016-04-19

    Here, the MINERvA Collaboration reports a novel study of neutrino-nucleus charged-current deep inelastic scattering (DIS) using the same neutrino beam incident on targets of polystyrene, graphite, iron, and lead. Results are presented as ratios of C, Fe, and Pb to CH. The ratios of total DIS cross sections as a function of neutrino energy and flux-integrated differential cross sections as a function of the Bjorken scaling variable x are presented in the neutrino-energy range of 5–50 GeV. Based on the predictions of charged-lepton scattering ratios, good agreement is found between the data and prediction at medium x and low neutrino energy.more » However, the ratios appear to be below predictions in the vicinity of the nuclear shadowing region, x < 0.1. This apparent deficit, reflected in the DIS cross-section ratio at high Eν, is consistent with previous MINERvA observations [B. Tice (MINERvA Collaboration), Phys. Rev. Lett. 112, 231801 (2014).] and with the predicted onset of nuclear shadowing with the axial-vector current in neutrino scattering.« less

  9. Coherent production of single pions and ρ mesons in charged-current interactions of neutrinos and antineutrinos on neon nuclei at the Fermilab Tevatron

    NASA Astrophysics Data System (ADS)

    Willocq, S.; Aderholz, M.; Akbari, H.; Allport, P. P.; Badyal, S. K.; Ballagh, H. C.; Barth, M.; Bingham, H. H.; Brucker, E. B.; Burnstein, R. A.; Cence, R. J.; Chatterjee, T. K.; Clayton, E. F.; Corrigan, G.; de Prospo, D.; Devanand; de Wolf, E.; Faulkner, P. J.; Foeth, H.; Fretter, W. B.; Gupta, V. K.; Hanlon, J.; Harigel, G.; Harris, F. A.; Jacques, P.; Jain, V.; Jones, G. T.; Jones, M. D.; Kafka, T.; Kalelkar, M.; Kohli, J. M.; Koller, E. L.; Krawiec, R. J.; Lauko, M.; Lys, J. E.; Marage, P.; Milburn, R. H.; Mittra, I. S.; Mobayyen, M. M.; Moreels, J.; Morrison, D. R.; Myatt, G.; Nailor, P.; Naon, R.; Napier, A.; Passmore, D.; Peters, M. W.; Peterson, V. Z.; Plano, R.; Rao, N. K.; Rubin, H. A.; Sacton, J.; Sambyal, S. S.; Schmitz, N.; Schneps, J.; Singh, J. B.; Singh, S.; Smart, W.; Stamer, P.; Varvell, K. E.; Verluyten, L.; Wachsmuth, H.; Wainstein, S.; Yost, G. P.

    1993-04-01

    The coherent production of π and ρ mesons in νμ(ν¯μ)-neon charged-current interactions has been studied using the Fermilab 15-foot bubble chamber filled with a heavy Ne-H2 mix and exposed to the Teva- tron quadrupole triplet (anti)neutrino beam. The νμ (ν¯μ) beam had an average energy of 80 GeV (70 GeV). From a sample corresponding to approximately 28 000 charged-current interactions, net signals of (53+/-9) μ+/-π-/+ coherent events and (19+/-7) μ+/-π-/+π0 coherent events are extracted. For E>10 GeV, the coherent pion production cross section is determined to be (3.2+/-0.7)×10-38 cm2 per neon nucleus whereas the coherent ρ production cross section is (2.1+/-0.8)×10-38 cm2 per neon nucleus. These cross sections and the kinematical characteristics of the coherent events at ||t||<0.1 GeV2 are found to be in general agreement with the predictions of a model based on the hadron dominance and, in the pion case, on the partially conserved axial-vector current hypothesis. Also discussed is the coherent production of systems consisting of three pions.

  10. Nuclear effects in (anti)neutrino charge-current quasielastic scattering at MINER νA kinematics

    NASA Astrophysics Data System (ADS)

    Ivanov, M. V.; Antonov, A. N.; Megias, G. D.; González-Jiménez, R.; Barbaro, M. B.; Caballero, J. A.; Donnelly, T. W.; Udías, J. M.

    2018-05-01

    We compare the characteristics of the charged-current quasielastic (anti)neutrino scattering obtained in two different nuclear models, the phenomenological SuperScaling Approximation and the model using a realistic spectral function S(p, ɛ) that gives a scaling function in accordance with the (e, e‧ ) scattering data, with the recent data published by the MiniBooNE, MINER νA, and NOMAD collaborations. The spectral function accounts for the nucleon-nucleon (NN) correlations by using natural orbitals from the Jastrow correlation method and has a realistic energy dependence. Both models provide a good description of the MINER νA and NOMAD data without the need of an ad hoc increase of the value of the mass parameter in the axial-vector dipole form factor. The models considered in this work, based on the the impulse approximation (IA), underpredict the MiniBooNE data for the flux-averaged charged-current quasielastic {ν }μ ({\\bar{ν }}μ ){+}12\\text{C} differential cross section per nucleon and the total cross sections, although the shape of the cross sections is represented by the approaches. The discrepancy is most likely due to missing of the effects beyond the IA, e.g., those of the 2p–2h meson exchange currents that have contribution in the transverse responses.

  11. A system and methodology for high-content visual screening of individual intact living cells in suspension

    NASA Astrophysics Data System (ADS)

    Renaud, Olivier; Heintzmann, Rainer; Sáez-Cirión, Asier; Schnelle, Thomas; Mueller, Torsten; Shorte, Spencer

    2007-02-01

    Three dimensional imaging provides high-content information from living intact biology, and can serve as a visual screening cue. In the case of single cell imaging the current state of the art uses so-called "axial through-stacking". However, three-dimensional axial through-stacking requires that the object (i.e. a living cell) be adherently stabilized on an optically transparent surface, usually glass; evidently precluding use of cells in suspension. Aiming to overcome this limitation we present here the utility of dielectric field trapping of single cells in three-dimensional electrode cages. Our approach allows gentle and precise spatial orientation and vectored rotation of living, non-adherent cells in fluid suspension. Using various modes of widefield, and confocal microscope imaging we show how so-called "microrotation" can provide a unique and powerful method for multiple point-of-view (three-dimensional) interrogation of intact living biological micro-objects (e.g. single-cells, cell aggregates, and embryos). Further, we show how visual screening by micro-rotation imaging can be combined with micro-fluidic sorting, allowing selection of rare phenotype targets from small populations of cells in suspension, and subsequent one-step single cell cloning (with high-viability). Our methodology combining high-content 3D visual screening with one-step single cell cloning, will impact diverse paradigms, for example cytological and cytogenetic analysis on haematopoietic stem cells, blood cells including lymphocytes, and cancer cells.

  12. A novel framework for the local extraction of extra-axial cerebrospinal fluid from MR brain images

    NASA Astrophysics Data System (ADS)

    Mostapha, Mahmoud; Shen, Mark D.; Kim, SunHyung; Swanson, Meghan; Collins, D. Louis; Fonov, Vladimir; Gerig, Guido; Piven, Joseph; Styner, Martin A.

    2018-03-01

    The quantification of cerebrospinal fluid (CSF) in the human brain has shown to play an important role in early postnatal brain developmental. Extr a-axial fluid (EA-CSF), which is characterized by the CSF in the subarachnoid space, is promising in the early detection of children at risk for neurodevelopmental disorders. Currently, though, there is no tool to extract local EA-CSF measurements in a way that is suitable for localized analysis. In this paper, we propose a novel framework for the localized, cortical surface based analysis of EA-CSF. In our proposed processing, we combine probabilistic brain tissue segmentation, cortical surface reconstruction as well as streamline based local EA-CSF quantification. For streamline computation, we employ the vector field generated by solving a Laplacian partial differential equation (PDE) between the cortical surface and the outer CSF hull. To achieve sub-voxel accuracy while minimizing numerical errors, fourth-order Runge-Kutta (RK4) integration was used to generate the streamlines. Finally, the local EA-CSF is computed by integrating the CSF probability along the generated streamlines. The proposed local EA-CSF extraction tool was used to study the early postnatal brain development in typically developing infants. The results show that the proposed localized EA-CSF extraction pipeline can produce statistically significant regions that are not observed in previous global approach.

  13. A Thin-Flux-Rope Approximation as a Basis for Modeling of Pre- and Post-Eruptive Magnetic Configurations

    NASA Astrophysics Data System (ADS)

    Titov, V. S.; Mikic, Z.; Torok, T.; Linker, J.

    2016-12-01

    Many existing models of solar flares and coronal mass ejections (CMEs) assume a key role of magnetic flux ropes in these phenomena. It is therefore important to have efficient methods for constructing flux-rope configurations consistent with the observed photospheric magnetic data and morphology of CMEs. As our new step in this direction, we propose an analytical formulation that succinctly represents the magnetic field of a thin flux rope, which has an axis of arbitrary shape and a circular cross-section with the diameter slowly varying along the axis. This representation implies also that the flux rope carries axial current I and axial flux F, so that the respective magnetic field is a curl of the sum of toroidal and poloidal vector potentials proportional to I and F, respectively. Each of the two potentials is individually expressed in terms of a modified Biot-Savart law with separate kernels, both regularized at the rope axis. We argue that the proposed representation is flexible enough to be used in MHD simulations for initializing pre-eruptive configurations in the low corona or post-eruptive configurations (interplanetary CMEs) in the heliosphere. We discuss the potential advantages of our approach, and the subsequent steps to be performed, to develop a fully operative and highly competitive method compared to existing methods. Research supported by NSF, NASA's HSR and LWS Programs, and AFOSR.

  14. A comparison of accuracy of fall detection algorithms (threshold-based vs. machine learning) using waist-mounted tri-axial accelerometer signals from a comprehensive set of falls and non-fall trials.

    PubMed

    Aziz, Omar; Musngi, Magnus; Park, Edward J; Mori, Greg; Robinovitch, Stephen N

    2017-01-01

    Falls are the leading cause of injury-related morbidity and mortality among older adults. Over 90 % of hip and wrist fractures and 60 % of traumatic brain injuries in older adults are due to falls. Another serious consequence of falls among older adults is the 'long lie' experienced by individuals who are unable to get up and remain on the ground for an extended period of time after a fall. Considerable research has been conducted over the past decade on the design of wearable sensor systems that can automatically detect falls and send an alert to care providers to reduce the frequency and severity of long lies. While most systems described to date incorporate threshold-based algorithms, machine learning algorithms may offer increased accuracy in detecting falls. In the current study, we compared the accuracy of these two approaches in detecting falls by conducting a comprehensive set of falling experiments with 10 young participants. Participants wore waist-mounted tri-axial accelerometers and simulated the most common causes of falls observed in older adults, along with near-falls and activities of daily living. The overall performance of five machine learning algorithms was greater than the performance of five threshold-based algorithms described in the literature, with support vector machines providing the highest combination of sensitivity and specificity.

  15. Statistical Theory of the Ideal MHD Geodynamo

    NASA Technical Reports Server (NTRS)

    Shebalin, J. V.

    2012-01-01

    A statistical theory of geodynamo action is developed, using a mathematical model of the geodynamo as a rotating outer core containing an ideal (i.e., no dissipation), incompressible, turbulent, convecting magnetofluid. On the concentric inner and outer spherical bounding surfaces the normal components of the velocity, magnetic field, vorticity and electric current are zero, as is the temperature fluctuation. This allows the use of a set of Galerkin expansion functions that are common to both velocity and magnetic field, as well as vorticity, current and the temperature fluctuation. The resulting dynamical system, based on the Boussinesq form of the magnetohydrodynamic (MHD) equations, represents MHD turbulence in a spherical domain. These basic equations (minus the temperature equation) and boundary conditions have been used previously in numerical simulations of forced, decaying MHD turbulence inside a sphere [1,2]. Here, the ideal case is studied through statistical analysis and leads to a prediction that an ideal coherent structure will be found in the form of a large-scale quasistationary magnetic field that results from broken ergodicity, an effect that has been previously studied both analytically and numerically for homogeneous MHD turbulence [3,4]. The axial dipole component becomes prominent when there is a relatively large magnetic helicity (proportional to the global correlation of magnetic vector potential and magnetic field) and a stationary, nonzero cross helicity (proportional to the global correlation of velocity and magnetic field). The expected angle of the dipole moment vector with respect to the rotation axis is found to decrease to a minimum as the average cross helicity increases for a fixed value of magnetic helicity and then to increase again when average cross helicity approaches its maximum possible value. Only a relatively small value of cross helicity is needed to produce a dipole moment vector that is aligned at approx.10deg with the rotation axis.

  16. A feasibility study of a 3-D finite element solution scheme for aeroengine duct acoustics

    NASA Technical Reports Server (NTRS)

    Abrahamson, A. L.

    1980-01-01

    The advantage from development of a 3-D model of aeroengine duct acoustics is the ability to analyze axial and circumferential liner segmentation simultaneously. The feasibility of a 3-D duct acoustics model was investigated using Galerkin or least squares element formulations combined with Gaussian elimination, successive over-relaxation, or conjugate gradient solution algorithms on conventional scalar computers and on a vector machine. A least squares element formulation combined with a conjugate gradient solver on a CDC Star vector computer initially appeared to have great promise, but severe difficulties were encountered with matrix ill-conditioning. These difficulties in conditioning rendered this technique impractical for realistic problems.

  17. Broken SU(3) x SU(3) x SU(3) x SU(3) Symmetry

    DOE R&D Accomplishments Database

    Freund, P. G. O.; Nambu, Y.

    1964-10-01

    We argue that the "Eight-fold Way" version of the SU(3) symmetry should be extended to a product of up to four separate and badly broken SU(3) groups, including the gamma{sub 5} type SU(3) symmetry. A hierarchy of subgroups (or subalgebras) are considered within this framework, and two candidates are found to be interesting in view of experimental evidence. Main features of the theory are: 1) the baryons belong to a nonet; 2) there is an octet of axial vector gauge mesons in addition to one or two octets of vector mesons; 3) pseudoscalar and scalar mesons exist as "incomplete" multiplets arising from spontaneous breakdown of symmetry.

  18. Quark model with chiral-symmetry breaking and confinement in the Covariant Spectator Theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biernat, Elmer P.; Pena, Maria Teresa; Ribiero, Jose' Emilio F.

    2016-03-01

    We propose a model for the quark-antiquark interaction in Minkowski space using the Covariant Spectator Theory. We show that with an equal-weighted scalar-pseudoscalar structure for the confining part of our interaction kernel the axial-vector Ward-Takahashi identity is preserved and our model complies with the Adler-zero constraint for pi-pi-scattering imposed by chiral symmetry.

  19. Actin cytoskeleton rearrangements in Arabidopsis roots under stress and during gravitropic response

    NASA Astrophysics Data System (ADS)

    Pozhvanov, Gregory; Medvedev, Sergei; Suslov, Dmitry; Demidchik, Vadim

    Among environmental factors, gravity vector is the only one which is constant in direction and accompanies the whole plant ontogenesis. That said, gravity vector can be considered as an essential factor for correct development of plants. Gravitropism is a plant growth response against changing its position relative to the gravity vector. It is well estableshed that gravitropism is directed by auxin redistribution across the gravistimulated organ. In addition to auxin, actin cytoskeleton was shown to be involved in gravitropism at different stages: gravity perception, signal transduction and gravitropic bending formation. However, the relationship between IAA and actin is still under discussion. In this work we studied rearrangements of actin cytoskeleton during root gravitropic response. Actin microfilaments were visualized in vivo in GFP-fABD2 transgenic Arabidopsis plants, and their angle distribution was acquired from MicroFilament Analyzer software. The curvature of actin microfilaments in root elongation zone was shown to be increased within 30-60 min of gravistimulation, the fraction of axially oriented microfilaments decreased with a concomitant increase in the fraction of oblique and transversally oriented microfilaments. In particular, the fraction of transversally oriented microfilaments (i.e. parallel to the gravity vector) increased 3-5 times. Under 10 min of sub-lethal salt stress impact, actin microfilament orientations widened from an initial axial orientation to a set of peaks at 15(°) , 45(°) and 90(°) . We conclude that the actin cytoskeleton rearrangements observed are associated with the regulation of basic mechanisms of cell extension growth by which the gravitropic bending is formed. Having common stress-related features, gravity-induced actin cytoskeleton rearrangement is slower but results in higher number of g-vector-parallel microfilaments when compared to salt stress-induced rearrangement. Also, differences in gravistimulated root growth between wild type and GFP-fABD2 plants are discussed. Project was supported by the OPTEC / Carl Zeiss Personal grant to G.P. (2012), grants of Russian Foundation for Basic Research (11-04-00701a, 14-04-01624a) and by the grant of St.-Petersburg State University (1.38.233.2014).

  20. Propagation of exponential shock wave in an axisymmetric rotating non-ideal dusty gas

    NASA Astrophysics Data System (ADS)

    Nath, G.

    2016-09-01

    One-dimensional unsteady isothermal and adiabatic flow behind a strong exponential shock wave propagating in a rotational axisymmetric mixture of non-ideal gas and small solid particles, which has variable azimuthal and axial fluid velocities, is analyzed. The shock wave is driven out by a piston moving with time according to exponential law. The azimuthal and axial components of the fluid velocity in the ambient medium are assumed to be varying and obeying exponential laws. In the present work, small solid particles are considered as pseudo-fluid with the assumption that the equilibrium flow-conditions are maintained in the flow-field, and the viscous-stress and heat conduction of the mixture are negligible. Solutions are obtained in both the cases, when the flow between the shock and the piston is isothermal or adiabatic by taking into account the components of vorticity vector and compressibility. It is found that the assumption of zero temperature gradient brings a profound change in the density, axial component of vorticity vector and compressibility distributions as compared to that of the adiabatic case. To investigate the behavior of the flow variables and the influence on the shock wave propagation by the parameter of non-idealness of the gas overline{b} in the mixture as well as by the mass concentration of solid particles in the mixture Kp and by the ratio of the density of solid particles to the initial density of the gas G1 are worked out in detail. It is interesting to note that the shock strength increases with an increase in G1 ; whereas it decreases with an increase in overline{b} . Also, a comparison between the solutions in the cases of isothermal and adiabatic flows is made.

  1. A simple dynamic engine model for use in a real-time aircraft simulation with thrust vectoring

    NASA Technical Reports Server (NTRS)

    Johnson, Steven A.

    1990-01-01

    A simple dynamic engine model was developed at the NASA Ames Research Center, Dryden Flight Research Facility, for use in thrust vectoring control law development and real-time aircraft simulation. The simple dynamic engine model of the F404-GE-400 engine (General Electric, Lynn, Massachusetts) operates within the aircraft simulator. It was developed using tabular data generated from a complete nonlinear dynamic engine model supplied by the manufacturer. Engine dynamics were simulated using a throttle rate limiter and low-pass filter. Included is a description of a method to account for axial thrust loss resulting from thrust vectoring. In addition, the development of the simple dynamic engine model and its incorporation into the F-18 high alpha research vehicle (HARV) thrust vectoring simulation. The simple dynamic engine model was evaluated at Mach 0.2, 35,000 ft altitude and at Mach 0.7, 35,000 ft altitude. The simple dynamic engine model is within 3 percent of the steady state response, and within 25 percent of the transient response of the complete nonlinear dynamic engine model.

  2. Optimization of a Hybrid Magnetic Bearing for a Magnetically Levitated Blood Pump via 3-D FEA

    PubMed Central

    Cheng, Shanbao; Olles, Mark W.; Burger, Aaron F.; Day, Steven W.

    2011-01-01

    In order to improve the performance of a magnetically levitated (maglev) axial flow blood pump, three-dimensional (3-D) finite element analysis (FEA) was used to optimize the design of a hybrid magnetic bearing (HMB). Radial, axial, and current stiffness of multiple design variations of the HMB were calculated using a 3-D FEA package and verified by experimental results. As compared with the original design, the optimized HMB had twice the axial stiffness with the resulting increase of negative radial stiffness partially compensated for by increased current stiffness. Accordingly, the performance of the maglev axial flow blood pump with the optimized HMBs was improved: the maximum pump speed was increased from 6000 rpm to 9000 rpm (50%). The radial, axial and current stiffness of the HMB was found to be linear at nominal operational position from both 3-D FEA and empirical measurements. Stiffness values determined by FEA and empirical measurements agreed well with one another. The magnetic flux density distribution and flux loop of the HMB were also visualized via 3-D FEA which confirms the designers’ initial assumption about the function of this HMB. PMID:22065892

  3. Optimization of a Hybrid Magnetic Bearing for a Magnetically Levitated Blood Pump via 3-D FEA.

    PubMed

    Cheng, Shanbao; Olles, Mark W; Burger, Aaron F; Day, Steven W

    2011-10-01

    In order to improve the performance of a magnetically levitated (maglev) axial flow blood pump, three-dimensional (3-D) finite element analysis (FEA) was used to optimize the design of a hybrid magnetic bearing (HMB). Radial, axial, and current stiffness of multiple design variations of the HMB were calculated using a 3-D FEA package and verified by experimental results. As compared with the original design, the optimized HMB had twice the axial stiffness with the resulting increase of negative radial stiffness partially compensated for by increased current stiffness. Accordingly, the performance of the maglev axial flow blood pump with the optimized HMBs was improved: the maximum pump speed was increased from 6000 rpm to 9000 rpm (50%). The radial, axial and current stiffness of the HMB was found to be linear at nominal operational position from both 3-D FEA and empirical measurements. Stiffness values determined by FEA and empirical measurements agreed well with one another. The magnetic flux density distribution and flux loop of the HMB were also visualized via 3-D FEA which confirms the designers' initial assumption about the function of this HMB.

  4. The mathematical modeling of the experiment on the determination of correlation coefficients in neutron beta-decay

    NASA Astrophysics Data System (ADS)

    Serebrov, A. P.; Zherebtsov, O. M.; Klyushnikov, G. N.

    2018-05-01

    An experiment on the measurement of the ratio of the axial coupling constant to the vector one is under development. The main idea of the experiment is to measure the values of A and B in the same setup. An additional measurement of the polarization is not necessary. The accuracy achieved to date in measuring λ is 2 × 10-3. It is expected that in the experiment the accuracy will be of the order of 10-4. Some particular problems of mathematical modeling concerning the experiment on the measurement of the ratio of the axial coupling constant to the vector one are considered. The force lines for the given tabular field of a magnetic trap are studied. The dependences of the longitudinal and transverse field non-uniformity coefficients on the coordinates are regarded. A special computational algorithm based on the law of a charged particle motion along a local magnetic force line is performed for the calculation of the electrons and protons motion time as well as for the evaluation of the total number of electrons colliding with the detector surface. The average values of the cosines of the angles with the coefficients of a, A and B have been estimated.

  5. Constraints on exotic dipole-dipole couplings between electrons at the micron scale

    NASA Astrophysics Data System (ADS)

    Kotler, Shlomi; Ozeri, Roee; Jackson Kimball, Derek

    2015-05-01

    Until recently, the magnetic dipole-dipole coupling between electrons had not been directly observed experimentally. This is because at the atomic scale dipole-dipole coupling is dominated by the exchange interaction and at larger distances the dipole-dipole coupling is overwhelmed by ambient magnetic field noise. In spite of these challenges, the magnetic dipole-dipole interaction between two electron spins separated by 2.4 microns was recently measured using the valence electrons of trapped Strontium ions [S. Kotler, N. Akerman, N. Navon, Y. Glickman, and R. Ozeri, Nature 510, 376 (2014)]. We have used this measurement to directly constrain exotic dipole-dipole interactions between electrons at the micron scale. For light bosons (mass 0.1 eV), we find that coupling constants describing pseudoscalar and axial-vector mediated interactions must be | gPegPe/4 πℏc | <= 1 . 5 × 10-3 and | gAegAe/4 πℏc | <= 1 . 2 × 10-17 , respectively, at the 90% confidence level. These bounds significantly improve on previous constraints in this mass range: for example, the constraints on axial-vector interactions are six orders of magnitude stronger than electron-positron constraints based on positronium spectroscopy. Supported by the National Science Foundation, I-Core: the Israeli excellence center, and the European Research Council.

  6. Stage Effects on Stalling and Recovery of a High-Speed 10-Stage Axial- Flow Compressor

    DTIC Science & Technology

    1990-06-01

    facility C Specific heat of air at constant pressureP Cx Axial velocity DC Direct current DAC Data acquisition computer DCS Design corrected compressor ...was designed to inve3tigate the component performance of an axial -flow compressor while stalling and operating in rotating stall. No attempt was made...Temperatures were measured from a probe configuration similar to the to - pressure design . 68 Table 4.2 Compressor instrumentation RADIAL PROPERTY AXIAL

  7. Cathode-constriction and column-constriction in high current vacuum arcs subjected to an axial magnetic field

    NASA Astrophysics Data System (ADS)

    Zhang, Zaiqin; Ma, Hui; Liu, Zhiyuan; Geng, Yingsan; Wang, Jianhua

    2018-04-01

    The influence of the applied axial magnetic field on the current density distribution in the arc column and electrodes is intensively studied. However, the previous results only provide a qualitative explanation, which cannot quantitatively explain a recent experimental data on anode current density. The objective of this paper is to quantitatively determine the current constriction subjected to an axial magnetic field in high-current vacuum arcs according to the recent experimental data. A magnetohydrodynamic model is adopted to describe the high current vacuum arcs. The vacuum arc is in a diffuse arc mode with an arc current ranged from 6 kArms to 14 kArms and an axial magnetic field ranged from 20 mT to 110 mT. By a comparison of the recent experimental work of current density distribution on the anode, the modelling results show that there are two types of current constriction. On one hand, the current on the cathode shows a constriction, and this constriction is termed as the cathode-constriction. On the other hand, the current constricts in the arc column region, and this constriction is termed as the column-constriction. The cathode boundary is of vital importance in a quantitative model. An improved cathode constriction boundary is proposed. Under the improved boundary, the simulation results are in good agreement with the recent experimental data on the anode current density distribution. It is demonstrated that the current density distribution at the anode is sensitive to that at the cathode, so that measurements of the anode current density can be used, in combination with the vacuum arc model, to infer the cathode current density distribution.

  8. Localized bulging in an inflated cylindrical tube of arbitrary thickness - the effect of bending stiffness

    NASA Astrophysics Data System (ADS)

    Fu, Y. B.; Liu, J. L.; Francisco, G. S.

    2016-05-01

    We study localized bulging of a cylindrical hyperelastic tube of arbitrary thickness when it is subjected to the combined action of inflation and axial extension. It is shown that with the internal pressure P and resultant axial force F viewed as functions of the azimuthal stretch on the inner surface and the axial stretch, the bifurcation condition for the initiation of a localized bulge is that the Jacobian of the vector function (P , F) should vanish. This is established using the dynamical systems theory by first computing the eigenvalues of a certain eigenvalue problem governing incremental deformations, and then deriving the bifurcation condition explicitly. The bifurcation condition is valid for all loading conditions, and in the special case of fixed resultant axial force it gives the expected result that the initiation pressure for localized bulging is precisely the maximum pressure in uniform inflation. It is shown that even if localized bulging cannot take place when the axial force is fixed, it is still possible if the axial stretch is fixed instead. The explicit bifurcation condition also provides a means to quantify precisely the effect of bending stiffness on the initiation pressure. It is shown that the (approximate) membrane theory gives good predictions for the initiation pressure, with a relative error less than 5%, for thickness/radius ratios up to 0.67. A two-term asymptotic bifurcation condition for localized bulging that incorporates the effect of bending stiffness is proposed, and is shown to be capable of giving extremely accurate predictions for the initiation pressure for thickness/radius ratios up to as large as 1.2.

  9. A numerical study of three-dimensional vortex breakdown

    NASA Technical Reports Server (NTRS)

    Spall, Robert E.; Ash, Robert L.

    1987-01-01

    A numerical simulation of bubble-type vortex breakdown using a unique discrete form of the full 3-D, unsteady incompressible Navier-Stokes equations was performed. The Navier-Stokes equations were written in a vorticity-velocity form and the physical problem was not restricted to axisymmetric flow. The problem was parametized on a Rossby- Reynolds-number basis. Utilization of this parameter duo was shown to dictate the form of the free-field boundary condition specification and allowed control of axial breakdown location within the computational domain. The structure of the breakdown bubble was studied through time evolution plots of planar projected velocity vectors as well as through plots of particle traces and vortex lines. These results compared favorably with previous experimental studies. In addition, profiles of all three velocity components are presented at various axial stations and a Fourier analysis was performed to identify the dominant circumferential modes. The dynamics of the breakdown process were studied through plots of axial variation of rate of change of integrated total energy and rate of change of integrated enstrophy, as well as through contour plots of velocity, vorticity and pressure.

  10. Augmented reality three-dimensional object visualization and recognition with axially distributed sensing.

    PubMed

    Markman, Adam; Shen, Xin; Hua, Hong; Javidi, Bahram

    2016-01-15

    An augmented reality (AR) smartglass display combines real-world scenes with digital information enabling the rapid growth of AR-based applications. We present an augmented reality-based approach for three-dimensional (3D) optical visualization and object recognition using axially distributed sensing (ADS). For object recognition, the 3D scene is reconstructed, and feature extraction is performed by calculating the histogram of oriented gradients (HOG) of a sliding window. A support vector machine (SVM) is then used for classification. Once an object has been identified, the 3D reconstructed scene with the detected object is optically displayed in the smartglasses allowing the user to see the object, remove partial occlusions of the object, and provide critical information about the object such as 3D coordinates, which are not possible with conventional AR devices. To the best of our knowledge, this is the first report on combining axially distributed sensing with 3D object visualization and recognition for applications to augmented reality. The proposed approach can have benefits for many applications, including medical, military, transportation, and manufacturing.

  11. Holographic CBK relation

    NASA Astrophysics Data System (ADS)

    Gabadadze, Gregory; Tukhashvili, Giorgi

    2018-07-01

    The Crewther-Broadhurst-Kataev (CBK) relation connects the Bjorken function for deep-inelastic sum rules (or the Gross-Llewellyn Smith function) with the Adler function for electron-positron annihilation in QCD; it has been checked to hold up to four loops in perturbation theory. Here we study non-perturbative terms in the CBK relation using a holographic dual theory that is believed to capture properties of QCD. We show that for the large invariant momenta the perturbative CBK relation is exactly satisfied. For the small momenta non-perturbative corrections enter the relation and we calculate their significant effects. We also give an exact holographic expression for the Bjorken function, as well as for the entire three-point axial-vector-vector correlation function, and check their consistency in the conformal limit.

  12. W-Band Circularly Polarized TE11 Mode Transducer

    NASA Astrophysics Data System (ADS)

    Zhan, Mingzhou; He, Wangdong; Wang, Lei

    2018-06-01

    This paper presents a balanced sidewall exciting approach to realize the circularly polarized TE11 mode transducer. We used a voltage vector transfer matrix to establish the relationship between input and output vectors, then we analyzed amplitude and phase errors to estimate the isolation of degenerate mode. A mode transducer with a sidewall exciter was designed based on the results. In the 88-100 GHz frequency range, the simulated axial ratio is less than 1.05 and the isolation of linearly polarization TE11 mode is higher than 30 dBc. In back-to-back measurements, the return loss is generally greater than 20 dB with a typical insertion loss of 1.2 dB. Back-to-back transmission measurements are in excellent agreement with simulations.

  13. Generation of elliptical and circular vector hollow beams with different polarizations by a Mach-Zehnder-type optical path

    NASA Astrophysics Data System (ADS)

    Wang, Zhizhang; Pei, Chunying; Xia, Meng; Yin, Yaling; Xia, Yong; Yin, Jianping

    2018-01-01

    We present an experimental approach to convert linearly polarized Gaussian beams into elliptical and circular vector hollow beams (VHBs) with different polarization states. The scheme employed is based on a Mach-Zehnder-type optical path combined with a reflective spatial light modulator (SLM) in each path. The resulting VHBs have radial, azimuthal, and other polarization states. Our studies also show that the size of the generated VHBs remains constant during the propagation in free space over a certain distance, and can be controlled by the axial ratio of the SLM’s binary phase plate. These studies deliver great optical parameters and hold promising applications in the fields of optical trapping and manipulation of particles.

  14. W-Band Circularly Polarized TE11 Mode Transducer

    NASA Astrophysics Data System (ADS)

    Zhan, Mingzhou; He, Wangdong; Wang, Lei

    2018-04-01

    This paper presents a balanced sidewall exciting approach to realize the circularly polarized TE11 mode transducer. We used a voltage vector transfer matrix to establish the relationship between input and output vectors, then we analyzed amplitude and phase errors to estimate the isolation of degenerate mode. A mode transducer with a sidewall exciter was designed based on the results. In the 88-100 GHz frequency range, the simulated axial ratio is less than 1.05 and the isolation of linearly polarization TE11 mode is higher than 30 dBc. In back-to-back measurements, the return loss is generally greater than 20 dB with a typical insertion loss of 1.2 dB. Back-to-back transmission measurements are in excellent agreement with simulations.

  15. Field theoretic perspectives of the Wigner function formulation of the chiral magnetic effect

    NASA Astrophysics Data System (ADS)

    Wu, Yan; Hou, De-fu; Ren, Hai-cang

    2017-11-01

    We assess the applicability of the Wigner function formulation in its present form to the chiral magnetic effect and note some issues regarding the conservation and the consistency of the electric current in the presence of an inhomogeneous and time-dependent axial chemical potential. The problems are rooted in the ultraviolet divergence of the underlying field theory associated with the axial anomaly and can be fixed with the Pauli-Villars regularization of the Wigner function. The chiral magnetic current with a nonconstant axial chemical potential is calculated with the regularized Wigner function and the phenomenological implications are discussed.

  16. Method and system for operating an electric motor

    DOEpatents

    Gallegos-Lopez, Gabriel; Hiti, Silva; Perisic, Milun

    2013-01-22

    Methods and systems for operating an electric motor having a plurality of windings with an inverter having a plurality of switches coupled to a voltage source are provided. A first plurality of switching vectors is applied to the plurality of switches. The first plurality of switching vectors includes a first ratio of first magnitude switching vectors to second magnitude switching vectors. A direct current (DC) current associated with the voltage source is monitored during the applying of the first plurality of switching vectors to the plurality of switches. A second ratio of the first magnitude switching vectors to the second magnitude switching vectors is selected based on the monitoring of the DC current associated with the voltage source. A second plurality of switching vectors is applied to the plurality of switches. The second plurality of switching vectors includes the second ratio of the first magnitude switching vectors to the second magnitude switching vectors.

  17. An exact solution for axial flow in cylindrically symmetric, steady-state detonation in polytropic explosive with an arbitrary rate of decomposition

    NASA Astrophysics Data System (ADS)

    Cowperthwaite, M.

    1994-03-01

    Methods of differential geometry and Bernoulli's equation, written as B=0, are used to develop a new approach for constructing an exact solution for axial flow in a classical, two-dimensional, ZND detonation wave in a polytropic explosive with an arbitrary rate of decomposition. This geometric approach is fundamentally different from the traditional approaches to this axial flow problem formulated by Wood and Kirkwood (WK) and Fickett and Davis (FD), and gives equations for the axial particle velocity (u), the sound speed (c), the pressure (p), and the density (ρ), that are expressed in terms of the detonation velocity (D), the extent of decomposition (λ), the polytropic index (K), and two nonideal parameters ɛ3 and ɛ1, and reduce to the equations for steady-state, one-dimensional detonation as ɛ3 and ɛ1 approach zero. In contrast to the FD approach, the equations for u and c are obtained from first integrals of a tangent vector à on (u,c,λ) space, and the invariant condition, ÃB=aB=0, bypasses the FD eigenvalue problem by defining ɛ3 in terms of the detonation velocity deficit D/D∞ and K. In contrast to the WK approach, the equations for p and ρ are obtained from equations expressing the conservation of axial momentum and energy. Because the equations for these flow variables are derived without using the conservation of mass, the axial radial particle velocity gradient (war) associated with the flow can be obtained from the continuity equation without making approximations. The relationship between ɛ1 and ɛ3 that closes the solution is obtained from equations expressing constraints imposed on the axial flow at the shock front by the axial and radial momentum equations, the curved shock and the decomposition rate law, and a particular solution is constructed from the ɛ1-ɛ3 relationship determined by a prescribed rate law and value of K. Properties of particular solutions are presented to provide a better understanding of two-dimensional detonation, and a new axial condition for detonation failure is used to show that detonation failure can occur before the curve relating D/D∞ to the axial radius of curvature of the shock (Sa) becomes infinite.

  18. Axial Compressor Reversed Flow Performance.

    DTIC Science & Technology

    1985-05-01

    5.3.2. Axial Tempature Profils TIme-verage axial temperature profiles were acquired through the use of exposed...on the above questions, or any additional details concerning the current application, future potential, or other value of this research. Please use the...were heavily dependent upon the model used for defining compressor post-stall performance, both steady state end transient, especially In the reve a

  19. The effect of axial ligand on the oxidation of syringyl alcohol by Co(salen) adducts

    Treesearch

    Thomas Elder; Joseph Bozell; Diana Cedeno

    2013-01-01

    Experimental work on the oxidation of the lignin model, syringyl alcohol, using oxygen and a Co(salen) catalyst has revealed variations in yield with different imidazole-based axial ligands. A reasonable linear relationship was found between product yield and pKa of the axial ligand. The current work, using density functional calculations, examined geometric,...

  20. Reevaluation of spin-dependent WIMP-proton interactions as an explanation of the DAMA data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nobile, Eugenio Del; Gelmini, Graciela B.; Georgescu, Andreea

    2015-08-25

    We reexamine the interpretation of the annual modulation signal observed by the DAMA experiment as due to WIMPs with a spin-dependent coupling mostly to protons. We consider both axial-vector and pseudo-scalar couplings, and elastic as well as endothermic and exothermic inelastic scattering. We conclude that the DAMA signal is in strong tension with null results of other direct detection experiments, particularly PICASSO and KIMS.

  1. Realization of the axial next-nearest-neighbor Ising model in U 3 Al 2 Ge 3

    DOE PAGES

    Fobes, David M.; Lin, Shi-Zeng; Ghimire, Nirmal J.; ...

    2017-11-09

    Inmore » this paper, we report small-angle neutron scattering (SANS) measurements and theoretical modeling of U 3 Al 2 Ge 3 . Analysis of the SANS data reveals a phase transition to sinusoidally modulated magnetic order at T N = 63 K to be second order and a first-order phase transition to ferromagnetic order at T c = 48 K. Within the sinusoidally modulated magnetic phase (T c < T < T N), we uncover a dramatic change, by a factor of 3, in the ordering wave vector as a function of temperature. Finally, these observations all indicate that U 3 Al 2 Ge 3 is a close realization of the three-dimensional axial next-nearest-neighbor Ising model, a prototypical framework for describing commensurate to incommensurate phase transitions in frustrated magnets.« less

  2. Realization of the axial next-nearest-neighbor Ising model in U 3 Al 2 Ge 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fobes, David M.; Lin, Shi-Zeng; Ghimire, Nirmal J.

    Inmore » this paper, we report small-angle neutron scattering (SANS) measurements and theoretical modeling of U 3 Al 2 Ge 3 . Analysis of the SANS data reveals a phase transition to sinusoidally modulated magnetic order at T N = 63 K to be second order and a first-order phase transition to ferromagnetic order at T c = 48 K. Within the sinusoidally modulated magnetic phase (T c < T < T N), we uncover a dramatic change, by a factor of 3, in the ordering wave vector as a function of temperature. Finally, these observations all indicate that U 3 Al 2 Ge 3 is a close realization of the three-dimensional axial next-nearest-neighbor Ising model, a prototypical framework for describing commensurate to incommensurate phase transitions in frustrated magnets.« less

  3. Nucleon Spin Structure and Constituent Quark Model

    NASA Astrophysics Data System (ADS)

    Wang, Fan; Qing, Di; Chen, Xiang-Song; Goldman, T.

    1998-10-01

    The success of the constituent quark model has been challenged by the nucleon spin structure discovered in polarized deep inelastic scattering (DIS). We find that this puzzle is due to misidentifying the axial charge Δ q and the nonrelativistic quark spin. The space component of the quark axial vector current operator, int d^3x\\overlineψ γγ_5ψ =2s_q, defines the quark spin operator s_q, including not only the Pauli spin operator, which corresponds to the nonrelativistic quark spin s_q^NR, but also relativistic and quark-antiquark pair creation (annihilation) correction terms. Both of these suppress the quark spin contribution for a nucleon at rest due to transverse motion of the quark. The relativistic quark orbital angular momentum operator L_q=int d^3x\\overlineψ x× fracpartial iψ includes L^NRq and two correction terms which are exactly the same as those of sq but of opposite sign. They provide compensation which keeps the total nucleon spin frac 12 untouched no matter what kind of quark model is used. Nucleon spin can be decomposed either as s_q+Lq or as s_q^NR+L_q^NR. (The gluon degree of freedom is assumed to be frozen in the nucleon ground state at low energy scales.) The tensor charge δ q=int d^3x\\overlineψ Σ ψ of the nucleon is predicted to have similar but smaller corrections.

  4. Electron dynamics in a plasma focus. [electron acceleration

    NASA Technical Reports Server (NTRS)

    Hohl, F.; Gary, S. P.; Winters, P. A.

    1977-01-01

    Results are presented of a numerical integration of the three-dimensional relativistic equations of motion of electrons subject to given electric and magnetic fields deduced from experiments. Fields due to two different models are investigated. For the first model, the fields are those due to a circular distribution of axial current filaments. As the current filaments collapse toward the axis, large azimuthal magnetic and axial electric fields are induced. These fields effectively heat the electrons to a temperature of approximately 8 keV and accelerate electrons within the radius of the filaments to high axial velocities. Similar results are obtained for the current-reduction phase of focus formation. For the second model, the fields are those due to a uniform current distribution. Both the current-reduction and the compression phases were studied. These is little heating or acceleration of electrons during the compression phase because the electrons are tied to the magnetic field. However, during the current-reduction phase, electrons near the axis are accelerated toward the center electrode and reach energies of 100 keV. A criterion is obtained which limits the runaway electron current to about 400 A.

  5. Experimental Investigation of the Effects of an Axial Magnetic Field on the Magneto-Rayleigh-Taylor Instability in Ablating Planar Foils

    NASA Astrophysics Data System (ADS)

    Yager-Elorriaga, D. A.; Patel, S. G.; Steiner, A. M.; Jordan, N. M.; Weiss, M. R.; Gilgenbach, R. M.; Lau, Y. Y.

    2014-10-01

    Experiments are underway to study the effects an axial magnetic field on the magneto-Rayleigh-Taylor instability (MRT) in ablating planar foils on the 1-MA LTD at the Michigan Accelerator for Inductive Z-pinch Experiments (MAIZE) facility at the University of Michigan. For 600 kA drive current, a 15 T axial magnetic field is produced using helical return current posts. During the current pulse, the magnetic field may diffuse into the foil, creating a sheared magnetic field along with the possibility of shear stabilization of the MRT instability. Theoretical investigation at UM has shown that a sheared azimuthal magnetic field coupled with an axial magnetic field reduces the MRT growth rate in general. In order to study this effect, the amount of magnetic shear is controlled by offsetting the initial position of the foil. A 775 nm Ti:sapphire laser will be used to shadowgraph the foil in order to measure the MRT growth rate. By comparing these results to previous experiments at UM, the effects of magnetic shear and an axial magnetic field will be determined. This work was supported by US DoE. S.G. Patel and A.M. Steiner supported by NPSC funded by Sandia. D.A. Yager-Elorriaga supported by NSF fellowship Grant DGE 1256260.

  6. Vector spherical quasi-Gaussian vortex beams

    NASA Astrophysics Data System (ADS)

    Mitri, F. G.

    2014-02-01

    Model equations for describing and efficiently computing the radiation profiles of tightly spherically focused higher-order electromagnetic beams of vortex nature are derived stemming from a vectorial analysis with the complex-source-point method. This solution, termed as a high-order quasi-Gaussian (qG) vortex beam, exactly satisfies the vector Helmholtz and Maxwell's equations. It is characterized by a nonzero integer degree and order (n,m), respectively, an arbitrary waist w0, a diffraction convergence length known as the Rayleigh range zR, and an azimuthal phase dependency in the form of a complex exponential corresponding to a vortex beam. An attractive feature of the high-order solution is the rigorous description of strongly focused (or strongly divergent) vortex wave fields without the need of either the higher-order corrections or the numerically intensive methods. Closed-form expressions and computational results illustrate the analysis and some properties of the high-order qG vortex beams based on the axial and transverse polarization schemes of the vector potentials with emphasis on the beam waist.

  7. Development of a two-dimensional dual pendulum thrust stand for Hall thrusters.

    PubMed

    Nagao, N; Yokota, S; Komurasaki, K; Arakawa, Y

    2007-11-01

    A two-dimensional dual pendulum thrust stand was developed to measure thrust vectors [axial and horizontal (transverse) direction thrusts] of a Hall thruster. A thruster with a steering mechanism is mounted on the inner pendulum, and thrust is measured from the displacement between inner and outer pendulums, by which a thermal drift effect is canceled out. Two crossover knife-edges support each pendulum arm: one is set on the other at a right angle. They enable the pendulums to swing in two directions. Thrust calibration using a pulley and weight system showed that the measurement errors were less than 0.25 mN (1.4%) in the main thrust direction and 0.09 mN (1.4%) in its transverse direction. The thrust angle of the thrust vector was measured with the stand using the thruster. Consequently, a vector deviation from the main thrust direction of +/-2.3 degrees was measured with the error of +/-0.2 degrees under the typical operating conditions for the thruster.

  8. Automatic Recognition of Fetal Facial Standard Plane in Ultrasound Image via Fisher Vector.

    PubMed

    Lei, Baiying; Tan, Ee-Leng; Chen, Siping; Zhuo, Liu; Li, Shengli; Ni, Dong; Wang, Tianfu

    2015-01-01

    Acquisition of the standard plane is the prerequisite of biometric measurement and diagnosis during the ultrasound (US) examination. In this paper, a new algorithm is developed for the automatic recognition of the fetal facial standard planes (FFSPs) such as the axial, coronal, and sagittal planes. Specifically, densely sampled root scale invariant feature transform (RootSIFT) features are extracted and then encoded by Fisher vector (FV). The Fisher network with multi-layer design is also developed to extract spatial information to boost the classification performance. Finally, automatic recognition of the FFSPs is implemented by support vector machine (SVM) classifier based on the stochastic dual coordinate ascent (SDCA) algorithm. Experimental results using our dataset demonstrate that the proposed method achieves an accuracy of 93.27% and a mean average precision (mAP) of 99.19% in recognizing different FFSPs. Furthermore, the comparative analyses reveal the superiority of the proposed method based on FV over the traditional methods.

  9. Direct model-based predictive control scheme without cost function for voltage source inverters with reduced common-mode voltage

    NASA Astrophysics Data System (ADS)

    Kim, Jae-Chang; Moon, Sung-Ki; Kwak, Sangshin

    2018-04-01

    This paper presents a direct model-based predictive control scheme for voltage source inverters (VSIs) with reduced common-mode voltages (CMVs). The developed method directly finds optimal vectors without using repetitive calculation of a cost function. To adjust output currents with the CMVs in the range of -Vdc/6 to +Vdc/6, the developed method uses voltage vectors, as finite control resources, excluding zero voltage vectors which produce the CMVs in the VSI within ±Vdc/2. In a model-based predictive control (MPC), not using zero voltage vectors increases the output current ripples and the current errors. To alleviate these problems, the developed method uses two non-zero voltage vectors in one sampling step. In addition, the voltage vectors scheduled to be used are directly selected at every sampling step once the developed method calculates the future reference voltage vector, saving the efforts of repeatedly calculating the cost function. And the two non-zero voltage vectors are optimally allocated to make the output current approach the reference current as close as possible. Thus, low CMV, rapid current-following capability and sufficient output current ripple performance are attained by the developed method. The results of a simulation and an experiment verify the effectiveness of the developed method.

  10. Experimental Investigation of Axial and Beam-Riding Propulsive Physics with TEA CO{sub 2} laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kenoyer, D. A.; Salvador, I.; Myrabo, L. N.

    2010-10-08

    A twin Lumonics K922M pulsed TEA CO{sub 2} laser system (pulse duration of approximately 100 ns FWHM spike, with optional 1 {mu}s tail, depending upon laser gas mix) was employed to experimentally measure both axial thrust and beam-riding behavior of Type no. 200 lightcraft engines, using a ballistic pendulum and Angular Impulse Measurement Device (AIMD, respectively. Beam-riding forces and moments were examined along with engine thrust-vectoring behavior, as a function of: a) laser beam lateral offset from the vehicle axis of symmetry; b) laser pulse energy ({approx}12 to 40 joules); c) pulse duration (100 ns, and 1 {mu}s); and d)more » engine size (97.7 mm to 161.2 mm). Maximum lateral momentum coupling coefficients (C{sub M}) of 75 N-s/MJ were achieved with the K922M laser whereas previous PLVTS laser (420 J, 18 {mu}s duration) results reached only 15 N-s/MJ--an improvement of 5x. Maximum axial C{sub M} performance with the K922M reached 225 N-s/MJ, or about {approx}3x larger than the lateral C{sub M} values. These axial C{sub M} results are sharply higher than the 120 N/MW previously reported for long pulse (e.g., 10-18 {mu}s)CO{sub 2} electric discharge lasers.« less

  11. Single-stage experimental evaluation of tandem-airfoil rotor stator blading for compressors. Part 6: Data and performance for stage D

    NASA Technical Reports Server (NTRS)

    Clemmons, D. R.

    1973-01-01

    An axial flow compressor stage, having single-airfoil blading, was designed for zero rotor prewhirl, constant rotor work across the span, and axial discharge flow. The stage was designed to produce a pressure ratio of 1.265 at a rotor tip velocity of 757 ft/sec. The rotor had an inlet hub/tip ratio of 0.8. The design procedure accounted for the rotor inlet boundary layer and included the effects of axial velocity ratio and secondary flow on blade row performance. The objectives of this experimental program were: (1) to obtain performance with uniform and distorted inlet flow for comparison with the performance of a stage consisting of tandem-airfoil blading designed for the same vector diagrams; and (2) to evaluate the effectiveness of accounting for the inlet boundary layer, axial velocity ratio, and secondary flows in the stage design. With uniform inlet flow, the rotor achieved a maximum adiabatic efficiency of 90.1% at design equivalent rotor speed and a pressure ratio of 1.281. The stage maximum adiabatic efficiency at design equivalent rotor speed with uniform inlet flow was 86.1% at a pressure ratio of 1.266. Hub radial, tip radial, and circumferential distortion of the inlet flow caused reductions in surge pressure ratio of approximately 2, 10 and 5%, respectively, at design rotor speed.

  12. Gamow-Teller response in the configuration space of a density-functional-theory-rooted no-core configuration-interaction model

    NASA Astrophysics Data System (ADS)

    Konieczka, M.; Kortelainen, M.; Satuła, W.

    2018-03-01

    Background: The atomic nucleus is a unique laboratory in which to study fundamental aspects of the electroweak interaction. This includes a question concerning in medium renormalization of the axial-vector current, which still lacks satisfactory explanation. Study of spin-isospin or Gamow-Teller (GT) response may provide valuable information on both the quenching of the axial-vector coupling constant as well as on nuclear structure and nuclear astrophysics. Purpose: We have performed a seminal calculation of the GT response by using the no-core configuration-interaction approach rooted in multireference density functional theory (DFT-NCCI). The model treats properly isospin and rotational symmetries and can be applied to calculate both the nuclear spectra and transition rates in atomic nuclei, irrespectively of their mass and particle-number parity. Methods: The DFT-NCCI calculation proceeds as follows: First, one builds a configuration space by computing relevant, for a given physical problem, (multi)particle-(multi)hole Slater determinants. Next, one applies the isospin and angular-momentum projections and performs the isospin and K mixing in order to construct a model space composed of linearly dependent states of good angular momentum. Eventually, one mixes the projected states by solving the Hill-Wheeler-Griffin equation. Results: The method is applied to compute the GT strength distribution in selected N ≈Z nuclei including the p -shell 8Li and 8Be nuclei and the s d -shell well-deformed nucleus 24Mg. In order to demonstrate a flexibility of the approach we present also a calculation of the superallowed GT β decay in doubly-magic spherical 100Sn and the low-spin spectrum in 100In. Conclusions: It is demonstrated that the DFT-NCCI model is capable of capturing the GT response satisfactorily well by using a relatively small configuration space, exhausting simultaneously the GT sum rule. The model, due to its flexibility and broad range of applicability, may either serve as a complement or even as an alternative to other theoretical approaches, including the conventional nuclear shell model.

  13. Input impedance of coaxially fed rectangular microstrip antenna on electrically thick substrate

    NASA Technical Reports Server (NTRS)

    Chen, Wei; Lee, Kai-Fong; Lee, R. Q.

    1993-01-01

    A full-wave spectral domain analysis has been used to obtain input-impedance results for a probe-fed rectangular-patch antenna, modeling the source as a magnetic-current frill. Multiple modes are used in the probe surface current to account for axial and azimuthal variations. It is established that maximum resistance is dependent on the substrate loss tangent. The axial variation of the probe current must be taken into account for substrate thicknesses greater than about 0.02 wavelengths.

  14. The g - 2 muon anomaly in di-muon production with the torsion in LHC

    NASA Astrophysics Data System (ADS)

    Syromyatnikov, A. G.

    2016-06-01

    It was considered within the framework of the conformal gauge gravitational theory CGTG coupling of the standard model fermions to the axial torsion and preliminary discusses the impact of extra dimensions, in particular, in a five-dimensional space-time with Randall-Sundrum metric, where the fifth dimension is compactified on an S1/Z 2 orbifold, which as it turns out is conformally to the fifth dimension flat Euclidean space with permanent trace of torsion, with a compactification radius R in terms of the radius of a CGTG gravitational screening, through torsion in a process Z → μ+μ- and LHC data. In general, have come to the correct set of the conformal calibration curvature the Faddeev-Popov diagram technique type, that follows directly from dynamics. This leads to the effect of restrictions on neutral spin currents of gauge fields by helicity and the Regge’s form theory. The diagrams reveals the fact of opening of the fine spacetime structure in a process pp → γ/Z/T → μ+μ- with a center-of-mass energy of 14TeV, indicated by dotted lines and texture columns, as a result of p-p collision on 1.3 ṡ 10-18cm scales from geometric shell gauge bosons of the SM continued by the heavy axial torsion resonance, and even by emerging from the inside into the outside of the ultra-light (freely-frozen in muon’s spin) axial torsion. We then evaluate the contribution of the torsion to the muon anomaly to derive new constraints on the torsion parameters. It was obtained that on the πN scattering through the exchange of axial torsion accounting, the nucleon anomalous magnetic moment in the eikonal phase leads to additive additives which is responsible for the spin-flip in the scattering process, the scattering amplitude is classical and characterized by a strong the torsion coupling ηT≅1. So the scattering of particles, occurs as on the Coulomb center with the charge fT This is the base model which is the g-2 muon anomaly. The muon anomaly contribution due to the heavy axial vector torsion arises from coupling the muon with torsion as external field. This leads to negative energy additive to mass of muons which makes the missing part of the g-2 muon anomaly. It takes place at reasonable values of the transverse front size of the exact solution CGTG equations types of torsion waves with the spin-flip close to the size of the Compton length muon.

  15. The Determination of Forces and Moments on a Gimballed SRM Nozzle Using a Cold Flow Model

    NASA Technical Reports Server (NTRS)

    Whitesides, R. Harold; Bacchus, David L.; Hengel, John E.

    1994-01-01

    The Solid Rocket Motor Air Flow Facility (SAF) at NASA Marshall Space Flight Center was used to characterize the flow in the critical aft end and nozzle of a solid propellant rocket motor (SRM) as part of the design phase of development. The SAF is a high pressure, blowdown facility which supplies a controlled flow of air to a subscale model of the internal port and nozzle of a SRM to enable measurement and evaluation of the flow field and surface pressure distributions. The ASRM Aft Section/Nozzle Model is an 8 percent scale model of the 19 second burn time aft port geometry and nozzle of the Advanced Solid Rocket Motor, the now canceled new generation space Shuttle Booster. It has the capability to simulate fixed nozzle gimbal angles of 0, 4, and 8 degrees. The model was tested at full scale motor Reynolds Numbers with extensive surface pressure instrumentation to enable detailed mapping of the surface pressure distributions over the nozzle interior surface, the exterior surface of the nozzle nose and the surface of the simulated propellant grain in the aft motor port. A mathematical analysis and associated numerical procedure were developed to integrate the measured surface pressure distributions to determine the lateral and axial forces on the moveable section of the nozzle, the effective model thrust and the effective aerodynamic thrust vector (as opposed to the geometric nozzle gimbal angle). The nozzle lateral and axial aerodynamic loads and moments about the pivot point are required for design purposes and require complex, three dimensional flow analyses. The alignment of the thrust vector with the nozzle geometric centerline is also a design requirement requiring three dimensional analyses which were supported by this experimental program. The model was tested with all three gimbal angles at three pressure levels to determine Reynolds number effects and reproducibility. This program was successful in demonstrating that a measured surface pressure distribution could be integrated to determine the lateral and axial loads, moments and thrust vector alignment for the scaled model of a large space booster nozzle. Numerical results were provided which are scaleable to the full scale rocket motor and can be used as benchmark data for 3-D CFD analyses.

  16. REVIEWS OF TOPICAL PROBLEMS: Helium-isotope mass-spectrometric method for studying tritium beta decay (idea, experiment, nuclear and molecular physics applications)

    NASA Astrophysics Data System (ADS)

    Akulov, Yuii A.; Mamyrin, Boris A.

    2003-11-01

    Experimental data on the variation of tritium nucleus beta decay constant caused by the interaction of the resulting beta-electron with orbital electrons and shell vacancies are reviewed for free atomic tritium and molecular tritium and used to obtain the half-life of atomic tritium (T1/2)a=(12.264±0.018) y, the half-life of the free triton (T1/2)t=(12.238±0.020) y, the axial-vector-to-vector weak-interaction coupling constant ratio (GA/GV)t=-1.2646 ± 0.0035 for beta decay of the triton, and an independent estimate of the free neutron lifetime τn= (890.3 ± 3.9stat ± 1.4syst) s.

  17. 'GRC1.5': Uptower Gearbox Testing to Investigate Bearing Axial Cracking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keller, Jonathan; Vaes, David; McNiff, Brian

    2016-02-16

    This presentation focuses on the investigation of bearing axial cracking using the GRC1.5 uptower gearbox. Topics covered include the testing options considered, the project goal, and current and near-term activities.

  18. Axial diffusion barriers in near-infrared nanopillar LEDs.

    PubMed

    Scofield, Adam C; Lin, Andrew; Haddad, Michael; Huffaker, Diana L

    2014-11-12

    The growth of GaAs/GaAsP axial heterostructures is demonstrated and implemented as diffusion current barriers in nanopillar light-emitting diodes at near-infrared wavelengths. The nanopillar light-emitting diodes utilize an n-GaAs/i-InGaAs/p-GaAs axial heterostructure for current injection. Axial GaAsP segments are inserted into the n- and p-GaAs portions of the nanopillars surrounding the InGaAs emitter region, acting as diffusion barriers to provide enhanced carrier confinement. Detailed characterization of growth of the GaAsP inserts and electronic band-offset measurements are used to effectively implement the GaAsP inserts as diffusion barriers. The implementation of these barriers in nanopillar light-emitting diodes provides a 5-fold increase in output intensity, making this a promising approach to high-efficiency pillar-based emitters in the near-infrared wavelength range.

  19. Inductive Position Sensor

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert C. (Inventor); Simmons, Stephen M. (Inventor)

    2015-01-01

    An inductive position sensor uses three independent inductors inductively coupled by a common medium such as air. First and second inductors are separated by a fixed distance with the first inductor's axial core and second inductor's axial core maintained parallel to one another. A third inductor is disposed between the first and second inductors with the third inductor's axial core being maintained parallel to those of the first and second inductors. The combination of the first and second inductors are configured for relative movement with the third inductor's axial core remaining parallel to those of the first and second inductors as distance changes from the third inductor to each of the first inductor and second inductor. An oscillating current can be supplied to at least one of the three inductors, while voltage induced in at least one of the three inductors not supplied with the oscillating current is measured.

  20. Megagauss-level magnetic field production in cm-scale auto-magnetizing helical liners pulsed to 500 kA in 125 ns

    DOE PAGES

    Shipley, Gabriel A.; Awe, Thomas James; Hutsel, Brian Thomas; ...

    2018-05-03

    We present Auto-magnetizing (AutoMag) liners [Slutz et al., Phys. Plasmas 24, 012704 (2017)] are designed to generate up to 100 T of axial magnetic field in the fuel for Magnetized Liner Inertial Fusion [Slutz et al., Phys. Plasmas 17, 056303 (2010)] without the need for external field coils. AutoMag liners (cylindrical tubes) are composed of discrete metallic helical conduction paths separated by electrically insulating material. Initially, helical current in the AutoMag liner produces internal axial magnetic field during a long (100 to 300 ns) current prepulse with an average current rise rate dI/dt=5 kA/ns. After the cold fuel is magnetized,more » a rapidly rising current (200 kA/ns) generates a calculated electric field of 64 MV/m between the helices. Such field is sufficient to force dielectric breakdown of the insulating material after which liner current is reoriented from helical to predominantly axial which ceases the AutoMag axial magnetic field production mechanism and the z-pinch liner implodes. Proof of concept experiments have been executed on the Mykonos linear transformer driver to measure the axial field produced by a variety of AutoMag liners and to evaluate what physical processes drive dielectric breakdown. Lastly, a range of field strengths have been generated in various cm-scale liners in agreement with magnetic transient simulations including a measured field above 90 T at I = 350 kA. By varying the helical pitch angle, insulator material, and insulator geometry, favorable liner designs have been identified for which breakdown occurs under predictable and reproducible field conditions.« less

  1. Megagauss-level magnetic field production in cm-scale auto-magnetizing helical liners pulsed to 500 kA in 125 ns

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shipley, Gabriel A.; Awe, Thomas James; Hutsel, Brian Thomas

    We present Auto-magnetizing (AutoMag) liners [Slutz et al., Phys. Plasmas 24, 012704 (2017)] are designed to generate up to 100 T of axial magnetic field in the fuel for Magnetized Liner Inertial Fusion [Slutz et al., Phys. Plasmas 17, 056303 (2010)] without the need for external field coils. AutoMag liners (cylindrical tubes) are composed of discrete metallic helical conduction paths separated by electrically insulating material. Initially, helical current in the AutoMag liner produces internal axial magnetic field during a long (100 to 300 ns) current prepulse with an average current rise rate dI/dt=5 kA/ns. After the cold fuel is magnetized,more » a rapidly rising current (200 kA/ns) generates a calculated electric field of 64 MV/m between the helices. Such field is sufficient to force dielectric breakdown of the insulating material after which liner current is reoriented from helical to predominantly axial which ceases the AutoMag axial magnetic field production mechanism and the z-pinch liner implodes. Proof of concept experiments have been executed on the Mykonos linear transformer driver to measure the axial field produced by a variety of AutoMag liners and to evaluate what physical processes drive dielectric breakdown. Lastly, a range of field strengths have been generated in various cm-scale liners in agreement with magnetic transient simulations including a measured field above 90 T at I = 350 kA. By varying the helical pitch angle, insulator material, and insulator geometry, favorable liner designs have been identified for which breakdown occurs under predictable and reproducible field conditions.« less

  2. Megagauss-level magnetic field production in cm-scale auto-magnetizing helical liners pulsed to 500 kA in 125 ns

    NASA Astrophysics Data System (ADS)

    Shipley, G. A.; Awe, T. J.; Hutsel, B. T.; Slutz, S. A.; Lamppa, D. C.; Greenly, J. B.; Hutchinson, T. M.

    2018-05-01

    Auto-magnetizing (AutoMag) liners [Slutz et al., Phys. Plasmas 24, 012704 (2017)] are designed to generate up to 100 T of axial magnetic field in the fuel for Magnetized Liner Inertial Fusion [Slutz et al., Phys. Plasmas 17, 056303 (2010)] without the need for external field coils. AutoMag liners (cylindrical tubes) are composed of discrete metallic helical conduction paths separated by electrically insulating material. Initially, helical current in the AutoMag liner produces internal axial magnetic field during a long (100 to 300 ns) current prepulse with an average current rise rate d I / d t = 5 k A / n s . After the cold fuel is magnetized, a rapidly rising current ( 200 k A / n s ) generates a calculated electric field of 64 M V / m between the helices. Such field is sufficient to force dielectric breakdown of the insulating material after which liner current is reoriented from helical to predominantly axial which ceases the AutoMag axial magnetic field production mechanism and the z-pinch liner implodes. Proof of concept experiments have been executed on the Mykonos linear transformer driver to measure the axial field produced by a variety of AutoMag liners and to evaluate what physical processes drive dielectric breakdown. A range of field strengths have been generated in various cm-scale liners in agreement with magnetic transient simulations including a measured field above 90 T at I = 350 kA. By varying the helical pitch angle, insulator material, and insulator geometry, favorable liner designs have been identified for which breakdown occurs under predictable and reproducible field conditions.

  3. Electric current locator

    DOEpatents

    King, Paul E [Corvallis, OR; Woodside, Charles Rigel [Corvallis, OR

    2012-02-07

    The disclosure herein provides an apparatus for location of a quantity of current vectors in an electrical device, where the current vector has a known direction and a known relative magnitude to an input current supplied to the electrical device. Mathematical constants used in Biot-Savart superposition equations are determined for the electrical device, the orientation of the apparatus, and relative magnitude of the current vector and the input current, and the apparatus utilizes magnetic field sensors oriented to a sensing plane to provide current vector location based on the solution of the Biot-Savart superposition equations. Description of required orientations between the apparatus and the electrical device are disclosed and various methods of determining the mathematical constants are presented.

  4. Harnessing Multivariate Statistics for Ellipsoidal Data in Structural Geology

    NASA Astrophysics Data System (ADS)

    Roberts, N.; Davis, J. R.; Titus, S.; Tikoff, B.

    2015-12-01

    Most structural geology articles do not state significance levels, report confidence intervals, or perform regressions to find trends. This is, in part, because structural data tend to include directions, orientations, ellipsoids, and tensors, which are not treatable by elementary statistics. We describe a full procedural methodology for the statistical treatment of ellipsoidal data. We use a reconstructed dataset of deformed ooids in Maryland from Cloos (1947) to illustrate the process. Normalized ellipsoids have five degrees of freedom and can be represented by a second order tensor. This tensor can be permuted into a five dimensional vector that belongs to a vector space and can be treated with standard multivariate statistics. Cloos made several claims about the distribution of deformation in the South Mountain fold, Maryland, and we reexamine two particular claims using hypothesis testing: 1) octahedral shear strain increases towards the axial plane of the fold; 2) finite strain orientation varies systematically along the trend of the axial trace as it bends with the Appalachian orogen. We then test the null hypothesis that the southern segment of South Mountain is the same as the northern segment. This test illustrates the application of ellipsoidal statistics, which combine both orientation and shape. We report confidence intervals for each test, and graphically display our results with novel plots. This poster illustrates the importance of statistics in structural geology, especially when working with noisy or small datasets.

  5. a Partial Wave Analysis of the Reaction Negative Pion Proton ---> Positive Pion Negative Pion Neutral Pion Neutron at 8.45 Gev/c.

    NASA Astrophysics Data System (ADS)

    Dankowych, John Alexander

    1980-06-01

    We have performed an isobar model partial wave analysis (PWA) of a high statistics sample of the reaction (pi)('-)p (,(--->)) (pi)('+)(pi)('-)(pi)('0)n at 8.45 GeV/c. We present strong evidence for the existence of the unnatural parity, isoscalar (H) and isovector (A(,1)) axial-vector mesons. The intensity distributions show significant structure while the forward phase motion relative to the isospin-2 axial-vector partial wave is consistent with that expected for Breit-Wigner resonances. The A(,1) production is mainly via M = 1, natural parity exchange while the H is produced mainly in M = 0, natural parity exchange. From a Deck model fit we obtain for the A(,1) a mass of 1241 (+OR-) 80 MeV and a width of 380 (+OR-) 100 MeV; for the H we obtain a mass of 1194 (+OR-) 55 MeV and a width of 320 (+OR-) 50 MeV. In nucleon spin flip we have evidence for an isovector, pseudoscalar resonance ((pi)') under the A(,2). The natural parity states : the (omega)(IJP = 01-), the A(,2) (IJP = 12+) and the (omega)(,g )(IJP = 03-) are strong features of the data. In the IJP = 01- partial wave thre is more cross-section than that expected for just the (omega)(783) tail.

  6. Decays of the vector glueball

    NASA Astrophysics Data System (ADS)

    Giacosa, Francesco; Sammet, Julia; Janowski, Stanislaus

    2017-06-01

    We calculate two- and three-body decays of the (lightest) vector glueball into (pseudo)scalar, (axial-)vector, as well as pseudovector and excited vector mesons in the framework of a model of QCD. While absolute values of widths cannot be predicted because the corresponding coupling constants are unknown, some interesting branching ratios can be evaluated by setting the mass of the yet hypothetical vector glueball to 3.8 GeV as predicted by quenched lattice QCD. We find that the decay mode ω π π should be one of the largest (both through the decay chain O →b1π →ω π π and through the direct coupling O →ω π π ). Similarly, the (direct and indirect) decay into π K K*(892 ) is sizable. Moreover, the decays into ρ π and K*(892 )K are, although subleading, possible and could play a role in explaining the ρ π puzzle of the charmonium state ψ (2 S ) thanks to a (small) mixing with the vector glueball. The vector glueball can be directly formed at the ongoing BESIII experiment as well as at the future PANDA experiment at the FAIR facility. If the width is sufficiently small (≲100 MeV ) it should not escape future detection. It should be stressed that the employed model is based on some inputs and simplifying assumptions: the value of glueball mass (at present, the quenched lattice value is used), the lack of mixing of the glueball with other quarkonium states, and the use of few interaction terms. It then represents a first step toward the identification of the main decay channels of the vector glueball, but shall be improved when corresponding experimental candidates and/or new lattice results will be available.

  7. Force Generation by Flapping Foils

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, P. R.; Donnelly, M.

    1996-11-01

    Aquatic animals like fish use flapping caudal fins to produce axial and cross-stream forces. During WW2, German scientists had built and tested an underwater vehicle powered by similar flapping foils. We have examined the forces produced by a pair of flapping foils. We have examined the forced produced by a pair of flapping foils attached to the tail end of a small axisymmetric cylinder. The foils operate in-phase (called waving), or in anti-phase (called clapping). In a low-speed water tunnel, we have undertaken time-dependent measurements of axial and cross-stream forces and moments that are exerted by the vortex shedding process over the entire body. Phase-matched LDV measurements of vorticity-velocity vectors, as well as limited flow visualization of the periodic vortex shedding process have also been carried out. The direction of the induced velocity within a pair of shed vortices determines the nature of the forces produced, viz., thrust or drag or cross-stream forces. The clapping mode produces a widely dispersed symmetric array of vortices which results in axial forces only (thrust and rag). On the other hand, the vortex array is staggered in the waving mode and cross-stream (maneuvering) forces are then generated.

  8. Stationary Plasma Thruster Ion Velocity Distribution

    NASA Technical Reports Server (NTRS)

    Manzella, David H.

    1994-01-01

    A nonintrusive velocity diagnostic based on laser induced fluorescence of the 5d4F(5/2)-6p4D(5/2) singly ionized xenon transition was used to interrogate the exhaust of a 1.5 kW Stationary Plasma Thruster (SPT). A detailed map of plume velocity vectors was obtained using a simplified, cost-effective, nonintrusive, semiconductor laser based scheme. Circumferential velocities on the order of 250 m/s were measured which implied induced momentum torques of approximately 5 x 10(exp -2) N-cm. Axial and radial velocities were evaluated one mm downstream of the cathode at several locations across the width of the annular acceleration channel. Radial velocities varied linearly with radial distance. A maximum radial velocity of 7500 m/s was measured 8 mm from the center of the channel. Axial velocities as large as 16,500 m/s were measured.

  9. Behavior of streamwise rib vortices in a three-dimensional mixing layer

    NASA Technical Reports Server (NTRS)

    Lopez, J. M.; Bulbeck, C. J.

    1992-01-01

    The structure and behavior of a streamwise rib vortex in a direct numerical simulation of a time-developing three-dimensional incompressible plane mixing layer is examined. Where the rib vortex is being stretched, the vorticity vector is primarily directed in the vortex axial direction and the radial and azimuthal velocity distribution is similar to that of a Burger's vortex. In the region where the vortex stretching is negative, there is a change in the local topology of the vortex. The axial flow is decelerated and a negative azimuthal component of vorticity is induced. These features are characteristic of vortex breakdown. The temporal evolution of the rib vortex is similar to the evolution of an axisymmetric vortex in the early stages of vortex breakdown. The effect of vortex breakdown on other parts of the flow is, however, not as significant as the interaction between the rib vortex and other vortices.

  10. Tilted shear-free axially symmetric fluids

    NASA Astrophysics Data System (ADS)

    Herrera, L.; Di Prisco, A.; Carot, J.

    2018-06-01

    We carry on a systematic study of the physical properties of axially symmetric fluid distributions, which appear to be geodesic, shearfree, irrotational, nondissipative, and purely electric, for the comoving congruence of observers, from the point of view of the tilted congruence. The vanishing of the magnetic part of the Weyl tensor for the comoving congruence of observers, suggests that no gravitational radiation is produced during the evolution of the system. Instead, the magnetic part of the Weyl tensor as measured by tilted observers is nonvanishing (as well as the shear, the four-acceleration, the vorticity and the dissipation), giving rise to a flux of gravitational radiation that can be characterized through the super-Poynting vector. This result strengthens further the relevance of the role of observers in the description of a physical system. An explanation of this dual interpretation in terms of the information theory, is provided.

  11. Thyra Abstract Interface Package

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bartlett, Roscoe A.

    2005-09-01

    Thrya primarily defines a set of abstract C++ class interfaces needed for the development of abstract numerical atgorithms (ANAs) such as iterative linear solvers, transient solvers all the way up to optimization. At the foundation of these interfaces are abstract C++ classes for vectors, vector spaces, linear operators and multi-vectors. Also included in the Thyra package is C++ code for creating concrete vector, vector space, linear operator, and multi-vector subclasses as well as other utilities to aid in the development of ANAs. Currently, very general and efficient concrete subclass implementations exist for serial and SPMD in-core vectors and multi-vectors. Codemore » also currently exists for testing objects and providing composite objects such as product vectors.« less

  12. Investigation of transverse oscillation method.

    PubMed

    Udesen, Jesper; Jensen, Jørgen Arendt

    2006-05-01

    Conventional ultrasound scanners can display only the axial component of the blood velocity vector, which is a significant limitation when vessels nearly parallel to the skin surface are scanned. The transverse oscillation (TO) method overcomes this limitation by introducing a TO and an axial oscillation in the pulse echo field. The theory behind the creation of the double oscillation pulse echo field is explained as well as the theory behind the estimation of the vector velocity. A parameter study of the method is performed, using the ultrasound simulation program Field II. A virtual linear-array transducer with center frequency 7 MHz and 128 active elements is created, and a virtual blood vessel of radius 6.4 mm is simulated. The performance of the TO method is found around an initial point in the parameter space. The parameters varied are: flow angle, transmit focus depth, receive apodization, pulse length, transverse wave length, number of emissions, signal-to-noise ratio (SNR), and type of echo-canceling filter used. Using an experimental scanner, the performance of the TO method is evaluated. An experimental flowrig is used to create laminar parabolic flow in a blood mimicking fluid, and the fluid is scanned under different flow-to-beam angles. The relative standard deviation on the transverse velocity estimate is found to be less than 10% for all angles between 50 degrees and 90 degrees. Furthermore, the TO method is evaluated in the flowrig using pulsatile flow, which resembles the flow in the femoral artery. The estimated volume flow as a function of time is compared to the volume flow derived from a conventional axial method at a flow-to-beam angle of 60 degrees. It is found that the method is highly sensitive to the angle between the flow and the beam direction. Also, the choice of echo canceling filter affects the performance significantly.

  13. Axial pain after posterior cervical spine surgery: a systematic review.

    PubMed

    Wang, Shan-Jin; Jiang, Sheng-Dan; Jiang, Lei-Sheng; Dai, Li-Yang

    2011-02-01

    Posterior operative approach has been the standard treatment for cervical compressive myelopathy, and axial pain after laminoplasty or laminectomy as a postoperative complication is now gradually receiving more and more attention. The objective of this study was to provide a systematic review of the current understanding of axial pain after cervical laminoplasty and laminectomy, and summarize clinical features, influence factors and preventive measures of axial pain after posterior decompressive surgery based on a review of literature published in the English language. Axial pain distributes over nuchal, periscapular and shoulder regions. Posterior surgery is not the major cause of axial pain, but axial pain can be worsened by the procedure. There are many clinical factors that influence postoperative axial pain such as age, preoperative axial pain, different surgical technique and postoperative management, but most of them are still controversial. Several surgical modifications have been innovated to reduce axial pain. Less invasive surgery, reconstruction of the extensor musculature, avoiding detachment of the semispinalis cervicis muscle and early removal of external immobilization have proved to be effective. Axial pain is under the influence of multiple factors, so comprehensive methods are required to reduce and avoid the postoperative axial pain. Because of methodological shortcomings in publications included in this systematic review, different results from different studies may be produced due to differences in study design, evaluation criteria, sample size, and incidence or severity of axial pain. More high-quality studies are necessary for drawing more reliable and convincing conclusions.

  14. Computational Investigation of Combustion Dynamics in a Lean-Direct Injection Gas Turbine Combustor

    DTIC Science & Technology

    2012-11-01

    variable vector which includes turbulence kinetic energy and specific dissipation, k and w; In the viscous flux, D is the molecular diffusion coefficient...for the liquid particle. This equation assumes the uniform temperature inside the liquid particle. The source term consist of the net sensible ...Spray Characteristics on Diesel Engine Combustion and Emission, SAE 980131, 1998 24 Fu, Y., “Aerodynamics and Combustion of Axial Swirlers,” Ph . D. dissertation from the University of Cincinnati, 2008.

  15. Cervical Spline Analysis for Ejection Injury Prediction.

    DTIC Science & Technology

    1982-11-30

    that the curva- ture ( lordosis ) of the spine will ensure that purely axial load will never exist. A second limitation is that the model is incapable of...tolerate shear; b)- The relative alignment of the spinal lordosis to the acceleration vector. Any ejection configuration which do~es not respect these two... lordosis in or- der to achieve zero shear at the O/CI/C2 joints. An air bag may pre- vent this geometry change. %b suggest that the air bag system should

  16. Experimental Investigation of Pseudospark generated electron beam

    NASA Astrophysics Data System (ADS)

    Kumar, Niraj; Verma, D. K.; Prajapati, J.; Kumar, M.; Meena, B. L.; Tyagi, M. S.; Srivastava, V.; Pal, U. N.

    2012-11-01

    The pseudospark (PS) discharge is, however, more recently recognized as a different type of discharge which is capable of generating electron beams with the highest combined current density and brightness of any known type of electron source. PS discharge is a specific type of gas discharge, which operates on the left-hand side of the hollow cathode analogy to the Paschen curve with axially symmetric parallel electrodes and central holes on the electrodes. The PS discharge generated electron beam has tremendous applications in plasma filled microwave sources where normal material cathode cannot be used. Analysis of the electron beam profile has been carried out experimentally for different applied voltages. The investigation has been done at different axial and radial location inside the drift tube in argon atmosphere. This paper represents experimentally derived axial and radial variation of the beam current inside the plasma filled drift tube of PS discharge based plasma cathode electron (PCE) gun. With the help of current density estimation the focusing and defocusing point of electron beam in axial direction can be analyzed. It has been further confirmed the successful propagation of electron beam in confined manner without any assistance of external magnetic field.

  17. On Multiple Hall-Like Electron Currents and Tripolar Guide Magnetic Field Perturbations During Kelvin-Helmholtz Waves

    NASA Astrophysics Data System (ADS)

    Sturner, Andrew P.; Eriksson, Stefan; Nakamura, Takuma; Gershman, Daniel J.; Plaschke, Ferdinand; Ergun, Robert E.; Wilder, Frederick D.; Giles, Barbara; Pollock, Craig; Paterson, William R.; Strangeway, Robert J.; Baumjohann, Wolfgang; Burch, James L.

    2018-02-01

    Two magnetopause current sheet crossings with tripolar guide magnetic field signatures were observed by multiple Magnetosphere Multiscale (MMS) spacecraft during Kelvin-Helmholtz wave activity. The two out-of-plane magnetic field depressions of the tripolar guide magnetic field are largely supported by the observed in-plane electron currents, which are reminiscent of two clockwise Hall current loop systems. A comparison with a three-dimensional kinetic simulation of Kelvin-Helmholtz waves and vortex-induced reconnection suggests that MMS likely encountered the two Hall magnetic field depressions on either side of a magnetic reconnection X-line. Moreover, MMS observed an out-of-plane current reversal and a corresponding in-plane magnetic field rotation at the center of one of the current sheets, suggesting the presence of two adjacent flux ropes. The region inside one of the ion-scale flux ropes was characterized by an observed decrease of the total magnetic field, a strong axial current, and significant enhancements of electron density and parallel electron temperature. The flux rope boundary was characterized by currents opposite this axial current, strong in-plane and converging electric fields, parallel electric fields, and weak electron-frame Joule dissipation. These return current region observations may reflect a need to support the axial current rather than representing local reconnection signatures in the absence of any exhausts.

  18. CURRENT TRANSFER SYSTEMS

    DOEpatents

    Watt, D.A.

    1956-07-01

    A current transfer system is described for transferring current between a rotating member and a co-axial stationary member. The particular area of application for the invention is in connection with homopolar generators where a low voltage and high current are generated. The current tramsfer system of the invention comprises a rotor member and a co-axial stator member wherein one of the members is shaped to provide a circumferential surface concave in section and the other member is shaped to have a peripheral portion in close proximity to the surface, whereby a liquid metal can be stably supported between the two members when they are moving relative to one another to establish an electrical conducting path between the members.

  19. Quasi-elastic light-scattering studies of single skeletal muscle fibers.

    PubMed Central

    Haskell, R C; Carlson, F D

    1981-01-01

    Measurements were made of the intensity autocorrelation function, g(2)[tau], of light scattered from intact frog muscle fibers. During the tension plateau of an isometric tenanus, scattered field statistics were approximately Gaussian and intensity fluctuations were quasi-stationary. The half time, tau 1/2, for the decay of g(2)[tau] was typically 70 ms at a scattering angle of 30 degrees. The decay rate, 1/tau 1/2, of g(2)[tau] varied roughly linearly with the projection of the scattering vector on the fiber axis. 1/tau 1/2 was greater during the tension creep phase of tetani of highly stretched fibers, but was roughly independent of sarcomere length during the tension plateau. g(2)[tau] measured during rest or on diffraction pattern maxima during isometric contraction were flat with low amplitudes. These results are consistent with a model of a 200-mu m segment of an isometrically contracting fiber in which scattering material possesses relative axial velocities of 1-2 mu m/s accompanied by relative axial displacements greater than 0.1 mu m. The slow (1-2 mu m/s) motion of one portion of the fiber relative to another observed under the microscope (500X) during isometric contraction is consistent with the light-scattering results. Structural fluctuations on the scale of the myofibrillar sarcomere which may arise from asynchronous cycling of cross-bridges must involve relative axial velocities less than 3 mu m/s or relative axial displacements less than 0.05 mu m. PMID:6974014

  20. Reciprocating linear motor

    NASA Technical Reports Server (NTRS)

    Goldowsky, Michael P. (Inventor)

    1987-01-01

    A reciprocating linear motor is formed with a pair of ring-shaped permanent magnets having opposite radial polarizations, held axially apart by a nonmagnetic yoke, which serves as an axially displaceable armature assembly. A pair of annularly wound coils having axial lengths which differ from the axial lengths of the permanent magnets are serially coupled together in mutual opposition and positioned with an outer cylindrical core in axial symmetry about the armature assembly. One embodiment includes a second pair of annularly wound coils serially coupled together in mutual opposition and an inner cylindrical core positioned in axial symmetry inside the armature radially opposite to the first pair of coils. Application of a potential difference across a serial connection of the two pairs of coils creates a current flow perpendicular to the magnetic field created by the armature magnets, thereby causing limited linear displacement of the magnets relative to the coils.

  1. A new EMI system for detection and classification of challenging targets

    NASA Astrophysics Data System (ADS)

    Shubitidze, F.; Fernández, J. P.; Barrowes, B. E.; O'Neill, K.

    2013-06-01

    Advanced electromagnetic induction (EMI) sensors currently feature multi-axis illumination of targets and tri-axial vector sensing (e.g., MetalMapper), or exploit multi-static array data acquisition (e.g., TEMTADS). They produce data of high density, quality, and diversity, and have been combined with advanced EMI models to provide superb classification performance relative to the previous generation of single-axis, monostatic sensors. However, these advances yet have to improve significantly our ability to classify small, deep, and otherwise challenging targets. Particularly, recent live-site discrimination studies at Camp Butner, NC and Camp Beale, CA have revealed that it is more challenging to detect and discriminate small munitions (with calibers ranging from 20 mm to 60 mm) than larger ones. In addition, a live-site test at the Massachusetts Military Reservation, MA highlighted the difficulties for current sensors to classify large, deep, and overlapping targets with high confidence. There are two main approaches to overcome these problems: 1) adapt advanced EMI models to the existing systems and 2) improve the detection limits of current sensors by modifying their hardware. In this paper we demonstrate a combined software/hardware approach that will provide extended detection range and spatial resolution to next-generation EMI systems; we analyze and invert EMI data to extract classification features for small and deep targets; and we propose a new system that features a large transmitter coil.

  2. Up, down, and strange nucleon axial form factors from lattice QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Green, Jeremy; Hasan, Nesreen; Meinel, Stefan

    Here, we report a calculation of the nucleon axial form factorsmore » $$G_A^q(Q^2)$$ and $$G_P^q(Q^2)$$ for all three light quark flavors $$q\\in\\{u,d,s\\}$$ in the range $$0\\leq Q^2\\lesssim 1.2\\text{ GeV}^2$$ using lattice QCD. Our work was done using a single ensemble with pion mass 317 MeV and made use of the hierarchical probing technique to efficiently evaluate the required disconnected loops. We perform nonperturbative renormalization of the axial current, including a nonperturbative treatment of the mixing between light and strange currents due to the singlet-nonsinglet difference caused by the axial anomaly. The form factor shapes are fit using the model-independent $z$ expansion. From $$G_A^q(Q^2)$$, we determine the quark contributions to the nucleon spin and axial radii. By extrapolating the isovector $$G_P^{u-d}(Q^2)$$, we obtain the induced pseudoscalar coupling relevant for ordinary muon capture and the pion-nucleon coupling constant. We also found that the disconnected contributions to $$G_P$$ form factors are large, and give an interpretation based on the dominant influence of the pseudoscalar poles in these form factors.« less

  3. Up, down, and strange nucleon axial form factors from lattice QCD

    DOE PAGES

    Green, Jeremy; Hasan, Nesreen; Meinel, Stefan; ...

    2017-06-14

    Here, we report a calculation of the nucleon axial form factorsmore » $$G_A^q(Q^2)$$ and $$G_P^q(Q^2)$$ for all three light quark flavors $$q\\in\\{u,d,s\\}$$ in the range $$0\\leq Q^2\\lesssim 1.2\\text{ GeV}^2$$ using lattice QCD. Our work was done using a single ensemble with pion mass 317 MeV and made use of the hierarchical probing technique to efficiently evaluate the required disconnected loops. We perform nonperturbative renormalization of the axial current, including a nonperturbative treatment of the mixing between light and strange currents due to the singlet-nonsinglet difference caused by the axial anomaly. The form factor shapes are fit using the model-independent $z$ expansion. From $$G_A^q(Q^2)$$, we determine the quark contributions to the nucleon spin and axial radii. By extrapolating the isovector $$G_P^{u-d}(Q^2)$$, we obtain the induced pseudoscalar coupling relevant for ordinary muon capture and the pion-nucleon coupling constant. We also found that the disconnected contributions to $$G_P$$ form factors are large, and give an interpretation based on the dominant influence of the pseudoscalar poles in these form factors.« less

  4. Measurement of sin 2 θ ℓ eff and Z-light quark couplings using the forward-backward charge asymmetry in pp -> Z/gamma * -> e +e - events with L=5.0 fb -1 at √s=1.96 TeV

    DOE PAGES

    Abazov, V. M.

    2011-07-26

    We measure the mass dependence of the forward-backward charge asymmetry in 157,553 pp = Z/γ* = e +e - interactions, corresponding to 5.0 fb -1 of integrated luminosity collected by the D0 experiment at the Fermilab Tevatron Collider at √s = 1.96 TeV. The effective weak mixing angle (θ ℓ eff) from this process involving predominantly the first generation of quarks is extracted as sin 2 θ ℓ eff = 0.2309 ± 0.0008 (stat.) ± 0.0006 (syst.). We also present the most precise direct measurement of the vector and axial-vector couplings of u and d quarks to the Z boson.

  5. Experimental Analysis of Pseudospark Sourced Electron Beam

    NASA Astrophysics Data System (ADS)

    Kumar, Niraj; Pal, U. N.; Verma, D. K.; Prajapati, J.; Kumar, M.; Meena, B. L.; Tyagi, M. S.; Srivastava, V.

    2011-12-01

    The pseudospark (PS) discharge has been shown to be a promising source of high brightness, high intensity electron beam pulses. The PS discharge sourced electron beam has potential applications in plasma filled microwave sources where normal material cathode cannot be used. Analysis of the electron beam profile has been done experimentally for different applied voltages. The investigation has been carried out at different axial and radial location inside the drift space in argon atmosphere. This paper represents experimentally found axial and radial variation of the beam current inside the drift tube of PS discharge based plasma cathode electron (PCE) gun. With the help of current density estimation the focusing and defocusing point of electron beam in axial direction can be analyzed.

  6. A measurement of the polarization asymmetry of the tau lepton using the L3 detector at LEP

    NASA Astrophysics Data System (ADS)

    Kim, Doris Yangsoo

    1997-07-01

    With a data sample of 58,000 e- e+/to τ- τ+(γ) events collected in the L3 detector at LEP during 1994, we did a measurement of the polarization of τ leptons as a function of the τ- production polar angle with respect to the incident e- beam direction. We used the following 1-prong τ decay channels: τ-to e- barνeντ τ- toμ- barνμντ τ- to π- ντ τ- to ρ- ντ, and τ- to a1-ντ. As the result, we obtained the asymmetries Aτ = 0.156 ± 0.017±0.009, and A e = 0.155±0.025±0.005. Combining this with the previous 1990-1993 data measurement by L3, we obtained Aτ = 0.152±0.010±0.009, and A e = 0.156±0.016± 0.005. These asymmetries gave the ratio of vector to axial-vector weak neutral coupling constants for electrons as gVe/gAe = 0.0787± 0.0078± 0.0025 and for taus as gVτ/gAτ = 0.0763± 0.0051±0.0044. The numbers are consistent with the hypothesis of e - τ lepton universality. Assuming the e - τ neutral current universality, the effective electroweak mixing angle is calculated as sin2 θweff = 0.2308/pm 0.0013.

  7. An investigation into the vector ellipticity of extremely low frequency magnetic fields from appliances in UK homes

    NASA Astrophysics Data System (ADS)

    Ainsbury, Elizabeth A.; Conein, Emma; Henshaw, Denis L.

    2005-07-01

    Elliptically polarized magnetic fields induce higher currents in the body compared with their plane polarized counterparts. This investigation examines the degree of vector ellipticity of extremely low frequency magnetic fields (ELF-MFs) in the home, with regard to the adverse health effects reportedly associated with ELF-MFs, for instance childhood leukaemia. Tri-axial measurements of the magnitude and phase of the 0-3000 Hz magnetic fields, produced by 226 domestic mains-fed appliances of 32 different types, were carried out in 16 homes in Worcestershire in the summer of 2004. Magnetic field strengths were low, with average (RMS) values of 0.03 ± 0.02 µT across all residences. In contrast, background field ellipticities were high, on average 47 ± 11%. Microwave and electric ovens produced the highest ellipticities: mean respective values of 21 ± 21% and 21 ± 17% were observed 20 cm away from these appliances. There was a negative correlation between field strength and field polarization, which we attribute to the higher relative field contribution close to each individual (single-phase) appliance. The measurements demonstrate that domestic magnetic fields are extremely complex and cannot simply be characterized by traditional measurements such as time-weighted average or peak exposure levels. We conclude that ellipticity should become a relevant metric for future epidemiological studies of health and ELF-MF exposure. This work is supported by the charity CHILDREN with LEUKAEMIA, registered charity number 298405.

  8. Experimental Studies on Strength Behaviour of Notched Glass/Epoxy Laminated Composites under Uni-axial and Bi-axial Loading

    NASA Astrophysics Data System (ADS)

    Guptha, V. L. Jagannatha; Sharma, Ramesh S.

    2017-11-01

    The use of FRP composite materials in aerospace, aviation, marine, automotive and civil engineering industry has increased rapidly in recent years due to their high specific strength and stiffness properties. The structural members contrived from such composite materials are generally subjected to complex loading conditions and leads to multi-axial stress conditions at critical surface localities. Presence of notches, much required for joining process of composites, makes it further significant. The current practice of using uni-axial test data alone to validate proposed material models is inadequate leading to evaluation and consideration of bi-axial test data. In order to correlate the bi-axial strengths with the uni-axial strengths of GFRP composite laminates in the presence of a circular notch, bi-axial tests using four servo-hydraulic actuators with four load cells were carried out. To determine the in-plane strength parameters, bi-axial cruciform test specimen model was considered. Three different fibre orientations, namely, 0°, 45°, and 90° are considered with a central circular notch of 10 mm diameter in the present investigation. From the results obtained, it is observed that there is a reduction in strength of 5.36, 2.41 and 13.92% in 0°, 45°, and 90° fibre orientation, respectively, under bi-axial loading condition as compared to that of uni-axial loading in laminated composite.

  9. Low-frequency instabilities and plasma turbulence

    NASA Technical Reports Server (NTRS)

    Ilic, D. B.

    1973-01-01

    A theoretical and experimental study is reported of steady-state and time-dependent characteristics of the positive column and the hollow cathode discharge (HCD). The steady state of a non-isothermal, cylindrical positive column in an axial magnetic field is described by three moment equations in the plasma approximation. Volume generation of electron-ion pairs by single-stage ionization, the presence of axial current, and collisions with neutrals are considered. The theory covers the range from the low pressure, collisionless regime to the intermediate pressure, collisional regime. It yields radial profiles of the charged particle velocities, density, potential, electron and ion temperatures, and demonstrates similarity laws for the positive column. The results are compared with two moment theories and with experimental data on He, Ar and Hg found in the literature for a wide range of pressures. A simple generalization of the isothermal theory for an infinitely long cylinder in an axial magnetic field to the case of a finite column with axial current flow is also demonstrated.

  10. An investigation of transient pressure and plasma properties in a pinched plasma column. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Stover, E. K.; York, T. M.

    1971-01-01

    The transient pinched plasma column generated in a linear Z-pinch was studied experimentally and analytically. The plasma column was investigated experimentally with the following plasma diagnostics: a special rapid response pressure transducer, a magnetic field probe, a voltage probe and discharge luminosity. Axial pressure profiles on the discharge chamber axis were used to identify three characteristic regions of plasma column behavior; they were in temporal sequence: strong axial pressure asymmetry noted early in plasma column lifetime followed by plasma heating in which there is a rapid rise in static pressure and a slight decrease static pressure before plasma column breakup. Plasma column lifetime was approximately 5 microseconds. The axial pressure asymmetry was attributed to nonsimultaneous pinching of the imploding current sheet along the discharge chamber axis. The rapid heating is attributed in part to viscous effects introduced by radial gradients in the axial streaming velocity. Turbulent heating arising from discharge current excitation of the ion acoustic wave instability is also considered a possible heating mechanism.

  11. Quasi-Axially Symmetric Stellarators with 3 Field Periods

    NASA Astrophysics Data System (ADS)

    Garabedian, Paul; Ku, Long-Poe

    1998-11-01

    Compact hybrid configurations with 2 field periods have been studied recently as candidates for a proof of principle experiment at PPPL, cf. A. Reiman et al., Physics design of a high beta quasi-axially symmetric stellarator, J. Plas. Fus. Res. SERIES 1, 429(1998). This enterprise has led us to the discovery of a family of quasi-axially symmetric stellarators with 3 field periods that seem to have significant advantages, although their aspect ratios are a little larger. They have reversed shear and perform better in a local analysis of ballooning modes. Nonlinear equilibrium and stability calculations predict that the average beta limit may be as high as 6% if the bootstrap current turns out to be as big as that expected in comparable tokamaks. The concept relies on a combination of helical fields and bootstrap current to achieve adequate rotational transform at low aspect ratio. A detailed manuscript describing some of this work will be published soon, cf. P.R. Garabedian, Quasi-axially symmetric stellarators, Proc. Natl. Acad. Sci. USA 95 (1998).

  12. ON THE STRENGTH OF THE HEMISPHERIC RULE AND THE ORIGIN OF ACTIVE-REGION HELICITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Y.-M., E-mail: yi.wang@nrl.navy.mil

    Vector magnetograph and morphological observations have shown that the solar magnetic field tends to have negative (positive) helicity in the northern (southern) hemisphere, although only ∼60%-70% of active regions appear to obey this 'hemispheric rule'. In contrast, at least ∼80% of quiescent filaments and filament channels that form during the decay of active regions follow the rule. We attribute this discrepancy to the difficulty in determining the helicity sign of newly emerged active regions, which are dominated by their current-free component; as the transverse field is canceled at the polarity inversion lines, however, the axial component becomes dominant there, allowingmore » a more reliable determination of the original active-region chirality. We thus deduce that the hemispheric rule is far stronger than generally assumed, and cannot be explained by stochastic processes. Earlier studies have shown that the twist associated with the axial tilt of active regions is too small to account for the observed helicity; here, both tilt and twist are induced by the Coriolis force acting on the diverging flow in the emerging flux tube. However, in addition to this east-west expansion about the apex of the loop, each of its legs must expand continually in cross section during its rise through the convection zone, thereby acquiring a further twist through the Coriolis force. Since this transverse pressure effect is not limited by drag or tension forces, the final twist depends mainly on the rise time, and may be large enough to explain the observed active-region helicity.« less

  13. Thrust and torque vector characteristics of axially-symmetric E-sail

    NASA Astrophysics Data System (ADS)

    Bassetto, Marco; Mengali, Giovanni; Quarta, Alessandro A.

    2018-05-01

    The Electric Solar Wind Sail is an innovative propulsion system concept that gains propulsive acceleration from the interaction with charged particles released by the Sun. The aim of this paper is to obtain analytical expressions for the thrust and torque vectors of a spinning sail of given shape. Under the only assumption that each tether belongs to a plane containing the spacecraft spin axis, a general analytical relation is found for the thrust and torque vectors as a function of the spacecraft attitude relative to an orbital reference frame. The results are then applied to the noteworthy situation of a Sun-facing sail, that is, when the spacecraft spin axis is aligned with the Sun-spacecraft line, which approximatively coincides with the solar wind direction. In that case, the paper discusses the equilibrium shape of the generic conducting tether as a function of the sail geometry and the spin rate, using both a numerical and an analytical (approximate) approach. As a result, the structural characteristics of the conducting tether are related to the spacecraft geometric parameters.

  14. Development of a two-dimensional dual pendulum thrust stand for Hall thrusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagao, N.; Yokota, S.; Komurasaki, K.

    A two-dimensional dual pendulum thrust stand was developed to measure thrust vectors (axial and horizontal (transverse) direction thrusts) of a Hall thruster. A thruster with a steering mechanism is mounted on the inner pendulum, and thrust is measured from the displacement between inner and outer pendulums, by which a thermal drift effect is canceled out. Two crossover knife-edges support each pendulum arm: one is set on the other at a right angle. They enable the pendulums to swing in two directions. Thrust calibration using a pulley and weight system showed that the measurement errors were less than 0.25 mN (1.4%)more » in the main thrust direction and 0.09 mN (1.4%) in its transverse direction. The thrust angle of the thrust vector was measured with the stand using the thruster. Consequently, a vector deviation from the main thrust direction of {+-}2.3 deg. was measured with the error of {+-}0.2 deg. under the typical operating conditions for the thruster.« less

  15. Transgenesis and paratransgenesis to control insect-borne diseases: Current status and future challenges

    PubMed Central

    Coutinho-Abreu, Iliano V.; Zhu, Kun Yan; Ramalho-Ortigao, Marcelo

    2009-01-01

    Insect-borne diseases cause significant human morbidity and mortality. Current control and preventive methods against vector-borne diseases rely mainly on insecticides. The emergence of insecticide resistance in many disease vectors highlights the necessity to develop new strategies to control these insects. Vector transgenesis and paratransgenesis are novel strategies that aim at reducing insect vectorial capacity, or seek to eliminate transmission of pathogens such as Plasmodium sp., Trypanosoma sp., and Dengue virus currently being developed. Vector transgenesis relies on direct genetic manipulation of disease vectors making them incapable of functioning as vectors of a given pathogen. Paratransgenesis focuses on utilizing genetically modified insect symbionts to express molecules within the vector that are deleterious to pathogens they transmit. Despite the many successes achieved in developing such techniques in the last several years, many significant barriers remain and need to be overcome prior to any of these approaches become a reality. Here, we highlight the current status of these strategies, pointing out advantages and constraints, and also explore issues that need to be resolved before the establishment of transgenesis and paratransgenesis as tools to prevent vector-borne diseases. PMID:19819346

  16. Focusing properties of arbitrary optical fields combining spiral phase and cylindrically symmetric state of polarization.

    PubMed

    Man, Zhongsheng; Bai, Zhidong; Zhang, Shuoshuo; Li, Jinjian; Li, Xiaoyu; Ge, Xiaolu; Zhang, Yuquan; Fu, Shenggui

    2018-06-01

    The tight focusing properties of optical fields combining a spiral phase and cylindrically symmetric state of polarization are presented. First, we theoretically analyze the mathematical characterization, Stokes parameters, and Poincaré sphere representations of arbitrary cylindrical vector (CV) vortex beams. Then, based on the vector diffraction theory, we derive and build an integrated analytical model to calculate the electromagnetic field and Poynting vector distributions of the input CV vortex beams. The calculations reveal that a generalized CV vortex beam can generate a sharper focal spot than that of a radially polarized (RP) plane beam in the focal plane. Besides, the focal size decrease accompanies its elongation along the optical axis. Hence, it seems that there is a trade-off between the transverse and axial resolutions. In addition, under the precondition that the absolute values between polarization order and topological charge are equal, a higher-order CV vortex can also achieve a smaller focal size than an RP plane beam. Further, the intensity for the sidelobe admits a significant suppression. To give a deep understanding of the peculiar focusing properties, the magnetic field and Poynting vector distributions are also demonstrated in detail. These properties may be helpful in applications such as optical trapping and manipulation of particles and superresolution microscopy imaging.

  17. Prospects for dark matter detection with inelastic transitions of xenon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCabe, Christopher

    2016-05-16

    Dark matter can scatter and excite a nucleus to a low-lying excitation in a direct detection experiment. This signature is distinct from the canonical elastic scattering signal because the inelastic signal also contains the energy deposited from the subsequent prompt de-excitation of the nucleus. A measurement of the elastic and inelastic signal will allow a single experiment to distinguish between a spin-independent and spin-dependent interaction. For the first time, we characterise the inelastic signal for two-phase xenon detectors in which dark matter inelastically scatters off the {sup 129}Xe or {sup 131}Xe isotope. We do this by implementing a realistic simulationmore » of a typical tonne-scale two-phase xenon detector and by carefully estimating the relevant background signals. With our detector simulation, we explore whether the inelastic signal from the axial-vector interaction is detectable with upcoming tonne-scale detectors. We find that two-phase detectors allow for some discrimination between signal and background so that it is possible to detect dark matter that inelastically scatters off either the {sup 129}Xe or {sup 131}Xe isotope for dark matter particles that are heavier than approximately 100 GeV. If, after two years of data, the XENON1T search for elastic scattering nuclei finds no evidence for dark matter, the possibility of ever detecting an inelastic signal from the axial-vector interaction will be almost entirely excluded.« less

  18. Transcatheter valve implantation can alter fluid flow fields in aortic sinuses and ascending aorta

    NASA Astrophysics Data System (ADS)

    Saikrishnan, Neelakantan; Yoganathan, Ajit

    2012-11-01

    Transcatheter aortic valves (TAVs) are valve replacements used to treat aortic stenosis. Currently, these have been used in elderly patients at high-risk for open-heart procedures. Since these devices are implanted under fluoroscopic guidance, the implantation position of the valve can vary with respect to the native aortic valve annulus. The current study characterizes the altered hemodynamics in the aortic sinus and ascending aorta under different implantation (high and low) and cardiac output (2.5 and 5.0 L/min) conditions. Two commonly used TAV designs are studied using 2-D Particle Image Velocimetry (PIV). 200 phase locked images are obtained at every 25ms in the cardiac cycle, and the resulting vector fields are ensemble averaged. High implantation of the TAV with respect to the annulus causes weaker sinus washout and weaker sinus vortex formation. Additionally, the longer TAV leaflets can also result in a weaker sinus vortex. The level of turbulent fluctuations in the ascending aorta did not appear to be affected by axial positioning of the valve, but varied with cardiac output. The results of this study indicates that TAV positioning is important to be considered clinically, since this can affect coronary perfusion and potential flow stagnation near the valve.

  19. Chiral anomaly, Berry phase, and chiral kinetic theory from worldlines in quantum field theory

    NASA Astrophysics Data System (ADS)

    Mueller, Niklas; Venugopalan, Raju

    2018-03-01

    In previous work, we outlined a worldline framework that can be used for systematic computations of the chiral magnetic effect (CME) in ultrarelativistic heavy-ion collisions. Towards this end, we first expressed the real part of the fermion determinant in the QCD effective action as a supersymmetric worldline action of spinning, colored, Grassmanian point particles in background gauge fields, with equations of motion that are covariant generalizations of the Bargmann-Michel-Telegdi and Wong equations. The chiral anomaly, in contrast, arises from the phase of the fermion determinant. Remarkably, the latter too can be expressed as a point particle worldline path integral, which can be employed to derive the anomalous axial vector current. We will show here how Berry's phase can be obtained in a consistent nonrelativistic adiabatic limit of the real part of the fermion determinant. Our work provides a general first principles demonstration that the topology of Berry's phase is distinct from that of the chiral anomaly confirming prior arguments by Fujikawa in specific contexts. This suggests that chiral kinetic treatments of the CME in heavy-ion collisions that include Berry's phase alone are incomplete. We outline the elements of a worldline covariant relativistic chiral kinetic theory that captures the physics of how the chiral current is modified by many-body scattering and topological fluctuations.

  20. Influence of Hall Effect on Magnetic Control of Stagnation Point Heat Transfer

    NASA Astrophysics Data System (ADS)

    Poggie, Jonathan; Gaitonde, Datta

    2001-11-01

    Electromagnetic control is an appealing possibility for mitigating the thermal loads that occur in hypersonic flight. There was extensive research on this technique in the past (up to about 1970), but enthusiasm waned because of problems of system cost and weight. Renewed interest has arisen recently due to developments in the technology of super-conducting magnets and the understanding of the physics of weakly-ionized, non-equilibrium plasmas. A problem of particular interest is the reduction of stagnation point heating during atmospheric entry by magnetic deceleration of the flow in the shock layer. For the case of hypersonic flow over a sphere, a reduction in heat flux has been observed with the application of a dipole magnetic field (Poggie and Gaitonde, AIAA Paper 2001-0196). The Hall effect has a detrimental influence on this control scheme, tending to rotate the current vector out of the circumferential direction and to reduce the impact of the applied magnetic field on the fluid. In the present work we re-examine this problem by using modern computational methods to simulate flow past a hemispherical-nosed vehicle in which a axially-oriented magnetic dipole has been placed. The deleterious effects of the Hall current are characterized, and are observed to diminish when the surface of the vehicle is conducting.

  1. The Application of a Technique for Vector Correlation to Problems in Meteorology and Oceanography.

    NASA Astrophysics Data System (ADS)

    Breaker, L. C.; Gemmill, W. H.; Crosby, D. S.

    1994-11-01

    In a recent study, Crosby et al. proposed a definition for vector correlation that has not been commonly used in meteorology or oceanography. This definition has both a firm theoretical basis and a rather complete set of desirable statistical properties. In this study, the authors apply the definition to practical problems arising in meteorology and oceanography. In the first of two case studies, vector correlations were calculated between subsurface currents for five locations along the southeastern shore of Lake Erie. Vector correlations for one sample size were calculated for all current meter combinations, first including the seiche frequency and then with the seiche frequency removed. Removal of the seiche frequency, which was easily detected in the current spectra, had only a small effect on the vector correlations. Under reasonable assumptions, the vector correlations were in most cases statistically significant and revealed considerable fine structure in the vector correlation sequences. In some cases, major variations in vector correlation coincided with changes in surface wind. The vector correlations for the various current meter combinations decreased rapidly with increasing spatial separation. For one current meter combination, canonical correlations were also calculated; the first canonical correlation tended to retain the underlying trend, whereas the second canonical correlation retained the peaks in the vector correlations.In the second case study, vector correlations were calculated between marine surface winds derived from the National Meteorological Center's Global Data Assimilation System and observed winds acquired from the network of National Data Buoy Center buoys that are located off the continental United States and in the Gulf of Alaska. Results of this comparison indicated that 1) there was a significant decrease in correlation between the predicted and observed winds with increasing forecast interval out to 72 h, 2) the technique provides a sensitive indicator for detecting bad buoy reports, and 3) there was no obvious seasonal cycle in the monthly vector correlations for the period of observation.

  2. Measurement of axial injection displacement with trim coil current unbalance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Covo, Michel Kireeff, E-mail: mkireeffcovo@lbl.gov

    The Dee probe used for measuring internal radial beam intensity shows large losses inside the radius of 20 cm of the 88 in. cyclotron. The current of the top and bottom innermost trim coil 1 is unbalanced to study effects of the axial injection displacement. A beam profile monitor images the ion beam bunches, turn by turn. The experimental bunch center of mass position is compared with calculations of the magnetic mirror effect displacement and shows good agreement.

  3. Superconducting magnetic coil

    DOEpatents

    Aized, Dawood; Schwall, Robert E.

    1999-06-22

    A superconducting magnetic coil includes a plurality of sections positioned axially along the longitudinal axis of the coil, each section being formed of an anisotropic high temperature superconductor material wound about a longitudinal axis of the coil and having an associated critical current value that is dependent on the orientation of the magnetic field of the coil. The cross section of the superconductor, or the type of superconductor material, at sections along the axial and radial axes of the coil are changed to provide an increased critical current at those regions where the magnetic field is oriented more perpendicularly to the conductor plane, to thereby increase the critical current at these regions and to maintain an overall higher critical current of the coil.

  4. Superconducting magnetic coil

    DOEpatents

    Aized, Dawood; Schwall, Robert E.

    1996-06-11

    A superconducting magnetic coil includes a plurality of sections positioned axially along the longitudinal axis of the coil, each section being formed of an anisotropic high temperature superconductor material wound about a longitudinal axis of the coil and having an associated critical current value that is dependent on the orientation of the magnetic field of the coil. The cross section of the superconductor, or the type of superconductor material, at sections along the axial and radial axes of the coil are changed to provide an increased critical current at those regions where the magnetic field is oriented more perpendicularly to the conductor plane, to thereby increase the critical current at these regions and to maintain an overall higher critical current of the coil.

  5. Ion energy spread and current measurements of the rf-driven multicusp ion source

    NASA Astrophysics Data System (ADS)

    Lee, Y.; Gough, R. A.; Kunkel, W. B.; Leung, K. N.; Perkins, L. T.; Pickard, D. S.; Sun, L.; Vujic, J.; Williams, M. D.; Wutte, D.

    1997-03-01

    Axial energy spread and useful beam current of positive ion beams have been carried out using a radio frequency (rf)-driven multicusp ion source. Operating the source with a 13.56 MHz induction discharge, the axial energy spread is found to be approximately 3.2 eV. The extractable beam current of the rf-driven source is found to be comparable to that of filament-discharge sources. With a 0.6 mm diameter extraction aperture, a positive hydrogen ion beam current density of 80 mA/cm2 can be obtained at a rf input power of 2.5 kW. The expected source lifetime is much longer than that of filament discharges.

  6. Receptor-mediated gene transfer vectors: progress towards genetic pharmaceuticals.

    PubMed

    Molas, M; Gómez-Valadés, A G; Vidal-Alabró, A; Miguel-Turu, M; Bermudez, J; Bartrons, R; Perales, J C

    2003-10-01

    Although specific delivery to tissues and unique cell types in vivo has been demonstrated for many non-viral vectors, current methods are still inadequate for human applications, mainly because of limitations on their efficiencies. All the steps required for an efficient receptor-mediated gene transfer process may in principle be exploited to enhance targeted gene delivery. These steps are: DNA/vector binding, internalization, subcellular trafficking, vesicular escape, nuclear import, and unpacking either for transcription or other functions (i.e., antisense, RNA interference, etc.). The large variety of vector designs that are currently available, usually aimed at improving the efficiency of these steps, has complicated the evaluation of data obtained from specific derivatives of such vectors. The importance of the structure of the final vector and the consequences of design decisions at specific steps on the overall efficiency of the vector will be discussed in detail. We emphasize in this review that stability in serum and thus, proper bioavailability of vectors to their specific receptors may be the single greatest limiting factor on the overall gene transfer efficiency in vivo. We discuss current approaches to overcome the intrinsic instability of synthetic vectors in the blood. In this regard, a summary of the structural features of the vectors obtained from current protocols will be presented and their functional characteristics evaluated. Dissecting information on molecular conjugates obtained by such methodologies, when carefully evaluated, should provide important guidelines for the creation of effective, targeted and safe DNA therapeutics.

  7. The influence of tip shape on bending force during needle insertion

    PubMed Central

    van de Berg, Nick J.; de Jong, Tonke L.; van Gerwen, Dennis J.; Dankelman, Jenny; van den Dobbelsteen, John J.

    2017-01-01

    Steering of needles involves the planning and timely modifying of instrument-tissue force interactions to allow for controlled deflections during the insertion in tissue. In this work, the effect of tip shape on these forces was studied using 10 mm diameter needle tips. Six different tips were selected, including beveled and conical versions, with or without pre-bend or pre-curve. A six-degree-of-freedom force/torque sensor measured the loads during indentations in tissue simulants. The increased insertion (axial) and bending (radial) forces with insertion depth — the force-displacement slopes — were analyzed. Results showed that the ratio between radial and axial forces was not always proportional. This means that the tip load does not have a constant orientation, as is often assumed in mechanics-based steering models. For all tip types, the tip-load assumed a more radial orientation with increased axial load. This effect was larger for straight tips than for pre-bent or pre-curved tips. In addition, the force-displacement slopes were consistently higher for (1) increased tip angles, and for (2) beveled tips compared to conical tips. Needles with a bent or curved tip allow for an increased bending force and a decreased variability of the tip load vector orientation. PMID:28074939

  8. Properties of the electrostatically driven helical plasma state

    NASA Astrophysics Data System (ADS)

    Akçay, Cihan; Finn, John M.; Nebel, Richard A.; Barnes, Daniel C.; Martin, Neal

    2018-02-01

    A novel plasma state has been found [Akçay et al., Phys. Plasmas 24, 052503 (2017)] in the presence of a uniform applied axial magnetic field in periodic cylindrical geometry. This state is driven by external electrostatic fields provided by helical electrodes with a (m =1 ,n =1 ) (helical) symmetry where m and n represent the poloidal and axial harmonics. The resulting plasma is a function of the cylinder radius r

  9. Isotensor Axial Polarizability and Lattice QCD Input for Nuclear Double-β Decay Phenomenology

    NASA Astrophysics Data System (ADS)

    Shanahan, Phiala E.; Tiburzi, Brian C.; Wagman, Michael L.; Winter, Frank; Chang, Emmanuel; Davoudi, Zohreh; Detmold, William; Orginos, Kostas; Savage, Martin J.; Nplqcd Collaboration

    2017-08-01

    The potential importance of short-distance nuclear effects in double-β decay is assessed using a lattice QCD calculation of the n n →p p transition and effective field theory methods. At the unphysical quark masses used in the numerical computation, these effects, encoded in the isotensor axial polarizability, are found to be of similar magnitude to the nuclear modification of the single axial current, which phenomenologically is the quenching of the axial charge used in nuclear many-body calculations. This finding suggests that nuclear models for neutrinoful and neutrinoless double-β decays should incorporate this previously neglected contribution if they are to provide reliable guidance for next-generation neutrinoless double-β decay searches. The prospects of constraining the isotensor axial polarizabilities of nuclei using lattice QCD input into nuclear many-body calculations are discussed.

  10. Isotensor Axial Polarizability and Lattice QCD Input for Nuclear Double-β Decay Phenomenology.

    PubMed

    Shanahan, Phiala E; Tiburzi, Brian C; Wagman, Michael L; Winter, Frank; Chang, Emmanuel; Davoudi, Zohreh; Detmold, William; Orginos, Kostas; Savage, Martin J

    2017-08-11

    The potential importance of short-distance nuclear effects in double-β decay is assessed using a lattice QCD calculation of the nn→pp transition and effective field theory methods. At the unphysical quark masses used in the numerical computation, these effects, encoded in the isotensor axial polarizability, are found to be of similar magnitude to the nuclear modification of the single axial current, which phenomenologically is the quenching of the axial charge used in nuclear many-body calculations. This finding suggests that nuclear models for neutrinoful and neutrinoless double-β decays should incorporate this previously neglected contribution if they are to provide reliable guidance for next-generation neutrinoless double-β decay searches. The prospects of constraining the isotensor axial polarizabilities of nuclei using lattice QCD input into nuclear many-body calculations are discussed.

  11. Design and market considerations for axial flux superconducting electric machine design

    NASA Astrophysics Data System (ADS)

    Ainslie, M. D.; George, A.; Shaw, R.; Dawson, L.; Winfield, A.; Steketee, M.; Stockley, S.

    2014-05-01

    In this paper, the authors investigate a number of design and market considerations for an axial flux superconducting electric machine design that uses high temperature superconductors. The axial flux machine design is assumed to utilise high temperature superconductors in both wire (stator winding) and bulk (rotor field) forms, to operate over a temperature range of 65-77 K, and to have a power output in the range from 10s of kW up to 1 MW (typical for axial flux machines), with approximately 2-3 T as the peak trapped field in the bulk superconductors. The authors firstly investigate the applicability of this type of machine as a generator in small- and medium-sized wind turbines, including the current and forecasted market and pricing for conventional turbines. Next, a study is also carried out on the machine's applicability as an in-wheel hub motor for electric vehicles. Some recommendations for future applications are made based on the outcome of these two studies. Finally, the cost of YBCO-based superconducting (2G HTS) wire is analysed with respect to competing wire technologies and compared with current conventional material costs and current wire costs for both 1G and 2G HTS are still too great to be economically feasible for such superconducting devices.

  12. A model for heliospheric flux-ropes

    NASA Astrophysics Data System (ADS)

    Nieves-Chinchilla, T.; Linton, M.; Vourlidas, A.; Hidalgo, M. A. U.

    2017-12-01

    This work is presents an analytical flux-rope model, which explores different levels of complexity starting from a circular-cylindrical geometry. The framework of this series of models was established by Nieves-Chinchilla et al. 2016 with the circular-cylindrical analytical flux rope model. The model attempts to describe the magnetic flux rope topology with distorted cross-section as a possible consequence of the interaction with the solar wind. In this model, the flux rope is completely described in a non-orthogonal geometry. The Maxwell equations are solved using tensor calculus consistent with the geometry chosen, invariance along the axial direction, and with the assumption of no radial current density. The model is generalized in terms of the radial and azimuthal dependence of the poloidal current density component and axial current density component. The misalignment between current density and magnetic field is studied in detail for several example profiles of the axial and poloidal current density components. This theoretical analysis provides a map of the force distribution inside of the flux-rope. For reconstruction of the heliospheric flux-ropes, the circular-cylindrical reconstruction technique has been adapted to the new geometry and applied to in situ ICMEs with a flux-rope entrained and tested with cases with clear in situ signatures of distortion. The model adds a piece in the puzzle of the physical-analytical representation of these magnetic structures that should be evaluated with the ultimate goal of reconciling in-situ reconstructions with imaging 3D remote sensing CME reconstructions. Other effects such as axial curvature and/or expansion could be incorporated in the future to fully understand the magnetic structure.

  13. Syngeneic AAV pseudo-vectors potentiates full vector transduction

    USDA-ARS?s Scientific Manuscript database

    An excessive amount of empty capsids are generated during regular AAV vector production process. These pseudo-vectors often remain in final vectors used for animal studies or clinical trials. The potential effects of these pseudo-vectors on AAV transduction have been a major concern. In the current ...

  14. Reaction μ-+6Li-->3H+3H+νμ and the axial current form factor in the timelike region

    NASA Astrophysics Data System (ADS)

    Mintz, S. L.

    1983-09-01

    The differential muon-capture rate dΓdET is obtained for the reaction μ-+6Li-->3H+3H+νμ over the allowed range of ET, the tritium energy, for two assumptions concerning the behavior of FA, the axial current form factor, in the timelike region; analytic continuation from the spacelike region and mirror behavior, FA(q2, timelike)=FA(q2, spacelike). The values of dΓdET under these two assumptions are found to vary substantially in the timelike region as a function of the mass MA in the dipole fit to FA. Values of dΓdET are given for MA2=2mπ2, 4.95mπ2, and 8mπ2. NUCLEAR REACTIONS Muon capture 6Li(μ-, νμ)3H3H, Γ, dΓdET calculated for two assumptions concerning the axial current form factor behavior in timelike region.

  15. Effect of axial ligands on the molecular configurations, stability, reactivity, and photodynamic activities of silicon phthalocyanines.

    PubMed

    Luan, Liqiang; Ding, Lanlan; Shi, Jiawei; Fang, Wenjuan; Ni, Yuxing; Liu, Wei

    2014-12-01

    To demonstrate the effect of axial ligands on the structure-activity relationship, a series of axially substituted silicon phthalocyanines (SiPcs) have been synthesized with changes to the axial ligands. The reactivity of the axial ligand upon shielding by the phthalocyanine ring current, along with their stability, photophysical, and photodynamic therapy (PDT) activities were compared and evaluated for the first time. As revealed by single-crystal XRD analysis, rotation of the axial -OMe ligands was observed in SiPc 3, which resulted in two molecular configurations coexisting synchronously in both the solid and solution states and causing a split of the phthalocyanine α protons in the (1)H NMR spectra that is significantly different from all SiPcs reported so far. The remarkable photostability, good singlet oxygen quantum yield, and efficient in vitro photodynamic activity synergistically show that compound 3 is one of the most promising photosensitizers for PDT. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Study of X(5568) in a unitary coupled-channel approximation of BK¯ and Bs π

    NASA Astrophysics Data System (ADS)

    Sun, Bao-Xi; Dong, Fang-Yong; Pang, Jing-Long

    2017-07-01

    The potential of the B meson and the pseudoscalar meson is constructed up to the next-to-leading order Lagrangian, and then the BK¯ and Bs π interaction is studied in the unitary coupled-channel approximation. A resonant state with a mass about 5568 MeV and JP =0+ is generated dynamically, which can be associated with the X(5568) state announced by the D0 Collaboration recently. The mass and the decay width of this resonant state depend on the regularization scale in the dimensional regularization scheme, or the maximum momentum in the momentum cutoff regularization scheme. The scattering amplitude of the vector B meson and the pseudoscalar meson is calculated, and an axial-vector state with a mass near 5620 MeV and JP =1+ is produced. Their partners in the charm sector are also discussed.

  17. Temperature dependences of the electric polarization and wave number of incommensurate structures in multiferroics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pikin, S. A., E-mail: pikin@ns.crys.ras.ru

    2016-05-15

    It is shown that the electric polarization and wave number of incommensurate modulations, proportional to each other, increase according to the Landau law in spin multiferroic cycloids near the Néel temperature. In this case, the constant magnetization component (including the one for a conical spiral) is oriented perpendicular to the spin incommensurability wave vector. A similar temperature behavior should manifest itself for spin helicoids, the axes of which are oriented parallel to the polarization vector but their spin rotation planes are oriented perpendicular to the antiferromagnetic order plane. When the directions of axes of the magnetization helicoid and polarization vectormore » coincide, the latter is quadratic with respect to magnetization and linearly depends on temperature, whereas the incommensurate-modulation wave number barely depends on temperature. Structural distortions of unit cells for multiferroics of different types determine their axial behavior.« less

  18. Automated metastatic brain lesion detection: a computer aided diagnostic and clinical research tool

    NASA Astrophysics Data System (ADS)

    Devine, Jeremy; Sahgal, Arjun; Karam, Irene; Martel, Anne L.

    2016-03-01

    The accurate localization of brain metastases in magnetic resonance (MR) images is crucial for patients undergoing stereotactic radiosurgery (SRS) to ensure that all neoplastic foci are targeted. Computer automated tumor localization and analysis can improve both of these tasks by eliminating inter and intra-observer variations during the MR image reading process. Lesion localization is accomplished using adaptive thresholding to extract enhancing objects. Each enhancing object is represented as a vector of features which includes information on object size, symmetry, position, shape, and context. These vectors are then used to train a random forest classifier. We trained and tested the image analysis pipeline on 3D axial contrast-enhanced MR images with the intention of localizing the brain metastases. In our cross validation study and at the most effective algorithm operating point, we were able to identify 90% of the lesions at a precision rate of 60%.

  19. Fields of an ultrashort tightly focused radially polarized laser pulse in a linear response plasma

    NASA Astrophysics Data System (ADS)

    Salamin, Yousef I.

    2017-10-01

    Analytical expressions for the fields of a radially polarized, ultrashort, and tightly focused laser pulse propagating in a linear-response plasma are derived and discussed. The fields are obtained from solving the inhomogeneous wave equations for the vector and scalar potentials, linked by the Lorenz gauge, in a plasma background. First, the scalar potential is eliminated using the gauge condition, then the vector potential is synthesized from Fourier components of an initial uniform distribution of wavenumbers, and the inverse Fourier transformation is carried out term-by-term in a truncated series (finite sum). The zeroth-order term in, for example, the axial electric field component is shown to model a pulse much better than its widely used paraxial approximation counterpart. Some of the propagation characteristics of the fields are discussed and all fields are shown to have manifested the expected limits for propagation in a vacuum.

  20. New a1(1420 ) state: Structure, mass, and width

    NASA Astrophysics Data System (ADS)

    Sundu, H.; Agaev, S. S.; Azizi, K.

    2018-03-01

    The structure, spectroscopic parameters and width of the resonance with quantum numbers JP C=1++ discovered by the COMPASS Collaboration and classified as the a1(1420 ) meson are examined in the context of QCD sum rule method. In the calculations the axial-vector meson a1(1420 ) is treated as a four-quark state with the diquark-antidiquark structure. The mass and current coupling of a1(1420 ) are evaluated using QCD two-point sum rule approach. Its observed decay mode a1(1420 )→f0(980 )π , and kinematically allowed ones, namely a1→K*±K∓ , a1→K*0K¯ 0 and a1→K¯ *0K0 channels are studied employing QCD sum rules on the light-cone. Our prediction for the mass of the a1(1420 ) state ma1=1416-79+81 MeV is in excellent agreement with the experimental result. Width of this state Γ =145.52 ±20.79 MeV within theoretical and experimental errors is also in accord with the COMPASS data.

  1. Chiral anomaly, Berry phase, and chiral kinetic theory from worldlines in quantum field theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mueller, Niklas; Venugopalan, Raju

    Here, we outline a novel chiral kinetic theory framework for systematic computations of the Chiral Magnetic Effect (CME) in ultrarelativistic heavy-ion collisions. The real part of the fermion determinant in the QCD effective action is expressed as a supersymmetric world-line action of spinning, colored, Grassmanian point particles in background gauge fields, with equations of motion that are covariant generalizations of the Bargmann-Michel-Telegdi and Wong equations. Berry’s phase is obtained in a consistent non-relativistic adiabatic limit. The chiral anomaly, in contrast, arises from the phase of the fermion determinant; its topological properties are therefore distinct from those of the Berry phase.more » We show that the imaginary contribution to the fermion determinant too can be expressed as a point particle world-line path integral and derive the corresponding anomalous axial vector current. Our results can be used to derive a covariant relativistic chiral kinetic theory including the effects of topological fluctuations that has overlap with classical-statistical simulations of the CME at early times and anomalous hydrodynamics at late times.« less

  2. Study of dipion transitions among Υ(3S), Υ(2S), and Υ(1S) states

    NASA Astrophysics Data System (ADS)

    Cronin-Hennessy, D.; Gao, K. Y.; Hietala, J.; Kubota, Y.; Klein, T.; Lang, B. W.; Poling, R.; Scott, A. W.; Smith, A.; Zweber, P.; Dobbs, S.; Metreveli, Z.; Seth, K. K.; Tomaradze, A.; Ernst, J.; Ecklund, K. M.; Severini, H.; Love, W.; Savinov, V.; Lopez, A.; Mehrabyan, S.; Mendez, H.; Ramirez, J.; Huang, G. S.; Miller, D. H.; Pavlunin, V.; Sanghi, B.; Shipsey, I. P. J.; Xin, B.; Adams, G. S.; Anderson, M.; Cummings, J. P.; Danko, I.; Hu, D.; Moziak, B.; Napolitano, J.; He, Q.; Insler, J.; Muramatsu, H.; Park, C. S.; Thorndike, E. H.; Yang, F.; Artuso, M.; Blusk, S.; Khalil, S.; Li, J.; Menaa, N.; Mountain, R.; Nisar, S.; Randrianarivony, K.; Sia, R.; Skwarnicki, T.; Stone, S.; Wang, J. C.; Bonvicini, G.; Cinabro, D.; Dubrovin, M.; Lincoln, A.; Pappas, S. P.; Weinstein, A. J.; Asner, D. M.; Edwards, K. W.; Naik, P.; Briere, R. A.; Ferguson, T.; Tatishvili, G.; Vogel, H.; Watkins, M. E.; Rosner, J. L.; Adam, N. E.; Alexander, J. P.; Cassel, D. G.; Duboscq, J. E.; Ehrlich, R.; Fields, L.; Galik, R. S.; Gibbons, L.; Gray, R.; Gray, S. W.; Hartill, D. L.; Heltsley, B. K.; Hertz, D.; Jones, C. D.; Kandaswamy, J.; Kreinick, D. L.; Kuznetsov, V. E.; Mahlke-Krüger, H.; Mohapatra, D.; Onyisi, P. U. E.; Patterson, J. R.; Peterson, D.; Pivarski, J.; Riley, D.; Ryd, A.; Sadoff, A. J.; Schwarthoff, H.; Shi, X.; Stroiney, S.; Sun, W. M.; Wilksen, T.; Athar, S. B.; Patel, R.; Yelton, J.; Rubin, P.; Cawlfield, C.; Eisenstein, B. I.; Karliner, I.; Kim, D.; Lowrey, N.; Selen, M.; White, E. J.; Wiss, J.; Mitchell, R. E.; Shepherd, M. R.; Besson, D.; Pedlar, T. K.

    2007-10-01

    We present measurements of decay matrix elements for hadronic transitions of the form Υ(nS)→Υ(mS)ππ, where (n,m)=(3,1),(2,1),(3,2). We reconstruct charged and neutral pion modes with the final state Upsilon decaying to either μ+μ- or e+e-. Dalitz plot distributions for the 12 decay modes are fit individually as well as jointly assuming isospin symmetry, thereby measuring the matrix elements of the decay amplitude. We observe and account for the anomaly previously noted in the dipion invariant mass distribution for the Υ(3S)→Υ(1S)ππ transition and obtain good descriptions of the dynamics of the decay using the most general decay amplitude allowed by partial conservation of the axial-vector current considerations. The fits further indicate that the Υ(2S)→Υ(1S)ππ and Υ(3S)→Υ(2S)ππ transitions also show the presence of terms in the decay amplitude that were previously ignored, although at a relatively suppressed level.

  3. Integrating the Gradient of the Thin Wire Kernel

    NASA Technical Reports Server (NTRS)

    Champagne, Nathan J.; Wilton, Donald R.

    2008-01-01

    A formulation for integrating the gradient of the thin wire kernel is presented. This approach employs a new expression for the gradient of the thin wire kernel derived from a recent technique for numerically evaluating the exact thin wire kernel. This approach should provide essentially arbitrary accuracy and may be used with higher-order elements and basis functions using the procedure described in [4].When the source and observation points are close, the potential integrals over wire segments involving the wire kernel are split into parts to handle the singular behavior of the integrand [1]. The singularity characteristics of the gradient of the wire kernel are different than those of the wire kernel, and the axial and radial components have different singularities. The characteristics of the gradient of the wire kernel are discussed in [2]. To evaluate the near electric and magnetic fields of a wire, the integration of the gradient of the wire kernel needs to be calculated over the source wire. Since the vector bases for current have constant direction on linear wire segments, these integrals reduce to integrals of the form

  4. Chiral anomaly, Berry phase, and chiral kinetic theory from worldlines in quantum field theory

    DOE PAGES

    Mueller, Niklas; Venugopalan, Raju

    2018-03-21

    Here, we outline a novel chiral kinetic theory framework for systematic computations of the Chiral Magnetic Effect (CME) in ultrarelativistic heavy-ion collisions. The real part of the fermion determinant in the QCD effective action is expressed as a supersymmetric world-line action of spinning, colored, Grassmanian point particles in background gauge fields, with equations of motion that are covariant generalizations of the Bargmann-Michel-Telegdi and Wong equations. Berry’s phase is obtained in a consistent non-relativistic adiabatic limit. The chiral anomaly, in contrast, arises from the phase of the fermion determinant; its topological properties are therefore distinct from those of the Berry phase.more » We show that the imaginary contribution to the fermion determinant too can be expressed as a point particle world-line path integral and derive the corresponding anomalous axial vector current. Our results can be used to derive a covariant relativistic chiral kinetic theory including the effects of topological fluctuations that has overlap with classical-statistical simulations of the CME at early times and anomalous hydrodynamics at late times.« less

  5. Extended MHD Effects in High Energy Density Experiments

    NASA Astrophysics Data System (ADS)

    Seyler, Charles

    2016-10-01

    The MHD model is the workhorse for computational modeling of HEDP experiments. Plasma models are inheritably limited in scope, but MHD is expected to be a very good model for studying plasmas at the high densities attained in HEDP experiments. There are, however, important ways in which MHD fails to adequately describe the results, most notably due to the omission of the Hall term in the Ohm's law (a form of extended MHD or XMHD). This talk will discuss these failings by directly comparing simulations of MHD and XMHD for particularly relevant cases. The methodology is to simulate HEDP experiments using a Hall-MHD (HMHD) code based on a highly accurate and robust Discontinuous Galerkin method, and by comparison of HMHD to MHD draw conclusions about the impact of the Hall term. We focus on simulating two experimental pulsed power machines under various scenarios. We examine the MagLIF experiment on the Z-machine at Sandia National Laboratories and liner experiments on the COBRA machine at Cornell. For the MagLIF experiment we find that power flow in the feed leads to low density plasma ablation into the region surrounding the liner. The inflow of this plasma compresses axial magnetic flux onto the liner. In MHD this axial flux tends to resistively decay, whereas in HMHD a force-free current layer sustains the axial flux on the liner leading to a larger ratio of axial to azimuthal flux. During the liner compression the magneto-Rayleigh-Taylor instability leads to helical perturbations due to minimization of field line bending. Simulations of a cylindrical liner using the COBRA machine parameters can under certain conditions exhibit amplification of an axial field due to a force-free low-density current layer separated by some distance from the liner. This results in a configuration in which there is predominately axial field on the liner inside the current layer and azimuthal field outside the layer. We are currently attempting to experimentally verify the simulation results. Collaborator: Nathaniel D. Hamlin, School of Electrical and Computer Engineering, Cornell University, Ithaca, New York.

  6. Adenoviral Vector Immunity: Its Implications and circumvention strategies

    PubMed Central

    Ahi, Yadvinder S.; Bangari, Dinesh S.; Mittal, Suresh K.

    2014-01-01

    Adenoviral (Ad) vectors have emerged as a promising gene delivery platform for a variety of therapeutic and vaccine purposes during last two decades. However, the presence of preexisting Ad immunity and the rapid development of Ad vector immunity still pose significant challenges to the clinical use of these vectors. Innate inflammatory response following Ad vector administration may lead to systemic toxicity, drastically limit vector transduction efficiency and significantly abbreviate the duration of transgene expression. Currently, a number of approaches are being extensively pursued to overcome these drawbacks by strategies that target either the host or the Ad vector. In addition, significant progress has been made in the development of novel Ad vectors based on less prevalent human Ad serotypes and nonhuman Ad. This review provides an update on our current understanding of immune responses to Ad vectors and delineates various approaches for eluding Ad vector immunity. Approaches targeting the host and those targeting the vector are discussed in light of their promises and limitations. PMID:21453277

  7. Computational Validation of a Two-Dimensional Semi-Empirical Model for Inductive Coupling in a Conical Pulsed Inductive Plasma Thruster

    NASA Technical Reports Server (NTRS)

    Hallock, Ashley K.; Polzin, Kurt A.

    2011-01-01

    A two-dimensional semi-empirical model of pulsed inductive thrust efficiency is developed to predict the effect of such a geometry on thrust efficiency. The model includes electromagnetic and gas-dynamic forces but excludes energy conversion from radial motion to axial motion, with the intention of characterizing thrust efficiency loss mechanisms that result from a conical versus a at inductive coil geometry. The range of conical pulsed inductive thruster geometries to which this model can be applied is explored with the use of finite element analysis. A semi-empirical relation for inductance as a function of current sheet radial and axial position is the limiting feature of the model, restricting the applicability as a function of half cone angle to a range from ten degrees to about 60 degrees. The model is nondimensionalized, yielding a set of dimensionless performance scaling parameters. Results of the model indicate that radial current sheet motion changes the axial dynamic impedance parameter at which thrust efficiency is maximized. This shift indicates that when radial current sheet motion is permitted in the model longer characteristic circuit timescales are more efficient, which can be attributed to a lower current sheet axial velocity as the plasma more rapidly decouples from the coil through radial motion. Thrust efficiency is shown to increase monotonically for decreasing values of the radial dynamic impedance parameter. This trend indicates that to maximize the radial decoupling timescale should be long compared to the characteristic circuit timescale.

  8. VectorBase: a home for invertebrate vectors of human pathogens

    PubMed Central

    Lawson, Daniel; Arensburger, Peter; Atkinson, Peter; Besansky, Nora J.; Bruggner, Robert V.; Butler, Ryan; Campbell, Kathryn S.; Christophides, George K.; Christley, Scott; Dialynas, Emmanuel; Emmert, David; Hammond, Martin; Hill, Catherine A.; Kennedy, Ryan C.; Lobo, Neil F.; MacCallum, M. Robert; Madey, Greg; Megy, Karine; Redmond, Seth; Russo, Susan; Severson, David W.; Stinson, Eric O.; Topalis, Pantelis; Zdobnov, Evgeny M.; Birney, Ewan; Gelbart, William M.; Kafatos, Fotis C.; Louis, Christos; Collins, Frank H.

    2007-01-01

    VectorBase () is a web-accessible data repository for information about invertebrate vectors of human pathogens. VectorBase annotates and maintains vector genomes providing an integrated resource for the research community. Currently, VectorBase contains genome information for two organisms: Anopheles gambiae, a vector for the Plasmodium protozoan agent causing malaria, and Aedes aegypti, a vector for the flaviviral agents causing Yellow fever and Dengue fever. PMID:17145709

  9. Modelling larval transport in a axial convergence front

    NASA Astrophysics Data System (ADS)

    Robins, P.

    2010-12-01

    Marine larvae exhibit different vertical swimming behaviours, synchronised by factors such as tidal currents and daylight, in order to aid retention near the parent populations and hence promote production, avoid predation, or to stimulate digestion. This paper explores two types of larval migration in an estuarine axial convergent front which is an important circulatory mechanism in many coastal regions where larvae are concentrated. A parallelised, three-dimensional, ocean model was applied to an idealised estuarine channel which was parameterised from observations of an axial convergent front which occurs in the Conwy Estuary, U.K. (Nunes and Simpson, 1985). The model successfully simulates the bilateral cross-sectional recirculation of an axial convergent front, which has been attributed to lateral density gradients established by the interaction of the lateral shear of the longitudinal currents with the axial salinity gradients. On the flood tide, there is surface axial convergence whereas on the ebb tide, there is (weaker) surface divergence. Further simulations with increased/decreased tidal velocities and with stronger/weaker axial salinity gradients are planned so that the effects of a changing climate on the secondary flow can be understood. Three-dimensional Lagrangian Particle Tracking Models (PTMs) have been developed which use the simulated velocity fields to track larvae in the estuarine channel. The PTMs take into account the vertical migrations of two shellfish species that are commonly found in the Conwy Estuary: (i) tidal migration of the common shore crab (Carcinus maenas) and (ii), diel (daily) migration of the Great scallop (Pecten maximus). These migration behaviours are perhaps the most widespread amongst shellfish larvae and have been compared with passive (drifting) particles in order to assess their relative importance in terms of larval transport. Preliminary results suggest that the net along-estuary dispersal over a typical larval period of 28 days of both passive and daily synchronised larvae will follow the asymmetry of the tide (i.e. for a symmetrical tide, the net dispersal is likely to be zero). For tidally synchronised larvae, there is an up-estuary migration as the larvae swim upwards to the stronger surface currents during the flood tide.

  10. The electromagnetic analogy of a ball on a rotating conical turntable

    NASA Astrophysics Data System (ADS)

    Zengel, Keith

    2017-12-01

    A ball on a flat rotating turntable executes circular orbits analogous to those of a charged particle in a uniform magnetic field. Stable circular orbits are also possible on rotating conical turntables and are analogous to those of a charged particle in an axial magnetic field superimposed on a radial electric field. The existence and stability of these orbits is derived and discussed. Further, parallels are drawn between the mechanical and electromagnetic cases, with particular attention to the magnetic vector potential. Finally, an experimental confirmation is reported and discussed.

  11. Singularity-free spinors in gravity with propagating torsion

    NASA Astrophysics Data System (ADS)

    Fabbri, Luca

    2017-12-01

    We consider the most general renormalizable theory of propagating torsion in Einstein gravity for the Dirac matter distribution and we demonstrate that in this case, torsion is a massive axial-vector field whose coupling to the spinor gives rise to conditions in terms of which gravitational singularities are not bound to form; we discuss how our results improve those that are presented in the existing literature, and that no further improvement can be achieved unless one is ready to re-evaluate some considerations on the renormalizability of the theory.

  12. Instantons and Massless Fermions in Two Dimensions

    DOE R&D Accomplishments Database

    Callan, C. G. Jr.; Dashen, R.; Gross, D. J.

    1977-05-01

    The role of instantons in the breakdown of chiral U(N) symmetry is studied in a two dimensional model. Chiral U(1) is always destroyed by the axial vector anomaly. For N = 2 chiral SU(N) is also spontaneously broken yielding massive fermions and three (decoupled) Goldstone bosons. For N greater than or equal to 3 the fermions remain massless. Realistic four dimensional theories are believed to behave in a similar way but the critical N above which the fermions cease to be massive is not known in four dimensions.

  13. Addendum to Radiative corrections to the Dalitz plot of semileptonic decays of neutral baryons with light or charm quarks''

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martinez, A.; Tun, D.M.; Garcia, A.

    1994-08-01

    We show that the radiative corrections containing terms up to order [alpha][ital q]/[pi][ital M][sub 1] for unpolarized semileptonic decays of baryons with positron emission can be obtained by simply reversing the sign of the axial-vector form factors in the corresponding final expressions of such decays with electron emission. This rule is valid regardless of the final kinematical variables chosen and of the particular Lorentz frame in which the final results are required.

  14. Beta-spectrum shapes of forbidden β decays

    NASA Astrophysics Data System (ADS)

    Kostensalo, Joel; Suhonen, Jouni

    2018-03-01

    The neutrinoless ββ decay of atomic nuclei continues to attract fervent interest due to its potential to confirm the possible Majorana nature of the neutrino, and thus the nonconservation of the lepton number. At the same time, the direct dark matter experiments are looking for weakly interacting massive particles (WIMPs) through their scattering on nuclei. The neutrino-oscillation experiments on reactor antineutrinos base their analyses on speculations of β-spectrum shapes of nuclear decays, thus leading to the notorious “reactor antineutrino anomaly.” In all these experimental efforts, one encounters the problem of β-spectrum shapes of forbidden β decays, either as unwanted backgrounds or unknown components in the analyses of data. In this work, the problem of spectrum shapes is discussed and illustrated with a set of selected examples. The relation of the β-spectrum shapes to the problem of the effective value of the weak axial-vector coupling strength gA and the enhancement of the axial-charge matrix element is also pointed out.

  15. Onboard Processing of Electromagnetic Measurements for the Luna - Glob Mission

    NASA Astrophysics Data System (ADS)

    Hruska, F.; Kolmasova, I.; Santolik, O.; Skalski, A.; Pronenko, V.; Belyayev, S.; Lan, R.; Uhlir, L.

    2013-12-01

    The LEMRA-L instrument (Long-wavelength Electro-Magnetic Radiation Analyzer) will be implemented on the LUNA-GLOB spacecraft. It will analyze the data of the three-axial flux gate (DC - 10Hz) and searchcoil (1Hz - 10kHz) magnetometers LEMI. It will measure intensity, polarization, and coherence properties of waves in plasmas of the solar wind, in the lunar wake and its boundaries, and study the magnetic anomalies. We will use new modern robust onboard analysis methods to estimate the wave coherence, sense of polarization, ellipticity, and wave-vector direction, and thus substantially compress the transmitted data volumes, while conserving the important scientific information. In the burst mode data set intended for studying nonlinear phenomena, we will conserve the continuous flux-gate magnetometer data and discrete snapshots of three axial waveform measurements. In the survey-mode data set, continuous flux-gate magnetometer data will be transmitted together with onboard analyzed and averaged spectral matrices from the higher-frequency wave measurements or with onboard calculated propagation and polarization parameters.

  16. Instrumentation for the Future Lunar Missions: Multicomponent Electromagnetic Measurements at Long Wavelengths

    NASA Astrophysics Data System (ADS)

    Kolmasova, Ivana; Santolik, Ondrej; Belyayev, Serhiy; Uhlir, Ludek; Skalsky, Alexander; Pronenko, Vira; Lan, Radek

    The LEMRA-L instrument (Long-wavelength Electro-Magnetic Radiation Analyzer) will be implemented on the LUNA-GLOB spacecraft. It will analyze the data of the three-axial flux gate (DC - 10Hz) and searchcoil (1Hz - 10kHz) magnetometers LEMI. It will measure intensity, polarization, and coherence properties of waves in plasmas of the solar wind, in the lunar wake and its boundaries, and study the magnetic anomalies. We will use new modern robust onboard analysis methods to estimate the wave coherence, sense of polarization, ellipticity, and wave-vector direction, and thus substantially compress the transmitted data volumes, while conserving the important scientific information. In the burst mode data set intended for studying nonlinear phenomena, we will conserve the continuous flux-gate magnetometer data and discrete snapshots of three axial waveform measurements. In the survey-mode data set, continuous flux-gate magnetometer data will be transmitted together with onboard analyzed and averaged spectral matrices from the higher-frequency wave measurements or with onboard calculated propagation and polarization parameters.

  17. The tolerance of the femoral shaft in combined axial compression and bending loading.

    PubMed

    Ivarsson, B Johan; Genovese, Daniel; Crandall, Jeff R; Bolton, James R; Untaroiu, Costin D; Bose, Dipan

    2009-11-01

    The likelihood of a front seat occupant sustaining a femoral shaft fracture in a frontal crash has traditionally been assessed by an injury criterion relying solely on the axial force in the femur. However, recently published analyses of real world data indicate that femoral shaft fracture occurs at axial loads levels below those found experimentally. One hypothesis attempting to explain this discrepancy suggests that femoral shaft fracture tends to occur as a result of combined axial compression and applied bending. The current study aims to evaluate this hypothesis by investigating how these two loading components interact. Femoral shafts harvested from human cadavers were loaded to failure in axial compression, sagittal plane bending, and combined axial compression and sagittal plane bending. All specimens subjected to bending and combined loading fractured midshaft, whereas the specimens loaded in axial compression demonstrated a variety of failure locations including midshaft and distal end. The interaction between the recorded levels of applied moment and axial compression force at fracture were evaluated using two different analysis methods: fitting of an analytical model to the experimental data and multiple regression analysis. The two analysis methods yielded very similar relationships between applied moment and axial compression force at midshaft fracture. The results indicate that posteroanterior bending reduces the tolerance of the femoral shaft to axial compression and that that this type of combined loading therefore may contribute to the high prevalence of femoral shaft fracture in frontal crashes.

  18. Anticipatory control of xenon in a pressurized water reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Impink, A.J. Jr.

    1987-02-10

    A method is described for automatically dampening xenon-135 spatial transients in the core of a pressurized water reactor having control rods which regulate reactor power level, comprising the steps of: measuring the neutron flu in the reactor core at a plurality of axially spaced locations on a real-time, on-line basis; repetitively generating from the neutron flux measurements, on a point-by-point basis, signals representative of the current axial distribution of xenon-135, and signals representative of the current rate of change of the axial distribution of xenon-135; generating from the xenon-135 distribution signals and the rate of change of xenon distribution signals,more » control signals for reducing the xenon transients; and positioning the control rods as a function of the control signals to dampen the xenon-135 spatial transients.« less

  19. Cell and current collector felt arrangement for solid oxide electrochemical cell combinations

    DOEpatents

    Reichner, Philip

    1988-01-01

    A solid electrolyte electrochemical cell combination 1 is made, comprising an annular, axially elongated, inner electrode 2 containing at least one interior gas feed conduit 3; annular solid electrolyte segments 4 around and covering portions of the inner electrode; annular outer electrode segments 6 around and covering portions of the electrolyte segments; electronically conducting, non-porous, interconnection material 5 disposed between electrolyte segments and in contact with the inner electrode, and electronically conducting, porous, metal fiber current collector felts 7 disposed on top of the non-porous interconnect material and outer electrode segments, where both the non-porous interconnect material and the porous metal felts are disposed circumferentially about the cell, transversely to the axial length of the cell and the inner electrode is continuous for the entire axial length of the cell combination.

  20. Isotensor Axial Polarizability and Lattice QCD Input for Nuclear Double- β Decay Phenomenology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shanahan, Phiala E.; Tiburzi, Brian C.; Wagman, Michael L.

    The potential importance of short-distance nuclear effects in double-more » $$\\beta$$ decay is assessed using a lattice QCD calculation of the $$nn\\rightarrow pp$$ transition and effective field theory methods. At the unphysical quark masses used in the numerical computation, these effects, encoded in the isotensor axial polarisability, are found to be of similar magnitude to the nuclear modification of the single axial current, which phenomenologically is the quenching of the axial charge used in nuclear many-body calculations. This finding suggests that nuclear models for neutrinoful and neutrinoless double-$$\\beta$$ decays should incorporate this previously neglected contribution if they are to provide reliable guidance for next-generation neutrinoless double-$$\\beta$$ decay searches. The prospects of constraining the isotensor axial polarisabilities of nuclei using lattice QCD input into nuclear many-body calculations are discussed.« less

  1. Superconducting magnetic coil

    DOEpatents

    Aized, D.; Schwall, R.E.

    1999-06-22

    A superconducting magnetic coil includes a plurality of sections positioned axially along the longitudinal axis of the coil, each section being formed of an anisotropic high temperature superconductor material wound about a longitudinal axis of the coil and having an associated critical current value that is dependent on the orientation of the magnetic field of the coil. The cross section of the superconductor, or the type of superconductor material, at sections along the axial and radial axes of the coil are changed to provide an increased critical current at those regions where the magnetic field is oriented more perpendicularly to the conductor plane, to thereby increase the critical current at these regions and to maintain an overall higher critical current of the coil. 15 figs.

  2. The effect of a multi-axis suspension on whole body vibration exposures and physical stress in the neck and low back in agricultural tractor applications.

    PubMed

    Kim, Jeong Ho; Dennerlein, Jack T; Johnson, Peter W

    2018-04-01

    Whole body vibration (WBV) exposures are often predominant in the fore-aft (x) or lateral (y) axis among off-road agricultural vehicles. However, as the current industry standard seats are designed to reduce mainly vertical (z) axis WBV exposures, they may be less effective in reducing drivers' exposure to multi-axial WBV. Therefore, this laboratory-based study aimed to determine the differences between a single-axial (vertical) and multi-axial (vertical + lateral) suspension seat in reducing WBV exposures, head acceleration, self-reported discomfort, and muscle activity (electromyography) of the major muscle of the low back, neck and shoulders. The results showed that the multi-axial suspension seat had significantly lower WBV exposures compared to the single-axial suspension seats (p' < 0.04). Similarly, the multi-axial suspension seat had lower head acceleration and muscle activity of the neck, shoulder, and low back compared to the single-axial suspension seat; some but not all of the differences were statistically significant. These results indicate that the multi-axial suspension seat may reduce the lateral WBV exposures and associated muscular loading in the neck and low back in agricultural vehicle operators. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Vector mesons in the Nambu-Jona-Lasinio model

    NASA Astrophysics Data System (ADS)

    Schüren, C.; Döring, F.; Ruiz Arriola, E.; Goeke, K.

    1993-12-01

    We investigate solitonic solutions with baryon number equal to one of the semi-bosonized SU(2) Nambu-Jona-Lasinio model including σ -, π -, ρ -, A 1- and ω-mesons both on the chiral circle ( σ2r) + π2( r) = f2π) and beyond it ( σ2( r) + π2( r) ≠ f2π). The action is treated in the mesonic and baryonic sector in the leading order of the large- Nc expansion (one-quark-loop approximation). The UV-divergent real part of the effective action is rendered finite using different gauge-invariant regularization methods (Pauli-Villars and proper time). The parameters of the model are fixed in two different ways: either approximately by a heat kernel expansion of the effective action up to second order or by an exact calculation of the mesonic on-shell masses. This leaves the constituent quark mass as the only free parameter of the model. In the solitonic sector we pay special attention to the way the Wick rotation from euclidean space back to Minkowski space has to be performed. We get solitonic solutions from hedgehoglike field configurations on the chiral circle for a wide range of couplings. We also find that if the chiral-circle constraint is relaxed vector mesons provide stable solitonic solutions. Moreover, whether the baryon number is carried by the valence quarks or by the Dirac sea depends strongly on the particular values of the constituent quark mass. We also study the low-energy limit of the model and its connection to chiral perturbation theory. To this end a covariant-derivative expansion is performed in the presence of external fields. After integrating out the scalar, vector and axial degrees of freedom this leads to the corresponding low-energy parameters as e.g. pion radii and some threshold parameters for pion-pion scattering. Vector mesons provide a natural explanation for an axial coupling constant at the quark level gAQ lower than one. However, we find for the gAN of the nucleon noticeable deviations from the non-relativistic quark model prediction g AN = {5}/{3}g AQ. For the values of the parameters where solitons are found, pionic radii come out to be too small. Finally, the relation of the present model to other chiral soliton models as well as some effective lagrangians is displayed.

  4. Axial and Torsional Load-Type Sequencing in Cumulative Fatigue: Low Amplitude Followed by High Amplitude Loading

    NASA Technical Reports Server (NTRS)

    Bonacuse, Peter J.; Kalluri, Sreeramesh

    2001-01-01

    The experiments described herein were performed to determine whether damage imposed by axial loading interacts with damage imposed by torsional loading. This paper is a follow on to a study that investigated effects of load-type sequencing on the cumulative fatigue behavior of a cobalt base superalloy, Haynes 188 at 538 C Both the current and the previous study were used to test the applicability of cumulative fatigue damage models to conditions where damage is imposed by different loading modes. In the previous study, axial and torsional two load level cumulative fatigue experiments were conducted, in varied combinations, with the low-cycle fatigue (high amplitude loading) applied first. In present study, the high-cycle fatigue (low amplitude loading) is applied initially. As in the previous study, four sequences (axial/axial, torsion/torsion, axial/torsion, and torsion/axial) of two load level cumulative fatigue experiments were performed. The amount of fatigue damage contributed by each of the imposed loads was estimated by both the Palmgren-Miner linear damage rule (LDR) and the non-linear damage curve approach (DCA). Life predictions for the various cumulative loading combinations are compared with experimental results.

  5. Will integrated surveillance systems for vectors and vector-borne diseases be the future of controlling vector-borne diseases? A practical example from China.

    PubMed

    Wu, Y; Ling, F; Hou, J; Guo, S; Wang, J; Gong, Z

    2016-07-01

    Vector-borne diseases are one of the world's major public health threats and annually responsible for 30-50% of deaths reported to the national notifiable disease system in China. To control vector-borne diseases, a unified, effective and economic surveillance system is urgently needed; all of the current surveillance systems in China waste resources and/or information. Here, we review some current surveillance systems and present a concept for an integrated surveillance system combining existing vector and vector-borne disease monitoring systems. The integrated surveillance system has been tested in pilot programmes in China and led to a 21·6% cost saving in rodent-borne disease surveillance. We share some experiences gained from these programmes.

  6. Elliptic-cylindrical analytical flux-rope model for ICMEs

    NASA Astrophysics Data System (ADS)

    Nieves-Chinchilla, T.; Linton, M.; Hidalgo, M. A. U.; Vourlidas, A.

    2016-12-01

    We present an analytical flux-rope model for realistic magnetic structures embedded in Interplanetary Coronal Mass Ejections. The framework of this model was established by Nieves-Chinchilla et al. (2016) with the circular-cylindrical analytical flux rope model and under the concept developed by Hidalgo et al. (2002). Elliptic-cylindrical geometry establishes the first-grade of complexity of a series of models. The model attempts to describe the magnetic flux rope topology with distorted cross-section as a possible consequence of the interaction with the solar wind. In this model, the flux rope is completely described in the non-euclidean geometry. The Maxwell equations are solved using tensor calculus consistently with the geometry chosen, invariance along the axial component, and with the only assumption of no radial current density. The model is generalized in terms of the radial dependence of the poloidal current density component and axial current density component. The misalignment between current density and magnetic field is studied in detail for the individual cases of different pairs of indexes for the axial and poloidal current density components. This theoretical analysis provides a map of the force distribution inside of the flux-rope. The reconstruction technique has been adapted to the model and compared with in situ ICME set of events with different in situ signatures. The successful result is limited to some cases with clear in-situ signatures of distortion. However, the model adds a piece in the puzzle of the physical-analytical representation of these magnetic structures. Other effects such as axial curvature, expansion and/or interaction could be incorporated in the future to fully understand the magnetic structure. Finally, the mathematical formulation of this model opens the door to the next model: toroidal flux rope analytical model.

  7. Stability of short-axial-wavelength internal kink modes of an anisotropic plasma

    NASA Astrophysics Data System (ADS)

    Faghihi, M.; Scheffel, J.

    1987-12-01

    The double adiabatic equations are used to study the stability of a cylindrical Z-pinch with respect to small axial wavelength, internal kink (m ≥ 1) modes. It is found that marginally (ideally) unstable, isotropic equilibria are stabilized. Also, constant-current-density equilibria can be stabilized for P > P and large β

  8. Synchrotron X-ray topographic study on nature of threading mixed dislocations in 4H–SiC crystals grown by PVT method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Jianqiu; Yang, Yu; Wu, Fangzhen

    Synchrotron X-ray Topography is a powerful technique to study defects structures particularly dislocation configurations in single crystals. Complementing this technique with geometrical and contrast analysis can enhance the efficiency of quantitatively characterizing defects. In this study, the use of Synchrotron White Beam X-ray Topography (SWBXT) to determine the line directions of threading dislocations in 4H–SiC axial slices (sample cut parallel to the growth axis from the boule) is demonstrated. This technique is based on the fact that the projected line directions of dislocations on different reflections are different. Another technique also discussed is the determination of the absolute Burgers vectorsmore » of threading mixed dislocations (TMDs) using Synchrotron Monochromatic Beam X-ray Topography (SMBXT). This technique utilizes the fact that the contrast from TMDs varies on SMBXT images as their Burgers vectors change. By comparing observed contrast with the contrast from threading dislocations provided by Ray Tracing Simulations, the Burgers vectors can be determined. Thereafter the distribution of TMDs with different Burgers vectors across the wafer is mapped and investigated.« less

  9. The Design of a Templated C++ Small Vector Class for Numerical Computing

    NASA Technical Reports Server (NTRS)

    Moran, Patrick J.

    2000-01-01

    We describe the design and implementation of a templated C++ class for vectors. The vector class is templated both for vector length and vector component type; the vector length is fixed at template instantiation time. The vector implementation is such that for a vector of N components of type T, the total number of bytes required by the vector is equal to N * size of (T), where size of is the built-in C operator. The property of having a size no bigger than that required by the components themselves is key in many numerical computing applications, where one may allocate very large arrays of small, fixed-length vectors. In addition to the design trade-offs motivating our fixed-length vector design choice, we review some of the C++ template features essential to an efficient, succinct implementation. In particular, we highlight some of the standard C++ features, such as partial template specialization, that are not supported by all compilers currently. This report provides an inventory listing the relevant support currently provided by some key compilers, as well as test code one can use to verify compiler capabilities.

  10. Recent investigations of the 0-5 Ma geomagnetic field recorded by lava flows

    NASA Astrophysics Data System (ADS)

    Johnson, C. L.; Constable, C. G.; Tauxe, L.; Barendregt, R.; Brown, L. L.; Coe, R. S.; Layer, P.; Mejia, V.; Opdyke, N. D.; Singer, B. S.; Staudigel, H.; Stone, D. B.

    2008-04-01

    We present a synthesis of 0-5 Ma paleomagnetic directional data collected from 17 different locations under the collaborative Time Averaged geomagnetic Field Initiative (TAFI). When combined with regional compilations from the northwest United States, the southwest United States, Japan, New Zealand, Hawaii, Mexico, South Pacific, and the Indian Ocean, a data set of over 2000 sites with high quality, stable polarity, and declination and inclination measurements is obtained. This is a more than sevenfold increase over similar quality data in the existing Paleosecular Variation of Recent Lavas (PSVRL) data set, and has greatly improved spatial sampling. The new data set spans 78°S to 53°N, and has sufficient temporal and spatial sampling to allow characterization of latitudinal variations in the time-averaged field (TAF) and paleosecular variation (PSV) for the Brunhes and Matuyama chrons, and for the 0-5 Ma interval combined. The Brunhes and Matuyama chrons exhibit different TAF geometries, notably smaller departures from a geocentric axial dipole field during the Brunhes, consistent with higher dipole strength observed from paleointensity data. Geographical variations in PSV are also different for the Brunhes and Matuyama. Given the high quality of our data set, polarity asymmetries in PSV and the TAF cannot be attributed to viscous overprints, but suggest different underlying field behavior, perhaps related to the influence of long-lived core-mantle boundary conditions on core flow. PSV, as measured by dispersion of virtual geomagnetic poles, shows less latitudinal variation than predicted by current statistical PSV models, or by previous data sets. In particular, the Brunhes data reported here are compatible with a wide range of models, from those that predict constant dispersion as a function of latitude to those that predict an increase in dispersion with latitude. Discriminating among such models could be helped by increased numbers of low-latitude data and new high northern latitude sites. Tests with other data sets, and with simulations, indicate that some of the latitudinal signature previously observed in VGP dispersion can be attributed to the inclusion of low-quality, insufficiently cleaned data with too few samples per site. Our Matuyama data show a stronger dependence of dispersion on latitude than the Brunhes data. The TAF is examined using the variation of inclination anomaly with latitude. Best fit two-parameter models have axial quadrupole contributions of 2-4% of the axial dipole term, and axial octupole contributions of 1-5%. Approximately 2% of the octupole signature is likely the result of bias incurred by averaging unit vectors.

  11. Quantum detectors of vector potential and their modeling

    NASA Astrophysics Data System (ADS)

    Gulian, Armen; Melkonyan, Gurgen; Gulian, Ellen

    Proportionality of current to vector potential is a feature not allowed in classical physics, but is one of the pillars in quantum theory. For superconductors, in particular, it allows us to describe the Meissner effect. Since the phase of the quantum wave function couples with the vector-potential, the related expressions are gauge-invariant. Is it possible to measure this gauge-invariant quantity locally? The answer is definitely ``yes'', as soon as the current is involved. Indeed, the electric current generates a magnetic field which can be measured straightforwardly. However, one can consider situations like the Aharonov-Bohm effect where the classical magnetic field is locally absent in the area occupied by the quantum object (i.e., superconductor in our case). Despite the local absence of the magnetic field, current is, nevertheless, building up. From what source is it acquiring its energy? Locally, only a vector potential is present. Is the current formation a result of a truly non-local quantum action, or does the local action of the vector potential have experimental consequences on the quantum system, which then can be considered as a detector of the vector potential? We discuss possible experimental schemes on the level of COMSOL modeling. This research is supported in part by the ONR Grant N000141612269.

  12. Frequency pulling in a low-voltage medium-power gyrotron

    NASA Astrophysics Data System (ADS)

    Luo, Li; Du, Chao-Hai; Huang, Ming-Guang; Liu, Pu-Kun

    2018-04-01

    Many recent biomedical applications use medium-power frequency-tunable terahertz (THz) sources, such as sensitivity-enhanced nuclear magnetic resonance, THz imaging, and biomedical treatment. As a promising candidate, a low-voltage gyrotron can generate watt-level, continuous THz-wave radiation. In particular, the frequency-pulling effect in a gyrotron, namely, the effect of the electron beam parameters on the oscillation frequency, can be used to tune the operating frequency. Most previous investigations used complicated and time-consuming gyrotron nonlinear theory to study the influence of many beam parameters on the interaction performance. While gyrotron linear theory investigation demonstrates the advantages of rapidly and clearly revealing the physical influence of individual key beam parameters on the overall system performance, this paper demonstrates systematically the use of gyrotron linear theory to study the frequency-pulling effect in a low-voltage gyrotron with either a Gaussian or a sinusoidal axial-field profile. Furthermore, simulations of a gyrotron operating in the first axial mode are carried out in the framework of nonlinear theory as a contrast. Close agreement is achieved between the two theories. Besides, some interesting results are obtained. In a low-current sinusoidal-profile cavity, the ranges of frequency variation for different axial modes are isolated from each other, and the frequency tuning bandwidth for each axial mode increases by increasing either the beam voltage or pitch factor. Lowering the voltage, the total tuning ranges are squeezed and become concentrated. However, the isolated frequency regions of each axial mode cannot be linked up unless the beam current is increased, meaning that higher current operation is the key to achieving a wider and continuous tuning frequency range. The results presented in this paper can provide a reference for designing a broadband low-voltage gyrotron.

  13. [Public health pests. Arthropods and rodents as causative disease agents as well as reservoirs and vectors of pathogens].

    PubMed

    Faulde, M; Freise, J

    2014-05-01

    Globally, infectious diseases pose the most important cause of death. Among known human pathogenic diseases, approximately 50 % are zoonoses. When considering emerging infectious diseases separately 73 % currently belong to the group of zoonoses. In Central Europe, hard ticks show by far the biggest potential as vectors of agents of human disease. Lyme borreliosis, showing an estimated annual incidence between 60,000 and 214,000 cases is by far the most frequent tick-borne disease in Germany. Continually, formerly unknown disease agents could be discovered in endemic vector species. Additionally, introduction of new arthropod vectors and/or agents of disease occur constantly. Recently, five mosquito species of the genus Aedes have been newly introduced to Europe where they are currently spreading in different regions. Uncommon autochthonous transmission of dengue and chikungunya fever viruses in Southern Europe could be directly linked to these vector species and of these Ae. albopictus and Ae. japonicus are currently reported to occur in Germany. The German Protection against Infection Act only covers the control of public health pests which are either active hematophagous vectors or mechanical transmitters of agents of diseases. Use of officially recommended biocidal products aiming to interrupt transmission cycles of vector-borne diseases, is confined to infested buildings only, including sewage systems in the case of Norway rat control. Outdoor vectors, such as hard ticks and mosquitoes, are currently not taken into consideration. Additionally, adjustments of national public health regulations, detailed arthropod vector and rodent reservoir mapping, including surveillance of vector-borne disease agents, are necessary in order to mitigate future disease risks.

  14. Amplitude Analysis of the Decay $$D^+ \\to K_s \\pi^- \\pi^+ \\pi^+$$ in the {FOCUS} Experiment (in Portuguese)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Otalora Goicochea, Juan Martin

    This thesis is devoted to the study of the decay D+ → KS π−π+π+ with data collected from the FOCUS experiment, at Fermilab. The fi state composed of 4 pseudo-scalars can be produced through a number of resonant sub-structures. The purpose of this analysis is to fi the contributing intermediate states by measuring their relative strenghts and phases. For that, the Amplitude Analysis formalism is used, with the so-called Isobar Model. The decay dynamics is described through a function which has the features of the contributing channels (functional forms of the resonances, angular distribution, etc) and which domain is amore » phase space determined by 5 invariants (due to the kinematical constraints of a 4-body spinless decay). The data sample is thus fi to this function. Our results show a dominant contribution of the axial-vector meson a1(1260) (52%), followed by the K1(1400) axial-vector (34%). Moreover, the model presents a contribution from the σ meson (about 8% as a1(σπ)KS and σKS π) and a significant contribution from the scalar κ−. The κ state has been reported in its neutral mode in other charm decays but not is its charged mode. We fi no significant contribution from the direct 4-body decay (non-resonant). This work adds to the effort in the understanding of the strong-interaction dynamics at low energies, which in recent years have been receiving an important contribution from charm meson physics.« less

  15. The reliability of humerothoracic angles during arm elevation depends on the representation of rotations.

    PubMed

    López-Pascual, Juan; Cáceres, Magda Liliana; De Rosario, Helios; Page, Álvaro

    2016-02-08

    The reliability of joint rotation measurements is an issue of major interest, especially in clinical applications. The effect of instrumental errors and soft tissue artifacts on the variability of human motion measures is well known, but the influence of the representation of joint motion has not yet been studied. The aim of the study was to compare the within-subject reliability of three rotation formalisms for the calculation of the shoulder elevation joint angles. Five repetitions of humeral elevation in the scapular plane of 27 healthy subjects were recorded using a stereophotogrammetry system. The humerothoracic joint angles were calculated using the YX'Y" and XZ'Y" Euler angle sequences and the attitude vector. A within-subject repeatability study was performed for the three representations. ICC, SEM and CV were the indices used to estimate the error in the calculation of the angle amplitudes and the angular waveforms with each method. Excellent results were obtained in all representations for the main angle (elevation), but there were remarkable differences for axial rotation and plane of elevation. The YX'Y" sequence generally had the poorest reliability in the secondary angles. The XZ'Y' sequence proved to be the most reliable representation of axial rotation, whereas the attitude vector had the highest reliability in the plane of elevation. These results highlight the importance of selecting the method used to describe the joint motion when within-subjects reliability is an important issue of the experiment. This may be of particular importance when the secondary angles of motions are being studied. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Analytical and Experimental Assessment of Seismic Vulnerability of Beam-Column Joints without Transverse Reinforcement in Concrete Buildings

    NASA Astrophysics Data System (ADS)

    Hassan, Wael Mohammed

    Beam-column joints in concrete buildings are key components to ensure structural integrity of building performance under seismic loading. Earthquake reconnaissance has reported the substantial damage that can result from inadequate beam-column joints. In some cases, failure of older-type corner joints appears to have led to building collapse. Since the 1960s, many advances have been made to improve seismic performance of building components, including beam-column joints. New design and detailing approaches are expected to produce new construction that will perform satisfactorily during strong earthquake shaking. Much less attention has been focused on beam-column joints of older construction that may be seismically vulnerable. Concrete buildings constructed prior to developing details for ductility in the 1970s normally lack joint transverse reinforcement. The available literature concerning the performance of such joints is relatively limited, but concerns about performance exist. The current study aimed to improve understanding and assessment of seismic performance of unconfined exterior and corner beam-column joints in existing buildings. An extensive literature survey was performed, leading to development of a database of about a hundred tests. Study of the data enabled identification of the most important parameters and the effect of each parameter on the seismic performance. The available analytical models and guidelines for strength and deformability assessment of unconfined joints were surveyed and evaluated. In particular, The ASCE 41 existing building document proved to be substantially conservative in joint shear strength estimation. Upon identifying deficiencies in these models, two new joint shear strength models, a bond capacity model, and two axial capacity models designed and tailored specifically for unconfined beam-column joints were developed. The proposed models strongly correlated with previous test results. In the laboratory testing phase of the current study, four full-scale corner beam-column joint subassemblies, with slab included, were designed, built, instrumented, tested, and analyzed. The specimens were tested under unidirectional and bidirectional displacement-controlled quasi-static loading that incorporated varying axial loads that simulated overturning seismic moment effects. The axial loads varied between tension and high compression loads reaching about 50% of the column axial capacity. The test parameters were axial load level, loading history, joint aspect ratio, and beam reinforcement ratio. The test results proved that high axial load increases joint shear strength and decreases the deformability of joints failing in pure shear failure mode without beam yielding. On the contrary, high axial load did not affect the strength of joints failing in shear after significant beam yielding; however, it substantially increased their displacement ductility. Joint aspect ratio proved to be instrumental in deciding joint shear strength; that is the deeper the joint the lower the shear strength. Bidirectional loading reduced the apparent strength of the joint in the uniaxial principal axes. However, circular shear strength interaction is an appropriate approximation to predict the biaxial strength. The developed shear strength models predicted successfully the strength of test specimens. Based on the literature database investigation, the shear and axial capacity models developed and the test results of the current study, an analytical finite element component model based on a proposed joint shear stress-rotation backbone constitutive curve was developed to represent the behavior of unconfined beam-column joints in computer numerical simulations of concrete frame buildings. The proposed finite element model included the effect of axial load, mode of joint failure, joint aspect ratio and axial capacity of joint. The proposed backbone curve along with the developed joint element exhibited high accuracy in simulating the test response of the current test specimens as well as previous test joints. Finally, a parametric study was conducted to assess the axial failure vulnerability of unconfined beam-column joints based on the developed shear and axial capacity models. This parametric study compared the axial failure potential of unconfined beam-column joint with that of shear critical columns to provide a preliminary insight into the axial collapse vulnerability of older-type buildings during intense ground shaking.

  17. Healing of Fatigue Crack in 1045 Steel by Using Eddy Current Treatment

    PubMed Central

    Yang, Chuan; Xu, Wenchen; Guo, Bin; Shan, Debin; Zhang, Jian

    2016-01-01

    In order to investigate the methods to heal fatigue cracks in metals, tubular specimens of 1045 steel with axial and radial fatigue cracks were treated under the eddy current. The optical microscope was employed to examine the change of fatigue cracks of specimens before and after the eddy current treatment. The results show that the fatigue cracks along the axial direction of the specimen could be healed effectively in the fatigue crack initiation zone and the crack tip zone under the eddy current treatment, and the healing could occur within a very short time. The voltage breakdown and the transient thermal compressive stress caused by the detouring of eddy current around the fatigue crack were the main factors contributing to the healing in the fatigue crack initiation zone and the crack tip zone, respectively. Eddy current treatment may be a novel and effective method for crack healing. PMID:28773761

  18. Healing of Fatigue Crack in 1045 Steel by Using Eddy Current Treatment.

    PubMed

    Yang, Chuan; Xu, Wenchen; Guo, Bin; Shan, Debin; Zhang, Jian

    2016-07-29

    In order to investigate the methods to heal fatigue cracks in metals, tubular specimens of 1045 steel with axial and radial fatigue cracks were treated under the eddy current. The optical microscope was employed to examine the change of fatigue cracks of specimens before and after the eddy current treatment. The results show that the fatigue cracks along the axial direction of the specimen could be healed effectively in the fatigue crack initiation zone and the crack tip zone under the eddy current treatment, and the healing could occur within a very short time. The voltage breakdown and the transient thermal compressive stress caused by the detouring of eddy current around the fatigue crack were the main factors contributing to the healing in the fatigue crack initiation zone and the crack tip zone, respectively. Eddy current treatment may be a novel and effective method for crack healing.

  19. Improvement of solar-cycle prediction: Plateau of solar axial dipole moment

    NASA Astrophysics Data System (ADS)

    Iijima, H.; Hotta, H.; Imada, S.; Kusano, K.; Shiota, D.

    2017-11-01

    Aims: We report the small temporal variation of the axial dipole moment near the solar minimum and its application to the solar-cycle prediction by the surface flux transport (SFT) model. Methods: We measure the axial dipole moment using the photospheric synoptic magnetogram observed by the Wilcox Solar Observatory (WSO), the ESA/NASA Solar and Heliospheric Observatory Michelson Doppler Imager (MDI), and the NASA Solar Dynamics Observatory Helioseismic and Magnetic Imager (HMI). We also use the SFT model for the interpretation and prediction of the observed axial dipole moment. Results: We find that the observed axial dipole moment becomes approximately constant during the period of several years before each cycle minimum, which we call the axial dipole moment plateau. The cross-equatorial magnetic flux transport is found to be small during the period, although a significant number of sunspots are still emerging. The results indicate that the newly emerged magnetic flux does not contribute to the build up of the axial dipole moment near the end of each cycle. This is confirmed by showing that the time variation of the observed axial dipole moment agrees well with that predicted by the SFT model without introducing new emergence of magnetic flux. These results allow us to predict the axial dipole moment at the Cycle 24/25 minimum using the SFT model without introducing new flux emergence. The predicted axial dipole moment at the Cycle 24/25 minimum is 60-80 percent of Cycle 23/24 minimum, which suggests the amplitude of Cycle 25 is even weaker than the current Cycle 24. Conclusions: The plateau of the solar axial dipole moment is an important feature for the longer-term prediction of the solar cycle based on the SFT model.

  20. Novel Integration Radial and Axial Magnetic Bearing

    NASA Technical Reports Server (NTRS)

    Blumenstock, Kenneth; Brown, Gary

    2000-01-01

    Typically, fully active magnetically suspended systems require one axial and two radial magnetic bearings. Combining radial and axial functions into a single device allows for more compact and elegant packaging. Furthermore, in the case of high-speed devices such as energy storage flywheels, it is beneficial to minimize shaft length to keep rotor mode frequencies as high as possible. Attempts have been made to combine radial and axial functionality, but with certain drawbacks. One approach requires magnetic control flux to flow through a bias magnet reducing control effectiveness, thus resulting in increased resistive losses. This approach also requires axial force producing magnetic flux to flow in a direction into the rotor laminate that is undesirable for minimizing eddy-current losses resulting in rotational losses. Another approach applies a conical rotor shape to what otherwise would be a radial heteropolar magnetic bearing configuration. However, positional non-linear effects are introduced with this scheme and the same windings are used for bias, radial, and axial control adding complexity to the controller and electronics. For this approach, the amount of axial capability must be limited. It would be desirable for an integrated radial and axial magnetic bearing to have the following characteristics; separate inputs for radial and axial control for electronics and control simplicity, all magnetic control fluxes should only flow through their respective air gaps and should not flow through any bias magnets for minimal resistive losses, be of a homopolar design to minimize rotational losses, position related non-linear effects should be minimized, and dependent upon the design parameters, be able to achieve any radial/axial force or power ratio as desired. The integrated radial and axial magnetic bearing described in this paper exhibits all these characteristics. Magnetic circuit design, design equations, and magnetic field modeling results will be presented.

  1. Novel Integrated Radial and Axial Magnetic Bearing

    NASA Technical Reports Server (NTRS)

    Blumenstock, Kenneth A.; Brown, Gary L.; Powers, Edward I. (Technical Monitor)

    2000-01-01

    Typically, fully active magnetically suspended systems require one axial and two radial magnetic bearings. Combining radial and axial functions into a single device allows for more compact and elegant packaging. Furthermore, in the case of high-speed devices such as energy storage flywheels, it is beneficial to minimize shaft length to keep rotor mode frequencies as high as possible. Attempts have been made to combine radial and axial functionality, but with certain drawbacks. One approach requires magnetic control flux to flow through a bias magnet reducing control effectiveness, thus resulting in increased resistive losses. This approach also requires axial force producing magnetic flux to flow in a direction into the rotor laminate that is undesirable for minimizing eddy-current losses resulting in rotational losses. Another approach applies a conical rotor shape to what otherwise would be a radial heteropolar magnetic bearing configuration. However, positional non-linear effects are introduced with this scheme and the same windings are used for bias, radial, and axial control adding complexity to the controller and electronics. For this approach, the amount of axial capability must be limited. It would be desirable for an integrated radial and axial magnetic bearing to have the following characteristics, separate inputs for radial and axial control for electronics and control simplicity, all magnetic control fluxes should only flow through their respective air gaps and should not flow through any bias magnets for minimal resistive losses, be of a homopolar design to minimize rotational losses, position related non-linear effects should be minimized, and dependent upon the design parameters, be able to achieve any radial/axial force or power ratio as desired. The integrated radial and axial magnetic bearing described in this paper exhibits all these characteristics. Magnetic circuit design, design equations, and analysis results will be presented.

  2. Synthesis, fabrication and characterization of Ge/Si axial nanowire heterostructure tunnel FETs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Picraux, Samuel T; Dayeh, Shadi A

    2010-01-01

    Axial Ge/Si heterostructure nanowires allow energy band-edge engineering along the axis of the nanowire, which is the charge transport direction, and the realization of asymmetric devices for novel device architectures. This work reports on two advances in the area of heterostructure nanowires and tunnel FETs: (i) the realization of 100% compositionally modulated Si/Ge axial heterostructure nanowires with lengths suitable for device fabrication and (ii) the design and implementation of Schottky barrier tunnel FETs on these nanowires for high-on currents and suppressed ambipolar behavior. Initial prototype devices resulted in a current drive in excess of 100 {micro}A/{micro}m (I/{pi}D) and 10{sup 5}more » I{sub on}/I{sub off} ratios. These results demonstrate the potential of such asymmetric heterostructures (both in the semiconductor channel and metal-semiconductor barrier heights) for low-power and high performance electronics.« less

  3. Effect of radial plasma transport at the magnetic throat on axial ion beam formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yunchao, E-mail: yunchao.zhang@anu.edu.au; Charles, Christine; Boswell, Rod

    2016-08-15

    Correlation between radial plasma transport and formation of an axial ion beam has been investigated in a helicon plasma reactor implemented with a convergent-divergent magnetic nozzle. The plasma discharge is sustained under a high magnetic field mode and a low magnetic field mode for which the electron energy probability function, the plasma density, the plasma potential, and the electron temperature are measured at the magnetic throat, and the two field modes show different radial parametric behaviors. Although an axial potential drop occurs in the plasma source for both field modes, an ion beam is only observed in the high fieldmore » mode while not in the low field mode. The transport of energetic ions is characterized downstream of the plasma source using the delimited ion current and nonlocal ion current. A decay of ion beam strength is also observed in the diffusion chamber.« less

  4. Feasibility Study of an Axially Extendable Multiplex Cylinder PET

    NASA Astrophysics Data System (ADS)

    Yoshida, Eiji; Hirano, Yoshiyuki; Tashima, Hideaki; Inadama, Naoko; Nishikido, Fumihiko; Murayama, Hideo; Ito, Hiroshi; Yamaya, Taiga

    2013-10-01

    Current clinical PET scanners have a 15-22 cm axial field-of-view (FOV). These scanners image the whole body using six or more bed positions. We designed an axially extendable multiplex cylinder (AEMC) PET scanner to provide high versatility for clinical and research studies using semiconductor photo-sensor based, depth-of-interaction (DOI) detectors. Since silicon-photomultipliers (Si-PMs) have high gain like conventional photomultiplier tubes and a compact design, the Si-PM-based detector is particularly expected to enable various new detector arrangements. The AEMC-PET scanner consists of multiple independent and laminated detector rings using the DOI detectors. The AEMC-PET scanner can extend the axial FOV as each stacked detector ring can be slid sideways. When this PET scanner is used for the four-layer DOI detector, its minimum axial FOV is 24 cm and its maximum crystal thickness is 3 cm. On the other hand, the axial FOV can be extended to 96 cm when laminated detector rings are slid sideways, but the crystal thickness must be 1/4 of 3 cm. In this work, we evaluated performance characteristics of the PET scanner with a variable axial FOV using Monte Carlo simulation. From the simulation of the 180-cm line source, the 96-cm axial FOV was found to have two-fold better sensitivity compared to the 24-cm axial FOV. For extension of the axial FOV, scatter and attenuation of oblique lines-of-response reduced the yield of true coincidences, but effects of scatter and attenuation were small. Conclusive results were obtained showing the 52.8-cm axial FOV yielded an increase in the noise equivalent count rate of approximately 30% relative to the 24-cm axial FOV. We expect the designed AEMC-PET scanner will provide high versatility in applications such as for measuring whole-body tracer uptakes while keeping the continuous axial FOV; as well, the scan time for static images will be reduced for a comparable number of detectors as conventional PET scanners.

  5. Visualization and Analysis of Geology Word Vectors for Efficient Information Extraction

    NASA Astrophysics Data System (ADS)

    Floyd, J. S.

    2016-12-01

    When a scientist begins studying a new geographic region of the Earth, they frequently begin by gathering relevant scientific literature in order to understand what is known, for example, about the region's geologic setting, structure, stratigraphy, and tectonic and environmental history. Experienced scientists typically know what keywords to seek and understand that if a document contains one important keyword, then other words in the document may be important as well. Word relationships in a document give rise to what is known in linguistics as the context-dependent nature of meaning. For example, the meaning of the word `strike' in geology, as in the strike of a fault, is quite different from its popular meaning in baseball. In addition, word order, such as in the phrase `Cretaceous-Tertiary boundary,' often corresponds to the order of sequences in time or space. The context of words and the relevance of words to each other can be derived quantitatively by machine learning vector representations of words. Here we show the results of training a neural network to create word vectors from scientific research papers from selected rift basins and mid-ocean ridges: the Woodlark Basin of Papua New Guinea, the Hess Deep rift, and the Gulf of Mexico basin. The word vectors are statistically defined by surrounding words within a given window, limited by the length of each sentence. The word vectors are analyzed by their cosine distance to related words (e.g., `axial' and `magma'), classified by high dimensional clustering, and visualized by reducing the vector dimensions and plotting the vectors on a two- or three-dimensional graph. Similarity analysis of `Triassic' and `Cretaceous' returns `Jurassic' as the nearest word vector, suggesting that the model is capable of learning the geologic time scale. Similarity analysis of `basalt' and `minerals' automatically returns mineral names such as `chlorite', `plagioclase,' and `olivine.' Word vector analysis and visualization allow one to extract information from hundreds of papers or more and find relationships in less time than it would take to read all of the papers. As machine learning tools become more commonly available, more and more scientists will be able to use and refine these tools for their individual needs.

  6. Two-dimensional electrodynamic structure of the normal glow discharge in an axial magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Surzhikov, S. T., E-mail: surg@ipmnet.ru

    Results are presented from numerical simulations of an axisymmetric normal glow discharge in molecular hydrogen and molecular nitrogen in an axial magnetic field. The charged particle densities and averaged azimuthal rotation velocities of electrons and ions are studied as functions of the gas pressure in the range of 1–5 Torr, electric field strength in the range of 100–600 V/cm, and magnetic field in the range of 0.01–0.3 T. It is found that the axial magnetic field does not disturb the normal current density law.

  7. Characterization of Flow and Ohm's Law in the Rotating Wall Machine

    NASA Astrophysics Data System (ADS)

    Hannum, David; Brookhart, M.; Forest, C. B.; Kendrick, R.; Mengin, G.; Paz-Soldan, C.

    2010-11-01

    The rotating wall machine is a linear screw-pinch built to study the role of different electromagnetic boundary conditions on the Resistive Wall Mode (RWM). Its plasma is created by an array of electrostatic washer guns which can be biased to discharge up to 1 kA of current each. Individual flux ropes from the guns shear, merge, and expand into a 20 cm diameter, ˜1 m long plasma column. Langmuir (singletip) and tri-axial B-dot probes move throughout the column to measure radial and axial profiles of key plasma parameters. As the plasma current increases, more H2 fuel is ionized, raising ne to 5 x10^20 m-3 while Te stays at a constant 3 eV. The electron density expands to the wall while the current density (Jz) stays pinched to the central axis. E xB and diamagnetic drifts create radially and axially sheared plasma rotation. Plasma resistivity follows the Spitzer model in the core while exceeding it at the edge. These measurements improve the model used to predict the RWM growth rate.

  8. Measurement of Flow Pattern Within a Rotating Stall Cell in an Axial Compressor

    NASA Technical Reports Server (NTRS)

    Lepicovsky, Jan; Braunscheidel, Edward P.

    2006-01-01

    Effective active control of rotating stall in axial compressors requires detailed understanding of flow instabilities associated with this compressor regime. Newly designed miniature high frequency response total and static pressure probes as well as commercial thermoanemometric probes are suitable tools for this task. However, during the rotating stall cycle the probes are subjected to flow direction changes that are far larger than the range of probe incidence acceptance, and therefore probe data without a proper correction would misrepresent unsteady variations of flow parameters. A methodology, based on ensemble averaging, is proposed to circumvent this problem. In this approach the ensemble averaged signals acquired for various probe setting angles are segmented, and only the sections for probe setting angles close to the actual flow angle are used for signal recombination. The methodology was verified by excellent agreement between velocity distributions obtained from pressure probe data, and data measured with thermoanemometric probes. Vector plots of unsteady flow behavior during the rotating stall regime indicate reversed flow within the rotating stall cell that spreads over to adjacent rotor blade channels. Results of this study confirmed that the NASA Low Speed Axial Compressor (LSAC) while in a rotating stall regime at rotor design speed exhibits one stall cell that rotates at a speed equal to 50.6 percent of the rotor shaft speed.

  9. Axial force measurement for esophageal function testing

    PubMed Central

    Gravesen, Flemming H; Funch-Jensen, Peter; Gregersen, Hans; Drewes, Asbjørn Mohr

    2009-01-01

    The esophagus serves to transport food and fluid from the pharynx to the stomach. Manometry has been the “golden standard” for the diagnosis of esophageal motility diseases for many decades. Hence, esophageal function is normally evaluated by means of manometry even though it reflects the squeeze force (force in radial direction) whereas the bolus moves along the length of esophagus in a distal direction. Force measurements in the longitudinal (axial) direction provide a more direct measure of esophageal transport function. The technique used to record axial force has developed from external force transducers over in-vivo strain gauges of various sizes to electrical impedance based measurements. The amplitude and duration of the axial force has been shown to be as reliable as manometry. Normal, as well as abnormal, manometric recordings occur with normal bolus transit, which have been documented using imaging modalities such as radiography and scintigraphy. This inconsistency using manometry has also been documented by axial force recordings. This underlines the lack of information when diagnostics are based on manometry alone. Increasing the volume of a bag mounted on a probe with combined axial force and manometry recordings showed that axial force amplitude increased by 130% in contrast to an increase of 30% using manometry. Using axial force in combination with manometry provides a more complete picture of esophageal motility, and the current paper outlines the advantages of using this method. PMID:19132762

  10. Demonstrations of Magnetic Phenomena: Measuring the Air Permeability Using Tablets

    ERIC Educational Resources Information Center

    Lara, V. O. M.; Amaral, D. F.; Faria, D.; Vieira, L. P.

    2014-01-01

    We use a tablet to experimentally determine the dependencies of the magnetic field (B) on the electrical current and the axial distance from a coil (z). Our data shows good precision on the inverse cubic dependence of the magnetic field on the axial distance, B?z[superscript -3]. We obtain the value of air permeability µ[subscript air] with good…

  11. A percent-level determination of the nucleon axial coupling from Quantum Chromodynamics

    DOE PAGES

    Chang, Chia C.; Rinaldi, Enrico; Nicholson, A. N.; ...

    2018-06-15

    Here, the axial coupling of the nucleon, g A, is the strength of its coupling to the weak axial current of the Standard Model, much as the electric charge is the strength of the coupling to the electromagnetic current. This axial coupling dictates, for example, the rate of β-decay of neutrons to protons and the strength of the attractive long-range force between nucleons. Precision tests of the Standard Model in nuclear environments require a quantitative understanding of nuclear physics rooted in Quantum Chromodynamics, a pillar of this theory. The prominence of g A makes it a benchmark quantity to determinemore » from theory, a difficult task as the theory is non-perturbative. Lattice QCD provides a rigorous, non-perturbative definition of the theory which can be numerically implemented. In order to determine g A, the lattice QCD community has identified two challenges that must be overcome to achieve a 2% precision by 2020: the excited state contamination must be controlled, and the statistical precision must be markedly improved. Here we report a calculation of g A QCD =1.271 ± 0.013, using an unconventional method11 that overcomes these challenges.« less

  12. A percent-level determination of the nucleon axial coupling from Quantum Chromodynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Chia C.; Rinaldi, Enrico; Nicholson, A. N.

    Here, the axial coupling of the nucleon, g A, is the strength of its coupling to the weak axial current of the Standard Model, much as the electric charge is the strength of the coupling to the electromagnetic current. This axial coupling dictates, for example, the rate of β-decay of neutrons to protons and the strength of the attractive long-range force between nucleons. Precision tests of the Standard Model in nuclear environments require a quantitative understanding of nuclear physics rooted in Quantum Chromodynamics, a pillar of this theory. The prominence of g A makes it a benchmark quantity to determinemore » from theory, a difficult task as the theory is non-perturbative. Lattice QCD provides a rigorous, non-perturbative definition of the theory which can be numerically implemented. In order to determine g A, the lattice QCD community has identified two challenges that must be overcome to achieve a 2% precision by 2020: the excited state contamination must be controlled, and the statistical precision must be markedly improved. Here we report a calculation of g A QCD =1.271 ± 0.013, using an unconventional method11 that overcomes these challenges.« less

  13. New method for determining central axial orientation of flux rope embedded within current sheet using multipoint measurements

    NASA Astrophysics Data System (ADS)

    Li, ZhaoYu; Chen, Tao; Yan, GuangQing

    2016-10-01

    A new method for determining the central axial orientation of a two-dimensional coherent magnetic flux rope (MFR) via multipoint analysis of the magnetic-field structure is developed. The method is devised under the following geometrical assumptions: (1) on its cross section, the structure is left-right symmetric; (2) the projected structure velocity is vertical to the line of symmetry. The two conditions can be naturally satisfied for cylindrical MFRs and are expected to be satisfied for MFRs that are flattened within current sheets. The model test demonstrates that, for determining the axial orientation of such structures, the new method is more efficient and reliable than traditional techniques such as minimum-variance analysis of the magnetic field, Grad-Shafranov (GS) reconstruction, and the more recent method based on the cylindrically symmetric assumption. A total of five flux transfer events observed by Cluster are studied using the proposed approach, and the application results indicate that the observed structures, regardless of their actual physical properties, fit the assumed geometrical model well. For these events, the inferred axial orientations are all in excellent agreement with those obtained using the multi-GS reconstruction technique.

  14. Study of the Anatomy of the X-Ray and Neutron Production Scaling Laws in the Plasma Focus (Particle Energy Spectrum and Optimization Criteria).

    DTIC Science & Technology

    1979-11-01

    plasma focus operations have been experimentally analyzed in terms of (A) The fine structure of the axial-current channel during maximum of compression. (B) Correlation coefficient, for neutron yield n (by D2 discharges) and the multiplicity of the electron beam pulses; (C) Different values of the electrode voltage. The current distribution near the axial plasma column during the explosive decay of the column has been monitored and correlated with the electron beam production. Plasma focus discharges by our mode of operation generate high-intensity

  15. Measuring the Spin Correlation of Nuclear Muon Capture in HELIUM-3.

    NASA Astrophysics Data System (ADS)

    McCracken, Dorothy Jill

    1996-06-01

    We have completed the first measurement of the spin correlation of nuclear muon capture in ^3 He: mu^- + ^3He to nu _{mu} + ^3 H. From this spin correlation, we can extract the induced pseudoscalar form factor, F_{ rm p}, of the weak charged nuclear current. This form factor is not well known experimentally. If nuclear muon capture were a purely leptonic weak interaction, the current would have no pseudoscalar coupling, and therefore F_{rm p} arises from QCD contributions. Since ^3He is a fairly well understood system, a precise measurement of F_{rm p} could provide a direct test of the theories which describe QCD at low energies. This experiment was performed at TRIUMF in Vancouver, BC, using a muon beam. We stopped unpolarized muons in a laser polarized target filled with ^3 He and Rb vapor. The muons were captured into atomic orbitals, forming muonic ^3He which was then polarized via collisions with the optically pumped Rb vapor. When polarized muons undergo nuclear capture in ^3He, the total capture rate is proportional to (1 + {rm A_ {v}P_{v}cos} theta) where theta is the angle between the muon polarization and the triton recoil direction, P_{rm v} is the muon vector polarization and A_ {rm v} is the vector analyzing power. The partially conserved axial current hypothesis (PCAC) predicts that A_{rm v} = 0.524 +/- 0.006 Our measurement of A_{rm v} is in agreement with this prediction: A_{rm v } = 0.604 +/- 0.093 (stat.) _sp{-.142}{+.112}(syst.). This thesis will describe the design, construction, and operation of the device which simultaneously served as a polarized target and a gridded ion chamber. The ion chamber apparatus enabled us to identify recoil tritons as well as determine their direction of motion. The directional information was obtained by fitting the shapes of the pulses generated by the tritons. In addition, this thesis will describe in detail the analysis of these pulses which resulted in a measurement of the raw forward/backward asymmetry of the triton recoil direction. This asymmetry was measured to a precision of 11.5%. With the techniques employed in this experiment, a clear path exists to obtaining a precise measurement of the induced pseudoscalar coupling of the charged weak nuclear current. Plans for a future run, in which we will improve upon these techniques, are underway.

  16. Theoretical modeling and evaluation of the axial resolution of the adaptive optics scanning laser ophthalmoscope.

    PubMed

    Venkateswaran, Krishnakumar; Roorda, Austin; Romero-Borja, Fernando

    2004-01-01

    We present axial resolution calculated using a mathematical model of the adaptive optics scanning laser ophthalmoscope (AOSLO). The peak intensity and the width of the axial intensity response are computed with the residual Zernike coefficients after the aberrations are corrected using adaptive optics for eight subjects and compared with the axial resolution of a diffraction-limited eye. The AOSLO currently uses a confocal pinhole that is 80 microm, or 3.48 times the width of the Airy disk radius of the collection optics, and projects to 7.41 microm on the retina. For this pinhole, the axial resolution of a diffraction-limited system is 114 microm and the computed axial resolution varies between 120 and 146 microm for the human subjects included in this study. The results of this analysis indicate that to improve axial resolution, it is best to reduce the pinhole size. The resulting reduction in detected light may demand, however, a more sophisticated adaptive optics system. The study also shows that imaging systems with large pinholes are relatively insensitive to misalignment in the lateral positioning of the confocal pinhole. However, when small pinholes are used to maximize resolution, alignment becomes critical. ( c) 2004 Society of Photo-Optical Instrumentation Engineers.

  17. Ocean Observing at Axial Seamount: Details of the Current OOI-RSN Design Within the Context of the April 2011 Eruption

    NASA Astrophysics Data System (ADS)

    Proskurowski, G.; Kelley, D. S.; Fundis, A. T.; Kawka, O.; Denny, G. F.; Delaney, J. R.

    2011-12-01

    In 2013, the NSF's Ocean Observatories Initiative (OOI) will deploy 22 instrument suites within the caldera of Axial Seamount as part of the cabled observatory component implemented by the Regional Scale Nodes (RSN) at the University of Washington. The cabled infrastructure will initially provide Axial caldera with a total of 8kW of power and 11Gbps of data bandwidth. Only an approximate 20% fraction will be used by "core instrumentation"-instrumentation supported and maintained by OOI-RSN. Thus, the OOI provided infrastructure is highly, and readily, expandable to include community-generated instrumention once the system is commissioned and begins operations in early 2015. Here we present the details of the current design of the cabled observatory at Axial Seamount, including locations of instruments, data products, and sampling rates placed in the context of meter scale resolution bathymetry and down-looking photomosaics of the experimental sites. The April 2011 Axial eruption is a demonstration of the importance of transmitting seismic, video, and vent fluid chemistry information in real-time. The eruptive event, or series of events, in April 2011 went undetected until a series of ROV/AUV cruises, planned separately and years in advance, made observations to discover, confirm, and detail the transformation to Axial (see Chadwick et al., this session). What transpired during, and shortly after, the eruption will remain largely unknown, as the initial extraordinary fluxes of heat, chemistry and biology will have decayed in the intervening three and a half months. Here we detail the response capabilities of the OOI-RSN cabled observatory to a future eruptive event under two scenarios-as built, and an expanded version using existing technology.

  18. HSV as a vector in vaccine development and gene therapy.

    PubMed

    Marconi, Peggy; Argnani, Rafaela; Epstein, Alberto L; Manservigi, Roberto

    2009-01-01

    The very deep knowledge acquired on the genetics and molecular biology of herpes simplex virus (HSV), major human pathogen whose lifestyle is based on a long-term dual interaction with the infected host characterized by the existence of lytic and latent infections, has allowed the development of potential vectors for several applications in human healthcare. These include delivery and expression of human genes to cells of the nervous system, selective destruction of cancer cells, prophylaxis against infection with HSV or other infectious diseases and targeted infection of specific tissues or organs. Three different classes of vectors can be derived from HSV-1: replication-competent attenuated vectors, replication-incompetent recombinant vectors and defective helper-dependent vectors known as amplicons. This chapter highlights the current knowledge concerning design, construction and recent applications, as well as the potential and current limitations of the three different classes of HSV-1-based vectors.

  19. Hydrodynamic effects in a misaligned radial face seal

    NASA Technical Reports Server (NTRS)

    Etsion, I.

    1978-01-01

    Hydrodynamic effects in a flat seal having an angular misalignment are analyzed, taking into account the radial variation in seal clearance. An analytical solution for axial force, restoring moment, and transverse moment is presented that covers the whole range from zero to full angular misalignment. Both low pressure seals with cavitating flow and high pressure seals with full fluid film are considered. Strong coupling is demonstrated between angular misalignment and transverse moment which leads the misalignment vector by 90 degrees. This transverse moment, which is entirely due to hydrodynamic effects, may be a significant factor in seal operating mechanism.

  20. Hydrodynamic effects in a misaligned radial face seal

    NASA Technical Reports Server (NTRS)

    Etsion, I.

    1977-01-01

    Hydrodynamic effects in a flat seal having an angular misalignment are analyzed, taking into account the radial variation in seal clearance. An analytical solution for axial force, restoring moment, and transverse moment is presented that covers the whole range from zero to full angular misalignment. Both low pressure seals with cavitating flow and high pressure seals with full fluid film are considered. Strong coupling is demonstrated between angular misalignment and transverse moment which leads the misalignment vector by 90 degrees. This transverse moment, which is entirely due to hydrodynamic effects, is a significant factor in the seal operating mechanism.

  1. 2-D Nonlinear Theory of the Free Electron Laser Amplifier for an Electron Beam with Finite Axial and Transverse Dimensions.

    DTIC Science & Technology

    1982-04-23

    configuration is shown in Fig. 1. The generalized vector potentials of the right-handed, heh. !, static magnetic wiggler field and the electromagnetic...Fig. 2 denote the locations of the electron beams at t1 - 1 rn/c and t - 2 in/c, which c is the speed of light . The solid lines in the (z, t) plot are...the light lines. The gain pulse on axis are plotted at times t and t2. We see that the excited radiation pulse grows and spreads beyond the electron

  2. Vector and Axial Form Factors Applied to Neutrino Quasielastic Scattering

    NASA Astrophysics Data System (ADS)

    Budd, H.; Bodek, A.; Arrington, J.

    2005-02-01

    We calculate the quasielastic cross sections for neutrino scattering on nucleons using up to date fits to the nucleon elastic electromagnetic form factors GEp, GEn, GMp, GMn, and weak form factors. We show the extraction of F(q). We show the that F(q) has a different contribution to the anti-neutrino cross section, and how the anti-neutrino data can be used to check F(q) extracted from neutrino scattering. (Presented by Howard Budd at NuInt04, Mar. 2004, Laboratori Nazionali del Gran Sasso - INFN - Assergi, Italy [ http://nuint04.lngs.infn.it/])

  3. Quasielastic neutrino charged-current scattering off 12C: Effects of the meson exchange currents and large nucleon axial mass

    NASA Astrophysics Data System (ADS)

    Butkevich, A. V.; Luchuk, S. V.

    2018-04-01

    The quasielastic scattering of muon neutrino and electrons on a carbon target are analyzed using the relativistic distorted-wave impulse approximation (RDWIA). We also evaluate the contribution of the two-particle and two-hole meson exchange current (2 p -2 h MEC) to electroweak response functions. The nuclear model dependence of the (anti)neutrino cross sections is studied within the RDWIA+MEC approach and RDWIA model with the large nucleon axial mass. It is shown that the results for the squared momentum transfer distribution d σ /d Q2 and for invariant mass of the final hadronic system distribution d σ /d W obtained within these models are substantially different.

  4. The Background to Current Theories of Scuffing

    DTIC Science & Technology

    1973-01-01

    attention because, by neglecting axial flow , it can be treated in two dimensions. This has resulted in a fairly complete theoretical analysis...the contact. This method was essentially one of measuring the volume rate of flow through the contact, which was directly related to the pad...exit constriction. The pressure and temperature were also measured in the axial direction (105) and the results indicated that side leakage was

  5. Theory of high-resolution tunneling spin transport on a magnetic skyrmion

    NASA Astrophysics Data System (ADS)

    Palotás, Krisztián; Rózsa, Levente; Szunyogh, László

    2018-05-01

    Tunneling spin transport characteristics of a magnetic skyrmion are described theoretically in magnetic scanning tunneling microscopy (STM). The spin-polarized charge current in STM (SP-STM) and tunneling spin transport vector quantities, the longitudinal spin current and the spin transfer torque, are calculated in high spatial resolution within the same theoretical framework. A connection between the conventional charge current SP-STM image contrasts and the magnitudes of the spin transport vectors is demonstrated that enables the estimation of tunneling spin transport properties based on experimentally measured SP-STM images. A considerable tunability of the spin transport vectors by the involved spin polarizations is also highlighted. These possibilities and the combined theory of tunneling charge and vector spin transport pave the way for gaining deep insight into electric-current-induced tunneling spin transport properties in SP-STM and to the related dynamics of complex magnetic textures at surfaces.

  6. Limits on tensor coupling from neutron β decay

    NASA Astrophysics Data System (ADS)

    Pattie, R. W., Jr.; Hickerson, K. P.; Young, A. R.

    2013-10-01

    Limits on the tensor couplings generating a Fierz interference term b in mixed Gamow-Teller Fermi decays can be derived by combining data from measurements of angular correlation parameters in neutron decay, the neutron lifetime, and GV=GFVud as extracted from measurements of the Ft values from the 0+→0+ superallowed decay data set. These limits are derived by comparing the neutron β-decay rate as predicted in the standard model with the measured decay rate while allowing for the existence of beyond the standard model (BSM) couplings. We analyze limits derived from the electron-neutrino asymmetry a, or the beta asymmetry A, finding that the most stringent limits for CT/CA under the assumption of no right-handed neutrinos is -0.0026

  7. Kalman-Filter-Based Orientation Determination Using Inertial/Magnetic Sensors: Observability Analysis and Performance Evaluation

    PubMed Central

    Sabatini, Angelo Maria

    2011-01-01

    In this paper we present a quaternion-based Extended Kalman Filter (EKF) for estimating the three-dimensional orientation of a rigid body. The EKF exploits the measurements from an Inertial Measurement Unit (IMU) that is integrated with a tri-axial magnetic sensor. Magnetic disturbances and gyro bias errors are modeled and compensated by including them in the filter state vector. We employ the observability rank criterion based on Lie derivatives to verify the conditions under which the nonlinear system that describes the process of motion tracking by the IMU is observable, namely it may provide sufficient information for performing the estimation task with bounded estimation errors. The observability conditions are that the magnetic field, perturbed by first-order Gauss-Markov magnetic variations, and the gravity vector are not collinear and that the IMU is subject to some angular motions. Computer simulations and experimental testing are presented to evaluate the algorithm performance, including when the observability conditions are critical. PMID:22163689

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sirunyan, A. M.; Tumasyan, A.; Adam, W.

    Here, a search for dark matter and unparticle production at the LHC has been performed using events containing two charged leptons (electrons or muons), consistent with the decay of a Z boson, and large missing transverse momentum. This study is based on data collected with the CMS detector in 2015, corresponding to an integrated luminosity of 2.3 fb –1 of proton-proton collisions at the LHC, at a center-of-mass energy of 13 TeV. No excess over the standard model expectation is observed. Compared to previous searches in this topology, which exclusively relied on effective field theories, the results are interpreted inmore » terms of a simplified model of dark matter production for both vector and axial vector couplings between a mediator and dark matter particles. The first study of this class of models using CMS data at √s = 13 TeV is presented. Additionally, effective field theories of dark matter and unparticle production are used to interpret the data.« less

  9. Meson effective mass in the isospin medium in hard-wall AdS/QCD model

    NASA Astrophysics Data System (ADS)

    Mamedov, Shahin

    2016-02-01

    We study a mass splitting of the light vector, axial-vector, and pseudoscalar mesons in the isospin medium in the framework of the hard-wall model. We write an effective mass definition for the interacting gauge fields and scalar field introduced in gauge field theory in the bulk of AdS space-time. Relying on holographic duality we obtain a formula for the effective mass of a boundary meson in terms of derivative operator over the extra bulk coordinate. The effective mass found in this way coincides with the one obtained from finding of poles of the two-point correlation function. In order to avoid introducing distinguished infrared boundaries in the quantization formula for the different mesons from the same isotriplet we introduce extra action terms at this boundary, which reduces distinguished values of this boundary to the same value. Profile function solutions and effective mass expressions were found for the in-medium ρ , a_1, and π mesons.

  10. SU(3) sextet model with Wilson fermions

    NASA Astrophysics Data System (ADS)

    Hansen, Martin; Pica, Claudio

    2018-03-01

    We present our final results for the SU(3) sextet model with the non-improved Wilson fermion discretization. We find evidence for several phases of the lattice model, including a bulk phase with broken chiral symmetry. We study the transition between the bulk and weak coupling phase which corresponds to a significant change in the qualitative behavior of spectral and scale setting observables. In particular the t0 and w0 observables seem to diverge in the chiral limit in the weak coupling phase. We then focus on the study of spectral observables in the chiral limit in the weak coupling phase at infinite volume. We consider the masses and decay constants for the pseudoscalar and vector mesons, the mass of the axial vector meson and the spin-1/2 baryon as a function of the quark mass, while controlling finite volume effects. We then test our data against both the IR conformal and the chirally broken hypotheses. Preprint: CP3-Origins-2017-49 DNRF90

  11. Numerical simulation of steady and unsteady asymmetric vortical flow

    NASA Technical Reports Server (NTRS)

    Kandil, Osama A.; Wong, Tin-Chee; Liu, C. H.

    1992-01-01

    The unsteady, compressible, thin-layer, Navier-Stokes (NS) equations are solved to simulate steady and unsteady, asymmetric, vortical laminar flow around cones at high incidences and supersonic Mach numbers. The equations are solved by using an implicit, upwind, flux-difference splitting (FDS), finite-volume scheme. The locally conical flow assumption is used and the solutions are obtained by forcing the conserved components of the flowfield vector to be equal at two axial stations located at 0.95 and 1.0. Computational examples cover steady and unsteady asymmetric flows around a circular cone and its control using side strakes. The unsteady asymmetric flow solution around the circular cone has also been validated using the upwind, flux-vector splitting (FVS) scheme with the thin-layer NS equations and the upwind FDS with the full NS equations. The results are in excellent agreement with each other. Unsteady asymmetric flows are also presented for elliptic- and diamond-section cones, which model asymmetric vortex shedding around round- and sharp-edged delta winds.

  12. Development and Testing of an Axial Halbach Magnetic Bearing

    NASA Technical Reports Server (NTRS)

    Eichenberg, Dennis J.; Gallo, Christopher A.; Thompson, William K.

    2006-01-01

    The NASA Glenn Research Center has developed and tested a revolutionary Axial Halbach Magnetic Bearing. The objective of this work is to develop a viable non-contact magnetic thrust bearing utilizing Halbach arrays for all-electric flight, and many other applications. This concept will help to reduce harmful emissions, reduce the Nation s dependence on fossil fuels and mitigate many of the concerns and limitations encountered in conventional axial bearings such as bearing wear, leaks, seals and friction loss. The Axial Halbach Magnetic Bearing is inherently stable and requires no active feedback control system or superconductivity as required in many magnetic bearing designs. The Axial Halbach Magnetic Bearing is useful for very high speed applications including turbines, instrumentation, medical systems, computer memory systems, and space power systems such as flywheels. Magnetic fields suspend and support a rotor assembly within a stator. Advanced technologies developed for particle accelerators, and currently under development for maglev trains and rocket launchers, served as the basis for this application. Experimental hardware was successfully designed and developed to validate the basic principles and analyses. The report concludes that the implementation of Axial Halbach Magnetic Bearings can provide significant improvements in rotational system performance and reliability.

  13. Why coronal flux tubes have axially invariant cross-section

    NASA Astrophysics Data System (ADS)

    Bellan, Paul

    2001-10-01

    We present here a model that not only explains the long-standing mystery^1 of why solar coronal flux tubes tend towards having axially invariant cross-sections but also explains several other enigmatic features, namely: rotating jets emanating from the ends (surges), counter-streaming beams, ingestion of photospheric material, and elevated pressure/temperature compared to adjacent plasma. The model shows that when a steady current flows along a flux tube with a bulging middle (i.e., a flux tube that is initially produced by a potential magnetic field), non-conservative forces develop which accelerate fluid axially from both ends towards the middle. Remarkably, this axial pumping of fluid into the flux tube causes the flux tube cross-section and volume to decrease in a manner such that the flux tube develops an axial uniform cross-section as observed in coronal loops. The pumping process produces counter-rotating, counter-streaming Alfvenic bulk motion consistent with observations. Collision of the counter-streaming beams causes non-localized bulk heating. This picture also has relevance to astrophysical jets and coaxial spheromak guns and explains why these systems tend to form an axial jet along the geometric axis. Supported by USDOE. l ^1 J. A. Klimchuk, Solar Phys. 193, 53 (2000)

  14. Why coronal flux tubes have axially invariant cross-section

    NASA Astrophysics Data System (ADS)

    Bellan, P. M.

    2001-12-01

    We present here a model that not only explains the long-standing mystery of why solar coronal flux tubes tend towards having axially in-variant cross-sections but also explains several other enigmatic features, namely: rotating jets emanating from the ends (surges), counter-streaming beams, ingestion of photospheric material, and elevated pressure/temperature compared to adjacent plasma. The model shows that when a steady current flows along a flux tube with a bulging middle (i.e., a flux tube that is initially produced by a potential magnetic field), non-conservative forces develop which accelerate fluid axially from both ends towards the middle. Remarkably, this axial pumping of fluid into the flux tube causes the flux tube cross-section and volume to decrease in a manner such that the flux tube develops an axial uniform cross-section as observed in coronal loops. The pumping process produces counter-rotating, counter-streaming Alfvenic bulk motion consistent with observations. Collision of the counter-streaming beams causes non-localized bulk heating. This picture also has relevance to astrophysical jets and coaxial spheromak guns and explains why these systems tend to form an axial jet along the geometric axis. Supported by USDOE. [1]J. A. Klimchuk, Solar Phys. 193, 53 (2000)

  15. Declining Prevalence of Disease Vectors Under Climate Change

    NASA Astrophysics Data System (ADS)

    Escobar, Luis E.; Romero-Alvarez, Daniel; Leon, Renato; Lepe-Lopez, Manuel A.; Craft, Meggan E.; Borbor-Cordova, Mercy J.; Svenning, Jens-Christian

    2016-12-01

    More than half of the world population is at risk of vector-borne diseases including dengue fever, chikungunya, zika, yellow fever, leishmaniasis, chagas disease, and malaria, with highest incidences in tropical regions. In Ecuador, vector-borne diseases are present from coastal and Amazonian regions to the Andes Mountains; however, a detailed characterization of the distribution of their vectors has never been carried out. We estimate the distribution of 14 vectors of the above vector-borne diseases under present-day and future climates. Our results consistently suggest that climate warming is likely threatening some vector species with extinction, locally or completely. These results suggest that climate change could reduce the burden of specific vector species. Other vector species are likely to shift and constrain their geographic range to the highlands in Ecuador potentially affecting novel areas and populations. These forecasts show the need for development of early prevention strategies for vector species currently absent in areas projected as suitable under future climate conditions. Informed interventions could reduce the risk of human exposure to vector species with distributional shifts, in response to current and future climate changes. Based on the mixed effects of future climate on human exposure to disease vectors, we argue that research on vector-borne diseases should be cross-scale and include climatic, demographic, and landscape factors, as well as forces facilitating disease transmission at fine scales.

  16. Axial magnetic field injection in magnetized liner inertial fusion

    NASA Astrophysics Data System (ADS)

    Gourdain, P.-A.; Adams, M. B.; Davies, J. R.; Seyler, C. E.

    2017-10-01

    MagLIF is a fusion concept using a Z-pinch implosion to reach thermonuclear fusion. In current experiments, the implosion is driven by the Z-machine using 19 MA of electrical current with a rise time of 100 ns. MagLIF requires an initial axial magnetic field of 30 T to reduce heat losses to the liner wall during compression and to confine alpha particles during fusion burn. This field is generated well before the current ramp starts and needs to penetrate the transmission lines of the pulsed-power generator, as well as the liner itself. Consequently, the axial field rise time must exceed hundreds of microseconds. Any coil capable of being submitted to such a field for that length of time is inevitably bulky. The space required to fit the coil near the liner, increases the inductance of the load. In turn, the total current delivered to the load decreases since the voltage is limited by driver design. Yet, the large amount of current provided by the Z-machine can be used to produce the required 30 T field by tilting the return current posts surrounding the liner, eliminating the need for a separate coil. However, the problem now is the field penetration time, across the liner wall. This paper discusses why skin effect arguments do not hold in the presence of resistivity gradients. Numerical simulations show that fields larger than 30 T can diffuse across the liner wall in less than 60 ns, demonstrating that external coils can be replaced by return current posts with optimal helicity.

  17. Cyclic axial-torsional deformation behavior of a cobalt-base superalloy

    NASA Technical Reports Server (NTRS)

    Bonacuse, Peter J.; Kalluri, Sreeramesh

    1992-01-01

    Multiaxial loading, especially at elevated temperature, can cause the inelastic response of a material to differ significantly from that predicted by simple flow rules, i.e., von Mises or Tresca. To quantify some of these differences, the cyclic high-temperature, deformation behavior of a wrought cobalt-based superalloy, Haynes 188, is investigated under combined axial and torsional loads. Haynes 188 is currently used in many aerospace gas turbine and rocket engine applications, e.g., the combustor liner for the T800 turboshaft engine for the RAH-66 Comanche helicopter and the liquid oxygen posts in the main injector of the space shuttle main engine. The deformation behavior of this material is assessed through the examination of hysteresis loops generated from a biaxial fatigue test program. A high-temperature axial, torsional, and combined axial-torsional fatigue data base has been generated on Haynes 188 at 760 C. Cyclic loading tests have been conducted on uniform gauge section tubular specimens in a servohydraulic axial-torsional test rig. Test control and data acquisition were accomplished with a minicomputer. In this paper, the cyclic hardening characteristics and typical hysteresis loops in the axial stress versus axial strain, shear stress versus engineering shear strain, axial strain versus engineering shear strain, and axial stress versus shear stress spaces are presented for cyclic, in-phase and out-of-phase, axial torsional tests. For in-phase tests three different values of the proportionality constant, lambda (ratio of engineering shear strain amplitude to axial strain amplitude), are examined, viz., 0.86, 1.73, and 3.46. In the out-of-phase tests, three different values of the phase angle, phi (between the axial and engineering shear strain waveforms), are studied, viz., 30, 60, and 90 deg with lambda = 1.73. The cyclic hardening behaviors of all the tests conducted on Haynes 188 at 760 C are evaluated using the von Mises equivalent stress-strain and the maximum shear stress-maximum engineering shear strain (Tresca) curves. Comparisons are also made between the hardening behaviors of cyclic axial, torsional, and combined in-phase and out-of-phase axial-torsional fatigue tests. These comparisons are accomplished through simple Ramberg-Osgood type stress-strain functions for cyclic, axial stress-strain and shear stress-engineering shear strain curves.

  18. Implications of the Corotation Theorem on the MRI in Axial Symmetry

    NASA Astrophysics Data System (ADS)

    Montani, G.; Cianfrani, F.; Pugliese, D.

    2016-08-01

    We analyze the linear stability of an axially symmetric ideal plasma disk, embedded in a magnetic field and endowed with a differential rotation. This study is performed by adopting the magnetic flux function as the fundamental dynamical variable, in order to outline the role played by the corotation theorem on the linear mode structure. Using some specific assumptions (e.g., plasma incompressibility and propagation of the perturbations along the background magnetic field), we select the Alfvénic nature of the magnetorotational instability, and, in the geometric optics limit, we determine the dispersion relation describing the linear spectrum. We show how the implementation of the corotation theorem (valid for the background configuration) on the linear dynamics produces the cancellation of the vertical derivative of the disk angular velocity (we check such a feature also in the standard vector formalism to facilitate comparison with previous literature, in both the axisymmetric and three-dimensional cases). As a result, we clarify that the unstable modes have, for a stratified disk, the same morphology, proper of a thin-disk profile, and the z-dependence has a simple parametric role.

  19. Acoustic manipulation of oscillating spherical bodies: Emergence of axial negative acoustic radiation force

    NASA Astrophysics Data System (ADS)

    Rajabi, Majid; Mojahed, Alireza

    2016-11-01

    In this paper, emergence of negative axial acoustic radiation force on a rigid oscillating spherical body is investigated for acoustic manipulation purposes. The problem of plane acoustic wave scattering from an oscillating spherical body submerged in an ideal acoustic fluid medium is solved. For the case of oscillating direction collinear with the wave propagation wave number vector (desired path), it has been shown that the acoustic radiation force, as a result of nonlinear acoustic wave interaction with bodies can be expressed as a linear function of incident wave field and the oscillation properties of the oscillator (i.e., amplitude and phase of oscillation). The negative (i.e., pulling effects) and positive (i.e., pushing effects) radiation force situations are divided in oscillation complex plane with a specific frequency-dependant straight line. This characteristic line defines the radiation force cancellation state. In order to investigate the stability of the mentioned manipulation strategy, the case of misaligned oscillation of sphere with the wave propagation direction is studied. The proposed methodology may suggest a novel concept of single-beam acoustic handling techniques based on smart carriers.

  20. Six-dimensional regularization of chiral gauge theories

    NASA Astrophysics Data System (ADS)

    Fukaya, Hidenori; Onogi, Tetsuya; Yamamoto, Shota; Yamamura, Ryo

    2017-03-01

    We propose a regularization of four-dimensional chiral gauge theories using six-dimensional Dirac fermions. In our formulation, we consider two different mass terms having domain-wall profiles in the fifth and the sixth directions, respectively. A Weyl fermion appears as a localized mode at the junction of two different domain walls. One domain wall naturally exhibits the Stora-Zumino chain of the anomaly descent equations, starting from the axial U(1) anomaly in six dimensions to the gauge anomaly in four dimensions. Another domain wall implies a similar inflow of the global anomalies. The anomaly-free condition is equivalent to requiring that the axial U(1) anomaly and the parity anomaly are canceled among the six-dimensional Dirac fermions. Since our formulation is based on a massive vector-like fermion determinant, a nonperturbative regularization will be possible on a lattice. Putting the gauge field at the four-dimensional junction and extending it to the bulk using the Yang-Mills gradient flow, as recently proposed by Grabowska and Kaplan, we define the four-dimensional path integral of the target chiral gauge theory.

  1. The Caltech experimental investigation of fast 3D non-equilbrium dynamics: an overview

    NASA Astrophysics Data System (ADS)

    Bellan, Paul; Shikama, Taiichi; Chai, Kilbyoung; Ha, Bao; Chaplin, Vernon; Kendall, Mark; Moser, Auna; Stenson, Eve; Tobin, Zachary; Zhai, Xiang

    2012-10-01

    The formation and dynamics of writhing, plasma-filled, twisted open magnetic flux tubes is being investigated using pulsed-power laboratory experiments. This work is relevant to solar corona loops, astrophysical jets, spheromak formation, and open field lines in tokamaks and RFP's. MHD forces have been observed to drive fast axial plasma flows into the flux tube from the boundary it intercepts. These flows fill the flux tube with plasma while simultaneously injecting linked frozen-in azimuthal flux; helicity injection is thus associated with mass injection. Recent results include observation of a secondary instability (Rayleigh-Taylor driven by the effective gravity of an exponentially growing kink mode), color-coded plasmas manifesting bidirectional axial flows in a geometry similar to a solar corona loop, and spectroscopic measurements of the internal vector magnetic field. Experiments underway include investigating how an external magnetic field straps down a solar loop, investigation of the details of the Rayleigh-Taylor instability, development of a fast EUV movie camera, increasing the jet velocity, excitation of Alfven waves, and investigating 3D magnetic reconnection.

  2. Loss reduction in axial-flow compressors through low-speed model testing

    NASA Technical Reports Server (NTRS)

    Wisler, D. C.

    1984-01-01

    A systematic procedure for reducing losses in axial-flow compressors is presented. In this procedure, a large, low-speed, aerodynamic model of a high-speed core compressor is designed and fabricated based on aerodynamic similarity principles. This model is then tested at low speed where high-loss regions associated with three-dimensional endwall boundary layers flow separation, leakage, and secondary flows can be located, detailed measurements made, and loss mechanisms determined with much greater accuracy and much lower cost and risk than is possible in small, high-speed compressors. Design modifications are made by using custom-tailored airfoils and vector diagrams, airfoil endbends, and modified wall geometries in the high-loss regions. The design improvements resulting in reduced loss or increased stall margin are then scaled to high speed. This paper describes the procedure and presents experimental results to show that in some cases endwall loss has been reduced by as much as 10 percent, flow separation has been reduced or eliminated, and stall margin has been substantially improved by using these techniques.

  3. Embedding Circular Force-Free Flux Ropes in Potential Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Titov, V. S.; Torok, T.; Mikic, Z.; Linker, J.

    2013-12-01

    We propose a method for constructing approximate force-free equilibria in active regions that locally have a potential bipolar-type magnetic field with a thin force-free flux rope embedded inside it. The flux rope has a circular-arc axis and circular cross-section in which the interior magnetic field is predominantly toroidal (axial). Its magnetic pressure is balanced outside by that of the poloidal (azimuthal) field created at the boundary by the electric current sheathing the flux rope. To facilitate the implementation of the method in our numerical magnetohydrodynamic (MHD) code, the entire solution is described in terms of the vector potential of the magnetic field. The parameters of the flux rope can be chosen so that a subsequent MHD relaxation of the constructed configuration under line-tied conditions at the boundary provides a numerically exact equilibrium. Such equilibria are an approximation for the magnetic configuration preceding solar eruptions, which can be triggered in our model by imposing suitable photospheric flows beneath the flux rope. The proposed method is a useful tool for constructing pre-eruption magnetic fields in data-driven simulations of solar active events. Research supported by NASA's Heliophysics Theory and LWS Programs, and NSF/SHINE and NSF/FESD.

  4. Open-flavor charm and bottom s q q ¯ Q ¯ and q q q ¯ Q ¯ tetraquark states

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Chen, Hua-Xing; Liu, Xiang; Steele, T. G.; Zhu, Shi-Lin

    2017-06-01

    We provide comprehensive investigations for the mass spectrum of exotic open-flavor charmed/bottom s q q ¯ c ¯ , q q q ¯ c ¯ , s q q ¯ b ¯ , q q q ¯ b ¯ tetraquark states with various spin-parity assignments JP=0+,1+,2+ and 0- , 1- in the framework of QCD sum rules. In the diquark configuration, we construct the diquark-antidiquark interpolating tetraquark currents using the color-antisymmetric scalar and axial-vector diquark fields. The stable mass sum rules are established in reasonable parameter working ranges, which are used to give reliable mass predictions for these tetraquark states. We obtain the mass spectra for the open-flavor charmed/bottom s q q ¯c ¯, q q q ¯c ¯, s q q ¯b ¯, q q q ¯b ¯ tetraquark states with various spin-parity quantum numbers. In addition, we suggest searching for exotic doubly-charged tetraquarks, such as [s d ][u ¯ c ¯ ]→Ds(*)-π- in future experiments at facilities such as BESIII, BelleII, PANDA, LHCb, and CMS, etc.

  5. Electron spectra in forbidden β decays and the quenching of the weak axial-vector coupling constant gA

    NASA Astrophysics Data System (ADS)

    Kostensalo, Joel; Haaranen, Mikko; Suhonen, Jouni

    2017-04-01

    Evolution of the electron spectra with the effective value of the weak axial-vector coupling constant gA was followed for 26 first-, second-, third-, fourth- and fifth-forbidden β- decays of odd-A nuclei by calculating the involved nuclear matrix elements (NMEs) in the framework of the microscopic quasiparticle-phonon model (MQPM). The next-to-leading-order terms were included in the β -decay shape factor of the electron spectra. The spectrum shapes of third- and fourth-forbidden nonunique decays were found to depend strongly on the value of gA, while first- and second-forbidden decays were mostly unaffected by the tuning of gA. The gA-driven evolution of the normalized β spectra was found to be quite universal, largely insensitive to the small changes in the nuclear mean field and the adopted residual many-body Hamiltonian producing the excitation spectra of the MQPM. This makes the comparison of experimental and theoretical electron spectra, coined "the spectrum-shape method" (SSM), a robust tool for extracting information on the effective values of the weak coupling constants. In this exploratory work two new experimentally interesting decays for the SSM treatment were discovered: the ground-state-to-ground-state decays of 99Tc and 87Rb. Comparing the experimental and theoretical spectra of these decays could shed light on the effective values of gA and gV for second- and third-forbidden nonunique decays. The measurable decay transitions of 135Cs and 137Cs, in turn, can be used to test the SSM in different many-body formalisms. The present work can also be considered as a (modest) step towards solving the gA problem of the neutrinoless double beta decay.

  6. An unsupervised machine learning method for delineating stratum corneum in reflectance confocal microscopy stacks of human skin in vivo

    NASA Astrophysics Data System (ADS)

    Bozkurt, Alican; Kose, Kivanc; Fox, Christi A.; Dy, Jennifer; Brooks, Dana H.; Rajadhyaksha, Milind

    2016-02-01

    Study of the stratum corneum (SC) in human skin is important for research in barrier structure and function, drug delivery, and water permeability of skin. The optical sectioning and high resolution of reflectance confocal microscopy (RCM) allows visual examination of SC non-invasively. Here, we present an unsupervised segmentation algorithm that can automatically delineate thickness of the SC in RCM images of human skin in-vivo. We mimic clinicians visual process by applying complex wavelet transform over non-overlapping local regions of size 16 x 16 μm called tiles, and analyze the textural changes in between consecutive tiles in axial (depth) direction. We use dual-tree complex wavelet transform to represent textural structures in each tile. This transform is almost shift-invariant, and directionally selective, which makes it highly efficient in texture representation. Using DT-CWT, we decompose each tile into 6 directional sub-bands with orientations in +/-15, 45, and 75 degrees and a low-pass band, which is the decimated version of the input. We apply 3 scales of decomposition by recursively transforming the low-pass bands and obtain 18 bands of different directionality at different scales. We then calculate mean and variance of each band resulting in a feature vector of 36 entries. Feature vectors obtained for each stack of tiles in axial direction are then clustered using spectral clustering in order to detect the textural changes in depth direction. Testing on a set of 15 RCM stacks produced a mean error of 5.45+/-1.32 μm, compared to the "ground truth" segmentation provided by a clinical expert reader.

  7. Flow behind an exponential shock wave in a rotational axisymmetric perfect gas with magnetic field and variable density.

    PubMed

    Nath, G; Sahu, P K

    2016-01-01

    A self-similar model for one-dimensional unsteady isothermal and adiabatic flows behind a strong exponential shock wave driven out by a cylindrical piston moving with time according to an exponential law in an ideal gas in the presence of azimuthal magnetic field and variable density is discussed in a rotating atmosphere. The ambient medium is assumed to possess radial, axial and azimuthal component of fluid velocities. The initial density, the fluid velocities and magnetic field of the ambient medium are assumed to be varying with time according to an exponential law. The gas is taken to be non-viscous having infinite electrical conductivity. Solutions are obtained, in both the cases, when the flow between the shock and the piston is isothermal or adiabatic by taking into account the components of vorticity vector. The effects of the variation of the initial density index, adiabatic exponent of the gas and the Alfven-Mach number on the flow-field behind the shock wave are investigated. It is found that the presence of the magnetic field have decaying effects on the shock wave. Also, it is observed that the effect of an increase in the magnetic field strength is more impressive in the case of adiabatic flow than in the case of isothermal flow. The assumption of zero temperature gradient brings a profound change in the density, non-dimensional azimuthal and axial components of vorticity vector distributions in comparison to those in the case of adiabatic flow. A comparison is made between isothermal and adiabatic flows. It is obtained that an increase in the initial density variation index, adiabatic exponent and strength of the magnetic field decrease the shock strength.

  8. A Numerical Model of Hercules A by Magnetic Tower

    NASA Astrophysics Data System (ADS)

    Nakamura, Masanori; Tregillis, I. L.; Li, H.; Li, S.

    2009-01-01

    We apply magnetohydrodynamic (MHD) modeling to the radio galaxy Hercules A for investigating the jet-driven shock, jet/lobe transition, wiggling, and magnetic field distribution associated with this source. The model consists of magnetic tower jets in a galaxy cluster environment. The profile of underlying ambient gas plays an important role in jet-lobe morphology. The balance between the magnetic pressure generated by axial current and the ambient gas pressure can determine the lobe radius. The jet body is confined jointly by the external pressure and gravity inside the cluster core radius, while outside this radius it expands radially to form fat lobes in a steeply decreasing ambient thermal pressure gradient. The current-carrying jets are responsible for generating a strong, tightly wound helical magnetic field. This magnetic configuration will be unstable against the current-driven kink mode and it visibly grows beyond the cluster core radius where a separation between the jet forward and return currents occurs. The reversed pinch profile of global magnetic field associated with the jet and lobes produces projected magnetic-vector distributions aligned with the jet flow and the lobe edge. AGN-driven shock powered by the expanding magnetic tower jet surrounds the jet/lobe structure and heats the ambient ICM. The lobes expand subsonically; no obvious hot spots are produced at the heads of lobes. Several key features in our MHD modeling may be qualitatively supported by the observations of Hercules A. This work was carried out under the auspices of the National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396. It was supported by the Laboratory Directed Research and Development Program at LANL and by IGPP at LANL.

  9. Neutrino-driven Explosion of a 20 Solar-mass Star in Three Dimensions Enabled by Strange-quark Contributions to Neutrino-Nucleon Scattering

    NASA Astrophysics Data System (ADS)

    Melson, Tobias; Janka, Hans-Thomas; Bollig, Robert; Hanke, Florian; Marek, Andreas; Müller, Bernhard

    2015-08-01

    Interactions with neutrons and protons play a crucial role for the neutrino opacity of matter in the supernova core. Their current implementation in many simulation codes, however, is rather schematic and ignores not only modifications for the correlated nuclear medium of the nascent neutron star, but also free-space corrections from nucleon recoil, weak magnetism, or strange quarks, which can easily add up to changes of several 10% for neutrino energies in the spectral peak. In the Garching supernova simulations with the Prometheus-Vertex code, such sophistications have been included for a long time except for the strange-quark contributions to the nucleon spin, which affect neutral-current neutrino scattering. We demonstrate on the basis of a 20 {M}⊙ progenitor star that a moderate strangeness-dependent contribution of {g}{{a}}{{s}}=-0.2 to the axial-vector coupling constant {g}{{a}}≈ 1.26 can turn an unsuccessful three-dimensional (3D) model into a successful explosion. Such a modification is in the direction of current experimental results and reduces the neutral-current scattering opacity of neutrons, which dominate in the medium around and above the neutrinosphere. This leads to increased luminosities and mean energies of all neutrino species and strengthens the neutrino-energy deposition in the heating layer. Higher nonradial kinetic energy in the gain layer signals enhanced buoyancy activity that enables the onset of the explosion at ˜300 ms after bounce, in contrast to the model with vanishing strangeness contributions to neutrino-nucleon scattering. Our results demonstrate the close proximity to explosion of the previously published, unsuccessful 3D models of the Garching group.

  10. Malaria vectors in South America: current and future scenarios.

    PubMed

    Laporta, Gabriel Zorello; Linton, Yvonne-Marie; Wilkerson, Richard C; Bergo, Eduardo Sterlino; Nagaki, Sandra Sayuri; Sant'Ana, Denise Cristina; Sallum, Maria Anice Mureb

    2015-08-19

    Malaria remains a significant public health issue in South America. Future climate change may influence the distribution of the disease, which is dependent on the distribution of those Anopheles mosquitoes competent to transmit Plasmodium falciparum. Herein, predictive niche models of the habitat suitability for P. falciparum, the current primary vector Anopheles darlingi and nine other known and/or potential vector species of the Neotropical Albitarsis Complex, were used to document the current situation and project future scenarios under climate changes in South America in 2070. To build each ecological niche model, we employed topography, climate and biome, and the currently defined distribution of P. falciparum, An. darlingi and nine species comprising the Albitarsis Complex in South America. Current and future (i.e., 2070) distributions were forecast by projecting the fitted ecological niche model onto the current environmental situation and two scenarios of simulated climate change. Statistical analyses were performed between the parasite and each vector in both the present and future scenarios to address potential vector roles in the dynamics of malaria transmission. Current distributions of malaria vector species were associated with that of P. falciparum, confirming their role in transmission, especially An. darlingi, An. marajoara and An. deaneorum. Projected climate changes included higher temperatures, lower water availability and biome modifications. Regardless of future scenarios considered, the geographic distribution of P. falciparum was exacerbated in 2070 South America, with the distribution of the pathogen covering 35-46% of the continent. As the current primary vector An. darlingi showed low tolerance for drier environments, the projected climate change would significantly reduce suitable habitat, impacting both its distribution and abundance. Conversely, climate generalist members of the Albitarsis Complex showed significant spatial and temporal expansion potential in 2070, and we conclude these species will become more important in the dynamics of malaria transmission in South America. Our data suggest that climate and landscape effects will elevate the importance of members of the Albitarsis Complex in malaria transmission in South America in 2070, highlighting the need for further studies addressing the bionomics, ecology and behaviours of the species comprising the Albitarsis Complex.

  11. The Chiral Separation Effect in quenched finite-density QCD

    NASA Astrophysics Data System (ADS)

    Puhr, Matthias; Buividovich, Pavel

    2018-03-01

    We present results of a study of the Chiral Separation Effect (CSE) in quenched finite-density QCD. Using a recently developed numerical method we calculate the conserved axial current for exactly chiral overlap fermions at finite density for the first time. We compute the anomalous transport coeffcient for the CSE in the confining and deconfining phase and investigate possible deviations from the universal value. In both phases we find that non-perturbative corrections to the CSE are absent and we reproduce the universal value for the transport coeffcient within small statistical errors. Our results suggest that the CSE can be used to determine the renormalisation factor of the axial current.

  12. Development and Testing of a Dual Accelerometer Vector Sensor for AUV Acoustic Surveys †

    PubMed Central

    Mantouka, Agni; Felisberto, Paulo; Santos, Paulo; Zabel, Friedrich; Saleiro, Mário; Jesus, Sérgio M.; Sebastião, Luís

    2017-01-01

    This paper presents the design, manufacturing and testing of a Dual Accelerometer Vector Sensor (DAVS). The device was built within the activities of the WiMUST project, supported under the Horizon 2020 Framework Programme, which aims to improve the efficiency of the methodologies used to perform geophysical acoustic surveys at sea by the use of Autonomous Underwater Vehicles (AUVs). The DAVS has the potential to contribute to this aim in various ways, for example, owing to its spatial filtering capability, it may reduce the amount of post processing by discriminating the bottom from the surface reflections. Additionally, its compact size allows easier integration with AUVs and hence facilitates the vehicle manoeuvrability compared to the classical towed arrays. The present paper is focused on results related to acoustic wave azimuth estimation as an example of its spatial filtering capabilities. The DAVS device consists of two tri-axial accelerometers and one hydrophone moulded in one unit. Sensitivity and directionality of these three sensors were measured in a tank, whilst the direction estimation capabilities of the accelerometers paired with the hydrophone, forming a vector sensor, were evaluated on a Medusa Class AUV, which was sailing around a deployed sound source. Results of these measurements are presented in this paper. PMID:28594342

  13. Development and Testing of a Dual Accelerometer Vector Sensor for AUV Acoustic Surveys.

    PubMed

    Mantouka, Agni; Felisberto, Paulo; Santos, Paulo; Zabel, Friedrich; Saleiro, Mário; Jesus, Sérgio M; Sebastião, Luís

    2017-06-08

    This paper presents the design, manufacturing and testing of a Dual Accelerometer Vector Sensor (DAVS). The device was built within the activities of the WiMUST project, supported under the Horizon 2020 Framework Programme, which aims to improve the efficiency of the methodologies used to perform geophysical acoustic surveys at sea by the use of Autonomous Underwater Vehicles (AUVs). The DAVS has the potential to contribute to this aim in various ways, for example, owing to its spatial filtering capability, it may reduce the amount of post processing by discriminating the bottom from the surface reflections. Additionally, its compact size allows easier integration with AUVs and hence facilitates the vehicle manoeuvrability compared to the classical towed arrays. The present paper is focused on results related to acoustic wave azimuth estimation as an example of its spatial filtering capabilities. The DAVS device consists of two tri-axial accelerometers and one hydrophone moulded in one unit. Sensitivity and directionality of these three sensors were measured in a tank, whilst the direction estimation capabilities of the accelerometers paired with the hydrophone, forming a vector sensor, were evaluated on a Medusa Class AUV, which was sailing around a deployed sound source. Results of these measurements are presented in this paper.

  14. You can hide but you have to run: direct detection with vector mediators

    NASA Astrophysics Data System (ADS)

    D'Eramo, Francesco; Kavanagh, Bradley J.; Panci, Paolo

    2016-08-01

    We study direct detection in simplified models of Dark Matter (DM) in which interactions with Standard Model (SM) fermions are mediated by a heavy vector boson. We consider fully general, gauge-invariant couplings between the SM, the mediator and both scalar and fermion DM. We account for the evolution of the couplings between the energy scale of the mediator mass and the nuclear energy scale. This running arises from virtual effects of SM particles and its inclusion is not optional. We compare bounds on the mediator mass from direct detection experiments with and without accounting for the running. In some cases the inclusion of these effects changes the bounds by several orders of magnitude, as a consequence of operator mixing which generates new interactions at low energy. We also highlight the importance of these effects when translating LHC limits on the mediator mass into bounds on the direct detection cross section. For an axial-vector mediator, the running can alter the derived bounds on the spin-dependent DM-nucleon cross section by a factor of two or more. Finally, we provide tools to facilitate the inclusion of these effects in future studies: general approximate expressions for the low energy couplings and a public code runDM to evolve the couplings between arbitrary energy scales.

  15. Spectral Dependence of Stratified Electrothermal Instability in Tamped Aluminum 6061 with Current in a Skin Layer

    NASA Astrophysics Data System (ADS)

    Bauer, Bruno; Hutchinson, Trevor; Awe, Thomas

    2017-10-01

    The stratified electrothermal instability (ETI) was recently observed on the surface of thick aluminum 6061 pulsed with rapidly rising lineal current density (3 ×1015 A m-1s-1) for 70 ns. A transparent 70- μm-thick Parylene-N coating tamped the aluminum expansion and suppressed surface plasma. The evolution of the aluminum surface emission pattern was recorded with time-resolved microscopy (3- μm resolution). The images were converted into a series of blackbody surface-temperature maps. Analysis of these temperature maps provides information on the evolution of temperature fluctuations, as a function of axial wavelength and azimuthal width. Perturbations with axial wavelength longer than 20 μm grow, while those with axial wavelength shorter than 10 μm decay. Comparing the spectral dependence of growth/decay rates with MHD simulations could test the modeling of ETI positive feedback and of damping by thermal conduction. Work supported by Sandia National Laboratories LDRD program, PO 1742766.

  16. Axial and radial water flow in the trunks of oak trees: a quantitative and qualitative analysis.

    PubMed

    Granier, A; Anfodillo, T; Sabatti, M; Cochard, H; Dreyer, E; Tomasi, M; Valentini, R; Bréda, N

    1994-12-01

    Axial water flow in the trunks of mature oak trees (Quercus petraea (Matt.) Liebl. and Q. robur L.) was studied by four independent techniques: water absorption from a cut trunk, sap flowmeters, heat pulse velocity (HPV) and thermoimaging. Estimation of the total water flow with sap flowmeters, HPV and water absorption yielded comparable results. We concluded from dye colorations, thermograms and axial profiles of sap flow and heat pulse velocity that, in intact trunks, most of the flow occurred in the current-year ring, where early-wood vessels in the outermost ring were still functional. Nevertheless, there was significant flow in the older rings of the xylem. Total water flow through the trunk was only slightly reduced when air embolisms were artificially induced in early-wood vessels, probably because there was little change in hydraulic conductance in the root-leaf sap pathway. Embolization of the current-year vessels reactivated transport in the older rings.

  17. Electron temperature profiles in axial field 2.45 GHz ECR ion source with a ceramic chamber

    NASA Astrophysics Data System (ADS)

    Abe, K.; Tamura, R.; Kasuya, T.; Wada, M.

    2017-08-01

    An array of electrostatic probes was arranged on the plasma electrode of a 2.45 GHz microwave driven axial magnetic filter field type negative hydrogen (H-) ion source to clarify the spatial plasma distribution near the electrode. The measured spatial distribution of electron temperature indicated the lower temperature near the extraction hole of the plasma electrode corresponding to the effectiveness of the axial magnetic filter field geometry. When the ratio of electron saturation current to the ion saturation current was plotted as a function of position, the obtained distribution showed a higher ratio near the hydrogen gas inlet through which ground state hydrogen molecules are injected into the source. Though the efficiency in producing H- ions is smaller for a 2.45 GHz source than a source operated at 14 GHz, it gives more volume to measure spatial distributions of various plasma parameters to understand fundamental processes that are influential on H- production in this type of ion sources.

  18. Superconducting-electromagnetic hybrid bearing using YBCO bulk blocks for passive axial levitation

    NASA Astrophysics Data System (ADS)

    Nicolsky, R.; de Andrade, R., Jr.; Ripper, A.; David, D. F. B.; Santisteban, J. A.; Stephan, R. M.; Gawalek, W.; Habisreuther, T.; Strasser, T.

    2000-06-01

    A superconducting/electromagnetic hybrid bearing has been designed using active radial electromagnetic positioning and a superconducting passive axial levitator. This bearing has been tested for an induction machine with a vertical shaft. The prototype was conceived as a four-pole, two-phase induction machine using specially designed stator windings for delivering torque and radial positioning simultaneously. The radial bearing uses four eddy-current sensors, displaced 90° from each other, for measuring the shaft position and a PID control system for feeding back the currents. The stator windings have been adapted from the ones of a standard induction motor. The superconducting axial bearing has been assembled with commercial NdFeB permanent magnets and a set of seven top-seeded-melt-textured YBCO large-grain cylindrical blocks. The bearing set-up was previously simulated by a finite element method for different permanent magnet-superconductor block configurations. The stiffness of the superconducting axial bearing has been investigated by measuring by a dynamic method the vertical and transversal elastic constants for different field cooling processes. The resulting elastic constants show a linear dependence on the air gap, i.e. the clearance between the permanent magnet assembly and the set of superconducting large-grain blocks, which is dependent on cooling distance.

  19. In-medium Chiral Perturbation Theory beyond the Mean-Field Approximation

    NASA Astrophysics Data System (ADS)

    Meißner, Ulf-G.; Oller, José A.; Wirzba, Andreas

    2002-04-01

    An explicit expression for the generating functional of two-flavor low-energy QCD with external sources in the presence of nonvanishing nucleon densities was derived recently (J. A. Oller, Phys. Rev. C65 (2002) 025204). Within this approach we derive power counting rules for the calculation of in-medium pion properties. We develop the so-called standard rules for residual nucleon energies of the order of the pion mass and a modified scheme (nonstandard counting) for vanishing residual nucleon energies. We also establish the different scales for the range of applicability of this perturbative expansion, which are 6πfπ≃0.7 GeV for standard and 6π2fπ2/2mN≃0.27 GeV for nonstandard counting, respectively. We have performed a systematic analysis of n-point in-medium Green functions up to and including next-to-leading order when the standard rules apply. These include the in-medium contributions to quark condensates, pion propagators, pion masses, and couplings of the axial-vector, vector, and pseudoscalar currents to pions. In particular, we find a mass shift for negatively charged pions in heavy nuclei, ΔMπ-=(18±m 5) MeV, that agrees with recent determinations from deeply bound pionic 207Pb. We have also established the absence of in-medium renormalization in the π0→γγ decay amplitude up to the same order. The study of ππ scattering requires the use of the nonstandard counting and the calculation is done at leading order. Even at that order we establish new contributions not considered so far. We also point toward further possible improvements of this scheme and touch upon its relation to more conventional many-body approaches.

  20. Baryon Effective Theories and Phenomenology in the 1/N c Expansion

    NASA Astrophysics Data System (ADS)

    Fernando, Ishara Priyasad

    Chiral perturbation theory (ChPT) and the 1/Nc expansion provide systematic frameworks to investigate the strong interaction at low energy. There are two main focuses of this dissertation. First, analyzing the masses of baryons in the framework of the 1/Nc expansion, using the available physical masses and masses calculated in lattice QCD. Second, combining both ChPT and the 1/Nc expansion into a single framework and applying it to the phenomenology of baryons with three light-quark flavors. In the first focus, the baryon states are organized into irreducible representa- tions of SU(6) x O(3), where the [56, ℓ P = 0+] contains the ground state and radially excited baryons, and the [56, 2+] and [70, 1 -] contain orbitally excited states are analyzed. The analyses are carried out to O(1/Nc) and first order in the quark masses. The issue of state identifications is discussed. Numerous parameter independent mass relations and the famous Gell-Mann-Okubo (GMO) and Equal-Spacing (ES) relations are tested. Also, the quark mass dependence of the operator coefficients for baryon mass is discussed. In the second focus, a small scale expansion of the combined approach is defined as the xi-expansion, in which the power counting of 1/Nc and chiral expansions are linked as O(p) = O(1/Nc) = O(xi). A calculation of one-loop corrections to the ground state baryon masses, vector and axial-vector currents up to O(xi 3) is presented. Moreover, the physical and lattice QCD masses are considered in order to understand the quark mass dependence, along with an analysis of the violations to GMO, ES and Gursey-Radicati (GR) mass relations, and their dependence on Nc.

  1. Exploring the ring current of carbon nanotubes by first-principles calculations.

    PubMed

    Ren, Pengju; Zheng, Anmin; Xiao, Jianping; Pan, Xiulian; Bao, Xinhe

    2015-02-01

    Ring current is a fundamental concept to understand the nuclear magnetic resonance (NMR) properties and aromaticity for conjugated systems, such as carbon nanotubes (CNTs). Employing the recently developed gauge including projector augmented wave (GIPAW) method, we studied the ring currents of CNTs systematically and visualized their distribution. The ring current patterns are determined by the semiconducting or metallic properties of CNTs. The discrepancy is mainly caused by the axial component of external magnetic fields, whereas the radial component induced ring currents are almost independent of the electronic structures of CNTs, where the intensities of the ring currents are linearly related to the diameters of the CNTs. Although the ring currents induced by the radial component are more intense than those by the axial component, only the latter determines the overall NMR responses and aromaticity of the CNTs as well. Furthermore, the semiconducting CNTs are more aromatic than their metallic counterparts due to the existence of delocalized ring currents on the semiconducting CNTs. These fundamental features are of vital importance for the development of CNT-based nanoelectronics and applications in magnetic fields.

  2. Exploring the ring current of carbon nanotubes by first-principles calculations

    PubMed Central

    Ren, Pengju; Zheng, Anmin; Xiao, Jianping; Pan, Xiulian

    2015-01-01

    Ring current is a fundamental concept to understand the nuclear magnetic resonance (NMR) properties and aromaticity for conjugated systems, such as carbon nanotubes (CNTs). Employing the recently developed gauge including projector augmented wave (GIPAW) method, we studied the ring currents of CNTs systematically and visualized their distribution. The ring current patterns are determined by the semiconducting or metallic properties of CNTs. The discrepancy is mainly caused by the axial component of external magnetic fields, whereas the radial component induced ring currents are almost independent of the electronic structures of CNTs, where the intensities of the ring currents are linearly related to the diameters of the CNTs. Although the ring currents induced by the radial component are more intense than those by the axial component, only the latter determines the overall NMR responses and aromaticity of the CNTs as well. Furthermore, the semiconducting CNTs are more aromatic than their metallic counterparts due to the existence of delocalized ring currents on the semiconducting CNTs. These fundamental features are of vital importance for the development of CNT-based nanoelectronics and applications in magnetic fields. PMID:29560175

  3. The Anopheles gambiae transcriptome - a turning point for malaria control.

    PubMed

    Domingos, A; Pinheiro-Silva, R; Couto, J; do Rosário, V; de la Fuente, J

    2017-04-01

    Mosquitoes are important vectors of several pathogens and thereby contribute to the spread of diseases, with social, economic and public health impacts. Amongst the approximately 450 species of Anopheles, about 60 are recognized as vectors of human malaria, the most important parasitic disease. In Africa, Anopheles gambiae is the main malaria vector mosquito. Current malaria control strategies are largely focused on drugs and vector control measures such as insecticides and bed-nets. Improvement of current, and the development of new, mosquito-targeted malaria control methods rely on a better understanding of mosquito vector biology. An organism's transcriptome is a reflection of its physiological state and transcriptomic analyses of different conditions that are relevant to mosquito vector competence can therefore yield important information. Transcriptomic analyses have contributed significant information on processes such as blood-feeding parasite-vector interaction, insecticide resistance, and tissue- and stage-specific gene regulation, thereby facilitating the path towards the development of new malaria control methods. Here, we discuss the main applications of transcriptomic analyses in An. gambiae that have led to a better understanding of mosquito vector competence. © 2017 The Royal Entomological Society.

  4. Effect of axial magnetic field on a 2.45 GHz permanent magnet ECR ion source.

    PubMed

    Nakamura, T; Wada, H; Asaji, T; Furuse, M

    2016-02-01

    Herein, we conduct a fundamental study to improve the generation efficiency of a multi-charged ion source using argon. A magnetic field of our electron cyclotron resonance ion source is composed of a permanent magnet and a solenoid coil. Thereby, the axial magnetic field in the chamber can be tuned. Using the solenoid coil, we varied the magnetic field strength in the plasma chamber and measured the ion beam current extracted at the electrode. We observed an approximately three times increase in the Ar(4+) ion beam current when the magnetic field on the extractor-electrode side of the chamber was weakened. From our results, we can confirm that the multi-charged ion beam current changes depending on magnetic field intensity in the plasma chamber.

  5. Simultaneous Optical Measurements of Axial and Tangential Steady-State Blade Deflections

    NASA Technical Reports Server (NTRS)

    Kurkov, Anatole P.; Dhadwal, Harbans S.

    1999-01-01

    Currently, the majority of fiber-optic blade instrumentation is being designed and manufactured by aircraft-engine companies for their own use. The most commonly employed probe for optical blade deflection measurements is the spot probe. One of its characteristics is that the incident spot on a blade is not fixed relative to the blade, but changes depending on the blade deformation associated with centrifugal and aerodynamic loading. While there are geometrically more complicated optical probe designs in use by different engine companies, this paper offers an alternate solution derived from a probe-mount design feature that allows one to change the probe axial position until the incident spot contacts either a leading or a trailing edge. By tracing the axial position of either blade edge one is essentially extending the deflection measurement to two dimensions, axial and tangential. The blade deflection measurements were obtained during a wind tunnel test of a fan prototype.

  6. Anomalous transport and generalized axial charge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirilin, Vladimir P.; Sadofyev, Andrey V.

    For this article, we continue studying the modification of the axial charge in chiral media by macroscopic helicities. Recently it was shown that magnetic reconnections result in a persistent current of zero mode along flux tubes. Here we argue that in general a change in the helical part of the generalized axial charge results in the same phenomenon. Thus one may say that there is a novel realization of chiral effects requiring no initial chiral asymmetry. The transfer of flow helicity to zero modes is analyzed in a toy model based on a vortex reconnection in a chiral superfluid. Then,more » we discuss the balance between the two competing processes effect of reconnections and the chiral instability on the example of magnetic helicity. We argue that in the general case there is a possibility for the distribution of the axial charge between the magnetic and fermionic forms at the end of the instability.« less

  7. An investigation of transient pressures and plasma properties in a pinched plasma column. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Stover, E. K.; York, T. M.

    1971-01-01

    The transient pinched plasma column generated in a linear Z-pinch was studied experimentally and analytically. The plasma column was investigated experimentally with several plasma diagnostics; they were: a rapid response pressure transducer, a magnetic field probe, a voltage probe, and discharge luminosity. Axial pressure profiles on the discharge chamber axis were used to identify three characteristic regions of plasma column behavior: (1) strong axial pressure asymmetry noted early in plasma column lifetime, (2) followed by plasma heating in which there is a rapid rise in static pressure, and (3) a slight decrease static pressure before plasma column breakup. Plasma column lifetime was approximately 5 microseconds. The axial pressure asymmetry was attributed to nonsimultaneous pinching of the imploding current sheet along the discharge chamber axis. The rapid heating could be attributed in part to viscous effects introduced by radial gradients in the axial streaming velocity.

  8. Overview spectra and axial distribution of spectral line intensities in a high-current vacuum arc with CuCr electrodes

    NASA Astrophysics Data System (ADS)

    Lisnyak, M.; Pipa, A. V.; Gorchakov, S.; Iseni, S.; Franke, St.; Khapour, A.; Methling, R.; Weltmann, K.-D.

    2015-09-01

    Spectroscopic investigations of free-burning vacuum arcs in diffuse mode with CuCr electrodes are presented. The experimental conditions of the investigated arc correspond to the typical system for vacuum circuit breakers. Spectra of six species Cu I, Cu II, Cu III, Cr I, Cr II, and Cr III have been analyzed in the wavelength range 350-810 nm. The axial intensity distributions were found to be strongly dependent on the ionization stage of radiating species. Emission distributions of Cr II and Cu II can be distinguished as well as the distributions of Cr III and Cu III. Information on the axial distribution was used to identify the spectra and for identification of overlapping spectral lines. The overview spectra and some spectral windows recorded with high resolution are presented. Analysis of axial distributions of emitted light, which originates from different ionization states, is presented and discussed.

  9. Anomalous transport and generalized axial charge

    DOE PAGES

    Kirilin, Vladimir P.; Sadofyev, Andrey V.

    2017-07-25

    For this article, we continue studying the modification of the axial charge in chiral media by macroscopic helicities. Recently it was shown that magnetic reconnections result in a persistent current of zero mode along flux tubes. Here we argue that in general a change in the helical part of the generalized axial charge results in the same phenomenon. Thus one may say that there is a novel realization of chiral effects requiring no initial chiral asymmetry. The transfer of flow helicity to zero modes is analyzed in a toy model based on a vortex reconnection in a chiral superfluid. Then,more » we discuss the balance between the two competing processes effect of reconnections and the chiral instability on the example of magnetic helicity. We argue that in the general case there is a possibility for the distribution of the axial charge between the magnetic and fermionic forms at the end of the instability.« less

  10. Compressive Failure of Fiber Composites under Multi-Axial Loading

    NASA Technical Reports Server (NTRS)

    Basu, Shiladitya; Waas, Anthony M.; Ambur, Damodar R.

    2006-01-01

    This paper examines the compressive strength of a fiber reinforced lamina under multi-axial stress states. An equilibrium analysis is carried out in which a kinked band of rotated fibers, described by two angles, is sandwiched between two regions in which the fibers are nominally straight. Proportional multi-axial stress states are examined. The analysis includes the possibility of bifurcation from the current equilibrium state. The compressive strength of the lamina is contingent upon either attaining a load maximum in the equilibrium response or satisfaction of a bifurcation condition, whichever occurs first. The results show that for uniaxial loading a non-zero kink band angle beta produces the minimum limit load. For multi-axial loading, different proportional loading paths show regimes of bifurcation dominated and limit load dominated behavior. The present results are able to capture the beneficial effect of transverse compression in raising the composite compressive strength as observed in experiments.

  11. Methods, systems and apparatus for optimization of third harmonic current injection in a multi-phase machine

    DOEpatents

    Gallegos-Lopez, Gabriel

    2012-10-02

    Methods, system and apparatus are provided for increasing voltage utilization in a five-phase vector controlled machine drive system that employs third harmonic current injection to increase torque and power output by a five-phase machine. To do so, a fundamental current angle of a fundamental current vector is optimized for each particular torque-speed of operating point of the five-phase machine.

  12. Explicit calculation of the two-loop corrections to the chiral magnetic effect with the NJL model

    NASA Astrophysics Data System (ADS)

    Chu, Kit-fai; Huang, Peng-hui; Liu, Hui

    2018-05-01

    The chiral magnetic effect (CME) is usually believed to not receive higher-order corrections due to the nonrenormalization of the AVV triangle diagram in the framework of quantum field theory. However, the CME-relevant triangle, which is obtained by expanding the current-current correlation, requires zero momentum on the axial vertex and is not equivalent to the general AVV triangle when taking the zero-momentum limit owing to the infrared problem on the axial vertex. Therefore, it is still significant to check if there exists perturbative higher-order corrections to the current-current correlation. In this paper, we explicitly calculate the two-loop corrections of CME within the Nambu-Jona-Lasinio model with a Chern-Simons term, which ensures a consistent μ5 . The result shows the two-loop corrections to the CME conductivity are zero, which confirms the nonrenomalization of CME conductivity.

  13. Investigation of multipactor breakdown in communication satellite microwave co-axial systems

    NASA Astrophysics Data System (ADS)

    Nagesh, S. K.; Revannasiddiah, D.; Shastry, S. V. K.

    2005-01-01

    Multipactor breakdown or multipactor discharge is a form of high frequency discharge that may occur in microwave components operating at very low pressures. Some RF components of multi-channel communication satellites have co-axial geometry and handle high RF power under near-vacuum conditions. The breakdown occurs due to secondary electron resonance, wherein electrons move back and forth in synchronism with the RF voltage across the gap between the inner and outer conductors of the co-axial structure. If the yield of secondary electrons from the walls of the co-axial structure is greater than unity, then the electron density increases with time and eventually leads to the breakdown. In this paper, the current due to the oscillating electrons in the co-axial geometry has been treated as a radially oriented Hertzian dipole. The electric field, due to this dipole, at any point in the coaxial structure, may then be determined by employing the dyadic Green's function technique. This field has been compared with the field that would exist in the absence of multipactor.

  14. Verification of the windings axial clamping forces for high voltage power transformers by using passively mode-locked fiber lasers

    NASA Astrophysics Data System (ADS)

    Şchiopu, IonuÅ£ Romeo; ǎgulinescu, Andrei, Dr; Iordǎnescu, Raluca; Marinescu, Andrei

    2015-02-01

    The current paper describes an optoelectronic method for direct monitoring of the axial clamping forces both in static and in dynamic duty. As advantages of this method we can state that it can be applied both to new and refurbished transformers without performing constructive changes or affecting in any way the transformer safety in operation. For monitoring the axial clamping forces for high-voltage (HV) power transformers, we use an optical fiber that we integrate into the laser cavity of a passively mode-locked fiber laser (PMFL). To each axial clamp corresponds a solitonic optical spectrum that is changed at the periodical passing of the fundamental soliton pulse through the sensitive fiber inside the transformer. Moreover, as a specific characteristic, the laser stability is unique for each set of axial clamping forces. Other important advantages of using an optical fiber as compared to the classical approach in which electronic sensors are used consist in the good reliability and insulator properties of the optical fiber, avoiding any risk of fire or damage of the transformer.

  15. Solution 1H NMR characterization of the axial bonding of the two His in oxidized human cytoglobin

    PubMed Central

    Bondarenko, Vasyl; Dewilde, Sylvia; Moens, Luc; La Mar, Gerd N.

    2008-01-01

    Solution 1H NMR spectroscopy has been used to determine the relative strengths (covalency) of the two axial His-Fe bonds in paramagnetic, S = 1/2, human met-cytoglobin. The sequence specific assignments of crucial portions of the proximal and distal helices, together with the magnitude of hyperfine shifts and paramagnetic relaxation, establish that His81 and His113, at the canonical positions E7 and F8 in the myoglobin fold, respectively, are ligated to the iron. The characterized complex (~90%) in solution has protohemin oriented as in crystals, with the remaining ~10% exhibiting the hemin orientation rotated 180° about the α-, γ-meso axis. No evidence could be obtained for any five-coordinate complex (<1%) in equilibrium with the six-coordinate complexes. Extensive sequence-specific assignments on other dipolar shifted helical fragments and loops, together with available alternate crystal coordinates for the complex, allowed the robust determination of the orientation and anisotropies of the paramagnetic susceptibility tensor. The tilt of the major axis is controlled by the His-Fe-His vector, and the rhombic axes by the mean of the imidazole orientations for the two His. The anisotropy of the paramagnetic susceptibility tensor allowed the quantitative factoring of the hyperfine shifts for the two axial His to reveal indistinguishable pattern and magnitudes of the contact shifts or π spin densities, and hence, indistinguishable Fe-imidazole covalency for both Fe-His bonds. PMID:17002396

  16. Development of Axial Continuous Metal Expeller for melt conditioning of alloys

    NASA Astrophysics Data System (ADS)

    Cassinath, Z.; Prasada Rao, A. K.

    2016-02-01

    ACME (Axial, centrifugal metal expeller) is a novel processing technology developed independently for conditioning liquid metal prior to solidification processing. The ACME process is based on an axial compressor and uses a rotor stator mechanism to impose a high shear rate and a high intensity of turbulence to the liquid metal, so that the conditioned liquid metal has uniform temperature and uniform chemical composition as it is expelled. The microstructural refinement is achieved through the process of dendrite fragmentation while taking advantage of the thixotropic property of semisolid metal slurry so that it can be conveyed for further downstream operations. This paper introduces the concept and its advantages over current technologies.

  17. Spatially-Explicit Simulation Modeling of Ecological Response to Climate Change: Methodological Considerations in Predicting Shifting Population Dynamics of Infectious Disease Vectors.

    PubMed

    Dhingra, Radhika; Jimenez, Violeta; Chang, Howard H; Gambhir, Manoj; Fu, Joshua S; Liu, Yang; Remais, Justin V

    2013-09-01

    Poikilothermic disease vectors can respond to altered climates through spatial changes in both population size and phenology. Quantitative descriptors to characterize, analyze and visualize these dynamic responses are lacking, particularly across large spatial domains. In order to demonstrate the value of a spatially explicit, dynamic modeling approach, we assessed spatial changes in the population dynamics of Ixodes scapularis , the Lyme disease vector, using a temperature-forced population model simulated across a grid of 4 × 4 km cells covering the eastern United States, using both modeled (Weather Research and Forecasting (WRF) 3.2.1) baseline/current (2001-2004) and projected (Representative Concentration Pathway (RCP) 4.5 and RCP 8.5; 2057-2059) climate data. Ten dynamic population features (DPFs) were derived from simulated populations and analyzed spatially to characterize the regional population response to current and future climate across the domain. Each DPF under the current climate was assessed for its ability to discriminate observed Lyme disease risk and known vector presence/absence, using data from the US Centers for Disease Control and Prevention. Peak vector population and month of peak vector population were the DPFs that performed best as predictors of current Lyme disease risk. When examined under baseline and projected climate scenarios, the spatial and temporal distributions of DPFs shift and the seasonal cycle of key questing life stages is compressed under some scenarios. Our results demonstrate the utility of spatial characterization, analysis and visualization of dynamic population responses-including altered phenology-of disease vectors to altered climate.

  18. Spatially-Explicit Simulation Modeling of Ecological Response to Climate Change: Methodological Considerations in Predicting Shifting Population Dynamics of Infectious Disease Vectors

    PubMed Central

    Dhingra, Radhika; Jimenez, Violeta; Chang, Howard H.; Gambhir, Manoj; Fu, Joshua S.; Liu, Yang; Remais, Justin V.

    2014-01-01

    Poikilothermic disease vectors can respond to altered climates through spatial changes in both population size and phenology. Quantitative descriptors to characterize, analyze and visualize these dynamic responses are lacking, particularly across large spatial domains. In order to demonstrate the value of a spatially explicit, dynamic modeling approach, we assessed spatial changes in the population dynamics of Ixodes scapularis, the Lyme disease vector, using a temperature-forced population model simulated across a grid of 4 × 4 km cells covering the eastern United States, using both modeled (Weather Research and Forecasting (WRF) 3.2.1) baseline/current (2001–2004) and projected (Representative Concentration Pathway (RCP) 4.5 and RCP 8.5; 2057–2059) climate data. Ten dynamic population features (DPFs) were derived from simulated populations and analyzed spatially to characterize the regional population response to current and future climate across the domain. Each DPF under the current climate was assessed for its ability to discriminate observed Lyme disease risk and known vector presence/absence, using data from the US Centers for Disease Control and Prevention. Peak vector population and month of peak vector population were the DPFs that performed best as predictors of current Lyme disease risk. When examined under baseline and projected climate scenarios, the spatial and temporal distributions of DPFs shift and the seasonal cycle of key questing life stages is compressed under some scenarios. Our results demonstrate the utility of spatial characterization, analysis and visualization of dynamic population responses—including altered phenology—of disease vectors to altered climate. PMID:24772388

  19. Combining axial and radial nanowire heterostructures: radial Esaki diodes and tunnel field-effect transistors.

    PubMed

    Dey, Anil W; Svensson, Johannes; Ek, Martin; Lind, Erik; Thelander, Claes; Wernersson, Lars-Erik

    2013-01-01

    The ever-growing demand on high-performance electronics has generated transistors with very impressive figures of merit (Radosavljevic et al., IEEE Int. Devices Meeting 2009, 1-4 and Cho et al., IEEE Int. Devices Meeting 2011, 15.1.1-15.1.4). The continued scaling of the supply voltage of field-effect transistors, such as tunnel field-effect transistors (TFETs), requires the implementation of advanced transistor architectures including FinFETs and nanowire devices. Moreover, integration of novel materials with high electron mobilities, such as III-V semiconductors and graphene, are also being considered to further enhance the device properties (del Alamo, Nature 2011, 479, 317-323, and Liao et al., Nature 2010, 467, 305-308). In nanowire devices, boosting the drive current at a fixed supply voltage or maintaining a constant drive current at a reduced supply voltage may be achieved by increasing the cross-sectional area of a device, however at the cost of deteriorated electrostatics. A gate-all-around nanowire device architecture is the most favorable electrostatic configuration to suppress short channel effects; however, the arrangement of arrays of parallel vertical nanowires to address the drive current predicament will require additional chip area. The use of a core-shell nanowire with a radial heterojunction in a transistor architecture provides an attractive means to address the drive current issue without compromising neither chip area nor device electrostatics. In addition to design advantages of a radial transistor architecture, we in this work illustrate the benefit in terms of drive current per unit chip area and compare the experimental data for axial GaSb/InAs Esaki diodes and TFETs to their radial counterparts and normalize the electrical data to the largest cross-sectional area of the nanowire, i.e. the occupied chip area, assuming a vertical device geometry. Our data on lateral devices show that radial Esaki diodes deliver almost 7 times higher peak current, Jpeak = 2310 kA/cm(2), than the maximum peak current of axial GaSb/InAs(Sb) Esaki diodes per unit chip area. The radial TFETs also deliver high peak current densities Jpeak = 1210 kA/cm(2), while their axial counterparts at most carry Jpeak = 77 kA/cm(2), normalized to the largest cross-sectional area of the nanowire.

  20. Supersonic quasi-axisymmetric vortex breakdown

    NASA Technical Reports Server (NTRS)

    Kandil, Osama A.; Kandil, Hamdy A.; Liu, C. H.

    1991-01-01

    An extensive computational study of supersonic quasi-axisymmetric vortex breakdown in a configured circular duct is presented. The unsteady, compressible, full Navier-Stokes (NS) equations are used. The NS equations are solved for the quasi-axisymmetric flows using an implicit, upwind, flux difference splitting, finite volume scheme. The quasi-axisymmetric solutions are time accurate and are obtained by forcing the components of the flowfield vector to be equal on two axial planes, which are in close proximity of each other. The effect of Reynolds number, for laminar flows, on the evolution and persistence of vortex breakdown, is studied. Finally, the effect of swirl ration at the duct inlet is investigated.

  1. A wave shaping approach of ferrite inductors exhibiting hysteresis using orthogonal field bias

    NASA Astrophysics Data System (ADS)

    Adly, A. A.; Abd-El-Hafiz, S. K.; Mahgoub, A. O.

    2018-05-01

    Advances in power electronic systems have considerably contributed to a wide spectrum of applications. In most power electronic circuits, inductors play crucial functions. Utilization of ferrite cores becomes a must when large inductances are required. Nevertheless, this results in an additional complexity due to their hysteresis nature. Recently, an efficient approach for modeling vector hysteresis using tri-node Hopfield neural networks (HNNs) has been introduced. This paper presents a wave shaping approach using hollow cylindrical ferrite core inductors having axial and toroidal windings. The approach investigates the possibility of tuning the inductor permeability to minimize circuit harmonics. Details of the approach are given in the paper.

  2. Effect of Inductive Coil Geometry and Current Sheet Trajectory of a Conical Theta Pinch Pulsed Inductive Plasma Accelerator

    NASA Technical Reports Server (NTRS)

    Hallock, Ashley K.; Polzin, Kurt A.; Bonds, Kevin W.; Emsellem, Gregory D.

    2011-01-01

    Results are presented demonstrating the e ect of inductive coil geometry and current sheet trajectory on the exhaust velocity of propellant in conical theta pinch pulsed induc- tive plasma accelerators. The electromagnetic coupling between the inductive coil of the accelerator and a plasma current sheet is simulated, substituting a conical copper frustum for the plasma. The variation of system inductance as a function of plasma position is obtained by displacing the simulated current sheet from the coil while measuring the total inductance of the coil. Four coils of differing geometries were employed, and the total inductance of each coil was measured as a function of the axial displacement of two sep- arate copper frusta both having the same cone angle and length as the coil but with one compressed to a smaller size relative to the coil. The measured relationship between total coil inductance and current sheet position closes a dynamical circuit model that is used to calculate the resulting current sheet velocity for various coil and current sheet con gura- tions. The results of this model, which neglects the pinching contribution to thrust, radial propellant con nement, and plume divergence, indicate that in a conical theta pinch ge- ometry current sheet pinching is detrimental to thruster performance, reducing the kinetic energy of the exhausting propellant by up to 50% (at the upper bound for the parameter range of the study). The decrease in exhaust velocity was larger for coils and simulated current sheets of smaller half cone angles. An upper bound for the pinching contribution to thrust is estimated for typical operating parameters. Measurements of coil inductance for three di erent current sheet pinching conditions are used to estimate the magnetic pressure as a function of current sheet radial compression. The gas-dynamic contribution to axial acceleration is also estimated and shown to not compensate for the decrease in axial electromagnetic acceleration that accompanies the radial compression of the plasma in conical theta pinches.

  3. Ultrahigh speed 1050nm swept source / Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second

    PubMed Central

    Potsaid, Benjamin; Baumann, Bernhard; Huang, David; Barry, Scott; Cable, Alex E.; Schuman, Joel S.; Duker, Jay S.; Fujimoto, James G.

    2011-01-01

    We demonstrate ultrahigh speed swept source/Fourier domain ophthalmic OCT imaging using a short cavity swept laser at 100,000–400,000 axial scan rates. Several design configurations illustrate tradeoffs in imaging speed, sensitivity, axial resolution, and imaging depth. Variable rate A/D optical clocking is used to acquire linear-in-k OCT fringe data at 100kHz axial scan rate with 5.3um axial resolution in tissue. Fixed rate sampling at 1 GSPS achieves a 7.5mm imaging range in tissue with 6.0um axial resolution at 100kHz axial scan rate. A 200kHz axial scan rate with 5.3um axial resolution over 4mm imaging range is achieved by buffering the laser sweep. Dual spot OCT using two parallel interferometers achieves 400kHz axial scan rate, almost 2X faster than previous 1050nm ophthalmic results and 20X faster than current commercial instruments. Superior sensitivity roll-off performance is shown. Imaging is demonstrated in the human retina and anterior segment. Wide field 12×12mm data sets include the macula and optic nerve head. Small area, high density imaging shows individual cone photoreceptors. The 7.5mm imaging range configuration can show the cornea, iris, and anterior lens in a single image. These improvements in imaging speed and depth range provide important advantages for ophthalmic imaging. The ability to rapidly acquire 3D-OCT data over a wide field of view promises to simplify examination protocols. The ability to image fine structures can provide detailed information on focal pathologies. The large imaging range and improved image penetration at 1050nm wavelengths promises to improve performance for instrumentation which images both the retina and anterior eye. These advantages suggest that swept source OCT at 1050nm wavelengths will play an important role in future ophthalmic instrumentation. PMID:20940894

  4. VectorBase: a data resource for invertebrate vector genomics

    PubMed Central

    Lawson, Daniel; Arensburger, Peter; Atkinson, Peter; Besansky, Nora J.; Bruggner, Robert V.; Butler, Ryan; Campbell, Kathryn S.; Christophides, George K.; Christley, Scott; Dialynas, Emmanuel; Hammond, Martin; Hill, Catherine A.; Konopinski, Nathan; Lobo, Neil F.; MacCallum, Robert M.; Madey, Greg; Megy, Karine; Meyer, Jason; Redmond, Seth; Severson, David W.; Stinson, Eric O.; Topalis, Pantelis; Birney, Ewan; Gelbart, William M.; Kafatos, Fotis C.; Louis, Christos; Collins, Frank H.

    2009-01-01

    VectorBase (http://www.vectorbase.org) is an NIAID-funded Bioinformatic Resource Center focused on invertebrate vectors of human pathogens. VectorBase annotates and curates vector genomes providing a web accessible integrated resource for the research community. Currently, VectorBase contains genome information for three mosquito species: Aedes aegypti, Anopheles gambiae and Culex quinquefasciatus, a body louse Pediculus humanus and a tick species Ixodes scapularis. Since our last report VectorBase has initiated a community annotation system, a microarray and gene expression repository and controlled vocabularies for anatomy and insecticide resistance. We have continued to develop both the software infrastructure and tools for interrogating the stored data. PMID:19028744

  5. Elements of the quality management in the materials' industry

    NASA Astrophysics Data System (ADS)

    Ioana, Adrian; Semenescu, Augustin; Costoiu, Mihnea; Marcu, Dragoş

    2017-12-01

    The criteria function concept consists of transforming the criteria function (CF) in a quality-economical matrix math MQE. The levels of prescribing the criteria function was obtained by using a composition algorithm for three vectors: T¯ vector - technical parameters' vector (ti); Ē vector - economical parameters' vector (ej) and P¯ vector - weight vector (p1). For each product or service, the area of the circle represents the value of its sales. The BCG Matrix thus offers a very useful map of the organization's service strengths and weaknesses, at least in terms of current profitability, as well as the likely cash flows.

  6. OTVE turbopump condition monitoring, task E.5

    NASA Technical Reports Server (NTRS)

    Coleman, Paul T.; Collins, J. J.

    1989-01-01

    Recent work has been carried out on development of isotope wear analysis and optical and eddy current technologies to provide bearing wear measurements and real time monitoring of shaft speed, shaft axial displacement and shaft orbit of the Orbit Transfer Vehicle hydrostatic bearing tester. Results show shaft axial displacement can be optically measured (at the same time as shaft orbital motion and speed) to within 0.3 mils by two fiberoptic deflectometers. Evaluation of eddy current probes showed that, in addition to measuring shaft orbital motion, they can be used to measure shaft speed without having to machine grooves on the shaft surface as is the usual practice for turbomachinery. The interim results of this condition monitoring effort are presented.

  7. Comparison of femoropopliteal artery stents under axial and radial compression, axial tension, bending, and torsion deformations.

    PubMed

    Maleckis, Kaspars; Deegan, Paul; Poulson, William; Sievers, Cole; Desyatova, Anastasia; MacTaggart, Jason; Kamenskiy, Alexey

    2017-11-01

    High failure rates of Peripheral Arterial Disease (PAD) stenting appear to be associated with the inability of certain stent designs to accommodate severe biomechanical environment of the femoropopliteal artery (FPA) that bends, twists, and axially compresses during limb flexion. Twelve Nitinol stents (Absolute Pro, Supera, Lifestent, Innova, Zilver, Smart Control, Smart Flex, EverFlex, Viabahn, Tigris, Misago, and Complete SE) were quasi-statically tested under bench-top axial and radial compression, axial tension, bending, and torsional deformations. Stents were compared in terms of force-strain behavior, stiffness, and geometrical shape under each deformation mode. Tigris was the least stiff stent under axial compression (6.6N/m axial stiffness) and bending (0.1N/m) deformations, while Smart Control was the stiffest (575.3N/m and 105.4N/m, respectively). Under radial compression Complete SE was the stiffest (892.8N/m), while Smart Control had the lowest radial stiffness (211.0N/m). Viabahn and Supera had the lowest and highest torsional stiffness (2.2μNm/° and 959.2μNm/°), respectively. None of the 12 PAD stents demonstrated superior characteristics under all deformation modes and many experienced global buckling and diameter pinching. Though it is yet to be determined which of these deformation modes might have greater clinical impact, results of the current analysis may help guide development of new stents with improved mechanical characteristics. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Topological analysis of the current density field in molecules

    NASA Astrophysics Data System (ADS)

    Gomes, J. A. N. F.

    A global qualitative theory of the current density has been very recently introduced by the author. These topological studies are reviewed and special attention is given to the shape of the separatrices which encase both toroidal and axial vortices.

  9. Reconstruction of Vectorial Acoustic Sources in Time-Domain Tomography

    PubMed Central

    Xia, Rongmin; Li, Xu; He, Bin

    2009-01-01

    A new theory is proposed for the reconstruction of curl-free vector field, whose divergence serves as acoustic source. The theory is applied to reconstruct vector acoustic sources from the scalar acoustic signals measured on a surface enclosing the source area. It is shown that, under certain conditions, the scalar acoustic measurements can be vectorized according to the known measurement geometry and subsequently be used to reconstruct the original vector field. Theoretically, this method extends the application domain of the existing acoustic reciprocity principle from a scalar field to a vector field, indicating that the stimulating vectorial source and the transmitted acoustic pressure vector (acoustic pressure vectorized according to certain measurement geometry) are interchangeable. Computer simulation studies were conducted to evaluate the proposed theory, and the numerical results suggest that reconstruction of a vector field using the proposed theory is not sensitive to variation in the detecting distance. The present theory may be applied to magnetoacoustic tomography with magnetic induction (MAT-MI) for reconstructing current distribution from acoustic measurements. A simulation on MAT-MI shows that, compared to existing methods, the present method can give an accurate estimation on the source current distribution and a better conductivity reconstruction. PMID:19211344

  10. Problems in particle theory. Technical report - 1993--1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adler, S.L.; Wilczek, F.

    This report is a progress report on the work of two principal investigators in the broad area of particle physics theory, covering their personal work, that of their coworkers, and their proposed work for the future. One author has worked in the past on various topics in field theory and particle physics, among them current algebras, the physics of neutrino induced reactions, quantum electrodynamics (including strong magnetic field processes), the theory of the axial-vector current anomaly, topics in quantum gravity, and nonlinear models for quark confinement. While much of his work has been analytical, all of the projects listed abovemore » (except for the work on gravity) had phases which required considerable computer work as well. Over the next several years, he proposes to continue or initiate research on the following problems: (1) Acceleration algorithms for the Monte Carlo analysis of lattice field and gauge theories, and more generally, new research in computational neuroscience and pattern recognition. (2) Construction of quaternionic generalizations of complex quantum mechanics and field theory, and their application to composite models of quarks and leptons, and to the problem of unifying quantum theories of matter with general relativity. One author has worked on problems in exotic quantum statistics and its applications to condensed matter systems. His work has also continued on the quantum theory of black holes. This has evolved toward understanding properties of quantum field theory and string theory in incomplete regions of flat space.« less

  11. A per-cent-level determination of the nucleon axial coupling from quantum chromodynamics.

    PubMed

    Chang, C C; Nicholson, A N; Rinaldi, E; Berkowitz, E; Garron, N; Brantley, D A; Monge-Camacho, H; Monahan, C J; Bouchard, C; Clark, M A; Joó, B; Kurth, T; Orginos, K; Vranas, P; Walker-Loud, A

    2018-06-01

    The axial coupling of the nucleon, g A , is the strength of its coupling to the weak axial current of the standard model of particle physics, in much the same way as the electric charge is the strength of the coupling to the electromagnetic current. This axial coupling dictates the rate at which neutrons decay to protons, the strength of the attractive long-range force between nucleons and other features of nuclear physics. Precision tests of the standard model in nuclear environments require a quantitative understanding of nuclear physics that is rooted in quantum chromodynamics, a pillar of the standard model. The importance of g A makes it a benchmark quantity to determine theoretically-a difficult task because quantum chromodynamics is non-perturbative, precluding known analytical methods. Lattice quantum chromodynamics provides a rigorous, non-perturbative definition of quantum chromodynamics that can be implemented numerically. It has been estimated that a precision of two per cent would be possible by 2020 if two challenges are overcome 1,2 : contamination of g A from excited states must be controlled in the calculations and statistical precision must be improved markedly 2-10 . Here we use an unconventional method 11 inspired by the Feynman-Hellmann theorem that overcomes these challenges. We calculate a g A value of 1.271 ± 0.013, which has a precision of about one per cent.

  12. Speckle measurements of density and temperature profiles in a model gas circuit breaker

    NASA Astrophysics Data System (ADS)

    Stoller, P. C.; Panousis, E.; Carstensen, J.; Doiron, C. B.; Färber, R.

    2015-01-01

    Speckle imaging was used to measure the density and temperature distribution in the arc zone of a model high voltage circuit breaker during the high current phase and under conditions simulating those present during current-zero crossings (current-zero-like arc); the arc was stabilized by a transonic, axial flow of synthetic air. A single probe beam was used; thus, accurate reconstruction was only possible for axially symmetric gas flows and arc channels. The displacement of speckles with respect to a reference image was converted to a line-of-sight integrated deflection angle, which was in turn converted into an axially symmetric refractive index distribution using a multistep process that made use of the inverse Radon transform. The Gladstone-Dale relation, which gives the index of refraction as a function of density, was extended to high temperatures by taking into account dissociation and ionization processes. The temperature and density were determined uniquely by assuming that the pressure distribution in the case of cold gas flow (in the absence of an arc) is not modified significantly by the arc. The electric conductivity distribution was calculated from the temperature profile and compared to measurements of the arc voltage and to previous results published in the literature for similar experimental conditions.

  13. Gene delivery with viral vectors for cerebrovascular diseases

    PubMed Central

    Gan, Yu; Jing, Zheng; Stetler, R. Anne; Cao, Guodong

    2017-01-01

    Recent achievements in the understanding of molecular events involved in the pathogenesis of central nervous system (CNS) injury have made gene transfer a promising approach for various neurological disorders, including cerebrovascular diseases. However, special obstacles, including the post-mitotic nature of neurons and the blood-brain barrier (BBB), constitute key challenges for gene delivery to the CNS. Despite the various limitations in current gene delivery systems, a spectrum of viral vectors has been successfully used to deliver genes to the CNS. Furthermore, recent advancements in vector engineering have improved the safety and delivery of viral vectors. Numerous viral vector-based clinical trials for neurological disorders have been initiated. This review will summarize the current implementation of viral gene delivery in the context of cerebrovascular diseases including ischemic stroke, hemorrhagic stroke and subarachnoid hemorrhage (SAH). In particular, we will discuss the potentially feasible ways in which viral vectors can be manipulated and exploited for use in neural delivery and therapy. PMID:23276981

  14. Home detection of freezing of gait using support vector machines through a single waist-worn triaxial accelerometer

    PubMed Central

    Pérez-López, Carlos; Català, Andreu; Moreno Arostegui, Joan M.; Cabestany, Joan; Bayés, Àngels; Alcaine, Sheila; Mestre, Berta; Prats, Anna; Crespo, M. Cruz; Counihan, Timothy J.; Browne, Patrick; Quinlan, Leo R.; ÓLaighin, Gearóid; Sweeney, Dean; Lewy, Hadas; Azuri, Joseph; Vainstein, Gabriel; Annicchiarico, Roberta; Costa, Alberto; Rodríguez-Molinero, Alejandro

    2017-01-01

    Among Parkinson’s disease (PD) symptoms, freezing of gait (FoG) is one of the most debilitating. To assess FoG, current clinical practice mostly employs repeated evaluations over weeks and months based on questionnaires, which may not accurately map the severity of this symptom. The use of a non-invasive system to monitor the activities of daily living (ADL) and the PD symptoms experienced by patients throughout the day could provide a more accurate and objective evaluation of FoG in order to better understand the evolution of the disease and allow for a more informed decision-making process in making adjustments to the patient’s treatment plan. This paper presents a new algorithm to detect FoG with a machine learning approach based on Support Vector Machines (SVM) and a single tri-axial accelerometer worn at the waist. The method is evaluated through the acceleration signals in an outpatient setting gathered from 21 PD patients at their home and evaluated under two different conditions: first, a generic model is tested by using a leave-one-out approach and, second, a personalised model that also uses part of the dataset from each patient. Results show a significant improvement in the accuracy of the personalised model compared to the generic model, showing enhancement in the specificity and sensitivity geometric mean (GM) of 7.2%. Furthermore, the SVM approach adopted has been compared to the most comprehensive FoG detection method currently in use (referred to as MBFA in this paper). Results of our novel generic method provide an enhancement of 11.2% in the GM compared to the MBFA generic model and, in the case of the personalised model, a 10% of improvement with respect to the MBFA personalised model. Thus, our results show that a machine learning approach can be used to monitor FoG during the daily life of PD patients and, furthermore, personalised models for FoG detection can be used to improve monitoring accuracy. PMID:28199357

  15. Modular coils and finite-β operation of a quasi-axially symmetric tokamak

    NASA Astrophysics Data System (ADS)

    Drevlak, M.

    1998-09-01

    Quasi-axially symmetric tokamaks (QA tokamaks) are an extension of the conventional tokamak concept. In these devices the magnetic field strength is independent of the generalized toroidal magnetic co-ordinate even though the cross-sectional shape changes. An optimized plasma equilibrium belonging to the class of QA tokamaks has been proposed by Nührenberg. It features the small aspect ratio of a tokamak while allowing part of the rotational transform to be generated by the external field. In this article, two particular aspects of the viability of QA tokamaks are explored, namely the feasibility of modular coils and the possibility of maintaining quasi-axial symmetry in the free-boundary equilibria obtained with the coils found. A set of easily feasible modular coils for the configuration is presented. It was designed using the extended version of the NESCOIL code (Merkel, P., Nucl. Fusion 27 (1987) 867). Using this coil system, free-boundary calculations of the plasma equilibrium were carried out using the NEMEC code (Hirshman, S.P., Van Rij, W.I., Merkel, P., Comput. Phys. Commun. 43 (1986) 143). It is observed that the effects of finite β and net toroidal plasma current can be compensated for with good precision by applying a vertical magnetic field and by separately adjusting the currents of the modular coils. A set of fully three dimensional (3-D) auxiliary coils is proposed to exert control on the rotational transform in the plasma. Deterioration of the quasi-axial symmetry induced by the auxiliary coils can be avoided by adequate adjustment of the currents in the primary coils. Finally, the neoclassical transport properties of the configuration are examined. It is observed that optimization with respect to confinement of the alpha particles can be maintained at operation with finite toroidal current if the aforementioned corrective measures are used. In this case, the neoclassical behaviour is shown to be very similar to that of a conventional tokamak.

  16. Thoracolumbar spinal ligaments exhibit negative and transverse pre-strain.

    PubMed

    Robertson, Daniel J; Von Forell, Gregory A; Alsup, Jeremy; Bowden, Anton E

    2013-07-01

    The present work represents the first reported bi-axial spinal ligament pre-strain data for the thoracic and lumbar spine. Ligament pre-strain (in-situ strain) is known to significantly alter joint biomechanics. However, there is currently a lack of comprehensive data with regards to spinal ligament pre-strain. The current work determined the pre-strain of 71 spinal ligaments (30 anterior longitudinal ligaments, 27 supraspinous ligaments and 14 interspinous ligaments). The interspinous ligament and the anterior longitudinal ligament exhibited bi-axial pre-strain distributions, demonstrating they are not uniaxial structures. The supraspinous ligament frequently exhibited large amounts of negative pre-strain or laxity suggesting it makes no mechanical contribution to spinal stability near the neutral posture. Upon implementing multi-axial pre-strain results into a finite element model of the lumbar spine, large differences in spinal biomechanics were observed. These results demonstrate the necessity of accounting for ligament pre-strain in biomechanical models. In addition, the authors present a unique experimental method for obtaining ligament pre-strain that presents a number of advantages when compared to standard techniques. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. A quasi-current representation for information needs inspired by Two-State Vector Formalism

    NASA Astrophysics Data System (ADS)

    Wang, Panpan; Hou, Yuexian; Li, Jingfei; Zhang, Yazhou; Song, Dawei; Li, Wenjie

    2017-09-01

    Recently, a number of quantum theory (QT)-based information retrieval (IR) models have been proposed for modeling session search task that users issue queries continuously in order to describe their evolving information needs (IN). However, the standard formalism of QT cannot provide a complete description for users' current IN in a sense that it does not take the 'future' information into consideration. Therefore, to seek a more proper and complete representation for users' IN, we construct a representation of quasi-current IN inspired by an emerging Two-State Vector Formalism (TSVF). With the enlightenment of the completeness of TSVF, a "two-state vector" derived from the 'future' (the current query) and the 'history' (the previous query) is employed to describe users' quasi-current IN in a more complete way. Extensive experiments are conducted on the session tracks of TREC 2013 & 2014, and show that our model outperforms a series of compared IR models.

  18. Dynamic current-current susceptibility in three-dimensional Dirac and Weyl semimetals

    NASA Astrophysics Data System (ADS)

    Thakur, Anmol; Sadhukhan, Krishanu; Agarwal, Amit

    2018-01-01

    We study the linear response of doped three-dimensional Dirac and Weyl semimetals to vector potentials, by calculating the wave-vector- and frequency-dependent current-current response function analytically. The longitudinal part of the dynamic current-current response function is then used to study the plasmon dispersion and the optical conductivity. The transverse response in the static limit yields the orbital magnetic susceptibility. In a Weyl semimetal, along with the current-current response function, all these quantities are significantly impacted by the presence of parallel electric and magnetic fields (a finite E .B term) and can be used to experimentally explore the chiral anomaly.

  19. The current-density distribution in a pulsed dc magnetron deposition discharge

    NASA Astrophysics Data System (ADS)

    Vetushka, Alena; Bradley, James W.

    2007-04-01

    Using a carefully constructed magnetic probe (a B-dot probe) the spatial and temporal evolution of the perturbation in the magnetic field ΔB in an unbalanced pulsed dc magnetron has been determined. The plasma was run in argon at a pressure of 0.74 Pa and the plasma ions sputtered a pure graphite target. The pulse frequency and duty were set at 100 kHz and 55%, respectively. From the ΔB measurements (measured with magnitudes up to about 0.01 mT) the axial, azimuthal and radial components of the total current density j in the plasma bulk were determined. In the plasma 'on' phase, the axial current density jz has a maximum value of approximately 200 A m-2 above the racetrack region, while high values in the azimuthal current density jΦ are distributed in a region from 1 to 3 cm into the bulk plasma with jΦ exceeding 350 A m-2. In the 'off' phase of the plasma, jz decays almost instantaneously (at least within the 100 ns time-resolution of the ΔB measurements) as the electric field collapses; however, jΦ decays with a characteristic time constant of about 1 µs. This slow decay can be attributed to the presence of decaying Grad-B and curvature drifts, with their rates controlled by the decay in the plasma density. A comparison between axial and azimuthal current densities in the plasma 'on' time, when the plasma is being driven, strongly indicates that classical transport does not operate in the magnetron discharge.

  20. A hydrodynamically suspended, magnetically sealed mechanically noncontact axial flow blood pump: design of a hydrodynamic bearing.

    PubMed

    Mitamura, Yoshinori; Kido, Kazuyuki; Yano, Tetsuya; Sakota, Daisuke; Yambe, Tomoyuki; Sekine, Kazumitsu; OKamoto, Eiji

    2007-03-01

    To overcome the drive shaft seal and bearing problem in rotary blood pumps, a hydrodynamic bearing, a magnetic fluid seal, and a brushless direct current (DC) motor were employed in an axial flow pump. This enabled contact-free rotation of the impeller without material wear. The axial flow pump consisted of a brushless DC motor, an impeller, and a guide vane. The motor rotor was directly connected to the impeller by a motor shaft. A hydrodynamic bearing was installed on the motor shaft. The motor and the hydrodynamic bearing were housed in a cylindrical casing and were waterproofed by a magnetic fluid seal, a mechanically noncontact seal. Impeller shaft displacement was measured using a laser sensor. Axial and radial displacements of the shaft were only a few micrometers for motor speed up to 8500 rpm. The shaft did not make contact with the bearing housing. A flow of 5 L/min was obtained at 8000 rpm at a pressure difference of 100 mm Hg. In conclusion, the axial flow blood pump consisting of a hydrodynamic bearing, a magnetic fluid seal, and a brushless DC motor provided contact-free rotation of the impeller without material wear.

  1. Investigation of Fluctuation-Induced Electron Transport in Hall Thrusters with a 2D Hybrid Code in the Azimuthal and Axial Coordinates

    NASA Astrophysics Data System (ADS)

    Fernandez, Eduardo; Borelli, Noah; Cappelli, Mark; Gascon, Nicolas

    2003-10-01

    Most current Hall thruster simulation efforts employ either 1D (axial), or 2D (axial and radial) codes. These descriptions crucially depend on the use of an ad-hoc perpendicular electron mobility. Several models for the mobility are typically invoked: classical, Bohm, empirically based, wall-induced, as well as combinations of the above. Experimentally, it is observed that fluctuations and electron transport depend on axial distance and operating parameters. Theoretically, linear stability analyses have predicted a number of unstable modes; yet the nonlinear character of the fluctuations and/or their contribution to electron transport remains poorly understood. Motivated by these observations, a 2D code in the azimuthal and axial coordinates has been written. In particular, the simulation self-consistently calculates the azimuthal disturbances resulting in fluctuating drifts, which in turn (if properly correlated with plasma density disturbances) result in fluctuation-driven electron transport. The characterization of the turbulence at various operating parameters and across the channel length is also the object of this study. A description of the hybrid code used in the simulation as well as the initial results will be presented.

  2. Lightning Tests on the WC-130 Research Aircraft.

    DTIC Science & Technology

    1982-12-01

    in the WC-136 tests at various times.) E- Feild Fiber Optic Test Article Sensor Transmitter (Typ)WiePr Indtuced Voltag Sensor"" *Fiber I"=Current optic...well-characterized. 5.1 Skin Current Measurements Skin current vectors were measured at five fuselage locations on the left side of the WC-130 at a...MGL-S7) which were mounted so that they sampled two orthogonal components of the skin current vector . The measured responses were then inte- grated

  3. Relaxation of flux ropes and magnetic reconnection in the Reconnection Scaling Experiment at LANL

    NASA Astrophysics Data System (ADS)

    Furno, I.; Intrator, T.; Hemsing, E.; Hsu, S.; Lapenta, G.; Abbate, S.

    2004-12-01

    Magnetic reconnection and plasma relaxation are studied in the Reconnection Scaling Experiment (RSX) with current carrying plasma columns (magnetic flux ropes). Using plasma guns, multiple flux ropes (Bθ ≤ 100 Gauss, L=90 cm, r≤3 cm) are generated in a three-dimensional (3D) cylindrical geometry and are observed to evolve dynamically during the injection of magnetic helicity. Detailed evolution of electron density, temperature, plasma potential and magnetic field structures is reconstructed experimentally and visible light emission is captured with a fast-gated, intensified CCD camera to provide insight into the global flux rope dynamics. Experiments with two flux ropes in collisional plasmas and in a strong axial guide field (Bz / Bθ > 10) suggest that magnetic reconnection plays an important role in the initial stages of flux rope evolution. During the early stages of the applied current drive (t≤ 20 τ Alfv´ {e}n), the flux ropes are observed to twist, partially coalesce and form a thin current sheet with a scale size comparable to that of the ion sound gyro-radius. Here, non-ideal terms in a generalized Ohm's Law appear to play a significant role in the 3D reconnection process as shown by the presence of a strong axial pressure gradient in the current sheet. In addition, a density perturbation with a structure characteristic of a kinetic Alfvén wave is observed to propagate axially in the current layer, anti-parallel to the induced sheet current. Later in the evolution, when a sufficient amount of helicity is injected into the system, a critical threshold for the kink instability is exceeded and the helical twisting of each individual flux rope can dominate the dynamics of the system. This may prevent the complete coalescence of the flux ropes.

  4. Relaxation of flux ropes and magnetic reconnection in the Reconnection Scaling Experiment at LANL

    NASA Astrophysics Data System (ADS)

    Furno, Ivo

    2004-11-01

    Magnetic reconnection and plasma relaxation are studied in the Reconnection Scaling Experiment (RSX) with current carrying plasma columns (magnetic flux ropes). Using plasma guns, multiple flux ropes (B_pol < 100 Gauss, L=90 cm, r < 3 cm) are generated in a three-dimensional (3D) cylindrical geometry and are observed to evolve dynamically during the injection of magnetic helicity. Detailed evolution of electron density, temperature, plasma potential and magnetic field structures is reconstructed experimentally and visible light emission is captured with a fast-gated, intensified CCD camera to provide insight into the global flux rope dynamics. Experiments with two flux ropes in collisional plasmas and in a strong axial guide field (Bz / B_pol > 10) suggest that magnetic reconnection plays an important role in the initial stages of flux rope evolution. During the early stages of the applied current drive (t < 20τ_Alfven), the flux ropes are observed to twist, partially coalesce and form a thin current sheet with a scale size comparable to that of the ion sound gyro-radius. Here, non-ideal terms in a generalized Ohm's Law appear to play a significant role in the 3D reconnection process as shown by the presence of a strong axial pressure gradient in the current sheet. In addition, a density perturbation with a structure characteristic of a kinetic Alfvén wave is observed to propagate axially in the current layer, anti-parallel to the induced sheet current. Later in the evolution, when a sufficient amount of helicity is injected into the system, a critical threshold for the kink instability is exceeded and the helical twisting of each individual flux rope can dominate the dynamics of the system. This may prevent the complete coalescence of the flux ropes.

  5. Reflections on the early development of poxvirus vectors.

    PubMed

    Moss, Bernard

    2013-09-06

    Poxvirus expression vectors were described in 1982 and quickly became widely used for vaccine development as well as research in numerous fields. Advantages of the vectors include simple construction, ability to accommodate large amounts of foreign DNA and high expression levels. Numerous poxvirus-based veterinary vaccines are currently in use and many others are in human clinical trials. The early reports of poxvirus vectors paved the way for and stimulated the development of other viral vectors and recombinant DNA vaccines. Published by Elsevier Ltd.

  6. Empirical Approach for Determining Axial Strength of Circular Concrete Filled Steel Tubular Columns

    NASA Astrophysics Data System (ADS)

    Jayalekshmi, S.; Jegadesh, J. S. Sankar; Goel, Abhishek

    2018-06-01

    The concrete filled steel tubular (CFST) columns are highly regarded in recent years as an interesting option in the construction field by designers and structural engineers, due to their exquisite structural performance, with enhanced load bearing capacity and energy absorption capacity. This study presents a new approach to simulate the capacity of circular CFST columns under axial loading condition, using a large database of experimental results by applying artificial neural network (ANN). A well trained network is established and is used to simulate the axial capacity of CFST columns. The validation and testing of the ANN is carried out. The current study is focused on proposing a simplified equation that can predict the ultimate strength of the axially loaded columns with high level of accuracy. The predicted results are compared with five existing analytical models which estimate the strength of the CFST column. The ANN-based equation has good prediction with experimental data, when compared with the analytical models.

  7. Overview spectra and axial distribution of spectral line intensities in a high-current vacuum arc with CuCr electrodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lisnyak, M.; Pipa, A. V.; Gorchakov, S., E-mail: gorchakov@inp-greifswald.de, E-mail: weltmann@inp-greifswald.de

    2015-09-28

    Spectroscopic investigations of free-burning vacuum arcs in diffuse mode with CuCr electrodes are presented. The experimental conditions of the investigated arc correspond to the typical system for vacuum circuit breakers. Spectra of six species Cu I, Cu II, Cu III, Cr I, Cr II, and Cr III have been analyzed in the wavelength range 350–810 nm. The axial intensity distributions were found to be strongly dependent on the ionization stage of radiating species. Emission distributions of Cr II and Cu II can be distinguished as well as the distributions of Cr III and Cu III. Information on the axial distribution wasmore » used to identify the spectra and for identification of overlapping spectral lines. The overview spectra and some spectral windows recorded with high resolution are presented. Analysis of axial distributions of emitted light, which originates from different ionization states, is presented and discussed.« less

  8. Empirical Approach for Determining Axial Strength of Circular Concrete Filled Steel Tubular Columns

    NASA Astrophysics Data System (ADS)

    Jayalekshmi, S.; Jegadesh, J. S. Sankar; Goel, Abhishek

    2018-03-01

    The concrete filled steel tubular (CFST) columns are highly regarded in recent years as an interesting option in the construction field by designers and structural engineers, due to their exquisite structural performance, with enhanced load bearing capacity and energy absorption capacity. This study presents a new approach to simulate the capacity of circular CFST columns under axial loading condition, using a large database of experimental results by applying artificial neural network (ANN). A well trained network is established and is used to simulate the axial capacity of CFST columns. The validation and testing of the ANN is carried out. The current study is focused on proposing a simplified equation that can predict the ultimate strength of the axially loaded columns with high level of accuracy. The predicted results are compared with five existing analytical models which estimate the strength of the CFST column. The ANN-based equation has good prediction with experimental data, when compared with the analytical models.

  9. Managing the resilience space of the German energy system - A vector analysis.

    PubMed

    Schlör, Holger; Venghaus, Sandra; Märker, Carolin; Hake, Jürgen-Friedrich

    2018-07-15

    The UN Sustainable Development Goals formulated in 2016 confirmed the sustainability concept of the Earth Summit of 1992 and supported UNEP's green economy transition concept. The transformation of the energy system (Energiewende) is the keystone of Germany's sustainability strategy and of the German green economy concept. We use ten updated energy-related indicators of the German sustainability strategy to analyse the German energy system. The development of the sustainable indicators is examined in the monitoring process by a vector analysis performed in two-dimensional Euclidean space (Euclidean plane). The aim of the novel vector analysis is to measure the current status of the Energiewende in Germany and thereby provide decision makers with information about the strains for the specific remaining pathway of the single indicators and of the total system in order to meet the sustainability targets of the Energiewende. Within this vector model, three vectors (the normative sustainable development vector, the real development vector, and the green economy vector) define the resilience space of our analysis. The resilience space encloses a number of vectors representing different pathways with different technological and socio-economic strains to achieve a sustainable development of the green economy. In this space, the decision will be made as to whether the government measures will lead to a resilient energy system or whether a readjustment of indicator targets or political measures is necessary. The vector analysis enables us to analyse both the government's ambitiousness, which is expressed in the sustainability target for the indicators at the start of the sustainability strategy representing the starting preference order of the German government (SPO) and, secondly, the current preference order of German society in order to bridge the remaining distance to reach the specific sustainability goals of the strategy summarized in the current preference order (CPO). Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Measurement and modeling of electric field and space-charge distributions in obstructed helium discharge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fendel, Peter; Ganguly, Biswa N.; Bletzinger, Peter

    Axial and radial variations of electric field have been measured in dielectric shielded 0.025 m diameter parallel plate electrode with 0.0065 m gap for 1.6 mA, 2260 V helium dc discharge at 1.75 Torr. The axial and radial electric field profiles have been measured from the Stark splitting of 2{sup 1}S→11 {sup 1}P transition through collision induced fluorescence from 4{sup 3}D→2{sup 3}P. The electric field values showed a strong radial variation peaking to 500 kV/m near the cathode radial boundary, and decreasing to about 100 kV/m near the anode edge, suggesting the formation of an obstructed discharge for this low nd condition, where n is the gasmore » density and d is the gap distance. The off-axis Stark spectra showed that the electric field vector deviates from normal to the cathode surface which permits longer path electron trajectories in the inter-electrode gap. Also, the on-axis electric field gradient was very small and off-axis electric field gradient was large indicating a radially non-uniform current density. In order to obtain information about the space charge distribution in this obstructed discharge, it was modeled using the 2-d axisymmetric Poisson solver with the COMSOL finite element modeling program. The best fit to the measured electric field distribution was obtained with a space charge variation of ρ(r) = ρ{sub 0}(r/r{sub 0}){sup 3}, where ρ(r) is the local space charge density, ρ{sub 0} = 6 × 10{sup −3} Coulomb/m{sup 3}, r is the local radial value, and r{sub 0} is the radius of the electrode.« less

  11. The within-match patterns of locomotor efficiency during professional soccer match play: Implications for injury risk?

    PubMed

    Barrett, Steve; Midgley, Adrian; Reeves, Matt; Joel, Tom; Franklin, Ed; Heyworth, Rob; Garrett, Andrew; Lovell, Ric

    2016-10-01

    The principle aim of the current study was to examine within-match patterns of locomotor efficiency in professional soccer, determined as the ratio between tri-axial accelerometer data (PlayerLoad™) and locomotor activities. Between match variability and determinants of PlayerLoad™ during match play were also assessed. A single cohort, observational study. Tri-axial accelerometer data (PlayerLoad™) was recorded during 86 competitive soccer matches in 63 English championship players (574 match observations). Accelerometer data accumulated (PlayerLoad Vector Magnitude [PLVM]) from the individual-component planes of PlayerLoad™ (anterior-posterior PlayerLoad™ [PLAP], medial-lateral PlayerLoad™ [PLML] and vertical PlayerLoad™ [PLV]), together with locomotor activity (Total Distance Covered [TDC]) were determined in 15-min segments. Locomotor efficiency was calculated using the ratio of PLVM and TDC (PlayerLoad™ per metre). The proportion of variance explaining the within-match trends in PLVM, PLAP, APML, APv, and TDC was determined owing to matches, individual players, and positional role. PLVM, PLAP, APML, APv and TDC reduced after the initial 15-min match period (p=0.001; η(2)=0.22-0.43, large effects). PL:TDC increased in the last 15min of each half (p=0.001; η(2)=0.25, large effect). The variance in PLVM during soccer match-play was explained by individual players (63.9%; p=0.001) and between-match variation (21.6%; p=0.001), but not positional role (14.1%; p=0.364). Locomotor efficiency is lower during the latter stages of each half of competitive soccer match-play, a trend synonymous with observations of increased injury incidence and fatigue in these periods. Locomotor efficiency may be a valuable metric to identify fatigue and heightened injury risk during soccer training and match-play. Copyright © 2015 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  12. Search for new physics in final states with an energetic jet or a hadronically decaying W or Z boson and transverse momentum imbalance at √{s }=13 TeV

    NASA Astrophysics Data System (ADS)

    Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Ambrogi, F.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Erö, J.; Escalante Del Valle, A.; Flechl, M.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Grossmann, J.; Hrubec, J.; Jeitler, M.; König, A.; Krammer, N.; Krätschmer, I.; Liko, D.; Madlener, T.; Mikulec, I.; Pree, E.; Rad, N.; Rohringer, H.; Schieck, J.; Schöfbeck, R.; Spanring, M.; Spitzbart, D.; Taurok, A.; Waltenberger, W.; Wittmann, J.; Wulz, C.-E.; Zarucki, M.; Chekhovsky, V.; Mossolov, V.; Suarez Gonzalez, J.; De Wolf, E. A.; Di Croce, D.; Janssen, X.; Lauwers, J.; Van De Klundert, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Abu Zeid, S.; Blekman, F.; D'Hondt, J.; De Bruyn, I.; De Clercq, J.; Deroover, K.; Flouris, G.; Lontkovskyi, D.; Lowette, S.; Marchesini, I.; Moortgat, S.; Moreels, L.; Python, Q.; Skovpen, K.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Parijs, I.; Beghin, D.; Bilin, B.; Brun, H.; Clerbaux, B.; De Lentdecker, G.; Delannoy, H.; Dorney, B.; Fasanella, G.; Favart, L.; Goldouzian, R.; Grebenyuk, A.; Kalsi, A. K.; Lenzi, T.; Luetic, J.; Maerschalk, T.; Marinov, A.; Seva, T.; Starling, E.; Vander Velde, C.; Vanlaer, P.; Vannerom, D.; Yonamine, R.; Zenoni, F.; Cornelis, T.; Dobur, D.; Fagot, A.; Gul, M.; Khvastunov, I.; Poyraz, D.; Roskas, C.; Salva, S.; Tytgat, M.; Verbeke, W.; Zaganidis, N.; Bakhshiansohi, H.; Bondu, O.; Brochet, S.; Bruno, G.; Caputo, C.; Caudron, A.; David, P.; De Visscher, S.; Delaere, C.; Delcourt, M.; Francois, B.; Giammanco, A.; Komm, M.; Krintiras, G.; Lemaitre, V.; Magitteri, A.; Mertens, A.; Musich, M.; Piotrzkowski, K.; Quertenmont, L.; Saggio, A.; Vidal Marono, M.; Wertz, S.; Zobec, J.; Aldá Júnior, W. L.; Alves, F. L.; Alves, G. A.; Brito, L.; Correa Martins Junior, M.; Correia Silva, G.; Hensel, C.; Moraes, A.; Pol, M. E.; Rebello Teles, P.; Belchior Batista Das Chagas, E.; Carvalho, W.; Chinellato, J.; Coelho, E.; Da Costa, E. M.; Da Silveira, G. G.; De Jesus Damiao, D.; Fonseca De Souza, S.; Huertas Guativa, L. M.; Malbouisson, H.; Melo De Almeida, M.; Mora Herrera, C.; Mundim, L.; Nogima, H.; Sanchez Rosas, L. J.; Santoro, A.; Sznajder, A.; Thiel, M.; Tonelli Manganote, E. J.; Torres Da Silva De Araujo, F.; Vilela Pereira, A.; Ahuja, S.; Bernardes, C. A.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Mercadante, P. G.; Novaes, S. F.; Padula, Sandra S.; Romero Abad, D.; Ruiz Vargas, J. C.; Aleksandrov, A.; Hadjiiska, R.; Iaydjiev, P.; Misheva, M.; Rodozov, M.; Shopova, M.; Sultanov, G.; Dimitrov, A.; Litov, L.; Pavlov, B.; Petkov, P.; Fang, W.; Gao, X.; Yuan, L.; Ahmad, M.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Chen, Y.; Jiang, C. H.; Leggat, D.; Liao, H.; Liu, Z.; Romeo, F.; Shaheen, S. M.; Spiezia, A.; Tao, J.; Wang, C.; Wang, Z.; Yazgan, E.; Yu, T.; Zhang, H.; Zhang, S.; Zhao, J.; Ban, Y.; Chen, G.; Li, J.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.; Zhang, F.; Wang, Y.; Avila, C.; Cabrera, A.; Carrillo Montoya, C. A.; Chaparro Sierra, L. F.; Florez, C.; González Hernández, C. F.; Ruiz Alvarez, J. D.; Segura Delgado, M. A.; Courbon, B.; Godinovic, N.; Lelas, D.; Puljak, I.; Ribeiro Cipriano, P. M.; Sculac, T.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Ferencek, D.; Kadija, K.; Mesic, B.; Starodumov, A.; Susa, T.; Ather, M. W.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.; Finger, M.; Finger, M.; Carrera Jarrin, E.; Assran, Y.; Elgammal, S.; Khalil, S.; Bhowmik, S.; Dewanjee, R. K.; Kadastik, M.; Perrini, L.; Raidal, M.; Tiko, A.; Veelken, C.; Eerola, P.; Kirschenmann, H.; Pekkanen, J.; Voutilainen, M.; Havukainen, J.; Heikkilä, J. K.; Järvinen, T.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Laurila, S.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Siikonen, H.; Tuominen, E.; Tuominiemi, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Faure, J. L.; Ferri, F.; Ganjour, S.; Ghosh, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Kucher, I.; Leloup, C.; Locci, E.; Machet, M.; Malcles, J.; Negro, G.; Rander, J.; Rosowsky, A.; Sahin, M. Ö.; Titov, M.; Abdulsalam, A.; Amendola, C.; Antropov, I.; Baffioni, S.; Beaudette, F.; Busson, P.; Cadamuro, L.; Charlot, C.; Granier de Cassagnac, R.; Jo, M.; Lisniak, S.; Lobanov, A.; Martin Blanco, J.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Pigard, P.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Stahl Leiton, A. G.; Strebler, T.; Yilmaz, Y.; Zabi, A.; Zghiche, A.; Agram, J.-L.; Andrea, J.; Bloch, D.; Brom, J.-M.; Buttignol, M.; Chabert, E. C.; Chanon, N.; Collard, C.; Conte, E.; Coubez, X.; Drouhin, F.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Jansová, M.; Juillot, P.; Le Bihan, A.-C.; Tonon, N.; Van Hove, P.; Gadrat, S.; Beauceron, S.; Bernet, C.; Boudoul, G.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fay, J.; Finco, L.; Gascon, S.; Gouzevitch, M.; Grenier, G.; Ille, B.; Lagarde, F.; Laktineh, I. B.; Lethuillier, M.; Mirabito, L.; Pequegnot, A. L.; Perries, S.; Popov, A.; Sordini, V.; Vander Donckt, M.; Viret, S.; Toriashvili, T.; Tsamalaidze, Z.; Autermann, C.; Feld, L.; Kiesel, M. K.; Klein, K.; Lipinski, M.; Preuten, M.; Schomakers, C.; Schulz, J.; Teroerde, M.; Wittmer, B.; Zhukov, V.; Albert, A.; Duchardt, D.; Endres, M.; Erdmann, M.; Erdweg, S.; Esch, T.; Fischer, R.; Güth, A.; Hamer, M.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Knutzen, S.; Merschmeyer, M.; Meyer, A.; Millet, P.; Mukherjee, S.; Pook, T.; Radziej, M.; Reithler, H.; Rieger, M.; Scheuch, F.; Teyssier, D.; Thüer, S.; Flügge, G.; Kargoll, B.; Kress, T.; Künsken, A.; Müller, T.; Nehrkorn, A.; Nowack, A.; Pistone, C.; Pooth, O.; Stahl, A.; Aldaya Martin, M.; Arndt, T.; Asawatangtrakuldee, C.; Beernaert, K.; Behnke, O.; Behrens, U.; Bermúdez Martínez, A.; Bin Anuar, A. A.; Borras, K.; Botta, V.; Campbell, A.; Connor, P.; Contreras-Campana, C.; Costanza, F.; Diez Pardos, C.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Eren, E.; Gallo, E.; Garay Garcia, J.; Geiser, A.; Grados Luyando, J. M.; Grohsjean, A.; Gunnellini, P.; Guthoff, M.; Harb, A.; Hauk, J.; Hempel, M.; Jung, H.; Kasemann, M.; Keaveney, J.; Kleinwort, C.; Korol, I.; Krücker, D.; Lange, W.; Lelek, A.; Lenz, T.; Leonard, J.; Lipka, K.; Lohmann, W.; Mankel, R.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mittag, G.; Mnich, J.; Mussgiller, A.; Ntomari, E.; Pitzl, D.; Raspereza, A.; Savitskyi, M.; Saxena, P.; Shevchenko, R.; Stefaniuk, N.; Van Onsem, G. P.; Walsh, R.; Wen, Y.; Wichmann, K.; Wissing, C.; Zenaiev, O.; Aggleton, R.; Bein, S.; Blobel, V.; Centis Vignali, M.; Dreyer, T.; Garutti, E.; Gonzalez, D.; Haller, J.; Hinzmann, A.; Hoffmann, M.; Karavdina, A.; Klanner, R.; Kogler, R.; Kovalchuk, N.; Kurz, S.; Lapsien, T.; Marconi, D.; Meyer, M.; Niedziela, M.; Nowatschin, D.; Pantaleo, F.; Peiffer, T.; Perieanu, A.; Scharf, C.; Schleper, P.; Schmidt, A.; Schumann, S.; Schwandt, J.; Sonneveld, J.; Stadie, H.; Steinbrück, G.; Stober, F. M.; Stöver, M.; Tholen, H.; Troendle, D.; Usai, E.; Vanhoefer, A.; Vormwald, B.; Akbiyik, M.; Barth, C.; Baselga, M.; Baur, S.; Butz, E.; Caspart, R.; Chwalek, T.; Colombo, F.; De Boer, W.; Dierlamm, A.; Faltermann, N.; Freund, B.; Friese, R.; Giffels, M.; Harrendorf, M. A.; Hartmann, F.; Heindl, S. M.; Husemann, U.; Kassel, F.; Kudella, S.; Mildner, H.; Mozer, M. U.; Müller, Th.; Plagge, M.; Quast, G.; Rabbertz, K.; Schröder, M.; Shvetsov, I.; Sieber, G.; Simonis, H. J.; Ulrich, R.; Wayand, S.; Weber, M.; Weiler, T.; Williamson, S.; Wöhrmann, C.; Wolf, R.; Anagnostou, G.; Daskalakis, G.; Geralis, T.; Kyriakis, A.; Loukas, D.; Topsis-Giotis, I.; Karathanasis, G.; Kesisoglou, S.; Panagiotou, A.; Saoulidou, N.; Kousouris, K.; Evangelou, I.; Foudas, C.; Gianneios, P.; Katsoulis, P.; Kokkas, P.; Mallios, S.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Strologas, J.; Triantis, F. A.; Tsitsonis, D.; Csanad, M.; Filipovic, N.; Pasztor, G.; Surányi, O.; Veres, G. I.; Bencze, G.; Hajdu, C.; Horvath, D.; Hunyadi, Á.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Beni, N.; Czellar, S.; Karancsi, J.; Makovec, A.; Molnar, J.; Szillasi, Z.; Bartók, M.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Choudhury, S.; Komaragiri, J. R.; Bahinipati, S.; Mal, P.; Mandal, K.; Nayak, A.; Sahoo, D. K.; Sahoo, N.; Swain, S. K.; Bansal, S.; Beri, S. B.; Bhatnagar, V.; Chawla, R.; Dhingra, N.; Kaur, A.; Kaur, M.; Kaur, S.; Kumar, R.; Kumari, P.; Mehta, A.; Singh, J. B.; Walia, G.; Kumar, Ashok; Shah, Aashaq; Bhardwaj, A.; Chauhan, S.; Choudhary, B. C.; Garg, R. B.; Keshri, S.; Kumar, A.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Sharma, R.; Bhardwaj, R.; Bhattacharya, R.; Bhattacharya, S.; Bhawandeep, U.; Dey, S.; Dutt, S.; Dutta, S.; Ghosh, S.; Majumdar, N.; Modak, A.; Mondal, K.; Mukhopadhyay, S.; Nandan, S.; Purohit, A.; Roy, A.; Roy Chowdhury, S.; Sarkar, S.; Sharan, M.; Thakur, S.; Behera, P. K.; Chudasama, R.; Dutta, D.; Jha, V.; Kumar, V.; Mohanty, A. K.; Netrakanti, P. K.; Pant, L. M.; Shukla, P.; Topkar, A.; Aziz, T.; Dugad, S.; Mahakud, B.; Mitra, S.; Mohanty, G. B.; Sur, N.; Sutar, B.; Banerjee, S.; Bhattacharya, S.; Chatterjee, S.; Das, P.; Guchait, M.; Jain, Sa.; Kumar, S.; Maity, M.; Majumder, G.; Mazumdar, K.; Sarkar, T.; Wickramage, N.; Chauhan, S.; Dube, S.; Hegde, V.; Kapoor, A.; Kothekar, K.; Pandey, S.; Rane, A.; Sharma, S.; Chenarani, S.; Eskandari Tadavani, E.; Etesami, S. M.; Khakzad, M.; Mohammadi Najafabadi, M.; Naseri, M.; Paktinat Mehdiabadi, S.; Rezaei Hosseinabadi, F.; Safarzadeh, B.; Zeinali, M.; Felcini, M.; Grunewald, M.; Abbrescia, M.; Calabria, C.; Colaleo, A.; Creanza, D.; Cristella, L.; De Filippis, N.; De Palma, M.; Errico, F.; Fiore, L.; Iaselli, G.; Lezki, S.; Maggi, G.; Maggi, M.; Miniello, G.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Ranieri, A.; Selvaggi, G.; Sharma, A.; Silvestris, L.; Venditti, R.; Verwilligen, P.; Abbiendi, G.; Battilana, C.; Bonacorsi, D.; Borgonovi, L.; Braibant-Giacomelli, S.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Chhibra, S. S.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Albergo, S.; Costa, S.; Di Mattia, A.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Chatterjee, K.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Lenzi, P.; Meschini, M.; Paoletti, S.; Russo, L.; Sguazzoni, G.; Strom, D.; Viliani, L.; Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.; Primavera, F.; Calvelli, V.; Ferro, F.; Ravera, F.; Robutti, E.; Tosi, S.; Benaglia, A.; Beschi, A.; Brianza, L.; Brivio, F.; Ciriolo, V.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Ghezzi, A.; Govoni, P.; Malberti, M.; Malvezzi, S.; Manzoni, R. A.; Menasce, D.; Moroni, L.; Paganoni, M.; Pauwels, K.; Pedrini, D.; Pigazzini, S.; Ragazzi, S.; Tabarelli de Fatis, T.; Buontempo, S.; Cavallo, N.; Di Guida, S.; Fabozzi, F.; Fienga, F.; Iorio, A. O. M.; Khan, W. A.; Lista, L.; Meola, S.; Paolucci, P.; Sciacca, C.; Thyssen, F.; Azzi, P.; Bacchetta, N.; Benato, L.; Bisello, D.; Boletti, A.; Carlin, R.; Checchia, P.; Dall'Osso, M.; De Castro Manzano, P.; Dorigo, T.; Dosselli, U.; Gasparini, F.; Gasparini, U.; Gozzelino, A.; Lacaprara, S.; Lujan, P.; Margoni, M.; Meneguzzo, A. T.; Pozzobon, N.; Ronchese, P.; Rossin, R.; Torassa, E.; Ventura, S.; Zanetti, M.; Zotto, P.; Zumerle, G.; Braghieri, A.; Magnani, A.; Montagna, P.; Ratti, S. P.; Re, V.; Ressegotti, M.; Riccardi, C.; Salvini, P.; Vai, I.; Vitulo, P.; Alunni Solestizi, L.; Biasini, M.; Bilei, G. M.; Cecchi, C.; Ciangottini, D.; Fanò, L.; Lariccia, P.; Leonardi, R.; Manoni, E.; Mantovani, G.; Mariani, V.; Menichelli, M.; Rossi, A.; Santocchia, A.; Spiga, D.; Androsov, K.; Azzurri, P.; Bagliesi, G.; Boccali, T.; Borrello, L.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Fedi, G.; Giannini, L.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Manca, E.; Mandorli, G.; Messineo, A.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Spagnolo, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Barone, L.; Cavallari, F.; Cipriani, M.; Daci, N.; Del Re, D.; Di Marco, E.; Diemoz, M.; Gelli, S.; Longo, E.; Margaroli, F.; Marzocchi, B.; Meridiani, P.; Organtini, G.; Paramatti, R.; Preiato, F.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bartosik, N.; Bellan, R.; Biino, C.; Cartiglia, N.; Cenna, F.; Costa, M.; Covarelli, R.; Degano, A.; Demaria, N.; Kiani, B.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Monteil, E.; Monteno, M.; Obertino, M. M.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Pinna Angioni, G. L.; Romero, A.; Ruspa, M.; Sacchi, R.; Shchelina, K.; Sola, V.; Solano, A.; Staiano, A.; Traczyk, P.; Belforte, S.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Zanetti, A.; Kim, D. H.; Kim, G. N.; Kim, M. S.; Lee, J.; Lee, S.; Lee, S. W.; Moon, C. S.; Oh, Y. D.; Sekmen, S.; Son, D. C.; Yang, Y. C.; Lee, A.; Kim, H.; Moon, D. H.; Oh, G.; Brochero Cifuentes, J. A.; Goh, J.; Kim, T. J.; Cho, S.; Choi, S.; Go, Y.; Gyun, D.; Ha, S.; Hong, B.; Jo, Y.; Kim, Y.; Lee, K.; Lee, K. S.; Lee, S.; Lim, J.; Park, S. K.; Roh, Y.; Almond, J.; Kim, J.; Kim, J. S.; Lee, H.; Lee, K.; Nam, K.; Oh, S. B.; Radburn-Smith, B. C.; Seo, S. h.; Yang, U. K.; Yoo, H. D.; Yu, G. B.; Kim, H.; Kim, J. H.; Lee, J. S. H.; Park, I. C.; Choi, Y.; Hwang, C.; Lee, J.; Yu, I.; Dudenas, V.; Juodagalvis, A.; Vaitkus, J.; Ahmed, I.; Ibrahim, Z. A.; Md Ali, M. A. B.; Mohamad Idris, F.; Wan Abdullah, W. A. T.; Yusli, M. N.; Zolkapli, Z.; Reyes-Almanza, R.; Ramirez-Sanchez, G.; Duran-Osuna, M. C.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-De La Cruz, I.; Rabadan-Trejo, R. I.; Lopez-Fernandez, R.; Mejia Guisao, J.; Sanchez-Hernandez, A.; Carrillo Moreno, S.; Oropeza Barrera, C.; Vazquez Valencia, F.; Eysermans, J.; Pedraza, I.; Salazar Ibarguen, H. A.; Uribe Estrada, C.; Morelos Pineda, A.; Krofcheck, D.; Butler, P. H.; Ahmad, A.; Ahmad, M.; Hassan, Q.; Hoorani, H. R.; Saddique, A.; Shah, M. A.; Shoaib, M.; Waqas, M.; Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Górski, M.; Kazana, M.; Nawrocki, K.; Szleper, M.; Zalewski, P.; Bunkowski, K.; Byszuk, A.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Pyskir, A.; Walczak, M.; Bargassa, P.; Beirão Da Cruz E Silva, C.; Di Francesco, A.; Faccioli, P.; Galinhas, B.; Gallinaro, M.; Hollar, J.; Leonardo, N.; Lloret Iglesias, L.; Nemallapudi, M. V.; Seixas, J.; Strong, G.; Toldaiev, O.; Vadruccio, D.; Varela, J.; Afanasiev, S.; Alexakhin, V.; Gavrilenko, M.; Golunov, A.; Golutvin, I.; Gorbounov, N.; Karjavin, V.; Lanev, A.; Malakhov, A.; Matveev, V.; Moisenz, P.; Palichik, V.; Perelygin, V.; Savina, M.; Shmatov, S.; Skatchkov, N.; Smirnov, V.; Voytishin, N.; Zarubin, A.; Ivanov, Y.; Kim, V.; Kuznetsova, E.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sosnov, D.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Karneyeu, A.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Pozdnyakov, I.; Safronov, G.; Spiridonov, A.; Stepennov, A.; Stolin, V.; Toms, M.; Vlasov, E.; Zhokin, A.; Aushev, T.; Bylinkin, A.; Chadeeva, M.; Parygin, P.; Philippov, D.; Polikarpov, S.; Popova, E.; Rusinov, V.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Rusakov, S. V.; Terkulov, A.; Baskakov, A.; Belyaev, A.; Boos, E.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Miagkov, I.; Obraztsov, S.; Petrushanko, S.; Savrin, V.; Snigirev, A.; Blinov, V.; Shtol, D.; Skovpen, Y.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Elumakhov, D.; Godizov, A.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Mandrik, P.; Petrov, V.; Ryutin, R.; Sobol, A.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Cirkovic, P.; Devetak, D.; Dordevic, M.; Milosevic, J.; Rekovic, V.; Alcaraz Maestre, J.; Bachiller, I.; Barrio Luna, M.; Cerrada, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Flix, J.; Fouz, M. C.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Moran, D.; Pérez-Calero Yzquierdo, A.; Puerta Pelayo, J.; Redondo, I.; Romero, L.; Soares, M. S.; Álvarez Fernández, A.; Albajar, C.; de Trocóniz, J. F.; Missiroli, M.; Cuevas, J.; Erice, C.; Fernandez Menendez, J.; Gonzalez Caballero, I.; González Fernández, J. R.; Palencia Cortezon, E.; Sanchez Cruz, S.; Vischia, P.; Vizan Garcia, J. M.; Cabrillo, I. J.; Calderon, A.; Chazin Quero, B.; Curras, E.; Duarte Campderros, J.; Fernandez, M.; Garcia-Ferrero, J.; Gomez, G.; Lopez Virto, A.; Marco, J.; Martinez Rivero, C.; Martinez Ruiz del Arbol, P.; Matorras, F.; Piedra Gomez, J.; Rodrigo, T.; Ruiz-Jimeno, A.; Scodellaro, L.; Trevisani, N.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Akgun, B.; Auffray, E.; Baillon, P.; Ball, A. H.; Barney, D.; Bendavid, J.; Bianco, M.; Bloch, P.; Bocci, A.; Botta, C.; Camporesi, T.; Castello, R.; Cepeda, M.; Cerminara, G.; Chapon, E.; Chen, Y.; d'Enterria, D.; Dabrowski, A.; Daponte, V.; David, A.; De Gruttola, M.; De Roeck, A.; Deelen, N.; Dobson, M.; du Pree, T.; Dünser, M.; Dupont, N.; Elliott-Peisert, A.; Everaerts, P.; Fallavollita, F.; Franzoni, G.; Fulcher, J.; Funk, W.; Gigi, D.; Gilbert, A.; Gill, K.; Glege, F.; Gulhan, D.; Harris, P.; Hegeman, J.; Innocente, V.; Jafari, A.; Janot, P.; Karacheban, O.; Kieseler, J.; Knünz, V.; Kornmayer, A.; Kortelainen, M. J.; Krammer, M.; Lange, C.; Lecoq, P.; Lourenço, C.; Lucchini, M. T.; Malgeri, L.; Mannelli, M.; Martelli, A.; Meijers, F.; Merlin, J. A.; Mersi, S.; Meschi, E.; Milenovic, P.; Moortgat, F.; Mulders, M.; Neugebauer, H.; Ngadiuba, J.; Orfanelli, S.; Orsini, L.; Pape, L.; Perez, E.; Peruzzi, M.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Pierini, M.; Rabady, D.; Racz, A.; Reis, T.; Rolandi, G.; Rovere, M.; Sakulin, H.; Schäfer, C.; Schwick, C.; Seidel, M.; Selvaggi, M.; Sharma, A.; Silva, P.; Sphicas, P.; Stakia, A.; Steggemann, J.; Stoye, M.; Tosi, M.; Treille, D.; Triossi, A.; Tsirou, A.; Veckalns, V.; Verweij, M.; Zeuner, W. D.; Bertl, W.; Caminada, L.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Rohe, T.; Wiederkehr, S. A.; Backhaus, M.; Bäni, L.; Berger, P.; Bianchini, L.; Casal, B.; Dissertori, G.; Dittmar, M.; Donegà, M.; Dorfer, C.; Grab, C.; Heidegger, C.; Hits, D.; Hoss, J.; Kasieczka, G.; Klijnsma, T.; Lustermann, W.; Mangano, B.; Marionneau, M.; Meinhard, M. T.; Meister, D.; Micheli, F.; Musella, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pata, J.; Pauss, F.; Perrin, G.; Perrozzi, L.; Quittnat, M.; Reichmann, M.; Sanz Becerra, D. A.; Schönenberger, M.; Shchutska, L.; Tavolaro, V. R.; Theofilatos, K.; Vesterbacka Olsson, M. L.; Wallny, R.; Zhu, D. H.; Aarrestad, T. K.; Amsler, C.; Canelli, M. F.; De Cosa, A.; Del Burgo, R.; Donato, S.; Galloni, C.; Hreus, T.; Kilminster, B.; Pinna, D.; Rauco, G.; Robmann, P.; Salerno, D.; Schweiger, K.; Seitz, C.; Takahashi, Y.; Zucchetta, A.; Candelise, V.; Chang, Y. H.; Cheng, K. y.; Doan, T. H.; Jain, Sh.; Khurana, R.; Kuo, C. M.; Lin, W.; Pozdnyakov, A.; Yu, S. S.; Kumar, Arun; Chang, P.; Chao, Y.; Chen, K. F.; Chen, P. H.; Fiori, F.; Hou, W.-S.; Hsiung, Y.; Liu, Y. F.; Lu, R.-S.; Paganis, E.; Psallidas, A.; Steen, A.; Tsai, J. f.; Asavapibhop, B.; Kovitanggoon, K.; Singh, G.; Srimanobhas, N.; Bat, A.; Boran, F.; Cerci, S.; Damarseckin, S.; Demiroglu, Z. S.; Dozen, C.; Dumanoglu, I.; Girgis, S.; Gokbulut, G.; Guler, Y.; Hos, I.; Kangal, E. E.; Kara, O.; Kayis Topaksu, A.; Kiminsu, U.; Oglakci, M.; Onengut, G.; Ozdemir, K.; Sunar Cerci, D.; Tali, B.; Tok, U. G.; Turkcapar, S.; Zorbakir, I. S.; Zorbilmez, C.; Karapinar, G.; Ocalan, K.; Yalvac, M.; Zeyrek, M.; Gülmez, E.; Kaya, M.; Kaya, O.; Tekten, S.; Yetkin, E. A.; Agaras, M. N.; Atay, S.; Cakir, A.; Cankocak, K.; Komurcu, Y.; Grynyov, B.; Levchuk, L.; Ball, F.; Beck, L.; Brooke, J. J.; Burns, D.; Clement, E.; Cussans, D.; Davignon, O.; Flacher, H.; Goldstein, J.; Heath, G. P.; Heath, H. F.; Kreczko, L.; Newbold, D. M.; Paramesvaran, S.; Sakuma, T.; Seif El Nasr-storey, S.; Smith, D.; Smith, V. J.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Calligaris, L.; Cieri, D.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Linacre, J.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Williams, T.; Womersley, W. J.; Auzinger, G.; Bainbridge, R.; Borg, J.; Breeze, S.; Buchmuller, O.; Bundock, A.; Casasso, S.; Citron, M.; Colling, D.; Corpe, L.; Dauncey, P.; Davies, G.; De Wit, A.; Della Negra, M.; Di Maria, R.; Elwood, A.; Haddad, Y.; Hall, G.; Iles, G.; James, T.; Lane, R.; Laner, C.; Lyons, L.; Magnan, A.-M.; Malik, S.; Mastrolorenzo, L.; Matsushita, T.; Nash, J.; Nikitenko, A.; Palladino, V.; Pesaresi, M.; Raymond, D. M.; Richards, A.; Rose, A.; Scott, E.; Seez, C.; Shtipliyski, A.; Summers, S.; Tapper, A.; Uchida, K.; Vazquez Acosta, M.; Virdee, T.; Wardle, N.; Winterbottom, D.; Wright, J.; Zenz, S. C.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Reid, I. D.; Teodorescu, L.; Zahid, S.; Borzou, A.; Call, K.; Dittmann, J.; Hatakeyama, K.; Liu, H.; Pastika, N.; Smith, C.; Bartek, R.; Dominguez, A.; Buccilli, A.; Cooper, S. I.; Henderson, C.; Rumerio, P.; West, C.; Arcaro, D.; Avetisyan, A.; Bose, T.; Gastler, D.; Rankin, D.; Richardson, C.; Rohlf, J.; Sulak, L.; Zou, D.; Benelli, G.; Cutts, D.; Hadley, M.; Hakala, J.; Heintz, U.; Hogan, J. M.; Kwok, K. H. M.; Laird, E.; Landsberg, G.; Lee, J.; Mao, Z.; Narain, M.; Pazzini, J.; Piperov, S.; Sagir, S.; Syarif, R.; Yu, D.; Band, R.; Brainerd, C.; Breedon, R.; Burns, D.; Calderon De La Barca Sanchez, M.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Flores, C.; Funk, G.; Ko, W.; Lander, R.; Mclean, C.; Mulhearn, M.; Pellett, D.; Pilot, J.; Shalhout, S.; Shi, M.; Smith, J.; Stolp, D.; Tos, K.; Tripathi, M.; Wang, Z.; Bachtis, M.; Bravo, C.; Cousins, R.; Dasgupta, A.; Florent, A.; Hauser, J.; Ignatenko, M.; Mccoll, N.; Regnard, S.; Saltzberg, D.; Schnaible, C.; Valuev, V.; Bouvier, E.; Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Ghiasi Shirazi, S. M. A.; Hanson, G.; Heilman, J.; Karapostoli, G.; Kennedy, E.; Lacroix, F.; Long, O. R.; Olmedo Negrete, M.; Paneva, M. I.; Si, W.; Wang, L.; Wei, H.; Wimpenny, S.; Yates, B. R.; Branson, J. G.; Cittolin, S.; Derdzinski, M.; Gerosa, R.; Gilbert, D.; Hashemi, B.; Holzner, A.; Klein, D.; Kole, G.; Krutelyov, V.; Letts, J.; Masciovecchio, M.; Olivito, D.; Padhi, S.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Tadel, M.; Vartak, A.; Wasserbaech, S.; Wood, J.; Würthwein, F.; Yagil, A.; Zevi Della Porta, G.; Amin, N.; Bhandari, R.; Bradmiller-Feld, J.; Campagnari, C.; Dishaw, A.; Dutta, V.; Franco Sevilla, M.; Gouskos, L.; Heller, R.; Incandela, J.; Ovcharova, A.; Qu, H.; Richman, J.; Stuart, D.; Suarez, I.; Yoo, J.; Anderson, D.; Bornheim, A.; Bunn, J.; Lawhorn, J. M.; Newman, H. B.; Nguyen, T. Q.; Pena, C.; Spiropulu, M.; Vlimant, J. R.; Wilkinson, R.; Xie, S.; Zhang, Z.; Zhu, R. Y.; Andrews, M. B.; Ferguson, T.; Mudholkar, T.; Paulini, M.; Russ, J.; Sun, M.; Vogel, H.; Vorobiev, I.; Weinberg, M.; Cumalat, J. P.; Ford, W. T.; Jensen, F.; Johnson, A.; Krohn, M.; Leontsinis, S.; Mulholland, T.; Stenson, K.; Wagner, S. R.; Alexander, J.; Chaves, J.; Chu, J.; Dittmer, S.; Mcdermott, K.; Mirman, N.; Patterson, J. R.; Quach, D.; Rinkevicius, A.; Ryd, A.; Skinnari, L.; Soffi, L.; Tan, S. M.; Tao, Z.; Thom, J.; Tucker, J.; Wittich, P.; Zientek, M.; Abdullin, S.; Albrow, M.; Alyari, M.; Apollinari, G.; Apresyan, A.; Apyan, A.; Banerjee, S.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bolla, G.; Burkett, K.; Butler, J. N.; Canepa, A.; Cerati, G. B.; Cheung, H. W. K.; Chlebana, F.; Cremonesi, M.; Duarte, J.; Elvira, V. D.; Freeman, J.; Gecse, Z.; Gottschalk, E.; Gray, L.; Green, D.; Grünendahl, S.; Gutsche, O.; Hanlon, J.; Harris, R. M.; Hasegawa, S.; Hirschauer, J.; Hu, Z.; Jayatilaka, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Klima, B.; Kreis, B.; Lammel, S.; Lincoln, D.; Lipton, R.; Liu, M.; Liu, T.; Lopes De Sá, R.; Lykken, J.; Maeshima, K.; Magini, N.; Marraffino, J. M.; Mason, D.; McBride, P.; Merkel, P.; Mrenna, S.; Nahn, S.; O'Dell, V.; Pedro, K.; Prokofyev, O.; Rakness, G.; Ristori, L.; Schneider, B.; Sexton-Kennedy, E.; Soha, A.; Spalding, W. J.; Spiegel, L.; Stoynev, S.; Strait, J.; Strobbe, N.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vernieri, C.; Verzocchi, M.; Vidal, R.; Wang, M.; Weber, H. A.; Whitbeck, A.; Wu, W.; Acosta, D.; Avery, P.; Bortignon, P.; Bourilkov, D.; Brinkerhoff, A.; Carnes, A.; Carver, M.; Curry, D.; Field, R. D.; Furic, I. K.; Gleyzer, S. V.; Joshi, B. M.; Konigsberg, J.; Korytov, A.; Kotov, K.; Ma, P.; Matchev, K.; Mei, H.; Mitselmakher, G.; Shi, K.; Sperka, D.; Terentyev, N.; Thomas, L.; Wang, J.; Wang, S.; Yelton, J.; Joshi, Y. R.; Linn, S.; Markowitz, P.; Rodriguez, J. L.; Ackert, A.; Adams, T.; Askew, A.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Kolberg, T.; Martinez, G.; Perry, T.; Prosper, H.; Saha, A.; Santra, A.; Sharma, V.; Yohay, R.; Baarmand, M. M.; Bhopatkar, V.; Colafranceschi, S.; Hohlmann, M.; Noonan, D.; Roy, T.; Yumiceva, F.; Adams, M. R.; Apanasevich, L.; Berry, D.; Betts, R. R.; Cavanaugh, R.; Chen, X.; Evdokimov, O.; Gerber, C. E.; Hangal, D. A.; Hofman, D. J.; Jung, K.; Kamin, J.; Sandoval Gonzalez, I. D.; Tonjes, M. B.; Trauger, H.; Varelas, N.; Wang, H.; Wu, Z.; Zhang, J.; Bilki, B.; Clarida, W.; Dilsiz, K.; Durgut, S.; Gandrajula, R. P.; Haytmyradov, M.; Khristenko, V.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Snyder, C.; Tiras, E.; Wetzel, J.; Yi, K.; Blumenfeld, B.; Cocoros, A.; Eminizer, N.; Fehling, D.; Feng, L.; Gritsan, A. V.; Maksimovic, P.; Roskes, J.; Sarica, U.; Swartz, M.; Xiao, M.; You, C.; Al-bataineh, A.; Baringer, P.; Bean, A.; Boren, S.; Bowen, J.; Castle, J.; Khalil, S.; Kropivnitskaya, A.; Majumder, D.; Mcbrayer, W.; Murray, M.; Rogan, C.; Royon, C.; Sanders, S.; Schmitz, E.; Tapia Takaki, J. D.; Wang, Q.; Ivanov, A.; Kaadze, K.; Maravin, Y.; Mohammadi, A.; Saini, L. K.; Skhirtladze, N.; Rebassoo, F.; Wright, D.; Baden, A.; Baron, O.; Belloni, A.; Eno, S. C.; Feng, Y.; Ferraioli, C.; Hadley, N. J.; Jabeen, S.; Jeng, G. Y.; Kellogg, R. G.; Kunkle, J.; Mignerey, A. C.; Ricci-Tam, F.; Shin, Y. H.; Skuja, A.; Tonwar, S. C.; Abercrombie, D.; Allen, B.; Azzolini, V.; Barbieri, R.; Baty, A.; Bauer, G.; Bi, R.; Brandt, S.; Busza, W.; Cali, I. A.; D'Alfonso, M.; Demiragli, Z.; Gomez Ceballos, G.; Goncharov, M.; Hsu, D.; Hu, M.; Iiyama, Y.; Innocenti, G. M.; Klute, M.; Kovalskyi, D.; Lee, Y.-J.; Levin, A.; Luckey, P. D.; Maier, B.; Marini, A. C.; Mcginn, C.; Mironov, C.; Narayanan, S.; Niu, X.; Paus, C.; Roland, C.; Roland, G.; Salfeld-Nebgen, J.; Stephans, G. S. F.; Sumorok, K.; Tatar, K.; Velicanu, D.; Wang, J.; Wang, T. W.; Wyslouch, B.; Benvenuti, A. C.; Chatterjee, R. M.; Evans, A.; Hansen, P.; Hiltbrand, J.; Kalafut, S.; Kubota, Y.; Lesko, Z.; Mans, J.; Nourbakhsh, S.; Ruckstuhl, N.; Rusack, R.; Turkewitz, J.; Wadud, M. A.; Acosta, J. G.; Oliveros, S.; Avdeeva, E.; Bloom, K.; Claes, D. R.; Fangmeier, C.; Golf, F.; Gonzalez Suarez, R.; Kamalieddin, R.; Kravchenko, I.; Monroy, J.; Siado, J. E.; Snow, G. R.; Stieger, B.; Dolen, J.; Godshalk, A.; Harrington, C.; Iashvili, I.; Nguyen, D.; Parker, A.; Rappoccio, S.; Roozbahani, B.; Alverson, G.; Barberis, E.; Freer, C.; Hortiangtham, A.; Massironi, A.; Morse, D. M.; Orimoto, T.; Teixeira De Lima, R.; Trocino, D.; Wamorkar, T.; Wang, B.; Wisecarver, A.; Wood, D.; Bhattacharya, S.; Charaf, O.; Hahn, K. A.; Mucia, N.; Odell, N.; Schmitt, M. H.; Sung, K.; Trovato, M.; Velasco, M.; Bucci, R.; Dev, N.; Hildreth, M.; Hurtado Anampa, K.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Li, W.; Loukas, N.; Marinelli, N.; Meng, F.; Mueller, C.; Musienko, Y.; Planer, M.; Reinsvold, A.; Ruchti, R.; Siddireddy, P.; Smith, G.; Taroni, S.; Wayne, M.; Wightman, A.; Wolf, M.; Woodard, A.; Alimena, J.; Antonelli, L.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Francis, B.; Hart, A.; Hill, C.; Ji, W.; Ling, T. Y.; Liu, B.; Luo, W.; Winer, B. L.; Wulsin, H. W.; Cooperstein, S.; Driga, O.; Elmer, P.; Hardenbrook, J.; Hebda, P.; Higginbotham, S.; Kalogeropoulos, A.; Lange, D.; Luo, J.; Marlow, D.; Mei, K.; Ojalvo, I.; Olsen, J.; Palmer, C.; Piroué, P.; Stickland, D.; Tully, C.; Malik, S.; Norberg, S.; Barker, A.; Barnes, V. E.; Das, S.; Folgueras, S.; Gutay, L.; Jones, M.; Jung, A. W.; Khatiwada, A.; Miller, D. H.; Neumeister, N.; Peng, C. C.; Qiu, H.; Schulte, J. F.; Sun, J.; Wang, F.; Xiao, R.; Xie, W.; Cheng, T.; Parashar, N.; Stupak, J.; Chen, Z.; Ecklund, K. M.; Freed, S.; Geurts, F. J. M.; Guilbaud, M.; Kilpatrick, M.; Li, W.; Michlin, B.; Padley, B. P.; Roberts, J.; Rorie, J.; Shi, W.; Tu, Z.; Zabel, J.; Zhang, A.; Bodek, A.; de Barbaro, P.; Demina, R.; Duh, Y. t.; Ferbel, T.; Galanti, M.; Garcia-Bellido, A.; Han, J.; Hindrichs, O.; Khukhunaishvili, A.; Lo, K. H.; Tan, P.; Verzetti, M.; Ciesielski, R.; Goulianos, K.; Mesropian, C.; Agapitos, A.; Chou, J. P.; Gershtein, Y.; Gómez Espinosa, T. A.; Halkiadakis, E.; Heindl, M.; Hughes, E.; Kaplan, S.; Kunnawalkam Elayavalli, R.; Kyriacou, S.; Lath, A.; Montalvo, R.; Nash, K.; Osherson, M.; Saka, H.; Salur, S.; Schnetzer, S.; Sheffield, D.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.; Delannoy, A. G.; Heideman, J.; Riley, G.; Rose, K.; Spanier, S.; Thapa, K.; Bouhali, O.; Castaneda Hernandez, A.; Celik, A.; Dalchenko, M.; De Mattia, M.; Delgado, A.; Dildick, S.; Eusebi, R.; Gilmore, J.; Huang, T.; Kamon, T.; Mueller, R.; Pakhotin, Y.; Patel, R.; Perloff, A.; Perniè, L.; Rathjens, D.; Safonov, A.; Tatarinov, A.; Ulmer, K. A.; Akchurin, N.; Damgov, J.; De Guio, F.; Dudero, P. R.; Faulkner, J.; Gurpinar, E.; Kunori, S.; Lamichhane, K.; Lee, S. W.; Libeiro, T.; Mengke, T.; Muthumuni, S.; Peltola, T.; Undleeb, S.; Volobouev, I.; Wang, Z.; Greene, S.; Gurrola, A.; Janjam, R.; Johns, W.; Maguire, C.; Melo, A.; Ni, H.; Padeken, K.; Sheldon, P.; Tuo, S.; Velkovska, J.; Xu, Q.; Arenton, M. W.; Barria, P.; Cox, B.; Hirosky, R.; Joyce, M.; Ledovskoy, A.; Li, H.; Neu, C.; Sinthuprasith, T.; Wang, Y.; Wolfe, E.; Xia, F.; Harr, R.; Karchin, P. E.; Poudyal, N.; Sturdy, J.; Thapa, P.; Zaleski, S.; Brodski, M.; Buchanan, J.; Caillol, C.; Carlsmith, D.; Dasu, S.; Dodd, L.; Duric, S.; Gomber, B.; Grothe, M.; Herndon, M.; Hervé, A.; Hussain, U.; Klabbers, P.; Lanaro, A.; Levine, A.; Long, K.; Loveless, R.; Ruggles, T.; Savin, A.; Smith, N.; Smith, W. H.; Taylor, D.; Woods, N.; CMS Collaboration

    2018-05-01

    A search for new physics using events containing an imbalance in transverse momentum and one or more energetic jets arising from initial-state radiation or the hadronic decay of W or Z bosons is presented. A data sample of proton-proton collisions at √{s }=13 TeV , collected with the CMS detector at the LHC and corresponding to an integrated luminosity of 35.9 fb-1 , is used. The observed data are found to be in agreement with the expectation from standard model processes. The results are interpreted as limits on the dark matter production cross section in simplified models with vector, axial-vector, scalar, and pseudoscalar mediators. Interpretations in the context of fermion portal and nonthermal dark matter models are also provided. In addition, the results are interpreted in terms of invisible decays of the Higgs boson and set stringent limits on the fundamental Planck scale in the Arkani-Hamed, Dimopoulos, and Dvali model with large extra spatial dimensions.

  13. Search for new physics in final states with an energetic jet or a hadronically decaying W or Z boson and transverse momentum imbalance at s = 13 TeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sirunyan, A. M.; Tumasyan, A.; Adam, W.

    Here, a search for new physics using events containing an imbalance in transverse momentum and one or more energetic jets arising from initial-state radiation or the hadronic decay of W or Z bosons is presented. A data sample of proton-proton collisions atmore » $$\\sqrt{s} = $$ 13 TeV, collected with the CMS detector at the LHC and corresponding to an integrated luminosity of 35.9 fb$$^{-1}$$, is used. The observed data are found to be in agreement with the expectation from standard model processes. The results are interpreted as limits on the dark matter production cross section in simplified models with vector, axial-vector, scalar, and pseudoscalar mediators. Interpretations in the context of fermion portal and nonthermal dark matter models are also provided. In addition, the results are interpreted in terms of invisible decays of the Higgs boson and set stringent limits on the fundamental Planck scale in the Arkani-Hamed, Dimopoulos, and Dvali model with large extra spatial dimensions.« less

  14. Search for dark matter and unparticles in events with a Z boson and missing transverse momentum in proton-proton collisions at √{s}=13 TeV

    NASA Astrophysics Data System (ADS)

    Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Erö, J.; Flechl, M.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hartl, C.; Hörmann, N.; Hrubec, J.; Jeitler, M.; König, A.; Krätschmer, I.; Liko, D.; Matsushita, T.; Mikulec, I.; Rabady, D.; Rad, N.; Rahbaran, B.; Rohringer, H.; Schieck, J.; Strauss, J.; Waltenberger, W.; Wulz, C.-E.; Chekhovsky, V.; Dvornikov, O.; Dydyshka, Y.; Emeliantchik, I.; Litomin, A.; Makarenko, V.; Mossolov, V.; Stefanovitch, R.; Suarez Gonzalez, J.; Zykunov, V.; Shumeiko, N.; Alderweireldt, S.; De Wolf, E. A.; Janssen, X.; Lauwers, J.; Van De Klundert, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Abu Zeid, S.; Blekman, F.; D'Hondt, J.; Daci, N.; De Bruyn, I.; Deroover, K.; Lowette, S.; Moortgat, S.; Moreels, L.; Olbrechts, A.; Python, Q.; Skovpen, K.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Parijs, I.; Brun, H.; Clerbaux, B.; De Lentdecker, G.; Delannoy, H.; Fasanella, G.; Favart, L.; Goldouzian, R.; Grebenyuk, A.; Karapostoli, G.; Lenzi, T.; Léonard, A.; Luetic, J.; Maerschalk, T.; Marinov, A.; Randle-conde, A.; Seva, T.; Vander Velde, C.; Vanlaer, P.; Vannerom, D.; Yonamine, R.; Zenoni, F.; Zhang, F.; Cimmino, A.; Cornelis, T.; Dobur, D.; Fagot, A.; Gul, M.; Khvastunov, I.; Poyraz, D.; Salva, S.; Schöfbeck, R.; Tytgat, M.; Van Driessche, W.; Yazgan, E.; Zaganidis, N.; Bakhshiansohi, H.; Beluffi, C.; Bondu, O.; Brochet, S.; Bruno, G.; Caudron, A.; De Visscher, S.; Delaere, C.; Delcourt, M.; Francois, B.; Giammanco, A.; Jafari, A.; Komm, M.; Krintiras, G.; Lemaitre, V.; Magitteri, A.; Mertens, A.; Musich, M.; Nuttens, C.; Piotrzkowski, K.; Quertenmont, L.; Selvaggi, M.; Vidal Marono, M.; Wertz, S.; Beliy, N.; Aldá Júnior, W. L.; Alves, F. L.; Alves, G. A.; Brito, L.; Hensel, C.; Moraes, A.; Pol, M. E.; Rebello Teles, P.; Belchior Batista Das Chagas, E.; Carvalho, W.; Chinellato, J.; Custódio, A.; Da Costa, E. M.; Da Silveira, G. G.; De Jesus Damiao, D.; De Oliveira Martins, C.; Fonseca De Souza, S.; Huertas Guativa, L. M.; Malbouisson, H.; Matos Figueiredo, D.; Mora Herrera, C.; Mundim, L.; Nogima, H.; Prado Da Silva, W. L.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.; Ahuja, S.; Bernardes, C. A.; Dogra, S.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Mercadante, P. G.; Moon, C. S.; Novaes, S. F.; Padula, Sandra S.; Romero Abad, D.; Ruiz Vargas, J. C.; Aleksandrov, A.; Hadjiiska, R.; Iaydjiev, P.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Vutova, M.; Dimitrov, A.; Glushkov, I.; Litov, L.; Pavlov, B.; Petkov, P.; Fang, W.; Ahmad, M.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Chen, Y.; Cheng, T.; Jiang, C. H.; Leggat, D.; Liu, Z.; Romeo, F.; Ruan, M.; Shaheen, S. M.; Spiezia, A.; Tao, J.; Wang, C.; Wang, Z.; Zhang, H.; Zhao, J.; Ban, Y.; Chen, G.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.; Avila, C.; Cabrera, A.; Chaparro Sierra, L. F.; Florez, C.; Gomez, J. P.; González Hernández, C. F.; Ruiz Alvarez, J. D.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Puljak, I.; Ribeiro Cipriano, P. M.; Sculac, T.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Ferencek, D.; Kadija, K.; Mesic, B.; Micanovic, S.; Sudic, L.; Susa, T.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.; Tsiakkouri, D.; Finger, M.; Finger, M.; Carrera Jarrin, E.; Abdelalim, A. A.; Mohamed, A.; Mohamed, A.; Kadastik, M.; Perrini, L.; Raidal, M.; Tiko, A.; Veelken, C.; Eerola, P.; Pekkanen, J.; Voutilainen, M.; Härkönen, J.; Järvinen, T.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.; Talvitie, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Ghosh, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Kucher, I.; Locci, E.; Machet, M.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.; Zghiche, A.; Abdulsalam, A.; Antropov, I.; Baffioni, S.; Beaudette, F.; Busson, P.; Cadamuro, L.; Chapon, E.; Charlot, C.; Davignon, O.; Granier de Cassagnac, R.; Jo, M.; Lisniak, S.; Miné, P.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Pigard, P.; Regnard, S.; Salerno, R.; Sirois, Y.; Strebler, T.; Yilmaz, Y.; Zabi, A.; Agram, J.-L.; Andrea, J.; Aubin, A.; Bloch, D.; Brom, J.-M.; Buttignol, M.; Chabert, E. C.; Chanon, N.; Collard, C.; Conte, E.; Coubez, X.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Le Bihan, A.-C.; Van Hove, P.; Gadrat, S.; Beauceron, S.; Bernet, C.; Boudoul, G.; Carrillo Montoya, C. A.; Chierici, R.; Contardo, D.; Courbon, B.; Depasse, P.; El Mamouni, H.; Fan, J.; Fay, J.; Gascon, S.; Gouzevitch, M.; Grenier, G.; Ille, B.; Lagarde, F.; Laktineh, I. B.; Lethuillier, M.; Mirabito, L.; Pequegnot, A. L.; Perries, S.; Popov, A.; Sabes, D.; Sordini, V.; Vander Donckt, M.; Verdier, P.; Viret, S.; Toriashvili, T.; Tsamalaidze, Z.; Autermann, C.; Beranek, S.; Feld, L.; Kiesel, M. K.; Klein, K.; Lipinski, M.; Preuten, M.; Schomakers, C.; Schulz, J.; Verlage, T.; Albert, A.; Brodski, M.; Dietz-Laursonn, E.; Duchardt, D.; Endres, M.; Erdmann, M.; Erdweg, S.; Esch, T.; Fischer, R.; Güth, A.; Hamer, M.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Knutzen, S.; Merschmeyer, M.; Meyer, A.; Millet, P.; Mukherjee, S.; Olschewski, M.; Padeken, K.; Pook, T.; Radziej, M.; Reithler, H.; Rieger, M.; Scheuch, F.; Sonnenschein, L.; Teyssier, D.; Thüer, S.; Cherepanov, V.; Flügge, G.; Kargoll, B.; Kress, T.; Künsken, A.; Lingemann, J.; Müller, T.; Nehrkorn, A.; Nowack, A.; Pistone, C.; Pooth, O.; Stahl, A.; Aldaya Martin, M.; Arndt, T.; Asawatangtrakuldee, C.; Beernaert, K.; Behnke, O.; Behrens, U.; Bin Anuar, A. A.; Borras, K.; Campbell, A.; Connor, P.; Contreras-Campana, C.; Costanza, F.; Diez Pardos, C.; Dolinska, G.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Eren, E.; Gallo, E.; Garay Garcia, J.; Geiser, A.; Gizhko, A.; Grados Luyando, J. M.; Grohsjean, A.; Gunnellini, P.; Harb, A.; Hauk, J.; Hempel, M.; Jung, H.; Kalogeropoulos, A.; Karacheban, O.; Kasemann, M.; Keaveney, J.; Kleinwort, C.; Korol, I.; Krücker, D.; Lange, W.; Lelek, A.; Leonard, J.; Lipka, K.; Lobanov, A.; Lohmann, W.; Mankel, R.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mittag, G.; Mnich, J.; Mussgiller, A.; Ntomari, E.; Pitzl, D.; Placakyte, R.; Raspereza, A.; Roland, B.; Sahin, M. Ö.; Saxena, P.; Schoerner-Sadenius, T.; Seitz, C.; Spannagel, S.; Stefaniuk, N.; Van Onsem, G. P.; Walsh, R.; Wissing, C.; Blobel, V.; Centis Vignali, M.; Draeger, A. R.; Dreyer, T.; Garutti, E.; Gonzalez, D.; Haller, J.; Hoffmann, M.; Junkes, A.; Klanner, R.; Kogler, R.; Kovalchuk, N.; Lapsien, T.; Lenz, T.; Marchesini, I.; Marconi, D.; Meyer, M.; Niedziela, M.; Nowatschin, D.; Pantaleo, F.; Peiffer, T.; Perieanu, A.; Poehlsen, J.; Sander, C.; Scharf, C.; Schleper, P.; Schmidt, A.; Schumann, S.; Schwandt, J.; Stadie, H.; Steinbrück, G.; Stober, F. M.; Stöver, M.; Tholen, H.; Troendle, D.; Usai, E.; Vanelderen, L.; Vanhoefer, A.; Vormwald, B.; Akbiyik, M.; Barth, C.; Baur, S.; Baus, C.; Berger, J.; Butz, E.; Caspart, R.; Chwalek, T.; Colombo, F.; De Boer, W.; Dierlamm, A.; Fink, S.; Freund, B.; Friese, R.; Giffels, M.; Gilbert, A.; Goldenzweig, P.; Haitz, D.; Hartmann, F.; Heindl, S. M.; Husemann, U.; Katkov, I.; Kudella, S.; Mildner, H.; Mozer, M. U.; Müller, Th.; Plagge, M.; Quast, G.; Rabbertz, K.; Röcker, S.; Roscher, F.; Schröder, M.; Shvetsov, I.; Sieber, G.; Simonis, H. J.; Ulrich, R.; Wayand, S.; Weber, M.; Weiler, T.; Williamson, S.; Wöhrmann, C.; Wolf, R.; Anagnostou, G.; Daskalakis, G.; Geralis, T.; Giakoumopoulou, V. A.; Kyriakis, A.; Loukas, D.; Topsis-Giotis, I.; Kesisoglou, S.; Panagiotou, A.; Saoulidou, N.; Tziaferi, E.; Evangelou, I.; Flouris, G.; Foudas, C.; Kokkas, P.; Loukas, N.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Filipovic, N.; Bencze, G.; Hajdu, C.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.; Beni, N.; Czellar, S.; Karancsi, J.; Makovec, A.; Molnar, J.; Szillasi, Z.; Bartók, M.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Bahinipati, S.; Choudhury, S.; Mal, P.; Mandal, K.; Nayak, A.; Sahoo, D. K.; Sahoo, N.; Swain, S. K.; Bansal, S.; Beri, S. B.; Bhatnagar, V.; Chawla, R.; Bhawandeep, U.; Kalsi, A. K.; Kaur, A.; Kaur, M.; Kumar, R.; Kumari, P.; Mehta, A.; Mittal, M.; Singh, J. B.; Walia, G.; Kumar, Ashok; Bhardwaj, A.; Choudhary, B. C.; Garg, R. B.; Keshri, S.; Malhotra, S.; Naimuddin, M.; Nishu, N.; Ranjan, K.; Sharma, R.; Sharma, V.; Bhattacharya, R.; Bhattacharya, S.; Chatterjee, K.; Dey, S.; Dutt, S.; Dutta, S.; Ghosh, S.; Majumdar, N.; Modak, A.; Mondal, K.; Mukhopadhyay, S.; Nandan, S.; Purohit, A.; Roy, A.; Roy, D.; Roy Chowdhury, S.; Sarkar, S.; Sharan, M.; Thakur, S.; Behera, P. K.; Chudasama, R.; Dutta, D.; Jha, V.; Kumar, V.; Mohanty, A. K.; Netrakanti, P. K.; Pant, L. M.; Shukla, P.; Topkar, A.; Aziz, T.; Dugad, S.; Kole, G.; Mahakud, B.; Mitra, S.; Mohanty, G. B.; Parida, B.; Sur, N.; Sutar, B.; Banerjee, S.; Bhowmik, S.; Dewanjee, R. K.; Ganguly, S.; Guchait, M.; Jain, Sa.; Kumar, S.; Maity, M.; Majumder, G.; Mazumdar, K.; Sarkar, T.; Wickramage, N.; Chauhan, S.; Dube, S.; Hegde, V.; Kapoor, A.; Kothekar, K.; Pandey, S.; Rane, A.; Sharma, S.; Chenarani, S.; Eskandari Tadavani, E.; Etesami, S. M.; Khakzad, M.; Mohammadi Najafabadi, M.; Naseri, M.; Paktinat Mehdiabadi, S.; Rezaei Hosseinabadi, F.; Safarzadeh, B.; Zeinali, M.; Felcini, M.; Grunewald, M.; Abbrescia, M.; Calabria, C.; Caputo, C.; Colaleo, A.; Creanza, D.; Cristella, L.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; Miniello, G.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Ranieri, A.; Selvaggi, G.; Sharma, A.; Silvestris, L.; Venditti, R.; Verwilligen, P.; Abbiendi, G.; Battilana, C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Chhibra, S. S.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Albergo, S.; Costa, S.; Di Mattia, A.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Lenzi, P.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Viliani, L.; Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.; Primavera, F.; Calvelli, V.; Ferro, F.; Monge, M. R.; Robutti, E.; Tosi, S.; Brianza, L.; Brivio, F.; Ciriolo, V.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Ghezzi, A.; Govoni, P.; Malberti, M.; Malvezzi, S.; Manzoni, R. A.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Pigazzini, S.; Ragazzi, S.; Tabarelli de Fatis, T.; Buontempo, S.; Cavallo, N.; De Nardo, G.; Di Guida, S.; Esposito, M.; Fabozzi, F.; Fienga, F.; Iorio, A. O. M.; Lanza, G.; Lista, L.; Meola, S.; Paolucci, P.; Sciacca, C.; Thyssen, F.; Azzi, P.; Bacchetta, N.; Benato, L.; Bisello, D.; Boletti, A.; Carlin, R.; Checchia, P.; Dall'Osso, M.; De Castro Manzano, P.; Dorigo, T.; Gasparini, U.; Gozzelino, A.; Gulmini, M.; Lacaprara, S.; Margoni, M.; Maron, G.; Meneguzzo, A. T.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Ventura, S.; Zanetti, M.; Zotto, P.; Zumerle, G.; Braghieri, A.; Fallavollita, F.; Magnani, A.; Montagna, P.; Ratti, S. P.; Re, V.; Riccardi, C.; Salvini, P.; Vai, I.; Vitulo, P.; Alunni Solestizi, L.; Bilei, G. M.; Ciangottini, D.; Fanò, L.; Lariccia, P.; Leonardi, R.; Mantovani, G.; Menichelli, M.; Saha, A.; Santocchia, A.; Androsov, K.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Donato, S.; Fedi, G.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Palla, F.; Rizzi, A.; SavoyNavarro, A.; Spagnolo, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Barone, L.; Cavallari, F.; Cipriani, M.; Del Re, D.; Diemoz, M.; Gelli, S.; Longo, E.; Margaroli, F.; Marzocchi, B.; Meridiani, P.; Organtini, G.; Paramatti, R.; Preiato, F.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bartosik, N.; Bellan, R.; Biino, C.; Cartiglia, N.; Cenna, F.; Costa, M.; Covarelli, R.; Degano, A.; Demaria, N.; Finco, L.; Kiani, B.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Monteil, E.; Monteno, M.; Obertino, M. M.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Pinna Angioni, G. L.; Ravera, F.; Romero, A.; Ruspa, M.; Sacchi, R.; Shchelina, K.; Sola, V.; Solano, A.; Staiano, A.; Traczyk, P.; Belforte, S.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Zanetti, A.; Kim, D. H.; Kim, G. N.; Kim, M. S.; Lee, S.; Lee, S. W.; Oh, Y. D.; Sekmen, S.; Son, D. C.; Yang, Y. C.; Lee, A.; Kim, H.; Brochero Cifuentes, J. A.; Kim, T. J.; Cho, S.; Choi, S.; Go, Y.; Gyun, D.; Ha, S.; Hong, B.; Jo, Y.; Kim, Y.; Lee, K.; Lee, K. S.; Lee, S.; Lim, J.; Park, S. K.; Roh, Y.; Almond, J.; Kim, J.; Lee, H.; Oh, S. B.; Radburn-Smith, B. C.; Seo, S. h.; Yang, U. K.; Yoo, H. D.; Yu, G. B.; Choi, M.; Kim, H.; Kim, J. H.; Lee, J. S. H.; Park, I. C.; Ryu, G.; Ryu, M. S.; Choi, Y.; Goh, J.; Hwang, C.; Lee, J.; Yu, I.; Dudenas, V.; Juodagalvis, A.; Vaitkus, J.; Ahmed, I.; Ibrahim, Z. A.; Komaragiri, J. R.; Md Ali, M. A. B.; Mohamad Idris, F.; Wan Abdullah, W. A. T.; Yusli, M. N.; Zolkapli, Z.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-De La Cruz, I.; Hernandez-Almada, A.; Lopez-Fernandez, R.; Magaña Villalba, R.; Mejia Guisao, J.; Sanchez-Hernandez, A.; Carrillo Moreno, S.; Oropeza Barrera, C.; Vazquez Valencia, F.; Carpinteyro, S.; Pedraza, I.; Salazar Ibarguen, H. A.; Uribe Estrada, C.; Morelos Pineda, A.; Krofcheck, D.; Butler, P. H.; Ahmad, A.; Ahmad, M.; Hassan, Q.; Hoorani, H. R.; Khan, W. A.; Saddique, A.; Shah, M. A.; Shoaib, M.; Waqas, M.; Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Górski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Zalewski, P.; Bunkowski, K.; Byszuk, A.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Walczak, M.; Bargassa, P.; Beirão Da Cruz E Silva, C.; Calpas, B.; Di Francesco, A.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Hollar, J.; Leonardo, N.; Lloret Iglesias, L.; Nemallapudi, M. V.; Rodrigues Antunes, J.; Seixas, J.; Toldaiev, O.; Vadruccio, D.; Varela, J.; Vischia, P.; Afanasiev, S.; Alexakhin, V.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Gorbunov, I.; Karjavin, V.; Lanev, A.; Malakhov, A.; Matveev, V.; Palichik, V.; Perelygin, V.; Savina, M.; Shmatov, S.; Skatchkov, N.; Smirnov, V.; Voytishin, N.; Zarubin, A.; Chtchipounov, L.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Kuznetsova, E.; Murzin, V.; Oreshkin, V.; Sulimov, V.; Vorobyev, A.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Karneyeu, A.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Pozdnyakov, I.; Safronov, G.; Spiridonov, A.; Toms, M.; Vlasov, E.; Zhokin, A.; Bylinkin, A.; Chadeeva, M.; Markin, O.; Rusinov, V.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Terkulov, A.; Baskakov, A.; Belyaev, A.; Boos, E.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Miagkov, I.; Obraztsov, S.; Petrushanko, S.; Savrin, V.; Snigirev, A.; Blinov, V.; Skovpen, Y.; Shtol, D.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Elumakhov, D.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Cirkovic, P.; Devetak, D.; Dordevic, M.; Milosevic, J.; Rekovic, V.; Alcaraz Maestre, J.; Barrio Luna, M.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Escalante Del Valle, A.; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Navarro De Martino, E.; Pérez-Calero Yzquierdo, A.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Soares, M. S.; de Trocóniz, J. F.; Missiroli, M.; Moran, D.; Cuevas, J.; Fernandez Menendez, J.; Gonzalez Caballero, I.; González Fernández, J. R.; Palencia Cortezon, E.; Sanchez Cruz, S.; Suárez Andrés, I.; Vizan Garcia, J. M.; Cabrillo, I. J.; Calderon, A.; Castiñeiras De Saa, J. R.; Curras, E.; Fernandez, M.; Garcia-Ferrero, J.; Gomez, G.; Lopez Virto, A.; Marco, J.; Martinez Rivero, C.; Matorras, F.; Piedra Gomez, J.; Rodrigo, T.; Ruiz-Jimeno, A.; Scodellaro, L.; Trevisani, N.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Bloch, P.; Bocci, A.; Bonato, A.; Botta, C.; Camporesi, T.; Castello, R.; Cepeda, M.; Cerminara, G.; Chen, Y.; d'Enterria, D.; Dabrowski, A.; Daponte, V.; David, A.; De Gruttola, M.; De Roeck, A.; Di Marco, E.; Dobson, M.; Dorney, B.; du Pree, T.; Duggan, D.; Dünser, M.; Dupont, N.; Elliott-Peisert, A.; Everaerts, P.; Fartoukh, S.; Franzoni, G.; Fulcher, J.; Funk, W.; Gigi, D.; Gill, K.; Girone, M.; Glege, F.; Gulhan, D.; Gundacker, S.; Guthoff, M.; Hammer, J.; Harris, P.; Hegeman, J.; Innocente, V.; Janot, P.; Kieseler, J.; Kirschenmann, H.; Knünz, V.; Kornmayer, A.; Kortelainen, M. J.; Kousouris, K.; Krammer, M.; Lange, C.; Lecoq, P.; Lourenço, C.; Lucchini, M. T.; Malgeri, L.; Mannelli, M.; Martelli, A.; Meijers, F.; Merlin, J. A.; Mersi, S.; Meschi, E.; Milenovic, P.; Moortgat, F.; Morovic, S.; Mulders, M.; Neugebauer, H.; Orfanelli, S.; Orsini, L.; Pape, L.; Perez, E.; Peruzzi, M.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Pierini, M.; Racz, A.; Reis, T.; Rolandi, G.; Rovere, M.; Sakulin, H.; Sauvan, J. B.; Schäfer, C.; Schwick, C.; Seidel, M.; Sharma, A.; Silva, P.; Sphicas, P.; Steggemann, J.; Stoye, M.; Takahashi, Y.; Tosi, M.; Treille, D.; Triossi, A.; Tsirou, A.; Veckalns, V.; Veres, G. I.; Verweij, M.; Wardle, N.; Wöhri, H. K.; Zagozdzinska, A.; Zeuner, W. D.; Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Rohe, T.; Bachmair, F.; Bäni, L.; Bianchini, L.; Casal, B.; Dissertori, G.; Dittmar, M.; Donegà, M.; Grab, C.; Heidegger, C.; Hits, D.; Hoss, J.; Kasieczka, G.; Lecomte, P.; Lustermann, W.; Mangano, B.; Marionneau, M.; Martinez Ruiz del Arbol, P.; Masciovecchio, M.; Meinhard, M. T.; Meister, D.; Micheli, F.; Musella, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pata, J.; Pauss, F.; Perrin, G.; Perrozzi, L.; Quittnat, M.; Rossini, M.; Schönenberger, M.; Starodumov, A.; Tavolaro, V. R.; Theofilatos, K.; Wallny, R.; Aarrestad, T. K.; Amsler, C.; Caminada, L.; Canelli, M. F.; De Cosa, A.; Galloni, C.; Hinzmann, A.; Hreus, T.; Kilminster, B.; Ngadiuba, J.; Pinna, D.; Rauco, G.; Robmann, P.; Salerno, D.; Yang, Y.; Zucchetta, A.; Candelise, V.; Doan, T. H.; Jain, Sh.; Khurana, R.; Konyushikhin, M.; Kuo, C. M.; Lin, W.; Lu, Y. J.; Pozdnyakov, A.; Yu, S. S.; Kumar, Arun; Chang, P.; Chang, Y. H.; Chao, Y.; Chen, K. F.; Chen, P. H.; Fiori, F.; Hou, W.-S.; Hsiung, Y.; Liu, Y. F.; Lu, R.-S.; Miñano Moya, M.; Paganis, E.; Psallidas, A.; Tsai, J. f.; Asavapibhop, B.; Singh, G.; Srimanobhas, N.; Suwonjandee, N.; Adiguzel, A.; Bakirci, M. N.; Cerci, S.; Damarseckin, S.; Demiroglu, Z. S.; Dozen, C.; Dumanoglu, I.; Girgis, S.; Gokbulut, G.; Guler, Y.; Hos, I.; Kangal, E. E.; Kara, O.; Kayis Topaksu, A.; Kiminsu, U.; Oglakci, M.; Onengut, G.; Ozdemir, K.; Tali, B.; Turkcapar, S.; Zorbakir, I. S.; Zorbilmez, C.; Bilin, B.; Bilmis, S.; Isildak, B.; Karapinar, G.; Yalvac, M.; Zeyrek, M.; Gülmez, E.; Kaya, M.; Kaya, O.; Yetkin, E. A.; Yetkin, T.; Cakir, A.; Cankocak, K.; Sen, S.; Grynyov, B.; Levchuk, L.; Sorokin, P.; Aggleton, R.; Ball, F.; Beck, L.; Brooke, J. J.; Burns, D.; Clement, E.; Cussans, D.; Flacher, H.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Jacob, J.; Kreczko, L.; Lucas, C.; Newbold, D. M.; Paramesvaran, S.; Poll, A.; Sakuma, T.; Seif El Nasr-storey, S.; Smith, D.; Smith, V. J.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Calligaris, L.; Cieri, D.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Williams, T.; Baber, M.; Bainbridge, R.; Buchmuller, O.; Bundock, A.; Burton, D.; Casasso, S.; Citron, M.; Colling, D.; Corpe, L.; Dauncey, P.; Davies, G.; De Wit, A.; Della Negra, M.; Di Maria, R.; Dunne, P.; Elwood, A.; Futyan, D.; Haddad, Y.; Hall, G.; Iles, G.; James, T.; Lane, R.; Laner, C.; Lucas, R.; Lyons, L.; Magnan, A.-M.; Malik, S.; Mastrolorenzo, L.; Nash, J.; Nikitenko, A.; Pela, J.; Penning, B.; Pesaresi, M.; Raymond, D. M.; Richards, A.; Rose, A.; Seez, C.; Summers, S.; Tapper, A.; Uchida, K.; Vazquez Acosta, M.; Virdee, T.; Wright, J.; Zenz, S. C.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leslie, D.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.; Borzou, A.; Call, K.; Dittmann, J.; Hatakeyama, K.; Liu, H.; Pastika, N.; Cooper, S. I.; Henderson, C.; Rumerio, P.; West, C.; Arcaro, D.; Avetisyan, A.; Bose, T.; Gastler, D.; Rankin, D.; Richardson, C.; Rohlf, J.; Sulak, L.; Zou, D.; Benelli, G.; Cutts, D.; Garabedian, A.; Hakala, J.; Heintz, U.; Hogan, J. M.; Jesus, O.; Kwok, K. H. M.; Laird, E.; Landsberg, G.; Mao, Z.; Narain, M.; Piperov, S.; Sagir, S.; Spencer, E.; Syarif, R.; Breedon, R.; Burns, D.; Calderon De La Barca Sanchez, M.; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Flores, C.; Funk, G.; Gardner, M.; Ko, W.; Lander, R.; Mclean, C.; Mulhearn, M.; Pellett, D.; Pilot, J.; Shalhout, S.; Smith, J.; Squires, M.; Stolp, D.; Tripathi, M.; Bravo, C.; Cousins, R.; Dasgupta, A.; Florent, A.; Hauser, J.; Ignatenko, M.; Mccoll, N.; Saltzberg, D.; Schnaible, C.; Valuev, V.; Weber, M.; Bouvier, E.; Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Ghiasi Shirazi, S. M. A.; Hanson, G.; Heilman, J.; Jandir, P.; Kennedy, E.; Lacroix, F.; Long, O. R.; Olmedo Negrete, M.; Paneva, M. I.; Shrinivas, A.; Si, W.; Wei, H.; Wimpenny, S.; Yates, B. R.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; Derdzinski, M.; Gerosa, R.; Holzner, A.; Klein, D.; Krutelyov, V.; Letts, J.; Macneill, I.; Olivito, D.; Padhi, S.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Tadel, M.; Vartak, A.; Wasserbaech, S.; Welke, C.; Wood, J.; Würthwein, F.; Yagil, A.; Zevi Della Porta, G.; Amin, N.; Bhandari, R.; Bradmiller-Feld, J.; Campagnari, C.; Dishaw, A.; Dutta, V.; Franco Sevilla, M.; George, C.; Golf, F.; Gouskos, L.; Gran, J.; Heller, R.; Incandela, J.; Mullin, S. D.; Ovcharova, A.; Qu, H.; Richman, J.; Stuart, D.; Suarez, I.; Yoo, J.; Anderson, D.; Bendavid, J.; Bornheim, A.; Bunn, J.; Duarte, J.; Lawhorn, J. M.; Mott, A.; Newman, H. B.; Pena, C.; Spiropulu, M.; Vlimant, J. R.; Xie, S.; Zhu, R. Y.; Andrews, M. B.; Ferguson, T.; Paulini, M.; Russ, J.; Sun, M.; Vogel, H.; Vorobiev, I.; Weinberg, M.; Cumalat, J. P.; Ford, W. T.; Jensen, F.; Johnson, A.; Krohn, M.; Mulholland, T.; Stenson, K.; Wagner, S. R.; Alexander, J.; Chaves, J.; Chu, J.; Dittmer, S.; Mcdermott, K.; Mirman, N.; Nicolas Kaufman, G.; Patterson, J. R.; Rinkevicius, A.; Ryd, A.; Skinnari, L.; Soffi, L.; Tan, S. M.; Tao, Z.; Thom, J.; Tucker, J.; Wittich, P.; Zientek, M.; Winn, D.; Abdullin, S.; Albrow, M.; Apollinari, G.; Apresyan, A.; Banerjee, S.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bolla, G.; Burkett, K.; Butler, J. N.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Cremonesi, M.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gottschalk, E.; Gray, L.; Green, D.; Grünendahl, S.; Gutsche, O.; Hare, D.; Harris, R. M.; Hasegawa, S.; Hirschauer, J.; Hu, Z.; Jayatilaka, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Klima, B.; Kreis, B.; Lammel, S.; Linacre, J.; Lincoln, D.; Lipton, R.; Liu, M.; Liu, T.; Lopes De Sá, R.; Lykken, J.; Maeshima, K.; Magini, N.; Marraffino, J. M.; Maruyama, S.; Mason, D.; McBride, P.; Merkel, P.; Mrenna, S.; Nahn, S.; O'Dell, V.; Pedro, K.; Prokofyev, O.; Rakness, G.; Ristori, L.; Sexton-Kennedy, E.; Soha, A.; Spalding, W. J.; Spiegel, L.; Stoynev, S.; Strait, J.; Strobbe, N.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vernieri, C.; Verzocchi, M.; Vidal, R.; Wang, M.; Weber, H. A.; Whitbeck, A.; Wu, Y.; Acosta, D.; Avery, P.; Bortignon, P.; Bourilkov, D.; Brinkerhoff, A.; Carnes, A.; Carver, M.; Curry, D.; Das, S.; Field, R. D.; Furic, I. K.; Konigsberg, J.; Korytov, A.; Low, J. F.; Ma, P.; Matchev, K.; Mei, H.; Mitselmakher, G.; Rank, D.; Shchutska, L.; Sperka, D.; Thomas, L.; Wang, J.; Wang, S.; Yelton, J.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.; Ackert, A.; Adams, T.; Askew, A.; Bein, S.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Prosper, H.; Santra, A.; Yohay, R.; Baarmand, M. M.; Bhopatkar, V.; Colafranceschi, S.; Hohlmann, M.; Noonan, D.; Roy, T.; Yumiceva, F.; Adams, M. R.; Apanasevich, L.; Berry, D.; Betts, R. R.; Bucinskaite, I.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Jung, K.; Sandoval Gonzalez, I. D.; Varelas, N.; Wang, H.; Wu, Z.; Zakaria, M.; Zhang, J.; Bilki, B.; Clarida, W.; Dilsiz, K.; Durgut, S.; Gandrajula, R. P.; Haytmyradov, M.; Khristenko, V.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Snyder, C.; Tiras, E.; Wetzel, J.; Yi, K.; Anderson, I.; Blumenfeld, B.; Cocoros, A.; Eminizer, N.; Fehling, D.; Feng, L.; Gritsan, A. V.; Maksimovic, P.; Martin, C.; Osherson, M.; Roskes, J.; Sarica, U.; Swartz, M.; Xiao, M.; Xin, Y.; You, C.; Al-bataineh, A.; Baringer, P.; Bean, A.; Boren, S.; Bowen, J.; Castle, J.; Forthomme, L.; Kenny, R. P.; Khalil, S.; Kropivnitskaya, A.; Majumder, D.; Mcbrayer, W.; Murray, M.; Sanders, S.; Stringer, R.; Tapia Takaki, J. D.; Wang, Q.; Ivanov, A.; Kaadze, K.; Maravin, Y.; Mohammadi, A.; Saini, L. K.; Skhirtladze, N.; Toda, S.; Rebassoo, F.; Wright, D.; Anelli, C.; Baden, A.; Baron, O.; Belloni, A.; Calvert, B.; Eno, S. C.; Ferraioli, C.; Gomez, J. A.; Hadley, N. J.; Jabeen, S.; Kellogg, R. G.; Kolberg, T.; Kunkle, J.; Lu, Y.; Mignerey, A. C.; Ricci-Tam, F.; Shin, Y. H.; Skuja, A.; Tonjes, M. B.; Tonwar, S. C.; Abercrombie, D.; Allen, B.; Apyan, A.; Azzolini, V.; Barbieri, R.; Baty, A.; Bi, R.; Bierwagen, K.; Brandt, S.; Busza, W.; Cali, I. A.; D'Alfonso, M.; Demiragli, Z.; Di Matteo, L.; Gomez Ceballos, G.; Goncharov, M.; Hsu, D.; Iiyama, Y.; Innocenti, G. M.; Klute, M.; Kovalskyi, D.; Krajczar, K.; Lai, Y. S.; Lee, Y.-J.; Levin, A.; Luckey, P. D.; Maier, B.; Marini, A. C.; Mcginn, C.; Mironov, C.; Narayanan, S.; Niu, X.; Paus, C.; Roland, C.; Roland, G.; Salfeld-Nebgen, J.; Stephans, G. S. F.; Tatar, K.; Varma, M.; Velicanu, D.; Veverka, J.; Wang, J.; Wang, T. W.; Wyslouch, B.; Yang, M.; Benvenuti, A. C.; Chatterjee, R. M.; Evans, A.; Hansen, P.; Kalafut, S.; Kao, S. C.; Kubota, Y.; Lesko, Z.; Mans, J.; Nourbakhsh, S.; Ruckstuhl, N.; Rusack, R.; Tambe, N.; Turkewitz, J.; Acosta, J. G.; Oliveros, S.; Avdeeva, E.; Bartek, R.; Bloom, K.; Claes, D. R.; Dominguez, A.; Fangmeier, C.; Gonzalez Suarez, R.; Kamalieddin, R.; Kravchenko, I.; Malta Rodrigues, A.; Meier, F.; Monroy, J.; Siado, J. E.; Snow, G. R.; Stieger, B.; Alyari, M.; Dolen, J.; Godshalk, A.; Harrington, C.; Iashvili, I.; Kaisen, J.; Kharchilava, A.; Parker, A.; Rappoccio, S.; Roozbahani, B.; Alverson, G.; Barberis, E.; Hortiangtham, A.; Massironi, A.; Morse, D. M.; Nash, D.; Orimoto, T.; Teixeira De Lima, R.; Trocino, D.; Wang, R.-J.; Wood, D.; Bhattacharya, S.; Charaf, O.; Hahn, K. A.; Kumar, A.; Mucia, N.; Odell, N.; Pollack, B.; Schmitt, M. H.; Sung, K.; Trovato, M.; Velasco, M.; Dev, N.; Hildreth, M.; Hurtado Anampa, K.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Marinelli, N.; Meng, F.; Mueller, C.; Musienko, Y.; Planer, M.; Reinsvold, A.; Ruchti, R.; Smith, G.; Taroni, S.; Wayne, M.; Wolf, M.; Woodard, A.; Alimena, J.; Antonelli, L.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Francis, B.; Hart, A.; Hill, C.; Hughes, R.; Ji, W.; Liu, B.; Luo, W.; Puigh, D.; Winer, B. L.; Wulsin, H. W.; Cooperstein, S.; Driga, O.; Elmer, P.; Hardenbrook, J.; Hebda, P.; Lange, D.; Luo, J.; Marlow, D.; Medvedeva, T.; Mei, K.; Olsen, J.; Palmer, C.; Piroué, P.; Stickland, D.; Svyatkovskiy, A.; Tully, C.; Malik, S.; Barker, A.; Barnes, V. E.; Folgueras, S.; Gutay, L.; Jha, M. K.; Jones, M.; Jung, A. W.; Khatiwada, A.; Miller, D. H.; Neumeister, N.; Schulte, J. F.; Shi, X.; Sun, J.; Wang, F.; Xie, W.; Parashar, N.; Stupak, J.; Adair, A.; Akgun, B.; Chen, Z.; Ecklund, K. M.; Geurts, F. J. M.; Guilbaud, M.; Li, W.; Michlin, B.; Northup, M.; Padley, B. P.; Roberts, J.; Rorie, J.; Tu, Z.; Zabel, J.; Betchart, B.; Bodek, A.; de Barbaro, P.; Demina, R.; Duh, Y. t.; Ferbel, T.; Galanti, M.; Garcia-Bellido, A.; Han, J.; Hindrichs, O.; Khukhunaishvili, A.; Lo, K. H.; Tan, P.; Verzetti, M.; Agapitos, A.; Chou, J. P.; Gershtein, Y.; Gómez Espinosa, T. A.; Halkiadakis, E.; Heindl, M.; Hughes, E.; Kaplan, S.; Kunnawalkam Elayavalli, R.; Kyriacou, S.; Lath, A.; Nash, K.; Saka, H.; Salur, S.; Schnetzer, S.; Sheffield, D.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.; Delannoy, A. G.; Foerster, M.; Heideman, J.; Riley, G.; Rose, K.; Spanier, S.; Thapa, K.; Bouhali, O.; Celik, A.; Dalchenko, M.; De Mattia, M.; Delgado, A.; Dildick, S.; Eusebi, R.; Gilmore, J.; Huang, T.; Juska, E.; Kamon, T.; Mueller, R.; Pakhotin, Y.; Patel, R.; Perloff, A.; Perniè, L.; Rathjens, D.; Safonov, A.; Tatarinov, A.; Ulmer, K. A.; Akchurin, N.; Cowden, C.; Damgov, J.; De Guio, F.; Dragoiu, C.; Dudero, P. R.; Faulkner, J.; Gurpinar, E.; Kunori, S.; Lamichhane, K.; Lee, S. W.; Libeiro, T.; Peltola, T.; Undleeb, S.; Volobouev, I.; Wang, Z.; Greene, S.; Gurrola, A.; Janjam, R.; Johns, W.; Maguire, C.; Melo, A.; Ni, H.; Sheldon, P.; Tuo, S.; Velkovska, J.; Xu, Q.; Arenton, M. W.; Barria, P.; Cox, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Li, H.; Neu, C.; Sinthuprasith, T.; Sun, X.; Wang, Y.; Wolfe, E.; Xia, F.; Clarke, C.; Harr, R.; Karchin, P. E.; Sturdy, J.; Belknap, D. A.; Buchanan, J.; Caillol, C.; Dasu, S.; Dodd, L.; Duric, S.; Gomber, B.; Grothe, M.; Herndon, M.; Hervé, A.; Klabbers, P.; Lanaro, A.; Levine, A.; Long, K.; Loveless, R.; Ojalvo, I.; Perry, T.; Pierro, G. A.; Polese, G.; Ruggles, T.; Savin, A.; Smith, N.; Smith, W. H.; Taylor, D.; Woods, N.

    2017-03-01

    A search for dark matter and unparticle production at the LHC has been performed using events containing two charged leptons (electrons or muons), consistent with the decay of a Z boson, and large missing transverse momentum. This study is based on data collected with the CMS detector in 2015, corresponding to an integrated luminosity of 2.3 fb-1 of proton-proton collisions at the LHC, at a center-of-mass energy of 13 TeV. No excess over the standard model expectation is observed. Compared to previous searches in this topology, which exclusively relied on effective field theories, the results are interpreted in terms of a simplified model of dark matter production for both vector and axial vector couplings between a mediator and dark matter particles. The first study of this class of models using CMS data at √{s}=13 TeV is presented. Additionally, effective field theories of dark matter and unparticle production are used to interpret the data. [Figure not available: see fulltext.

  15. Search for new physics in final states with an energetic jet or a hadronically decaying $W$ or $Z$ boson and transverse momentum imbalance at $$\\sqrt{s}=13\\text{ }\\text{ }\\mathrm{TeV}$$

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sirunyan, Albert M; et al.

    2018-05-22

    A search for new physics using events containing an imbalance in transverse momentum and one or more energetic jets arising from initial-state radiation or the hadronic decay of W or Z bosons is presented. A data sample of proton-proton collisions atmore » $$\\sqrt{s} = $$ 13 TeV, collected with the CMS detector at the LHC and corresponding to an integrated luminosity of 35.9 fb$$^{-1}$$, is used. The observed data are found to be in agreement with the expectation from standard model processes. The results are interpreted as limits on the dark matter production cross section in simplified models with vector, axial-vector, scalar, and pseudoscalar mediators. Interpretations in the context of fermion portal and nonthermal dark matter models are also provided. In addition, the results are interpreted in terms of invisible decays of the Higgs boson and set stringent limits on the fundamental Planck scale in the Arkani-Hamed, Dimopoulos, and Dvali model with large extra spatial dimensions.« less

  16. Search for new physics in final states with an energetic jet or a hadronically decaying W or Z boson and transverse momentum imbalance at s = 13 TeV

    DOE PAGES

    Sirunyan, A. M.; Tumasyan, A.; Adam, W.; ...

    2018-05-21

    Here, a search for new physics using events containing an imbalance in transverse momentum and one or more energetic jets arising from initial-state radiation or the hadronic decay of W or Z bosons is presented. A data sample of proton-proton collisions atmore » $$\\sqrt{s} = $$ 13 TeV, collected with the CMS detector at the LHC and corresponding to an integrated luminosity of 35.9 fb$$^{-1}$$, is used. The observed data are found to be in agreement with the expectation from standard model processes. The results are interpreted as limits on the dark matter production cross section in simplified models with vector, axial-vector, scalar, and pseudoscalar mediators. Interpretations in the context of fermion portal and nonthermal dark matter models are also provided. In addition, the results are interpreted in terms of invisible decays of the Higgs boson and set stringent limits on the fundamental Planck scale in the Arkani-Hamed, Dimopoulos, and Dvali model with large extra spatial dimensions.« less

  17. Interactive computer modeling of combustion chemistry and coalescence-dispersion modeling of turbulent combustion

    NASA Technical Reports Server (NTRS)

    Pratt, D. T.

    1984-01-01

    An interactive computer code for simulation of a high-intensity turbulent combustor as a single point inhomogeneous stirred reactor was developed from an existing batch processing computer code CDPSR. The interactive CDPSR code was used as a guide for interpretation and direction of DOE-sponsored companion experiments utilizing Xenon tracer with optical laser diagnostic techniques to experimentally determine the appropriate mixing frequency, and for validation of CDPSR as a mixing-chemistry model for a laboratory jet-stirred reactor. The coalescence-dispersion model for finite rate mixing was incorporated into an existing interactive code AVCO-MARK I, to enable simulation of a combustor as a modular array of stirred flow and plug flow elements, each having a prescribed finite mixing frequency, or axial distribution of mixing frequency, as appropriate. Further increase the speed and reliability of the batch kinetics integrator code CREKID was increased by rewriting in vectorized form for execution on a vector or parallel processor, and by incorporating numerical techniques which enhance execution speed by permitting specification of a very low accuracy tolerance.

  18. Displacement Vector Measurement Using 2D Modulation by Virtual Hyperbolic Beam Forming

    NASA Astrophysics Data System (ADS)

    Kondo, Kengo; Yamakawa, Makoto; Shiina, Tsuyoshi

    For the purpose of diagnosing ischemic heart disease by detection of malfunction area and cancer tumor by detection of hard area, 3-D tissue motion must be correctly evaluated. So far various methods of measuring multidimensional displacement have been developed. Most of present techniques are restricted to one-dimensional measurement of tissue displacement such as myocardial stain-rate imaging. Although lateral modulation method enables us to attain high-accuracy measurement of lateral displacement as well as axial direction by generating lateral oscillating RF signals, the method causes distorted RF far from center of aperture. As a result, the method is not suited to sector scan which is used for myocardial examination. We propose a method to solve the problem by using 2-D modulation with the virtual hyperbolic beam forming and detection of 2-D displacement vector. The feasibilities of the proposed method were evaluated by numerically simulating the left ventricle short-axis imaging of cylindrical myocardial model. The volume strain image obtained by the proposed method clearly depicted the hard infarction area where conventional multi-beam Doppler imaging could not.

  19. Renormalization of quark bilinear operators in a momentum-subtraction scheme with a nonexceptional subtraction point

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sturm, C.; Soni, A.; Aoki, Y.

    2009-07-01

    We extend the Rome-Southampton regularization independent momentum-subtraction renormalization scheme (RI/MOM) for bilinear operators to one with a nonexceptional, symmetric subtraction point. Two-point Green's functions with the insertion of quark bilinear operators are computed with scalar, pseudoscalar, vector, axial-vector and tensor operators at one-loop order in perturbative QCD. We call this new scheme RI/SMOM, where the S stands for 'symmetric'. Conversion factors are derived, which connect the RI/SMOM scheme and the MS scheme and can be used to convert results obtained in lattice calculations into the MS scheme. Such a symmetric subtraction point involves nonexceptional momenta implying a lattice calculation withmore » substantially suppressed contamination from infrared effects. Further, we find that the size of the one-loop corrections for these infrared improved kinematics is substantially decreased in the case of the pseudoscalar and scalar operator, suggesting a much better behaved perturbative series. Therefore it should allow us to reduce the error in the determination of the quark mass appreciably.« less

  20. Generation of tunable chain of three-dimensional optical bottle beams via focused multi-ring hollow Gaussian beam.

    PubMed

    Philip, Geo M; Viswanathan, Nirmal K

    2010-11-01

    We report here the generation of a chain of three-dimensional (3-D) optical bottle beams by focusing a π-phase shifted multi-ring hollow Gaussian beam (HGB) using a lens with spherical aberration. The rings of the HGB of suitable radial (k(r)) and axial (k(z)) wave vectors are generated using a double-negative axicon chemically etched in the optical fiber tips. Moving the lens position with respect to the fiber tip results in variation of the semi-angle of the cones of wave vectors of the HGBs and their diameter, using which we demonstrate tunability in the size and the periodicity of the 3-D optical bottle beams over a wide range, from micrometers to millimeters. The propagation characteristics of the beams resulting from focusing of single- and multi-ring HGBs and resulting in a quasi-non-diffracting beam and a chain of 3-D optical bottle beams, respectively, are simulated using only the input beam parameters and are found to agree well with experimental results.

  1. A few words about resonances in the electroweak effective Lagrangian

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosell, Ignasi; Pich, Antonio; Santos, Joaquín

    Contrary to a widely spread believe, we have demonstrated that strongly coupled electroweak models including both a light Higgs-like boson and massive spin-1 resonances are not in conflict with experimental constraints on the oblique S and T parameters. We use an effective Lagrangian implementing the chiral symmetry breaking SU (2){sub L} ⊗ SU (2){sub R} → SU (2){sub L+R} that contains the Standard Model gauge bosons coupled to the electroweak Goldstones, one Higgs-like scalar state h with mass m{sub h} = 126 GeV and the lightest vector and axial-vector resonance multiplets V and A. We have considered the one-loop calculationmore » of S and T in order to study the viability of these strongly-coupled scenarios, being short-distance constraints and dispersive relations the main ingredients of the calculation. Once we have constrained the resonance parameters, we do a first approach to the determination of the low energy constants of the electroweak effective theory at low energies (without resonances). We show this determination in the case of the purely Higgsless bosonic Lagrangian.« less

  2. Search for dark matter and unparticles in events with a Z boson and missing transverse momentum in proton-proton collisions at $$ \\sqrt{s}=13$$ TeV

    DOE PAGES

    Sirunyan, A. M.; Tumasyan, A.; Adam, W.; ...

    2017-03-10

    Here, a search for dark matter and unparticle production at the LHC has been performed using events containing two charged leptons (electrons or muons), consistent with the decay of a Z boson, and large missing transverse momentum. This study is based on data collected with the CMS detector in 2015, corresponding to an integrated luminosity of 2.3 fb –1 of proton-proton collisions at the LHC, at a center-of-mass energy of 13 TeV. No excess over the standard model expectation is observed. Compared to previous searches in this topology, which exclusively relied on effective field theories, the results are interpreted inmore » terms of a simplified model of dark matter production for both vector and axial vector couplings between a mediator and dark matter particles. The first study of this class of models using CMS data at √s = 13 TeV is presented. Additionally, effective field theories of dark matter and unparticle production are used to interpret the data.« less

  3. Current status of Plasmodium knowlesi vectors: a public health concern?

    PubMed

    Vythilingam, I; Wong, M L; Wan-Yussof, W S

    2018-01-01

    Plasmodium knowlesi a simian malaria parasite is currently affecting humans in Southeast Asia. Malaysia has reported the most number of cases and P. knowlesi is the predominant species occurring in humans. The vectors of P. knowlesi belong to the Leucosphyrus group of Anopheles mosquitoes. These are generally described as forest-dwelling mosquitoes. With deforestation and changes in land-use, some species have become predominant in farms and villages. However, knowledge on the distribution of these vectors in the country is sparse. From a public health point of view it is important to know the vectors, so that risk factors towards knowlesi malaria can be identified and control measures instituted where possible. Here, we review what is known about the knowlesi malaria vectors and ascertain the gaps in knowledge, so that future studies could concentrate on this paucity of data in-order to address this zoonotic problem.

  4. Towards an integrated approach in surveillance of vector-borne diseases in Europe

    PubMed Central

    2011-01-01

    Vector borne disease (VBD) emergence is a complex and dynamic process. Interactions between multiple disciplines and responsible health and environmental authorities are often needed for an effective early warning, surveillance and control of vectors and the diseases they transmit. To fully appreciate this complexity, integrated knowledge about the human and the vector population is desirable. In the current paper, important parameters and terms of both public health and medical entomology are defined in order to establish a common language that facilitates collaboration between the two disciplines. Special focus is put on the different VBD contexts with respect to the current presence or absence of the disease, the pathogen and the vector in a given location. Depending on the context, whether a VBD is endemic or not, surveillance activities are required to assess disease burden or threat, respectively. Following a decision for action, surveillance activities continue to assess trends. PMID:21967706

  5. Support vector machine based decision for mechanical fault condition monitoring in induction motor using an advanced Hilbert-Park transform.

    PubMed

    Ben Salem, Samira; Bacha, Khmais; Chaari, Abdelkader

    2012-09-01

    In this work we suggest an original fault signature based on an improved combination of Hilbert and Park transforms. Starting from this combination we can create two fault signatures: Hilbert modulus current space vector (HMCSV) and Hilbert phase current space vector (HPCSV). These two fault signatures are subsequently analysed using the classical fast Fourier transform (FFT). The effects of mechanical faults on the HMCSV and HPCSV spectrums are described, and the related frequencies are determined. The magnitudes of spectral components, relative to the studied faults (air-gap eccentricity and outer raceway ball bearing defect), are extracted in order to develop the input vector necessary for learning and testing the support vector machine with an aim of classifying automatically the various states of the induction motor. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.

  6. You can hide but you have to run: Direct detection with vector mediators

    DOE PAGES

    D’Eramo, Francesco; Kavanagh, Bradley J.; Panci, Paolo

    2016-08-18

    We study direct detection in simplified models of Dark Matter (DM) in which interactions with Standard Model (SM) fermions are mediated by a heavy vector boson. We consider fully general, gauge-invariant couplings between the SM, the mediator and both scalar and fermion DM. We account for the evolution of the couplings between the energy scale of the mediator mass and the nuclear energy scale. This running arises from virtual effects of SM particles and its inclusion is not optional. We compare bounds on the mediator mass from direct detection experiments with and without accounting for the running. In some casesmore » the inclusion of these effects changes the bounds by several orders of magnitude, as a consequence of operator mixing which generates new interactions at low energy. We also highlight the importance of these effects when translating LHC limits on the mediator mass into bounds on the direct detection cross section. For an axial-vector mediator, the running can alter the derived bounds on the spin-dependent DM-nucleon cross section by a factor of two or more. Lastly, we provide tools to facilitate the inclusion of these effects in future studies: general approximate expressions for the low energy couplings and a public code runDM to evolve the couplings between arbitrary energy scales.« less

  7. Explaining the R_K and R_{K^*} anomalies

    NASA Astrophysics Data System (ADS)

    Ghosh, Diptimoy

    2017-10-01

    Recent LHCb results on R_{K^*}, the ratio of the branching fractions of B → K^* μ ^+ μ ^- to that of B → K^* e^+ e^-, for the dilepton invariant mass bins q^2 ≡ m_{ℓ ℓ }^2 = [0.045-1.1] GeV^2 and [1.1-6] GeV^2 show approximately 2.5 σ deviations from the corresponding Standard Model prediction in each of the bins. This, when combined with the measurement of R_K (q^2=[1-6] GeV^2), a similar ratio for the decay to a pseudo-scalar meson, highly suggests lepton non-universal new physics in semi-leptonic B meson decays. In this work, we perform a model independent analysis of these potential new physics signals and identify the operators that do the best job in satisfying all these measurements. We show that heavy new physics, giving rise to q^2 independent local 4-Fermi operators of scalar, pseudo-scalar, vector or axial-vector type, is unable to explain all the three measurements simultaneously, in particular R_{K^*} in the bin [0.045-1.1], within their experimental 1σ regions. We point out the possibility to explain R_{K^*} in the low bin by an additional light (≲ 20 {MeV}) vector boson with appropriate coupling strengths to (\\bar{b} s) and (\\bar{e} e).

  8. You can hide but you have to run: Direct detection with vector mediators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D’Eramo, Francesco; Kavanagh, Bradley J.; Panci, Paolo

    We study direct detection in simplified models of Dark Matter (DM) in which interactions with Standard Model (SM) fermions are mediated by a heavy vector boson. We consider fully general, gauge-invariant couplings between the SM, the mediator and both scalar and fermion DM. We account for the evolution of the couplings between the energy scale of the mediator mass and the nuclear energy scale. This running arises from virtual effects of SM particles and its inclusion is not optional. We compare bounds on the mediator mass from direct detection experiments with and without accounting for the running. In some casesmore » the inclusion of these effects changes the bounds by several orders of magnitude, as a consequence of operator mixing which generates new interactions at low energy. We also highlight the importance of these effects when translating LHC limits on the mediator mass into bounds on the direct detection cross section. For an axial-vector mediator, the running can alter the derived bounds on the spin-dependent DM-nucleon cross section by a factor of two or more. Lastly, we provide tools to facilitate the inclusion of these effects in future studies: general approximate expressions for the low energy couplings and a public code runDM to evolve the couplings between arbitrary energy scales.« less

  9. Analysis and simulation of a magnetic bearing suspension system for a laboratory model annular momentum control device

    NASA Technical Reports Server (NTRS)

    Groom, N. J.; Woolley, C. T.; Joshi, S. M.

    1981-01-01

    A linear analysis and the results of a nonlinear simulation of a magnetic bearing suspension system which uses permanent magnet flux biasing are presented. The magnetic bearing suspension is part of a 4068 N-m-s (3000 lb-ft-sec) laboratory model annular momentum control device (AMCD). The simulation includes rigid body rim dynamics, linear and nonlinear axial actuators, linear radial actuators, axial and radial rim warp, and power supply and power driver current limits.

  10. Design of Advanced Blading for a High-Speed HP Compressor Using an S1-S2 Flow Calculation System.

    DTIC Science & Technology

    1990-11-01

    Howell multistage compressor speed squared) and pressure ratio for the initial prediction method (7), with an arbitrary increase of design are given in...improved performance of axial compressors with leading designs to be produced with the current SI-S2 edge normal shock waves, system. However, it is...performance of the new (7) Howell A R and Calvert W J, A new stage- design was extremely encouraging, with a peak stacking technique for axial -flow

  11. Anomaly inflow on QCD axial domain-walls and vortices

    NASA Astrophysics Data System (ADS)

    Fukushima, Kenji; Imaki, Shota

    2018-06-01

    We study the chiral effective theory in the presence of quantum chromodynamics (QCD) vortices. Gauge invariance requires novel terms from vortex singularities in the gauged Wess-Zumino-Witten action, which incorporate anomaly-induced currents along the vortices. We examine these terms for systems with QCD axial domain-walls bounded by vortices (vortons) under magnetic fields. We discuss how the baryon and electric charge conservations are satisfied in these systems through interplay between domain-walls and vortices, manifesting Callan-Harvey's mechanism of anomaly inflow.

  12. Investigate Fundamentals and Performance Improvements of Current In-Line Inspection Technologies for Mechanical Damage Detection

    DOT National Transportation Integrated Search

    2008-05-01

    This Phase I report provides a comprehensive and in-depth review of the current status of in-line inspection technologies, including, but not limited to, Magnetic (Axial MFL, Circumferential MFL), Ultrasonic (UT), and Geometrical (Caliper) methods, i...

  13. Twinning of amphibian embryos by centrifugation

    NASA Technical Reports Server (NTRS)

    Black, S. D.

    1984-01-01

    In the frog Xenopus laevis, the dorsal structures of the embryonic body axis normally derive from the side of the egg opposite the side of sperm entry. However, if the uncleaved egg is inclined at lg or centrifuged in an inclined position, this topographic relationship is overridden: the egg makes its dorsal axial structures according to its orientation in the gravitational/centrifugal field, irrespective of the position of sperm entry. Certain conditions of centrifugation cause eggs to develop into conjoined twins with two sets of axial structures. A detailed analysis of twinning provided some insight into experimental axis orientation. First, as with single-axis embryos, both axes in twins are oriented according to the direction of centrifugation. One axis forms at the centripetal side of the egg and the other forms at the centrifugal side, even when the side of sperm entry is normal to the centrifugal force vector. Second, if eggs are centrifuged to give twins, but are inclined at lg to prevent post-centrifugation endoplasmic redistributions, only single-axis embryos develop. Thus, a second redistribution is required for high-frequency secondary axis formation. This can be accomplished by lg (as in the single centrifugations) or by a second centrifugation directed along the egg's animal-vegetal axis.

  14. Mass, momentum and energy flow from an MPD accelerator. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Cory, J. S.

    1971-01-01

    The mass, momentum, and energy flows are measured over a current range of 8 to 50 kA and inlet mass flows of 2 to 36q/sec of argon. The momentum flux profile indicates that the accelerator produces a uniform, 2-inch diameter axial jet at the anode which expands into a Gaussian profile at an axial station 11 inches from the anode. The electromagnetic component of the thrust is found to follow the familiar quadratic dependence on arc current, while a more complex empirical relation is needed to correlate the gasdynamic contribution with the current and mass flow rate. Using available time-of-flight velocity profiles at a current of 16 kA and a mass flow of 5.9 g/sec, calculated flux profiles of mass and kinetic energy exhibit a tendency for some fraction of the inlet mass flow to leak out at a low velocity around the central high velocity core.

  15. Extreme degree of ionization in homogenous micro-capillary plasma columns heated by ultrafast current pulses.

    PubMed

    Avaria, G; Grisham, M; Li, J; Tomasel, F G; Shlyaptsev, V N; Busquet, M; Woolston, M; Rocca, J J

    2015-03-06

    Homogeneous plasma columns with ionization levels typical of megaampere discharges are created by rapidly heating gas-filled 520-μm-diameter channels with nanosecond rise time current pulses of 40 kA. Current densities of up to 0.3  GA cm^{-2} greatly increase Joule heating with respect to conventional capillary discharge Z pinches, reaching unprecedented degrees of ionization for a high-Z plasma column heated by a current pulse of remarkably low amplitude. Dense xenon plasmas are ionized to Xe^{28+}, while xenon impurities in hydrogen discharges reach Xe^{30+}. The unique characteristics of these hot, ∼300:1 length-to-diameter aspect ratio plasmas allow the observation of unexpected spectroscopic phenomena. Axial spectra show the unusual dominance of the intercombination line over the resonance line of He-like Al by nearly an order of magnitude, caused by differences in opacities in the axial and radial directions. These plasma columns could enable the development of sub-10-nm x-ray lasers.

  16. Development of High Interruption Capability Vacuum Circuit Breaker -Technology of Vacuum Arc Control-

    NASA Astrophysics Data System (ADS)

    Niwa, Yoshimitsu; Kaneko, Eiji

    Vacuum circuit breakers (VCB) have been widely used for power distribution systems. Vacuum Interrupters, which are the current interruption unit, have been increased its interruption capability with the development of vacuum arc control technology by magnetic field. There are three major type electrodes: disk shaped electrodes, radial magnetic field electrodes, axial magnetic field (AMF) electrodes. In the disk shaped electrode, the vacuum arc between the electrodes is not controlled. In the AMF electrode, the vacuum arc is diffused and stabilized by an axial magnetic field, which is parallel to the arc current. In the last type of electrodes, the vacuum arc column is rotated by magnetic force generated by the current flowing in the electrodes. The interruption current and the voltage of one break VCB is increased to 100 kA, 144 kV respectively. This paper describes basic configurations and functions of VCB, vacuum arc control technology in vacuum interrupters, recent researches and applications of VCB.

  17. Remote sensing of surface currents with single shipborne high-frequency surface wave radar

    NASA Astrophysics Data System (ADS)

    Wang, Zhongbao; Xie, Junhao; Ji, Zhenyuan; Quan, Taifan

    2016-01-01

    High-frequency surface wave radar (HFSWR) is a useful technology for remote sensing of surface currents. It usually requires two (or more) stations spaced apart to create a two-dimensional (2D) current vector field. However, this method can only obtain the measurements within the overlapping coverage, which wastes most of the data from only one radar observation. Furthermore, it increases observation's costs significantly. To reduce the number of required radars and increase the ocean area that can be measured, this paper proposes an economical methodology for remote sensing of the 2D surface current vector field using single shipborne HFSWR. The methodology contains two parts: (1) a real space-time multiple signal classification (MUSIC) based on sparse representation and unitary transformation techniques is developed for measuring the radial currents from the spreading first-order spectra, and (2) the stream function method is introduced to obtain the 2D surface current vector field. Some important conclusions are drawn, and simulations are included to validate the correctness of them.

  18. Current Advances and Future Challenges in Adenoviral Vector Biology and Targeting

    PubMed Central

    Campos, Samuel K.; Barry, Michael A.

    2008-01-01

    Gene delivery vectors based on Adenoviral (Ad) vectors have enormous potential for the treatment of both hereditary and acquired disease. Detailed structural analysis of the Ad virion, combined with functional studies has broadened our knowledge of the structure/function relationships between Ad vectors and host cells/tissues and substantial achievement has been made towards a thorough understanding of the biology of Ad vectors. The widespread use of Ad vectors for clinical gene therapy is compromised by their inherent immunogenicity. The generation of safer and more effective Ad vectors, targeted to the site of disease, has therefore become a great ambition in the field of Ad vector development. This review provides a synopsis of the structure/function relationships between Ad vectors and host systems and summarizes the many innovative approaches towards achieving Ad vector targeting. PMID:17584037

  19. Field line twist and field-aligned currents in an axially symmetric equilibrium magnetosphere. [of Uranus

    NASA Technical Reports Server (NTRS)

    Voigt, Gerd-Hannes

    1986-01-01

    Field-aligned Birkeland currents and the angle of the magnetic line twist were calculated for an axially symmetric pole-on magnetosphere (assumed to be in MHD equilibrium). The angle of the field line twist was shown to have a strong radial dependence on the axisymmetric magnetotail as well as on the ionospheric conductivity and the amount of thermal plasma contained in closed magnetotail flux tubes. The field line twist results from the planetary rotation, which leads to the development of a toroidal magnetic B-sub-phi component and to differentially rotating magnetic field lines. It was shown that the time development of the toroidal magnetic B-sub-phi component and the rotation frequency are related through an induction equation.

  20. Tendency of a rotating electron plasma to approach the Brillouin limit

    DOE PAGES

    Gueroult, Renaud; Fruchtman, Amnon; Fisch, Nathaniel J.

    2013-07-24

    In this study, a neutral plasma is considered to be immersed in an axial magnetic field together with a radial electric field. If the electrons are magnetized, but the ions are not magnetized, then the electrons will rotate but the ions will not rotate, leading to current generation. The currents, in turn, weaken the axial magnetic field, leading to an increase in the rotation frequency of the slow Brillouin mode. This produces a positive feedback effect, further weakening the magnetic field. The operating point thus tends to drift towards the Brillouin limit, possibly finding stability only in proximity to themore » limit itself. An example of this effect might be the cylindrical Hall thruster configuration.« less

  1. Size-induced axial band structure and directional flow of a ternary-size granular material in a 3-D horizontal rotating drum

    NASA Astrophysics Data System (ADS)

    Yang, Shiliang; Sun, Yuhao; Ma, Honghe; Chew, Jia Wei

    2018-05-01

    Differences in the material property of the granular material induce segregation which inevitably influences both natural and industrial processes. To understand the dynamical segregation behavior, the band structure, and also the spatial redistribution of particles induced by the size differences of the particles, a ternary-size granular mixture in a three-dimensional rotating drum operating in the rolling flow regime is numerically simulated using the discrete element method. The results demonstrate that (i) the axial bands of the medium particles are spatially sandwiched in between those of the large and small ones; (ii) the total mass in the active and passive regions is a global parameter independent of segregation; (iii) nearly one-third of all the particles are in the active region, with the small particles having the highest mass fraction; (iv) the axial bands initially appear near the end wall, then become wider and purer in the particular species with time as more axial bands form toward the axial center; and (v) the medium particle type exhibits segregation later and has the narrowest axial bandwidth and least purity in the bands. Compared to the binary-size system, the presence of the medium particle type slightly increases the total mass in the active region, leads to larger mass fractions of the small and large particle types in the active region, and enhances the axial segregation in the system. The results obtained in the current work provide valuable insights regarding size segregation, and band structure and formation in the rotating drum with polydisperse particles.

  2. Quantitative Measurement of Cationic Polymer Vector and Polymer-pDNA Polyplex Intercalation into the Cell Plasma Membrane.

    PubMed

    Vaidyanathan, Sriram; Anderson, Kevin B; Merzel, Rachel L; Jacobovitz, Binyamin; Kaushik, Milan P; Kelly, Christina N; van Dongen, Mallory A; Dougherty, Casey A; Orr, Bradford G; Banaszak Holl, Mark M

    2015-06-23

    Cationic gene delivery agents (vectors) are important for delivering nucleotides, but are also responsible for cytotoxicity. Cationic polymers (L-PEI, jetPEI, and G5 PAMAM) at 1× to 100× the concentrations required for translational activity (protein expression) induced the same increase in plasma membrane current of HEK 293A cells (30-50 nA) as measured by whole cell patch-clamp. This indicates saturation of the cell membrane by the cationic polymers. The increased currents induced by the polymers are not reversible for over 15 min. Irreversibility on this time scale is consistent with a polymer-supported pore or carpet model and indicates that the cell is unable to clear the polymer from the membrane. For polyplexes, although the charge concentration was the same (at N/P ratio of 10:1), G5 PAMAM and jetPEI polyplexes induced a much larger current increase (40-50 nA) than L-PEI polyplexes (<20 nA). Both free cationic lipid and lipid polyplexes induced a lower increase in current than cationic polymers (<20 nA). To quantify the membrane bound material, partition constants were measured for both free vectors and polyplexes into the HEK 293A cell membrane using a dye influx assay. The partition constants of free vectors increased with charge density of the vectors. Polyplex partition constants did not show such a trend. The long lasting cell plasma permeability induced by exposure to the polymer vectors or the polyplexes provides a plausible mechanism for the toxicity and inflammatory response induced by exposure to these materials.

  3. Current status of genome editing in vector mosquitoes: A review.

    PubMed

    Reegan, Appadurai Daniel; Ceasar, Stanislaus Antony; Paulraj, Michael Gabriel; Ignacimuthu, Savarimuthu; Al-Dhabi, Naif Abdullah

    2017-01-16

    Mosquitoes pose a major threat to human health as they spread many deadly diseases like malaria, dengue, chikungunya, filariasis, Japanese encephalitis and Zika. Identification and use of novel molecular tools are essential to combat the spread of vector borne diseases. Genome editing tools have been used for the precise alterations of the gene of interest for producing the desirable trait in mosquitoes. Deletion of functional genes or insertion of toxic genes in vector mosquitoes will produce either knock-out or knock-in mutants that will check the spread of vector-borne diseases. Presently, three types of genome editing tools viz., zinc finger nuclease (ZFN), transcription activator-like effector nucleases (TALEN) and clustered regulatory interspaced short palindromic repeats (CRISPR) and CRISPR associated protein 9 (Cas9) are widely used for the editing of the genomes of diverse organisms. These tools are also applied in vector mosquitoes to control the spread of vector-borne diseases. A few studies have been carried out on genome editing to control the diseases spread by vector mosquitoes and more studies need to be performed with the utilization of more recently invented tools like CRISPR/Cas9 to combat the spread of deadly diseases by vector mosquitoes. The high specificity and flexibility of CRISPR/Cas9 system may offer possibilities for novel genome editing for the control of important diseases spread by vector mosquitoes. In this review, we present the current status of genome editing research on vector mosquitoes and also discuss the future applications of vector mosquito genome editing to control the spread of vectorborne diseases.

  4. Method and apparatus for the formation of a spheromak plasma

    DOEpatents

    Jardin, Stephen C.; Yamada, Masaaki; Furth, Harold P.; Okabayashi, Mitcheo

    1984-01-01

    An inductive method and apparatus for forming detached spheromak plasma using a thin-walled metal toroidal ring, with external current leads and internal poloidal and toroidal field coils located inside a vacuum chamber filled with low density hydrogen gas and an external axial field generating coil. The presence of a current in the poloidal field coils, and an externally generated axial field sets up the initial poloidal field configuration in which the field is strongest toward the major axis of the toroid. The internal toroidal-field-generating coil is then pulsed on, ionizing the gas and inducing poloidal current and toroidal magnetic field into the plasma region in the sleeve exterior to and adjacent to the ring and causing the plasma to expand away from the ring and toward the major axis. Next the current in the poloidal field coils in the ring is reversed. This induces toroidal current into the plasma and causes the poloidal magnetic field lines to reconnect. The reconnection continues until substantially all of the plasma is formed in a separated spheromak configuration held in equilibrium by the initial external field.

  5. A research agenda for malaria eradication: vector control.

    PubMed

    2011-01-25

    Different challenges are presented by the variety of malaria transmission environments present in the world today. In each setting, improved control for reduction of morbidity is a necessary first step towards the long-range goal of malaria eradication and a priority for regions where the disease burden is high. For many geographic areas where transmission rates are low to moderate, sustained and well-managed application of currently available tools may be sufficient to achieve local elimination. The research needs for these areas will be to sustain and perhaps improve the effectiveness of currently available tools. For other low-to-moderate transmission regions, notably areas where the vectors exhibit behaviours such as outdoor feeding and resting that are not well targeted by current strategies, new interventions that target predictable features of the biology/ecologies of the local vectors will be required. To achieve elimination in areas where high levels of transmission are sustained by very efficient vector species, radically new interventions that significantly reduce the vectorial capacity of wild populations will be needed. Ideally, such interventions should be implemented with a one-time application with a long-lasting impact, such as genetic modification of the vectorial capacity of the wild vector population.

  6. The impact of climate change on the geographical distribution of two vectors of Chagas disease: implications for the force of infection

    PubMed Central

    Medone, Paula; Ceccarelli, Soledad; Parham, Paul E.; Figuera, Andreína; Rabinovich, Jorge E.

    2015-01-01

    Chagas disease, caused by the parasite Trypanosoma cruzi, is the most important vector-borne disease in Latin America. The vectors are insects belonging to the Triatominae (Hemiptera, Reduviidae), and are widely distributed in the Americas. Here, we assess the implications of climatic projections for 2050 on the geographical footprint of two of the main Chagas disease vectors: Rhodnius prolixus (tropical species) and Triatoma infestans (temperate species). We estimated the epidemiological implications of current to future transitions in the climatic niche in terms of changes in the force of infection (FOI) on the rural population of two countries: Venezuela (tropical) and Argentina (temperate). The climatic projections for 2050 showed heterogeneous impact on the climatic niches of both vector species, with a decreasing trend of suitability of areas that are currently at high-to-moderate transmission risk. Consequently, climatic projections affected differently the FOI for Chagas disease in Venezuela and Argentina. Despite the heterogeneous results, our main conclusions point out a decreasing trend in the number of new cases of Tr. cruzi human infections per year between current and future conditions using a climatic niche approach. PMID:25688019

  7. Continuum modeling of catastrophic collisions

    NASA Technical Reports Server (NTRS)

    Ryan, Eileen V.; Aspaug, Erik; Melosh, H. J.

    1991-01-01

    A two dimensional hydrocode based on 2-D SALE was modified to include strength effects and fragmentation equations for fracture resulting from tensile stress in one dimension. Output from this code includes a complete fragmentation summary for each cell of the modeled object: fragment size (mass) distribution, vector velocities of particles, peak values of pressure and tensile stress, and peak strain rates associated with fragmentation. Contour plots showing pressure and temperature at given times within the object are also produced. By invoking axial symmetry, three dimensional events can be modeled such as zero impact parameter collisions between asteroids. The code was tested against the one dimensional model and the analytical solution for a linearly increasing tensile stress under constant strain rate.

  8. Chiral-symmetry breaking and confinement in Minkowski space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biernat, Elmer P.; Pena, M. T.; Ribiero, J. E.

    2016-01-01

    We present a model for the quark-antiquark interaction formulated in Minkowski space using the Covariant Spectator Theory. The quark propagators are dressed with the same kernel that describes the interaction between different quarks. By applying the axial-vector Ward-Takahashi identity we show that our model satisfies the Adler-zero constraint imposed by chiral symmetry. For this model, our Minkowski-space results of the dressed quark mass function are compared to lattice QCD data obtained in Euclidean space. The mass function is then used in the calculation of the electromagnetic pion form factor in relativistic impulse approximation, and the results are presented and comparedmore » with the experimental data from JLab.« less

  9. Chiral-symmetry breaking and confinement in Minkowski space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biernat, Elmar P.; Peña, M. T.; Departamento de Física, Instituto Superior Técnico

    2016-01-22

    We present a model for the quark-antiquark interaction formulated in Minkowski space using the Covariant Spectator Theory. The quark propagators are dressed with the same kernel that describes the interaction between different quarks. By applying the axial-vector Ward-Takahashi identity we show that our model satisfies the Adler-zero constraint imposed by chiral symmetry. For this model, our Minkowski-space results of the dressed quark mass function are compared to lattice QCD data obtained in Euclidean space. The mass function is then used in the calculation of the electromagnetic pion form factor in relativistic impulse approximation, and the results are presented and comparedmore » with the experimental data from JLab.« less

  10. General theories of linear gravitational perturbations to a Schwarzschild black hole

    NASA Astrophysics Data System (ADS)

    Tattersall, Oliver J.; Ferreira, Pedro G.; Lagos, Macarena

    2018-02-01

    We use the covariant formulation proposed by Tattersall, Lagos, and Ferreira [Phys. Rev. D 96, 064011 (2017), 10.1103/PhysRevD.96.064011] to analyze the structure of linear perturbations about a spherically symmetric background in different families of gravity theories, and hence study how quasinormal modes of perturbed black holes may be affected by modifications to general relativity. We restrict ourselves to single-tensor, scalar-tensor and vector-tensor diffeomorphism-invariant gravity models in a Schwarzschild black hole background. We show explicitly the full covariant form of the quadratic actions in such cases, which allow us to then analyze odd parity (axial) and even parity (polar) perturbations simultaneously in a straightforward manner.

  11. From Bethe–Salpeter Wave functions to Generalised Parton Distributions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mezrag, C.; Moutarde, H.; Rodríguez-Quintero, J.

    2016-06-06

    We review recent works on the modelling of Generalised Parton Distributions within the Dyson-Schwinger formalism. We highlight how covariant computations, using the impulse approximation, allows one to fulfil most of the theoretical constraints of the GPDs. A specific attention is brought to chiral properties and especially the so-called soft pion theorem, and its link with the Axial-Vector Ward-Takahashi identity. The limitation of the impulse approximation are also explained. Beyond impulse approximation computations are reviewed in the forward case. Finally, we stress the advantages of the overlap of lightcone wave functions, and possible ways to construct covariant GPD models within thismore » framework, in a two-body approximation« less

  12. Effect of dust on tilted electrostatic resistive instability in a Hall thruster

    NASA Astrophysics Data System (ADS)

    Tyagi, Jasvendra; Singh, Sukhmander; Malik, Hitendra K.

    2018-03-01

    Effect of negatively charged dust on resistive instability corresponding to the electrostatic wave is investigated in a Hall thruster plasma when this purely azimuthal wave is tilted and strong axial component of wave vector is developed. Analytical calculations are done to obtain the relevant dispersion equation, which is solved numerically to investigate the growth rate of the instability. The magnitude of the growth rate in the plasma having dust particles is found to be much smaller than the case of pure plasma. However, the instability grows faster for the increasing dust density and the higher charge on the dust particles. The higher magnetic field is also found to support the instability.

  13. Nonlocal theory of electromagnetic wave decay into two electromagnetic waves in a rippled density plasma channel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sati, Priti; Tripathi, V. K.

    Parametric decay of a large amplitude electromagnetic wave into two electromagnetic modes in a rippled density plasma channel is investigated. The channel is taken to possess step density profile besides a density ripple of axial wave vector. The density ripple accounts for the momentum mismatch between the interacting waves and facilitates nonlinear coupling. For a given pump wave frequency, the requisite ripple wave number varies only a little w.r.t. the frequency of the low frequency decay wave. The radial localization of electromagnetic wave reduces the growth rate of the parametric instability. The growth rate decreases with the frequency of lowmore » frequency electromagnetic wave.« less

  14. Dark matter annihilation with s-channel internal Higgsstrahlung

    DOE PAGES

    Kumar, Jason; Liao, Jiajun; Marfatia, Danny

    2016-05-31

    We study the scenario of fermionic dark matter that annihilates to standard model fermions through an s-channel axial vector mediator. We point out that the well-known chirality suppression of the annihilation cross section can be alleviated by s-channel internal Higgsstrahlung. The shapes of the cosmic ray spectra are identical to that of t-channel internal Higgsstrahlung in the limit of a heavy mediating particle. Unlike the general case of t-channel bremsstrahlung, s-channel Higgsstrahlung can be the dominant annihilation process even for Dirac dark matter. Finally, since the s-channel mediator can be a standard model singlet, collider searches for the mediator aremore » easily circumvented.« less

  15. Dark matter annihilation with s-channel internal Higgsstrahlung

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Jason; Liao, Jiajun; Marfatia, Danny

    We study the scenario of fermionic dark matter that annihilates to standard model fermions through an s-channel axial vector mediator. We point out that the well-known chirality suppression of the annihilation cross section can be alleviated by s-channel internal Higgsstrahlung. The shapes of the cosmic ray spectra are identical to that of t-channel internal Higgsstrahlung in the limit of a heavy mediating particle. Unlike the general case of t-channel bremsstrahlung, s-channel Higgsstrahlung can be the dominant annihilation process even for Dirac dark matter. Finally, since the s-channel mediator can be a standard model singlet, collider searches for the mediator aremore » easily circumvented.« less

  16. Constituent quark masses in Poincaré-invariant quantum mechanics

    NASA Astrophysics Data System (ADS)

    Andreev, Viktor; Haurysh, Vadzim

    2017-12-01

    The masses of the quarks in the Poincaré-invariant quantum mechanics are the constituent masses. Even in this framework it is possible to obtain an estimate of the constituent quark masses from the Ward identity for the axial current ant the current quark masses.

  17. Energy buildup in coronal magnetic flux tubes

    NASA Technical Reports Server (NTRS)

    Steinolfson, R. S.; Tajima, T.

    1987-01-01

    A time-dependent two-dimensional MHD simulation is used to study the response of the magnetic field in coronal loops to photospheric motion. From an initially uniform field, circular sections of the ends of the loop are slowly rotated to represent the photospheric motion. The evolution of the field and flow is characterized by three phases: (1) a phase of negligible kinetic energy where the current and field are predominantly parallel; (2) a phase where the field twist increases, the axial field at and near the axis increases, and the axial field decreases in two cylindrical regions away from the axis; and (3) a phase in which a significant portion of the field makes several rotations at large radii, with a corresponding reducton in the axial field to a few percent of the initial value.

  18. Axial distribution of plasma fluctuations, plasma parameters, deposition rate and grain size during copper deposition

    NASA Astrophysics Data System (ADS)

    Gopikishan, S.; Banerjee, I.; Pathak, Anand; Mahapatra, S. K.

    2017-08-01

    Floating potential fluctuations, plasma parameters and deposition rate have been investigated as a function of axial distance during deposition of copper in direct current (DC) magnetron sputtering system. Fluctuations were analyzed using phase space, power spectra and amplitude bifurcation plots. It has been observed that the fluctuations are modified from chaotic to ordered state with increase in the axial distance from cathode. Plasma parameters such as electron density (ne), electron temperature (Te) and deposition rate (Dr) were measured and correlated with plasma fluctuations. It was found that more the deposition rate, greater the grain size, higher the electron density, higher the electron temperature and more chaotic the oscillations near the cathode. This observation could be helpful to the thin film technology industry to optimize the required film.

  19. Coincidence charged-current neutrino-induced deuteron disintegration for 2H2 16O

    NASA Astrophysics Data System (ADS)

    Van Orden, J. W.; Donnelly, T. W.; Moreno, O.

    2017-12-01

    Semi-inclusive charge-changing neutrino reactions on targets of heavy water are investigated with the goal of determining the relative contributions to the total cross section of deuterium and oxygen in kinematics chosen to emphasize the former. The study is undertaken for conditions where the typical neutrino beam energies are in the few GeV region, and hence relativistic modeling is essential. For this, the previous relativistic approach for the deuteron is employed, together with a spectral function approach for the case of oxygen. Upon optimizing the kinematics of the final-state particles assumed to be detected (typically a muon and a proton) it is shown that the oxygen contribution to the total cross section is suppressed by roughly an order of magnitude compared with the deuterium cross section, thereby confirming that CC ν studies of heavy water can effectively yield the cross sections for deuterium, with acceptable backgrounds from oxygen. This opens the possibility of using deuterium to determine the incident neutrino flux distribution, to have it serve as a target for which the nuclear structure issues are minimal, and possibly to use deuterium to provide improved knowledge of specific aspects of hadronic structure, such as to explore the momentum transfer dependence of the isovector axial-vector form factor of the nucleon.

  20. An efficient and portable SIMD algorithm for charge/current deposition in Particle-In-Cell codes

    DOE PAGES

    Vincenti, H.; Lobet, M.; Lehe, R.; ...

    2016-09-19

    In current computer architectures, data movement (from die to network) is by far the most energy consuming part of an algorithm (≈20pJ/word on-die to ≈10,000 pJ/word on the network). To increase memory locality at the hardware level and reduce energy consumption related to data movement, future exascale computers tend to use many-core processors on each compute nodes that will have a reduced clock speed to allow for efficient cooling. To compensate for frequency decrease, machine vendors are making use of long SIMD instruction registers that are able to process multiple data with one arithmetic operator in one clock cycle. SIMD registermore » length is expected to double every four years. As a consequence, Particle-In-Cell (PIC) codes will have to achieve good vectorization to fully take advantage of these upcoming architectures. In this paper, we present a new algorithm that allows for efficient and portable SIMD vectorization of current/charge deposition routines that are, along with the field gathering routines, among the most time consuming parts of the PIC algorithm. Our new algorithm uses a particular data structure that takes into account memory alignment constraints and avoids gather/scat;ter instructions that can significantly affect vectorization performances on current CPUs. The new algorithm was successfully implemented in the 3D skeleton PIC code PICSAR and tested on Haswell Xeon processors (AVX2-256 bits wide data registers). Results show a factor of ×2 to ×2.5 speed-up in double precision for particle shape factor of orders 1–3. The new algorithm can be applied as is on future KNL (Knights Landing) architectures that will include AVX-512 instruction sets with 512 bits register lengths (8 doubles/16 singles). Program summary Program Title: vec_deposition Program Files doi:http://dx.doi.org/10.17632/nh77fv9k8c.1 Licensing provisions: BSD 3-Clause Programming language: Fortran 90 External routines/libraries:  OpenMP > 4.0 Nature of problem: Exascale architectures will have many-core processors per node with long vector data registers capable of performing one single instruction on multiple data during one clock cycle. Data register lengths are expected to double every four years and this pushes for new portable solutions for efficiently vectorizing Particle-In-Cell codes on these future many-core architectures. One of the main hotspot routines of the PIC algorithm is the current/charge deposition for which there is no efficient and portable vector algorithm. Solution method: Here we provide an efficient and portable vector algorithm of current/charge deposition routines that uses a new data structure, which significantly reduces gather/scatter operations. Vectorization is controlled using OpenMP 4.0 compiler directives for vectorization which ensures portability across different architectures. Restrictions: Here we do not provide the full PIC algorithm with an executable but only vector routines for current/charge deposition. These scalar/vector routines can be used as library routines in your 3D Particle-In-Cell code. However, to get the best performances out of vector routines you have to satisfy the two following requirements: (1) Your code should implement particle tiling (as explained in the manuscript) to allow for maximized cache reuse and reduce memory accesses that can hinder vector performances. The routines can be used directly on each particle tile. (2) You should compile your code with a Fortran 90 compiler (e.g Intel, gnu or cray) and provide proper alignment flags and compiler alignment directives (more details in README file).« less

Top