Electrons Confined with an Axially Symmetric Magnetic Mirror Field
Higaki, H.; Ito, K.; Kira, K.; Okamoto, H.
2008-08-08
Low energy non-neutral electron plasmas were confined with an axially symmetric magnetic mirror field and an electrostatic potential to investigate the basic confinement properties of a simple magnetic mirror trap. As expected the confinement time became longer as a function of the mirror ratio. The axial electrostatic oscillations of a confined electron plasma were also observed. Obtained results suggested an improved scheme to accumulate low energy charged particles with the use of a magnetic mirror field, which would enable the investigation of electron-positron plasmas.
Dynamics of intense particle beam in axial-symmetric magnetic field
NASA Astrophysics Data System (ADS)
Batygin, Yuri K.
2015-02-01
Axial-symmetric magnetic field is often used in focusing of particle beams. Most existing ion Low Energy Beam Transport lines are based on solenoid focusing. Modern accelerator projects utilize superconducting solenoids in combination with superconducting accelerating cavities for acceleration of high-intensity particle beams. Present article discusses conditions for matched beam in axial-symmetric magnetic field. Analysis allows us to minimize power consumption of solenoids and beam emittance growth due to nonlinear space charge, lens aberrations, and maximize acceptance of the channel. Expressions for maximum beam current in focusing structure, beam emittance growth due to spherical aberrations and non-linear space charge forces are derived.
Global Aspects of Charged Particle Motion in Axially Symmetric Multipole Magnetic Fields
NASA Technical Reports Server (NTRS)
Shebalin, John V.
2003-01-01
The motion of a single charged particle in the space outside of a compact region of steady currents is investigated. The charged particle is assumed to produce negligible electromagnetic radiation, so that its energy is conserved. The source of the magnetic field is represented as a point multipole. After a general description, attention is focused on magnetic fields with axial symmetry. Lagrangian dynamical theory is utilized to identify constants of the motion as well as the equations of motion themselves. The qualitative method of Stonner is used to examine charged particle motion in axisymmetric multipole fields of all orders. Although the equations of motion generally have no analytical solutions and must be integrated numerically to produce a specific orbit, a topological examination of dynamics is possible, and can be used, d la Stonner, to completely describe the global aspects of the motion of a single charged particle in a space with an axisymmetric multipole magnetic field.
Hood, L.L.
1987-07-01
Saturn's main rings exist within a zone of negligible magnetospheric losses and surface alteration effects, substantially due to the solid-body absorption of inwardly diffusing magnetospheric particles. This process is presently shown to be especially efficient in the inner magnetosphere of Saturn, due to the near-axial symmetry of the planetary magnetic field relative to the equatorial rotation plane; under the assumption of comparable diffusion rates, the inward magnetospheric particle transport is far more inhibited in the inner Saturnian magnetosphere than in the same regions of Jupiter and Uranus, even when only rings of comparable widths and depths are considered. In light of this, ring particle surface exposure to the ion fluxes of the radiation belt remains a prepossessing rationale for low Uranian ring albedos. 86 references.
Magnetic Field, Force, and Inductance Computations for an Axially Symmetric Solenoid
NASA Technical Reports Server (NTRS)
Lane, John E.; Youngquist, Robert C.; Immer, Christopher D.; Simpson, James C.
2001-01-01
The pumping of liquid oxygen (LOX) by magnetic fields (B field), using an array of electromagnets, is a current topic of research and development at Kennedy Space Center, FL. Oxygen is paramagnetic so that LOX, like a ferrofluid, can be forced in the direction of a B field gradient. It is well known that liquid oxygen has a sufficient magnetic susceptibility that a strong magnetic gradient can lift it in the earth's gravitational field. It has been proposed that this phenomenon can be utilized in transporting (i.e., pumping) LOX not only on earth, but on Mars and in the weightlessness of space. In order to design and evaluate such a magnetic pumping system, it is essential to compute the magnetic and force fields, as well as inductance, of various types of electromagnets (solenoids). In this application, it is assumed that the solenoids are air wrapped, and that the current is essentially time independent.
Zimbardo; Veltri; Pommois
2000-02-01
We studied a magnetic turbulence axisymmetric around the unperturbed magnetic field for cases having different ratios l( ||)/l( perpendicular). We find, in addition to the fact that a higher fluctuation level deltaB/B(0) makes the system more stochastic, that by increasing the ratio l( ||)/l( perpendicular) at fixed deltaB/B(0), the stochasticity increases. It appears that the different transport regimes can be organized in terms of the Kubo number R=(deltaB/B(0))(l( ||)/l( perpendicular)). The simulation results are compared with the two analytical limits, that is the percolative limit and the quasilinear limit. When R<1 weak chaos, closed magnetic surfaces, and anomalous transport regimes are found. When R approximately 1 the diffusion regime is Gaussian, and the quasilinear scaling of the diffusion coefficient D( perpendicular) approximately (deltaB/B(0))(2) is recovered. Finally, for R>1 the percolation scaling of the diffusion coefficient D( perpendicular) approximately (deltaB/B(0))(0.7) is obtained.
Stationary axially symmetric solutions in Brans-Dicke theory
NASA Astrophysics Data System (ADS)
Kirezli, Pınar; Delice, Özgür
2015-11-01
Stationary, axially symmetric Brans-Dicke-Maxwell solutions are reexamined in the framework of the Brans-Dicke (BD) theory. We see that, employing a particular parametrization of the standard axially symmetric metric simplifies the procedure of obtaining the Ernst equations for axially symmetric electrovacuum spacetimes for this theory. This analysis also permits us to construct a two parameter extension in both Jordan and Einstein frames of an old solution generating technique frequently used to construct axially symmetric solutions for BD theory from a seed solution of general relativity. As applications of this technique, several known and new solutions are constructed including a general axially symmetric BD-Maxwell solution of Plebanski-Demianski with vanishing cosmological constant, i.e., the Kinnersley solution and general magnetized Kerr-Newman-type solutions. Some physical properties and the circular motion of test particles for a particular subclass of Kinnersley solution, i.e., a Kerr-Newman-NUT-type solution for BD theory, are also investigated in some detail.
Axial Halbach Magnetic Bearings
NASA Technical Reports Server (NTRS)
Eichenberg, Dennis J.; Gallo, Christopher A.; Thompson, William K.
2008-01-01
Axial Halbach magnetic bearings have been investigated as part of an effort to develop increasingly reliable noncontact bearings for future high-speed rotary machines that may be used in such applications as aircraft, industrial, and land-vehicle power systems and in some medical and scientific instrumentation systems. Axial Halbach magnetic bearings are passive in the sense that unlike most other magnetic bearings that have been developed in recent years, they effect stable magnetic levitation without need for complex active control.
Perturbation approximation for orbits in axially symmetric funnels
NASA Astrophysics Data System (ADS)
Nauenberg, Michael
2014-11-01
A perturbation method that can be traced back to Isaac Newton is applied to obtain approximate analytic solutions for objects sliding in axially symmetric funnels in near circular orbits. Some experimental observations are presented for balls rolling in inverted cones with different opening angles, and in a funnel with a hyperbolic surface that approximately simulates the gravitational force.
Modifications to Axially Symmetric Simulations Using New DSMC (2007) Algorithms
NASA Technical Reports Server (NTRS)
Liechty, Derek S.
2008-01-01
Several modifications aimed at improving physical accuracy are proposed for solving axially symmetric problems building on the DSMC (2007) algorithms introduced by Bird. Originally developed to solve nonequilibrium, rarefied flows, the DSMC method is now regularly used to solve complex problems over a wide range of Knudsen numbers. These new algorithms include features such as nearest neighbor collisions excluding the previous collision partners, separate collision and sampling cells, automatically adaptive variable time steps, a modified no-time counter procedure for collisions, and discontinuous and event-driven physical processes. Axially symmetric solutions require radial weighting for the simulated molecules since the molecules near the axis represent fewer real molecules than those farther away from the axis due to the difference in volume of the cells. In the present methodology, these radial weighting factors are continuous, linear functions that vary with the radial position of each simulated molecule. It is shown that how one defines the number of tentative collisions greatly influences the mean collision time near the axis. The method by which the grid is treated for axially symmetric problems also plays an important role near the axis, especially for scalar pressure. A new method to treat how the molecules are traced through the grid is proposed to alleviate the decrease in scalar pressure at the axis near the surface. Also, a modification to the duplication buffer is proposed to vary the duplicated molecular velocities while retaining the molecular kinetic energy and axially symmetric nature of the problem.
Aissani, Sarra; Guendouz, Laouès; Marande, Pierre-Louis; Canet, Daniel
2015-01-01
As demonstrated before, the application of a weak static B0 magnetic field (less than 10 G) may produce definite effects on the ¹⁴N Quadrupole Resonance line when the electric field gradient tensor at the nitrogen nucleus level is of axial symmetry. Here, we address more precisely the problem of the relative orientation of the two magnetic fields (the static field and the radio-frequency field of the pure NQR experiment). For a field of 6G, the evolution of the signal intensity, as a function of this relative orientation, is in very good agreement with the theoretical predictions. There is in particular an intensity loss by a factor of three when going from the parallel configuration to the perpendicular configuration. By contrast, when dealing with a very weak magnetic field (as the earth field, around 0.5 G), this effect drops to ca. 1.5 in the case Hexamethylenetetramine (HMT).This is explained by the fact that the Zeeman shift (due to the very weak magnetic field) becomes comparable to the natural line-width. The latter can therefore be determined by accounting for this competition. Still in the case of HMT, the estimated natural line-width is half the observed line-width. The extra broadening is thus attributed to earth magnetic field. The latter constitutes therefore the main cause of the difference between the natural transverse relaxation time (T₂) and the transverse relaxation time derived from the observed line-width (T₂(⁎)). PMID:25910551
Fully Characterizing Axially Symmetric Szekeres Models with Three Data Sets
NASA Astrophysics Data System (ADS)
Célérier, Marie-Nöelle Mishra, Priti; Singh, Tejinder P.
2015-01-01
Inhomogeneous exact solutions of General Relativity with zero cosmological constant have been used in the literature to challenge the ΛCDM model. From one patch Lemaître-Tolman-Bondi (LTB) models to axially symmetric quasi-spherical Szekeres (QSS) Swiss-cheese models, some of them are able to reproduce to a good accuracy the cosmological data. It has been shown in the literature that a zero Λ LTB model with a central observer can be fully determined by two data sets. We demonstrate that an axially symmetric zero Λ QSS model with an observer located at the origin can be fully reconstructed from three data sets, number counts, luminosity distance and redshift drift. This is a first step towards a future demonstration involving five data sets and the most general Szekeres model.
Martian great dust storms - Interpretive axially symmetric models
NASA Astrophysics Data System (ADS)
Schneider, E. K.
1983-08-01
The Martian great dust storms are presently considered in light of the Schneider (1977) simplified theory of steady, nearly inviscid, thermally forced and axially symmetric atmospheric motions. A highly idealized calculation of atmospheric response to heating that is concentrated in a small latitude band is conducted, leading to the identification of qualitatively different local and global response regimes. Idealized model results indicate that subtropical latitudes are favored for the initiation of a dust-raising global dust storm. The steady, axially symmetric Martian response to solar forcing and modification to this response through an additional, latitudinally localized heat source are also discussed, and it is suggested that transition behavior similar to that of the more idealized model is to be expected in this case as well.
Guendouz, Laouès; Aissani, Sarra; Marêché, Jean-François; Retournard, Alain; Marande, Pierre-Louis; Canet, Daniel
2013-01-01
The application of a weak static B0 magnetic field (less than 1 mT) may produce a well-defined splitting of the (14)N Quadrupole Resonance line when the electric field gradient tensor at the nitrogen nucleus level is of axial symmetry. It is theoretically shown and experimentally confirmed that the actual splitting (when it exists) as well as the line-shape and the signal intensity depends on three factors: (i) the amplitude of B0, (ii) the amplitude and pulse duration of the radio-frequency field, B1, used for detecting the NQR signal, and (iii) the relative orientation of B0 and B1. For instance, when B0 is parallel to B1 and regardless of the B0 value, the signal intensity is three times larger than when B0 is perpendicular to B1. This point is of some importance in practice since NQR measurements are almost always performed in the earth field. Moreover, in the course of this study, it has been recognized that important pieces of information regarding line-shape are contained in data points at the beginning of the free induction decay (fid) which, in practice, are eliminated for avoiding spurious signals due to probe ringing. It has been found that these data points can generally be retrieved by linear prediction (LP) procedures. As a further LP benefit, the signal intensity loss (by about a factor of three) is regained. PMID:24183810
Kinetic models of two-dimensional plane and axially symmetric current sheets: Group theory approach
Vasko, I. Y.; Artemyev, A. V.; Popov, V. Y.; Malova, H. V.
2013-02-15
In this paper, we present new class of solutions of Grad-Shafranov-like (GS-like) equations, describing kinetic plane and axially symmetric 2D current sheets. We show that these equations admit symmetry groups only for Maxwellian and {kappa}-distributions of charged particles. The admissible symmetry groups are used to reduce GS-like equations to ordinary differential equations for invariant solutions. We derive asymptotes of invariant solutions, while invariant solutions are found analytically for the {kappa}-distribution with {kappa}=7/2. We discuss the difference of obtained solutions from equilibria widely used in other studies. We show that {kappa} regulates the decrease rate of plasma characteristics along the current sheet and determines the spatial distribution of magnetic field components. The presented class of plane and axially symmetric (disk-like) current sheets includes solutions with the inclined neutral plane.
Dain, Sergio; Ortiz, Omar E.
2009-07-15
We present numerical evidences for the validity of the inequality between the total mass and the total angular momentum for multiple axially symmetric (nonstationary) black holes. We use a parabolic heat flow to solve numerically the stationary axially symmetric Einstein equations. As a by-product of our method, we also give numerical evidences that there are no regular solutions of Einstein equations that describe two extreme, axially symmetric black holes in equilibrium.
Method of characteristics for three-dimensional axially symmetrical supersonic flows.
NASA Technical Reports Server (NTRS)
Sauer, R
1947-01-01
An approximation method for three-dimensional axially symmetrical supersonic flows is developed; it is based on the characteristics theory (represented partly graphically, partly analytically). Thereafter this method is applied to the construction of rotationally symmetrical nozzles. (author)
Axially symmetric dissipative fluids in the quasi-static approximation
NASA Astrophysics Data System (ADS)
Herrera, L.; di Prisco, A.; Ospino, J.; Carot, J.
2016-01-01
Using a framework based on the 1 + 3 formalism, we carry out a study on axially and reflection symmetric dissipative fluids, in the quasi-static regime. We first derive a set of invariantly defined “velocities”, which allow for an inambiguous definition of the quasi-static approximation. Next, we rewrite all the relevant equations in this approximation and extract all the possible, physically relevant, consequences ensuing the adoption of such an approximation. In particular, we show how the vorticity, the shear and the dissipative flux, may lead to situations where different kind of “velocities” change their sign within the fluid distribution with respect to their sign on the boundary surface. It is shown that states of gravitational radiation are not a priori incompatible with the quasi-static regime. However, any such state must last for an infinite period of time, thereby diminishing its physical relevance.
The stability of the axially symmetric pendent drop
NASA Technical Reports Server (NTRS)
Wente, H. C.
1982-01-01
The axially symmetric pendent drop as it occurs in three different physical settings is analyzed: Problem A with constant pressure and a fixed circular opening (the siphon); Problem B with constant volume and a fixed circular opening (the medicine dropper); and Problem C with prescribed volume and a constant angle of contact with a horizontal plate. As examples, the results are verified. For Problem B it is shown that if the opening is small enough to support a stable pendent drop with a bulge, then as the exposed volume is increased, stable pendent drops with both a neck and a bulge will be formed. For Problem C it is shown that with increasing volume the profile curves for the family of stable pendent drops will develop an inflection point before instability arises.
Propagation features of beams with axially symmetric polarization
NASA Astrophysics Data System (ADS)
Nesterov, A. V.; Niziev, V. G.
2001-04-01
The general solution of the wave equation for axially symmetric polarized (ASP) beams consists of two independent solutions: an azimuthally polarized beam and a beam with longitudinal and radial field components. The maximum of the longitudinal field is at the beam axis where the transverse component is equal to zero. While the longitudinal component is maximum in the waist it does not contribute to beam divergence here, and therefore the wavefront of ASP-beams is flat in the focal plane. The ASP-beams are free from polarization aberrations, which are inherent for linearly polarized beams passing through a lens with large annular apertures, and these beams are prospective for experiments on obtaining `diffraction-free' beams. The formulae and their electromagnetic field analysis in the case of sharp focusing of ASP-beams in the Debye approximation are presented.
Three-dimensional equilibria in axially symmetric tokamaks
Garabedian, Paul R.
2006-01-01
The NSTAB and TRAN computer codes have been developed to study equilibrium, stability, and transport in fusion plasmas with three-dimensional (3D) geometry. The numerical method that is applied calculates islands in tokamaks like the Doublet III-D at General Atomic and the International Thermonuclear Experimental Reactor. When bifurcated 3D solutions are used in Monte Carlo computations of the energy confinement time, a realistic simulation of transport is obtained. The significance of finding many 3D magnetohydrodynamic equilibria in axially symmetric tokamaks needs attention because their cumulative effect may contribute to the prompt loss of α particles or to crashes and disruptions that are observed. The 3D theory predicts good performance for stellarators. PMID:17159158
Redshift drift in axially symmetric quasispherical Szekeres models
NASA Astrophysics Data System (ADS)
Mishra, Priti; Célérier, Marie-Noëlle; Singh, Tejinder P.
2012-10-01
Models of inhomogeneous universes constructed with exact solutions of Einstein’s general relativity have been proposed in the literature with the aim of reproducing the cosmological data without any need for a dark energy component. Besides large scale inhomogeneity models spherically symmetric around the observer, Swiss-cheese models have also been studied. Among them, Swiss cheeses where the inhomogeneous patches are modeled by different particular Szekeres solutions have been used for reproducing the apparent dimming of the type Ia supernovae. However, the problem of fitting such models to the type Ia supernovae data is completely degenerate and we need other constraints to fully characterize them. One of the tests which is known to be able to discriminate between different cosmological models is the redshift drift. This drift has already been calculated by different authors for Lemaître-Tolman-Bondi models. We compute it here for one particular axially symmetric quasispherical Szekeres Swiss cheese which has previously been shown to reproduce to a good accuracy the type Ia supernovae data, and we compare the results to the drift in the ΛCDM model and in some Lemaître-Tolman-Bondi models that can be found in the literature. We show that it is a good discriminator between them. Then, we discuss our model’s remaining degrees of freedom and propose a recipe to fully constrain them.
Novel Integrated Radial and Axial Magnetic Bearing
NASA Technical Reports Server (NTRS)
Blumenstock, Kenneth A.; Brown, Gary L.; Powers, Edward I. (Technical Monitor)
2000-01-01
Typically, fully active magnetically suspended systems require one axial and two radial magnetic bearings. Combining radial and axial functions into a single device allows for more compact and elegant packaging. Furthermore, in the case of high-speed devices such as energy storage flywheels, it is beneficial to minimize shaft length to keep rotor mode frequencies as high as possible. Attempts have been made to combine radial and axial functionality, but with certain drawbacks. One approach requires magnetic control flux to flow through a bias magnet reducing control effectiveness, thus resulting in increased resistive losses. This approach also requires axial force producing magnetic flux to flow in a direction into the rotor laminate that is undesirable for minimizing eddy-current losses resulting in rotational losses. Another approach applies a conical rotor shape to what otherwise would be a radial heteropolar magnetic bearing configuration. However, positional non-linear effects are introduced with this scheme and the same windings are used for bias, radial, and axial control adding complexity to the controller and electronics. For this approach, the amount of axial capability must be limited. It would be desirable for an integrated radial and axial magnetic bearing to have the following characteristics, separate inputs for radial and axial control for electronics and control simplicity, all magnetic control fluxes should only flow through their respective air gaps and should not flow through any bias magnets for minimal resistive losses, be of a homopolar design to minimize rotational losses, position related non-linear effects should be minimized, and dependent upon the design parameters, be able to achieve any radial/axial force or power ratio as desired. The integrated radial and axial magnetic bearing described in this paper exhibits all these characteristics. Magnetic circuit design, design equations, and analysis results will be presented.
EBQ code: transport of space-charge beams in axially symmetric devices
Paul, A.C.
1982-11-01
Such general-purpose space charge codes as EGUN, BATES, WOLF, and TRANSPORT do not gracefully accommodate the simulation of relativistic space-charged beams propagating a long distance in axially symmetric devices where a high degree of cancellation has occurred between the self-magnetic and self-electric forces of the beam. The EBQ code was written specifically to follow high current beam particles where space charge is important in long distance flight in axially symmetric machines possessing external electric and magnetic field. EBQ simultaneously tracks all trajectories so as to allow procedures for charge deposition based on inter-ray separations. The orbits are treated in Cartesian geometry (position and momentum) with z as the independent variable. Poisson's equation is solved in cylindrical geometry on an orthogonal rectangular mesh. EBQ can also handle problems involving multiple ion species where the space charge from each must be included. Such problems arise in the design of ion sources where different charge and mass states are present.
Symmetry-adapted digital modeling I. Axial symmetric proteins.
Janner, A
2016-05-01
Considered are axial symmetric proteins exemplified by the octameric mitochondrial creatine kinase, the Pyr RNA-binding attenuation protein, the D-aminopeptidase and the cyclophilin A-cyclosporin complex, with tetragonal (422), trigonal (32), pentagonal (52) and pentagonal (52) point-group symmetry, respectively. One starts from the protein enclosing form, which is characterized by vertices at points of a lattice (the form lattice) whose dimension depends on the point group. This allows the indexing of Cα's at extreme radial positions. The indexing is extended to additional residues on the basis of a finer lattice, the digital modeling lattice Λ, which includes the form lattice as a sublattice. This leads to a coarse-grained description of the protein. In the crystallographic point-group case, the planar indices are obtained from a projection of atomic positions along the rotation axis, taken as the z axis. The planar indices of a Cα are then those of the nearest projected lattice point. In the non-crystallographic case, low indices are an additional requirement. The coarse-grained bead follows from the condition imposed on the residues selected to have a z coordinate within a band of value δ above and below the height of lattice points. The choice of δ permits a variation of the coarse-grained bead model. For example, the value δ = 0.5 leads to a fine-grained indexing of the full set of residues, whereas with δ = 0.25 one gets a coarse-grained model which includes only about half of these residues. Within this procedure, the indexing of the Cα only depends on the choice of the digital modeling lattice and not on the value of δ. The characteristics which distinguish the present approach from other coarse-grained models of proteins on lattices are summarized at the end. PMID:27126107
NASA Technical Reports Server (NTRS)
Ye, Gang; Voigt, Gerd-Hannes
1989-01-01
A model is presented of an axially symmetric pole-on magnetosphere in MHD force balance, in which both plasma thermal pressure gradients and centrifugal force are taken into account. Assuming that planetary rotation leads to differentially rotating magnetotail field lines, the deformation of magnetotail field lines under the influence of both thermal plasma pressure and centrifugal forces was calculated. Analytic solutions to the Grad-Shafranov equation are presented, which include the centrifugal force term. It is shown that the nonrotational magnetosphere with hot thermal plasma leads to a field configuration without a toroidal B(phi) component and without field-aligned Birkeland currents. The other extreme, a rapidly rotating magnetosphere with cold plasma, leads to a configuration in which plasma must be confined within a thin disk in a plane where the radial magnetic field component B(r) vanishes locally.
Normal glow discharge in axial magnetic field
NASA Astrophysics Data System (ADS)
Surzhikov, S.; Shang, J.
2014-10-01
Theory and results of mathematical modeling of a glow discharge in a parallel-plate configuration with axial magnetic field is presented. The model consists of continuity equations for electron and ion fluids, the Poisson equation for the self-consistent electric field. Numerical simulation results are presented for two-dimensional glow discharge at various initial conditions. The results are obtained for molecular nitrogen at pressure 1-5 Torr, emf of power supply 1-2 kV, and magnetic field induction B = 0-0.5 T. It is shown that in the presence of the axial magnetic field the glow discharge is rotated around its axis of symmetry. Nevertheless it is shown that in the investigated range of discharge parameters in an axial magnetic field the law of the normal current density is retained.
Earliest stages of the nonequilibrium in axially symmetric, self-gravitating, dissipative fluids
NASA Astrophysics Data System (ADS)
Herrera, L.; Di Prisco, A.; Ospino, J.; Carot, J.
2016-09-01
We report a study on axially and reflection symmetric dissipative fluids, just after its departure from hydrostatic and thermal equilibrium, at the smallest time scale at which the first signs of dynamic evolution appear. Such a time scale is smaller than the thermal relaxation time, the thermal adjustment time, and the hydrostatic time. It is obtained that the onset of nonequilibrium will critically depend on a single function directly related to the time derivative of the vorticity. Among all fluid variables (at the time scale under consideration), only the tetrad component of the anisotropic tensor in the subspace orthogonal to the four-velocity and the Killing vector of axial symmetry, shows signs of dynamic evolution. Also, the first step toward a dissipative regime begins with a nonvanishing time derivative of the heat flux component along the meridional direction. The magnetic part of the Weyl tensor vanishes (not so its time derivative), indicating that the emission of gravitational radiation will occur at later times. Finally, the decreasing of the effective inertial mass density, associated to thermal effects, is clearly illustrated.
Gapless excitations of axially symmetric vortices in systems with tensorial order parameter
Peterson, Adam J.; Shifman, Mikhail
2014-09-15
We extend the results of previous work on vortices in systems with tensorial order parameters. Specifically, we focus our attention on systems with a Ginzburg–Landau free energy with a global U(1){sub P}×SO(3){sub S}×SO(3){sub L} symmetry in the phase, spin and orbital degrees of freedom. We consider axially symmetric vortices appearing on the spin–orbit locked SO(3){sub S+L} vacuum. We determine the conditions required on the Ginzburg–Landau parameters to allow for an axially symmetric vortex with off diagonal elements in the order parameter to appear. The collective coordinates of the axial symmetric vortices are determined. These collective coordinates are then quantized using the time dependent Ginzburg–Landau free energy to determine the number of gapless modes propagating along the vortex.
NASA Technical Reports Server (NTRS)
Page, R. J.; Childs, M. E.
1974-01-01
An experimental investigation at Mach 4 of shock-induced turbulent boundary layer separation at the walls of axially symmetric flow passages is discussed, with particular emphasis placed on determining the shock strengths required for incipient separation. The shock waves were produced by interchangeable sting-mounted cones placed on the axes of the flow passages and aligned with the freestream flow. The interactions under study simulate those encountered in axially symmetric engine inlets of supersonic aircraft. Knowledges of the shock strengths required for boundary layer separation in inlets is important since for shocks of somewhat greater strength rather drastic alterations in the inlet flow field may occur.
Axial bearings using superconductors and permanent magnets
Marion-Pera, M.C.; Yonnet, J.P.
1995-05-01
Contactless bearings are one of the applications of high temperature superconductors. Different structures of permanent magnets and superconductors are modeled assuming a total Meissner effect. Axial force of a few hundred Newtons and stiffness of around 100 N/mm can be achieved. Consequences of real superconducting material behavior are discussed.
Dynamic locking plates provide symmetric axial dynamization to stimulate fracture healing.
Tsai, Stanley; Fitzpatrick, Daniel C; Madey, Steven M; Bottlang, Michael
2015-08-01
Axial dynamization of an osteosynthesis construct can promote fracture healing. This biomechanical study evaluated a novel dynamic locking plate that derives symmetric axial dynamization by elastic suspension of locking holes within the plate. Standard locked and dynamic plating constructs were tested in a diaphyseal bridge-plating model of the femoral diaphysis to determine the amount and symmetry of interfragmentary motion under axial loading, and to assess construct stiffness under axial loading, torsion, and bending. Subsequently, constructs were loaded until failure to determine construct strength and failure modes. Finally, strength tests were repeated in osteoporotic bone surrogates. One body-weight axial loading of standard locked constructs produced asymmetric interfragmentary motion that was over three times smaller at the near cortex (0.1 ± 0.01 mm) than at the far cortex (0.32 ± 0.02 mm). Compared to standard locked constructs, dynamic plating constructs enhanced motion by 0.32 mm at the near cortex and by 0.33 mm at the far cortex and yielded a 77% lower axial stiffness (p < 0.001). Dynamic plating constructs were at least as strong as standard locked constructs under all test conditions. In conclusion, dynamic locking plates symmetrically enhance interfragmentary motion, deliver controlled axial dynamization, and are at least comparable in strength to standard locked constructs. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 33:1218-1225, 2015.
Axially symmetric equations for differential pulsar rotation with superfluid entrainment
NASA Astrophysics Data System (ADS)
Antonelli, M.; Pizzochero, P. M.
2016-09-01
In this article we present an analytical two-component model for pulsar rotational dynamics. Under the assumption of axial symmetry, implemented by a paraxial array of straight vortices that thread the entire neutron superfluid, we are able to project exactly the 3D hydrodynamical problem to a 1D cylindrical one. In the presence of density-dependent entrainment the superfluid rotation is non-columnar: we circumvent this by using an auxiliary dynamical variable directly related to the areal density of vortices. The main result is a system of differential equations that take consistently into account the stratified spherical structure of the star, the dynamical effects of non-uniform entrainment, the differential rotation of the superfluid component and its coupling to the normal crust. These equations represent a mathematical framework in which to test quantitatively the macroscopic consequences of the presence of a stable vortex array, a working hypothesis widely used in glitch models. Even without solving the equations explicitly, we are able to draw some general quantitative conclusions; in particular, we show that the reservoir of angular momentum (corresponding to recent values of the pinning forces), is enough to reproduce the largest glitch observed in the Vela pulsar, provided its mass is not too large.
Investigation of Flow in an Axially Symmetrical Heated Jet of Air
NASA Technical Reports Server (NTRS)
Corrsin, Stanley
1943-01-01
The work done under this contract falls essentially into two parts: the first part was the design and construction of the equipment and the running of preliminary tests on the 3-inch jet, carried out by Mr. Carl Thiele in 1940; the second part consisting in the measurement in the 1-inch jet flow in an axially symmetrical heated jet of air. (author)
Electromagnetic fields in an axial symmetric waveguide with variable cross section
Kheifets, S.
1980-07-01
A new class of separable variables is found which allows one to find an approximate analytical solution of the Maxwell equations for axial symmetric waveguides with slow (but not necessarily small) varying boundary surfaces. An example of the solution is given. Possible applications and limitations of this approach are discussed.
Symmetric coordinates in solids: magnetic Bloch oscillations
NASA Astrophysics Data System (ADS)
Zak, Joshua
2015-04-01
There has recently been a revival of the Bloch theory of energy bands in solids. This revival was caused, on one hand, by the discovery of topological insulators and the discovery of graphene, and, on the other end, by a very efficient new technique that was developed for creating artificial solids. These are the cold atoms in optical lattices. Last year geometric phases were measured in energy bands of cold atoms in a one-dimensional optical lattice by using Bloch oscillations. These phases are related to the Wyckoff positions, or the symmetry centers in the Bravais lattice. In this lecture a theoretical frame is developed for magnetic Bloch oscillations, meaning oscillations in the presence of a magnetic field. The theory is based on the kq-representation and the symmetric coordinates in solids. It is shown that for a Bloch electron in a magnetic field the orbit quasi-center is a conserved quantity. This is similar to the conservation of the quasi-momentum for an electron in a periodic potential. When an electric field is turned on, the orbit quasi-center oscillates in a similar way to the Bloch oscillations in the absence of a magnetic field. But there is a difference because the magnetic Brillouin zone is different. It depends on the strength of the magnetic field. An analogy is drawn between Bloch oscillations and magnetic Bloch oscillations. By using the magnetic translations it is indicated that a magnetic Wannier-Stark ladder appears in the spectrum of a Bloch electron in crossed magnetic and electric fields. The geometric phases for magnetic Bloch oscillations should be magnetic field dependent.
Dynamic locking plates provide symmetric axial dynamization to stimulate fracture healing.
Tsai, Stanley; Fitzpatrick, Daniel C; Madey, Steven M; Bottlang, Michael
2015-08-01
Axial dynamization of an osteosynthesis construct can promote fracture healing. This biomechanical study evaluated a novel dynamic locking plate that derives symmetric axial dynamization by elastic suspension of locking holes within the plate. Standard locked and dynamic plating constructs were tested in a diaphyseal bridge-plating model of the femoral diaphysis to determine the amount and symmetry of interfragmentary motion under axial loading, and to assess construct stiffness under axial loading, torsion, and bending. Subsequently, constructs were loaded until failure to determine construct strength and failure modes. Finally, strength tests were repeated in osteoporotic bone surrogates. One body-weight axial loading of standard locked constructs produced asymmetric interfragmentary motion that was over three times smaller at the near cortex (0.1 ± 0.01 mm) than at the far cortex (0.32 ± 0.02 mm). Compared to standard locked constructs, dynamic plating constructs enhanced motion by 0.32 mm at the near cortex and by 0.33 mm at the far cortex and yielded a 77% lower axial stiffness (p < 0.001). Dynamic plating constructs were at least as strong as standard locked constructs under all test conditions. In conclusion, dynamic locking plates symmetrically enhance interfragmentary motion, deliver controlled axial dynamization, and are at least comparable in strength to standard locked constructs. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 33:1218-1225, 2015. PMID:25721801
NASA Astrophysics Data System (ADS)
Vollmer, Andreas
2015-10-01
Stationary and axially symmetric spacetimes play an important role in astrophysics, particularly in the theory of neutron stars and black holes. The static vacuum subclass of these spacetimes is known as Weyl's class, and contains the Schwarzschild spacetime as its most prominent example. This paper is going to study the space of Killing tensor fields of valence 3 for spacetimes of Weyl's class. Killing tensor fields play a crucial role in physics since they are in correspondence to invariants of the geodesic motion (i.e. constants of the motion). It will be proven that in static and axially symmetric vacuum spacetimes the space of Killing tensor fields of valence 3 is generated by Killing vector fields and quadratic Killing tensor fields. Using this result, it will be proven that for the family of Zipoy-Voorhees metrics, valence-3 Killing tensor fields are always generated by Killing vector fields and the metric.
NASA Technical Reports Server (NTRS)
Nelson, C. D., Jr.; Hudson, W. G.; Yang, T.
1974-01-01
This paper presents a procedure for the design and the performance prediction of axially symmetrical contoured wall diffusers employing suction boundary layer control. An inverse problem approach was used in the potential flow design of the diffuser wall contours. The experimentally observed flow characteristics and the stability of flows within the diffuser are also described. Guidelines for the design of low suction (less than 10 percent of the inlet flow) and thus high effectiveness contoured wall diffusers are also provided based on the results of the experimental program.
A combined finite element-boundary element formulation for solution of axially symmetric bodies
NASA Technical Reports Server (NTRS)
Collins, Jeffrey D.; Volakis, John L.
1991-01-01
A new method is presented for the computation of electromagnetic scattering from axially symmetric bodies. To allow the simulation of inhomogeneous cross sections, the method combines the finite element and boundary element techniques. Interior to a fictitious surface enclosing the scattering body, the finite element method is used which results in a sparce submatrix, whereas along the enclosure the Stratton-Chu integral equation is enforced. By choosing the fictitious enclosure to be a right circular cylinder, most of the resulting boundary integrals are convolutional and may therefore be evaluated via the FFT with which the system is iteratively solved. In view of the sparce matrix associated with the interior fields, this reduces the storage requirement of the entire system to O(N) making the method attractive for large scale computations. The details of the corresponding formulation and its numerical implementation are described.
Beam squint in axially symmetric reflector antennas with laterally displaced feeds
NASA Astrophysics Data System (ADS)
Fiebig, Dirk; Wohlleben, Rudolph; Prata, Aluizio; Rusch, Willard V. T.
1991-06-01
The beam squint effect appearing in axially symmetric reflector antennas with laterally displaced feeds was investigated. Numerical calculations have been carried out and the beam squint for circular polarized excitation has been measured using a 100-m telescope. The telescope was operated in the Gregorian mode, where the equivalent focal length equals 387.5 m. The feed horn was laterally displaced by 1.364 m from the optical axis at the system focus. Good agreement was obtained between the numerical calculations and the experimental results. The authors found a shift of the two radiation patterns of phi of about 2 arcsec. The orientation of the beam squint in the configuration with a laterally displaced feed is different from the orientation in offset reflector antennas.
Octupolar approximation for the excluded volume of axially symmetric convex bodies
NASA Astrophysics Data System (ADS)
Piastra, Marco; Virga, Epifanio G.
2013-09-01
We propose a simply computable formula for the excluded volume of convex, axially symmetric bodies, based on the classical Brunn-Minkoski theory for convex bodies, which is briefly outlined in an Appendix written in a modern mathematical language. This formula is applied to cones and spherocones, which are regularized cones; a shape-reconstruction algorithm is able to generate the region in space inaccessible to them and to compute their excluded volume, which is found to be in good agreement with our approximate analytical formula. Finally, for spherocones with an appropriately tuned amplitude, we predict the occurrence of a relative deep minimum of the excluded volume in a configuration lying between the parallel alignment (where the excluded volume is maximum) and the antiparallel alignment (where the excluded volume is minimum).
A Priori Bound on the Velocity in Axially Symmetric Navier-Stokes Equations
NASA Astrophysics Data System (ADS)
Lei, Zhen; Navas, Esteban A.; Zhang, Qi S.
2016-01-01
Let v be the velocity of Leray-Hopf solutions to the axially symmetric three-dimensional Navier-Stokes equations. Under suitable conditions for initial values, we prove the following a priori bound |v(x, t)| ≤ C |ln r|^{1/2}/r^2, qquad 0 < r ≤ 1/2, where r is the distance from x to the z axis, and C is a constant depending only on the initial value. This provides a pointwise upper bound (worst case scenario) for possible singularities, while the recent papers (Chiun-Chuan et al., Commun PDE 34(1-3):203-232, 2009; Koch et al., Acta Math 203(1):83-105, 2009) gave a lower bound. The gap is polynomial order 1 modulo a half log term.
Charge-exchange QRPA with the Gogny Force for Axially-symmetric Deformed Nuclei
Martini, M.; Goriely, S.; Péru, S.
2014-06-15
In recent years fully consistent quasiparticle random-phase approximation (QRPA) calculations using finite range Gogny force have been performed to study electromagnetic excitations of several axially-symmetric deformed nuclei up to the {sup 238}U. Here we present the extension of this approach to the charge-exchange nuclear excitations (pnQRPA). In particular we focus on the Isobaric Analog and Gamow-Teller resonances. A comparison of the predicted GT strength distribution with existing experimental data is presented. The role of nuclear deformation is shown. Special attention is paid to β-decay half-lives calculations for which experimental data exist and for specific isotone chains of relevance for the r-process nucleosynthesis.
Condensed matter realization of the axial magnetic effect
NASA Astrophysics Data System (ADS)
Chernodub, Maxim N.; Cortijo, Alberto; Grushin, Adolfo G.; Landsteiner, Karl; Vozmediano, María A. H.
2014-02-01
The axial magneticeffect, i.e., the generation of an energy current parallel to an axial magnetic field coupling with opposite signs to left- and right-handed fermions, is a nondissipative transport phenomenon intimately related to the gravitational contribution to the axial anomaly. An axial magnetic field emerges naturally in condensed matter in so-called Weyl semimetals. We present a measurable implementation of the axial magnetic effect. We show that the edge states of a Weyl semimetal at finite temperature possess a temperature dependent angular momentum in the direction of the vector potential intrinsic to the system. Such a realization provides a plausible context for the experimental confirmation of the elusive gravitational anomaly.
Nonlinear resonance and envelope instability of intense beam in axial symmetric periodic channel
NASA Astrophysics Data System (ADS)
Li, Chao; Liu, Zhicong; Zhao, Yaliang; Qin, Qing
2016-03-01
When an intense charged particle beam propagates through a given periodic focusing channel, it will experience the phenomena of nonlinear resonance, collective instability or chaotic motion with different conditions. In this paper, the collective envelope instability mechanisms are studied for symmetric beam propagation in an axially symmetric periodic channel. The beam is characterized as collectively stable if there exists a stable fixed point (SFP) located at the matched beam condition (rm , 0) in (r ,pr) phase space. It is found that the well-known collective envelope instability is dynamically related to the period-two orbits bifurcation of the matched SFP, meanwhile the unique stable SFP turns into an unstable saddle-node, surrounded by 1/2 resonance islands. However, higher orders of resonance (l / n, n > 2) coming from period-n bifurcation will not lead to collective beam instability because a new SFP emerges immediately upon the bifurcation process. The orders of SFP bifurcation is numerically depicted by the envelope tune ν=ϕ/360, where ϕ is the eigenphase of the Poincar e ´ tangent map T(s) in one focusing period at SFP, as functions of depressed phase advance. With strong space charge, due to these resonances from SFP bifurcation could be overlapped, mismatched beam would even show chaotic motion. For specific parameters, regular orbits, resonance islands, chaotic regions formed by resonance overlapping are clearly depicted with frequency analysis and Lyapunov spectral exponents, a method that may prove useful when extended to higher phase-space dimensions.
Development and Testing of an Axial Halbach Magnetic Bearing
NASA Technical Reports Server (NTRS)
Eichenberg, Dennis J.; Gallo, Christopher A.; Thompson, William K.
2006-01-01
The NASA Glenn Research Center has developed and tested a revolutionary Axial Halbach Magnetic Bearing. The objective of this work is to develop a viable non-contact magnetic thrust bearing utilizing Halbach arrays for all-electric flight, and many other applications. This concept will help to reduce harmful emissions, reduce the Nation s dependence on fossil fuels and mitigate many of the concerns and limitations encountered in conventional axial bearings such as bearing wear, leaks, seals and friction loss. The Axial Halbach Magnetic Bearing is inherently stable and requires no active feedback control system or superconductivity as required in many magnetic bearing designs. The Axial Halbach Magnetic Bearing is useful for very high speed applications including turbines, instrumentation, medical systems, computer memory systems, and space power systems such as flywheels. Magnetic fields suspend and support a rotor assembly within a stator. Advanced technologies developed for particle accelerators, and currently under development for maglev trains and rocket launchers, served as the basis for this application. Experimental hardware was successfully designed and developed to validate the basic principles and analyses. The report concludes that the implementation of Axial Halbach Magnetic Bearings can provide significant improvements in rotational system performance and reliability.
Space charge field in a FEL with axially symmetric electron beam
Goncharov, I.A.; Belyavskiy, E.D.
1995-12-31
Nonlinear two-dimensional theory of the space charge of an axially symmetric electron beam propagating in combined right-hand polarized wiggler and uniform axial guide fields in a presence of high-frequency electromagnetic wave is presented. The well-known TE{sub 01} mode in a cylindrical waveguide for the model of radiation fields and paraxial approximation for the wiggler field are used. Space charge field components are written in the Lagrange coordinates by the twice averaged Green`s functions of two equally charged infinitely thin discs. For that {open_quotes}compensating charges{close_quotes} method is applied in which an electron ring model is substituted by one with two different radii and signs discs. On this approach the initial Green`s functions peculiarities are eliminated and all calculations are considerably simplified. Coefficients of a twice averaged Green`s function expansion into a Fourier series are obtained by use of corresponding expansion coefficients of longitudinal Green`s functions of equal radii discs and identical rings known from the one-dimensional theory of super HF devices taking into account electron bunches periodicity. This approach permit the space charge field components for an arbitrary stratified stream to be expressed in a simple and strict enough form. The expressions obtained can be employed in a nonlinear two-dimensional FEL theory in order to investigate beam dynamical defocusing and electrons failing on the waveguide walls in the high gain regime. This is especially important for FEL operation in mm and submm.
High-speed three-dimensional plasma temperature determination of axially symmetric free-burning arcs
NASA Astrophysics Data System (ADS)
Bachmann, B.; Kozakov, R.; Gött, G.; Ekkert, K.; Bachmann, J.-P.; Marques, J.-L.; Schöpp, H.; Uhrlandt, D.; Schein, J.
2013-03-01
In this paper we introduce an experimental technique that allows for high-speed, three-dimensional determination of electron density and temperature in axially symmetric free-burning arcs. Optical filters with narrow spectral bands of 487.5-488.5 nm and 689-699 nm are utilized to gain two-dimensional spectral information of a free-burning argon tungsten inert gas arc. A setup of mirrors allows one to image identical arc sections of the two spectral bands onto a single camera chip. Two-different Abel inversion algorithms have been developed to reconstruct the original radial distribution of emission coefficients detected with each spectral window and to confirm the results. With the assumption of local thermodynamic equilibrium we calculate emission coefficients as a function of temperature by application of the Saha equation, the ideal gas law, the quasineutral gas condition and the NIST compilation of spectral lines. Ratios of calculated emission coefficients are compared with measured ones yielding local plasma temperatures. In the case of axial symmetry the three-dimensional plasma temperature distributions have been determined at dc currents of 100, 125, 150 and 200 A yielding temperatures up to 20000 K in the hot cathode region. These measurements have been validated by four different techniques utilizing a high-resolution spectrometer at different positions in the plasma. Plasma temperatures show good agreement throughout the different methods. Additionally spatially resolved transient plasma temperatures have been measured of a dc pulsed process employing a high-speed frame rate of 33000 frames per second showing the modulation of the arc isothermals with time and providing information about the sensitivity of the experimental approach.
Linear optical response of carbon nanotubes under axial magnetic field
NASA Astrophysics Data System (ADS)
Moradian, Rostam; Chegel, Raad; Behzad, Somayeh
2010-04-01
We considered single walled carbon naotubes (SWCNTs) as real three dimensional (3D) systems in a cylindrical coordinate. The optical matrix elements and linear susceptibility, χ(ω), in the tight binding approximation in terms of one-dimensional wave vector, kz and subband index, l are calculated. In an external axial magnetic field optical frequency dependence of linear susceptibility are investigated. We found that axial magnetic field has two effects on the imaginary part of the linear susceptibility spectrum, in agreement with experimental results. The first effect is broadening and the second, splitting. Also we found that for all metallic zigzag and armchair SWCNTs, the axial magnetic field leads to the creation of a peak with energy less than 1.5 eV, contrary to what is observed in the absence of a magnetic field.
NASA Astrophysics Data System (ADS)
Lin, C.-C.; Huang, T.-C.; Chu, C.-C.; Hsiao, Vincent K. S.
2016-07-01
We demonstrate an optically switchable half-wave plate (HWP) composed of a photoaligned and axially symmetric liquid crystal (ASLC) film containing two azobenzene derivatives, methyl red (MR) and 4-butyl-4‧-methoxyazobenzene (BMAB). MR is responsible for photoalignment, and BMAB is used for optical tuning and switching the state of polarization (SOP) of probe beam (633 nm He-Ne laser) passing through the MR/BMAB doped ASLC film. The photoaligned ASLC film is first fabricated using a line-shaped laser beam (532 nm) exposure applied on a rotating LC sample. The fabricated ASLC film can passively change the linearly polarized light. Under UV light exposure, the formation of cis-BMAB (bend-like shape) within the film disrupts the LC molecules, switches the LC orientation, and further changes the SOP of the probe beam. Under laser irradiation (532 nm), the formation of trans-BMAB (rod-like shape) reverts the LC orientation back and simultaneously generates cis-MR, helping anchor the LC in the previously photoaligned orientation. The photoaligned MR/BMAB-doped LC HWP can change the linear SOP under alternating UV and visible light exposure.
Axial Anomaly, Dirac Sea, and the Chiral Magnetic Effect
Kharzeev, D.E.
2010-05-26
Gribov viewed the axial anomaly as a manifestation of the collective motion of Dirac fermions with arbitrarily high momenta in the vacuum. In the presence of an external magnetic field and a chirality imbalance, this collective motion becomes directly observable in the form of the electric current - this is the chiral magnetic effect (CME). I give an elementary introduction into the physics of CME, and discuss the experimental status and recent developments.
Dynamics of intrinsic axial flows in unsheared, uniform magnetic fields
NASA Astrophysics Data System (ADS)
Li, J. C.; Diamond, P. H.; Xu, X. Q.; Tynan, G. R.
2016-05-01
A simple model for the generation and amplification of intrinsic axial flow in a linear device, controlled shear decorrelation experiment, is proposed. This model proposes and builds upon a novel dynamical symmetry breaking mechanism, using a simple theory of drift wave turbulence in the presence of axial flow shear. This mechanism does not require complex magnetic field structure, such as shear, and thus is also applicable to intrinsic rotation generation in tokamaks at weak or zero magnetic shear, as well as to linear devices. This mechanism is essentially the self-amplification of the mean axial flow profile, i.e., a modulational instability. Hence, the flow development is a form of negative viscosity phenomenon. Unlike conventional mechanisms where the residual stress produces an intrinsic torque, in this dynamical symmetry breaking scheme, the residual stress induces a negative increment to the ambient turbulent viscosity. The axial flow shear is then amplified by this negative viscosity increment. The resulting mean axial flow profile is calculated and discussed by analogy with the problem of turbulent pipe flow. For tokamaks, the negative viscosity is not needed to generate intrinsic rotation. However, toroidal rotation profile gradient is enhanced by the negative increment in turbulent viscosity.
NASA Astrophysics Data System (ADS)
Schwartz, Benjamin L.; Yin, Ziying; Magin, Richard L.
2016-09-01
Cylindrical homogenous phantoms for magnetic resonance (MR) elastography in biomedical research provide one way to validate an imaging systems performance, but the simplified geometry and boundary conditions can cloak complexity arising at tissue interfaces. In an effort to develop a more realistic gel tissue phantom for MRE, we have constructed a heterogenous gel phantom (a sphere centrally embedded in a cylinder). The actuation comes from the phantom container, with the mechanical waves propagating toward the center, focusing the energy and thus allowing for the visualization of high-frequency waves that would otherwise be damped. The phantom was imaged and its stiffness determined using a 9.4 T horizontal MRI with a custom build piezo-elastic MRE actuator. The phantom was vibrated at three frequencies, 250, 500, and 750 Hz. The resulting shear wave images were first used to reconstruct material stiffness maps for thin (1 mm) axial slices at each frequency, from which the complex shear moduli μ were estimated, and then compared with forward modeling using a recently developed theoretical model which took μ as inputs. The overall accuracy of the measurement process was assessed by comparing theory with experiment for selected values of the shear modulus (real and imaginary parts). Close agreement is shown between the experimentally obtained and theoretically predicted wave fields.
Alton, Gerald D.
1996-01-01
An electron cyclotron resonance (ECR) ion source includes a primary mirror coil disposed coaxially around a vacuum vessel in which a plasma is induced and introducing a solenoidal ECR-producing field throughout the length of the vacuum vessel. Radial plasma confinement is provided by a multi-cusp, multi-polar permanent magnet array disposed azimuthally around the vessel and within the primary mirror coil. Axial confinement is provided either by multi-cusp permanent magnets at the opposite axial ends of the vessel, or by secondary mirror coils disposed on opposite sides of the primary coil.
NASA Technical Reports Server (NTRS)
Warsi, Z. U. A.; Weed, R. A.; Thompson, J. F.
1980-01-01
A formulation of the complete Navier-Stokes problem for a viscous hypersonic flow in general curvilinear coordinates is presented. This formulation is applicable to both the axially symmetric and three dimensional flows past bodies of revolution. The equations for the case of zero angle of attack were solved past a circular cylinder with hemispherical caps by point SOR finite difference approximation. The free stream Mach number and the Reynolds number for the test case are respectively 22.04 and 168883. The whole algorithm is presented in detail along with the preliminary results for pressure, temperature, density and velocity distributions along the stagnation line.
NASA Astrophysics Data System (ADS)
Jolos, R. V.; Shirikova, N. Yu.; Sushkov, A. V.
2014-09-01
In this paper, the ratio of the mass coefficients for the γ-vibrational and rotational motion for the well deformed axially symmetric nuclei is calculated. Calculations are performed based on the Cranking model approach. The results obtained show that the microscopic model based on the Woods-Saxon nuclear mean field potential and the pairing forces with a constant strength coefficient qualitatively explain the existing experimental data on the ratio of the mass coefficients. The important role of the blocking effect in the calculation of the mass coefficients is demonstrated.
Electrostatic waves in carbon nanotubes with an axial magnetic field
Abdikian, Alireza; Bagheri, Mehran
2013-10-15
Based on a linearized hydrodynamic model and within the quasi-static approximation, the dispersion relation of electrostatic waves propagating through single-walled carbon nanotubes subject to an axial magnetic field is theoretically explored. In the classical limit, we obtain two main possible waves which in turn are divided into two branches, a low-frequency acoustical and a high-frequency optical plasmon branch. In the quantum case, we have found that the dispersion relation is substantially modified when the electron wavelength becomes large enough compared to the propagation wavelength of the electrostatic waves in the quantum plasma. We also show that the axial magnetic field manifest itself on the perturbed electron density through the quantum term and gives rise to the propagation of the electrostatic waves within the quantum plasma. As a result, the effect of the magnetic field is pronounced in the plasma dispersion relations in such a way that their curves approach to zero when the magnetic field is weak; and for the strong magnetic field, they asymptotically meet the constant lines.
NASA Astrophysics Data System (ADS)
Nam-Il, Kim; Moon-Young, Kim
2005-06-01
An improved numerical method to exactly evaluate the dynamic element stiffness matrix is proposed for the spatially coupled free vibration analysis of non-symmetric thin-walled curved beams subjected to uniform axial force. For this purpose, firstly equations of motion, boundary conditions and force-deformation relations are rigorously derived from the total potential energy for a curved beam element. Next systems of linear algebraic equations with non-symmetric matrices are constructed by introducing 14 displacement parameters and transforming the fourth-order simultaneous differential equations into the first-order simultaneous equations. And then explicit expressions for displacement parameters are numerically evaluated via eigensolutions and the exact 14×14 element stiffness matrix is determined using force-deformation relations. In order to demonstrate the validity and the accuracy of this study, the spatially coupled natural frequencies of non-symmetric thin-walled curved beams subjected to uniform compressive and tensile forces are evaluated and compared with analytical and finite element solutions using Hermitian curved beam elements or ABAQUS's shell element. In addition, some results by the parametric study are reported.
Permanent Magnet Spiral Motor for Magnetic Gradient Energy Utilization: Axial Magnetic Field
NASA Astrophysics Data System (ADS)
Valone, Thomas F.
2010-01-01
power for magnetic field switching device can be achieved in order to deflect the rotor magnet in transit. The Wiegand effect itself (bistable FeCoV wire called "Vicalloy") invented by John Wiegand (Switchable Magnetic Device, US Patent ♯4,247,601), utilizing Barkhausen jumps of magnetic domains, is also applied for a similar achievement (Dilatush, 1977). Conventional approaches for spiral magnetic gradient force production have not been adequate for magnetostatic motors to perform useful work. It is proposed that integrating a magnetic force control device with a spiral stator inhomogeneous axial magnetic field motor is a viable approach to add a sufficient nonlinear boundary shift to apply the angular momentum and potential energy gained in 315 degrees of the motor cycle.
Collimation of laser-produced plasmas using axial magnetic field
Roy, Amitava; Harilal, Sivanandan S.; Hassan, Syed M.; Endo, Akira; Mocek, Tomas; Hassanein, A.
2015-06-01
We investigated the expansion dynamics of laser-produced plasmas expanding into an axial magnetic field. Plasmas were generated by focusing 1.064 µm Nd:YAG laser pulses onto a planar tin target in vacuum and allowed to expand into a 0.5 T magnetic-filed where field lines were aligned along the plume expansion direction. Gated images employing intensified CCD showed focusing of the plasma plume, which were also compared with results obtained using particle-in-cell modelling methods. The estimated density and temperature of the plasma plumes employing emission spectroscopy revealed significant changes in the presence and absence of the 0.5T magnetic field. In the presence of the field, the electron temperature is increased with distance from the target, while the density showed opposite effects.
NASA Technical Reports Server (NTRS)
Mishchenko, Michael I.
1993-01-01
Rigorously light scattering by size-shape distributions of randomly oriented axially symmetric particles are calculated by the T-matrix method, as extended to randomly oriented scatterers. The computational scheme is described along with a newly developed convergence procedure that makes it possible to substantially reduce computer time and storage requirements. The elements of the Stokes scattering matrix for a power-law size distribution of randomly oriented moderately aspherical spheroids are shown to be much smoother than and differ substantially from those of equivalent monodisperse spheroids; averaging over orientations does not eliminate the necessity of averaging over particle sizes. The angular-scattering behavior of the ensembles of nonspherical particles is found to be significantly different from that of the equivalent polydisperse spheres.
Höhne, Christian; Prager, Jens; Gravenkamp, Hauke
2015-12-01
In this paper, a method to determine the complex dispersion relations of axially symmetric guided waves in cylindrical structures is presented as an alternative to the currently established numerical procedures. The method is based on a spectral decomposition into eigenfunctions of the Laplace operator on the cross-section of the waveguide. This translates the calculation of real or complex wave numbers at a given frequency into solving an eigenvalue problem. Cylindrical rods and plates are treated as the asymptotic cases of cylindrical structures and used to generalize the method to the case of hollow cylinders. The presented method is superior to direct root-finding algorithms in the sense that no initial guess values are needed to determine the complex wave numbers and that neither starting at low frequencies nor subsequent mode tracking is required. The results obtained with this method are shown to be reasonably close to those calculated by other means and an estimate for the achievable accuracy is given.
High temperature superconducting axial field magnetic coupler: realization and test
NASA Astrophysics Data System (ADS)
Belguerras, L.; Mezani, S.; Lubin, T.; Lévêque, J.; Rezzoug, A.
2015-09-01
Contactless torque transmission through a large airgap is required in some industrial applications in which hermetic isolation is necessary. This torque transmission usually uses magnetic couplers, whose dimension strongly depends on the airgap flux density. The use of high temperature superconducting (HTS) coils to create a strong magnetic field may constitute a solution to reduce the size of the coupler. It is also possible to use this coupler to replace a torque tube in transmitting the torque produced by a HTS motor to its load. This paper presents the detailed construction and tests of an axial field HTS magnetic coupler. Pancake coils have been manufactured from BSCCO tape and used in one rotor of the coupler. The second rotor is mainly composed of NdFeB permanent magnets. Several tests have been carried out showing that the constructed coupler is working properly. A 3D finite element (FE) model of the studied coupler has been developed. Airgap magnetic field and torque measurements have been carried out and compared to the FE results. It has been shown that the measured and the computed quantities are in satisfactory agreement.
Multi-branch structure for electrically charged four-pole axially symmetric system of solutions
NASA Astrophysics Data System (ADS)
Soltanian, Amin; Teh, Rosy; Wong, Khai-Ming
2016-01-01
Dyon solutions with axial symmetry in Yang-Mills-Higgs theory, including monopole-antimonopole pairs (MAP), monopole-antimonopole chains (MAC) and vortex-rings are introduced previously. The previously studied cases include at most a bifurcation for MAP systems and two for MAC dyon solutions. Here, for the case of ϕ-winding number n = 4, a rich set of solutions including nine branches and four bifurcations, has been obtained for electrically charged four-pole MAC solutions. Also, the transition between two different charge configurations at a lower energy bifurcating branch is detected for the first time. This study also improves and completes some aspects of a previous study on the electrically neutral case. In the case of n = 3, in addition to previously found bifurcation, another bifurcation at small values of Higgs self-coupling constant λ, has been obtained here.
Thermophoresis of axially and fore-and-aft symmetric aerosol particles
NASA Astrophysics Data System (ADS)
Chang, Yu C.; Keh, Huan J.
2010-11-01
The thermophoretic motion of an aerosol particle of revolution with fore-and-aft symmetry in a uniformly prescribed temperature gradient normal to its axis of revolution is studied theoretically. The Knudsen number is assumed to be small so that the fluid flow is described by a continuum model. A method of distribution of a set of spherical singularities along the axis of revolution within a prolate particle or on the fundamental plane within an oblate particle is used to find the general solutions for the temperature and fluid velocity fields. The temperature jump and fluid slip conditions at the particle surface are satisfied by applying a boundary collocation technique to these general solutions to determine the unknown coefficients. The thermophoretic velocity of the particle is calculated with good convergence behavior for various cases, and the agreement between our results and the available analytical solutions is very good. It is found that the normalized thermophoretic velocity of a prolate or oblate spheroid perpendicular to its axis of revolution decreases monotonically with an increase in its axial-to-radial aspect ratio. For most practical cases of a spheroid with a specified aspect ratio, its thermophoretic mobility is not a monotonic function of its relative thermal conductivity. For the general problem of a particle with axial and fore-and-aft symmetry undergoing thermophoresis in a temperature gradient oriented arbitrarily with respect to its axis of revolution, the solution of the particle velocity can be obtained as a superposition of the solution obtained previously for the axisymmetric motion of the particle and the current result.
Andersson, P; Andersson-Sunden, E; Sjöstrand, H; Jacobsson-Svärd, S
2014-08-01
In nuclear boiling water reactor cores, the distribution of water and steam (void) is essential for both safety and efficiency reasons. In order to enhance predictive capabilities, void distribution assessment is performed in two-phase test-loops under reactor-relevant conditions. This article proposes the novel technique of fast-neutron tomography using a portable deuterium-tritium neutron generator to determine the time-averaged void distribution in these loops. Fast neutrons have the advantage of high transmission through the metallic structures and pipes typically concealing a thermal-hydraulic test loop, while still being fairly sensitive to the water/void content. However, commercially available fast-neutron generators also have the disadvantage of a relatively low yield and fast-neutron detection also suffers from relatively low detection efficiency. Fortunately, some loops are axially symmetric, a property which can be exploited to reduce the amount of data needed for tomographic measurement, thus limiting the interrogation time needed. In this article, three axially symmetric test objects depicting a thermal-hydraulic test loop have been examined; steel pipes with outer diameter 24 mm, thickness 1.5 mm, and with three different distributions of the plastic material POM inside the pipes. Data recorded with the FANTOM fast-neutron tomography instrument have been used to perform tomographic reconstructions to assess their radial material distribution. Here, a dedicated tomographic algorithm that exploits the symmetry of these objects has been applied, which is described in the paper. Results are demonstrated in 20 rixel (radial pixel) reconstructions of the interior constitution and 2D visualization of the pipe interior is demonstrated. The local POM attenuation coefficients in the rixels were measured with errors (RMS) of 0.025, 0.020, and 0.022 cm(-1), solid POM attenuation coefficient. The accuracy and precision is high enough to provide a useful
Andersson, P; Andersson-Sunden, E; Sjöstrand, H; Jacobsson-Svärd, S
2014-08-01
In nuclear boiling water reactor cores, the distribution of water and steam (void) is essential for both safety and efficiency reasons. In order to enhance predictive capabilities, void distribution assessment is performed in two-phase test-loops under reactor-relevant conditions. This article proposes the novel technique of fast-neutron tomography using a portable deuterium-tritium neutron generator to determine the time-averaged void distribution in these loops. Fast neutrons have the advantage of high transmission through the metallic structures and pipes typically concealing a thermal-hydraulic test loop, while still being fairly sensitive to the water/void content. However, commercially available fast-neutron generators also have the disadvantage of a relatively low yield and fast-neutron detection also suffers from relatively low detection efficiency. Fortunately, some loops are axially symmetric, a property which can be exploited to reduce the amount of data needed for tomographic measurement, thus limiting the interrogation time needed. In this article, three axially symmetric test objects depicting a thermal-hydraulic test loop have been examined; steel pipes with outer diameter 24 mm, thickness 1.5 mm, and with three different distributions of the plastic material POM inside the pipes. Data recorded with the FANTOM fast-neutron tomography instrument have been used to perform tomographic reconstructions to assess their radial material distribution. Here, a dedicated tomographic algorithm that exploits the symmetry of these objects has been applied, which is described in the paper. Results are demonstrated in 20 rixel (radial pixel) reconstructions of the interior constitution and 2D visualization of the pipe interior is demonstrated. The local POM attenuation coefficients in the rixels were measured with errors (RMS) of 0.025, 0.020, and 0.022 cm(-1), solid POM attenuation coefficient. The accuracy and precision is high enough to provide a useful
NASA Astrophysics Data System (ADS)
Andersson, P.; Andersson-Sunden, E.; Sjöstrand, H.; Jacobsson-Svärd, S.
2014-08-01
In nuclear boiling water reactor cores, the distribution of water and steam (void) is essential for both safety and efficiency reasons. In order to enhance predictive capabilities, void distribution assessment is performed in two-phase test-loops under reactor-relevant conditions. This article proposes the novel technique of fast-neutron tomography using a portable deuterium-tritium neutron generator to determine the time-averaged void distribution in these loops. Fast neutrons have the advantage of high transmission through the metallic structures and pipes typically concealing a thermal-hydraulic test loop, while still being fairly sensitive to the water/void content. However, commercially available fast-neutron generators also have the disadvantage of a relatively low yield and fast-neutron detection also suffers from relatively low detection efficiency. Fortunately, some loops are axially symmetric, a property which can be exploited to reduce the amount of data needed for tomographic measurement, thus limiting the interrogation time needed. In this article, three axially symmetric test objects depicting a thermal-hydraulic test loop have been examined; steel pipes with outer diameter 24 mm, thickness 1.5 mm, and with three different distributions of the plastic material POM inside the pipes. Data recorded with the FANTOM fast-neutron tomography instrument have been used to perform tomographic reconstructions to assess their radial material distribution. Here, a dedicated tomographic algorithm that exploits the symmetry of these objects has been applied, which is described in the paper. Results are demonstrated in 20 rixel (radial pixel) reconstructions of the interior constitution and 2D visualization of the pipe interior is demonstrated. The local POM attenuation coefficients in the rixels were measured with errors (RMS) of 0.025, 0.020, and 0.022 cm-1, solid POM attenuation coefficient. The accuracy and precision is high enough to provide a useful indication
Andersson, P. Andersson-Sunden, E.; Sjöstrand, H.; Jacobsson-Svärd, S.
2014-08-01
In nuclear boiling water reactor cores, the distribution of water and steam (void) is essential for both safety and efficiency reasons. In order to enhance predictive capabilities, void distribution assessment is performed in two-phase test-loops under reactor-relevant conditions. This article proposes the novel technique of fast-neutron tomography using a portable deuterium-tritium neutron generator to determine the time-averaged void distribution in these loops. Fast neutrons have the advantage of high transmission through the metallic structures and pipes typically concealing a thermal-hydraulic test loop, while still being fairly sensitive to the water/void content. However, commercially available fast-neutron generators also have the disadvantage of a relatively low yield and fast-neutron detection also suffers from relatively low detection efficiency. Fortunately, some loops are axially symmetric, a property which can be exploited to reduce the amount of data needed for tomographic measurement, thus limiting the interrogation time needed. In this article, three axially symmetric test objects depicting a thermal-hydraulic test loop have been examined; steel pipes with outer diameter 24 mm, thickness 1.5 mm, and with three different distributions of the plastic material POM inside the pipes. Data recorded with the FANTOM fast-neutron tomography instrument have been used to perform tomographic reconstructions to assess their radial material distribution. Here, a dedicated tomographic algorithm that exploits the symmetry of these objects has been applied, which is described in the paper. Results are demonstrated in 20 rixel (radial pixel) reconstructions of the interior constitution and 2D visualization of the pipe interior is demonstrated. The local POM attenuation coefficients in the rixels were measured with errors (RMS) of 0.025, 0.020, and 0.022 cm{sup −1}, solid POM attenuation coefficient. The accuracy and precision is high enough to provide a useful
Yang, Wanan; Li, Yan; Qin, Fengqing
2015-01-01
To actively maneuver a robotic capsule for interactive diagnosis in the gastrointestinal tract, visualizing accurate position and orientation of the capsule when it moves in the gastrointestinal tract is essential. A possible method that encloses the circuits, batteries, imaging device, etc into the capsule looped by an axially magnetized permanent-magnet ring is proposed. Based on expression of the axially magnetized permanent-magnet ring’s magnetic fields, a localization and orientation model was established. An improved hybrid strategy that combines the advantages of particle-swarm optimization, clone algorithm, and the Levenberg–Marquardt algorithm was found to solve the model. Experiments showed that the hybrid strategy has good accuracy, convergence, and real time performance. PMID:25733935
Radiofrequency hydrogen ion source with permanent magnets providing axial magnetic field
Oikawa, Kohei Saito, Yuta; Komizunai, Shota; Takahashi, Kazunori; Ando, Akira
2014-02-15
Uniform axial magnetic field of about 70 G is applied to a radiofrequency (rf) hydrogen ion source by arrays of permanent magnets. The plasma density and electron temperature downstream of the source and near the magnetic filter are compared with those in the previously described ion source, where the axial field has been applied by two solenoids. The source is operated at ∼350 kHz and above 10 kW rf power with a field-effect-transistor-based invertor power supply in 1.5 Pa hydrogen. The results show that the plasma density of ∼10{sup 19} m{sup −3} near the source exit and ∼10{sup 18} m{sup −3} near the magnetic filter can be obtained, which are higher than those with the solenoids.
Radiofrequency hydrogen ion source with permanent magnets providing axial magnetic field
NASA Astrophysics Data System (ADS)
Oikawa, Kohei; Saito, Yuta; Komizunai, Shota; Takahashi, Kazunori; Ando, Akira
2014-02-01
Uniform axial magnetic field of about 70 G is applied to a radiofrequency (rf) hydrogen ion source by arrays of permanent magnets. The plasma density and electron temperature downstream of the source and near the magnetic filter are compared with those in the previously described ion source, where the axial field has been applied by two solenoids. The source is operated at ˜350 kHz and above 10 kW rf power with a field-effect-transistor-based invertor power supply in 1.5 Pa hydrogen. The results show that the plasma density of ˜1019 m-3 near the source exit and ˜1018 m-3 near the magnetic filter can be obtained, which are higher than those with the solenoids.
Radiofrequency hydrogen ion source with permanent magnets providing axial magnetic field.
Oikawa, Kohei; Saito, Yuta; Komizunai, Shota; Takahashi, Kazunori; Ando, Akira
2014-02-01
Uniform axial magnetic field of about 70 G is applied to a radiofrequency (rf) hydrogen ion source by arrays of permanent magnets. The plasma density and electron temperature downstream of the source and near the magnetic filter are compared with those in the previously described ion source, where the axial field has been applied by two solenoids. The source is operated at ∼350 kHz and above 10 kW rf power with a field-effect-transistor-based invertor power supply in 1.5 Pa hydrogen. The results show that the plasma density of ∼10(19) m(-3) near the source exit and ∼10(18) m(-3) near the magnetic filter can be obtained, which are higher than those with the solenoids.
Staudhammer, Karl P.
2004-01-01
The Mach stem region in an axial symmetric shock implosion has generally been avoided in the dynamic consolidation of powders for a number of reasons. The prime reason being that the convergence of the shock waves in the cylindrical axis produce enormous pressures and concomitant temperatures that have melted tungsten. This shock wave convergence consequently results in a discontinuity in the hydro-code calculations. Dynamic deformation experiments on gold plated 304L stainless steel powders were undertaken. These experiments utilized pressures of 0.08 to 1.0 Mbar and contained a symmetric radial melt region along the central axis of the sample holder. To understand the role of deformation in a porous material, the pressure, and temperature as well as the deformation heat and associated defects must be accounted for. When the added heat of consolidation deformation exceeds the melt temperature of the 304 powders, a melt zone results that can consume large regions of the compact while still under the high-pressure pulse. As the shock wave traverses the sample and is removed in a momentum trap, its pressure/temperature are quenched. It is within this region that very high diffusion/alloying occurs and has been observed in the gold plated powders. Anomalous increases of gold diffusion into 304 stainless steel have been observed via optical microscopy, scanning electron microscopy and EDAX measurements. Values exceeding 1200 m/sec have been measured and correlated to the powder sizes, size distribution and packing density, concomitant with sample container strains ranging from 2.0% to 26%.
NASA Astrophysics Data System (ADS)
Kofler, Johannes; Arnold, Nikita
2006-06-01
An analytical description of arbitrary strongly aberrated axially symmetric focusing is developed. This is done by matching the solution of geometrical optics with a wave pattern which is universal for the underlying ray structure. The corresponding canonical integral is the Bessoid integral, which is a three-dimensional generalization of the Pearcey integral that approximates the field near an arbitrary two-dimensional cusp. We first develop the description for scalar fields and then generalize it to the vector case. As a practical example the formalism is applied to the focusing of light by transparent dielectric spheres with a few wavelengths in diameter. The results demonstrate good agreement with the Mie theory down to Mie parameters of about 30. Compact analytical expressions are derived for the intensity on the axis and the position of the diffraction focus both for the general case and for the focusing by microspheres. The high intensity region is narrower than for an ideal lens of the same aperture at the expense of longitudinal localization and has a polarization dependent fine structure, which can be explained quantitatively. The results are relevant for aerosol and colloid science where natural light focusing occurs and can be used in laser micro- and nano-processing of materials.
NASA Astrophysics Data System (ADS)
Xu, Minfeng; Waynert, Joseph A.
1994-07-01
The magnetic multipole sensitivity to asymmetric and symmetric deviations is analyzed in the two-dimensional cross-section of SSC quadrupole magnets. Deviations in the 2-D cross-section caused by variations in the superconducting cable locations due to changes in the thickness of the pole sheet, mid plane insulation, inter-layer spacer, backing sheet, and copper wedges have direct impact on the magnetic field gradient and multipoles in the straight section of the magnets. Asymmetric deviations due to different coil sizes in a cross-section are also analyzed. The analyses are performed mainly with the software package AHARM(1). SSCMAG(1) and finite element software PE2D(2) were also used to obtain baselines and to verify the results. The results provide information essential to an understanding of the deviations of the multipoles resulting from manufacturing processes, and suggest possibilities for tuning the multipoles to meet the magnetic requirements.
Effect of axial magnetic field on a 2.45 GHz permanent magnet ECR ion source.
Nakamura, T; Wada, H; Asaji, T; Furuse, M
2016-02-01
Herein, we conduct a fundamental study to improve the generation efficiency of a multi-charged ion source using argon. A magnetic field of our electron cyclotron resonance ion source is composed of a permanent magnet and a solenoid coil. Thereby, the axial magnetic field in the chamber can be tuned. Using the solenoid coil, we varied the magnetic field strength in the plasma chamber and measured the ion beam current extracted at the electrode. We observed an approximately three times increase in the Ar(4+) ion beam current when the magnetic field on the extractor-electrode side of the chamber was weakened. From our results, we can confirm that the multi-charged ion beam current changes depending on magnetic field intensity in the plasma chamber. PMID:26931955
Axial Magnetic Field Effects on Xenon Short-Arc Lamps
NASA Astrophysics Data System (ADS)
Wang, Cheng; Chen, Tang; Li, Wanwan; Zha, Jun; Xia, Weidong
2014-12-01
The effect of an axial magnetic field (AMF) on an old xenon short-arc lamp is experimentally investigated in this work. As the AMF increases up to 18 mT, the visible radiation power and electric power ascend more than 80% and 70% respectively, and the radiation efficiency is improved by 23% for the best increment at 12 mT AMF. The measurement of radiation intensity shows that the increment of radiation intensity comes mostly from the plasma area close to the cathode tip, and partially from the other area of the arc column. Successive images of the arc indicate that the arc column not only rotates about its axis, but revolves around the axis of electrodes with the AMF. The arc column structure is constricted, distorted and elongated as the AMF increases. It is suggested that the improvements of the radiation intensity and radiation efficiency are attributed to the constriction of the arc column, which is mainly induced by the enhanced cathode jet.
NASA Technical Reports Server (NTRS)
Takahata, Ryoichi; Ueyama, Hirochika; Yotsuya, Tsutom
1992-01-01
High T(sub c) superconductor as a stator and permanent magnets for a rotor were assembled into a superconducting magnetic bearing. The dynamic stiffness and the damping coefficient of the superconducting magnetic bearing in axial direction were measured. The dynamic stiffness depended on an axial gap between superconductor and permanent magnet. The superconducting magnetic bearings are advantageous for a passive bearing, because they have a vibration damping effect that a permanent magnet bearing does not have. The tendency of its vibration damping coefficient indicated an increase as the resonant frequency increased.
NASA Astrophysics Data System (ADS)
Tarafdar, Pratik; Das, Tapas K.
2015-09-01
In black hole evaporation process, the mass of the hole anti-correlates with the Hawking temperature. This indicates that the smaller holes have higher surface gravity. For analogue Hawking effects, however, the acoustic surface gravity is determined by the local values of the dynamical velocity of the stationary background fluid flow and the speed of propagation of the characteristic perturbation embedded in the background fluid, as well as by their space derivatives evaluated along the direction normal to the acoustic horizon, respectively. The mass of the analogue system — whether classical or quantum — does not directly contribute to extremize the value of the associated acoustic surface gravity. For general relativistic axially symmetric background fluid flow in the Schwarzschild metric, we show that the initial boundary conditions describing such accretion influence the maximization scheme of the acoustic surface gravity and associated analogue temperature. Aforementioned background flow onto black holes can assume three distinct geometric configurations. Identical set of initial boundary conditions can lead to entirely different phase-space behavior of the stationary flow solutions, as well as the salient features of the associated relativistic acoustic geometry. This implies that it is imperative to investigate how the measure of the acoustic surface gravity corresponding to the accreting black holes gets influenced by the geometric configuration of the inflow described by various thermodynamic equations of state. Such investigation is useful to study the effect of Einstenian gravity on the nonconventional classical features as observed in Hawking like effect in a dispersive medium in the limit of a strong dispersion relation.
NASA Astrophysics Data System (ADS)
Albin, Michael; de, William; Horrocks, W., Jr.; Liotta, Frank J.
1982-01-01
The Eu(III) complex of the octadentate macrocyclic ligand, 1,4,7,10-tetraazacyclododecane-N,N',N'',N''' -tetraacetate, DOTA, has been examined by luminescence excitation, emission, and lifetime spectroscopy using pulsed dye laser techniques. The results confirm the expected axially symmetric nature of the major component in solution and reveal that 1.2 ± 0.4 water molecules arc coordinatcd to the Eu(III) ion in the complex.
Effect of Axial Loading on Quench Performance in Nb3Sn Magnets
Ambrosio, G.; Bordini, B.; Caspi, S.; Dietderich, D.R.; Felice, H.; Hafalia, A.R.; Hannaford, C.R.; Lizarazo, J.; Lietzke, A.F.; McInturff, A.D.; Sabbi, G.L.; DiMarco, J.D.; Tartaglia, M.; Vedrice, P.; Ferracin, P.
2008-06-01
A series of tests has been performed at Lawrence Berkeley National Laboratory (LBNL) and Fermi National Accelerator Laboratory (FNAL) with the goal of assessing the influence of coil axial pre-load on Nb{sub 3}Sn magnet training. The tests involved two subscale Nb{sub 3}Sn magnets: SQ02, a quadrupole magnet fabricated as part of the US LHC Accelerator Research Program (LARP), and SD01, a dipole magnet developed in collaboration between CEA/Saclay and LBNL. Both magnets used similar Nb{sub 3}Sn flat racetrack coils from LBNL Subscale Magnet Program, and implemented an axial support system composed of stainless steel end-plates and aluminum rods. The system was designed to withstand full longitudinal electro-magnetic forces and provide controllable preloads. Quench performances, training, and quench locations have been recorded in various axial loading conditions. Test results are reported.
Clean measurements of the nucleon axial-vector and free-neutron magnetic form factors
NASA Astrophysics Data System (ADS)
Deur, A.
2013-11-01
We discuss the feasibility of a weak charged current experiment using a low energy electron beam. A first goal is to measure the Q2 dependence of the axial-vector form factor ga(Q2). It can be measured model-independently and as robustly as for electromagnetic form factors from typical electron scattering experiments, in contrast to the methods used so far to measure ga(Q2). If ga(Q2) follows a dipole form, the axial mass can be extracted with a better accuracy than the world data altogether. The most important detection equipment would be a segmented neutron detector with good momentum and angular resolution that is symmetric about the beam direction, and covers a moderate angular range. A high intensity beam (100 uA) is necessary. Beam polarization is highly desirable as it provides a clean measurement of the backgrounds. Beam energies between 70 and 110 MeV are ideal. This range would provide a Q2 mapping of ga between 0.01
A Model for Axial Magnetic Bearings Including Eddy Currents
NASA Technical Reports Server (NTRS)
Kucera, Ladislav; Ahrens, Markus
1996-01-01
This paper presents an analytical method of modelling eddy currents inside axial bearings. The problem is solved by dividing an axial bearing into elementary geometric forms, solving the Maxwell equations for these simplified geometries, defining boundary conditions and combining the geometries. The final result is an analytical solution for the flux, from which the impedance and the force of an axial bearing can be derived. Several impedance measurements have shown that the analytical solution can fit the measured data with a precision of approximately 5%.
Research on a novel high stiffness axial passive magnetic bearing for DGMSCMG
NASA Astrophysics Data System (ADS)
Sun, Jinji; Wang, Chun'e.; Le, Yun
2016-08-01
To increase the displacement stiffness and decrease power loss of double gimbals magnetically suspended control momentum gyro (DGMSCMG), this paper researches a new structure of axial passive magnetic bearing (APMB). Different from the existing APMB, the proposed APMB is composed of segmented permanent magnets and magnetic rings. The displacement stiffness and angular stiffness expressions are derived by equivalent magnetic circuit method and infinitesimal method based on the end magnetic flux. The relationships are analyzed between stiffness and structure parameters such as length of air gap, length of permanent magnet, height of permanent magnet and end length of magnetic ring. Besides, the axial displacement stiffness measurement method of the APMB is proposed, and it verified the correctness of proposed theoretical method. The DGMSCMG prototype is manufactured and the slow-down characteristic experiment is carried out, and the experimental result reflects the low power loss feature of the APMB.
NASA Astrophysics Data System (ADS)
Ivanenko, I. A.; Kazarinov, N. Yu.
2014-11-01
The optimization of the field distribution of the analyzing magnet installed in the axial injection beam line of the cyclotron DC-280 is carried out. This optimization is done on the basis of a three-dimensional calculation of the magnet field. The optimum value of the basic geometrical characteristics of the magnet influencing the form of the field distribution is found.
On the Rayleigh law of magnetization. Symmetrical and asymmetric hysteresis loops. Experiment
NASA Astrophysics Data System (ADS)
Ponomarev, Yu. F.
2008-03-01
Results of an experimental study of symmetrical and asymmetric loops of magnetic hysteresis in weak ac fields are given (Rayleigh region). The asymmetric loops are observed when a dc magnetizing field is additionally applied to the ferromagnetic material together with a weak ac field. The studies have been carried out on a manganese-zinc ferrite of grade M1000NM-A. It has been shown that the symmetrical hysteresis loops obey the mathematical Rayleigh model by no means strictly. It has been revealed that if the dc magnetizing field is in the Rayleigh region, then the hysteresis loops in the ac field remain symmetrical as before. But if the dc field falls outside the Rayleigh region, then the hysteresis loops become asymmetric. This asymmetry is caused by the different values of the remanences on the ascending and descending branches of the hysteresis loop with the same quadratic dependence of magnetization on the field as in the Rayleigh case.
Melt Motion Due to Peltier Marking During Bridgman Crystal Growth with an Axial Magnetic Field
NASA Technical Reports Server (NTRS)
Sellers, C. C.; Walker, John S.; Szofran, Frank R.; Motakef, Shariar
2000-01-01
This paper treats a liquid-metal flow inside an electrically insulating cylinder with electrically conducting solids above and below the liquid region. There is a uniform axial magnetic field, and there is an electric current through the liquid and both solids. Since the lower liquid-solid interface is concave into the solid and since the liquid is a better electrical conductor than the adjacent solid, the electric current is locally concentrated near the centerline. The return to a uniform current distribution involves a radial electric current which interacts with the axial magnetic field to drive an azimuthal flow. The axial variation of the centrifugal force due to the azimuthal velocity drives a meridional circulation with radial and axial velocities. This problem models the effects of Peltier marking during the vertical Bridgman growth of semiconductor crystals with an externally applied magnetic field, where the meridional circulation due to the Peltier Current may produce important mixing in the molten semiconductor.
NASA Astrophysics Data System (ADS)
Pimshtein, V. G.
2016-07-01
The shadow visualization method is applied to study the process of loss of stability of the mixing layer of a subsonic axially symmetric turbulent jet under longitudinal internal action of saw-tooth sound waves of finite amplitude. Such action leads to the formation of a system of ring vortices in the mixing layer at the frequency of its intrinsic instability. The interaction of the vortices can be accompanied by sound emission. A similar phenomenon is also observed in turbulent jets for small supercritical pressure fluctuations on a nozzle.
Wakayama, Toshitaka Yonemura, Motoki; Oikawa, Hiroki; Sasanuma, Atsushi; Arai, Goki; Fujii, Yusuke; Dinh, Thanh-Hung; Otani, Yukitoshi; Higashiguchi, Takeshi; Sakaue, Kazuyuki; Washio, Masakazu; Miura, Taisuke; Takahashi, Akihiko; Nakamura, Daisuke; Okada, Tatsuo
2015-08-24
We demonstrated the generation of the intense radially polarized mid-infrared optical vortex at a wavelength of 10.6 μm by use of a passive axially symmetric zinc selenide (ZnSe) waveplate with high energy pulse throughput. The phase of the radially polarized optical vortex with the degree of polarization of 0.95 was spirally distributed in regard to the angle. The converted laser beam energy of about 2.6 mJ per pulse was obtained at the input pulse energy of 4.9 mJ, corresponding to the energy conversion efficiency of 56%.
NASA Technical Reports Server (NTRS)
Anderson, E. C.; Moss, J. N.
1975-01-01
The viscous shock layer equations applicable to hypersonic laminar, transitional, and turbulent flows of a perfect gas over two-dimensional plane or axially symmetric blunt bodies are presented. The equations are solved by means of an implicit finite difference scheme, and the results are compared with a turbulent boundary layer analysis. The agreement between the two solution procedures is satisfactory for the region of flow where streamline swallowing effects are negligible. For the downstream regions, where streamline swallowing effects are present, the expected differences in the two solution procedures are evident.
NASA Astrophysics Data System (ADS)
Bubnov, Andrey; Gubina, Nadezda; Zhukovsky, Vladimir
2016-05-01
We study vacuum polarization effects in the model of Dirac fermions with additional interaction of an anomalous magnetic moment with an external magnetic field and fermion interaction with an axial-vector condensate. The proper time method is used to calculate the one-loop vacuum corrections with consideration for different configurations of the characteristic parameters of these interactions.
Axial-field permanent magnet motors for electric vehicles
NASA Technical Reports Server (NTRS)
Campbell, P.
1981-01-01
The modelling of an anisotropic alnico magnet for the purpose of field computation involves assigning a value for the material's permeability in the transverse direction. This is generally based upon the preferred direction properties, being all that are easily available. By analyzing the rotation of intrinsic magnetization due to the self demagnetizing field, it is shown that the common assumptions relating the transverse to the preferred direction are not accurate. Transverse magnetization characteristics are needed, and these are given for Alnico 5, 5-7, and 8 magnets, yielding appropriate permeability values.
Imaging of the Magnetization of a Symmetric Spin Valve
NASA Astrophysics Data System (ADS)
Nikitenko, V. I.; Gornakov, V. S.; Dedukh, L. M.; Kabanov, Yu. P.; Khapikov, A. F.; Bennett, L. H.; Egelhoff, W. F.; Chen, P. J.; McMichael, R. D.; Donahue, M. J.; Swartzendruber, L. J.; Shapiro, A. J.; Brown, H. J.
1996-03-01
The magnetization reversal processes in a 50nmNiO/2.5nmCo/2.3nmCu/6.1nmNiFe2.3nmCu2.5nmCo/50nmNiO spin valve were studied by a magneto-optical indicator film technique (MOIF), SQUID magnetometry, and giant magnetoresistance measurements. Stray magnetic fields from the sample edge and from domain walls were imaged using polarized light optical microscopy in reflective mode with a Bi-substituted YIG indicator film with in-plane anisotropy. The images indicate that magnetization reversal in the center NiFe layer of the spin valve occurs by a non-uniform process with a length scale on the order kof 10--50 μm. Magnetization reversal in the top and bottom Co layers proceeds by nucleation of domain walls at a much larger value of applied field. The ability of MOIF to observe the dynamics of the magnetization reversal processes suggests its use for fast nondestructive quality control in different stages of spin-valve manufacturing.
Scaling of the magnetic reconnection rate with symmetric shear flow
Cassak, P. A.; Otto, A.
2011-07-15
The scaling of the reconnection rate during (fast) Hall magnetic reconnection in the presence of an oppositely directed bulk shear flow parallel to the reconnecting magnetic field is studied using two-dimensional numerical simulations of Hall reconnection with two different codes. Previous studies noted that the reconnection rate falls with increasing flow speed and shuts off entirely for super-Alfvenic flow, but no quantitative expression for the reconnection rate in sub-Alfvenic shear flows is known. An expression for the scaling of the reconnection rate is presented.
On the control of rapidly rotating convection by an axially varying magnetic field
NASA Astrophysics Data System (ADS)
Gopinath, Venkatesh; Sreenivasan, Binod
2015-11-01
The magnetic field in rapidly rotating dynamos is spatially inhomogeneous. The axial variation of the magnetic field is of particular importance because tall columnar vortices aligned with the rotation axis form at the onset of convection. The classical picture of magnetoconvection with constant or axially varying magnetic fields is that the Rayleigh number and wavenumber at onset decrease appreciably from their non-magnetic values. Nonlinear dynamo simulations show that the axial lengthscale of the self-generated azimuthal magnetic field becomes progressively smaller as we move towards a rapidly rotating regime. With a small-scale field, however, the magnetic control of convection is different from that in previous studies with a uniform or large-scale field. This study looks at the competing viscous and magnetic mode instabilities when the Ekman number ? (ratio of viscous to Coriolis forces) is small. As the applied magnetic field strength (measured by the Elsasser number ?) increases, the critical Rayleigh number for onset of convection initially increases in a viscous branch, reaches an apex where both viscous and magnetic instabilities co-exist, and then falls in the magnetic branch. The magnetic mode of onset is notable for its dramatic suppression of convection in the bulk of the fluid layer where the field is weak. The viscous-magnetic mode transition occurs at ?, which implies that small-scale convection can exist at field strengths higher than previously thought. In spherical shell dynamos with basal heating, convection near the tangent cylinder is likely to be in the magnetic mode. The wavenumber of convection is only slightly reduced by the self-generated magnetic field at ?, in agreement with previous planetary dynamo models. The back reaction of the magnetic field on the flow is, however, visible in the difference in kinetic helicity between cyclonic and anticyclonic vortices.
Further Development of an Optimal Design Approach Applied to Axial Magnetic Bearings
NASA Technical Reports Server (NTRS)
Bloodgood, V. Dale, Jr.; Groom, Nelson J.; Britcher, Colin P.
2000-01-01
Classical design methods involved in magnetic bearings and magnetic suspension systems have always had their limitations. Because of this, the overall effectiveness of a design has always relied heavily on the skill and experience of the individual designer. This paper combines two approaches that have been developed to aid the accuracy and efficiency of magnetostatic design. The first approach integrates classical magnetic circuit theory with modern optimization theory to increase design efficiency. The second approach uses loss factors to increase the accuracy of classical magnetic circuit theory. As an example, an axial magnetic thrust bearing is designed for minimum power.
Revisiting the cylindrical positive column in an axial magnetic field
Franklin, R. N.
2012-09-15
This paper seeks to bring together past and present work in this area and to remove some recent inconsistencies. It concludes that while some aspects were not completely correct in the early work, the general picture of azimuthal motion of electrons and ions is an important feature and accounts for the diamagnetism of a bounded active plasma and other features of an axially magnetised plasma. It also introduces a means of testing the equations derived by interchanging electrons and positive ions; under such a 'transformation,' the equations to be solved should be identical. This is a fundamental principle and is implicit in treatments given in many of the standard texts, but not made explicit.
Revisiting the cylindrical positive column in an axial magnetic field
NASA Astrophysics Data System (ADS)
Franklin, R. N.
2012-09-01
This paper seeks to bring together past and present work in this area and to remove some recent inconsistencies. It concludes that while some aspects were not completely correct in the early work, the general picture of azimuthal motion of electrons and ions is an important feature and accounts for the diamagnetism of a bounded active plasma and other features of an axially magnetised plasma. It also introduces a means of testing the equations derived by interchanging electrons and positive ions; under such a "transformation," the equations to be solved should be identical. This is a fundamental principle and is implicit in treatments given in many of the standard texts, but not made explicit.
Kantsyrev, V. L.; Esaulov, A. A.; Safronova, A. S.; Osborne, G. C.; Shrestha, I.; Weller, M. E.; Stafford, A.; Shlyaptseva, V. V.; Velikovich, A. L.; Rudakov, L. I.; Williamson, K. M.
2011-10-15
The influence of an induced axial magnetic field on plasma dynamics and radiative characteristics of Z pinches is investigated. An axial magnetic field was induced in a novel Z-pinch load: a double planar wire array with skewed wires (DPWAsk), which represents a planar wire array in an open magnetic configuration. The induced axial magnetic field suppressed magneto-Rayleigh-Taylor (MRT) instabilities (with m = 0 and m = 1 instability modes) in the Z-pinch plasma. The influence of the initial axial magnetic field on the structure of the plasma column at stagnation was manifested through the formation of a more uniform plasma column compared to a standard double planar wire array (DPWA) load [V. L. Kantsyrev et al., Phys. Plasmas 15, 030704 (2008)]. The DPWAsk load is characterized by suppression of MRT instabilities and by the formation of the sub-keV radiation pulse that occurs before the main x-ray peak. Gradients in plasma parameters along the cathode-anode gap were observed and analyzed for DPWAsk loads made from low atomic number Z (Al) and mid-Z (brass) wires.
NASA Astrophysics Data System (ADS)
Cubarsi, Rafael
2014-07-01
Under a common potential, a finite mixture of ellipsoidal velocity distributions satisfying the Boltzmann collisionless equation provides a set of integrability conditions that may constrain the population kinematics. They are referred to as conditions of consistency and were discussed in a previous paper on mixtures of axisymmetric populations. As a corollary, these conditions are now extended to point-axial symmetry, that is, point symmetry around the rotation axis or bisymmetry, by determining which potentials are connected with a more flexible superposition of stellar populations. Under point-axial symmetry, the potential is still axisymmetric, but the velocity and mass distributions are not necessarily. A point-axial stellar system is, in a natural way, consistent with a flat velocity distribution of a disc population. Therefore, no additional integrability conditions are required to solve the Boltzmann collisionless equation for such a population. For other populations, if the potential is additively separable in cylindrical coordinates, the populations are not kinematically constrained, although under point-axial symmetry, the potential is reduced to the harmonic function, which, for the Galaxy, is proven to be non-realistic. In contrast, a non-separable potential provides additional conditions of consistency. When mean velocities for the populations are unconstrained, the potential becomes quasi-stationary, being a particular case of the axisymmetric model. Then, the radial and vertical mean velocities of the populations can differ and produce an apparent vertex deviation of the whole velocity distribution. However, single population velocity ellipsoids still have no vertex deviation in the Galactic plane and no tilt in their intersection with a meridional Galactic plane. If the thick disc and halo ellipsoids actually have non-vanishing tilt, as the surveys of the solar neighbourhood that include RAdial Velocity Experiment (RAVE) data seem to show, the
Effect of radial plasma transport at the magnetic throat on axial ion beam formation
NASA Astrophysics Data System (ADS)
Zhang, Yunchao; Charles, Christine; Boswell, Rod
2016-08-01
Correlation between radial plasma transport and formation of an axial ion beam has been investigated in a helicon plasma reactor implemented with a convergent-divergent magnetic nozzle. The plasma discharge is sustained under a high magnetic field mode and a low magnetic field mode for which the electron energy probability function, the plasma density, the plasma potential, and the electron temperature are measured at the magnetic throat, and the two field modes show different radial parametric behaviors. Although an axial potential drop occurs in the plasma source for both field modes, an ion beam is only observed in the high field mode while not in the low field mode. The transport of energetic ions is characterized downstream of the plasma source using the delimited ion current and nonlocal ion current. A decay of ion beam strength is also observed in the diffusion chamber.
Axial Magnetic Field Compression within Radial Foil Plasma Jets, Experiment and Simulation
NASA Astrophysics Data System (ADS)
Byvank, Tom; Potter, William; Chang, Jae Young; Banasek, Jacob; Greenly, John; Seyler, Charles; Kusse, Bruce
2015-11-01
Compression of an axial magnetic field correlates with density hollowing and azimuthal rotation of a plasma jet generated by the COBRA pulsed power machine (1 MA peak current in 100 ns rise time) in a radial foil (15 μm Al thin disk) configuration. The plasma jet compresses an external 1 T axial magnetic field (Bz) as it collimates along the central z-axis. Experimental measurements use a Bdot magnetic probe placed in the center of the hollow plasma jet. Experimental results show compression of the 1 T Bz field to 2.4 +/- 0.3 T. Predictions made by the extended magnetohydrodynamics (XMHD) code, PERSEUS, show a 5.0 +/- 0.7 T field at the probe location. We overview physical reasons for the discrepancy between the experimental and simulation magnetic field compression measurements.
Ginzburg-Landau theory for skyrmions in inversion-symmetric magnets with competing interactions
Lin, Shi-Zeng; Hayami, Satoru
2016-02-01
Magnetic skyrmions have attracted considerable attention recently for their huge potential in spintronic applications. Generally skyrmions are big compared to the atomic lattice constant, which allows for the Ginzburg-Landau type description in the continuum limit. This description successfully captures the main experimental observations on skyrmions in B20 compound without inversion symmetry. Skyrmions can also exist in inversion-symmetric magnets with competing interactions. Here, we derive a general Ginzburg-Landau theory for skyrmions in these magnets valid in the long-wavelength limit. We study the unusual static and dynamical properties of skyrmions based on the derived Ginzburg-Landau theory. We show that an easy axismore » spin anisotropy is sufficient to stabilize a skyrmion lattice. Interestingly, the skyrmion in inversion-symmetric magnets has a new internal degree of freedom associated with the rotation of helicity, i.e., the “spin” of the skyrmion as a particle, in addition to the usual translational motion of skyrmions (orbital motion). The orbital and spin degree of freedoms of an individual skyrmion can couple to each other, and give rise to unusual behavior that is absent for the skyrmions stabilized by the Dzyaloshinskii-Moriya interaction. Finally, the derived Ginzburg-Landau theory provides a convenient and general framework to discuss skyrmion physics and will facilitate the search for skyrmions in inversion-symmetric magnets.« less
Ginzburg-Landau theory for skyrmions in inversion-symmetric magnets with competing interactions
NASA Astrophysics Data System (ADS)
Lin, Shi-Zeng; Hayami, Satoru
2016-02-01
Magnetic skyrmions have attracted considerable attention recently for their huge potential in spintronic applications. Generally skyrmions are big compared to the atomic lattice constant, which allows for the Ginzburg-Landau type description in the continuum limit. Such a description successfully captures the main experimental observations on skyrmions in B20 compound without inversion symmetry. Skyrmions can also exist in inversion-symmetric magnets with competing interactions. Here, we derive a general Ginzburg-Landau theory for skyrmions in these magnets valid in the long-wavelength limit. We study the unusual static and dynamical properties of skyrmions based on the derived Ginzburg-Landau theory. We show that an easy axis spin anisotropy is sufficient to stabilize a skyrmion lattice. Interestingly, the skyrmion in inversion-symmetric magnets has a new internal degree of freedom associated with the rotation of helicity, i.e., the "spin" of the skyrmion as a particle, in addition to the usual translational motion of skyrmions (orbital motion). The orbital and spin degree of freedoms of an individual skyrmion can couple to each other, and give rise to unusual behavior that is absent for the skyrmions stabilized by the Dzyaloshinskii-Moriya interaction. The derived Ginzburg-Landau theory provides a convenient and general framework to discuss skyrmion physics and will facilitate the search for skyrmions in inversion-symmetric magnets.
Study on Axially Distributed Divertor Magnetic Field Configuration in a Mirror Cell
Islam, M.K.; Nakashima, Y.; Higashizono, Y.; Katanuma, I.; Cho, T
2005-01-15
A mirror magnetic field configuration (MFC) is studied in which a divertor is distributed axially using multipole coils. Both configurations of divertor and minimum-B are obtained in a mirror cell. Magnetohydrodynamic (MHD) instability of a mirror cell can be eliminated in this way. Concept of the design and properties of the MFC are discussed.
Numerical simulation of a helical shape electric arc in the external axial magnetic field
NASA Astrophysics Data System (ADS)
Urusov, R. M.; Urusova, I. R.
2016-10-01
Within the frameworks of non-stationary three-dimensional mathematical model, in approximation of a partial local thermodynamic equilibrium, a numerical calculation was made of characteristics of DC electric arc burning in a cylindrical channel in the uniform external axial magnetic field. The method of numerical simulation of the arc of helical shape in a uniform external axial magnetic field was proposed. This method consists in that that in the computational algorithm, a "scheme" analog of fluctuations for electrons temperature is supplemented. The "scheme" analogue of fluctuations increases a weak numerical asymmetry of electrons temperature distribution, which occurs randomly in the course of computing. This asymmetry can be "picked up" by the external magnetic field that continues to increase up to a certain value, which is sufficient for the formation of helical structure of the arc column. In the absence of fluctuations in the computational algorithm, the arc column in the external axial magnetic field maintains cylindrical axial symmetry, and a helical form of the arc is not observed.
Influence of axial self-magnetic field component on arcing behavior of spiral-shaped contacts
Feng, Dingyu; Xiu, Shixin Wang, Yi; Liu, Gang; Zhang, Yali; Bi, Dongli
2015-10-15
The transverse magnetic field (TMF) contact design is commonly used in vacuum interrupters. When arcing occurs between the TMF contacts, the contact structure can create a self-induced magnetic field that drives the arc to move and rotate on the contact, and thus local overheating and severe erosion can be avoided. However, TMF contacts could also create an axial self-magnetic component, and the influence of this component on the arc behavior has not been considered to date. In this paper, five different types of Cu-Cr spiral-shaped TMF contacts with three different structures are investigated in a demountable vacuum chamber that contains a high-speed charge-coupled device video camera. It was found that the contact structure greatly influenced the arc behavior, especially in terms of arc rotation and the effective contact area, while contacts with the same slot structure but different diameters showed similar arc behavior and arc motion. The magnetic field distribution and the Lorentz force of each of the three different contact structures are simulated, and the axial self-magnetic field was first taken into consideration for investigation of the TMF contact design. It was found that contact designs that have higher axial self-magnetic field components tend to have arc columns with larger diameters and show poorer arc motion and rotation performance in the experiments.
NASA Astrophysics Data System (ADS)
Gair, S.; Eastham, J. F.; Canova, A.
1996-04-01
The article reports on a study of the effects of slot closure in axial-field permanent magnet brushless machines by a two-dimensional finite element method (2D FEM) of analysis. The closure of the slots is made by using soft magnetic powder wedge material. Parameter values and machine performance for the open and closed slot configuration are computed. In order to test the 2D FEM model, calculated results are compared with measurements and favorable agreement is shown.
Mitamura, Yoshinori; Kido, Kazuyuki; Yano, Tetsuya; Sakota, Daisuke; Yambe, Tomoyuki; Sekine, Kazumitsu; OKamoto, Eiji
2007-03-01
To overcome the drive shaft seal and bearing problem in rotary blood pumps, a hydrodynamic bearing, a magnetic fluid seal, and a brushless direct current (DC) motor were employed in an axial flow pump. This enabled contact-free rotation of the impeller without material wear. The axial flow pump consisted of a brushless DC motor, an impeller, and a guide vane. The motor rotor was directly connected to the impeller by a motor shaft. A hydrodynamic bearing was installed on the motor shaft. The motor and the hydrodynamic bearing were housed in a cylindrical casing and were waterproofed by a magnetic fluid seal, a mechanically noncontact seal. Impeller shaft displacement was measured using a laser sensor. Axial and radial displacements of the shaft were only a few micrometers for motor speed up to 8500 rpm. The shaft did not make contact with the bearing housing. A flow of 5 L/min was obtained at 8000 rpm at a pressure difference of 100 mm Hg. In conclusion, the axial flow blood pump consisting of a hydrodynamic bearing, a magnetic fluid seal, and a brushless DC motor provided contact-free rotation of the impeller without material wear.
Axial magnetic bearing development for the BiVACOR rotary BiVAD/TAH.
Greatrex, Nicholas A; Timms, Daniel L; Kurita, Nobuyuki; Palmer, Edward W; Masuzawa, Toru
2010-03-01
A suspension system for the BiVACOR biventricular assist device (BiVAD) has been developed and tested. The device features two semi-open centrifugal impellers mounted on a common rotating hub. Flow balancing is achieved through the movement of the rotor in the axial direction. The rotor is suspended in the pump casings by an active magnetic suspension system in the axial direction and a passive hydrodynamic bearing in the radial direction. This paper investigates the axial movement capacity of the magnetic bearing system and the power consumption at various operating points. The force capacity of the passive hydrodynamic bearing is investigated using a viscous glycerol solution. Axial rotor movement in the range of +/-0.15 mm is confirmed and power consumption is under 15.5 W. The journal bearing is shown to stabilize the rotor in the radial direction at the required operating speed. Magnetic levitation is a viable suspension technique for the impeller of an artificial heart to improve device lifetime and reduce blood damage. PMID:19822465
Mitamura, Yoshinori; Kido, Kazuyuki; Yano, Tetsuya; Sakota, Daisuke; Yambe, Tomoyuki; Sekine, Kazumitsu; OKamoto, Eiji
2007-03-01
To overcome the drive shaft seal and bearing problem in rotary blood pumps, a hydrodynamic bearing, a magnetic fluid seal, and a brushless direct current (DC) motor were employed in an axial flow pump. This enabled contact-free rotation of the impeller without material wear. The axial flow pump consisted of a brushless DC motor, an impeller, and a guide vane. The motor rotor was directly connected to the impeller by a motor shaft. A hydrodynamic bearing was installed on the motor shaft. The motor and the hydrodynamic bearing were housed in a cylindrical casing and were waterproofed by a magnetic fluid seal, a mechanically noncontact seal. Impeller shaft displacement was measured using a laser sensor. Axial and radial displacements of the shaft were only a few micrometers for motor speed up to 8500 rpm. The shaft did not make contact with the bearing housing. A flow of 5 L/min was obtained at 8000 rpm at a pressure difference of 100 mm Hg. In conclusion, the axial flow blood pump consisting of a hydrodynamic bearing, a magnetic fluid seal, and a brushless DC motor provided contact-free rotation of the impeller without material wear. PMID:17343698
Active H ∞ control of the vibration of an axially moving cantilever beam by magnetic force
NASA Astrophysics Data System (ADS)
Wang, Liang; Chen, Huai-hai; He, Xu-dong
2011-11-01
An H ∞ method for the vibration control of an iron cantilever beam with axial velocity using the noncontact force by permanent magnets is proposed in the paper. The transverse vibration equation of the axially moving cantilever beam with a tip mass is derived by D'Alembert's principle and then updated by experiments. An experimental platform and a magnetic control system are introduced. The properties of the force between the magnet and the beam have been determined by theoretic analysis and tests. The H ∞ control strategy for the suppression of the beam transverse vibration by initial deformation excitations is put forward. The control method can be used for the beam with constant length or varying length. Numerical simulation and actual experiments are implemented. The results show that the control method is effective and the simulations fit well with the experiments.
Ramdhas, Abilasha; Pattanayak, Roson Kumar; Balasubramaniam, Krishnan; Rajagopal, Prabhu
2013-09-01
The influence of bends constituting annular polygonal structures on ultrasonic guided waves propagating along their axis is investigated. Considering a single bend as a bent plate connects this problem to the better-understood physics of guided waves in straight plates. Using a three-dimensional finite element simulation validated with experiments, bends in plates are shown to act as features that can concentrate and guide ultrasonic energy along their length. Two interesting feature-guided modes are identified when the bent plate is subjected to "in-plane" or axial excitation applied uniformly along a through-thickness line bisecting the bent edge. Of these, the faster traveling mode has properties similar to, but travels at group velocities lower than, the S0 (fundamental symmetric) Lamb mode in flat plates. This paper however focuses on the slower bend-guided mode that is similar to the A0 (fundamental anti-symmetric) Lamb mode in flat plates. This mode is shown to be more strongly generated in smaller angle bends where it has a low attenuation. The results are discussed in light of simple modal studies performed using the Semi-Analytical Finite Element method.
NASA Astrophysics Data System (ADS)
Calvin, Matthew
A variety of magnetic gear topologies have been investigated in recent years as alternatives to traditional mechanical gearboxes. In general these magnetic gears offer advantages in the non-contact transmission of torque including inherent overload protection, reduced acoustic emissions, and a reduction in the number of contacting components subject to wear. The earliest magnetic gear designs however suffered from low volumetric torque densities, which limited their utility for industrial applications. Research into flux focusing magnetic gearbox topologies has resulted in increased volumetric torque densities by actively engaging all of the magnets in the transmission of torque throughout the process. This research compared the volumetric torque density of axial and radial flux focusing magnetic gearbox designs and prototypes to planetary, cycloidal, and harmonic mechanical gearboxes. The rare earth scaled up radial and axial flux focusing topologies were found to have consistently higher volumetric torque densities than planetary gearboxes of comparable diameter. The cycloidal and harmonic gearboxes had comparable volumetric torque densities, with greater volumetric torque densities for some models and lesser volumetric torque densities for others. The expectation is that further improvements in volumetric torque density are possible for flux focusing magnetic gears with additional refinement and optimization of the designs. The current study does show that flux focusing magnetic gear topologies are a plausible future alternative to mechanical gearboxes in applications where their unique torque transmission mechanism would be advantageous.
Pinch instability of a cylindrical couette flow in a nonuniform axial magnetic field
Shalybkov, D. A.
2012-12-15
The paper addresses the linear stability to axisymmetric perturbations of an incompressible nonideal fluid between two rotating coaxial infinitely long cylinders in a nonuniform axial magnetic field. For conducting cylinders, the results for uniform and nonuniform magnetic fields are qualitatively identical. This is also observed for nonconducting cylinders in a magnetic field with a constant direction. Instability appears for nonconducting cylinders in a magnetic field with a varying direction, whose magnitude exceeds a certain critical value. This new instability also exists in the absence of rotation and, hence, is independent of its parameters. In addition, the critical magnetic field is independent of the magnetic Prandtl number, which facilitates experimental observation of the new instability.
NASA Astrophysics Data System (ADS)
Ma, Hui; Wang, Jianhua; Liu, Zhiyuan; Geng, Yingsan; Wang, Zhenxing; Yan, Jing
2016-06-01
The objective of this work is to reveal the effects of an axial magnetic field (AMF) on the vacuum arc characteristics between transverse magnetic field (TMF) contacts. These vacuum arc characteristics include the vacuum arcing behavior and the arc voltage waveform. In the experiments, an external AMF was applied to a pair of TMF contacts. The external AMF flux density BAMF can be adjusted from 0 to 110 mT. The arc current in the tests varied over a range from 0 to 20 kA rms at 45 Hz. The contact material was CuCr25 (25% Cr). A high-speed charge-coupled device video camera was used to record the vacuum arc evolution. The experimental results show that the application of the AMF effectively reduces the TMF arc voltage noise component and reduces the formation of liquid metal drops between the contacts. The diffuse arc duration increases linearly with increasing AMF flux density, but it also decreases linearly with increasing arc current under application of the external AMF. The results also indicate that the diffuse arc duration before the current zero is usually more than 1 ms under the condition that the value of the AMF per kiloampere is more than 2.0 mT/kA. Finally, under application of the AMF, the arc column of the TMF contacts may constrict and remain in the center region without transverse rotation. Therefore, the combined TMF-AMF contacts should be designed such that they guarantee that the AMF is not so strong as to oppose transverse rotation of the arc column.
NASA Astrophysics Data System (ADS)
Jung, Tae-Uk
2012-04-01
Axial field permanent magnet (AFPM) generators are widely applied for the small wind turbine. The output power of conventional AFPM generator, AFER-NS (Axial Field External Rotor-Non Slotted) generator, is limited by the large reluctance by the long air-gap flux paths. In this paper, the novel structure of AFPM generator, AFIR-S (Axial Field Inner Rotor-Slotted) generator, is suggested to improve the output characteristics. The electromagnetic design analysis and the design improvement of the suggested AFIR-S generator are studied. Firstly, the electromagnetic design analysis was done to increase the power density. Secondly, the design optimizations of the rotor pole-arc ratio and skew angle to increase the output power and to reduce the cogging torque. Finally, the output performances of AFER-NS and AFIR-S generator are compared with each other.
Passive magnetic bearing in the 3rd generation miniature axial flow pump-the valvo pump 2.
Okamoto, Eiji; Ishida, Yuya; Yano, Tetsuya; Mitamura, Yoshinori
2015-06-01
The new miniature axial flow pump (valvo pump 2) that is installed at the base of the ascending aorta consists of a six-phase stator, an impeller in which four neodymium magnets are incorporated, and passive magnetic bearings that suspend the impeller for axial levitation. The impeller is sustained by hydrodynamic force between the blade tip of the impeller and the inner housing of the stator. The passive magnetic bearing consists of a ring neodymium magnet and a columnar neodymium magnet. The ring neodymium magnet is set in the stationary side and the columnar neodymium magnet is incorporated in the impeller shaft. Both neodymium magnets are coaxially mounted, and the anterior and posterior passive magnetic bearings suspend the impeller by repulsion force against the hydrodynamic force that acts to move the impeller in the inflow port direction. The passive magnetic bearing was evaluated by a tensile test, and the levitation force of 8.5 N and stiffness of 2.45 N/mm was obtained. Performance of the axial flow pump was evaluated by an in vitro experiment. The passive magnetic bearing showed sufficient levitation capacity to suspend the impeller in an axial direction. In conclusion, the passive magnetic bearing is promising to be one of levitation technology for the third-generation axial flow blood pump. PMID:25407124
Three-dimensional model and simulation of vacuum arcs under axial magnetic fields
NASA Astrophysics Data System (ADS)
Wang, Lijun; Jia, Shenli; Zhou, Xin; Wang, Haijing; Shi, Zongqian
2012-01-01
In this paper, a three-dimensional (3d) magneto-hydro-dynamic (MHD) model of axial magnetic field vacuum arcs (AMFVAs) is established. Based on this model, AMFVAs are simulated and analyzed. Three-dimensional spatial distributions of many important plasma parameters and electric characteristics in AMFVAs can be obtained, such as ion number density, ion temperature, electron temperature, plasma pressure, current densities along different directions (x, y, and z), ion velocities along different directions, electric fields strength along different directions, and so on. Simulation results show that there exist significant spiral-shaped rotational phenomena in the AMFVAs, this kind of rotational phenomenon also can be verified by the many related experiments (AMFVAs photographs, especially for stronger AMF strength). For current simulation results of AMFVAs, the maximal rotational velocity at anode side is about 1100 m/s. Radial electric field is increased from arc center to arc edge; axial electric field is decreased from cathode side to anode side. Radial electric field at arc edge can be larger than axial electric field. Azimuthal electric field in most regions is much smaller than radial and axial electric field, but it can reach about 1.19 kV/m. Radial magnetic field is the smallest one compared with other components, it reaches to maximum value at the position near to anode, it can influence arc characteristics.
Radiation-Hydromagnetic Models of a Z-Pinch Implosion with an Axial Magnetic Field
NASA Astrophysics Data System (ADS)
Clark, R. W.; Giuliani, J. L.; Terry, R.; Davis, J.; Velikovich, A. L.
1997-11-01
Experimental results on a 1MA pulser suggest that axial magnetic fields can stabilize z-pinch implosions and enhance the compression ratio(S. Sorokin and S. Chaikovsky, Dense Z-Pinches, AIP Conf. Proc. 299, p.83 (1993).). The present theoretical work calculates the effects of an axial magnetic field on the plasma and field profiles in an imploding z-pinch. The initial mass configuration is an annular shell of krypton. The 1-D simulation model includes: resistive diffusion (skin effect) for both the azimuthal and axial fields, ionization dynamics, and non-LTE radiation transport. Unlike the constant pulser current of self-similar models for the screw-pinch, a transmission line is used to model the circuit of a realistic ~10MA pulser. The implosion dynamics resulting from an axial field generated by a twisted return current cage will be compared with results due to an initial field from external Helmholtz coils. The dependence of the radiative performance on compression ratio, which in turn is a function of inital field strength or cage twist, will be discussed.
A comparison between soft x-ray and magnetic phase data on the Madison symmetric torus
NASA Astrophysics Data System (ADS)
VanMeter, P. D.; Franz, P.; Reusch, L. M.; Sarff, J. S.; Den Hartog, D. J.
2016-11-01
The Soft X-Ray (SXR) tomography system on the Madison Symmetric Torus uses four cameras to determine the emissivity structure of the plasma. This structure should directly correspond to the structure of the magnetic field; however, there is an apparent phase difference between the emissivity reconstructions and magnetic field reconstructions when using a cylindrical approximation. The difference between the phase of the dominant rotating helical mode of the magnetic field and the motion of the brightest line of sight for each SXR camera is dependent on both the camera viewing angle and the plasma conditions. Holding these parameters fixed, this phase difference is shown to be consistent over multiple measurements when only toroidal or poloidal magnetic field components are considered. These differences emerge from physical effects of the toroidal geometry which are not captured in the cylindrical approximation.
Heterogeneous deformation recorded by magnetic fabrics in the Pyrenean Axial Zone
NASA Astrophysics Data System (ADS)
Izquierdo-Llavall, Esther; Casas-Sainz, Antonio M.; Oliva-Urcia, Belén
2013-12-01
Magnetic fabrics studies (AMS) are a useful tool in order to describe the distribution of deformation in orogenic areas where conventional techniques are difficult to apply, especially due to the lack of proper strain markers. In the present study, AMS and structural analysis are used to define the distribution of deformation in the Central Axial and Nogueres Zones, an area of strong structural changes (i) in the geometry of the antiformal stack defining the Pyrenean Axial Zone and (ii) the distribution of Alpine cleavage. The studied rocks are Lower-Middle Triassic red beds that crop out in three different stacked thrust units (Bielsa, Nogueres and Orri). Primary sedimentary fabrics are preserved in the uppermost thrust units (Nogueres Zone), but a high percentage of the sampling sites shows an overprint of Alpine compression on magnetic fabrics, with the magnetic lineation mostly parallel to the tectonic grain defined by compressional structures and the magnetic foliation showing different orientations between the poles to cleavage and bedding. The development of compressional fabrics strongly depends on the structural position of the sites, and two deformation gradients can be inferred: the southern margin of the Axial Zone (Orri and Bielsa units) shows strong internal deformation, increasing towards the North; farther north (in the restored cross-section), deformation is in general terms lower, but increases towards the basal thrust of the Nogueres Zone. The heterogeneous distribution of Alpine internal deformation indicates a preferred development of cleavage in the Variscan basement and overlying units of the southern margin of the Axial Zone (mainly in the Orri unit), that could be partly controlled by the tectonic load resulting from the stacking of thrust sheets.
Advanced AC permanent magnet axial flux disc motor for electric passenger vehicle
NASA Technical Reports Server (NTRS)
Kliman, G. B.
1982-01-01
An ac permanent magnet axial flux disc motor was developed to operate with a thyristor load commutated inverter as part of an electric vehicle drive system. The motor was required to deliver 29.8 kW (40 hp) peak and 10.4 kW (14 hp) average with a maximum speed of 11,000 rpm. It was also required to run at leading power factor to commutate the inverter. Three motors were built.
Development of a Co-Axial Hot Cathode for Magnetized Ion Source Plasma
Miyamoto, N.; Hamamoto, N.; Imakita, S.; Mendenilla, A. G.; Wada, M.
2008-11-03
Directly heated high temperature cathodes of refractory metals such as tungsten run electric current of more than several tens of amperes. The electric current makes magnetic field around the cathode wire, and the magnetic field causes inhomogeneous emission of electrons from the cathode. To solve this problem we have designed the cathode having a co-axial heater current flow structure, and mounted it in a Bernas-type ion source. A plasma produced by co-axial hot cathode showed a clearer column along the external magnetic field and less displacement in the direction perpendicular to the field than that produced by a hair-pin filament. Stable discharge current as high as 5000 mA was obtained for Ar and BF{sub 3} gases with the co-axial cathode. Boron and phosphorus ion beams were extracted from the source on an actual ion implanter. The ion beam currents were 1.5 times as large as those obtained with a hair-pin filament.
Manipulating Magnetism: Ru-2(5+) Paddlewheels Devoid of Axial Interactions
Chiarella, Gina M; Cotton, F. A.; Murillo, Carlos A; Ventura, Karen; Vilagran, Dino; Wang, Xiaoping
2014-01-01
Variable-temperature magnetic and structural data of two pairs of diruthenium isomers, one pair having an axial ligand and the formula Ru-2(DArF)(4)Cl (where DArF is the anion of a diarylformamidine isomer and Ar = p-anisyl or m-anisyl) and the other one being essentially identical but devoid of axial ligands and having the formula [Ru-2(DArF)(4)]BF4, show that the axial ligand has a significant effect on the electronic structure of the diruthenium unit. Variable temperature crystallographic and magnetic data as well as density functional theory calculations unequivocally demonstrate the occurrence of pi interactions between the p orbitals of the chlorine ligand and the pi* orbitals in the Ru-2(5+) units. The magnetic and structural data are consistent with the existence of combined ligand sigma/metal sigma and ligand p pi/metal-d pi interactions. Electron paramagnetic resonance data show unambiguously that the unpaired electrons are in metal-based molecular orbitals.
Torsional Alfvén waves in solar magnetic flux tubes of axial symmetry
NASA Astrophysics Data System (ADS)
Murawski, K.; Solov'ev, A.; Musielak, Z. E.; Srivastava, A. K.; Kraśkiewicz, J.
2015-05-01
Aims: Propagation and energy transfer of torsional Alfvén waves in solar magnetic flux tubes of axial symmetry is studied. Methods: An analytical model of a solar magnetic flux tube of axial symmetry is developed by specifying a magnetic flux and deriving general analytical formulas for the equilibrium mass density and gas pressure. The main advantage of this model is that it can be easily adopted to any axisymmetric magnetic structure. The model is used to numerically simulate the propagation of nonlinear Alfvén waves in such 2D flux tubes of axial symmetry embedded in the solar atmosphere. The waves are excited by a localized pulse in the azimuthal component of velocity and launched at the top of the solar photosphere, and they propagate through the solar chromosphere, the transition region, and into the solar corona. Results: The results of our numerical simulations reveal a complex scenario of twisted magnetic field lines and flows associated with torsional Alfvén waves, as well as energy transfer to the magnetoacoustic waves that are triggered by the Alfvén waves and are akin to the vertical jet flows. Alfvén waves experience about 5% amplitude reflection at the transition region. Magnetic (velocity) field perturbations that experience attenuation (growth) with height agree with analytical findings. The kinetic energy of magnetoacoustic waves consists of 25% of the total energy of Alfvén waves. The energy transfer may lead to localized mass transport in the form of vertical jets, as well as to localized heating because slow magnetoacoustic waves are prone to dissipation in the inner corona.
Matrix isolation ESR spectroscopy and magnetic anisotropy of D{sub 3h} symmetric septet trinitrenes
Misochko, Eugenii Ya.; Akimov, Alexander V.; Masitov, Artem A.; Korchagin, Denis V.; Aldoshin, Sergei M.; Chapyshev, Sergei V.
2013-05-28
The fine-structure (FS) parameters D of a series of D{sub 3h} symmetric septet trinitrenes were analyzed theoretically using density functional theory (DFT) calculations and compared with the experimental D values derived from ESR spectra. ESR studies show that D{sub 3h} symmetric septet 1,3,5-trichloro-2,4,6-trinitrenobenzene with D=-0.0957 cm{sup -1} and E= 0 cm{sup -1} is the major paramagnetic product of the photolysis of 1,3,5-triazido-2,4,6-trichlorobenzene in solid argon matrices at 15 K. Trinitrenes of this type display in the powder X-band ESR spectra intense Z{sub 1}-transition at very low magnetic fields, the position of which allows one to precisely calculate the parameter D of such molecules. Thus, our revision of the FS parameters of well-known 1,3,5-tricyano-2,4,6-trinitrenobenzene [E. Wasserman, K. Schueller, and W. A. Yager, Chem. Phys. Lett. 2, 259 (1968)] shows that this trinitrene has Double-Vertical-Line D Double-Vertical-Line = 0.092 cm{sup -1} and E= 0 cm{sup -1}. DFT calculations reveal that, unlike C{sub 2v} symmetric septet trinitrenes, D{sub 3h} symmetric trinitrenes have the same orientations of the spin-spin coupling tensor D-caret{sub SS} and the spin-orbit coupling tensor D-caret{sub SOC} and, as a result, have negative signs for both the D{sub SS} and D{sub SOC} values. The negative magnetic anisotropy of septet 2,4,6-trinitrenobenzenes is considerably strengthened on introduction of heavy atoms in the molecules, owing to an increase in contributions of various excitation states to the D{sub SOC} term.
Ultra-high speed permanent magnet axial gap alternator with multiple stators
Hawsey, Robert A.; Bailey, J. Milton
1991-01-01
An ultra-high speed, axial gap alternator that can provide an output to a plurality of loads, the alternator providing magnetic isolation such that operating conditions in one load will not affect operating conditions of another load. This improved alternator uses a rotor member disposed between a pair of stator members, with magnets disposed in each of the rotor member surfaces facing the stator members. The magnets in one surface of the rotor member, which alternate in polarity, are isolated from the magnets in the other surface of the rotor member by a disk of magnetic material disposed between the two sets of magents. In the preferred embodiment, this disk of magnetic material is laminated between two layers of non-magnetic material that support the magnets, and the magnetic material has a peripheral rim that extends to both surfaces of the rotor member to enhance the structural integrity. The stator members are substantially conventional in construction in that equally-spaced and radially-oriented slots are provided, and winding members are laid in these slots. A unit with multiple rotor members and stator members is also described.
Papadichev, V.A.
1995-12-31
Undulator and solenoid field errors cause electron trajectory deviation from the ideal orbit. Even small errors can result in a large lower frequency excursion from the undulator axis of a distorted orbit and of betatron oscillations performed now around it, especially near resonant conditions. Numerical calculation of a trajectory step by step requires large computing time and treats only particular cases, thus lacking generality. Theoretical treatment is traditionally based on random distribution of field errors, which allows a rather general approach, but is not convenient for practical purposes. In contrast, analytical treatment shows explicitly how distorted orbit and betatron oscillation amplitude depend on field parameters and errors and indicates how to eliminate these distortions. An analytical solution of the equations of motion can be found by expanding field errors and distorted orbit in Fourier series as was done earlier for the simplest case of a plane undulator without axial magnetic field. The same method is applied now to the more general case of combined generlized undulator and axial magnetic fields. The undulator field is a superposition of the fields of two plane undulators with mutually orthogonal fields and an arbitrary axial shift of the second undulator relative to the first. Beam space-charge forces and external linear focusing are taken into account. The particle trajectory is a superposition of ideal and distorted orbits with cyclotron gyration and slow drift gyration in the axial magnetic field caused by a balance of focusing and defocusing forces. The amplitudes of these gyrations depend on transverse coordinate and velocity at injection and can nearly double the total deviation of an electron from the undulator axis even after an adiabatic undulator entry. If the wavenumber of any Fourier harmonic is close to the wavenumbers of cyclotron or drift gyrations, a resonant increase of orbit distortion occurs.
NASA Technical Reports Server (NTRS)
Bilharz, Herbert; Hoelder, Ernst
1947-01-01
The present report concerns a method of computing the velocity and pressure distributions on bodies of revolution in axially symmetrical flow in the subsonic range. The differential equation for the velocity potential Phi of a compressible fluid motion is linearized tn the conventional manner, and then put in the form Delta(Phi) = 0 by affine transformation. The quantity Phi represents the velocity potential of a fictitious incompressible flow, for which a constant superposition of sources by sections is secured by a method patterned after von Karman which must comply with the boundary condition delta(phi)/delta(n) = 0 at the originally specified contour. This requirement yields for the "pseudo-stream function" psi a differential equation which must be fulfilled for as many points on the contour as source lengths are assumed. In this manner, the problem of defining the still unknown source intensities is reduced to the solution of an inhomogeneous equation system. The pressure distribution is then determined with the aid of Bernoulli's equation and adiabatic equation of state. Lastly, the pressure distributions in compressible and incompressible medium are compared on a model problem.
Magnetic moment of the majorana neutrino in the left-right symmetric model
Boyarkin, O. M. Boyarkina, G. G.
2013-04-15
Corrections to the neutrino magnetic dipole moment from the singly charged Higgs bosons h{sup ({+-})} and {delta}-tilde{sup (}{+-}) were calculated within the left-right symmetric model involving Majorana neutrinos. It is shown that, if the h{sup ({+-})} and {delta}-tilde{sup (}{+-}) bosons lie at the electroweak scale, the contributions from Higgs sector are commensurate with the contribution of charged gauge bosons or may even exceed it. The behavior of the neutrino flux inmatter and in amagnetic field was studied. It was found that resonance transitions between light and heavy neutrinos are forbidden.
Clean measurements of the nucleon axial-vector and free-neutron magnetic form factors
Deur, Alexandre P.
2013-11-01
We discuss the feasibility of a weak charged current experiment using a low energy electron beam. A first goal is to measure the Q^2 dependence of the axial-vector form factor g_a(Q^2). It can be measured model-independently and as robustly as for electromagnetic form factors from typical electron scattering experiments, in contrast to the methods used so far to measure g_a(Q^2). If g_a(Q^2) follows a dipole form, the axial mass can be extracted with a better accuracy than the world data altogether. The most important detection equipment would be a segmented neutron detector with good momentum and angular resolution that is symmetric about the beam direction, and covers a moderate angular range. A high intensity beam (100 uA) is necessary. Beam polarization is highly desirable as it provides a clean measurement of the backgrounds. Beam energies between 70 and 110 MeV are ideal. This range would provide a Q^2 mapping of g_a between 0.01
SL(2,R) duality-symmetric action for electromagnetic theory with electric and magnetic sources
Lee, Choonkyu; Min, Hyunsoo
2013-12-15
For the SL(2,R) duality-invariant generalization of Maxwell electrodynamics in the presence of both electric and magnetic sources, we formulate a local, manifestly duality-symmetric, Zwanziger-type action by introducing a pair of four-potentials A{sup μ} and B{sup μ} in a judicious way. On the two potentials A{sup μ} and B{sup μ} the SL(2,R) duality transformation acts in a simple linear manner. In quantum theory including charged source fields, this action can be recast as a SL(2,Z)-invariant action. Also given is a Zwanziger-type action for SL(2,R) duality-invariant Born–Infeld electrodynamics which can be important for D-brane dynamics in string theory. -- Highlights: •We formulate a local, manifestly duality-symmetric, Zwanziger-type action. •Maxwell electrodynamics is generalized to include dilaton and axion fields. •SL(2,R) symmetry is manifest. •We formulate a local, manifestly duality-symmetric, nonlinear Born–Infeld action with SL(2,R) symmetry.
Lim, Tau Meng; Cheng, Shanbao; Chua, Leok Poh
2009-07-01
Axial flow blood pumps are generally smaller as compared to centrifugal pumps. This is very beneficial because they can provide better anatomical fit in the chest cavity, as well as lower the risk of infection. This article discusses the design, levitated responses, and parameter estimation of the dynamic characteristics of a compact hybrid magnetic bearing (HMB) system for axial flow blood pump applications. The rotor/impeller of the pump is driven by a three-phase permanent magnet brushless and sensorless motor. It is levitated by two HMBs at both ends in five degree of freedom with proportional-integral-derivative controllers, among which four radial directions are actively controlled and one axial direction is passively controlled. The frequency domain parameter estimation technique with statistical analysis is adopted to validate the stiffness and damping coefficients of the HMB system. A specially designed test rig facilitated the estimation of the bearing's coefficients in air-in both the radial and axial directions. Experimental estimation showed that the dynamic characteristics of the HMB system are dominated by the frequency-dependent stiffness coefficients. By injecting a multifrequency excitation force signal onto the rotor through the HMBs, it is noticed in the experimental results the maximum displacement linear operating range is 20% of the static eccentricity with respect to the rotor and stator gap clearance. The actuator gain was also successfully calibrated and may potentially extend the parameter estimation technique developed in the study of identification and monitoring of the pump's dynamic properties under normal operating conditions with fluid. PMID:19566728
Lim, Tau Meng; Cheng, Shanbao; Chua, Leok Poh
2009-07-01
Axial flow blood pumps are generally smaller as compared to centrifugal pumps. This is very beneficial because they can provide better anatomical fit in the chest cavity, as well as lower the risk of infection. This article discusses the design, levitated responses, and parameter estimation of the dynamic characteristics of a compact hybrid magnetic bearing (HMB) system for axial flow blood pump applications. The rotor/impeller of the pump is driven by a three-phase permanent magnet brushless and sensorless motor. It is levitated by two HMBs at both ends in five degree of freedom with proportional-integral-derivative controllers, among which four radial directions are actively controlled and one axial direction is passively controlled. The frequency domain parameter estimation technique with statistical analysis is adopted to validate the stiffness and damping coefficients of the HMB system. A specially designed test rig facilitated the estimation of the bearing's coefficients in air-in both the radial and axial directions. Experimental estimation showed that the dynamic characteristics of the HMB system are dominated by the frequency-dependent stiffness coefficients. By injecting a multifrequency excitation force signal onto the rotor through the HMBs, it is noticed in the experimental results the maximum displacement linear operating range is 20% of the static eccentricity with respect to the rotor and stator gap clearance. The actuator gain was also successfully calibrated and may potentially extend the parameter estimation technique developed in the study of identification and monitoring of the pump's dynamic properties under normal operating conditions with fluid.
Measurements of the Ion Species of Cathodic Arc Plasma in an Axial Magnetic Field
Oks, Efim; Anders, Andre
2010-10-19
Metal and gas ion species and their charge state distributions were measured for pulsed copper cathodic arcs in argon background gas in the presence of an axial magnetic field. It was found that changing the cathode position relative to anode and ion extraction system as well as increasing the gas pressure did not much affect the arc burning voltage and the related power dissipation. However, the burning voltage and power dissipation greatly increased as the magnetic field strength was increased. The fraction of metal ions and the mean ion charge state were reduced as the discharge length was increased. The observations can be explained by the combination of charge exchange collisions and electron impact ionization. They confirm that previously published data on characteristic material-dependent charge state distributions (e.g., Anders and Yushkov, J. Appl. Phys., Vol. 91, pp. 4824-4832, 2002) are not universal but valid for high vacuum conditions and the specifics of the applied magnetic fields.
Nonreciprocal μ -near-zero mode in PT -symmetric magnetic domains
NASA Astrophysics Data System (ADS)
Wang, Jin; Dong, Hui Yuan; Ling, Chi Wai; Chan, C. T.; Fung, Kin Hung
2015-06-01
We find that a new type of nonreciprocal modes exists at an interface between two parity-time- (PT -) symmetric magnetic domains (MDs) near the frequency of zero effective permeability. This mode is nonpropagating and purely magnetic when the two MDs are semi-infinite, while it becomes propagating in the finite case. In particular, two pronounced nonreciprocal responses could be observed via the excitation of this mode: one-way optical tunneling for oblique incidence and unidirectional beam shift at normal incidence. When the two MDs system becomes finite in size, it is found that perfect-transmission mode could be achieved if PT symmetry is maintained. The unique properties of such an unusual mode are investigated by analytical modal calculation as well as numerical simulations. The results suggest a different approach to the design of compact optical isolator.
Disorder-promoted C4-symmetric magnetic order in iron-based superconductors
NASA Astrophysics Data System (ADS)
Hoyer, Mareike; Fernandes, Rafael M.; Levchenko, Alex; Schmalian, Jörg
2016-04-01
In most iron-based superconductors, the transition to the magnetically ordered state is closely linked to a lowering of structural symmetry from tetragonal (C4) to orthorhombic (C2). However, recently, a regime of C4-symmetric magnetic order has been reported in certain hole-doped iron-based superconductors. This novel magnetic ground state can be understood as a double-Q spin density wave characterized by two order parameters M1 and M2 related to each of the two Q vectors. Depending on the relative orientations of the order parameters, either a noncollinear spin-vortex crystal or a nonuniform charge-spin density wave could form. Experimentally, Mössbauer spectroscopy, neutron scattering, and muon spin rotation established the latter as the magnetic configuration of some of these optimally hole-doped iron-based superconductors. Theoretically, low-energy itinerant models do support a transition from single-Q to double-Q magnetic order, but with nearly degenerate spin-vortex crystal and charge-spin density wave states. In fact, extensions of these low-energy models including additional electronic interactions tip the balance in favor of the spin-vortex crystal, in apparent contradiction with the recent experimental findings. In this paper we revisit the phase diagram of magnetic ground states of low-energy multiband models in the presence of weak disorder. We show that impurity scattering not only promotes the transition from C2 to C4-magnetic order, but it also favors the charge-spin density wave over the spin-vortex crystal phase. Additionally, in the single-Q phase, our analysis of the nematic coupling constant in the presence of disorder supports the experimental finding that the splitting between the structural and stripe-magnetic transition is enhanced by disorder.
NASA Astrophysics Data System (ADS)
Kim, S. B.; Imai, M.; Takano, R.; Kashima, K.; Hahn, S.
2010-11-01
Recently, the performance of high-temperature superconducting (HTS) bulks such as a critical current density, size, and mechanical strength has been improved. In consequence, various applications with HTS bulks such as motors, bearings, and flywheels are being investigated by many research groups; Compact nuclear magnetic resonance (NMR) magnet is one of the new applications after a technique to enhance maximum trapped field of an HTS bulk more than 11.7 T, 500 MHz 1H NMR frequency, has been developed. This new compact NMR magnet out of HTS bulks is far less expensive than those conventional NMR magnets and expected to be widely used in food and drug industry. In design and manufacture of those compact NMR magnets, the issues of spatial homogeneity and temporal stability of trapped magnetic fields in HTS bulk annuli are very important. In this paper, the characteristics of the trapped magnetic fields in a stack of assembled HTS bulk annuli were investigated with various axial spaces between HTS bulks, experimentally and analytically.
Helical plasma striations in liners in the presence of an external axial magnetic field
NASA Astrophysics Data System (ADS)
Atoyan, L.; Hammer, D. A.; Kusse, B. R.; Byvank, T.; Cahill, A. D.; Greenly, J. B.; Pikuz, S. A.; Shelkovenko, T. A.
2016-02-01
Awe et al. found on the 20 MA Z machine [Acta Phys. Pol. A 115, 956 (2009)] that applying an externally generated axial magnetic field to an imploding liner leads to a helical pattern in the liner when viewed with soft x-ray radiography ([Phys. Rev. Lett. 111, 235005 (2013)] and [Phys. Plasmas 21, 056303 (2014)]). Here, we show that this phenomenon is also observed in extreme ultraviolet self-emission images of 10 mm long cylindrical metal liners having varying diameters and varying wall thicknesses on a 1 MA, 100-200 ns pulsed power generator. The magnetic field in these experiments is created using either twisted return current wires positioned close to the liner, generating a time-varying Bz, or a Helmholtz coil, generating a steady-state Bz.
Muljadi, E.; Butterfield, C.P.; Wan, Y.H.
1998-07-01
Permanent-magnet generators have been used for wind turbines for many years. Many small wind turbine manufacturers use direct-drive permanent-magnet generators. For wind turbine generators, the design philosophy must cover the following characteristics: low cost, light weight, low speed, high torque, and variable speed generation. The generator is easy to manufacture and the design can be scaled up for a larger size without major retooling. A modular permanent-magnet generator with axial flux direction was chosen. The permanent magnet used is NdFeB or ferrite magnet with flux guide to focus flux density in the air gap. Each unit module of the generator may consist of one, two, or more phases. Each generator can be expanded to two or more unit modules. Each unit module is built from simple modular poles. The stator winding is formed like a torus. Thus, the assembly process is simplified and the winding insertion in the slot is less tedious. The authors built a prototype of one unit module and performed preliminary tests in the laboratory. Follow up tests will be conducted in the lab to improve the design.
NASA Astrophysics Data System (ADS)
Shirazi Tehrani, A.; Almasi Kashi, M.; Ramazani, A.; Montazer, A. H.
2016-07-01
Arrays of multilayered Ni/Cu nanowires (NWs) with variable segment sizes were fabricated into anodic aluminum oxide templates using a pulsed electrodeposition method in a single bath for designated potential pulse times. Increasing the pulse time between 0.125 and 2 s in the electrodeposition of Ni enabled the formation of segments with thicknesses ranging from 25 to 280 nm and 10-110 nm in 42 and 65 nm diameter NWs, respectively, leading to disk-shaped, rod-shaped and/or near wire-shaped geometries. Using hysteresis loop measurements at room temperature, the axial and perpendicular magnetic properties were investigated. Regardless of the segment geometry, the axial coercivity and squareness significantly increased with increasing Ni segment thickness, in agreement with a decrease in calculated demagnetizing factors along the NW length. On the contrary, the perpendicular magnetic properties were found to be independent of the pulse times, indicating a competition between the intrawire interactions and the shape demagnetizing field.
Aunai, Nicolas; Hesse, Michael; Black, Carrie; Evans, Rebekah; Kuznetsova, Maria
2013-04-15
Numerical studies implementing different versions of the collisionless Ohm's law have shown a reconnection rate insensitive to the nature of the non-ideal mechanism occurring at the X line, as soon as the Hall effect is operating. Consequently, the dissipation mechanism occurring in the vicinity of the reconnection site in collisionless systems is usually thought not to have a dynamical role beyond the violation of the frozen-in condition. The interpretation of recent studies has, however, led to the opposite conclusion that the electron scale dissipative processes play an important dynamical role in preventing an elongation of the electron layer from throttling the reconnection rate. This work re-visits this topic with a new approach. Instead of focusing on the extensively studied symmetric configuration, we aim to investigate whether the macroscopic properties of collisionless reconnection are affected by the dissipation physics in asymmetric configurations, for which the effect of the Hall physics is substantially modified. Because it includes all the physical scales a priori important for collisionless reconnection (Hall and ion kinetic physics) and also because it allows one to change the nature of the non-ideal electron scale physics, we use a (two dimensional) hybrid model. The effects of numerical, resistive, and hyper-resistive dissipation are studied. In a first part, we perform simulations of symmetric reconnection with different non-ideal electron physics. We show that the model captures the already known properties of collisionless reconnection. In a second part, we focus on an asymmetric configuration where the magnetic field strength and the density are both asymmetric. Our results show that contrary to symmetric reconnection, the asymmetric model evolution strongly depends on the nature of the mechanism which breaks the field line connectivity. The dissipation occurring at the X line plays an important role in preventing the electron current layer
NASA Astrophysics Data System (ADS)
Ma, Hui; Geng, Yingsan; Liu, Zhiyuan; Wang, Jianhua; Wang, Zhenxing; Zhang, Zaiqin
2016-09-01
The objective of this paper is to measure the effect of an axial magnetic field (AMF) BAMF and arc current on the anode current density in diffuse vacuum arcs. The experimental geometry included a split anode and a butt-type cathode, both with a diameter of 60 mm. The anode surface was divided into a central area and three symmetrically disposed peripheral annular areas. The central area of the split anode had a diameter of 20 mm. The contact material was CuCr25 (25% Cr). The arc current IARC ranged from 4 to 14 kA (rms) at 50 Hz. The opening velocity was 2.4 m/s. The currents of the four areas on the anode contact were measured using four Rogowski coils situated outside the vacuum chamber. An external uniform AMF BAMF ranging from 0 to 110 mT was applied during the experiment. The observed arc modes were recorded by a high-speed charge-coupled device video camera. The experimental results quantitatively reveal that the current density distribution on the anode surface in the diffuse arc mode was not uniform but concentrated in the central area. The current density in the central anode area at the current peak JPeakArea I decreased with increasing BAMF following a power law. For BAMF of 0-110 mT and IARC of 4-14 kA, JPeakArea I = (2.2 IARC + 0.069 IARC2) BAMF-0.22, where JPeakArea I is in A/mm2, BAMF is in mT, and IARC is in kA. Moreover, the current distribution was uneven in the three peripheral areas.
Guarendi, Andrew N; Chandy, Abhilash J
2013-01-01
Numerical simulations of magnetohydrodynamic (MHD) hypersonic flow over a cylinder are presented for axial- and transverse-oriented dipoles with different strengths. ANSYS CFX is used to carry out calculations for steady, laminar flows at a Mach number of 6.1, with a model for electrical conductivity as a function of temperature and pressure. The low magnetic Reynolds number (<1) calculated based on the velocity and length scales in this problem justifies the quasistatic approximation, which assumes negligible effect of velocity on magnetic fields. Therefore, the governing equations employed in the simulations are the compressible Navier-Stokes and the energy equations with MHD-related source terms such as Lorentz force and Joule dissipation. The results demonstrate the ability of the magnetic field to affect the flowfield around the cylinder, which results in an increase in shock stand-off distance and reduction in overall temperature. Also, it is observed that there is a noticeable decrease in drag with the addition of the magnetic field. PMID:24307870
Guarendi, Andrew N; Chandy, Abhilash J
2013-01-01
Numerical simulations of magnetohydrodynamic (MHD) hypersonic flow over a cylinder are presented for axial- and transverse-oriented dipoles with different strengths. ANSYS CFX is used to carry out calculations for steady, laminar flows at a Mach number of 6.1, with a model for electrical conductivity as a function of temperature and pressure. The low magnetic Reynolds number (<1) calculated based on the velocity and length scales in this problem justifies the quasistatic approximation, which assumes negligible effect of velocity on magnetic fields. Therefore, the governing equations employed in the simulations are the compressible Navier-Stokes and the energy equations with MHD-related source terms such as Lorentz force and Joule dissipation. The results demonstrate the ability of the magnetic field to affect the flowfield around the cylinder, which results in an increase in shock stand-off distance and reduction in overall temperature. Also, it is observed that there is a noticeable decrease in drag with the addition of the magnetic field.
Guarendi, Andrew N.; Chandy, Abhilash J.
2013-01-01
Numerical simulations of magnetohydrodynamic (MHD) hypersonic flow over a cylinder are presented for axial- and transverse-oriented dipoles with different strengths. ANSYS CFX is used to carry out calculations for steady, laminar flows at a Mach number of 6.1, with a model for electrical conductivity as a function of temperature and pressure. The low magnetic Reynolds number (≪1) calculated based on the velocity and length scales in this problem justifies the quasistatic approximation, which assumes negligible effect of velocity on magnetic fields. Therefore, the governing equations employed in the simulations are the compressible Navier-Stokes and the energy equations with MHD-related source terms such as Lorentz force and Joule dissipation. The results demonstrate the ability of the magnetic field to affect the flowfield around the cylinder, which results in an increase in shock stand-off distance and reduction in overall temperature. Also, it is observed that there is a noticeable decrease in drag with the addition of the magnetic field. PMID:24307870
ERIC Educational Resources Information Center
de Brito, P. E.; Nazareno, H. N.
2007-01-01
In the present work we treat the problem of a particle in a uniform magnetic field along the symmetric gauge, so chosen since the wavefunctions present the required cylindrical symmetry. It is our understanding that by means of this work we can make a contribution to the teaching of the present subject, as well as encourage students to use…
Mini hemoreliable axial flow LVAD with magnetic bearings: part 2: design description.
Goldowsky, Michael
2002-01-01
This paper gives the preliminary configuration of the flow geometry used to eliminate bearing thrombus by forced pressure wash-out of the bearing gaps. This left ventricular assist device (LVAD) is physiologically controllable without extraneous sensors based on the measurement of pump differential pressure using the magnetic bearings. Knowing the LVAD differential pressure allows safe cyclic variation of impeller rpm with feedback around differential pressure, which obtains desired pressure pulsatility. Flow pulsatility is known to be of major benefit for minimizing thrombus in both the pump and arteries. It also results in improved perfusion of many organs. The ability of a conventional virtual zero power feedback loop to axially control the bearing in a long-term drift free manor is also explained.
Design of an axial flux PM motor using magnetic and thermal equivalent network
NASA Astrophysics Data System (ADS)
Mignot, Romain-Bernard; Glises, Raynal; Espanet, Christophe; Saint Ellier, Emeline; Dubas, Frédéric; Chamagne, Didier
2013-09-01
This paper deals with the development of a new generation of electric motors (7.5-15 kW) for automotive powertrains. The target is a full electric direct drive vehicle, for the particular application to heavy quadricycles. An original axial flux PM structure is proposed due to the simplicity of its manufacturing. However it leads to a 3D structure, difficult to study. The paper deals with analytical models that can be used to achieve the analysis and the sizing of the motor. The electromagnetic behavior is modeled using a simple magnetic equivalent network and the thermal behavior is analyzed with a thermal network. Finally, the analytical results are compared to those experimentally obtained and it proves the interest of the proposed structure: the construction is simple and the performances are satisfying.
Kumar, Narender; Rodrigues, G. Lakshmy, P. S.; Mathur, Y.; Ahuja, R.; Kanjilal, D.; Baskaran, R.
2014-02-15
A compact microwave ion source has been designed and developed for operation at a frequency of 2.45 GHz. The axial magnetic field is based on two permanent magnet rings, operating in the “off-resonance” mode and is tunable by moving the permanent magnets. In order to understand the electron energy distribution function, x-ray bremsstrahlung has been measured in the axial direction. Simulation studies on the x-ray bremsstrahlung have been carried out to compare with the experimental results. The effect of the axial magnetic field with respect to the microwave launching position and the position of the extraction electrode on the x-ray bremsstrahlung have been studied.
MCZ: Striations in CZ silicon crystals grown under various axial magnetic field strengths
NASA Technical Reports Server (NTRS)
Kim, G. K. M.
1985-01-01
Suppression of fluid flow instabilities in the melt by the axial magnetic field in Czochralski silicon crystal growth (AMCZ) is investigated precisely by a high-sensitivity striation etching in conjunction with temperature measurements. The magnetic strength (B) was varied up to 4.0 kG, incremented in 0.5 kG/5 cm crystal length. The convection flow was substantially suppressed at B 1.0 kG. A low oxygen level of 2-3 ppma and a high resistivity of 400 ohm-cm is achieved in the AMCZ silicon crystals at B 1.0 kG. Details of the striation formation as a function of B are presented. Computer simulation of the magnetohydrodynamics of the AMCZ silicon crystal growth are discussed briefly with regard to the solute, especially oxygen segregation at B=0, 1.0, and 2.0 kG. Earlier studies in the inverted Bridgman growth of InSb and Ge, which have established the cause and effect relationship between the convection in the melt and the striation formation as well as the suppression of the convections in the melt by transverse magnetic field are reviewed.
Design, simulation and analysis of 3 kW low speed axial flux permanent magnet generator
NASA Astrophysics Data System (ADS)
Kasim, Muhammad; Irasari, Pudji; Hikmawan, Muhammad Fathul
2016-03-01
Design and simulation of an axial flux permanent magnet generator (AFPMG) have been described in this paper. It was designed using the single rotor - single stator construction. The analytical method was using in the design process. The design process also employed the simulation using Finite Element Method Magnetics (FEMM) 4.2 software for identifying the magnetic characteristic and heat transfer. The effect of fill factor (FF) variation on the generator performances also observed in this paper. The design result shows that using the selected FF, the conductor diameter, power output, efficiency and heat distribution are affected but not for the Bg. The generator output can achieve up to 5.2 kW using the FF 0.4 which is more than assumed power output at the pre-design using FF 0.3. It also can be seen that the increasing FF will increase the power output and the efficiency. Despite a higher temperature compared with FF 0.3 and 0.35, the value of 0.4 is the most appropriate FF for designing the AFPMG.
Cremaschini, Claudio Stuchlík, Zdeněk; Tessarotto, Massimo
2014-05-15
Astrophysical plasmas in the surrounding of compact objects and subject to intense gravitational and electromagnetic fields are believed to give rise to relativistic regimes. Theoretical and observational evidences suggest that magnetized plasmas of this type are collisionless and can persist for long times (e.g., with respect to a distant observer, coordinate, time), while exhibiting geometrical structures characterized by the absence of well-defined spatial symmetries. In this paper, the problem is posed whether such configurations can correspond to some kind of kinetic equilibrium. The issue is addressed from a theoretical perspective in the framework of a covariant Vlasov statistical description, which relies on the method of invariants. For this purpose, a systematic covariant variational formulation of gyrokinetic theory is developed, which holds without requiring any symmetry condition on the background fields. As a result, an asymptotic representation of the relativistic particle magnetic moment is obtained from its formal exact solution, in terms of a suitably defined invariant series expansion parameter (perturbative representation). On such a basis, it is shown that spatially non-symmetric kinetic equilibria can actually be determined, an example being provided by Gaussian-like distributions. As an application, the physical mechanisms related to the occurrence of a non-vanishing equilibrium fluid 4-flow are investigated.
NASA Astrophysics Data System (ADS)
Cremaschini, Claudio; Tessarotto, Massimo; Stuchlík, Zdeněk
2014-05-01
Astrophysical plasmas in the surrounding of compact objects and subject to intense gravitational and electromagnetic fields are believed to give rise to relativistic regimes. Theoretical and observational evidences suggest that magnetized plasmas of this type are collisionless and can persist for long times (e.g., with respect to a distant observer, coordinate, time), while exhibiting geometrical structures characterized by the absence of well-defined spatial symmetries. In this paper, the problem is posed whether such configurations can correspond to some kind of kinetic equilibrium. The issue is addressed from a theoretical perspective in the framework of a covariant Vlasov statistical description, which relies on the method of invariants. For this purpose, a systematic covariant variational formulation of gyrokinetic theory is developed, which holds without requiring any symmetry condition on the background fields. As a result, an asymptotic representation of the relativistic particle magnetic moment is obtained from its formal exact solution, in terms of a suitably defined invariant series expansion parameter (perturbative representation). On such a basis, it is shown that spatially non-symmetric kinetic equilibria can actually be determined, an example being provided by Gaussian-like distributions. As an application, the physical mechanisms related to the occurrence of a non-vanishing equilibrium fluid 4-flow are investigated.
Dynamics of multiple viscoelastic carbon nanotube based nanocomposites with axial magnetic field
Karličić, Danilo; Cajić, Milan; Murmu, Tony; Kozić, Predrag; Adhikari, Sondipon
2014-06-21
Nanocomposites and magnetic field effects on nanostructures have received great attention in recent years. A large amount of research work was focused on developing the proper theoretical framework for describing many physical effects appearing in structures on nanoscale level. Great step in this direction was successful application of nonlocal continuum field theory of Eringen. In the present paper, the free transverse vibration analysis is carried out for the system composed of multiple single walled carbon nanotubes (MSWCNT) embedded in a polymer matrix and under the influence of an axial magnetic field. Equivalent nonlocal model of MSWCNT is adopted as viscoelastically coupled multi-nanobeam system (MNBS) under the influence of longitudinal magnetic field. Governing equations of motion are derived using the Newton second low and nonlocal Rayleigh beam theory, which take into account small-scale effects, the effect of nanobeam angular acceleration, internal damping and Maxwell relation. Explicit expressions for complex natural frequency are derived based on the method of separation of variables and trigonometric method for the “Clamped-Chain” system. In addition, an analytical method is proposed in order to obtain asymptotic damped natural frequency and the critical damping ratio, which are independent of boundary conditions and a number of nanobeams in MNBS. The validity of obtained results is confirmed by comparing the results obtained for complex frequencies via trigonometric method with the results obtained by using numerical methods. The influence of the longitudinal magnetic field on the free vibration response of viscoelastically coupled MNBS is discussed in detail. In addition, numerical results are presented to point out the effects of the nonlocal parameter, internal damping, and parameters of viscoelastic medium on complex natural frequencies of the system. The results demonstrate the efficiency of the suggested methodology to find the closed form
NASA Astrophysics Data System (ADS)
Stephens, Hillary Dianne
Tearing mode induced magnetic islands have a significant impact on the thermal characteristics of magnetically confined plasmas such as those in the reversed-field-pinch. Using a state-of-the-art Thomson scattering (TS) diagnostic, electron temperature fluctuations correlated with magnetic tearing modes have been observed on the Madison Symmetric Torus reversed-field-pinch. The TS diagnostic consists of two independently triggerable Nd:YAG lasers that can each pulse up to 15 times each plasma discharge and 21 General Atomics polchromators equipped with avalanche photodiode modules. Detailed calibrations focusing on accuracy, ease of use and repeatability and in-situ measurements have been performed on the system. Electron temperature (Te) profiles are acquired at 25 kHz with 2 cm or less resolution along the minor radius, sufficient to measure the effect of an island on the profile as the island rotates by the measurement point. Bayesian data analysis techniques are developed and used to detect fluctuations over an ensemble of shots. Four cases are studied; standard plasmas in quiescent periods, through sawteeth, through core reconnection events and in plasmas where the tearing mode activity is decreased. With a spectrum of unstable tearing modes, remnant islands that tend to flatten the temperature profile are present in the core between sawtooth-like reconnection events. This flattening is characteristic of rapid parallel heat conduction along helical magnetic field lines. The spatial structure of the temperature fluctuations show that the location of the rational surface of the m/n = 1/6 tearing mode is significantly further in than equilibrium suggestions predict. The fluctuations also provide a measurement of the remnant island width which is significantly smaller than the predicted full island width. These correlated fluctuations disappear during both global and core reconnection events. In striking contrast to temperature flattening, a temperature gradient
Hamann, F. Combis, P.; Videau, L.
2015-08-15
The one-dimensional magnetohydrodynamics of a plasma cylindrical liner is addressed in the case of a two components magnetic field. The azimuthal component is responsible for the implosion of the liner and the axial field is compressed inside the liner. A complete set of analytical profiles for the magnetic field components, the density, and the local velocity are proposed at the scale of the liner thickness. Numerical simulations are also presented to test the validity of the analytical formulas.
Detection of electron magnetic circular dichroism signals under zone axial diffraction geometry.
Song, Dongsheng; Rusz, Jan; Cai, Jianwang; Zhu, Jing
2016-10-01
EMCD (electron magnetic circular dichroism) technique provides us a new opportunity to explore magnetic properties in the transmission electron microscope. However, specific diffraction geometry is the major limitation. Only the two-beam and three-beam case are demonstrated in the experiments until now. Here, we present the more general case of zone axial (ZA) diffraction geometry through which the EMCD signals can be detected even with the very strong sensitivity to dynamical diffraction conditions. Our detailed calculations and well-controlled diffraction conditions lead to experiments in agreement with theory. The effect of dynamical diffraction conditions on EMCD signals are discussed both in theory and experiments. Moreover, with the detailed analysis of dynamical diffraction effects, we experimentally obtain the separate EMCD signals for each crystallographic site in Y3Fe5O12, which is also applicable for other materials and cannot be achieved by site-specific EMCD and XMCD technique directly. Our work extends application of more general diffraction geometries and will further promote the development of EMCD technique. PMID:27448200
An optimal design of coreless direct-drive axial flux permanent magnet generator for wind turbine
NASA Astrophysics Data System (ADS)
Ahmed, D.; Ahmad, A.
2013-06-01
Different types of generators are currently being used in wind power technology. The commonly used are induction generator (IG), doubly-fed induction generator (DFIG), electrically excited synchronous generator (EESG) and permanent magnet synchronous generator (PMSG). However, the use of PMSG is rapidly increasing because of advantages such as higher power density, better controllability and higher reliability. This paper presents an innovative design of a low-speed modular, direct-drive axial flux permanent magnet (AFPM) generator with coreless stator and rotor for a wind turbine power generation system that is developed using mathematical and analytical methods. This innovative design is implemented in MATLAB / Simulink environment using dynamic modelling techniques. The main focus of this research is to improve efficiency of the wind power generation system by investigating electromagnetic and structural features of AFPM generator during its operation in wind turbine. The design is validated by comparing its performance with standard models of existing wind power generators. The comparison results demonstrate that the proposed model for the wind power generator exhibits number of advantages such as improved efficiency with variable speed operation, higher energy yield, lighter weight and better wind power utilization.
Axially elongated field-free point data acquisition in magnetic particle imaging.
Kaethner, Christian; Ahlborg, Mandy; Bringout, Gael; Weber, Matthias; Buzug, Thorsten M
2015-02-01
The magnetic particle imaging (MPI) technology is a new imaging technique featuring an excellent possibility to detect iron oxide based nanoparticle accumulations in vivo. The excitation of the particles and in turn the signal generation in MPI are achieved by using oscillating magnetic fields. In order to realize a spatial encoding, a field-free point (FFP) is steered through the field of view (FOV). Such a positioning of the FFP can thereby be achieved by mechanical or electromagnetical movement. Conventionally, the data acquisition path is either a planar 2-D or a 3-D FFP trajectory. Assuming human applications, the size of the FOV sampled by such trajectories is strongly limited by heating of the body and by nerve stimulations. In this work, a new approach acquiring MPI data based on the axial elongation of a 2-D FFP trajectory is proposed. It is shown that such an elongation can be used as a data acquisition path to significantly increase the acquisition speed, with negligible loss of spatial resolution.
Optimal design of a novel hybrid MR brake for motorcycles considering axial and radial magnetic flux
NASA Astrophysics Data System (ADS)
Nguyen, Q. H.; Choi, S. B.
2012-05-01
This work presents an optimal solution of a new type of motorcycle brake featuring different smart magnetorheological (MR) fluids. In this study, typical types of commercial MR fluid are considered there for the design of a motorcycle MR brake; MRF-122-2ED (low yield stress), MRF-132-DG (medium yield stress) and MRF-140-CG (high yield stress). As a first step, a new configuration featuring a T-shaped drum MR brake is introduced and a hybrid concept of magnetic circuit (using both axial and radial magnetic flux) to generate braking force is analyzed based on the finite element method. An optimal design of the MR brake considering the required braking torque, the temperature due to friction of the MR fluid, the mass of the brake system and all significant geometric dimensions is then performed. For the optimization, the finite element analysis (FEA) is used to achieve principal geometric dimensions of the MR brake. In addition, the size, mass and power consumption of three different MR motorcycle brakes are quantitatively analyzed and compared.
Control of Meridional Flow in Circular Cylinders by a Travelling Axial Magnetic Field
NASA Technical Reports Server (NTRS)
Mazuruk, K.; Ramachandran, N.; Volz, M. P.
1999-01-01
Convective flow in a Bridgman or float zone configuration significantly affects the interface shape and segregation phenomena. While the primary causative factor for this flow is buoyancy induced convection in an enclosed Bridgman melt, the presence of a free surface gives rise to surface tension driven flows in the floating zone processing of melts. It is of interest to curtail these flows in order to realize near quiescent growth conditions that have shown to result in crystals with good longitudinal and radial homogeneity and thereby of better overall quality. While buoyancy effects can be reduced by careful processing in a low gravity (space) environment, the reduction of Marangoni flows due to surface tension variations is not that straight forward. Attempts have been made with some limited success with the use of external fields to affect the melt thermo-fluid behavior. The use of a static magnetic field that reduces convective contamination through the effects of a non-intrusively induced, dissipative Lorentz force in an electrically conducting melt is one such approach. Experiments have shown that axial fields of the order of 5 Tesla can significantly eliminate convection and yield close to diffusion limited crystal growth conditions. The generation and use of such high magnetic fields require substantial hardware and incur significant costs for its operation. Lately, the use of rotating magnetic fields has been tested in semiconductor crystal growth. The method is fairly well known and commonly used in metal processing but its adaptation to crystal growth of semiconductors is fairly recent. The elegance of the technique rests in its low power requirement (typically 10-20 milli-Tesla at 50-400 Hz) and its efficacy in curtailing deleterious temperature fluctuations in the melt. A rotating magnetic field imposes a rotational force and thereby induces a circulation within the melt that tends to dominate other sporadic convective effects. Thus a known low level
Pidcoe, Stephen V.; Zink, Roger A.; Boroski, William N.; McCaw, William R.
1993-01-01
An arrangement for measuring the field angle of a magnetic field as a function of axial position within a magnet bore tube of a magnet such as is used with the Superconducting Super Collider (SSC). The arrangement includes a magnetic field alignment gauge that is carried through the magnet bore tube by a positioning shuttle in predetermined increments. The positioning shuttle includes an extensible body assembly which is actuated by an internal piston arrangement. A pair of spaced inflatable cuffs are carried by the body assembly and are selectively actuated in cooperation with pressurizing of the piston to selectively drive the positioning shuttle in an axial direction. Control of the shuttle is provided by programmed electronic computer means located exteriorly of the bore tube and which controls valves provided pressurized fluid to the inflatable cuss and the piston arrangement.
NASA Astrophysics Data System (ADS)
Arani, A. Ghorbanpour; Haghparast, E.; BabaAkbar Zarei, H.
2016-08-01
In the present research, vibration and instability of axially moving single-layered graphene sheet (SLGS) subjected to magnetic field is investigated. Orthotropic visco-Pasternak foundation is developed to consider the influences of orthotropy angle, damping coefficient, normal and shear modulus. Third order shear deformation theory (TSDT) is utilized due to its accuracy of polynomial functions than other plate theories. Motion equations are obtained by means of Hamilton's principle and solved analytically. Influences of various parameters such as axially moving speed, magnetic field, orthotropic viscoelastic surrounding medium, thickness and aspect ratio of SLGS on the vibration characteristics of moving system are discussed in details. The results indicated that the critical speed of moving SLGS is strongly dependent on the moving speed. Therefore, the critical speed of moving SLGS can be improved by applying magnetic field. The results of this investigation can be used in design and manufacturing of marine vessels in nanoscale.
Reciprocal and unidirectional scattering of parity-time symmetric structures
Jin, L.; Zhang, X. Z.; Zhang, G.; Song, Z.
2016-01-01
Parity-time symmetry is of great interest. The reciprocal and unidirectional features are intriguing besides the symmetry phase transition. Recently, the reciprocal transmission, unidirectional reflectionless and invisibility are intensively studied. Here, we show the reciprocal reflection/transmission in -symmetric system is closely related to the type of symmetry, that is, the axial (reflection) symmetry leads to reciprocal reflection (transmission). The results are further elucidated by studying the scattering of rhombic ring form coupled resonators with enclosed synthetic magnetic flux. The nonreciprocal phase shift induced by the magnetic flux and gain/loss break the parity and time-reversal symmetry but keep the parity-time symmetry. The reciprocal reflection (transmission) and unidirectional transmission (reflection) are found in the axial (reflection) -symmetric ring centre. The explorations of symmetry and asymmetry from symmetry may shed light on novel one-way optical devices and application of -symmetric metamaterials. PMID:26876806
Singh, K. P.
2006-08-15
Acceleration of electrons by a circularly polarized laser pulse in the presence of a short duration intense axial magnetic field has been studied. Resonance occurs between the electrons and the laser field for an optimum magnetic field leading to effective energy transfer from laser to electrons. The value of optimum magnetic field is independent of the laser intensity and decreases with initial electron energy. The electrons rotate around the axis of the laser pulse with small angle of emittance and small energy spread. Acceleration gradient increases with laser intensity and decreases with initial electron energy.
NASA Astrophysics Data System (ADS)
Kiani, Keivan
2015-06-01
The axial buckling behavior of magnetically affected current-carrying nanowires is studied accounting for the surface energy effect. Using Euler-Bernoulli beam theory, the Lorentz force on the nanowire is determined and the governing equations are established. By application of the Galerkin approach and assumed mode method, the critical axial compressive load of the nanostructure is evaluated in the cases of simply supported and fully clamped ends. The effects of surface energy, electric current, strength of the magnetic field, slenderness ratio, and nanowire’s radius on the axial buckling loads are comprehensively discussed. The obtained results reveal that both the electric current and exerted magnetic field endanger the axial stability of the nanowire. For high levels of electric current or magnetic field strength, the surface effect becomes significant in the axial buckling performance of the nanostructure.
Investigation of mechanical field weakening of axial flux permanent magnet motor
NASA Astrophysics Data System (ADS)
Syaifuddin Mohd, M.; Aziz, A. Rashid A.; Syafiq Mohd, M.
2015-12-01
An investigation of axial flux permanent magnet motor (AFPM) characteristics was conducted with a proposed mechanical field weakening control mechanisms (by means of stator-rotor force manipulation) on the motor through modeling and experimentation. By varying the air gap between at least two bistable positions, the peak torque and top speed of the motor can be extended. The motor high efficiency region can also be extended to cover greater part of the motor operating points. An analytical model of the motor had been developed to study the correlation between the total attraction force (between the rotor and the stator) and the operating parameters of the motor. The test results shows that the motor output complies with the prediction of the research hypothesis and it is likely that a spring locking mechanism can be built to dynamically adjust the air gap of the motor to increase the operating range and could be applied in electric drivetrain applications to improve overall efficiency of electric and hybrid electric vehicles.
NASA Astrophysics Data System (ADS)
Takahashi, Hironori; Fredrickson, Eric; Gerhardt, Stefan
2012-10-01
The neutral beam intersects open field lines as it traverses the Scrape-Off-Layer (SOL), and casts its ``shadows'' on the divertor floor, where beam particles and heat lost in transit are deposited. These shadows are toroidally asymmetric in shape, reflecting the localized nature of the beam geometry and, unlike in the main plasma, a lack of symmetrizing field-line property (irrational surfaces) in the SOL. Thermoelectrically driven Scrape-Off-Layer Current (SOLC) due to a Te difference between these shadows is also toroidally asymmetric, and, when considered on a single flux-surface basis, generates an error field in an otherwise ideal magnetically symmetric tokamak. Spreading of the SOLC over flux surfaces has a symmetrizing effect on magnetic field produced due to field-line shear, except around a ``sweet spot'' midway between primary and secondary separatrices, necessitating calculations along the entire SOL beam path for a reliable field estimate. This study explores the possibility that error field due to a SOLC in the beam shadows may contribute to strong plasma rotation braking often observed when the SOL magnetic structure rapidly evolves in an early discharge phase. Similar considerations may apply to pellet paths, gas puff clouds, and other operational asymmetries.
Aghajamali, Alireza; Zare, Azadeh; Wu, Chien-Jang
2015-10-10
In this paper, the characteristic matrix method is employed to theoretically investigate properties of the defect mode in a 1D lossy symmetric defective photonic crystal containing two magnetized cold plasma defect layers. The considered photonic crystal is made of double-negative and double-positive materials. The defect mode, as a function of the magnetic field and the electron density, will be investigated in three different structures. The results show that the defect mode frequency can be tuned by variations of the magnetic field and the electron density as well. Due to the polarization-dependent magnetized cold plasma, the shift trend in the defect mode is shown to also rely on the polarization. The proposed structures could provide another alternative for the design of narrowband filters at microwave.
Polymeric Perturbation to the Magnetic Relaxations of the C2v-Symmetric [Er(Cp)2(OBu)2](-) Anion.
Han, Tian; Ding, You-Song; Leng, Ji-Dong; Zheng, Zhiping; Zheng, Yan-Zhen
2015-05-18
To test the coordination symmetry effect on the magnetization-reversal barrier trend of Er(III)-based single-ion magnets, the C2v-symmetric organolanthanide anion [Er(Cp)2(O(t)Bu)2](-) has been incorporated with different countercations, resulting in two structures, namely, the discrete [K2(Cp)(18-C-6)2][Er(Cp)2(O(t)Bu)2] (1) and the polymeric [ErK2(Cp)3(O(t)Bu)2(THF)2]n (2), where 18-C-6 = 18-crown-6 ether and Cp = cyclopentadienide. Surprisingly, the polymeric 2 exhibits much stronger field-induced magnetization relaxing behavior compared to the monomeric 1. Such disparate dynamic magnetism is attributable to the subtle coordination environmental perturbations of the central Er(III) ions.
NASA Astrophysics Data System (ADS)
Ghotra, Harjit Singh; Kant, Niti
2016-05-01
Electron injected in the path of a circularly polarized Gaussian laser beam under the influence of an external axial magnetic field is shown to be accelerated with a several GeV of energy in vacuum. A small angle of injection δ with 0 ∘ < δ < 20 ∘ for a sideway injection of electron about the axis of propagation of laser pulse is suggested for better trapping of electron in laser field and stronger betatron resonance under the influence of axial magnetic field. Such an optimized electron injection with axial magnetic field maximizes the acceleration gradient and electron energy gain with low electron scattering.
Papadichev, V.A.
1995-12-31
Various types of undulators with or without axial magnetic field are used in FELs. Supplementary beam focusing can be applied by wedging, inclining or profiling pole faces of plan undulators or superposing external focusing magnetic fields in addition to undulator own focusing. Space-charge forces influence significantly particle motion in high-current, low-energy electron beams. Finally, one can use simultaneously two or more different undulators for some specific purpose: more efficient and selective higher harmonics generation, changing polarization types and direction, gain enhancement in double-period undulator etc. All these cases can be treated by solving the generalized equations of transverse orbital motion in a linear approximation, which is widely used for orbit calculation, gives sufficient accuracy for practical purposes and allows to consider many variants and optimize the chosen one. The undulator field is described as a field of two plane undulators with mutually orthogonal fields and an arbitrary axial (phase) shift between them. Various values of the phase shift correspond to right- or left-handed helical undulators, plane undulator of different polarization etc. The general formulae are reduced to forms that allow easier examination of particular cases: planar or helical undulator combined with axial magnetic field or without it, gyroresonance, limiting beam current, polarization etc.
Akou, H. Hamedi, M.
2015-10-15
In this paper, the generation of high-quality and high-energy micro electron beam in vacuum by a chirped Gaussian laser pulse in the presence of an axial magnetic field is numerically investigated. The features of energy and angular spectra, emittances, and position distribution of electron beam are compared in two cases, i.e., in the presence and absence of an external magnetic field. The electron beam is accelerated with higher energy and qualified in spatial distribution in the presence of the magnetic field. The presence of an axial magnetic field improves electron beam spatial quality as well as its gained energy through keeping the electron motion parallel to the direction of propagation for longer distances. It has been found that a 64 μm electron bunch with about MeV initial energy becomes a 20 μm electron beam with high energy of the order of GeV, after interacting with a laser pulse in the presence of an external magnetic field.
NASA Astrophysics Data System (ADS)
Li, Shiyou; Zhang, Shifeng; Cai, Hong; Yang, Huabo
2015-06-01
We present an in situ evidence of electron beam-associated symmetric bipolar electrostatic solitary waves (ESWs) on the current sheet-side of the separatrix of the magnetic reconnection in the near-Earth magnetotail by multi-spacecraft observation of Cluster. Within one spin period, 42 cases of symmetric ESWs are continuously observed during 2 s by SC2 while other spacecrafts do not "detect" them. And the Plasma Electron and Current Experiment (PEACE) spinPAD mode data exhibits unidirectional electron beam antiparallel to the ambient field, and no electron beam-like distribution is found by other spacecrafts without ESW observation. Though the electron beam is strongly associated with the ESWs in observation by multiple spacecraft differentiation, however, the relationship between the counter-directed electron beam and the simultaneously observed ESWs remains unclear and open to the next study.
NASA Astrophysics Data System (ADS)
Pryadun, Vladimir
2005-03-01
Rectification of AC current has been observed in plain superconducting Nb films and in Nb/Ni films with symmetric periodic pinning centers. The rectified DC voltage appears for various sample geometries (cross or strip) both along and transverse to the alternating current direction, is nearly anti-symmetric with perpendicular magnetic field and strongly dependent on temperature below Tc. Analyses of the data at different temperatures, drive frequencies from 100kHz to 150MHz and at the different sample sides [1] shows that not far below Tc the rectification phenomena can be understood in terms of generation of electric fields due to local excess of critical current. Further below Tc anisotropic pinning effects could also contribute to the rectification. [1] F.G.Aliev, et al., Cond. Mat.405656. Supported by Comunidad Autonoma de Madrid -CAM/07N/0050/2002
NASA Technical Reports Server (NTRS)
Hong, S. H.; Wilhelm, H. E.
1978-01-01
An electrical discharge between two ring electrodes embedded in the mantle of a cylindrical chamber is considered, in which the plasma in the anode and cathode regions rotates in opposite directions under the influence of an external axial magnetic field. The associated boundary-value problem for the coupled partial differential equations describing the azimuthal velocity and radial current-density fields is solved in closed form. The velocity, current density, induced magnetic induction, and electric fields are presented for typical Hartmann numbers, magnetic Reynolds numbers, and geometry parameters. The discharge is shown to produce anodic and cathodic plasma sections rotating at speeds of the order 1,000,000 cm/sec for conventional magnetic field intensities. Possible application of the magnetoactive discharge as a plasma centrifuge for isotope separation is discussed.
Wei, Qin; Yu, Fan; Jin, Fang; Shuo, Li; Guoguo, Li; Gang, Lv
2012-04-01
A new high temperature superconductor axial-flux coreless maglev motor (HTS AFIM) is proposed, of which the primary windings are made of HTS tapes and the secondary is a non-magnetic conductor. The main works of this paper are the magnetic-field computation and characteristics analysis of HTS AFIM. For the first one, the reduction of magnetic fields near outer and inner radius of the HTS AFIM is solved by introducing the sub-loop electro-magnetic model along the radial position. For the second one, the AC losses of HTS coils are calculated. The relationships between the device's characteristics and device parameters are presented, and the results indicate that under certain frequency and current levitation device can output enough lift force. The conclusions are verified by finite element calculations. PMID:22393268
Tri-axial magnetic anisotropies in RE{sub 2}Ba{sub 4}Cu{sub 7}O{sub 15−y} superconductors
Horii, Shigeru Doi, Toshiya; Okuhira, Shota; Yamaki, Momoko; Kishio, Kohji; Shimoyama, Jun-ichi
2014-03-21
We report a novel quantification method of tri-axial magnetic anisotropy in orthorhombic substances containing rare earth (RE) ions using tri-axial magnetic alignment and tri-axial magnetic anisotropies depending on the type of RE in RE-based cuprate superconductors. From the changes in the axes for magnetization in magnetically aligned powders of (RE′{sub 1−x}RE″{sub x}){sub 2}Ba{sub 4}Cu{sub 7}O{sub y} [(RE′,RE″)247] containing RE ions with different single-ion magnetic anisotropies, the ratios of three-dimensional magnetic anisotropies between RE′247 and RE″247 could be determined. The results in (Y,Er)247, (Dy,Er)247, (Ho,Er)247, and (Y,Eu)247 systems suggest that magnetic anisotropies largely depended on the type of RE′ (or RE″), even in the heavy RE ions with higher magnetic anisotropies. An appropriate choice of RE ions in RE-based cuprate superconductors enables the reduction of the required magnetic field for the production of their bulks and thick films based on the tri-axial magnetic alignment technique using modulated rotation magnetic fields.
Angular Momentum of a Magnetically Trapped Atomic Condensate
Zhang, P.; Jen, H. H.; Sun, C. P.; You, L.
2007-01-19
For an atomic condensate in an axially symmetric magnetic trap, the sum of the axial components of the orbital angular momentum and the hyperfine spin is conserved. Inside an Ioffe-Pritchard trap (IPT) whose magnetic field (B field) is not axially symmetric, the difference of the two becomes surprisingly conserved. In this Letter we investigate the relationship between the values of the sum or difference angular momentums for an atomic condensate inside a magnetic trap and the associated gauge potential induced by the adiabatic approximation. Our result provides significant new insight into the vorticity of magnetically trapped atomic quantum gases.
NASA Astrophysics Data System (ADS)
Dong, Xiaomin
2016-01-01
An axial flux permanent magnet energy harvester (AFPMEH) is proposed and analyzed for a vehicle magneto-rheological (MR) damper. The relationship between the output voltage and the input excitations are analytically developed. Under different constant rotation speeds and sinusoidal excitations, the harvesting energy is numerically computed for different loads of pure resistance and coil in the MR damper. To check the performance of the proposed AFPMEH for the MR damper, the AFPMEH and MR damper are fabricated individually. Experiments are performed to measure the harvesting energy of the AFPMEH and the damping characteristics of the MR damper under different excited conditions. The excited conditions include three constant rotation speeds and sinusoidal inputs. Load inputs of the pure resistance and the coil of the MR damper are considered. The results show that the time history of the generated voltage of the AFPMEH in experiment is agreed well with that of the AFPMEH in simulation. Under constant rotation speeds, the root mean square (rms) of loaded voltage will increase with the increment of load, whereas the rms of power will be affected by the amplitude of load. The MR damper powered by the AFPMEH can almost obtain the similar damping characteristics of that external power supply. Under sinusoidal inputs, the rms of loaded voltage will increase with the increment of external loads, whereas the rms of power will be almost kept as a constant. The damping range of the MR damper can also be enlarged over 30% comparing to off-state damping force. A quarter car model with an MR damper powered by the AFPMEH is developed to investigate the control performance. The on-off skyhook control is adopted to tune the input current of the MR damper. The vibration performance of the MR suspension is investigated under different roads and vehicle speeds. The numerical results show that the MR suspension with the AFPMEH under on-off skyhook control can achieve better ride comfort
NASA Astrophysics Data System (ADS)
Zheng, Chun-Yang; Zhu, Shao-Ping; He, Xian-Tu
2002-07-01
The quasi-static magnetic fields created in the interaction of relativistic laser pulses with under-dense plasmas have been investigated by three-dimensional particle-in-cell simulation. The relativistic ponderomotive force can drive an intense electron current in the laser propagation direction, which is responsible for the generation of a helical magnetic field. The axial magnetic field results from a difference beat of wave-wave, which drives a solenoidal current. In particular, the physical significance of the kinetic model for the generation of the axial magnetic field is discussed.
Kaplan, Alex; Tomes, Matthew; Carmon, Tal; Kozlov, Maxim; Cohen, Oren; Bartal, Guy; Schwefel, Harald G L
2013-06-17
We present an optical mode solver for a whispering gallery resonator coupled to an adjacent arbitrary shaped nano-particle that breaks the axial symmetry of the resonator. Such a hybrid resonator-nanoparticle is similar to what was recently used for bio-detection and for field enhancement. We demonstrate our solver by parametrically studying a toroid-nanoplasmonic device and get the optimal nano-plasmonic size for maximal enhancement. We investigate cases near a plasmonic resonance as well as far from a plasmonic resonance. Unlike common plasmons that typically benefit from working near their resonance, here working far from plasmonic resonance provides comparable performance. This is because the plasmonic resonance enhancement is accompanied by cavity quality degradation through plasmonic absorption.
NASA Astrophysics Data System (ADS)
Yager-Elorriaga, D. A.; Patel, S. G.; Steiner, A. M.; Jordan, N. M.; Weiss, M. R.; Gilgenbach, R. M.; Lau, Y. Y.
2014-10-01
Experiments are underway to study the effects an axial magnetic field on the magneto-Rayleigh-Taylor instability (MRT) in ablating planar foils on the 1-MA LTD at the Michigan Accelerator for Inductive Z-pinch Experiments (MAIZE) facility at the University of Michigan. For 600 kA drive current, a 15 T axial magnetic field is produced using helical return current posts. During the current pulse, the magnetic field may diffuse into the foil, creating a sheared magnetic field along with the possibility of shear stabilization of the MRT instability. Theoretical investigation at UM has shown that a sheared azimuthal magnetic field coupled with an axial magnetic field reduces the MRT growth rate in general. In order to study this effect, the amount of magnetic shear is controlled by offsetting the initial position of the foil. A 775 nm Ti:sapphire laser will be used to shadowgraph the foil in order to measure the MRT growth rate. By comparing these results to previous experiments at UM, the effects of magnetic shear and an axial magnetic field will be determined. This work was supported by US DoE. S.G. Patel and A.M. Steiner supported by NPSC funded by Sandia. D.A. Yager-Elorriaga supported by NSF fellowship Grant DGE 1256260.
NASA Astrophysics Data System (ADS)
Jing, C.; Chang, C.; Gold, S. H.; Konecny, R.; Antipov, S.; Schoessow, P.; Kanareykin, A.; Gai, W.
2013-11-01
Efforts by a number of institutions to develop a Dielectric-Loaded Accelerating (DLA) structure capable of supporting high gradient acceleration when driven by an external radio frequency source have been ongoing over the past decade. Single surface resonant multipactor has been previously identified as one of the major limitations on the practical application of DLA structures in electron accelerators. In this paper, we report the results of an experiment that demonstrated suppression of multipactor growth in an X-band DLA structure through the use of an applied axial magnetic field. This represents an advance toward the practical use of DLA structures in many accelerator applications.
Mayhall, D J; Stein, W; Gronberg, J B
2006-05-15
We have performed preliminary computer-based, transient, magnetostatic calculations of the eddy-current power loss in rotating titanium-alloy and aluminum wheels and wheel rims in the predominantly axially-directed, steady magnetic fields of two small, solenoidal coils. These calculations have been undertaken to assess the eddy-current power loss in various possible International Linear Collider (ILC) positron target wheels. They have also been done to validate the simulation code module against known results published in the literature. The commercially available software package used in these calculations is the Maxwell 3D, Version 10, Transient Module from the Ansoft Corporation.
Jing, C.; Konecny, R.; Antipov, S.; Chang, C.; Gold, S. H.; Schoessow, P.; Kanareykin, A.; Gai, W.
2013-11-18
Efforts by a number of institutions to develop a Dielectric-Loaded Accelerating (DLA) structure capable of supporting high gradient acceleration when driven by an external radio frequency source have been ongoing over the past decade. Single surface resonant multipactor has been previously identified as one of the major limitations on the practical application of DLA structures in electron accelerators. In this paper, we report the results of an experiment that demonstrated suppression of multipactor growth in an X-band DLA structure through the use of an applied axial magnetic field. This represents an advance toward the practical use of DLA structures in many accelerator applications.
NASA Technical Reports Server (NTRS)
Bozeman, Richard J., Jr. (Inventor); Akkerman, James W. (Inventor); Aber, Gregory S. (Inventor); VanDamm, George Arthur (Inventor); Bacak, James W. (Inventor); Svejkovsky, Paul A. (Inventor); Benkowski, Robert J. (Inventor)
1997-01-01
A rotary blood pump includes a pump housing for receiving a flow straightener, a rotor mounted on rotor bearings and having an inducer portion and an impeller portion, and a diffuser. The entrance angle, outlet angle, axial and radial clearances of blades associated with the flow straightener, inducer portion, impeller portion and diffuser are optimized to minimize hemolysis while maintaining pump efficiency. The rotor bearing includes a bearing chamber that is filled with cross-linked blood or other bio-compatible material. A back emf integrated circuit regulates rotor operation and a microcomputer may be used to control one or more back emf integrated circuits. A plurality of magnets are disposed in each of a plurality of impeller blades with a small air gap. A stator may be axially adjusted on the pump housing to absorb bearing load and maximize pump efficiency.
NASA Astrophysics Data System (ADS)
Wang, Lijun; Deng, Jie; Zhou, Xin; Jia, Shenli; Qian, Zhonghao; Shi, Zongqian
2016-04-01
In this paper, cathode spot plasma jet (CSPJ) rotation and cathode spots behavior subjected to two kinds of large diameter axial magnetic field (AMF) electrode (cup-shaped and coil-shaped) are studied and analyzed based on experiments. The influence of gap distances on the CSPJ rotational behavior is analyzed. Experimental results show that CSPJ rotational phenomena extensively exist in the vacuum interrupters, and CSPJ rotational direction is along the direction of composite magnetic field (mainly the combination of the axial and azimuthal components). For coil-shaped and cup-shaped AMF electrodes, the rotational or inclination phenomena before the current peak value are much more significant than that after current peak value (for the same arc current), which is related to the larger ratio of azimuthal magnetic field Bt and AMF Bz (Bt/Bz). With the increase of the gap distance, the AMF strength decreases, when the arc current is kept as constant, the azimuthal magnetic field is kept invariable, the ratio between azimuthal magnetic field and AMF is increased, which results in the increase of rotational effect. For cathode spots motion, compared with cup-shaped electrode, coil-shaped electrode has the inverse AMF direction. The Robson drift direction of cathode spots of coil-shaped electrode is opposite to that of cup-shaped electrode. With the increase of gap distance, the Robson angle is decreased, which is associated with the reduced AMF strength. Erosion imprints of anode and cathode are also related to the CSPJ rotational phenomena and cathode spots behavior. The noise of arc voltage in the initial arcing stage is related to the weaker AMF.
Yang, Juan; Cai, Jing; Wang, Hongjun; Chang, Zheng; Czito, Brian G.; Bashir, Mustafa R.; Yin, Fang-Fang
2014-03-15
Purpose: To evaluate the feasibility of a retrospective binning technique for 4-dimensional magnetic resonance imaging (4D-MRI) using body area (BA) as a respiratory surrogate. Methods and Materials: Seven patients with hepatocellular carcinoma (4 of 7) or liver metastases (3 of 7) were enrolled in an institutional review board-approved prospective study. All patients were simulated with both computed tomography (CT) and MRI to acquire 3-dimensinal and 4D images for treatment planning. Multiple-slice multiple-phase cine-MR images were acquired in the axial plane for 4D-MRI reconstruction. Image acquisition time per slice was set to 10-15 seconds. Single-slice 2-dimensinal cine-MR images were also acquired across the center of the tumor in orthogonal planes. Tumor motion trajectories from 4D-MRI, cine-MRI, and 4D-CT were analyzed in the superior–inferior (SI), anterior–posterior (AP), and medial–lateral (ML) directions, respectively. Their correlation coefficients (CC) and differences in tumor motion amplitude were determined. Tumor-to-liver contrast-to-noise ratio (CNR) was measured and compared between 4D-CT, 4D-MRI, and conventional T2-weighted fast spin echo MRI. Results: The means (±standard deviations) of CC comparing 4D-MRI with cine-MRI were 0.97 ± 0.03, 0.97 ± 0.02, and 0.99 ± 0.04 in SI, AP, and ML directions, respectively. The mean differences were 0.61 ± 0.17 mm, 0.32 ± 0.17 mm, and 0.14 ± 0.06 mm in SI, AP, and ML directions, respectively. The means of CC comparing 4D-MRI and 4D-CT were 0.95 ± 0.02, 0.94 ± 0.02, and 0.96 ± 0.02 in SI, AP, and ML directions, respectively. The mean differences were 0.74 ± 0.02 mm, 0.33 ± 0.13 mm, and 0.18 ± 0.07 mm in SI, AP, and ML directions, respectively. The mean tumor-to-tissue CNRs were 2.94 ± 1.51, 19.44 ± 14.63, and 39.47 ± 20.81 in 4D-CT, 4D-MRI, and T2-weighted MRI, respectively. Conclusions: The preliminary evaluation of our 4D-MRI technique results in oncologic patients demonstrates its
NASA Astrophysics Data System (ADS)
Chakraborty Thakur, S.; Adriany, K.; Gosselin, J. J.; McKee, J.; Scime, E. E.; Sears, S. H.; Tynan, G. R.
2016-11-01
We report experimental measurements of the axial plasma flow and the parallel ion temperature in a magnetized linear plasma device. We used laser induced fluorescence to measure Doppler resolved ion velocity distribution functions in argon plasma to obtain spatially resolved axial velocities and parallel ion temperatures. We also show changes in the parallel velocity profiles during the transition from resistive drift wave dominated plasma to a state of weak turbulence driven by multiple plasma instabilities.
Herchel, Radovan; Váhovská, Lucia; Potočňák, Ivan; Trávníček, Zdeněk
2014-06-16
Pseudooctahedral mononuclear cobat(II) complex [Co(abpt)2(tcm)2] (1), where abpt = 4-amino-3,5-bis(2-pyridyl)-1,2,4-triazole and tcm = tricyanomethanide anion, shows field-induced slow relaxation of magnetization with U = 86.2 K and large axial and rhombic single-ion zero-field-splitting parameters, D = +48(2) cm(-1) and E/D = 0.27(2) (D = +53.7 cm(-1) and E/D = 0.29 from ab initio CASSCF/NEVPT2 calculations), thus presenting a new example of a field-induced single-ion magnet with transversal magnetic anisotropy. PMID:24853769
NASA Astrophysics Data System (ADS)
Munaretto, S.; Chapman, B. E.; Nornberg, M. D.; Boguski, J.; DuBois, A. M.; Almagri, A. F.; Sarff, J. S.
2016-05-01
The orientation of 3D equilibria in the Madison Symmetric Torus (MST) [R. N. Dexter et al., Fusion Technol. 19, 131 (1991)] reversed-field pinch can now be controlled with a resonant magnetic perturbation (RMP). Absent the RMP, the orientation of the stationary 3D equilibrium varies from shot to shot in a semi-random manner, making its diagnosis difficult. Produced with a poloidal array of saddle coils at the vertical insulated cut in MST's thick conducting shell, an m = 1 RMP with an amplitude br/B ˜ 10% forces the 3D structure into any desired orientation relative to MST's diagnostics. This control has led to improved diagnosis, revealing enhancements in both the central electron temperature and density. With sufficient amplitude, the RMP also inhibits the generation of high-energy (>20 keV) electrons, which otherwise emerge due to a reduction in magnetic stochasticity in the core. Field line tracing reveals that the RMP reintroduces stochasticity to the core. A m = 3 RMP of similar amplitude has little effect on the magnetic topology or the high-energy electrons.
Kuznetsov, Alexey A.; Nita, Gelu M.; Fleishman, Gregory D.
2011-12-01
Microwave emission of solar flares is formed primarily by incoherent gyrosynchrotron radiation generated by accelerated electrons in coronal magnetic loops. The resulting emission depends on many factors, including pitch-angle distribution of the emitting electrons and the source geometry. In this work, we perform systematic simulations of solar microwave emission using recently developed tools (GS Simulator and fast gyrosynchrotron codes) capable of simulating maps of radio brightness and polarization as well as spatially resolved emission spectra. A three-dimensional model of a symmetric dipole magnetic loop is used. We compare the emission from isotropic and anisotropic (of loss-cone type) electron distributions. We also investigate effects caused by inhomogeneous distribution of the emitting particles along the loop. It is found that the effect of the adopted moderate electron anisotropy is the most pronounced near the footpoints and it also depends strongly on the loop orientation. Concentration of the emitting particles at the looptop results in a corresponding spatial shift of the radio brightness peak, thus reducing effects of the anisotropy. The high-frequency ({approx}> 50 GHz) emission spectral index is specified mainly by the energy spectrum of the emitting electrons; however, at intermediate frequencies (around 10-20 GHz), the spectrum shape is strongly dependent on the electron anisotropy, spatial distribution, and magnetic field nonuniformity. The implications of the obtained results for the diagnostics of the energetic electrons in solar flares are discussed.
NASA Astrophysics Data System (ADS)
Velikovich, A. L.; Giuliani, J. L.; Clark, R. W.; Mikitchuk, D.; Kroupp, E.; Maron, Y.; Fisher, A.; Schmit, P. F.
2014-10-01
Recent progress in developing the MagLIF approach to pulsed-power driven inertial confinement fusion has stimulated the interest in observation and mitigation of the magnetic Rayleigh-Taylor instability (MRTI) of liners and Z-pinches imploded in an axial magnetic field. Theoretical analysis of these issues is particularly important because direct numerical simulation of the MRTI development is challenging due to intrinsically 3D helical structure of the fastest-growing modes. We review the analytical small-amplitude theory of the MRTI perturbation development and the weakly nonlinear theory of MRTI mode interaction, emphasizing basic physics, opportunity for 3D code verification against exact analytical solutions, and stabilization criteria. The theory is compared to the experimental results obtained at Weizmann Institute with gas-puff Z pinches and on the Z facility at Sandia with solid liners imploded in an axial magnetic field. Work supported by the US DOE/NNSA, and by the US-Israel Binational Science Foundation. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.
NASA Astrophysics Data System (ADS)
Nguyen, Thoa; Sederman, Andrew; Gladden, Lynn
2007-03-01
Radial and axial segregations are investigated by Magnetic Resonance Imaging (MRI). For the first time, full 3D structures and real-time 2D MRI movies showing the progress of segregation over many hours are reported. Data were acquired with high temporal (74 ms) and in-plane spatial resolutions (1 mm x 1 mm), giving new insights into the underlying mechanisms. The mixture composition can be quantified throughout segregation. The cylinder to be considered is 48 mm in diameter, up to 50 cm long and filled to 50 -- 82% by volume with millet and poppy seeds at a 3:1 ratio. In particular, the effects of filling fraction, cylinder length and rotational speed on segregation are addressed. Radial segregation is found to be driven by both core diffusion and the free surface. The former is dominant in the cylindrical core buried under the avalanche layer in systems over 75% full while the latter is significant at lower filling levels. Axial segregation is characterized by band formation, traveling, and merging. In all cases studied, the formation of poppy-rich bands is observed, after which individual bands start to travel at ˜3 μm s-1 until they are within ˜3 cm of a stationary band. Adjacent bands then merge into a single, enlarged poppy band as millet seeds move out of the merging region.
Axial variations in the magnetic field of superconducting dipoles and quadrupoles
Ghosh, A.K.; Robins, K.E.; Sampson, W.B.
1993-09-01
A periodic variation in the magnetic field along the axis has been observed in both quadrupole and dipole magnets made from superconducting cable. This oscillation is present in all components of the field and has a wavelength equal to the transposition length of the cable. In general the amplitude of these variations increases with magnet current and is not reversible. The residual field patten at zero current depends on the energizing cycle and increases with time spent at high field. The decay of the oscillations has a complex time dependence which contains some extremely long time constants. Unbalanced currents in the individual strands of the cable appear to cause these effects and the field variations can only be completely erased by raising the magnet above its critical temperature.
NASA Astrophysics Data System (ADS)
Pelkner, M.; Blome, M.; Reimund, V.; Thomas, H.-M.; Kreutzbruck, M.
2011-06-01
High-precision magnetic field sensors are of increasing interest in non destructive testing (NDT). In particular GMR-sensors (giant magneto resistance) are qualified because of their high sensitivity, high signal-to-noise ratio and high spatial resolution. With a GMR-gradiometer and a 3D-GMR-magnetometer we performed magnetic flux leakage measurements of artificial cracks and cracks of a depth of ≤50 μm still could be dissolved with a sufficient high signal-to-noise ratio. A semi-analytic magnetic dipole model that allows realistic GMR sensor characteristics to be incorporated is used for swiftly predicting magnetic stray fields. The reliable reconstruction based on measurements of artificial rectangular-shaped defects is demonstrated.
Sagar, Vikram; Sengupta, Sudip; Kaw, Predhiman
2012-11-15
Dynamics of a charged particle is studied in the field of a relativistically intense linearly polarized finite duration laser pulse in the presence of a static axial magnetic field. For a finite duration laser pulse whose temporal shape is defined by Gaussian profile, exact analytical expressions are derived for the particle trajectory, momentum, and energy as function of laser phase. From the solutions, it is shown that, unlike for the monochromatic plane wave case, resonant phase locking time between the particle and laser pulse is finite. The net energy transferred to the particle does not increase monotonically but tends to saturate. It is further shown that appropriate tuning of cyclotron frequency of the particle with the characteristic frequency in the pulse spectrum can lead to the generation of accelerated particles with variable energies in MeV-TeV range.
Axial-flux modular permanent-magnet generator with a toroidal winding for wind-turbine applications
Muljadi, E.; Butterfield, C.P.; Wan, Y.H.
1999-08-01
Permanent-magnet (PM) generators have been used for wind turbines for many years. Many small wind-turbine manufacturers use direct-drive PM generators. For wind-turbine generators, the design philosophy must cover the following characteristics: low cost, light weight, low speed, high torque, and variable-speed generation. The generator is easy to manufacture and the design can be scaled up for a larger size without major retooling. A modular PM generator with axial flux direction was chosen. The permanent magnet used is NdFeB or ferrite magnet with flux guide to focus flux density in the air gap. Each unit module of the generator may consist of one, two, or more phases. Each generator can be expanded to two or more unit modules. Each unit module is built from simple modular poles. The stator winding is formed like a torus. Thus, the assembly process is simplified and the winding insertion in the slot is less tedious. The authors built a prototype of one unit module and performed preliminary tests in the laboratory. Follow-up tests will be conducted in the laboratory to improve the design.
Two-dimensional inflow-wind solution of black hole accretion with an evenly symmetric magnetic field
NASA Astrophysics Data System (ADS)
Mosallanezhad, Amin; Bu, Defu; Yuan, Feng
2016-03-01
We solve the two-dimensional magnetohydrodynamic (MHD) equations of black hole accretion with the presence of magnetic field. The field includes a turbulent component, whose role is represented by the viscosity, and a large-scale ordered component. The latter is further assumed to be evenly symmetric with the equatorial plane. The equations are solved in the r - θ plane of a spherical coordinate by assuming time-steady and radially self-similar. An inflow-wind solution is found. Around the equatorial plane, the gas is inflowing; while above and below the equatorial plane at a certain critical θ angle, θ ˜ 47°, the inflow changes its direction of radial motion and becomes wind. The driving forces are analysed and found to be the centrifugal force and the gradient of gas and magnetic pressure. The properties of wind are also calculated. The specific angular momentum of wind is found to be significantly larger than that of inflow, thus wind can transfer angular momentum outward. These analytical results are compared to those obtained by the trajectory analysis based on MHD numerical simulation data and good agreements are found.
NASA Astrophysics Data System (ADS)
Andreev, O.; Kobzev, A.; Kolesnikov, Yu.; Thess, A.
Flows around obstacles are among the most common problems encountered in the fluid mechanics literature, and cylindrical obstacles definitely received the most extensive attention. The reason for this is that this relatively simple geometry already encompasses most of the important physical effects likely to play a role in flow around more complicated obstacles. This means that understanding the cylinder problem provides relevant insight on a wide variety of problem ranging from aerodynamics, with the flow around a wing or a vehicle, to pollutant dispersion around building, flows in turbines … When the working fluid conducts electricity additional effects are involved. In particular, the presence of a magnetic field tends to homogenise the flow in the direction of the magnetic field lines which leads to strong alterations of the flow patterns known from the classical nonconducting case. This configuration is also a very generic one as Magnetohydrodynamic flows around obstacle also occur in a wide variety of applications: for instance, the space vehicle re-entry problem features the flow of a conducting plasma around an obstacle: [1] and [2] have shown that it could be influenced by a strong magnetic field in order to reduce heat transfer. The cooling blanket of the future nuclear fusion reactor ITER soon to be built in France, features a complex flow of liquid metal in a very high magnetic field (typically 10 T), in which the occurrence of obstacles cannot be avoided.
NASA Astrophysics Data System (ADS)
Caratori Tontini, Fabio; Crone, Timothy J.; Ronde, Cornel E. J.; Fornari, Daniel J.; Kinsey, James C.; Mittelstaedt, Eric; Tivey, Maurice
2016-06-01
High-resolution geophysical data have been collected using the Autonomous Underwater Vehicle (AUV) Sentry over the ASHES (Axial Seamount Hydrothermal Emission Study) high-temperature (~348°C) vent field at Axial Seamount, on the Juan de Fuca Ridge. Multiple surveys were performed on a 3-D grid at different altitudes above the seafloor, providing an unprecedented view of magnetic data resolution as a function of altitude above the seafloor. Magnetic data derived near the seafloor show that the ASHES field is characterized by a zone of low magnetization, which can be explained by hydrothermal alteration of the host volcanic rocks. Surface manifestations of hydrothermal activity at the ASHES vent field are likely controlled by a combination of local faults and fractures and different lava morphologies near the seafloor. Three-dimensional inversion of the magnetic data provides evidence of a vertical, pipe-like upflow zone of the hydrothermal fluids with a vertical extent of ~100 m.
NASA Astrophysics Data System (ADS)
Reza, Khazaeinezhad; Mahdi, Esmaeilzadeh
2012-09-01
Electron acceleration in the inverse free electron laser (IFEL) with a helical wiggler in the presence of ion-channel guiding and axial magnetic field is investigated in this article. The effects of tapering wiggler amplitude and axial magnetic field are calculated for the electron acceleration. In free electron lasers, electron beams lose energy through radiation while in IFEL electron beams gain energy from the laser. The equation of electron motion and the equation of energy exchange between a single electron and electromagnetic waves are derived and then solved numerically using the fourth order Runge-Kutta method. The tapering effects of a wiggler magnetic field on electron acceleration are investigated and the results show that the electron acceleration increases in the case of a tapered wiggler magnetic field with a proper taper constant.
Zhang, X; Bishof, M; Bromley, S L; Kraus, C V; Safronova, M S; Zoller, P; Rey, A M; Ye, J
2014-09-19
SU(N) symmetry can emerge in a quantum system with N single-particle spin states when spin is decoupled from interparticle interactions. Taking advantage of the high measurement precision offered by an ultrastable laser, we report a spectroscopic observation of SU(N ≤ 10) symmetry in (87)Sr. By encoding the electronic orbital degree of freedom in two clock states while keeping the system open to as many as 10 nuclear spin sublevels, we probed the non-equilibrium two-orbital SU(N) magnetism via Ramsey spectroscopy of atoms confined in an array of two-dimensional optical traps; we studied the spin-orbital quantum dynamics and determined the relevant interaction parameters. This study lays the groundwork for using alkaline-earth atoms as testbeds for important orbital models. PMID:25147278
Martin, James E.; Solis, Kyle Jameson
2015-08-07
We recently reported two methods of inducing vigorous fluid vorticity in magnetic particle suspensions. The first method employs symmetry-breaking rational fields. These fields are comprised of two orthogonal ac components whose frequencies form a rational number and an orthogonal dc field that breaks the symmetry of the biaxial ac field to create the parity required to induce deterministic vorticity. The second method is based on rational triads, which are fields comprised of three orthogonal ac components whose frequency ratios are rational (e.g., 1 : 2 : 3). For each method a symmetry theory has been developed that enables the predictionmore » of the direction and sign of vorticity as functions of the field frequencies and phases. However, this theory has its limitations. It only applies to those particular phase angles that give rise to fields whose Lissajous plots, or principal 2-d projections thereof, have a high degree of symmetry. Nor can symmetry theory provide a measure of the magnitude of the torque density induced by the field. In this paper a functional of the multiaxial magnetic field is proposed that not only is consistent with all of the predictions of the symmetry theories, but also quantifies the torque density. This functional can be applied to fields whose Lissajous plots lack symmetry and can thus be used to predict a variety of effects and trends that cannot be predicted from the symmetry theories. These trends include the dependence of the magnitude of the torque density on the various frequency ratios, the unexpected reversal of flow with increasing dc field amplitude for certain symmetry-breaking fields, and the existence of off-axis vorticity for rational triads, such as 1 : 3 : 5, that do not have the symmetry required to analyze by symmetry theory. As a result, experimental data are given that show the degree to which this functional is successful in predicting observed trends.« less
Martin, James E.; Solis, Kyle Jameson
2015-08-07
We recently reported two methods of inducing vigorous fluid vorticity in magnetic particle suspensions. The first method employs symmetry-breaking rational fields. These fields are comprised of two orthogonal ac components whose frequencies form a rational number and an orthogonal dc field that breaks the symmetry of the biaxial ac field to create the parity required to induce deterministic vorticity. The second method is based on rational triads, which are fields comprised of three orthogonal ac components whose frequency ratios are rational (e.g., 1 : 2 : 3). For each method a symmetry theory has been developed that enables the prediction of the direction and sign of vorticity as functions of the field frequencies and phases. However, this theory has its limitations. It only applies to those particular phase angles that give rise to fields whose Lissajous plots, or principal 2-d projections thereof, have a high degree of symmetry. Nor can symmetry theory provide a measure of the magnitude of the torque density induced by the field. In this paper a functional of the multiaxial magnetic field is proposed that not only is consistent with all of the predictions of the symmetry theories, but also quantifies the torque density. This functional can be applied to fields whose Lissajous plots lack symmetry and can thus be used to predict a variety of effects and trends that cannot be predicted from the symmetry theories. These trends include the dependence of the magnitude of the torque density on the various frequency ratios, the unexpected reversal of flow with increasing dc field amplitude for certain symmetry-breaking fields, and the existence of off-axis vorticity for rational triads, such as 1 : 3 : 5, that do not have the symmetry required to analyze by symmetry theory. As a result, experimental data are given that show the degree to which this functional is successful in predicting observed trends.
Mirzanejhad, Saeed; Sohbatzadeh, Farshad; Asri, Mehdi; Toosi, Ershad Sadeghi
2006-12-15
Electron bunch acceleration by a laser pulse having Gaussian radial and temporal profiles of intensity has been studied numerically in a static helical magnetic wiggler in vacuum. The main electron bunch parameters for simulations are 10 MeV initial energy with 0.1% longitudinal energy spread, 1 mm mrad rms transverse emittance, and 3x10{sup 12} cm{sup -3} density. It is shown that the radial Gaussian profile can decrease the acceleration gradient compared with that of the plane-wave approximation due to the reduction of electron-pulse interaction area. In order to collimate electron bunch and overcome the decreasing of the acceleration gradient, an external axial magnetic field is used. The importance of the electron initial phase with respect to laser pulse is considered, and some appropriate values are found. Finally, acceleration of a femtosecond (fs) microbunch with an optimum appropriate initial phase is considered, which leads to a nearly monoenergetic microbunch and an acceleration gradient of about {approx_equal}0.2 GeV/m.
NASA Astrophysics Data System (ADS)
Wang, Cong; Shi, Zongqian; Wu, Bingzhou; Gao, Zhanpeng; Jia, Shenli; Wang, Lijun
2016-04-01
In this paper, the characteristics of the plasma jet of a low-current vacuum arc with a single cathode spot (CS) in an external axial magnetic field (AMF) up to 150 mT is investigated experimentally, at a constant arc current ranging from 20 A to 60 A. The experiments are conducted with Cu butt contacts in a demountable vacuum chamber. Images of the plasma jets are photographed with a high-speed digital camera with an exposure time of 2 μs. The uniform constant AMF (B n ) within the inter-contacts region is supplied by Nd-Fe-B permanent magnets. The influence of the external AMF on the shape of the jet near the anode surface as well as in the arc column is mainly investigated. A luminous ‘spot’ is observed on the anode surface facing the position of the CS under a relatively strong AMF. The mechanism of the appearance of the luminous ‘spot’ is proposed to be connected to the secondary plasma originating from the anode. Moreover, with the increase in the strength of the AMF, the spreading angle of the cone-shaped plasma jet in the arc-column region decreases gradually. The plasma jet, subjected to a relatively strong AMF (120 mT and 150 mT), becomes cylindrical in shape in the arc-column region and conical in shape in the near-electrode regions. The overall geometry of the plasma jet looks like a dumbbell.
Turbulent convection in a horizontal duct with strong axial magnetic field
NASA Astrophysics Data System (ADS)
Zhang, Xuan; Zikanov, Oleg
2014-11-01
Convection in a horizontal duct with one heated wall is studied computationally. The work is motivated by the concept of a blanket for fusion reactors, according to which liquid metal slowly flows in toroidal ducts aligned with the main component of the magnetic field. We first assume that the magnetic field is sufficiently strong for the flow to be purely two-dimensional and analyze chaotic flow regimes at very high Grashof numbers. Furthermore, three-dimensional perturbations are considered and the relation between the length of the duct and the critical Hartmann number, below which the flow becomes three-dimensional, is determined. Financial support was provided by the US NSF (Grant CBET 1232851).
Propagation of Axially Symmetric Detonation Waves
Druce, R L; Roeske, F; Souers, P C; Tarver, C M; Chow, C T S; Lee, R S; McGuire, E M; Overturf, G E; Vitello, P A
2002-06-26
We have studied the non-ideal propagation of detonation waves in LX-10 and in the insensitive explosive TATB. Explosively-driven, 5.8-mm-diameter, 0.125-mm-thick aluminum flyer plates were used to initiate 38-mm-diameter, hemispherical samples of LX-10 pressed to a density of 1.86 g/cm{sup 3} and of TATB at a density of 1.80 g/cm{sup 3}. The TATB powder was a grade called ultrafine (UFTATB), having an arithmetic mean particle diameter of about 8-10 {micro}m and a specific surface area of about 4.5 m{sup 2}/g. Using PMMA as a transducer, output pressure was measured at 5 discrete points on the booster using a Fabry-Perot velocimeter. Breakout time was measured on a line across the booster with a streak camera. Each of the experimental geometries was calculated using the Ignition and Growth Reactive Flow Model, the JWL++ Model and the Programmed Burn Model. Boosters at both ambient and cold (-20 C and -54 C) temperatures have been experimentally and computationally studied. A comparison of experimental and modeling results is presented.
Sun, Pengfei; Wu, Xinjun; Xu, Jiang; Li, Jian
2014-01-01
The non-contact magnetostrictive sensor (MsS) has been widely used in the guided wave testing of pipes, cables, and so on. However, it has a disadvantage of low excitation efficiency. A new method for enhancing the excitation efficiency of the non-contact MsS for pipe inspection using guided waves, by adjusting the axial length of the excitation magnetic field, is proposed. A special transmitter structure, in which two copper rings are added beside the transmitter coil, is used to adjust the axial length at the expense of weakening the excitation magnetic field. An equivalent vibration model is presented to analyze the influence of the axial length variation. The final result is investigated by experiments. Results show that the excitation efficiency of the non-contact MsS is enhanced in the whole inspection frequency range of the L(0,2) mode if the axial length is adjusted to a certain value. Moreover that certain axial length is the same for pipes of different sizes but made of the same material. PMID:24441769
Sun, Pengfei; Wu, Xinjun; Xu, Jiang; Li, Jian
2014-01-16
The non-contact magnetostrictive sensor (MsS) has been widely used in the guided wave testing of pipes, cables, and so on. However, it has a disadvantage of low excitation efficiency. A new method for enhancing the excitation efficiency of the non-contact MsS for pipe inspection using guided waves, by adjusting the axial length of the excitation magnetic field, is proposed. A special transmitter structure, in which two copper rings are added beside the transmitter coil, is used to adjust the axial length at the expense of weakening the excitation magnetic field. An equivalent vibration model is presented to analyze the influence of the axial length variation. The final result is investigated by experiments. Results show that the excitation efficiency of the non-contact MsS is enhanced in the whole inspection frequency range of the L(0,2) mode if the axial length is adjusted to a certain value. Moreover that certain axial length is the same for pipes of different sizes but made of the same material.
Study of plasmonic and magnetic modes in non-symmetric gold nano-ring geometries
NASA Astrophysics Data System (ADS)
Khosravi Khorashad, Larousse; Zhang, Hui; Roller, Eva-Maria; Liedl, Tim; Govorov, Alexander O.
2015-03-01
Research on the science of plasmonics and the study of the optical properties of photonic devices at the nanoscale have become essential over the past few decades owing to the introduction of innovative plasmonic devices and their vast applicability. The quest for light manipulation in metallic nanostructures has grown greatly due to the creation of novel optical devices for applications ranging from meta-materials and cloaking to optical sensing and plasmonic waveguides. Here, we present theoretical and numerical studies of complex nano-ring geometries composed of gold nano-spheres. We used the finite element method (COMSOL) for computational implementations. For each of the experimentally built structures, we have obtained the plasmonic resonance modes. The nano-ring structures exhibit magnetic, dipole and multipole plasmonic modes and these modes depend on the size of nanoparticles and the geometry of nano-rings. We also indicate that the plasmonic resonances observed in scattering and absorption spectra are highly dependent on symmetry breaking of nano-rings. Finally, we compare our results with the experiment and observe that our simulation is in good agreement with the experimental measurements. This work has been supported under the grant from Volkswagen Foundation.
NASA Astrophysics Data System (ADS)
Wang, Lijun; Deng, Jie; Wang, Haijing; Jia, Shenli; Qin, Kang; Shi, Zongqian
2015-10-01
In this research, drawing vacuum arc (VA) experiments were conducted using composite contacts under currents ranging from 5 kA to 20 kA root mean square (rms). The new type of contact comprised an axial magnetic field (AMF) configuration and a transverse magnetic field (TMF) configuration. The TMF plate was in the center, surrounded by the AMF plate. The contact generated both AMFs and TMFs simultaneously. VA appearances and arc voltages were recorded, and the VA was modeled as a conductor for electromagnetic force analysis in ANSYS software. The results showed that the coaxiality of operating mechanisms significantly influenced arc behavior just as the arc was ignited. When arc brightness did not increase after ignition, there was a voltage drop accompanied with diffusion of the VA. As to VA development, when an arc was ignited on an AMF plate, it spread on the plate and rotated. Over time the arc current increased, the constricting arc forms, and the arc column rotated on the TMF plate under the action of Ampere's force. With regard to the influence of a magnetic field on a VA at different stages, in the initial drawing arc stage the TMF was dominant, and the arc started to rotate under the action of Ampere's force. Afterwards, the AMF was dominant, with a steadily burning arc. As for contact melting, in the initial arcing period, a contracted short arc caused severe melting and erosion of the contact plate. When the ignition spot or root was close to the slot of plate, the electromagnetic force pushed the arc toward slot and contact edge, resulting in local erosion of the slot region.
Wang, Lijun Deng, Jie; Wang, Haijing; Jia, Shenli; Qin, Kang; Shi, Zongqian
2015-10-15
In this research, drawing vacuum arc (VA) experiments were conducted using composite contacts under currents ranging from 5 kA to 20 kA root mean square (rms). The new type of contact comprised an axial magnetic field (AMF) configuration and a transverse magnetic field (TMF) configuration. The TMF plate was in the center, surrounded by the AMF plate. The contact generated both AMFs and TMFs simultaneously. VA appearances and arc voltages were recorded, and the VA was modeled as a conductor for electromagnetic force analysis in ANSYS software. The results showed that the coaxiality of operating mechanisms significantly influenced arc behavior just as the arc was ignited. When arc brightness did not increase after ignition, there was a voltage drop accompanied with diffusion of the VA. As to VA development, when an arc was ignited on an AMF plate, it spread on the plate and rotated. Over time the arc current increased, the constricting arc forms, and the arc column rotated on the TMF plate under the action of Ampere's force. With regard to the influence of a magnetic field on a VA at different stages, in the initial drawing arc stage the TMF was dominant, and the arc started to rotate under the action of Ampere's force. Afterwards, the AMF was dominant, with a steadily burning arc. As for contact melting, in the initial arcing period, a contracted short arc caused severe melting and erosion of the contact plate. When the ignition spot or root was close to the slot of plate, the electromagnetic force pushed the arc toward slot and contact edge, resulting in local erosion of the slot region.
Analytic treatment of vortex states in cylindrical superconductors in applied axial magnetic field
Ludu, A.; Van Deun, J.; Cuyt, A.; Milosevic, M. V.; Peeters, F. M.
2010-08-15
We solve the linear Ginzburg-Landau (GL) equation in the presence of a uniform magnetic field with cylindrical symmetry and we find analytic expressions for the eigenfunctions in terms of the confluent hypergeometric functions. The discrete spectrum results from an implicit equation associated to the boundary conditions and it is resolved in analytic form using the continued fractions formalism. We study the dependence of the spectrum and the eigenfunctions on the sample size and the surface conditions for solid and hollow cylindrical superconductors. Finally, the solutions of the nonlinear GL formalism are constructed as expansions in the linear GL eigenfunction basis and selected by minimization of the free energy. We present examples of vortex states and their energies for different samples in enhancing/suppressing superconductivity surroundings.
Perkins, L. J.; Logan, B. G.; Zimmerman, G. B.; Werner, C. J.
2013-07-15
We report for the first time on full 2-D radiation-hydrodynamic implosion simulations that explore the impact of highly compressed imposed magnetic fields on the ignition and burn of perturbed spherical implosions of ignition-scale cryogenic capsules. Using perturbations that highly convolute the cold fuel boundary of the hotspot and prevent ignition without applied fields, we impose initial axial seed fields of 20–100 T (potentially attainable using present experimental methods) that compress to greater than 4 × 10{sup 4} T (400 MG) under implosion, thereby relaxing hotspot areal densities and pressures required for ignition and propagating burn by ∼50%. The compressed field is high enough to suppress transverse electron heat conduction, and to allow alphas to couple energy into the hotspot even when highly deformed by large low-mode amplitudes. This might permit the recovery of ignition, or at least significant alpha particle heating, in submarginal capsules that would otherwise fail because of adverse hydrodynamic instabilities.
Auluck, S. K. H.
2014-10-15
Direct measurement of axial magnetic field in the PF-1000 dense plasma focus (DPF), and its reported correlation with neutron emission, call for a fresh look at previous reports of existence of axial magnetic field component in the DPF from other laboratories, and associated data suggesting toroidal directionality of fast ions participating in fusion reactions, with a view to understand the underlying physics. In this context, recent work dealing with application of the hyperbolic conservation law formalism to the DPF is extended in this paper to a curvilinear coordinate system, which reflects the shape of the DPF current sheath. Locally unidirectional shock propagation in this coordinate system enables construction of a system of 7 one-dimensional hyperbolic conservation law equations with geometric source terms, taking into account all the components of magnetic field and flow velocity. Rankine-Hugoniot jump conditions for this system lead to expressions for the axial magnetic field and three components of fluid velocity having high ion kinetic energy.
NASA Astrophysics Data System (ADS)
Auluck, S. K. H.
2014-10-01
Direct measurement of axial magnetic field in the PF-1000 dense plasma focus (DPF), and its reported correlation with neutron emission, call for a fresh look at previous reports of existence of axial magnetic field component in the DPF from other laboratories, and associated data suggesting toroidal directionality of fast ions participating in fusion reactions, with a view to understand the underlying physics. In this context, recent work dealing with application of the hyperbolic conservation law formalism to the DPF is extended in this paper to a curvilinear coordinate system, which reflects the shape of the DPF current sheath. Locally unidirectional shock propagation in this coordinate system enables construction of a system of 7 one-dimensional hyperbolic conservation law equations with geometric source terms, taking into account all the components of magnetic field and flow velocity. Rankine-Hugoniot jump conditions for this system lead to expressions for the axial magnetic field and three components of fluid velocity having high ion kinetic energy.
Awe, T. J. Jennings, C. A.; McBride, R. D.; Cuneo, M. E.; Lamppa, D. C.; Martin, M. R.; Rovang, D. C.; Sinars, D. B.; Slutz, S. A.; Owen, A. C.; Gomez, M. R.; Hansen, S. B.; Herrmann, M. C.; Jones, M. C.; McKenney, J. L.; Robertson, G. K.; Rochau, G. A.; Savage, M. E.; Stygar, W. A.; Tomlinson, K.; and others
2014-05-15
Recent experiments at the Sandia National Laboratories Z Facility have, for the first time, studied the implosion dynamics of magnetized liner inertial fusion (MagLIF) style liners that were pre-imposed with a uniform axial magnetic field. As reported [T. J. Awe et al., Phys. Rev. Lett. 111, 235005 (2013)] when premagnetized with a 7 or 10 T axial field, these liners developed 3D-helix-like hydrodynamic instabilities; such instabilities starkly contrast with the azimuthally correlated magneto-Rayleigh-Taylor (MRT) instabilities that have been consistently observed in many earlier non-premagnetized experiments. The helical structure persisted throughout the implosion, even though the azimuthal drive field greatly exceeded the expected axial field at the liner's outer wall for all but the earliest stages of the experiment. Whether this modified instability structure has practical importance for magneto-inertial fusion concepts depends primarily on whether the modified instability structure is more stable than standard azimuthally correlated MRT instabilities. In this manuscript, we discuss the evolution of the helix-like instability observed on premagnetized liners. While a first principles explanation of this observation remains elusive, recent 3D simulations suggest that if a small amplitude helical perturbation can be seeded on the liner's outer surface, no further influence from the axial field is required for the instability to grow.
Mohsenpour, Taghi; Mehrabi, Narges
2013-08-15
The dispersion relation of a two-stream free-electron laser (TSFEL) with a one-dimensional helical wiggler and an axial magnetic field is studied. Also, all relativistic effects on the space-charge wave and radiation are considered. This dispersion relation is solved numerically to find the unstable interaction among the all wave modes. Numerical calculations show that the growth rate is considerably enhanced in comparison with single-stream FEL. The effect of the velocity difference of the two electron beams on the two-stream instability and the FEL resonance is investigated. The maximum growth rate of FEL resonance is investigated numerically as a function of the axial magnetic field.
Ambient-Temperature Passive Magnetic Bearings for Flywheel Energy Storage Systems
NASA Astrophysics Data System (ADS)
Post, R. F.; Bender, D. A.
2002-05-01
Based on prior work at the Lawrence Livermore National Laboratory ambient-temperature passive magnetic bearings are being adapted for use in highpower flywheel energy storage systems developed at the Trinity Flywheel Power company. En route to this goal specialized test stands have been built and computer codes have been written to aid in the development of the component parts of these bearing systems. The Livermore passive magnetic bearing system involves three types of elements, as follows: (1) axially symmetric levitation elements, energized by permanent magnets, (2) electrodynamic stabilizers employing axially symmetric arrays of permanent magnet bars (Halbach arrays) on the rotating system, interacting with specially wound electrically shorted stator circuits, and, (3) eddy-current-type vibration dampers, employing axially symmetric rotating pole assemblies interacting with stationary metallic discs. The theory of the Livermore passive magnetic bearing concept describes specific quantitative stability criteria.
Nonlinear theory of a free electron laser with a helical wiggler and an axial guide magnetic field
NASA Astrophysics Data System (ADS)
Ginzburg, N. S.; Peskov, N. Yu.
2013-09-01
A 1D nonlinear theory of a free electron laser (FEL) with a helical wiggler and an axial guide magnetic field is developed based on averaged equations of the electron motion. By averaging we separated two different cases of the e-beam/rf-wave interaction. The first one corresponds to the traditional wiggler synchronism (resonance) of rf wave with the electrons moving along stationary helical trajectories. The second one corresponds to combination resonances distinguishing by excitation of oscillation of the electrons near the stationary helical trajectory. Comparative analysis of the FEL operation in different regimes has been studied under the traditional wiggler synchronism condition. It was shown that FELs operated far from cyclotron resonance (including a reversed guide field orientation) possess low sensitivity to the initial velocity spread in the driving beam resulting in high electron efficiency. In contrast, under the weak guide field (the gyrofrequency is less than the bounce frequency) of a conventional orientation, the FEL efficiency is restricted by a significant increase in the transverse velocity of the electrons during the interaction with the rf wave that results in violation of the synchronism conditions and is accompanied by electron current losses. An additional mechanism of FEL efficiency enhancement under the conventional guide field orientation in the conditions when the gyrofrequency is higher than the bounce frequency, based on the dependence of the effective mass of the oscillating electrons on their energy, was demonstrated. Results of the theoretical analysis are compared with the results of experimental studies of FEL oscillators. The specific features of energy extraction from the electron beam under condition of an abnormal Doppler effect in the case of the combination resonance are described. This regime is beneficial to increase radiation frequency keeping wiggler period and electron energies.
Das, Ankita; Ghosh, Prabir; Priego, José Luis; Jiménez-Aparicio, Reyes; Lahiri, Goutam Kumar
2016-09-01
The present article deals with the structurally characterized unsymmetric oxido/pyrazolato-bridged [(bpy)2Os(III)(μ-oxido)(μ-pz)Os(III)(bpy)2](ClO4)3 ([1](ClO4)3) and symmetric dipyrazolato-bridged [(bpy)2Os(II)(μ-pz)2Os(II)(bpy)2](ClO4)2 ([2](ClO4)2) (pz = pyrazolato, bpy = 2,2'-bipyridine) complexes with the Os···Os separations of 3.484 and 4.172 Å, respectively. The anti-ferromagnetically coupled Os(III) centers [E(S = 1)-E(BS(1,1) S = 0) = 322.504 cm(-1)] in 1(3+) and diamagnetic (S = 0) 2(2+) exhibit well-resolved (1)H NMR resonances. [1](ClO4)3 shows temperature- and magnetic field-dependent paramagnetism at low magnetic field and diamagnetism at high magnetic field. 1(3+) and 2(2+) display successive metal-based oxidation processes involving the intermediate mixed-valent states and isovalent congeners: Os(IV)Os(IV) (1(5+))→Os(III)Os(IV) (1(4+))⇌Os(III)Os(III) (1(3+))⇌Os(III)Os(II) (1(2+)) and Os(III)Os(III) (2(4+))→Os(II)Os(III) (2(3+))⇌Os(II)Os(II) (2(2+)) as well as bpy-centered reductions. The effect of π donor O(2-) and σ/π-donating pz(-) in 1(3+) and 2(2+), respectively, leads to varying oxidation state of the metal ions in the isolated complexes: Os(III)Os(III) versus Os(II)Os(II). UV-visible-near-IR-electron paramagnetic resonance spectro-electrochemistry and density functional theory (DFT)/time-dependent DFT calculations collectively reveal overlapping of the metal- and ligand (pz, O, bpy)-based frontier orbitals in the delocalized mixed-valent states in 1(4+) and 1(2+) with comproportionation constant (Kc) value > 1 × 10(14) as well as in isovalent 1(3+), resulting in mixed metal/ligand to metal/ligand near-IR transitions in all the three states. The mixed-valent Os(II)Os(III) state in 2(3+) exhibits high Kc value of 1 × 10(22) corresponding to a strong electrochemical coupling situation. However, closeness of the bandwidth (Δν1/2, 4861 cm(-1)) of broad and weak intervalence charge transfer transition of 2(3+) at 1360 nm (ε
NASA Astrophysics Data System (ADS)
Øieroset, M.; Phan, T. D.; Haggerty, C.; Shay, M. A.; Eastwood, J. P.; Gershman, D. J.; Drake, J. F.; Fujimoto, M.; Ergun, R. E.; Mozer, F. S.; Oka, M.; Torbert, R. B.; Burch, J. L.; Wang, S.; Chen, L. J.; Swisdak, M.; Pollock, C.; Dorelli, J. C.; Fuselier, S. A.; Lavraud, B.; Giles, B. L.; Moore, T. E.; Saito, Y.; Avanov, L. A.; Paterson, W.; Strangeway, R. J.; Russell, C. T.; Khotyaintsev, Y.; Lindqvist, P. A.; Malakit, K.
2016-06-01
We report evidence for reconnection between colliding reconnection jets in a compressed current sheet at the center of a magnetic flux rope at Earth's magnetopause. The reconnection involved nearly symmetric inflow boundary conditions with a strong guide field of two. The thin (2.5 ion-skin depth (di) width) current sheet (at ~12 di downstream of the X line) was well resolved by MMS, which revealed large asymmetries in plasma and field structures in the exhaust. Ion perpendicular heating, electron parallel heating, and density compression occurred on one side of the exhaust, while ion parallel heating and density depression were shifted to the other side. The normal electric field and double out-of-plane (bifurcated) currents spanned almost the entire exhaust. These observations are in good agreement with a kinetic simulation for similar boundary conditions, demonstrating in new detail that the structure of large guide field symmetric reconnection is distinctly different from antiparallel reconnection.
Xu, Jiang; Wu, Xinjun; Kong, Dongying; Sun, Pengfei
2015-01-01
The magnetostrictive guided wave sensor with a single induced winding cannot distinguish axially symmetric from non-axially symmetric features in a pipe, because it is impossible for the sensor to detect the non-axially symmetric mode waves. When we study the effect of the change of the magnetic field in the air zone for receiving the longitudinal guided wave mode, we find that the change of the magnetic flux in the air zone is almost equivalent to the change of the flux in the pipe wall, but in opposite directions. Based on this phenomenon, we present a sensor that can detect the flexural-mode waves in pipes based on the inverse magnetostrictive effect. The sensor is composed of several coils that are arranged evenly on the outside of pipes. The coils induce a change in magnetic flux in the air to detect the flexural-mode waves. The waves can be determined by adding a phase delay to the induced signals. The symmetric and asymmetric features of a pipe can be distinguished using the sensor. A prototype sensor that can detect F(1,3) and F(2,3) mode waves is presented. The function of the sensor is verified by experiments. PMID:25738769
NASA Astrophysics Data System (ADS)
Andersen, Søren B.; Enemark, Søren; Santos, Ilmar F.
2013-12-01
A stable rotor—supported laterally by passive magnetic bearings and longitudinally by magnetic forces and a clutch—loses suddenly its contact to the clutch and executes abruptly longitudinal movements away from its original equilibrium position as a result of small increases in angular velocity. Such an abrupt unstable behaviour and its reasons are thoroughly theoretically as well as experimentally investigated in this work. In this context, this paper gives theoretical as well as experimental contributions to the problem of two dimensional passive magnetic levitation and one dimensional pointwise contact stability dictated by mechanical-magnetic interaction. Load capacity and stiffness of passive multicylinder magnetic bearings (MCMB) are thoroughly investigated using two theoretical approaches followed by experimental validation. The contact dynamics between the clutch and the rotor supported by MCMB using several configurations of magnet distribution are described based on an accurate nonlinear model able to reliably reproduce the rotor-bearing dynamic behaviour. Such investigations lead to: (a) clear physical explanation about the reasons for the rotor's unstable behaviour, losing its contact to the clutch and (b) an accurate prediction of the threshold of stability based on the nonlinear rotor-bearing model, i.e. maximum angular velocity before the rotor misses its contact to the clutch as a function of rotor, bearing and clutch design parameters. passive cylinder-magnet bearings, imbalance ring with a screw, passive rotating cylinder-magnets, rotor, Pointwise contact clutch, and DC-motor. The rotor (4) is levitated in the two horseshoe-shaped bearing houses (1) which contain several cylinder-magnets arranged in a circular pattern. These permanent magnets form a magnetic field around the rotor which repels similar cylinder-magnets (3) embedded in the rotor, thereby counteracting the gravity forces. As the shape of the magnetic field generated by the
NASA Astrophysics Data System (ADS)
Ze-Jin, Yang; Rong-Feng, Linghu; Qing-He, Gao; Heng-Na, Xiong; Zhi-Jun, Xu; Ling, Tang; Guo-Zhu, Jia; Yun-Dong, Guo
2016-09-01
The electronic structure and thermodynamical properties of Cr2TiAlC2 are studied by first principles under pressure. The obtained results observed that the ferromagnetic order is the most stable ground state and the magnetic moment will collapse at about 50 GPa. As a result, the lattice a axis becomes stiffer above about 420 GPa, ultimately presenting the same axial compressibility trends with those of nonmagnetic compounds Mo2TiAlC2 and hypothetical Cr2TiAlC2. The elastic constants and phonon dispersion curves demonstrate the structural stability during the disappearance of magnetic moment and occurrence of axial alternative compressibility. The density of states and energy band calculations confirmed the existence of magnetic moment of Cr2TiAlC2 at 0 GPa and disappearance at high pressures above 50 GPa. Evolutions of magnetic moment collapse with pressure are confirmed by a variety of properties. The obtained grüneisen parameter and thermal expansion coefficients show the maximum value among the known MAX phases, to date and to the author’s knowledge.
Ze-Jin, Yang; Rong-Feng, Linghu; Qing-He, Gao; Heng-Na, Xiong; Zhi-Jun, Xu; Ling, Tang; Guo-Zhu, Jia; Yun-Dong, Guo
2016-01-01
The electronic structure and thermodynamical properties of Cr2TiAlC2 are studied by first principles under pressure. The obtained results observed that the ferromagnetic order is the most stable ground state and the magnetic moment will collapse at about 50 GPa. As a result, the lattice a axis becomes stiffer above about 420 GPa, ultimately presenting the same axial compressibility trends with those of nonmagnetic compounds Mo2TiAlC2 and hypothetical Cr2TiAlC2. The elastic constants and phonon dispersion curves demonstrate the structural stability during the disappearance of magnetic moment and occurrence of axial alternative compressibility. The density of states and energy band calculations confirmed the existence of magnetic moment of Cr2TiAlC2 at 0 GPa and disappearance at high pressures above 50 GPa. Evolutions of magnetic moment collapse with pressure are confirmed by a variety of properties. The obtained grüneisen parameter and thermal expansion coefficients show the maximum value among the known MAX phases, to date and to the author’s knowledge. PMID:27666292
Growth of (Y1-x Ca x )Ba2Cu4O8 in ambient pressure and its tri-axial magnetic alignment
NASA Astrophysics Data System (ADS)
Horii, S.; Yamaki, M.; Shimoyama, J.; Kishio, K.; Doi, T.
2015-10-01
We report the growth of single crystals in ambient pressure and tri-axial orientation under modulated rotation magnetic fields (MRFs) for (Y1-x Ca x )Ba2Cu4O8 [(Y1-x Ca x )124] with x ≤ 0.1. Rectangular (Y1-x Ca x )124 crystals approximately 50 μm in size have been successfully grown for x ≤ 0.1 in a growth temperature region from 650 °C to 750 °C. Their critical temperatures increased with x and exhibited approximately 91 K for x = 0.1. By applying an MRF of 10 T, pulverised powders of (Y1-x Ca x )124 were tri-axially aligned in epoxy resin at room temperature in a whole x region below x = 0.1. The magnitude relationship of the magnetic susceptibilities (χ) along crystallographic directions for (Y1-x Ca x )124 was χ c > χ a > χ b at room temperature and was unchanged with a change in x. From changes in the degrees of the c-axis and the in-plane orientation (Δω) for the (Y1-x Ca x )124 powder samples aligned under three different MRF conditions, it was found that MRFs above at least 1 T were required to achieve almost complete tri-axial alignment with Δω < 5°. Irreversibility lines for H//c were successfully determined even from the powder samples by the introduction of magnetic alignment without using single crystalline samples. The present study indicates that magnetic alignment is a useful process for the fabrication of quasi-single-crystals from the perspective of solid-state physics and the production of cuprate superconducting materials.
NASA Technical Reports Server (NTRS)
Moorcroft, D. R.; Arima, K. S.
1972-01-01
Correlation analysis of three-station observations of satellite amplitude scintillations, recorded at London, Canada during the summer of 1968, have been interpreted to give information on the height, size and shape of the ionospheric irregularities. The irregularities had a mean height of 390 km, and when interpreted in terms of the usual axially-symmetric, field-aligned model, had a mean axial ratio of 6.5, and a mean dimension transverse to the magnetic field of 0.7 km. None of these parameters showed any systematic trend with geomagnetic latitude. The data for one of the passes analyzed were inconsistent with axial symmetry, and when examined in terms of a more general model, 3 of 9 passes showed evidence of irregularities which were elongated both along and transverse to the earth's magnetic field, the elongation transverse to the field tending to lie in a north-south direction.
... Site-specific Modules Resources Archived Modules Updates Axial Skeleton (80 bones) Skull (28) Cranial Bones Parietal (2) ... Sternum (1) Ribs (24) « Previous (Divisions of the Skeleton) Next (Appendicular Skeleton (126 bones)) » Contact Us | Privacy ...
NASA Technical Reports Server (NTRS)
Kimura, S.; Steinbach, G. C.; Watenpaugh, D. E.; Hargens, A. R.
2001-01-01
STUDY DESIGN: Axial load-dependent changes in the lumbar spine of supine healthy volunteers were examined using a compression device compatible with magnetic resonance imaging. OBJECTIVE: To test two hypotheses: Axial loading of 50% body weight from shoulder to feet in supine posture 1) simulates the upright lumbar spine alignment and 2) decreases disc height significantly. SUMMARY OF BACKGROUND DATA: Axial compression on the lumbar spine has significantly narrowed the lumbar dural sac in patients with sciatica, neurogenic claudication or both. METHODS: Using a device compatible with magnetic resonance imaging, the lumbar spine of eight young volunteers, ages 22 to 36 years, was axially compressed with a force equivalent to 50% of body weight, approximating the normal load on the lumbar spine in upright posture. Sagittal lumbar magnetic resonance imaging was performed to measure intervertebral angle and disc height before and during compression. RESULTS: Each intervertebral angle before and during compression was as follows: T12-L1 (-0.8 degrees +/- 2.5 degrees and -1.5 degrees +/- 2.6 degrees ), L1-L2 (0.7 degrees +/- 1.4 degrees and 3.3 degrees +/- 2.9 degrees ), L2-L3 (4.7 degrees +/- 3.5 degrees and 7.3 degrees +/- 6 degrees ), L3-L4 (7.9 degrees +/- 2.4 degrees and 11.1 degrees +/- 4.6 degrees ), L4-L5 (14.3 degrees +/- 3.3 degrees and 14.9 degrees +/- 1.7 degrees ), L5-S1 (25.8 degrees +/- 5.2 degrees and 20.8 degrees +/- 6 degrees ), and L1-S1 (53.4 degrees +/- 11.9 degrees and 57.3 degrees +/- 16.7 degrees ). Negative values reflect kyphosis, and positive values reflect lordosis. A significant difference between values before and during compression was obtained at L3-L4 and L5-S1. There was a significant decrease in disc height only at L4-L5 during compression. CONCLUSIONS: The axial force of 50% body weight in supine posture simulates the upright lumbar spine morphologically. No change in intervertebral angle occurred at L4-L5. However, disc height at L4-L
Electrostatic mirror objective with eliminated spherical and axial chromatic aberrations.
Bimurzaev, Seitkerim B; Serikbaeva, Gulnur S; Yakushev, Evgeniy M
2003-01-01
Computational formulae for the coefficients of the third-order spherical aberration and the second-order axial chromatic aberration are presented for an axially symmetric electrostatic electron mirror. A technique for eliminating the high-order derivatives of the potential axial distribution in mirror systems from the integrands is described. Conditions for elimination of spherical and axial chromatic aberrations, either separately or simultaneously, are found for a three-electrode axially symmetric mirror composed of coaxial cylinders of the same diameter. A principal scheme of the transmission electron microscope, where an electrostatic electron mirror serves as its objective, is presented. PMID:14599097
Rome, J.A.; Harris, J.H.
1984-01-01
A fusion reactor device is provided in which the magnetic fields for plasma confinement in a toroidal configuration is produced by a plurality of symmetrical modular coils arranged to form a symmetric modular torsatron referred to as a symmotron. Each of the identical modular coils is helically deformed and comprise one field period of the torsatron. Helical segments of each coil are connected by means of toroidally directed windbacks which may also provide part of the vertical field required for positioning the plasma. The stray fields of the windback segments may be compensated by toroidal coils. A variety of magnetic confinement flux surface configurations may be produced by proper modulation of the winding pitch of the helical segments of the coils, as in a conventional torsatron, winding the helix on a noncircular cross section and varying the poloidal and radial location of the windbacks and the compensating toroidal ring coils.
Mohsenpour, Taghi Rezaee Rami, Omme Kolsoum
2014-07-15
Free electron lasers (FEL) play major roles in the Raman Regime, due to the charge and current densities of the beam self-field. The method of perturbation has been applied to study the influence of self-electric and self-magnetic fields. A dispersion relation for two-stream free electron lasers with a helical wiggler and an axial magnetic field has been found. This dispersion relation is solved numerically to investigate the influence of self-fields on the FEL coupling and the two-stream instability. It was found that self-fields can produce very large effects on the FEL coupling, but they have almost negligible effects on two-stream instability.
NASA Astrophysics Data System (ADS)
Kumar, Varun; Kumar, Manoj; Shakher, Chandra
2015-08-01
In this paper, digital holographic interferometry (DHI) is implemented to investigate the effect of upward decreasing gradient magnetic field on the temperature and temperature profile of diffusion flame created by butane torch burner. In the experiment double exposure digital holographic interferometry is used to calculate the temperature distribution inside the flame. First a digital hologram is recorded in the absence of flame and second hologram is recorded in the presence of flame. Phases in two different states of air (i.e. in absence of flame and presence of flame) are reconstructed individually by numerical method. The phase difference map is obtained by subtracting the reconstructed phase of air in presence and absence of flame. Refractive index inside the flame is obtained from the axi-symmetric phase difference data using the Abel inversion integral. Temperature distribution inside the flame is calculated from the refractive index data using Lorentz - Lorentz equation. Experiment is conducted on a diffusion flame created by butane torch burner in the absence of magnetic field and in presence of upward decreasing gradient magnetic field. Experimental investigations reveal that the maximum temperature inside the flame increases under the influence of upward decreasing magnetic field.
NASA Technical Reports Server (NTRS)
Betz, A
1944-01-01
Improvements, however, have been attained which permit a shortening of the structure without any impairment of the efficiency. The axial supercharger has a better efficiency and a simpler design than the radial supercharger. The relatively narrow range in which it operates satisfactorily should not be a very disturbing factor for practical flight problems. The length of this type of supercharger may be reduced considerably if some impairment in the efficiency is permitted.
Brüning, R; Seelos, K; Yousry, T; Scheidler, J; Exner, H; Porn, U; Reiser, M; Rosen, B R
1999-01-01
The aim of this study was to assess the potential of high-speed interleaved echo-planar imaging (EPI) to achieve diagnostic image quality comparable to T2-weighted imaging in patients with brain tumors. Seventeen patients with intra-axial, supratentorial tumors (10 untreated gliomas, 7 radiated gliomas) were investigated on a 1. 5-T scanner. The conventional scan (SE, TR/TE = 2200/80 ms, 18 slices) was acquired in 8 min, 4 s, and EPI (TR/TE = 3000/80 ms, 18 slices) was completed in 25 s. The films were compared in a blinded trail by three radiologists. On the general impression and anatomic display, both sequences were rated to be of similar quality. Artifacts were slightly more pronounced at the skull base and around surgical clips using EPI. Tumor delineation was nearly equivalent using EPI, compared with the T2-weighted sequence. Echo-planar imaging reached diagnostic quality in all patients. Interleaved high-resolution EPI yielded sufficient quality to depict intra-axial, supratentorial brain tumors. Since EPI can be obtained in a small fraction of the time needed for conventional spin echo, in addition to other indications it could be considered to study patients unable to cooperate.
Brüning, R; Seelos, K; Yousry, T; Scheidler, J; Exner, H; Porn, U; Reiser, M; Rosen, B R
1999-01-01
The aim of this study was to assess the potential of high-speed interleaved echo-planar imaging (EPI) to achieve diagnostic image quality comparable to T2-weighted imaging in patients with brain tumors. Seventeen patients with intra-axial, supratentorial tumors (10 untreated gliomas, 7 radiated gliomas) were investigated on a 1. 5-T scanner. The conventional scan (SE, TR/TE = 2200/80 ms, 18 slices) was acquired in 8 min, 4 s, and EPI (TR/TE = 3000/80 ms, 18 slices) was completed in 25 s. The films were compared in a blinded trail by three radiologists. On the general impression and anatomic display, both sequences were rated to be of similar quality. Artifacts were slightly more pronounced at the skull base and around surgical clips using EPI. Tumor delineation was nearly equivalent using EPI, compared with the T2-weighted sequence. Echo-planar imaging reached diagnostic quality in all patients. Interleaved high-resolution EPI yielded sufficient quality to depict intra-axial, supratentorial brain tumors. Since EPI can be obtained in a small fraction of the time needed for conventional spin echo, in addition to other indications it could be considered to study patients unable to cooperate. PMID:10460380
Quark mass effect on axial charge dynamics
NASA Astrophysics Data System (ADS)
Guo, Er-dong; Lin, Shu
2016-05-01
We studied the effect of finite quark mass on the dynamics of the axial charge using the D3/D7 model in holography. The mass term in the axial anomaly equation affects both the fluctuation (generation) and dissipation of the axial charge. We studied the dependence of the effect on quark mass and an external magnetic field. For axial charge generation, we calculated the mass diffusion rate, which characterizes the helicity flipping rate. The rate is a nonmonotonous function of mass and can be significantly enhanced by the magnetic field. The diffusive behavior is also related to a divergent susceptibility of the axial charge. For axial charge dissipation, we found that in the long time limit, the mass term dissipates all the charge effectively generated by parallel electric and magnetic fields. The result is consistent with a relaxation time approximation. The rate of dissipation through mass term is a monotonous increasing function of both quark mass and a magnetic field.
Takakura, Y.; Ono, S.; Teii, S.
1995-12-31
Plasma torch is used in many industrial processes for high temperature sources. In the past, an application of magnetic field is experientially known to stabilize plasma torch operations. However, there is a little discussion regarding to magnetic field effects on plasma torch operating characteristics and plasma parameters. In this work, the influences of magnetic field and plasma gas flow rate on plasma torch current-voltage characteristics and downstream plasma parameters have been experimentally studied, and results are qualitatively analyzed based on the charged particle transport equation.
VOLKOV,V.V.; ZHU,Y.
2002-08-04
Recent progress in the field of noninterferometric phase retrieval brings the ordinary Fresnel microscopy to a new quantitative level, suitable for recovering both the amplitude and phase of the object, based on image intensity measurements of the object. We show that this is sufficient for in-plane component mapping of magnetic induction for small magnetic elements with known geometry ranging from micro- to few nanometers size. In present paper we re-examine some conservation principles used for the transport-of-intensity (TIE) equation derived by Teaque for application to phase retrieval in light and X-ray optics. In particular, we prove that the intensity conservation law should be replaced in general case with the energy-flow conservation law. This law describes the amplitude-phase balance of the partially coherent beam on its propagation along the optical path, valid both for light and electron optics. This substitution has at least two important fundamental consequences.
Ekin, J.W. ); Finnemore, D.K.; Li, Q. ); Tenbrink, J. ); Carter, W. )
1992-08-17
The irreversible strain limit {epsilon}{sub irrev} for the onset of permanent axial strain damage to Ag-sheathed Bi{sub 2}Sr{sub 2}Ca{sub 1}Cu{sub 2}O{sub 8+{ital x}} and Bi{sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub 10+{ital x}} superconductors has been measured to be in the range of 0.2%--0.35%. This strain damage onset is about an order of magnitude higher than for {ital bulk} {ital sintered} Y-, Bi-, or Tl-based superconductors and is approaching practical values for magnet design. The measurements show that the value of {epsilon}{sub irrev} is not dependent on magnetic field, nor does the critical current depend on strain below {epsilon}{sub irrev} at least up to 25 T at 4.2 K. Both of these factors indicate that the observed strain effect in Ag-sheathed Bi-based superconductors is not intrinsic to the superconductor material. Rather, the effect is extrinsic and arises from superconductor fracture. Thus, the damage onset is amenable to further enhancement. Indeed, the data suggest that subdividing the superconductor into fine filaments or adding Ag to the superconductor powder prior to processing significantly enhances the damage threshold {epsilon}{sub irrev} to above 0.6%.
Inducing chaos by breaking axial symmetry in a black hole magnetosphere
Kopáček, O.; Karas, V.
2014-06-01
While the motion of particles near a rotating, electrically neutral (Kerr), and charged (Kerr-Newman) black hole is always strictly regular, a perturbation in the gravitational or the electromagnetic field generally leads to chaos. The transition from regular to chaotic dynamics is relatively gradual if the system preserves axial symmetry, whereas non-axisymmetry induces chaos more efficiently. Here we study the development of chaos in an oblique (electro-vacuum) magnetosphere of a magnetized black hole. Besides the strong gravity of the massive source represented by the Kerr metric, we consider the presence of a weak, ordered, large-scale magnetic field. An axially symmetric model consisting of a rotating black hole embedded in an aligned magnetic field is generalized by allowing an oblique direction of the field having a general inclination with respect to the rotation axis of the system. The inclination of the field acts as an additional perturbation to the motion of charged particles as it breaks the axial symmetry of the system and cancels the related integral of motion. The axial component of angular momentum is no longer conserved and the resulting system thus has three degrees of freedom. Our primary concern within this contribution is to find out how sensitive the system of bound particles is to the inclination of the field. We employ the method of the maximal Lyapunov exponent to distinguish between regular and chaotic orbits and to quantify their chaoticity. We find that even a small misalignment induces chaotic motion.
Correction of the axial asymmetry of the poloidal magnetic field in the Globus-M spherical tokamak
Petrov, Yu. V.; Patrov, M. I.; Varfolomeev, V. I.; Gusev, V. K.; Lamzin, E. A.; Sakharov, N. V.; Sychevskii, S. E.
2010-06-15
The toroidal inhomogeneity of the poloidal magnetic field-the so-called error fields that arise due to imperfections in manufacturing and assembling of the electromagnetic system-was measured in the Globus-M spherical tokamak. A substantial inhomogeneity corresponding to the n = 1 mode, which gave rise to a locked mode and led to discharge disruption, was revealed. After compensation of this inhomogeneity with the help of special correction coils, the discharge duration increased and the global plasma parameters improved substantially. A technique for determining and compensating the n = 1 mode inhomogeneity is described, the measured dependences of the penetration threshold of the m = 2/n = 1 mode on the plasma parameters are given, and results of experiments in which record parameters for the Globus-M tokamak were achieved after correction of the poloidal magnetic field are presented.
Magnetic circuit for hall effect plasma accelerator
NASA Technical Reports Server (NTRS)
Manzella, David H. (Inventor); Jacobson, David T. (Inventor); Jankovsky, Robert S. (Inventor); Hofer, Richard (Inventor); Peterson, Peter (Inventor)
2009-01-01
A Hall effect plasma accelerator includes inner and outer electromagnets, circumferentially surrounding the inner electromagnet along a thruster centerline axis and separated therefrom, inner and outer magnetic conductors, in physical connection with their respective inner and outer electromagnets, with the inner magnetic conductor having a mostly circular shape and the outer magnetic conductor having a mostly annular shape, a discharge chamber, located between the inner and outer magnetic conductors, a magnetically conducting back plate, in magnetic contact with the inner and outer magnetic conductors, and a combined anode electrode/gaseous propellant distributor, located at a bottom portion of the discharge chamber. The inner and outer electromagnets, the inner and outer magnetic conductors and the magnetically conducting back plate form a magnetic circuit that produces a magnetic field that is largely axial and radially symmetric with respect to the thruster centerline.
Eriksson, Stefanie; Topgaard, Daniel; Lasič, Samo; Nilsson, Markus; Westin, Carl-Fredrik
2015-03-14
We introduce a nuclear magnetic resonance method for quantifying the shape of axially symmetric microscopic diffusion tensors in terms of a new diffusion anisotropy metric, D{sub Δ}, which has unique values for oblate, spherical, and prolate tensor shapes. The pulse sequence includes a series of equal-amplitude magnetic field gradient pulse pairs, the directions of which are tailored to give an axially symmetric diffusion-encoding tensor b with variable anisotropy b{sub Δ}. Averaging of data acquired for a range of orientations of the symmetry axis of the tensor b renders the method insensitive to the orientation distribution function of the microscopic diffusion tensors. Proof-of-principle experiments are performed on water in polydomain lyotropic liquid crystals with geometries that give rise to microscopic diffusion tensors with oblate, spherical, and prolate shapes. The method could be useful for characterizing the geometry of fluid-filled compartments in porous solids, soft matter, and biological tissues.
Lasič, Samo; Nilsson, Markus; Westin, Carl-Fredrik
2015-01-01
We introduce a nuclear magnetic resonance method for quantifying the shape of axially symmetric microscopic diffusion tensors in terms of a new diffusion anisotropy metric, DΔ, which has unique values for oblate, spherical, and prolate tensor shapes. The pulse sequence includes a series of equal-amplitude magnetic field gradient pulse pairs, the directions of which are tailored to give an axially symmetric diffusion-encoding tensor b with variable anisotropy bΔ. Averaging of data acquired for a range of orientations of the symmetry axis of the tensor b renders the method insensitive to the orientation distribution function of the microscopic diffusion tensors. Proof-of-principle experiments are performed on water in polydomain lyotropic liquid crystals with geometries that give rise to microscopic diffusion tensors with oblate, spherical, and prolate shapes. The method could be useful for characterizing the geometry of fluid-filled compartments in porous solids, soft matter, and biological tissues. PMID:25770532
NASA Astrophysics Data System (ADS)
Santarius, J. F.
2012-07-01
Converging plasma jets may be able to reach the regime of high energy density plasmas (HEDP). The successful application of plasma jets to magneto-inertial fusion (MIF) would heat the plasma by fusion products and should increase the plasma energy density. This paper reports the results of using the University of Wisconsin's 1-D Lagrangian, radiation-hydrodynamics, fusion code BUCKY to investigate two MIF converging plasma jet test cases originally analyzed by Samulyak et al. [Physics of Plasmas 17, 092702 (2010)]. In these cases, 15 cm or 5 cm radially thick deuterium-tritium (DT) plasma jets merge at 60 cm from the origin and converge radially onto a DT target magnetized to 2 T and of radius 5 cm. The BUCKY calculations reported here model these cases, starting from the time of initial contact of the jets and target. Compared to the one-temperature Samulyak et al. calculations, the one-temperature BUCKY results show similar behavior, except that the plasma radius remains about twice as long near maximum compression. One-temperature and two-temperature BUCKY results differ, reflecting the sensitivity of the calculations to timing and plasma parameter details, with the two-temperature case giving a more sustained compression.
On gravitational radiation with axial symmetry
NASA Astrophysics Data System (ADS)
Robinson, Ivor
1989-12-01
General results are obtained for Robinson-Trautman metrics which satisfy reasonable conditions for radiation from a bounded source. For the axially symmetrical case, the degree of the one field equation is reduced from 5 to 2; a simplified proof is given of the Lukacs-Perjes-Porter-Sebestyen theorem and a systematic procedure is developed for formal solution in series.
Vittitoe, C.N.
1981-04-01
The FORTRAN IV computer code FIDELE simulates the high-frequency electrical logging of a well in which induction and receiving coils are mounted in an instrument sonde immersed in a drilling fluid. The fluid invades layers of surrounding rock in an azimuthally symmetric pattern, superimposing radial layering upon the horizonally layered earth. Maxwell's equations are reduced to a second-order elliptic differential equation for the azimuthal electric-field intensity. The equation is solved at each spatial position where the complex dielectric constant, magnetic permeability, and electrical conductivity have been assigned. Receiver response is given as the complex open-circuit voltage on receiver coils. The logging operation is simulated by a succession of such solutions as the sonde traverses the borehole. Test problems verify consistency with available results for simple geometries. The code's main advantage is its treatment of a two-dimensional earth; its chief disadvantage is the large computer time required for typical problems. Possible code improvements are noted. Use of the computer code is outlined, and tests of most code features are presented.
Karasawa, Satoru; Koga, Noboru
2011-06-01
The solutions of 1:4 complexes of Co(X)(2)(D1py)(4), X = Cl(-), and NCO(-) and D1py = phenylpyridyldiazomethane, were photolyzed under cryogenic conditions, and their magnetic properties were investigated by direct current (DC) and alternating current (AC) magneto/susceptometries. After irradiation, the resulting cobalt-carbene complexes, Co(X)(2)(C1py)(4), exhibited the behaviors of heterospin single-molecule magnets (SMMs) strongly depending on the axial ligands. In Co(X)(2)(C1py)(4): X = Cl(-) and NCO(-), the effective activation barriers, U(eff), for the reorientation of the magnetic moment and the resonant quantum tunneling time, τ(Q), characteristic to SMM properties were estimated to be 91 and 130 K, and 4 × 10(3) and 2 × 10(5) s, respectively. The τ(Q) of Co(NCS)(2)(C1py)(4) with U(eff) = 89 K was found to be 6 × 10(2) s. In Co(X)(2)(C1py)(4): X = Cl(-) and NCO(-), temperature-dependent hysteresis loops were also observed below the blocking temperature (T(B) = 3.2 and 4.8 K, respectively) and the coercive forces, H(c), of 7.0 and 20 kOe at 1.9 K, respectively, were obtained. In a series of 1:4 complexes of Co(X)(2)(C1py)(4), X = NCS(-), Cl(-), and NCO(-), the axial ligands strongly affected the heterospin SMM properties, and the NCO(-) ion having the large magnitude of the ligand-field splitting in a spectrochemical series, gave the largest U(eff) and H(c) and the longest τ(Q).
NASA Astrophysics Data System (ADS)
Saviz, S.; Lashani, E.; Ashkarran, A.
2014-02-01
The theory for the two-stream free electron laser (FEL) consisting of a relativistic electron beam transporting along the axis of a helical wiggler in the presence of an axial guiding magnetic field is proposed and investigated. In the analysis, the effects of self-fields are taken into account. The electron trajectories and the small signal gain are derived. The characteristics of the linear-gain and the normalized maximum gain are studied numerically. The results show that there are seven stable groups of orbits in the presence of self-fields instead of two groups reported in the absence of the self-fields. It is also shown that the normalized gains of three groups decrease while the rest increase with the increasing of normalized cyclotron frequency Ω0. Furthermore, it is found that the two-stream instability and the self-field lead to a decrease in the maximum gain except for group 3. The results show that the normalized maximum gain is enhanced in comparison with that of the single stream.
On the Importance of Symmetrizing RF Coupler Fields for Low Emittance Beams
Li, Zenghai; Zhou, Feng; Vlieks, Arnold; Adolphsen, Chris; /SLAC
2011-06-23
The input power of accelerator structure is normally fed through a coupling slot(s) on the outer wall of the accelerator structure via magnetic coupling. While providing perfect matching, the coupling slots may produce non-axial-symmetric fields in the coupler cell that can induce emittance growth as the beam is accelerated in such a field. This effect is especially important for low emittance beams at low energies such as in the injector accelerators for light sources. In this paper, we present studies of multipole fields of different rf coupler designs and their effect on beam emittance for an X-band photocathode gun being jointly designed with LLNL, and X-band accelerator structures. We will present symmetrized rf coupler designs for these components to preserve the beam emittance.
Magnetic bearings for spacecraft
NASA Technical Reports Server (NTRS)
Studer, P. A.
1972-01-01
Magnetic bearings have been successfully applied to motorized rotor systems in the multi-kilogram range, at speeds up to 1200 radians per second. These engineering models also indicated the need for continued development in specific areas to make them feasible for spacecraft applications. Significant power reductions have recently been attained. A unique magnetic circuit, combining permanent magnets with electromagnetic control, has a bidirectional forcing capability with improved current sensitivity. The multi-dimensional nature of contact-free rotor support is discussed. Stable continuous radial suspension is provided by a rotationally symmetric permanent magnet circuit. Two bearings, on a common shaft, counteract the normal instability perpendicular to the rotational axis. The axial direction is servoed to prevent contact. A new bearing technology and a new field of application for magnetics is foreseen.
Visani, C.; Tornos, J.; Nemes, Norbert; Rocci, M.; Leon, C.; Santamaria, J.; te Velthuis, G. E.; Liu, Y.; Hoffman, A.; Freeland, J. W.; Garcia-Hernandez, M; Fitzsimmons, M. R.; Kirby, B. J.; Varela del Arco, Maria; Pennycook, Stephen J
2011-01-01
We have analyzed the interface structure and composition of La{sub 0.7}Ca{sub 0.3}MnO{sub 3}/YBa{sub 2}Cu{sub 3}O{sub 7}/La{sub 0.7}Ca{sub 0.3}MnO{sub 3} trilayers by combined polarized neutron reflectometry, aberration-corrected microscopy, and atomic column resolution electron-energy-loss spectroscopy and x-ray absorption with polarization analysis. We find the same stacking sequence at both top and bottom cuprate interfaces. X-ray magnetic circular dichroism experiments show that both cuprate interfaces are magnetic with a magnetic moment induced in Cu atoms as expected from symmetric Mn-O-Cu superexchange paths. These results supply a solid footing for the applicability of recent theories explaining the interplay between magnetism and superconductivity in this system in terms of the induced Cu spin polarization at both interfaces.
Cantarini, Luca; Fabbroni, Marta; Talarico, Rosaria; Costa, Luisa; Caso, Francesco; Cuneo, Gian Luca; Frediani, Bruno; Faralli, Gabriele; Vitale, Antonio; Brizi, Maria Giuseppina; Sabadini, Luciano; Galeazzi, Mauro
2015-07-01
The primary aim of the study was to evaluate the long-term effectiveness of adalimumab (ADA) in a cohort of non-radiographic axial spondyloarthritis (nr-axSpA), and the secondary aims were to identify predictive factors of response and evaluate radiological progression.We evaluated 37 patients (male/female: 12/25; mean age 49 ± 14; mean disease duration: 6.3 ± 5.8) with active nr-axSpA (Assessment of SpondyloArthritis International Society criteria), despite the treatment with ≥1 nonsteroidal anti-inflammatory drug for at least 3 months, initiating the treatment with ADA 40 mg every other week. Patients were treated for 24 months, and evaluated at baseline, 6, 12, and 24 months. Outcome measures included Ankylosing Spondylitis Disease Activity Score, Bath Ankylosing Spondylitis Disease Activity Index (BASDAI), and Bath Ankylosing Spondylitis Functional Index. Radiograph of the spine and sacroiliac joints and magnetic resonance of the sacroiliac joints were performed at baseline and according to the standard of assessment for the disease.The proportion of patients that achieved a BASDAI50 response at 6, 12 and 24 months was 51.3%, 70.3%, and 76.8%, respectively. Treatment was well tolerated with no unexpected adverse events and/or serious adverse events. All patients remained on treatment for 2 years, with a good compliance. We did not identify any predictive factor of response to therapy. Moreover, modified Stoke Ankylosing Spondylitis Spine Score and Spondyloarthritis Research Consortium of Canada scores showed a trend of improvement during the study period.ADA was effective on clinical and radiological outcomes at 2-year follow-up; thus, early treatment with ADA may prevent radiographic damage and be associated with low disease activity or remission. Moreover, data from this cohort study have confirmed safety and tolerability profile of ADA in nr-axSpA in the long term.
McKeever, J.W.
2001-08-06
Researchers of the Oak Ridge National Laboratory's (ORNLs) Power Electronics and Electric Machine Research Center (PEEMRC) collaborated with Visual Computing Systems (VCS) to develop an electric axial-gap permanent magnet (PM) motor controlled by a self-sensing inverter for driving vehicle accessories such as power steering, air conditioning, and brakes. VCS designed an 8 kW motor based on their Segmented Electromagnetic Array (SEMA) technology. ORNL designed a 10 kW inverter to fit within the volume of a housing, which had been integrated with the motor. This modular design was pursued so that multiple modules could be used for higher power applications. ORNL built the first inverter under the cooperative research and development agreement (CRADA) ORNL 98-0514 and drove a refurbished Delta motor with no load during the Merit Review at ORNL on Monday, May 17, 1999. Inverter circuitry and instructions for assembling the inverters were sent to VCS. A report was prepared and delivered during the Future Car Congress in April 2000, at Arlington, Virginia. Collaboration continued under CRADA ORNL 99-0568 as VCS designed and built a SEMA motor with a dual coil platter to be the traction motor for an electric truck. VCS and ORNL assembled two 45 kW inverters. Each inverter drove one coil, which was designed to deliver 15 kW continuous power and 45 kW peak power for 90 s. The vehicle was road tested as part of the Future Truck Competition. A report was prepared and delivered during the PCIM in October 2000, at Boston, Massachusetts.
Chambler, A. F.; Chapman-Sheath, P. J.; Pearse, M. F.; Hollingdale, J.
1997-01-01
Chronic recurrent multifocal osteomyelitis is often confused with symmetrical Brodie's abscess as it has a similar pathogenesis. We report an otherwise healthy 17-year-old boy presenting with a true symmetrical Brodie's abscess. We conclude that a symmetrical Brodie's abscess presenting in an otherwise healthy patient is a separate clinical condition with a different management protocol. Images Figure 1 Figure 2 PMID:9497984
Chambler, A F; Chapman-Sheath, P J; Pearse, M F; Hollingdale, J
1997-10-01
Chronic recurrent multifocal osteomyelitis is often confused with symmetrical Brodie's abscess as it has a similar pathogenesis. We report an otherwise healthy 17-year-old boy presenting with a true symmetrical Brodie's abscess. We conclude that a symmetrical Brodie's abscess presenting in an otherwise healthy patient is a separate clinical condition with a different management protocol.
Radial Halbach Magnetic Bearings
NASA Technical Reports Server (NTRS)
Eichenberg, Dennis J.; Gallo, Christopher A.; Thompson, William K.
2009-01-01
Radial Halbach magnetic bearings have been investigated as part of an effort to develop increasingly reliable noncontact bearings for future high-speed rotary machines that may be used in such applications as aircraft, industrial, and land-vehicle power systems and in some medical and scientific instrumentation systems. Radial Halbach magnetic bearings are based on the same principle as that of axial Halbach magnetic bearings, differing in geometry as the names of these two types of bearings suggest. Both radial and axial Halbach magnetic bearings are passive in the sense that unlike most other magnetic bearings that have been developed in recent years, they effect stable magnetic levitation without need for complex active control. Axial Halbach magnetic bearings were described in Axial Halbach Magnetic Bearings (LEW-18066-1), NASA Tech Briefs, Vol. 32, No. 7 (July 2008), page 85. In the remainder of this article, the description of the principle of operation from the cited prior article is recapitulated and updated to incorporate the present radial geometry. In simplest terms, the basic principle of levitation in an axial or radial Halbach magnetic bearing is that of the repulsive electromagnetic force between (1) a moving permanent magnet and (2) an electric current induced in a stationary electrical conductor by the motion of the magnetic field. An axial or radial Halbach bearing includes multiple permanent magnets arranged in a Halbach array ("Halbach array" is defined below) in a rotor and multiple conductors in the form of wire coils in a stator, all arranged so the rotary motion produces an axial or radial repulsion that is sufficient to levitate the rotor. A basic Halbach array (see Figure 1) consists of a row of permanent magnets, each oriented so that its magnetic field is at a right angle to that of the adjacent magnet, and the right-angle turns are sequenced so as to maximize the magnitude of the magnetic flux density on one side of the row while
Refractive index determination in axially symmetric oprtically inhomogeneous media
NASA Astrophysics Data System (ADS)
Ionescu-Pallas, Nicholas; Vlad, Valentin I.; Bociort, Florian
The focussing method from transversally light, put forward by Dietrich Marcuse in view of determining the refractive index profile (RIP) in optical fibers and fiber performs, is revised. A more rigorous derivation of the Marcuse formula is given, establishing the conditions of its validity and a simplified version is initially proposed, able to avoid the systematic errors in the processing of light intensity data.
Chaos in axially symmetric potentials with octupole deformation
Heiss, W.D.; Nazmitdinov, R.G.; Radu, S. Departamento de Fisica Teorica C-XI, Universidad Autonoma de Madrid, E-28049, Madrid )
1994-04-11
Classical and quantum mechanical results are reported for the single particle motion in a harmonic oscillator potential which is characterized by a quadrupole deformation and an additional octupole deformation. The chaotic character of the motion is strongly dependent on the quadrupole deformation in that for a prolate deformation virtually no chaos is discernible while for the oblate case the motion shows strong chaos when the octupole term is turned on.
Convection in axially symmetric accretion discs with microscopic transport coefficients
NASA Astrophysics Data System (ADS)
Malanchev, K. L.; Postnov, K. A.; Shakura, N. I.
2016-09-01
The vertical structure of stationary thin accretion discs is calculated from the energy balance equation with heat generation due to microscopic ion viscosity η and electron heat conductivity κ, both depending on temperature. In the optically thin discs it is found that for the heat conductivity increasing with temperature, the vertical temperature gradient exceeds the adiabatic value at some height, suggesting convective instability in the upper disc layer. There is a critical Prandtl number, Pr = 4/9, above which a Keplerian disc become fully convective. The vertical density distribution of optically thin laminar accretion discs as found from the hydrostatic equilibrium equation cannot be generally described by a polytrope but in the case of constant viscosity and heat conductivity. In the optically thick discs with radiation heat transfer, the vertical disc structure is found to be convectively stable for both absorption dominated and scattering dominated opacities, unless a very steep dependence of the viscosity coefficient on temperature is assumed. A polytropic-like structure in this case is found for Thomson scattering dominated opacity.
Reconstruction of symmetric Dirac-Maxwell equations using nonassociative algebra
NASA Astrophysics Data System (ADS)
Kalauni, Pushpa; Barata, J. C. A.
2015-01-01
In the presence of sources, the usual Maxwell equations are neither symmetric nor invariant with respect to the duality transformation between electric and magnetic fields. Dirac proposed the existence of magnetic monopoles for symmetrizing the Maxwell equations. In the present work, we obtain the fully symmetric Dirac-Maxwell's equations (i.e. with electric and magnetic charges and currents) as a single equation by using 4 × 4 matrix presentation of fields and derivative operators. This matrix representation has been derived with the help of the algebraic properties of quaternions and octonions. Such description gives a compact representation of electric and magnetic counterparts of the field in a single equation.
Zimny, Anna; Sasiadek, Marek
2011-07-01
We present six cases of extra-axial lesions: three meningiomas [including one intraventricular and one cerebellopontine angle (CPA) meningioma], one dural metastasis, one CPA schwannoma and one choroid plexus papilloma which were chosen from a larger cohort of extra-axial tumors evaluated in our institution. Apart from conventional MR examinations, all the patients also underwent perfusion-weighted imaging (PWI) using dynamic susceptibility contrast method on a 1.5 T MR unit (contrast: 0.3 mmol/kg, rate 5 ml/s). Though the presented tumors showed very similar appearance on conventional MR images, they differed significantly in perfusion examinations. The article draws special attention to the usefulness of PWI in the differentiation of various extra-axial tumors and its contribution in reaching final correct diagnoses. Finding a dural lesion with low perfusion parameters strongly argues against the diagnosis of meningioma and should raise a suspicion of a dural metastasis. In cases of CPA tumors, a lesion with low relative cerebral blood volume values should be suspected to be schwannoma, allowing exclusion of meningioma to be made. In intraventricular tumors arising from choroid plexus, low perfusion parameters can exclude a diagnosis of meningioma. In our opinion, PWI as an easy and quick to perform functional technique should be incorporated into the MR protocol of all intracranial tumors including extra-axial neoplasms. PMID:21061142
Characteristics of 2D magnetic field sensor based on magnetic sensitivity diodes
NASA Astrophysics Data System (ADS)
Zhao, Xiaofeng; Yang, Xianghong; Yu, Yang; Wu, Tong; Wen, Dianzhong
2015-04-01
A two-dimensional (2D) magnetic field sensor is proposed in this paper. It contains two Wheatstone bridges composed of four magnetic sensitivity diodes(MSDs)with similar characteristics and four loading resistances. In order to realize the axial symmetric distribution of four MSDs, two MSDs with opposite magnetic sensitive directions were located along the x and -x axes, and two with opposite magnetic sensitive directions were located along the y and -y axes. The experimental results indicate that when VDD = 5.0 V, the magnetic sensitivities of the 2D magnetic sensor can reach SxB = 544 mV/T and SyB = 498 mV/T in the x and y directions, respectively. Consequently, it is possible to measure the two-dimensional magnetic field.
Induced axial oscillations in superconducting dipole windings
Sampson, W.B.; Ghosh, A.K.
1994-12-31
When superconducting accelerator magnets wound from multi-stranded conductor are energized a periodic variation appears in the magnetic field along the axis. This oscillation is present in al components of the field and has a period that is equal to the transposition pitch of the superconducting cable. Such axial variations have been observed even in windings which are not carrying any transport current. A magnetic field was applied to a portion of a dipole winding using a second magnet. Axial oscillations were induced along the total length of the windings including the portion not in the applied field. The amplitude of these oscillations varied with the amount of inert winding inside the energizing magnet and with t;he angle of the applied field. These field variations could be completely applied field. These field variations could be completely eliminated in the external portion of the coil by heating a small section of the winding above the transition temperature.
Radiative corrections in symmetrized classical electrodynamics
Van Meter JR; Kerman; Chen; Hartemann
2000-12-01
The physics of radiation reaction for a point charge is discussed within the context of classical electrodynamics. The fundamental equations of classical electrodynamics are first symmetrized to include magnetic charges: a double four-potential formalism is introduced, in terms of which the field tensor and its dual are employed to symmetrize Maxwell's equations and the Lorentz force equation in covariant form. Within this framework, the symmetrized Dirac-Lorentz equation is derived, including radiation reaction (self-force) for a particle possessing both electric and magnetic charge. The connection with electromagnetic duality is outlined, and an in-depth discussion of nonlocal four-momentum conservation for the wave-particle system is given.
Vibration of axially loaded circular arches
Sabir, A.B.; Djoudi, M.S.
1996-11-01
The work in the present paper is devoted to the determination of the buckling loads and natural frequencies of axially loaded arch structures. The finite element method is employed using a strain based arch element. The element is based on the conventional Euler curved beam type of strain displacement relationship and satisfies the exact representation of rigid body modes. The sub-space iteration technique is used to determine the eigenvalues and corresponding eigenvectors of the governing transcendental equation. The buckling of a pinned arch subjected to a uniform lateral pressure is first considered. The work is then extended to produce a comprehensive set of results for the vibration of axially loaded arches which are either pinned or fixed at both ends. The first symmetric and anti symmetric modes of vibration are determined and the effect of the axial load on these frequencies is investigated. The practical problem of an arch with a backfill is then considered and the effect of the elastic packing due to this backfill on the natural frequencies is determined.
NASA Astrophysics Data System (ADS)
Dunajewski, Adam; Dusza, Jacek J.; Rosado Muñoz, Alfredo
2014-11-01
The article presents a proposal for the description of human gait as a periodic and symmetric process. Firstly, the data for researches was obtained in the Laboratory of Group SATI in the School of Engineering of University of Valencia. Then, the periodical model - Mean Double Step (MDS) was made. Finally, on the basis of MDS, the symmetrical models - Left Mean Double Step and Right Mean Double Step (LMDS and RMDS) could be created. The method of various functional extensions was used. Symmetrical gait models can be used to calculate the coefficients of asymmetry at any time or phase of the gait. In this way it is possible to create asymmetry, function which better describes human gait dysfunction. The paper also describes an algorithm for calculating symmetric models, and shows exemplary results based on the experimental data.
Symmetric extensions of normal discrete velocity models
NASA Astrophysics Data System (ADS)
Bobylev, A. V.; Vinerean, M. C.
2012-11-01
In this paper we discuss a general problem related to spurious conservation laws for discrete velocity models (DVMs) of the classical (elastic) Boltzmann equation. Models with spurious conservation laws appeared already at the early stage of the development of discrete kinetic theory. The well-known theorem of uniqueness of collision invariants for the continuous velocity space very often does not hold for a set of discrete velocities. In our previous works we considered the general problem of the construction of normal DVMs, we found a general algorithm for the construction of all such models and presented a complete classification of normal DVMs with small number n of velocities (n<11). Even if we have a general method to classify all normal discrete kinetic models (and in particular DVMs), the existing method is relatively slow and the amount of possible cases to check increases rapidly with n. We remarked that many of our normal DVMs appear to be axially symmetric. In this paper we consider a connection between symmetric transformations and normal DVMs. We first develop a new inductive method that, starting with a given normal DVM, leads by symmetric extensions to a new normal DVM. This method can produce very fast many new normal DVMs with larger number of velocities, showing that the class of normal DVMs contains a large subclass of symmetric models. We finally apply the method to several normal DVMs and construct new models that are not only normal, but also symmetric relatively to more and more axes. We hope that such symmetric velocity sets can be used for DSMC methods of solving Boltzmann equation.
Axial type self-bearing motor for axial flow blood pump.
Okada, Yohji; Masuzawa, Toru; Matsuda, Ken-Ichi; Ohmori, Kunihiro; Yamane, Takashi; Konishi, Yoshiaki; Fukahori, Shinya; Ueno, Satoshi; Kim, Seung-Jong
2003-10-01
An axial self-bearing motor is proposed which can drive an axial blood pump without physical contact. It is a functional combination of the bi-directional disc motor and the axial active magnetic bearing, where it actively controls single degree-of-freedom motion, while other motions such as lateral vibration are passively stable. For application to a blood pump, the proposed self-bearing motor has the advantages of simple structure and small size. Through the finite element method (FEM) analysis and the experimental test, its good feasibility is verified. Finally, the axial flow pump is fabricated using the developed magnetically suspended motor. The pump test is carried out and the results are discussed in detail. PMID:14616531
Second harmonic generation of off axial vortex beam in the case of walk-off effect
NASA Astrophysics Data System (ADS)
Chen, Shunyi; Ding, Panfeng; Pu, Jixiong
2016-07-01
Process of off axial vortex beam propagating in negative uniaxial crystal is investigated in this work. Firstly, we get the formulae of the normalized electric field and calculate the location of vortices for second harmonic beam in two type of phase matching. Then, numerical analysis verifies that the intensity distribution and location of vortices of the first order original vortex beam depend on the walk-off angle and off axial magnitude. It is shown that, in type I phase matching, the distribution of vortices is symmetrical about the horizontal axis, the separation distance increases as the off axial magnitude increases or the off axial magnitude deceases. However, in type II phase matching, the vortices are symmetrical along with some vertical axis, and increase of the walk-off angle or off axial magnitude leads to larger separation distance. Finally, the case of high order original off axial vortex beam is also investigated.
Yu, Hsi-Yu; Peng, Hsu-Hsia; Wang, Jaw-Lin; Wen, Chih-Yung; Tseng, Wen-Yih Isaac
2006-10-01
The pulse wave velocity (PWV) of aortic blood flow is considered a surrogate for aortic compliance. A new method using phase-contrast (PC)-MRI is presented whereby the spatial and temporal profiles of axial velocity along the descending aorta can be analyzed. Seventeen young healthy volunteers (the YH group), six older healthy volunteers (the OH group), and six patients with coronary artery disease (the CAD group) were studied. PC-MRI covering the whole descending aorta was acquired, with velocity gradients encoding the in-plane velocity. From the corrected axial flow velocity profiles, PWV was determined from the slope of an intersecting line between the presystolic and early systolic phases. Furthermore, the aortic elastic modulus (Ep) was derived from the ratio of the brachial pulse pressure to the strain of the aortic diameter. The PWV increased from YH to OH to CAD (541 +/- 94, 808 +/- 184, 1121 +/- 218 cm/s, respectively; P = 0.015 between YH and OH; P = 0.023 between OH and CAD). There was a high correlation between PWV and Ep (r = 0.861, P < 0.001). Multivariate analysis showed that age and CAD were independent risk factors for an increase in the PWV. Compared to existing methods, our method requires fewer assumptions and provides a more intuitive and objective way to estimate the PWV.
J. Huffer
2004-09-28
The purpose of this calculation is to develop axial profiles for estimating the axial variation in burnup of a boiling water reactor (BWR) assembly spent nuclear fuel (SNF) given the average burnup of an assembly. A discharged fuel assembly typically exhibits higher burnup in the center and lower burnup at the ends of the assembly. Criticality safety analyses taking credit for SNF burnup must account for axially varying burnup relative to calculations based on uniformly distributed assembly average burnup due to the under-burned tips. Thus, accounting for axially varying burnup in criticality analyses is also referred to as accounting for the ''end effect'' reactivity. The magnitude of the reactivity change due to ''end effect'' is dependent on the initial assembly enrichment, the assembly average burnup, and the particular axial profile characterizing the burnup distribution. The set of bounding axial profiles should incorporate multiple BWR core designs and provide statistical confidence (95 percent confidence that 95 percent of the population is bound by the profile) that end nodes are conservatively represented. The profiles should also conserve the overall burnup of the fuel assembly. More background on BWR axial profiles is provided in Attachment I.
Suchoza, B.P.; Becse, I.
1988-11-08
An apparatus for measuring the hydraulic axial thrust of a pump under operation conditions is disclosed. The axial thrust is determined by forcing the rotating impeller off of an associated thrust bearing by use of an elongate rod extending coaxially with the pump shaft. The elongate rod contacts an impeller retainer bolt where a bearing is provided. Suitable measuring devices measure when the rod moves to force the impeller off of the associated thrust bearing and the axial force exerted on the rod at that time. The elongate rod is preferably provided in a housing with a heat dissipation mechanism whereby the hot fluid does not affect the measuring devices. 1 fig.
Suchoza, Bernard P.; Becse, Imre
1988-01-01
An apparatus for measuring the hydraulic axial thrust of a pump under operation conditions is disclosed. The axial thrust is determined by forcing the rotating impeller off of an associated thrust bearing by use of an elongate rod extending coaxially with the pump shaft. The elongate rod contacts an impeller retainer bolt where a bearing is provided. Suitable measuring devices measure when the rod moves to force the impeller off of the associated thrust bearing and the axial force exerted on the rod at that time. The elongate rod is preferably provided in a housing with a heat dissipation mechanism whereby the hot fluid does not affect the measuring devices.
Analysis of the structure of Saturn's magnetic field using charged particle absorption signatures
Chenette, D.L.; Davis, L. Jr.
1982-07-01
A new technique is derived for determining the structure of Saturn's magnetic field. This technique uses the observed positions of charged particle absorption signatures due to the satellites and rings of Saturn to determine the parameters of an axially symmetric, spherical harmonic model of the magnetic field using the method of least squares. Absorption signatures observed along the Pioneer 11, Voyager 1, and Voyager 2 spacecraft trajectories are used to derive values for the orientation of the magnetic symmetry axis relative to Saturn's axis of rotation, the axial displacement of the center of the magnetic dipole from the center of Saturn, and the magnitude of the external field component. Comparing these results with the magnetic field model parameters deduced from analyses of magnetometer data leads us to prefer models that incorporate a northward offset of the dipole center by about 0.05 R/sub s/.
An analysis of the structure of Saturn's magnetic field using charged particle absorption signatures
Chenette, D.L.; Davis, L. Jr.
1983-06-01
A technique is derived for determining the structure of Saturn's magnetic field. This technique uses the observed positions of charged particle absorption signatures due to the satellites and rings of Saturn to determine the parameters of an axially symmetric, spherical harmonic model of the magnetic field using the method of least squares. Absorption signatures observed along the Pioneer 11, Voyager 1, and Voyager 2 spacecraft trajectories are used to derive values for the orientation of the magnetic symmetry axis relative to Saturn's axis of rotation, the axial displacement of the center of the magnetic dipole from the center of Saturn, and the magnitude of the external field component. A comparison of these results with the magnetic field model parameters deduced from analyses of magnetometer data supports models which incorporate a northward offset of the dipole center by about 0.05 R(3).
Flow field visualization about external axial corners
NASA Technical Reports Server (NTRS)
Talcott, N. A., Jr.
1978-01-01
An experimental investigation was conducted to visualize the flow field about external axial corners. The investigation was initiated to provide answers to questions about the inviscid flow pattern for continuing numerical investigations. Symmetrical and asymmetrical corner models were tested at a Reynolds number per meter of 60,700,000. Oil-flow and vapor-screen photographs were taken for both models at angle of attack and yaw. The paper presents the results of the investigation in the form of oil-flow photographs and the surrounding shock wave location obtained from the vapor screens.
Sandrock, H.E.
1982-05-06
Static axial mixing apparatus includes a plurality of channels, forming flow paths of different dimensions. The axial mixer includes a flow adjusting device for adjustable selective control of flow resistance of various flow paths in order to provide substantially identical flows through the various channels, thereby reducing nonuniform coating of interior surfaces of the channels. The flow adjusting device may include diaphragm valves, and may further include a pressure regulating system therefor.
Weakly Interacting Symmetric and Anti-Symmetric States in the Bilayer Systems
NASA Astrophysics Data System (ADS)
Marchewka, M.; Sheregii, E. M.; Tralle, I.; Tomaka, G.; Ploch, D.
We have studied the parallel magneto-transport in DQW-structures of two different potential shapes: quasi-rectangular and quasi-triangular. The quantum beats effect was observed in Shubnikov-de Haas (SdH) oscillations for both types of the DQW structures in perpendicular magnetic filed arrangement. We developed a special scheme for the Landau levels energies calculation by means of which we carried out the necessary simulations of beating effect. In order to obtain the agreement between our experimental data and the results of simulations, we introduced two different quasi-Fermi levels which characterize symmetric and anti-symmetric states in DQWs. The existence of two different quasi Fermi-Levels simply means, that one can treat two sub-systems (charge carriers characterized by symmetric and anti-symmetric wave functions) as weakly interacting and having their own rate of establishing the equilibrium state.
Braids, shuffles and symmetrizers
NASA Astrophysics Data System (ADS)
Isaev, A. P.; Ogievetsky, O. V.
2009-07-01
Multiplicative analogues of the shuffle elements of the braid group rings are introduced; in local representations they give rise to certain graded associative algebras (b-shuffle algebras). For the Hecke and BMW algebras, the (anti)-symmetrizers have simple expressions in terms of the multiplicative shuffles. The (anti)-symmetrizers can be expressed in terms of the highest multiplicative 1-shuffles (for the Hecke and BMW algebras) and in terms of the highest additive 1-shuffles (for the Hecke algebras). The spectra and multiplicities of eigenvalues of the operators of the multiplication by the multiplicative and additive 1-shuffles are examined. Dedicated to the memory of Aleosha Zamolodchikov.
An Unbroken Axial-Vector Current Conservation Law
NASA Astrophysics Data System (ADS)
Sharafiddinov, Rasulkhozha S.
2016-03-01
The mass, energy and momentum of the neutrino of a true flavor have an axial-vector nature. As a consequence, the left-handed truly neutral neutrino in an axial-vector field of emission can be converted into a right-handed one and vice versa. This predicts the unidenticality of masses, energies and momenta of neutrinos of the different components. Recognizing such a difference in masses, energies, momenta and accepting that the left-handed axial-vector neutrino and the right-handed antineutrino of true neutrality refer to long-lived C-odd leptons, and the right-handed truly neutral neutrino and the left-handed axial-vector antineutrino are of short-lived fermions of C-oddity, we would write a new CP-even Dirac equation taking into account the flavor symmetrical axial-vector mass, energy and momentum matrices. Their presence explains the spontaneous mirror symmetry violation, confirming that an axial-vector current conservation law has never violated. They reflect the availability of a mirror Minkowski space in which a neutrino is characterized by left as well as by right space-time coordinates. Therefore, it is not surprising that whatever the main purposes experiments about a quasielastic axial-vector mass say in favor of an axial-vector mirror Minkowski space-time.
An Unbroken Axial-Vector Current Conservation Law
NASA Astrophysics Data System (ADS)
Sharafiddinov, Rasulkhozha S.
2016-04-01
The mass, energy and momentum of the neutrino of a true flavor have an axial-vector nature. As a consequence, the left-handed truly neutral neutrino in an axial-vector field of emission can be converted into a right-handed one and vice versa. This predicts the unidenticality of masses, energies and momenta of neutrinos of the different components. Recognizing such a difference in masses, energies, momenta and accepting that the left-handed axial-vector neutrino and the right-handed antineutrino of true neutrality refer to long-lived C-odd leptons, and the right-handed truly neutral neutrino and the left-handed axial-vector antineutrino are of short-lived fermions of C-oddity, we would write a new CP-even Dirac equation taking into account the flavor symmetrical axial-vector mass, energy and momentum matrices. Their presence explains the spontaneous mirror symmetry violation, confirming that an axial-vector current conservation law has never violated. They reflect the availability of a mirror Minkowski space in which a neutrino is characterized by left as well as by right space-time coordinates. Therefore, it is not surprising that whatever the main purposes experiments about a quasielastic axial-vector mass say in favor of an axial-vector mirror Minkowski space-time.
Basova, Tamara; Berezin, Aleksei; Nadolinny, Vladimir; Peisert, Heiko; Chassé, Thomas; Banimuslem, Hikmat; Hassan, Aseel
2013-11-28
The μ-(oxo)bis[tetra-tert-butylphthalocyaninato] aluminum(III) [(tBu)4PcAl]2O films with the crystallites oriented preferably in one direction were obtained via chemical transformation of tetra-tert-butylsubstituted chloroaluminum(III) phthalocyanine (tBu)4PcAlCl film upon its annealing in magnetic field. A comparative analysis of the influence of post-deposition annealing process without and under applied magnetic field of 1 T, on the orientation and morphology of (tBu)4PcAlCl and [(tBu)4PcAl]2O films, has been carried out by the methods of UV-vis, Infrared and Raman spectroscopies, XRD as well as atomic force microscopy. The formation of [(tBu)4PcAl]2O films with elongated crystallites having preferential orientation was observed upon heating of the films in magnetic field while annealing without magnetic field under the same conditions does not demonstrate any effect on the structure and morphology of these films. The reasons of the sensitivity of this reaction to the presence of such magnetic field is discussed and studied by electronic paramagnetic resonance spectroscopy. PMID:24289372
Assadi, S.
1994-01-01
Linear and nonlinear magnetohydrodynamic (MHD) stability of current-driven modes are studied in the MST reversed field pinch. Measured low frequency (f < 35 kHz) magnetic fluctuations are consistent with the global resistive tearing instabilities predicted by 3-D MHD simulations. At frequencies above 35 kHz, the magnetic fluctuations were detected to be localized and externally resonant. Discrete dynamo events, ``sawtooth oscillations,`` have been observed in the experimental RFP plasmas. This phenomenon causes the plasma to become unstable to m = 1 tearing modes. The modes that may be important in different phases of these oscillations are identified. These results then assist in nonlinear studies and also help to interpret the spectral broadening of the measured data during a discrete dynamo event. Three-wave nonlinear coupling of spectral Fourier modes is measured in the MST by applying bispectral analysis to magnetic fluctuations measured at the plasma edge at 64 toroidal locations and 16 poloidal locations, permitting observation of coupling over 8 poloidal and 32 toroidal modes. Comparison to bispectra predicted by resistive MHD computation indicates reasonably good agreement. However, during the crash phase of the sawtooth oscillation the nonlinear coupling is strongly enhanced, concomitant with a broadened k-spectrum. During the sawtooth formation the plasma is undergoing a pure diffusive process. The dynamo only occurs during the sawtooth crash. High frequency activity prior to a sawtooth crash is caused by nonlinear frequency (small-scale) mode coupling. Growth rate and coupling coefficients of toroidal mode spectra are calculated by statistical modeling. Temporal evolution of edge toroidal mode spectra has been predicted by transfer function analysis. The driving sources of electrostatic fields are different than for the magnetic fields. The characteristics of tearing modes can be altered by external field errors and addition of impurities to the plasma.
Souza Dutra, A. de; Santos, V. G. C. S. dos; Amaro de Faria, A. C. Jr.
2007-06-15
Some kinks for non-Hermitian quantum field theories in 1+1 dimensions are constructed. A class of models where the soliton energies are stable and real are found. Although these kinks are not Hermitian, they are symmetric under PT transformations.
Amore, Paolo; Fernández, Francisco M.; Garcia, Javier; Gutierrez, German
2014-04-15
We study both analytically and numerically the spectrum of inhomogeneous strings with PT-symmetric density. We discuss an exactly solvable model of PT-symmetric string which is isospectral to the uniform string; for more general strings, we calculate exactly the sum rules Z(p)≡∑{sub n=1}{sup ∞}1/E{sub n}{sup p}, with p=1,2,… and find explicit expressions which can be used to obtain bounds on the lowest eigenvalue. A detailed numerical calculation is carried out for two non-solvable models depending on a parameter, obtaining precise estimates of the critical values where pair of real eigenvalues become complex. -- Highlights: •PT-symmetric Hamiltonians exhibit real eigenvalues when PT symmetry is unbroken. •We study PT-symmetric strings with complex density. •They exhibit regions of unbroken PT symmetry. •We calculate the critical parameters at the boundaries of those regions. •There are exact real sum rules for some particular complex densities.
Axial myopathy: an overlooked feature of muscle diseases.
Witting, Nanna; Andersen, Linda K; Vissing, John
2016-01-01
Classically, myopathies are categorized according to limb or cranial nerve muscle affection, but with the growing use of magnetic resonance imaging it has become evident that many well-known myopathies have significant involvement of the axial musculature. New disease entities with selective axial muscle involvement have also been described recently, but overall the axial myopathy is unexplored. We performed a PubMed search using the search terms 'myopathy', 'paraspinal', 'axial' and 'erector'. Axial myopathy was defined as involvement of paraspinal musculature. We found evidence of axial musculature involvement in the majority of myopathies in which paraspinal musculature was examined. Even in diseases named after a certain pattern of non-axial muscle affection, such as facioscapulohumeral and limb girdle muscular dystrophies, affection of the axial musculature was often severe and early, compared to other muscle groups. Very sparse literature evaluating the validity of clinical assessment methods, electromyography, muscle biopsy and magnetic resonance imaging was identified and reference material is generally missing. This article provides an overview of the present knowledge on axial myopathy with the aim to increase awareness and spur interest among clinicians and researchers in the field.
Evaluation of Axially Modulations in Plasma Channels
NASA Astrophysics Data System (ADS)
Cooley, James; Antonsen, Thomas; Milchberg, Howard; Fan, Jay; Parra, Enrique
2000-10-01
Plasma waveguides for guiding intense laser pulses have applications in particle acceleration and x-ray generation schemes. Waveguides can be formed using a variety of methods. One method [1] is to create a plasma channel by breaking down a gas with a laser pulse focused through an axicon. Ideally, the plasma channel will be axially symmetric and allow for guided single mode propagation of short laser pulses. However, for certain experimental conditions the channel develops periodic axial modulations. The onset of these modulations appears to correlate with the conditions for self trapping and resonant absorption of the axicon pulse by the plasma waveguide. Resonant absorption occurs under the following scenario [2]. As the channel is expanding the axial wave numbers of the modes of the leaky waveguide defined by the channel evolve as well. At certain times one of these axial wave numbers will correspond to that of the formation pulse, which is defined by the axicon. At this time the formation pulse couples linearly to the confined mode of the channel and is strongly absorbed. According to our model the modulations are due to a nonlinear coupling of the axicon field to the confined modes of the channel. Small axial modulations in the expansion rate of the channel can scatter the incident axicon field into the guided mode of the waveguide. The beating of the guided mode and the axicon field leads to modulations in the heating rate and ponderomotive force which reinforce the modulations in the expansion rate, in other words, there is a parametric instability. A simple model of this process will be presented. [1] C.G. Durfee III and H.M. Milchberg, Phys. Rev. Lett. 71, 2409 (1993) [2] J. Fan, E. Parra, and H.M. Milchberg, Phys. Rev. Lett. 84, 3085 (2000)
Hoffman, A L; Crawford, E A
1982-01-01
The present work utilizes high f number optics and is directed primarily at controlling the conditions in the magnetically confined plume. Typically, fully ionized carbon plasmas have been produced with 10/sup 18/ cm/sup -3/ electron densities and 100 to 150 eV electron temperatures. These carbon plasmas have been doped with high Z atoms in order to study ionization and emission rates at the above conditions.
NASA Astrophysics Data System (ADS)
Chen, Yan; Feng, Huijuan; Ma, Jiayao; Peng, Rui; You, Zhong
2016-06-01
The traditional waterbomb origami, produced from a pattern consisting of a series of vertices where six creases meet, is one of the most widely used origami patterns. From a rigid origami viewpoint, it generally has multiple degrees of freedom, but when the pattern is folded symmetrically, the mobility reduces to one. This paper presents a thorough kinematic investigation on symmetric folding of the waterbomb pattern. It has been found that the pattern can have two folding paths under certain circumstance. Moreover, the pattern can be used to fold thick panels. Not only do the additional constraints imposed to fold the thick panels lead to single degree of freedom folding, but the folding process is also kinematically equivalent to the origami of zero-thickness sheets. The findings pave the way for the pattern being readily used to fold deployable structures ranging from flat roofs to large solar panels.
Static cylindrically symmetric spacetimes
NASA Astrophysics Data System (ADS)
Fjällborg, Mikael
2007-05-01
We prove the existence of static solutions to the cylindrically symmetric Einstein Vlasov system, and we show that the matter cylinder has finite extension in two of the three spatial dimensions. The same results are also proved for a quite general class of equations of state for perfect fluids coupled to the Einstein equations, extending the class of equations of state considered by Bicak et al (2004 Class. Quantum Grav.21 1583). We also obtain this result for the Vlasov Poisson system.
Computational modeling of magnetic nanoparticle targeting to stent surface under high gradient field
NASA Astrophysics Data System (ADS)
Wang, Shunqiang; Zhou, Yihua; Tan, Jifu; Xu, Jiang; Yang, Jie; Liu, Yaling
2014-03-01
A multi-physics model was developed to study the delivery of magnetic nanoparticles (MNPs) to the stent-implanted region under an external magnetic field. The model is firstly validated by experimental work in literature. Then, effects of external magnetic field strength, magnetic particle size, and flow velocity on MNPs' targeting and binding have been analyzed through a parametric study. Two new dimensionless numbers were introduced to characterize relative effects of Brownian motion, magnetic force induced particle motion, and convective blood flow on MNPs motion. It was found that larger magnetic field strength, bigger MNP size, and slower flow velocity increase the capture efficiency of MNPs. The distribution of captured MNPs on the vessel along axial and azimuthal directions was also discussed. Results showed that the MNPs density decreased exponentially along axial direction after one-dose injection while it was uniform along azimuthal direction in the whole stented region (averaged over all sections). For the beginning section of the stented region, the density ratio distribution of captured MNPs along azimuthal direction is center-symmetrical, corresponding to the center-symmetrical distribution of magnetic force in that section. Two different generation mechanisms are revealed to form four main attraction regions. These results could serve as guidelines to design a better magnetic drug delivery system.
Altered Axial Skeletal Development
The axial skeleton is routinely examined in standard developmental toxicity bioassays and has proven to be sensitive to a wide variety of chemical agents. Dysmorphogenesis in the skull, vertebral column and ribs has been described in both human populations and in laboratory anima...
NASA Technical Reports Server (NTRS)
Lienert, Barry R.
1991-01-01
Monte Carlo perturbations of synthetic tensors to evaluate the Hext/Jelinek elliptical confidence regions for anisotropy of magnetic susceptibility (AMS) eigenvectors are used. When the perturbations are 33 percent of the minimum anisotropy, both the shapes and probability densities of the resulting eigenvector distributions agree with the elliptical distributions predicted by the Hext/Jelinek equations. When the perturbation size is increased to 100 percent of the minimum eigenvalue difference, the major axis of the 95 percent confidence ellipse underestimates the observed eigenvector dispersion by about 10 deg. The observed distributions of the principal susceptibilities (eigenvalues) are close to being normal, with standard errors that agree well with the calculated Hext/Jelinek errors. The Hext/Jelinek ellipses are also able to describe the AMS dispersions due to instrumental noise and provide reasonable limits for the AMS dispersions observed in two Hawaiian basaltic dikes. It is concluded that the Hext/Jelinek method provides a satisfactory description of the errors in AMS data and should be a standard part of any AMS data analysis.
Zhang, Peng; Tang, Ming; Gao, Feng; Zhu, Benpeng; Fu, Songnian; Ouyang, Jun; Shum, Perry Ping; Liu, Deming
2014-08-11
We report a highly sensitive fiber-optic sensor based on two cascaded intrinsic fiber Fabry-Perot interferometers (IFFPIs). The cascaded IFFPIs have different free spectral ranges (FSRs) and are formed by a short section of hollow core photonic crystal fiber sandwiched by two single mode fibers. With the superposition of reflective spectrum with different FSRs, the Vernier effect will be generated in the proposed sensor and we found that the strain sensitivity of the proposed sensor can be improved from 1.6 pm/με for a single IFFPI sensor to 47.14 pm/με by employing the Vernier effect. The sensor embed with a metglas ribbon can be also used to measure the magnetic field according to the similar principle. The sensitivity of the magnetic field measurement is achieved to be 71.57 pm/Oe that is significantly larger than the 2.5 pm/Oe for a single IFFPI sensor. PMID:25321041
Magnetic bags in hyperbolic space
NASA Astrophysics Data System (ADS)
Bolognesi, Stefano; Harland, Derek; Sutcliffe, Paul
2015-07-01
A magnetic bag is an Abelian approximation to a large number of coincident S U (2 ) Bogomol'nyi-Prasad-Sommerfield monopoles. In this paper we consider magnetic bags in hyperbolic space and derive their Nahm transform from the large-charge limit of the discrete Nahm equation for hyperbolic monopoles. An advantage of studying magnetic bags in hyperbolic space, rather than Euclidean space, is that a range of exact charge N hyperbolic monopoles can be constructed, for arbitrarily large values of N , and compared with the magnetic bag approximation. We show that a particular magnetic bag (the magnetic disc) provides a good description of the axially symmetric N -monopole. However, an Abelian magnetic bag is not a good approximation to a roughly spherical N -monopole that has more than N zeros of the Higgs field. We introduce an extension of the magnetic bag that does provide a good approximation to such monopoles and involves a spherical non-Abelian interior for the bag, in addition to the conventional Abelian exterior.
Theory of the Shape of the Heliospheric Termination Shock: Axial Symmetry
NASA Technical Reports Server (NTRS)
Barnes, Aaron; DeVincenzi, Donald L. (Technical Monitor)
1998-01-01
The heliospheric termination shock must exhibit asymmetry in its shape, due in part to internal latitude variations in the solar wind, and in part to the special directions defined by the external interstellar flow and/or the galactic magnetic field. This asymmetry shows up naturally in numerical simulations of the interaction between the heliosphere and local interstellar medium. However, to date only one analytical treatment of the theory has appeared, which discussed the modification of the shock shape due to solar wind latitude variations in the presence of spherically symmetric outer boundary conditions. In the present report, we discuss an extension and generalization of this theory to an axially symmetric gasdynamic system, in which departure from spherical symmetry may be due either to internal solar wind variations or to the directional properties of the external interstellar medium. It is shown that for steady flow the post-shock region is characterized by an infinite set of quantities that are conserved along streamlines; among these invariants are the stagnation pressure and a quantity closely related to vorticity. Moreover, for a given latitude profile of the (supersonic) solar wind, the geometry of the termination shock uniquely determines the valued of these invariants at the points where the streamlines emerge from the shock. A self-consistent solution of the problem thus requires a match between the shock geometry and distant boundary conditions. The theory is applied to give estimates of termination-shock asymmetry for various internal and external conditions.
Surface nanoscale axial photonics.
Sumetsky, M; Fini, J M
2011-12-19
Dense photonic integration promises to revolutionize optical computing and communications. However, efforts towards this goal face unacceptable attenuation of light caused by surface roughness in microscopic devices. Here we address this problem by introducing Surface Nanoscale Axial Photonics (SNAP). The SNAP platform is based on whispering gallery modes circulating around the optical fiber surface and undergoing slow axial propagation readily described by the one-dimensional Schrödinger equation. These modes can be steered with dramatically small nanoscale variation of the fiber radius, which is quite simple to introduce in practice. Extremely low loss of SNAP devices is achieved due to the low surface roughness inherent in a drawn fiber surface. In excellent agreement with the developed theory, we experimentally demonstrate localization of light in quantum wells, halting light by a point source, tunneling through potential barriers, dark states, etc. This demonstration has intriguing potential applications in filtering, switching, slowing light, and sensing.
Cracked shells under skew-symmetric loading
NASA Technical Reports Server (NTRS)
Lelale, F.
1982-01-01
A shell containing a through crack in one of the principal planes of curvature and under general skew-symmetric loading is considered. By employing a Reissner type shell theory which takes into account the effect of transverse shear strains, all boundary conditions on the crack surfaces are satisfied separately. Consequently, unlike those obtained from the classical shell theory, the angular distributions of the stress components around the crack tips are shown to be identical to the distributions obtained from the plane and antiplane elasticity solutions. Extensive results are given for axially and circumferentially cracked cylindrical shells, spherical shells, and toroidal shells under uniform inplane shearing, out of plane shearing, and torsion. The effect of orthotropy on the results is also studied.
Symmetrization for redundant channels
NASA Technical Reports Server (NTRS)
Tulplue, Bhalchandra R. (Inventor); Collins, Robert E. (Inventor)
1988-01-01
A plurality of redundant channels in a system each contain a global image of all the configuration data bases in each of the channels in the system. Each global image is updated periodically from each of the other channels via cross channel data links. The global images of the local configuration data bases in each channel are separately symmetrized using a voting process to generate a system signal configuration data base which is not written into by any other routine and is available for indicating the status of the system within each channel. Equalization may be imposed on a suspect signal and a number of chances for that signal to heal itself are provided before excluding it from future votes. Reconfiguration is accomplished upon detecting a channel which is deemed invalid. A reset function is provided which permits an externally generated reset signal to permit a previously excluded channel to be reincluded within the system. The updating of global images and/or the symmetrization process may be accomplished at substantially the same time within a synchronized time frame common to all channels.
On Cyclically Symmetrical Spacetimes
NASA Astrophysics Data System (ADS)
Barnes, A.
2001-07-01
In a recent paper Carot et al. considered the definition of cylindrical symmetry as a specialisation of the case of axial symmetry. One of their propositions states that if there is a second Killing vector, which together with the one generating the axial symmetry, forms the basis of a two-dimensional Lie algebra, then the two Killing vectors must commute, thus generating an Abelian group. In this paper a similar result, valid under considerably weaker assumptions, is derived: any two-dimensional Lie transformation group which contains a one-dimensional subgroup whose orbits are circles, must be Abelian. The method used to prove this result is extended to apply to three-dimensional Lie transformation groups. It is shown that the existence of a one-dimensional subgroup with closed orbits restricts the Bianchi type of the associated Lie algebra to be I, II, III, VIIq = 0, VIII or IX. Some results on n-dimensional Lie groups are also derived and applied to show there are severe restrictions on the structure of the allowed four-dimensional Lie transformation groups compatible with cyclic symmetry.
Implications of the Corotation Theorem on the MRI in Axial Symmetry
NASA Astrophysics Data System (ADS)
Montani, G.; Cianfrani, F.; Pugliese, D.
2016-08-01
We analyze the linear stability of an axially symmetric ideal plasma disk, embedded in a magnetic field and endowed with a differential rotation. This study is performed by adopting the magnetic flux function as the fundamental dynamical variable, in order to outline the role played by the corotation theorem on the linear mode structure. Using some specific assumptions (e.g., plasma incompressibility and propagation of the perturbations along the background magnetic field), we select the Alfvénic nature of the magnetorotational instability, and, in the geometric optics limit, we determine the dispersion relation describing the linear spectrum. We show how the implementation of the corotation theorem (valid for the background configuration) on the linear dynamics produces the cancellation of the vertical derivative of the disk angular velocity (we check such a feature also in the standard vector formalism to facilitate comparison with previous literature, in both the axisymmetric and three-dimensional cases). As a result, we clarify that the unstable modes have, for a stratified disk, the same morphology, proper of a thin-disk profile, and the z-dependence has a simple parametric role.
Reactive control of subsonic axial fan noise in a duct.
Liu, Y; Choy, Y S; Huang, L; Cheng, L
2014-10-01
Suppressing the ducted fan noise at low frequencies without varying the flow capacity is still a technical challenge. This study examines a conceived device consisting of two tensioned membranes backed with cavities housing the axial fan for suppression of the sound radiation from the axial fan directly. The noise suppression is achieved by destructive interference between the sound fields from the axial fan of a dipole nature and sound radiation from the membrane via vibroacoustics coupling. A two-dimensional model with the flow effect is presented which allows the performance of the device to be explored analytically. The air flow influences the symmetrical behavior and excites the odd in vacuo mode response of the membrane due to kinematic coupling. Such an asymmetrical effect can be compromised with off-center alignment of the axial fan. Tension plays an important role to sustain the performance to revoke the deformation of the membrane during the axial fan operation. With the design of four appropriately tensioned membranes covered by a cylindrical cavity, the first and second blade passage frequencies of the axial fan can be reduced by at least 20 dB. The satisfactory agreement between experiment and theory demonstrates that its feasibility is practical.
Reactive control of subsonic axial fan noise in a duct.
Liu, Y; Choy, Y S; Huang, L; Cheng, L
2014-10-01
Suppressing the ducted fan noise at low frequencies without varying the flow capacity is still a technical challenge. This study examines a conceived device consisting of two tensioned membranes backed with cavities housing the axial fan for suppression of the sound radiation from the axial fan directly. The noise suppression is achieved by destructive interference between the sound fields from the axial fan of a dipole nature and sound radiation from the membrane via vibroacoustics coupling. A two-dimensional model with the flow effect is presented which allows the performance of the device to be explored analytically. The air flow influences the symmetrical behavior and excites the odd in vacuo mode response of the membrane due to kinematic coupling. Such an asymmetrical effect can be compromised with off-center alignment of the axial fan. Tension plays an important role to sustain the performance to revoke the deformation of the membrane during the axial fan operation. With the design of four appropriately tensioned membranes covered by a cylindrical cavity, the first and second blade passage frequencies of the axial fan can be reduced by at least 20 dB. The satisfactory agreement between experiment and theory demonstrates that its feasibility is practical. PMID:25324066
Effects of Magnetic Field Topology on Secondary Neutron Spectra in MagLIF
NASA Astrophysics Data System (ADS)
Appelbe, Brian; Chittenden, Jeremy
2015-11-01
Ignition in Magneto-Inertial Fusion schemes requires both inertial and magnetic confinement of the fuel and charged fusion products. Recent theoretical and experimental work has demonstrated the confinement of charged fusion products by magnetic fields in Magnetized Liner Inertial Fusion (MagLIF) experiments. This confinement can be inferred from the ratio of secondary to primary neutron yields and the shape of secondary neutron spectra. In this work we investigate the effects of magnetic field topology on the shape of secondary neutron spectra. The MagLIF design has a cylindrical geometry and includes both axial and azimuthal magnetic fields. The azimuthal field is initially in the liner surrounding the fuel but instability growth may cause it to penetrate into the fuel. Charged fusion products (such as tritons or alpha particles) that are isotropically emitted and then confined by an axial field will flow parallel and anti-parallel to the field with equal intensities. In the case of tritons, this motion results in a secondary neutron spectrum emitted in the axial direction that is symmetric. However, in an azimuthal field such particles exhibit singular orbits and there is a net ion drift along the axis. This ion drift can cause the secondary neutron spectrum to be asymmetric. We examine the effects on the spectrum shape of confinement by a combination of axial and azimuthal fields.
Investigation of Aluminum-Copper Tube Hydroforming with Axial Feeding
NASA Astrophysics Data System (ADS)
Parto D., M.; Seyedkashi, S. M. H.; Liaghat, Gh.; Naeini, H. Moslemi; Panahizadeh R., V.
2011-01-01
Hydroforming of a two-layered Aluminum-Copper tube is investigated numerically and experimentally. Pressure is applied through a nonlinear path along with symmetrical axial feeding. ABAQUS/Explicit commercial code is used for finite element simulation of the process. ASTM C11000 Copper alloy is used as inner layer and ASTM AA1050A Aluminum alloy is used as outer layer. The simulation results show that the part can be successfully formed under internal pressure of 40 MPa with 8 mm axial displacement. Stress distributions on both inner and outer tubes are compared and maximum thinning on their wall is also discussed. Different friction conditions are applied on the process using different coefficients of friction and their effects are investigated on thinning percentage of inner and outer tubes and also on axial feeding. It is observed that finite element results are in good agreement with experimental results.
Lorenzin, M; Ortolan, A; Frallonardo, P; Vio, S; Lacognata, C; Oliviero, F; Punzi, L; Ramonda, R
2016-01-01
Our aim was to determine the prevalence of spine and sacroiliac joint (SIJ) lesions on magnetic resonance imaging (MRI) in patients with early axial spondyloarthritis (axSpA) and their correlation with disease activity indices. Sixty patients with low back pain (LBP) (≥3 months, ≤2 years, onset ≤45 years), attending the SpA-clinic of the Unità Operativa Complessa Reumatologia of Padova [SpondyloArthritis-Caught-Early (SPACE) study], were studied following a protocol including physical examination, questionnaires, laboratory tests, X-rays and spine and SIJ MRI. Positive spine and SIJ MRI and X-rays images were scored independently by 2 readers using the SPARCC method, modified Stoke ankylosing spondylitis spine score and New York criteria. The axial pain and localization of MRI-lesions were referred to 4 sites: cervical/thoracic/lumbar spine and SIJ. All patients were classified into three groups: patients with signs of radiographic sacroiliitis (r-axSpA), patients without signs of r-axSpA but with signs of sacroiliitis on MRI (nr-axSpA MRI SIJ+), patients without signs of sacroiliitis on MRI and X-rays (nr-axSpA MRI SIJ-). The median age at LBP onset was 29.05±8.38 years; 51.6% of patients showed bone marrow edema (BME) in spine-MRI and 56.7% of patients in SIJ-MRI. Signs of enthesitis were found in 55% of patients in the thoracic district. Of the 55% of patients with BME on spine-MRI, 15% presented presented a negative SIJMRI. There was a significant difference between these cohorts with regard to the prevalence of radiographic sacroiliitis, active sacroiliitis on MRI and SPARCC SIJ score. The site of pain correlated statistically with BME lesions in thoracic and buttock districts. Since positive spine-MRI images were observed in absence of sacroiliitis, we can hypothesize that this finding could have a diagnostic significance in axSpA suspected axSpA. PMID:27608795
Axial flux machine, stator and fabrication method
Carl, Ralph James
2004-03-16
An axial flux machine comprises: a soft magnetic composite stator extension positioned in parallel with a rotor disk and having slots; soft magnetic composite pole pieces attached to the stator extension and facing a permanent magnet on the rotor disk, each comprising a protrusion situated within a respective one of the slots, each protrusion shaped so as to facilitate orientation of the respective pole piece with respect to the stator extension; electrical coils, each wrapped around a respective one of the pole pieces. In another embodiment the soft magnetic composite pole pieces each comprise a base portion around with the electrical coils are wound and a trapezoidal shield portion a plurality of heights with a first height in a first region being longer than a second height in a second region, the second region being closer to a pole-to-pole gap than the first region.
Optimal symmetric flight studies
NASA Technical Reports Server (NTRS)
Weston, A. R.; Menon, P. K. A.; Bilimoria, K. D.; Cliff, E. M.; Kelley, H. J.
1985-01-01
Several topics in optimal symmetric flight of airbreathing vehicles are examined. In one study, an approximation scheme designed for onboard real-time energy management of climb-dash is developed and calculations for a high-performance aircraft presented. In another, a vehicle model intermediate in complexity between energy and point-mass models is explored and some quirks in optimal flight characteristics peculiar to the model uncovered. In yet another study, energy-modelling procedures are re-examined with a view to stretching the range of validity of zeroth-order approximation by special choice of state variables. In a final study, time-fuel tradeoffs in cruise-dash are examined for the consequences of nonconvexities appearing in the classical steady cruise-dash model. Two appendices provide retrospective looks at two early publications on energy modelling and related optimal control theory.
Axial Plane Optical Microscopy
Li, Tongcang; Ota, Sadao; Kim, Jeongmin; Wong, Zi Jing; Wang, Yuan; Yin, Xiaobo; Zhang, Xiang
2014-01-01
We present axial plane optical microscopy (APOM) that can, in contrast to conventional microscopy, directly image a sample's cross-section parallel to the optical axis of an objective lens without scanning. APOM combined with conventional microscopy simultaneously provides two orthogonal images of a 3D sample. More importantly, APOM uses only a single lens near the sample to achieve selective-plane illumination microscopy, as we demonstrated by three-dimensional (3D) imaging of fluorescent pollens and brain slices. This technique allows fast, high-contrast, and convenient 3D imaging of structures that are hundreds of microns beneath the surfaces of large biological tissues. PMID:25434770
Axial Plane Optical Microscopy
NASA Astrophysics Data System (ADS)
Li, Tongcang; Ota, Sadao; Kim, Jeongmin; Wong, Zi Jing; Wang, Yuan; Yin, Xiaobo; Zhang, Xiang
2014-12-01
We present axial plane optical microscopy (APOM) that can, in contrast to conventional microscopy, directly image a sample's cross-section parallel to the optical axis of an objective lens without scanning. APOM combined with conventional microscopy simultaneously provides two orthogonal images of a 3D sample. More importantly, APOM uses only a single lens near the sample to achieve selective-plane illumination microscopy, as we demonstrated by three-dimensional (3D) imaging of fluorescent pollens and brain slices. This technique allows fast, high-contrast, and convenient 3D imaging of structures that are hundreds of microns beneath the surfaces of large biological tissues.
VACUUM calculation in azimuthally symmetric geometry
Chance, M.S.
1996-11-01
A robustly accurate and effective method is presented to solve Laplace`s equation in general azimuthally symmetric geometry for the magnetic scalar potential in the region surrounding a plasma discharge which may or may not contain external conducting shells. These shells can be topologically toroidal or spherical, and may have toroidal gaps in them. The solution is incorporated into the various MHD stability codes either through the volume integrated perturbed magnetic energy in the vacuum region or through the continuity requirements for the normal component of the perturbed magnetic field and the total perturbed pressure across the unperturbed plasma-vacuum boundary. The method is based upon using Green`s second identity and the method of collocation. As useful byproducts, the eddy currents and the simulation of Mirnov loop measurements are calculated.
Experimental and numerical study of a YBCO pancake coil with a magnetic substrate
NASA Astrophysics Data System (ADS)
Zhang, Min; Kvitkovic, J.; Pamidi, S. V.; Coombs, T. A.
2012-12-01
A finite element model for a YBCO pancake coil with a magnetic substrate is developed in this paper. An axial symmetrical H formulation and the E-J power law are used to construct the model, with the magnetic substrate considered by introducing an extra time-dependent term in the formula. A pancake coil is made and tested. The measurement of critical current and transport loss is compared to the model result, showing good consistency. The influence of magnetic substrate in the condition of AC and DC current is studied. The AC loss decreases without a magnetic substrate. It is observed that when the applied DC current approaches the critical current the coil turn loss profile changes completely in the presence of magnetic substrate due to the change of magnetic field distribution.
Visani, C.; Tornos, J.; Nemes, N. M.; Rocci, M.; Leon, C.; Santamaria, J.; te Velthuis, S. G. E.; Liu, Y.; Hoffmann, A.; Freeland, J. W.; Garcia-Hernandez, M.; Fitzsimmons, M. R.; Kirby, B. J.; Varela, M.; Pennycock, S. J.
2011-01-01
We have analyzed the interface structure and composition of La{sub 0.7}Ca{sub 0.3}MnO{sub 3}/YBa{sub 2}Cu{sub 3}O{sub 7}/La{sub 0.7}Ca{sub 0.3}MnO{sub 3} trilayers by combined polarized neutron reflectometry, aberration-corrected microscopy, and atomic column resolution electron-energy-loss spectroscopy and x-ray absorption with polarization analysis. We find the same stacking sequence at both top and bottom cuprate interfaces. X-ray magnetic circular dichroism experiments show that both cuprate interfaces are magnetic with a magnetic moment induced in Cu atoms as expected from symmetric Mn-O-Cu superexchange paths. These results supply a solid footing for the applicability of recent theories explaining the interplay between magnetism and superconductivity in this system in terms of the induced Cu spin polarization at both interfaces.
Davis, J.H.
1988-01-12
Lyotropic nematic liquid-crystalline phases, such as that formed by potassium laurate/decanol/KCl/water, are found to accept readily large amphiphilic solute molecules. Since these phases spontaneously orient in high magnetic fields, it becomes possible to obtain NMR spectra of biologically interesting solutes in an oriented axially symmetric environment. The amide hydrogens of the peptide backbone of gramicidin D (Dubos) were exchanged for deuterium, and the gramicidin was incorporated into a lyotropic nematic phase made with deuteriated buffer in place of water. /sup 2/H NMR spectra of oriented, exchange-labeled gramicidin were then obtained. The strong water signal from the deuteriated buffer was eliminated by using selective excitation and a polynomial subtraction procedure. The /sup 2/H NMR spectra at high temperature consist of twelve major quadrupolar doublets. The splittings observed are largely independent of temperature, suggesting a highly rigid backbone structure. Two of the doublets, which are chemically shifted relative to the others, show stronger temperature dependence. These two probably arise from the exchangeable amino hydrogens on the tryptophan indole moieties of the peptide. While we cannot yet assign all of the doublets, the spectra and nuclear magnetic relaxation data are consistent with a rigid slightly distorted ..beta../sub LD//sup 6.3/ helix undergoing axially symmetric reorientation about the director of the liquid-crystalline phase. The correlation time for the axially symmetric reorientation is determined by relaxation measurements to be about 10/sup -7/s.
{PT}-symmetric optical superlattices
NASA Astrophysics Data System (ADS)
Longhi, Stefano
2014-04-01
The spectral and localization properties of {PT}-symmetric optical superlattices, either infinitely extended or truncated at one side, are theoretically investigated, and the criteria that ensure a real energy spectrum are derived. The analysis is applied to the case of superlattices describing a complex ( {PT}-symmetric) extension of the Harper Hamiltonian in the rational case.
Ambient-Temperature Passive Magnetic Bearings for Flywheel Energy Storage Systems
Bender, D.; Post, R.
2000-05-26
Based on prior work at the Lawrence Livermore National Laboratory ambient-temperature passive magnetic bearings are being adapted for use in high-power flywheel energy storage systems developed at the Trinity Flywheel Power company. En route to this goal specialized test stands have been built and computer codes have been written to aid in the development of the component parts of these bearing systems. The Livermore passive magnetic bearing system involves three types of elements, as follows: (1) Axially symmetric levitation elements, energized by permanent magnets., (2) electrodynamic ''stabilizers'' employing axially symmetric arrays of permanent magnet bars (''Halbach arrays'') on the rotating system, interacting with specially wound electrically shorted stator circuits, and, (3) eddy-current-type vibration dampers, employing axially symmetric rotating pole assemblies interacting with stationary metallic discs. The theory of the Livermore passive magnetic bearing concept describes specific quantitative stability criteria. The satisfaction of these criteria will insure that, when rotating above a low critical speed, a bearing system made up of the three elements described above will be dynamically stable. That is, it will not only be stable for small displacements from equilibrium (''Earnshaw-stable''), but will also be stable against whirl-type instabilities of the types that can arise from displacement-dependent drag forces, or from mechanical-hysteritic losses that may occur in the rotor. Our design problem thus becomes one of calculating and/or measuring the relevant stiffnesses and drag coefficients of the various elements and comparing our results with the theory so as to assure that the cited stability criteria are satisfied.
Magnetic bearing. [for supplying magnetic fluxes
NASA Technical Reports Server (NTRS)
Studer, P. A. (Inventor)
1975-01-01
A magnetic bearing is described which includes a pair of coaxial, toroidal, and permanent magnets having axially directed poles. Like poles of the permanent magnets are adjacent to each other, whereby the permanent magnets have a tendency to be urged apart along the common axis. An electromagnet is wound coaxially with the permanent magnets in such a manner that the poles are axially directed. Between the poles of each permanent magnet there is a low magnetic reluctance circuit including two series air gaps. Between the poles of the electromagnet a low reluctance path including only one air gap of each of the low magnetic reluctance circuits is provided. The low reluctance path for the electromagnet includes a ring axially translatable relative to the permanent magnets. The ring forms opposite faces of the air gaps in the magnetic circuits for each permanent magnet.
Conformally symmetric traversable wormholes
Boehmer, Christian G.; Harko, Tiberiu; Lobo, Francisco S. N.
2007-10-15
Exact solutions of traversable wormholes are found under the assumption of spherical symmetry and the existence of a nonstatic conformal symmetry, which presents a more systematic approach in searching for exact wormhole solutions. In this work, a wide variety of solutions are deduced by considering choices for the form function, a specific linear equation of state relating the energy density and the pressure anisotropy, and various phantom wormhole geometries are explored. A large class of solutions impose that the spatial distribution of the exotic matter is restricted to the throat neighborhood, with a cutoff of the stress-energy tensor at a finite junction interface, although asymptotically flat exact solutions are also found. Using the 'volume integral quantifier', it is found that the conformally symmetric phantom wormhole geometries may, in principle, be constructed by infinitesimally small amounts of averaged null energy condition violating matter. Considering the tidal acceleration traversability conditions for the phantom wormhole geometry, specific wormhole dimensions and the traversal velocity are also deduced.
Static Magnetic Fields in Semiconductor Floating-Zone Growth
NASA Technical Reports Server (NTRS)
Croll, Arne; Benz, K. W.
1999-01-01
Heat and mass transfer in semiconductor float-zone processing are strongly influenced by convective flows in the zone, originating from sources such as buoyancy convection, thermocapillary (Marangoni) convection, differential rotation, or radio frequency heating. Because semiconductor melts are conducting, flows can be damped by the use of static magnetic fields to influence the interface shape and the segregation of dopants and impurities. An important objective is often the suppression of time-dependent flows and the ensuing dopant striations. In RF-heated Si-FZ - crystals, fields up to O.STesla show some flattening of the interface curvature and a reduction of striation amplitudes. In radiation-heated (small-scale) SI-FZ crystals, fields of 0.2 - 0.5 Tesla already suppress the majority of the dopant striations. The uniformity of the radial segregation is often compromised by using a magnetic field, due to the directional nature of the damping. Transverse fields lead to an asymmetric interface shape and thus require crystal rotation (resulting in rotational dopant striations) to achieve a radially symmetric interface, whereas axial fields introduce a coring effect. A complete suppression of dopant striations and a reduction of the coring to insignificant values, combined with a shift of the axial segregation profile towards a more diffusion-limited case, are possible with axial static fields in excess of 1 Tesla. Strong static magnetic fields, however, can also lead to the appearance of thermoelectromagnetic convection, caused by the interaction of thermoelectric currents with the magnetic field.
Drift waves in helically symmetric stellarators
Rafiq, T.; Hegna, C.
2005-11-15
The local linear stability of electron drift waves and ion temperature gradient modes (ITG) is investigated in a quasihelically symmetric (QHS) stellarator and a conventional asymmetric (Mirror) stellarator. The geometric details of the different equilibria are emphasized. Eigenvalue equations for the models are derived using the ballooning mode formalism and solved numerically using a standard shooting technique in a fully three-dimensional stellarator configuration. While the eigenfunctions have a similar shape in both magnetic geometries, they are slightly more localized along the field line in the QHS case. The most unstable electron drift modes are strongly localized at the symmetry points (where stellarator symmetry is present) and in the regions where normal curvature is unfavorable and magnitude of the local magnetic shear and magnetic field is minimum. The presence of a large positive local magnetic shear in the bad curvature region is found to be destabilizing. Electron drift modes are found to be more affected by the normal curvature than by the geodesic curvature. The threshold of stability of the ITG modes in terms of {eta}{sub i} is found to be 2/3 in this fluid model consistent with the smallest threshold for toroidal geometry with adiabatic electrons. Optimization to favorable drift wave stability has small field line curvature, short connection lengths, the proper combination of geodesic curvature and local magnetic shear, large values of local magnetic shear, and the compression of flux surfaces in the unfavorable curvature region.
NASA Technical Reports Server (NTRS)
Schmidt, G. K.
1979-01-01
A booms and mechanisms subsystem was designed, developed, and qualified for the geostationary scientific satellite GEOS. Part of this subsystem consist of four axial booms consisting of one pair of 1 m booms and one pair of 2.5 m booms. Each of these booms is carrying one bird cage electric field sensor. Alignment accuracy requirements led to a telescopic type solution. Deployment is performed by pressurized nitrogen. At deployment in orbit two of these booms showed some anomalies and one of these two deployed only about 80%. Following this malfunction a detailed failure investigation was performed resulting in a design modification of some critical components as release mechanism, guide sleeves of the telescopic elements, and pressure system.
Masi, Alfonse T
2014-01-01
Ankylosing spondylitis and axial spondyloarthropathy have characteristic age- and sex-specific onset patterns, typical entheseal lesions, and marked heritability, but the integrative mechanisms causing the pathophysiological and structural alterations remain largely undefined. Myofascial tissues are integrated in the body into webs and networks which permit transmission of passive and active tensional forces that provide stabilizing support and help to control movements. Axial myofascial hypertonicity was hypothesized as a potential excessive polymorphic trait which could contribute to chronic biomechanical overloading and exaggerated stresses at entheseal sites. Such a mechanism may help to integrate many of the characteristic host, pathological, and structural features of ankylosing spondylitis and axial spondyloarthritis. Biomechanical stress and strain were recently documented to correlate with peripheral entheseal inflammation and new bone formation in a murine model of spondyloarthritis. Ankylosing spondylitis has traditionally been classified by the modified New York criteria, which require the presence of definite radiographic sacroiliac joint lesions. New classification criteria for axial spondyloarthritis now include patients who do not fulfill the modified New York criteria. The male-to-female sex ratios clearly differed between the two patient categories - 2:1 or 3:1 in ankylosing spondylitis and 1:1 in non-radiographic axial spondyloarthritis - and this suggests a spectral concept of disease and, among females, milder structural alterations. Magnetic resonance imaging of active and chronic lesions in ankylosing spondylitis and axial spondyloarthritis reveals complex patterns, usually interpreted as inflammatory reactions, but shows similarities to acute degenerative disc disease, which attributed to edema formation following mechanical stresses and micro-damage. A basic question is whether mechanically induced microinjury and immunologically mediated
2014-01-01
Ankylosing spondylitis and axial spondyloarthropathy have characteristic age- and sex-specific onset patterns, typical entheseal lesions, and marked heritability, but the integrative mechanisms causing the pathophysiological and structural alterations remain largely undefined. Myofascial tissues are integrated in the body into webs and networks which permit transmission of passive and active tensional forces that provide stabilizing support and help to control movements. Axial myofascial hypertonicity was hypothesized as a potential excessive polymorphic trait which could contribute to chronic biomechanical overloading and exaggerated stresses at entheseal sites. Such a mechanism may help to integrate many of the characteristic host, pathological, and structural features of ankylosing spondylitis and axial spondyloarthritis. Biomechanical stress and strain were recently documented to correlate with peripheral entheseal inflammation and new bone formation in a murine model of spondyloarthritis. Ankylosing spondylitis has traditionally been classified by the modified New York criteria, which require the presence of definite radiographic sacroiliac joint lesions. New classification criteria for axial spondyloarthritis now include patients who do not fulfill the modified New York criteria. The male-to-female sex ratios clearly differed between the two patient categories - 2:1 or 3:1 in ankylosing spondylitis and 1:1 in non-radiographic axial spondyloarthritis - and this suggests a spectral concept of disease and, among females, milder structural alterations. Magnetic resonance imaging of active and chronic lesions in ankylosing spondylitis and axial spondyloarthritis reveals complex patterns, usually interpreted as inflammatory reactions, but shows similarities to acute degenerative disc disease, which attributed to edema formation following mechanical stresses and micro-damage. A basic question is whether mechanically induced microinjury and immunologically mediated
Linear magnetic spring and spring/motor combination
NASA Technical Reports Server (NTRS)
Patt, Paul J. (Inventor); Stolfi, Fred R. (Inventor)
1991-01-01
A magnetic spring, or a spring and motor combination, providing a linear spring force characteristic in each direction from a neutral position, in which the spring action may occur for any desired coordinate of a typical orthogonal coordinate system. A set of magnets are disposed, preferably symmetrically about a coordinate axis, poled orthogonally to the desired force direction. A second set of magnets, respectively poled opposite the first set, are arranged on the sprung article. The magnets of one of the sets are spaced a greater distance apart than those of the other, such that an end magnet from each set forms a pair having preferably planar faces parallel to the direction of spring force, the faces being offset so that in a neutral position the outer edge of the closer spaced magnet set is aligned with the inner edge of the greater spaced magnet set. For use as a motor, a coil can be arranged with conductors orthogonal to both the magnet pole directions and the direction of desired spring force, located across from the magnets of one set and fixed with respect to the magnets of the other set. In a cylindrical coordinate system having axial spring force, the magnets are radially poled and motor coils are concentric with the cylinder axis.
Axial movements in ideomotor apraxia
Poeck, K; Lehmkuhl, G; Willmes, K
1982-01-01
Non-symbolic axial movements were examined and compared to oral and limb movements in a group of 60 aphasic patients (15 of each major subgroup) with exclusively left-sided brain damage. The contention in the literature that axial movements are preserved in patients with ideomotor limb apraxia was not confirmed. PMID:6186771
Time-resolved Measurements of Spontaneous Magnetic Deflagration of Mn12 tBuAc
NASA Astrophysics Data System (ADS)
Chen, Yizhang; Kent, A. D.; Zhang, Qing; Sarachik, M. P.; Baker, M. L.; Garanin, D. A.; Mhesn, Najah; Lampropoulos, Christos
Magnetic deflagration in molecular magnets has been triggered by heat pulses and acoustic waves. In this work we report spontaneous magnetic deflagration (i.e. deflagration that occurs without an external trigger) in the axially symmetric single molecule magnet Mn12 tBuAc . Magnetic hysteresis measurements show steps due to resonant quantum tunneling (RQT) below 1K, confirming the spin-Hamiltonian parameters for this material and previous results. Deflagration speeds measured with a newly constructed higher bandwidth (2MHz) setup will be presented as a function of transverse and longitudinal fields Hx ⊗Hz both on and off resonance. A large increase in front velocity near RQT steps is observed in experiments with swept transverse fields and will be discussed in light of models of deflagration. Work supported by NSF-DMR-1309202 (NYU); ARO W911NF-13-1-0125 (CCNY); DMR-1161571(Lehman); Cottrell College Science Award (UNF).
Chiral Magnetic Effect in Heavy Ion Collisions
Liao, Jinfeng
2016-12-01
The Chiral Magnetic Effect (CME) is a remarkable phenomenon that stems from highly nontrivial interplay of QCD chiral symmetry, axial anomaly, and gluonic topology. We show it is of fundamental importance to search for the CME in experiments. The heavy ion collisions provide a unique environment where a hot chiral-symmetric quark-gluon plasma is created, gluonic topological fluctuations generate chirality imbalance, and very strong magnetic fields |Β→|~m2π are present during the early stage of such collisions. Significant efforts have been made to look for CME signals in heavy ion collision experiments. Lastly, in this contribution we give a brief overview onmore » the status of such efforts.« less
Symmetric Composite Laminate Stress Analysis
NASA Technical Reports Server (NTRS)
Wang, T.; Smolinski, K. F.; Gellin, S.
1985-01-01
It is demonstrated that COSMIC/NASTRAN may be used to analyze plate and shell structures made of symmetric composite laminates. Although general composite laminates cannot be analyzed using NASTRAN, the theoretical development presented herein indicates that the integrated constitutive laws of a symmetric composite laminate resemble those of a homogeneous anisotropic plate, which can be analyzed using NASTRAN. A detailed analysis procedure is presented, as well as an illustrative example.
Magnetic assembly of colloidal superstructures with multipole symmetry.
Erb, Randall M; Son, Hui S; Samanta, Bappaditya; Rotello, Vincent M; Yellen, Benjamin B
2009-02-19
The assembly of complex structures out of simple colloidal building blocks is of practical interest for building materials with unique optical properties (for example photonic crystals and DNA biosensors) and is of fundamental importance in improving our understanding of self-assembly processes occurring on molecular to macroscopic length scales. Here we demonstrate a self-assembly principle that is capable of organizing a diverse set of colloidal particles into highly reproducible, rotationally symmetric arrangements. The structures are assembled using the magnetostatic interaction between effectively diamagnetic and paramagnetic particles within a magnetized ferrofluid. The resulting multipolar geometries resemble electrostatic charge configurations such as axial quadrupoles ('Saturn rings'), axial octupoles ('flowers'), linear quadrupoles (poles) and mixed multipole arrangements ('two tone'), which represent just a few examples of the type of structure that can be built using this technique.
Magnetic assembly of colloidal superstructures with multipole symmetry.
Erb, Randall M; Son, Hui S; Samanta, Bappaditya; Rotello, Vincent M; Yellen, Benjamin B
2009-02-19
The assembly of complex structures out of simple colloidal building blocks is of practical interest for building materials with unique optical properties (for example photonic crystals and DNA biosensors) and is of fundamental importance in improving our understanding of self-assembly processes occurring on molecular to macroscopic length scales. Here we demonstrate a self-assembly principle that is capable of organizing a diverse set of colloidal particles into highly reproducible, rotationally symmetric arrangements. The structures are assembled using the magnetostatic interaction between effectively diamagnetic and paramagnetic particles within a magnetized ferrofluid. The resulting multipolar geometries resemble electrostatic charge configurations such as axial quadrupoles ('Saturn rings'), axial octupoles ('flowers'), linear quadrupoles (poles) and mixed multipole arrangements ('two tone'), which represent just a few examples of the type of structure that can be built using this technique. PMID:19225522
Measuring cylindrically symmetric refractive-index profiles: a method.
Gregoris, D; Iizuka, K
1983-02-01
This paper describes a new nondestructive method to measure cylindrically symmetric refractive-index profiles of transparent cylinders. The technique is based on the measurement of the axial displacement of rays that are refracted within the cylinder. Three different types of index profile were experimentally determined. Profile errors of better than one part in 10(3) were achieved using very modest equipment. The effects of certain experimental parameters on the profile accuracy are noted. The technique may be applied to the characterization of optical fiber preforms and graded-index rod lenses. PMID:18195804
Magnetospectroscopy of symmetric and anti-symmetric states in double quantum wells
NASA Astrophysics Data System (ADS)
Marchewka, M.; Sheregii, E. M.; Tralle, I.; Ploch, D.; Tomaka, G.; Furdak, M.; Kolek, A.; Stadler, A.; Mleczko, K.; Zak, D.; Strupinski, W.; Jasik, A.; Jakiela, R.
2008-02-01
The experimental results obtained for magnetotransport in the InGaAs/InAlAs double quantum well (DQW) structures of two different shapes of wells are reported. A beating effect occurring in the Shubnikov-de Haas (SdH) oscillations was observed for both types of structures at low temperatures in the parallel transport when the magnetic field was perpendicular to the layers. An approach for the calculation of the Landau level energies for DQW structures was developed and then applied to the analysis and interpretation of the experimental data related to the beating effect. We also argue that in order to account for the observed magnetotransport phenomena (SdH and integer quantum Hall effect), one should introduce two different quasi-Fermi levels characterizing two electron subsystems regarding the symmetry properties of their states, symmetric and anti-symmetric ones, which are not mixed by electron-electron interaction.
Krausse, George J.
1988-01-01
A shutter (36) is provided for controlling a beam, or current, of charged particles in a device such as a thyratron (10). The substrate (38) defines an aperture (60) with a gap (32) which is placeable within the current. Coils (48) are formed on the substrate (38) adjacent the aperture (60) to produce a magnetic field for trapping the charged particles in or about aperture (60). The proximity of the coils (48) to the aperture (60) enables an effective magnetic field to be generated by coils (48) having a low inductance suitable for high frequency control. The substantially monolithic structure including the substrate (38) and coils (48) enables the entire shutter assembly (36) to be effectively located with respect to the particle beam.
A bi-symmetric square wave Zeeman modulator for nuclear quadrupole resonance.
Mao, D; Petersen, G L; Bray, P J
1992-11-01
A simple circuit has been designed to generate a bi-symmetric square wave Zeeman modulation for the detection of nuclear quadrupole resonance. The square waveform not only provides an optimum result among bi-symmetric modulation waveforms, but also allows the observation of the Zeeman perturbed NQR powder pattern without the need for an extra external magnetic field.
Axial gap rotating electrical machine
None
2016-02-23
Direct drive rotating electrical machines with axial air gaps are disclosed. In these machines, a rotor ring and stator ring define an axial air gap between them. Sets of gap-maintaining rolling supports bear between the rotor ring and the stator ring at their peripheries to maintain the axial air gap. Also disclosed are wind turbines using these generators, and structures and methods for mounting direct drive rotating electrical generators to the hubs of wind turbines. In particular, the rotor ring of the generator may be carried directly by the hub of a wind turbine to rotate relative to a shaft without being mounted directly to the shaft.
Rapalino, Otto; Batchelor, Tracy; González, R Gilberto
2016-01-01
There is a wide variety of intra-axial primary and secondary brain neoplasms. Many of them have characteristic imaging features while other tumors can present in a similar fashion. There are peculiar posttreatment imaging phenomena that can present as intra-axial mass-like lesions (such as pseudoprogression or radiation necrosis), further complicating the diagnosis and clinical follow-up of patients with intracerebral tumors. The purpose of this chapter is to present a general overview of the most common intra-axial brain tumors and peculiar posttreatment changes that are very important in the diagnosis and clinical follow-up of patients with brain tumors. PMID:27432670
Extended symmetrical classical electrodynamics.
Fedorov, A V; Kalashnikov, E G
2008-03-01
In this paper, we discuss a modification of classical electrodynamics in which "ordinary" point charges are absent. The modified equations contain additional terms describing the induced charges and currents. The densities of the induced charges and currents depend on the vector k and the vectors of the electromagnetic field, E and B . It is shown that the vectors E and B can be defined in terms of two four-potentials and the components of k are the components of a four-tensor of the third rank. The Lagrangian of the modified electrodynamics is defined. The conditions are derived at which only one four-potential determines the behavior of the electromagnetic field. It is also shown that static modified electrodynamics can describe the electromagnetic field in the inner region of an electric monopole. In the outer region of the electric monopole the electric field is governed by the Maxwell equations. It follows from boundary conditions at the interface between the inner and outer regions of the monopole that the vector k has a discrete spectrum. The electric and magnetic fields, energy, and angular momentum of the monopole are found for different eigenvalues of k .
Periodicity effects of axial waves in elastic compound rods
NASA Astrophysics Data System (ADS)
Nielsen, R. B.; Sorokin, S. V.
2015-09-01
Floquet analysis is applied to the Bernoulli-Euler model for axial waves in a periodic rod. Explicit asymptotic formulae for the stop band borders are given and the topology of the stop band pattern is explained. Eigenfrequencies of the symmetric unit cell are determined by the Phase-closure Principle, and their correspondence with stop band formation is shown. Steady-state and transient dynamics of a periodic rod of finite length are analysed numerically and the difference in structural response when excitation is done in either stop- or pass bands is demonstrated. A physical interpretation of the underlying mechanisms of stop bands is proposed.
Evaluation of the performance and flow in an axial compressor
NASA Astrophysics Data System (ADS)
Waddell, J. L.
1982-10-01
An experimental evaluation of the axial compressor test rig with one stage of symmetric blading was conducted to determine its suitability for studies of tip clearance effects. Measurements were made of performance parameters and internal flow fields. The configuration tested was found to be unsuitable due to poor flow from the inlet guide vanes, particularly near the tip region. Secondary flows and flaws in construction of the guide vanes were suggested as probable causes. Recommendations were made for a program to resolve the problem.
Stability analysis of restricted non-static axial symmetry
Sharif, M.; Bhatti, M. Zaeem Ul Haq E-mail: mzaeem.math@gmail.com
2013-11-01
This paper aims to investigate the instability of very restricted class of non-static axially symmetric spacetime with anisotropic matter configuration. The perturbation scheme is established for the Einstein field equations and conservation laws. The instability range in the Newtonian and post-Newtonian regions are explored by constructing the collapse equation in this scenario. It is found that the adiabatic index plays an important role in the stability analysis which depends upon the physical parameters i.e., energy density and anisotropic pressure of the fluid distribution.
Fluorescence axial nanotomography with plasmonics.
Cade, Nicholas I; Fruhwirth, Gilbert O; Krasavin, Alexey V; Ng, Tony; Richards, David
2015-01-01
We present a novel imaging technique with super-resolution axial sensitivity, exploiting the changes in fluorescence lifetime above a plasmonic substrate. Using conventional confocal fluorescence lifetime imaging, we show that it is possible to deliver down to 6 nm axial position sensitivity of fluorophores in whole biological cell imaging. We employ this technique to map the topography of the cellular membrane, and demonstrate its application in an investigation of receptor-mediated endocytosis in carcinoma cells.
Axial anomaly at arbitrary virtualities
Veretin, O.L.; Teryaev, O.V.
1995-12-01
The one-loop analytic expression for the axial-vector triangle diagram involving an anomaly is obtained for arbitrary virtualities of external momenta. The `t Hooft consistency principle is applied to the QCD sum rules for the first moment of the photon spin structure function g{sub l}{sup {gamma}}. It is shown that the contribution of the singlet axial current to the sum rules for g{sub l}{sup {gamma}} vanishes. 19 refs., 1 fig.
Interpolation via symmetric exponential functions
NASA Astrophysics Data System (ADS)
Bezubik, Agata; Pošta, Severin
2013-11-01
Complex valued functions on the Euclidean space Bbb Rn, symmetric or antisymmetric with respect to the permutation group Sn, are often dealt with in various branches of physics, such as quantum theory or theory of integrable systems. One often needs to approximate such functions with series consisting of various special functions which satisfy nice properties. Questions of uniform convergence of such approximations are crucial for applications. In this article a family of special functions called the symmetric exponential functions are used for such approximation and the uniform convergence of their sums is considered.
Luce, J.S.; Smith, L.P.
1960-11-22
A method and apparatus are given for producing coaxial arc discharges in an evacuated enclosure and within a strong, confining magnetic field. The arcs are maintained at a high potential difference. Electrons will diffuse to the more positive arc from the negative arc, and positive ions will diffuse from the more positive arc to the negative arc. Coaxial arc discharges have the advantage that ions which return to strike the positive arc discharge will lose no energy since they do not strike a solid wall or electrode. Those discharges are useful in confining an ionized plasma between the discharges, and have the advantage of preventing impurities from the walls of the enclosure from entering ihe plasma area because of the arc barrier set up bv the cylindrical outer arc.
Luce, J. S.; Smith, L. P.
1960-11-22
An apparatus is described for producing coaxial arc discharges in an evacuated enclosure and within a strong, confining magnetic field. The arcs are maintained at a high potential difference. Electrons diffuse to the more positive arc from the negative arc, and positive ions diffuse from the more positive arc to the negative arc. Coaxial arc discharges have the advantuge that ions that return to strike the positive arc discharge will lose no energy since they do not strike a solid wall or electrode. These discharges are useful in confining an ionized plasma between the discharges and have the advantage of preventing impurities from the walls of the enclosure from entering the plasma area because of the arc barrier set up by the cylindrical outer arc. (auth)
Permanent-Magnet Meissner Bearing
NASA Technical Reports Server (NTRS)
Robertson, Glen A.
1994-01-01
Permanent-magnet meissner bearing features inherently stable, self-centering conical configuration. Bearing made stiffer or less stiff by selection of magnets, springs, and spring adjustments. Cylindrical permanent magnets with axial magnetization stacked coaxially on rotor with alternating polarity. Typically, rare-earth magnets used. Magnets machined and fitted together to form conical outer surface.
Axial momentum lost to a lateral wall of a helicon plasma source.
Takahashi, Kazunori; Chiba, Aiki; Komuro, Atsushi; Ando, Akira
2015-05-15
Momentum exerted to a lateral wall of a helicon plasma source is individually measured for argon, krypton, and xenon gases. A significant loss of the axial plasma momentum to the lateral wall, which has been assumed to be negligible, is experimentally identified when an axially asymmetric density profile is formed in the source. This indicates that the radially lost ions deliver not only the radial momentum but also the axial momentum to the lateral wall. The formation of the axial asymmetry causing the momentum loss is interpreted with competition between the magnetic field and neutral depletion effects.
Axial momentum lost to a lateral wall of a helicon plasma source.
Takahashi, Kazunori; Chiba, Aiki; Komuro, Atsushi; Ando, Akira
2015-05-15
Momentum exerted to a lateral wall of a helicon plasma source is individually measured for argon, krypton, and xenon gases. A significant loss of the axial plasma momentum to the lateral wall, which has been assumed to be negligible, is experimentally identified when an axially asymmetric density profile is formed in the source. This indicates that the radially lost ions deliver not only the radial momentum but also the axial momentum to the lateral wall. The formation of the axial asymmetry causing the momentum loss is interpreted with competition between the magnetic field and neutral depletion effects. PMID:26024174
Pseudo-Z symmetric space-times
Mantica, Carlo Alberto; Suh, Young Jin
2014-04-15
In this paper, we investigate Pseudo-Z symmetric space-time manifolds. First, we deal with elementary properties showing that the associated form A{sub k} is closed: in the case the Ricci tensor results to be Weyl compatible. This notion was recently introduced by one of the present authors. The consequences of the Weyl compatibility on the magnetic part of the Weyl tensor are pointed out. This determines the Petrov types of such space times. Finally, we investigate some interesting properties of (PZS){sub 4} space-time; in particular, we take into consideration perfect fluid and scalar field space-time, and interesting properties are pointed out, including the Petrov classification. In the case of scalar field space-time, it is shown that the scalar field satisfies a generalized eikonal equation. Further, it is shown that the integral curves of the gradient field are geodesics. A classical method to find a general integral is presented.
Prior Distributions on Symmetric Groups
ERIC Educational Resources Information Center
Gupta, Jayanti; Damien, Paul
2005-01-01
Fully and partially ranked data arise in a variety of contexts. From a Bayesian perspective, attention has focused on distance-based models; in particular, the Mallows model and extensions thereof. In this paper, a class of prior distributions, the "Binary Tree," is developed on the symmetric group. The attractive features of the class are: it…
Bragt, D.D.B. van; Rizwan-uddin; Hagen, T.H.J.J. van der
2000-02-15
Bifurcation analyses of the impact of the void distribution parameter C{sub 0} and the axial power profile on the stability of boiling water reactors (BWRs) are reported. Bifurcation characteristics of heated channels (without nuclear feedback) appear to be very sensitive to the axial power profile. A turning point bifurcation was detected for a (symmetrically) peaked axial power profile. This kind of bifurcation does not occur for a uniformly heated channel.Both supercritical and subcritical Hopf bifurcations were encountered in a (nuclear-coupled) reactor system, depending on the strength of the void reactivity feedback. Subcritical bifurcations become less likely to occur as C{sub 0} is significantly larger than unity. In BWRs with a strong nuclear feedback, the oscillation amplitude of limit cycles caused by a supercritical bifurcation is very sensitive to both C{sub 0} and the axial power profile.
Effects of symmetrical foundation on sound radiation from a submarine hull structure.
Li, Chenyang; Su, Jinpeng; Wang, Jian; Hua, Hongxing
2015-11-01
The effects of a passive noise control method for suppressing sound radiation from a submarine hull structure are investigated. The control method is realized by symmetrizing the foundation about the horizontal plane. The coupled finite element method and boundary element method are adopted to compute the acoustic characteristics of the submerged hull. From the numerical results, the symmetrical foundation has advantages in sound radiation reduction when the hull is subjected to the axial load, but has little influences in the vertical and transverse load cases. Using the modal decomposition technique, the contributions of each individual mode to the sound radiation are analyzed to reveal the mechanism of the control method. PMID:26627793
Symmetric States Requiring System Asymmetry.
Nishikawa, Takashi; Motter, Adilson E
2016-09-01
Spontaneous synchronization has long served as a paradigm for behavioral uniformity that can emerge from interactions in complex systems. When the interacting entities are identical and their coupling patterns are also identical, the complete synchronization of the entire network is the state inheriting the system symmetry. As in other systems subject to symmetry breaking, such symmetric states are not always stable. Here, we report on the discovery of the converse of symmetry breaking-the scenario in which complete synchronization is not stable for identically coupled identical oscillators but becomes stable when, and only when, the oscillator parameters are judiciously tuned to nonidentical values, thereby breaking the system symmetry to preserve the state symmetry. Aside from demonstrating that diversity can facilitate and even be required for uniformity and consensus, this suggests a mechanism for convergent forms of pattern formation in which initially asymmetric patterns evolve into symmetric ones. PMID:27661690
Symmetric States Requiring System Asymmetry
NASA Astrophysics Data System (ADS)
Nishikawa, Takashi; Motter, Adilson E.
2016-09-01
Spontaneous synchronization has long served as a paradigm for behavioral uniformity that can emerge from interactions in complex systems. When the interacting entities are identical and their coupling patterns are also identical, the complete synchronization of the entire network is the state inheriting the system symmetry. As in other systems subject to symmetry breaking, such symmetric states are not always stable. Here, we report on the discovery of the converse of symmetry breaking—the scenario in which complete synchronization is not stable for identically coupled identical oscillators but becomes stable when, and only when, the oscillator parameters are judiciously tuned to nonidentical values, thereby breaking the system symmetry to preserve the state symmetry. Aside from demonstrating that diversity can facilitate and even be required for uniformity and consensus, this suggests a mechanism for convergent forms of pattern formation in which initially asymmetric patterns evolve into symmetric ones.
Plethystic algebras and vector symmetric functions.
Rota, G C; Stein, J A
1994-01-01
An isomorphism is established between the plethystic Hopf algebra Pleth(Super[L]) and the algebra of vector symmetric functions. The Hall inner product of symmetric function theory is extended to the Hopf algebra Pleth(Super[L]). PMID:11607504
NASA Astrophysics Data System (ADS)
Bender, Carl M.
2015-07-01
The average quantum physicist on the street would say that a quantum-mechanical Hamiltonian must be Dirac Hermitian (invariant under combined matrix transposition and complex conjugation) in order to guarantee that the energy eigenvalues are real and that time evolution is unitary. However, the Hamiltonian H = p2 + ix3, which is obviously not Dirac Hermitian, has a positive real discrete spectrum and generates unitary time evolution, and thus it defines a fully consistent and physical quantum theory. Evidently, the axiom of Dirac Hermiticity is too restrictive. While H = p2 + ix3 is not Dirac Hermitian, it is PT symmetric; that is, invariant under combined parity P (space reflection) and time reversal T. The quantum mechanics defined by a PT-symmetric Hamiltonian is a complex generalization of ordinary quantum mechanics. When quantum mechanics is extended into the complex domain, new kinds of theories having strange and remarkable properties emerge. In the past few years, some of these properties have been verified in laboratory experiments. A particularly interesting PT-symmetric Hamiltonian is H = p2 - x4, which contains an upside-down potential. This potential is discussed in detail, and it is explained in intuitive as well as in rigorous terms why the energy levels of this potential are real, positive, and discrete. Applications of PT-symmetry in quantum field theory are also discussed.
The window of opportunity: a relevant concept for axial spondyloarthritis.
Robinson, Philip C; Brown, Matthew A
2014-01-01
The window of opportunity is a concept critical to rheumatoid arthritis treatment. Early treatment changes the outcome of rheumatoid arthritis treatment, in that response rates are higher with earlier disease-modifying anti-rheumatic drug treatment and damage is substantially reduced. Axial spondyloarthritis is an inflammatory axial disease encompassing both nonradiographic axial spondyloarthritis and established ankylosing spondylitis. In axial spondyloarthritis, studies of magnetic resonance imaging as well as tumor necrosis factor inhibitor treatment and withdrawal studies all suggest that early effective suppression of inflammation has the potential to reduce radiographic damage. This potential would suggest that the concept of a window of opportunity is relevant not only to rheumatoid arthritis but also to axial spondyloarthritis. The challenge now remains to identify high-risk patients early and to commence treatment without delay. Developments in risk stratification include new classification criteria, identification of clinical risk factors, biomarkers, genetic associations, potential antibody associations and an ankylosing spondylitis-specific microbiome signature. Further research needs to focus on the evidence for early intervention and the early identification of high-risk individuals.
Axial structure of the nucleon
Veronique Bernard; Latifa Elouadrhiri; Ulf-G Meissner
2002-01-01
We review the current status of experimental and theoretical understanding of the axial nucleon structure at low and moderate energies. Topics considered include (quasi)elastic (anti)neutrino-nucleon scattering, charged pion electroproduction off nucleons and ordinary as well as radiative muon capture on the proton.
Whispering gallery resonators with broken axial symmetry: Theory and experiment.
Fürst, J; Sturman, B; Buse, K; Breunig, I
2016-09-01
Axial symmetry is the cornerstone for theory and applications of high-Q optical whispering gallery resonators (WGRs). Nevertheless, research on birefringent crystalline material persistently pushes towards breaking this symmetry. We show theoretically and experimentally that the effect of broken axial symmetry, caused by optical anisotropy, is modest for the resonant frequencies and Q-factors of the WGR modes. Thus, the most important equatorial whispering gallery modes can be quantitatively described and experimentally identified. At the same time, the effect of broken axial symmetry on the light field distribution of the whispering gallery modes is typically very strong. This qualitatively modifies the phase-matching for the χ^{(2)} nonlinear processes and enables broad-band second harmonic generation and optical parametric oscillation. The effect of weak geometric ellipticity in nominally symmetric WGRs is also considered. Altogether our findings pave the way for an extensive use of numerous birefringent (uniaxial and biaxial) crystals with broad transparency window and large χ^{(2)} coefficients in nonlinear optics with WGRs.
Whispering gallery resonators with broken axial symmetry: Theory and experiment.
Fürst, J; Sturman, B; Buse, K; Breunig, I
2016-09-01
Axial symmetry is the cornerstone for theory and applications of high-Q optical whispering gallery resonators (WGRs). Nevertheless, research on birefringent crystalline material persistently pushes towards breaking this symmetry. We show theoretically and experimentally that the effect of broken axial symmetry, caused by optical anisotropy, is modest for the resonant frequencies and Q-factors of the WGR modes. Thus, the most important equatorial whispering gallery modes can be quantitatively described and experimentally identified. At the same time, the effect of broken axial symmetry on the light field distribution of the whispering gallery modes is typically very strong. This qualitatively modifies the phase-matching for the χ^{(2)} nonlinear processes and enables broad-band second harmonic generation and optical parametric oscillation. The effect of weak geometric ellipticity in nominally symmetric WGRs is also considered. Altogether our findings pave the way for an extensive use of numerous birefringent (uniaxial and biaxial) crystals with broad transparency window and large χ^{(2)} coefficients in nonlinear optics with WGRs. PMID:27607622
Magnetic surfaces in an axisymmetric torus
Skovoroda, A. A.
2013-04-15
A method is developed for specifying the boundary equilibrium magnetic surface in an axially symmetric torus by using the absolute values of the magnetic field B = B{sub s}({theta}) and the gradient of the poloidal flux vertical bar vertical bar {nabla}{Psi} vertical bar = vertical bar {nabla}{Psi} vertical bar {sub s}({theta}) in a special flux coordinate system. By setting two surface constants (e.g., the safety factor q and dp/d{Psi}) and matching the absolute values of the magnetic field and the flux gradient on a closed magnetic surface, it is possible to find all equilibrium magnetic functions (including n {center_dot} {nabla} ln B and the local shear s) and all constants (including the toroidal current J and the shear d{mu}/d{Psi}) on this surface. Such a non-traditional formulation of the boundary conditions in solving the stability problem in an axisymmetric torus allows one to impose intentional conditions on plasma confinement and MHD stability at the periphery of the system.
First-passage-time approach to overbarrier relaxation of magnetization
NASA Astrophysics Data System (ADS)
Klik, Ivo; Gunther, Leon
1990-08-01
We consider the irreversible dynamics of the magnetization vector M in a single-domain particle. The dynamics is given by a stochastic phenomenological equation due to Gilbert. It contains a damping field proportional to M and a corresponding white noise field component. The probability distribution function satisfies a Fokker-Planck equation derived by Brown. We give the overbarrier decay rate κ out of a metastable minimum. First we rederive the well-known expression for κ for an axially symmetric model. We argue that this result is unphysical. For systems of general point symmetry of the magnetic anisotropy energy we give κ in both the low-damping and intermediate- to high-damping limits.
Geomagnetic Secular Variation Recorded in Volcanic Rocks: The End of the Geocentric Axial Dipole
NASA Astrophysics Data System (ADS)
Champion, D. E.; Turrin, B. D.; Robinson, J. E.
2015-12-01
Most paleomagnetic textbooks ascribe secular variation (SV) to the movement and waxing/waning of non-dipole magnetic features in the fluid core, perhaps joined by wobble of a geocentric axial dipole (GAD). The actuality of a GAD is profoundly limited by the existence of the static, solid inner core, and the dynamic nature of the fluid outer core. A study of >560 Brunhes Epoch Virtual Geomagnetic Poles (VGP) suggests that geomagnetic field behavior arises from the waxing/waning of three approximately "stationary" offset dipoles (OD) situated in the middle of the ring of the outer core. These OD have been loosely fixed to preferred longitudes of 40°E, 120°E, and 280°E for at least the past 17Ma. The three offset dipoles in these positions determine transitional and excursional paths, and also normal SV. An extended literature documents these longitude corridors as paths of preferred VGP movement, guided by the polarity inversion of one of the three OD. Analysis of volcanic rock and archeomagnetic SV records shows a three-fold symmetric movement of local magnetic directions, guided by the variation in strength of the three OD. Preliminary data indicates that in the recent past the dominant OD at a given time yields to the next OD in movement toward greater east longitude. The frequency of OD dominance exchange is ~400 years, with return to the original OD in ~1200 years. Archeomagnetic "jerks", not easily explained by a single dominant, inertial GAD, are more easily understood with 3 waxing/waning and exchanging OD. The particular analysis of Hawaiian SV with regard to the three OD suggests that tropical locales, far from the three spin axis-parallel OD, may still record true non-dipole influences.
Gagliardi, J.C.
1987-01-01
The equations of motion for a viscous incompressible fluid in a rotating spherical annulus, subject to case study boundary conditions were developed. The specific boundary conditions studied were: (1) one or both spheres rotates with prescribed constant angular velocities, and (2) one sphere rotates under the action of an applied constant or impulsive torque. The solution of the stream and circumferential functions were obtained in the form of a series in powers of the Reynolds number. The number of independent variables in the perturbation equations were reduced (from three to two) by specifying the meridional dependence with Gegenbauer functions and then employing the concept of orthogonality. The zeroth-order perturbation solution for the resulting partial differential equation subject to nonhomogeneous boundary conditions were obtained by employing the Laplace Transform in conjunction with Cauchy's Residual Theorem. The higher-order perturbation solutions were obtained by applying the method of Separation of Variables. Results were obtained for a fifth-order solution.
An offset-fed reflector antenna with an axially symmetric main reflector
NASA Astrophysics Data System (ADS)
Chang, D.-C.; Rusch, W. V. T.
1984-11-01
A design method for an offset-fed, dual reflector antenna (Cassegrain type or Gregorian type) system with an axisymmetric main reflector is presented. Geometrical optics (GO) and the geometrical theory of diffraction (GTD) are used to find the surface-current density on the main reflector. A modified Jacobi-Bessel series (JBS) method is used to find the far-field pattern for the physical optics (PO) integral. In the defocused mode of operation, a new technique is developed to find the reflection point on the subreflector corresponding to the defocused feed and a general field point on the main reflector. Two sample systems are designed.
Numerical relativity for D dimensional axially symmetric space-times: Formalism and code tests
Zilhao, Miguel; Herdeiro, Carlos; Witek, Helvi; Nerozzi, Andrea; Sperhake, Ulrich; Cardoso, Vitor; Gualtieri, Leonardo
2010-04-15
The numerical evolution of Einstein's field equations in a generic background has the potential to answer a variety of important questions in physics: from applications to the gauge-gravity duality, to modeling black hole production in TeV gravity scenarios, to analysis of the stability of exact solutions, and to tests of cosmic censorship. In order to investigate these questions, we extend numerical relativity to more general space-times than those investigated hitherto, by developing a framework to study the numerical evolution of D dimensional vacuum space-times with an SO(D-2) isometry group for D{>=}5, or SO(D-3) for D{>=}6. Performing a dimensional reduction on a (D-4) sphere, the D dimensional vacuum Einstein equations are rewritten as a 3+1 dimensional system with source terms, and presented in the Baumgarte, Shapiro, Shibata, and Nakamura formulation. This allows the use of existing 3+1 dimensional numerical codes with small adaptations. Brill-Lindquist initial data are constructed in D dimensions and a procedure to match them to our 3+1 dimensional evolution equations is given. We have implemented our framework by adapting the Lean code and perform a variety of simulations of nonspinning black hole space-times. Specifically, we present a modified moving puncture gauge, which facilitates long-term stable simulations in D=5. We further demonstrate the internal consistency of the code by studying convergence and comparing numerical versus analytic results in the case of geodesic slicing for D=5, 6.
NASA Astrophysics Data System (ADS)
Oba, H.; Matsuo, M.
2008-07-01
We analyse the deformation mechanism in neutron-rich Cr, Fe and Ti isotopes with N = 32-44 using a Skyrme-Hartree-Fock-Bogoliubov mean-field code employing a two-dimensional mesh representation in the cylindrical coordinate system. Evaluating the quadrupole deformation energy systematically, we show that the Skyrme parameter set SkM* gives a quadrupole instability around the neutron numbers N ˜ 38-42 in Cr isotopes, where the deformation energy curve suggests a transitional behavior with a shallow minimum extending to a large prolate deformation. The roles of a deformed N = 38 gap and the position of the neutron g_{9/2} orbit are analysed in detail.
Numerical relativity for D dimensional axially symmetric space-times: Formalism and code tests
NASA Astrophysics Data System (ADS)
Zilhão, Miguel; Witek, Helvi; Sperhake, Ulrich; Cardoso, Vitor; Gualtieri, Leonardo; Herdeiro, Carlos; Nerozzi, Andrea
2010-04-01
The numerical evolution of Einstein’s field equations in a generic background has the potential to answer a variety of important questions in physics: from applications to the gauge-gravity duality, to modeling black hole production in TeV gravity scenarios, to analysis of the stability of exact solutions, and to tests of cosmic censorship. In order to investigate these questions, we extend numerical relativity to more general space-times than those investigated hitherto, by developing a framework to study the numerical evolution of D dimensional vacuum space-times with an SO(D-2) isometry group for D≥5, or SO(D-3) for D≥6. Performing a dimensional reduction on a (D-4) sphere, the D dimensional vacuum Einstein equations are rewritten as a 3+1 dimensional system with source terms, and presented in the Baumgarte, Shapiro, Shibata, and Nakamura formulation. This allows the use of existing 3+1 dimensional numerical codes with small adaptations. Brill-Lindquist initial data are constructed in D dimensions and a procedure to match them to our 3+1 dimensional evolution equations is given. We have implemented our framework by adapting the Lean code and perform a variety of simulations of nonspinning black hole space-times. Specifically, we present a modified moving puncture gauge, which facilitates long-term stable simulations in D=5. We further demonstrate the internal consistency of the code by studying convergence and comparing numerical versus analytic results in the case of geodesic slicing for D=5, 6.
Optical design for amateur reflecting telescopes based on tilted axial-symmetrical planoidal mirror
NASA Astrophysics Data System (ADS)
Chuprakov, Sergey A.
2012-09-01
Two-mirrors aplanatic optical design for amateur telescopes up to 0.5m class is described. The optical system is low cost, easy for adjusting, fast and large field of view can be used for visual and astrophotography. The method for calculation of baffles for straight light protection is described. The optical performances and sample shots for the builted device are presented. Keywords: two-mirrors system, all-reflecting schmidt system, aplanatic system, protection from straight light, baffles, obscuration, wide-field, telescopes for amateurs.
Acoustic-emissive memory effect in coal samples under triaxial axial-symmetric compression
Shkuratnik, V.L.; Filimonov, Y.L.; Kuchurin, S.V.
2006-05-15
The experimental data are presented for production and manifestation of the Kaiser effect in coal samples subjected to triaxial loading by the Karman scheme in the first cycle and to various loading modes in the second cycle. The Kaiser effect is identified with the help of a deformation memory effect.
NASA Technical Reports Server (NTRS)
Englert, G. W.; Patch, R. W.; Reinmann, J. J.
1978-01-01
A plasma model, previously developed to interpret neutral-particle analyzer measurements on E x B heating devices, is adapted to analyze Doppler broadened charge-exchange-neutral lines measured by an optical monochromator. Comparison of theoretical with experimental results indicates that azimuthal drift as well as cyclotron motion are quite influential in determining line shapes and widths, and thus important in temperature determination, even when the monochromator line of sight is intersecting the plasma axis of symmetry. At this central sighting position, however, results are quite insensitive to radial ion density distribution when time lag between the charge-exchange-excitation events and emission is neglected. Line shapes and widths obtained by sighting across chords of plasma at various distances from the plasma axis of symmetry indicate a strong dependence on time lag.
Forced axial segregation in axially inhomogeneous rotating systems.
González, S; Windows-Yule, C R K; Luding, S; Parker, D J; Thornton, A R
2015-08-01
Controlling segregation is both a practical and a theoretical challenge. Using a novel drum design comprising concave and convex geometry, we explore, through the application of both discrete particle simulations and positron emission particle tracking, a means by which radial size segregation may be used to drive axial segregation, resulting in an order of magnitude increase in the rate of separation. The inhomogeneous drum geometry explored also allows the direction of axial segregation within a binary granular bed to be controlled, with a stable, two-band segregation pattern being reliably and reproducibly imposed on the bed for a variety of differing system parameters. This strong banding is observed to persist even in systems that are highly constrained in the axial direction, where such segregation would not normally occur. These findings, and the explanations provided of their underlying mechanisms, could lead to radical new designs for a broad range of particle processing applications but also may potentially prove useful for medical and microflow applications. PMID:26382389
Forced axial segregation in axially inhomogeneous rotating systems
NASA Astrophysics Data System (ADS)
González, S.; Windows-Yule, C. R. K.; Luding, S.; Parker, D. J.; Thornton, A. R.
2015-08-01
Controlling segregation is both a practical and a theoretical challenge. Using a novel drum design comprising concave and convex geometry, we explore, through the application of both discrete particle simulations and positron emission particle tracking, a means by which radial size segregation may be used to drive axial segregation, resulting in an order of magnitude increase in the rate of separation. The inhomogeneous drum geometry explored also allows the direction of axial segregation within a binary granular bed to be controlled, with a stable, two-band segregation pattern being reliably and reproducibly imposed on the bed for a variety of differing system parameters. This strong banding is observed to persist even in systems that are highly constrained in the axial direction, where such segregation would not normally occur. These findings, and the explanations provided of their underlying mechanisms, could lead to radical new designs for a broad range of particle processing applications but also may potentially prove useful for medical and microflow applications.
Marginal Stability Diagrams for Infinite-n Ballooning Modes in Quasi-symmetric Stellarators
S.R. Hudson; C.C. Hegna; R. Torasso; A. Ware
2003-12-05
By perturbing the pressure and rotational-transform profiles at a selected surface in a given equilibrium, and by inducing a coordinate variation such that the perturbed state is in equilibrium, a family of magnetohydrodynamic equilibria local to the surface and parameterized by the pressure gradient and shear is constructed for arbitrary stellarator geometry. The geometry of the surface is not changed. The perturbed equilibria are analyzed for infinite-n ballooning stability and marginal stability diagrams are constructed that are analogous to the (s; alpha) diagrams constructed for axi-symmetric configurations. The method describes how pressure and rotational-transform gradients influence the local shear, which in turn influences the ballooning stability. Stability diagrams for the quasi-axially-symmetric NCSX (National Compact Stellarator Experiment), a quasi-poloidally-symmetric configuration and the quasi-helically-symmetric HSX (Helically Symmetric Experiment) are presented. Regions of second-stability are observed in both NCSX and the quasi-poloidal configuration, whereas no second stable region is observed for the quasi-helically symmetric device. To explain the different regions of stability, the curvature and local shear of the quasi-poloidal configuration are analyzed. The results are seemingly consistent with the simple explanation: ballooning instability results when the local shear is small in regions of bad curvature. Examples will be given that show that the structure, and stability, of the ballooning mode is determined by the structure of the potential function arising in the Schroedinger form of the ballooning equation.
Eigenmodes of Three-dimensional Magnetic Arcades in the Sun’s Corona
NASA Astrophysics Data System (ADS)
Hindman, Bradley W.; Jain, Rekha
2015-12-01
We develop a model of coronal-loop oscillations that treats the observed bright loops as an integral part of a larger three-dimensional (3D) magnetic structure comprised of the entire magnetic arcade. We demonstrate that magnetic arcades within the solar corona can trap MHD fast waves in a 3D waveguide. This is accomplished through the construction of a cylindrically symmetric model of a magnetic arcade with a potential magnetic field. For a magnetically dominated plasma, we derive a governing equation for MHD fast waves and from this equation we show that the magnetic arcade forms a 3D waveguide if the Alfvén speed increases monotonically beyond a fiducial radius. Both magnetic pressure and tension act as restoring forces, instead of just tension as is generally assumed in 1D models. Since magnetic pressure plays an important role, the eigenmodes involve propagation both parallel and transverse to the magnetic field. Using an analytic solution, we derive the specific eigenfrequencies and eigenfunctions for an arcade possessing a discontinuous density profile. The discontinuity separates a diffuse cylindrical cavity and an overlying shell of denser plasma that corresponds to the bright loops. We emphasize that all of the eigenfunctions have a discontinuous axial velocity at the density interface; hence, the interface can give rise to the Kelvin-Helmholtz instability. Further, we find that all modes have elliptical polarization with the degree of polarization changing with height. However, depending on the line of sight, only one polarization may be clearly visible.
EIGENMODES OF THREE-DIMENSIONAL MAGNETIC ARCADES IN THE SUN’S CORONA
Hindman, Bradley W.; Jain, Rekha
2015-12-01
We develop a model of coronal-loop oscillations that treats the observed bright loops as an integral part of a larger three-dimensional (3D) magnetic structure comprised of the entire magnetic arcade. We demonstrate that magnetic arcades within the solar corona can trap MHD fast waves in a 3D waveguide. This is accomplished through the construction of a cylindrically symmetric model of a magnetic arcade with a potential magnetic field. For a magnetically dominated plasma, we derive a governing equation for MHD fast waves and from this equation we show that the magnetic arcade forms a 3D waveguide if the Alfvén speed increases monotonically beyond a fiducial radius. Both magnetic pressure and tension act as restoring forces, instead of just tension as is generally assumed in 1D models. Since magnetic pressure plays an important role, the eigenmodes involve propagation both parallel and transverse to the magnetic field. Using an analytic solution, we derive the specific eigenfrequencies and eigenfunctions for an arcade possessing a discontinuous density profile. The discontinuity separates a diffuse cylindrical cavity and an overlying shell of denser plasma that corresponds to the bright loops. We emphasize that all of the eigenfunctions have a discontinuous axial velocity at the density interface; hence, the interface can give rise to the Kelvin–Helmholtz instability. Further, we find that all modes have elliptical polarization with the degree of polarization changing with height. However, depending on the line of sight, only one polarization may be clearly visible.
Measurement of axial injection displacement with trim coil current unbalance
NASA Astrophysics Data System (ADS)
Covo, Michel Kireeff
2014-08-01
The Dee probe used for measuring internal radial beam intensity shows large losses inside the radius of 20 cm of the 88 in. cyclotron. The current of the top and bottom innermost trim coil 1 is unbalanced to study effects of the axial injection displacement. A beam profile monitor images the ion beam bunches, turn by turn. The experimental bunch center of mass position is compared with calculations of the magnetic mirror effect displacement and shows good agreement.
Measurement of axial injection displacement with trim coil current unbalance
Covo, Michel Kireeff
2014-08-15
The Dee probe used for measuring internal radial beam intensity shows large losses inside the radius of 20 cm of the 88 in. cyclotron. The current of the top and bottom innermost trim coil 1 is unbalanced to study effects of the axial injection displacement. A beam profile monitor images the ion beam bunches, turn by turn. The experimental bunch center of mass position is compared with calculations of the magnetic mirror effect displacement and shows good agreement.
Roberts, A; Ampem-Lassen, E; Barty, A; Nugent, K A; Baxter, G W; Dragomir, N M; Huntington, S T
2002-12-01
The application of quantitative phase microscopy to refractive-index profiling of optical fibers is demonstrated. Phase images of axially symmetric optical fibers immersed in index-matching fluid are obtained, and the inverse Abel transform is used to obtain the radial refractive-index profile. This technique is straightforward, nondestructive, repeatable, and accurate. Excellent agreement, to within approximately 0.0005, between this method and the index profile obtained with a commercial profiler is obtained.
Symmetric spaces of exceptional groups
Boya, L. J.
2010-02-15
We address the problem of the reasons for the existence of 12 symmetric spaces with the exceptional Lie groups. The 1 + 2 cases for G{sub 2} and F{sub 4}, respectively, are easily explained from the octonionic nature of these groups. The 4 + 3 + 2 cases on the E{sub 6,7,8} series require the magic square of Freudenthal and, for the split case, an appeal to the supergravity chain in 5, 4, and 3 space-time dimensions.
General description of circularly symmetric Bessel beams of arbitrary order
NASA Astrophysics Data System (ADS)
Wang, Jia Jie; Wriedt, Thomas; Lock, James A.; Mädler, Lutz
2016-11-01
A general description of circularly symmetric Bessel beams of arbitrary order is derived in this paper. This is achieved by analyzing the relationship between different descriptions of polarized Bessel beams obtained using different approaches. It is shown that a class of circularly symmetric Davis Bessel beams derived using the Hertz vector potentials possesses the same general functional dependence as the aplanatic Bessel beams generated using the angular spectrum representation (ASR). This result bridges the gap between different descriptions of Bessel beams and leads to a general description of circularly symmetric Bessel beams, such that the Davis Bessel beams and the aplanatic Bessel beams are merely the two simplest cases of an infinite number of possible circularly symmetric Bessel beams. Additionally, magnitude profiles of the electric and magnetic fields, the energy density and the Poynting vector are displayed for Bessel beams in both paraxial and nonparaxial cases. The results presented in this paper provide a fresh perspective on the description of Bessel beams and cast some insights into the light scattering and light-matter interactions problems in practice.
Cracked shells under skew-symmetric loading. [Reissner theory
NASA Technical Reports Server (NTRS)
Delale, F.
1981-01-01
The general problem of a shell containing a through crack in one of the principal planes of curvature and under general skew-symmetric loading is considered. By employing a Reissner type shell theory which takes into account the effect of transverse shear strains, all boundary conditions on the crack surfaces are satisfied separately. Consequently, unlike those obtained from the classical shell theory, the angular distributions of the stress components around the crack tips are shown to be identical to the distributions obtained from the plane and anti-plane elasticity solutions. Results are given for axially and circumferentially cracked cylindrical shells, spherical shells, and toroidal shells under uniform in-plane shearing, out of plane shearing, and torsion. The problem is formulated for specially orthostropic materials, therefore, the effect of orthotropy on the results is also studied.
Modelling larval transport in a axial convergence front
NASA Astrophysics Data System (ADS)
Robins, P.
2010-12-01
Marine larvae exhibit different vertical swimming behaviours, synchronised by factors such as tidal currents and daylight, in order to aid retention near the parent populations and hence promote production, avoid predation, or to stimulate digestion. This paper explores two types of larval migration in an estuarine axial convergent front which is an important circulatory mechanism in many coastal regions where larvae are concentrated. A parallelised, three-dimensional, ocean model was applied to an idealised estuarine channel which was parameterised from observations of an axial convergent front which occurs in the Conwy Estuary, U.K. (Nunes and Simpson, 1985). The model successfully simulates the bilateral cross-sectional recirculation of an axial convergent front, which has been attributed to lateral density gradients established by the interaction of the lateral shear of the longitudinal currents with the axial salinity gradients. On the flood tide, there is surface axial convergence whereas on the ebb tide, there is (weaker) surface divergence. Further simulations with increased/decreased tidal velocities and with stronger/weaker axial salinity gradients are planned so that the effects of a changing climate on the secondary flow can be understood. Three-dimensional Lagrangian Particle Tracking Models (PTMs) have been developed which use the simulated velocity fields to track larvae in the estuarine channel. The PTMs take into account the vertical migrations of two shellfish species that are commonly found in the Conwy Estuary: (i) tidal migration of the common shore crab (Carcinus maenas) and (ii), diel (daily) migration of the Great scallop (Pecten maximus). These migration behaviours are perhaps the most widespread amongst shellfish larvae and have been compared with passive (drifting) particles in order to assess their relative importance in terms of larval transport. Preliminary results suggest that the net along-estuary dispersal over a typical larval
Symmetric neutralized ion beams: Production, acceleration, propagation, and applications
NASA Astrophysics Data System (ADS)
Hicks, Nathaniel Kenneth
This dissertation presents the first integrated experimental, computational, and theoretical research program on symmetric neutralized ion beams. A beam of this type is composed of positive and negative ions having equal charge-to-mass ratios, such that the beam has overall charge neutrality and its constituent ions respond symmetrically to electromagnetic forces. Under the right conditions, these beams may propagate undeflected across transverse magnetic fields due to beam polarization. Such propagation is studied here computationally, using a three-dimensional particle-in-cell code. Also, key theoretical differences between the propagation ability of these beams and that of beams consisting of positive ions and electrons are elucidated. An experimental method of producing a symmetric neutralized ion beam by merging together separate beams of positive and negative ions is demonstrated, and prototype collector hardware to diagnose the composition and energy distribution of the beam is developed. The ability of radio frequency quadrupole accelerators to simultaneously confine and accelerate the positive and negative ions of such a beam is demonstrated computationally and is confirmed experimentally, and a method to reestablish local charge neutrality in the beam after acceleration is conceived and simulated. The favorable scaling of such accelerators to small size and high frequency is illustrated. Finally, applications of the research to magnetic confinement fusion and topics for future study are presented.
Golimumab for treatment of axial spondyloarthritis.
Rios Rodriguez, Valeria; Poddubnyy, Denis
2016-02-01
Axial spondyloarthritis comprises two forms: nonradiographic (nonradiographic axial spondyloarthritis) and radiographic (better known as ankylosing spondylitis), which are often considered as two stages of one disease. Historically, all currently available TNF-α inhibitors were first investigated in ankylosing spondylitis and later on in nonradiographic axial spondyloarthritis. This year, EMA has granted golimumab approval for the treatment of active nonradiographic axial spondyloarthritis based on the recently published data from the GO-AHEAD study. This article summarizes recent data on efficacy and safety of golimumab in the treatment of ankylosing spondylitis and nonradiographic axial spondyloarthritis.
Determining if an axially rotated solenoid will induce a radial EMF
NASA Astrophysics Data System (ADS)
MacDermott, Dustin R.
The nature of the electromagnetic field of an axially rotated solenoid or magnet is investigated. The investigations reviewed suggest the possibility of a radially emitted electric field by either: axially rotated magnetic field lines, or a relativistic change in charge of the electron. For a very long solenoid a relativistic change in charge leaves no electric field inside while leaving an electric field outside. The concept of axially rotating magnetic field lines gives an opposite prediction. They both seem to be in contradiction to the standard model of induction, which gives no change in the electric field for a rotated solenoid or magnet. An experiment by Joseph B. Tate [48], [49] conducted in 1968 seemed to have measured a change in charge outside of a rotated solenoid. Another experiment by Barnett [3] in 1912 reported measuring no electric field inside of a rotated solenoid. Further experimentation was decided necessary and the method decided upon to attempt detection of the radial E or EMF induced by an axially rotating B field or change in charge is two concentric capacitor plates, one inside and the other outside an axially rotated solenoid. The solenoid was rotated on a lathe for the test. A concentric capacitor around an axially rotated permanent neodymium magnet was also used as a test. These experiments proved very challenging because of the small magnitude of the predicted effect. Nevertheless, the bulk of the evidence obtained indicates that no induced E arises when a magnetic source is rotated about its magnetic axis, thus supporting the standard field model of electromagnetic induction, and casting doubt on the alternative theories of magnetic field line rotation or relativistic charge enhancement.
Oliveriusová, Ludmila; Němec, Pavel; Pavelková, Zuzana; Sedláček, František
2014-07-01
Magnetoreception has been convincingly demonstrated in only a few mammalian species. Among rodents, magnetic compass orientation has been documented in four species of subterranean mole rats and two epigeic (i.e. active above ground) species-the Siberian hamster and the C57BL/6J mouse. The mole rats use the magnetic field azimuth to determine compass heading; their directional preference is spontaneous and unimodal, and their magnetic compass is magnetite-mediated. By contrast, the primary component of orientation response is learned in the hamster and the mouse, but both species also exhibit a weak spontaneous bimodal preference in the natural magnetic field. To determine whether the magnetic compass of wild epigeic rodents features the same functional properties as that of laboratory rodents, we investigated magnetic compass orientation in the bank vole Clethrionomys glareolus (Cricetidae, Rodentia). The voles exhibited a robust spontaneous bimodal directional preference, i.e. built nests and slept preferentially along the north-south axis, and deflected their directional preference according to a shift in the direction of magnetic north, clearly indicating that they were deriving directional information from the magnetic field. Thus, bimodal, axially symmetrical directional choice seems to be a common feature shared by epigeic rodents. However, spontaneous directional preference in the bank vole appeared to be more pronounced than that reported in the hamster and the mouse. These findings suggest that bank voles are well suited for future studies investigating the adaptive significance and mechanisms of magnetic orientation in epigeic rodents. PMID:24913128
NASA Astrophysics Data System (ADS)
Oliveriusová, Ludmila; Němec, Pavel; Pavelková, Zuzana; Sedláček, František
2014-07-01
Magnetoreception has been convincingly demonstrated in only a few mammalian species. Among rodents, magnetic compass orientation has been documented in four species of subterranean mole rats and two epigeic (i.e. active above ground) species—the Siberian hamster and the C57BL/6J mouse. The mole rats use the magnetic field azimuth to determine compass heading; their directional preference is spontaneous and unimodal, and their magnetic compass is magnetite-mediated. By contrast, the primary component of orientation response is learned in the hamster and the mouse, but both species also exhibit a weak spontaneous bimodal preference in the natural magnetic field. To determine whether the magnetic compass of wild epigeic rodents features the same functional properties as that of laboratory rodents, we investigated magnetic compass orientation in the bank vole Clethrionomys glareolus (Cricetidae, Rodentia). The voles exhibited a robust spontaneous bimodal directional preference, i.e. built nests and slept preferentially along the north-south axis, and deflected their directional preference according to a shift in the direction of magnetic north, clearly indicating that they were deriving directional information from the magnetic field. Thus, bimodal, axially symmetrical directional choice seems to be a common feature shared by epigeic rodents. However, spontaneous directional preference in the bank vole appeared to be more pronounced than that reported in the hamster and the mouse. These findings suggest that bank voles are well suited for future studies investigating the adaptive significance and mechanisms of magnetic orientation in epigeic rodents.
Axial Tilt Angles of Active Regions
NASA Astrophysics Data System (ADS)
Howard, Robert F.
1996-12-01
Separate Mount Wilson plage and sunspot group data sets are analyzed in this review to illustrate several interesting aspects of active region axial tilt angles. (1) The distribution of tilt angles differs between plages and sunspot groups in the sense that plages have slightly higher tilt angles, on average, than do spot groups. (2) The distributions of average plage total magnetic flux, or sunspot group area, with tilt angle show a consistent effect: those groups with tilt angles nearest the average values are larger (or have a greater total flux) on average than those farther from the average values. Moreover, the average tilt angles on which these size or flux distributions are centered differ for the two types of objects, and represent closely the actual different average tilt angles for these two features. (3) The polarity separation distances of plages and sunspot groups show a clear relationship to average tilt angles. In the case of each feature, smaller polarity separations are correlated with smaller tilt angles. (4) The dynamics of regions also show a clear relationship with region tilt angles. The spot groups with tilt angles nearest the average value (or perhaps 0-deg tilt angle) have on average a faster rotation rate than those groups with extreme tilt angles. All of these tilt-angle characteristics may be assumed to be related to the physical forces that affect the magnetic flux loop that forms the region. These aspects are discussed in this brief review within the context of our current view of the formation of active region magnetic flux at the solar surface.
NASA Astrophysics Data System (ADS)
Lu, Jie
2016-06-01
In this work, we report analytical results on transverse domain wall (TDW) statics and field-driven dynamics in quasi-one-dimensional biaxial nanowires under arbitrary uniform transverse magnetic fields (TMFs) based on the Landau-Lifshitz-Gilbert equation. Without axial driving fields, the static TDW should be symmetric about its center while twisted in its azimuthal angle distribution. By decoupling polar and azimuthal degrees of freedom, an approximate solution is provided which reproduces these features to a great extent. When an axial driving field is applied, the dynamical behavior of a TDW is viewed as the response of its static profile to external excitations. By means of the asymptotic expansion method, the TDW velocity in the traveling-wave mode is obtained, which provides the extent and boundary of the "velocity-enhancement" effect of TMFs on TDWs in biaxial nanowires. Finally, numerical simulations are performed and strongly support our analytics.
Probabilistic cloning of three symmetric states
Jimenez, O.; Bergou, J.; Delgado, A.
2010-12-15
We study the probabilistic cloning of three symmetric states. These states are defined by a single complex quantity, the inner product among them. We show that three different probabilistic cloning machines are necessary to optimally clone all possible families of three symmetric states. We also show that the optimal cloning probability of generating M copies out of one original can be cast as the quotient between the success probability of unambiguously discriminating one and M copies of symmetric states.
Walking dynamics are symmetric (enough)
Ankaralı, M. Mert; Sefati, Shahin; Madhav, Manu S.; Long, Andrew; Bastian, Amy J.; Cowan, Noah J.
2015-01-01
Many biological phenomena such as locomotion, circadian cycles and breathing are rhythmic in nature and can be modelled as rhythmic dynamical systems. Dynamical systems modelling often involves neglecting certain characteristics of a physical system as a modelling convenience. For example, human locomotion is frequently treated as symmetric about the sagittal plane. In this work, we test this assumption by examining human walking dynamics around the steady state (limit-cycle). Here, we adapt statistical cross-validation in order to examine whether there are statistically significant asymmetries and, even if so, test the consequences of assuming bilateral symmetry anyway. Indeed, we identify significant asymmetries in the dynamics of human walking, but nevertheless show that ignoring these asymmetries results in a more consistent and predictive model. In general, neglecting evident characteristics of a system can be more than a modelling convenience—it can produce a better model.
Symmetric blanket nuclear fuel assembly
Penkrot, J.A.
1986-08-19
This patent describes a fuel assembly having spaced-apart fuel rods, the combination comprising: (a) a first group of the fuel rods containing natural uranium only; and (b) a second group of the fuel rods constituting the remainder therof containing enriched uranium only; (c) the fuel rods of the first group being surrounded by the fuel rods of the second group in a predetermined symmetrical relationship; (d) the first group of the fuel rods forming an inner, centrally-located, generally squared pattern wherein the only fuel rods present in the inner squared pattern are the fuel rods of the first group; (e) the second group of the fuel rods forming an outer, peripherally-located, generally squared annular pattern which surrounds the first group wherein the only fuel rods present in the outer squared pattern are the fuel rods of the second group.
Symmetric Quartic Map in natural canonical coordinates
NASA Astrophysics Data System (ADS)
Baldwin, Danielle; Jones, Bilal; Settle, Talise; Ali, Halima; Punjabi, Alkesh
2015-11-01
The generating function for the simple map is modified by replacing the cubic term in canonical momentum by a quartic term. New parameters are introduced in the modified generating function to control the height and the width of ideal separatrix surface and the poloidal magnetic flux inside ideal separatrix. The new generating function is the generating function for the Symmetric Quartic Map (SQM). The new parameters in the generating function are chosen such that the height, width, elongation, and the poloidal flux inside the separatrix for the SQM are same as the simple map. The resulting generating function for the SQM is then transformed from the physical coordinates to the natural canonical coordinates. The equilibrium separatrix of the SQM is calculated in the natural canonical coordinates. The purpose of this research is to calculate the homoclinic tangle of the SQM and compare with the simple map. The separatrix of the simple map is open and unbounded; while the separatrix of the SQM is closed and compact. Motivation is to see what role the topology of the separatrix plays in its homoclinic tangle in single-null divertor tokamaks. This work is supported by grants DE-FG02-01ER54624, DE-FG02-04ER54793, and DE-FG02-07ER54937.
Computing symmetric colorings of the dihedral group
NASA Astrophysics Data System (ADS)
Zelenyuk, Yuliya
2016-06-01
A symmetry on a group G is a mapping G ∋ x ↦ gx-1 g ∈ G, where g ∈ G. A subset A ⊆ G is symmetric if it is invariant under some symmetry, that is, A = gA-1g. The notion of symmetry has interesting relations to enumerative combinatorics. A coloring is symmetric if χ(gx-1g) = χ(x) for some g ∈ G. We discuss an approach how to compute the number of symmetric r-colorings for any finite group. Using this approach we derive the formula for the number of symmetric r-colorings of the dihedral group D3.
Hofacker, H.B.
1958-09-23
This patent relates to nmgnets used in a calutron and more particularly to means fur clamping an assembly of magnet coils and coil spacers into tightly assembled relation in a fluid-tight vessel. The magnet comprises windings made up of an assembly of alternate pan-cake type coils and spacers disposed in a fluid-tight vessel. At one end of the tank a plurality of clamping strips are held firmly against the assembly by adjustable bolts extending through the adjacent wall. The foregoing arrangement permits taking up any looseness which may develop in the assembly of coils and spacers.
Axial current generation by P-odd domains in QCD matter
Iatrakis, Ioannis; Yin, Yi; Lin, Shu
2015-06-23
The dynamics of topological domains which break parity (P) and charge-parity (CP) symmetry of QCD are studied. We derive in a general setting that those local domains will generate an axial current and quantify the strength of the induced axial current. Thus, our findings are verified in a top-down holographic model. The relation between the real time dynamics of those local domains and the chiral magnetic field is also elucidated. We finally argue that such an induced axial current would be phenomenologically important in a heavy-ion collisions experiment.
Bidirectional solar wind electron heat flux and hemispherically symmetric polar rain
NASA Technical Reports Server (NTRS)
Gosling, J. T.; Baker, D. N.; Bame, S. J.; Zwickl, R. D.
1986-01-01
THe paper examines ISEE 3 solar wind electron data obtained concurrent with reported symmetric polar rain events and it is found that a bidirectional solar wind electron heat flux is present whenever such polar cap events occur. In contrast to the normal situation when only one of the earth's polar caps is magnetically connected to the sun, during hemispherically symmetric polar rain events either both of the earth's polar caps are magnetically connected to the sun, or else both are connected to a magnetic loop which is entirely disconnected from the sun. The relative timing between bidirectional solar wind heat flux and symmetrical polar rain events can be utilized to determine certain magnetospheric quantities such as the cross-tail convection speed.
Flow-separation patterns on symmetric forebodies
NASA Technical Reports Server (NTRS)
Keener, Earl R.
1986-01-01
Flow-visualization studies of ogival, parabolic, and conical forebodies were made in a comprehensive investigation of the various types of flow patterns. Schlieren, vapor-screen, oil-flow, and sublimation flow-visualization tests were conducted over an angle-of-attack range from 0 deg. to 88 deg., over a Reynolds-number range from 0.3X10(6) to 2.0X10(6) (based on base diameter), and over a Mach number range from 0.1 to 2. The principal effects of angle of attack, Reynolds number, and Mach number on the occurrence of vortices, the position of vortex shedding, the principal surface-flow-separation patterns, the magnitude of surface-flow angles, and the extent of laminar and turbulent flow for symmetric, asymmetric, and wake-like flow-separation regimes are presented. It was found that the two-dimensional cylinder analogy was helpful in a qualitative sense in analyzing both the surface-flow patterns and the external flow field. The oil-flow studies showed three types of primary separation patterns at the higher Reynolds numbers owing to the influence of boundary-layer transition. The effect of angle of attack and Reynolds number is to change the axial location of the onset and extent of the primary transitional and turbulent separation regions. Crossflow inflectional-instability vortices were observed on the windward surface at angles of attack from 5 deg. to 55 deg. Their effect is to promote early transition. At low angles of attack, near 10 deg., an unexpected laminar-separation bubble occurs over the forward half of the forebody. At high angles of attack, at which vortex asymmetry occurs, the results support the proposition that the principal cause of vortex asymmetry is the hydrodynamic instability of the inviscid flow field. On the other hand, boundary-layer asymmetries also occur, especially at transitional Reynolds numbers. The position of asymmetric vortex shedding moves forward with increasing angle of attack and with increasing Reynolds number, and moves
Permanent magnet energy conversion machine with magnet mounting arrangement
Hsu, John S.; Adams, Donald J.
1999-01-01
A hybrid permanent magnet dc motor includes three sets of permanent magnets supported by the rotor and three sets of corresponding stators fastened to the surrounding frame. One set of magnets operates across a radial gap with a surrounding radial gap stator, and the other two sets of magnets operate off the respective ends of the rotor across respective axial gaps.
PWR AXIAL BURNUP PROFILE ANALYSIS
J.M. Acaglione
2003-09-17
The purpose of this activity is to develop a representative ''limiting'' axial burnup profile for pressurized water reactors (PWRs), which would encompass the isotopic axial variations caused by different assembly irradiation histories, and produce conservative isotopics with respect to criticality. The effect that the low burnup regions near the ends of spent fuel have on system reactivity is termed the ''end-effect''. This calculation will quantify the end-effects associated with Pressurized Water Reactor (PWR) fuel assemblies emplaced in a hypothetical 21 PWR waste package. The scope of this calculation covers an initial enrichment range of 3.0 through 5.0 wt% U-235 and a burnup range of 10 through 50 GWd/MTU. This activity supports the validation of the process for ensuring conservative generation of spent fuel isotopics with respect to criticality safety applications, and the use of burnup credit for commercial spent nuclear fuel. The intended use of these results will be in the development of PWR waste package loading curves, and applications involving burnup credit. Limitations of this evaluation are that the limiting profiles are only confirmed for use with the B&W 15 x 15 fuel assembly design. However, this assembly design is considered bounding of all other typical commercial PWR fuel assembly designs. This calculation is subject to the Quality Assurance Requirements and Description (QARD) because this activity supports investigations of items or barriers on the Q-list (YMP 2001).
Self-Centering Reciprocating-Permanent-Magnet Machine
NASA Technical Reports Server (NTRS)
Bhate, Suresh; Vitale, Nick
1988-01-01
New design for monocoil reciprocating-permanent-magnet electric machine provides self-centering force. Linear permanent-magnet electrical motor includes outer stator, inner stator, and permanent-magnet plunger oscillateing axially between extreme left and right positions. Magnets arranged to produce centering force and allows use of only one coil of arbitrary axial length. Axial length of coil chosen to provide required efficiency and power output.
Continuity and Separation in Symmetric Topologies
ERIC Educational Resources Information Center
Harris, J.; Lynch, M.
2007-01-01
In this note, it is shown that in a symmetric topological space, the pairs of sets separated by the topology determine the topology itself. It is then shown that when the codomain is symmetric, functions which separate only those pairs of sets that are already separated are continuous, generalizing a result found by M. Lynch.
Expansions of non-symmetric toroidal magnetohydrodynamic equilibria
NASA Astrophysics Data System (ADS)
Weitzner, Harold
2016-06-01
Expansions of non-symmetric toroidal ideal magnetohydrodynamic equilibria with nested flux surfaces are carried out for two cases. The first expansion is in a topological torus in three dimensions, in which physical quantities are periodic of period 2 π in y and z. Data is given on the flux surface x = 0. Despite the possibility of magnetic resonances the power series expansion can be carried to all orders in a parameter which measures the flux between x = 0 and the surface in question. Resonances are resolved by appropriate addition resonant fields, as by Weitzner, [Phys. Plasmas 21, 022515 (2014)]. The second expansion is about a circular magnetic axis in a true torus. It is also assumed that the cross section of a flux surface at constant toroidal angle is approximately circular. The expansion is in an analogous flux coordinate, and despite potential resonance singularities, may be carried to all orders. Non-analytic behavior occurs near the magnetic axis. Physical quantities have a finite number of derivatives there. The results, even though no convergence proofs are given, support the possibility of smooth, well-behaved non-symmetric toroidal equilibria.
Electric Power Generation from Earth's Rotation through its Own Magnetic Field
NASA Astrophysics Data System (ADS)
Chyba, Christopher F.; Hand, Kevin P.
2016-07-01
We examine electric power generation from Earth's rotation through its own nonrotating magnetic field (that component of the field symmetric about Earth's rotation axis). There is a simple general proof that this is impossible. However, we identify a loophole in that proof and show that voltage can be continuously generated in a low-magnetic-Reynolds-number conductor rotating with Earth, provided magnetically permeable material is used to ensure curl(v ×B0)≠0 within the conductor, where B0 derives from the axially symmetric component of Earth's magnetic flux density, and v is Earth's rotation velocity at the conductor's location. We solve the relevant equations for one laboratory realization, and from this solution, we predict the voltage magnitude and sign dependence on system dimensions and orientation relative to Earth's rotation. The effect, which would be available nearly globally with no intermittency, requires testing and further examination to see if it can be scaled to practical emission-free power generation.
Post, R.F.; Ryitov, D.D.` Smith, J.R.; Tung, L.S.
1997-04-01
Research performed at the Lawrence Livermore National Laboratory on the equilibrium and stability of a new class of ambient-temperature passive bearing systems is described. The basic concepts involved are: (1) Stability of the rotating system is only achieved in the rotating state. That is, disengaging mechanical systems are used to insure stable levitation at rest (when Earnshaw`s theorem applies). (2) Stable levitation by passive magnetic elements can be achieved if the vector sum of the force derivatives of the several elements of the system is net negative (i.e. restoring) for axial, transverse, and tilt-type perturbations from equilibrium. To satisfy the requirements of (2) using only permanent magnet elements we have employed periodic ``Halbach arrays.`` These interact with passive inductive loaded circuits and act as stabilizers, with the primary forces arising from axially symmetric permanent-magnet elements. Stabilizers and other elements needed to create compact passive magnetic bearing systems have been constructed. Novel passive means for stabilizing classes of rotor-dynamic instabilities in such systems have also been investigated.
Symmetrical thalamic lesions in infants.
Eicke, M; Briner, J; Willi, U; Uehlinger, J; Boltshauser, E
1992-01-01
Clinical observations and findings on imaging are reported in six newborns with symmetrical thalamic lesions (STL). In three cases the diagnosis was confirmed by postmortem examination. Characteristic observations in this series and 17 previously reported cases include no evidence of perinatal asphyxia, high incidence of polyhydramnios, absent suck and swallow, absent primitive reflexes, appreciable spasticity at or within days of birth, lack of psychomotor development, and death within days or months. Characteristic pathological findings include loss of neurons, astrogliosis, and 'incrusted' neurons particularly in the thalamus. In two thirds of cases the basal ganglia and brain stem are involved as well. A hypoxic-ischaemic event occurring two to four weeks before birth is most likely responsible for STL. Bilateral thalamic calcification can often, but not always, be demonstrated in the newborn period by computed tomography and/or cranial ultrasound. The presence of these calcifications and the observation of spasticity at birth imply that the responsible insult occurred at least two to four weeks earlier. The small number of published cases with STL suggest that it may be easily missed. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:1536580
Baryon symmetric big bang cosmology
NASA Technical Reports Server (NTRS)
Stecker, F. W.
1978-01-01
Both the quantum theory and Einsteins theory of special relativity lead to the supposition that matter and antimatter were produced in equal quantities during the big bang. It is noted that local matter/antimatter asymmetries may be reconciled with universal symmetry by assuming (1) a slight imbalance of matter over antimatter in the early universe, annihilation, and a subsequent remainder of matter; (2) localized regions of excess for one or the other type of matter as an initial condition; and (3) an extremely dense, high temperature state with zero net baryon number; i.e., matter/antimatter symmetry. Attention is given to the third assumption, which is the simplest and the most in keeping with current knowledge of the cosmos, especially as pertains the universality of 3 K background radiation. Mechanisms of galaxy formation are discussed, whereby matter and antimatter might have collided and annihilated each other, or have coexisted (and continue to coexist) at vast distances. It is pointed out that baryon symmetric big bang cosmology could probably be proved if an antinucleus could be detected in cosmic radiation.
Parity-time-symmetric teleportation
NASA Astrophysics Data System (ADS)
Ra'di, Y.; Sounas, D. L.; Alù, A.; Tretyakov, S. A.
2016-06-01
We show that electromagnetic plane waves can be fully "teleported" through thin, nearly fully reflective sheets, assisted by a pair of parity-time-symmetric lossy and active sheets in front and behind the screen. The proposed structure is able to almost perfectly absorb incident waves over a wide range of frequency and incidence angles, while waves having a specific frequency and incidence angle are replicated behind the structure in synchronization with the input signal. It is shown that the proposed structure can be designed to teleport waves at any desired frequency and incidence angle. Furthermore, we generalize the proposed concept to the case of teleportation of electromagnetic waves over electrically long distances, enabling full absorption at one surface and the synthesis of the same signal at another point located electrically far away from the first surface. The physical principle behind this selective teleportation is discussed, and similarities and differences with tunneling and cloaking concepts based on PT symmetry are investigated. From the application point of view, the proposed structure works as an extremely selective filter, both in frequency and spatial domains.
PRELIMINARY DESIGN ANALYSIS OF AXIAL FLOW TURBINES
NASA Technical Reports Server (NTRS)
Glassman, A. J.
1994-01-01
A computer program has been developed for the preliminary design analysis of axial-flow turbines. Rapid approximate generalized procedures requiring minimum input are used to provide turbine overall geometry and performance adequate for screening studies. The computations are based on mean-diameter flow properties and a stage-average velocity diagram. Gas properties are assumed constant throughout the turbine. For any given turbine, all stages, except the first, are specified to have the same shape velocity diagram. The first stage differs only in the value of inlet flow angle. The velocity diagram shape depends upon the stage work factor value and the specified type of velocity diagram. Velocity diagrams can be specified as symmetrical, zero exit swirl, or impulse; or by inputting stage swirl split. Exit turning vanes can be included in the design. The 1991 update includes a generalized velocity diagram, a more flexible meanline path, a reheat model, a radial component of velocity, and a computation of free-vortex hub and tip velocity diagrams. Also, a loss-coefficient calibration was performed to provide recommended values for airbreathing engine turbines. Input design requirements include power or pressure ratio, mass flow rate, inlet temperature and pressure, and rotative speed. The design variables include inlet and exit diameters, stator angle or exit radius ratio, and number of stages. Gas properties are input as gas constant, specific heat ratio, and viscosity. The program output includes inlet and exit annulus dimensions, exit temperature and pressure, total and static efficiencies, flow angles, blading angles, and last stage absolute and relative Mach numbers. This program is written in FORTRAN 77 and can be ported to any computer with a standard FORTRAN compiler which supports NAMELIST. It was originally developed on an IBM 7000 series computer running VM and has been implemented on IBM PC computers and compatibles running MS-DOS under Lahey FORTRAN, and
System Study for Axial Vane Engine Technology
NASA Technical Reports Server (NTRS)
Badley, Patrick R.; Smith, Michael R.; Gould, Cedric O.
2008-01-01
The purpose of this engine feasibility study was to determine the benefits that can be achieved by incorporating positive displacement axial vane compression and expansion stages into high bypass turbofan engines. These positive-displacement stages would replace some or all of the conventional compressor and turbine stages in the turbine engine, but not the fan. The study considered combustion occurring internal to an axial vane component (i.e., Diesel engine replacing the standard turbine engine combustor, burner, and turbine); and external continuous flow combustion with an axial vane compressor and an axial vane turbine replacing conventional compressor and turbine systems.
Unsteady Flows in Axial Turbomachines
NASA Technical Reports Server (NTRS)
Marble, F. E.; Rannie, W. D.
1957-01-01
Of the various unsteady flows that occur in axial turbomachines certain asymmetric disturbances, of wave length large in comparison with blade spacing, have become understood to a certain extent. These disturbances divide themselves into two categories: self-induced oscillations and force disturbances. A special type of propagating stall appears as a self-induced disturbance; an asymmetric velocity profile introduced at the compressor inlet constitutes a forced disturbance. Both phenomena have been treated from a unified theoretical point of view in which the asymmetric disturbances are linearized and the blade characteristics are assumed quasi-steady. Experimental results are in essential agreement with this theory wherever the limitations of the theory are satisfied. For the self-induced disturbances and the more interesting examples of the forced disturbances, the dominant blade characteristic is the dependence of total pressure loss, rather than the turning angle, upon the local blade inlet angle.
Axially grooved heat pipe study
NASA Technical Reports Server (NTRS)
1977-01-01
A technology evaluation study on axially grooved heat pipes is presented. The state-of-the-art is reviewed and present and future requirements are identified. Analytical models, the Groove Analysis Program (GAP) and a closed form solution, were developed to facilitate parametric performance evaluations. GAP provides a numerical solution of the differential equations which govern the hydrodynamic flow. The model accounts for liquid recession, liquid/vapor shear interaction, puddle flow as well as laminar and turbulent vapor flow conditions. The closed form solution was developed to reduce computation time and complexity in parametric evaluations. It is applicable to laminar and ideal charge conditions, liquid/vapor shear interaction, and an empirical liquid flow factor which accounts for groove geometry and liquid recession effects. The validity of the closed form solution is verified by comparison with GAP predictions and measured data.
Axial cylinder internal combustion engine
Gonzalez, C.
1992-03-10
This patent describes improvement in a barrel type internal combustion engine including an engine block having axial-positioned cylinders with reciprocating pistons arranged in a circular pattern: a drive shaft concentrically positioned within the cylinder block having an offset portion extending outside the cylinder block; a wobble spider rotatably journaled to the offset portion; connecting rods for each cylinder connecting each piston to the wobble spider. The improvement comprising: a first sleeve bearing means supporting the drive shaft in the engine block in a cantilevered manner for radial loads; a second sleeve bearing means rotatably supporting the wobble spider on the offset portion of the drive shaft for radial loads; a first roller bearing means positioned between the offset portion of the drive shaft and the wobble spider carrying thrust loadings only; a second roller bearing means carrying thrust loads only reacting to the first roller bearing located on the opposite end of the driveshaft between the shaft and the engine block.
NASA Astrophysics Data System (ADS)
Zhang, Shi-Chang
2013-01-01
It is revealed that at anti-resonance in a free-electron laser with a reversed guide magnetic field, the beam self-fields can act to focus the beam transport and prevent the electrons from striking on the waveguide wall before the wiggler exit. It is found that the focusing function results from the modulation of the periodically-varying self-field tangential and normal components on the electron's Larmor rotation. As a potential application, substantial improvement of the wave gain and output power at anti-resonance could be expected, since the beam current loss can be obviated by using this modulation mechanism.
NMR structural inference of symmetric homo-oligomers.
Chandola, Himanshu; Yan, Anthony K; Potluri, Shobha; Donald, Bruce R; Bailey-Kellogg, Chris
2011-12-01
Symmetric homo-oligomers represent a majority of proteins, and determining their structures helps elucidate important biological processes, including ion transport, signal transduction, and transcriptional regulation. In order to account for the noise and sparsity in the distance restraints used in Nuclear Magnetic Resonance (NMR) structure determination of cyclic (C(n)) symmetric homo-oligomers, and the resulting uncertainty in the determined structures, we develop a Bayesian structural inference approach. In contrast to traditional NMR structure determination methods, which identify a small set of low-energy conformations, the inferential approach characterizes the entire posterior distribution of conformations. Unfortunately, traditional stochastic techniques for inference may under-sample the rugged landscape of the posterior, missing important contributions from high-quality individual conformations and not accounting for the possible aggregate effects on inferred quantities from numerous unsampled conformations. However, by exploiting the geometry of symmetric homo-oligomers, we develop an algorithm that provides provable guarantees for the posterior distribution and the inferred mean atomic coordinates. Using experimental restraints for three proteins, we demonstrate that our approach is able to objectively characterize the structural diversity supported by the data. By simulating spurious and missing restraints, we further demonstrate that our approach is robust, degrading smoothly with noise and sparsity. PMID:21718128
Time-dependent {P} {T}-symmetric quantum mechanics
NASA Astrophysics Data System (ADS)
Gong, Jiangbin; Wang, Qing-hai
2013-12-01
The parity-time-reversal ( {P} {T})-symmetric quantum mechanics (QM) (PTQM) has developed into a noteworthy area of research. However, to date, most known studies of PTQM focused on the spectral properties of non-Hermitian Hamiltonian operators. In this work, we propose an axiom in PTQM in order to study general time-dependent problems in PTQM, e.g., those with a time-dependent {P} {T}-symmetric Hamiltonian and with a time-dependent metric. We illuminate our proposal by examining a proper mapping from a time-dependent Schrödinger-like equation of motion for PTQM to the familiar time-dependent Schrödinger equation in conventional QM. The rich structure of the proper mapping hints that time-dependent PTQM can be a fruitful extension of conventional QM. Under our proposed framework, we further study in detail the Berry-phase generation in a class of {P} {T}-symmetric two-level systems. It is found that a closed path in the parameter space of PTQM is often associated with an open path in a properly mapped problem in conventional QM. In one interesting case, we further interpret the Berry phase as the flux of a continuously tunable fictitious magnetic monopole, thus highlighting the difference between PTQM and conventional QM despite the existence of a proper mapping between them.
Ambient-temperature passive magnetic bearings: Theory and design equations
Post, R.F.; Ryutov, D.D.
1997-12-30
Research has been underway at the Lawrence Livermore National Laboratory to build a theoretical and experimental base for the design of ambient-temperature passive magnetic bearings for a variety of possible applications. in the approach taken the limitations imposed by Earnshaw`s theorem with respect to the stability of passive magnetic bearing systems employing axially symmetric permanent-magnet elements are overcome by employing special combinations of elements, as follows: Levitating and restoring forces are provided by combinations of permanent-magnet-excited elements chosen to provide positive stiffnesses (negative force derivatives) for selected displacements (i.e., those involving translations or angular displacement of the axis of rotation). As dictated by Eamshaw`s theorem, any bearing system thus constructed will be statically unstable for at least one of the remaining possible displacements. Stabilization against this displacement is accomplished by using periodic arrays (`Halbach arrays`) of permanent magnets to induce currents in close-packed inductively loaded circuits, thereby producing negative force derivatives stabilizing the system while in rotation. Disengaging mechanical elements stabilize the system when at rest and when below a low critical speed. The paper discusses theory and equations needed for the design of such systems.
Interaction of gravitational waves with magnetic and electric fields
Barrabes, C.; Hogan, P. A.
2010-03-15
The existence of large-scale magnetic fields in the universe has led to the observation that if gravitational waves propagating in a cosmological environment encounter even a small magnetic field then electromagnetic radiation is produced. To study this phenomenon in more detail we take it out of the cosmological context and at the same time simplify the gravitational radiation to impulsive waves. Specifically, to illustrate our findings, we describe the following three physical situations: (1) a cylindrical impulsive gravitational wave propagating into a universe with a magnetic field, (2) an axially symmetric impulsive gravitational wave propagating into a universe with an electric field and (3) a 'spherical' impulsive gravitational wave propagating into a universe with a small magnetic field. In cases (1) and (3) electromagnetic radiation is produced behind the gravitational wave. In case (2) no electromagnetic radiation appears after the wave unless a current is established behind the wave breaking the Maxwell vacuum. In all three cases the presence of the magnetic or electric fields results in a modification of the amplitude of the incoming gravitational wave which is explicitly calculated using the Einstein-Maxwell vacuum field equations.
METHOD AND APPARATUS FOR INJECTING AND TRAPPING ELECTRONS IN A MAGNETIC FIELD
Christofilos, N.C.
1962-05-29
An apparatus is designed for the manipulation of electrons in an exially symmetric magnetic field region and may be employed to trap electrons in such a field by directing an electron beam into a gradientially intensified field region therein to form an annular electron moving axially in the field and along a decreasing field gradient. Dissipative loop circuits such as resistive loops are disposed along at least the decreasing field gradient so as to be inductively coupled to the electron bunch so as to extract energy of the electron bunch and provide a braking force effective to reduce the velocity of the bunch. Accordingly, the electron bunch upon entering a lower intensity magnetic field region is retained therein since the electrons no longer possess sufficient energy to escape. (AEC)
Boundary value problem for the solution of magnetic cutoff rigidities and some special applications
NASA Technical Reports Server (NTRS)
Edmonds, Larry
1987-01-01
Since a planet's magnetic field can sometimes provide a spacecraft with some protection against cosmic ray and solar flare particles, it is important to be able to quantify this protection. This is done by calculating cutoff rigidities. An alternate to the conventional method (particle trajectory tracing) is introduced, which is to treat the problem as a boundary value problem. In this approach trajectory tracing is only needed to supply boundary conditions. In some special cases, trajectory tracing is not needed at all because the problem can be solved analytically. A differential equation governing cutoff rigidities is derived for static magnetic fields. The presense of solid objects, which can block a trajectory and other force fields are not included. A few qualititative comments, on existence and uniqueness of solutions, are made which may be useful when deciding how the boundary conditions should be set up. Also included are topics on axially symmetric fields.
NASA Technical Reports Server (NTRS)
Studer, P. A. (Inventor)
1983-01-01
A linear magnetic bearing system having electromagnetic vernier flux paths in shunt relation with permanent magnets, so that the vernier flux does not traverse the permanent magnet, is described. Novelty is believed to reside in providing a linear magnetic bearing having electromagnetic flux paths that bypass high reluctance permanent magnets. Particular novelty is believed to reside in providing a linear magnetic bearing with a pair of axially spaced elements having electromagnets for establishing vernier x and y axis control. The magnetic bearing system has possible use in connection with a long life reciprocating cryogenic refrigerator that may be used on the space shuttle.
Symmetric Monotone Venn Diagrams with Seven Curves
NASA Astrophysics Data System (ADS)
Cao, Tao; Mamakani, Khalegh; Ruskey, Frank
An n-Venn diagram consists of n curves drawn in the plane in such a way that each of the 2 n possible intersections of the interiors and exteriors of the curves forms a connected non-empty region. A k-region in a diagram is a region that is in the interior of precisely k curves. A n-Venn diagram is symmetric if it has a point of rotation about which rotations of the plane by 2π/n radians leaves the diagram fixed; it is polar symmetric if it is symmetric and its stereographic projection about the infinite outer face is isomorphic to the projection about the innermost face. A Venn diagram is monotone if every k-region is adjacent to both some (k - 1)-region (if k > 0) and also to some k + 1 region (if k < n). A Venn diagram is simple if at most two curves intersect at any point. We prove that the "Grünbaum" encoding uniquely identifies monotone simple symmetric n-Venn diagrams and describe an algorithm that produces an exhaustive list of all of the monotone simple symmetric n-Venn diagrams. There are exactly 23 simple monotone symmetric 7-Venn diagrams, of which 6 are polar symmetric.
The symmetric extendibility of quantum states
NASA Astrophysics Data System (ADS)
Nowakowski, Marcin L.
2016-09-01
Studies on the symmetric extendibility of quantum states have become particularly important in the context of the analysis of one-way quantum measures of entanglement, and the distillability and security of quantum protocols. In this paper we analyze composite systems containing a symmetric extendible part, with particular attention devoted to the one-way security of such systems. Further, we introduce a new one-way entanglement monotone based on the best symmetric approximation of a quantum state and the extendible number of a quantum state. We underpin these results with geometric observations about the structures of multi-party settings which posses substantial symmetric extendible components in their subspaces. The impossibility of reducing the maximal symmetric extendibility by means of the one-way local operations and classical communication method is pointed out on multiple copies. Finally, we state a conjecture linking symmetric extendibility with the one-way distillability and security of all quantum states, analyzing the behavior of a private key in the neighborhood of symmetric extendible states.
Jia, Song-Ling; Jentzen, Walter; Shang, Mayou; Song, Xing-Zhi; Ma, Jian-Guo; Scheidt, W. Robert; Shelnutt, John A.
1998-08-24
Axial ligation of nickel(II) 5,10,15,20-tetraphenylporphyrin (NiTPP) with pyrrolidine or piperidine has been investigated using X-ray crystallography, UV-visible spectroscopy, resonance Raman spectroscopy, and molecular mechanics (MM) calculations. By varying the pyrrolidine concentration in dichloromethane, distinct nu(4) Raman lines are found for the four-, five-, and six-coordinate species of NiTPP. The equilibrium constants for addition of the first and second pyrrolidine axial ligands are 1.1 and 3.8 M(-)(1), respectively. The axial ligands and their orientations influence the type and magnitude of the calculated nonplanar distortion. The differences in the calculated energies of the conformers having different ligand rotational angles are small so they may coexist in solution. Because of the similarity in macrocyclic structural parameters of these conformers and the free rotation of the axial ligands, narrow and symmetric nu(2) and nu(8) Raman lines are observed. Nonetheless, the normal-coordinate structural-decomposition analysis of the nonplanar distortions of the calculated structures and the crystal structure of the bis(piperidine) complex reveals a relationship between the orientations of axial ligand(s) and the macrocyclic distortions. For the five-coordinate complex with the plane of the axial ligand bisecting the Ni-N(pyrrole) bonds, a primarily ruffled deformation results. With the ligand plane eclipsing the Ni-N(pyrrole) bonds, a mainly saddled deformation occurs. With the addition of the second axial ligand, the small doming of the five-coordinate complexes disappears, and ruffling or saddling deformations change depending on the relative orientation of the two axial ligands. The crystal structure of the NiTPP bis(piperidine) complex shows a macrocycle distortion composed of wav(x) and wav(y) symmetric deformations, but no ruffling, saddling, or doming. The difference in the calculated and observed distortions results partly from the phenyl group
Liquid rocket engine axial-flow turbopumps
NASA Technical Reports Server (NTRS)
Scheer, D. D.; Huppert, M. C.; Viteri, F.; Farquhar, J.; Keller, R. B., Jr. (Editor)
1978-01-01
The axial pump is considered in terms of the total turbopump assembly. Stage hydrodynamic design, pump rotor assembly, pump materials for liquid hydrogen applications, and safety factors as utilized in state of the art pumps are among the topics discussed. Axial pump applications are included.
Cytokine profiles in axial spondyloarthritis
Madej, Marta; Nowak, Beata; Sokolik, Renata; Chlebicki, Arkadiusz; Korman, Lucyna; Woytala, Patryk; Lubiński, Łukasz; Wiland, Piotr
2015-01-01
Objectives Current studies concentrate on the cytokine network and its role in the pathogenesis of spondyloarthritis (SpA). In this study, we analyzed whether the serum cytokine profile (interleukins: IL-10, IL-11, IL-12, IL-15, IL-17, IL-23 and IL-33) correlates with demographic data, clinical manifestations, disease activity and treatment outcome in a group of patients with axial spondyloarthritis. Material and methods Forty-nine patients with an established diagnosis of axial spondyloarthritis (aSpA) and 19 healthy volunteers as controls were enrolled in the study. Clinical evaluation included patient's medical history, 44 joint count, back pain intensity and global disease activity in the preceding week (VAS), the duration of morning stiffness and blood tests. Disease activity was assessed using BASDAI and ASDAS-CRP. Serum concentration of IL-10, IL-11, IL-12, IL-15, IL-17, IL-23 and IL-33 was determined. Results In patients with aSpA, elevated serum concentration of IL-10, IL-15, IL-17 and IL-23 was detected. In the aSpA group we detected higher values of serum concentration of IL-23 and IL-33 in the subgroup with anterior uveitis (83.1 ±184.0 pg/ml vs. 14.0 ±17.1 pg/ml, p < 0.0001 and 45.5 ±71.9 pg/ml vs. 18.4 ±14.3 pg/ml, p < 0.0001, respectively). Additionally, in the subgroup with peripheral arthritis, elevation of serum concentration of IL-12 (249.3 ±246.9 pg/ml vs. 99.9 ±105.9 pg/ml, p = 0.0001) was detected. Patients with preradiological SpA had higher serum concentration of IL-17 than patients with established diagnosis of AS (6.37 ±8.50 pg/ml vs. 2.04 ±2.98 pg/ml, p = 0.0295). No differences in serum concentration of analyzed cytokines were found between the subgroup with low to moderate disease activity and the subgroup with high to very high disease activity. Conclusions We report that in aSpA patients, compared to controls, elevated serum concentrations of IL-10, IL-15, IL-17 and IL-23 were observed. Some cytokines may predispose to a more
Axial interaction free-electron laser
Carlsten, B.E.
1997-09-02
Electron orbits from a helical axial wiggler in an axial guide field are absolutely unstable as power is extracted from the particles. For off-axis beams an axial FEL mechanism exists when the axial electric field in a TM mode is wiggled to interact with the axial velocity of the electrons that form the beam. The interaction strength is comparable to that for helical FELs and is insensitive to beam orbit errors. The orbits for this mechanism are extremely stable in the absence of space charge and lead to high extraction efficiencies without particle phasing incoherence or interception. This interaction mechanism is suitable for use with intense annular electron beams for high power generation at microwave frequencies. 5 figs.
Axial interaction free-electron laser
Carlsten, Bruce E.
1997-01-01
Electron orbits from a helical axial wiggler in an axial guide field are absolutely unstable as power is extracted from the particles. For off-axis beams an axial FEL mechanism exists when the axial electric field in a TM mode is wiggled to interact with the axial velocity of the electrons that form the beam. The interaction strength is comparable to that for helical FELs and is insensitive to beam orbit errors. The orbits for this mechanism are extremely stable in the absence of space charge and lead to high extraction efficiencies without particle phasing incoherence or interception. This interaction mechanism is suitable for use with intense annular electron beams for high power generation at microwave frequencies.
Axial polarizers based on dichroic liquid crystals
NASA Astrophysics Data System (ADS)
Nersisyan, Sarik; Tabiryan, Nelson; Steeves, Diane M.; Kimball, Brian R.
2010-08-01
Polarizers capable of producing linearly polarized beams with axial (radial and azimuthal) symmetry have been fabricated with the aid of a dichroic liquid crystal. Photoalignment was achieved using a printing technique to reduce the UV exposure time required for production of axially aligning substrates from 1 h, typical for direct writing techniques, to 10 min. The polarizing features of axial polarizers and their pairs are characterized and their differences outlined. We demonstrate that the transmission switching contrast of an axial polarizer/analyzer pair, comprised of an electrically controlled liquid crystal cell, is comparable to conventional systems with linear polarizers. The opportunities for using axial polarizers for polarization imaging, sensor protection, and nonlinear optics are discussed. Particularly, we show that the technology could reduce the fluence of a laser beam on an optical sensor without affecting imaging.
Parametric design of tri-axial nested Helmholtz coils
Abbott, Jake J.
2015-05-15
This paper provides an optimal parametric design for tri-axial nested Helmholtz coils, which are used to generate a uniform magnetic field with controllable magnitude and direction. Circular and square coils, both with square cross section, are considered. Practical considerations such as wire selection, wire-wrapping efficiency, wire bending radius, choice of power supply, and inductance and time response are included. Using the equations provided, a designer can quickly create an optimal set of custom coils to generate a specified field magnitude in the uniform-field region while maintaining specified accessibility to the central workspace. An example case study is included.
Alfvén modes in the Madison Symmetric Torus
NASA Astrophysics Data System (ADS)
Li, M.; Breizman, B. N.; Zheng, L. J.; Lin, L.; Ding, W. X.; Brower, D. L.
2014-08-01
This work presents a theoretical and computational analysis of core-localized energetic particle driven modes observed near the magnetic axis in the Madison Symmetric Torus [L. Lin, W. X. Ding, D. L. Brower et al., Phys. Plasmas 20, 030701 (2013)]. Using measured safety factor and plasma pressure profiles as input, the linear ideal MHD code Adaptive EiGenfunction Independent Solution (AEGIS) [L. J. Zheng and M. Kotschenreuther, J. Comput. Phys. 211, 748 (2006)] reveals Alfvénic modes close to the measured frequencies. The AEGIS results together with a reduced analytical model demonstrate that the modes are essentially "cylindrical" and dominated by a single poloidal component (m = 1). The modes are localized at the plasma core where the magnetic shear is weak and continuum damping is minimal. Detailed analysis establishes constraints on the safety factor and plasma pressure, under which two modes can exist simultaneously.
Non-axial muscle stress and stiffness.
Zahalak, G I
1996-09-01
A generalization is developed of the classic two-state Huxley cross-bridge model to account for non-axial active stress and stiffness. The main ingredients of the model are: (i) a relation between the general three-dimensional deformation of an element of muscle and the deformations of the cross-bridges, that assumes macroscopic deformation is transmitted to the myofibrils, (ii) radial as well as axial cross-bridge stiffness, and (iii) variations of the attachment and detachment rates with lateral filament spacing. The theory leads to a generalized Huxley rate equation on the bond-distribution function, n(zeta, theta, t), of the form [equation: see text] where the Dij are the components of the relative velocity gradient and rho and ñ are functions of the polar angle, theta, and time that describe, respectively, the deformation of the myofilament lattice and the distribution of accessible actin sites (both of these functions can be calculated from the macroscopic deformation). Explicit expressions, in terms of n, are derived for the nine components of the active stress tensor, and the 21 non-vanishing components of the active stiffness tensor; the active stress tensor is found to be unsymmetric. The theory predicts that in general non-axial deformations will modify active axial stress and stiffness, and also give rise to non-axial (e.g., shearing) components. Under most circumstances the magnitudes of the non-axial stress and stiffness components will be small compared with the axial and, further, the effects of non-axial deformation rates will be small compared with those of the axial rate. Large transverse deformations may, however, greatly reduce the axial force and stiffness. The theory suggests a significant mechanical role for the non-contractile proteins in muscle, namely that of equilibrating the unsymmetric active stresses. Some simple applications of the theory are provided to illustrate its physical content. PMID:8917737
NASA Technical Reports Server (NTRS)
Studer, Philip A. (Inventor)
1983-01-01
A magnetic bearing assembly (10) has an intermediate rotatable section (33) having an outer cylindrical member (30) coaxially suspended by a torsion wire (72) around an axially polarized cylindrical magnet (32). Axial alignment between the pole faces (40-43) of the intermediate section (33) and end surfaces (50-53) of opposed end bells (20, 22) provides a path of least reluctance across intervening air gaps (60-63) for the magnetic flux emanating from magnet (32). Radial dislocation increases the reluctance and creates a radial restoring force. Substitution of radially polarized magnets 107 fixed to a magnetically permeable cylinder (32') and insertion of pairs of armature coil windings (109-112) between the cylinder pair (33') provides an integral magnetic bearing and torsion motor (100) able to provide arcuately limited rotational drive.
Combustion enhancement by axial vortices
NASA Astrophysics Data System (ADS)
Gutmark, E.; Schadow, K. C.; Parr, T. P.; Parr, D. M.; Wilson, K. J.
1987-06-01
A tapered slot jet was studied experimentally in nonreacting and reacting tests using hot-wire anemometry, water-tunnel flow visualization, and Planar Laser Induced Fluorescence (PLIF). The tapered slot jet is a modified elliptic jet which has a conical contraction leading to its outlet. The added contraction changes the entire flow field. The jet spread in the major axis plane is larger than in the minor axis plane, which is the opposite behavior of an elliptic jet. Consequently, no axes switching, typical to an elliptic jet, is observed. The turbulence amplification in the jet core is higher than in circular and elliptic jets. The different behavior is attributed to the change in flow direction, inside the nozzle, from the conical section to the slot outlet. During this transition, the flow acquires angular momentum thereby generating axial vorticity. The influence of the contraction angle and the outlet aspect ratio were investigated. The effect of the augmented turbulence on reactive flow was tested in a premixed flame. The combustion rate was augmented in both the core and edges of the flame relative to a circular burner.
Extra-axial isolated cerebral varix misdiagnosed as convexity meningioma
Tan, Zhi-Gang; Zhou, Qian; Cui, Yan; Yi, Lei; Ouyang, Yian; Jiang, Yugang
2016-01-01
Abstract Isolated cerebral varix is a rare cerebrovascular anomaly, which is easily misdiagnosed as other brain tumors. A 59-year-old female patient with noncontributory medical history presented with headache and insomnia for the last 2 months. Upon admission, her neurological examination was unremarkable. Magnetic resonance imaging revealed a well-demarcated extra medullary mass, 11 × 11 mm in size, within the subdural space at the right frontal lobe. The lesion was initially interpreted as a convexity meningioma. After conducting a craniotomy on the patient, an extra-axial varix was exposed and resected subsequently. The patient's headache was resolved soon after surgery and charged without neurologic sequelae. Extra-axial isolated cerebral varix is mimicking convexity meningioma on MR images and should be considered as a differential diagnosis. The focal erosion in the inner table of the skull could be an important character of extra-axial isolated cerebral varix. An extremely round shape and smooth contour of the lesion was another important character. Isolated cerebral varix is rare vascular lesion that is treated surgically in the case of rupture or compression of adjacent structures. The information obtained with noninvasive imaging techniques should include CTA to make a clinical decision. PMID:27368037
Martingale Rosenthal inequalities in symmetric spaces
Astashkin, S V
2014-12-31
We establish inequalities similar to the classical Rosenthal inequalities for sequences of martingale differences in general symmetric spaces; a central role is played here by the predictable quadratic characteristic of a martingale. Bibliography: 26 titles.
PT-Symmetric Quantum Field Theory
NASA Astrophysics Data System (ADS)
Bender, Carl M.
2011-09-01
In 1998 it was discovered that the requirement that a Hamiltonian be Dirac Hermitian (H = H†) can be weakened and generalized to the requirement that a Hamiltonian be PT symmetric ([H,PT] = 0); that is, invariant under combined space reflection and time reversal. Weakening the constraint of Hermiticity allows one to consider new kinds of physically acceptable Hamiltonians and, in effect, it amounts to extending quantum mechanics from the real (Hermitian) domain into the complex domain. Much work has been done on the analysis of various PT-symmetric quantum-mechanical models. However, only very little analysis has been done on PT-symmetric quantum-field-theoretic models. Here, we describe some of what has been done in the context of PT-symmetric quantum field theory and describe some possible fundamental applications.
Origin of symmetric PMNS and CKM matrices
NASA Astrophysics Data System (ADS)
Rodejohann, Werner; Xu, Xun-Jie
2015-03-01
The Pontecorvo-Maki-Nakagawa-Sakata and Cabibbo-Kobayashi-Maskawa matrices are phenomenologically close to symmetric, and a symmetric form could be used as zeroth-order approximation for both matrices. We study the possible theoretical origin of this feature in flavor symmetry models. We identify necessary geometric properties of discrete flavor symmetry groups that can lead to symmetric mixing matrices. Those properties are actually very common in discrete groups such as A4 , S4 , or Δ (96 ) . As an application of our theorem, we generate a symmetric lepton mixing scheme with θ12=θ23=36.21 ° ; θ13=12.20 ° , and δ =0 , realized with the group Δ (96 ) .
Fit to an analytic form of the measured central CMS magnetic field
NASA Astrophysics Data System (ADS)
Maroussov, Vassili
The CMS magnetic field measurements inside the hadronic calorimeter barrel (HB) had been carried out at CERN SX5 in November 2006 using the "fieldmapper" device developed at FNAL. The goal of these measurements was to provide field maps for several nominal field values with the precision of +/-5˙10 -4 T, usable for charged particle tracking. An initial analysis of the measured data indicated presence of large systematic errors, which supposedly were related to fieldmapper misalignments and errors of calibration of the Hall probes. An algorithm had been developed that allows to eliminate the systematic errors and to recover the actual field. The algorithm is based on the idea of making the measurements self-consistent (that is: the field must satisfy the Maxwell equations) by introducing fitted parameters for amplifier gain shifts and the probes position shifts. With the help of this algorithm, an analytic field representation, both for the axially symmetric and complete 3D field models, had been obtained which is within +/-4˙10 -4 T agreement with the measured field values in whole volume spanned in measurements except the most remote off center part of it, which makes only 6% of total volume. Based on this analytic axially symmetric fit, a C++ code (BFit) is developed intended to be used in the CMS offline tracking. This code is recently integrated into the CMSSW software package.
Symmetric states: Their nonlocality and entanglement
Wang, Zizhu; Markham, Damian
2014-12-04
The nonlocality of permutation symmetric states of qubits is shown via an extension of the Hardy paradox and the extension of the associated inequality. This is achieved by using the Majorana representation, which is also a powerful tool in the study of entanglement properties of symmetric states. Through the Majorana representation, different nonlocal properties can be linked to different entanglement properties of a state, which is useful in determining the usefulness of different states in different quantum information processing tasks.
Electron magnetic moment from geonium spectra: Early experiments and background concepts
NASA Astrophysics Data System (ADS)
van Dyck, Robert S., Jr.; Schwinberg, Paul B.; Dehmelt, Hans G.
1986-08-01
The magnetic moment of a free electron has been measured by observing both its low-energy spin and cyclotron resonances (at νs=ωs/2π and νc=ωc/2π, respectively) by means of a sensitive frequency-shift technique. Using radiation and tuned-circuit damping of a single electron, isolated in a special anharmonicity-compensated Penning trap, also cooled to 4 K, the electron's motion is brought nearly to rest, thus preparing it in a cold quasipermanent state of the geonium ``atom.'' The magnetic-coupling scheme, described as a continuous Stern-Gerlach effect, is made possible through a weak Lawrence magnetic bottle which causes the very narrow axial resonance, at νz=ωz/2π for the harmonically bound electron, to change in frequency by a small fixed amount δ per unit change in magnetic quantum number. Spin flips are indirectly induced by a scheme which weakly drives the axial motion at the νa=ωa/2π spin-cyclotron difference frequency within the inhomogeneous magnetic field, thus yielding a measure of ωa≡ωs-ωc. The magnetic moment μs in terms of the Bohr magneton μB equals (1/2) the spin's g factor, which in turn is described by ωs and ωc: g=2μs/μB=2ωs/ωc. In a Penning trap, however, these resonance frequencies are obtained from the observed cyclotron frequency at ω'c=ωc-δe and the observed anomaly frequency at ω'a=ωs-ω'c, which are related by the small electric shift δe computed using the measured axial frequency and 2δeω'c=ωz 2. This last expression, derived for a perfectly axially symmetric trap, happens to be practically invariant against small imperfections in the electric quadrupole field (error in ωc<10-16). The magnetic-bottle-determined line shapes are analyzed and found to have sharp low-frequency edge features which correspond to the electron being temporarily at the trap center and at the bottom of the magnetic well. Relativistic shifts are considered and found to be <10-11. Our result at the time of submission, g/2=1.001 159
Vibration localization in dual-span axially moving elastic systems
NASA Astrophysics Data System (ADS)
Aljawi, Abdulghaffar Azhari Nawawi
To date, vibration localization in the large class of systems modeled by multispan axially moving materials has not been examined. These systems are common in many engineering applications, such as band saw blades, power transmission, belts and chains, and magnetic and paper tapes. An investigation of the vibration localization phenomenon in two-span, axially moving beams is presented. The effects of tension disorder, interspan coupling, and transport speed on the confinement of the natural modes of free vibration are studied. The equations governing the transverse vibration of the two-span, axially moving beam are derived through Hamilton's principle and solution methods are developed. Numerical results demonstrate that normal mode localization indeed occurs for both stationary and translating disordered two-span beams, especially for small interspan coupling. The occurrence of localization is characterized by a peak deflection much greater in one span than in the other. In the stationary disordered case, localization becomes more pronounced as interspan coupling decreases, i.e., as the span axial tension increases. For an axially translating beam with identical spans, the two loci in each pair of natural frequencies may exhibit a single or double crossing (depending on the value of tension) when plotted against the axial transport speed. These crossings become veerings when the beam is disordered, and localization is strongest at those speeds where the eigenvalue veerings occur. A perturbation approach, which provides additional insights into the sensitivity of the system to disorder, is also utilized. Analytical expressions are obtained in the limiting cases of weak and strong interspan coupling. Findings show that the sensitivity of the system to disorder primarily depends upon disorder and interspan coupling strengths. Finally, an investigation of the localization phenomenon is performed for a more complete model of a band/wheel system. The effects of tension
Two-dimensional symmetrical mixtures in an external field of square symmetry.
Patrykiejew, A; Sokołowski, S
2010-01-14
Using the Monte Carlo simulation method in the grand canonical ensemble, we study two-dimensional symmetrical binary mixtures subjected to an external potential of square symmetry and finite corrugation. The results reveal a rich variety of mixed liquid-like and solid-like structures. It is demonstrated that even very weakly corrugated external potential leads to the development of axially ordered striped solid-like phases. The results of finite temperature simulation confirm quite well the predictions stemming from the ground state considerations and show the formation of commensurate, high-order commensurate, and incommensurate mixed phases. It is also shown that the corrugation potential affects the demixing transition. PMID:20017542
Axial field spectrometer at the CERN ISR
Gordon, H.; Hogue, R.; Killian, T.
1981-01-01
The Axial Field Spectrometer (AFS) was recently brought into operation at the CERN ISR. It is being exploited in a wide-ranging program to study different aspects of those proton-proton or proton-antiproton collisions which are characterized by a large transverse momentum (p/sub T/). Examples include the measurement of inclusive distributions of identified high p/sub T/ hadrons, and the study of event structures characterized by a large transverse energy (E/sub T/) or the production of one or several high-p/sub T/ electrons or photons. The experimental approach to this program emphasizes integration of advanced magnetic spectroscopy with state-of-the-art calorimetry. These techniques are fully exploited to provide maximal information on all particles produced. In addition, information from these detectors is used in new ways for on-line event triggering and filtering; this allows even very rare events to be selected with high efficiency, an essential prerequisite for studies at a high-luminosity hadron collider, such as the ISR. Considerable modularity of the detectors was sought. Apart from clear advantages of construction, debugging, running, and servicing of such components, modularity provides ease for addition or reconfiguration of the system to emphasize the study of specific final states. At present, for example, a 1 sr Cerenkov detector system allows hadron identification up to p approx. = 12 GeV/c; liquid-argon electromagnetic calorimeters and a uranium-scintillator calorimeter (Hexagon) are used for a study of events containing direct photons.
Flow Split Venturi, Axially-Rotated Valve
Walrath, David E.; Lindberg, William R.; Burgess, Robert K.; LaBelle, James
2000-02-22
The present invention provides an axially-rotated valve which permits increased flow rates and lower pressure drop (characterized by a lower loss coefficient) by using an axial eccentric split venturi with two portions where at least one portion is rotatable with respect to the other portion. The axially-rotated valve typically may be designed to avoid flow separation and/or cavitation at full flow under a variety of conditions. Similarly, the valve is designed, in some embodiments, to produce streamlined flow within the valve. An axially aligned outlet may also increase the flow efficiency. A typical cross section of the eccentric split venturi may be non-axisymmetric such as a semicircular cross section which may assist in both throttling capabilities and in maximum flow capacity using the design of the present invention. Such a design can include applications for freeze resistant axially-rotated valves and may be fully-opened and fully-closed in one-half of a complete rotation. An internal wide radius elbow typically connected to a rotatable portion of the eccentric venturi may assist in directing flow with lower friction losses. A valve actuator may actuate in an axial manner yet be uniquely located outside of the axial flow path to further reduce friction losses. A seal may be used between the two portions that may include a peripheral and diametrical seal in the same plane. A seal separator may increase the useful life of the seal between the fixed and rotatable portions.
NASA Astrophysics Data System (ADS)
Bordag, L. A.; Chkhetiani, O. G.; Fröhner, M.; Myrnyy, V.
2005-07-01
We analyze the stability of a Taylor Couette flow under the imposition of a weak axial flow in the case of a very short cylinder with a narrow annulus gap. We consider an incompressible viscous fluid contained in the narrow gap between two concentric short cylinders, in which the inner cylinder rotates with constant angular velocity. The caps of the cylinders have narrow tubes conically tapering to very narrow slits, allowing an axial flow along the surface of the inner cylinder. The approximated solution for the Taylor Couette flow for short cylinders was found and used for the stability analysis instead of the precise but bulky solution. The sensitivity of the Taylor Couette flow to small perturbations and to weak axial flow was studied. We demonstrate that perturbations coming from the axial flow cause the propagation of dispersive waves in the Taylor Couette flow. While in long cylinders the presence of an axial flow leads to the breaking of axial symmetry, in small cylinders it leads to the breaking of mirror symmetry. The coexistence of a rotation and an axial flow requires that, in addition to the energy and the angular momentum of the flow, the helicity must also be studied. The approximated form for the helicity formula in the case of short cylinders was derived. We found that the axial flow stabilizes the Taylor Couette flow. The supercritical flow includes a rich variety of vortical structures, including a symmetric pair of Taylor vortices, an anomalous single vortex and quasiperiodic oscillating vortices. Pattern formation was studied at large for rated ranges of azimuthal and axial Reynolds numbers. A region where three branches of different states occur was localized. Numerical simulations in 3-D and in the axisymmetrical case of the model flow are presented, which illustrate the instabilities analyzed.
Parity-time symmetry under magnetic flux
NASA Astrophysics Data System (ADS)
Jin, L.; Song, Z.
2016-06-01
We study a parity-time-(PT -) symmetric ring lattice, with one pair of balanced gain and loss located at opposite positions. The system remains PT -symmetric when threaded by a magnetic flux; however, the PT symmetry is sensitive to the magnetic flux in the presence of a large balanced gain and loss, or in a large system. We find a threshold gain or loss above which any nontrivial magnetic flux breaks the PT symmetry. We obtain the maximally tolerable magnetic flux for the exact PT -symmetric phase, which is approximately linearly dependent on a weak gain or loss.
Symmetric Galerkin boundary formulations employing curved elements
NASA Technical Reports Server (NTRS)
Kane, J. H.; Balakrishna, C.
1993-01-01
Accounts of the symmetric Galerkin approach to boundary element analysis (BEA) have recently been published. This paper attempts to add to the understanding of this method by addressing a series of fundamental issues associated with its potential computational efficiency. A new symmetric Galerkin theoretical formulation for both the (harmonic) heat conduction and the (biharmonic) elasticity problem that employs regularized singular and hypersingular boundary integral equations (BIEs) is presented. The novel use of regularized BIEs in the Galerkin context is shown to allow straightforward incorporation of curved, isoparametric elements. A symmetric reusable intrinsic sample point (RISP) numerical integration algorithm is shown to produce a Galerkin (i.e., double) integration strategy that is competitive with its counterpart (i.e., singular) integration procedure in the collocation BEA approach when the time saved in the symmetric equation solution phase is also taken into account. This new formulation is shown to be capable of employing hypersingular BIEs while obviating the requirement of C 1 continuity, a fact that allows the employment of the popular continuous element technology. The behavior of the symmetric Galerkin BEA method with regard to both direct and iterative equation solution operations is also addressed. A series of example problems are presented to quantify the performance of this symmetric approach, relative to the more conventional unsymmetric BEA, in terms of both accuracy and efficiency. It is concluded that appropriate implementations of the symmetric Galerkin approach to BEA indeed have the potential to be competitive with, if not superior to, collocation-based BEA, for large-scale problems.
ON MAGNETIC EQUILIBRIA IN BAROTROPIC STARS
Armaza, Cristóbal; Reisenegger, Andreas; Valdivia, Juan Alejandro
2015-04-01
Upper main-sequence stars, white dwarfs, and neutron stars are known to possess stable, large-scale magnetic fields. Numerical works have confirmed that stable magnetohydrodynamic equilibria can exist in non-barotropic, stably stratified stars. On the other hand, it is unclear whether stable equilibria are possible in barotropic stars, although the existing evidence suggests that they are all unstable. This work aims to construct barotropic equilibria in order to study their properties, as a first step to test their stability. We have assumed that the star is a perfectly conducting, axially symmetric fluid, allowing for both poloidal and toroidal components of the magnetic field. In addition, we made the astrophysically justified assumption that the magnetic force has a negligible influence on the fluid structure, in which case the equilibrium is governed by the Grad–Shafranov equation, involving two arbitrary functions of the poloidal flux. We built a numerical code to solve this equation, allowing for an arbitrary prescription for these functions. Taking particularly simple, but physically reasonable choices for these functions with a couple of adjustable parameters, all of the equilibria found present only a small (≲10%) fraction of the magnetic energy stored in the toroidal component, confirming previous results. We developed an analytical model in order to study in more detail the behavior of the magnetic energy over the full range of parameters. The model confirms that the toroidal fraction of the energy and the ratio of toroidal to poloidal flux are bounded from above for the whole range of parameters.
The Effect of Axial Stress on YBCO Coils
Sampson, W.; Anerella, M.; Cozzolino, J.P.; Gupta, R.C.; Shiroyanagi, Y.; Evangelou, E.
2011-03-28
The large aspect ratio of typical YBCO conductors makes them ideal for constructing solenoids from pancake style coils. An advantage of this method is that each subunit can be tested before assembly into the finished magnet. The fact that conductors are available in relatively short lengths is another reason for using such a fabrication technique. The principal drawback is the large number of joints required to connect the coils together. When very high field solenoids such as those contemplated for the muon collider are built in this way the magnetic forces between pancakes can be very large. Extensive measurements have been made on the effect of stress on short lengths of conductor, but there is little or no data on the effect of intercoil loading. The experiment described in this paper was designed to test the ability of YBCO coils to withstand these forces. A spiral wound 'pancake' coil made from YBCO coated conductor has been stressed to a pressure of 100MPa in the axial direction at 77K. In this case axial refers to the coil so that the force is applied to the edge of the conductor. The effect on the critical current was small and completely reversible. Repeatedly cycling the pressure had no measureable permanent effect on the coil. The small current change observed exhibited a slight hysteretic behaviour during the loading cycle.
Magnetic structure of Sr2Fe2O5 brownmillerite by single-crystal Mössbauer spectroscopy
NASA Astrophysics Data System (ADS)
Waerenborgh, J. C.; Tsipis, E. V.; Auckett, J. E.; Ling, C. D.; Kharton, V. V.
2013-09-01
In order to determine orientation of the Fe3+ magnetic moments and electric field gradient (efg) axes in the brownmillerite-type strontium ferrite structure for both iron sublattices where the efg tensor is not axially symmetric, the Mössbauer spectra of powdered and oriented single-crystal Sr2Fe2O5 were analyzed by solving the complete Hamiltonian for hyperfine interactions in the excited and ground states of the 57Fe nuclei. The magnetic moments of both octahedrally and tetrahedrally coordinated iron cations lie on the ac-plane of the orthorhombic unit cell and are parallel to the shortest c-axis, whilst the main efg axes are parallel to the longest crystallographic axis, b. This orientation is similar to that in Ca2Fe2O5, in spite of the structural differences of strontium and calcium ferrite brownmillerites at low temperatures.
Spin filter due to spin Hall effect with axially asymmetric potential
NASA Astrophysics Data System (ADS)
Yokoyama, Tomohiro; Eto, Mikio
2010-02-01
We examine a three-terminal spin filter including an artificial potential created by antidot, scanning tunnel microscope (STM) tip, etc., fabricated on semiconductor heterostructures with strong spin-orbit interaction. When the potential is attractive and its strength is properly tuned, the resonant scattering takes place, which enhances the extrinsic spin Hall effect. As a result, the efficiency of the spin filter can be more than 50% when the potential is axially symmetric. The efficiency becomes smaller when the symmetry is broken, but we still expect an efficient spin filter unless the degree of asymmetry is too large.
Axial grading of inert matrix fuels
Recktenwald, G. D.; Deinert, M. R.
2012-07-01
Burning actinides in an inert matrix fuel to 750 MWd/kg IHM results in a significant reduction in transuranic isotopes. However, achieving this level of burnup in a standard light water reactor would require residence times that are twice that of uranium dioxide fuels. The reactivity of an inert matrix assembly at the end of life is less than 1/3 of its beginning of life reactivity leading to undesirable radial and axial power peaking in the reactor core. Here we show that axial grading of the inert matrix fuel rods can reduce peaking significantly. Monte Carlo simulations are used to model the assembly level power distributions in both ungraded and graded fuel rods. The results show that an axial grading of uranium dioxide and inert matrix fuels with erbium can reduces power peaking by more than 50% in the axial direction. The reduction in power peaking enables the core to operate at significantly higher power. (authors)
A Compliant Casing for Transonic Axial Compressors
NASA Technical Reports Server (NTRS)
Bloch, Gregory S.; Hah, Chunill
2003-01-01
A viewgraph presentation on the concept of compliant casing for transonic axial compressors is shown. The topics include: 1) Concept for compliant casing; 2) Rig and facility details; 3) Experimental results; and 4) Numerical results.
Axial gravitational perturbations of an infinite static line source
NASA Astrophysics Data System (ADS)
Gleiser, Reinaldo J.
2015-03-01
The Levi-Civita metric, which contains a naked singularity that has been interpreted as an infinite static line source, appears, for instance, as the possible end point in the collapse of cylindrically symmetric objects such as shells of dust. The analysis of its gravitational stability should therefore be relevant in the contexts of the cosmic censorship and hoop conjectures. In this paper we study axial gravitational perturbations of the Levi-Civita metric. The perturbations are restricted to axial symmetry but break the cylindrical symmetry of the background metric. We analyze the gauge issues that arise in setting up the appropriate form of the perturbed metric and show that it is possible to restrict the perturbations to diagonal terms but that this does not fix the gauge completely. We derive and solve the perturbation equations. The solutions contain gauge-trivial parts, and we show how to extract the gauge-nontrivial components. We impose appropriate boundary conditions on the solutions and show that these lead to a boundary value problem that determines the allowed functional forms of the perturbation modes. The associated eigenvalues determine a sort of ‘dispersion relation’ for the frequencies and corresponding ‘wave vector’ components. The central result of this analysis is that the spectrum of allowed frequencies contains one unstable (imaginary frequency) mode for every possible choice of the background metric. The completeness of the mode expansion in relation to the initial value problem and to the gauge problem is discussed in detail, and we show that the perturbations contain an unstable component for generic initial data and therefore that the Levi-Civita space times are gravitationally unstable. We also include, for completeness, a set of approximate eigenvalues and examples of the functional form of the solutions.
Planned Axial Reorientation Investigation on Sloshsat
NASA Technical Reports Server (NTRS)
Chato, David J.
2000-01-01
This paper details the design and logic of an experimental investigation to study axial reorientation in low gravity. The Sloshsat free-flyer is described. The planned axial reorientation experiments and test matrixes are presented. Existing analytical tools are discussed. Estimates for settling range from 64 to 1127 seconds. The planned experiments are modelled using computational fluid dynamics. These models show promise in reducing settling estimates and demonstrate the ability of pulsed high thrust settling to emulate lower thrust continuous firing.
High temperature co-axial winding transformers
NASA Technical Reports Server (NTRS)
Divan, Deepakraj M.; Novotny, Donald W.
1993-01-01
The analysis and design of co-axial winding transformers is presented. The design equations are derived and the different design approaches are discussed. One of the most important features of co-axial winding transformers is the fact that the leakage inductance is well controlled and can be made low. This is not the case in conventional winding transformers. In addition, the power density of co-axial winding transformers is higher than conventional ones. Hence, using co-axial winding transformers in a certain converter topology improves the power density of the converter. The design methodology used in meeting the proposed specifications of the co-axial winding transformer specifications are presented and discussed. The final transformer design was constructed in the lab. Co-axial winding transformers proved to be a good choice for high power density and high frequency applications. They have a more predictable performance compared with conventional transformers. In addition, the leakage inductance of the transformer can be controlled easily to suit a specific application. For space applications, one major concern is the extraction of heat from power apparatus to prevent excessive heating and hence damaging of these units. Because of the vacuum environment, the only way to extract heat is by using a cold plate. One advantage of co-axial winding transformers is that the surface area available to extract heat from is very large compared to conventional transformers. This stems from the unique structure of the co-axial transformer where the whole core surface area is exposed and can be utilized for cooling effectively. This is a crucial issue here since most of the losses are core losses.
NASA Astrophysics Data System (ADS)
Martínez-Coronado, R.; Aguadero, A.; Alonso, J. A.; Fernández-Díaz, M. T.
2013-04-01
A polycrystalline oxygen-stoichiometric La2ZnMnO6 double-perovskite oxide has been prepared by soft-chemistry procedures, followed by annealing in air at 800 °C. A reduced specimen, with a La2ZnMnO6-δ composition, has been obtained by topotactical oxygen removal in an H2/N2 (5%/95%) flow at 600 °C. The structural characterization has been conducted from neutron powder diffraction (NPD) data, very sensitive to the contrast between Zn and Mn and the oxygen stoichiometry. Both perovskites (oxidized and reduced) crystallize in the monoclinic P21/n space group, exhibiting an antisite Zn/Mn disorder of about 15% and 14%, respectively. The partial reduction of Mn4+ to Mn3+ in the reduced phase is accompanied with the occurrence of oxygen vacancies, located at the axial octahedral sites. Thermogravimetric analysis (TGA) substantiates the oxygen stoichiometry and the stability range. Magnetic susceptibility measurements indicate an antiferromagnetic behaviour, confirming the presence of Mn3+ ions in the structure. The magnetic structure of the reduced phase, determined from NPD data at 3 K, shows an antiferromagnetic G-type coupling between Mn at 2c and 2d sites (promoted by the anti-site disorder); the ordered magnetic moment at Mn site is 0.789 μB at 3 K. Both phases display a semiconductor-like behaviour with a maximum conductivity of 0.052 S cm-1 for the reduced phase at 650 °C, due to the occurrence of Mn3+-Mn4+ mixed valence. Moreover, the measured thermal expansion coefficients perfectly match with the values usually displayed by SOFC electrolytes. The reversibility and versatility of the present compounds as catalysts for oxygen reduction (cathode) or fuel oxidation (anode) were tested in single SOFC cells yielding power density spanning from 120 to 155 W/cm2 using these perovskites as anode, cathode and symmetric electrodes for SOFC.
Tang, Jiqiang; Xiang, Biao; Zhang, Yongbin
2014-07-01
For a magnetically suspended control moment gyroscope, stiffness and damping of magnetic bearing will influence modal frequency of a rotor. In this paper the relationship between modal frequency and stiffness and damping has been investigated. The mathematic calculation model of axial passive magnetic bearing (PMB) stiffness is developed. And PID control based on internal model control is introduced into control of radial active magnetic bearing (AMB), considering the radial coupling of axial PMB, a mathematic calculation model of stiffness and damping of radial AMB is established. According to modal analysis, the relationship between modal frequency and modal shapes is achieved. Radial vibration frequency is mainly influenced by stiffness of radial AMB; however, when stiffness increases, radial vibration will disappear and a high frequency bending modal will appear. Stiffness of axial PMB mainly affects the axial vibration mode, which will turn into high-order bending modal. Axial PMB causes bigger influence on torsion modal of the rotor.
Zonal spherical aberration correction utilizing axial electrodes
NASA Astrophysics Data System (ADS)
Chao, Liang C.
2005-01-01
Spherical aberration is important in focused ion beam applications where large aperture angles are needed to obtain high beam currents because it results in large tails on the current density distribution. Merwe has shown that for coaxial lenses, negative spherical aberration can be found for rays pass through zonal regions. Merwe"s calculation is valid only for periodic or quasi-periodic lenses and requires a constant axial potential distribution. We have calculated zonal focusing properties of lenses with axial electrodes using nine-point finite difference method and direct ray tracing. Our calculation results indicate that an axial electrode protruding partially into the lens can correct the spherical aberration. When a three-element electrostatic lens is operated at deceleration mode, the introduction of an axial electrode creates zonal regions where the spherical aberration is negative. At deceleration mode, the induced surface charges on the axial electrode have an opposite sign relative to the primary beam. This is in agreement with our previous findings on the study of the correction of spherical aberration utilizing space charges. Same phenomenon was found when an axial electrode is used in conjunction with a cathode lens.
Split Venturi, Axially-Rotated Valve
Walrath, David E.; Lindberg, William R.; Burgess, Robert K.
2000-08-29
The present invention provides an axially-rotated valve which permits increased flow rates and lower pressure drop (characterized by a lower loss coefficient) by using an axial eccentric split venturi with two portions where at least one portion is rotatable with respect to the other portion. The axially-rotated valve typically may be designed to avoid flow separation and/or cavitation at full flow under a variety of conditions. Similarly, the valve is designed, in some embodiments, to produce streamlined flow within the valve. A typical cross section of the eccentric split venturi may be non-axisymmetric such as a semicircular cross section which may assist in both throttling capabilities and in maximum flow capacity using the design of the present invention. Such a design can include applications for freeze resistant axially-rotated valves and may be fully-opened and fully-closed in one-half of a complete rotation. An internal wide radius elbow typically connected to a rotatable portion of the eccentric venturi may assist in directing flow with lower friction losses. A valve actuator may actuate in an axial manner yet be uniquely located outside of the axial flow path to further reduce friction losses. A seal may be used between the two portions that may include a peripheral and diametrical seal in the same plane.
Equatorial superrotation in a thermally driven zonally symmetric circulation
NASA Technical Reports Server (NTRS)
Mayr, H. G.; Harris, I.
1981-01-01
Near the equator where the Coriolis force vanishes, the momentum balance for the axially symmetric circulation is established between horizontal and vertical diffusion, which, a priori, does not impose constraints on the direction or magnitude of the zonal winds. Solar radiation absorbed at low latitudes is a major force in driving large scale motions with air rising near the equator and falling at higher latitudes. In the upper leg of the meridional cell, angular momentum is redistributed so that the atmosphere tends to subrotate (or corotate) at low latitudes and superrotate at high latitudes. In the lower leg, however, the process is reversed and produces a tendency for the equatorial region to superrotate. The outcome depends on the energy budget which is closely coupled to the momentum budget through the thermal wind equation; a pressure (temperature) maximum is required to sustain equatorial superrotation. Such a condition arises in regions which are convectively unstable and the temperature lapse rate is superadiabatic. It should arise in the tropospheres of Jupiter and Saturn; planetary energy from the interior is carried to higher altitudes where radiation to space becomes important. Upward equatorial motions in the direct and indirect circulations (Ferrel-Thomson type) imposed by insolation can then trap dynamic energy for equatorial heating which can sustain the superrotation of the equatorial region.
Magnetic fields in quiescent prominences
NASA Technical Reports Server (NTRS)
Van Ballegooijen, A. A.; Martens, P. C. H.
1990-01-01
The origin of the axial fields in high-latitude quiescent prominences is considered. The fact that almost all quiescent prominences obey the same hemisphere-dependent rule strongly suggests that the solar differential rotation plays an important role in producing the axial fields. However, the observations are inconsistent with the hypothesis that the axial fields are produced by differential rotation acting on an existing coronal magnetic field. Several possible explanations for this discrepancy are considered. The possibility that the sign of the axial field depends on the topology of the magnetic field in which the prominence is embedded is examined, as is the possibility that the neutral line is tilted with respect to the east-west direction, so that differential rotation causes the neutral line also to rotate with time. The possibility that the axial fields of quiescent prominences have their origin below the solar surface is also considered.
On symmetric and upwind TVD schemes
NASA Technical Reports Server (NTRS)
Yee, H. C.
1985-01-01
A class of explicit and implicit total variation diminishing (TVD) schemes for the compressible Euler and Navier-Stokes equations was developed. They do not generate spurious oscillations across shocks and contact discontinuities. In general, shocks can be captured within 1 to 2 grid points. For the inviscid case, these schemes are divided into upwind TVD schemes and symmetric (nonupwind) TVD schemes. The upwind TVD scheme is based on the second-order TVD scheme. The symmetric TVD scheme is a generalization of Roe's and Davis' TVD Lax-Wendroff scheme. The performance of these schemes on some viscous and inviscid airfoil steady-state calculations is investigated. The symmetric and upwind TVD schemes are compared.
The Robust Assembly of Small Symmetric Nanoshells
Wagner, Jef; Zandi, Roya
2015-01-01
Highly symmetric nanoshells are found in many biological systems, such as clathrin cages and viral shells. Many studies have shown that symmetric shells appear in nature as a result of the free-energy minimization of a generic interaction between their constituent subunits. We examine the physical basis for the formation of symmetric shells, and by using a minimal model, demonstrate that these structures can readily grow from the irreversible addition of identical subunits. Our model of nanoshell assembly shows that the spontaneous curvature regulates the size of the shell while the mechanical properties of the subunit determine the symmetry of the assembled structure. Understanding the minimum requirements for the formation of closed nanoshells is a necessary step toward engineering of nanocontainers, which will have far-reaching impact in both material science and medicine. PMID:26331253
Symmetric extension of two-qubit states
NASA Astrophysics Data System (ADS)
Chen, Jianxin; Ji, Zhengfeng; Kribs, David; Lütkenhaus, Norbert; Zeng, Bei
2014-09-01
A bipartite state ρAB is symmetric extendible if there exists a tripartite state ρABB' whose AB and AB' marginal states are both identical to ρAB. Symmetric extendibility of bipartite states is of vital importance in quantum information because of its central role in separability tests, one-way distillation of Einstein-Podolsky-Rosen pairs, one-way distillation of secure keys, quantum marginal problems, and antidegradable quantum channels. We establish a simple analytic characterization for symmetric extendibility of any two-qubit quantum state ρAB; specifically, tr(ρB2)≥tr(ρAB2)-4√ detρAB . As a special case we solve the bosonic three-representability problem for the two-body reduced density matrix.
CAST: Contraction Algorithm for Symmetric Tensors
Rajbhandari, Samyam; NIkam, Akshay; Lai, Pai-Wei; Stock, Kevin; Krishnamoorthy, Sriram; Sadayappan, Ponnuswamy
2014-09-22
Tensor contractions represent the most compute-intensive core kernels in ab initio computational quantum chemistry and nuclear physics. Symmetries in these tensor contractions makes them difficult to load balance and scale to large distributed systems. In this paper, we develop an efficient and scalable algorithm to contract symmetric tensors. We introduce a novel approach that avoids data redistribution in contracting symmetric tensors while also avoiding redundant storage and maintaining load balance. We present experimental results on two parallel supercomputers for several symmetric contractions that appear in the CCSD quantum chemistry method. We also present a novel approach to tensor redistribution that can take advantage of parallel hyperplanes when the initial distribution has replicated dimensions, and use collective broadcast when the final distribution has replicated dimensions, making the algorithm very efficient.
Communication-avoiding symmetric-indefinite factorization
Ballard, Grey Malone; Becker, Dulcenia; Demmel, James; Dongarra, Jack; Druinsky, Alex; Peled, Inon; Schwartz, Oded; Toledo, Sivan; Yamazaki, Ichitaro
2014-11-13
We describe and analyze a novel symmetric triangular factorization algorithm. The algorithm is essentially a block version of Aasen's triangular tridiagonalization. It factors a dense symmetric matrix A as the product A=PLTL^{T}P^{T} where P is a permutation matrix, L is lower triangular, and T is block tridiagonal and banded. The algorithm is the first symmetric-indefinite communication-avoiding factorization: it performs an asymptotically optimal amount of communication in a two-level memory hierarchy for almost any cache-line size. Adaptations of the algorithm to parallel computers are likely to be communication efficient as well; one such adaptation has been recently published. As a result, the current paper describes the algorithm, proves that it is numerically stable, and proves that it is communication optimal.
Communication-avoiding symmetric-indefinite factorization
Ballard, Grey Malone; Becker, Dulcenia; Demmel, James; Dongarra, Jack; Druinsky, Alex; Peled, Inon; Schwartz, Oded; Toledo, Sivan; Yamazaki, Ichitaro
2014-11-13
We describe and analyze a novel symmetric triangular factorization algorithm. The algorithm is essentially a block version of Aasen's triangular tridiagonalization. It factors a dense symmetric matrix A as the product A=PLTLTPT where P is a permutation matrix, L is lower triangular, and T is block tridiagonal and banded. The algorithm is the first symmetric-indefinite communication-avoiding factorization: it performs an asymptotically optimal amount of communication in a two-level memory hierarchy for almost any cache-line size. Adaptations of the algorithm to parallel computers are likely to be communication efficient as well; one such adaptation has been recently published. As a result,more » the current paper describes the algorithm, proves that it is numerically stable, and proves that it is communication optimal.« less
Symmetric States on the Octonionic Bloch Ball
NASA Astrophysics Data System (ADS)
Graydon, Matthew
2012-02-01
Finite-dimensional homogeneous self-dual cones arise as natural candidates for convex sets of states and effects in a variety of approaches towards understanding the foundations of quantum theory in terms of information-theoretic concepts. The positive cone of the ten-dimensional Jordan-algebraic spin factor is one particular instantiation of such a convex set in generalized frameworks for quantum theory. We consider a projection of the regular 9-simplex onto the octonionic projective line to form a highly symmetric structure of ten octonionic quantum states on the surface of the octonionic Bloch ball. A uniform subnormalization of these ten symmetric states yields a symmetric informationally complete octonionic quantum measurement. We discuss a Quantum Bayesian reformulation of octonionic quantum formalism for the description of two-dimensional physical systems. We also describe a canonical embedding of the octonionic Bloch ball into an ambient space for states in usual complex quantum theory.
An alternative approach to symmetric systems
NASA Astrophysics Data System (ADS)
Véron, Alain
2016-11-01
We propose an alternative approach to treat problems with axial or spherical symmetry. Its main characteristic consists of using Cartesian coordinates instead of curvilinear coordinates as usual. To this end, we derive general mathematical expressions giving the spatial derivatives of tensors of arbitrary order along the direction normal to an arbitrary meridian plane for systems with axial symmetry, or along two orthogonal directions normal to an arbitrary radius for systems with spherical symmetry. These relations allow the reduction of the initial three-dimensional problem to a domain with a lower dimension (two for axial symmetry, one for spherical symmetry), while keeping Cartesian coordinates within this domain. The method is illustrated for the flow of a Newtonian fluid between two coaxial cylinders (Couette cell), the Weissenberg effect for viscoelastic fluids and the flow of complex fluids like liquid crystals.
Flux Compression Magnetic Nozzle
NASA Technical Reports Server (NTRS)
Thio, Y. C. Francis; Schafer, Charles (Technical Monitor)
2001-01-01
In pulsed fusion propulsion schemes in which the fusion energy creates a radially expanding plasma, a magnetic nozzle is required to redirect the radially diverging flow of the expanding fusion plasma into a rearward axial flow, thereby producing a forward axial impulse to the vehicle. In a highly electrically conducting plasma, the presence of a magnetic field B in the plasma creates a pressure B(exp 2)/2(mu) in the plasma, the magnetic pressure. A gradient in the magnetic pressure can be used to decelerate the plasma traveling in the direction of increasing magnetic field, or to accelerate a plasma from rest in the direction of decreasing magnetic pressure. In principle, ignoring dissipative processes, it is possible to design magnetic configurations to produce an 'elastic' deflection of a plasma beam. In particular, it is conceivable that, by an appropriate arrangement of a set of coils, a good approximation to a parabolic 'magnetic mirror' may be formed, such that a beam of charged particles emanating from the focal point of the parabolic mirror would be reflected by the mirror to travel axially away from the mirror. The degree to which this may be accomplished depends on the degree of control one has over the flux surface of the magnetic field, which changes as a result of its interaction with a moving plasma.
Hidden local symmetry of Eu{sup 3+} in xenotime-like crystals revealed by high magnetic fields
Han, Yibo; Ma, Zongwei; Zhang, Junpei; Wang, Junfeng; Du, Guihuan; Xia, Zhengcai; Han, Junbo Li, Liang; Yu, Xuefeng
2015-02-07
The excellent optical properties of europium-doped crystals in visible and near infrared wavelength regions enable them to have broad applications in optoelectronics, laser crystals and sensing devices. The local site crystal fields can affect the intensities and peak positions of the photo-emission lines strongly, but they are usually difficult to be clarified due to magnetically degenerate 4f electronic levels coupling with the crystal fields. Here, we provide an effective way to explore the hidden local symmetry of the Eu{sup 3+} sites in different hosts by taking photoluminescence measurements under pulsed high magnetic fields up to 46 T. The zero-field photoluminescence peaks split further at high magnetic fields when the Zeeman splitting energy is comparable to or larger than that of the crystal field induced zero-field splitting. In particular, a magnetic field induced crossover of the local crystal fields has been observed in the GdVO{sub 4}:Eu{sup 3+} crystal, which resulted from the alignment of Gd{sup 3+} magnetic moment in high magnetic fields; and a hexagonally symmetric local crystal fields was observed in the YPO{sub 4} nanocrystals at the Eu{sup 3+} sites characterized by the special axial and rhombic crystal field terms. These distinct Zeeman splitting behaviors uncover the crystal fields-related local symmetry of luminescent Eu{sup 3+} centers in different hosts or magnetic environments, which are significant for their applications in optics and optoelectronics.
A highly active, stable and magnetically separable glutathione based organocatalyst provided good to excellent yields to symmetric biaryls in the homocoupling of arylboronic acids under microwave irradiation. Symmetrical biaryl motifs are present in a wide range of natural p...
Magnetic clouds and force-free fields with constant alpha
NASA Technical Reports Server (NTRS)
Burlaga, L. F.
1988-01-01
Magnetic clouds observed at 1 AU are modeled as cylindrically symmetric, constant alpha force-free magnetic fields. The model satisfactorily explains the types of variations of the magnetic field direction that are observed as a magnetic cloud moves past a spacecraft in terms of the possible orientations of the axis of a magnetic cloud. The model also explains why the magnetic field strength is observed to be higher inside a magnetic cloud than near its boundaries. However, the model predicts that the magnetic field strength profile should be symmetric with respect to the axis of the magnetic cloud, whereas observations show that this is not generally the case.
On symmetric and upwind TVD schemes
NASA Technical Reports Server (NTRS)
Yee, H. C.
1986-01-01
The performance of the upwind and symmetric total variation diminishing (TVD) schemes in viscous and inviscid airfoil steady-state calculations is considered, and the extension of the implicit second-order-accurate TVD scheme for hyperbolic systems of conservative laws in curvilinear coordinates is discussed. For two-dimensional steady-state applications, schemes are implemented in a conservative noniterative alternating direction implicit form, and results illustrate that the algorithm produces a fairly good solution for an RAE2822 airfoil calculation. The study demonstrates that the symmetric TVD scheme is as accurate as the upwind TVD scheme, while requiring less computational effort than it.
Observational tests of Baryon symmetric cosmology
NASA Technical Reports Server (NTRS)
Stecker, F. W.
1982-01-01
Observational evidence for Baryon symmetric (matter/antimatter) cosmology and future observational tests are reviewed. The most significant consequences of Baryon symmetric cosmology lie in the prediction of an observable cosmic background of gamma radiation from the decay of pi(0)-mesons produced in nucleon-antinucleon annihilations. Equations for the prediction of the amma ray background spectrum for the case of high redshifts are presented. The theoretical and observational plots of the background spectrum are shown to be in good agreement. Measurement of cosmic ray antiprotons and the use of high energy neutrino astronomy to look for antimatter elsewhere in the universe are also addressed.
All-optical symmetric ternary logic gate
NASA Astrophysics Data System (ADS)
Chattopadhyay, Tanay
2010-09-01
Symmetric ternary number (radix=3) has three logical states (1¯, 0, 1). It is very much useful in carry free arithmetical operation. Beside this, the logical operation using this type of number system is also effective in high speed computation and communication in multi-valued logic. In this literature all-optical circuits for three basic symmetrical ternary logical operations (inversion, MIN and MAX) are proposed and described. Numerical simulation verifies the theoretical model. In this present scheme the different ternary logical states are represented by different polarized state of light. Terahertz optical asymmetric demultiplexer (TOAD) based interferometric switch has been used categorically in this manuscript.
The rhomboidal symmetric four-body problem
NASA Astrophysics Data System (ADS)
Waldvogel, Jörg
2012-05-01
We consider the planar symmetric four-body problem with two equal masses m 1 = m 3 > 0 at positions (± x 1( t), 0) and two equal masses m 2 = m 4 > 0 at positions (0, ± x 2( t)) at all times t, referred to as the rhomboidal symmetric four-body problem. Owing to the simplicity of the equations of motion this problem is well suited to study regularization of the binary collisions, periodic solutions, chaotic motion, as well as the four-body collision and escape manifolds. Furthermore, resonance phenomena between the two interacting rectilinear binaries play an important role.
Self-bending symmetric cusp beams
Gong, Lei; Liu, Wei-Wei; Lu, Yao; Li, Yin-Mei; Ren, Yu-Xuan
2015-12-07
A type of self-bending symmetric cusp beams with four accelerating intensity maxima is theoretically and experimentally presented. Distinguished from the reported regular polygon beams, the symmetric cusp beams simultaneously exhibit peculiar features of natural autofocusing and self-acceleration during propagation. Further, such beams take the shape of a fine longitudinal needle-like structure at the focal region and possess the strong ability of self-healing over obstacles. All these intriguing properties were verified experimentally. Particularly, the spatial profile of the reconstructed beam exhibits spatially sculpted optical structure with four siamesed curved arms. Thus, we anticipate that the structured beam will benefit optical guiding and optofluidics in surprising ways.
Production of low axial energy spread ion beams with multicusp sources
Lee, Y.H.Y.
1998-05-01
Multicusp ion sources are capable of producing ions with low axial energy spread which are necessary in applications such as: ion projection lithography (IPL) and focused ion beams for the next generation lithographic tools and nuclear science experiments such as radioactive ion beam production. The axial ion energy spread for multicusp source is approximately 6 eV which is too large for IPL and radioactive ion beam applications. The addition of a magnetic filter which consists of a pair of permanent magnets to the multicusp source reduces the energy spread considerably. The reduction is due to the improvement in the uniformity of the axial plasma potential distribution in the discharge region. Axial ion energy spread of the filament driven ion source has been measured using three different techniques. In all cases, it was found to be less than 2 eV. Energy spread of the radio frequency (RF) driven source has also been explored, and it was found to be less than 3 eV with the proper RF-shielding. A new multicusp source configuration has been designed and constructed to further reduce the energy spread. To achieve a more uniform axial plasma potential distribution, a cylindrical magnetic filter has been designed and constructed for a 2-cm-diameter source. This new source configuration, the co-axial source, is new in its kind. The energy spread in this source has been measured to be a record low of 0.6 eV. Because of the novelty of this device, some plasma parameters inside the source have been studied. Langmuir probe has been used to measure the plasma potential, the electron temperature and the density distribution.
Composite Dirac Liquids: Parent States for Symmetric Surface Topological Order
NASA Astrophysics Data System (ADS)
Mross, David F.; Essin, Andrew; Alicea, Jason
2015-01-01
We introduce exotic gapless states—"composite Dirac liquids"—that can appear at a strongly interacting surface of a three-dimensional electronic topological insulator. Composite Dirac liquids exhibit a gap to all charge excitations but nevertheless feature a single massless Dirac cone built from emergent electrically neutral fermions. These states thus comprise electrical insulators that, interestingly, retain thermal properties similar to those of the noninteracting topological insulator surface. A variety of novel fully gapped phases naturally descend from composite Dirac liquids. Most remarkably, we show that gapping the neutral fermions via Cooper pairing—which crucially does not violate charge conservation—yields symmetric non-Abelian topologically ordered surface phases captured in several recent works. Other (Abelian) topological orders emerge upon alternatively gapping the neutral Dirac cone with magnetism. We establish a hierarchical relationship between these descendant phases and expose an appealing connection to paired states of composite Fermi liquids arising in the half filled Landau level of two-dimensional electron gases. To controllably access these states we exploit a quasi-1D deformation of the original electronic Dirac cone that enables us to analytically address the fate of the strongly interacting surface. The algorithm we develop applies quite broadly and further allows the construction of symmetric surface topological orders for recently introduced bosonic topological insulators.
Theoretical Study on Twofold and Fourfold Symmetric Anisotropic Magnetoresistance Effect
NASA Astrophysics Data System (ADS)
Kokado, Satoshi; Tsunoda, Masakiyo
We theoretically study the twofold and fourfold symmetric anisotropic magnetoresistance (AMR) effect [ 1 ] . We first extend our previous model [ 2 ] to a model including the crystal field effect [ 1 ] . Using the model, we next obtain an analytical expression of the AMR ratio, i.e., AMR (ϕ) =C0 +C2 cos (2 ϕ) +C4 cos (4 ϕ) , with C0=C2 -C4 [ 1 ] . Here, ϕ is the relative angle between the magnetization direction and the electric current direction and C2 (C4) is a coefficient of the twofold (fourfold) symmetric term. The coefficients C2 and C4 are expressed by a spin-orbit coupling constant, an exchange field, a crystal field, and s-s and s-d scattering resistivities. Using this expression, we analyze the experimental results for Fe4N [ 3 ] , in which | C2 | and | C4 | increase with decreasing temperature. The experimental results can be reproduced by assuming that the tetragonal distortion increases with decreasing temperature. [ 1 ] S. Kokado et al., J. Phys. Soc. Jpn. 84 (2015) 094710. [ 2 ] S. Kokado et al., J. Phys. Soc. Jpn. 81 (2012) 024705. [ 3 ] M. Tsunoda et al., Appl. Phys. Express 3 (2010) 113003.
Binary switching in a ‘symmetric' potential landscape
Roy, Kuntal; Bandyopadhyay, Supriyo; Atulasimha, Jayasimha
2013-01-01
A binary switch is the basic building block for information processing. The potential energy profile of a bistable binary switch is a ‘symmetric' double well. The traditional method of switching it from one state (one well) to the other is to tilt the profile towards the desired state. Here, we present a case, where no such tilting is necessary to switch successfully, even in the presence of thermal noise. This happens because of the built-in dynamics inside the switch itself. It differs from the general perception on binary switching that in a ‘symmetric' potential landscape, the switching probability is 50% in the presence of thermal noise. Our results, considering the complete three-dimensional potential landscape, demonstrate intriguing phenomena on binary switching mechanism. With experimentally feasible parameters, we theoretically demonstrate such intriguing possibility in electric field induced magnetization switching of a shape-anisotropic single-domain magnetostrictive nanomagnet with two stable states at room-temperature. PMID:24154561
Magnetic Anisotropy in the Radula of Chiton
NASA Astrophysics Data System (ADS)
Zhao, Jian-Gao; Qian, Xia; Liu, Wei; Liu, Chuan-Lin; Zhan, Wen-Shan
2000-07-01
Radular teeth of chitons were studied by using magnetic torque-meter and transmission electron microscopy (TEM). The magnetic torque curves give clear evidence of presence of strong uni-axial magnetic anisotropy. The easy axis is along the length direction of tongue-like radula. The TEM pattern shows that long chip-like magnetite nano-scaled particles packed in the radular teeth with both uni-axial shape anisotropy and magneto-crystalline anisotropy.
Gaudin-type models, non-skew-symmetric classical r-matrices and nested Bethe ansatz
NASA Astrophysics Data System (ADS)
Skrypnyk, T.
2015-02-01
We consider quantum integrable systems associated with the Lie algebra gl (n) and Cartan-invariant non-dynamical non-skew-symmetric classical r-matrices. We describe the sub-class of Cartan-invariant non-skew-symmetric r-matrices for which exists the standard procedure of the nested Bethe ansatz associated with the chain of embeddings gl (n) ⊃ gl (n - 1) ⊃ gl (n - 2) ⊃ ⋯ ⊃ gl (1). We diagonalize the corresponding quantum integrable systems by its means. We illustrate the obtained results by the examples of the generalized Gaudin systems with and without external magnetic field associated with three classes of non-dynamical non-skew-symmetric classical r-matrices.
SEISMIC DISCRIMINATION OF THERMAL AND MAGNETIC ANOMALIES IN SUNSPOT UMBRAE
Lindsey, C.; Cally, P. S.; Rempel, M.
2010-08-20
Efforts to model sunspots based on helioseismic signatures need to discriminate between the effects of (1) a strong magnetic field that introduces time-irreversible, vantage-dependent phase shifts, apparently connected to fast- and slow-mode coupling and wave absorption and (2) a thermal anomaly that includes cool gas extending an indefinite depth beneath the photosphere. Helioseismic observations of sunspots show travel times considerably reduced with respect to equivalent quiet-Sun signatures. Simulations by Moradi and Cally of waves skipping across sunspots with photospheric magnetic fields of order 3 kG show travel times that respond strongly to the magnetic field and relatively weakly to the thermal anomaly by itself. We note that waves propagating vertically in a vertical magnetic field are relatively insensitive to the magnetic field, while remaining highly responsive to the attendant thermal anomaly. Travel-time measurements for waves with large skip distances into the centers of axially symmetric sunspots are therefore a crucial resource for discrimination of the thermal anomaly beneath sunspot umbrae from the magnetic anomaly. One-dimensional models of sunspot umbrae based on compressible-radiative-magnetic-convective simulations such as by Rempel et al. can be fashioned to fit observed helioseismic travel-time spectra in the centers of sunspot umbrae. These models are based on cooling of the upper 2-4 Mm of the umbral subphotosphere with no significant anomaly beneath 4.5 Mm. The travel-time reductions characteristic of these models are primarily a consequence of a Wilson depression resulting from a strong downward buoyancy of the cooled umbral medium.
Magnetostatic simulation on a novel design of axially multi-coiled magnetorheological brakes
NASA Astrophysics Data System (ADS)
Ubaidillah, Permata, A. N. S.; Wibowo, A.; Budiana, E. P.; Yahya, I.; Mazlan, S. A.
2016-03-01
This paper describes the 3D magnetostatic simulation of a novel design axially multi-coiled magnetorheological (MRB). The proposed model is expected to produce a concentrated magnetic flux on the surface of the rotor disk brake. Thus, the braking torque enhancement is expected to be higher than that of conventional big size single-coil-equipped disk-type MRB. The axially multi-coiled MRB design features multiple electromagnetic poles from by several coils placed in the axial direction outside the MRB body. The magnetostatic analysis was developed utilizing finite element software namely ANSOFT-MAXWELL in 3D environment. The distribution of magnetic flux was investigated in a pair of the coil that represents the other pairs of electromagnetic parts. The simulation was done in 0.5 mm gap filled by magnetorheological fluids (MRFs) (MRF-132DG). The simulation was performed in various applied currents i.e. 0.25, 0.5, 0.75, 1, 1.5, and 2 Amperes. The results showed that the axially multi-coiled MRB provides a considerable magnetic flux (maximum of 337 mT/area). The active energizing areas of the MRB are proven to be more intensive than the conventional MRB. The proposed MRB exhibited a compact and robust design for achieving high torque MRB.
Three-Dimensional Field Solutions for Multi-Pole Cylindrical Halbach Arrays in an Axial Orientation
NASA Technical Reports Server (NTRS)
Thompson, William K.
2006-01-01
This article presents three-dimensional B field solutions for the cylindrical Halbach array in an axial orientation. This arrangement has applications in the design of axial motors and passive axial magnetic bearings and couplers. The analytical model described here assumes ideal magnets with fixed and uniform magnetization. The field component functions are expressed as sums of 2-D definite integrals that are easily computed by a number of mathematical analysis software packages. The analysis is verified with sample calculations and the results are compared to equivalent results from traditional finite-element analysis (FEA). The field solutions are then approximated for use in flux linkage and induced EMF calculations in nearby stator windings by expressing the field variance with angular displacement as pure sinusoidal function whose amplitude depends on radial and axial position. The primary advantage of numerical implementation of the analytical approach presented in the article is that it lends itself more readily to parametric analysis and design tradeoffs than traditional FEA models.