Single Axis Attitude Control and DC Bus Regulation with Two Flywheels
NASA Technical Reports Server (NTRS)
Kascak, Peter E.; Jansen, Ralph H.; Kenny, Barbara; Dever, Timothy P.
2002-01-01
A computer simulation of a flywheel energy storage single axis attitude control system is described. The simulation models hardware which will be experimentally tested in the future. This hardware consists of two counter rotating flywheels mounted to an air table. The air table allows one axis of rotational motion. An inertia DC bus coordinator is set forth that allows the two control problems, bus regulation and attitude control, to be separated. Simulation results are presented with a previously derived flywheel bus regulator and a simple PID attitude controller.
Peng, Hongjun; Long, Ying; Li, Jie; Guo, Yangbo; Wu, Huawang; Yang, YuLing; Ding, Yi; He, Jianfei; Ning, Yuping
2014-02-18
To date, the relationships between childhood neglect, hypothalamic-pituitary-adrenal (HPA) axis functioning and dysfunctional attitude in depressed patients are still obscure. The Childhood Trauma Questionnaire (CTQ) was used to assess childhood emotional neglect and physical neglect. Twenty-eight depressed patients with childhood neglect and 30 depressed patients without childhood neglect from Guangzhou Psychiatric Hospital were compared with 29 age- and gender-matched control subjects without childhood neglect and 22 control subjects with childhood neglect. Cortisol awakening response, the difference between the cortisol concentrations at awakening and 30 minutes later, provided a measure of HPA axis functioning. The Dysfunctional Attitude Scale measured cognitive schema. HPA axis functioning was significantly increased in depressed patients with childhood neglect compared with depressed patients without childhood neglect (p < 0.001). HPA axis activity in the control group with childhood neglect was significantly higher than in the depressed group without childhood neglect (p < 0.001). Total scores of childhood neglect were positively correlated with HPA axis functioning and dysfunctional attitude scores, but not with severity of depression. We did not find correlations with HPA axis functioning and dysfunctional attitude or with the Hamilton Rating Scale for Depression scores. Childhood neglect may cause hyperactivity of the HPA axis functioning and dysfunctional attitude, but does not affect depression severity.
A new momentum management controller for the space station
NASA Technical Reports Server (NTRS)
Wie, B.; Byun, K. W.; Warren, V. W.
1988-01-01
A new approach to CMG (control moment gyro) momentum management and attitude control of the Space Station is developed. The control algorithm utilizes both the gravity-gradient and gyroscopic torques to seek torque equilibrium attitude in the presence of secular and cyclic disturbances. Depending upon mission requirements, either pitch attitude or pitch-axis CMG momentum can be held constant: yaw attitude and roll-axis CMG momentum can be held constant, while roll attitude and yaw-axis CMG momentum cannot be held constant. As a result, the overall attitude and CMG momentum oscillations caused by cyclic aero-dynamic disturbances are minimized. A state feedback controller with minimal computer storage requirement for gain scheduling is also developed. The overall closed-loop system is stable for + or - 30 percent inertia matrix variations and has more than + or - 10 dB and 45 deg stability margins in each loop.
NASA Astrophysics Data System (ADS)
Inamori, Takaya; Otsuki, Kensuke; Sugawara, Yoshiki; Saisutjarit, Phongsatorn; Nakasuka, Shinichi
2016-11-01
This study proposes a novel method for three-axis attitude control using only magnetic torquers (MTQs). Previously, MTQs have been utilized for attitude control in many low Earth orbit satellites. Although MTQs are useful for achieving attitude control at low cost and high reliability without the need for propellant, these electromagnetic coils cannot be used to generate an attitude control torque about the geomagnetic field vector. Thus, conventional attitude control methods using MTQs assume the magnetic field changes in an orbital period so that the satellite can generate a required attitude control torque after waiting for a change in the magnetic field direction. However, in a near magnetic equatorial orbit, the magnetic field does not change in an inertial reference frame. Thus, satellites cannot generate a required attitude control torque in a single orbital period with only MTQs. This study proposes a method for achieving a rotation about the geomagnetic field vector by generating a torque that is perpendicular to it. First, this study shows that the three-axis attitude control using only MTQs is feasible with a two-step rotation. Then, the study proposes a method for controlling the attitude with the two-step rotation using a PD controller. Finally, the proposed method is assessed by examining the results of numerical simulations.
Spacecraft Attitude Tracking and Maneuver Using Combined Magnetic Actuators
NASA Technical Reports Server (NTRS)
Zhou, Zhiqiang
2012-01-01
A paper describes attitude-control algorithms using the combination of magnetic actuators with reaction wheel assemblies (RWAs) or other types of actuators such as thrusters. The combination of magnetic actuators with one or two RWAs aligned with different body axis expands the two-dimensional control torque to three-dimensional. The algorithms can guarantee the spacecraft attitude and rates to track the commanded attitude precisely. A design example is presented for nadir-pointing, pitch, and yaw maneuvers. The results show that precise attitude tracking can be reached and the attitude- control accuracy is comparable with RWA-based attitude control. When there are only one or two workable RWAs due to RWA failures, the attitude-control system can switch to the control algorithms for the combined magnetic actuators with the RWAs without going to the safe mode, and the control accuracy can be maintained. The attitude-control algorithms of the combined actuators are derived, which can guarantee the spacecraft attitude and rates to track the commanded values precisely. Results show that precise attitude tracking can be reached, and the attitude-control accuracy is comparable with 3-axis wheel control.
NASA Technical Reports Server (NTRS)
Sindlinger, R. S.
1977-01-01
A 3-axis active attitude control system with only one rotating part was developed using a momentum wheel with magnetic gimballing capability as a torque actuator for all three body axes. A brief description of magnetic bearing technology is given. It is concluded that based on this technology an integrated energy storage/attitude control system with one air of counterrotating rings could reduce the complexity and weight of conventional systems.
Science observations with the IUE using the one-gyro mode
NASA Technical Reports Server (NTRS)
Imhoff, C.; Pitts, R.; Arquilla, R.; Shrader, Chris R.; Perez, M. R.; Webb, J.
1990-01-01
The International Ultraviolet Explorer (IUE) attitude control system originally included an inertial reference package containing six gyroscopes for three axis stabilization. The science instrument includes a prime and redundant Field Error Sensor (FES) camera for target acquisition and offset guiding. Since launch, four of the six gyroscopes have failed. The current attitude control system utilizes the remaining two gyros and a Fine Sun Sensor (FSS) for three axis stabilization. When the next gyro fails, a new attitude control system will be uplinked which will rely on the remaining gyro and the FSS for general three axis stabilization. In addition to the FSS, the FES cameras will be required to assist in maintaining fine attitude control during target acquisition. This has required thoroughly determining the characteristics of the FES cameras and the spectrograph aperture plate as well as devising new target acquisition procedures. The results of this work are presented.
Science observations with the IUE using the one-gyro mode
NASA Technical Reports Server (NTRS)
Imhoff, C.; Pitts, R.; Arquilla, R.; Shrader, C.; Perez, M.; Webb, J.
1990-01-01
The International Ultraviolet Explorer (IUE) attitude control system originally included an inertial reference package containing six gyroscopes for three axis stabilization. The science instrument includes a prime and redundant Field Error Sensor (FES) camera for target acquisition and offset guiding. Since launch, four of the six gyroscopes have failed. The current attitude control system utilizes the remaining two gyros and a Fine Sun Sensor (FSS) for three axis stabilization. When the next gyro fails, a new attitude control system will be uplinked, which will relay on the remaining gyro and the FSS for general three axis stabilization. In addition to the FSS, the FES cameras will be required to assist in maintaining fine attitude control during target acquisition. This has required thoroughly determining the characteristics of the FES cameras and the spectrograph aperture plate as well as devising new target acquisition procedures. The results of this work are presented.
NASA Technical Reports Server (NTRS)
Magana, Mario E.
1989-01-01
The digital position controller implemented in the control computer of the 3-axis attitude motion simulator is mathematically reconstructed and documented, since the information supplied with the executable code of this controller was insufficient to make substantial modifications to it. Also developed were methodologies to introduce changes in the controller which do not require rewriting the software. Finally, recommendations are made on possible improvement to the control system performance.
Attitude analysis of the Earth Radiation Budget Satellite (ERBS) yaw turn anomaly
NASA Technical Reports Server (NTRS)
Kronenwetter, J.; Phenneger, M.; Weaver, William L.
1988-01-01
The July 2 Earth Radiation Budget Satellite (ERBS) hydrazine thruster-controlled yaw inversion maneuver resulted in a 2.1 deg/sec attitude spin. This mode continued for 150 minutes until the spacecraft was inertially despun using the hydrazine thrusters. The spacecraft remained in a low-rate Y-axis spin of .06 deg/sec for 3 hours until the B-DOT control mode was activated. After 5 hours in this mode, the spacecraft Y-axis was aligned to the orbit normal, and the spacecraft was commanded to the mission mode of attitude control. This work presents the experience of real-time attitude determination support following analysis using the playback telemetry tape recorded for 7 hours from the start of the attitude control anomaly.
NASA Astrophysics Data System (ADS)
Aleksandrov, A. Yu.; Aleksandrova, E. B.; Tikhonov, A. A.
2018-07-01
The paper deals with a dynamically symmetric satellite in a circular near-Earth orbit. The satellite is equipped with an electrodynamic attitude control system based on Lorentz and magnetic torque properties. The programmed satellite attitude motion is such that the satellite slowly rotates around the axis of its dynamical symmetry. Unlike previous publications, we consider more complex and practically more important case where the axis is fixed in the orbital frame in an inclined position with respect to the local vertical axis. The satellite stabilization in the programmed attitude motion is studied. The gravitational disturbing torque acting on the satellite attitude dynamics is taken into account since it is the largest disturbing torque. The novelty of the proposed approach is based on the usage of electrodynamic attitude control system. With the aid of original construction of a Lyapunov function, new conditions under which electrodynamic control solves the problem are obtained. Sufficient conditions for asymptotic stability of the programmed motion are found in terms of inequalities for the values of control parameters. The results of a numerical simulation are presented to demonstrate the effectiveness of the proposed approach.
attitude control design for the solar polar orbit radio telesope
NASA Astrophysics Data System (ADS)
Gao, D.; Zheng, J.
This paper studies the attitude dynamics and control of the Solar Polar Orbit Radio Telescope SPORT The SPORT which consists of one parent satellite and eight tethered satellites runs around the Sun in a polar orbit The parent satellite locates at the mass center of the constellation and tethered satellites which are tied with the parent satellite through a non-electric rope rotate around the parent satellite It is also supposed that the parent satellite and all tethered satellites are in a plane when the constellation works begin figure htbp centerline includegraphics width 3 85in height 2 38in 75271331 6a6eb71057 doc1 eps label fig1 end figure Fig 1 the SPORT constellation Firstly this paper gives the dynamic equations of the tethered satellite and the parent satellite From the dynamic characteristic of the tethered satellite we then find that the roll axis is coupled with the yaw axis The control torque of the roll axis can control the yaw angle But the control torque of the roll axis and pitch axis provided by the tether is very small it can not meet the accuracy requirement of the yaw angle In order to improve the attitude pointing accuracy of the tethered satellite a gradient pole is set in the negative orientation of the yaw axis The gradient pole can improve not only the attitude accuracy of roll angle and pitch angle but also that of the yaw angle indirectly As to the dynamic characteristic of the parent satellite the roll axis is coupled with the pitch axis due to the spinning angular velocity At the same
Two Axis Pointing System (TAPS) attitude acquisition, determination, and control
NASA Technical Reports Server (NTRS)
Azzolini, John D.; Mcglew, David E.
1990-01-01
The Two Axis Pointing System (TAPS) is a 2 axis gimbal system designed to provide fine pointing of Space Transportation System (STS) borne instruments. It features center-of-mass instrument mounting and will accommodate instruments of up to 1134 kg (2500 pounds) which fit within a 1.0 by 1.0 by 4.2 meter (40 by 40 by 166 inch) envelope. The TAPS system is controlled by a microcomputer based Control Electronics Assembly (CEA), a Power Distribution Unit (PDU), and a Servo Control Unit (SCU). A DRIRU-II inertial reference unit is used to provide incremental angles for attitude propagation. A Ball Brothers STRAP star tracker is used for attitude acquisition and update. The theory of the TAPS attitude determination and error computation for the Broad Band X-ray Telescope (BBXRT) are described. The attitude acquisition is based upon a 2 star geometric solution. The acquisition theory and quaternion algebra are presented. The attitude control combines classical position, integral and derivative (PID) control with techniques to compensate for coulomb friction (bias torque) and the cable harness crossing the gimbals (spring torque). Also presented is a technique for an adaptive bias torque compensation which adjusts to an ever changing frictional torque environment. The control stability margins are detailed, with the predicted pointing performance, based upon simulation studies. The TAPS user interface, which provides high level operations commands to facilitate science observations, is outlined.
A system for spacecraft attitude control and energy storage
NASA Technical Reports Server (NTRS)
Shaughnessy, J. D.
1974-01-01
A conceptual design for a double-gimbal reaction-wheel energy-wheel device which has three-axis attitude control and electrical energy storage capability is given. A mathematical model for the three-axis gyroscope (TAG) was developed, and a system of multiple units is proposed for attitude control and energy storage for a class of spacecraft. Control laws were derived to provide the required attitude-control torques and energy transfer while minimizing functions of TAG gimbal angles, gimbal rates, reaction-wheel speeds, and energy-wheel speed differences. A control law is also presented for a magnetic torquer desaturation system. A computer simulation of a three-TAG system for an orbiting telescope was used to evaluate the concept. The results of the study indicate that all control and power requirements can be satisfied by using the TAG concept.
Demonstration of Single Axis Combined Attitude Control and Energy Storage Using Two Flywheels
NASA Technical Reports Server (NTRS)
Kenny, Barbara H.; Jansen, Ralph; Kascak, Peter; Dever, Timothy; Santiago, Walter
2004-01-01
The energy storage and attitude control subsystems of the typical satellite are presently distinct and separate. Energy storage is conventionally provided by batteries, either NiCd or NiH, and active attitude control is accomplished with control moment gyros (CMGs) or reaction wheels. An overall system mass savings can be realized if these two subsystems are combined using multiple flywheels for simultaneous kinetic energy storage and momentum transfer. Several authors have studied the control of the flywheels to accomplish this and have published simulation results showing the feasibility and performance. This paper presents the first experimental results showing combined energy storage and momentum control about a single axis using two flywheels.
NASA Technical Reports Server (NTRS)
1991-01-01
A study which consisted of a series of design analyses for an Attitude Control System (ACS) to be incorporated into the Re-usable Re-entry Satellite (RRS) was performed. The main thrust of the study was associated with defining the control laws and estimating the mass and power requirements of the ACS needed to meet the specified performance goals. The analyses concentrated on the different on-orbit control modes which start immediately after the separation of the RRS from the launch vehicle. The three distinct on-orbit modes considered for these analyses are as follows: (1) Mode 1 - A Gravity Gradient (GG) three-axis stabilized spacecraft with active magnetic control; (2) Mode 2 - A GG stabilized mode with a controlled yaw rotation rate ('rotisserie') using three-axis magnetic control and also incorporating a 10 N-m-s momentum wheel along the (Z) yaw axis; and (3) Mode 3 - A spin stabilized mode of operation with the spin about the pitch (Y) axis, incorporating a 20 N-m-s momentum wheel along the pitch (Y) axis and attitude control via thrusters. To investigate the capabilities of the different controllers in these various operational modes, a series of computer simulations and trade-off analyses have been made to evaluate the achievable performance levels, and the necessary mass and power requirements.
NASA Astrophysics Data System (ADS)
1991-02-01
A study which consisted of a series of design analyses for an Attitude Control System (ACS) to be incorporated into the Re-usable Re-entry Satellite (RRS) was performed. The main thrust of the study was associated with defining the control laws and estimating the mass and power requirements of the ACS needed to meet the specified performance goals. The analyses concentrated on the different on-orbit control modes which start immediately after the separation of the RRS from the launch vehicle. The three distinct on-orbit modes considered for these analyses are as follows: (1) Mode 1 - A Gravity Gradient (GG) three-axis stabilized spacecraft with active magnetic control; (2) Mode 2 - A GG stabilized mode with a controlled yaw rotation rate ('rotisserie') using three-axis magnetic control and also incorporating a 10 N-m-s momentum wheel along the (Z) yaw axis; and (3) Mode 3 - A spin stabilized mode of operation with the spin about the pitch (Y) axis, incorporating a 20 N-m-s momentum wheel along the pitch (Y) axis and attitude control via thrusters. To investigate the capabilities of the different controllers in these various operational modes, a series of computer simulations and trade-off analyses have been made to evaluate the achievable performance levels, and the necessary mass and power requirements.
NASA Astrophysics Data System (ADS)
Chak, Yew-Chung; Varatharajoo, Renuganth
2016-07-01
Many spacecraft attitude control systems today use reaction wheels to deliver precise torques to achieve three-axis attitude stabilization. However, irrecoverable mechanical failure of reaction wheels could potentially lead to mission interruption or total loss. The electrically-powered Solar Array Drive Assemblies (SADA) are usually installed in the pitch axis which rotate the solar arrays to track the Sun, can produce torques to compensate for the pitch-axis wheel failure. In addition, the attitude control of a flexible spacecraft poses a difficult problem. These difficulties include the strong nonlinear coupled dynamics between the rigid hub and flexible solar arrays, and the imprecisely known system parameters, such as inertia matrix, damping ratios, and flexible mode frequencies. In order to overcome these drawbacks, the adaptive Jacobian tracking fuzzy control is proposed for the combined attitude and sun-tracking control problem of a flexible spacecraft during attitude maneuvers in this work. For the adaptation of kinematic and dynamic uncertainties, the proposed scheme uses an adaptive sliding vector based on estimated attitude velocity via approximate Jacobian matrix. The unknown nonlinearities are approximated by deriving the fuzzy models with a set of linguistic If-Then rules using the idea of sector nonlinearity and local approximation in fuzzy partition spaces. The uncertain parameters of the estimated nonlinearities and the Jacobian matrix are being adjusted online by an adaptive law to realize feedback control. The attitude of the spacecraft can be directly controlled with the Jacobian feedback control when the attitude pointing trajectory is designed with respect to the spacecraft coordinate frame itself. A significant feature of this work is that the proposed adaptive Jacobian tracking scheme will result in not only the convergence of angular position and angular velocity tracking errors, but also the convergence of estimated angular velocity to the actual angular velocity. Numerical results are presented to demonstrate the effectiveness of the proposed scheme in tracking the desired attitude, as well as suppressing the elastic deflection effects of solar arrays during maneuver.
Research on Robot Pose Control Technology Based on Kinematics Analysis Model
NASA Astrophysics Data System (ADS)
Liu, Dalong; Xu, Lijuan
2018-01-01
In order to improve the attitude stability of the robot, proposes an attitude control method of robot based on kinematics analysis model, solve the robot walking posture transformation, grasping and controlling the motion planning problem of robot kinematics. In Cartesian space analytical model, using three axis accelerometer, magnetometer and the three axis gyroscope for the combination of attitude measurement, the gyroscope data from Calman filter, using the four element method for robot attitude angle, according to the centroid of the moving parts of the robot corresponding to obtain stability inertia parameters, using random sampling RRT motion planning method, accurate operation to any position control of space robot, to ensure the end effector along a prescribed trajectory the implementation of attitude control. The accurate positioning of the experiment is taken using MT-R robot as the research object, the test robot. The simulation results show that the proposed method has better robustness, and higher positioning accuracy, and it improves the reliability and safety of robot operation.
A novel single thruster control strategy for spacecraft attitude stabilization
NASA Astrophysics Data System (ADS)
Godard; Kumar, Krishna Dev; Zou, An-Min
2013-05-01
Feasibility of achieving three axis attitude stabilization using a single thruster is explored in this paper. Torques are generated using a thruster orientation mechanism with which the thrust vector can be tilted on a two axis gimbal. A robust nonlinear control scheme is developed based on the nonlinear kinematic and dynamic equations of motion of a rigid body spacecraft in the presence of gravity gradient torque and external disturbances. The spacecraft, controlled using the proposed concept, constitutes an underactuated system (a system with fewer independent control inputs than degrees of freedom) with nonlinear dynamics. Moreover, using thruster gimbal angles as control inputs make the system non-affine (control terms appear nonlinearly in the state equation). This necessitates the control algorithms to be developed based on nonlinear control theory since linear control methods are not directly applicable. The stability conditions for the spacecraft attitude motion for robustness against uncertainties and disturbances are derived to establish the regions of asymptotic 3-axis attitude stabilization. Several numerical simulations are presented to demonstrate the efficacy of the proposed controller and validate the theoretical results. The control algorithm is shown to compensate for time-varying external disturbances including solar radiation pressure, aerodynamic forces, and magnetic disturbances; and uncertainties in the spacecraft inertia parameters. The numerical results also establish the robustness of the proposed control scheme to negate disturbances caused by orbit eccentricity.
Modular design attitude control system
NASA Technical Reports Server (NTRS)
Chichester, F. D.
1982-01-01
A hybrid multilevel linear quadratic regulator (ML-LQR) approach was developed and applied to the attitude control of models of the rotational dynamics of a prototype flexible spacecraft and of a typical space platform. Three axis rigid body flexible suspension models were developed for both the spacecraft and the space platform utilizing augmented body methods. Models of the spacecraft with hybrid ML-LQR attitude control and with LQR attitude control were simulated and their response with the two different types of control were compared.
NASA Technical Reports Server (NTRS)
Sindlinger, R. S.
1977-01-01
Magnetic bearings used for the suspension of momentum wheels provide conclusive advantages: the low friction torques and the absence of abrasion allow the realization of lightweight high speed wheels with high angular momentum and energy storage capacity and virtually unlimited lifetime. The use of actively controlled bearings provides a magnetic gimballing capability by applying the external signals to the two servo loops controlling the rotational degrees of freedom. Thus, an attitude control system can be realized by using only one rotating mass for 3-axis active satellite stabilization.
Inflight redesign of the IUE attitude control system
NASA Technical Reports Server (NTRS)
Femiano, M. D.
1986-01-01
The one- and two-gyro system designs of the International Ultraviolet Explorer (IUE) attitude control system (ACS) are examined. The inertial reference assembly that provides the primary attitude reference for IUE consists of six rate sensors which are single-axis rate integrating gyros. The gyros operate in a pulse rebalanced mode that produces an output pulse for 0.01 arcsec of motion about the input axis. The functions of the fine error sensor, fine sun sensor (FSS), the IUE reaction wheels, the onboard computer, and the hold/slew algorithm are described. The use of the hold/slew algorithm to compute the control voltage for the ACS based on the Kalman filter is studied. A two-gyro system was incorporated into IUE following gyro failure. The procedures for establishing attitude control with the two-gyro design based on the FSS is analyzed. The performance of the two-gyro system is evaluated; it is observed that the pitch and yaw gyro control is 0.24 arcsec and the control is sufficient to permit extended periods of observation.
Thermal elastic shock and its effect on TOPEX spacecraft attitude control
NASA Technical Reports Server (NTRS)
Zimbelman, Darrell F.
1991-01-01
Thermal elastic shock (TES) is a twice per orbit impulsive disturbance torque experienced by low-Earth orbiting spacecraft. The fundamental equations used to model the TES disturbance torque for typical spacecraft appendages (e.g., solar arrays and antenna booms) are derived in detail. In particular, the attitude-pointing performance of the TOPEX spacecraft, when subjected to the TES disturbance, is analyzed using a three-axis nonlinear time-domain simulation. Results indicate that the TOPEX spacecraft could exceed its roll-axis attitude-control requirement during penumbral transitions, and remain in violation for approximately 150 sec each orbit until the umbra collapses. A localized active-control system is proposed as a solution to minimize and/or eliminate the degrading effects of the TES disturbance.
Attitude control system of the Delfi-n3Xt satellite
NASA Astrophysics Data System (ADS)
Reijneveld, J.; Choukroun, D.
2013-12-01
This work is concerned with the development of the attitude control algorithms that will be implemented on board of the Delfi-n3xt nanosatellite, which is to be launched in 2013. One of the mission objectives is to demonstrate Sun pointing and three axis stabilization. The attitude control modes and the associated algorithms are described. The control authority is shared between three body-mounted magnetorquers (MTQ) and three orthogonal reaction wheels. The attitude information is retrieved from Sun vector measurements, Earth magnetic field measurements, and gyro measurements. The design of the control is achieved as a trade between simplicity and performance. Stabilization and Sun pointing are achieved via the successive application of the classical Bdot control law and a quaternion feedback control. For the purpose of Sun pointing, a simple quaternion estimation scheme is implemented based on geometric arguments, where the need for a costly optimal filtering algorithm is alleviated, and a single line of sight (LoS) measurement is required - here the Sun vector. Beyond the three-axis Sun pointing mode, spinning Sun pointing modes are also described and used as demonstration modes. The three-axis Sun pointing mode requires reaction wheels and magnetic control while the spinning control modes are implemented with magnetic control only. In addition, a simple scheme for angular rates estimation using Sun vector and Earth magnetic measurements is tested in the case of gyro failures. The various control modes performances are illustrated via extensive simulations over several orbits time spans. The simulated models of the dynamical space environment, of the attitude hardware, and the onboard controller logic are using realistic assumptions. All control modes satisfy the minimal Sun pointing requirements allowed for power generation.
Attitude orientation control for a spinning satellite
NASA Astrophysics Data System (ADS)
Frost, Gerald
The Department of the Air Force, Headquarters Space Systems Division, and the National Aeronautics and Space Administration (NASA) are currently involved in litigation with Hughes Aircraft Company over the alledged infringement of the 'Williams patent,' which describes a method for attitude control of a spin-stabilized vehicle. Summarized here is pre-1960 RAND work on this subject and information obtained from RAND personnel knowledgeable on this subject. It was concluded that there is no RAND documentation that directly parallels the 'Williams patent' concept. Also, the TIROS II magnetic torque attitude control method is reviewed. The TIROS II meteorological satellite, launched on November 23, 1960, incorporated a magnetic actuation system for spin axis orientation control. The activation system was ground controlled to orient the satellite spin axis to obtain the desired pointing direction for optical and infrared sensor subsystems.
CORRELATED ERRORS IN EARTH POINTING MISSIONS
NASA Technical Reports Server (NTRS)
Bilanow, Steve; Patt, Frederick S.
2005-01-01
Two different Earth-pointing missions dealing with attitude control and dynamics changes illustrate concerns with correlated error sources and coupled effects that can occur. On the OrbView-2 (OV-2) spacecraft, the assumption of a nearly-inertially-fixed momentum axis was called into question when a residual dipole bias apparently changed magnitude. The possibility that alignment adjustments and/or sensor calibration errors may compensate for actual motions of the spacecraft is discussed, and uncertainties in the dynamics are considered. Particular consideration is given to basic orbit frequency and twice orbit frequency effects and their high correlation over the short science observation data span. On the Tropical Rainfall Measuring Mission (TRMM) spacecraft, the switch to a contingency Kalman filter control mode created changes in the pointing error patterns. Results from independent checks on the TRMM attitude using science instrument data are reported, and bias shifts and error correlations are discussed. Various orbit frequency effects are common with the flight geometry for Earth pointing instruments. In both dual-spin momentum stabilized spacecraft (like OV-2) and three axis stabilized spacecraft with gyros (like TRMM under Kalman filter control), changes in the initial attitude state propagate into orbit frequency variations in attitude and some sensor measurements. At the same time, orbit frequency measurement effects can arise from dynamics assumptions, environment variations, attitude sensor calibrations, or ephemeris errors. Also, constant environment torques for dual spin spacecraft have similar effects to gyro biases on three axis stabilized spacecraft, effectively shifting the one-revolution-per-orbit (1-RPO) body rotation axis. Highly correlated effects can create a risk for estimation errors particularly when a mission switches an operating mode or changes its normal flight environment. Some error effects will not be obvious from attitude sensor measurement residuals, so some independent checks using imaging sensors are essential and derived science instrument attitude measurements can prove quite valuable in assessing the attitude accuracy.
The Attitude Control System for the Wilkinson Microwave Anisotropy Probe
NASA Technical Reports Server (NTRS)
Markley, F. Landis; Andrews, Stephen F.; ODonnell, James R., Jr.; Ward, David K.
2003-01-01
The Wilkinson Microwave Anisotropy Probe mission produces a map of the cosmic microwave background radiation over the entire celestial sphere by executing a fast spin and a slow precession of its spin axis about the Sun line to obtain a highly interconnected set of measurements. The spacecraft attitude is sensed and controlled using an inertial reference unit, two star trackers, a digital sun sensor, twelve coarse sun sensors, three reaction wheel assemblies, and a propulsion system. Sufficient attitude knowledge is provided to yield instrument pointing to a standard deviation (l sigma) of 1.3 arc-minutes per axis. In addition, the spacecraft acquires and holds the sunline at initial acquisition and in the event of a failure, and slews to the proper orbit adjust orientations and to the proper off-sunline attitude to start the compound spin. This paper presents an overview of the design of the attitude control system to carry out this mission and presents some early flight experience.
Autonomous spacecraft attitude control using magnetic torquing only
NASA Technical Reports Server (NTRS)
Musser, Keith L.; Ebert, Ward L.
1989-01-01
Magnetic torquing of spacecraft has been an important mechanism for attitude control since the earliest satellites were launched. Typically a magnetic control system has been used for precession/nutation damping for gravity-gradient stabilized satellites, momentum dumping for systems equipped with reaction wheels, or momentum-axis pointing for spinning and momentum-biased spacecraft. Although within the small satellite community there has always been interest in expensive, light-weight, and low-power attitude control systems, completely magnetic control systems have not been used for autonomous three-axis stabilized spacecraft due to the large computational requirements involved. As increasingly more powerful microprocessors have become available, this has become less of an impediment. These facts have motivated consideration of the all-magnetic attitude control system presented here. The problem of controlling spacecraft attitude using only magnetic torquing is cast into the form of the Linear Quadratic Regulator (LQR), resulting in a linear feedback control law. Since the geomagnetic field along a satellite trajectory is not constant, the system equations are time varying. As a result, the optimal feedback gains are time-varying. Orbit geometry is exploited to treat feedback gains as a function of position rather than time, making feasible the onboard solution of the optimal control problem. In simulations performed to date, the control laws have shown themselves to be fairly robust and a good candidate for an onboard attitude control system.
Large Angle Reorientation of a Solar Sail Using Gimballed Mass Control
NASA Astrophysics Data System (ADS)
Sperber, E.; Fu, B.; Eke, F. O.
2016-06-01
This paper proposes a control strategy for the large angle reorientation of a solar sail equipped with a gimballed mass. The algorithm consists of a first stage that manipulates the gimbal angle in order to minimize the attitude error about a single principal axis. Once certain termination conditions are reached, a regulator is employed that selects a single gimbal angle for minimizing both the residual attitude error concomitantly with the body rate. Because the force due to the specular reflection of radiation is always directed along a reflector's surface normal, this form of thrust vector control cannot generate torques about an axis normal to the plane of the sail. Thus, in order to achieve three-axis control authority a 1-2-1 or 2-1-2 sequence of rotations about principal axes is performed. The control algorithm is implemented directly in-line with the nonlinear equations of motion and key performance characteristics are identified.
Voyager Saturn encounter attitude and articulation control experience
NASA Technical Reports Server (NTRS)
Carlisle, G.; Hill, M.
1981-01-01
The Voyager attitude and articulation control system is designed for a three-axis stabilized spacecraft; it uses a biasable sun sensor and a Canopus Star Tracker (CST) for celestial control, as well as a dry inertial reference unit, comprised of three dual-axis dry gryos, for inertial control. A series of complex maneuvers was required during the first of two Voyager spacecraft encounters with Saturn (November 13, 1980); these maneuvers involved rotating the spacecraft simultaneously about two or three axes while maintaining accurate pointing of the scan platform. Titan and Saturn earth occulation experiments and a ring scattering experiment are described. Target motion compensation and the effects of celestial sensor interference are also considered. Failure of the CST, which required an extensive reevaluation of the star reference and attitude control mode strategy, is discussed. Results analyzed thus far show that the system performed with high accuracy, gathering data deeper into Saturn's atmosphere than on any previous planetary encounter.
Spacecraft attitude calibration/verification baseline study
NASA Technical Reports Server (NTRS)
Chen, L. C.
1981-01-01
A baseline study for a generalized spacecraft attitude calibration/verification system is presented. It can be used to define software specifications for three major functions required by a mission: the pre-launch parameter observability and data collection strategy study; the in-flight sensor calibration; and the post-calibration attitude accuracy verification. Analytical considerations are given for both single-axis and three-axis spacecrafts. The three-axis attitudes considered include the inertial-pointing attitudes, the reference-pointing attitudes, and attitudes undergoing specific maneuvers. The attitude sensors and hardware considered include the Earth horizon sensors, the plane-field Sun sensors, the coarse and fine two-axis digital Sun sensors, the three-axis magnetometers, the fixed-head star trackers, and the inertial reference gyros.
1978-07-01
occurred. The attitude detection system included a three-axis fluxgate vector magnetometer and solar attitude detectors that produced both analog and digital ...heliogoniometer ( digital solar attitudeIsensing system) Three axis analog solar detection - Rubidium vapor magnetometer Three axis fluxgate magnetometer ...Telemetry: 35 channels modulating 150 MHz carrier on command Three axis solar attitude detector system Three axis fluxgate magnetometer system
Attitude determination with three-axis accelerometer for emergency atmospheric entry
NASA Technical Reports Server (NTRS)
Garcia-Llama, Eduardo (Inventor)
2012-01-01
Two algorithms are disclosed that, with the use of a 3-axis accelerometer, will be able to determine the angles of attack, sideslip and roll of a capsule-type spacecraft prior to entry (at very high altitudes, where the atmospheric density is still very low) and during entry. The invention relates to emergency situations in which no reliable attitude and attitude rate are available. Provided that the spacecraft would not attempt a guided entry without reliable attitude information, the objective of the entry system in such case would be to attempt a safe ballistic entry. A ballistic entry requires three controlled phases to be executed in sequence: First, cancel initial rates in case the spacecraft is tumbling; second, maneuver the capsule to a heat-shield-forward attitude, preferably to the trim attitude, to counteract the heat rate and heat load build up; and third, impart a ballistic bank or roll rate to null the average lift vector in order to prevent prolonged lift down situations. Being able to know the attitude, hence the attitude rate, will allow the control system (nominal or backup, automatic or manual) to cancel any initial angular rates. Also, since a heat-shield forward attitude and the trim attitude can be specified in terms of the angles of attack and sideslip, being able to determine the current attitude in terms of these angles will allow the control system to maneuver the vehicle to the desired attitude. Finally, being able to determine the roll angle will allow for the control of the roll ballistic rate during entry.
Mazinan, A H; Pasand, M; Soltani, B
2015-09-01
In the aspect of further development of investigations in the area of spacecraft modeling and analysis of the control scheme, a new hybrid finite-time robust three-axis cascade attitude control approach is proposed via pulse modulation synthesis. The full quaternion based control approach proposed here is organized in association with both the inner and the outer closed loops. It is shown that the inner closed loop, which consists of the sliding mode finite-time control approach, the pulse width pulse frequency modulator, the control allocation and finally the dynamics of the spacecraft is realized to track the three-axis referenced commands of the angular velocities. The pulse width pulse frequency modulators are in fact employed in the inner closed loop to accommodate the control signals to a number of on-off thrusters, while the control allocation algorithm provides the commanded firing times for the reaction control thrusters in the overactuated spacecraft. Hereinafter, the outer closed loop, which consists of the proportional linear control approach and the kinematics of the spacecraft is correspondingly designed to deal with the attitude angles that are presented by quaternion vector. It should be noted that the main motivation of the present research is to realize a hybrid control method by using linear and nonlinear terms and to provide a reliable and robust control structure, which is able to track time varying three-axis referenced commands. Subsequently, a stability analysis is presented to verify the performance of the overall proposed cascade attitude control approach. To prove the effectiveness of the presented approach, a thorough investigation is presented compared to a number of recent corresponding benchmarks. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
CubeSat Attitude Determination and Helmholtz Cage Design
2012-03-01
4.2.2. 3.6 CubeSat Components The CubeSat used in this experiment is commanded and controlled via the Arduino Mega board that is based on the ATmel...UNIVERSITY AIR FORCE INSTITUTE OF TECHNOLOGY Wright-Patterson Air Force Base , Ohio APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED The views...ENY/12-M03 Abstract A method of 3-axis satellite attitude determination utilizing six body-fixed light sensors and a 3-axis magnetometer is analyzed. A
Control Laws for a Dual-Spin Stabilized Platform
NASA Technical Reports Server (NTRS)
Lim, K. B.; Moerder, D. D.
2008-01-01
This paper describes two attitude control laws suitable for atmospheric flight vehicles with a steady angular momentum bias in the vehicle yaw axis. This bias is assumed to be provided by an internal flywheel, and is introduced to enhance roll and pitch stiffness. The first control law is based on Lyapunov stability theory, and stability proofs are given. The second control law, which assumes that the angular momentum bias is large, is based on a classical PID control. It is shown that the large yaw-axis bias requires that the PI feedback component on the roll and pitch angle errors be cross-fed. Both control laws are applied to a vehicle simulation in the presence of disturbances for several values of yaw-axis angular momentum bias. It is seen that both control laws provide a significant improvement in attitude performance when the bias is sufficiently large, but the nonlinear control law is also able to provide improved performance for a small value of bias. This is important because the smaller bias corresponds to a smaller requirement for mass to be dedicated to the flywheel.
Voyager 2 Saturn encounter attitude and articulation control experience
NASA Technical Reports Server (NTRS)
Hill, M.
1982-01-01
A description is given of the Voyager Attitude and Articulation Control System (AACS). The complex series of maneuvers required for Voyager 2 during the near encounter period to obtain fields and particle data, track the limb of Saturn during the earth occultation period, and reflect the RF beam off the Saturnian ring system are discussed. It is noted that some of these maneuvers involved rotating the spacecraft simultaneously about multiple axes while maintaining accurate pointing of the scan platform, a first for interplanetary missions. Also described are two anomalies experienced by the AACS during the near encounter period. The first was the significant roll attitude error that occurred shortly after all axis inertial control and that continued to grow until celestial reacquisition. The second was that the scan platform slewing in the azimuth axis stopped midway through the near encounter. These anomalies are analyzed, and their effect on future missions is assessed.
3-Axis magnetic control: flight results of the TANGO satellite in the PRISMA mission
NASA Astrophysics Data System (ADS)
Chasset, C.; Noteborn, R.; Bodin, P.; Larsson, R.; Jakobsson, B.
2013-09-01
PRISMA implements guidance, navigation and control strategies for advanced formation flying and rendezvous experiments. The project is funded by the Swedish National Space Board and run by OHB-Sweden in close cooperation with DLR, CNES and the Danish Technical University. The PRISMA test bed consists of a fully manoeuvrable MANGO satellite as well as a 3-axis controlled TANGO satellite without any Δ V capability. PRISMA was launched on the 15th of June 2010 on board DNEPR. The TANGO spacecraft is the reference satellite for the experiments performed by MANGO, either with a "cooperative" or "non-cooperative" behaviour. Small, light and low-cost were the keywords for the TANGO design. The attitude determination is based on Sun sensors and magnetometers, and the active attitude control uses magnetic torque rods only. In order to perform the attitude manoeuvres required to fulfil the mission objectives, using any additional gravity gradient boom to passively stabilize the spacecraft was not allowed. After a two-month commissioning phase, TANGO separated from MANGO on the 11th of August 2010. All operational modes have been successfully tested, and the pointing performance in flight is in accordance with expectations. The robust Sun Acquisition mode reduced the initial tip-off rate and placed TANGO into a safe attitude in <30 min. The Manual Pointing mode was commissioned, and the spacecraft demonstrated the capability to follow or maintain different sets of attitudes. In Sun/Zenith Pointing mode, TANGO points its GPS antenna towards zenith with sufficient accuracy to track as many GPS satellites as MANGO. At the same time, it points its solar panel towards the Sun, and all payload equipments can be switched on without any restriction. This paper gives an overview of the TANGO Attitude Control System design. It then presents the flight results in the different operating modes. Finally, it highlights the key elements at the origin of the successful 3-axis magnetic control strategy on the TANGO satellite.
Attitude control system conceptual design for the GOES-N spacecraft series
NASA Technical Reports Server (NTRS)
Markley, F. L.; Bauer, F. H.; Deily, J. J.; Femiano, M. D.
1991-01-01
The attitude determination sensing and processing of the system are considered, and inertial reference units, star trackers, and beacons and landmarks are discussed as well as an extended Kalman filter and expected attitude-determination performance. The baseline controller is overviewed, and a spacecraft motion compensation (SMC) algorithm, disturbance environment, and SMC performance expectations are covered. Detailed simulation results are presented, and emphasis is placed on dynamic models, attitude estimation and control, and SMC disturbance accommmodation. It is shown that the attitude control system employing gyro/star tracker sensing and active three-axis control with reaction wheels is capable of maintaining attitude errors of 1.7 microrad or less on all axes in the absence of attitude disturbances, and that the sensor line-of-sight pointing errors can be reduced to 0.1 microrad by SMC.
Overview of the Miniature Sensor Technology Integration (MSTI) spacecraft attitude control system
NASA Technical Reports Server (NTRS)
Mcewen, Rob
1994-01-01
Msti2 is a small, 164 kg (362 lb), 3-axis stabilized, low-Earth-orbiting satellite whose mission is missile booster tracking. The spacecraft is actuated by 3 reaction wheels and 12 hot gas thrusters. It carries enough fuel for a projected life of 6 months. The sensor complement consists of a Horizon Sensor, a Sun Sensor, low-rate gyros, and a high rate gyro for despin. The total pointing control error allocation is 6 mRad (.34 Deg), and this is while tracking a target on the Earth's surface. This paper describes the Attitude Control System (ACS) algorithms which include the following: attitude acquisition (despin, Sun and Earth acquisition), attitude determination, attitude control, and linear stability analysis.
Variable structure control of spacecraft reorientation maneuvers
NASA Technical Reports Server (NTRS)
Sira-Ramirez, H.; Dwyer, T. A. W., III
1986-01-01
A Variable Structure Control (VSC) approach is presented for multi-axial spacecraft reorientation maneuvers. A nonlinear sliding surface is proposed which results in an asymptotically stable, ideal linear sliding motion of Cayley-Rodriques attitude parameters. By imposing a desired equivalent dynamics on the attitude parameters, the approach is devoid of optimal control considerations. The single axis case provides a design scheme for the multiple axes design problem. Illustrative examples are presented.
Spacecraft Attitude Tracking and Maneuver Using Combined Magnetic Actuators
NASA Technical Reports Server (NTRS)
Zhou, Zhiqiang
2010-01-01
The accuracy of spacecraft attitude control using magnetic actuators only is low and on the order of 0.4-5 degrees. The key reason is that the magnetic torque is two-dimensional and it is only in the plane perpendicular to the magnetic field vector. In this paper novel attitude control algorithms using the combination of magnetic actuators with Reaction Wheel Assembles (RWAs) or other types of actuators, such as thrusters, are presented. The combination of magnetic actuators with one or two RWAs aligned with different body axis expands the two-dimensional control torque to three-dimensional. The algorithms can guarantee the spacecraft attitude and rates to track the commanded attitude precisely. A design example is presented for Nadir pointing, pitch and yaw maneuvers. The results show that precise attitude tracking can be reached and the attitude control accuracy is comparable with RWAs based attitude control. The algorithms are also useful for the RWAs based attitude control. When there are only one or two workable RWAs due to RWA failures, the attitude control system can switch to the control algorithms for the combined magnetic actuators with the RWAs without going to the safe mode and the control accuracy can be maintained.
Evaluation of conformal and body-axis attitude information for spatial awareness
NASA Astrophysics Data System (ADS)
Jones, Denise R.; Abbott, Terence S.; Burley, James R., II
1992-10-01
The traditional head-up display (HUD) used in most modern fighter aircraft presents attitude information that is both conformal to the outside world and aligned with the body-axis of the aircraft. The introduction of helmet-mounted display (HMD) technology into simulated and actual flight environments has introduced an interesting issue regarding the presentation of attitude information. This information can be presented conformally or relative to the aircraft's body-axis, but not both (except in the special case where the pilot's line of sight is directly matched with the aircraft's body-axis). The question addressed with this study was whether attitude information displayed in an HMD should be presented with respect to the real world (conformally) or to the aircraft's body-axis. To answer this, both conformal and body-axis attitude symbology were compared under simulated air combat situations. The results of this study indicated that the body-axis concept was a more effective HMD display. A detailed description of the flight task and results of this study will be presented.
Evaluation of conformal and body-axis attitude information for spatial awareness
NASA Technical Reports Server (NTRS)
Jones, Denise R.; Abbott, Terence S.; Burley, James R., II
1992-01-01
The traditional head-up display (HUD) used in most modern fighter aircraft presents attitude information that is both conformal to the outside world and aligned with the body-axis of the aircraft. The introduction of helmet-mounted display (HMD) technology into simulated and actual flight environments has introduced an interesting issue regarding the presentation of attitude information. This information can be presented conformally or relative to the aircraft's body-axis, but not both (except in the special case where the pilot's line of sight is directly matched with the aircraft's body-axis). The question addressed with this study was whether attitude information displayed in an HMD should be presented with respect to the real world (conformally) or to the aircraft's body-axis. To answer this, both conformal and body-axis attitude symbology were compared under simulated air combat situations. The results of this study indicated that the body-axis concept was a more effective HMD display. A detailed description of the flight task and results of this study will be presented.
The Microwave Anisotropy Probe (MAP) Attitude Control System
NASA Technical Reports Server (NTRS)
Markley, F. Landis; Andrews, Stephen F.; ODonnell, James R., Jr.; Ward, David K.; Ericsson, Aprille J.; Bauer, Frank H. (Technical Monitor)
2002-01-01
The Microwave Anisotropy Probe mission is designed to produce a map of the cosmic microwave background radiation over the entire celestial sphere by executing a fast spin and a slow precession of its spin axis about the Sun line to obtain a highly interconnected set of measurements. The spacecraft attitude is sensed and controlled using an Inertial Reference Unit, two Autonomous Star Trackers, a Digital Sun Sensor, twelve Coarse Sun Sensors, three Reaction Wheel Assemblies, and a propulsion system. This paper describes the design of the attitude control system that carries out this mission and presents some early flight experience.
NASA Astrophysics Data System (ADS)
Nakasuka, Shinichi; Miyata, Kikuko; Tsuruda, Yoshihiro; Aoyanagi, Yoshihide; Matsumoto, Takeshi
2018-04-01
The recent advancement of micro/nano/pico-satellites technologies encourages many universities to develop three axis stabilized satellites. As three axis stabilization is high level technology requiring the proper functioning of various sensors, actuators and control software, many early satellites failed in their initial operation phase because of shortage of solar power generation or inability to realize the initial step of missions because of unexpected attitude control system performance. These results come from failure to design the satellite attitude determination and control system (ADCS) appropriately and not considering "satellite survivability." ADCS should be designed such that even if some sensors or actuators cannot work as expected, the satellite can survive and carry out some of its missions, even if not full. This paper discusses how to realize ADCS while taking satellite survivability into account, based on our experiences of design and in-orbit operations of Hodoyoshi-3 and 4 satellites launched in 2014, which suffered from various component anomalies but could complete their missions.
Precision Attitude Determination System (PADS) design and analysis. Two-axis gimbal star tracker
NASA Technical Reports Server (NTRS)
1973-01-01
Development of the Precision Attitude Determination System (PADS) focused chiefly on the two-axis gimballed star tracker and electronics design improved from that of Precision Pointing Control System (PPCS), and application of the improved tracker for PADS at geosynchronous altitude. System design, system analysis, software design, and hardware design activities are reported. The system design encompasses the PADS configuration, system performance characteristics, component design summaries, and interface considerations. The PADS design and performance analysis includes error analysis, performance analysis via attitude determination simulation, and star tracker servo design analysis. The design of the star tracker and electronics are discussed. Sensor electronics schematics are included. A detailed characterization of the application software algorithms and computer requirements is provided.
Attitude ground support system for the solar maximum mission spacecraft
NASA Technical Reports Server (NTRS)
Nair, G.
1980-01-01
The SMM attitude ground support system (AGSS) supports the acquisition of spacecraft roll attitude reference, performs the in-flight calibration of the attitude sensor complement, supports onboard control autonomy via onboard computer data base updates, and monitors onboard computer (OBC) performance. Initial roll attitude acquisition is accomplished by obtaining a coarse 3 axis attitude estimate from magnetometer and Sun sensor data and subsequently refining it by processing data from the fixed head star trackers. In-flight calibration of the attitude sensor complement is achieved by processing data from a series of slew maneuvers designed to maximize the observability and accuracy of the appropriate alignments and biases. To ensure autonomy of spacecraft operation, the AGSS selects guide stars and computes sensor occultation information for uplink to the OBC. The onboard attitude control performance is monitored on the ground through periodic attitude determination and processing of OBC data in downlink telemetry. In general, the control performance has met mission requirements. However, software and hardware problems have resulted in sporadic attitude reference losses.
NASA Technical Reports Server (NTRS)
Jones, Denise R.; Abbott, Terence S.; Burley, James R., II
1993-01-01
A piloted simulation study has been conducted to evaluate two methods of presenting attitude information in a helmet-mounted display (HMD) for spatial awareness in a fighter airplane. One method, the body-axis concept, displayed the information relative to the body axis of the airplane. The quantitative results of this study favored the body-axis concept. Although no statistically significant differences were noted for either the pilots' understanding of roll attitude or target position, the pilots made pitch judgment errors three times more often with the conformal display. The subjective results showed the body-axis display did not cause attitude confusion, a prior concern with this display. In the posttest comments, the pilots overwhelmingly selected the body-axis display as the display of choice.
Predictive momentum management for the Space Station
NASA Technical Reports Server (NTRS)
Hatis, P. D.
1986-01-01
Space station control moment gyro momentum management is addressed by posing a deterministic optimization problem with a performance index that includes station external torque loading, gyro control torque demand, and excursions from desired reference attitudes. It is shown that a simple analytic desired attitude solution exists for all axes with pitch prescription decoupled, but roll and yaw coupled. Continuous gyro desaturation is shown to fit neatly into the scheme. Example results for pitch axis control of the NASA power tower Space Station are shown based on predictive attitude prescription. Control effector loading is shown to be reduced by this method when compared to more conventional momentum management techniques.
Three-Axis Attitude Estimation Using Rate-Integrating Gyroscopes
NASA Technical Reports Server (NTRS)
Crassidis, John L.; Markley, F. Landis
2016-01-01
Traditionally, attitude estimation has been performed using a combination of external attitude sensors and internal three-axis gyroscopes. There are many studies of three-axis attitude estimation using gyros that read angular rates. Rate-integrating gyros measure integrated rates or angular displacements, but three-axis attitude estimation using these types of gyros has not been as fully investigated. This paper derives a Kalman filtering framework for attitude estimation using attitude sensors coupled with rate- integrating gyroscopes. In order to account for correlations introduced by using these gyros, the state vector must be augmented, compared with filters using traditional gyros that read angular rates. Two filters are derived in this paper. The first uses an augmented state-vector form that estimates attitude, gyro biases, and gyro angular displacements. The second ignores correlations, leading to a filter that estimates attitude and gyro biases only. Simulation comparisons are shown for both filters. The work presented in this paper focuses only on attitude estimation using rate-integrating gyros, but it can easily be extended to other applications such as inertial navigation, which estimates attitude and position.
NASA Technical Reports Server (NTRS)
Chamberlin, K.; Clagett, C.; Correll, T.; Gruner, T.; Quinn, T.; Shiflett, L.; Schnurr, R.; Wennersten, M.; Frederick, M.; Fox, S. M.
1993-01-01
The attitude Control Electronics (ACE) Box is the center of the Attitude Control Subsystem (ACS) for the Solar Anomalous and Magnetospheric Particle Explorer (SAMPEX) satellite. This unit is the single point interface for all of the Attitude Control Subsystem (ACS) related sensors and actuators. Commands and telemetry between the SAMPEX flight computer and the ACE Box are routed via a MIL-STD-1773 bus interface, through the use of an 80C85 processor. The ACE Box consists of the flowing electronic elements: power supply, momentum wheel driver, electromagnet driver, coarse sun sensor interface, digital sun sensor interface, magnetometer interface, and satellite computer interface. In addition, the ACE Box also contains an independent Safehold electronics package capable of keeping the satellite pitch axis pointing towards the sun. The ACE Box has dimensions of 24 x 31 x 8 cm, a mass of 4.3 kg, and an average power consumption of 10.5 W. This set of electronics was completely designed, developed, integrated, and tested by personnel at NASA GSFC. SAMPEX was launched on July 3, 1992, and the initial attitude acquisition was successfully accomplished via the analog Safehold electronics in the ACE Box. This acquisition scenario removed the excess body rates via magnetic control and precessed the satellite pitch axis to within 10 deg of the sun line. The performance of the SAMPEX ACS in general and the ACE Box in particular has been quite satisfactory.
Three-Axis Time-Optimal Attitude Maneuvers of a Rigid-Body
NASA Astrophysics Data System (ADS)
Wang, Xijing; Li, Jisheng
With the development trends for modern satellites towards macro-scale and micro-scale, new demands are requested for its attitude adjustment. Precise pointing control and rapid maneuvering capabilities have long been part of many space missions. While the development of computer technology enables new optimal algorithms being used continuously, a powerful tool for solving problem is provided. Many papers about attitude adjustment have been published, the configurations of the spacecraft are considered rigid body with flexible parts or gyrostate-type systems. The object function always include minimum time or minimum fuel. During earlier satellite missions, the attitude acquisition was achieved by using the momentum ex change devices, performed by a sequential single-axis slewing strategy. Recently, the simultaneous three-axis minimum-time maneuver(reorientation) problems have been studied by many researchers. It is important to research the minimum-time maneuver of a rigid spacecraft within onboard power limits, because of potential space application such as surveying multiple targets in space and academic value. The minimum-time maneuver of a rigid spacecraft is a basic problem because the solutions for maneuvering flexible spacecraft are based on the solution to the rigid body slew problem. A new method for the open-loop solution for a rigid spacecraft maneuver is presented. Having neglected all perturbation torque, the necessary conditions of spacecraft from one state to another state can be determined. There is difference between single-axis with multi-axis. For single- axis analytical solution is possible and the switching line passing through the state-space origin belongs to parabolic. For multi-axis, it is impossible to get analytical solution due to the dynamic coupling between the axes and must be solved numerically. Proved by modern research, Euler axis rotations are quasi-time-optimal in general. On the basis of minimum value principles, a research for reorienting an inertial syrnmetric spacecraft with time cost function from an initial state of rest to a final state of rest is deduced. And the solution to it is stated below: Firstly, the essential condition for solving the problem is deduced with the minimum value principle. The necessary conditions for optimality yield a two point boundary-value problem (TPBVP), which, when solved, produces the control history that minimize time performance index. In the nonsingular control, the solution is the' bang-bang maneuver. The control profile is characterized by Saturated controls for the entire maneuver. The singular control maybe existed. It is only singular in mathematics. According to physical principle, the bigger the mode of the control torque is, the shorter the time is. So saturated controls are used in singular control. Secondly, the control parameters are always in maximum, so the key problem is to determine switch point thus original problem is changed to find the changing time. By the use of adjusting the switch on/off time, the genetic algorithm, which is a new robust method is optimized to determine the switch features without the gyroscopic coupling. There is improvement upon the traditional GA in this research. The homotopy method to find the nonlinear algebra is based on rigorous topology continuum theory. Based on the idea of the homotopy, the relaxation parameters are introduced, and the switch point is figured out with simulated annealing. Computer simulation results using a rigid body show that the new method is feasible and efficient. A practical method of computing approximate solutions to the time-optimal control- switch times for rigid body reorientation has been developed.
NASA Technical Reports Server (NTRS)
Krishnan, Hariharan
1993-01-01
This thesis is organized in two parts. In Part 1, control systems described by a class of nonlinear differential and algebraic equations are introduced. A procedure for local stabilization based on a local state realization is developed. An alternative approach to local stabilization is developed based on a classical linearization of the nonlinear differential-algebraic equations. A theoretical framework is established for solving a tracking problem associated with the differential-algebraic system. First, a simple procedure is developed for the design of a feedback control law which ensures, at least locally, that the tracking error in the closed loop system lies within any given bound if the reference inputs are sufficiently slowly varying. Next, by imposing additional assumptions, a procedure is developed for the design of a feedback control law which ensures that the tracking error in the closed loop system approaches zero exponentially for reference inputs which are not necessarily slowly varying. The control design methodologies are used for simultaneous force and position control in constrained robot systems. The differential-algebraic equations are shown to characterize the slow dynamics of a certain nonlinear control system in nonstandard singularly perturbed form. In Part 2, the attitude stabilization (reorientation) of a rigid spacecraft using only two control torques is considered. First, the case of momentum wheel actuators is considered. The complete spacecraft dynamics are not controllable. However, the spacecraft dynamics are small time locally controllable in a reduced sense. The reduced spacecraft dynamics cannot be asymptotically stabilized using continuous feedback, but a discontinuous feedback control strategy is constructed. Next, the case of gas jet actuators is considered. If the uncontrolled principal axis is not an axis of symmetry, the complete spacecraft dynamics are small time locally controllable. However, the spacecraft attitude cannot be asymptotically stabilized using continuous feedback, but a discontinuous stabilizing feedback control strategy is constructed. If the uncontrolled principal axis is an axis of symmetry, the complete spacecraft dynamics cannot be stabilized. However, the spacecraft dynamics are small time locally controllable in a reduced sense. The reduced spacecraft dynamics cannot be asymptotically stabilized using continuous feedback, but again a discontinuous feedback control strategy is constructed.
High speed reaction wheels for satellite attitude control and energy storage
NASA Technical Reports Server (NTRS)
Studer, P.; Rodriguez, E.
1985-01-01
The combination of spacecraft attitude control and energy storage (ACES) functions in common hardware, to synergistically maintain three-axis attitude control while supplying electrical power during earth orbital eclipses, allows the generation of control torques by high rotating speed wheels that react against the spacecraft structure via a high efficiency bidirectional energy conversion motor/generator. An ACES system encompasses a minimum of four wheels, controlling power and the three torque vectors. Attention is given to the realization of such a system with composite flywheel rotors that yield high energy density, magnetic suspension technology yielding low losses at high rotational speeds, and an ironless armature permanent magnet motor/generator yielding high energy conversion efficiency.
Vibration Interaction in a Multiple Flywheel System
2011-03-01
IP/IT ) t time x x−axis y y−axis z z−axis κ rotational spring stiffness ρ radial distance between flywheel center of mass and shaft center θ axial...they may be a viable alternative for the satellite designer . One additional benefit of flywheel-based energy storage is its inherent ability to control...rotating wheels it can change the satellite’s attitude by exchanging momentum between flywheels and 2 the spacecraft. Thus an IPACS, if well designed
A compact magnetic bearing for gimballed momentum wheel
NASA Technical Reports Server (NTRS)
Yabu-Uchi, K.; Inoue, M.; Akishita, S.; Murakami, C.; Okamoto, O.
1983-01-01
A three axis controlled magnetic bearing and its application to a momentum wheel are described. The four divided stators provide a momentum wheel with high reliability, low weight, large angular momentum storage capacity, and gimbal control. Those characteristics are desirable for spacecraft attitude control.
Review of Research On Guidance for Recovery from Pitch Axis Upsets
NASA Technical Reports Server (NTRS)
Harrison, Stephanie J.
2016-01-01
A literature review was conducted to identify past efforts in providing control guidance for aircraft upset recovery including stall recovery. Because guidance is integrally linked to the intended function of aircraft attitude awareness and upset recognition, it is difficult, if not impossible, to consider these issues separately. This literature review covered the aspects of instrumentation and display symbologies for attitude awareness, aircraft upset recognition, upset and stall alerting, and control guidance. Many different forms of symbology have been investigated including, but not limited to, pitch scale depictions, attitude indicator icons, horizon symbology, attitude recovery arrows, and pitch trim indicators. Past research on different visual and alerting strategies that provide advisories, cautions, and warnings to pilots before entering an unusual attitude (UA) are also discussed. Finally, potential control guidance for recovery from upset or unusual attitudes, including approach-to-stall and stall conditions, are reviewed. Recommendations for future research are made.
Cui, Peiling; Zhang, Huijuan; Yan, Ning; Fang, Jiancheng
2012-01-01
Integrating the advantage of magnetic bearings with a double gimble control moment gyroscope (DGCMG), a magnetically suspended DGCMG (MSDGCMG) is an ideal actuator in high-precision, long life, and rapid maneuver attitude control systems. The work presented here mainly focuses on performance testing of a MSDGCMG independently developed by Beihang University, based on the single axis air bearing table. In this paper, taking into sufficient consideration to the moving-gimbal effects and the response bandwidth limit of the gimbal, a special MSDGCMG steering law is proposed subject to the limits of gimbal angle rate and angle acceleration. Finally, multiple experiments are carried out, with different MSDGCMG angular momenta as well as different desired attitude angles. The experimental results indicate that the MSDGCMG has a good gimbal angle rate and output torque tracking capabilities, and that the attitude stability with MSDGCMG as actuator is superior to 10−3°/s. The MSDGCMG performance testing in this paper, carried out under moving-base condition, will offer a technique base for the future research and application of MSDGCMGs. PMID:23012536
Attitude motion compensation for imager on Fengyun-4 geostationary meteorological satellite
NASA Astrophysics Data System (ADS)
Lyu, Wang; Dai, Shoulun; Dong, Yaohai; Shen, Yili; Song, Xiaozheng; Wang, Tianshu
2017-09-01
A compensation method is used in Chinese Fengyun-4 satellite to counteracting the line-of-sight influence by attitude motion during imaging. The method is acted on-board by adding the compensation amount to the instrument scanning control circuit. The mathematics simulation and the three-axis air-bearing test results show that the method works effectively.
Experiments study on attitude coupling control method for flexible spacecraft
NASA Astrophysics Data System (ADS)
Wang, Jie; Li, Dongxu
2018-06-01
High pointing accuracy and stabilization are significant for spacecrafts to carry out Earth observing, laser communication and space exploration missions. However, when a spacecraft undergoes large angle maneuver, the excited elastic oscillation of flexible appendages, for instance, solar wing and onboard antenna, would downgrade the performance of the spacecraft platform. This paper proposes a coupling control method, which synthesizes the adaptive sliding mode controller and the positive position feedback (PPF) controller, to control the attitude and suppress the elastic vibration simultaneously. Because of its prominent performance for attitude tracking and stabilization, the proposed method is capable of slewing the flexible spacecraft with a large angle. Also, the method is robust to parametric uncertainties of the spacecraft model. Numerical simulations are carried out with a hub-plate system which undergoes a single-axis attitude maneuver. An attitude control testbed for the flexible spacecraft is established and experiments are conducted to validate the coupling control method. Both numerical and experimental results demonstrate that the method discussed above can effectively decrease the stabilization time and improve the attitude accuracy of the flexible spacecraft.
Attitude Control System Design for the Solar Dynamics Observatory
NASA Technical Reports Server (NTRS)
Starin, Scott R.; Bourkland, Kristin L.; Kuo-Chia, Liu; Mason, Paul A. C.; Vess, Melissa F.; Andrews, Stephen F.; Morgenstern, Wendy M.
2005-01-01
The Solar Dynamics Observatory mission, part of the Living With a Star program, will place a geosynchronous satellite in orbit to observe the Sun and relay data to a dedicated ground station at all times. SDO remains Sun- pointing throughout most of its mission for the instruments to take measurements of the Sun. The SDO attitude control system is a single-fault tolerant design. Its fully redundant attitude sensor complement includes 16 coarse Sun sensors, a digital Sun sensor, 3 two-axis inertial reference units, 2 star trackers, and 4 guide telescopes. Attitude actuation is performed using 4 reaction wheels and 8 thrusters, and a single main engine nominally provides velocity-change thrust. The attitude control software has five nominal control modes-3 wheel-based modes and 2 thruster-based modes. A wheel-based Safehold running in the attitude control electronics box improves the robustness of the system as a whole. All six modes are designed on the same basic proportional-integral-derivative attitude error structure, with more robust modes setting their integral gains to zero. The paper details the mode designs and their uses.
Analysis of the Command and Control Segment (CCS) attitude estimation algorithm
NASA Technical Reports Server (NTRS)
Stockwell, Catherine
1993-01-01
This paper categorizes the qualitative behavior of the Command and Control Segment (CCS) differential correction algorithm as applied to attitude estimation using simultaneous spin axis sun angle and Earth cord length measurements. The categories of interest are the domains of convergence, divergence, and their boundaries. Three series of plots are discussed that show the dependence of the estimation algorithm on the vehicle radius, the sun/Earth angle, and the spacecraft attitude. Common qualitative dynamics to all three series are tabulated and discussed. Out-of-limits conditions for the estimation algorithm are identified and discussed.
Attitude motion of a non-attitude-controlled cylindrical satellite
NASA Technical Reports Server (NTRS)
Wilkinson, C. K.
1988-01-01
In 1985, two non-attitude-controlled satellites were each placed in a low earth orbit by the Scout Launch Vehicle. The satellites were cylindrical in shape and contained reservoirs of hydrazine fuel. Three-axis magnetometer measurements, telemetered in real time, were used to derive the attitude motion of each satellite. Algorithms are generated to deduce possible orientations (and magnitudes) of each vehicle's angular momentum for each telemetry contact. To resolve ambiguities at each contact, a force model was derived to simulate the significant long-term effects of magnetic, gravity gradient, and aerodynamic torques on the angular momentum of the vehicles. The histories of the orientation and magnitude of the angular momentum are illustrated.
An active attitude control system for a drag sail satellite
NASA Astrophysics Data System (ADS)
Steyn, Willem Herman; Jordaan, Hendrik Willem
2016-11-01
The paper describes the development and simulation results of a full ADCS subsystem for the deOrbitSail drag sail mission. The deOrbitSail satellite was developed as part of an European FP7 collaboration research project. The satellite was launched and commissioning started on 10th July 2015. Various new actuators and sensors designed for this mission will be presented. The deOrbitSail satellite is a 3U CubeSat to deploy a 4 by 4 m drag sail from an initial 650 km circular polar low earth orbit. With an active attitude control system it will be shown that by maximising the drag force, the expected de-orbiting period from the initial altitude will be less than 50 days. A future application of this technology will be the use of small drag sails as low-cost devices to de-orbit LEO satellites, when they have reached their end of life, without having to use expensive propulsion systems. Simulation and Hardware-in-Loop experiments proved the feasibility of the proposed attitude control system. A magnetic-only control approach using a Y-Thomson spin, is used to detumble the 3U Cubesat with stowed sail and subsequently to 3-axis stabilise the satellite to be ready for the final deployment phase. Minituarised torquer rods, a nano-sized momentum wheel, attitude sensor hardware (magnetometer, sun, earth) developed for this phase will be presented. The final phase will be to deploy and 3-axis stabilise the drag sail normal to the satellite's velocity vector, using a combined Y-momentum wheel and magnetic controller. The design and performance improvements when using a 2-axis translation stage to adjust the sail centre-of-pressure to satellite centre-of-mass offset, will also be discussed, although for launch risk reasons this stage was not included in the final flight configuration. To accurately determine the drag sail's attitude during the sunlit part of the orbit, an accurate wide field of view dual sensor to measure both the sun and nadir vector direction was developed for this mission. The calibration results for this new Cubesat sensor (CubeSense), will also be presented.
14 CFR 23.253 - High speed characteristics.
Code of Federal Regulations, 2012 CFR
2012-01-01
... upsets, inadvertent control movements, low stick force gradients in relation to control friction... specified in § 23.1303, it must be shown that the airplane can be recovered to a normal attitude and its... control the airplane for recovery. (c) There may be no control reversal about any axis at any speed up to...
Robust attitude control design for spacecraft under assigned velocity and control constraints.
Hu, Qinglei; Li, Bo; Zhang, Youmin
2013-07-01
A novel robust nonlinear control design under the constraints of assigned velocity and actuator torque is investigated for attitude stabilization of a rigid spacecraft. More specifically, a nonlinear feedback control is firstly developed by explicitly taking into account the constraints on individual angular velocity components as well as external disturbances. Considering further the actuator misalignments and magnitude deviation, a modified robust least-squares based control allocator is employed to deal with the problem of distributing the previously designed three-axis moments over the available actuators, in which the focus of this control allocation is to find the optimal control vector of actuators by minimizing the worst-case residual error using programming algorithms. The attitude control performance using the controller structure is evaluated through a numerical example. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
1982-01-01
A design concept that will implement a mapping capability for the Orbital Camera Payload System (OCPS) when ground control points are not available is discussed. Through the use of stellar imagery collected by a pair of cameras whose optical axis are structurally related to the large format camera optical axis, such pointing information is made available.
Flight test results for a separate surface stability augmented Beech model 99
NASA Technical Reports Server (NTRS)
Jenks, G. E.; Henry, H. F.; Roskam, J.
1977-01-01
A flight evaluation of a Beech model 99 equipped with an attitude command control system incorporating separate surface stability augmentation (SSSA) was conducted to determine whether an attitude command control system could be implemented using separate surface controls, and to determine whether the handling and ride qualities of the aircraft were improved by the SSSA attitude command system. The results of the program revealed that SSSA is a viable approach to implementing attitude command and also that SSSA has the capability of performing less demanding augmentation tasks such as yaw damping, wing leveling, and pitch damping. The program also revealed that attitude command did improve the pilot rating and ride qualities of the airplane while flying an IFR mission in turbulence. Some disadvantages of the system included the necessity of holding aileron force in a banked turn and excessive stiffness in the pitch axis.
Satellite Attitude Control Utilizing the Earth's Magnetic Field
NASA Technical Reports Server (NTRS)
White, John S.; Shigemoto, Fred H.; Bourquin, Kent
1961-01-01
A study was conducted to determine the feasibility of a satellite attitude fine-control system using the interaction of the earth's magnetic field with current-carrying coils to produce torque. The approximate intensity of the earth's magnetic field was determined as a function of the satellite coordinates. Components of the magnetic field were found to vary essentially sinusoidally at approximately twice orbital frequency. Amplitude and distortion of the sinusoidal components were a function of satellite orbit. Two systems for two-axis attitude control evolved from this study, one using three coils and the other using two coils. The torques developed by the two systems differ only when the component of magnetic field along the tracking line is zero. For this case the two-coil system develops no torque whereas the three-coil system develops some effective torque which allows partial control. The equations which describe the three-coil system are complex in comparison to those of the two-coil system and require the measurement of all three components of the magnetic field as compared with only one for the two-coil case. Intermittent three-axis torquing can also be achieved. This torquing can be used for coarse attitude control, or for dumping the stored momentum of inertia reaction wheels. Such a system has the advantage of requiring no fuel aboard the satellite. For any of these magnetic torquing schemes the power required to produce the magnetic moment and the weight of the coil seem reasonable.
NASA Technical Reports Server (NTRS)
Harman, Richard R.
2006-01-01
The advantages of inducing a constant spin rate on a spacecraft are well known. A variety of science missions have used this technique as a relatively low cost method for conducting science. Starting in the late 1970s, NASA focused on building spacecraft using 3-axis control as opposed to the single-axis control mentioned above. Considerable effort was expended toward sensor and control system development, as well as the development of ground systems to independently process the data. As a result, spinning spacecraft development and their resulting ground system development stagnated. In the 1990s, shrinking budgets made spinning spacecraft an attractive option for science. The attitude requirements for recent spinning spacecraft are more stringent and the ground systems must be enhanced in order to provide the necessary attitude estimation accuracy. Since spinning spacecraft (SC) typically have no gyroscopes for measuring attitude rate, any new estimator would need to rely on the spacecraft dynamics equations. One estimation technique that utilized the SC dynamics and has been used successfully in 3-axis gyro-less spacecraft ground systems is the pseudo-linear Kalman filter algorithm. Consequently, a pseudo-linear Kalman filter has been developed which directly estimates the spacecraft attitude quaternion and rate for a spinning SC. Recently, a filter using Markley variables was developed specifically for spinning spacecraft. The pseudo-linear Kalman filter has the advantage of being easier to implement but estimates the quaternion which, due to the relatively high spinning rate, changes rapidly for a spinning spacecraft. The Markley variable filter is more complicated to implement but, being based on the SC angular momentum, estimates parameters which vary slowly. This paper presents a comparison of the performance of these two filters. Monte-Carlo simulation runs will be presented which demonstrate the advantages and disadvantages of both filters.
Three-Axis Attitude Control of Solar Sails Utilising Reflectivity Control Devices
NASA Astrophysics Data System (ADS)
Theodorou, Theodoros
Solar sails are spacecraft that utilise the Solar Radiation Pressure, the force generated by impinging photons, to propel themselves. Conventional actuators are not suitable for controlling the attitude of solar sails therefore specific attitude control methods have been devised to tackle this. One of these methods is to change the centre of pressure with respect to the center of mass thus creating a torque. Reflectivity Control Devices (RCDs) have been proposed and successfully used to change the centre of pressure. Current methods that utilise RCDs have control authority over two axis only with no ability to control the torque about the normal of the sail surface. This thesis extends the state of the art and demonstrates 3-axis control by generating arbitrary torque vectors within a convex polyhedron. Two different RCD materials are considered, transmission and diffusion technologies both compatible with the proposed concept. A number of metrics have been developed which facilitate the comparison of different sail configurations. One of these metics is the sun map which is a graphic representation of the sun angles for which control authority is maintained. An iterative design process is presented which makes use of the metrics developed and aids in the design of a sail which meets the mission requirements and constraints. Moreover, the effects of different parameters on the performance of the proposed control concept are discussed. For example it is shown that by alternating the angle between the edge and middle RCDs the control authority increases. The concept's scalability has been investigated and a hybrid control scheme has been devised which makes use of both RCDs and reaction wheels. The RCDs are complemented by the reaction wheels to achieve higher slew rates while in turn the RCDs desaturate the reaction wheels. Finally, a number of simulations are conducted to verify the validity of the proposed concept.
Control theory analysis of a three-axis VTOL flight director. M.S. Thesis - Pennsylvania State Univ.
NASA Technical Reports Server (NTRS)
Niessen, F. R.
1971-01-01
A control theory analysis of a VTOL flight director and the results of a fixed-based simulator evaluation of the flight-director commands are discussed. The VTOL configuration selected for this study is a helicopter-type VTOL which controls the direction of the thrust vector by means of vehicle-attitude changes and, furthermore, employs high-gain attitude stabilization. This configuration is the same as one which was simulated in actual instrument flight tests with a variable stability helicopter. Stability analyses are made for each of the flight-director commands, assuming a single input-output, multi-loop system model for each control axis. The analyses proceed from the inner-loops to the outer-loops, using an analytical pilot model selected on the basis of the innermost-loop dynamics. The time response of the analytical model of the system is primarily used to adjust system gains, while root locus plots are used to identify dominant modes and mode interactions.
TRMM On Orbit Attitude Control System Performance
NASA Technical Reports Server (NTRS)
Robertson, Brent; Placanica, Sam; Morgenstern, Wendy
1999-01-01
This paper presents an overview of the Tropical Rainfall Measuring Mission (TRMM) Attitude Control System (ACS) along with detailed in-flight performance results for each operational mode. The TRMM spacecraft is an Earth-pointed, zero momentum bias satellite launched on November 27, 1997 from Tanegashima Space Center, Japan. TRMM is a joint mission between NASA and the National Space Development Agency (NASDA) of Japan designed to monitor and study tropical rainfall and the associated release of energy. Launched to provide a validation for poorly known rainfall data sets generated by global climate models, TRMM has demonstrated its utility by reducing uncertainties in global rainfall measurements by a factor of two. The ACS is comprised of Attitude Control Electronics (ACE), an Earth Sensor Assembly (ESA), Digital Sun Sensors (DSS), Inertial Reference Units (IRU), Three Axis Magnetometers (TAM), Coarse Sun Sensors (CSS), Magnetic Torquer Bars (MTB), Reaction Wheel Assemblies (RWA), Engine Valve Drivers (EVD) and thrusters. While in Mission Mode, the ESA provides roll and pitch axis attitude error measurements and the DSS provide yaw updates twice per orbit. In addition, the TAM in combination with the IRU and DSS can be used to provide pointing in a contingency attitude determination mode which does not rely on the ESA. Although the ACS performance to date has been highly successful, lessons were learned during checkout and initial on-orbit operation. This paper describes the design, on-orbit checkout, performance and lessons learned for the TRMM ACS.
Fault tolerant programmable digital attitude control electronics study
NASA Technical Reports Server (NTRS)
Sorensen, A. A.
1974-01-01
The attitude control electronics mechanization study to develop a fault tolerant autonomous concept for a three axis system is reported. Programmable digital electronics are compared to general purpose digital computers. The requirements, constraints, and tradeoffs are discussed. It is concluded that: (1) general fault tolerance can be achieved relatively economically, (2) recovery times of less than one second can be obtained, (3) the number of faulty behavior patterns must be limited, and (4) adjoined processes are the best indicators of faulty operation.
Modular design attitude control system
NASA Technical Reports Server (NTRS)
Chichester, F. D.
1984-01-01
A sequence of single axismodels and a series of reduced state linear observers of minimum order are used to reconstruct inaccessible variables pertaining to the modular attitude control of a rigid body flexible suspension model of a flexible spacecraft. The single axis models consist of two, three, four, and five rigid bodies, each interconnected by a flexible shaft passing through the mass centers of the bodies. Modal damping is added to each model. Reduced state linear observers are developed for synthesizing the inaccessible modal state variables for each modal model.
Three-axis attitude determination via Kalman filtering of magnetometer data
NASA Technical Reports Server (NTRS)
Martel, Francois; Pal, Parimal K.; Psiaki, Mark L.
1988-01-01
A three-axis Magnetometer/Kalman Filter attitude determination system for a spacecraft in low-altitude Earth orbit is developed, analyzed, and simulation tested. The motivation for developing this system is to achieve light weight and low cost for an attitude determination system. The extended Kalman filter estimates the attitude, attitude rates, and constant disturbance torques. Accuracy near that of the International Geomagnetic Reference Field model is achieved. Covariance computation and simulation testing demonstrate the filter's accuracy. One test case, a gravity-gradient stabilized spacecraft with a pitch momentum wheel and a magnetically-anchored damper, is a real satellite on which this attitude determination system will be used. The application to a nadir pointing satellite and the estimation of disturbance torques represent the significant extensions contributed by this paper. Beyond its usefulness purely for attitude determination, this system could be used as part of a low-cost three-axis attitude stabilization system.
A new type of magnetic gimballed momentum wheel and its application to attitude control in space
NASA Astrophysics Data System (ADS)
Murakami, C.; Ohkami, Y.; Okamoto, O.; Nakajima, A.; Inoue, M.; Tsuchiya, J.; Yabu-uchi, K.; Akishita, S.; Kida, T.
A new type of magnetically suspended gimbal momentum wheel utilizing permanent magnets is described. The bearing was composed of four independent thrust actuators which control the rotor thrust position and gimbal angles cooperatively, so that the bearing comes to have a simple mechanism with high reliability and light weight. The high speed instability problem due to the internal damping was easily overcome by introducing anisotropic radial stiffness. A momentum flywheel with the 3-axis controlled magnetic bearing displays good performance for attitude control of satellite with biased momentum.
Artificial neural networks in Space Station optimal attitude control
NASA Astrophysics Data System (ADS)
Kumar, Renjith R.; Seywald, Hans; Deshpande, Samir M.; Rahman, Zia
1992-08-01
Innovative techniques of using 'Artificial Neural Networks' (ANN) for improving the performance of the pitch axis attitude control system of Space Station Freedom using Control Moment Gyros (CMGs) are investigated. The first technique uses a feedforward ANN with multilayer perceptrons to obtain an on-line controller which improves the performance of the control system via a model following approach. The second techique uses a single layer feedforward ANN with a modified back propagation scheme to estimate the internal plant variations and the external disturbances separately. These estimates are then used to solve two differential Riccati equations to obtain time varying gains which improve the control system performance in successive orbits.
NASA Astrophysics Data System (ADS)
Woodcock, Gordon; Wingo, Dennis
2006-01-01
A modular design for a solar-electric tug was analyzed to establish flight control requirements and methods. Thrusters are distributed around the periphery of the solar array. This design enables modules to be berthed together to create a larger system from smaller modules. It requires a different flight mode than traditional design and a different thrust direction scheme, to achieve net thrust in the desired direction, observe thruster pointing constraints that avoid plume impingement on the tug, and balance moments. The array is perpendicular to the Sun vector for maximum electric power. The tug may maintain a constant inertial attitude or rotate around the Sun vector once per orbit. Either non-rotating or constant angular velocity rotation offers advantages over the conventional flight mode, which has highly variable roll rates. The baseline single module has 12 thrusters: two 2-axis gimbaling main thrusters, one at each ``end'', and two back-to-back Z axis thrusters at each corner of the array. Thruster pointing and throttling were optimized to maximize net thrust effectiveness while observing constraints. Control design used a spread sheet with Excel Solver to calculate nominal thruster pointing and throttling. These results are used to create lookup tables. A conventional control system generates a thruster pointing and throttling overlay on the nominals to maintain active attitude control. Gravity gradients can cause major attitude perturbations during occultation periods if thrust is off during these periods. Thrust required to maintain attitude is about 4% of system rated power. This amount of power can be delivered by a battery system, avoiding the performance penalty if chemical propulsion thrusters were used to maintain attitude.
Multivariable control theory applied to hierarchial attitude control for planetary spacecraft
NASA Technical Reports Server (NTRS)
Boland, J. S., III; Russell, D. W.
1972-01-01
Multivariable control theory is applied to the design of a hierarchial attitude control system for the CARD space vehicle. The system selected uses reaction control jets (RCJ) and control moment gyros (CMG). The RCJ system uses linear signal mixing and a no-fire region similar to that used on the Skylab program; the y-axis and z-axis systems which are coupled use a sum and difference feedback scheme. The CMG system uses the optimum steering law and the same feedback signals as the RCJ system. When both systems are active the design is such that the torques from each system are never in opposition. A state-space analysis was made of the CMG system to determine the general structure of the input matrices (steering law) and feedback matrices that will decouple the axes. It is shown that the optimum steering law and proportional-plus-rate feedback are special cases. A derivation of the disturbing torques on the space vehicle due to the motion of the on-board television camera is presented. A procedure for computing an upper bound on these torques (given the system parameters) is included.
Thrust vector control of upper stage with a gimbaled thruster during orbit transfer
NASA Astrophysics Data System (ADS)
Wang, Zhaohui; Jia, Yinghong; Jin, Lei; Duan, Jiajia
2016-10-01
In launching Multi-Satellite with One-Vehicle, the main thruster provided by the upper stage is mounted on a two-axis gimbal. During orbit transfer, the thrust vector of this gimbaled thruster (GT) should theoretically pass through the mass center of the upper stage and align with the command direction to provide orbit transfer impetus. However, it is hard to be implemented from the viewpoint of the engineering mission. The deviations of the thrust vector from the command direction would result in large velocity errors. Moreover, the deviations of the thrust vector from the upper stage mass center would produce large disturbance torques. This paper discusses the thrust vector control (TVC) of the upper stage during its orbit transfer. Firstly, the accurate nonlinear coupled kinematic and dynamic equations of the upper stage body, the two-axis gimbal and the GT are derived by taking the upper stage as a multi-body system. Then, a thrust vector control system consisting of the special attitude control of the upper stage and the gimbal rotation of the gimbaled thruster is proposed. The special attitude control defined by the desired attitude that draws the thrust vector to align with the command direction when the gimbal control makes the thrust vector passes through the upper stage mass center. Finally, the validity of the proposed method is verified through numerical simulations.
NASA Technical Reports Server (NTRS)
Wirzburger, John H.
2005-01-01
For f i h years, the science mission of the Hubble Space Telescope (HST) required using at least three of six rate gyros for attitude control. In the past, HST has mitigated gyro hardware failures by replacement of the failed units through Space Shuttle Servicing Missions. Following the tragic loss of Space Shuttle Columbia on STS-107, the desire to have a safe haven for astronauts during missions has resulted in the cancellation of all planned maxu14 missions to HST. While a robotic servicing mission is being currently being planned, controlling with alternate sensors to replace failed gyros can extend the HST Science mission until the robotic mission can be performed and extend science at HST s end of life. A two-gym control law has been designed and implemented using magnetometers (Magnetic Sensing System - MSS), fixed head star trackers (FHSTs), and Fine Guidance Sensors (FGSs) to control vehicle rate about the missing gyro axis. The three aforementioned sensors are used in succession to reduce HST boresight jitter to less than 7 milli-arcseconds rms and attitude error to less than 10 milli-arcseconds prior to science imaging. The MSS and 2-Gyro (M2G) control law is used for large angle maneuvers and attitude control during earth occultation of FHSTs and FGSs. The Tracker and 2-Gyro (T2G) control law dampens M2G rates and corrects the majority of attitude error in preparation for guide star acquisition with the FGSs. The Fine Guidance Sensor and 2-Gyro (F2G) control law d a m p T2G rates and controls HST attitude during science imaging. This paper describes the M2G control law. Details of M2G algorithms are presented, including computation of the HST 3-axis attitude error estimate, design of the M2G control law, SISO hear stability analyses, and restrictions on operations to maintain the h d t h and safety requirement of a 10degree maximum attitude error. Results of simulations performed in HSTSIM, a high-fidelity non-linear time domain simulation, are presented to predict HST on-orbit performance in attitude hold and maneuver modes. Simulation results are compared to on-orbit data from M2G flight tests performed in November and December 2004 and February 2005. Flight telemetry, using a currently available third gyro, shows that HST attitude error with the new M2G control law is maintained below the 10-degree requirement, and attitude errors are under 2 degrees for 95% of the time.
Motor Control of Two Flywheels Enabling Combined Attitude Control and Bus Regulation
NASA Technical Reports Server (NTRS)
Kenny, Barbara H.
2004-01-01
This presentation discussed the flywheel technology development work that is ongoing at NASA GRC with a particular emphasis on the flywheel system control. The "field orientation" motor/generator control algorithm was discussed and explained. The position-sensorless angle and speed estimation algorithm was presented. The motor current response to a step change in command at low (10 kRPM) and high (60 kRPM) was discussed. The flywheel DC bus regulation control was explained and experimental results presented. Finally, the combined attitude control and energy storage algorithm that controls two flywheels simultaneously was presented. Experimental results were shown that verified the operational capability of the algorithm. shows high speed flywheel energy storage (60,000 RPM) and the successful implementation of an algorithm to simultaneously control both energy storage and a single axis of attitude with two flywheels. Overall, the presentation demonstrated that GRC has an operational facility that
Water Landing Characteristics of a Reentry Capsule
NASA Technical Reports Server (NTRS)
1958-01-01
Experimental and theoretical investigations have been made to determine the water-landing characteristics of a conical-shaped reentry capsule having a segment of a sphere as the bottom. For the experimental portion of the investigation, a 1/12-scale model capsule and a full-scale capsule were tested for nominal flight paths of 65 deg and 90 deg (vertical), a range of contact attitudes from -30 deg to 30 deg, and a full-scale vertical velocity of 30 feet per second at contact. Accelerations were measured by accelerometers installed at the centers of gravity of the model and full-scale capsules. For the model test the accelerations were measured along the X-axis (roll) and Z-axis (yaw) and for the full-scale test they were measured along the X-axis (roll), Y-axis (pitch), and Z-axis (yaw). Motions and displacements of the capsules that occurred after contact were determined from high-speed motion pictures. The theoretical investigation was conducted to determine the accelerations that might occur along the X-axis when the capsule contacted the water from a 90 deg flight path at a 0 deg attitude. Assuming a rigid body, computations were made from equations obtained by utilizing the principle of the conservation of momentum. The agreement among data obtained from the model test, the full-scale test, and the theory was very good. The accelerations along the X-axis, for a vertical flight path and 0 deg attitude, were in the order of 40g. For a 65 deg flight path and 0 deg attitude, the accelerations along the X-axis were in the order of 50g. Changes in contact attitude, in either the positive or negative direction from 0 deg attitude, considerably reduced the magnitude of the accelerations measured along the X-axis. Accelerations measured along the Y- and Z-axes were relatively small at all test conditions.
Water-Landing Characteristics of a Reentry Capsule
NASA Technical Reports Server (NTRS)
McGehee, John R.; Hathaway, Melvin E.; Vaughan, Victor L., Jr.
1959-01-01
Experimental and theoretical investigations have been made to determine the water-landing characteristics of a conical-shaped reentry capsule having a segment of a sphere as the bottom. For the experimental portion of the investigation, a 1/12-scale model capsule and a full-scale capsule were tested for nominal flight paths of 65 deg and 90 deg (vertical), a range of contact attitudes from -30 deg to 30 deg, and a full-scale vertical velocity of 30 feet per second at contact. Accelerations were measured by accelerometers installed at the centers of gravity of the model and full-scale capsules. For the model test the accelerations were measured along the X-axis (roll) and Z-axis (yaw) and for the full-scale test they were measured along the X-axis (roll), Y-axis (pitch), and Z-axis (yaw). Motions and displacements of the capsules that occurred after contact were determined from high-speed motion pictures. The theoretical investigation was conducted to determine the accelerations that might occur along the X-axis when the capsule contacted the water from a 90 deg flight path at a 0 deg attitude. Assuming a rigid body, computations were made from equations obtained by utilizing the principle of the conservation of momentum. The agreement among data obtained from the model test, the full-scale test, and the theory was very good. The accelerations along the X-axis, for a vertical flight path and 0 deg attitude, were in the order of 40g. For a 65 deg flight path and 0 deg attitude, the accelerations along the X-axis were in the order of 50g. Changes in contact attitude, in either the positive or negative direction from 0 deg attitude, considerably reduced the magnitude of the accelerations measured along the X-axis. Accelerations measured along the Y- and Z-axes were relatively small at all test conditions.
NASA Technical Reports Server (NTRS)
Teichman, M. A.; Marek, F. L.; Browning, J. J.; Parr, A. K.
1974-01-01
An RF phase interferometer has been integrated into the ATS-F spacecraft attitude control system. Laboratory measurements indicate that the interferometer is capable of determining spacecraft attitude in pitch and roll to an accuracy of 0.18 deg over a field-of-view of plus or minus 12.5 deg about the spacecraft normal axis with an angular resolution of 0.004 deg. The system is completely solid state, weighs 17 pounds, and consumes 12.5 W of DC power.
NASA Technical Reports Server (NTRS)
Sarani, Siamak
2010-01-01
This paper describes a methodology for accurate and flight-calibrated determination of the on-times of the Cassini spacecraft Reaction Control System (RCS) thrusters, without any form of dynamic simulation, for the reaction wheel biases. The hydrazine usage and the delta V vector in body frame are also computed from the respective thruster on-times. The Cassini spacecraft, the largest and most complex interplanetary spacecraft ever built, continues to undertake ambitious and unique scientific observations of planet Saturn, Titan, Enceladus, and other moons of Saturn. In order to maintain a stable attitude during the course of its mission, this three-axis stabilized spacecraft uses two different control systems: the RCS and the reaction wheel assembly control system. The RCS is used to execute a commanded spacecraft slew, to maintain three-axis attitude control, control spacecraft's attitude while performing science observations with coarse pointing requirements, e.g. during targeted low-altitude Titan and Enceladus flybys, bias the momentum of reaction wheels, and to perform RCS-based orbit trim maneuvers. The use of RCS often imparts undesired delta V on the spacecraft. The Cassini navigation team requires accurate predictions of the delta V in spacecraft coordinates and inertial frame resulting from slews using RCS thrusters and more importantly from reaction wheel bias events. It is crucial for the Cassini spacecraft attitude control and navigation teams to be able to, quickly but accurately, predict the hydrazine usage and delta V for various reaction wheel bias events without actually having to spend time and resources simulating the event in flight software-based dynamic simulation or hardware-in-the-loop simulation environments. The methodology described in this paper, and the ground software developed thereof, are designed to provide just that. This methodology assumes a priori knowledge of thrust magnitudes and thruster pulse rise and tail-off time constants for eight individual attitude control thrusters, the spacecraft's wet mass and its center of mass location, and a few other key parameters.
Disturbing effects of attitude control maneuvers on the orbital motion of the Helios spacecraft
NASA Technical Reports Server (NTRS)
Georgevic, R. M.
1976-01-01
The position of the spin axis of the Helios A spacecraft has been maintained and updated by a series of attitude control maneuvers, by means of a sequence of unbalanced jet forces which produce an additional disturbed motion of the spacecraft's center of mass. The character of this motion, its magnitude and direction was studied. For practical purposes of the orbit determination of the spacecraft, a computer program is given which shows how the components of the disturbing acceleration in the spacecraft-fixed reference frame can be easily computed.
Artificial neural networks in Space Station optimal attitude control
NASA Astrophysics Data System (ADS)
Kumar, Renjith R.; Seywald, Hans; Deshpande, Samir M.; Rahman, Zia
1995-01-01
Innovative techniques of using "artificial neural networks" (ANN) for improving the performance of the pitch axis attitude control system of Space Station Freedom using control moment gyros (CMGs) are investigated. The first technique uses a feed-forward ANN with multi-layer perceptrons to obtain an on-line controller which improves the performance of the control system via a model following approach. The second technique uses a single layer feed-forward ANN with a modified back propagation scheme to estimate the internal plant variations and the external disturbances separately. These estimates are then used to solve two differential Riccati equations to obtain time varying gains which improve the control system performance in successive orbits.
Attitude Ground System (AGS) for the Magnetospheric Multi-Scale (MMS) Mission
NASA Technical Reports Server (NTRS)
Raymond, Juan C.; Sedlak, Joseph E.; Vint, Babak
2015-01-01
MMS Overview Recall from Conrads presentation earlier today MMS launch: March 13, 2015 on an Atlas V from Space Launch Complex 40, Cape Canaveral, Florida MMS Observatory Separation: five minute intervals spinning at 3 rpm approximately 1.5 hours after launch MMS Science Goals: study magnetospheric plasma physics and understand the processes that cause power grids, communication disruptions and Aurora formation Mission: 4 identical spacecraft in tetrahedral formation with variable size1.2 x 12 RE in Phase 1, with apogee on dayside to observe bow shock1.2 x 25 RE in Phase 2, with apogee on night side to observe magneto tail Challenges Tight attitude control box, orbit and formation maintenance requirements Maneuvers on thrusters every two weeks Delta-H Spin axis direction and spin rate maintenance Delta-V Orbit and Formation maintenance Mission phase transitions AGS support Smart targeting prediction of Spin-Axis attitude in the presence of environmental torques to stay within the science attitude Determination of the spacecraft attitude and spin rate (sensitive to knowledge of inertia tensor)Calibrations to improve attitude determination results and improve orbit maneuvers Mass properties (Center of Mass, and inertia tensor for nutation and coning) Accelerometer bias (sensitive to the accuracy of the rate estimates) Sensor alignments.
Multi-Axis Space Inertia Test Facility inside the Altitude Wind Tunnel
1960-04-21
The Multi-Axis Space Test Inertial Facility (MASTIF) in the Altitude Wind Tunnel at the National Aeronautics and Space Administration (NASA) Lewis Research Center. Although the Mercury astronaut training and mission planning were handled by the Space Task Group at Langley Research Center, NASA Lewis played an important role in the program, beginning with the Big Joe launch. Big Joe was a singular attempt early in the program to use a full-scale Atlas booster and simulate the reentry of a mockup Mercury capsule without actually placing it in orbit. A unique three-axis gimbal rig was built inside Lewis’ Altitude Wind Tunnel to test Big Joe’s attitude controls. The control system was vital since the capsule would burn up on reentry if it were not positioned correctly. The mission was intended to assess the performance of the Atlas booster, the reliability of the capsule’s attitude control system and beryllium heat shield, and the capsule recovery process. The September 9, 1959 launch was a success for the control system and heatshield. Only a problem with the Atlas booster kept the mission from being a perfect success. The MASTIF was modified in late 1959 to train Project Mercury pilots to bring a spinning spacecraft under control. An astronaut was secured in a foam couch in the center of the rig. The rig then spun on three axes from 2 to 50 rotations per minute. Small nitrogen gas thrusters were used by the astronauts to bring the MASTIF under control.
NASA Technical Reports Server (NTRS)
Hur-Diaz, Sun; Wirzburger, John; Smith, Dan
2008-01-01
The Hubble Space Telescope (HST) is renowned for its superb pointing accuracy of less than 10 milli-arcseconds absolute pointing error. To accomplish this, the HST relies on its complement of four reaction wheel assemblies (RWAs) for attitude control and four magnetic torquer bars (MTBs) for momentum management. As with most satellites with reaction wheel control, the fourth RWA provides for fault tolerance to maintain three-axis pointing capability should a failure occur and a wheel is lost from operations. If an additional failure is encountered, the ability to maintain three-axis pointing is jeopardized. In order to prepare for this potential situation, HST Pointing Control Subsystem (PCS) Team developed a Two Reaction Wheel Science (TRS) control mode. This mode utilizes two RWAs and four magnetic torquer bars to achieve three-axis stabilization and pointing accuracy necessary for a continued science observing program. This paper presents the design of the TRS mode and operational considerations necessary to protect the spacecraft while allowing for a substantial science program.
Magnetospheric Multiscale (MMS) Mission Attitude Ground System Design
NASA Technical Reports Server (NTRS)
Sedlak, Joseph E.; Superfin, Emil; Raymond, Juan C.
2010-01-01
This paper describes the attitude ground system (AGS) design to be used for support of the Magnetospheric MultiScale (MMS) mission. The AGS exists as one component of the mission operations control center. It has responsibility for validating the onboard attitude and accelerometer bias estimates, calibrating the attitude sensors and the spacecraft inertia tensor, and generating a definitive attitude history for use by the science teams. NASA's Goddard Space Flight Center (GSFC) in Greenbelt, Maryland is responsible for developing the MMS spacecraft, for the overall management of the MMS mission, and for mission operations. MMS is scheduled for launch in 2014 for a planned two-year mission. The MMS mission consists of four identical spacecraft flying in a tetrahedral formation in an eccentric Earth orbit. The relatively tight formation, ranging from 10 to 400 km, will provide coordinated observations giving insight into small-scale magnetic field reconnection processes. By varying the size of the tetrahedron and the orbital semi-major axis and eccentricity, and making use of the changing solar phase, this geometry allows for the study of both bow shock and magnetotail plasma physics, including acceleration, reconnection, and turbulence. The mission divides into two phases for science; these phases will have orbit dimensions of 1.2 x 12 Earth radii in the first phase and 1.2x25 Earth radii in the second in order to study the dayside magnetopause and the nightside magnetotail, respectively. The orbital periods are roughly one day and three days for the two mission phases. Each of the four MMS spacecraft will be spin stabilized at 3 revolutions per minute (rpm), with the spin axis oriented near the ecliptic north pole but tipped approximately 2.5 deg towards the Sun line. The main body of each spacecraft will be an eight-sided platform with diameter of 3.4 m and height of 1.2 m. Several booms are attached to this central core: two axial booms of 14.9 m length, two radial magnetometer booms of 5 m length, and four radial wire booms of 60 m length. Attitude and orbit control will use a set of axial and radial thrusters. A four-head star tracker and a slit-type digital Sun sensor (DSS) provide input for attitude determination. In addition, an accelerometer will be used for closed-loop orbit maneuver control. The primary AGS product will be a daily definitive attitude history. Due to power limitations, the star tracker and accelerometer data will not be available at all times. However, tracker data from at least 10 percent of each orbit and continuous DSS data will be provided. An extended Kalman filter (EKF) will be used to estimate the three-axis attitude (i.e., spin axis orientation and spin phase) and rotation rate for all times when the tracker data is valid. For other times, the attitude is generated by assuming a constant angular momentum vector in the inertial frame. The DSS sun pulse will provide a timing signal to maintain an accurate spin phase. There will be times when the Sun is occulted and DSS data is not available. If this occurs at the start or end of a definitive attitude product, then the spin phase will be extrapolated using the mean rate determined by the EKF.
Magnetospheric Multiscale (MMS) Mission Attitude Ground System Design
NASA Technical Reports Server (NTRS)
Sedlak, Joseph E.; Superfin, Emil; Raymond, Juan C.
2011-01-01
This paper describes the attitude ground system (AGS) design to be used for support of the Magnetospheric MultiScale (MMS) mission. The AGS exists as one component of the mission operations control center. It has responsibility for validating the onboard attitude and accelerometer bias estimates, calibrating the attitude sensors and the spacecraft inertia tensor, and generating a definitive attitude history for use by the science teams. NASA's Goddard Space Flight Center (GSFC) in Greenbelt, Maryland is responsible for developing the MMS spacecraft, for the overall management of the MMS mission, and for mission operations. MMS is scheduled for launch in 2014 for a planned two-year mission. The MMS mission consists of four identical spacecraft flying in a tetrahedral formation in an eccentric Earth orbit. The relatively tight formation, ranging from 10 to 400 km, will provide coordinated observations giving insight into small-scale magnetic field reconnection processes. By varying the size of the tetrahedron and the orbital semi-major axis and eccentricity, and making use of the changing solar phase, this geometry allows for the study of both bow shock and magnetotail plasma physics, including acceleration, reconnection, and turbulence. The mission divides into two phases for science; these phases will have orbit dimensions of l.2xl2 Earth radii in the first phase and l.2x25 Earth radii in the second in order to study the dayside magnetopause and the nightside magnetotail, respectively. The orbital periods are roughly one day and three days for the two mission phases. Each of the four MMS spacecraft will be spin stabilized at 3 revolutions per minute (rpm), with the spin axis oriented near the ecliptic north pole but tipped approximately 2.5 deg towards the Sun line. The main body of each spacecraft will be an eight-sided platform with diameter of 3.4 m and height of 1.2 m. Several booms are attached to this central core: two axial booms of 14.9 m length, two radial magnetometer booms of 5 m length, and four radial -wire booms of 60 m length. Attitude and orbit control will use a set of axial and radial thrusters. A four-head star tracker and a slit-type digital Sun sensor (DSS) provide input for attitude determination. In addition, an accelerometer will be· used for closed-loop orbit maneuver control. The primary AGS product will be a daily definitive attitude history. Due to power limitations; the star tracker and accelerometer data will not be available at all times. However, tracker data from at least 10 percent of each orbit and continuous DSS data will be provided. An extended Kalman filter (EKF) will be used to estimate the three-axis attitude (i.e., spin axis orientation and spin phase) and rotation rate for all times when the tracker data is valid. For other times, the attitude is generated by assuming a constant angular momentum vector in the inertial frame. The DSS sun pulse will provide a timing signal to maintain an accurate spin phase. There will be times when the Sun is occulted and DSS data is not available. If this occurs at the start or end of a definitive attitude product, then the spin phase will be extrapolated using the mean rate determined by the EKF.
2008-12-01
Figure 2. Definition of Attitude Angles and Torque Components in Spacecraft Reference Frame...Figure 5. PD controller in ideal three-axis-stabilized spacecraft ADCS. ................................16 Figure 6. Extract Position Angles function in...performance of spacecraft systems. Two categories of system architectures are discussed: recursive data management, found in feedback control systems; and
Attitude control compensator for flexible spacecraft
NASA Technical Reports Server (NTRS)
Goodzeit, Neil E. (Inventor); Linder, David M. (Inventor)
1991-01-01
An attitude control loop for a spacecraft uses a proportional-integral-derivative (PID) controller for control about an axis. The spacecraft body has at least a primary mechanical resonance. The attitude sensors are collocated, or both on the rigid portion of the spacecraft. The flexure attributable to the resonance may result in instability of the system. A compensator for the control loop has an amplitude response which includes a component which rolls off beginning at frequencies below the resonance, and which also includes a component having a notch at a notch frequency somewhat below the resonant frequency. The phase response of the compensator tends toward zero at low frequencies, and tends toward -180.degree. as frequency increases toward the notch frequency. At frequencies above the notch frequency, the phase decreases from +180.degree., becoming more negative, and tending toward -90.degree. at frequencies far above the resonance frequency. Near the resonance frequency, the compensator phase is near zero.
Multivariable control of a forward swept wing aircraft. M.S. Thesis
NASA Technical Reports Server (NTRS)
Quinn, W. W.
1986-01-01
The impact of independent canard and flaperon control of the longitudinal axis of a generic forward swept wing aircraft is examined. The Linear Quadratic Gaussian (LQG)/Loop Transfer Recovery (LTR) method is used to design three compensators: two single-input-single-output (SISO) systems, one with angle of attack as output and canard as control, the other with pitch attitude as output and canard as control, and a two-input-two-output system with both canard and flaperon controlling both the pitch attitude and angle of attack. The performances of the three systems are compared showing the addition of flaperon control allows the aircraft to perform in the precision control modes with very little loss of command following accuracy.
NASA Technical Reports Server (NTRS)
Burken, John J.; Burcham, Frank W., Jr.; Maine, Trindel A.; Feather, John; Goldthorpe, Steven; Kahler, Jeffrey A.
1996-01-01
A large, civilian, multi-engine transport MD-11 airplane control system was recently modified to perform as an emergency backup controller using engine thrust only. The emergency backup system, referred to as the propulsion-controlled aircraft (PCA) system, would be used if a major primary flight control system fails. To allow for longitudinal and lateral-directional control, the PCA system requires at least two engines and is implemented through software modifications. A flight-test program was conducted to evaluate the PCA system high-altitude flying characteristics and to demonstrate its capacity to perform safe landings. The cruise flight conditions, several low approaches and one landing without any aerodynamic flight control surface movement, were demonstrated. This paper presents results that show satisfactory performance of the PCA system in the longitudinal axis. Test results indicate that the lateral-directional axis of the system performed well at high attitude but was sluggish and prone to thermal upsets during landing approaches. Flight-test experiences and test techniques are also discussed with emphasis on the lateral-directional axis because of the difficulties encountered in flight test.
Summary Report of Mission Acceleration Measurements for STS-73, Launched October 20, 1995
NASA Technical Reports Server (NTRS)
Rogers, Melissa J. B.; DeLombard, Richard
1996-01-01
The microgravity environment of the Space Shuttle Columbia was measured during the STS-73 mission using accelerometers from five different instruments: the Orbital Acceleration Research Experiment, the Space Acceleration Measurement System, the Three-dimensional Microgravity Accelerometer, the Microgravity Measuring Device, and Suppression of Transient Accelerations by Levitation Evaluation System. The Microgravity Analysis Workstation quasi-steady environment calculation and comparison of this calculation with Orbital Acceleration Research Experiment data was used to assess how appropriate a planned attitude was expected to be for one Crystal Growth Facility experiment sample. The microgravity environment related to several different Orbiter, crew, and experiment operations is presented and interpreted in this report. Data are examined to show the effects of vernier reaction control system jet firings for Orbiter attitude control. This is compared to examples of data when no thrusters were firing, when the primary reaction control system jets were used for attitude control, and when single vernier jets were fired for test purposes. In general, vernier jets, when used for attitude control, cause accelerations in the 3 x 10(exp -4) g to 7 x 10(exp -4) g range. Primary jets used in this manner cause accelerations in the 0.01 to 0.025 g range. Other significant disturbance sources characterized are water dump operations, with Y(sub b) axis acceleration deviations of about 1 x 10(exp -6) g; payload bay door opening motion, with Y(sub o) and Z(sub o) axis accelerations of frequency 0.4 Hz; and probable Glovebox fan operations with notable frequency components at 20, 38, 43, 48, and 53 Hz. The STS-73 microgravity environment is comparable to the environments measured on earlier microgravity science missions.
Attitude control system design using a flywheel suspended by two gimbals
NASA Astrophysics Data System (ADS)
Peres, R. W.; Ricci, M. C.
2015-10-01
This work presents the attitude control system design procedures for a three axis stabilized satellite in geostationary orbit, which contains a flywheel suspended by two gimbals. The use of a flywheel with two DOFs is an interesting option because with only one device it's possible to control the torques about vehicle's three axes; through the wheel speed control and gyrotorquing phenomenon with two DOFs. If the wheel size and speed are determined properly it's possible to cancel cyclic torques using gas jets only periodically to cancel secular disturbance torques. The system, based on a flywheel, takes only one pitch/roll (earth) sensor to maintain precise attitude, unlike mass expulsion based control systems, which uses propellants continuously, beyond roll, pitch and yaw sensors. It is considered the satellite is in nominal orbit and, therefore, that the attitude's acquisition phase has already elapsed. Control laws and system parameters are determined in order to cancel the solar pressure radiation disturbance torque and the torque due to misalignment of the thrusters. Stability is analyzed and step and cyclic responses are obtained.
B-dot algorithm steady-state motion performance
NASA Astrophysics Data System (ADS)
Ovchinnikov, M. Yu.; Roldugin, D. S.; Tkachev, S. S.; Penkov, V. I.
2018-05-01
Satellite attitude motion subject to the well-known B-dot magnetic control is considered. Unlike the majority of studies the present work focuses on the slowly rotating spacecraft. The attitude and the angular velocity acquired after detumbling the satellite is determined. This task is performed using two relatively simple geomagnetic field models. First the satellite is considered moving in the simplified dipole model. Asymptotically stable rotation around the axis of the maximum moment of inertia is found. This axis direction in the inertial space and the rotation rate are found. This result is then refined using the direct dipole geomagnetic field. Simple stable rotation transforms into the periodical motion, the rotation rate is also refined. Numerical analysis with the gravitational torque and the inclined dipole model verifies the analytical results.
Analytical Approach Validation for the Spin-Stabilized Satellite Attitude
NASA Technical Reports Server (NTRS)
Zanardi, Maria Cecilia F. P. S.; Garcia, Roberta Veloso; Kuga, Helio Koiti
2007-01-01
An analytical approach for spin-stabilized spacecraft attitude prediction is presented for the influence of the residual magnetic torques and the satellite in an elliptical orbit. Assuming a quadripole model for the Earth s magnetic field, an analytical averaging method is applied to obtain the mean residual torque in every orbital period. The orbit mean anomaly is used to compute the average components of residual torque in the spacecraft body frame reference system. The theory is developed for time variations in the orbital elements, giving rise to many curvature integrals. It is observed that the residual magnetic torque does not have component along the spin axis. The inclusion of this torque on the rotational motion differential equations of a spin stabilized spacecraft yields conditions to derive an analytical solution. The solution shows that the residual torque does not affect the spin velocity magnitude, contributing only for the precession and the drift of the spin axis of the spacecraft. The theory developed has been applied to the Brazilian s spin stabilized satellites, which are quite appropriated for verification and comparison of the theory with the data generated and processed by the Satellite Control Center of Brazil National Research Institute. The results show the period that the analytical solution can be used to the attitude propagation, within the dispersion range of the attitude determination system performance of Satellite Control Center of Brazil National Research Institute.
The Microwave Anisotropy Probe (MAP) Mission
NASA Technical Reports Server (NTRS)
Markley, F. Landis; Andrews, Stephen F.; ODonnell, James R., Jr.; Ward, David K.; Bauer, Frank H. (Technical Monitor)
2002-01-01
The Microwave Anisotropy Probe mission is designed to produce a map of the cosmic microwave background radiation over the entire celestial sphere by executing a fast spin and a slow precession of its spin axis about the Sun line to obtain a highly interconnected set of measurements. The spacecraft attitude is sensed and controlled using an inertial reference unit, two star trackers, a digital sun sensor, twelve coarse sun sensors, three reaction wheel assemblies, and a propulsion system. This paper presents an overview of the design of the attitude control system to carry out this mission and presents some early flight experience.
The Microwave Anisotropy Probe (MAP) Mission
NASA Technical Reports Server (NTRS)
Markley, F. Landis; Andrews, Stephen F.; ODonnell, James R., Jr.; Ward, David K.; Ericsson, Aprille J.; Bauer, Frank H. (Technical Monitor)
2002-01-01
The Microwave Anisotropy Probe mission is designed to produce a map of the cosmic microwave background radiation over the entire celestial sphere by executing a fast spin and a slow precession of its spin axis about the Sun line to obtain a highly interconnected set of measurements. The spacecraft attitude is sensed and controlled using an Inertial Reference Unit, two Autonomous Star Trackers, a Digital Sun Sensor, twelve Coarse Sun Sensors, three Reaction Wheel Assemblies, and a propulsion system. This paper describes the design of the attitude control system that carries out this mission and presents some early flight experience.
Attitude guidance and tracking for spacecraft with two reaction wheels
NASA Astrophysics Data System (ADS)
Biggs, James D.; Bai, Yuliang; Henninger, Helen
2018-04-01
This paper addresses the guidance and tracking problem for a rigid-spacecraft using two reaction wheels (RWs). The guidance problem is formulated as an optimal control problem on the special orthogonal group SO(3). The optimal motion is solved analytically as a function of time and is used to reduce the original guidance problem to one of computing the minimum of a nonlinear function. A tracking control using two RWs is developed that extends previous singular quaternion stabilisation controls to tracking controls on the rotation group. The controller is proved to locally asymptotically track the generated reference motions using Lyapunov's direct method. Simulations of a 3U CubeSat demonstrate that this tracking control is robust to initial rotation errors and angular velocity errors in the controlled axis. For initial angular velocity errors in the uncontrolled axis and under significant disturbances the control fails to track. However, the singular tracking control is combined with a nano-magnetic torquer which simply damps the angular velocity in the uncontrolled axis and is shown to provide a practical control method for tracking in the presence of disturbances and initial condition errors.
A PC-based magnetometer-only attitude and rate determination system for gyroless spacecraft
NASA Technical Reports Server (NTRS)
Challa, M.; Natanson, G.; Deutschmann, J.; Galal, K.
1995-01-01
This paper describes a prototype PC-based system that uses measurements from a three-axis magnetometer (TAM) to estimate the state (three-axis attitude and rates) of a spacecraft given no a priori information other than the mass properties. The system uses two algorithms that estimate the spacecraft's state - a deterministic magnetic-field only algorithm and a Kalman filter for gyroless spacecraft. The algorithms are combined by invoking the deterministic algorithm to generate the spacecraft state at epoch using a small batch of data and then using this deterministic epoch solution as the initial condition for the Kalman filter during the production run. System input comprises processed data that includes TAM and reference magnetic field data. Additional information, such as control system data and measurements from line-of-sight sensors, can be input to the system if available. Test results are presented using in-flight data from two three-axis stabilized spacecraft: Solar, Anomalous, and Magnetospheric Particle Explorer (SAMPEX) (gyroless, Sun-pointing) and Earth Radiation Budget Satellite (ERBS) (gyro-based, Earth-pointing). The results show that, using as little as 700 s of data, the system is capable of accuracies of 1.5 deg in attitude and 0.01 deg/s in rates; i.e., within SAMPEX mission requirements.
NASA Technical Reports Server (NTRS)
Frew, A. M.; Eisenhut, D. F.; Farrenkopf, R. L.; Gates, R. F.; Iwens, R. P.; Kirby, D. K.; Mann, R. J.; Spencer, D. J.; Tsou, H. S.; Zaremba, J. G.
1972-01-01
The precision pointing control system (PPCS) is an integrated system for precision attitude determination and orientation of gimbaled experiment platforms. The PPCS concept configures the system to perform orientation of up to six independent gimbaled experiment platforms to design goal accuracy of 0.001 degrees, and to operate in conjunction with a three-axis stabilized earth-oriented spacecraft in orbits ranging from low altitude (200-2500 n.m., sun synchronous) to 24 hour geosynchronous, with a design goal life of 3 to 5 years. The system comprises two complementary functions: (1) attitude determination where the attitude of a defined set of body-fixed reference axes is determined relative to a known set of reference axes fixed in inertial space; and (2) pointing control where gimbal orientation is controlled, open-loop (without use of payload error/feedback) with respect to a defined set of body-fixed reference axes to produce pointing to a desired target.
Attitude dynamics and control of a spacecraft using shifting mass distribution
NASA Astrophysics Data System (ADS)
Ahn, Young Tae
Spacecraft need specific attitude control methods that depend on the mission type or special tasks. The dynamics and the attitude control of a spacecraft with a shifting mass distribution within the system are examined. The behavior and use of conventional attitude control actuators are widely developed and performing at the present time. However, the advantage of a shifting mass distribution concept can complement spacecraft attitude control, save mass, and extend a satellite's life. This can be adopted in practice by moving mass from one tank to another, similar to what an airplane does to balance weight. Using this shifting mass distribution concept, in conjunction with other attitude control devices, can augment the three-axis attitude control process. Shifting mass involves changing the center-of-mass of the system, and/or changing the moments of inertia of the system, which then ultimately can change the attitude behavior of the system. This dissertation consists of two parts. First, the equations of motion for the shifting mass concept (also known as morphing) are developed. They are tested for their effects on attitude control by showing how shifting the mass changes the spacecraft's attitude behavior. Second, a method for optimal mass redistribution is shown using a combinatorial optimization theory under constraints. It closes with a simple example demonstrating an optimal reconfiguration. The procedure of optimal reconfiguration from one mass distribution to another to accomplish attitude control has been demonstrated for several simple examples. Mass shifting could work as an attitude controller for fine-tuning attitude behavior in small satellites. Various constraints can be applied for different situations, such as no mass shift between two tanks connected by a failed pipe or total amount of shifted mass per pipe being set for the time optimum solution. Euler angle changes influenced by the mass reconfiguration are accomplished while stability conditions are satisfied. In order to increase the accuracy, generally, more than two control systems are installed in a satellite. Combination with another actuator will be examined to fulfill the full attitude control maneuver. Future work can also include more realistic spacecraft design and operational considerations on the behavior of this type of control system.
Single Axis Flywheel IPACS @1300W, 0.8 N-m
NASA Technical Reports Server (NTRS)
Jansen, Ralph; Kenny, Barbara; Kascak, Peter; Dever, Tim; Santiago, Walter
2005-01-01
NASA Glenn Research Center is developing flywheels for space systems. A single axis laboratory version of an integrated power and attitude control (IPACs) system has been experimentally demonstrated. This is a significant step on the road to a flight qualified three axes IPACS system. The presentation outlines the flywheel development process at NASA GRC, the experimental hardware and approach, the IPACS control algorithm that was formulated and the results of the test program and then proposes a direction for future work. GRC has made progress on flywheel module design in terms of specific energy density and capability through a design and test program resulting in three flywheel module designs. Two of the flywheels are used in the 1D-IPACS experiment with loads and power sources to simulate a satellite power system. The system response is measured in three power modes: charge, discharge, and charge reduction while simultaneously producing a net output torque which could be used for attitude control. Finally, recommendations are made for steps that should be taken to evolve from this laboratory demonstration to a flight like system.
A generalized technique for using cones and dihedral angles in attitude determination, revision 1
NASA Technical Reports Server (NTRS)
Werking, R. D.
1973-01-01
Analytic development is presented for a general least squares attitude determination subroutine applicable to spinning satellites. The method is founded on a geometric approach which is completely divorced from considerations relating to particular types and configurations of onboard attitude sensors. Any mix of sensor measurements which can be first transformed (outside the program) to cone or dihedral angle data can be processed. A cone angle is an angle between the spin axis and a known direction line in space; a dihedral angle is an angle between two planes formed by the spin axis and each of two known direction lines. Many different kinds of sensor data can be transformed to these angles, which in turn constitute the actual program inputs, so that the subroutine can be applied without change to a variety of satellite missions. Either a constant or dynamic spin axis model can be handled. The program is also capable of solving for fixed biases in the input angles, in addition to the spin axis attitude solution.
A New Approach to Attitude Stability and Control for Low Airspeed Vehicles
NASA Technical Reports Server (NTRS)
Lim, K. B.; Shin, Y-Y.; Moerder, D. D.; Cooper, E. G.
2004-01-01
This paper describes an approach for controlling the attitude of statically unstable thrust-levitated vehicles in hover or slow translation. The large thrust vector that characterizes such vehicles can be modulated to provide control forces and moments to the airframe, but such modulation is accompanied by significant unsteady flow effects. These effects are difficult to model, and can compromise the practical value of thrust vectoring in closed-loop attitude stability, even if the thrust vectoring machinery has sufficient bandwidth for stabilization. The stabilization approach described in this paper is based on using internal angular momentum transfer devices for stability, augmented by thrust vectoring for trim and other "outer loop" control functions. The three main components of this approach are: (1) a z-body axis angular momentum bias enhances static attitude stability, reducing the amount of control activity needed for stabilization, (2) optionally, gimbaled reaction wheels provide high-bandwidth control torques for additional stabilization, or agility, and (3) the resulting strongly coupled system dynamics are controlled by a multivariable controller. A flight test vehicle is described, and nonlinear simulation results are provided that demonstrate the efficiency of the approach.
NASA Astrophysics Data System (ADS)
Ousaloo, H. S.; Nodeh, M. T.; Mehrabian, R.
2016-09-01
This paper accomplishes one goal and it was to verify and to validate a Spin Magnetic Attitude Control System (SMACS) program and to perform Hardware-In-the-Loop (HIL) air-bearing experiments. A study of a closed-loop magnetic spin controller is presented using only magnetic rods as actuators. The magnetic spin rate control approach is able to perform spin rate control and it is verified with an Attitude Control System (ACS) air-bearing MATLAB® SIMULINK® model and a hardware-embedded LABVIEW® algorithm that controls the spin rate of the test platform on a spherical air bearing table. The SIMULINK® model includes dynamic model of air-bearing, its disturbances, actuator emulation and the time delays caused by on-board calculations. The air-bearing simulator is employed to develop, improve, and carry out objective tests of magnetic torque rods and spin rate control algorithm in the experimental framework and to provide a more realistic demonstration of expected performance of attitude control as compared with software-based architectures. Six sets of two torque rods are used as actuators for the SMACS. It is implemented and simulated to fulfill mission requirement including spin the satellite up to 12 degs-1 around the z-axis. These techniques are documented for the full nonlinear equations of motion of the system and the performances of these techniques are compared in several simulations.
NASA Astrophysics Data System (ADS)
Lim, Yeerang; Lee, Wonsuk; Bang, Hyochoong; Lee, Hosung
2017-04-01
A thrust distribution approach is proposed in this paper for a variable thrust solid propulsion system with an attitude control system (ACS) that uses a reduced number of nozzles for a three-axis attitude maneuver. Although a conventional variable thrust solid propulsion system needs six ACS nozzles, this paper proposes a thrust system with four ACS nozzles to reduce the complexity and mass of the system. The performance of the new system was analyzed with numerical simulations, and the results show that the performance of the system with four ACS nozzles was similar to the original system while the mass of the whole system was simultaneously reduced. Moreover, a feasibility analysis was performed to determine whether a thrust system with three ACS nozzles is possible.
Magnetometer bias determination and attitude determination for near-earth spacecraft
NASA Technical Reports Server (NTRS)
Lerner, G. M.; Shuster, M. D.
1979-01-01
A simple linear-regression algorithm is used to determine simultaneously magnetometer biases, misalignments, and scale factor corrections, as well as the dependence of the measured magnetic field on magnetic control systems. This algorithm has been applied to data from the Seasat-1 and the Atmosphere Explorer Mission-1/Heat Capacity Mapping Mission (AEM-1/HCMM) spacecraft. Results show that complete inflight calibration as described here can improve significantly the accuracy of attitude solutions obtained from magnetometer measurements. This report discusses the difficulties involved in obtaining attitude information from three-axis magnetometers, briefly derives the calibration algorithm, and presents numerical results for the Seasat-1 and AEM-1/HCMM spacecraft.
Attitude Dynamics and Control of Solar Sails
NASA Astrophysics Data System (ADS)
Sperber, Evan
Solar sails are space vehicles that rely on solar radiation pressure in order to generate forces for thrust and attitude control torques. They exhibit characteristics such as large moments of inertia, fragility of various system components, and long mission durations that make attitude control a particularly difficult engineering problem. Thrust vector control (TVC) is a family of sailcraft attitude control techniques that is on a short list of strategies thought to be suitable for the primary attitude control of solar sails. Every sailcraft TVC device functions by manipulating the relative locations of the composite mass center (cm) of the sailcraft and the center of pressure (cp) of at least one of its reflectors. Relative displacement of these two points results in body torques that can be used to steer the sailcraft. This dissertation presents a strategy for the large-angle reorientation of a sailcraft using TVC. Two forms of TVC, namely the panel and ballast mass translation methods are well represented in the literature, while rigorous studies regarding a third form, gimballed mass rotation, are conspicuously absent. The gimballed mass method is physically realized by placing a ballast mass, commonly the sailcraft's scientific payload, at the tip of a gimballed boom that has its base fixed at some point on the sailcraft. A TVC algorithm will then strategically manipulate the payload boom's gimbal angles, thereby changing the projection of the sailcraft cm in the plane of the sail. This research demonstrates effective three-axis attitude control of a model sailcraft using numerical simulation of its nonlinear equations of motion. The particular TVC algorithm developed herein involves two phases---the first phase selects appropriate gimbal rates with the objective that the sailcraft be placed in the neighborhood of its target orientation. It was discovered, however that concomitantly minimizing attitude error as well as residual body rate was not possible using soley this method. By solving the one-dimensional Euler's equation, a single gimbal angle can be found that will cause simultaneous convergence of both these quantities to their respective target values. The second phase of control consists of calculating such an angle, and then setting and maintaining this configuration until the maneuver is completed. iiOnce the validity of the approach is confirmed via simulation for a model sailcraft, it is demonstrated that three-axis attitude control can be performed using this approach by executing a sequence of maneuvers about principal axes. The algorithm is implemented directly inline with the nonlinear equations of motion and simulations are conducted for sailcraft of various sizes that are representative of the dimensions proposed in the literature for future missions.
A vector autopilot system. [aircraft attitude determination with three-axis magnetometer
NASA Technical Reports Server (NTRS)
Pietila, R.; Dunn, W. R., Jr.
1976-01-01
Current technology has evolved low cost, highly reliable solid state vector magnetometers with excellent angular resolution. This paper discusses the role of a three-axis magnetometer as a new instrument for aircraft attitude determination. Using flight data acquired by an instrumented aircraft, attitude is calculated using the earth's magnetic field vector and compared to measured attitudes. The magnetic field alone is not adequate to resolve all attitude variations and the need for a second reference angle or vector is discussed. A system combining the functions of heading determination and attitude measurement is presented to show that both functions can be implemented with essentially the same component count required to measure heading alone. It is concluded that with the correlation achieved in calculated and measured attitude there is a potential application of vector magnetometry in attitude measurement systems.
Restoring Redundancy to the MAP Propulsion System
NASA Technical Reports Server (NTRS)
O'Donnell, James R., Jr.; Davis, Gary T.; Ward, David K.; Bauer, Frank H. (Technical Monitor)
2002-01-01
The Microwave Anisotropy Probe (MAP) is a follow-on to the Differential Microwave Radiometer (DMR) instrument on the Cosmic Background Explorer (COBE). Due to the MAP project's limited mass, power, and financial resources, a traditional reliability concept including fully redundant components was not feasible. The MAP design employs selective hardware redundancy, along with backup software modes and algorithms, to improve the odds of mission success. In particular, MAP's propulsion system, which is used for orbit maneuvers and momentum management, uses eight thrusters positioned and oriented in such a way that its thruster-based attitude control modes can maintain three-axis attitude control in the event of the failure of any one thruster.
The Effects of Propellant Slosh Dynamics on the Solar Dynamics Observatory
NASA Technical Reports Server (NTRS)
Mason, Paul; Starin, Scott R.
2011-01-01
The Solar Dynamics Observatory (SDO) mission, which is part of the Living With a Star program, was successfully launched and deployed from its Atlas V launch vehicle on February 11, 2010. SDO is an Explorer-class mission now operating in a geosynchronous orbit (GEO). The basic mission is to observe the Sun for a very high percentage of the 5-year mission (10-year goal) with long stretches of uninterrupted observations and with constant, high-data-rate transmission to a dedicated ground station located in White Sands, New Mexico. A significant portion of SDO's launch mass was propellant, contained in two large tanks. To ensure performance with this level of propellant, a slosh analysis was performed. This paper provides an overview of the SDO slosh analysis, the on-orbit experience, and the lessons learned. SDO is a three-axis controlled, single fault tolerant spacecraft. The attitude sensor complement includes sixteen coarse Sun sensors, a digital Sun sensor, three two-axis inertial reference units, two star trackers, and four guide telescopes. Attitude actuation is performed either using four reaction wheels or eight thrusters, depending on the control mode, along with single main engine which nominally provides velocity-change thrust. The attitude control software has five nominal control modes: three wheel-based modes and two thruster-based modes. A wheel-based Safehold running in the Attitude Control Electronics (ACE) box improves the robustness of the system as a whole. All six modes are designed on the same basic proportional-integral-derivative attitude error structure, with more robust modes setting their integral gains to zero. To achieve and maintain a geosynchronous orbit for a 2974-kilogram spacecraft in a cost effective manner, the SDO team designed a high-efficiency propulsive system. This bi-propellant design includes a 100-pound-force main engine and eight 5-pound-force attitude control thrusters. The main engine provides high specific impulse for the maneuvers to attain GEO, while the smaller Attitude Control System (ACS) thrusters manage the disturbance torques of the larger main engine and provide the capability for much smaller orbit adjustment burns. SDO's large solar profile produces a large solar torque disturbance and momentum buildup. This buildup drives the frequency of momentum unloads via ACS thrusters. SDO requires 1409 kilograms (which is approximately half the launch mass) of propellant to achieve and maintain the GEO orbit while performing the momentum unloads for 10 years.
NASA Technical Reports Server (NTRS)
Helms, W. Jason; Pohlkamp, Kara M.
2011-01-01
The Space Shuttle does not dock at an exact 90 degrees to the International Space Station (ISS) x-body axis. This offset from 90 degrees, along with error sources within their respective attitude knowledge, causes the two vehicles to never completely agree on their attitude, even though they operate as a single, mated stack while docked. The docking offset can be measured in flight when both vehicles have good attitude reference and is a critical component in calculations to transfer attitude reference from one vehicle to another. This paper will describe how the docking offset and attitude reference errors between both vehicles are measured and how this information would be used to recover Shuttle attitude reference from ISS in the event of multiple failures. During STS-117, ISS on-board Guidance, Navigation and Control (GNC) computers began having problems and after several continuous restarts, the systems failed. The failure took the ability for ISS to maintain attitude knowledge. This paper will also demonstrate how with knowledge of the docking offset, the contingency procedure to recover Shuttle attitude reference from ISS was reversed in order to provide ISS an attitude reference from Shuttle. Finally, this paper will show how knowledge of the docking offset can be used to speed up attitude control handovers from Shuttle to ISS momentum management. By taking into account the docking offset, Shuttle can be commanded to hold a more precise attitude which better agrees with the ISS commanded attitude such that start up transients with the ISS momentum management controllers are reduced. By reducing start-up transients, attitude control can be transferred from Shuttle to ISS without the use of ISS thrusters saving precious on-board propellant, crew time and minimizing loads placed upon the mated stack.
Alternative Determination of Density of the Titan Atmosphere
NASA Technical Reports Server (NTRS)
Lee, Allan; Brown, Jay; Feldman, Antonette; Peer, Scott; Wamg. Eric
2009-01-01
An alternative has been developed to direct measurement for determining the density of the atmosphere of the Saturn moon Titan as a function of altitude. The basic idea is to deduce the density versus altitude from telemetric data indicative of the effects of aerodynamic torques on the attitude of the Cassini Saturn orbiter spacecraft as it flies past Titan at various altitudes. The Cassini onboard attitude-control software includes a component that can estimate three external per-axis torques exerted on the spacecraft. These estimates are available via telemetry.
A multilevel control approach for a modular structured space platform
NASA Technical Reports Server (NTRS)
Chichester, F. D.; Borelli, M. T.
1981-01-01
A three axis mathematical representation of a modular assembled space platform consisting of interconnected discrete masses, including a deployable truss module, was derived for digital computer simulation. The platform attitude control system as developed to provide multilevel control utilizing the Gauss-Seidel second level formulation along with an extended form of linear quadratic regulator techniques. The objectives of the multilevel control are to decouple the space platform's spatial axes and to accommodate the modification of the platform's configuration for each of the decoupled axes.
NASA Astrophysics Data System (ADS)
Gao, Chunfeng; Wei, Guo; Wang, Qi; Xiong, Zhenyu; Wang, Qun; Long, Xingwu
2016-10-01
As an indispensable equipment in inertial technology tests, the three-axis turntable is widely used in the calibration of various types inertial navigation systems (INS). In order to ensure the calibration accuracy of INS, we need to accurately measure the initial state of the turntable. However, the traditional measuring method needs a lot of exterior equipment (such as level instrument, north seeker, autocollimator, etc.), and the test processing is complex, low efficiency. Therefore, it is relatively difficult for the inertial measurement equipment manufacturers to realize the self-inspection of the turntable. Owing to the high precision attitude information provided by the laser gyro strapdown inertial navigation system (SINS) after fine alignment, we can use it as the attitude reference of initial state measurement of three-axis turntable. For the principle that the fixed rotation vector increment is not affected by measuring point, we use the laser gyro INS and the encoder of the turntable to provide the attitudes of turntable mounting plat. Through this way, the high accuracy measurement of perpendicularity error and initial attitude of the three-axis turntable has been achieved.
Iterative Magnetometer Calibration
NASA Technical Reports Server (NTRS)
Sedlak, Joseph
2006-01-01
This paper presents an iterative method for three-axis magnetometer (TAM) calibration that makes use of three existing utilities recently incorporated into the attitude ground support system used at NASA's Goddard Space Flight Center. The method combines attitude-independent and attitude-dependent calibration algorithms with a new spinning spacecraft Kalman filter to solve for biases, scale factors, nonorthogonal corrections to the alignment, and the orthogonal sensor alignment. The method is particularly well-suited to spin-stabilized spacecraft, but may also be useful for three-axis stabilized missions given sufficient data to provide observability.
NASA Astrophysics Data System (ADS)
Dilssner, Florian; Springer, Tim; Schönemann, Erik; Zandbergen, Rene; Enderle, Werner
2015-04-01
Solar radiation pressure (SRP) is the largest non-gravitational perturbation for Global Navigation Satellite System (GNSS) satellites, and can therefore have substantial impact on their orbital dynamics. Various SRP force models have been developed over the past 30 years for the purpose of precise orbit determination. They all rely upon the assumption that the satellites continuously maintain a Sun-Nadir pointing attitude with the navigation antenna boresight (body-fixed z-axis) pointing towards Earth center, and the solar panel rotation axis (body-fixed y-axis) being normal to the Sun direction. However, in reality, this is not perfectly the case. Reasons for a non-nominal spacecraft attitude may be eclipse maneuvers, commanded attitude biases and Sun/horizon sensor measurement errors, for example due to mounting misalignment or incorrectly calibrated sensor electronics. In this work the effect of GNSS spacecraft orientation errors on SRP modelling is investigated. Simplified mathematical functions describing the SRP force acting on the solar arrays in the presence of yaw-, pitch- and roll-biases are derived. Special attention is paid to the yaw-bias and its relationship to the SRP dynamics, particular in direction of the spacecraft y-axis ("y-bias force"). Analytical and experimental results gathered from orbit and attitude analyses of GPS Block II/IIA/IIF satellites demonstrate how sensitive the SRP coefficients are to changes in yaw.
Minimization of Roll Firings for Optimal Propellant Maneuvers
NASA Astrophysics Data System (ADS)
Leach, Parker C.
Attitude control of the International Space Station (ISS) is critical for operations, impacting power, communications, and thermal systems. The station uses gyroscopes and thrusters for attitude control, and reorientations are normally assisted by thrusters on docked vehicles. When the docked vehicles are unavailable, the reduction in control authority in the roll axis results in frequent jet firings and massive fuel consumption. To improve this situation, new guidance and control schemes are desired that provide control with fewer roll firings. Optimal control software was utilized to solve for potential candidates that satisfied desired conditions with the goal of minimizing total propellant. An ISS simulation too was then used to test these solutions for feasibility. After several problem reformulations, multiple candidate solutions minimizing or completely eliminating roll firings were found. Flight implementation would not only save massive amounts of fuel and thus money, but also reduce ISS wear and tear, thereby extending its lifetime.
Spacecraft attitude determination using a second-order nonlinear filter
NASA Technical Reports Server (NTRS)
Vathsal, S.
1987-01-01
The stringent attitude determination accuracy and faster slew maneuver requirements demanded by present-day spacecraft control systems motivate the development of recursive nonlinear filters for attitude estimation. This paper presents the second-order filter development for the estimation of attitude quaternion using three-axis gyro and star tracker measurement data. Performance comparisons have been made by computer simulation of system models and filter mechanization. It is shown that the second-order filter consistently performs better than the extended Kalman filter when the performance index of the root sum square estimation error of the quaternion vector is compared. The second-order filter identifies the gyro drift rates faster than the extended Kalman filter. The uniqueness of this algorithm is the online generation of the time-varying process and measurement noise covariance matrices, derived as a function or the process and measurement nonlinearity, respectively.
2005-12-07
KENNEDY SPACE CENTER, FLA. -- In NASA Kennedy Space Center’s Orbiter Processing Facility Bay 1, installation of the forward reaction control system on Atlantis is complete. The control system fits just behind the nose cone and provides the thrust for attitude (rotational) maneuvers (pitch, yaw and roll) and for small velocity changes along the orbiter axis (translation maneuvers). Processing of Atlantis is under way for mission STS-115, the 19th flight to the International Space Station.
2005-12-07
KENNEDY SPACE CENTER, FLA. -- In NASA Kennedy Space Center’s Orbiter Processing Facility Bay 1, workers are installing the forward reaction control system on Atlantis. The control system fits just behind the nose cone and provides the thrust for attitude (rotational) maneuvers (pitch, yaw and roll) and for small velocity changes along the orbiter axis (translation maneuvers). Processing of Atlantis is under way for mission STS-115, the 19th flight to the International Space Station.
2005-12-06
KENNEDY SPACE CENTER, FLA. -- Inside NASA Kennedy Space Center’s Orbiter Processing Facility Bay 1, workers get ready to lift the sling placed round the forward reaction control system that will be installed on Atlantis. The forward reaction control system is located in the forward fuselage nose area. During ascent of the space shuttle, it provides the thrust for attitude (rotational) maneuvers (pitch, yaw and roll) and for small velocity changes along the orbiter axis (translation maneuvers).
2005-12-07
KENNEDY SPACE CENTER, FLA. -- In NASA Kennedy Space Center’s Orbiter Processing Facility Bay 1, workers are installing the forward reaction control system on Atlantis. The control system fits just behind the nose cone and provides the thrust for attitude (rotational) maneuvers (pitch, yaw and roll) and for small velocity changes along the orbiter axis (translation maneuvers). Processing of Atlantis is under way for mission STS-115, the 19th flight to the International Space Station.
Inertial-space disturbance rejection for robotic manipulators
NASA Technical Reports Server (NTRS)
Holt, Kevin
1992-01-01
The disturbance rejection control problem for a 6-DOF (degree of freedom) PUMA manipulator mounted on a 3-DOF platform is investigated. A control algorithm is designed to track the desired position and attitude of the end-effector in inertial space, subject to unknown disturbances in the platform axes. Conditions for the stability of the closed-loop system are derived. The performance of the controller is compared for step, sinusoidal, and random disturbances in the platform rotational axis and in the neighborhood of kinematic singularities.
Observing Mode Attitude Controller for the Lunar Reconnaissance Orbiter
NASA Technical Reports Server (NTRS)
Calhourn, Philip C.; Garrick, Joseph C.
2007-01-01
The Lunar Reconnaissance Orbiter (LRO) mission is the first of a series of lunar robotic spacecraft scheduled for launch in Fall 2008. LRO will spend at least one year in a low altitude polar orbit around the Moon, collecting lunar environment science and mapping data to enable future human exploration. The LRO employs a 3-axis stabilized attitude control system (ACS) whose primary control mode, the "Observing mode", provides Lunar Nadir, off-Nadir, and Inertial fine pointing for the science data collection and instrument calibration. The controller combines the capability of fine pointing with that of on-demand large angle full-sky attitude reorientation into a single ACS mode, providing simplicity of spacecraft operation as well as maximum flexibility for science data collection. A conventional suite of ACS components is employed in this mode to meet the pointing and control objectives. This paper describes the design and analysis of the primary LRO fine pointing and attitude re-orientation controller function, known as the "Observing mode" of the ACS subsystem. The control design utilizes quaternion feedback, augmented with a unique algorithm that ensures accurate Nadir tracking during large angle yaw maneuvers in the presence of high system momentum and/or maneuver rates. Results of system stability analysis and Monte Carlo simulations demonstrate that the observing mode controller can meet fine pointing and maneuver performance requirements.
Triana Safehold: A New Gyroless, Sun-Pointing Attitude Controller
NASA Technical Reports Server (NTRS)
Chen, J.; Morgenstern, Wendy; Garrick, Joseph
2001-01-01
Triana is a single-string spacecraft to be placed in a halo orbit about the sun-earth Ll Lagrangian point. The Attitude Control Subsystem (ACS) hardware includes four reaction wheels, ten thrusters, six coarse sun sensors, a star tracker, and a three-axis Inertial Measuring Unit (IMU). The ACS Safehold design features a gyroless sun-pointing control scheme using only sun sensors and wheels. With this minimum hardware approach, Safehold increases mission reliability in the event of a gyroscope anomaly. In place of the gyroscope rate measurements, Triana Safehold uses wheel tachometers to help provide a scaled estimation of the spacecraft body rate about the sun vector. Since Triana nominally performs momentum management every three months, its accumulated system momentum can reach a significant fraction of the wheel capacity. It is therefore a requirement for Safehold to maintain a sun-pointing attitude even when the spacecraft system momentum is reasonably large. The tachometer sun-line rate estimation enables the controller to bring the spacecraft close to its desired sun-pointing attitude even with reasonably high system momentum and wheel drags. This paper presents the design rationale behind this gyroless controller, stability analysis, and some time-domain simulation results showing performances with various initial conditions. Finally, suggestions for future improvements are briefly discussed.
A geometric model of a V-slit Sun sensor correcting for spacecraft wobble
NASA Technical Reports Server (NTRS)
Mcmartin, W. P.; Gambhir, S. S.
1994-01-01
A V-Slit sun sensor is body-mounted on a spin-stabilized spacecraft. During injection from a parking or transfer orbit to some final orbit, the spacecraft may not be dynamically balanced. This may result in wobble about the spacecraft spin axis as the spin axis may not be aligned with the spacecraft's axis of symmetry. While the widely used models in Spacecraft Attitude Determination and Control, edited by Wertz, correct for separation, elevation, and azimuthal mounting biases, spacecraft wobble is not taken into consideration. A geometric approach is used to develop a method for measurement of the sun angle which corrects for the magnitude and phase of spacecraft wobble. The algorithm was implemented using a set of standard mathematical routines for spherical geometry on a unit sphere.
77 FR 58971 - Airworthiness Directives; Eurocopter France (Eurocopter) Helicopters
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-25
... prompted by flight crew reports of deviations between the displayed attitude on the attitude display screen and the independent electromechanical standby attitude indicator. The proposed actions [[Page 58972... helicopters. EASA advises that a slow drift in the roll axis on the pilot's and co-pilot's attitude display...
78 FR 20234 - Airworthiness Directives; Eurocopter France Helicopters
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-04
... prompted by flight crew reports of deviations between the displayed attitude on the attitude display screen and the independent electromechanical standby attitude indicator. The actions of this AD are intended... helicopters. EASA advises that a slow drift in the roll axis on the pilot's and co-pilot's attitude display...
Evaluation of the prototype dual-axis wall attitude measurement sensor
NASA Technical Reports Server (NTRS)
Wong, Douglas T.
1994-01-01
A prototype dual-axis electrolytic tilt sensor package for angular position measurements was built and evaluated in a laboratory environment. The objective was to investigate the use of this package for making wind tunnel wall attitude measurements for the National Transonic Facility (NTF) at NASA Langley Research Center (LaRC). The instrumentation may replace an existing, more costly, and less rugged servo accelerometer package (angle-of-attack package) currently in use. The dual-axis electrolytic tilt sensor package contains two commercial electrolytic tilt sensors thermally insulated with NTF foam, all housed within a stainless steel package. The package is actively heated and maintained at 160 F using foil heating elements. The laboratory evaluation consisted of a series of tests to characterize the linearity, repeatability, cross-axis interaction, lead wire effect, step response, thermal time constant, and rectification errors. Tests revealed that the total RMS errors for the x-axis sensor is 0.084 degree, and 0.182 degree for the y-axis sensor. The RMS errors are greater than the 0.01 degree specification required for NTF wall attitude measurements. It is therefore not a viable replacement for the angle-of-attack package in the NTF application. However, with some physical modifications, it can be used as an inexpensive 5-degree range dual-axis inclinometer with overall accuracy approaching 0.01 degree under less harsh environments. Also, the data obtained from the tests can be valuable for wind tunnel applications of most types of electrolytic tilt sensors.
Attitude Drift Analysis for the WIND and POLAR Missions
NASA Technical Reports Server (NTRS)
Crouse, Patrick
1996-01-01
The spin axis attitude drift due to environmental torques acting on the Global Geospace Science (GGS) Interplanetary Physics Laboratory (WIND) and the Polar Plasma Laboratory (POLAR) and the subsequent impact on the maneuver planning strategy for each mission is investigated. A brief overview of each mission is presented, including mission objectives, requirements, constraints, and spacecraft design. The environmental torques that act on the spacecraft and the relative importance of each is addressed. Analysis results are presented that provide the basis for recommendations made pre-launch to target the spin axis attitude to minimize attitude trim maneuvers for both spacecraft over their respective mission lives. It is demonstrated that attitude drift is not the dominant factor in maintaining the pointing requirement for each spacecraft. Further it is demonstrated that the WIND pointing cannot be met pas 4 months due to the Sun angle constraint, while the POLAR initial attitude can be chosen such that attitude trim maneuvers are not required during each 6 month viewing period.
1956-10-12
A photo of the control stick used on the Iron Cross Attitude Simulator. Although it resembled today's desktop computer flight sticks, its operation was different. As with a standard control stick, moving it back and forth raised and lowered the nose resulting in changes in pitch. Moving the stick to the right or left raised or lowered the wing, resulted in changes in roll. This control stick had a third axis, not found in standard control sticks. Twisting the stick to the right or left caused the airplane's nose to move horizontally in the same direction, resulting in changes in yaw.
Space construction base control system
NASA Technical Reports Server (NTRS)
Kaczynski, R. F.
1979-01-01
Several approaches for an attitude control system are studied and developed for a large space construction base that is structurally flexible. Digital simulations were obtained using the following techniques: (1) the multivariable Nyquist array method combined with closed loop pole allocation, (2) the linear quadratic regulator method. Equations for the three-axis simulation using the multilevel control method were generated and are presented. Several alternate control approaches are also described. A technique is demonstrated for obtaining the dynamic structural properties of a vehicle which is constructed of two or more submodules of known dynamic characteristics.
Three-Axis Attitude Estimation With a High-Bandwidth Angular Rate Sensor
NASA Technical Reports Server (NTRS)
Bayard, David S.; Green, Joseph J.
2013-01-01
A continuing challenge for modern instrument pointing control systems is to meet the increasingly stringent pointing performance requirements imposed by emerging advanced scientific, defense, and civilian payloads. Instruments such as adaptive optics telescopes, space interferometers, and optical communications make unprecedented demands on precision pointing capabilities. A cost-effective method was developed for increasing the pointing performance for this class of NASA applications. The solution was to develop an attitude estimator that fuses star tracker and gyro measurements with a high-bandwidth angular rotation sensor (ARS). An ARS is a rate sensor whose bandwidth extends well beyond that of the gyro, typically up to 1,000 Hz or higher. The most promising ARS sensor technology is based on a magnetohydrodynamic concept, and has recently become available commercially. The key idea is that the sensor fusion of the star tracker, gyro, and ARS provides a high-bandwidth attitude estimate suitable for supporting pointing control with a fast-steering mirror or other type of tip/tilt correction for increased performance. The ARS is relatively inexpensive and can be bolted directly next to the gyro and star tracker on the spacecraft bus. The high-bandwidth attitude estimator fuses an ARS sensor with a standard three-axis suite comprised of a gyro and star tracker. The estimation architecture is based on a dual-complementary filter (DCF) structure. The DCF takes a frequency- weighted combination of the sensors such that each sensor is most heavily weighted in a frequency region where it has the lowest noise. An important property of the DCF is that it avoids the need to model disturbance torques in the filter mechanization. This is important because the disturbance torques are generally not known in applications. This property represents an advantage over the prior art because it overcomes a weakness of the Kalman filter that arises when fusing more than one rate measurement. An additional advantage over prior art is that, computationally, the DCF requires significantly fewer real-time calculations than a Kalman filter formulation. There are essentially two reasons for this: the DCF state is not augmented with angular rate, and measurement updates occur at the slower gyro rate instead of the faster ARS sampling rate. Finally, the DCF has a simple and compelling architecture. The DCF is exactly equivalent to flying two identical attitude observers, one at low rate and one at high rate. These attitude observers are exactly of the form currently flown on typical three-axis spacecraft.
A view finder control system for an earth observation satellite
NASA Astrophysics Data System (ADS)
Steyn, H.
2004-11-01
A real time TV view finder is used on-board a low earth orbiting (LEO) satellite to manually select targets for imaging from a ground station within the communication footprint of the satellite. The attitude control system on the satellite is used to steer the satellite using commands from the groundstation and a television camera onboard the satellite will then downlink a television signal in real time to a monitor screen in the ground station. The operator in the feedback loop will be able to manually steer the boresight of the satellite's main imager towards interested target areas e.g. to avoid clouds or correct for any attitude pointing errors. Due to a substantial delay (in the order of a second) in the view finding feedback loop and the narrow field of view of the main imager, the operator has to be assisted by the onboard attitude control system to stabilise and track the target area visible on the monitor screen. This paper will present the extended Kalman filter used to estimate the satellite's attitude angles using quaternions and the bias vector component of the 3-axis inertial rate sensors (gyros). Absolute attitude sensors (i.e. sun, horizon and magnetic) are used to supply the measurement vectors to correct the filter states during the view finder manoeuvres. The target tracking and rate steering reaction wheel controllers to accurately point and stabilise the satellite will be presented. The reference generator for the satellite to target attitude and rate vectors as used by the reaction wheel controllers will be derived.
Orientation estimation algorithm applied to high-spin projectiles
NASA Astrophysics Data System (ADS)
Long, D. F.; Lin, J.; Zhang, X. M.; Li, J.
2014-06-01
High-spin projectiles are low cost military weapons. Accurate orientation information is critical to the performance of the high-spin projectiles control system. However, orientation estimators have not been well translated from flight vehicles since they are too expensive, lack launch robustness, do not fit within the allotted space, or are too application specific. This paper presents an orientation estimation algorithm specific for these projectiles. The orientation estimator uses an integrated filter to combine feedback from a three-axis magnetometer, two single-axis gyros and a GPS receiver. As a new feature of this algorithm, the magnetometer feedback estimates roll angular rate of projectile. The algorithm also incorporates online sensor error parameter estimation performed simultaneously with the projectile attitude estimation. The second part of the paper deals with the verification of the proposed orientation algorithm through numerical simulation and experimental tests. Simulations and experiments demonstrate that the orientation estimator can effectively estimate the attitude of high-spin projectiles. Moreover, online sensor calibration significantly enhances the estimation performance of the algorithm.
NASA Technical Reports Server (NTRS)
Sahasrabudhe, Vineet; Melkers, Edgar; Faynberg, Alexander; Blanken, Chris L.
2003-01-01
The UH-60 BLACK HAWK was designed in the 1970s, when the US Army primarily operated during the day in good visual conditions. Subsequently, the introduction of night-vision goggles increased the BLACK HAWK'S mission effectiveness, but the accident rate also increased. The increased accident rate is strongly tied to increased pilot workload as a result of a degradation in visual cues. Over twenty years of research in helicopter flight control and handling qualities has shown that these degraded handling qualities can be recovered by modifying the response type of the helicopter in low speed flight. Sikorsky Aircraft Corporation initiated a project under the National Rotorcraft Technology Center (NRTC) to develop modern flight control laws while utilizing the existing partial authority Stability Augmentation System (SAS) of the BLACK HAWK. This effort resulted in a set of Modernized Control Laws (MCLAWS) that incorporate rate command and attitude command response types. Sikorsky and the US Army Aeroflightdynamics Directorate (AFDD) conducted a piloted simulation on the NASA-Ames Vertical h4otion Simulator, to assess potential handling qualities and to reduce the risk of subsequent implementation and flight test of these modern control laws on AFDD's EH-60L helicopter. The simulation showed that Attitude Command Attitude Hold control laws in pitch and roll improve handling qualities in the low speed flight regime. These improvements are consistent across a range of mission task elements and for both good and degraded visual environments. The MCLAWS perform better than the baseline UH-60A control laws in the presence of wind and turbulence. Finally, while the improved handling qualities in the pitch and roll axis allow the pilot to pay more attention to the vertical axis and hence altitude performance also improves, it is clear from pilot comments and altitude excursions that the addition of an Altitude Hold function would further reduce workload and improve overall handling qualities of the aircraft.
2005-12-07
KENNEDY SPACE CENTER, FLA. -- In NASA Kennedy Space Center’s Orbiter Processing Facility Bay 1, technicians check details for the installation of the forward reaction control system on Atlantis (behind them). The control system fits just behind the nose cone and provides the thrust for attitude (rotational) maneuvers (pitch, yaw and roll) and for small velocity changes along the orbiter axis (translation maneuvers). Processing of Atlantis is under way for mission STS-115, the 19th flight to the International Space Station.
2005-12-07
KENNEDY SPACE CENTER, FLA. -- In NASA Kennedy Space Center’s Orbiter Processing Facility Bay 1, a technician inspects a point of installation of the forward reaction control system on Atlantis. The control system fits just behind the nose cone and provides the thrust for attitude (rotational) maneuvers (pitch, yaw and roll) and for small velocity changes along the orbiter axis (translation maneuvers). Processing of Atlantis is under way for mission STS-115, the 19th flight to the International Space Station.
Zero-gyro control of the International Ultraviolet Explorer
NASA Technical Reports Server (NTRS)
O'Donnell, James R., Jr.; Hoffman, Henry C.
1993-01-01
The IUE was built for an anticipated lifespan of three years with a goal of five. It has been operating for over 15 years, even though it has had only two working gyros since August 17, 1985, through the use of a two-gyro attitude control system that uses information from IUE's fine sun sensor (FSS) and the two remaining gyros to provide three-axis control. A one-gyro control system that uses an additional axis of information from the FSS has been developed and tested on-orbit. The purpose of this paper is to discuss the work in progress towards the development of a zero-gyro control law for IUE. Motion about the sunline, which cannot be measured by the FSS, is measured and controlled in the zero-gyro system by applying a momentum bias perpendicular to the sunline and measuring the transfer of this momentum between the spacecraft reaction wheels, while the spacecraft is held in the other two axes using position and derived-rate information from the FSS.
NASA Technical Reports Server (NTRS)
Neil, A. L.
1973-01-01
The Pioneer Venus mission study was conducted for a probe spacecraft and an orbiter spacecraft to be launched by either a Thor/Delta or an Atlas/Centaur launch vehicle. Both spacecraft are spin stabilized. The spin speed is controlled by ground commands to as low as 5 rpm for science instrument scanning on the orbiter and as high as 71 rpm for small probes released from the probe bus. A major objective in the design of the attitude control and mechanism subsystem (ACMS) was to provide, in the interest of costs, maximum commonality of the elements between the probe bus and orbiter spacecraft configurations. This design study was made considering the use of either launch vehicle. The basic functional requirements of the ACMS are derived from spin axis pointing and spin speed control requirements implicit in the acquisition, cruise, encounter and orbital phases of the Pioneer Venus missions.
The Implementation of Satellite Attitude Control System Software Using Object Oriented Design
NASA Technical Reports Server (NTRS)
Reid, W. Mark; Hansell, William; Phillips, Tom; Anderson, Mark O.; Drury, Derek
1998-01-01
NASA established the Small Explorer (SNMX) program in 1988 to provide frequent opportunities for highly focused and relatively inexpensive space science missions. The SMEX program has produced five satellites, three of which have been successfully launched. The remaining two spacecraft are scheduled for launch within the coming year. NASA has recently developed a prototype for the next generation Small Explorer spacecraft (SMEX-Lite). This paper describes the object-oriented design (OOD) of the SMEX-Lite Attitude Control System (ACS) software. The SMEX-Lite ACS is three-axis controlled and is capable of performing sub-arc-minute pointing. This paper first describes high level requirements governing the SMEX-Lite ACS software architecture. Next, the context in which the software resides is explained. The paper describes the principles of encapsulation, inheritance, and polymorphism with respect to the implementation of an ACS software system. This paper will also discuss the design of several ACS software components. Specifically, object-oriented designs are presented for sensor data processing, attitude determination, attitude control, and failure detection. Finally, this paper will address the establishment of the ACS Foundation Class (AFC) Library. The AFC is a large software repository, requiring a minimal amount of code modifications to produce ACS software for future projects.
Predictive momentum management for a space station measurement and computation requirements
NASA Technical Reports Server (NTRS)
Adams, John Carl
1986-01-01
An analysis is made of the effects of errors and uncertainties in the predicting of disturbance torques on the peak momentum buildup on a space station. Models of the disturbance torques acting on a space station in low Earth orbit are presented, to estimate how accurately they can be predicted. An analysis of the torque and momentum buildup about the pitch axis of the Dual Keel space station configuration is formulated, and a derivation of the Average Torque Equilibrium Attitude (ATEA) is presented, for the case of no MRMS (Mobile Remote Manipulation System) motion, Y vehicle axis MRMS motion, and Z vehicle axis MRMS motion. Results showed the peak momentum buildup to be approximately 20000 N-m-s and to be relatively insensitive to errors in the predicting torque models, for Z axis motion of the MRMS was found to vary significantly with model errors, but not exceed a value of approximately 15000 N-m-s for the Y axis MRMS motion with 1 deg attitude hold error. Minimum peak disturbance momentum was found not to occur at the ATEA angle, but at a slightly smaller angle. However, this minimum peak momentum attitude was found to produce significant disturbance momentum at the end of the predicting time interval.
Magnetospheric Multiscale Mission Attitude Dynamics: Observations from Flight Data
NASA Technical Reports Server (NTRS)
Williams, Trevor; Shulman, Seth; Sedlak, Joseph E.; Ottenstein, Neil; Lounsbury, Brian
2016-01-01
The NASA Magnetospheric Multiscale mission, launched on Mar. 12, 2015, is flying four spinning spacecraft in highly elliptical orbits to study the magnetosphere of the Earth. Extensive attitude data is being collected, including spin rate, spin axis orientation, and nutation rate. The paper will discuss the various environmental disturbance torques that act on the spacecraft, and will describe the observed results of these torques. In addition, a slow decay in spin rate has been observed for all four spacecraft in the extended periods between maneuvers. It is shown that this despin is consistent with the effects of an additional disturbance mechanism, namely that produced by the Active Spacecraft Potential Control devices. Finally, attitude dynamics data is used to analyze a micrometeoroid/orbital debris impact event with MMS4 that occurred on Feb. 2, 2016.
Bias Momentum Sizing for Hovering Dual-Spin Platforms
NASA Technical Reports Server (NTRS)
Lim, Kyong B.; Shin, Jong-Yeob; Moerder, Daniel D.
2006-01-01
An atmospheric flight vehicle in hover is typically controlled by varying its thrust vector. Achieving both levitation and attitude control with the propulsion system places considerable demands on it for agility and precision, particularly if the vehicle is statically unstable, or nearly so. These demands can be relaxed by introducing an appropriately sized angular momentum bias aligned with the vehicle's yaw axis, thus providing an additional margin of attitude stability about the roll and pitch axes. This paper describes a methodical approach for trading off angular momentum bias level needed with desired levels of vehicle response due to the design disturbance environment given a vehicle's physical parameters. It also describes several simplifications that provide a more physical and intuitive understanding of dual-spin dynamics for hovering atmospheric vehicles. This approach also mitigates the need for control torques and inadvertent actuator saturation difficulties in trying to stabilize a vehicle via control torques produced by unsteady aerodynamics, thrust vectoring, and unsteady throttling. Simulation results, based on a subscale laboratory test flying platform, demonstrate significant improvements in the attitude control robustness of the vehicle with respect to both wind disturbances and off-center of gravity payload changes during flight.
Attitude Heading Reference System Using MEMS Inertial Sensors with Dual-Axis Rotation
Kang, Li; Ye, Lingyun; Song, Kaichen; Zhou, Yang
2014-01-01
This paper proposes a low cost and small size attitude and heading reference system based on MEMS inertial sensors. A dual-axis rotation structure with a proper rotary scheme according to the design principles is applied in the system to compensate for the attitude and heading drift caused by the large gyroscope biases. An optimization algorithm is applied to compensate for the installation angle error between the body frame and the rotation table's frame. Simulations and experiments are carried out to evaluate the performance of the AHRS. The results show that the proper rotation could significantly reduce the attitude and heading drifts. Moreover, the new AHRS is not affected by magnetic interference. After the rotation, the attitude and heading are almost just oscillating in a range. The attitude error is about 3° and the heading error is less than 3° which are at least 5 times better than the non-rotation condition. PMID:25268911
Multi-Parameter Wireless Monitoring and Telecommand of a Rocket Payload: Design and Implementation
NASA Astrophysics Data System (ADS)
Pamungkas, Arga C.; Putra, Alma A.; Puspitaningayu, Pradini; Fransisca, Yulia; Widodo, Arif
2018-04-01
A rocket system generally consists of two parts, the rocket motor and the payload. The payload system is built of several sensors such as accelerometer, gyroscope, magnetometer, and also a surveillance camera. These sensors are used to monitor the rocket in a three-dimensional axis which determine its attitude. Additionally, the payload must be able to perform image capturing in a certain distance using telecommand. This article is intended to describe the design and also the implementation of a rocket payload which has attitude monitoring and telecommand ability from the ground control station using a long-range wireless module Digi XBee Pro 900 HP.
Output Feedback Slewing Control of Flewible Spacecraft by
NASA Astrophysics Data System (ADS)
Kim, Daesik; Kim, Chun-Hwey; Bang, Hyochoong
1997-12-01
Slewing maneuver and vibration suppression control of flexible spacecraft model by Lyapunov stability theory are considered. The specific model considered in this paper consists of a rigid hub with an elastic appendage attached to the central hub and tip mass. Attitude control to point and stabilize single axis using reaction wheel type device is tested. To control all flexible modes is so critical to designing an active control law. We therefore considered an direct output feeback control design by using Lyapunov stability theory. It is shown that the ouput feedback control law design with proposed configuration gives satisfactory result in slewing performance and vibration suppression control.
2005-12-06
KENNEDY SPACE CENTER, FLA. -- Inside NASA Kennedy Space Center’s Orbiter Processing Facility Bay 1, workers make adjustments to the sling being placed round the forward reaction control system that will be installed on Atlantis. When ready, the shuttle equipment will be lifted for installation. The forward reaction control system is located in the forward fuselage nose area. During ascent of the space shuttle, it provides the thrust for attitude (rotational) maneuvers (pitch, yaw and roll) and for small velocity changes along the orbiter axis (translation maneuvers).
2005-12-06
KENNEDY SPACE CENTER, FLA. -- Inside NASA Kennedy Space Center’s Orbiter Processing Facility Bay 1, workers move the sling into place around the forward reaction control system that will be installed on Atlantis. When ready, the shuttle equipment will be lifted for installation. The forward reaction control system is located in the forward fuselage nose area. During ascent of the space shuttle, it provides the thrust for attitude (rotational) maneuvers (pitch, yaw and roll) and for small velocity changes along the orbiter axis (translation maneuvers).
2005-12-06
KENNEDY SPACE CENTER, FLA. -- Inside NASA Kennedy Space Center’s Orbiter Processing Facility Bay 1, workers secure the overhead crane to the sling placed round the forward reaction control system that will be installed on Atlantis. When ready, the shuttle equipment will be lifted for installation. The forward reaction control system is located in the forward fuselage nose area. During ascent of the space shuttle, it provides the thrust for attitude (rotational) maneuvers (pitch, yaw and roll) and for small velocity changes along the orbiter axis (translation maneuvers).
Spacecraft momentum unloading using controlled magnetic torques
NASA Technical Reports Server (NTRS)
Linder, David M. (Inventor); Goodzeit, Neil E. (Inventor); Schwarzschild, Marc (Inventor)
1992-01-01
A method for maintaining the attitude of a three-axis controlled satellite by use of magnetic torquers includes using magnetometers for measuring the direction of the ambient geomagnetic field. The direction of the net reaction wheel momentum is also determined. The angle between the direction of the geomagnetic field and the net reaction wheel momentum is determined. The angle is compared with a threshold value. Magnetic torquer power consumption is reduced by operating the magnetic torquers only when the angle exceeds the threshold value.
Three axis pulsed plasma thruster with angled cathode and anode strip lines
NASA Technical Reports Server (NTRS)
Cassady, R. Joseph (Inventor); Myers, Roger M. (Inventor); Osborne, Robert D. (Inventor)
2001-01-01
A spacecraft attitude and altitude control system utilizes sets of three pulsed plasma thrusters connected to a single controller. The single controller controls the operation of each thruster in the set. The control of a set of three thrusters in the set makes it possible to provide a component of thrust along any one of three desired axes. This configuration reduces the total weight of a spacecraft since only one controller and its associated electronics is required for each set of thrusters rather than a controller for each thruster. The thrusters are positioned about the spacecraft such that the effect of the thrusters is balanced.
Modular experimental platform for science and applications
NASA Technical Reports Server (NTRS)
Hill, A. S.
1984-01-01
A modularized, standardized spacecraft bus, known as MESA, suitable for a variety of science and applications missions is discussed. The basic bus consists of a simple structural arrangement housing attitude control, telemetry/command, electrical power, propulsion and thermal control subsystems. The general arrangement allows extensive subsystem adaptation to mission needs. Kits provide for the addition of tape recorders, increased power levels and propulsion growth. Both 3-axis and spin stabilized flight proven attitude control subsystems are available. The MESA bus can be launched on Ariane, as a secondary payload for low cost, or on the STS with a PAM-D or other suitable upper stage. Multi-spacecraft launches are possible with either booster. Launch vehicle integration is simple and cost-effective. The low cost of the MESA bus is achieved by the extensive utilization of existing subsystem design concepts and equipment, and efficient program management and test integration techniques.
A Weight Comparison of Several Attitude Controls for Satellites
NASA Technical Reports Server (NTRS)
Adams, James J.; Chilton, Robert G.
1959-01-01
A brief theoretical study has been made for the purpose for estimating and comparing the weight of three different types of controls that can be used to change the attitude of a satellite. The three types of controls are jet reaction, inertia wheel, and a magnetic bar which interacts with the magnetic field of the earth. An idealized task which imposed severe requirements on the angular motion of the satellite was used as the basis for comparison. The results showed that a control for one axis can be devised which will weigh less than 1 percent of the total weight of the satellite. The inertia-wheel system offers weight-saving possibilities if a large number of cycles of operation are required, whereas the jet system would be preferred if a limited number of cycles are required. The magnetic-bar control requires such a large magnet that it is impractical for the example application but might be of value for supplying small trimming moments about certain axes.
Lunar Reconnaissance Orbiter (LRO) Thruster Control Mode Design and Flight Experience
NASA Technical Reports Server (NTRS)
Hsu, Oscar C.
2010-01-01
National Aeronautics and Space Administration s (NASA) Goddard Space Flight Center (GSFC) in Greenbelt, MD, designed, built, tested, and launched the Lunar Reconnaissance Orbiter (LRO) from Cape Canaveral Air Force Station on June 18, 2009. The LRO spacecraft is the first operational spacecraft designed to support NASA s return to the Moon, as part of the Vision for Space Exploration. LRO was launched aboard an Atlas V 401 launch vehicle into a direct insertion trajectory to the Moon. Twenty-four hours after separation the propulsion system was used to perform a mid-course correction maneuver. Four days after the mid-course correction a series of propulsion maneuvers were executed to insert LRO into its commissioning orbit. The commission period lasted eighty days and this followed by a second set of thruster maneuvers that inserted LRO into its mission orbit. To date, the spacecraft has been gathering invaluable data in support of human s future return to the moon. The LRO Attitude Control Systems (ACS) contains two thruster based control modes: Delta-H and Delta-V. The design of the two controllers are similar in that they are both used for 3-axis control of the spacecraft with the Delta-H controller used for momentum management and the Delta-V controller used for orbit adjust and maintenance maneuvers. In addition to the nominal purpose of the thruster modes, the Delta-H controller also has the added capability of performing a large angle slew maneuver. A suite of ACS components are used by the thruster based control modes, for both initialization and control. For initialization purposes, a star tracker or the Kalman Filter solution is used for providing attitude knowledge and upon entrance into the thruster based control modes attitude knowledge is provided via rate propagation using a inertial reference unit (IRU). Rate information for the controller is also supplied by the IRU. Three-axis control of the spacecraft in the thruster modes is provided by eight 5-lbf class attitude control thrusters configured in two sets of four thrusters for redundancy purposes. Four additional 20-lbf class thrusters configured in two sets of two thrusters are used for Lunar Orbit Insertion maneuvers. The propulsion system is one the few systems on-board the LRO spacecraft that has built in redundancy. The Delta-H controller consists of a Proportional-Derivative (PD) controller with a structural filter on the thrusters and a Proportional controller on the reaction wheels. The PD control that employs the thrusters is used for attitude and rate control. The Proportional controller on the reaction wheels is used for commanding the wheels to a new momentum state. The ground commands used for the Delta-H controller are the system momentum vector, reaction wheel momentum, maximum expected command time, and which set of attitude control thrusters to use. The ability to command both the system momentum vector and reaction wheel momentum in the Delta-H controller provides both a capability and an additional source of operator error. Large angle slews via the Delta-H controller is achievable via this commands because these commands are used for the exit mode criteria. Setting these commands to non-consistent values prevents the mode from exiting nominally.
Attitude analysis in Flatland: The plane truth
NASA Technical Reports Server (NTRS)
Shuster, Malcolm D.
1993-01-01
Many results in attitude analysis are still meaningful when the attitude is restricted to rotations about a single axis. Such a picture corresponds to attitude analysis in the Euclidean plane. The present report formalizes the representation of attitude in the plane and applies it to some well-known problems. In particular, we study the connection of the 'additive' and 'multiplicative' formulations of the differential corrector for the quaternion in its two-dimensional setting.
2005-11-30
KENNEDY SPACE CENTER, FLA. - The Forward Reaction Control System (FRCS) of space shuttle Atlantis sits in the transfer aisle of Orbiter Processing Facility Bay 1 in anticipation of being installed. The FRCS provides the thrust for attitude (rotational) maneuvers (pitch, yaw and roll) and for small velocity changes along the orbiter axis (translation maneuvers). Processing of Atlantis is under way for mission STS-115, the 19th flight to the International Space Station.
2005-11-30
KENNEDY SPACE CENTER, FLA. - The Forward Reaction Control System (FRCS) of space shuttle Atlantis sits in the transfer aisle of Orbiter Processing Facility Bay 1 in anticipation of being installed. The FRCS provides the thrust for attitude (rotational) maneuvers (pitch, yaw and roll) and for small velocity changes along the orbiter axis (translation maneuvers). Processing of Atlantis is under way for mission STS-115, the 19th flight to the International Space Station.
Attitude Determination Error Analysis System (ADEAS) mathematical specifications document
NASA Technical Reports Server (NTRS)
Nicholson, Mark; Markley, F.; Seidewitz, E.
1988-01-01
The mathematical specifications of Release 4.0 of the Attitude Determination Error Analysis System (ADEAS), which provides a general-purpose linear error analysis capability for various spacecraft attitude geometries and determination processes, are presented. The analytical basis of the system is presented. The analytical basis of the system is presented, and detailed equations are provided for both three-axis-stabilized and spin-stabilized attitude sensor models.
Aviation spatial orientation in relationship to head position and attitude interpretation.
Patterson, F R; Cacioppo, A J; Gallimore, J J; Hinman, G E; Nalepka, J P
1997-06-01
Conventional wisdom describing aviation spatial awareness assumes that pilots view a moving horizon through the windscreen. This assumption presupposes head alignment with the cockpit "Z" axis during both visual (VMC) and instrument (IMC) maneuvers. Even though this visual paradigm is widely accepted, its accuracy has not been verified. The purpose of this research was to determine if a visually induced neck reflex causes pilots to align their heads toward the horizon, rather than the cockpit vertical axis. Based on literature describing reflexive head orientation in terrestrial environments it was hypothesized that during simulated VMC aircraft maneuvers, pilots would align their heads toward the horizon. Some 14 military pilots completed two simulated flights in a stationary dome simulator. The flight profile consisted of five separate tasks, four of which evaluated head tilt during exposure to unique visual conditions and one examined occurrences of disorientation during unusual attitude recovery. During simulated visual flight maneuvers, pilots tilted their heads toward the horizon (p < 0.0001). Under IMC, pilots maintained head alignment with the vertical axis of the aircraft. During VMC maneuvers pilots reflexively tilt their heads toward the horizon, away from the Gz axis of the cockpit. Presumably, this behavior stabilizes the retinal image of the horizon (1 degree visual-spatial cue), against which peripheral images of the cockpit (2 degrees visual-spatial cue) appear to move. Spatial disorientation, airsickness, and control reversal error may be related to shifts in visual-vestibular sensory alignment during visual transitions between VMC (head tilt) and IMC (Gz head stabilized) conditions.
Panoramic attitude sensor for Radio Astronomy Explorer B
NASA Technical Reports Server (NTRS)
Thomsen, R.
1973-01-01
An instrument system to acquire attitude determination data for the RAE-B spacecraft was designed and built. The system consists of an electronics module and two optical scanner heads. Each scanner head has an optical scanner with a field of view of 0.7 degrees diameter which scans the sky and measures the position of the moon, earth and sun relative to the spacecraft. This scanning is accomplished in either of two modes. When the spacecraft is spinning, the scanner operates in spherical mode, with the spacecraft spin providing the slow sweep of lattitude to scan the entire sky. After the spacecraft is placed in lunar orbit and despun, the scanner will operate in planar mode, advancing at a rate of 5.12 seconds per revolution in a fixed plane parallel to the spacecraft Z axis. This scan will cross and measure the moon horizons with every revolution. Each scanner head also has a sun slit which is aligned parallel to the spin axis of the spacecraft and which provides a sun pulse each revolution of the spacecraft. The electronics module provides the command and control, data processing and housekeeping functions.
Attitude control of the LACE satellite: A gravity gradient stabilized spacecraft
NASA Technical Reports Server (NTRS)
Ivory, J. E.; Campion, R. E.; Bakeris, D. F.
1993-01-01
The Low-power Atmospheric Compensation Experiment (LACE) satellite was launched in February 1990 by the Naval Research Laboratory. The spacecraft's pitch and roll are maintained with a gravity gradient boom and a magnetic damper. There are two other booms with much smaller tip masses, one in the velocity direction (lead boom) of variable length and the other in the opposite direction (balance boom) also of variable length. In addition, the system uses a momentum wheel with its axis perpendicular to the plane of the orbit to control yaw and keep these booms in the orbital plane. The primary LACE experiment requires that the lead boom be moved to lengths varying from 4.6 m to 45.7 m. This and other onboard experiments require that the spacecraft attitude remain within tight constraints while operating. The problem confronting the satellite operators was to move the lead boom without inducing a net spacecraft attitude disturbance. A description of a method used to change the length of the lead boom while minimizing the disturbance to the attitude of the spacecraft is given. Deadbeating to dampen pitch oscillations has also been accomplished by maneuvering either the lead or balance boom and is discussed.
NASA Astrophysics Data System (ADS)
Kawajiri, Shota; Matunaga, Saburo
2017-10-01
This study examines a low-complexity control method that satisfies mechanical constraints by using control moment gyros for an agile maneuver. The method is designed based on the fact that a simple rotation around an Euler's principal axis corresponds to a well-approximated solution of a time-optimal rest-to-rest maneuver. With respect to an agile large-angle maneuver using CMGs, it is suggested that there exists a coasting period in which all gimbal angles are constant, and a constant body angular velocity is almost along the Euler's principal axis. The gimbals are driven such that the coasting period is generated in the proposed method. This allows the problem to be converted into obtaining only a coasting time and gimbal angles such that their combination maximizes body angular velocity along the rotational axis of the maneuver. The effectiveness of the proposed method is demonstrated by using numerical simulations. The results indicate that the proposed method shortens the settling time by 20-70% when compared to that of a traditional feedback method. Additionally, a comparison with an existing path planning method shows that the proposed method achieves a low computational complexity (that is approximately 150 times faster) and a certain level of shortness in the settling time.
Study of tethered satellite active attitude control
NASA Technical Reports Server (NTRS)
Colombo, G.
1982-01-01
Existing software was adapted for the study of tethered subsatellite rotational dynamics, an analytic solution for a stable configuration of a tethered subsatellite was developed, the analytic and numerical integrator (computer) solutions for this "test case' was compared in a two mass tether model program (DUMBEL), the existing multiple mass tether model (SKYHOOK) was modified to include subsatellite rotational dynamics, the analytic "test case,' was verified, and the use of the SKYHOOK rotational dynamics capability with a computer run showing the effect of a single off axis thruster on the behavior of the subsatellite was demonstrated. Subroutines for specific attitude control systems are developed and applied to the study of the behavior of the tethered subsatellite under realistic on orbit conditions. The effect of all tether "inputs,' including pendular oscillations, air drag, and electrodynamic interactions, on the dynamic behavior of the tether are included.
NASA Astrophysics Data System (ADS)
Bialke, Bill
1992-05-01
In order to satisfy the stringent cost and power requirements of small satellites, an advanced SCANWHEEL was designed, built, and qualified by ITHACO, Inc. The T-SCANWHEEL is a modular momentum/reaction wheel with an integral conical Earth scanner. The momentum wheel provides momentum bias and control torques about the pitch axis of a spacecraft. An angled scan mirror coupled to the rotating shaft of the momentum wheel provides a conical scan of the field-of-view of an infrared sensor to provide pitch-and-roll attitude information. By using the same motor and bearings for the momentum wheel and Earth scanner, the overall power consumption is reduced and the system reliability is enhanced. The evolution of the T-SCANWHEEL is presented, including design ground rules, tradeoff analyses, and performance results.
NASA Technical Reports Server (NTRS)
1974-01-01
Attitude reference systems for use with the Earth Observatory Satellite (EOS) are described. The systems considered are fixed and gimbaled star trackers, star mappers, and digital sun sensors. Covariance analyses were performed to determine performance for the most promising candidate in low altitude and synchronous orbits. The performance of attitude estimators that employ gyroscopes which are periodically updated by a star sensor is established by a single axis covariance analysis. The other systems considered are: (1) the propulsion system design, (2) electric power and electrical integration, (3) thermal control, (4) ground data processing, and (5) the test plan and cost reduction aspects of observatory integration and test.
A Novel Attitude Determination Algorithm for Spinning Spacecraft
NASA Technical Reports Server (NTRS)
Bar-Itzhack, Itzhack Y.; Harman, Richard R.
2007-01-01
This paper presents a single frame algorithm for the spin-axis orientation-determination of spinning spacecraft that encounters no ambiguity problems, as well as a simple Kalman filter for continuously estimating the full attitude of a spinning spacecraft. The later algorithm is comprised of two low order decoupled Kalman filters; one estimates the spin axis orientation, and the other estimates the spin rate and the spin (phase) angle. The filters are ambiguity free and do not rely on the spacecraft dynamics. They were successfully tested using data obtained from one of the ST5 satellites.
Attitude transfer assembly design for MAGSAT
NASA Technical Reports Server (NTRS)
Collyer, P. W.; Freund, N. P.
1976-01-01
A description is given of a design for an instrument system that will monitor the orientation of a boom-mounted vector magnetometer relative to the main spacecraft body. The attitude of the magnetometer is measured with respect to X and Z axes lateral to the boom length and also a twist axis around the boom center line. These measurements are made in a noncontact optical approach employing a three-axis autocollimator system mounted on the main body of the spacecraft with only passive elements (reflectors) located at the end of the 20-foot boom.
2015-12-01
angular momentum is simply the scalar value projected along the axis of rotation of the momentum wheel (see Figure 1). Since reaction wheels are fixed ...CMGs generate torque by gimbaling a momentum wheel rotating at a nominally fixed rate [2]. The torque output of a CMG is the cross product of the...notably the fixed skew angle of the original system. The goal of this research is to build upon the previous redesign efforts and develop a four-CMG HIL
2007-09-01
Power Control and Filter Boards (PCFB) are powered. The anticipated temperature range is based on a model, and like all models, it is subject to...voltage regulation, filtering , or averaging at room temperature , and with no rate applied. This data was taken at 1K samples/sec, and resulted in an...buffering or amplification should be done as near to the signal source as possible. The low pass filter was added to the rate, BIT, and temperature
Testing Done for Lorentz Force Accelerators and Electrodeless Propulsion Technology Development
NASA Technical Reports Server (NTRS)
Pencil, Eric J.; Gilland, James H.; Arrington, Lynn A.; Kamhawi, Hani
2004-01-01
The NASA Glenn Research Center is developing Lorentz force accelerators and electrodeless plasma propulsion for a wide variety of space applications. These applications range from precision control of formation-flying spacecraft to primary propulsion for very high power interplanetary spacecraft. The specific thruster technologies being addressed are pulsed plasma thrusters, magnetoplasmadynamic thrusters, and helicon-electron cyclotron resonance acceleration thrusters. The pulsed plasma thruster mounted on the Earth Observing-1 spacecraft was operated successfully in orbit in 2002. The two-axis thruster system is fully incorporated in the attitude determination and control system and is being used to automatically counteract disturbances in the pitch axis of the spacecraft. Recent on-orbit operations have focused on extended operations to add flight operation time to the total accumulated thruster life. The results of the experiments pave the way for electric propulsion applications on future Earth-imaging satellites.
Automatic control of the Skylab Astronaut Maneuvering Research Vehicle.
NASA Technical Reports Server (NTRS)
Murtagh, T. B.; Goodwin, M. A.; Greenlee, J. E.; Whitsett , C. E.
1973-01-01
The two automatic control modes of the Astronaut Maneuvering Research Vehicle (AMRV) are analyzed: the control moment gyro (CMG) and the rate gyro (RG). The AMRV is an autonomous maneuvering unit which translates and rotates the pilot by means of hand-controller input commands. The CMG normal operation, desaturation, and cage/lock dynamics are described in terms of a realistic AMRV mass property configuration. No propellant is used for normal operation in the CMG mode, and the maximum rotation rate is 5 deg/sec about each AMRV axis. The RG attitude maneuvering and limit cycle submode dynamic are described in terms of the same AMRV mass property configuration.
2009-08-19
CAPE CANAVERAL, Fla. – In NASA Kennedy Space Center's Orbiter Processing Facility 2, workers begin removing the forward reaction control system, or FRCS, from space shuttle Endeavour's forward fuselage nose area. The FRCS provides the thrust for attitude (rotational) maneuvers (pitch, yaw and roll) and for small velocity changes along the orbiter axis (translation maneuvers). Endeavour is designated as the shuttle for the STS-130 mission, targeted for launch in February 2010. Photo credit: NASA/Jack Pfaller
2009-08-19
CAPE CANAVERAL, Fla. – In NASA Kennedy Space Center's Orbiter Processing Facility 2, a worker removes the forward reaction control system, or FRCS, from space shuttle Endeavour's forward fuselage nose area. The FRCS provides the thrust for attitude (rotational) maneuvers (pitch, yaw and roll) and for small velocity changes along the orbiter axis (translation maneuvers). Endeavour is designated as the shuttle for the STS-130 mission, targeted for launch in February 2010. Photo credit: NASA/Jack Pfaller
2009-08-19
CAPE CANAVERAL, Fla. – The forward reaction control system, or FRCS, will be removed from space shuttle Endeavour's forward fuselage nose area in NASA Kennedy Space Center's Orbiter Processing Facility 2. The FRCS provides the thrust for attitude (rotational) maneuvers (pitch, yaw and roll) and for small velocity changes along the orbiter axis (translation maneuvers). Endeavour is designated as the shuttle for the STS-130 mission, targeted for launch in February 2010. Photo credit: NASA/Jack Pfaller
The deep space 1 extended mission
NASA Astrophysics Data System (ADS)
Rayman, Marc D.; Varghese, Philip
2001-03-01
The primary mission of Deep Space 1 (DS1), the first flight of the New Millennium program, completed successfully in September 1999, having exceeded its objectives of testing new, high-risk technologies important for future space and Earth science missions. DS1 is now in its extended mission, with plans to take advantage of the advanced technologies, including solar electric propulsion, to conduct an encounter with comet 19P/Borrelly in September 2001. During the extended mission, the spacecraft's commercial star tracker failed; this critical loss prevented the spacecraft from achieving three-axis attitude control or knowledge. A two-phase approach to recovering the mission was undertaken. The first involved devising a new method of pointing the high-gain antenna to Earth using the radio signal received at the Deep Space Network as an indicator of spacecraft attitude. The second was the development of new flight software that allowed the spacecraft to return to three-axis operation without substantial ground assistance. The principal new feature of this software is the use of the science camera as an attitude sensor. The differences between the science camera and the star tracker have important implications not only for the design of the new software but also for the methods of operating the spacecraft and conducting the mission. The ambitious rescue was fully successful, and the extended mission is back on track.
The control of satellites with microgravity constraints: The COMET Control System
NASA Astrophysics Data System (ADS)
Grossman, Walter; Freesland, Douglas
1994-05-01
The COMET attitude determination and control system, using inverse dynamics and a novel torque distribution/momentum management technique, has shown great flexibility, performance, and robustness. Three-axis control with two wheels is an inherent consequence of inverse dynamics control which allows for reduction in spacecraft weight and cost, or alternatively, provides a simple means of failure-redundancy for three-wheel spacecraft. The control system, without modification, has continued to perform well in spite of large changes in spacecraft mass properties and mission orbit altitude that have occurred during development. This flexibility has obviated imposition of early stringent ADACS design constraints and has greatly reduced commonly incurred ADACS modification costs and delay associated with program maturation.
The control of satellites with microgravity constraints: The COMET Control System
NASA Technical Reports Server (NTRS)
Grossman, Walter; Freesland, Douglas
1994-01-01
The COMET attitude determination and control system, using inverse dynamics and a novel torque distribution/momentum management technique, has shown great flexibility, performance, and robustness. Three-axis control with two wheels is an inherent consequence of inverse dynamics control which allows for reduction in spacecraft weight and cost, or alternatively, provides a simple means of failure-redundancy for three-wheel spacecraft. The control system, without modification, has continued to perform well in spite of large changes in spacecraft mass properties and mission orbit altitude that have occurred during development. This flexibility has obviated imposition of early stringent ADACS design constraints and has greatly reduced commonly incurred ADACS modification costs and delay associated with program maturation.
Attitude propulsion technology for TOPS
NASA Technical Reports Server (NTRS)
Moynihan, P. I.
1972-01-01
The thermoelectric outer planet spacecraft (TOPS) attitude propulsion subsystem (APS) effort is discussed. It includes the tradeoff rationale that went into the selection of an anhydrous hydrazine baseline system, followed by a discussion of the 0.22 N thruster and its integration into a portable, self-contained propulsion module that was designed, developed, and man rated to support the TOPS single-axis attitude control tests. The results of a cold-start feasibility demonstration with a modified thruster are presented. A description of three types of 0.44 thrusters that were procured for in-house evaluation is included along with the results of the test program. This is followed by a description of the APS feed system components, their evaluations, and a discussion of an evaluation of elastomeric material for valve seat seals. A list of new technology items which will be of value for application to future systems of this type is included.
NASA Technical Reports Server (NTRS)
Smith, G. A.
1975-01-01
The attitude of a spacecraft is determined by specifying independent parameters which relate the spacecraft axes to an inertial coordinate system. Sensors which measure angles between spin axis and other vectors directed to objects or fields external to the spacecraft are discussed. For the spin-stabilized spacecraft considered, the spin axis is constant over at least an orbit, but separate solutions based on sensor angle measurements are different due to propagation of errors. Sensor-angle solution methods are described which minimize the propagated errors by making use of least squares techniques over many sensor angle measurements and by solving explicitly (in closed form) for the spin axis coordinates. These methods are compared with star observation solutions to determine if satisfactory accuracy is obtained by each method.
Periodic-disturbance accommodating control of the space station for asymptotic momentum management
NASA Technical Reports Server (NTRS)
Warren, Wayne; Wie, Bong
1989-01-01
Periodic maneuvering control is developed for asymptotic momentum management of control gyros used as primary actuating devices for the Space Station. The proposed controller utilizes the concepts of quaternion feedback control and periodic-disturbance accommodation to achieve oscillations about the constant torque equilibrium attitude, while minimizing the control effort required. Three-axis coupled equations of motion, written in terms of quaternions, are derived for roll/yaw controller design and stability analysis. It is shown that the quaternion feedback controller is very robust for a wide range of pitch angles. It is also shown that the proposed controller tunes the open-loop unstable vehicle to a stable oscillatory motion which minimizes the control effort needed for steady-state operations.
Initial Satellite Formation Flight Results from the Magnetospheric Multiscale Mission
NASA Technical Reports Server (NTRS)
Williams, Trevor; Ottenstein, Neil; Palmer, Eric; Farahmand, Mitra
2016-01-01
This paper will describe the results that have been obtained to date concerning MMS formation flying. The MMS spacecraft spin at a rate of 3.1 RPM, with spin axis roughly aligned with Ecliptic North. Several booms are used to deploy instruments: two 5 m magnetometer booms in the spin plane, two rigid booms of length 12.5 m along the positive and negative spin axes, and four flexible wire booms of length 60 m in the spin plane. Minimizing flexible motion of the wire booms requires that reorientation of the spacecraft spin axis be kept to a minimum: this is limited to attitude maneuvers to counteract the effects of gravity-gradient and apparent solar motion. Orbital maneuvers must therefore be carried out in essentially the nominal science attitude. These burns make use of a set of monopropellant hydrazine thrusters: two (of thrust 4.5 N) along the spin axis in each direction, and eight (of thrust 18 N) in the spin plane; the latter are pulsed at the spin rate to produce a net delta-v. An on-board accelerometer-based controller is used to accurately generate a commanded delta-v. Navigation makes use of a weak-signal GPS-based system: this allows signals to be received even when MMS is flying above the GPS orbits, producing a highly accurate determination of the four MMS orbits. This data is downlinked to the MMS Mission Operations Center (MOC) and used by the MOC Flight Dynamics Operations Area (FDOA) for maneuver design. These commands are then uplinked to the spacecraft and executed autonomously using the controller, with the ground monitoring the burns in real time.
Development of a Two-Wheel Contingency Mode for the MAP Spacecraft
NASA Technical Reports Server (NTRS)
Starin, Scott R.; ODonnell, James R., Jr.; Bauer, Frank H. (Technical Monitor)
2002-01-01
In the event of a failure of one of MAP's three reaction wheel assemblies (RWAs), it is not possible to achieve three-axis, full-state attitude control using the remaining two wheels. Hence, two of the attitude control algorithms implemented on the MAP spacecraft will no longer be usable in their current forms: Inertial Mode, used for slewing to and holding inertial attitudes, and Observing Mode, which implements the nominal dual-spin science mode. This paper describes the effort to create a complete strategy for using software algorithms to cope with a RWA failure. The discussion of the design process will be divided into three main subtopics: performing orbit maneuvers to reach and maintain an orbit about the second Earth-Sun libration point in the event of a RWA failure, completing the mission using a momentum-bias two-wheel science mode, and developing a new thruster-based mode for adjusting the inertially fixed momentum bias. In this summary, the philosophies used in designing these changes is shown; the full paper will supplement these with algorithm descriptions and testing results.
NASA Astrophysics Data System (ADS)
Zhou, Kaixing; Sun, Xiucong; Huang, Hai; Wang, Xinsheng; Ren, Guangwei
2017-10-01
The space-based Automatic Dependent Surveillance - Broadcast (ADS-B) is a new technology for air traffic management. The satellite equipped with spaceborne ADS-B system receives the broadcast signals from aircraft and transfers the message to ground stations, so as to extend the coverage area of terrestrial-based ADS-B. In this work, a novel satellite single-axis attitude determination solution based on the ADS-B receiving system is proposed. This solution utilizes the signal-to-noise ratio (SNR) measurement of the broadcast signals from aircraft to determine the boresight orientation of the ADS-B receiving antenna fixed on the satellite. The basic principle of this solution is described. The feasibility study of this new attitude determination solution is implemented, including the link budget and the access analysis. On this basis, the nonlinear least squares estimation based on the Levenberg-Marquardt method is applied to estimate the single-axis orientation. A full digital simulation has been carried out to verify the effectiveness and performance of this solution. Finally, the corresponding results are processed and presented minutely.
A gimbaled low noise momentum wheel
NASA Technical Reports Server (NTRS)
Bichler, U.; Eckardt, T.
1993-01-01
The bus actuators are the heart and at the same time the Achilles' heel of accurate spacecraft stabilization systems, because both their performance and their perturbations can have a deciding influence on the achievable pointing accuracy of the mission. The main task of the attitude actuators, which are mostly wheels, is the generation of useful torques with sufficiently high bandwidth, resolution and accuracy. This is because the bandwidth of the whole attitude control loop and its disturbance rejection capability is dependent upon these factors. These useful torques shall be provided, without - as far as possible - parasitic noise like unbalance forces and torques and harmonics. This is because such variable frequency perturbations excite structural resonances which in turn disturb the operation of sensors and scientific instruments. High accuracy spacecraft will further require bus actuators for the three linear degrees of freedom (DOF) to damp structural oscillations excited by various sources. These actuators have to cover the dynamic range of these disturbances. Another interesting feature, which is not necessarily related to low noise performance, is a gimballing capability which enables, in a certain angular range, a three axis attitude control with only one wheel. The herein presented Teldix MWX, a five degree of freedom Magnetic Bearing Momentum Wheel, incorporates all the above required features. It is ideally suited to support, as a gyroscopic actuator in the attitude control system, all High Pointing Accuracy and Vibration Sensitive space missions.
Stellar Gyroscope for Determining Attitude of a Spacecraft
NASA Technical Reports Server (NTRS)
Pain, Bedabrata; Hancock, Bruce; Liebe, Carl; Mellstrom, Jeffrey
2005-01-01
A paper introduces the concept of a stellar gyroscope, currently at an early stage of development, for determining the attitude or spin axis, and spin rate of a spacecraft. Like star trackers, which are commercially available, a stellar gyroscope would capture and process images of stars to determine the orientation of a spacecraft in celestial coordinates. Star trackers utilize chargecoupled devices as image detectors and are capable of tracking attitudes at spin rates of no more than a few degrees per second and update rates typically <5 Hz. In contrast, a stellar gyroscope would utilize an activepixel sensor as an image detector and would be capable of tracking attitude at a slew rate as high as 50 deg/s, with an update rate as high as 200 Hz. Moreover, a stellar gyroscope would be capable of measuring a slew rate up to 420 deg/s. Whereas a Sun sensor and a three-axis mechanical gyroscope are typically needed to complement a star tracker, a stellar gyroscope would function without them; consequently, the mass, power consumption, and mechanical complexity of an attitude-determination system could be reduced considerably.
Efficient algorithms for single-axis attitude estimation
NASA Technical Reports Server (NTRS)
Shuster, M. D.
1981-01-01
The computationally efficient algorithms determine attitude from the measurement of art lengths and dihedral angles. The dependence of these algorithms on the solution of trigonometric equations was reduced. Both single time and batch estimators are presented along with the covariance analysis of each algorithm.
Control and dynamics of a flexible spacecraft during stationkeeping maneuvers
NASA Technical Reports Server (NTRS)
Liu, D.; Yocum, J.; Kang, D. S.
1991-01-01
A case study of a spacecraft having flexible solar arrays is presented. A stationkeeping attitude control mode using both earth and rate gyro reference signals and a flexible vehicle dynamics modeling and implementation is discussed. The control system is designed to achieve both pointing accuracy and structural mode stability during stationkeeping maneuvers. Reduction of structural mode interactions over the entire mode duration is presented. The control mode using a discrete time observer structure is described to show the convergence of the spacecraft attitude transients during Delta-V thrusting maneuvers without preloading thrusting bias to the onboard control processor. The simulation performance using the three axis, body stabilized nonlinear dynamics is provided. The details of a five body dynamics model are discussed. The spacecraft is modeled as a central rigid body having cantilevered flexible antennas, a pair of flexible articulated solar arrays, and to gimballed momentum wheels. The vehicle is free to undergo unrestricted rotations and translations relative to inertial space. A direct implementation of the equations of motion is compared to an indirect implementation that uses a symbolic manipulation software to generate rigid body equations.
Controlling Attitude of a Solar-Sail Spacecraft Using Vanes
NASA Technical Reports Server (NTRS)
Mettler, Edward; Acikmese, Ahmet; Ploen, Scott
2006-01-01
A paper discusses a concept for controlling the attitude and thrust vector of a three-axis stabilized Solar Sail spacecraft using only four single degree-of-freedom articulated spar-tip vanes. The vanes, at the corners of the sail, would be turned to commanded angles about the diagonals of the square sail. Commands would be generated by an adaptive controller that would track a given trajectory while rejecting effects of such disturbance torques as those attributable to offsets between the center of pressure on the sail and the center of mass. The controller would include a standard proportional + derivative part, a feedforward part, and a dynamic component that would act like a generalized integrator. The controller would globally track reference signals, and in the presence of such control-actuator constraints as saturation and delay, the controller would utilize strategies to cancel or reduce their effects. The control scheme would be embodied in a robust, nonlinear algorithm that would allocate torques among the vanes, always finding a stable solution arbitrarily close to the global optimum solution of the control effort allocation problem. The solution would include an acceptably small angle, slow limit-cycle oscillation of the vanes, while providing overall thrust vector pointing stability and performance.
On-Orbit Solar Dynamics Observatory (SDO) Star Tracker Warm Pixel Analysis
NASA Technical Reports Server (NTRS)
Felikson, Denis; Ekinci, Matthew; Hashmall, Joseph A.; Vess, Melissa
2011-01-01
This paper describes the process of identification and analysis of warm pixels in two autonomous star trackers on the Solar Dynamics Observatory (SDO) mission. A brief description of the mission orbit and attitude regimes is discussed and pertinent star tracker hardware specifications are given. Warm pixels are defined and the Quality Index parameter is introduced, which can be explained qualitatively as a manifestation of a possible warm pixel event. A description of the algorithm used to identify warm pixel candidates is given. Finally, analysis of dumps of on-orbit star tracker charge coupled devices (CCD) images is presented and an operational plan going forward is discussed. SDO, launched on February 11, 2010, is operated from the NASA Goddard Space Flight Center (GSFC). SDO is in a geosynchronous orbit with a 28.5 inclination. The nominal mission attitude points the spacecraft X-axis at the Sun, with the spacecraft Z-axis roughly aligned with the Solar North Pole. The spacecraft Y-axis completes the triad. In attitude, SDO moves approximately 0.04 per hour, mostly about the spacecraft Z-axis. The SDO star trackers, manufactured by Galileo Avionica, project the images of stars in their 16.4deg x 16.4deg fields-of-view onto CCD detectors consisting of 512 x 512 pixels. The trackers autonomously identify the star patterns and provide an attitude estimate. Each unit is able to track up to 9 stars. Additionally, each tracker calculates a parameter called the Quality Index, which is a measure of the quality of the attitude solution. Each pixel in the CCD measures the intensity of light and a warns pixel is defined as having a measurement consistently and significantly higher than the mean background intensity level. A warns pixel should also have lower intensity than a pixel containing a star image and will not move across the field of view as the attitude changes (as would a dim star image). It should be noted that the maximum error introduced in the star tracker attitude solution during suspected warm pixel corruptions is within the specified 36 attitude error budget requirement of [35, 70, 70] arcseconds. Thus, the star trackers provided attitude accuracy within the specification for SDO. The star tracker images are intentionally defocused so each star image is detected in more than one CCD pixel. The position of each star is calculated as an intensity-weighted average of the illuminated pixels. The exact method of finding the positions is proprietary to the tracker manufacturer. When a warm pixel happens to be in the vicinity of a star, it can corrupt the calculation of the position of that particular star, thereby corrupting the estimate of the attitude.
LQG/LTR optimal attitude control of small flexible spacecraft using free-free boundary conditions
NASA Astrophysics Data System (ADS)
Fulton, Joseph M.
Due to the volume and power limitations of a small satellite, careful consideration must be taken while designing an attitude control system for 3-axis stabilization. Placing redundancy in the system proves difficult and utilizing power hungry, high accuracy, active actuators is not a viable option. Thus, it is customary to find dependable, passive actuators used in conjunction with small scale active control components. This document describes the application of Elastic Memory Composite materials in the construction of a flexible spacecraft appendage, such as a gravity gradient boom. Assumed modes methods are used with Finite Element Modeling information to obtain the equations of motion for the system while assuming free-free boundary conditions. A discussion is provided to illustrate how cantilever mode shapes are not always the best assumption when modeling small flexible spacecraft. A key point of interest is first resonant modes may be needed in the system design plant in spite of these modes being greater than one order of magnitude in frequency when compared to the crossover frequency of the controller. LQG/LTR optimal control techniques are implemented to compute attitude control gains while controller robustness considerations determine appropriate reduced order controllers and which flexible modes to include in the design model. Key satellite designer concerns in the areas of computer processor sizing, material uncertainty impacts on the system model, and system performance variations resulting from appendage length modifications are addressed.
Spacecraft attitude determination accuracy from mission experience
NASA Technical Reports Server (NTRS)
Brasoveanu, D.; Hashmall, J.; Baker, D.
1994-01-01
This document presents a compilation of the attitude accuracy attained by a number of satellites that have been supported by the Flight Dynamics Facility (FDF) at Goddard Space Flight Center (GSFC). It starts with a general description of the factors that influence spacecraft attitude accuracy. After brief descriptions of the missions supported, it presents the attitude accuracy results for currently active and older missions, including both three-axis stabilized and spin-stabilized spacecraft. The attitude accuracy results are grouped by the sensor pair used to determine the attitudes. A supplementary section is also included, containing the results of theoretical computations of the effects of variation of sensor accuracy on overall attitude accuracy.
The Gravity Probe B Experiment
NASA Technical Reports Server (NTRS)
Kolodziejczak, Jeffrey
2008-01-01
This presentation briefly describes the Gravity Probe B (GP-B) Experiment which is designed to measure parts of Einstein's general theory of relativity by monitoring gyroscope orientation relative to a distant guide star. To measure the miniscule angles predicted by Einstein's theory, it was necessary to build near-perfect gyroscopes that were approximately 50 million times more precise than the best navigational gyroscopes. A telescope mounted along the central axis of the dewar and spacecraft provided the experiment's pointing reference to a guide star. The telescope's image divide precisely split the star's beam into x-axis and y-axis components whose brightness could be compared. GP-B's 650-gallon dewar, kept the science instrument inside the probe at a cryogenic temperature for 17.3 months and also provided the thruster propellant for precision attitude and translation control. Built around the dewar, the GP-B spacecraft was a total-integrated system, comprising both the space vehicle and payload, dedicated as a single entity to experimentally testing predictions of Einstein's theory.
Deep Space 1 Ion Engine Completed a 3-Year Journey
NASA Technical Reports Server (NTRS)
Sovey, James S.; Patterson, Michael J.; Rawlin, Vincent K.; Hamley, John A.
2001-01-01
A xenon ion engine and power processor system, which was developed by the NASA Glenn Research Center in partnership with the Jet Propulsion Laboratory and Boeing Electron Dynamic Devices, completed nearly 3 years of operation aboard the Deep Space 1 spacecraft. The 2.3-kW ion engine, which provided primary propulsion and two-axis attitude control, thrusted for more than 16,000 hr and consumed more than 70 kg of xenon propellant. The Deep Space 1 spacecraft was launched on October 24, 1998, to validate 12 futuristic technologies, including the ion-propulsion system. After the technology validation process was successfully completed, the Deep Space 1 spacecraft flew by the small asteroid Braille on July 29, 1999. The final objective of this mission was to encounter the active comet Borrelly, which is about 6 miles long. The ion engine was on a thrusting schedule to navigate the Deep Space 1 spacecraft to within 1400 miles of the comet. Since the hydrazine used for spacecraft attitude control was in short supply, the ion engine also provided two-axis attitude control to conserve the hydrazine supply for the Borrelly encounter. The comet encounter took place on September 22, 2001. Dr. Marc Rayman, project manager of Deep Space 1 at the Jet Propulsion Laboratory said, "Deep Space 1 plunged into the heart of the comet Borrelly and has lived to tell every detail of its spinetingling adventure! The images are even better than the impressive images of comet Halley taken by Europe's Giotto spacecraft in 1986." The Deep Space 1 mission, which successfully tested the 12 high-risk, advanced technologies and captured the best images ever taken of a comet, was voluntarily terminated on December 18, 2001. The successful demonstration of the 2-kW-class ion propulsion system technology is now providing mission planners with off-the-shelf flight hardware. Higher power, next generation ion propulsion systems are being developed for large flagship missions, such as outer planet explorers and sample-return missions.
Multi-sensor Array for High Altitude Balloon Missions to the Stratosphere
NASA Astrophysics Data System (ADS)
Davis, Tim; McClurg, Bryce; Sohl, John
2008-10-01
We have designed and built a microprocessor controlled and expandable multi-sensor array for data collection on near space missions. Weber State University has started a high altitude research balloon program called HARBOR. This array has been designed to data log a base set of measurements for every flight and has room for six guest instruments. The base measurements are absolute pressure, on-board temperature, 3-axis accelerometer for attitude measurement, and 2-axis compensated magnetic compass. The system also contains a real time clock and circuitry for logging data directly to a USB memory stick. In typical operation the measurements will be cycled through in sequence and saved to the memory stick along with the clock's time stamp. The microprocessor can be reprogrammed to adapt to guest experiments with either analog or digital interfacing. This system will fly with every mission and will provide backup data collection for other instrumentation for which the primary task is measuring atmospheric pressure and temperature. The attitude data will be used to determine the orientation of the onboard camera systems to aid in identifying features in the images. This will make these images easier to use for any future GIS (geographic information system) remote sensing missions.
F-8C adaptive flight control extensions. [for maximum likelihood estimation
NASA Technical Reports Server (NTRS)
Stein, G.; Hartmann, G. L.
1977-01-01
An adaptive concept which combines gain-scheduled control laws with explicit maximum likelihood estimation (MLE) identification to provide the scheduling values is described. The MLE algorithm was improved by incorporating attitude data, estimating gust statistics for setting filter gains, and improving parameter tracking during changing flight conditions. A lateral MLE algorithm was designed to improve true air speed and angle of attack estimates during lateral maneuvers. Relationships between the pitch axis sensors inherent in the MLE design were examined and used for sensor failure detection. Design details and simulation performance are presented for each of the three areas investigated.
High temperature superconducting infrared imaging satellite
NASA Technical Reports Server (NTRS)
Angus, B.; Covelli, J.; Davinic, N.; Hailey, J.; Jones, E.; Ortiz, V.; Racine, J.; Satterwhite, D.; Spriesterbach, T.; Sorensen, D.
1992-01-01
A low earth orbiting platform for an infrared (IR) sensor payload is examined based on the requirements of a Naval Research Laboratory statement of work. The experiment payload is a 1.5-meter square by 0.5-meter high cubic structure equipped with the imaging system, radiators, and spacecraft mounting interface. The orbit is circular at 509 km (275 nmi) altitude and 70 deg. inclination. The spacecraft is three-axis stabilized with pointing accuracy of plus or minus 0.5 deg. in each axis. The experiment payload requires two 15-minute sensing periods over two contiguous orbit periods for 30 minutes of sensing time per day. The spacecraft design is presented for launch via a Delta 2 rocket. Subsystem designs include attitude control, propulsion, electric power, telemetry, tracking and command, thermal design, structure, and cost analysis.
Periodic-disturbance accommodating control of the space station for asymptotic momentum management
NASA Technical Reports Server (NTRS)
Warren, Wayne; Wie, Bong; Geller, David
1989-01-01
Periodic-disturbance accommodating control is investigated for asymptotic momentum management of control moment gyros used as primary actuating devices for the Space Station. The proposed controller utilizes the concepts of quaternion feedback control and periodic-disturbance accommodation to achieve oscillations about the constant torque equilibrium attitude, while minimizing the control effort required. Three-axis coupled equations of motion, written in terms of quaternions, are derived for roll/yaw controller design and stability analysis. The quaternion feedback controller designed using the linear-quadratic regulator synthesis technique is shown to be robust for a wide range of pitch angles. It is also shown that the proposed controller tunes the open-loop unstable vehicle to a stable oscillatory motion which minimizes the control effort needed for steady-state operations.
A feasibility study regarding the addition of a fifth control to a rotorcraft in-flight simulator
NASA Technical Reports Server (NTRS)
Turner, Simon; Andrisani, Dominick, II
1992-01-01
The addition of a large movable horizontal tail surface to the control system of a rotorcraft in-flight simulator being developed from a Sikorsky UH-60A Black Hawk Helicopter is evaluated. The capabilities of the control surface as a trim control and as an active control are explored. The helicopter dynamics are modeled using the Generic Helicopter simulation program developed by Sikorsky Aircraft. The effect of the horizontal tail on the helicopter trim envelope is examined by plotting trim maps of the aircraft attitude and controls as a function of the flight speed and horizontal tail incidence. The control power of the tail surface relative to that of the other controls is examined by comparing control derivatives extracted from the simulation program over the flight speed envelope. The horizontal tail's contribution as an active control is evaluated using an explicit model following control synthesis involving a linear model of the helicopter in steady, level flight at a flight speed of eighty knots. The horizontal tail is found to provide additional control flexibility in the longitudinal axis. As a trim control, it provides effective control of the trim pitch attitude at mid to high forward speeds. As an active control, the horizontal tail provides useful pitching moment generating capabilities at mid to high forward speeds.
NASA Technical Reports Server (NTRS)
Thibodeaux, J. J.
1977-01-01
The results of a simulation study performed to determine the effects of gyro verticality error on lateral autoland tracking and landing performance are presented. A first order vertical gyro error model was used to generate the measurement of the roll attitude feedback signal normally supplied by an inertial navigation system. The lateral autoland law used was an inertially smoothed control design. The effect of initial angular gyro tilt errors (2 deg, 3 deg, 4 deg, and 5 deg), introduced prior to localizer capture, were investigated by use of a small perturbation aircraft simulation. These errors represent the deviations which could occur in the conventional attitude sensor as a result of the maneuver-induced spin-axis misalinement and drift. Results showed that for a 1.05 deg per minute erection rate and a 5 deg initial tilt error, ON COURSE autoland control logic was not satisfied. Failure to attain the ON COURSE mode precluded high control loop gains and localizer beam path integration and resulted in unacceptable beam standoff at touchdown.
Aircraft body-axis rotation measurement system
NASA Technical Reports Server (NTRS)
Cowdin, K. T. (Inventor)
1983-01-01
A two gyro four gimbal attitude sensing system having gimbal lock avoidance is provided with continuous azimuth information, rather than roll information, relative to the magnetic cardinal headings while in near vertical attitudes to allow recovery from vertical on a desired heading. The system is comprised of a means for stabilizing an outer roll gimbal that is common to a vertical gyro and a directional gyro with respect to the aircraft platform which is being angularly displaced about an axis substantially parallel to the outer roll gyro axis. A means is also provided for producing a signal indicative of the magnitude of such displacement as an indication of aircraft heading. Additional means are provided to cause stabilization of the outer roll gimbal whenever the pitch angle of the aircraft passes through a threshold prior to entering vertical flight and destabilization of the outer roll gimbal upon passing through the threshold when departing vertical flight.
The Effect of Microgravity on the Growth of Lead Tin Telluride
NASA Technical Reports Server (NTRS)
Narayanan, R.
2000-01-01
The main objective of this research was to present a model for the prediction of the effect of the microgravity environment on the growth of Lead Tin Telluride. The attitude change and its relation to the experimental objectives: The main objective for the AADSF experiment on USMP 3 involving LTT growth was to estimate the effect of ampoule orientation on the axial and radial segregation of tin telluride. As the furnace was not situated on a gimbal there was no possibility to reorient the ampoule during the flight. Instead the only way to change the growth orientation was to change the attitude of the orbiter. This was accomplished by vernier rocket firings. In what follows it must be noted that the orbiter body coordinates are such that the positive z axis points outward from the 'belly', the positive 'x' axis points outwards from the nose and the positive 'y' axis points outwards from the starboard side. The furnace which was in the pay load had its axis aligned with the orbiter's 'z' axis with the hot end closest to the shuttle body. There were basically three orientations that were desired. These corresponded to the ampoule being seen as a heated from above (thermally stable-solutally unstable) configuration, the heated from below (where the instabilities were reversed from the first orientation) configuration and an 'in between' case where the ampoule axis was misaligned with respect to the orbiters 'g(sub z)' axis.
Orion Handling Qualities During ISS Rendezvous and Docking
NASA Technical Reports Server (NTRS)
Hart, Jeremy J.; Stephens, J. P.; Spehar, P.; Bilimoria, K.; Foster, C.; Gonzalex, R.; Sullivan, K.; Jackson, B.; Brazzel, J.; Hart, J.
2011-01-01
The Orion spacecraft was designed to rendezvous with multiple vehicles in low earth orbit (LEO) and beyond. To perform the required rendezvous and docking task, Orion must provide enough control authority to perform coarse translational maneuvers while maintaining precision to perform the delicate docking corrections. While Orion has autonomous docking capabilities, it is expected that final approach and docking operations with the International Space Station (ISS) will initially be performed in a manual mode. A series of evaluations was conducted by NASA and Lockheed Martin at the Johnson Space Center to determine the handling qualities (HQ) of the Orion spacecraft during different docking and rendezvous conditions using the Cooper-Harper scale. This paper will address the specifics of the handling qualities methodology, vehicle configuration, scenarios flown, data collection tools, and subject ratings and comments. The initial Orion HQ assessment examined Orion docking to the ISS. This scenario demonstrates the Translational Hand Controller (THC) handling qualities of Orion. During this initial assessment, two different scenarios were evaluated. The first was a nominal docking approach to a stable ISS, with Orion initializing with relative position dispersions and a closing rate of approximately 0.1 ft/sec. The second docking scenario was identical to the first, except the attitude motion of the ISS was modeled to simulate a stress case ( 1 degree deadband per axis and 0.01 deg/sec rate deadband per axis). For both scenarios, subjects started each run on final approach at a docking port-to-port range of 20 ft. Subjects used the THC in pulse mode with cues from the docking camera image, window views, and range and range rate data displayed on the Orion display units. As in the actual design, the attitude of the Orion vehicle was held by the automated flight control system at 0.5 degree deadband per axis. Several error sources were modeled including Reaction Control System (RCS) jet angular and position misalignment, RCS thrust magnitude uncertainty, RCS jet force direction uncertainty due to self plume impingement, and Orion center of mass uncertainty.
UltraSail - Ultra-Lightweight Solar Sail Concept
NASA Technical Reports Server (NTRS)
Burton, Rodney L.; Coverstone, Victoria L.; Hargens-Rysanek, Jennifer; Ertmer, Kevin M.; Botter, Thierry; Benavides, Gabriel; Woo, Byoungsam; Carroll, David L.; Gierow, Paul A.; Farmer, Greg
2005-01-01
UltraSail is a next-generation high-risk, high-payoff sail system for the launch, deployment, stabilization and control of very large (sq km class) solar sails enabling high payload mass fractions for high (Delta)V. Ultrasail is an innovative, non-traditional approach to propulsion technology achieved by combining propulsion and control systems developed for formation-flying micro-satellites with an innovative solar sail architecture to achieve controllable sail areas approaching 1 sq km, sail subsystem area densities approaching 1 g/sq m, and thrust levels many times those of ion thrusters used for comparable deep space missions. Ultrasail can achieve outer planetary rendezvous, a deep space capability now reserved for high-mass nuclear and chemical systems. One of the primary innovations is the near-elimination of sail supporting structures by attaching each blade tip to a formation-flying micro-satellite which deploys the sail, and then articulates the sail to provide attitude control, including spin stabilization and precession of the spin axis. These tip micro-satellites are controlled by 3-axis micro-thruster propulsion and an on-board metrology system. It is shown that an optimum spin rate exists which maximizes payload mass.
Handling qualities effects of display latency
NASA Technical Reports Server (NTRS)
King, David W.
1993-01-01
Display latency is the time delay between aircraft response and the corresponding response of the cockpit displays. Currently, there is no explicit specification for allowable display lags to ensure acceptable aircraft handling qualities in instrument flight conditions. This paper examines the handling qualities effects of display latency between 70 and 400 milliseconds for precision instrument flight tasks of the V-22 Tiltrotor aircraft. Display delay effects on the pilot control loop are analytically predicted through a second order pilot crossover model of the V-22 lateral axis, and handling qualities trends are evaluated through a series of fixed-base piloted simulation tests. The results show that the effects of display latency for flight path tracking tasks are driven by the stability characteristics of the attitude control loop. The data indicate that the loss of control damping due to latency can be simply predicted from knowledge of the aircraft's stability margins, control system lags, and required control bandwidths. Based on the relationship between attitude control damping and handling qualities ratings, latency design guidelines are presented. In addition, this paper presents a design philosophy, supported by simulation data, for using flight director display augmentation to suppress the effects of display latency for delays up to 300 milliseconds.
NASA Astrophysics Data System (ADS)
Treder, Alfred J.; Meldahl, Keith L.
The recorded histories of Shuttle/Orbiter attitude and Inertial Upper Stage (IUS) attitude have been analyzed for all joint flights of the IUS in the Orbiter. This database was studied to determine the behavior of relative alignment between the IUS and Shuttle navigation systems. It is found that the overall accuracy of physical alignment has a Shuttle Orbiter bias component less than 5 arcmin/axis and a short-term stability upper bound of 0.5 arcmin/axis, both at 1 sigma. Summaries of the experienced physical and inertial alginment offsets are shown in this paper, together with alignment variation data, illustrated with some flight histories. Also included is a table of candidate values for some error source groups in an Orbiter/IUS attitude errror model. Experience indicates that the Shuttle is much more accurate and stable as an orbiting launch platform than has so far been advertised. This information will be valuable for future Shuttle payloads, especially those (such as the Aeroassisted Flight Experiment) which carry their own inertial navigation systems, and which could update or initialize their attitude determination systems using the Shuttle as the reference.
Solar and Magnetic Attitude Determination for Small Spacecraft
NASA Technical Reports Server (NTRS)
Woodham, Kurt; Blackman, Kathie; Sanneman, Paul
1997-01-01
During the Phase B development of the NASA New Millennium Program (NMP) Earth Orbiter-1 (EO-1) spacecraft, detailed analyses were performed for on-board attitude determination using the Sun and the Earth's magnetic field. This work utilized the TRMM 'Contingency Mode' as a starting point but concentrated on implementation for a small spacecraft without a high performance mechanical gyro package. The analyses and simulations performed demonstrate a geographic dependence due to diurnal variations in the Earth magnetic field with respect to the Sun synchronous, nearly polar orbit. Sensitivity to uncompensated residual magnetic fields of the spacecraft and field modeling errors is shown to be the most significant obstacle for maximizing performance. Performance has been evaluated with a number of inertial reference units and various mounting orientations for the two-axis Fine Sun Sensors. Attitude determination accuracy using the six state Kalman Filter executing at 2 Hz is approximately 0.2 deg, 3-sigma, per axis. Although EO-1 was subsequently driven to a stellar-based attitude determination system as a result of tighter pointing requirements, solar/magnetic attitude determination is demonstrated to be applicable to a range of small spacecraft with medium precision pointing requirements.
Spinning Spacecraft Attitude Estimation Using Markley Variables: Filter Implementation And Results
NASA Technical Reports Server (NTRS)
Sedlak, Joseph E.
2005-01-01
Attitude estimation is often more difficult for spinning spacecraft than for three-axis stabilized platforms due to the need to follow rapidly-varying state vector elements and the lack of three-axis rate measurements from gyros. The estimation problem simplifies when torques are negligible and nutation has damped out, but the general case requires a sequential filter with dynamics propagation. This paper describes the implementation and test results for an extended Kalman filter for spinning spacecraft attitude and rate estimation based on a novel set of variables suggested in a paper by Markley [AAS93-3301 (referred to hereafter as Markley variables). Markley has demonstrated that the new set of variables provides a superior parameterization for numerical integration of the attitude dynamics for spinning or momentum-biased spacecraft. The advantage is that the Markley variables have fewer rapidly-varying elements than other representations such as the attitude quaternion and rate vector. A filter based on these variables was expected to show improved performance due to the more accurate numerical state propagation. However, for a variety of test cases, it has been found that the new filter, as currently implemented, does not perform significantly better than a quaternion-based filter that was developed and tested in parallel. This paper reviews the mathematical background for a filter based on Markley variables. It also describes some features of the implementation and presents test results. The test cases are based on a mission using magnetometer and Sun sensor data and gyro measurements on two axes normal to the spin axis. The orbit and attitude scenarios and spacecraft parameters are modeled after one of the THEMIS (Time History of Events and Macroscale Interactions during Substorms) probes. Several tests are presented that demonstrate the filter accuracy and convergence properties. The tests include torque-free motion with various nutation angles, large constant-torque attitude slews, sensor misalignments, large initial attitude and rate errors, and cases with low data frequency. It is found that the convergence is rapid, the radius of convergence is large, and the results are reasonably accurate even in the presence of unmodeled perturbations.
Fault Detection and Correction for the Solar Dynamics Observatory Attitude Control System
NASA Technical Reports Server (NTRS)
Starin, Scott R.; Vess, Melissa F.; Kenney, Thomas M.; Maldonado, Manuel D.; Morgenstern, Wendy M.
2007-01-01
The Solar Dynamics Observatory is an Explorer-class mission that will launch in early 2009. The spacecraft will operate in a geosynchronous orbit, sending data 24 hours a day to a devoted ground station in White Sands, New Mexico. It will carry a suite of instruments designed to observe the Sun in multiple wavelengths at unprecedented resolution. The Atmospheric Imaging Assembly includes four telescopes with focal plane CCDs that can image the full solar disk in four different visible wavelengths. The Extreme-ultraviolet Variability Experiment will collect time-correlated data on the activity of the Sun's corona. The Helioseismic and Magnetic Imager will enable study of pressure waves moving through the body of the Sun. The attitude control system on Solar Dynamics Observatory is responsible for four main phases of activity. The physical safety of the spacecraft after separation must be guaranteed. Fine attitude determination and control must be sufficient for instrument calibration maneuvers. The mission science mode requires 2-arcsecond control according to error signals provided by guide telescopes on the Atmospheric Imaging Assembly, one of the three instruments to be carried. Lastly, accurate execution of linear and angular momentum changes to the spacecraft must be provided for momentum management and orbit maintenance. In thsp aper, single-fault tolerant fault detection and correction of the Solar Dynamics Observatory attitude control system is described. The attitude control hardware suite for the mission is catalogued, with special attention to redundancy at the hardware level. Four reaction wheels are used where any three are satisfactory. Four pairs of redundant thrusters are employed for orbit change maneuvers and momentum management. Three two-axis gyroscopes provide full redundancy for rate sensing. A digital Sun sensor and two autonomous star trackers provide two-out-of-three redundancy for fine attitude determination. The use of software to maximize chances of recovery from any hardware or software fault is detailed. A generic fault detection and correction software structure is used, allowing additions, deletions, and adjustments to fault detection and correction rules. This software structure is fed by in-line fault tests that are also able to take appropriate actions to avoid corruption of the data stream.
Drag balance Cubesat attitude motion effects on in-situ thermosphere density measurements
NASA Astrophysics Data System (ADS)
Felicetti, Leonard; Santoni, Fabio
2014-08-01
The dynamics of Cubesats carrying a drag balance instrument (DBI) for in situ atmosphere density measurements is analyzed. Atmospheric drag force is measured by the displacement of two light plates exposed to the incoming particle flow. This system is well suited for a distributed sensor network in orbit, to get simultaneous in situ local (non orbit averaged) measurements in multiple positions and orbit heights, contributing to the development and validation of global atmosphere models. The implementation of the DBI leads to orbit normal pointing spinning two body system. The use of a spin-magnetic attitude control system is suggested, based only on magnetometer readings, contributing to making the system simple, inexpensive, and reliable. It is shown, by an averaging technique, that this system provides for orbit normal spin axis pointing. The effect of the coupling between the attitude dynamics and the DBI is evaluated, analyzing its frequency content and showing that no frequency components arise, affecting the DBI performance. The analysis is confirmed by Monte Carlo numerical simulation results.
The Multi-Axis Space Test Inertia Facility in the Altitude Wind Tunnel
1959-12-21
National Aeronautics and Space Administration (NASA) pilot Joe Algranti tests the Multi-Axis Space Test Inertia Facility (MASTIF) inside the Altitude Wind Tunnel while researcher Robert Miller looks on. The MASTIF was a three-axis rig with a pilot’s chair mounted in the center to train Project Mercury pilots to bring a spinning spacecraft under control. An astronaut was secured in a foam couch in the center of the rig. The rig then spun on three axes from 2 to 50 rotations per minute. Small nitrogen gas thrusters were used by the astronauts to bring the MASTIF under control. The device was originally designed in early 1959 without the chair and controllers. It was used by Lewis researchers to determine if the Lewis-designed autopilot system could rectify the capsule’s attitude following separation. If the control system failed to work properly, the heatshield would be out of place and the spacecraft would burn up during reentry. The system was flight tested during the September 1959 launch of the Lewis-assembled Big Joe capsule. The MASTIF was adapted in late 1959 for the astronaut training. NASA engineers added a pilot’s chair, a hand controller, and an instrument display to the MASTIF in order familiarize the astronauts with the sensations of an out-of-control spacecraft. NASA Lewis researcher James Useller and Algranti perfected and calibrated the MASTIF in the fall of 1959. In February and March 1960, the seven Project Mercury astronauts traveled to Cleveland to train on the MASTIF.
Development of an autonomous video rendezous and docking system
NASA Technical Reports Server (NTRS)
Tietz, J. C.; Kelly, J. H.
1982-01-01
Video control systems using three flashing lights and two other types of docking aids were evaluated through computer simulation and other approaches. The three light system performed much better than the others. Its accuracy is affected little by tumbling of the target spacecraft, and in the simulations it was able to cope with attitude rates up to 20,000 degrees per hour about the docking axis. Its performance with rotation about other axes is determined primarily by the state estimation and goal setting portions of the control system, not by measurement accuracy. A suitable control system, and a computer program that can serve as the basis for the physical simulation are discussed.
Digital autopilots: Design considerations and simulator evaluations
NASA Technical Reports Server (NTRS)
Osder, S.; Neuman, F.; Foster, J.
1971-01-01
The development of a digital autopilot program for a transport aircraft and the evaluation of that system's performance on a transport aircraft simulator is discussed. The digital autopilot includes three axis attitude stabilization, automatic throttle control and flight path guidance functions with emphasis on the mode progression from descent into the terminal area through automatic landing. The study effort involved a sequence of tasks starting with the definition of detailed system block diagrams of control laws followed by a flow charting and programming phase and concluding with performance verification using the transport aircraft simulation. The autopilot control laws were programmed in FORTRAN 4 in order to isolate the design process from requirements peculiar to an individual computer.
Solar Dynamics Observatory Guidance, Navigation, and Control System Overview
NASA Technical Reports Server (NTRS)
Morgenstern, Wendy M.; Bourkland, Kristin L.; Hsu, Oscar C.; Liu, Kuo-Chia; Mason, Paul A. C.; O'Donnell, James R., Jr.; Russo, Angela M.; Starin, Scott R.; Vess, Melissa F.
2011-01-01
The Solar Dynamics Observatory (SDO) was designed and built at the Goddard Space Flight Center, launched from Cape Canaveral on February 11, 2010, and reached its final geosynchronous science orbit on March 16, 2010. The purpose of SDO is to observe the Sun and continuously relay data to a dedicated ground station. SDO remains Sun-pointing throughout most of its mission for the instruments to take measurements of the Sun. The SDO attitude control system (ACS) is a single-fault tolerant design. Its fully redundant attitude sensor complement includes sixteen coarse Sun sensors (CSSs), a digital Sun sensor (DSS), three two-axis inertial reference units (IRUs), and two star trackers (STs). The ACS also makes use of the four guide telescopes included as a part of one of the science instruments. Attitude actuation is performed using four reaction wheels assemblies (RWAs) and eight thrusters, with a single main engine used to provide velocity-change thrust for orbit raising. The attitude control software has five nominal control modes, three wheel-based modes and two thruster-based modes. A wheel-based Safehold running in the attitude control electronics box improves the robustness of the system as a whole. All six modes are designed on the same basic proportional-integral-derivative attitude error structure, with more robust modes setting their integral gains to zero. This paper details the final overall design of the SDO guidance, navigation, and control (GN&C) system and how it was used in practice during SDO launch, commissioning, and nominal operations. This overview will include the ACS control modes, attitude determination and sensor calibration, the high gain antenna (HGA) calibration, and jitter mitigation operation. The Solar Dynamics Observatory mission is part of the NASA Living With a Star program, which seeks to understand the changing Sun and its effects on the Solar System, life, and society. To this end, the SDO spacecraft carries three Sun-observing instruments: Helioseismic and Magnetic Imager (HMI), led by Stanford University; Atmospheric Imaging Assembly (AIA), led by Lockheed Martin Space and Astrophysics Laboratory; and Extreme Ultraviolet Variability Experiment (EVE), led by the University of Colorado. The basic mission is to observe the Sun for a very high percentage of the 5-year mission (10-year goal) with long stretches of uninterrupted observations and with constant, high-data-rate transmission to a dedicated ground station to be located in White Sands, New Mexico. These goals guided the design of the spacecraft bus that will carry and service the three-instrument payload. Overarching design goals for the bus are geosynchronous orbit, near-constant Sun observations with the ability to fly through eclipses, and constant HGA contact with the dedicated ground station. A three-axis stabilized ACS is needed both to point at the Sun accurately and to keep the roll about the Sun vector correctly positioned with respect to the solar north pole. This roll control is especially important for the magnetic field imaging of HM I. The mission requirements have several general impacts on the ACS design. Both the AIA and HMI instruments are very sensitive to the blurring caused by jitter. Each has an image stabilization system (ISS) with some ability to filter out high frequency motion, but below the bandwidth of the ISS the control system must compensate for disturbances within the ACS bandwidth or avoid exciting jitter at higher frequencies. Within the ACS bandwidth, the control requirement imposed by AIA is to place the center of the solar disk no more than 2 arc sec, 3 , from a body-defined target based on one of the GTs that accompany the instrument. This body-defined target, called the science reference boresight (SRB), was determined from the postlaunch orientation of the GTs by averaging the bounding telescope boresights for pitch to get a pitch SRB coordinate, and by averaging the bounding boresights for yaw toet the yaw SRB coordinate. The location of this SRB in the 0.5-deg field-of-view for each GT then becomes the central target for each telescope; one GT is selected for use as the ACS controlling guide telescope (CGT) at any given time. Fine Sun-pointing is effected based on this SRB for all three instruments when the Sun is within the linear range of the CGT. In addition to limiting jitter, HMI science requires averaging several observations, making the instrument sensitive to low frequency motion that induces differential motion between each observation. This requires the spacecraft attitude to be stable about the roll axis to approximately 10 arcsec over a ten-minute period. Instrument calibrations require that the spacecraft point the SRB up to 2.5 degrees in pitch and yaw away from the center of the Sun, placing the Sun outside the field-of-view of the guide telescopes. In such instances, when the GTs cannot provide the definitive target for the ACS, on-board attitude determination combined with ephemeris prediction of the Sun direction must provide the definitive target. EVE is capable of observing the Sun with less dependence on attitude control. However, the ground data processing needs for calibrations result in the most strict attitude knowledge requirements for the mission: [35,70,70] arcsec, 3 , of knowledge with respect to the center of the solar disk. In addition to driving the ACS sensor selection, the knowledge requirements, which have their effect primarily during Inertial mode calibrations, drive the accuracy requirements for the solar ephemeris. The need to achieve and maintain geosynchronous orbit (GEO) drove the need for high-efficiency propulsive systems and appropriate attitude control. The main engine provided high specific impulse for the maneuvers to attain GEO, while the smaller ACS thrusters managed the disturbance torques of the larger engine and provided the capability for much smaller adjustment burns on orbit. SDO s large solar profile means that solar radiation pressure is a large torque disturbance, and the momentum buildup from this disturbance and the GEO altitude drives the ACS to use thrusters to manage vehicle momentum. The demanding data capture budget for the mission, however, requires SDO to avoid frequent thruster maneuvers, while concerns about on-orbit jitter restrict the maximum desired wheel speeds desired from the RWAs. The plan for on-orbit wheel speed and momentum management will be discussed as well as what is now being done in operation after the jitter environment was characterized. The SDO ACS hardware complement is single-fault tolerant. Two main processors carry virtually identical copies of the command and data handling and ACS software, and two identical attitude control electronics (ACE) boxes carry Coldfire processors with contingency ACS software and other hardware interface cards; the ACE structure allows reaction wheels to be commanded by the Sun-pointing Safehold independent of the Mil Std 1553 data bus. The sixteen Adcole CSSs are grouped into primary and backup sets of eight sensors, each set providing the ability to calculate a sun vector. Each set of eight eyes provides full 4 -steradian coverage. The Adcole DSS comprises an optics head and a separate electronics box providing a 1553 data interface. The electronics box is mounted inside the Faraday cage created by the spacecraft bus module. The DSS head with its 32- deg square FOV is mounted on the instrument module with its boresight along the spacecraft X axis, nearly aligned with the Sun during observations. Adcole has designed the DSS calibration parameters so that the accuracy is 0.24 arcminutes within 10 deg of the boresight, and diminishes to 3 arcminutes as the Sun moves towards the edges of its FOV . This DSS calibration scheme provides higher accuracy attitude determination over the range of the instrument calibration maneuvers.
NASA Technical Reports Server (NTRS)
Fehrmann, Elizabeth A.; Kenny, Barbara H.
2004-01-01
The NASA Glenn Research Center (GRC) has been working to advance the technology necessary for a flywheel energy storage system for the past several years. Flywheels offer high efficiency, durability, and near-complete discharge capabilities not produced by typical chemical batteries. These characteristics show flywheels to be an attractive alternative to the more typical energy storage solutions. Flywheels also offer the possibility of combining what are now two separate systems in space applications into one: energy storage, which is currently provided by batteries, and attitude control, which is currently provided by control moment gyroscopes (CMGs) or reaction wheels. To date, NASA Glenn research effort has produced the control algorithms necessary to demonstrate flywheel operation up to a rated speed of 60,000 RPM and the combined operation of two flywheel machines to simultaneously provide energy storage and single axis attitude control. Two position-sensorless algorithms are used to control the motor/generator, one for low (0 to 1200 RPM) speeds and one for high speeds. The algorithm allows the transition from the low speed method to the high speed method, but the transition from the high to low speed method was not originally included. This leads to a limitation in the existing motor/generator control code that does not allow the flywheels to be commanded to zero speed (and back in the negative speed direction) after the initial startup. In a multi-flywheel system providing both energy storage and attitude control to a spacecraft, speed reversal may be necessary.
NASA Astrophysics Data System (ADS)
Zhu, Jing; Wang, Xingshu; Wang, Jun; Dai, Dongkai; Xiong, Hao
2016-10-01
Former studies have proved that the attitude error in a single-axis rotation INS/GPS integrated system tracks the high frequency component of the deflections of the vertical (DOV) with a fixed delay and tracking error. This paper analyses the influence of the nominal process noise covariance matrix Q on the tracking error as well as the response delay, and proposed a Q-adjusting technique to obtain the attitude error which can track the DOV better. Simulation results show that different settings of Q lead to different response delay and tracking error; there exists optimal Q which leads to a minimum tracking error and a comparatively short response delay; for systems with different accuracy, different Q-adjusting strategy should be adopted. In this way, the DOV estimation accuracy of using the attitude error as the observation can be improved. According to the simulation results, the DOV estimation accuracy after using the Q-adjusting technique is improved by approximate 23% and 33% respectively compared to that of the Earth Model EGM2008 and the direct attitude difference method.
Landing Characteristics of a Reentry Capsule with a Torus-Shaped Air Bag for Load Alleviation
NASA Technical Reports Server (NTRS)
McGehee, John R.; Hathaway, Melvin E.
1960-01-01
An experimental investigation has been made to determine the landing characteristics of a conical-shaped reentry capsule by using torus-shaped air bags for impact-load alleviation. An impact bag was attached below the large end of the capsule to absorb initial impact loads and a second bag was attached around the canister to absorb loads resulting from impact on the canister when the capsule overturned. A 1/6-scale dynamic model of the configuration was tested for nominal flight paths of 60 deg. and 90 deg. (vertical), a range of contact attitudes from -25 deg. to 30 deg., and a vertical contact velocity of 12.25 feet per second. Accelerations were measured along the X-axis (roll) and Z-axis (yaw) by accelerometers rigidly installed at the center of gravity of the model. Actual flight path, contact attitudes, and motions were determined from high-speed motion pictures. Landings were made on concrete and on water. The peak accelerations along the X-axis for landings on concrete were in the order of 3Og for a 0 deg. contact attitude. A horizontal velocity of 7 feet per second, corresponding to a flight path of 60 deg., had very little effect upon the peak accelerations obtained for landings on concrete. For contact attitudes of -25 deg. and 30 deg. the peak accelerations along the Z-axis were about +/- l5g, respectively. The peak accelerations measured for the water landings were about one-third lower than the peak accelerations measured for the landings on concrete. Assuming a rigid body, computations were made by using Newton's second law of motion and the force-stroke characteristics of the air bag to determine accelerations for a flight path of 90 deg. (vertical) and a contact attitude of 0 deg. The computed and experimental peak accelerations and strokes at peak acceleration were in good agreement for the model. The special scaling appears to be applicable for predicting full-scale time and stroke at peak acceleration for a landing on concrete from a 90 deg. flight path at a 0 deg. It appears that the full-scale approximately the same as those obtained from the model for the range of attitudes and flight paths investigated.
NASA Astrophysics Data System (ADS)
Thorsen, Adam
This study investigates a novel approach to flight control for a compound rotorcraft in a variety of maneuvers ranging from fundamental to aerobatic in nature. Fundamental maneuvers are a class of maneuvers with design significance that are useful for testing and tuning flight control systems along with uncovering control law deficiencies. Aerobatic maneuvers are a class of aggressive and complex maneuvers with more operational significance. The process culminating in a unified approach to flight control includes various control allocation studies for redundant controls in trim and maneuvering flight, an efficient methodology to simulate non-piloted maneuvers with varying degrees of complexity, and the setup of an unconventional control inceptor configuration along with the use of a flight simulator to gather pilot feedback in order to improve the unified control architecture. A flight path generation algorithm was developed to calculate control inceptor commands required for a rotorcraft in aerobatic maneuvers. This generalized algorithm was tailored to generate flight paths through optimization methods in order to satisfy target terminal position coordinates or to minimize the total time of a particular maneuver. Six aerobatic maneuvers were developed drawing inspiration from air combat maneuvers of fighter jet aircraft: Pitch-Back Turn (PBT), Combat Ascent Turn (CAT), Combat Descent Turn (CDT), Weaving Pull-up (WPU), Combat Break Turn (CBT), and Zoom and Boom (ZAB). These aerobatic maneuvers were simulated at moderate to high advance ratios while fundamental maneuvers of the compound including level accelerations/decelerations, climbs, descents, and turns were investigated across the entire flight envelope to evaluate controller performance. The unified control system was developed to allow controls to seamlessly transition between manual and automatic allocations while ensuring that the axis of control for a particular inceptor remained constant with flight regime. An energy management system was developed in order to manage performance limits (namely power required) to promote carefree maneuvering and alleviate pilot workload. This system features limits on pilot commands and has additional logic for preserving control margins and limiting maximum speed in a dive. Nonlinear dynamic inversion (NLDI) is the framework of the unified controller, which incorporates primary and redundant controls. The inner loop of the NLDI controller regulates bank angle, pitch attitude, and yaw rate, while the outer loop command structure is varied (three modes). One version uses an outer loop that commands velocities in the longitudinal and vertical axes (velocity mode), another commands longitudinal acceleration and vertical speed (acceleration mode), and the third commands longitudinal acceleration and transitions from velocity to acceleration command in the vertical axis (aerobatic mode). The flight envelope is discretized into low, cruise, and high speed flight regimes. The unified outer loop primary control effectors for the longitudinal and vertical axes (collective pitch, pitch attitude, and propeller pitch) vary depending on flight regime. A weighted pseudoinverse is used to phase either the collective or propeller pitch in/out of a redundant control role. The controllers were evaluated in Penn State's Rotorcraft Flight Simulator retaining the cyclic stick for vertical and lateral axis control along with pedal inceptors for yaw axis control. A throttle inceptor was used in place of the pilot's traditional left hand inceptor for longitudinal axis control. Ultimately, a simple rigid body model of the aircraft was sufficient enough to design a controller with favorable performance and stability characteristics. This unified flight control system promoted a low enough pilot workload so that an untrained pilot (the author) was able to pilot maneuvers of varying complexity with ease. The framework of this unified system is generalized enough to be able to be applied to any rotorcraft with redundant controls. Minimum power propeller thrust shares ranged from 50% - 90% in high speed flight, while lift shares at high speeds tended towards 60% wing and 40% main rotor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hlond, M.; Bzowski, M.; Moebius, E.
Post-launch boresight of the IBEX-Lo instrument on board the Interstellar Boundary Explorer (IBEX) is determined based on IBEX-Lo Star Sensor observations. Accurate information on the boresight of the neutral gas camera is essential for precise determination of interstellar gas flow parameters. Utilizing spin-phase information from the spacecraft attitude control system (ACS), positions of stars observed by the Star Sensor during two years of IBEX measurements were analyzed and compared with positions obtained from a star catalog. No statistically significant differences were observed beyond those expected from the pre-launch uncertainty in the Star Sensor mounting. Based on the star observations andmore » their positions in the spacecraft reference system, pointing of the IBEX satellite spin axis was determined and compared with the pointing obtained from the ACS. Again, no statistically significant deviations were observed. We conclude that no systematic correction for boresight geometry is needed in the analysis of IBEX-Lo observations to determine neutral interstellar gas flow properties. A stack-up of uncertainties in attitude knowledge shows that the instantaneous IBEX-Lo pointing is determined to within {approx}0.{sup 0}1 in both spin angle and elevation using either the Star Sensor or the ACS. Further, the Star Sensor can be used to independently determine the spacecraft spin axis. Thus, Star Sensor data can be used reliably to correct the spin phase when the Star Tracker (used by the ACS) is disabled by bright objects in its field of view. The Star Sensor can also determine the spin axis during most orbits and thus provides redundancy for the Star Tracker.« less
Foot Placement Modification for a Biped Humanoid Robot with Narrow Feet
Hattori, Kentaro; Otani, Takuya; Lim, Hun-Ok; Takanishi, Atsuo
2014-01-01
This paper describes a walking stabilization control for a biped humanoid robot with narrow feet. Most humanoid robots have larger feet than human beings to maintain their stability during walking. If robot's feet are as narrow as humans, it is difficult to realize a stable walk by using conventional stabilization controls. The proposed control modifies a foot placement according to the robot's attitude angle. If a robot tends to fall down, a foot angle is modified about the roll axis so that a swing foot contacts the ground horizontally. And a foot-landing point is also changed laterally to inhibit the robot from falling to the outside. To reduce a foot-landing impact, a virtual compliance control is applied to the vertical axis and the roll and pitch axes of the foot. Verification of the proposed method is conducted through experiments with a biped humanoid robot WABIAN-2R. WABIAN-2R realized a knee-bended walking with 30 mm breadth feet. Moreover, WABIAN-2R mounted on a human-like foot mechanism mimicking a human's foot arch structure realized a stable walking with the knee-stretched, heel-contact, and toe-off motion. PMID:24592154
Restoring Redundancy to the Wilkinson Microwave Anisotrophy Probe Propulsion System
NASA Technical Reports Server (NTRS)
O'Donnell, James R., Jr.; Davis, Gary T.; Ward, David K.
2004-01-01
The Wilkinson Microwave Anisotropy Probe is a follow-on to the Differential Microwave Radiometer instrument on the Cosmic Background Explorer. Attitude control system engineers discovered sixteen months before launch that configuration changes after the critical design review had resulted in a significant migration of the spacecraft's center of mass. As a result, the spacecraft no longer had a viable backup control mode in the event of a failure of the negative pitch-axis thruster. A tiger team was formed and identified potential solutions to this problem, such as adding thruster-plume shields to redirect thruster torque, adding or removing mass from the spacecraft, adding an additional thruster, moving thrusters, bending thruster nozzles or propellant tubing, or accepting the loss of redundancy. The project considered the impacts on mass, cost, fuel budget, and schedule for each solution, and decided to bend the propellant tubing of the two roll-control thrusters to allow the pair to be used for backup control in the negative pitch axis. This paper discusses the problem and the potential solutions, and documents the hardware and software changes and verification performed. Flight data are presented to show the on-orbit performance of the propulsion system and lessons learned are described.
Foot placement modification for a biped humanoid robot with narrow feet.
Hashimoto, Kenji; Hattori, Kentaro; Otani, Takuya; Lim, Hun-Ok; Takanishi, Atsuo
2014-01-01
This paper describes a walking stabilization control for a biped humanoid robot with narrow feet. Most humanoid robots have larger feet than human beings to maintain their stability during walking. If robot's feet are as narrow as humans, it is difficult to realize a stable walk by using conventional stabilization controls. The proposed control modifies a foot placement according to the robot's attitude angle. If a robot tends to fall down, a foot angle is modified about the roll axis so that a swing foot contacts the ground horizontally. And a foot-landing point is also changed laterally to inhibit the robot from falling to the outside. To reduce a foot-landing impact, a virtual compliance control is applied to the vertical axis and the roll and pitch axes of the foot. Verification of the proposed method is conducted through experiments with a biped humanoid robot WABIAN-2R. WABIAN-2R realized a knee-bended walking with 30 mm breadth feet. Moreover, WABIAN-2R mounted on a human-like foot mechanism mimicking a human's foot arch structure realized a stable walking with the knee-stretched, heel-contact, and toe-off motion.
Test stand for precise measurement of impulse and thrust vector of small attitude control jets
NASA Technical Reports Server (NTRS)
Woodruff, J. R.; Chisel, D. M.
1973-01-01
A test stand which accurately measures the impulse bit and thrust vector of reaction jet thrusters used in the attitude control system of space vehicles has been developed. It can be used to measure, in a vacuum or ambient environment, both impulse and thrust vector of reaction jet thrusters using hydrazine or inert gas propellants. The ballistic pendulum configuration was selected because of its accuracy, simplicity, and versatility. The pendulum is mounted on flexure pivots rotating about a vertical axis at the center of its mass. The test stand has the following measurement capabilities: impulse of 0.00004 to 4.4 N-sec (0.00001 to 1.0 lb-sec) with a pulse duration of 0.5 msec to 1 sec; static thrust of 0.22 to 22 N (0.05 to 5 lb) with a 5 percent resolution; and thrust angle alinement of 0.22 to 22 N (0.05 to 5 lb) thrusters with 0.01 deg accuracy.
NASA Technical Reports Server (NTRS)
Jackson, E. Bruce; Goodrich, Kenneth H.; Bailey, Randall E.; Barnes, James R.; Ragsdale, William A.; Neuhaus, Jason R.
2010-01-01
This paper documents the investigation into the manual docking of a preliminary version of the Crew Exploration Vehicle with stationary and rotating targets in Low Earth Orbit. The investigation was conducted at NASA Langley Research Center in the summer of 2008 in a repurposed fixed-base transport aircraft cockpit and involved nine evaluation astronauts and research pilots. The investigation quantified the benefits of a feed-forward reaction control system thruster mixing scheme to reduce translation-into-rotation coupling, despite unmodeled variations in individual thruster force levels and off-axis center of mass locations up to 12 inches. A reduced rate dead-band in the phase-plane attitude controller also showed some promise. Candidate predictive symbology overlaid on a docking ring centerline camera image did not improve handling qualities, but an innovative attitude status indicator symbol was beneficial. The investigation also showed high workload and handling quality problems when manual dockings were performed with a rotating target. These concerns indicate achieving satisfactory handling quality ratings with a vehicle configuration similar to the nominal Crew Exploration Vehicle may require additional automation.
Smart-1 Moon Impact Operations
NASA Technical Reports Server (NTRS)
Ayala, Andres; Rigger, Ralf
2007-01-01
This paper describes the operations to control the Moon impact of the 3-axis stabilized spacecraft SMART-1 in September 2006. SMART-1 was launched on 27/09/2003. It was the first ESA mission to use an Electric Propulsion (EP) engine as the main motor to spiral out of the Earth gravity field and reach a scientific moon orbit [1]. During September 2005 the last EP maneuvers were performed using the remaining Xenon, in order to compensate for the 3rd body perturbations of the Sun and Earth. These operations extended the mission for an additional year. Afterwards the EP performance became unpredictable and low, so that no meaningful operation for the moon impact could be done. To move the predicted impact point on the 16/8/2006 into visibility from Earth an alternative Delta-V strategy was designed. Due to their alignment, the attitude thrusters could not be used directly to generate the Delta-V, so this strategy was based on controlled angular momentum biasing. Firing along the velocity vector around apolune, the remaining Hydrazine left from the attitude control budget was used, to shift the impact to the required coordinates.
NanoSail - D Orbital and Attitude Dynamics
NASA Technical Reports Server (NTRS)
Heaton, Andrew F.; Faller, Brent F.; Katan, Chelsea K.
2013-01-01
NanoSail-D unfurled January 20th, 2011 and successfully demonstrated the deployment and deorbit capability of a solar sail in low Earth orbit. The orbit was strongly perturbed by solar radiation pressure, aerodynamic drag, and oblate gravity which were modeled using STK HPOP. A comparison of the ballistic coefficient history to the orbit parameters exhibits a strong relationship between orbital lighting, the decay rate of the mean semi-major axis and mean eccentricity. A similar comparison of mean solar area using the STK HPOP solar radiation pressure model exhibits a strong correlation of solar radiation pressure to mean eccentricity and mean argument of perigee. NanoSail-D was not actively controlled and had no capability on-board for attitude or orbit determination. To estimate attitude dynamics we created a 3-DOF attitude dynamics simulation that incorporated highly realistic estimates of perturbing forces into NanoSail-D torque models. By comparing the results of this simulation to the orbital behavior and ground observations of NanoSail-D, we conclude that there is a coupling between the orbit and attitude dynamics as well as establish approximate limits on the location of the NanoSail-D solar center of pressure. Both of these observations contribute valuable data for future solar sail designs and missions.
NASA Technical Reports Server (NTRS)
Kosmann, W. J.; Dionne, E. R.; Klemetson, R. W.
1978-01-01
Nonaxial thrusts produced by solid rocket motors during three-axis stabilized attitude control have been determined from ascent experience on twenty three Burner II, Burner IIA and Block 5D-1 upper stage vehicles. A data base representing four different rocket motor designs (three spherical and one extended spherical) totaling twenty five three-axis stabilized firings is generated. Solid rocket motor time-varying resultant and lateral side force vector magnitudes, directions and total impulses, and roll torque couple magnitudes, directions, and total impulses are tabulated in the appendix. Population means and three sigma deviations are plotted. Existing applicable ground test side force and roll torque magnitudes and total impulses are evaluated and compared to the above experience data base. Within the spherical motor population, the selected AEDC ground test data consistently underestimated experienced motor side forces, roll torques and total impulses. Within the extended spherical motor population, the selected AEDC test data predicted experienced motor side forces, roll torques, and total impulses, with surprising accuracy considering the very small size of the test and experience populations.
On the attitude control and flight result of winged reentry test vehicle
NASA Astrophysics Data System (ADS)
Kawaguchi, Jun'ichiro; Inatani, Yoshifumi; Yonemoto, Koichi; Hinada, Motoki
The Institute of Space and Astronautical Science (ISAS) has been studying the unmanned winged space vehicle HIMES (HIghly Maneuverable Engineering Space vehicle) for a decade and successfully carried out sub-sonic Gliding Flight Experiments several years ago, which was followed by Reentry Flight Experiment, utilizing so called 'Rockoon' method, in September of 1988, which failed due to the unexpected burst of the balloon. ISAS conducted it again making use of refined 'Rockoon' scheme in February of 1992. In spite of its small bulk property, it was equipped with not only a reaction control system (RCS) but a surface control system (SCS) capability as well, which enabled it to make a successful flight under both vacuum and atmospheric circumstances. The highest Mach number exceeded 3.5 and the highest altitude was a bit lower to 67 km. Switching from reaction control to surface control was one of the essential engineering interests in the flight like this. Supersonic autonomous flight control with high angle of attack was also what should be established through this, since in general it inevitably carries inherent lateral instability. A flight test this time revealed those features and characteristics quite well. This paper deals with the attitude control strategy with three-axis Motion Simulation Test as well as the flight results.
Horizon sensors attitude errors simulation for the Brazilian Remote Sensing Satellite
NASA Astrophysics Data System (ADS)
Vicente de Brum, Antonio Gil; Ricci, Mario Cesar
Remote sensing, meteorological and other types of satellites require an increasingly better Earth related positioning. From the past experience it is well known that the thermal horizon in the 15 micrometer band provides conditions of determining the local vertical at any time. This detection is done by horizon sensors which are accurate instruments for Earth referred attitude sensing and control whose performance is limited by systematic and random errors amounting about 0.5 deg. Using the computer programs OBLATE, SEASON, ELECTRO and MISALIGN, developed at INPE to simulate four distinct facets of conical scanning horizon sensors, attitude errors are obtained for the Brazilian Remote Sensing Satellite (the first one, SSR-1, is scheduled to fly in 1996). These errors are due to the oblate shape of the Earth, seasonal and latitudinal variations of the 15 micrometer infrared radiation, electronic processing time delay and misalignment of sensor axis. The sensor related attitude errors are thus properly quantified in this work and will, together with other systematic errors (for instance, ambient temperature variation) take part in the pre-launch analysis of the Brazilian Remote Sensing Satellite, with respect to the horizon sensor performance.
An approach to attitude determination for a spin-stabilized spacecraft (IMP 1)
NASA Technical Reports Server (NTRS)
Fang, A. C.
1972-01-01
The analysis and the FORTRAN program are presented for the determination of attitude of a spin-stabilized spacecraft. The use of telemetry data that provide information about two reference vectors and their relation to the spin is outlined. A technique for the determination of the spin-axis orientation that employs only simple calculations is described.
NASA Technical Reports Server (NTRS)
Hamer, H. A.; Johnson, K. G.
1986-01-01
An analysis was performed to determine the effects of model error on the control of a large flexible space antenna. Control was achieved by employing two three-axis control-moment gyros (CMG's) located on the antenna column. State variables were estimated by including an observer in the control loop that used attitude and attitude-rate sensors on the column. Errors were assumed to exist in the individual model parameters: modal frequency, modal damping, mode slope (control-influence coefficients), and moment of inertia. Their effects on control-system performance were analyzed either for (1) nulling initial disturbances in the rigid-body modes, or (2) nulling initial disturbances in the first three flexible modes. The study includes the effects on stability, time to null, and control requirements (defined as maximum torque and total momentum), as well as on the accuracy of obtaining initial estimates of the disturbances. The effects on the transients of the undisturbed modes are also included. The results, which are compared for decoupled and linear quadratic regulator (LQR) control procedures, are shown in tabular form, parametric plots, and as sample time histories of modal-amplitude and control responses. Results of the analysis showed that the effects of model errors on the control-system performance were generally comparable for both control procedures. The effect of mode-slope error was the most serious of all model errors.
NASA Technical Reports Server (NTRS)
Ha, Kong Q.; Femiano, Michael D.; Mosier, Gary E.
2004-01-01
This viewgraph presentation presents an algorithm for trajectory control of a spacecraft that minimizes the time to perform slews, including settling, by avoiding reaction wheel torque and momentum limits that would excite flexible structural modes. This algorithm was validated by simulation during the design of the NGST 'Yardstick' (precursor to JWST). Performance verification of a reduced form for single-axis slews was carried out using the MIT Origins Testbed. It is currently baselined for use by TPF-Coronagraph.
The Software Design for the Wide-Field Infrared Explorer Attitude Control System
NASA Technical Reports Server (NTRS)
Anderson, Mark O.; Barnes, Kenneth C.; Melhorn, Charles M.; Phillips, Tom
1998-01-01
The Wide-Field Infrared Explorer (WIRE), currently scheduled for launch in September 1998, is the fifth of five spacecraft in the NASA/Goddard Small Explorer (SMEX) series. This paper presents the design of WIRE's Attitude Control System flight software (ACS FSW). WIRE is a momentum-biased, three-axis stabilized stellar pointer which provides high-accuracy pointing and autonomous acquisition for eight to ten stellar targets per orbit. WIRE's short mission life and limited cryogen supply motivate requirements for Sun and Earth avoidance constraints which are designed to prevent catastrophic instrument damage and to minimize the heat load on the cryostat. The FSW implements autonomous fault detection and handling (FDH) to enforce these instrument constraints and to perform several other checks which insure the safety of the spacecraft. The ACS FSW implements modules for sensor data processing, attitude determination, attitude control, guide star acquisition, actuator command generation, command/telemetry processing, and FDH. These software components are integrated with a hierarchical control mode managing module that dictates which software components are currently active. The lowest mode in the hierarchy is the 'safest' one, in the sense that it utilizes a minimal complement of sensors and actuators to keep the spacecraft in a stable configuration (power and pointing constraints are maintained). As higher modes in the hierarchy are achieved, the various software functions are activated by the mode manager, and an increasing level of attitude control accuracy is provided. If FDH detects a constraint violation or other anomaly, it triggers a safing transition to a lower control mode. The WIRE ACS FSW satisfies all target acquisition and pointing accuracy requirements, enforces all pointing constraints, provides the ground with a simple means for reconfiguring the system via table load, and meets all the demands of its real-time embedded environment (16 MHz Intel 80386 processor with 80387 coprocessor running under the VRTX operating system). The mode manager organizes and controls all the software modules used to accomplish these goals, and in particular, the FDH module is tightly coupled with the mode manager.
Analog neural network control method proposed for use in a backup satellite control mode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frigo, J.R.; Tilden, M.W.
1998-03-01
The authors propose to use an analog neural network controller implemented in hardware, independent of the active control system, for use in a satellite backup control mode. The controller uses coarse sun sensor inputs. The field of view of the sensors activate the neural controller, creating an analog dead band with respect to the direction of the sun on each axis. This network controls the orientation of the vehicle toward the sunlight to ensure adequate power for the system. The attitude of the spacecraft is stabilized with respect to the ambient magnetic field on orbit. This paper develops a modelmore » of the controller using real-time coarse sun sensor data and a dynamic model of a prototype system based on a satellite system. The simulation results and the feasibility of this control method for use in a satellite backup control mode are discussed.« less
Estimation and identification study for flexible vehicles
NASA Technical Reports Server (NTRS)
Jazwinski, A. H.; Englar, T. S., Jr.
1973-01-01
Techniques are studied for the estimation of rigid body and bending states and the identification of model parameters associated with the single-axis attitude dynamics of a flexible vehicle. This problem is highly nonlinear but completely observable provided sufficient attitude and attitude rate data is available and provided all system bending modes are excited in the observation interval. A sequential estimator tracks the system states in the presence of model parameter errors. A batch estimator identifies all model parameters with high accuracy.
An Evaluation of Attitude-Independent Magnetometer-Bias Determination Methods
NASA Technical Reports Server (NTRS)
Hashmall, J. A.; Deutschmann, Julie
1996-01-01
Although several algorithms now exist for determining three-axis magnetometer (TAM) biases without the use of attitude data, there are few studies on the effectiveness of these methods, especially in comparison with attitude dependent methods. This paper presents the results of a comparison of three attitude independent methods and an attitude dependent method for computing TAM biases. The comparisons are based on in-flight data from the Extreme Ultraviolet Explorer (EUVE), the Upper Atmosphere Research Satellite (UARS), and the Compton Gamma Ray Observatory (GRO). The effectiveness of an algorithm is measured by the accuracy of attitudes computed using biases determined with that algorithm. The attitude accuracies are determined by comparison with known, extremely accurate, star-tracker-based attitudes. In addition, the effect of knowledge of calibration parameters other than the biases on the effectiveness of all bias determination methods is examined.
NASA Astrophysics Data System (ADS)
Chen, Yuanpei; Wang, Lingcao; Li, Kui
2017-10-01
Rotary inertial navigation modulation mechanism can greatly improve the inertial navigation system (INS) accuracy through the rotation. Based on the single-axis rotational inertial navigation system (RINS), a self-calibration method is put forward. The whole system is applied with the rotation modulation technique so that whole inertial measurement unit (IMU) of system can rotate around the motor shaft without any external input. In the process of modulation, some important errors can be decoupled. Coupled with the initial position information and attitude information of the system as the reference, the velocity errors and attitude errors in the rotation are used as measurement to perform Kalman filtering to estimate part of important errors of the system after which the errors can be compensated into the system. The simulation results show that the method can complete the self-calibration of the single-axis RINS in 15 minutes and estimate gyro drifts of three-axis, the installation error angle of the IMU and the scale factor error of the gyro on z-axis. The calibration accuracy of optic gyro drifts could be about 0.003°/h (1σ) as well as the scale factor error could be about 1 parts per million (1σ). The errors estimate reaches the system requirements which can effectively improve the longtime navigation accuracy of the vehicle or the boat.
NASA Technical Reports Server (NTRS)
1974-01-01
The feasibility is evaluated of an evolutionary development for use of a single-axis gimbal star tracker from prior two-axis gimbal star tracker based system applications. Detailed evaluation of the star tracker gimbal encoder is considered. A brief system description is given including the aspects of tracker evolution and encoder evaluation. System analysis includes evaluation of star availability and mounting constraints for the geosynchronous orbit application, and a covariance simulation analysis to evaluate performance potential. Star availability and covariance analysis digital computer programs are included.
2011-03-01
with the Earth but does follow the Earth’s orbit around the sun . Though it is not a true inertial frame, for the sake of terrestrial navigation it can...the center of the Earth , with the x and y-axes on the equatorial plane and the z- axis along the Earth’s axis of rotation. The i-frame does not spin...be considered as such. Earth -centered Earth -fixed frame (e-frame) - The origin is fixed at the center of the Earth , with the x- axis on the equatorial
Torque equilibrium attitudes for the Space Station
NASA Technical Reports Server (NTRS)
Thompson, Roger C.
1993-01-01
All spacecraft orbiting in a low earth orbit (LEO) experience external torques due to environmental effects. Examples of these torques include those induced by aerodynamic, gravity-gradient, and solar forces. It is the gravity-gradient and aerodynamic torques that produce the greatest disturbances to the attitude of a spacecraft in LEO, and large asymmetric spacecraft, such as the space station, are affected to a greater degree because the magnitude of the torques will, in general, be larger in proportion to the moments of inertia. If left unchecked, these torques would cause the attitude of the space station to oscillate in a complex manner and the resulting motion would destroy the micro-gravity environment as well as prohibit the orbiter from docking. The application of control torques will maintain the proper attitude, but the controllers have limited momentum capacity. When any controller reaches its limit, propellant must then be used while the device is reset to a zero or negatively-biased momentum state. Consequently, the rate at which momentum is accumulated is a significant factor in the amount of propellant used and the frequency of resupply necessary to operate the station. A torque profile in which the area curve for a positive torque is not equal to the area under the curve for a negative torque is 'biased,' and the consequent momentum build-up about that axis is defined as secular momentum because it continues to grow with time. Conversely, when the areas are equal, the momentum is cyclic and bounded. A Torque Equilibrium Attitude (TEA) is thus defined as an attitude at which the external torques 'balance' each other as much as possible, and which will result in lower momentum growth in the controllers. Ideally, the positive and negative external moments experienced by a spacecraft at the TEA would exactly cancel each other out and small cyclic control torques would be required only for precise attitude control. Over time, the only momentum build-up in the controllers would be due to electro-mechanical losses within the device. However, the atmospheric torques are proportional to the density of the atmosphere and the density varies with the orbital position, time of day, time of year, and the solar cycle. In addition, there are unmodeled disturbances and uncertainties in the mass and inertias. Therefore, there is no constant attitude that will completely balance the environmental torques and the dynamic TEA cannot be solved in closed form. The objective of this research was to determine a method to calculate a dynamic TEA such that the rate of momentum build-up in the controllers would be minimized and to implement this method in the MATRIX(x) simulation software by Integrated Systems, Inc.
Opatrný, Tomáš; Richterek, Lukáš; Opatrný, Martin
2018-01-31
We show that the classical model of Euler top (freely rotating, generally asymmetric rigid body), possibly supplemented with a rotor, corresponds to a generalized Lipkin-Meshkov-Glick (LMG) model describing phenomena of various branches of quantum physics. Classical effects such as free precession of a symmetric top, Feynman's wobbling plate, tennis-racket instability and the Dzhanibekov effect, attitude control of satellites by momentum wheels, or twisting somersault dynamics, have their counterparts in quantum effects that include spin squeezing by one-axis twisting and two-axis countertwisting, transitions between the Josephson and Rabi regimes of a Bose-Einstein condensate in a double-well potential, and other quantum critical phenomena. The parallels enable us to expand the range of explored quantum phase transitions in the generalized LMG model, as well as to present a classical analogy of the recently proposed LMG Floquet time crystal.
Kalman filtering applied to real-time monitoring of apogee maneuvers
NASA Technical Reports Server (NTRS)
Deboer, Frederic; Barbier, Christian
1993-01-01
Part of the Space Mathematics Division in CNES, the Flight Dynamics Center provides attitude and orbit determinations and maneuvers during the Launch and Early Operation Phase (LEOP) of geostationary satellites. Orbit determination is based on a Kalman filter method; when the 2 GHz CNES/NASA network is used, Doppler measurements are available and allow orbit determination during the apogee maneuvers. This method was used for TELE-X and TDF 2 LEOP (3-axis controlled satellites) and also for TELECOM 2 and HISPASAT (spun satellites): it enables us to follow the evolution of the maneuver and gives out a quite accurate estimation of the reached orbit. In this paper, we briefly describe the dynamic models of the orbit evolution in both cases, '3-axis' and 'inertial' thrust. Then, we present the results obtained for each case. Afterwards, we present some cases to show the robustness of the filter.
NASA Technical Reports Server (NTRS)
Davidson, A. C.; Grant, M. M. (Inventor)
1973-01-01
A system for sensing the attitude of a spacecraft includes a pair of optical scanners having a relatively narrow field of view rotating about the spacecraft x-y plane. The spacecraft rotates about its z axis at a relatively high angular velocity while one scanner rotates at low velocity, whereby a panoramic sweep of the entire celestial sphere is derived from the scanner. In the alternative, the scanner rotates at a relatively high angular velocity about the x-y plane while the spacecraft rotates at an extremely low rate or at zero angular velocity relative to its z axis to provide a rotating horizon scan. The positions of the scanners about the x-y plane are read out to assist in a determination of attitude. While the satellite is spinning at a relatively high angular velocity, the angular positions of the bodies detected by the scanners are determined relative to the sun by providing a sun detector having a field of view different from the scanners.
Fast Auroral Snapshot performance using a multi-body dynamic simulation
NASA Technical Reports Server (NTRS)
Zimbelman, Darrell; Walker, Mary
1993-01-01
This paper examines the complex dynamic interaction between two 2.6 m long stacer booms, four 30 m long flexible wire booms and the attitude control system of the Fast Auroral SnapshoT (FAST) spacecraft. The FAST vehicle will nominally operate as a negative orbit spinner, positioned in a 83 deg inclination, 350 x 4200 km orbit. For this study, a three-axis, non-linear, seven body dynamic simulation is developed using the TREETOPS software package. The significance of this approach is the ability to model each component of the FAST spacecraft as an individual member and connect them together in order to better understand the dynamic coupling between structures and the control system. Both the wire and stacer booms are modeled as separate bodies attached to a rigid central body. The wire booms are oriented perpendicular to the spin axis at right angles relative to each other, whereas the stacer booms are aligned with the spin axis. The analysis consists of a comparison between the simulated in-plane and out-of-plane boom motions with theoretically derived frequencies, and an examination of the dynamic coupling between the control system and boom oscillations. Results show that boom oscillations of up to 0.36 deg are acceptable in order to meet the performance requirements. The dynamic motion is well behaved when the precession coil is operating, however, activation of the spin coil produces an erratic trend in the spin rate which approaches the spin rate requirement.
2009-01-01
three axis fluxgate magnetometer , CMOS sun and star sensors, and a Kalman filter. The work and tasks that have been accomplished on the TOROID... magnetometer . The problem was found to be a missing ferrite bead which connects the 12V power supply to the op-amps which are used to appropriately...establish an overall operational timeline for TOROID. Testing and calibration was performed on the three-axis magnetometer which is primary attitude
Analysis and experiments for delay compensation in attitude control of flexible spacecraft
NASA Astrophysics Data System (ADS)
Sabatini, Marco; Palmerini, Giovanni B.; Leonangeli, Nazareno; Gasbarri, Paolo
2014-11-01
Space vehicles are often characterized by highly flexible appendages, with low natural frequencies which can generate coupling phenomena during orbital maneuvering. The stability and delay margins of the controlled system are deeply affected by the presence of bodies with different elastic properties, assembled to form a complex multibody system. As a consequence, unstable behavior can arise. In this paper the problem is first faced from a numerical point of view, developing accurate multibody mathematical models, as well as relevant navigation and control algorithms. One of the main causes of instability is identified with the unavoidable presence of time delays in the GNC loop. A strategy to compensate for these delays is elaborated and tested using the simulation tool, and finally validated by means of a free floating platform, replicating the flexible spacecraft attitude dynamics (single axis rotation). The platform is equipped with thrusters commanded according to the on-off modulation of the Linear Quadratic Regulator (LQR) control law. The LQR is based on the estimate of the full state vector, i.e. including both rigid - attitude - and elastic variables, that is possible thanks to the on line measurement of the flexible displacements, realized by processing the images acquired by a dedicated camera. The accurate mathematical model of the system and the rigid and elastic measurements enable a prediction of the state, so that the control is evaluated taking the predicted state relevant to a delayed time into account. Both the simulations and the experimental campaign demonstrate that by compensating in this way the time delay, the instability is eliminated, and the maneuver is performed accurately.
TRMM On-Orbit Performance Re-Accessed After Control Change
NASA Technical Reports Server (NTRS)
Bilanow, Steve
2006-01-01
The Tropical Rainfall Measuring Mission (TRMM) spacecraft, a joint mission between the U.S. and Japan, launched onboard an HI1 rocket on November 27,1997 and transitioned in August, 2001 from an average operating altitude of 350 kilometers to 402.5 kilometers. Due to problems using the Earth Sensor Assembly (ESA) at the higher altitude, TRMM switched to a backup attitude control mode. Prior to the orbit boost TRMM controlled pitch and roll to the local vertical using ESA measurements while using gyro data to propagate yaw attitude between yaw updates from the Sun sensors. After the orbit boost, a Kalman filter used 3-axis gyro data with Sun sensor and magnetometers to estimate onboard attitude. While originally intended to meet a degraded attitude accuracy of 0.7 degrees, the new control mode met the original 0.2 degree attitude accuracy requirement after improving onboard ephemeris prediction and adjusting the magnetometer calibration onboard. Independent roll attitude checks using a science instrument, the Precipitation Radar (PR) which was built in Japan, provided a novel insight into the pointing performance. The PR data helped identify the pointing errors after the orbit boost, track the performance improvements, and show subtle effects from ephemeris errors and gyro bias errors. It also helped identify average bias trends throughout the mission. Roll errors tracked by the PR from sample orbits pre-boost and post-boost are shown in Figure 1. Prior to the orbit boost the largest attitude errors were due to occasional interference in the ESA. These errors were sometime larger than 0.2 degrees in pitch and roll, but usually less, as estimated from a comprehensive review of the attitude excursions using gyro data. Sudden jumps in the onboard roll show up as spikes in the reported attitude since the control responds within tens of seconds to null the pointing error. The PR estimated roll tracks well with an estimate of the roll history propagated using gyro data. After the orbit boost, the attitude errors shown by the PR roll have a smooth sine-wave type signal because of the way that attitude errors propagate with the use of gyro data. Yaw errors couple at orbit period to roll with '/4 orbit lag. By tracking the amplitude, phase, and bias of the sinusoidal PR roll error signal, it was shown that the average pitch rotation axis tends to be offset from orbit normal in a direction perpendicular to the Sun direction, as shown in Figure 2 for a 200 day period following the orbit boost. This is a result of the higher accuracy and stability of the Sun sensor measurements relative to the magnetometer measurements used in the Kalman filter. In November, 2001 a magnetometer calibration adjustment was uploaded which improved the pointing performance, keeping the roll and yaw amplitudes within about 0.1 degrees. After the boost, onboard ephemeris errors had a direct effect on the pitch pointing, being used to compute the Earth pointing reference frame. Improvements after the orbit boost have kept the the onboard ephemeris errors generally below 20 kilometers. Ephemeris errors have secondary effects on roll and yaw, especially during high beta angle when pitch effects can couple into roll and yaw. This is illustrated in figure 3. The onboard roll bias trends as measured by PR data show correlations with the Kalman filter's gyro bias error. This particularly shows up after yaw turns (every 2 to 4 weeks) as shown in Figure 3, when a slight roll bias is observed while the onboard computed gyro biases settle to new values. As for longer term trends, the PR data shows that the roll bias was influenced by Earth horizon radiance effects prior to the boost, changing values at yaw turns, and indicated a long term drift as shown in Figure 4. After the boost, the bias variations were smaller and showed some possible correlation with solar beta angle, probably due to sun sensor misalignment effects.
NASA Technical Reports Server (NTRS)
Hashmall, J.; Garrick, J.
1993-01-01
Flight Dynamics Facility (FDF) responsibilities for calibration of Upper Atmosphere Research Satellite (UARS) sensors included alignment calibration of the fixed-head star trackers (FHST's) and the fine Sun sensor (FSS), determination of misalignments and scale factors for the inertial reference units (IRU's), determination of biases for the three-axis magnetometers (TAM's) and Earth sensor assemblies (ESA's), determination of gimbal misalignments of the Solar/Stellar Pointing Platform (SSPP), and field-of-view calibration for the FSS's mounted both on the Modular Attitude Control System (MACS) and on the SSPP. The calibrations, which used a combination of new and established algorithms, gave excellent results. Alignment calibration results markedly improved the accuracy of both ground and onboard Computer (OBC) attitude determination. SSPP calibration results allowed UARS to identify stars in the period immediately after yaw maneuvers, removing the delay required for the OBC to reacquire its fine pointing attitude mode. SSPP calibration considerably improved the pointing accuracy of the attached science instrument package. This paper presents a summary of the methods used and the results of all FDF UARS sensor calibration.
Lex, Claudia; Meyer, Thomas D; Marquart, Barbara; Thau, Kenneth
2008-03-01
Beck extended his original cognitive theory of depression by suggesting that mania was a mirror image of depression characterized by extreme positive cognition about the self, the world, and the future. However, there were no suggestions what might be special regarding cognitive features in bipolar patients (Mansell & Scott, 2006). We therefore used different indicators to evaluate cognitive processes in bipolar patients and healthy controls. We compared 19 remitted bipolar I patients (BPs) without any Axis I comorbidity with 19 healthy individuals (CG). All participants completed the Beck Depression Inventory, the Dysfunctional Attitude Scale, the Automatic Thoughts Questionnaire, the Emotional Stroop Test, and an incidental recall task. No significant group differences were found in automatic thinking and the information-processing styles (Emotional Stroop Test, incidental recall task). Regarding dysfunctional attitudes, we obtained ambiguous results. It appears that individuals with remitted bipolar affective disorder do not show cognitive vulnerability as proposed in Beck's theory of depression if they only report subthreshold levels of depressive symptoms. Perhaps, the cognitive vulnerability might only be observable if mood induction procedures are used.
NASA Technical Reports Server (NTRS)
Sarani, Sam
2010-01-01
The Cassini spacecraft, the largest and most complex interplanetary spacecraft ever built, continues to undertake unique scientific observations of planet Saturn, Titan, Enceladus, and other moons of the ring world. In order to maintain a stable attitude during the course of its mission, this three-axis stabilized spacecraft uses two different control systems: the Reaction Control System (or RCS) and the Reaction Wheel Assembly (RWA) control system. In the course of its mission, Cassini performs numerous reaction wheel momentum biases (or unloads) using its reaction control thrusters. The use of the RCS thrusters often imparts undesired velocity changes (delta Vs) on the spacecraft and it is crucial for Cassini navigation and attitude control teams to be able to, quickly but accurately, predict the hydrazine usage and delta V vector in Earth Mean Equatorial (J2000) inertial coordinates for reaction wheel bias events, without actually having to spend time and resources simulating the event in a dynamic or hardware-in-the-loop simulation environments. The flight-calibrated methodology described in this paper, and the ground software developed thereof, are designed to provide the RCS thruster on-times, with acceptable accuracy and without any form of dynamic simulation, for reaction wheel biases, along with the hydrazine usage and the delta V in EME-2000 inertial frame.
NASA Technical Reports Server (NTRS)
Calhoun, Philip
2010-01-01
The Lunar Reconnaissance Orbiter (LRO), the first spacecraft to support NASA s return to the Moon, launched on June 18, 2009 from the Cape Canaveral Air Force Station aboard an Atlas V launch vehicle. It was initially inserted into a direct trans-lunar trajectory to the Moon. After a five day transit to the Moon, LRO was inserted into the Lunar orbit and successfully lowered to a low altitude elliptical polar orbit for spacecraft commissioning. Successful commissioning was completed in October 2009 when LRO was placed in its near circular mission orbit with an approximate altitude of 50km. LRO will spend at least one year orbiting the Moon, collecting lunar environment science and mapping data, utilizing a suite of seven instruments to enable future human exploration. The objective is to provide key science data necessary to facilitate human return to the Moon as well as identification of opportunities for future science missions. LRO's instrument suite will provide the high resolution imaging data with sub-meter accuracy, highly accurate lunar cartographic maps, mineralogy mapping, amongst other science data of interest. LRO employs a 3-axis stabilized attitude control system (ACS) whose primary control mode, the "Observing Mode", provides Lunar nadir, off-nadir, and inertial fine pointing for the science data collection and instrument calibration. This controller combines the capability of fine pointing with on-demand large angle full-sky attitude reorientation. It provides simplicity of spacecraft operation as well as additional flexibility for science data collection. A conventional suite of ACS components is employed in the Observing Mode to meet the pointing and control objectives. Actuation is provided by a set of four reaction wheels developed in-house at NASA Goddard Space Flight Center (GSFC). Attitude feedback is provided by a six state Kalman filter which utilizes two SELEX Galileo Star Trackers for attitude updates, and a single Honeywell Miniature Inertial Measurement Unit (MIMU) to provide body rates for attitude propagation. Rate is computed by differentiating accumulated angle provided by the MIMU. The Observing Mode controller is required to maintain fine pointing while a large fully-articulated solar array (SA) maintains its panel normal to the solar incidence. This paper describes the disturbances to the attitude control resulting from the SA articulation. Observing Mode performance in the presence of this disturbance was assessed while the spacecraft was in an initial elliptical low altitude orbit during the commissioning phase, which started about two weeks after launch and lasted for 90 days. LRO demonstrated excellent pointing performance during Observing Mode nadir and inertial attitude target operations during this phase. Transient LRO attitude errors observed during commissioning resulted primarily from three sources, Diviner instrument calibrations, RW zero crossings, and SA articulation. Even during times of considerable disturbance from SA articulation, the attitude errors were maintained below the statistical attitude error requirement level of 15 arc-sec (3 sigma).
Remote Attitude Measurement Techniques.
1982-12-01
televison camera). The incident illumination produces a non-uniformity on the scanned side of the sensitive material which can be modeled as an...to compute the probabilistic attitude matrix. Fourth, the experiment will be conducted with the televison camera mounted on a machinists table, such... the optical axis does not necesarily pass through the center of the lens assembly and impact the center pixel in the active region of
Ground station software for receiving and handling Irecin telemetry data
NASA Astrophysics Data System (ADS)
Ferrante, M.; Petrozzi, M.; Di Ciolo, L.; Ortenzi, A.; Troso, G
2004-11-01
The on board resources, needed to perform the mission tasks, are very limited in nano-satellites. This paper proposes a software system to receive, manage and process in Real Time the Telemetry data coming from IRECIN nanosatellite and transmit operator manual commands and operative procedures. During the receiving phase, it shows the IRECIN subsystem physical values, visualizes the IRECIN attitude, and performs other suitable functions. The IRECIN Ground Station program is in charge to exchange information between IRECIN and the Ground segment. It carries out, in real time during IRECIN transmission phase, IRECIN attitude drawing, sun direction drawing, power supply received from Sun, visualization of the telemetry data, visualization of Earth magnetic field and more other functions. The received data are memorized and interpreted by a module, parser, and distribute to the suitable modules. Moreover it allows sending manual and automatic commands. Manual commands are delivered by an operator, on the other hand, automatic commands are provided by pre-configured operative procedures. Operative procedures development is realized in a previous phase called configuration phase. This program is also in charge to carry out a test session by mean the scheduler and commanding modules allowing execution of specific tasks without operator control. A log module to memorize received and transmitted data is realized. A phase to analyze, filter and visualize in off line the collected data, called post analysis, is based on the data extraction form the log module. At the same time, the Ground Station Software can work in network allowing managing, receiving and sending data/commands from different sites. The proposed system constitutes the software of IRECIN Ground Station. IRECIN is a modular nanosatellite weighting less than 2 kg, constituted by sixteen external sides with surface-mounted solar cells and three internal Al plates, kept together by four steel bars. Lithium-ions batteries are used. Attitude is determined by two three-axis magnetometers and the solar panels data. Control is provided by an active magnetic control system. The spacecraft will be spin- stabilized with the spin-axis normal to the orbit. All IRECIN electronic components are SMD technology in order to reduce weight and size. The realized Electronic board are completely developed, realized and tested at the Vitrociset S.P.A. under control of Research and Develop Group
Relative attitude dynamics and control for a satellite inspection mission
NASA Astrophysics Data System (ADS)
Horri, Nadjim M.; Kristiansen, Kristian U.; Palmer, Phil; Roberts, Mark
2012-02-01
The problem of conducting an inspection mission from a chaser satellite orbiting a target spaceraft is considered. It is assumed that both satellites follow nearly circular orbits. The relative orbital motion is described by the Hill-Clohessy-Wiltshire equation. In the case of an elliptic relative orbit, it is shown that an inspection mission is feasible when the chaser is inertially pointing, provided that the camera mounted on the chaser satellite has sufficiently large field of view. The same possibility is shown when the optical axis of the chaser's camera points in, or opposite to, the tangential direction of the local vertical local horizontal frame. For an arbitrary relative orbit and arbitrary initial conditions, the concept of relative Euler angles is defined for this inspection mission. The expression of the desired relative angular velocity vector is derived as a function of Cartesian coordinates of the relative orbit. A quaternion feedback controller is then designed and shown to perform relative attitude control with admissible internal torques. Three different types of relative orbits are considered, namely the elliptic, Pogo and drifting relative orbits. Measurements of the relative orbital motion are assumed to be available from optical navigation.
Orbital Manuvering System Design and Performance For the Magnetosperic Multiscale Constellation
NASA Technical Reports Server (NTRS)
Queen, Steven Z.; Chai, Dean J.; Placanica, Sam
2013-01-01
The Magnetospheric Multiscale (MMS) mission, launched on March 13, 2015, is the fourth mission of NASA's Solar Terrestrial Probe program. The MMS mission consists of four identically instrumented observatories that function as a constellation to provide the first definitive study of magnetic reconnection in space. Since it is frequently desirable to isolate electric and magnetic field sensors from stray effects caused by the spacecraft's core-body, the suite of instruments on MMS includes six radial and two axial instrument-booms with deployed lengths ranging from 5-60 meters (see Figure 1). The observatory is spin-stabilized about its positive z-axis with a nominal rate slightly above 3 rev/min (RPM). The spin is also used to maintain tension in the four radial wire-booms. Each observatory's Attitude Control System (ACS) consists of digital sun sensors, star cameras, accelerometers, and mono-propellant hydrazine thrusters-responsible for orbital adjustments, attitude control, and spin adjustments. The sections that follow describe performance requirements, the hardware and algorithms used for 6-DOF estimation, and then similarly for 6-DOF control. The paper concludes with maneuver performance based on both simulated and on-orbit telem.
NASA Astrophysics Data System (ADS)
Luo, Tong; Xu, Ming; Colombo, Camilla
2018-04-01
This paper studies the dynamics and control of a spacecraft, whose area-to-mass ratio is increased by deploying a reflective orientable surface such as a solar sail or a solar panel. The dynamical system describing the motion of a non-zero attitude angle high area-to-mass ratio spacecraft under the effects of the Earth's oblateness and solar radiation pressure admits the existence of equilibrium points, whose number and the eccentricity values depend on the semi-major axis, the area-to-mass ratio and the attitude angle of the spacecraft together. When two out of three parameters are fixed, five different dynamical topologies successively occur through varying the third parameter. Two of these five topologies are critical cases characterized by the appearance of the bifurcation phenomena. A conventional Hamiltonian structure-preserving (HSP) controller and an improved HSP controller are both constructed to stabilize the hyperbolic equilibrium point. Through the use of a conventional HSP controller, a bounded trajectory around the hyperbolic equilibrium point is obtained, while an improved HSP controller allows the spacecraft to easily transfer to the hyperbolic equilibrium point and to follow varying equilibrium points. A bifurcation control using topologies and changes of behavior areas can also stabilize a spacecraft near a hyperbolic equilibrium point. Natural trajectories around stable equilibrium point and these stabilized trajectories around hyperbolic equilibrium point can all be applied to geomagnetic exploration.
NASA Technical Reports Server (NTRS)
Guglielmo, David; Omar, Sanny R.; Bevilacqua, Riccardo
2017-01-01
The increasing number of CubeSats being launched has raised concerns about orbital debris since most of these satellites have no means of active orbit control. Some technologies exist to increase the surface area of a CubeSat and expedite de-orbit due to aerodynamic drag in low Earth orbit, but most of these devices cannot be retracted and hence cannot be used for orbital maneuvering. This paper discusses the De-Orbit Drag Device (D3) module that is capable of de-orbiting a 12U, 15kg CubeSat from a 700 km circular orbit in under 25 years and can be deployed and retracted to modulate the aerodynamic drag force experienced by the satellite. This facilitates orbital maneuvering using aerodynamic drag and the active targeting of a de-orbit location. In addition, the geometry of this drag device provides 3-axis attitude stabilization of the host CubeSat using aerodynamic and gravity gradient torques which is useful for many missions and provides a predictable aerodynamic profile for use in orbital maneuvering algorithms.
Dynamic Stability Instrumentation System (DSIS). Volume 3; User Manual
NASA Technical Reports Server (NTRS)
Daniels, Taumi S.; Boyden, Richmond P.; Dress, David A.; Jordan, Thomas L.
1996-01-01
The paper is an operating manual for the Dynamic Stability Instrumentation System in specific NASA Langley wind tunnels. The instrumentation system performs either a synchronous demodulation or a Fast Fourier Transform on dynamic balance strain gage signals, and ultimately computes aerodynamic coefficients. The dynamic balance converts sting motor rotation into pitch or yaw plane or roll axis oscillation, with timing information provided by a shaft encoder. Additional instruments control model attitude and balance temperature and monitor sting vibrations. Other instruments perform self-calibration and diagnostics. Procedures for conducting calibrations and wind-off and wind-on tests are listed.
NASA Technical Reports Server (NTRS)
Chen, R. T. N.; Hindson, W. S.
1985-01-01
The increasing use of highly augmented digital flight-control systems in modern military helicopters prompted an examination of the influence of rotor dynamics and other high-order dynamics on control-system performance. A study was conducted at NASA Ames Research Center to correlate theoretical predictions of feedback gain limits in the roll axis with experimental test data obtained from a variable-stability research helicopter. Feedback gains, the break frequency of the presampling sensor filter, and the computational frame time of the flight computer were systematically varied. The results, which showed excellent theoretical and experimental correlation, indicate that the rotor-dynamics, sensor-filter, and digital-data processing delays can severely limit the usable values of the roll-rate and roll-attitude feedback gains.
NASA Astrophysics Data System (ADS)
Simon, Miguel
In this work, we show how to computerize a helicopter to fly attitude axes controlled hover flight without the assistance of a pilot and without ever crashing. We start by developing a helicopter research test bed system including all hardware, software, and means for testing and training the helicopter to fly by computer. We select a Remote Controlled helicopter with a 5 ft. diameter rotor and 2.2 hp engine. We equip the helicopter with a payload of sensors, computers, navigation and telemetry equipment, and batteries. We develop a differential GPS system with cm accuracy and a ground computerized navigation system for six degrees of freedom (6-DoF) free flight while tracking navigation commands. We design feedback control loops with yet-to-be-determined gains for the five control "knobs" available to a flying radio-controlled (RC) miniature helicopter: engine throttle, main rotor collective pitch, longitudinal cyclic pitch, lateral cyclic pitch, and tail rotor collective pitch. We develop helicopter flight equations using fundamental dynamics, helicopter momentum theory and blade element theory. The helicopter flight equations include helicopter rotor equations of motions, helicopter rotor forces and moments, helicopter trim equations, helicopter stability derivatives, and a coupled fuselage-rotor helicopter 6-DoF model. The helicopter simulation also includes helicopter engine control equations, a helicopter aerodynamic model, and finally helicopter stability and control equations. The derivation of a set of non-linear equations of motion for the main rotor is a contribution of this thesis work. We design and build two special test stands for training and testing the helicopter to fly attitude axes controlled hover flight, starting with one axis at a time and progressing to multiple axes. The first test stand is built for teaching and testing controlled flight of elevation and yaw (i.e., directional control). The second test stand is built for teaching and testing any one or combination of the following attitude axes controlled flight: (1) pitch, (2) roll and (3) yaw. The subsequent development of a novel method to decouple, stabilize and teach the helicopter hover flight is a primary contribution of this thesis. The novel method included the development of a non-linear modeling technique for linearizing the RPM state equation dynamics so that a simple but accurate transfer function is derivable between the "available torque of the engine" and RPM. Specifically, the main rotor and tail rotor torques are modeled accurately with a bias term plus a nonlinear term involving the product of RPM squared times the main rotor blade pitch angle raised to the three-halves power. Application of this non-linear modeling technique resulted in a simple, representative and accurate transfer function model of the open-loop plant for the entire helicopter system so that all the feedback control laws for autonomous flight purposes could be derived easily using classical control theory. This is one of the contributions of this dissertation work. After discussing the integration of hardware and software elements of our helicopter research test bed system, we perform a number of experiments and tests using the two specially built test stands. Feedback gains are derived for controlling the following: (1) engine throttle to maintain prescribed main rotor angular speed, (2) main rotor collective pitch to maintain constant elevation, (3) longitudinal cyclic pitch to maintain prescribed pitch angle, (4) lateral cyclic pitch to maintain prescribed roll angle, and (5) yaw axis to maintain prescribed compass direction. (Abstract shortened by UMI.)
A Dynamic Attitude Measurement System Based on LINS
Li, Hanzhou; Pan, Quan; Wang, Xiaoxu; Zhang, Juanni; Li, Jiang; Jiang, Xiangjun
2014-01-01
A dynamic attitude measurement system (DAMS) is developed based on a laser inertial navigation system (LINS). Three factors of the dynamic attitude measurement error using LINS are analyzed: dynamic error, time synchronization and phase lag. An optimal coning errors compensation algorithm is used to reduce coning errors, and two-axis wobbling verification experiments are presented in the paper. The tests indicate that the attitude accuracy is improved 2-fold by the algorithm. In order to decrease coning errors further, the attitude updating frequency is improved from 200 Hz to 2000 Hz. At the same time, a novel finite impulse response (FIR) filter with three notches is designed to filter the dither frequency of the ring laser gyro (RLG). The comparison tests suggest that the new filter is five times more effective than the old one. The paper indicates that phase-frequency characteristics of FIR filter and first-order holder of navigation computer constitute the main sources of phase lag in LINS. A formula to calculate the LINS attitude phase lag is introduced in the paper. The expressions of dynamic attitude errors induced by phase lag are derived. The paper proposes a novel synchronization mechanism that is able to simultaneously solve the problems of dynamic test synchronization and phase compensation. A single-axis turntable and a laser interferometer are applied to verify the synchronization mechanism. The experiments results show that the theoretically calculated values of phase lag and attitude error induced by phase lag can both match perfectly with testing data. The block diagram of DAMS and physical photos are presented in the paper. The final experiments demonstrate that the real-time attitude measurement accuracy of DAMS can reach up to 20″ (1σ) and the synchronization error is less than 0.2 ms on the condition of three axes wobbling for 10 min. PMID:25177802
An automated method of tuning an attitude estimator
NASA Technical Reports Server (NTRS)
Mason, Paul A. C.; Mook, D. Joseph
1995-01-01
Attitude determination is a major element of the operation and maintenance of a spacecraft. There are several existing methods of determining the attitude of a spacecraft. One of the most commonly used methods utilizes the Kalman filter to estimate the attitude of the spacecraft. Given an accurate model of a system and adequate observations, a Kalman filter can produce accurate estimates of the attitude. If the system model, filter parameters, or observations are inaccurate, the attitude estimates may be degraded. Therefore, it is advantageous to develop a method of automatically tuning the Kalman filter to produce the accurate estimates. In this paper, a three-axis attitude determination Kalman filter, which uses only magnetometer measurements, is developed and tested using real data. The appropriate filter parameters are found via the Process Noise Covariance Estimator (PNCE). The PNCE provides an optimal criterion for determining the best filter parameters.
NASA Astrophysics Data System (ADS)
Ishida, Takayuki; Takahashi, Masaki
2014-12-01
In this study, we propose a new attitude determination system, which we call Irradiance-based Attitude Determination (IRAD). IRAD employs the characteristics and geometry of solar panels. First, the sun vector is estimated using data from solar panels including current, voltage, temperature, and the normal vectors of each solar panel. Because these values are obtained using internal sensors, it is easy for rovers to provide redundancy for IRAD. The normal vectors are used to apply to various shapes of rovers. Second, using the gravity vector obtained from an accelerometer, the attitude of a rover is estimated using a three-axis attitude determination method. The effectiveness of IRAD is verified through numerical simulations and experiments that show IRAD can estimate all the attitude angles (roll, pitch, and yaw) within a few degrees of accuracy, which is adequate for planetary explorations.
Damping SOFIA: passive and active damping for the Stratospheric Observatory for Infrared Astronomy
NASA Astrophysics Data System (ADS)
Maly, Joseph R.; Keas, Paul J.; Glaese, Roger M.
2001-07-01
The Stratospheric Observatory For Infrared Astronomy, SOFIA is being developed by NASA and the German space agency, Deutschen Zentrum fur Luft- und Raumfahrt (DLR), with an international contractor team. The 2.5-meter reflecting telescope of SOFIA will be the world's largest airborne telescope. Flying in an open cavity on a modified 747 aircraft, SOFIA will perform infrared astronomy while cruising at 41,000 feet and while being buffeted by a 550- mile-per-hour slipstream. A primary system requirement of SOFIA is tracking stability of 0.2 arc-seconds, and a 3-axis pointing control model has been used to evaluate the feasibility of achieving this kind of stability. The pointing control model shows that increased levels of damping in certain elastic modes of the telescope assembly will help achieve the tracking stability goal and also expand the bandwidth of the attitude controller. This paper describes the preliminary work that has been done to approximate the reduction in image motion yielded by various structure configurations that use reaction masses to attenuate the flexible motions of the telescope structure. Three approaches are considered: passive tuned-mass dampers, active-mass dampers, and attitude control with reaction-mass actuators. Expected performance improvements for each approach, and practical advantages and disadvantages associated with each are presented.
Software and mathematical support of Kazakhstani star tracker
NASA Astrophysics Data System (ADS)
Akhmedov, D.; Yelubayev, S.; Ten, V.; Bopeyev, T.; Alipbayev, K.; Sukhenko, A.
2016-10-01
Currently the specialists of Kazakhstan have been developing the star tracker that is further planned to use on Kazakhstani satellites of various purposes. At the first stage it has been developed the experimental model of star tracker that has following characteristics: field of view 20°, update frequency 2 Hz, exclusion angle 40°, accuracy of attitude determination of optical axis/around optical axis 15/50 arcsec. Software and mathematical support are the most high technology parts of star tracker. The results of software and mathematical support development of experimental model of Kazakhstani star tracker are represented in this article. In particular, there are described the main mathematical models and algorithms that have been used as a basis for program units of preliminary image processing of starry sky, stars identification and star tracker attitude determination. The results of software and mathematical support testing with the help of program simulation complex using various configurations of defects including image sensor noises, point spread function modeling, optical system distortion up to 2% are presented. Analysis of testing results has shown that accuracy of attitude determination of star tracker is within the permissible range
Error analysis and experiments of attitude measurement using laser gyroscope
NASA Astrophysics Data System (ADS)
Ren, Xin-ran; Ma, Wen-li; Jiang, Ping; Huang, Jin-long; Pan, Nian; Guo, Shuai; Luo, Jun; Li, Xiao
2018-03-01
The precision of photoelectric tracking and measuring equipment on the vehicle and vessel is deteriorated by the platform's movement. Specifically, the platform's movement leads to the deviation or loss of the target, it also causes the jitter of visual axis and then produces image blur. In order to improve the precision of photoelectric equipment, the attitude of photoelectric equipment fixed with the platform must be measured. Currently, laser gyroscope is widely used to measure the attitude of the platform. However, the measurement accuracy of laser gyro is affected by its zero bias, scale factor, installation error and random error. In this paper, these errors were analyzed and compensated based on the laser gyro's error model. The static and dynamic experiments were carried out on a single axis turntable, and the error model was verified by comparing the gyro's output with an encoder with an accuracy of 0.1 arc sec. The accuracy of the gyroscope has increased from 7000 arc sec to 5 arc sec for an hour after error compensation. The method used in this paper is suitable for decreasing the laser gyro errors in inertial measurement applications.
NASA Astrophysics Data System (ADS)
Mason, James Paul; Baumgart, Matt; Rogler, Bryan; Downs, Chloe; Williams, Margaret; Woods, Thomas N.; Palo, Scott; Chamberlin, Phillip C.; Solomon, Stanley; Jones, Andrew; Li, Xinlin; Kohnert, Rick; Caspi, Amir
2017-12-01
The Miniature X-ray Solar Spectrometer (MinXSS) is a three-unit (3U) CubeSat designed for a three-month mission to study solar soft X-ray spectral irradiance. The first of the two flight models was deployed from the International Space Station in May 2016, and operated for one year before its natural deorbiting. This was the first flight of the Blue Canyon Technologies XACT 3-axis attitude determination and control system - a commercially available, high-precision pointing system. The performance of the pointing system on orbit was characterized, including performance at low altitudes where drag torque builds up. It was found that the pointing accuracy was 0.0042° - 0.0117° (15" - 42", 3σ, axis dependent) consistently from 190 km - 410 km, slightly better than the specification sheet states. Peak-to-peak jitter was estimated to be 0.0073° (10 s^-1) - 0.0183° (10 s^-1) (26" (10 s^-1) - 66" (10 s^-1), 3σ). The system was capable of dumping mome ntum until an altitude of 185 km. Small amounts of sensor degradation were found in the star tracker and coarse sun sensor. The mission profile did not require high-agility maneuvers, so it was not possible to characterize this metric. Without a GPS receiver, it was necessary to periodically upload ephemeris information to update the orbit propagation model and maintain pointing. At 400 km, these uploads were required once every other week; at ˜270 km, they were required every day. The power performance of the electric power system was also characterized, including use of a novel pseudo-peak power tracker - a resistor that limited the current draw from the battery on the solar panels. With 19 30% efficient solar cells and an 8 W system load, the power balance had 65% of margin on orbit. The current paper presents several recommendations to other CubeSat programs throughout.
A deorbiter CubeSat for active orbital debris removal
NASA Astrophysics Data System (ADS)
Hakima, Houman; Bazzocchi, Michael C. F.; Emami, M. Reza
2018-05-01
This paper introduces a mission concept for active removal of orbital debris based on the utilization of the CubeSat form factor. The CubeSat is deployed from a carrier spacecraft, known as a mothership, and is equipped with orbital and attitude control actuators to attach to the target debris, stabilize its attitude, and subsequently move the debris to a lower orbit where atmospheric drag is high enough for the bodies to burn up. The mass and orbit altitude of debris objects that are within the realms of the CubeSat's propulsion capabilities are identified. The attitude control schemes for the detumbling and deorbiting phases of the mission are specified. The objective of the deorbiting maneuver is to decrease the semi-major axis of the debris orbit, at the fastest rate, from its initial value to a final value of about 6471 km (i.e., 100 km above Earth considering a circular orbit) via a continuous low-thrust orbital transfer. Two case studies are investigated to verify the performance of the deorbiter CubeSat during the detumbling and deorbiting phases of the mission. The baseline target debris used in the study are the decommissioned KOMPSAT-1 satellite and the Pegasus rocket body. The results show that the deorbiting times for the target debris are reduced significantly, from several decades to one or two years.
Precise attitude determination of defunct satellite laser ranging tragets
NASA Astrophysics Data System (ADS)
Pittet, Jean-Noel; Schildknecht, Thomas; Silha, Jiri
2016-07-01
The Satellite Laser Ranging (SLR) technology is used to determine the dynamics of objects equipped with so-called retro-reflectors or retro-reflector arrays (RRA). This type of measurement allows to range to the spacecraft with very high precision, which leads to determination of very accurate orbits. Non-active spacecraft, which are not any more attitude controlled, tend to start to spin or tumble under influence of the external and internal torques. Such a spinning can be around one constant axis of rotation or it can be more complex, when also precession and nutation motions are present. The rotation of the RRA around the spacecraft's centre of mass can create both a oscillation pattern of laser range signal and a periodic signal interruption when the RRA is hidden behind the satellite. In our work we will demonstrate how the SLR ranging technique to cooperative targets can be used to determine precisely their attitude state. The processing of the obtained data will be discussed, as well as the attitude determination based on parameters estimation. Continuous SLR measurements to one target can allow to accurately monitor attitude change over time which can be further used for the future attitude modelling. We will show our solutions of the attitude states determined for the non-active ESA satellite ENVISAT based on measurements acquired during year 2013-2015 by Zimmerwald SLR station, Switzerland. The angular momentum shows a stable behaviour with respect to the orbital plane but is not aligned with orbital momentum. The determination of the inertial rotation over time, shows it evolving between 130 to 190 seconds within two year. Parameter estimation also bring a strong indication of a retrograde rotation. Results on other former satellites in low and medium Earth orbit such as TOPEX/Poseidon or GLONASS type will be also presented.
NASA Technical Reports Server (NTRS)
Decarlo, Francesco; Stalio, Roberto; Trampus, Paolo; Broadfoot, A. Lyle; Sandel, Bill R.; Sicuranza, Giovanni
1993-01-01
We describe an algorithm for star identification and pointing/tracking of a spaceborne electro-optical system and simulation analyses to test the algorithm. The algorithm will be implemented in the guiding system of UVSTAR, a spectrographic telescope for observations of astronomical and planetary sources operating in the 500-1250 A waveband at approximately 1 A resolution. The experiment is an attached payload and will fly as a Hitchhiker-M payload on the Shuttle. UVSTAR includes capabilities for independent target acquisition and tracking. The spectrograph package has internal gimbals that allow angular movement of plus or minus 3 deg from the central position. Rotation about the azimuth axis (parallel to the Shuttle z axis) and elevation axis (parallel to the Shuttle x axis) will actively position the field of view to center the target of interest in the fields of the spectrographs. The algorithm is based on an on-board catalog of stars. To identify star fields, the algorithm compares the positions of stars recorded by the guiding imager to positions computed from the on-board catalog. When the field has been identified, its position within the guiding imager field of view can be used to compute the pointing corrections necessary to point to a target of interest. In tracking mode, the software uses the past history to predict the quasi-periodic attitude control motions of the shuttle and sends pointing commands to cancel the motion and stabilize UVSTAR on the target. The guiding imager (guider) will have an 80-mm focal length and f/1.4 optics giving a field of view of 6 deg x 4.5 deg using a 385 x 288 pixel intensified CCD. It will be capable of providing high accuracy (better than 2 arc-sec) attitude determination from coarse (6 deg x 4.5 deg) initial knowledge of the pointing direction; and of pointing toward the target. It will also be capable of tracking at the same high accuracy with a processing time of less than a few hundredths of a second.
Longitudinal handling qualities during approach and landing of a powered lift STOL aircraft
NASA Technical Reports Server (NTRS)
Franklin, J. A.; Innis, R. C.
1972-01-01
Longitudinal handling qualities evaluations were conducted on the Ames Research Center Flight Simulator for Advanced Aircraft (FSAA) for the approach and landing tasks of a powered lift STOL research aircraft. The test vehicle was a C-8A aircraft modified with a new wing incorporating internal blowing over an augmentor flap. The investigation included: (1) use of various flight path and airspeed control techniques for the basic vehicle; (2) assessment of stability and command augmentation schemes for pitch attitude and airspeed control; (3) determination of the influence of longitudinal and vertical force coupling for the power control; (4) determination of the influence of pitch axis coupling with the thrust vector control; and (5) evaluations of the contribution of stability and command augmentation to recovery from a single engine failure. Results are presented in the form of pilot ratings and commentary substantiated by landing approach time histories.
The Juno Magnetic Field Investigation
NASA Astrophysics Data System (ADS)
Connerney, J. E. P.; Benn, M.; Bjarno, J. B.; Denver, T.; Espley, J.; Jorgensen, J. L.; Jorgensen, P. S.; Lawton, P.; Malinnikova, A.; Merayo, J. M.; Murphy, S.; Odom, J.; Oliversen, R.; Schnurr, R.; Sheppard, D.; Smith, E. J.
2017-11-01
The Juno Magnetic Field investigation (MAG) characterizes Jupiter's planetary magnetic field and magnetosphere, providing the first globally distributed and proximate measurements of the magnetic field of Jupiter. The magnetic field instrumentation consists of two independent magnetometer sensor suites, each consisting of a tri-axial Fluxgate Magnetometer (FGM) sensor and a pair of co-located imaging sensors mounted on an ultra-stable optical bench. The imaging system sensors are part of a subsystem that provides accurate attitude information (to ˜20 arcsec on a spinning spacecraft) near the point of measurement of the magnetic field. The two sensor suites are accommodated at 10 and 12 m from the body of the spacecraft on a 4 m long magnetometer boom affixed to the outer end of one of 's three solar array assemblies. The magnetometer sensors are controlled by independent and functionally identical electronics boards within the magnetometer electronics package mounted inside Juno's massive radiation shielded vault. The imaging sensors are controlled by a fully hardware redundant electronics package also mounted within the radiation vault. Each magnetometer sensor measures the vector magnetic field with 100 ppm absolute vector accuracy over a wide dynamic range (to 16 Gauss = 1.6 × 106 nT per axis) with a resolution of ˜0.05 nT in the most sensitive dynamic range (±1600 nT per axis). Both magnetometers sample the magnetic field simultaneously at an intrinsic sample rate of 64 vector samples per second. The magnetic field instrumentation may be reconfigured in flight to meet unanticipated needs and is fully hardware redundant. The attitude determination system compares images with an on-board star catalog to provide attitude solutions (quaternions) at a rate of up to 4 solutions per second, and may be configured to acquire images of selected targets for science and engineering analysis. The system tracks and catalogs objects that pass through the imager field of view and also provides a continuous record of radiation exposure. A spacecraft magnetic control program was implemented to provide a magnetically clean environment for the magnetic sensors, and residual spacecraft fields and/or sensor offsets are monitored in flight taking advantage of Juno's spin (nominally 2 rpm) to separate environmental fields from those that rotate with the spacecraft.
The Juno Magnetic Field Investigation
NASA Technical Reports Server (NTRS)
Connerney, J. E. P.; Benna, M.; Bjarno, J. B.; Denver, T.; Espley, J.; Jorgensen, J. L.; Jorgensen, P. S.; Lawton, P.; Malinnikova, A.; Merayo, J. M.;
2017-01-01
The Juno Magnetic Field investigation (MAG) characterizes Jupiter's planetary magnetic field and magnetosphere, providing the first globally distributed and proximate measurements of the magnetic field of Jupiter. The magnetic field instrumentation consists of two independent magnetometer sensor suites, each consisting of a tri-axial Fluxgate Magnetometer (FGM) sensor and a pair of co-located imaging sensors mounted on an ultra-stable optical bench. The imaging system sensors are part of a subsystem that provides accurate attitude information (to approx. 20 arcsec on a spinning spacecraft) near the point of measurement of the magnetic field. The two sensor suites are accommodated at 10 and 12 m from the body of the spacecraft on a 4 m long magnetometer boom affixed to the outer end of one of 's three solar array assemblies. The magnetometer sensors are controlled by independent and functionally identical electronics boards within the magnetometer electronics package mounted inside Juno's massive radiation shielded vault. The imaging sensors are controlled by a fully hardware redundant electronics package also mounted within the radiation vault. Each magnetometer sensor measures the vector magnetic field with 100 ppm absolute vector accuracy over a wide dynamic range (to 16 Gauss = 1.6 x 10(exp. 6) nT per axis) with a resolution of approx. 0.05 nT in the most sensitive dynamic range (+/-1600 nT per axis). Both magnetometers sample the magnetic field simultaneously at an intrinsic sample rate of 64 vector samples per second. The magnetic field instrumentation may be reconfigured in flight to meet unanticipated needs and is fully hardware redundant. The attitude determination system compares images with an on-board star catalog to provide attitude solutions (quaternions) at a rate of up to 4 solutions per second, and may be configured to acquire images of selected targets for science and engineering analysis. The system tracks and catalogs objects that pass through the imager field of view and also provides a continuous record of radiation exposure. A spacecraft magnetic control program was implemented to provide a magnetically clean environment for the magnetic sensors, and residual spacecraft fields andor sensor offsets are monitored in flight taking advantage of Juno's spin (nominally 2 rpm) to separate environmental fields from those that rotate with the spacecraft.
Summary of compliant and multi-arm control at NASA. Langley Research Center
NASA Technical Reports Server (NTRS)
Harrison, Fenton W.
1992-01-01
The topics are presented in viewgraph form and include the: single arm system, single arm axis system, single arm control systems, single arm hand controller axis system, single arm position axis system, single arm vision axis system, single arm force axis system, multi-arm system, multi-arm axis system, and the dual arm hand control axis system with control signals.
The Magsat three axis arc second precision attitude transfer system
NASA Technical Reports Server (NTRS)
Schenkel, F. W.; Heins, R. J.
1981-01-01
The Magsat Attitude Transfer System (ATS), which provides attitude alteration in pitch, yaw, and roll is described. A remote vector magnetometer extends from Magsat on a 20 ft boom, requiring vector orientation by reference to coordinate axes determined by a set of star mapping cameras. The ATS was designed to perform in a solar illuminated environment by using an optically narrow bandwidth with synchronous demodulation at 9300 A. The pitch/yaw optical design, the electrooptics, and signal and switching diagrams are provided. Simple mirrors with no moving parts are placed on the magnetometer to reflect a collimated beam from the ATS for attitude indication, which is accurate to one part in 96. Alignment was completed within 24 hr after launch.
Preliminary results of rocket attitude and auroral green line emission rate in the DELTA campaign
NASA Astrophysics Data System (ADS)
Iwagami, Naomoto; Komada, Sayaka; Takahashi, Takao
2006-09-01
The attitude of a sounding rocket launched in the DELTA (Dynamics and Energetics of the Lower Thermosphere in Aurora) campaign was determined with IR horizon sensors and geomagnetic sensors. Since the payload was separated into two portions, two sets of attitude sensors were needed. A new IR sensor was developed for the present experiment, and found the zenith-angle of the spin-axis of the rocket with an accuracy of 2°. By combining information obtained by both type of sensors, the absolute attitudes were determined. The auroral green line emission rate was measured by a photometer on board the same rocket launched under active auroral conditions, and the energy flux of the auroral particle precipitation was estimated.
Tracking and data relay satellite system configuration and tradeoff study. Volume 1: Study summary
NASA Technical Reports Server (NTRS)
Hill, T. E.
1973-01-01
A study was conducted to determine the configuration and tradeoffs of a tracking and data relay satellite. The study emphasized the design of a three axis stabilized satellite and a telecommunications system optimized for support of low and medium data rate user spacecraft. Telecommunications support to low and high, or low medium, and high data rate users, considering launches with the Delta 2914, the Atlas/Centaur, and the space shuttle was also considered. The following subjects are presented: (1) launch and deployment profile, (2) spacecraft mechanical and structural design, (3) attitude stabilization and control subsystem, and (4) reliability analysis.
Spinning projectile's attitude measurement with LW infrared radiation under sea-sky background
NASA Astrophysics Data System (ADS)
Xu, Miaomiao; Bu, Xiongzhu; Yu, Jing; He, Zilu
2018-05-01
With the further development of infrared radiation research in sea-sky background and the requirement of spinning projectile's attitude measurement, the sea-sky infrared radiation field is used to carry out spinning projectile's attitude angle instead of inertial sensors. Firstly, the generation mechanism of sea-sky infrared radiation is analysed. The mathematical model of sea-sky infrared radiation is deduced in LW (long wave) infrared 8 ∼ 14 μm band by calculating the sea surface and sky infrared radiation. Secondly, according to the movement characteristics of spinning projectile, the attitude measurement model of infrared sensors on projectile's three axis is established. And the feasibility of the model is analysed by simulation. Finally, the projectile's attitude calculation algorithm is designed to improve the attitude angle estimation accuracy. The results of semi-physical experiments show that the segmented interactive algorithm estimation error of pitch and roll angle is within ±1.5°. The attitude measurement method is effective and feasible, and provides accurate measurement basis for the guidance of spinning projectile.
A Measuring System for Well Logging Attitude and a Method of Sensor Calibration
Ren, Yong; Wang, Yangdong; Wang, Mijian; Wu, Sheng; Wei, Biao
2014-01-01
This paper proposes an approach for measuring the azimuth angle and tilt angle of underground drilling tools with a MEMS three-axis accelerometer and a three-axis fluxgate sensor. A mathematical model of well logging attitude angle is deduced based on combining space coordinate transformations and algebraic equations. In addition, a system implementation plan of the inclinometer is given in this paper, which features low cost, small volume and integration. Aiming at the sensor and assembly errors, this paper analyses the sources of errors, and establishes two mathematical models of errors and calculates related parameters to achieve sensor calibration. The results show that this scheme can obtain a stable and high precision azimuth angle and tilt angle of drilling tools, with the deviation of the former less than ±1.4° and the deviation of the latter less than ±0.1°. PMID:24859028
A measuring system for well logging attitude and a method of sensor calibration.
Ren, Yong; Wang, Yangdong; Wang, Mijian; Wu, Sheng; Wei, Biao
2014-05-23
This paper proposes an approach for measuring the azimuth angle and tilt angle of underground drilling tools with a MEMS three-axis accelerometer and a three-axis fluxgate sensor. A mathematical model of well logging attitude angle is deduced based on combining space coordinate transformations and algebraic equations. In addition, a system implementation plan of the inclinometer is given in this paper, which features low cost, small volume and integration. Aiming at the sensor and assembly errors, this paper analyses the sources of errors, and establishes two mathematical models of errors and calculates related parameters to achieve sensor calibration. The results show that this scheme can obtain a stable and high precision azimuth angle and tilt angle of drilling tools, with the deviation of the former less than ±1.4° and the deviation of the latter less than ±0.1°.
Power optimal single-axis articulating strategies
NASA Technical Reports Server (NTRS)
Kumar, Renjith R.; Heck, Michael L.
1991-01-01
Power optimal single axis articulating PV array motion for Space Station Freedom is investigated. The motivation is to eliminate one of the articular joints to reduce Station costs. Optimal (maximum power) Beta tracking is addressed for local vertical local horizontal (LVLH) and non-LVLH attitudes. Effects of intra-array shadowing are also presented. Maximum power availability while Beta tracking is compared to full sun tracking and optimal alpha tracking. The results are quantified in orbital and yearly minimum, maximum, and average values of power availability.
Error analysis of satellite attitude determination using a vision-based approach
NASA Astrophysics Data System (ADS)
Carozza, Ludovico; Bevilacqua, Alessandro
2013-09-01
Improvements in communication and processing technologies have opened the doors to exploit on-board cameras to compute objects' spatial attitude using only the visual information from sequences of remote sensed images. The strategies and the algorithmic approach used to extract such information affect the estimation accuracy of the three-axis orientation of the object. This work presents a method for analyzing the most relevant error sources, including numerical ones, possible drift effects and their influence on the overall accuracy, referring to vision-based approaches. The method in particular focuses on the analysis of the image registration algorithm, carried out through on-purpose simulations. The overall accuracy has been assessed on a challenging case study, for which accuracy represents the fundamental requirement. In particular, attitude determination has been analyzed for small satellites, by comparing theoretical findings to metric results from simulations on realistic ground-truth data. Significant laboratory experiments, using a numerical control unit, have further confirmed the outcome. We believe that our analysis approach, as well as our findings in terms of error characterization, can be useful at proof-of-concept design and planning levels, since they emphasize the main sources of error for visual based approaches employed for satellite attitude estimation. Nevertheless, the approach we present is also of general interest for all the affine applicative domains which require an accurate estimation of three-dimensional orientation parameters (i.e., robotics, airborne stabilization).
Solar Sail Attitude Control System for the NASA Near Earth Asteroid Scout Mission
NASA Technical Reports Server (NTRS)
Orphee, Juan; Diedrich, Ben; Stiltner, Brandon; Becker, Chris; Heaton, Andrew
2017-01-01
An Attitude Control System (ACS) has been developed for the NASA Near Earth Asteroid (NEA) Scout mission. The NEA Scout spacecraft is a 6U cubesat with an eighty-six square meter solar sail for primary propulsion that will launch as a secondary payload on the Space Launch System (SLS) Exploration Mission 1 (EM-1) and rendezvous with a target asteroid after a two year journey, and will conduct science imagery. The spacecraft ACS consists of three major actuating subsystems: a Reaction Wheel (RW) control system, a Reaction Control System (RCS), and an Active Mass Translator (AMT) system. The reaction wheels allow fine pointing and higher rates with low mass actuators to meet the science, communication, and trajectory guidance requirements. The Momentum Management System (MMS) keeps the speed of the wheels within their operating margins using a combination of solar torque and the RCS. The AMT is used to adjust the sign and magnitude of the solar torque to manage pitch and yaw momentum. The RCS is used for initial de-tumble, performing a Trajectory Correction Maneuver (TCM), and performing momentum management about the roll axis. The NEA Scout ACS is able to meet all mission requirements including attitude hold, slews, pointing for optical navigation and pointing for science with margin and including flexible body effects. Here we discuss the challenges and solutions of meeting NEA Scout mission requirements for the ACS design, and present a novel implementation of managing the spacecraft Center of Mass (CM) to trim the solar sail disturbance torque. The ACS we have developed has an applicability to a range of potential missions and does so in a much smaller volume than is traditional for deep space missions beyond Earth.
NASA Technical Reports Server (NTRS)
Tsai, Dean C.; Markley, F. Landis; Watson, Todd P.
2008-01-01
The Solar, Anomalous, and Magnetospheric Particle Explorer (SAMPEX), the first of the Small Explorer series of spacecraft, was launched on July 3, 1992 into an 82' inclination orbit with an apogee of 670 km and a perigee of 520 km and a mission lifetime goal of 3 years. After more than 15 years of continuous operation, the reaction wheel began to fail on August 18,2007. With a set of three magnetic torquer bars being the only remaining attitude actuator, the SAMPEX recovery team decided to deviate from its original attitude control system design and put the spacecraft into a spin stabilized mode. The necessary operations had not been used for many years, which posed a challenge. However, on September 25, 2007, the spacecraft was successfully spun up to 1.0 rpm about its pitch axis, which points at the sun. This paper describes the diagnosis of the anomaly, the analysis of flight data, the simulation of the spacecraft dynamics, and the procedures used to recover the spacecraft to spin stabilized mode.
Analysis of Retainer Induced Disturbances of Reaction Wheel
NASA Astrophysics Data System (ADS)
Taniwaki, Shigemune; Kudo, Masahito; Sato, Makoto; Ohkami, Yoshiaki
A ball bearing reaction wheel (RW) is a key attitude control actuator of spacecrafts, but it is also a major source of inner disturbances. Future space mission requires high attitude stability, and disturbance property of the RW must be improved. There are some disturbance sources inside the RW, and abnormal motion of a retainer is one of the most significant ones. The retainer is one of mechanical parts of a ball bearing supporting a rotor spin axis. It is used to keep the ball intervals. Therefore it is nonholonomically constrained with balls, an inner race, and an outer race, and its complex motion causes disturbances which are difficult to be effectively removed. In this paper, dynamics of the retainer is investigated through experimental tests and numerical simulations. Disturbances of normal and abnormal RWs are compared, and relation between retainer mass imbalances and their dynamics are investigated. As results, a trade-off relation between instability reduction and disturbance reduction is verified and one of the criteria to decide the appropriate mass imbalance is proposed.
Influencing Factors of the Initiation Point in the Parachute-Bomb Dynamic Detonation System
NASA Astrophysics Data System (ADS)
Qizhong, Li; Ye, Wang; Zhongqi, Wang; Chunhua, Bai
2017-12-01
The parachute system has been widely applied in modern armament design, especially for the fuel-air explosives. Because detonation of fuel-air explosives occurs during flight, it is necessary to investigate the influences of the initiation point to ensure successful dynamic detonation. In fact, the initiating position exist the falling area in the fuels, due to the error of influencing factors. In this paper, the major influencing factors of initiation point were explored with airdrop and the regularity between initiation point area and factors were obtained. Based on the regularity, the volume equation of initiation point area was established to predict the range of initiation point in the fuel. The analysis results showed that the initiation point appeared area, scattered on account of the error of attitude angle, secondary initiation charge velocity, and delay time. The attitude angle was the major influencing factors on a horizontal axis. On the contrary, secondary initiation charge velocity and delay time were the major influencing factors on a horizontal axis. Overall, the geometries of initiation point area were sector coupled with the errors of the attitude angle, secondary initiation charge velocity, and delay time.
NASA Technical Reports Server (NTRS)
Schairer, Edward T.; Kushner, Laura K.; Drain, Bethany A.; Heineck, James T.; Durston, Donald A.
2017-01-01
Stereo photogrammetry was used to measure the position and attitude of a slender body of revolution during nozzle-plume/shock-wave interaction tests in the NASA Ames 9- by 7-Ft Supersonic Wind Tunnel. The model support system was designed to allow the model to be placed at many locations in the test section relative to a pressure rail on one sidewall. It included a streamwise traverse as well as a thin blade that offset the model axis from the sting axis. With these features the support system was more flexible than usual resulting in higher-than-usual uncertainty in the position and attitude of the model. Also contributing to this uncertainty were the absence of a balance, so corrections for sting deflections could not be applied, and the wings-vertical orientation of the model, which precluded using a gravity-based accelerometer to measure pitch angle. Therefore, stereo photogrammetry was chosen to provide independent measures of the model position and orientation. This paper describes the photogrammetry system and presents selected results from the test.
NASA Technical Reports Server (NTRS)
Joseph, M.; Keat, J.; Liu, K. S.; Plett, M. E.; Shear, M. A.; Shinohara, T.; Wertz, J. R.
1983-01-01
The Multisatellite Attitude Determination/Optical Aspect Bias Determination (MSAD/OABIAS) System, designed to determine spin axis orientation and biases in the alignment or performance of optical or infrared horizon sensors and Sun sensors used for spacecraft attitude determination, is described. MSAD/OABIAS uses any combination of eight observation models to process data from a single onboard horizon sensor and Sun sensor to determine simultaneously the two components of the attitude of the spacecraft, the initial phase of the Sun sensor, the spin rate, seven sensor biases, and the orbital in-track error associated with the spacecraft ephemeris information supplied to the system. In addition, the MSAD/OABIAS system provides a data simulator for system and performance testing, an independent deterministic attitude system for preprocessing and independent testing of biases determined, and a multipurpose data prediction and comparison system.
NASA Technical Reports Server (NTRS)
Joseph, M.; Ket, J. E.; Liu, K. S.; Plett, M. E.; Shear, M. A.; Shinohara, T.; Wertz, J. R.
1983-01-01
The Multisatellite Attitude Determination/Optical Aspect Bias Determination (MSAD/OABIAS) System, designed to determine spin axis orientation and biases in the alignment or performance of optical or infrared horizon sensors and Sun sensors used for spacecraft attitude determination is described. MSAD/OABIAS uses any combination of eight observation models to process data from a single onboard horizon sensor and Sun sensor to determine simultaneously the two components of the attitude of the spacecraft, the initial phase of the Sun sensor, the spin rate, seven sensor biases, and the orbital in-track error associated with the spacecraft ephemeris information supplied to the system. In addition, the MSAD/OABIAS System provides a data simulator for system and performance testing, an independent deterministic attitude system for preprocessing and independent testing of biases determined, and a multipurpose data prediction and comparison system.
A novel double fine guide sensor design on space telescope
NASA Astrophysics Data System (ADS)
Zhang, Xu-xu; Yin, Da-yi
2018-02-01
To get high precision attitude for space telescope, a double marginal FOV (field of view) FGS (Fine Guide Sensor) is proposed. It is composed of two large area APS CMOS sensors and both share the same lens in main light of sight. More star vectors can be get by two FGS and be used for high precision attitude determination. To improve star identification speed, the vector cross product in inter-star angles for small marginal FOV different from traditional way is elaborated and parallel processing method is applied to pyramid algorithm. The star vectors from two sensors are then used to attitude fusion with traditional QUEST algorithm. The simulation results show that the system can get high accuracy three axis attitudes and the scheme is feasibility.
Experimental study at low supersonic speeds of a missile concept having opposing wraparound tails
NASA Technical Reports Server (NTRS)
Allen, Jerry M.; Watson, Carolyn B.
1994-01-01
A wind-tunnel investigation has been performed at low supersonic speeds (at Mach numbers of 1.60, and 2.16) to evaluate the aerodynamic characteristics of a missile concept capable of being tube launched and controlled with a simple one-axis canard controller. This concept, which features an axisymmetric body with two planar canards and four wraparound tail fins arranged in opposing pairs, must be in rolling motion to be controllable in any radial plane with the planar canards. Thus, producing a constant rolling moment that is invariant with speed and attitude to provide the motion is desirable. Two tail-fin shaping designs, one shaved and one beveled, were evaluated for their efficiency in producing the needed rolling moments, and the results showed that the shaved fins were much more desirable for this task than the beveled fins.
Pitch, roll, and yaw moment generator for insect-like tailless flapping-wing MAV
NASA Astrophysics Data System (ADS)
Phan, Hoang Vu; Park, Hoon Cheol
2016-04-01
In this work, we proposed a control moment generator, which is called Trailing Edge Change (TEC) mechanism, for attitudes change in hovering insect-like tailless flapping-wing MAV. The control moment generator was installed to the flapping-wing mechanism to manipulate the wing kinematics by adjusting the wing roots location symmetrically or asymmetrically. As a result, the mean aerodynamic force center of each wing is relocated and control moments are generated. The three-dimensional wing kinematics captured by three synchronized high-speed cameras showed that the flapping-wing MAV can properly modify the wing kinematics. In addition, a series of experiments were performed using a multi-axis load cell to evaluate the forces and moments generation. The measurement demonstrated that the TEC mechanism produced reasonable amounts of pitch, roll and yaw moments by shifting position of the trailing edges at the wing roots of the flapping-wing MAV.
Nutation and precession control of the High Energy Solar Physics (HESP) satellite
NASA Technical Reports Server (NTRS)
Jayaraman, C. P.; Robertson, B. P.
1993-01-01
The High Energy Solar Physics (HESP) spacecraft is an intermediate class satellite proposed by NASA to study solar high-energy phenomena during the next cycle of high solar activity in the 1998 to 2005 time frame. The HESP spacecraft is a spinning satellite which points to the sun with stringent pointing requirements. The natural dynamics of a spinning satellite includes an undesirable effect: nutation, which is due to the presence of disturbances and offsets of the spin axis from the angular momentum vector. The proposed Attitude Control System (ACS) attenuates nutation with reaction wheels. Precessing the spacecraft to track the sun in the north-south and east-west directions is accomplished with the use of torques from magnetic torquer bars. In this paper, the basic dynamics of a spinning spacecraft are derived, control algorithms to meet HESP science requirements are discussed and simulation results to demonstrate feasibility of the ACS concept are presented.
Backup Attitude Control Algorithms for the MAP Spacecraft
NASA Technical Reports Server (NTRS)
ODonnell, James R., Jr.; Andrews, Stephen F.; Ericsson-Jackson, Aprille J.; Flatley, Thomas W.; Ward, David K.; Bay, P. Michael
1999-01-01
The Microwave Anisotropy Probe (MAP) is a follow-on to the Differential Microwave Radiometer (DMR) instrument on the Cosmic Background Explorer (COBE) spacecraft. The MAP spacecraft will perform its mission, studying the early origins of the universe, in a Lissajous orbit around the Earth-Sun L(sub 2) Lagrange point. Due to limited mass, power, and financial resources, a traditional reliability concept involving fully redundant components was not feasible. This paper will discuss the redundancy philosophy used on MAP, describe the hardware redundancy selected (and why), and present backup modes and algorithms that were designed in lieu of additional attitude control hardware redundancy to improve the odds of mission success. Three of these modes have been implemented in the spacecraft flight software. The first onboard mode allows the MAP Kalman filter to be used with digital sun sensor (DSS) derived rates, in case of the failure of one of MAP's two two-axis inertial reference units. Similarly, the second onboard mode allows a star tracker only mode, using attitude and derived rate from one or both of MAP's star trackers for onboard attitude determination and control. The last backup mode onboard allows a sun-line angle offset to be commanded that will allow solar radiation pressure to be used for momentum management and orbit stationkeeping. In addition to the backup modes implemented on the spacecraft, two backup algorithms have been developed in the event of less likely contingencies. One of these is an algorithm for implementing an alternative scan pattern to MAP's nominal dual-spin science mode using only one or two reaction wheels and thrusters. Finally, an algorithm has been developed that uses thruster one shots while in science mode for momentum management. This algorithm has been developed in case system momentum builds up faster than anticipated, to allow adequate momentum management while minimizing interruptions to science. In this paper, each mode and algorithm will be discussed, and simulation results presented.
NASA Technical Reports Server (NTRS)
1971-01-01
The feasibility of using the Scanning Celestial Attitude Determination System (SCADS) during Earth Resources Technology Satellite (ERTS) missions to compute an accurate spacecraft attitude by use of stellar measurements is considered. The spacecraft is local-vertical-stabilized. A heuristic discussion of the SCADS concept is first given. Two concepts are introduced: a passive system which contains no moving parts, and an active system in which the reticle is caused to rotate about the sensor's axis. A quite complete development of the equations of attitude motions is then given. These equations are used to generate the true attitude which in turn is used to compute the transit times of detectable stars and to determine the errors associated with the SCADS attitude. A more complete discussion of the analytical foundation of SCADS concept and its use for the geometries particular to this study, as well as salient design parameters for the passive and active systems are included.
Acquisition of control skill with delayed and compensated displays.
Ricard, G L
1995-09-01
The difficulty of mastering a two-axis, compensatory, manual control task was manipulated by introducing transport delays into the feedback loop of the controlled element. Realistic aircraft dynamics were used. Subjects' display was a simulation of an "inside-out" artificial horizon instrument perturbed by atmospheric turbulence. The task was to maintain straight and level flight, and delays tested were representative of those found in current training simulators. Delay compensations in the form of first-order lead and first-order lead/lag transfer functions, along with an uncompensated condition, were factorially combined with added delays. Subjects were required to meet a relatively strict criterion for performance. Control activity showed no differences during criterion performance, but the trials needed to achieve the criterion were linearly related to the magnitude of the delay and the compensation condition. These data were collected in the context of aircraft attitude control, but the results can be applied to the simulation of other vehicles, to remote manipulation, and to maneuvering in graphical environments.
Identification and Reconfigurable Control of Impaired Multi-Rotor Drones
NASA Technical Reports Server (NTRS)
Stepanyan, Vahram; Krishnakumar, Kalmanje; Bencomo, Alfredo
2016-01-01
The paper presents an algorithm for control and safe landing of impaired multi-rotor drones when one or more motors fail simultaneously or in any sequence. It includes three main components: an identification block, a reconfigurable control block, and a decisions making block. The identification block monitors each motor load characteristics and the current drawn, based on which the failures are detected. The control block generates the required total thrust and three axis torques for the altitude, horizontal position and/or orientation control of the drone based on the time scale separation and nonlinear dynamic inversion. The horizontal displacement is controlled by modulating the roll and pitch angles. The decision making algorithm maps the total thrust and three torques into the individual motor thrusts based on the information provided by the identification block. The drone continues the mission execution as long as the number of functioning motors provide controllability of it. Otherwise, the controller is switched to the safe mode, which gives up the yaw control, commands a safe landing spot and descent rate while maintaining the horizontal attitude.
NASA Astrophysics Data System (ADS)
Sazonov, V. V.
An analysis is made of a generalized conservative mechanical system whose equations of motion contain a large parameter characterizing local forces acting along certain generalized coordinates. It is shown that the equations have periodic solutions which are close to periodic solutions to the corresponding degenerate equations. As an example, the periodic motions of a satellite with respect to its center of mass due to gravitational and restoring aerodynamic moments are examined for the case where the aerodynamic moment is much larger than the gravitational moment. Such motions can be treated as nominal unperturbed motions of a satellite under conditions of single-axis aerodynamic attitude control.
Integrated Power and Attitude Control System (IPACS)
NASA Technical Reports Server (NTRS)
Michaelis, Theodore D.
1998-01-01
Recent advances in materials, circuit integration and power switching have given the concept of dynamic energy and momentum storage important weight size, and operational advantages over the conventional momentum wheel-battery configuration. Simultaneous momentum and energy storage for a three axes stabilized spacecraft can be accomplished with a topology of at least four wheels where energy (a scalar) is stored or retrieved in such a manner as to keep the momentum vector invariant. This study, instead, considers the case of two counter-rotating wheels in one axis to more effectively portray the principles involved. General scalable system design equations are derived which demonstrate the role of momentum storage when combined with energy storage.
Band co-registration modeling of LAPAN-A3/IPB multispectral imager based on satellite attitude
NASA Astrophysics Data System (ADS)
Hakim, P. R.; Syafrudin, A. H.; Utama, S.; Jayani, A. P. S.
2018-05-01
One of significant geometric distortion on images of LAPAN-A3/IPB multispectral imager is co-registration error between each color channel detector. Band co-registration distortion usually can be corrected by using several approaches, which are manual method, image matching algorithm, or sensor modeling and calibration approach. This paper develops another approach to minimize band co-registration distortion on LAPAN-A3/IPB multispectral image by using supervised modeling of image matching with respect to satellite attitude. Modeling results show that band co-registration error in across-track axis is strongly influenced by yaw angle, while error in along-track axis is fairly influenced by both pitch and roll angle. Accuracy of the models obtained is pretty good, which lies between 1-3 pixels error for each axis of each pair of band co-registration. This mean that the model can be used to correct the distorted images without the need of slower image matching algorithm, nor the laborious effort needed in manual approach and sensor calibration. Since the calculation can be executed in order of seconds, this approach can be used in real time quick-look image processing in ground station or even in satellite on-board image processing.
1982-11-01
control 4centering and breakout forces 21 3.2.9.6 Pitch axis control forces- free play 21 3.2.9.7 Pitch axis control force limits 21 3.2.9.7.1 Pitch axis...axis control forces - control centering and breakout forces 31 *3.5.10.5 Roll axis control forces -- free play 31 3.5.10.6 Roll axis control force limits...vs. deflection 3.2.9.5 Control centering and -- no(-) to homin and hOax breakout forces no(*) 3.2.9.6 Free play I 3.2.9.7.1 Force limits -- takeoff
Partial study of quadrotor based on quaternions
NASA Astrophysics Data System (ADS)
Ji, Xiang
2018-05-01
In this paper, the attitude calculation of quadrotor is studied, and the attitude angle of quaternions and the method of using IIR low pass filter to filter the high frequency noise are proposed. First of all, this paper puts forward the characteristics of quadrotor more flexible than other aircraft. The flexible steering mode of quadrotor is classified into three categories. Starting from reality, this paper proposes an algorithm to transform the value of acceleration sensor to pose angle, which can greatly reduce the amount of computation and is the theoretical basis for real-time attitude calculation of aircraft. When introducing the number of quaternion, this article starts from the theoretical model and first introduces the conceptual meaning of the number of quaternion. In this model, the aircraft's own coordinate axis and the geographical axis are regarded as two rigid bodies, and they have three coordinate axes that are orthogonal to each other. When the steering operation is involved, the corresponding acceleration is generated. By using the quaternion multiplicative formula mentioned in this paper, the change of attitude angle can be obtained. n reality, in order to ensure the accuracy of the output attitude angle. More accurate input variables are often needed, and the IIR low pass filter is introduced in this way. In this paper, a nine order IIR filter is designed according to the actual situation, and its spectrum characteristics are obtained by simulation software. After mixing the original signal generated by propeller's high frequency noise, it outputs clean signals through filter, all of which are intuitively reflected by three spectrum images. After giving some practical solutions, this paper looks forward to the prospect of the aircraft.
Development of the SEASIS instrument for SEDSAT
NASA Technical Reports Server (NTRS)
Maier, Mark W.
1996-01-01
Two SEASIS experiment objectives are key: take images that allow three axis attitude determination and take multi-spectral images of the earth. During the tether mission it is also desirable to capture images for the recoiling tether from the endmass perspective (which has never been observed). SEASIS must store all its imagery taken during the tether mission until the earth downlink can be established. SEASIS determines attitude with a panoramic camera and performs earth observation with a telephoto lens camera. Camera video is digitized, compressed, and stored in solid state memory. These objectives are addressed through the following architectural choices: (1) A camera system using a Panoramic Annular Lens (PAL). This lens has a 360 deg. azimuthal field of view by a +45 degree vertical field measured from a plan normal to the lens boresight axis. It has been shown in Mr. Mark Steadham's UAH M.S. thesis that his camera can determine three axis attitude anytime the earth and one other recognizable celestial object (for example, the sun) is in the field of view. This will be essentially all the time during tether deployment. (2) A second camera system using telephoto lens and filter wheel. The camera is a black and white standard video camera. The filters are chosen to cover the visible spectral bands of remote sensing interest. (3) A processor and mass memory arrangement linked to the cameras. Video signals from the cameras are digitized, compressed in the processor, and stored in a large static RAM bank. The processor is a multi-chip module consisting of a T800 Transputer and three Zoran floating point Digital Signal Processors. This processor module was supplied under ARPA contract by the Space Computer Corporation to demonstrate its use in space.
An Investigation of Large Tilt-Rotor Hover and Low Speed Handling Qualities
NASA Technical Reports Server (NTRS)
Malpica, Carlos A.; Decker, William A.; Theodore, Colin R.; Lindsey, James E.; Lawrence, Ben; Blanken, Chris L.
2011-01-01
A piloted simulation experiment conducted on the NASA-Ames Vertical Motion Simulator evaluated the hover and low speed handling qualities of a large tilt-rotor concept, with particular emphasis on longitudinal and lateral position control. Ten experimental test pilots evaluated different combinations of Attitude Command-Attitude Hold (ACAH) and Translational Rate Command (TRC) response types, nacelle conversion actuator authority limits and inceptor choices. Pilots performed evaluations in revised versions of the ADS-33 Hover, Lateral Reposition and Depart/Abort MTEs and moderate turbulence conditions. Level 2 handling qualities ratings were primarily recorded using ACAH response type in all three of the evaluation maneuvers. The baseline TRC conferred Level 1 handling qualities in the Hover MTE, but there was a tendency to enter into a PIO associated with nacelle actuator rate limiting when employing large, aggressive control inputs. Interestingly, increasing rate limits also led to a reduction in the handling qualities ratings. This led to the identification of a nacelle rate to rotor longitudinal flapping coupling effect that induced undesired, pitching motions proportional to the allowable amount of nacelle rate. A modification that counteracted this effect significantly improved the handling qualities. Evaluation of the different response type variants showed that inclusion of TRC response could provide Level 1 handling qualities in the Lateral Reposition maneuver by reducing coupled pitch and heave off axis responses that otherwise manifest with ACAH. Finally, evaluations in the Depart/Abort maneuver showed that uncertainty about commanded nacelle position and ensuing aircraft response, when manually controlling the nacelle, demanded high levels of attention from the pilot. Additional requirements to maintain pitch attitude within 5 deg compounded the necessary workload.
Design study for LANDSAT-D attitude control system
NASA Technical Reports Server (NTRS)
Iwens, R. P.; Bernier, G. E.; Hofstadter, R. F.; Mayo, R. A.; Nakano, H.
1977-01-01
The gimballed Ku-band antenna system for communication with TDRS was studied. By means of an error analysis it was demonstrated that the antenna cannot be open loop pointed to TDRS by an onboard programmer, but that an autotrack system was required. After some tradeoffs, a two-axis, azimuth-elevation type gimbal configuration was recommended for the antenna. It is shown that gimbal lock only occurs when LANDSAT-D is over water where a temporary loss of the communication link to TDRS is of no consequence. A preliminary gimbal control system design is also presented. A digital computer program was written that computes antenna gimbal angle profiles, assesses percent antenna beam interference with the solar array, and determines whether the spacecraft is over land or water, a lighted earth or a dark earth, and whether the spacecraft is in eclipse.
NASA Astrophysics Data System (ADS)
Nugraha, A. T.; Agustinah, T.
2018-01-01
Quadcopter an unstable system, underactuated and nonlinear in quadcopter control research developments become an important focus of attention. In this study, following the path control method for position on the X and Y axis, used structure-Generator Tracker Command (CGT) is tested. Attitude control and position feedback quadcopter is compared using the optimal output. The addition of the H∞ performance optimal output feedback control is used to maintain the stability and robustness of quadcopter. Iterative numerical techniques Linear Matrix Inequality (LMI) is used to find the gain controller. The following path control problems is solved using the method of LQ regulators with output feedback. Simulations show that the control system can follow the paths that have been defined in the form of a reference signal square shape. The result of the simulation suggest that the method which used can bring the yaw angle at the expected value algorithm. Quadcopter can do automatically following path with cross track error mean X=0.5 m and Y=0.2 m.
NASA Technical Reports Server (NTRS)
Mitchell, Darryl R.
1997-01-01
Goddard Space Flight Center's (GSFC) Spacecraft Magnetic Test Facility (SMTF) is a historic test facility that has set the standard for all subsequent magnetic test facilities. The SMTF was constructed in the early 1960's for the purpose of simulating geomagnetic and interplanetary magnetic fields. Additionally, the facility provides the capability for measuring spacecraft generated magnetic fields as well as calibrating magnetic attitude control systems and science magnetometers. The SMTF was designed for large, spacecraft level tests and is currently the second largest spherical coil system in the world. The SMTF is a three-axis Braunbek system composed of four coils on each of three orthogonal axes. The largest coils are 12.7 meters (41.6 feet) in diameter. The three-axis Braunbek configuration provides a highly uniform cancellation of the geomagnetic field over the central 1.8 meter (6 foot) diameter primary test volume. Cancellation of the local geomagnetic field is to within +/-0.2 nanotesla with a uniformity of up to 0.001% within the 1.8 meter (6 foot) diameter primary test volume. Artificial magnetic field vectors from 0-60,000 nanotesla can be generated along any axis with a 0.1 nanotesla resolution. Oscillating or rotating field vectors can also be produced about any axis with a frequency of up to 100 radians/second. Since becoming fully operational in July of 1967, the SMTF has been the site of numerous spacecraft magnetics tests. Spacecraft tested at the SMTF include: the Solar Maximum Mission (SMM), Magsat, LANDSAT-D, the Fast Aurora] Snapshot (FAST) Explorer and the Sub-millimeter-Wave-Astronomy Satellite (SWAS) among others. This paper describes the methodology and sequencing used for the Global Geospace Science (GGS) initiative magnetic testing program in the Goddard Space Flight Center's SMTF. The GGS initiative provides an exemplary model of a strict and comprehensive magnetic control program.
Space Station Control Moment Gyroscope Lessons Learned
NASA Technical Reports Server (NTRS)
Gurrisi, Charles; Seidel, Raymond; Dickerson, Scott; Didziulis, Stephen; Frantz, Peter; Ferguson, Kevin
2010-01-01
Four 4760 Nms (3510 ft-lbf-s) Double Gimbal Control Moment Gyroscopes (DGCMG) with unlimited gimbal freedom about each axis were adopted by the International Space Station (ISS) Program as the non-propulsive solution for continuous attitude control. These CMGs with a life expectancy of approximately 10 years contain a flywheel spinning at 691 rad/s (6600 rpm) and can produce an output torque of 258 Nm (190 ft-lbf)1. One CMG unexpectedly failed after approximately 1.3 years and one developed anomalous behavior after approximately six years. Both units were returned to earth for failure investigation. This paper describes the Space Station Double Gimbal Control Moment Gyroscope design, on-orbit telemetry signatures and a summary of the results of both failure investigations. The lessons learned from these combined sources have lead to improvements in the design that will provide CMGs with greater reliability to assure the success of the Space Station. These lessons learned and design improvements are not only applicable to CMGs but can be applied to spacecraft mechanisms in general.
NASA Technical Reports Server (NTRS)
Williams, Jonathan H.
2010-01-01
The Upper Stage Reaction Control System provides three-axis attitude control for the Ares I launch vehicle during active Upper Stage flight. The system design must accommodate rapid thruster firing to maintain the proper launch trajectory and thus allow for the possibility to pulse multiple thrusters simultaneously. Rapid thruster valve closure creates an increase in static pressure, known as waterhammer, which propagates throughout the propellant system at pressures exceeding nominal design values. A series of development tests conducted in the fall of 2009 at Marshall Space Flight Center were performed using a water-flow test article to better understand fluid performance characteristics of the Upper Stage Reaction Control System. A subset of the tests examined waterhammer along with the subsequent pressure and frequency response in the flight-representative system and provided data to anchor numerical models. This thesis presents a comparison of waterhammer test results with numerical model and analytical results. An overview of the flight system, test article, modeling and analysis are also provided.
NASA Astrophysics Data System (ADS)
Williams, Jonathan Hunter
The Upper Stage Reaction Control System provides in-flight three-axis attitude control for the Ares I Upper Stage. The system design must accommodate rapid thruster firing to maintain proper launch trajectory and thus allow for the possibility to pulse multiple thrusters simultaneously. Rapid thruster valve closure creates an increase in static pressure, known as waterhammer, which propagates throughout the propellant system at pressures exceeding nominal design values. A series of development tests conducted at Marshall Space Flight Center in 2009 were performed using a water-flow test article to better understand fluid characteristics of the Upper Stage Reaction Control System. A subset of the tests examined the waterhammer pressure and frequency response in the flight-representative system and provided data to anchor numerical models. This thesis presents a comparison of waterhammer test results with numerical model and analytical results. An overview of the flight system, test article, modeling and analysis are also provided.
Magnetometer-Only Attitude and Rate Estimates for Spinning Spacecraft
NASA Technical Reports Server (NTRS)
Challa, M.; Natanson, G.; Ottenstein, N.
2000-01-01
A deterministic algorithm and a Kalman filter for gyroless spacecraft are used independently to estimate the three-axis attitude and rates of rapidly spinning spacecraft using only magnetometer data. In-flight data from the Wide-Field Infrared Explorer (WIRE) during its tumble, and the Fast Auroral Snapshot Explorer (FAST) during its nominal mission mode are used to show that the algorithms can successfully estimate the above in spite of the high rates. Results using simulated data are used to illustrate the importance of accurate and frequent data.
Recent Goddard Space Flight Center (GSFC) experience with on-orbit calibration of attitude sensors
NASA Technical Reports Server (NTRS)
Davis, W.; Hashmall, J.; Harman, R.
1992-01-01
The results of on-orbit calibration for several satellites by the flight Dynamics Facility (FDF) at GSFC are reviewed. The examples discussed include attitude calibrations for sensors, including fixed-head star trackers, fine sun sensors, three-axis magnetometers, and inertial reference units taken from recent experience with the Compton Gamma Ray observatory, the Upper Atmosphere Research Satellite, and the Extreme Ultraviolet Explorer calibration. The methods used and the results of calibration are discussed, as are the improvements attained from in-flight calibration.
Earth Observing System (EOS) Aqua Launch and Early Mission Attitude Support Experiences
NASA Technical Reports Server (NTRS)
Tracewell, D.; Glickman, J.; Hashmall, J.; Natanson, G.; Sedlak, J.
2003-01-01
The Earth Observing System (EOS) Aqua satellite was successfully launched on May 4,2002. Aqua is the second in the series of EOS satellites. EOS is part of NASA s Earth Science Enterprise Program, whose goals are to advance the scientific understanding of the Earth system. Aqua is a three-axis stabilized, Earth-pointing spacecraft in a nearly circular, sun-synchronous orbit at an altitude of 705 km. The Goddard Space Flight Center (GSFC) Flight Dynamics attitude team supported all phases of the launch and early mission. This paper presents the main results and lessons learned during this period, including: real-time attitude mode transition support, sensor calibration, onboard computer attitude validation, response to spacecraft emergencies, postlaunch attitude analyses, and anomaly resolution. In particular, Flight Dynamics support proved to be invaluable for successful Earth acquisition, fine-point mode transition, and recognition and correction of several anomalies, including support for the resolution of problems observed with the MODIS instrument.
Çelik, Selime; Kayar, Yusuf; Önem Akçakaya, Rabia; Türkyılmaz Uyar, Ece; Kalkan, Kübra; Yazısız, Veli; Aydın, Çiğdem; Yücel, Başak
2015-01-01
It is reported that eating disorders and depression are more common in patients with type 2 diabetes mellitus (T2DM). In this study, we aimed to determine the prevalence of binge eating disorder (BED) in T2DM patients and examine the correlation of BED with level of depression and glycemic control. One hundred fifty-two T2DM patients aged between 18 and 75 years (81 females, 71 males) were evaluated via a Structured Clinical Interview for DSM-IV Axis I Disorder, Clinical Version in terms of eating disorders. Disordered eating attitudes were determined using the Eating Attitudes Test (EAT) and level of depression was determined using the Beck Depression Scale. Patients who have BED and patients who do not were compared in terms of age, gender, body mass index, glycosylated hemoglobin (HbA1c) levels, depression and EAT scores. Eight of the patients included in the study (5.26%) were diagnosed with BED. In patients diagnosed with BED, depression and EAT scores were significantly high (P<.05). A positive correlation was found between EAT scores and depression scores (r = +0.196, P<.05). No significant difference was found in HbA1c levels between patients with BED and those without (P<.05). T2DM patients should be examined in terms of the presence of BED and disordered eating attitudes. Psychiatric treatments should be organized for patients diagnosed with BED by taking into consideration comorbid depression. Copyright © 2015 Elsevier Inc. All rights reserved.
Ebstein, Richard P.; Monakhov, Mikhail V.; Lu, Yunfeng; Jiang, Yushi; Lai, Poh San; Chew, Soo Hong
2015-01-01
Twin and family studies suggest that political attitudes are partially determined by an individual's genotype. The dopamine D4 receptor gene (DRD4) exon III repeat region that has been extensively studied in connection with human behaviour, is a plausible candidate to contribute to individual differences in political attitudes. A first United States study provisionally identified this gene with political attitude along a liberal–conservative axis albeit contingent upon number of friends. In a large sample of 1771 Han Chinese university students in Singapore, we observed a significant main effect of association between the DRD4 exon III variable number of tandem repeats and political attitude. Subjects with two copies of the 4-repeat allele (4R/4R) were significantly more conservative. Our results provided evidence for a role of the DRD4 gene variants in contributing to individual differences in political attitude particularly in females and more generally suggested that associations between individual genes, and neurochemical pathways, contributing to traits relevant to the social sciences can be provisionally identified. PMID:26246555
Ebstein, Richard P; Monakhov, Mikhail V; Lu, Yunfeng; Jiang, Yushi; Lai, Poh San; Chew, Soo Hong
2015-08-22
Twin and family studies suggest that political attitudes are partially determined by an individual's genotype. The dopamine D4 receptor gene (DRD4) exon III repeat region that has been extensively studied in connection with human behaviour, is a plausible candidate to contribute to individual differences in political attitudes. A first United States study provisionally identified this gene with political attitude along a liberal-conservative axis albeit contingent upon number of friends. In a large sample of 1771 Han Chinese university students in Singapore, we observed a significant main effect of association between the DRD4 exon III variable number of tandem repeats and political attitude. Subjects with two copies of the 4-repeat allele (4R/4R) were significantly more conservative. Our results provided evidence for a role of the DRD4 gene variants in contributing to individual differences in political attitude particularly in females and more generally suggested that associations between individual genes, and neurochemical pathways, contributing to traits relevant to the social sciences can be provisionally identified. © 2015 The Author(s).
Accurate attitude determination of the LACE satellite
NASA Technical Reports Server (NTRS)
Miglin, M. F.; Campion, R. E.; Lemos, P. J.; Tran, T.
1993-01-01
The Low-power Atmospheric Compensation Experiment (LACE) satellite, launched in February 1990 by the Naval Research Laboratory, uses a magnetic damper on a gravity gradient boom and a momentum wheel with its axis perpendicular to the plane of the orbit to stabilize and maintain its attitude. Satellite attitude is determined using three types of sensors: a conical Earth scanner, a set of sun sensors, and a magnetometer. The Ultraviolet Plume Instrument (UVPI), on board LACE, consists of two intensified CCD cameras and a gimbal led pointing mirror. The primary purpose of the UVPI is to image rocket plumes from space in the ultraviolet and visible wavelengths. Secondary objectives include imaging stars, atmospheric phenomena, and ground targets. The problem facing the UVPI experimenters is that the sensitivity of the LACF satellite attitude sensors is not always adequate to correctly point the UVPI cameras. Our solution is to point the UVPI cameras at known targets and use the information thus gained to improve attitude measurements. This paper describes the three methods developed to determine improved attitude values using the UVPI for both real-time operations and post observation analysis.
Design considerations for imaging charge-coupled device
NASA Astrophysics Data System (ADS)
1981-04-01
The image dissector tube, which was formerly used as detector in star trackers, will be replaced by solid state imaging devices. The technology advances of charge transfer devices, like the charge-coupled device (CCD) and the charge-injection device (CID) have made their application to star trackers an immediate reality. The Air Force in 1979 funded an American Aerospace company to develop an imaging CCD (ICCD) star sensor for the Multimission Attitude Determination and Autonomous Navigation (MADAN) system. The MADAN system is a technology development for a strapdown attitude and navigation system which can be used on all Air Force 3-axis stabilized satellites. The system will be autonomous and will provide real-time satellite attitude and position information. The star sensor accuracy provides an overall MADAN attitude accuracy of 2 arcsec for star rates up to 300 arcsec/sec. The ICCD is basically an integrating device. Its pixel resolution in not yet satisfactory for precision applications.
Pseudo-Linear Attitude Determination of Spinning Spacecraft
NASA Technical Reports Server (NTRS)
Bar-Itzhack, Itzhack Y.; Harman, Richard R.
2004-01-01
This paper presents the overall mathematical model and results from pseudo linear recursive estimators of attitude and rate for a spinning spacecraft. The measurements considered are vector measurements obtained by sun-sensors, fixed head star trackers, horizon sensors, and three axis magnetometers. Two filters are proposed for estimating the attitude as well as the angular rate vector. One filter, called the q-Filter, yields the attitude estimate as a quaternion estimate, and the other filter, called the D-Filter, yields the estimated direction cosine matrix. Because the spacecraft is gyro-less, Euler s equation of angular motion of rigid bodies is used to enable the estimation of the angular velocity. A simpler Markov model is suggested as a replacement for Euler's equation in the case where the vector measurements are obtained at high rates relative to the spacecraft angular rate. The performance of the two filters is examined using simulated data.
NASA Technical Reports Server (NTRS)
Calhoun, Philip C.; Sedlak, Joseph E.; Superfin, Emil
2011-01-01
Precision attitude determination for recent and planned space missions typically includes quaternion star trackers (ST) and a three-axis inertial reference unit (IRU). Sensor selection is based on estimates of knowledge accuracy attainable from a Kalman filter (KF), which provides the optimal solution for the case of linear dynamics with measurement and process errors characterized by random Gaussian noise with white spectrum. Non-Gaussian systematic errors in quaternion STs are often quite large and have an unpredictable time-varying nature, particularly when used in non-inertial pointing applications. Two filtering methods are proposed to reduce the attitude estimation error resulting from ST systematic errors, 1) extended Kalman filter (EKF) augmented with Markov states, 2) Unscented Kalman filter (UKF) with a periodic measurement model. Realistic assessments of the attitude estimation performance gains are demonstrated with both simulation and flight telemetry data from the Lunar Reconnaissance Orbiter.
NASA Technical Reports Server (NTRS)
Challa, M.; Natanson, G.
1998-01-01
Two different algorithms - a deterministic magnetic-field-only algorithm and a Kalman filter for gyroless spacecraft - are used to estimate the attitude and rates of the Rossi X-Ray Timing Explorer (RXTE) using only measurements from a three-axis magnetometer. The performance of these algorithms is examined using in-flight data from various scenarios. In particular, significant enhancements in accuracies are observed when' the telemetered magnetometer data are accurately calibrated using a recently developed calibration algorithm. Interesting features observed in these studies of the inertial-pointing RXTE include a remarkable sensitivity of the filter to the numerical values of the noise parameters and relatively long convergence time spans. By analogy, the accuracy of the deterministic scheme is noticeably lower as a result of reduced rates of change of the body-fixed geomagnetic field. Preliminary results show the filter-per-axis attitude accuracies ranging between 0.1 and 0.5 deg and rate accuracies between 0.001 deg/sec and 0.005 deg./sec, whereas the deterministic method needs a more sophisticated techniques for smoothing time derivatives of the measured geomagnetic field to clearly distinguish both attitude and rate solutions from the numerical noise. Also included is a new theoretical development in the deterministic algorithm: the transformation of a transcendental equation in the original theory into an 8th-order polynomial equation. It is shown that this 8th-order polynomial reduces to quadratic equations in the two limiting cases-infinitely high wheel momentum, and constant rates-discussed in previous publications.
Center of Mass Estimation for a Spinning Spacecraft Using Doppler Shift of the GPS Carrier Frequency
NASA Technical Reports Server (NTRS)
Sedlak, Joseph E.
2016-01-01
A sequential filter is presented for estimating the center of mass (CM) of a spinning spacecraft using Doppler shift data from a set of onboard Global Positioning System (GPS) receivers. The advantage of the proposed method is that it is passive and can be run continuously in the background without using commanded thruster firings to excite spacecraft dynamical motion for observability. The NASA Magnetospheric Multiscale (MMS) mission is used as a test case for the CM estimator. The four MMS spacecraft carry star cameras for accurate attitude and spin rate estimation. The angle between the spacecraft nominal spin axis (for MMS this is the geometric body Z-axis) and the major principal axis of inertia is called the coning angle. The transverse components of the estimated rate provide a direct measure of the coning angle. The coning angle has been seen to shift slightly after every orbit and attitude maneuver. This change is attributed to a small asymmetry in the fuel distribution that changes with each burn. This paper shows a correlation between the apparent mass asymmetry deduced from the variations in the coning angle and the CM estimates made using the GPS Doppler data. The consistency between the changes in the coning angle and the CM provides validation of the proposed GPS Doppler method for estimation of the CM on spinning spacecraft.
Time Frequency Analysis of Spacecraft Propellant Tank Spinning Slosh
NASA Technical Reports Server (NTRS)
Green, Steven T.; Burkey, Russell C.; Sudermann, James
2010-01-01
Many spacecraft are designed to spin about an axis along the flight path as a means of stabilizing the attitude of the spacecraft via gyroscopic stiffness. Because of the assembly requirements of the spacecraft and the launch vehicle, these spacecraft often spin about an axis corresponding to a minor moment of inertia. In such a case, any perturbation of the spin axis will cause sloshing motions in the liquid propellant tanks that will eventually dissipate enough kinetic energy to cause the spin axis nutation (wobble) to grow further. This spinning slosh and resultant nutation growth is a primary design problem of spinning spacecraft and one that is not easily solved by analysis or simulation only. Testing remains the surest way to address spacecraft nutation growth. This paper describes a test method and data analysis technique that reveal the resonant frequency and damping behavior of liquid motions in a spinning tank. Slosh resonant frequency and damping characteristics are necessary inputs to any accurate numerical dynamic simulation of the spacecraft.
1945-04-01
order to expedite general distribution. L- 572 NATI<’NAL· ADVISC’F! COWITTBE !iPR AEFONATUICS MEMORAJ- 1 ’J)tJ)J REPORT ··for the· ,- I...coefficient(~ . qa;:J J1R No •. L5Dl2a - 3 - whE:’re N I . rol"l.1ng-mttment coeff1p1~nt of. co~r>lete wing( L ’ . qS 1b 1 l yawing-mQment coeffioi~t o...aileron moment about the aileron hinge· axis, positive when 1 t tends· to de"press the aileron trailing odgo ( ft-lb) left elevator mOm.ent ab"out
NASA Technical Reports Server (NTRS)
Pastor, P. Rick; Bishop, Robert H.; Striepe, Scott A.
2000-01-01
A first order simulation analysis of the navigation accuracy expected from various Navigation Quick-Look data sets is performed. Here quick-look navigation data are observations obtained by hypothetical telemetried data transmitted on the fly during a Mars probe's atmospheric entry. In this simulation study, navigation data consists of 3-axis accelerometer sensor and attitude information data. Three entry vehicle guidance types are studied: I. a Maneuvering entry vehicle (as with Mars 01 guidance where angle of attack and bank angle are controlled); II. Zero angle-of-attack controlled entry vehicle (as with Mars 98); and III. Ballistic, or spin stabilized entry vehicle (as with Mars Pathfinder);. For each type, sensitivity to progressively under sampled navigation data and inclusion of sensor errors are characterized. Attempts to mitigate the reconstructed trajectory errors, including smoothing, interpolation and changing integrator characteristics are also studied.
Flight Dynamics Aspects of a Large Civil Tiltrotor Simulation Using Translational Rate Command
NASA Technical Reports Server (NTRS)
Lawrence, Ben; Malpica, Carlos A.; Theodore, Colin R.; Decker, William A.; Lindsey, James E.
2011-01-01
An in-depth analysis of a Large Civil Tiltrotor simulation with a Translational Rate Command control law that uses automatic nacelle deflections for longitudinal velocity control and lateral cyclic for lateral velocity control is presented. Results from piloted real-time simulation experiments and offline time and frequency domain analyses are used to investigate the fundamental flight dynamic and control mechanisms of the control law. The baseline Translational Rate Command conferred handling qualities improvements over an attitude command attitude hold control law but in some scenarios there was a tendency to enter PIO. Nacelle actuator rate limiting strongly influenced the PIO tendency and reducing the rate limits degraded the handling qualities further. Counterintuitively, increasing rate limits also led to a worsening of the handling qualities ratings. This led to the identification of a nacelle rate to rotor longitudinal flapping coupling effect that induced undesired pitching motions proportional to the allowable amount of nacelle rate. A modification that applied a counteracting amount of longitudinal cyclic proportional to the nacelle rate significantly improved the handling qualities. The lateral axis of the Translational Rate Command conferred Level 1 handling qualities in a Lateral Reposition maneuver. Analysis of the influence of the modeling fidelity on the lateral flapping angles is presented. It is showed that the linear modeling approximation is likely to have under-predicted the side-force and therefore under-predicted the lateral flapping at velocities above 15 ft/s. However, at lower velocities, and therefore more weakly influenced by the side force modeling, the accelerations that the control law commands also significantly influenced the peak levels of lateral flapping achieved.
NASA Technical Reports Server (NTRS)
Fairbank, W. M.; Everitt, C. W. F.; Debra, D. B.
1977-01-01
A satellite configuration having two gyroscopes with axes parallel to the boresight of a telescope and two at right angles to the telescope and approximately parallel and perpendicular to the earth's axis is proposed for measuring geodetic precessions due to the earth's motion about the sun, higher order geodetic terms calculated from the earth's quadrapole mass moment (0.010 arc-sec/year in a 400 nautical mile polar orbit), and deflection by the sun of the starlight signal for the reference telescope. Data from the experiment also contain large periodic signals due to the annual and orbital aberrations of starlight which are useful in providing a built in reference signal of known amplitude for scaling the relativity signals, and should yield a singularly precise measurement of the parallax of the reference star. The development of the gyroscope and its readout system are discussed, as well as signal integration, drag-free control, and attitude control.
Space Station on-orbit solar array loads during assembly
NASA Astrophysics Data System (ADS)
Ghofranian, S.; Fujii, E.; Larson, C. R.
This paper is concerned with the closed-loop dynamic analysis of on-orbit maneuvers when the Space Shuttle is fully mated to the Space Station Freedom. A flexible model of the Space Station in the form of component modes is attached to a rigid orbiter and on-orbit maneuvers are performed using the Shuttle Primary Reaction Control System jets. The traditional approach for this type of problems is to perform an open-loop analysis to determine the attitude control system jet profiles based on rigid vehicles and apply the resulting profile to a flexible Space Station. In this study a closed-loop Structure/Control model was developed in the Dynamic Analysis and Design System (DADS) program and the solar array loads were determined for single axis maneuvers with various delay times between jet firings. It is shown that the Digital Auto Pilot jet selection is affected by Space Station flexibility. It is also shown that for obtaining solar array loads the effect of high frequency modes cannot be ignored.
The COLD-SAT Experiment for Cryogenic Fluid Management Technology
NASA Technical Reports Server (NTRS)
Schuster, J. R.; Wachter, J. P.; Vento, D. M.
1990-01-01
Future national space transportation missions will depend on the use of cryogenic fluid management technology development needs for these missions. In-space testing will be conducted in order to show low gravity cryogenic fluid management concepts and to acquire a technical data base. Liquid H2 is the preferred test fluid due to its propellant use. The design of COLD-SAT (Cryogenic On-orbit Liquid Depot Storage, Acquisition, and Transfer Satellite), an Expendable Launch Vehicle (ELV) launched orbital spacecraft that will perform subcritical liquid H2 storage and transfer experiments under low gravity conditions is studied. An Atlas launch vehicle will place COLD-SAT into a circular orbit, and the 3-axis controlled spacecraft bus will provide electric power, experiment control, and data management, attitude control, and propulsive accelerations for the experiments. Low levels of acceleration will provide data on the effects that low gravity might have on the heat and mass transfer processes used. The experiment module will contain 3 liquid H2 tanks; fluid transfer, pressurization and venting equipment; and instrumentation.
NASA Technical Reports Server (NTRS)
Corliss, L. D.; Talbot, P. D.
1977-01-01
A two-pilot moving base simulator experiment was conducted to assess the effects of servo failures of a flight control system on the transient dynamics of a Bell UH-1H helicopter. The flight control hardware considered was part of the V/STOLAND system built with control authorities of from 20-40%. Servo hardover and oscillatory failures were simulated in each control axis. Measurements were made to determine the adequacy of the failure monitoring system time delay and the servo center and lock time constant, the pilot reaction times, and the altitude and attitude excursions of the helicopter at hover and 60 knots. Safe recoveries were made from all failures under VFR conditions. Pilot reaction times were from 0.5 to 0.75 sec. Reduction of monitor delay times below these values resulted in significantly reduced excursion envelopes. A subsequent flight test was conducted on a UH-1H helicopter with the V/STOLAND system installed. Series servo hardovers were introduced in hover and at 60 knots straight and level. Data from these tests are included for comparison.
A design of optical measurement laboratory for space-based illumination condition emulation
NASA Astrophysics Data System (ADS)
Xu, Rong; Zhao, Fei; Yang, Xin
2015-10-01
Space Objects Identification(SOI) and related technology have aroused wide attention from spacefaring nations due to the increasingly severe space environment. Multiple ground-based assets have been employed to acquire statistical survey data, detect faint debris, acquire photometric and spectroscopic data. Great efforts have been made to characterize different space objects using the statistical data acquired by telescopes. Furthermore, detailed laboratory data are needed to optimize the characterization of orbital debris and satellites via material composition and potential rotation axes, which calls for a high-precision and flexible optical measurement system. A typical method of taking optical measurements of a space object(or model) is to move light source and sensors through every possible orientation around it and keep the target still. However, moving equipments to accurate orientations in the air is difficult, especially for those large precise instruments sensitive to vibrations. Here, a rotation structure of "3+1" axes, with a three-axis turntable manipulating attitudes of the target and the sensor revolving around a single axis, is utilized to emulate every possible illumination condition in space, which can also avoid the inconvenience of moving large aparatus. Firstly, the source-target-sensor orientation of a real satellite was analyzed with vectors and coordinate systems built to illustrate their spatial relationship. By bending the Reference Coordinate Frame to the Phase Angle plane, the sensor only need to revolve around a single axis while the other three degrees of freedom(DOF) are associated with the Euler's angles of the satellite. Then according to practical engineering requirements, an integrated rotation system of four-axis structure is brought forward. Schemetic diagrams of the three-axis turntable and other equipments show an overview of the future laboratory layout. Finally, proposals on evironment arrangements, light source precautions and sensor selections are provided. Comparing to current methods, this design shows better effects on device simplication, automatic control and high-precision measurement.
Strapdown system performance optimization test evaluations (SPOT), volume 1
NASA Technical Reports Server (NTRS)
Blaha, R. J.; Gilmore, J. P.
1973-01-01
A three axis inertial system was packaged in an Apollo gimbal fixture for fine grain evaluation of strapdown system performance in dynamic environments. These evaluations have provided information to assess the effectiveness of real-time compensation techniques and to study system performance tradeoffs to factors such as quantization and iteration rate. The strapdown performance and tradeoff studies conducted include: (1) Compensation models and techniques for the inertial instrument first-order error terms were developed and compensation effectivity was demonstrated in four basic environments; single and multi-axis slew, and single and multi-axis oscillatory. (2) The theoretical coning bandwidth for the first-order quaternion algorithm expansion was verified. (3) Gyro loop quantization was identified to affect proportionally the system attitude uncertainty. (4) Land navigation evaluations identified the requirement for accurate initialization alignment in order to pursue fine grain navigation evaluations.
Landsat thematic mapper attitude data processing
NASA Technical Reports Server (NTRS)
Sehn, G. J.; Miller, S. F.
1984-01-01
The Landsat 4 and 5 satellites carry a new, high resolution, seven band thematic mapper imaging instrument. The spacecraft also carry two types of attitude sensors: a gyroscopic internal reference unit (IRU) which senses angular rate from dc to about 2 Hz, and an AC-coupled angular displacement sensor (ADS) measuring angular deviation above 2 Hz. A description of the derivation of the crossover network used to combine and equalize the IRU and ADS data is made. Also described are the digital data processing algorithms which produce the time history of the satellites' attitude motion including the finite impulse response (FIR) implementation of G and F filters; the resampling (interpolation/decimation) and synchronization of the IRU and ADS data; and the axis rotations required as a result of the on-board sensor locations on three orthogonal axes.
Attitude sensor alignment calibration for the solar maximum mission
NASA Technical Reports Server (NTRS)
Pitone, Daniel S.; Shuster, Malcolm D.
1990-01-01
An earlier heuristic study of the fine attitude sensors for the Solar Maximum Mission (SMM) revealed a temperature dependence of the alignment about the yaw axis of the pair of fixed-head star trackers relative to the fine pointing Sun sensor. Here, new sensor alignment algorithms which better quantify the dependence of the alignments on the temperature are developed and applied to the SMM data. Comparison with the results from the previous study reveals the limitations of the heuristic approach. In addition, some of the basic assumptions made in the prelaunch analysis of the alignments of the SMM are examined. The results of this work have important consequences for future missions with stringent attitude requirements and where misalignment variations due to variations in the temperature will be significant.
Spacecraft attitude determination accuracy from mission experience
NASA Technical Reports Server (NTRS)
Brasoveanu, D.; Hashmall, J.
1994-01-01
This paper summarizes a compilation of attitude determination accuracies attained by a number of satellites supported by the Goddard Space Flight Center Flight Dynamics Facility. The compilation is designed to assist future mission planners in choosing and placing attitude hardware and selecting the attitude determination algorithms needed to achieve given accuracy requirements. The major goal of the compilation is to indicate realistic accuracies achievable using a given sensor complement based on mission experience. It is expected that the use of actual spacecraft experience will make the study especially useful for mission design. A general description of factors influencing spacecraft attitude accuracy is presented. These factors include determination algorithms, inertial reference unit characteristics, and error sources that can affect measurement accuracy. Possible techniques for mitigating errors are also included. Brief mission descriptions are presented with the attitude accuracies attained, grouped by the sensor pairs used in attitude determination. The accuracies for inactive missions represent a compendium of missions report results, and those for active missions represent measurements of attitude residuals. Both three-axis and spin stabilized missions are included. Special emphasis is given to high-accuracy sensor pairs, such as two fixed-head star trackers (FHST's) and fine Sun sensor plus FHST. Brief descriptions of sensor design and mode of operation are included. Also included are brief mission descriptions and plots summarizing the attitude accuracy attained using various sensor complements.
Kinematic properties of the helicopter in coordinated turns
NASA Technical Reports Server (NTRS)
Chen, R. T. N.; Jeske, J. A.
1981-01-01
A study on the kinematic relationship of the variables of helicopter motion in steady, coordinated turns involving inherent sideslip is described. A set of exact kinematic equations which govern a steady coordinated helical turn about an Earth referenced vertical axis is developed. A precise definition for the load factor parameter that best characterizes a coordinated turn is proposed. Formulas are developed which relate the aircraft angular rates and pitch and roll attitudes to the turn parameters, angle of attack, and inherent sideslip. A steep, coordinated helical turn at extreme angles of attack with inherent sideslip is of primary interest. The bank angle of the aircraft can differ markedly from the tilt angle of the normal load factor. The normal load factor can also differ substantially from the accelerometer reading along the vertical body axis of the aircraft. Sideslip has a strong influence on the pitch attitude and roll rate of the helicopter. Pitch rate is independent of angle of attack in a coordinated turn and in the absence of sideslip, angular rates about the stability axes are independent of the aerodynamic characteristics of the aircraft.
A 1 cm space debris impact onto the Sentinel-1A solar array
NASA Astrophysics Data System (ADS)
Krag, H.; Serrano, M.; Braun, V.; Kuchynka, P.; Catania, M.; Siminski, J.; Schimmerohn, M.; Marc, X.; Kuijper, D.; Shurmer, I.; O'Connell, A.; Otten, M.; Muñoz, Isidro; Morales, J.; Wermuth, M.; McKissock, D.
2017-08-01
Sentinel-1A is a 2-ton spacecraft of the Copernicus Earth observation program operated by ESA's Space Operations Centre in Darmstadt, Germany. Sentinel-1A and its sister spacecraft Sentinel-1B operate in a sun-synchronous orbit at about 700 km altitude. On 2016/08/23 17:07:37 UTC, Sentinel-1A suffered from an anomaly resulting in a sudden permanent partial power loss and significant impulsive orbit and attitude changes. A deeper investigation identified that an impulsive orbit change against flight direction of 0.7 mm/s, estimated at the time of the event, gave the best results in terms of GPS residuals. At the same time, a peak attitude off-pointing of 0.7° (around the spacecraft yaw axis) and peak attitude rate increase of 0.04°/s (around the same axis) were observed. The simultaneous occurrence of these anomalies, starting from a sudden attitude change and ending with a permanent partial power loss, made an MMOD (Micro-Meteoroid and Orbital Debris) impact onto a solar array a possible explanation for this event. While the spacecraft is able to continue its mission nominally, a detailed investigation involving ESA's Space Debris and Flight Dynamics experts was conducted. An MMOD impact as an explanation gained further credibility, due to the pictures of the solar array taken by the on-board camera displaying a significant damage area. On September 7th, JSpOC (US Joint Space Operations Centre) informed SDO on 8 tracked fragments that are considered to be released by Sentinel-1A after the impact. This paper addresses the analysis that was performed on the data characterising the attitude and orbit change, the on-board camera image, and the tracked fragments. The data helped to identify the linear momentum vector while a flux analysis helped to identify the origin of the impactor and allowed to understand its mass and size characteristics.
Method for spinning up a three-axis controlled spacecraft
NASA Technical Reports Server (NTRS)
Vorlicek, Preston L. (Inventor)
1988-01-01
A three-axis controlled spacecraft (1), typically a satellite, is spun up about its roll axis (20) prior to firing a motor (2), i.e., a perigee kick motor, to achieve the requisite degree of angular momentum stiffness. Thrusters (21) for imparting rotation about the roll axis (20) are activated in open-loop fashion, typically at less than full duty cycle. Cross-axis torques induced by this rotational motion are compensated for by means of closed control loops for each of the pitch and yaw axes (30, 40, respectively). Each closed control loop combines a prebias torque (72) with torques (75, 74) representative of position and rate feedback information, respectively. A deadband (52) within each closed control loop can be widened during the spinup, to conserve fuel. Position feedback information (75) in each of the control loops is disabled upon saturation of the gyroscope associated with the roll axis (20).
Analytic Theory and Control of the Motion of Spinning Rigid Bodies
NASA Technical Reports Server (NTRS)
Tsiotras, Panagiotis
1993-01-01
Numerical simulations are often resorted to, in order to understand the attitude response and control characteristics of a rigid body. However, this approach in performing sensitivity and/or error analyses may be prohibitively expensive and time consuming, especially when a large number of problem parameters are involved. Thus, there is an important role for analytical models in obtaining an understanding of the complex dynamical behavior. In this dissertation, new analytic solutions are derived for the complete attitude motion of spinning rigid bodies, under minimal assumptions. Hence, we obtain the most general solutions reported in the literature so far. Specifically, large external torques and large asymmetries are included in the problem statement. Moreover, problems involving large angular excursions are treated in detail. A new tractable formulation of the kinematics is introduced which proves to be extremely helpful in the search for analytic solutions of the attitude history of such kinds of problems. The main utility of the new formulation becomes apparent however, when searching for feedback control laws for stabilization and/or reorientation of spinning spacecraft. This is an inherently nonlinear problem, where standard linear control techniques fail. We derive a class of control laws for spin axis stabilization of symmetric spacecraft using only two pairs of gas jet actuators. Practically, this could correspond to a spacecraft operating in failure mode, for example. Theoretically, it is also an important control problem which, because of its difficulty, has received little, if any, attention in the literature. The proposed control laws are especially simple and elegant. A feedback control law that achieves arbitrary reorientation of the spacecraft is also derived, using ideas from invariant manifold theory. The significance of this research is twofold. First, it provides a deeper understanding of the fundamental behavior of rigid bodies subject to body-fixed torques. Assessment of the analytic solutions reveals that they are very accurate; for symmetric bodies the solutions of Euler's equations of motion are, in fact, exact. Second, the results of this research have a fundamental impact on practical scientific and mechanical applications in terms of the analysis and control of all finite-sized rigid bodies ranging from nanomachines to very large bodies, both man made and natural. After all, Euler's equations of motion apply to all physical bodies, barring only the extreme limits of quantum mechanics and relativity.
Magnetospheric Multiscale Mission Attitude Dynamics: Observations from Flight Data
NASA Technical Reports Server (NTRS)
Williams, Trevor; Shulman, Seth; Sedlak, Joseph; Ottenstein, Neil; Lounsbury, Brian
2016-01-01
Extensive flight data is being collected throughout the MMS mission that includes quantities that are of interest for attitude dynamics studies such as spin rate, spin axis orientation nutation rate, etc. One example of such data is the long-term evolution of the spin rates of the four spacecraft. Spikes in these rates are observed that are separated by the MMS orbital period (just under 24 hr) and occur around perigee due to gravity-gradient torque. Periodic discontinuities in spin rate are caused by the controller resetting the spin rate approximately to the nominal 3.1 RPM value at the time of each maneuver. In between, a slow decay in spin rate can be seen to occur. The paper will discuss various disturbance torque mechanisms that could potentially be responsible for this behavior: these include magnetic hysteresis, eddy currents, solar radiation pressure, and a possible interaction between gravity-gradient and wire boom flexibility effects. One additional disturbance mechanism is produced by the Active Spacecraft Potential Control (ASPOC) devices: these emit positive indium ions to keep the MMS spacecraft electrically neutral, so as not to corrupt the electric field observations that are made by some of the on-board instruments. The spin rate decays that could be produced by these various mechanisms will be quantified in the paper, and their signatures described. Comparing these with the observations from flight data then allow the most likely candidate to be determined.
An enhanced inertial navigation system based on a low-cost IMU and laser scanner
NASA Astrophysics Data System (ADS)
Kim, Hyung-Soon; Baeg, Seung-Ho; Yang, Kwang-Woong; Cho, Kuk; Park, Sangdeok
2012-06-01
This paper describes an enhanced fusion method for an Inertial Navigation System (INS) based on a 3-axis accelerometer sensor, a 3-axis gyroscope sensor and a laser scanner. In GPS-denied environments, indoor or dense forests, a pure INS odometry is available for estimating the trajectory of a human or robot. However it has a critical implementation problem: a drift error of velocity, position and heading angles. Commonly the problem can be solved by fusing visual landmarks, a magnetometer or radio beacons. These methods are not robust in diverse environments: darkness, fog or sunlight, an unstable magnetic field and an environmental obstacle. We propose to overcome the drift problem using an Iterative Closest Point (ICP) scan matching algorithm with a laser scanner. This system consists of three parts. The first is the INS. It estimates attitude, velocity, position based on a 6-axis Inertial Measurement Unit (IMU) with both 'Heuristic Reduction of Gyro Drift' (HRGD) and 'Heuristic Reduction of Velocity Drift' (HRVD) methods. A frame-to-frame ICP matching algorithm for estimating position and attitude by laser scan data is the second. The third is an extended kalman filter method for multi-sensor data fusing: INS and Laser Range Finder (LRF). The proposed method is simple and robust in diverse environments, so we could reduce the drift error efficiently. We confirm the result comparing an odometry of the experimental result with ICP and LRF aided-INS in a long corridor.
Noise screen for attitude control system
NASA Technical Reports Server (NTRS)
Rodden, John J. (Inventor); Stevens, Homer D. (Inventor); Hong, David P. (Inventor); Hirschberg, Philip C. (Inventor)
2002-01-01
An attitude control system comprising a controller and a noise screen device coupled to the controller. The controller is adapted to control an attitude of a vehicle carrying an actuator system that is adapted to pulse in metered bursts in order to generate a control torque to control the attitude of the vehicle in response to a control pulse. The noise screen device is adapted to generate a noise screen signal in response to the control pulse that is generated when an input attitude error signal exceeds a predetermined deadband attitude level. The noise screen signal comprises a decaying offset signal that when combined with the attitude error input signal results in a net attitude error input signal away from the predetermined deadband level to reduce further control pulse generation.
Development and Psychometric Validation of the Dementia Attitudes Scale
O'Connor, Melissa L.; McFadden, Susan H.
2010-01-01
This study employed qualitative construct mapping and factor analysis to construct a scale to measure attitudes toward dementia. Five family caregivers, five professionals, and five college students participated in structured interviews. Qualitative analysis of the interviews led to a 46-item scale, which was reduced to 20 items following principal axis factoring with two different samples: college students (N = 302) and certified nursing assistant students (N = 145). Confirmatory factor analysis was then conducted with another sample of college students (N = 157). The final scale, titled the Dementia Attitudes Scale (DAS), essentially had a two-factor structure; the factors were labeled “dementia knowledge” and “social comfort.” Total-scale Cronbach's alphas ranged 0.83–0.85. Evidence for convergent validity was promising, as the DAS correlated significantly with scales that measured ageism and attitudes toward disabilities (range of correlations = 0.44–0.55; mean correlation = 0.50). These findings demonstrate the reliability and validity of the DAS, supporting its use as a research tool.
A Fixed-Base-Simulator Study of the Ability of a Pilot to Establish Close Orbits Around the Moon
NASA Technical Reports Server (NTRS)
Queijo, M. J.; Riley, Donald R.
1961-01-01
A study was made on a six-degree-of-freedom fixed-base simulator of the ability of human pilots to modify ballistic trajectories of a 5 space vehicle approaching the moon to establish a circular orbit about 50 miles above the lunar surface. The unmodified ballistic trajectories had miss distances from the lunar surface of from 40 to 80 miles, and a velocity range of from 8,200 to 8,700 feet per second at closest approach. The pilot was given control of the thrust (along the vehicle longitudinal axis) and torques about all three body axes. The information display given to the pilot was a hodograph of the vehicle rate of descent and circumferential velocity, an altimeter, and vehicle attitude and rate meters.
Design, Fabrication, and Modeling of a Novel Dual-Axis Control Input PZT Gyroscope.
Chang, Cheng-Yang; Chen, Tsung-Lin
2017-10-31
Conventional gyroscopes are equipped with a single-axis control input, limiting their performance. Although researchers have proposed control algorithms with dual-axis control inputs to improve gyroscope performance, most have verified the control algorithms through numerical simulations because they lacked practical devices with dual-axis control inputs. The aim of this study was to design a piezoelectric gyroscope equipped with a dual-axis control input so that researchers may experimentally verify those control algorithms in future. Designing a piezoelectric gyroscope with a dual-axis control input is more difficult than designing a conventional gyroscope because the control input must be effective over a broad frequency range to compensate for imperfections, and the multiple mode shapes in flexural deformations complicate the relation between flexural deformation and the proof mass position. This study solved these problems by using a lead zirconate titanate (PZT) material, introducing additional electrodes for shielding, developing an optimal electrode pattern, and performing calibrations of undesired couplings. The results indicated that the fabricated device could be operated at 5.5±1 kHz to perform dual-axis actuations and position measurements. The calibration of the fabricated device was completed by system identifications of a new dynamic model including gyroscopic motions, electromechanical coupling, mechanical coupling, electrostatic coupling, and capacitive output impedance. Finally, without the assistance of control algorithms, the "open loop sensitivity" of the fabricated gyroscope was 1.82 μV/deg/s with a nonlinearity of 9.5% full-scale output. This sensitivity is comparable with those of other PZT gyroscopes with single-axis control inputs.
NASA Technical Reports Server (NTRS)
Hashmall, J.; Davis, W.; Harman, R.
1993-01-01
The science mission of the Extreme Ultraviolet Explorer (EUVE) requires attitude solutions with uncertainties of 27, 16.7, 16.7 arcseconds (3 sigma) around the roll, pitch, and yaw axes, respectively. The primary input to the attitude determination process is provided by two NASA standard fixed-head star trackers (FHSTs) and a Teledyne dry rotor inertial reference unit (DRIRU) 2. The attitude determination requirements approach the limits attainable with the FHSTs and DRIRU. The Flight Dynamics Facility (FDF) at Goddard Space Flight Center (GSFC) designed and executed calibration procedures that far exceeded the extent and the data volume of any other FDF-supported mission. The techniques and results of this attempt to obtain attitude accuracies at the limit of sensor capability and the results of analysis of the factors that limit the attitude accuracy are the primary subjects of this paper. The success of the calibration effort is judged by the resulting measurement residuals and comparisons between ground- and onboard-determined attitudes. The FHST star position residuals have been reduced to less tha 4 arcsec per axis -- a value that appears to be limited by the sensor capabilities. The FDF ground system uses a batch least-squares estimator to determine attitude. The EUVE onboard computer (OBC) uses an extended Kalman filter. Currently, there are systematic differences between the two attitude solutions that occasionally exceed the mission requirements for 3 sigma attitude uncertainty. Attempts to understand and reduce these differences are continuing.
ERIC Educational Resources Information Center
Palinkas, Lawrence A.; Garcia, Antonio; Aarons, Gregory; Finno-Velasquez, Megan; Fuentes, Dahlia; Holloway, Ian; Chamberlain, Patricia
2018-01-01
The Cultural Exchange Inventory (CEI) is a 15-item instrument designed to measure the process (7 items) and outcomes (8 items) of exchanges of knowledge, attitudes and practices between members of different organisations collaborating in implementing evidence-based practice. We conducted principal axis factor analyses and parallel analyses of data…
Phase Correction for GPS Antenna with Nonunique Phase Center
NASA Technical Reports Server (NTRS)
Fink, Patrick W.; Dobbins, Justin
2005-01-01
A method of determining the position and attitude of a body equipped with a Global Positioning System (GPS) receiver includes an accounting for the location of the nonunique phase center of a distributed or wraparound GPS antenna. The method applies, more specifically, to the case in which (1) the GPS receiver utilizes measurements of the phases of GPS carrier signals in its position and attitude computations and (2) the body is axisymmetric (e.g., spherical or round cylindrical) and wrapped at its equator with a single- or multiple-element antenna, the radiation pattern of which is also axisymmetric with the same axis of symmetry as that of the body.
Enhanced Attitude Control Experiment for SSTI Lewis Spacecraft
NASA Technical Reports Server (NTRS)
Maghami, Peoman G.
1997-01-01
The enhanced attitude control system experiment is a technology demonstration experiment on the NASA's small spacecraft technology initiative program's Lewis spacecraft to evaluate advanced attitude control strategies. The purpose of the enhanced attitude control system experiment is to evaluate the feasibility of designing and implementing robust multi-input/multi-output attitude control strategies for enhanced pointing performance of spacecraft to improve the quality of the measurements of the science instruments. Different control design strategies based on modern and robust control theories are being considered for the enhanced attitude control system experiment. This paper describes the experiment as well as the design and synthesis of a mixed H(sub 2)/H(sub infinity) controller for attitude control. The control synthesis uses a nonlinear programming technique to tune the controller parameters and impose robustness and performance constraints. Simulations are carried out to demonstrate the feasibility of the proposed attitude control design strategy. Introduction
NASA Technical Reports Server (NTRS)
Lewis, Carl E. (Inventor); Carlton, Lindley A. (Inventor); Saeks, Richard E. (Inventor)
2004-01-01
A control surface for an air vehicle (e.g., an aircraft, rocket, or missile) is useful for flight control at both subsonic and supersonic speeds. The control surface defines the outboardmost tip of a flight structure (e.g., a wing, tail or other stabilizer) of the air vehicle. Hence, the control surface is referred to as a `tiperon`. The tiperon has an approximately L-shaped configuration, and can be rotated relative to a fixed portion of the flight structure about a control axis. The respective surface areas of the tiperon sections forward and aft of the control axis are proportioned to place the subsonic center of pressure aft of the control axis to enhance aircraft control, and preferably also forward of the centroid of tiperon surface area. Also, the control surface sections forward and aft of the control axis are preferably mass-balanced, or at least nearly so, to enhance aircraft control at supersonic speeds. Either of the tiperon sections forward and aft of the control axis can be tapered to reduce the dependence of the moment exerted by air flow about the control axis, upon the tiperon's angle-of-attack. The tiperon also has enough surface area to control the air vehicle, even at low airspeeds. The invention is also directed to air vehicles incorporating one or more such control surfaces.
Walby, Fredrik A; Odegaard, Erik; Mehlum, Lars
2006-06-01
To investigate the differential impact of DSM-IV axis-I and axis-II disorders on completed suicide and to study if psychiatric comorbidity increases the risk of suicide in currently and previously hospitalized psychiatric patients. A nested case-control design based on case notes from 136 suicides and 166 matched controls. All cases and controls were rediagnosed using the SCID-CV for axis-I and the DSM-IV criteria for axis-II disorders and the inter-rater reliability was satisfactory. Raters were blind to the case and control status and the original hospital diagnoses. Depressive disorders and bipolar disorders were associated with an increased risk of suicide. No such effect was found for comorbidity between axis-I disorders and for comorbidity between axis-I and axis-II disorders. Psychiatric diagnoses, although made using a structured and criteria-based approach, was based on information recorded in case notes. Axis-II comorbidity could only be investigated at an aggregated level. Psychiatric comorbidity did not predict suicide in this sample. Mood disorders did, however, increase the risk significantly independent of history of previous suicide attempts. Both findings can inform identification and treatment of patients at high risk for completed suicide.
ISS Contingency Attitude Control Recovery Method for Loss of Automatic Thruster Control
NASA Technical Reports Server (NTRS)
Bedrossian, Nazareth; Bhatt, Sagar; Alaniz, Abran; McCants, Edward; Nguyen, Louis; Chamitoff, Greg
2008-01-01
In this paper, the attitude control issues associated with International Space Station (ISS) loss of automatic thruster control capability are discussed and methods for attitude control recovery are presented. This scenario was experienced recently during Shuttle mission STS-117 and ISS Stage 13A in June 2007 when the Russian GN&C computers, which command the ISS thrusters, failed. Without automatic propulsive attitude control, the ISS would not be able to regain attitude control after the Orbiter undocked. The core issues associated with recovering long-term attitude control using CMGs are described as well as the systems engineering analysis to identify recovery options. It is shown that the recovery method can be separated into a procedure for rate damping to a safe harbor gravity gradient stable orientation and a capability to maneuver the vehicle to the necessary initial conditions for long term attitude hold. A manual control option using Soyuz and Progress vehicle thrusters is investigated for rate damping and maneuvers. The issues with implementing such an option are presented and the key issue of closed-loop stability is addressed. A new non-propulsive alternative to thruster control, Zero Propellant Maneuver (ZPM) attitude control method is introduced and its rate damping and maneuver performance evaluated. It is shown that ZPM can meet the tight attitude and rate error tolerances needed for long term attitude control. A combination of manual thruster rate damping to a safe harbor attitude followed by a ZPM to Stage long term attitude control orientation was selected by the Anomaly Resolution Team as the alternate attitude control method for such a contingency.
Inflight alignment of payload inertial reference from Shuttle navigation system
NASA Astrophysics Data System (ADS)
Treder, A. J.; Norris, R. E.; Ruprecht, R.
Two methods for payload attitude initialization from the STS Orbiter have been proposed: body axis maneuvers (BAM) and star line maneuvers (SLM). The first achieves alignment directly through the Shuttle star tracker, while the second, indirectly through the stellar-updated Shuttle inertial platform. The Inertial Upper Stage (IUS) with its strapdown navigation system is used to demonstrate in-flight alignment techniques. Significant accuracy can be obtained with minimal impact on Orbiter operations, with payload inertial reference potentially approaching the accuracy of the Shuttle star tracker. STS-6 flight performance parameters, including alignment stability, are discussed and compared with operational complexity. Results indicate overall alignment stability of .06 deg, 3 sigma per axis.
Predicted torque equilibrium attitude utilization for Space Station attitude control
NASA Technical Reports Server (NTRS)
Kumar, Renjith R.; Heck, Michael L.; Robertson, Brent P.
1990-01-01
An approximate knowledge of the torque equilibrium attitude (TEA) is shown to improve the performance of a control moment gyroscope (CMG) momentum management/attitude control law for Space Station Freedom. The linearized equations of motion are used in conjunction with a state transformation to obtain a control law which uses full state feedback and the predicted TEA to minimize both attitude excursions and CMG peak and secular momentum. The TEA can be computationally determined either by observing the steady state attitude of a 'controlled' spacecraft using arbitrary initial attitude, or by simulating a fixed attitude spacecraft flying in desired orbit subject to realistic environmental disturbance models.
A multimission three-axis stabilized spacecraft flight dynamics ground support system
NASA Technical Reports Server (NTRS)
Langston, J.; Krack, K.; Reupke, W.
1993-01-01
The Multimission Three-Axis Stabilized Spacecraft (MTASS) Flight Dynamics Support System (FDSS) has been developed in an effort to minimize the costs of ground support systems. Unlike single-purpose ground support systems, which attempt to reduce costs by reusing software specifically developed for previous missions, the multimission support system is an intermediate step in the progression to a fully generalized mission support system in which numerous missions may be served by one general system. The benefits of multimission attitude ground support systems extend not only to the software design and coding process, but to the entire system environment, from specification through testing, simulation, operations, and maintenance. This paper reports the application of an MTASS FDSS to multiple scientific satellite missions. The satellites are the Upper Atmosphere Research Satellite (UARS), the Extreme Ultraviolet Explorer (EUVE), and the Solar Anomalous Magnetospheric Particle Explorer (SAMPEX). Both UARS and EUVE use the multimission modular spacecraft (MMS) concept. SAMPEX is part of the Small Explorer (SMEX) series and uses a much simpler set of attitude sensors. This paper centers on algorithm and design concepts for a multimission system and discusses flight experience from UARS.
NASA Technical Reports Server (NTRS)
Cardoso, Humberto Pontes
1990-01-01
The Satelite de Coleta de Dados (SCD) 02 (Data Collection Satellite) has the following characteristics: 115 kg weight, octagonal prism shape, 1 m diameter, and 0.67 m height. Its specified orbit is nearly circular, 700 km altitude, is inclined 25 deg with respect to the equator line, and has 100 min period. The electric power is supplied by eight solar panels installed on the lateral sides of the satellite. The equipment is located on the central (both faces) and lower (internal face) panels. The satellite is spin stabilized and its attitude control is such that during its lifetime, the solar aspect angle will vary between 80 and 100 deg with respect to its spin axis. Two critical cases were selected for thermal control design purposes: Hot case (maximum solar constant, solar aspect angle equal to 100 deg, minimum eclipse time and maximum internal heat dissipation); and a passive thermal design concept was achieved and the maximum and minimum equipment operating temperatures were obtained through a 109 node finite difference mathematical model.
Application of inertial instruments for DSN antenna pointing and tracking
NASA Technical Reports Server (NTRS)
Eldred, D. B.; Nerheim, N. M.; Holmes, K. G.
1990-01-01
The feasibility of using inertial instruments to determine the pointing attitude of the NASA Deep Space Network antennas is examined. The objective is to obtain 1 mdeg pointing knowledge in both blind pointing and tracking modes to facilitate operation of the Deep Space Network 70 m antennas at 32 GHz. A measurement system employing accelerometers, an inclinometer, and optical gyroscopes is proposed. The initial pointing attitude is established by determining the direction of the local gravity vector using the accelerometers and the inclinometer, and the Earth's spin axis using the gyroscopes. Pointing during long-term tracking is maintained by integrating the gyroscope rates and augmenting these measurements with knowledge of the local gravity vector. A minimum-variance estimator is used to combine measurements to obtain the antenna pointing attitude. A key feature of the algorithm is its ability to recalibrate accelerometer parameters during operation. A survey of available inertial instrument technologies is also given.
NASA Astrophysics Data System (ADS)
Mao, Yao; Tian, Jing; Ma, Jia-guang
2015-02-01
The techonology of LOS stabilization is widely applicated in moving carrier photoelectric systems such as shipborne, airborne and so on. In application situations with compact structure, such as LOS stabilization system of unmanned aerial vehicle, LOS stabilization based on reflector is adopted, and the detector is installed on the carrier to reduce the volume of stabilized platform and loading weight. However, the LOS deflection angle through reflector and the rotation angle of the reflector has a ratio relation of 2:1, simple reflector of stable inertial space can not make the optical axis stable. To eliminate the limitation of mirror stabilizing method, this article puts forward the carrier attitude compensation method, which uses the inertial sensor installed on the carrier to measure the attitude change of the carrier, and the stabilized platform rotating half of the carrier turbulence angle to realize the LOS stabilization.
NASA Astrophysics Data System (ADS)
Meng, Fanwei; Liu, Chengying; Li, Zhijun; Wang, Liping
2013-01-01
Due to low damping ratio, flat permanent magnet linear synchronous motor's vibration is difficult to be damped and the accuracy is limited. The vibration suppressing results are not good enough in the existing research because only the longitudinal direction vibration is considered while the normal direction vibration is neglected. The parameters of the direct-axis current controller are set to be the same as those of the quadrature-axis current controller commonly. This causes contradiction between signal noise and response. To suppress the vibration, the electromagnetic force model of the flat permanent magnet synchronous linear motor is formulated first. Through the analysis of the effect that direct-axis current noise and quadrature-axis current noise have on both direction vibration, it can be declared that the conclusion that longitudinal direction vibration is only related to the quadrature-axis current noise while the normal direction vibration is related to both the quadrature-axis current noise and direct-axis current noise. Then, the simulation test on current loop with a low-pass filter is conducted and the results show that the low-pass filter can not suppress the vibration but makes the vibration more severe. So a vibration suppressing strategy that the proportional gain of direct-axis current controller adapted according to quadrature-axis reference current is proposed. This control strategy can suppress motor vibration by suppressing direct-axis current noise. The experiments results about the effect of K p and T i on normal direction vibration, longitudinal vibration and the position step response show that this strategy suppresses vibration effectively while the motor's motion performance is not affected. The maximum reduction of vibration can be up to 40%. In addition, current test under rated load condition is also conducted and the results show that the control strategy can avoid the conflict between the direct-axis current and the quadrature-axis current under typical load. Adaptive PI control strategy can effectively suppress the flat permanent magnet linear synchronous motor's vibration without affecting the motor's performance.
Research and development of a control system for multi axis cooperative motion based on PMAC
NASA Astrophysics Data System (ADS)
Guo, Xiao-xiao; Dong, Deng-feng; Zhou, Wei-hu
2017-10-01
Based on Programmable Multi-axes Controller (PMAC), a design of a multi axis motion control system for the simulator of spatial targets' dynamic optical properties is proposed. According to analysis the properties of spatial targets' simulator motion control system, using IPC as the main control layer, TurboPMAC2 as the control layer to meet coordinated motion control, data acquisition and analog output. A simulator using 5 servomotors which is connected with speed reducers to drive the output axis was implemented to simulate the motion of both the sun and the space target. Based on PMAC using PID and a notch filter algorithm, negative feedback, the speed and acceleration feed forward algorithm to satisfy the axis' requirements of the good stability and high precision at low speeds. In the actual system, it shows that the velocity precision is higher than 0.04 s ° and the precision of repetitive positioning is better than 0.006° when each axis is at a low-speed. Besides, the system achieves the control function of multi axis coordinated motion. The design provides an important technical support for detecting spatial targets, also promoting the theoretical research.
NASA Technical Reports Server (NTRS)
Rodden, John James (Inventor); Price, Xenophon (Inventor); Carrou, Stephane (Inventor); Stevens, Homer Darling (Inventor)
2002-01-01
A control system for providing attitude control in spacecraft. The control system comprising a primary attitude reference system, a secondary attitude reference system, and a hyper-complex number differencing system. The hyper-complex number differencing system is connectable to the primary attitude reference system and the secondary attitude reference system.
Attitude-Independent Magnetometer Calibration for Spin-Stabilized Spacecraft
NASA Technical Reports Server (NTRS)
Natanson, Gregory
2005-01-01
The paper describes a three-step estimator to calibrate a Three-Axis Magnetometer (TAM) using TAM and slit Sun or star sensor measurements. In the first step, the Calibration Utility forms a loss function from the residuals of the magnitude of the geomagnetic field. This loss function is minimized with respect to biases, scale factors, and nonorthogonality corrections. The second step minimizes residuals of the projection of the geomagnetic field onto the spin axis under the assumption that spacecraft nutation has been suppressed by a nutation damper. Minimization is done with respect to various directions of the body spin axis in the TAM frame. The direction of the spin axis in the inertial coordinate system required for the residual computation is assumed to be unchanged with time. It is either determined independently using other sensors or included in the estimation parameters. In both cases all estimation parameters can be found using simple analytical formulas derived in the paper. The last step is to minimize a third loss function formed by residuals of the dot product between the geomagnetic field and Sun or star vector with respect to the misalignment angle about the body spin axis. The method is illustrated by calibrating TAM for the Fast Auroral Snapshot Explorer (FAST) using in-flight TAM and Sun sensor data. The estimated parameters include magnetic biases, scale factors, and misalignment angles of the spin axis in the TAM frame. Estimation of the misalignment angle about the spin axis was inconclusive since (at least for the selected time interval) the Sun vector was about 15 degrees from the direction of the spin axis; as a result residuals of the dot product between the geomagnetic field and Sun vectors were to a large extent minimized as a by-product of the second step.
The Implementation of Satellite Control System Software Using Object Oriented Design
NASA Technical Reports Server (NTRS)
Anderson, Mark O.; Reid, Mark; Drury, Derek; Hansell, William; Phillips, Tom
1998-01-01
NASA established the Small Explorer (SMEX) program in 1988 to provide frequent opportunities for highly focused and relatively inexpensive space science missions that can be launched into low earth orbit by small expendable vehicles. The development schedule for each SMEX spacecraft was three years from start to launch. The SMEX program has produced five satellites; Solar Anomalous and Magnetospheric Particle Explorer (SAMPEX), Fast Auroral Snapshot Explorer (FAST), Submillimeter Wave Astronomy Satellite (SWAS), Transition Region and Coronal Explorer (TRACE) and Wide-Field Infrared Explorer (WIRE). SAMPEX and FAST are on-orbit, TRACE is scheduled to be launched in April of 1998, WIRE is scheduled to be launched in September of 1998, and SWAS is scheduled to be launched in January of 1999. In each of these missions, the Attitude Control System (ACS) software was written using a modular procedural design. Current program goals require complete spacecraft development within 18 months. This requirement has increased pressure to write reusable flight software. Object-Oriented Design (OOD) offers the constructs for developing an application that only needs modification for mission unique requirements. This paper describes the OOD that was used to develop the SMEX-Lite ACS software. The SMEX-Lite ACS is three-axis controlled, momentum stabilized, and is capable of performing sub-arc-minute pointing. The paper first describes the high level requirements which governed the architecture of the SMEX-Lite ACS software. Next, the context in which the software resides is explained. The paper describes the benefits of encapsulation, inheritance and polymorphism with respect to the implementation of an ACS software system. This paper will discuss the design of several software components that comprise the ACS software. Specifically, Object-Oriented designs are presented for sensor data processing, attitude control, attitude determination and failure detection. The paper addresses the benefits of the OOD versus a conventional procedural design. The final discussion in this paper will address the establishment of the ACS Foundation Class (AFC) Library. The AFC is a large software repository, requiring a minimal amount of code modifications to produce ACS software for future projects, saving production time and costs.
Attitude Accuracy Study for the Earth Observing System (EOS) AM-1 Spacecraft
NASA Technical Reports Server (NTRS)
Lesikar, James D., II; Garrick, Joseph C.
1996-01-01
Earth Observing System (EOS) spacecraft will take measurements of the Earth's clouds, oceans, atmosphere, land, and radiation balance. These EOS spacecraft are part of the National Aeronautics and Space Administration's Mission to Planet Earth, and consist of several series of satellites, with each series specializing in a particular class of observations. This paper focuses on the EOS AM-1 spacecraft, which is the first of three satellites constituting the EOS AM series (morning equatorial crossing) and the initial spacecraft of the EOS program. EOS AM-1 has a stringent onboard attitude knowledge requirement, of 36/41/44 arc seconds (3 sigma) in yaw/roll/pitch, respectively. During normal mission operations, attitude is determined onboard using an extended Kalman sequential filter via measurements from two charge coupled device (CCD) star trackers, one Fine Sun Sensor, and an Inertial Rate Unit. The attitude determination error analysis system (ADEAS) was used to model the spacecraft and mission profile, and in a worst case scenario with only one star tracker in operation, the attitude uncertainty was 9.7/ll.5/12.2 arc seconds (3 sigma) in yaw/roll/pitch. The quoted result assumed the spacecraft was in nominal attitude, using only the 1-rotation per orbit motion of the spacecraft about the pitch axis for calibration of the gyro biases. Deviations from the nominal attitude would show greater attitude uncertainties, unless calibration maneuvers which roll and/or yaw the spacecraft have been performed. This permits computation of the gyro misalignments, and the attitude knowledge requirement would remain satisfied.
Critical Technology Assessment of Five Axis Simultaneous Control Machine Tools
2009-07-01
assessment, BIS specifically examined: • The application of Export Control Classification Numbers ( ECCN ) 2B001.b.2 and 2B001.c.2 controls and related...availability of certain five axis simultaneous control mills, mill/turns, and machining centers controlled by ECCN 2B001.b.2 (but not grinders controlled by... ECCN 2B001.c.2) exists to China and Taiwan, which both have an indigenous capability to produce five axis simultaneous control machine tools with
Effects of astigmatic axis orientation on postural stabilization with stationary equilibrium
NASA Astrophysics Data System (ADS)
Kanazawa, Masatsugu; Uozato, Hiroshi; Asakawa, Ken; Kawamorita, Takushi
2018-02-01
We evaluated 15 healthy participants by assessing their maintenance of postural control while standing on a platform stabilometer for 1 min under the following conditions: eyes open; eyes open with + 3.00 D on both eyes on same directions (45, 90, 135, 180 degree axis); right eye on 45 degree axis and left eye on 135 degree axis (inverted V-pattern), and right eye on 135 degree axis and left eye on axis 45 degree axis (V-pattern). The differences in the linear length, area and maximum velocity of center of pressure during postural control before and after the six types of positive cylinder-oriented axes were analyzed. Comparing the antero-posterior lengths and antero-posterior maximum velocities, there were significant differences between the V-pattern condition and the six other conditions. Astigmatic defocus in the antagonistic axes conditions, particularly the V-pattern condition, affects postural control of antero-posterior sway (143/150).
NASA Technical Reports Server (NTRS)
1976-01-01
The performance capability of each of two precision attitude determination systems (PADS), one using a strapdown star tracker, and the other using a single-axis gimbal star tracker was measured in the laboratory under simulated orbit conditions. The primary focus of the evaluation was on the contribution to the total system accuracy by the star trackers, and the effectiveness of the software algorithms in functioning with actual sensor signals. A brief description of PADS, the laboratory test configuration and the test facility, is given along with a discussion of the data handling and display, laboratory computer programs, PADS performance evaluation programs, and the strapdown and gimbal system tests. Results are presented and discussed.
SIRIO: One year of station keeping
NASA Technical Reports Server (NTRS)
Palutan, F.; Trumpy, S.
1979-01-01
The strategy followed in maintaining the station point and the results achieved are described. The method used for orbit determination is presented. Azimuth and elevation data from SHF antennas were used as input for the determination. An estimation of the uncertainty of the orbit was given and a comparison was made between determinations performed using the method here described and determinations performed using VHF ranging data. Also, the difference in using data from a single SHF station or two stations was shown. In the area of attitude determination, a study was carried out for predicting the spacecraft spin axis precession. The model used was explained and then the agreement between predicted and measured attitude outlined.
Reaction wheel low-speed compensation using a dither signal
NASA Astrophysics Data System (ADS)
Stetson, John B., Jr.
1993-08-01
A method for improving low-speed reaction wheel performance on a three-axis controlled spacecraft is presented. The method combines a constant amplitude offset with an unbiased, oscillating dither to harmonically linearize rolling solid friction dynamics. The complete, nonlinear rolling solid friction dynamics using an analytic modification to the experimentally verified Dahl solid friction model were analyzed using the dual-input describing function method to assess the benefits of dither compensation. The modified analytic solid friction model was experimentally verified with a small dc servomotor actuated reaction wheel assembly. Using dither compensation abrupt static friction disturbances are eliminated and near linear behavior through zero rate can be achieved. Simulated vehicle response to a wheel rate reversal shows that when the dither and offset compensation is used, elastic modes are not significantly excited, and the uncompensated attitude error reduces by 34:1.
Application of Wind Tunnel Free-Flight Technique for Wake Vortex Encounters
NASA Technical Reports Server (NTRS)
Brandon, Jay M.; Jordan, Frank L., Jr.; Stuever, Robert A.; Buttrill, Catherine W.
1997-01-01
A wind tunnel investigation was conducted in the Langley 30- by 60-Foot Tunnel to assess the free-flight test technique as a tool in research on wake vortex encounters. A typical 17.5-percent scale business-class jet airplane model was flown behind a stationary wing mounted in the forward portion of the wind tunnel test section. The span ratio (model span-generating wingspan) was 0.75. The wing angle of attack could be adjusted to produce a vortex of desired strength. The test airplane model was successfully flown in the vortex and through the vortex for a range of vortex strengths. Data obtained included the model airplane body axis accelerations, angular rates, attitudes, and control positions as a function of vortex strength and relative position. Pilot comments and video records were also recorded during the vortex encounters.
NASA Astrophysics Data System (ADS)
Chak, Yew-Chung; Varatharajoo, Renuganth; Razoumny, Yury
2017-04-01
This paper investigates the combined attitude and sun-tracking control problem in the presence of external disturbances and internal disturbances, caused by flexible appendages. A new method based on Pythagorean trigonometric identity is proposed to drive the solar arrays. Using the control input and attitude output, a disturbance observer is developed to estimate the lumped disturbances consisting of the external and internal disturbances, and then compensated by the disturbance observer-based controller via a feed-forward control. The stability analysis demonstrates that the desired attitude trajectories are followed even in the presence of external disturbance and internal flexible modes. The main features of the proposed control scheme are that it can be designed separately and incorporated into the baseline controller to form the observer-based control system, and the combined attitude and sun-tracking control is achieved without the conventional attitude actuators. The attitude and sun-tracking performance using the proposed strategy is evaluated and validated through numerical simulations. The proposed control solution can serve as a fail-safe measure in case of failure of the conventional attitude actuator, which triggered by automatic reconfiguration of the attitude control components.
Proceedings from the 2nd International Symposium on Formation Flying Missions and Technologies
NASA Technical Reports Server (NTRS)
2004-01-01
Topics discussed include: The Stellar Imager (SI) "Vision Mission"; First Formation Flying Demonstration Mission Including on Flight Nulling; Formation Flying X-ray Telescope in L2 Orbit; SPECS: The Kilometer-baseline Far-IR Interferometer in NASA's Space Science Roadmap Presentation; A Tight Formation for Along-track SAR Interferometry; Realization of the Solar Power Satellite using the Formation Flying Solar Reflector; SIMBOL-X : Formation Flying for High-Energy Astrophysics; High Precision Optical Metrology for DARWIN; Close Formation Flight of Micro-Satellites for SAR Interferometry; Station-Keeping Requirements for Astronomical Imaging with Constellations of Free-Flying Collectors; Closed-Loop Control of Formation Flying Satellites; Formation Control for the MAXIM Mission; Precision Formation Keeping at L2 Using the Autonomous Formation Flying Sensor; Robust Control of Multiple Spacecraft Formation Flying; Virtual Rigid Body (VRB) Satellite Formation Control: Stable Mode-Switching and Cross-Coupling; Electromagnetic Formation Flight (EMFF) System Design, Mission Capabilities, and Testbed Development; Navigation Algorithms for Formation Flying Missions; Use of Formation Flying Small Satellites Incorporating OISL's in a Tandem Cluster Mission; Semimajor Axis Estimation Strategies; Relative Attitude Determination of Earth Orbiting Formations Using GPS Receivers; Analysis of Formation Flying in Eccentric Orbits Using Linearized Equations of Relative Motion; Conservative Analytical Collision Probabilities for Orbital Formation Flying; Equations of Motion and Stability of Two Spacecraft in Formation at the Earth/Moon Triangular Libration Points; Formations Near the Libration Points: Design Strategies Using Natural and Non-Natural Ares; An Overview of the Formation and Attitude Control System for the Terrestrial Planet Finder Formation Flying Interferometer; GVE-Based Dynamics and Control for Formation Flying Spacecraft; GNC System Design for a New Concept of X-Ray Distributed Telescope; GNC System for the Deployment and Fine Control of the DARWIN Free-Flying Interferometer; Formation Algorithm and Simulation Testbed; and PLATFORM: A Formation Flying, RvD and Robotic Validation Test-bench.
Magnetoresistive magnetometer for space science applications
NASA Astrophysics Data System (ADS)
Brown, P.; Beek, T.; Carr, C.; O'Brien, H.; Cupido, E.; Oddy, T.; Horbury, T. S.
2012-02-01
Measurement of the in situ dc magnetic field on space science missions is most commonly achieved using instruments based on fluxgate sensors. Fluxgates are robust, reliable and have considerable space heritage; however, their mass and volume are not optimized for deployment on nano or picosats. We describe a new magnetometer design demonstrating science measurement capability featuring significantly lower mass, volume and to a lesser extent power than a typical fluxgate. The instrument employs a sensor based on anisotropic magnetoresistance (AMR) achieving a noise floor of less than 50 pT Hz-1/2 above 1 Hz on a 5 V bridge bias. The instrument range is scalable up to ±50 000 nT and the three-axis sensor mass and volume are less than 10 g and 10 cm3, respectively. The ability to switch the polarization of the sensor's easy axis and apply magnetic feedback is used to build a driven first harmonic closed loop system featuring improved linearity, gain stability and compensation of the sensor offset. A number of potential geospace applications based on the initial instrument results are discussed including attitude control systems and scientific measurement of waves and structures in the terrestrial magnetosphere. A flight version of the AMR magnetometer will fly on the TRIO-CINEMA mission due to be launched in 2012.
Waterhammer Testing and Modeling of the Ares I Upper Stage Reaction Control System
NASA Technical Reports Server (NTRS)
Williams, J. Hunter; Holt, Kimberly A.
2010-01-01
NASA's Ares I rocket is the agency's first step in completing the goals of the Constellation Program, which plans to deliver a new generation of space explorers into low earth orbit for future missions to the International Space Station, the moon, and other destinations within the solar system. Ares I is a two-stage rocket topped by the Orion crew capsule and its service module. The launch vehicle's First Stage is a single, five-segment reusable solid rocket booster (RSRB), derived from the Space Shuttle Program's four segment RSRB. The vehicle's Upper Stage, being designed at Marshall Space Flight Center (MSFC), is propelled by a single J-2X Main Engine fueled with liquid oxygen and liquid hydrogen. During active Upper Stage flight of the Ares I launch vehicle, the Upper Stage Reaction Control System (US ReCS) will perform attitude control operations for the vehicle. The US ReCS will provide three-axis attitude control capability (roll, pitch, and yaw) for the Upper Stage while the J-2X is not firing and roll control capability while the engine is firing. Because of the requirements imposed upon the system, the design must accommodate rapid pulsing of multiple thrusters simultaneously to maintain attitude control. In support of these design activities and in preparation for Critical Design Review, analytical models of the US ReCS propellant feed system have been developed using the Thermal Hydraulic Library of MSC.EASY5 v.2008, herein referred to as EASY5. EASY5 is a commercially available fluid system modeling package with significant history of modeling space propulsion systems. In Fall 2009, a series of development tests were conducted at MSFC on a cold-flow test article for the US ReCS, herein referred to as System Development Test Article (SDTA). A subset of those tests performed were aimed at examining the effects of waterhammer on a flight-representative system and to ensure that those effects could be quantified with analytical models and incorporated into the design of the flight system. This paper presents an overview of the test article and the test approach, along with a discussion of the analytical modeling methodology. In addition, the results of that subset of development tests, along with analytical model pre-test predictions and post-test model correlations, will also be discussed in detail.
Linearizing feedforward/feedback attitude control
NASA Technical Reports Server (NTRS)
Paielli, Russell A.; Bach, Ralph E.
1991-01-01
An approach to attitude control theory is introduced in which a linear form is postulated for the closed-loop rotation error dynamics, then the exact control law required to realize it is derived. The nonminimal (four-component) quaternion form is used to attitude because it is globally nonsingular, but the minimal (three-component) quaternion form is used for attitude error because it has no nonlinear constraints to prevent the rotational error dynamics from being linearized, and the definition of the attitude error is based on quaternion algebra. This approach produces an attitude control law that linearizes the closed-loop rotational error dynamics exactly, without any attitude singularities, even if the control errors become large.
Zhu, Qingyuan; Xiao, Chunsheng; Hu, Huosheng; Liu, Yuanhui; Wu, Jinjin
2018-01-13
Articulated wheel loaders used in the construction industry are heavy vehicles and have poor stability and a high rate of accidents because of the unpredictable changes of their body posture, mass and centroid position in complex operation environments. This paper presents a novel distributed multi-sensor system for real-time attitude estimation and stability measurement of articulated wheel loaders to improve their safety and stability. Four attitude and heading reference systems (AHRS) are constructed using micro-electro-mechanical system (MEMS) sensors, and installed on the front body, rear body, rear axis and boom of an articulated wheel loader to detect its attitude. A complementary filtering algorithm is deployed for sensor data fusion in the system so that steady state margin angle (SSMA) can be measured in real time and used as the judge index of rollover stability. Experiments are conducted on a prototype wheel loader, and results show that the proposed multi-sensor system is able to detect potential unstable states of an articulated wheel loader in real-time and with high accuracy.
Xiao, Chunsheng; Liu, Yuanhui; Wu, Jinjin
2018-01-01
Articulated wheel loaders used in the construction industry are heavy vehicles and have poor stability and a high rate of accidents because of the unpredictable changes of their body posture, mass and centroid position in complex operation environments. This paper presents a novel distributed multi-sensor system for real-time attitude estimation and stability measurement of articulated wheel loaders to improve their safety and stability. Four attitude and heading reference systems (AHRS) are constructed using micro-electro-mechanical system (MEMS) sensors, and installed on the front body, rear body, rear axis and boom of an articulated wheel loader to detect its attitude. A complementary filtering algorithm is deployed for sensor data fusion in the system so that steady state margin angle (SSMA) can be measured in real time and used as the judge index of rollover stability. Experiments are conducted on a prototype wheel loader, and results show that the proposed multi-sensor system is able to detect potential unstable states of an articulated wheel loader in real-time and with high accuracy. PMID:29342850
Modeling and design of a two-axis elliptical notch flexure hinge
NASA Astrophysics Data System (ADS)
Wu, Jianwei; Zhang, Yin; Lu, Yunfeng; Wen, Zhongpu; Bin, Deer; Tan, Jiubin
2018-04-01
As an important part of the joule balance system, the two-axis elliptical notch flexure hinge (TENFH) which typically consists of two single-axis elliptical notch flexure hinges was studied. First, a 6 degrees of freedom (6-DOF) compliance model was established based on the coordinate transformation method. In addition, the maximum stress of the TENFH was derived. The compliance and maximum stress model was verified using finite element analysis simulation. To decouple the attitude of the suspended coil system and reduce the offset between the centroid of the suspended coil mechanism and the mass comparator in the joule balance system, a new mechanical structure of TENFH was designed based on the compliance model and stress model proposed in this paper. The maximum rotation range is up to 10°, and the axial load is more than 5 kg, which meets the requirements of the system. The compliance model was also verified by deformation experimentation with the designed TENFH.
NASA Technical Reports Server (NTRS)
Crawford, Bradley L.
2007-01-01
The angle measurement system (AMS) developed at NASA Langley Research Center (LaRC) is a system for many uses. It was originally developed to check taper fits in the wind tunnel model support system. The system was further developed to measure simultaneous pitch and roll angles using 3 orthogonally mounted accelerometers (3-axis). This 3-axis arrangement is used as a transfer standard from the calibration standard to the wind tunnel facility. It is generally used to establish model pitch and roll zero and performs the in-situ calibration on model attitude devices. The AMS originally used a laptop computer running DOS based software but has recently been upgraded to operate in a windows environment. Other improvements have also been made to the software to enhance its accuracy and add features. This paper will discuss the accuracy and calibration methodologies used in this system and some of the features that have contributed to its popularity.
Seasat-A attitude control system
NASA Technical Reports Server (NTRS)
Weiss, R.; Rodden, J. J.; Hendricks, R. J.
1977-01-01
The Seasat-A attitude control system controls the attitude of the satellite system during injection into final circular orbit after Atlas boost, during orbit adjust and trim phases, and throughout the 3-year mission. Ascent and injection guidance and attitude control are provided by the Agena spacecraft with a gyrocompassed mass expulsion system. On-orbit attitude control functions are performed by a system that has its functional roots in the gravity-gradient momentum bias technology. The paper discusses hardware, control laws, and simulation results.
14 CFR 125.225 - Flight data recorders.
Code of Federal Regulations, 2014 CFR
2014-01-01
... acceleration; (5) Heading; (6) Time of each radio transmission to or from air traffic control; (7) Pitch attitude; (8) Roll attitude; (9) Longitudinal acceleration; (10) Control column or pitch control surface... control; (7) Pitch attitude; (8) Roll attitude; (9) Longitudinal acceleration; (10) Pitch trim position...
Debris measure subsystem of the nanosatellite IRECIN
NASA Astrophysics Data System (ADS)
Ferrante, M.; di Ciolo, L.; Ortenzi, A.; Petrozzi, M.; del Re, V.
2003-09-01
The on board resources, needed to perform the mission tasks, are very limited in nano-satellites. This paper proposes an Electronic real-time system that acquires space debris measures. It uses a piezo-electric sensor. The described device is a subsystem on board of the IRECIN nanosatellite composed mainly by a r.i.s.c. microprocessor, an electronic part that interfaces to the debris sensor in order to provide a low noise electrical and suitable range to ADC 12 bit converter, and finally a memory in order to store the data. The microprocessor handles the Debris Measure System measuring the impacts number, their intensity and storing their waves form. This subsystem is able to communicate with the other IRECIN subsystems through I2C Bus and principally with the "Main Microprocessor" subsystem allowing the data download directly to the Ground Station. Moreover this subsystem lets free the "Main Microprocessor Board" from the management and charge of debris data. All electronic components are SMD technology in order to reduce weight and size. The realized Electronic board are completely developed, realized and tested at the Vitrociset S.P.A. under control of Research and Development Group. The proposed system is implemented on the IRECIN, a modular nanosatellite weighting less than 1.5 kg, constituted by sixteen external sides with surface-mounted solar cells and three internal Al plates, kept together by four steel bars. Lithium-ions batteries are added for eclipse operations. Attitude is determined by two three-axis magnetometers and the solar panels data. Control is provided by an active magnetic control system. The spacecraft will be spin-stabilized with the spin-axis normal to the orbit. debris and micrometeoroids mass and velocity.
Relative-Motion Sensors and Actuators for Two Optical Tables
NASA Technical Reports Server (NTRS)
Gursel, Yekta; McKenney, Elizabeth
2004-01-01
Optoelectronic sensors and magnetic actuators have been developed as parts of a system for controlling the relative position and attitude of two massive optical tables that float on separate standard air suspensions that attenuate ground vibrations. In the specific application for which these sensors and actuators were developed, one of the optical tables holds an optical system that mimics distant stars, while the other optical table holds a test article that simulates a spaceborne stellar interferometer that would be used to observe the stars. The control system is designed to suppress relative motion of the tables or, on demand, to impose controlled relative motion between the tables. The control system includes a sensor system that detects relative motion of the tables in six independent degrees of freedom and a drive system that can apply force to the star-simulator table in the six degrees of freedom. The sensor system includes (1) a set of laser heterodyne gauges and (2) a set of four diode lasers on the star-simulator table, each aimed at one of four quadrant photodiodes at nominal corresponding positions on the test-article table. The heterodyne gauges are used to measure relative displacements along the x axis.
1986-05-31
Nonlinear Feedback Control 8-16 for Spacecraft Attitude Maneuvers" 2. " Spacecraft Attitude Control Using 17-35... nonlinear state feedback control laws are developed for space- craft attitude control using the Euler parameters and conjugate angular momenta. Time... Nonlinear Feedback Control for Spacecraft Attitude Maneuvers," to appear in AIAA J. of Guidance, Control, and Dynamics, (AIAA Paper No. 83-2230-CP,
Rathore, Farooq Azam; Waqas, Ahmed; Zia, Ahmad Marjan; Mavrinac, Martina; Farooq, Fareeha
2015-01-01
Objective. The objective of this survey was to explore the attitudes towards plagiarism of faculty members and medical students in Pakistan. Methods. The Attitudes Toward Plagiarism questionnaire (ATP) was modified and distributed among 550 medical students and 130 faculty members in 7 medical colleges of Lahore and Rawalpindi. Data was entered in the SPSS v.20 and descriptive statistics were analyzed. The questionnaire was validated by principal axis factoring analysis. Results. Response rate was 93% and 73%, respectively. Principal axis factoring analysis confirmed one factor structure of ATP in the present sample. It had an acceptable Cronbach's alpha value of 0.73. There were 421 medical students (218 (52%) female, 46% 3rd year MBBS students, mean age of 20.93 ± 1.4 years) and 95 faculty members (54.7% female, mean age 34.5 ± 8.9 years). One fifth of the students (19.7%) trained in medical writing (19.7%), research ethics (25.2%) or were currently involved in medical writing (17.6%). Most of the faculty members were demonstrators (66) or assistant professors (20) with work experience between 1 and 10 years. Most of them had trained in medical writing (68), research ethics (64) and were currently involved in medical writing (64). Medical students and faculty members had a mean score of 43.21 (7.1) and 48.4 (5.9) respectively on ATP. Most of the respondents did not consider that they worked in a plagiarism free environment and reported that self-plagiarism should not be punishable in the same way as plagiarism. Opinion regarding leniency in punishment of younger researchers who were just learning medical writing was divided. Conclusions. The general attitudes of Pakistani medical faculty members and medical students as assessed by ATP were positive. We propose training in medical writing and research ethics as part of the under and post graduate medical curriculum.
Rathore, Farooq Azam; Zia, Ahmad Marjan; Mavrinac, Martina; Farooq, Fareeha
2015-01-01
Objective. The objective of this survey was to explore the attitudes towards plagiarism of faculty members and medical students in Pakistan. Methods. The Attitudes Toward Plagiarism questionnaire (ATP) was modified and distributed among 550 medical students and 130 faculty members in 7 medical colleges of Lahore and Rawalpindi. Data was entered in the SPSS v.20 and descriptive statistics were analyzed. The questionnaire was validated by principal axis factoring analysis. Results. Response rate was 93% and 73%, respectively. Principal axis factoring analysis confirmed one factor structure of ATP in the present sample. It had an acceptable Cronbach’s alpha value of 0.73. There were 421 medical students (218 (52%) female, 46% 3rd year MBBS students, mean age of 20.93 ± 1.4 years) and 95 faculty members (54.7% female, mean age 34.5 ± 8.9 years). One fifth of the students (19.7%) trained in medical writing (19.7%), research ethics (25.2%) or were currently involved in medical writing (17.6%). Most of the faculty members were demonstrators (66) or assistant professors (20) with work experience between 1 and 10 years. Most of them had trained in medical writing (68), research ethics (64) and were currently involved in medical writing (64). Medical students and faculty members had a mean score of 43.21 (7.1) and 48.4 (5.9) respectively on ATP. Most of the respondents did not consider that they worked in a plagiarism free environment and reported that self-plagiarism should not be punishable in the same way as plagiarism. Opinion regarding leniency in punishment of younger researchers who were just learning medical writing was divided. Conclusions. The general attitudes of Pakistani medical faculty members and medical students as assessed by ATP were positive. We propose training in medical writing and research ethics as part of the under and post graduate medical curriculum. PMID:26157615
Software for System for Controlling a Magnetically Levitated Rotor
NASA Technical Reports Server (NTRS)
Morrison, Carlos R. (Inventor)
2004-01-01
In a rotor assembly having a rotor supported for rotation by magnetic bearings, a processor controlled by software or firmware controls the generation of force vectors that position the rotor relative to its bearings in a 'bounce' mode in which the rotor axis is displaced from the principal axis defined between the bearings and a 'tilt' mode in which the rotor axis is tilted or inclined relative to the principal axis. Waveform driven perturbations are introduced to generate force vectors that excite the rotor in either the 'bounce' or 'tilt' modes.
System for Controlling a Magnetically Levitated Rotor
NASA Technical Reports Server (NTRS)
Morrison, Carlos R. (Inventor)
2006-01-01
In a rotor assembly having a rotor supported for rotation by magnetic bearings, a processor controlled by software or firmware controls the generation of force vectors that position the rotor relative to its bearings in a "bounce" mode in which the rotor axis is displaced from the principal axis defined between the bearings and a "tilt" mode in which the rotor axis is tilted or inclined relative to the principal axis. Waveform driven perturbations are introduced to generate force vectors that excite the rotor in either the "bounce" or "tilt" modes.
NASA Technical Reports Server (NTRS)
Clapp, Brian R.
2005-01-01
For fifteen years, the science mission of the Hubble Space Telescope (HST) required using at least three rate gyros for n Controlling with alternate sensors to replace failing gyros can extend the HST science mission. A two-gyro control law has been designed and implemented using magnetometers, star trackers, and Fine Guidance Sensors (FGSs) to control vehicle rate about the missing gyro axis. The three aforementioned sensors are used in succession to reduce HST boresight jitter to less than 7 milli-arcseconds rms prior to science imaging. The Magnetometer and 2-Gyro (M2G) control law is used for large angle maneuvers and attitude control during earth. occultation of star trackers and FGSs. The Tracker and 2-Gyro (T2G) control law dampens M2G rates and controls attitude in preparation for guide star acquisition with the FGSs. The Fine Guidance Sensor and 2-Gyro (F2G) control law dampens T2G rates and controls HST attitude during science imaging. This paper describes the F2G control law. Details of F2G algorithms are presented, including computation of the FGS-measured star vector using non-linear equations, optimal estimation of HST body rate, design of the F2G control laws and gyro bias observer, SISO and MIMO linear stability analyses, and design of the F2G intramode transition and guide star acquisition logic. Results from an FGS flight spare ground test are presented that define acceptable HST jitter levels for successful guide star acquisition under two-gyro control. HST-specific disturbance and noise models are described that are based upon flight telemetry; these models are used in HSTSIM, a high-fidelity non-linear time domain simulation, to predict HST on-orbit disturbance responses and FGS interferometer Loss of Lock (LOL) characteristics under F2G control. Additional HSTSIM results are presented predicting HST quiescent boresight jitter performance, science maneuver performance, and observer configuration performance during F2G operation. Simulation results are compared to on-orbit data b m F2G flight tests performed in February 2005. Science images and point spread functions from the Advanced Camera for Surveys (ACS) High Resolution Camera (HRC) are presented that compare HST science performance under F2G versus three-gyro control. Images and flight telemetry show that HST boresight jitter with the new F2G control law is usually less than jitter using the three-gyro law, and HST boresight jitter during F2G operation is dependent upon guide star magnitude.
Attributions and Attitudes of Mothers and Fathers in Jordan.
Al-Hassan, Suha; Takash, Hanan
2011-07-01
OBJECTIVE: The present study examined mean level similarities and differences as well as correlations between mothers' and fathers' attributions regarding successes and failures in caregiving situations and progressive versus authoritarian attitudes in Jordan. DESIGN: Interviews were conducted with both mothers and fathers in 112 families. RESULTS: There were no significant main effects of gender on any of the constructs of interest. Mothers and fathers reported similar levels of attributions regarding uncontrollable success, adult-controlled failure, and child-controlled failure in the same family. Regarding attitudes, mothers and fathers reported greater progressive attitudes than authoritarian attitudes. Large, significant correlations were found for concordance between parents in the same family on all seven attributions and attitudes examined; all remained significant after controlling for parents' age, education, and possible social desirability bias. Significant positive correlations were found for mothers' and fathers' attributions regarding uncontrollable success, adult-controlled failure, child-controlled failure, perceived control over failure, progressive attitudes, authoritarian attitudes, and modernity of attitudes. CONCLUSIONS: This study concluded that in Jordan mothers and fathers hold similar levels of attributions and attitudes.
Reduced Gravity Walking Simulator
1965-10-15
Cable system which supports the test subject on the Reduced Gravity Walking Simulator. The purpose of this simulator was to study the subject while walking, jumping or running. Researchers conducted studies of various factors such as fatigue limit, energy expenditure, and speed of locomotion. A.W. Vigil described the purpose of the simulator as follows: "When the astronauts land on the moon they will be in an unfamiliar environment involving, particularly, a gravitational field only one-sixth as strong as on earth. A novel method of simulating lunar gravity has been developed and is supported by a puppet-type suspension system at the end of a long pendulum. A floor is provided at the proper angle so that one-sixth of the subject's weight is supported by the floor with the remainder being supported by the suspension system. This simulator allows almost complete freedom in vertical translation and pitch and is considered to be a very realistic simulation of the lunar walking problem. For this problem this simulator suffers only slightly from the restrictions in lateral movement it puts on the test subject. This is not considered a strong disadvantage for ordinary walking problems since most of the motions do, in fact, occur in the vertical plane. However, this simulation technique would be severely restrictive if applied to the study of the extra-vehicular locomotion problem, for example, because in this situation complete six degrees of freedom are rather necessary. This technique, in effect, automatically introduces a two-axis attitude stabilization system into the problem. The technique could, however, be used in preliminary studies of extra-vehicular locomotion where, for example, it might be assumed that one axis of the attitude control system on the astronaut maneuvering unit may have failed." -- Published in James R. Hansen, Spaceflight Revolution: NASA Langley Research Center From Sputnik to Apollo, (Washington: NASA, 1995); A.W. Vigil, "Discussion of Existing and Planned Simulators for Space Research," Paper presented at Conference on the Role of Simulation in Space Technology," Blacksburg, VA, August 17-21, 1964.
Zou, An-Min; Kumar, Krishna Dev
2012-07-01
This brief considers the attitude coordination control problem for spacecraft formation flying when only a subset of the group members has access to the common reference attitude. A quaternion-based distributed attitude coordination control scheme is proposed with consideration of the input saturation and with the aid of the sliding-mode observer, separation principle theorem, Chebyshev neural networks, smooth projection algorithm, and robust control technique. Using graph theory and a Lyapunov-based approach, it is shown that the distributed controller can guarantee the attitude of all spacecraft to converge to a common time-varying reference attitude when the reference attitude is available only to a portion of the group of spacecraft. Numerical simulations are presented to demonstrate the performance of the proposed distributed controller.
Nonlinear feedback model attitude control using CCD in magnetic suspension system
NASA Technical Reports Server (NTRS)
Lin, CHIN-E.; Hou, Ann-San
1994-01-01
A model attitude control system for a CCD camera magnetic suspension system is studied in this paper. In a recent work, a position and attitude sensing method was proposed. From this result, model position and attitude of a magnetic suspension system can be detected by generating digital outputs. Based on this achievement, a control system design using nonlinear feedback techniques for magnetic suspended model attitude control is proposed.
Dexterous Humanoid Robotic Wrist
NASA Technical Reports Server (NTRS)
Ihrke, Chris A. (Inventor); Bridgwater, Lyndon (Inventor); Reich, David M. (Inventor); Wampler, II, Charles W. (Inventor); Askew, Scott R. (Inventor); Diftler, Myron A. (Inventor); Nguyen, Vienny (Inventor)
2013-01-01
A humanoid robot includes a torso, a pair of arms, a neck, a head, a wrist joint assembly, and a control system. The arms and the neck movably extend from the torso. Each of the arms includes a lower arm and a hand that is rotatable relative to the lower arm. The wrist joint assembly is operatively defined between the lower arm and the hand. The wrist joint assembly includes a yaw axis and a pitch axis. The pitch axis is disposed in a spaced relationship to the yaw axis such that the axes are generally perpendicular. The pitch axis extends between the yaw axis and the lower arm. The hand is rotatable relative to the lower arm about each of the yaw axis and the pitch axis. The control system is configured for determining a yaw angle and a pitch angle of the wrist joint assembly.
A four-axis hand controller for helicopter flight control
NASA Technical Reports Server (NTRS)
Demaio, Joe
1993-01-01
A proof-of-concept hand controller for controlling lateral and longitudinal cyclic pitch, collective pitch and tail rotor thrust was developed. The purpose of the work was to address problems of operator fatigue, poor proprioceptive feedback and cross-coupling of axes associated with many four-axis controller designs. The present design is an attempt to reduce cross-coupling to a level that can be controlled with breakout force, rather than to eliminate it entirely. The cascaded design placed lateral and longitudinal cyclic in their normal configuration. Tail rotor thrust was placed atop the cyclic controller. A left/right twisting motion with the wrist made the control input. The axis of rotation was canted outboard (clockwise) to minimize cross-coupling with the cyclic pitch axis. The collective control was a twist grip, like a motorcycle throttle. Measurement of the amount of cross-coupling involved in pure, single-axis inputs showed cross coupling under 10 percent of full deflection for all axes. This small amount of cross-coupling could be further reduced with better damping and force gradient control. Fatigue was not found to be a problem, and proprioceptive feedback was adequate for all flight tasks executed.
Park, Emma C; Waller, Glenn; Gannon, Kenneth
2014-03-01
The personality disorders are commonly comorbid with the eating disorders. Personality disorder pathology is often suggested to impair the treatment of axis 1 disorders, including the eating disorders. This study examined whether personality disorder cognitions reduce the impact of cognitive behavioural therapy (CBT) for eating disorders, in terms of treatment dropout and change in eating disorder attitudes in the early stages of treatment. Participants were individuals with a diagnosed eating disorder, presenting for individual outpatient CBT. They completed measures of personality disorder cognitions and eating disorder attitudes at sessions one and six of CBT. Drop-out rates prior to session six were recorded. CBT had a relatively rapid onset of action, with a significant reduction in eating disorder attitudes over the first six sessions. Eating disorder attitudes were most strongly associated with cognitions related to anxiety-based personality disorders (avoidant, obsessive-compulsive and dependent). Individuals who dropped out of treatment prematurely had significantly higher levels of dependent personality disorder cognitions than those who remained in treatment. For those who remained in treatment, higher levels of avoidant, histrionic and borderline personality disorder cognitions were associated with a greater change in global eating disorder attitudes. CBT's action and retention of patients might be improved by consideration of such personality disorder cognitions when formulating and treating the eating disorders.
Youth Attitudes towards Tobacco Control Laws: The Influence of Smoking Status and Grade in School
ERIC Educational Resources Information Center
Williams, Terrinieka T.; Jason, Leonard A.; Pokorny, Steven B.
2008-01-01
This study examined adolescent attitudes towards tobacco control laws. An exploratory factor analysis, using surveys from over 9,000 students, identified the following three factors: (1) youth attitudes towards the efficacy of tobacco control laws, (2) youth attitudes towards tobacco possession laws and (3) youth attitudes towards tobacco sales…
Design and optimize of 3-axis filament winding machine
NASA Astrophysics Data System (ADS)
Quanjin, Ma; Rejab, M. R. M.; Idris, M. S.; Bachtiar, B.; Siregar, J. P.; Harith, M. N.
2017-10-01
Filament winding technique is developed as the primary process for composite cylindrical structures fabrication at low cost. Fibres are wound on a rotating mandrel by a filament winding machine where resin impregnated fibres pass through a pay-out eye. This paper aims to develop and optimize a 3-axis, lightweight, practical, efficient, portable filament winding machine to satisfy the customer demand, which can fabricate pipes and round shape cylinders with resins. There are 3 main units on the 3-axis filament winding machine, which are the rotary unit, the delivery unit and control system unit. Comparison with previous existing filament winding machines in the factory, it has 3 degrees of freedom and can fabricate more complex shape specimens based on the mandrel shape and particular control system. The machine has been designed and fabricated on 3 axes movements with control system. The x-axis is for movement of the carriage, the y-axis is the rotation of mandrel and the z-axis is the movement of the pay-out eye. Cylindrical specimens with different dimensions and winding angles were produced. 3-axis automated filament winding machine has been successfully designed with simple control system.
Statistical Control Paradigm for Aerospace Structures Under Impulsive Disturbances
2006-08-03
attitude control system with an innovative and robust statistical controller design shows significant promise for use in attitude hold mode operation...indicate that the existing attitude control system with an innovative and robust statistical controller design shows significant promise for use in...and three thrusters are for use in controlling the attitude of the satellite. Then the angular momentum of the satellite with three thrusters and a
Single-Axis Acoustic Levitator With Rotation Control
NASA Technical Reports Server (NTRS)
Trinh, E. H.; Olli, E. E.
1987-01-01
Rotation-control equipment simplified. Acoustic levitator with rotation control handles liquid and solid specimens as dense as steel in both low gravity and normal Earth gravity. Levitator is single-axis type.
NASA Astrophysics Data System (ADS)
Green, K. N.; van Alstine, R. L.
This paper presents the current performance levels of the SDG-5 gyro, a high performance two-axis dynamically tuned gyro, and the DRIRU II redundant inertial reference unit relating to stabilization and pointing applications. Also presented is a discussion of a product improvement program aimed at further noise reductions to meet the demanding requirements of future space defense applications.
Automatic Mass Balancing of Air-Bearing-Based Three-Axis Rotational Spacecraft Simulator
2009-06-01
required at all possible combinations of spacecraft attitude, angular/linear position of rotating/translating parts, maneuver rates, etc., which is...solution is to generate a desired spacecraft momentum trajectory that can provide persistent maneuvering of the spacecraft simulator. We define the...disturbance torque becomes zero. Because the spacecraft is con- stantly maneuvering , the center of gravity also converges to zero to have a zero
Chassin, Laurie; Presson, Clark C.; Sherman, Steven J.; Seo, Dong-Chul; Macy, Jon
2010-01-01
The current study tested implicit and explicit attitudes as prospective predictors of smoking cessation in a Midwestern community sample of smokers. Results showed that the effects of attitudes significantly varied with levels of experienced failure to control smoking and plans to quit. Explicit attitudes significantly predicted later cessation among those with low (but not high or average) levels of experienced failure to control smoking. Conversely, however, implicit attitudes significantly predicted later cessation among those with high levels of experienced failure to control smoking, but only if they had a plan to quit. Because smoking cessation involves both controlled and automatic processes, interventions may need to consider attitude change interventions that focus on both implicit and explicit attitudes. PMID:21198227
Global finite-time attitude consensus tracking control for a group of rigid spacecraft
NASA Astrophysics Data System (ADS)
Li, Penghua
2017-10-01
The problem of finite-time attitude consensus for multiple rigid spacecraft with a leader-follower architecture is investigated in this paper. To achieve the finite-time attitude consensus, at the first step, a distributed finite-time convergent observer is proposed for each follower to estimate the leader's attitude in a finite time. Then based on the terminal sliding mode control method, a new finite-time attitude tracking controller is designed such that the leader's attitude can be tracked in a finite time. Finally, a finite-time observer-based distributed control strategy is proposed. It is shown that the attitude consensus can be achieved in a finite time under the proposed controller. Simulation results are given to show the effectiveness of the proposed method.
Pupil Control Ideology as a Source of Stress: The Student Teacher's Dilemma.
ERIC Educational Resources Information Center
Jones, Dan R.
One type of adaptation made by each student teacher is the development of attitudes toward controlling pupils. The student teachers' attitudes toward pupil control may be at odds with those of other educators and this difference in attitude, particularly in the case of the cooperating teacher, can cause stress. Attitudes toward pupil control can…
Attitude stability of spinning flexible spacecraft
NASA Technical Reports Server (NTRS)
Likins, P. W.; Barbera, F. J.
1971-01-01
The stability of spinning flexible satellites in a force-free environment was analyzed. The satellite was modeled as a rigid core having attached to it a flexible appendage idealized as a collection of particles (point masses) interconnected by springs. Both Liapunov and Routh-Hurwitz stability procedures are used. In the former, the Hamiltonian of the system, constrained through the angular momentum integral so as to admit complete damping, is used as a testing function. Equations of motion are written using the hybrid coordinate formulation, which readily accepts a modal coordinate transformation ultimately allowing truncation to a level amenable to literal stability analysis. Closed form stability criteria are generated for the first mode of a restricted appendage model lying in a plane containing the system center of mass and orthogonal to the spin axis. The effects of spin on flexible bodies are discussed by considering a very elementary particle model. Control of passively unstable spacecraft is briefly considered.
Stimuli-Driven Control of the Helical Axis of Self-Organized Soft Helical Superstructures.
Bisoyi, Hari Krishna; Bunning, Timothy J; Li, Quan
2018-06-01
Supramolecular and macromolecular functional helical superstructures are ubiquitous in nature and display an impressive catalog of intriguing and elegant properties and performances. In materials science, self-organized soft helical superstructures, i.e., cholesteric liquid crystals (CLCs), serve as model systems toward the understanding of morphology- and orientation-dependent properties of supramolecular dynamic helical architectures and their potential for technological applications. Moreover, most of the fascinating device applications of CLCs are primarily determined by different orientations of the helical axis. Here, the control of the helical axis orientation of CLCs and its dynamic switching in two and three dimensions using different external stimuli are summarized. Electric-field-, magnetic-field-, and light-irradiation-driven orientation control and reorientation of the helical axis of CLCs are described and highlighted. Different techniques and strategies developed to achieve a uniform lying helix structure are explored. Helical axis control in recently developed heliconical cholesteric systems is examined. The control of the helical axis orientation in spherical geometries such as microdroplets and microshells fabricated from these enticing photonic fluids is also explored. Future challenges and opportunities in this exciting area involving anisotropic chiral liquids are then discussed. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Chassin, Laurie; Presson, Clark C.
2013-01-01
Introduction: This study examined the association between implicit and explicit attitudes toward smoking and support for tobacco control policies. Methods: Participants were from an ongoing longitudinal study of the natural history of smoking who also completed a web-based assessment of implicit attitudes toward smoking (N = 1,337). Multiple regression was used to test the association between covariates (sex, age, educational attainment, parent status, and smoking status), implicit attitude toward smoking, and explicit attitude toward smoking and support for tobacco control policies. The moderating effect of the covariates on the relation between attitudes and support for policies was also tested. Results: Females, those with higher educational attainment, parents, and nonsmokers expressed more support for tobacco control policy measures. For nonsmokers, only explicit attitude was significantly associated with support for policies. For smokers, both explicit and implicit attitudes were significantly associated with support. The effect of explicit attitude was stronger for those with lower educational attainment. Conclusions: Both explicit and implicit smoking attitudes are important for building support for tobacco control policies, particularly among smokers. More research is needed on how to influence explicit and implicit attitudes to inform policy advocacy campaigns. PMID:22581941
Macy, Jonathan T; Chassin, Laurie; Presson, Clark C
2013-01-01
This study examined the association between implicit and explicit attitudes toward smoking and support for tobacco control policies. Participants were from an ongoing longitudinal study of the natural history of smoking who also completed a web-based assessment of implicit attitudes toward smoking (N = 1,337). Multiple regression was used to test the association between covariates (sex, age, educational attainment, parent status, and smoking status), implicit attitude toward smoking, and explicit attitude toward smoking and support for tobacco control policies. The moderating effect of the covariates on the relation between attitudes and support for policies was also tested. Females, those with higher educational attainment, parents, and nonsmokers expressed more support for tobacco control policy measures. For nonsmokers, only explicit attitude was significantly associated with support for policies. For smokers, both explicit and implicit attitudes were significantly associated with support. The effect of explicit attitude was stronger for those with lower educational attainment. Both explicit and implicit smoking attitudes are important for building support for tobacco control policies, particularly among smokers. More research is needed on how to influence explicit and implicit attitudes to inform policy advocacy campaigns.
NASA Astrophysics Data System (ADS)
Park, Han-Earl; Park, Sang-Young; Kim, Sung-Woo; Park, Chandeok
2013-12-01
Development and experiment of an integrated orbit and attitude hardware-in-the-loop (HIL) simulator for autonomous satellite formation flying are presented. The integrated simulator system consists of an orbit HIL simulator for orbit determination and control, and an attitude HIL simulator for attitude determination and control. The integrated simulator involves four processes (orbit determination, orbit control, attitude determination, and attitude control), which interact with each other in the same way as actual flight processes do. Orbit determination is conducted by a relative navigation algorithm using double-difference GPS measurements based on the extended Kalman filter (EKF). Orbit control is performed by a state-dependent Riccati equation (SDRE) technique that is utilized as a nonlinear controller for the formation control problem. Attitude is determined from an attitude heading reference system (AHRS) sensor, and a proportional-derivative (PD) feedback controller is used to control the attitude HIL simulator using three momentum wheel assemblies. Integrated orbit and attitude simulations are performed for a formation reconfiguration scenario. By performing the four processes adequately, the desired formation reconfiguration from a baseline of 500-1000 m was achieved with meter-level position error and millimeter-level relative position navigation. This HIL simulation demonstrates the performance of the integrated HIL simulator and the feasibility of the applied algorithms in a real-time environment. Furthermore, the integrated HIL simulator system developed in the current study can be used as a ground-based testing environment to reproduce possible actual satellite formation operations.
Observation of planets by a circumpolar stratospheric telescope
NASA Astrophysics Data System (ADS)
Yamamoto, M.; Taguchi, M.; Yoshida, K.; Sakamoto, Y.; Nakano, T.; Shoji, Y.; Takahashi, Y.; Hamamoto, K.; Nakamoto, J.; Imai, M.
2012-12-01
Phenomena in the planetary atmospheres and plasmaspheres have been studied by various methods using emissions emitted from there in the spectral regions from radio wave to X-ray. Optical observation of a planet has been performed by a ground-based telescope, a satellite telescope and an orbiter. A balloon-borne telescope is proposed as another platform for optical remote sensing of planets. Since it is floated in the stratosphere at an altitude of about 32 km, fine weather condition, excellent seeing and high transmittance of the atmosphere in the near ultraviolet and infrared regions are expected. Especially a planet can be continuously monitored by a long-period circumpolar flight. For these reasons we have been developing a balloon-borne telescope system for planetary observations from the polar stratosphere. In this system a Schmidt-Cassegrain telescope with a 300-mm clear aperture is mounted on a gondola whose attitude is controlled by control moment gyros, an active decoupling motor, and attitude sensors. The gondola can float in the stratosphere for periods longer than 1 week. Pointing stability of 0.1"rms will be achieved by the cooperative operation of the following three-stage pointing devices: a gondola-attitude control system, two axis telescope gimbals for coarse guiding, and a tip/tilt mirror mount for guiding error correction. The optical path is divided to three paths to an ultraviolet camera, an infrared camera and a position-sensitive photomultiplier tube for detection of guiding error. The size of gondola is 1 m by 1 m by 2.7 m high, and the weight is 784 kg including the weight of ballast of 300 kg. The first experiment of the balloon-borne telescope system was conducted on June 3, 2009 at Taikicho, Hokkaido targeting Venus. However, it failed due to a trouble in an onboard computer. The balloon-borne telescope was redesigned for the second experiment in August in 2012, when the target planet is also Venus. In the presentation, the balloon-borne telescope system, the ground-test results of its pointing performance and the results of balloon experiment in 2012 will be reported. Overview of the gondola ;
Entropy-based adaptive attitude estimation
NASA Astrophysics Data System (ADS)
Kiani, Maryam; Barzegar, Aylin; Pourtakdoust, Seid H.
2018-03-01
Gaussian approximation filters have increasingly been developed to enhance the accuracy of attitude estimation in space missions. The effective employment of these algorithms demands accurate knowledge of system dynamics and measurement models, as well as their noise characteristics, which are usually unavailable or unreliable. An innovation-based adaptive filtering approach has been adopted as a solution to this problem; however, it exhibits two major challenges, namely appropriate window size selection and guaranteed assurance of positive definiteness for the estimated noise covariance matrices. The current work presents two novel techniques based on relative entropy and confidence level concepts in order to address the abovementioned drawbacks. The proposed adaptation techniques are applied to two nonlinear state estimation algorithms of the extended Kalman filter and cubature Kalman filter for attitude estimation of a low earth orbit satellite equipped with three-axis magnetometers and Sun sensors. The effectiveness of the proposed adaptation scheme is demonstrated by means of comprehensive sensitivity analysis on the system and environmental parameters by using extensive independent Monte Carlo simulations.
Identification of Time-Varying Pilot Control Behavior in Multi-Axis Control Tasks
NASA Technical Reports Server (NTRS)
Zaal, Peter M. T.; Sweet, Barbara T.
2012-01-01
Recent developments in fly-by-wire control architectures for rotorcraft have introduced new interest in the identification of time-varying pilot control behavior in multi-axis control tasks. In this paper a maximum likelihood estimation method is used to estimate the parameters of a pilot model with time-dependent sigmoid functions to characterize time-varying human control behavior. An experiment was performed by 9 general aviation pilots who had to perform a simultaneous roll and pitch control task with time-varying aircraft dynamics. In 8 different conditions, the axis containing the time-varying dynamics and the growth factor of the dynamics were varied, allowing for an analysis of the performance of the estimation method when estimating time-dependent parameter functions. In addition, a detailed analysis of pilots adaptation to the time-varying aircraft dynamics in both the roll and pitch axes could be performed. Pilot control behavior in both axes was significantly affected by the time-varying aircraft dynamics in roll and pitch, and by the growth factor. The main effect was found in the axis that contained the time-varying dynamics. However, pilot control behavior also changed over time in the axis not containing the time-varying aircraft dynamics. This indicates that some cross coupling exists in the perception and control processes between the roll and pitch axes.
Attitude Control Subsystem for the Advanced Communications Technology Satellite
NASA Technical Reports Server (NTRS)
Hewston, Alan W.; Mitchell, Kent A.; Sawicki, Jerzy T.
1996-01-01
This paper provides an overview of the on-orbit operation of the Attitude Control Subsystem (ACS) for the Advanced Communications Technology Satellite (ACTS). The three ACTS control axes are defined, including the means for sensing attitude and determining the pointing errors. The desired pointing requirements for various modes of control as well as the disturbance torques that oppose the control are identified. Finally, the hardware actuators and control loops utilized to reduce the attitude error are described.
Chassin, Laurie; Presson, Clark C; Sherman, Steven J; Seo, Dong-Chul; Macy, Jonathan T
2010-12-01
The current study tested implicit and explicit attitudes as prospective predictors of smoking cessation in a Midwestern community sample of smokers. Results showed that the effects of attitudes significantly varied with levels of experienced failure to control smoking and plans to quit. Explicit attitudes significantly predicted later cessation among those with low (but not high or average) levels of experienced failure to control smoking. Conversely, however, implicit attitudes significantly predicted later cessation among those with high levels of experienced failure to control smoking, but only if they had a plan to quit. Because smoking cessation involves both controlled and automatic processes, interventions may need to consider attitude change interventions that focus on both implicit and explicit attitudes. (PsycINFO Database Record (c) 2010 APA, all rights reserved).
NASA Technical Reports Server (NTRS)
DeKock, Brandon; Sanders, Devon; Vanzwieten, Tannen; Capo-Lugo, Pedro
2011-01-01
The FASTSAT-HSV01 spacecraft is a microsatellite with magnetic torque rods as it sole attitude control actuator. FASTSAT s multiple payloads and mission functions require the Attitude Control System (ACS) to maintain Local Vertical Local Horizontal (LVLH)-referenced attitudes without spin-stabilization, while the pointing errors for some attitudes be significantly smaller than the previous best-demonstrated for this type of control system. The mission requires the ACS to hold multiple stable, unstable, and non-equilibrium attitudes, as well as eject a 3U CubeSat from an onboard P-POD and recover from the ensuing tumble. This paper describes the Attitude Control System, the reasons for design choices, how the ACS integrates with the rest of the spacecraft, and gives recommendations for potential future applications of the work.
Attitude control with realization of linear error dynamics
NASA Technical Reports Server (NTRS)
Paielli, Russell A.; Bach, Ralph E.
1993-01-01
An attitude control law is derived to realize linear unforced error dynamics with the attitude error defined in terms of rotation group algebra (rather than vector algebra). Euler parameters are used in the rotational dynamics model because they are globally nonsingular, but only the minimal three Euler parameters are used in the error dynamics model because they have no nonlinear mathematical constraints to prevent the realization of linear error dynamics. The control law is singular only when the attitude error angle is exactly pi rad about any eigenaxis, and a simple intuitive modification at the singularity allows the control law to be used globally. The forced error dynamics are nonlinear but stable. Numerical simulation tests show that the control law performs robustly for both initial attitude acquisition and attitude control.
Coupled attitude-orbit dynamics and control for an electric sail in a heliocentric transfer mission.
Huo, Mingying; Zhao, Jun; Xie, Shaobiao; Qi, Naiming
2015-01-01
The paper discusses the coupled attitude-orbit dynamics and control of an electric-sail-based spacecraft in a heliocentric transfer mission. The mathematical model characterizing the propulsive thrust is first described as a function of the orbital radius and the sail angle. Since the solar wind dynamic pressure acceleration is induced by the sail attitude, the orbital and attitude dynamics of electric sails are coupled, and are discussed together. Based on the coupled equations, the flight control is investigated, wherein the orbital control is studied in an optimal framework via a hybrid optimization method and the attitude controller is designed based on feedback linearization control. To verify the effectiveness of the proposed control strategy, a transfer problem from Earth to Mars is considered. The numerical results show that the proposed strategy can control the coupled system very well, and a small control torque can control both the attitude and orbit. The study in this paper will contribute to the theory study and application of electric sail.
Coupled Attitude-Orbit Dynamics and Control for an Electric Sail in a Heliocentric Transfer Mission
Huo, Mingying; Zhao, Jun; Xie, Shaobiao; Qi, Naiming
2015-01-01
The paper discusses the coupled attitude-orbit dynamics and control of an electric-sail-based spacecraft in a heliocentric transfer mission. The mathematical model characterizing the propulsive thrust is first described as a function of the orbital radius and the sail angle. Since the solar wind dynamic pressure acceleration is induced by the sail attitude, the orbital and attitude dynamics of electric sails are coupled, and are discussed together. Based on the coupled equations, the flight control is investigated, wherein the orbital control is studied in an optimal framework via a hybrid optimization method and the attitude controller is designed based on feedback linearization control. To verify the effectiveness of the proposed control strategy, a transfer problem from Earth to Mars is considered. The numerical results show that the proposed strategy can control the coupled system very well, and a small control torque can control both the attitude and orbit. The study in this paper will contribute to the theory study and application of electric sail. PMID:25950179
High Accuracy Attitude Control of a Spacecraft Using Feedback Linearization
1992-05-01
High Accuracy Attitude Control of a Spacecraft Using Feedback Linearization A Thesis Presented by Louis Joseph PoehIman, Captain, USAF B.S., U.S. Air...High Accuracy Attitude Control of a Spacecraft Using Feedback Linearization by Louis Joseph Poehlman, Captain, USAF Submitted to the Department of...31 2-4 Attitude Determination and Control System Architecture ................. 33 3-1 Exact Linearization Using Nonlinear Feedback
ERIC Educational Resources Information Center
Oudekerk, Barbara A.; Allen, Joseph P.; Hafen, Christopher A.; Hessel, Elenda T.; Szwedo, David E.; Spilker, Ann
2014-01-01
Maternal and paternal psychological control, peer attitudes, and the interaction of psychological control and peer attitudes at age 13 were examined as predictors of risky sexual behavior before age 16 in a community sample of 181 youth followed from age 13 to 16. Maternal psychological control moderated the link between peer attitudes and sexual…
NASA Technical Reports Server (NTRS)
Woodard, Mark; Rohrbaugh, Dave
1995-01-01
The Advanced Composition Explorer (ACE) spacecraft is designed to fly in a spin-stabilized attitude. The spacecraft will carry two attitude sensors - a digital fine Sun sensor and a charge coupled device (CCD) star tracker - to allow ground-based determination of the spacecraft attitude and spin rate. Part of the processing that must be performed on the CCD star tracker data is the star identification. Star data received from the spacecraft must be matched with star information in the SKYMAP catalog to determine exactly which stars the sensor is tracking. This information, along with the Sun vector measured by the Sun sensor, is used to determine the spacecraft attitude. Several existing star identification (star ID) systems were examined to determine whether they could be modified for use on the ACE mission. Star ID systems which exist for three-axis stabilized spacecraft tend to be complex in nature and many require fairly good knowledge of the spacecraft attitude, making their use for ACE excessive. Star ID systems used for spinners carrying traditional slit star sensors would have to be modified to model the CCD star tracker. The ACE star ID algorithm must also be robust, in that it will be able to correctly identify stars even though the attitude is not known to a high degree of accuracy, and must be very efficient to allow real-time star identification. The paper presents the star ID algorithm that was developed for ACE. Results from prototype testing are also presented to demonstrate the efficiency, accuracy, and robustness of the algorithm.
A brief measure of attitudes toward mixed methods research in psychology.
Roberts, Lynne D; Povee, Kate
2014-01-01
The adoption of mixed methods research in psychology has trailed behind other social science disciplines. Teaching psychology students, academics, and practitioners about mixed methodologies may increase the use of mixed methods within the discipline. However, tailoring and evaluating education and training in mixed methodologies requires an understanding of, and way of measuring, attitudes toward mixed methods research in psychology. To date, no such measure exists. In this article we present the development and initial validation of a new measure: Attitudes toward Mixed Methods Research in Psychology. A pool of 42 items developed from previous qualitative research on attitudes toward mixed methods research along with validation measures was administered via an online survey to a convenience sample of 274 psychology students, academics and psychologists. Principal axis factoring with varimax rotation on a subset of the sample produced a four-factor, 12-item solution. Confirmatory factor analysis on a separate subset of the sample indicated that a higher order four factor model provided the best fit to the data. The four factors; 'Limited Exposure,' '(in)Compatibility,' 'Validity,' and 'Tokenistic Qualitative Component'; each have acceptable internal reliability. Known groups validity analyses based on preferred research orientation and self-rated mixed methods research skills, and convergent and divergent validity analyses based on measures of attitudes toward psychology as a science and scientist and practitioner orientation, provide initial validation of the measure. This brief, internally reliable measure can be used in assessing attitudes toward mixed methods research in psychology, measuring change in attitudes as part of the evaluation of mixed methods education, and in larger research programs.
Development of a decentralized multi-axis synchronous control approach for real-time networks.
Xu, Xiong; Gu, Guo-Ying; Xiong, Zhenhua; Sheng, Xinjun; Zhu, Xiangyang
2017-05-01
The message scheduling and the network-induced delays of real-time networks, together with the different inertias and disturbances in different axes, make the synchronous control of the real-time network-based systems quite challenging. To address this challenge, a decentralized multi-axis synchronous control approach is developed in this paper. Due to the limitations of message scheduling and network bandwidth, error of the position synchronization is firstly defined in the proposed control approach as a subset of preceding-axis pairs. Then, a motion message estimator is designed to reduce the effect of network delays. It is proven that position and synchronization errors asymptotically converge to zero in the proposed controller with the delay compensation. Finally, simulation and experimental results show that the developed control approach can achieve the good position synchronization performance for the multi-axis motion over the real-time network. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Dynamic Forms. Part 1: Functions
NASA Technical Reports Server (NTRS)
Meyer, George; Smith, G. Allan
1993-01-01
The formalism of dynamic forms is developed as a means for organizing and systematizing the design control systems. The formalism allows the designer to easily compute derivatives to various orders of large composite functions that occur in flight-control design. Such functions involve many function-of-a-function calls that may be nested to many levels. The component functions may be multiaxis, nonlinear, and they may include rotation transformations. A dynamic form is defined as a variable together with its time derivatives up to some fixed but arbitrary order. The variable may be a scalar, a vector, a matrix, a direction cosine matrix, Euler angles, or Euler parameters. Algorithms for standard elementary functions and operations of scalar dynamic forms are developed first. Then vector and matrix operations and transformations between parameterization of rotations are developed in the next level in the hierarchy. Commonly occurring algorithms in control-system design, including inversion of pure feedback systems, are developed in the third level. A large-angle, three-axis attitude servo and other examples are included to illustrate the effectiveness of the developed formalism. All algorithms were implemented in FORTRAN code. Practical experience shows that the proposed formalism may significantly improve the productivity of the design and coding process.
NASA Technical Reports Server (NTRS)
Barnstable, Bob; Polte, Hans; Kepes, Paul; Walker, Kevin; Jacobs, Jeff; Williams, Stephen
1990-01-01
The Copernicus spacecraft, to be launched on May 4, 2009, is designed for scientific exploration of the planet Pluto. The main objectives of this exploration is to accurately determine the mass, density, and composition of the two bodies in the Pluto-Charon system. A further goal of the exploration is to obtain precise images of the system. The spacecraft will be designed for three axis stability control. It will use the latest technological advances to optimize the performance, reliability, and cost of the spacecraft. Due to the long duration of the mission, nominally 12.6 years, the spacecraft will be powered by a long lasting radioactive power source. Although this type of power may have some environmental drawbacks, currently it is the only available source that is suitable for this mission. The planned trajectory provides flybys of Jupiter and Saturn. These flybys provide an opportunity for scientific study of these planets in addition to Pluto. The information obtained on these flybys will supplement the data obtained by the Voyager and Galileo missions. The topics covered include: (1) scientific instrumentation; (2) mission management, planning, and costing; (3) power and propulsion system; (4) structural subsystem; (5) command, control, and communication; and (6) attitude and articulation control.
Attitude Ground System (AGS) For The Magnetospheric Multi-Scale (MMS) Mission
NASA Technical Reports Server (NTRS)
Raymond, Juan C.; Sedlak, Joseph E.; Vint, Babak
2015-01-01
The Magnetospheric Multiscale (MMS) mission is a Solar-Terrestrial Probe mission consisting of four identically instrumented spin-stabilized spacecraft flying in an adjustable pyramid-like formation around the Earth. The formation of the MMS spacecraft allows for three-dimensional study of the phenomenon of magnetic reconnection, which is the primary objective of the mission. The MMS spacecraft were launched early on March 13, 2015 GMT. Due to the challenging and very constricted attitude and orbit requirements for performing the science, as well as the need to maintain the spacecraft formation, multiple ground functionalities were designed to support the mission. These functionalities were incorporated into a ground system known as the Attitude Ground System (AGS). Various AGS configurations have been used widely to support a variety of three-axis-stabilized and spin-stabilized spacecraft missions within the NASA Goddard Space Flight Center (GSFC). The original MMS operational concept required the AGS to perform highly accurate predictions of the effects of environmental disturbances on the spacecraft orientation and to plan the attitude maneuvers necessary to stay within the science attitude tolerance. The orbit adjustment requirements for formation control drove the need also to perform calibrations that have never been done before in support of NASA GSFC missions. The MMS mission required support analysts to provide fast and accurately calibrated values of the inertia tensor, center of mass, and accelerometer bias for each MMS spacecraft. During early design of the AGS functionalities, a Kalman filter for estimating the attitude, body rates, center of mass, and accelerometer bias, using only star tracker and accelerometer measurements, was heavily analyzed. A set of six distinct filters was evaluated and considered for estimating the spacecraft attitude and body rates using star tracker data only. Four of the six filters are closely related and were compared during support of the Time History of Events and Macroscale Interactions during Substorms (THEMIS) and Space Technology-5 (ST-5) missions. These analyses exposed high dependency and sensitivity on the knowledge of the spacecraft inertia tensor for both body rates and accelerometer bias estimation. The conclusion of the analysis led to the design of an inertia tensor calibration technique using only star tracker data. The second most important result of the analysis was the design of two separate Kalman filters to estimate the spacecraft attitude and body rates and the accelerometer bias instead of a single combined filter. In this paper, the calibration results of the mass properties, as well as the performance of the spacecraft attitude and body rates filters using flight data are presented and compared against the mission requirements.
Investigation of the effects of bandwidth and time delay on helicopter roll-axis handling qualities
NASA Technical Reports Server (NTRS)
Pausder, Heinz-Juergen; Blanken, Chris L.
1992-01-01
Several years of cooperative research conducted under the U.S./German Memorandum of Understanding (MOU) in helicopter flight control has recently resulted in a successful handling qualities study. The focus of this cooperative research has been the effects on handling qualities due to time delays in combination with a high bandwidth vehicle. The jointly performed study included the use of U.S. ground-based simulation and German in-flight simulation facilities. The NASA-Ames Vertical Motion Simulator (VMS) was used to develop a high bandwidth slalom tracking task which took into consideration the constraints of the facilities. The VMS was also used to define a range of the test parameters and to perform initial handling qualities evaluations. The flight tests were conducted using DLR's variable-stability BO 105 S3 Advanced Technology Testing Helicopter System (ATTHeS). Configurations included a rate command and an attitude command response system with added time delays up to 160 milliseconds over the baseline and bandwidth values between 1.5 and 4.5 rad/sec. Sixty-six evaluations were performed in about 25 hr of flight time during 10 days of testing. The results indicate a need to more tightly constrain the allowable roll axis phase delay for the Level 1 and Level 2 requirements in the U.S. Army's specification for helicopter handling qualities, ADS-33C.
Investigation of the effects of bandwidth and time delay on helicopter roll-axis handling qualities
NASA Technical Reports Server (NTRS)
Pausder, Heinz-Juergen; Blanken, Chris L.
1993-01-01
Several years of cooperative research conducted under the U.S./German Memorandum of Understanding (MOU) in helicopter flight control has recently resulted in a successful handling qualities study. The focus of this cooperative research has been the effects on handling qualities due to time delays in combination with a high bandwidth vehicle. The jointly performed study included the use of U.S. ground-based simulation and German in-flight simulation facilities. The NASA-Ames Vertical Motion Simulator (VMS) was used to develop a high bandwidth slalom tracking task which took into consideration the constraints of the facilities. The VMS was also used to define a range of the test parameters and to perform initial handling qualities evaluations. The flight tests were conducted using DLR's variable-stability BO 105 S3 Advanced Technology Testing Helicopter System (ATTHeS). Configurations included a rate command and an attitude command response system with added time delays up to 160 milliseconds over the baseline and bandwidth values between 1.5 and 4.5 rad/sec. Sixty-six evaluations were performed in about 25 hours of flight time during ten days of testing. The results indicate a need to more tightly constrain the allowable roll axis phase delay for the Level 1 and Level 2 requirements in the U.S. Army's specification for helicopter handling qualities, ADS-33C.
The system design of TRIO cinema Mission
NASA Astrophysics Data System (ADS)
Jin, Ho; Seon, Jongho; Kim, Khan-Hyuk; Lee, Dong-Hun; Kim, Kap-Sung; Lin, Robert; Parks, George; Tindall, Craig; Horbury, T. S.; Larson, Davin; Sample, John
TRIO (Triplet Ionospheric Observatory) CINEMA ( Cubesat for Ion, Neutral, Electron, MAg-netic fields) is a space science mission with three identical cubesats. The main scientific objec-tives are a multi-observation of ionospheric ENA (Energetic Neutral Atom) imaging, ionospheric signature of suprathermal electrons and ions and complementary measurements of magnetic fields for particle data. For this, Main payloads consist of a suprathermal electron, ion, neutral (STEIN) instrument and a 3-axis magnetometer of magnetoresistive sensors. The CINEMA is a 3-unit CubeSat, which translates to a 10 cm x 10 cm x 30 cm in volume and no more than four kilograms in mass. An attitude control system (ACS) uses torque coils, a sun sensor and the magnetometers and spin CINEMA spcaecraft 4 rpm with the spin axis perpendicular to the ecliptic plane. CINEMA will be placed into a high inclination low earth orbit that crosses the auroral zone and cusp. Three institutes are collaborating to develop CINEMA cubesats: i) two cubesats by Kyung Hee University (KHU) under their World Class University (WCU) program, ii) one cubesat by UC Berkeley under the NSF support, and iii) three magnetometers are provide by Imperial College, respectively. In this paper, we describe the system design and their performance of TR IO cinema mission. TRIO cinema's development of miniature in-strument and spacecraft spinning operation will play an important role for future nanosatellite space missions
Estimation Filter for Alignment of the Spitzer Space Telescope
NASA Technical Reports Server (NTRS)
Bayard, David
2007-01-01
A document presents a summary of an onboard estimation algorithm now being used to calibrate the alignment of the Spitzer Space Telescope (formerly known as the Space Infrared Telescope Facility). The algorithm, denoted the S2P calibration filter, recursively generates estimates of the alignment angles between a telescope reference frame and a star-tracker reference frame. At several discrete times during the day, the filter accepts, as input, attitude estimates from the star tracker and observations taken by the Pointing Control Reference Sensor (a sensor in the field of view of the telescope). The output of the filter is a calibrated quaternion that represents the best current mean-square estimate of the alignment angles between the telescope and the star tracker. The S2P calibration filter incorporates a Kalman filter that tracks six states - two for each of three orthogonal coordinate axes. Although, in principle, one state per axis is sufficient, the use of two states per axis makes it possible to model both short- and long-term behaviors. Specifically, the filter properly models transient learning, characteristic times and bounds of thermomechanical drift, and long-term steady-state statistics, whether calibration measurements are taken frequently or infrequently. These properties ensure that the S2P filter performance is optimal over a broad range of flight conditions, and can be confidently run autonomously over several years of in-flight operation without human intervention.
ELSA- The European Levitated Spherical Actruator
NASA Astrophysics Data System (ADS)
Ruiz, M.; Serin, J.; Telteu-Nedelcu, D.; De La Vallee Poussin, H.; Onillon, E.; Rossini, L.
2014-08-01
The reaction sphere is a magnetic bearing spherical actuator consisting of a permanent magnet spherical rotor that can be accelerated in any direction. It consists of an 8-pole permanent magnet spherical rotor that is magnetically levitated and can be accelerated about any axis by a 20-pole stator with electromagnets. The spherical actuator is proposed as a potential alternative to traditional momentum exchange devices such as reaction wheels (RWs) or control moment gyroscopes (CMGs). This new actuator provides several benefits such as reduced mass and power supply allocated to the attitude and navigation unit, performance gain, and improved reliability due to the absence of mechanical bearings. The paper presents the work done on the levitated spherical actuator and more precisely the electrical drive including its control unit and power parts. An elegant breadboard is currently being manufactured within the frame of an FP7 project. This project also comprises a feasibility study to show the feasibility of integrating such a system on a flight platform and to identify all the challenges to be solved in terms of technology or components to be developed.
NASA Technical Reports Server (NTRS)
Lewis, Michael S.; Mansur, M. Hossein; Chen, Robert T. N.
1987-01-01
A piloted simulation study investigating handling qualities and flight characteristics required for helicopter air to air combat is presented. The Helicopter Air Combat system was used to investigate this role for Army rotorcraft. Experimental variables were the maneuver envelope size (load factor and sideslip), directional axis handling qualities, and pitch and roll control-response type. Over 450 simulated, low altitude, one-on-one engagements were conducted. Results from the experiment indicate that a well damped directional response, low sideforce caused by sideslip, and some effective dihedral are all desirable for weapon system performance, good handling qualities, and low pilot workload. An angular rate command system was favored over the attitude type pitch and roll response for most applications, and an enhanced maneuver envelope size over that of current generation aircraft was found to be advantageous. Pilot technique, background, and experience are additional factors which had a significant effect on performance in the air combat tasks investigated. The implication of these results on design requirements for future helicopters is presented.
In-orbit results of Delfi-n3Xt: Lessons learned and move forward
NASA Astrophysics Data System (ADS)
Guo, Jian; Bouwmeester, Jasper; Gill, Eberhard
2016-04-01
This paper provides an update of the Delfi nanosatellite programme of the Delft University of Technology (TU Delft), with a focus on the recent in-orbit results of the second TU Delft satellite Delfi-n3Xt. In addition to the educational objective that has been reached with more than 80 students involved in the project, most of the technological objectives of Delfi-n3Xt have also been fulfilled with successful in-orbit demonstrations of payloads and platform. Among these demonstrations, four are highlighted in this paper, including a solid cool gas micropropulsion system, a new type of solar cell, a more robust Command and Data Handling Subsystem (CDHS), and a highly integrated Attitude Determination and Control Subsystem (ADCS) that performs three-axis active control using reaction wheels. Through the development of Delfi-n3Xt, significant experiences and lessons have been learned, which motivated a further step towards DelFFi, the third Delfi CubeSat mission, to demonstrate autonomous formation flying using two CubeSats named Delta and Phi. A brief update of the DelFFi mission is also provided.
Systems Engineering Challenges for GSFC Space Science Mission Operations
NASA Technical Reports Server (NTRS)
Thienel, Julie; Harman, Richard R.
2017-01-01
The NASA Goddard Space Flight Center Space Science Mission Operations (SSMO) project currently manages19 missions for the NASA Science Mission Directorate, within the Planetary, Astrophysics, and Heliophysics Divisions. The mission lifespans range from just a few months to more than20 years. The WIND spacecraft, the oldest SSMO mission, was launched in 1994. SSMO spacecraft reside in low earth, geosynchronous,highly elliptical, libration point, lunar, heliocentric,and Martian orbits. SSMO spacecraft range in size from 125kg (Aeronomy of Ice in the Mesosphere (AIM)) to over 4000kg (Fermi Gamma-Ray Space Telescope (Fermi)). The attitude modes include both spin and three-axis stabilized, with varying requirements on pointing accuracy. The spacecraft are operated from control centers at Goddard and off-site control centers;the Lunar Reconnaissance Orbiter (LRO), the Solar Dynamics Observatory (SDO) and Magnetospheric MultiScale (MMS)mission were built at Goddard. The Advanced Composition Explorer (ACE) and Wind are operated out of a multi-mission operations center, which will also host several SSMO-managed cubesats in 2017. This paper focuses on the systems engineeringchallenges for such a large and varied fleet of spacecraft.
NASA Astrophysics Data System (ADS)
Ovchinnikov, M. Yu.; Ivanov, D. S.; Ivlev, N. A.; Karpenko, S. O.; Roldugin, D. S.; Tkachev, S. S.
2014-01-01
Design, analytical investigation, laboratory and in-flight testing of the attitude determination and control system (ADCS) of a microsatellites are considered. The system consists of three pairs of reaction wheels, three magnetorquers, a set of Sun sensors, a three-axis magnetometer and a control unit. The ADCS is designed for a small 10-50 kg LEO satellite. System development is accomplished in several steps: satellite dynamics preliminary study using asymptotical and numerical techniques, hardware and software design, laboratory testing of each actuator and sensor and the whole ADCS. Laboratory verification is carried out on the specially designed test-bench. In-flight ADCS exploitation results onboard the Russian microsatellite "Chibis-M" are presented. The satellite was developed, designed and manufactured by the Institute of Space Research of RAS. "Chibis-M" was launched by the "Progress-13M" cargo vehicle on January 25, 2012 after undocking from the International Space Station (ISS). This paper assess both the satellite and the ADCS mock-up dynamics. Analytical, numerical and laboratory study results are in good correspondence with in-flight data.
Oudekerk, Barbara A; Allen, Joseph P; Hafen, Christopher A; Hessel, Elenda T; Szwedo, David E; Spilker, Ann
2014-05-01
Maternal and paternal psychological control, peer attitudes, and the interaction of psychological control and peer attitudes at age 13 were examined as predictors of risky sexual behavior before age 16 in a community sample of 181 youth followed from age 13 to 16. Maternal psychological control moderated the link between peer attitudes and sexual behavior. Peer acceptance of early sex predicted greater risky sexual behaviors, but only for teens whose mothers engaged in high levels of psychological control. Paternal psychological control demonstrated the same moderating effect for girls; for boys, however, high levels of paternal control predicted risky sex regardless of peer attitudes. Results are consistent with the theory that peer influences do not replace parental influences with regard to adolescent sexual behavior; rather, parental practices continue to serve an important role either directly forecasting sexual behavior or moderating the link between peer attitudes and sexual behavior.
Oudekerk, Barbara A.; Allen, Joseph P.; Hafen, Christopher A.; Hessel, Elenda T.; Szwedo, David E.; Spilker, Ann
2013-01-01
Maternal and paternal psychological control, peer attitudes, and the interaction of psychological control and peer attitudes at age 13 were examined as predictors of risky sexual behavior before age 16 in a community sample of 181 youth followed from age 13 to 16. Maternal psychological control moderated the link between peer attitudes and sexual behavior. Peer acceptance of early sex predicted greater risky sexual behaviors, but only for teens whose mothers engaged in high levels of psychological control. Paternal psychological control demonstrated the same moderating effect for girls; for boys, however, high levels of paternal control predicted risky sex regardless of peer attitudes. Results are consistent with the theory that peer influences do not replace parental influences with regard to adolescent sexual behavior; rather, parental practices continue to serve an important role either directly forecasting sexual behavior or moderating the link between peer attitudes and sexual behavior. PMID:25328265
Position, Attitude, and Fault-Tolerant Control of Tilting-Rotor Quadcopter
NASA Astrophysics Data System (ADS)
Kumar, Rumit
The aim of this thesis is to present algorithms for autonomous control of tilt-rotor quadcopter UAV. In particular, this research work describes position, attitude and fault tolerant control in tilt-rotor quadcopter. Quadcopters are one of the most popular and reliable unmanned aerial systems because of the design simplicity, hovering capabilities and minimal operational cost. Numerous applications for quadcopters have been explored all over the world but very little work has been done to explore design enhancements and address the fault-tolerant capabilities of the quadcopters. The tilting rotor quadcopter is a structural advancement of traditional quadcopter and it provides additional actuated controls as the propeller motors are actuated for tilt which can be utilized to improve efficiency of the aerial vehicle during flight. The tilting rotor quadcopter design is accomplished by using an additional servo motor for each rotor that enables the rotor to tilt about the axis of the quadcopter arm. Tilting rotor quadcopter is a more agile version of conventional quadcopter and it is a fully actuated system. The tilt-rotor quadcopter is capable of following complex trajectories with ease. The control strategy in this work is to use the propeller tilts for position and orientation control during autonomous flight of the quadcopter. In conventional quadcopters, two propellers rotate in clockwise direction and other two propellers rotate in counter clockwise direction to cancel out the effective yawing moment of the system. The variation in rotational speeds of these four propellers is utilized for maneuvering. On the other hand, this work incorporates use of varying propeller rotational speeds along with tilting of the propellers for maneuvering during flight. The rotational motion of propellers work in sync with propeller tilts to control the position and orientation of the UAV during the flight. A PD flight controller is developed to achieve various modes of the flight. Further, the performance of the controller and the tilt-rotor design has been compared with respect to the conventional quadcopter in the presence of wind disturbances and sensor uncertainties. In this work, another novel feed-forward control design approach is presented for complex trajectory tracking during autonomous flight. Differential flatness based feed-forward position control is employed to enhance the performance of the UAV during complex trajectory tracking. By accounting for differential flatness based feed-forward control input parameters, a new PD controller is designed to achieve the desired performance in autonomous flight. The results for tracking complex trajectories have been presented by performing numerical simulations with and without environmental uncertainties to demonstrate robustness of the controller during flight. The conventional quadcopters are under-actuated systems and, upon failure of one propeller, the conventional quadcopter would have a tendency of spinning about the primary axis fixed to the vehicle as an outcome of the asymmetry in resultant yawing moment in the system. In this work, control of tilt-rotor quadcopter is presented upon failure of one propeller during flight. The tilt-rotor quadcopter is capable of handling a propeller failure and hence is a fault-tolerant system. The dynamic model of tilting-rotor quadcopter with one propeller failure is derived and a controller has been designed to achieve hovering and navigation capability. The simulation results of way point navigation, complex trajectory tracking and fault-tolerance are presented.
Event-triggered attitude control of spacecraft
NASA Astrophysics Data System (ADS)
Wu, Baolin; Shen, Qiang; Cao, Xibin
2018-02-01
The problem of spacecraft attitude stabilization control system with limited communication and external disturbances is investigated based on an event-triggered control scheme. In the proposed scheme, information of attitude and control torque only need to be transmitted at some discrete triggered times when a defined measurement error exceeds a state-dependent threshold. The proposed control scheme not only guarantees that spacecraft attitude control errors converge toward a small invariant set containing the origin, but also ensures that there is no accumulation of triggering instants. The performance of the proposed control scheme is demonstrated through numerical simulation.
Highly miniaturized FEEP propulsion system (NanoFEEP) for attitude and orbit control of CubeSats
NASA Astrophysics Data System (ADS)
Bock, Daniel; Tajmar, Martin
2018-03-01
A highly miniaturized Field Emission Electric Propulsion (FEEP) system is currently under development at TU Dresden, called NanoFEEP [1]. The highly miniaturized thruster heads are very compact and have a volume of less than 3 cm3 and a weight of less than 6 g each. One thruster is able to generate continuous thrust of up to 8 μN with short term peaks of up to 22 μN. The very compact design and low power consumption (heating power demand between 50 and 150 mW) are achieved by using Gallium as metal propellant with its low melting point of approximately 30 °C. This makes it possible to implement an electric propulsion system consisting of four thruster heads, two neutralizers and the necessary electronics on a 1U CubeSat with its strong limitation in space, weight and available power. Even formation flying of 1U CubeSats using an electric propulsion system is possible with this system, which is shown by the example of a currently planned cooperation project between Wuerzburg University, Zentrum fuer Telematik and TU Dresden. It is planned to use the NanoFEEP electric propulsion system on the UWE (University Wuerzburg Experimental) 1U CubeSat platform [2] to demonstrate orbit and two axis attitude control with our electric propulsion system NanoFEEP. We present the latest performance characteristics of the NanoFEEP thrusters and the highly miniaturized electronics. Additionally, the concept and the current status of a novel cold neutralizer chip using Carbon Nano Tubes (CNTs) is presented.
Huang, Haoqian; Chen, Xiyuan; Zhou, Zhikai; Xu, Yuan; Lv, Caiping
2014-01-01
High accuracy attitude and position determination is very important for underwater gliders. The cross-coupling among three attitude angles (heading angle, pitch angle and roll angle) becomes more serious when pitch or roll motion occurs. This cross-coupling makes attitude angles inaccurate or even erroneous. Therefore, the high accuracy attitude and position determination becomes a difficult problem for a practical underwater glider. To solve this problem, this paper proposes backing decoupling and adaptive extended Kalman filter (EKF) based on the quaternion expanded to the state variable (BD-AEKF). The backtracking decoupling can eliminate effectively the cross-coupling among the three attitudes when pitch or roll motion occurs. After decoupling, the adaptive extended Kalman filter (AEKF) based on quaternion expanded to the state variable further smoothes the filtering output to improve the accuracy and stability of attitude and position determination. In order to evaluate the performance of the proposed BD-AEKF method, the pitch and roll motion are simulated and the proposed method performance is analyzed and compared with the traditional method. Simulation results demonstrate the proposed BD-AEKF performs better. Furthermore, for further verification, a new underwater navigation system is designed, and the three-axis non-magnetic turn table experiments and the vehicle experiments are done. The results show that the proposed BD-AEKF is effective in eliminating cross-coupling and reducing the errors compared with the conventional method. PMID:25479331
Huang, Haoqian; Chen, Xiyuan; Zhou, Zhikai; Xu, Yuan; Lv, Caiping
2014-12-03
High accuracy attitude and position determination is very important for underwater gliders. The cross-coupling among three attitude angles (heading angle, pitch angle and roll angle) becomes more serious when pitch or roll motion occurs. This cross-coupling makes attitude angles inaccurate or even erroneous. Therefore, the high accuracy attitude and position determination becomes a difficult problem for a practical underwater glider. To solve this problem, this paper proposes backing decoupling and adaptive extended Kalman filter (EKF) based on the quaternion expanded to the state variable (BD-AEKF). The backtracking decoupling can eliminate effectively the cross-coupling among the three attitudes when pitch or roll motion occurs. After decoupling, the adaptive extended Kalman filter (AEKF) based on quaternion expanded to the state variable further smoothes the filtering output to improve the accuracy and stability of attitude and position determination. In order to evaluate the performance of the proposed BD-AEKF method, the pitch and roll motion are simulated and the proposed method performance is analyzed and compared with the traditional method. Simulation results demonstrate the proposed BD-AEKF performs better. Furthermore, for further verification, a new underwater navigation system is designed, and the three-axis non-magnetic turn table experiments and the vehicle experiments are done. The results show that the proposed BD-AEKF is effective in eliminating cross-coupling and reducing the errors compared with the conventional method.
Adaptive mass expulsion attitude control system
NASA Technical Reports Server (NTRS)
Rodden, John J. (Inventor); Stevens, Homer D. (Inventor); Carrou, Stephane (Inventor)
2001-01-01
An attitude control system and method operative with a thruster controls the attitude of a vehicle carrying the thruster, wherein the thruster has a valve enabling the formation of pulses of expelled gas from a source of compressed gas. Data of the attitude of the vehicle is gathered, wherein the vehicle is located within a force field tending to orient the vehicle in a first attitude different from a desired attitude. The attitude data is evaluated to determine a pattern of values of attitude of the vehicle in response to the gas pulses of the thruster and in response to the force field. The system and the method maintain the attitude within a predetermined band of values of attitude which includes the desired attitude. Computation circuitry establishes an optimal duration of each of the gas pulses based on the pattern of values of attitude, the optimal duration providing for a minimal number of opening and closure operations of the valve. The thruster is operated to provide gas pulses having the optimal duration.
Distributed attitude synchronization of formation flying via consensus-based virtual structure
NASA Astrophysics Data System (ADS)
Cong, Bing-Long; Liu, Xiang-Dong; Chen, Zhen
2011-06-01
This paper presents a general framework for synchronized multiple spacecraft rotations via consensus-based virtual structure. In this framework, attitude control systems for formation spacecrafts and virtual structure are designed separately. Both parametric uncertainty and external disturbance are taken into account. A time-varying sliding mode control (TVSMC) algorithm is designed to improve the robustness of the actual attitude control system. As for the virtual attitude control system, a behavioral consensus algorithm is presented to accomplish the attitude maneuver of the entire formation and guarantee a consistent attitude among the local virtual structure counterparts during the attitude maneuver. A multiple virtual sub-structures (MVSSs) system is introduced to enhance current virtual structure scheme when large amounts of spacecrafts are involved in the formation. The attitude of spacecraft is represented by modified Rodrigues parameter (MRP) for its non-redundancy. Finally, a numerical simulation with three synchronization situations is employed to illustrate the effectiveness of the proposed strategy.
Elliptic nozzle aspect ratio effect on controlled jet propagation
NASA Astrophysics Data System (ADS)
Aravindh Kumar, S. M.; Rathakrishnan, Ethirajan
2017-04-01
The present study deals with the control of a Mach 2 elliptic jet from a convergent-divergent elliptic nozzle of aspect ratio 4 using tabs at the nozzle exit. The experiments were carried out for rectangular and triangular tabs of the same blockage, placed along the major and minor axes of the nozzle exit, at different levels of nozzle expansion. The triangular tabs along the minor axis promoted superior mixing compared to the other controlled jets and caused substantial core length reduction at all the nozzle pressure ratios studied. The rectangular tabs along the minor axis caused core length reduction at all pressure ratios, but the values were minimal compared to that of triangular tabs along the minor axis. For all the test conditions, the mixing promotion caused by tabs along the major axis was inferior to that of tabs along the minor axis. The waves present in the core of controlled jets were visualized using a shadowgraph. Comparison of the present results with the results of a controlled Mach 2 elliptic jet of aspect ratio 2 (Aravindh Kumar and Sathakrishnan 2016 J. Propulsion Power 32 121-33, Aravindh Kumar and Rathakrishnan 2016 J. Aerospace Eng. at press (doi:10.1177/0954410016652921)) show that for all levels of expansion, the mixing effectiveness of triangular tabs along the minor axis of an aspect ratio 4 nozzle is better than rectangular or triangular tabs along the minor axis of an aspect ratio 2 nozzle.
Energy management and attitude control for spacecraft
NASA Astrophysics Data System (ADS)
Costic, Bret Thomas
2001-07-01
This PhD dissertation describes the design and implementation of various control strategies centered around spacecraft applications: (i) an attitude control system for spacecraft, (ii) flywheels used for combined attitude and energy tracking, and (iii) an adaptive autobalancing control algorithm. The theory found in each of these sections is demonstrated through simulation or experimental results. An introduction to each of these three primary chapters can be found in chapter one. The main problem addressed in the second chapter is the quaternion-based, attitude tracking control of rigid spacecraft without angular velocity measurements and in the presence of an unknown inertia matrix. As a stepping-stone, an adaptive, full-state feedback controller that compensates for parametric uncertainty while ensuring asymptotic attitude tracking errors is designed. The adaptive, full-state feedback controller is then redesigned such that the need for angular velocity measurements is eliminated. The proposed adaptive, output feedback controller ensures asymptotic attitude tracking. This work uses a four-parameter representation of the spacecraft attitude that does not exhibit singular orientations as in the case of the previous three-parameter representation-based results. To the best of my knowledge, this represents the first solution to the adaptive, output feedback, attitude tracking control problem for the quaternion representation. Simulation results are included to illustrate the performance of the proposed output feedback control strategy. The third chapter is devoted to the use of multiple flywheels that integrate the energy storage and attitude control functions in space vehicles. This concept, which is referred to as an Integrated Energy Management and Attitude Control (IEMAC) system, reduces the space vehicle bus mass, volume, cost, and maintenance requirements while maintaining or improving the space vehicle performance. To this end, two nonlinear IEMAC strategies (model-based and adaptive) that simultaneously track a desired attitude trajectory and desired energy/power profile are presented. Both strategies ensure asymptotic tracking while the adaptive controller compensates for uncertain spacecraft inertia. In the final chapter, a control strategy is designed for a rotating, unbalanced disk. The control strategy, which is composed of a control torque and two control forces, regulates the disk displacement and ensures angular velocity tracking. The controller uses a desired compensation adaptation law and a gain adjusted forgetting factor to achieve exponential stability despite the lack of knowledge of the imbalance-related parameters, provided a mild persistency of excitation condition is satisfied.
Attributions and Attitudes of Mothers and Fathers in the United States.
Lansford, Jennifer E; Bornstein, Marc H; Dodge, Kenneth A; Skinner, Ann T; Putnick, Diane L; Deater-Deckard, Kirby
2011-01-01
OBJECTIVE.: The present study examined mean level similarities and differences as well as correlations between U.S. mothers' and fathers' attributions regarding successes and failures in caregiving situations and progressive versus authoritarian attitudes. DESIGN.: Interviews were conducted with both mothers and fathers in 139 European American, Latin American, and African American families. RESULTS.: Interactions between parent gender and ethnicity emerged for adult-controlled failure and perceived control over failure. Fathers reported higher adult-controlled failure and child-controlled failure attributions than did mothers, whereas mothers reported attitudes that were more progressive and modern than did fathers; these differences remained significant after controlling for parents' age, education, and possible social desirability bias. Ethnic differences emerged for five of the seven attributions and attitudes examined; four remained significant after controlling for parents' age, education, and possible social desirability bias. Medium effect sizes were found for concordance between parents in the same family for attributions regarding uncontrollable success, child-controlled failure, progressive attitudes, authoritarian attitudes, and modernity of attitudes after controlling for parents' age, education, and possible social desirability bias. CONCLUSIONS.: This work elucidates ways that parent gender and ethnicity relate to attributions regarding U.S. parents' successes and failures in caregiving situations and to their progressive versus authoritarian parenting attitudes.
Attributions and Attitudes of Mothers and Fathers in the United States
Lansford, Jennifer E.; Bornstein, Marc H.; Dodge, Kenneth A.; Skinner, Ann T.; Putnick, Diane L.; Deater-Deckard, Kirby
2011-01-01
SYNOPSIS Objective. The present study examined mean level similarities and differences as well as correlations between U.S. mothers’ and fathers’ attributions regarding successes and failures in caregiving situations and progressive versus authoritarian attitudes. Design. Interviews were conducted with both mothers and fathers in 139 European American, Latin American, and African American families. Results. Interactions between parent gender and ethnicity emerged for adult-controlled failure and perceived control over failure. Fathers reported higher adult-controlled failure and child-controlled failure attributions than did mothers, whereas mothers reported attitudes that were more progressive and modern than did fathers; these differences remained significant after controlling for parents’ age, education, and possible social desirability bias. Ethnic differences emerged for five of the seven attributions and attitudes examined; four remained significant after controlling for parents’ age, education, and possible social desirability bias. Medium effect sizes were found for concordance between parents in the same family for attributions regarding uncontrollable success, child-controlled failure, progressive attitudes, authoritarian attitudes, and modernity of attitudes after controlling for parents’ age, education, and possible social desirability bias. Conclusions. This work elucidates ways that parent gender and ethnicity relate to attributions regarding U.S. parents’ successes and failures in caregiving situations and to their progressive versus authoritarian parenting attitudes. PMID:21822402
SSS-A attitude control prelaunch analysis and operations plan
NASA Technical Reports Server (NTRS)
Werking, R. D.; Beck, J.; Gardner, D.; Moyer, P.; Plett, M.
1971-01-01
A description of the attitude control support being supplied by the Mission and Data Operations Directorate is presented. Descriptions of the computer programs being used to support the mission for attitude determination, prediction, control, and definitive attitude processing are included. In addition, descriptions of the operating procedures which will be used to accomplish mission objectives are provided.
SED16 autonomous star tracker night sky testing
NASA Astrophysics Data System (ADS)
Foisneau, Thierry; Piriou, Véronique; Perrimon, Nicolas; Jacob, Philippe; Blarre, Ludovic; Vilaire, Didier
2017-11-01
The SED16 is an autonomous multi-missions star tracker which delivers three axis satellite attitude in an inertial reference frame and the satellite angular velocity with no prior information. The qualification process of this star sensor includes five validation steps using optical star simulator, digitized image simulator and a night sky tests setup. The night sky testing was the final step of the qualification process during which all the functions of the star tracker were used in almost nominal conditions : Autonomous Acquisition of the attitude, Autonomous Tracking of ten stars. These tests were performed in Calern in the premises of the OCA (Observatoire de la Cote d'Azur). The test set-up and the test results are described after a brief review of the sensor main characteristics and qualification process.
NASA Technical Reports Server (NTRS)
Boland, J. S., III
1973-01-01
The conventional six-engine reaction control jet relay attitude control law with deadband is shown to be a good linear approximation to a weighted time-fuel optimal control law. Techniques for evaluating the value of the relative weighting between time and fuel for a particular relay control law is studied along with techniques to interrelate other parameters for the two control laws. Vehicle attitude control laws employing control moment gyros are then investigated. Steering laws obtained from the expression for the reaction torque of the gyro configuration are compared to a total optimal attitude control law that is derived from optimal linear regulator theory. This total optimal attitude control law has computational disadvantages in the solving of the matrix Riccati equation. Several computational algorithms for solving the matrix Riccati equation are investigated with respect to accuracy, computational storage requirements, and computational speed.
Helicopter flight dynamics simulation with a time-accurate free-vortex wake model
NASA Astrophysics Data System (ADS)
Ribera, Maria
This dissertation describes the implementation and validation of a coupled rotor-fuselage simulation model with a time-accurate free-vortex wake model capable of capturing the response to maneuvers of arbitrary amplitude. The resulting model has been used to analyze different flight conditions, including both steady and transient maneuvers. The flight dynamics model is based on a system of coupled nonlinear rotor-fuselage differential equations in first-order, state-space form. The rotor model includes flexible blades, with coupled flap-lag-torsion dynamics and swept tips; the rigid body dynamics are modeled with the non-linear Euler equations. The free wake models the rotor flow field by tracking the vortices released at the blade tips. Their behavior is described by the equations of vorticity transport, which is approximated using finite differences, and solved using a time-accurate numerical scheme. The flight dynamics model can be solved as a system of non-linear algebraic trim equations to determine the steady state solution, or integrated in time in response to pilot-applied controls. This study also implements new approaches to reduce the prohibitive computational costs associated with such complex models without losing accuracy. The mathematical model was validated for trim conditions in level flight, turns, climbs and descents. The results obtained correlate well with flight test data, both in level flight as well as turning and climbing and descending flight. The swept tip model was also found to improve the trim predictions, particularly at high speed. The behavior of the rigid body and the rotor blade dynamics were also studied and related to the aerodynamic load distributions obtained with the free wake induced velocities. The model was also validated in a lateral maneuver from hover. The results show improvements in the on-axis prediction, and indicate a possible relation between the off-axis prediction and the lack of rotor-body interaction aerodynamics. The swept blade model improves both the on-axis and off-axis response. An axial descent though the vortex ring state was simulated. As theǒrtex ring" goes through the rotor, the unsteady loads produce large attitude changes, unsteady flapping, fluctuating thrust and an increase in power required. A roll reversal maneuver was found useful in understanding the cross-couplings effects found in rotorcraft, specifically the effect of the aerodynamic loading on the rotor orientation and the off-axis response.
NASA Astrophysics Data System (ADS)
Keum, Jung-Hoon; Ra, Sung-Woong
2009-12-01
Nonlinear sliding surface design in variable structure systems for spacecraft attitude control problems is studied. A robustness analysis is performed for regular form of system, and calculation of actuator bandwidth is presented by reviewing sliding surface dynamics. To achieve non-singular attitude description and minimal parameterization, spacecraft attitude control problems are considered based on modified Rodrigues parameters (MRP). It is shown that the derived controller ensures the sliding motion in pre-determined region irrespective of unmodeled effects and disturbances.
Orion MPCV GN and C End-to-End Phasing Tests
NASA Technical Reports Server (NTRS)
Neumann, Brian C.
2013-01-01
End-to-end integration tests are critical risk reduction efforts for any complex vehicle. Phasing tests are an end-to-end integrated test that validates system directional phasing (polarity) from sensor measurement through software algorithms to end effector response. Phasing tests are typically performed on a fully integrated and assembled flight vehicle where sensors are stimulated by moving the vehicle and the effectors are observed for proper polarity. Orion Multi-Purpose Crew Vehicle (MPCV) Pad Abort 1 (PA-1) Phasing Test was conducted from inertial measurement to Launch Abort System (LAS). Orion Exploration Flight Test 1 (EFT-1) has two end-to-end phasing tests planned. The first test from inertial measurement to Crew Module (CM) reaction control system thrusters uses navigation and flight control system software algorithms to process commands. The second test from inertial measurement to CM S-Band Phased Array Antenna (PAA) uses navigation and communication system software algorithms to process commands. Future Orion flights include Ascent Abort Flight Test 2 (AA-2) and Exploration Mission 1 (EM-1). These flights will include additional or updated sensors, software algorithms and effectors. This paper will explore the implementation of end-to-end phasing tests on a flight vehicle which has many constraints, trade-offs and compromises. Orion PA-1 Phasing Test was conducted at White Sands Missile Range (WSMR) from March 4-6, 2010. This test decreased the risk of mission failure by demonstrating proper flight control system polarity. Demonstration was achieved by stimulating the primary navigation sensor, processing sensor data to commands and viewing propulsion response. PA-1 primary navigation sensor was a Space Integrated Inertial Navigation System (INS) and Global Positioning System (GPS) (SIGI) which has onboard processing, INS (3 accelerometers and 3 rate gyros) and no GPS receiver. SIGI data was processed by GN&C software into thrust magnitude and direction commands. The processing changes through three phases of powered flight: pitchover, downrange and reorientation. The primary inputs to GN&C are attitude position, attitude rates, angle of attack (AOA) and angle of sideslip (AOS). Pitch and yaw attitude and attitude rate responses were verified by using a flight spare SIGI mounted to a 2-axis rate table. AOA and AOS responses were verified by using a data recorded from SIGI movements on a robotic arm located at NASA Johnson Space Center. The data was consolidated and used in an open-loop data input to the SIGI. Propulsion was the Launch Abort System (LAS) Attitude Control Motor (ACM) which consisted of a solid motor with 8 nozzles. Each nozzle has active thrust control by varying throat area with a pintle. LAS ACM pintles are observable through optically transparent nozzle covers. SIGI movements on robot arm, SIGI rate table movements and LAS ACM pintle responses were video recorded as test artifacts for analysis and evaluation. The PA-1 Phasing Test design was determined based on test performance requirements, operational restrictions and EGSE capabilities. This development progressed during different stages. For convenience these development stages are initial, working group, tiger team, Engineering Review Team (ERT) and final.
He, ZeFang; Zhao, Long
2014-01-01
An attitude control strategy based on Ziegler-Nichols rules for tuning PD (proportional-derivative) parameters of quadrotor helicopters is presented to solve the problem that quadrotor tends to be instable. This problem is caused by the narrow definition domain of attitude angles of quadrotor helicopters. The proposed controller is nonlinear and consists of a linear part and a nonlinear part. The linear part is a PD controller with PD parameters tuned by Ziegler-Nichols rules and acts on the quadrotor decoupled linear system after feedback linearization; the nonlinear part is a feedback linearization item which converts a nonlinear system into a linear system. It can be seen from the simulation results that the attitude controller proposed in this paper is highly robust, and its control effect is better than the other two nonlinear controllers. The nonlinear parts of the other two nonlinear controllers are the same as the attitude controller proposed in this paper. The linear part involves a PID (proportional-integral-derivative) controller with the PID controller parameters tuned by Ziegler-Nichols rules and a PD controller with the PD controller parameters tuned by GA (genetic algorithms). Moreover, this attitude controller is simple and easy to implement.
NASA Astrophysics Data System (ADS)
Jiang, Chao; Qiao, Mingzhong; Zhu, Peng
2017-12-01
A permanent magnet synchronous motor with radial magnetic circuit and built-in permanent magnet is designed for the electric vehicle. Finite element numerical calculation and experimental measurement are adopted to obtain the direct axis and quadrature axis inductance parameters of the motor which are vital important for the motor control. The calculation method is simple, the measuring principle is clear, the results of numerical calculation and experimental measurement are mutual confirmation. A quick and effective method is provided to obtain the direct axis and quadrature axis inductance parameters of the motor, and then improve the design of motor or adjust the control parameters of the motor controller.
Gao, Yuan; Feng, Yuchao; Wang, Min; Su, Yiwei; Li, Yanhua; Wang, Zhi; Tang, Shihao
2015-04-01
To develop the knowledge, attitude and practice questionnaire on the prevention and control of occupational diseases for occupational groups, and to provide a convenient and effective tool for the survey of knowledge, attitude, and behavior on the prevention and control of occupational diseases in occupational groups and the evaluation of intervention effect. The initial questionnaire which was evaluated by the experts was used to carry out a pre-survey in Guangzhou, China. The survey results were statistically analyzed by t test, identification index method, correlation analysis, and Cronbach's a coefficient method. And then the questionnaire was further modified, and the content of the questionnaire was determined finally. After modification, there were 18 items on knowledge, 16 items on attitude, and 12 items on behavior in the "Knowledge, attitude and practice questionnaire on the prevention and control of occupational diseases for enterprise managers"; there were 19 items on knowledge, 10 items on attitude, and 11 items on behavior in the "Knowledge, attitude and practice questionnaire on the prevention and control of occupational diseases for workers". The knowledge, attitude and practice questionnaire on the prevention and control of occupational diseases for occupational groups is developed successfully, and it is a convenient and effective tool for the survey of knowledge, attitude, and behavior on the prevention and control of occupational diseases in occupational groups and the evaluation of intervention effect.
Dynamic characteristics of triaxial active control magnetic bearing with asymmetric structure
NASA Astrophysics Data System (ADS)
Nakajima, Atsushi; Hirata, Katsuhiro; Niguchi, Noboru; Kato, Masayuki
2018-03-01
Supporting forces of magnetic bearings are lower than those of mechanical bearings. In order to solve these problems, this paper proposes a new three-axis active control magnetic bearing (3-axis AMB) with an asymmetric structure where its rotor is attracted only in one axial direction due to a negative pressure of fluid. Our proposed 3-axis AMB can generate a large suspension force in one axial direction due to the asymmetric structure. The performances of our proposed 3-axis AMB are computed through 3-D finite element analysis.
A General Closed-Form Solution for the Lunar Reconnaissance Orbiter (LRO) Antenna Pointing System
NASA Technical Reports Server (NTRS)
Shah, Neerav; Chen, J. Roger; Hashmall, Joseph A.
2010-01-01
The National Aeronautics and Space Administration s (NASA) Lunar Reconnaissance Orbiter (LRO) launched on June 18, 2009 from the Cape Canaveral Air Force Station aboard an Atlas V launch vehicle into a direct insertion trajectory to the Moon LRO, designed, built, and operated by the NASA Goddard Space Flight Center in Greenbelt, MD, is gathering crucial data on the lunar environment that will help astronauts prepare for long-duration lunar expeditions. During the mission s nominal life of one year its six instruments and one technology demonstrator will find safe landing site, locate potential resources, characterize the radiation environment and test new technology. To date, LRO has been operating well within the bounds of its requirements and has been collecting excellent science data images taken from the LRO Camera Narrow Angle Camera (LROC NAC) of the Apollo landing sites have appeared on cable news networks. A significant amount of information on LRO s science instruments is provided at the LRO mission webpage. LRO s Attitude Control System (ACS), in addition to controlling the orientation of the spacecraft is also responsible for pointing the High Gain Antenna (HGA). A dual-axis (or double-gimbaled) antenna, deployed on a meter-long boom, is required to point at a selected Earth ground station. Due to signal loss over the distance from the Moon to Earth, pointing precision for the antenna system is very tight. Since the HGA has to be deployed in spaceflight, its exact geometry relative to the spacecraft body is uncertain. In addition, thermal distortions and mechanical errors/tolerances must be characterized and removed to realize the greatest gain from the antenna system. These reasons necessitate the need for an in-flight calibration. Once in orbit around the moon, a series of attitude maneuvers was conducted to provide data needed to determine optimal parameters to load onboard, which would account for the environmental and mechanical errors at any antenna orientation. The nominal geometry for the HGA involves an outer gimbal axis that is exactly perpendicular to the inner gimbal axis, and a target direction that is exactly perpendicular to the outer gimbal axis. For this nominal geometry, closed-form solutions of the desired gimbal angles are simple to get for a desired target direction specified in the spacecraft body fame. If the gimbal axes and the antenna boresight are slightly misaligned, the nominal closed-form solution is not sufficiently accurate for computing the gimbal angles needed to point at a target. In this situation, either a general closed-form solution has to be developed for a mechanism with general geometries, or a correction scheme has to be applied to the nominal closed-form solutions. The latter has been adopted for Solar Dynamics Observatory (SDO) as can be seen in Reference 1, and the former has been used for LRO. The advantage of the general closed-form solution is the use of a small number of parameters for the correction of nominal solutions, especially in the regions near singularities. Singularities here refer to cases when the nominal closed-form solutions have two or more solutions. Algorithm complexity, however, is the disadvantage of the general closed-form solution.
Automated Target Planning for FUSE Using the SOVA Algorithm
NASA Technical Reports Server (NTRS)
Heatwole, Scott; Lanzi, R. James; Civeit, Thomas; Calvani, Humberto; Kruk, Jeffrey W.; Suchkov, Anatoly
2007-01-01
The SOVA algorithm was originally developed under the Resilient Systems and Operations Project of the Engineering for Complex Systems Program from NASA s Aerospace Technology Enterprise as a conceptual framework to support real-time autonomous system mission and contingency management. The algorithm and its software implementation were formulated for generic application to autonomous flight vehicle systems, and its efficacy was demonstrated by simulation within the problem domain of Unmanned Aerial Vehicle autonomous flight management. The approach itself is based upon the precept that autonomous decision making for a very complex system can be made tractable by distillation of the system state to a manageable set of strategic objectives (e.g. maintain power margin, maintain mission timeline, and et cetera), which if attended to, will result in a favorable outcome. From any given starting point, the attainability of the end-states resulting from a set of candidate decisions is assessed by propagating a system model forward in time while qualitatively mapping simulated states into margins on strategic objectives using fuzzy inference systems. The expected return value of each candidate decision is evaluated as the product of the assigned value of the end-state with the assessed attainability of the end-state. The candidate decision yielding the highest expected return value is selected for implementation; thus, the approach provides a software framework for intelligent autonomous risk management. The name adopted for the technique incorporates its essential elements: Strategic Objective Valuation and Attainability (SOVA). Maximum value of the approach is realized for systems where human intervention is unavailable in the timeframe within which critical control decisions must be made. The Far Ultraviolet Spectroscopic Explorer (FUSE) satellite, launched in 1999, has been collecting science data for eight years.[1] At its beginning of life, FUSE had six gyros in two IRUs and four reaction wheels. Over time through various failures, the satellite has been left with one reaction wheel on the vehicle skew axis and two gyros. To remain operational, a control scheme has been implemented using the magnetic torque rods and the remaining momentum wheel.[2] As a consequence, there are attitude regions where there is insufficient torque authority to overcome environmental disturbances (e.g. gravity gradient torques). The situation is further complicated by the fact that these attitude regions shift inertially with time as the spacecraft moves through earth s magnetic field during the course of its orbit. Under these conditions, the burden of planning targets and target-to-target slew maneuvers has increased significantly since the beginning of the mission.[3] Individual targets must be selected so that the magnetic field remains roughly aligned with the skew wheel axis to provide enough control authority to the other two orthogonal axes. If the field moves too far away from the skew axis, the lack of control authority allows environmental torques to pull the satellite away from the target and can potentially cause it to tumble. Slew maneuver planning must factor the stability of targets at the beginning and end, and the torque authority at all points along the slew. Due to the time varying magnetic field geometry relative to any two inertial targets, small modifications in slew maneuver timing can make large differences in the achievability of a maneuver.
Servo-controlling structure of five-axis CNC system for real-time NURBS interpolating
NASA Astrophysics Data System (ADS)
Chen, Liangji; Guo, Guangsong; Li, Huiying
2017-07-01
NURBS (Non-Uniform Rational B-Spline) is widely used in CAD/CAM (Computer-Aided Design / Computer-Aided Manufacturing) to represent sculptured curves or surfaces. In this paper, we develop a 5-axis NURBS real-time interpolator and realize it in our developing CNC(Computer Numerical Control) system. At first, we use two NURBS curves to represent tool-tip and tool-axis path respectively. According to feedrate and Taylor series extension, servo-controlling signals of 5 axes are obtained for each interpolating cycle. Then, generation procedure of NC(Numerical Control) code with the presented method is introduced and the method how to integrate the interpolator into our developing CNC system is given. And also, the servo-controlling structure of the CNC system is introduced. Through the illustration, it has been indicated that the proposed method can enhance the machining accuracy and the spline interpolator is feasible for 5-axis CNC system.
Laser Measurements Based for Volumetric Accuracy Improvement of Multi-axis Systems
NASA Astrophysics Data System (ADS)
Vladimir, Sokolov; Konstantin, Basalaev
The paper describes a new developed approach to CNC-controlled multi-axis systems geometric errors compensation based on optimal error correction strategy. Multi-axis CNC-controlled systems - machine-tools and CMM's are the basis of modern engineering industry. Similar design principles of both technological and measurement equipment allow usage of similar approaches to precision management. The approach based on geometric errors compensation are widely used at present time. The paper describes a system for compensation of geometric errors of multi-axis equipment based on the new approach. The hardware basis of the developed system is a multi-function laser interferometer. The principles of system's implementation, results of measurements and system's functioning simulation are described. The effectiveness of application of described principles to multi-axis equipment of different sizes and purposes for different machining directions and zones within workspace is presented. The concepts of optimal correction strategy is introduced and dynamic accuracy control is proposed.
Integrated Orbit and Attitude Control for a Nanosatellite with Power Constraints
NASA Technical Reports Server (NTRS)
Naasz, Bo; Hall, Christopher; Berry, Matthew; Hy-Young, Kim
2003-01-01
Small satellites tend to be power-limited, so that actuators used to control the orbit and attitude must compete with each other as well as with other subsystems for limited electrical power. The Virginia Tech nanosatellite project, HokieSat, must use its limited power resources to operate pulsed-plasma thrusters for orbit control and magnetic torque coils for attitude control, while also providing power to a GPS receiver, a crosslink transceiver, and other subsystems. The orbit and attitude control strategies were developed independently. The attitude control system is based on an application of Linear Quadratic Regulator (LQR) to an averaged system of equations, whereas the orbit control is based on orbit element feedback. In this paper we describe the strategy for integrating these two control systems and present simulation results to verify the strategy.
Trying to trust: Brain activity during interpersonal social attitude change.
Filkowski, Megan M; Anderson, Ian W; Haas, Brian W
2016-04-01
Interpersonal trust and distrust are important components of human social interaction. Although several studies have shown that brain function is associated with either trusting or distrusting others, very little is known regarding brain function during the control of social attitudes, including trust and distrust. This study was designed to investigate the neural mechanisms involved when people attempt to control their attitudes of trust or distrust toward another person. We used a novel control-of-attitudes fMRI task, which involved explicit instructions to control attitudes of interpersonal trust and distrust. Control of trust or distrust was operationally defined as changes in trustworthiness evaluations of neutral faces before and after the control-of-attitudes fMRI task. Overall, participants (n = 60) evaluated faces paired with the distrust instruction as being less trustworthy than faces paired with the trust instruction following the control-of-distrust task. Within the brain, both the control-of-trust and control-of-distrust conditions were associated with increased temporoparietal junction, precuneus (PrC), inferior frontal gyrus (IFG), and medial prefrontal cortex activity. Individual differences in the control of trust were associated with PrC activity, and individual differences in the control of distrust were associated with IFG activity. Together, these findings identify a brain network involved in the explicit control of distrust and trust and indicate that the PrC and IFG may serve to consolidate interpersonal social attitudes.
Attitude control challenges for earth orbiters of the 1980's
NASA Technical Reports Server (NTRS)
Hibbard, W.
1980-01-01
Experience gained in designing attitude control systems for orbiting spacecraft of the late 1980's is related. Implications for satellite attitude control design of the guidance capabilities, rendezvous and recovery requirements, use of multiple-use spacecraft and the development of large spacecraft associated with the advent of the Space Shuttle are considered. Attention is then given to satellite attitude control requirements posed by the Tracking and Data Relay Satellite System, the Global Positioning System, the NASA End-to-End Data System, and Shuttle-associated subsatellites. The anticipated completion and launch of the Space Telescope, which will provide one of the first experiences with the new generation of attitude control, is also pointed out.
Improved Controller for a Three-Axis Piezoelectric Stage
NASA Technical Reports Server (NTRS)
Rao, Shanti; Palmer, Dean
2009-01-01
An improved closed-loop controller has been built for a three-axis piezoelectric positioning stage. The stage can be any of a number of commercially available or custom-made units that are used for precise three-axis positioning of optics in astronomical instruments and could be used for precise positioning in diverse fields of endeavor that include adaptive optics, fabrication of semiconductors, and nanotechnology.
Self-Regulation and Implicit Attitudes Toward Physical Activity Influence Exercise Behavior.
Padin, Avelina C; Emery, Charles F; Vasey, Michael; Kiecolt-Glaser, Janice K
2017-08-01
Dual-process models of health behavior posit that implicit and explicit attitudes independently drive healthy behaviors. Prior evidence indicates that implicit attitudes may be related to weekly physical activity (PA) levels, but the extent to which self-regulation attenuates this link remains unknown. This study examined the associations between implicit attitudes and self-reported PA during leisure time among 150 highly active young adults and evaluated the extent to which effortful control (one aspect of self-regulation) moderated this relationship. Results indicated that implicit attitudes toward exercise were unrelated to average workout length among individuals with higher effortful control. However, those with lower effortful control and more negative implicit attitudes reported shorter average exercise sessions compared with those with more positive attitudes. Implicit and explicit attitudes were unrelated to total weekly PA. A combination of poorer self-regulation and negative implicit attitudes may leave individuals vulnerable to mental and physical health consequences of low PA.
Autonomous control system reconfiguration for spacecraft with non-redundant actuators
NASA Astrophysics Data System (ADS)
Grossman, Walter
1995-05-01
The Small Satellite Technology Initiative (SSTI) 'CLARK' spacecraft is required to be single-failure tolerant, i.e., no failure of any single component or subsystem shall result in complete mission loss. Fault tolerance is usually achieved by implementing redundant subsystems. Fault tolerant systems are therefore heavier and cost more to build and launch than non-redundent, non fault-tolerant spacecraft. The SSTI CLARK satellite Attitude Determination and Control System (ADACS) achieves single-fault tolerance without redundancy. The attitude determination system system uses a Kalman Filter which is inherently robust to loss of any single attitude sensor. The attitude control system uses three orthogonal reaction wheels for attitude control and three magnetic dipoles for momentum control. The nominal six-actuator control system functions by projecting the attitude correction torque onto the reaction wheels while a slower momentum management outer loop removes the excess momentum in the direction normal to the local B field. The actuators are not redundant so the nominal control law cannot be implemented in the event of a loss of a single actuator (dipole or reaction wheel). The spacecraft dynamical state (attitude, angular rate, and momentum) is controllable from any five-element subset of the six actuators. With loss of an actuator the instantaneous control authority may not span R(3) but the controllability gramian integral(limits between t,0) Phi(t, tau)B(tau )B(prime)(tau) Phi(prime)(t, tau)d tau retains full rank. Upon detection of an actuator failure the control torque is decomposed onto the remaining active axes. The attitude control torque is effected and the over-orbit momentum is controlled. The resulting control system performance approaches that of the nominal system.
NASA Technical Reports Server (NTRS)
Bennett, William H.; Kwatny, Harry G.; Lavigna, Chris; Blankenship, Gilmer
1994-01-01
The following topics are discussed: (1) modeling of articulated spacecraft as multi-flex-body systems; (2) nonlinear attitude control by adaptive partial feedback linearizing (PFL) control; (3) attitude dynamics and control for SSF/MRMS; and (4) performance analysis results for attitude control of SSF/MRMS.
The possible effect of reaction wheel unloading on orbit determination for Chang'E-1 lunar mission
NASA Astrophysics Data System (ADS)
Jianguo, Yan; Jingsong, Ping; Fei, Li
During the flight of 3-axis stabilized lunar orbiter i e SELENE main orbiter Chang E-1 due to the overflow of the accumulated angular momentum the reaction-wheel will be unloaded during certain period so as to release the angular momentum for initialization Then the momentum wheel will be reloaded for satellite attitude measurement and control Above action will not only change the attitude but also change the orbit of the spacecraft Assuming the reaction-wheel unloading is carried out twice a day according to the current engineering designation and plan for SELENE main orbiter and Chang E-1 missions considering the algebra configuration of the tracking stations the Moon and the lunar orbiter the orbit determination is simulated for 14 days evolution of lunar orbiter In the simulation the satellite orbit is generated using GEODYNII code Based on the generated orbit the common view time period of the satellite by VLBI and USB network in every day is computed the orbit determination is processed for all the arcs of the orbit The orbit determination result of 28 orbits in 14 days is provided The orbits cover most of the possible geometrical configuration among orbiter the Moon and the tracking network The analysis here can benefit the tracking designation and plan for Chang E-1 mission
Information management in Iranian Maternal Mortality Surveillance System.
Sadoughi, Farahnaz; Karimi, Afsaneh; Erfannia, Leila
2017-07-01
Maternal mortality is preventable by proper information management and is the main target of the Maternal Mortality Surveillance System (MMSS). This study aimed to determine the status of information management in the Iranian Maternal Mortality Surveillance System (IMMSS). The population of this descriptive and analytical study, which was conducted in 2016, included 96 administrative staff of health and treatment deputies of universities of medical sciences and the Ministry of Health in Iran. Data were gathered by a five-part questionnaire with confirmed validity and reliability. A total of 76 questionnaires were completed, and data were analyzed using SPSS software, version 19, by descriptive and inferential statistics. The relationship between variables "organizational unit" and the four studied axes was studied using Kendall's correlation coefficient test. The status of information management in IMMSS was desirable. Data gathering and storage axis and data processing and compilation axis achieved the highest (2.7±0.46) and the lowest (2.4±0.49) mean scores, respectively. The data-gathering method, control of a sample of women deaths in reproductive age in the universities of medical sciences, use of international classification of disease, and use of this system information by management teams to set resources allocation achieved the lowest mean scores in studied axes. Treatment deputy staff had a more positive attitude toward the status of information management of IMMSS than the health deputy staff (p=0.004). Although the status of information management in IMMSS was desirable, it could be improved by modification of the data-gathering method; creating communication links between different data resources; a periodic sample control of women deaths in reproductive age in the universities of medical sciences; and implementing ICD-MM and integration of its rules on a unified system of death.
NASA Technical Reports Server (NTRS)
Benet, Charles A.; Hofman, Henry; Williams, Thomas E.; Olney, Dave; Zaleski, Ronald
2011-01-01
Launched on April 4, 1983 onboard STS 6 (Space Shuttle Challenger), the First Tracking and Data Relay Satellite (TDRS 1) was retired above the Geosynchronous Orbit (GEO) on June 27, 2010 after having provided real-time communications with a variety of low-orbiting spacecraft over a 26-year period. To meet NASA requirements limiting orbital debris 1, a team of experts was assembled to conduct an End-Of-Mission (EOM) procedure to raise the satellite 350 km above the GEO orbit. Following the orbit raising via conventional station change maneuvers, the team was confronted with having to deplete the remaining propellant and passivate all energy storage or generation sources. To accomplish these tasks within the time window, communications (telemetry and control links), electrical power, propulsion, and thermal constraints, a spacecraft originally designed as a three-axis stabilized satellite was turned into a spinner. This paper (a companion paper to Innovative Approach Enabled the Retirement of TDRS 1, paper # 1699, IEEE 2011 Aerospace Conference, March 5-12, 2011 sup 2) focuses on the challenges of maintaining an acceptable spinning dynamics, while repetitively firing thrusters. Also addressed are the effects of thruster firings on the orbit characteristics and how they were mitigated by a careful scheduling of the fuel depletion operations. Periodic thruster firings for spin rate adjustment, nutation damping, and precession of the momentum vector were also required in order to maintain effective communications with the satellite. All operations were thoroughly rehearsed and supported by simulations thus lending a high level of confidence in meeting the NASA EOM goals.
He, ZeFang
2014-01-01
An attitude control strategy based on Ziegler-Nichols rules for tuning PD (proportional-derivative) parameters of quadrotor helicopters is presented to solve the problem that quadrotor tends to be instable. This problem is caused by the narrow definition domain of attitude angles of quadrotor helicopters. The proposed controller is nonlinear and consists of a linear part and a nonlinear part. The linear part is a PD controller with PD parameters tuned by Ziegler-Nichols rules and acts on the quadrotor decoupled linear system after feedback linearization; the nonlinear part is a feedback linearization item which converts a nonlinear system into a linear system. It can be seen from the simulation results that the attitude controller proposed in this paper is highly robust, and its control effect is better than the other two nonlinear controllers. The nonlinear parts of the other two nonlinear controllers are the same as the attitude controller proposed in this paper. The linear part involves a PID (proportional-integral-derivative) controller with the PID controller parameters tuned by Ziegler-Nichols rules and a PD controller with the PD controller parameters tuned by GA (genetic algorithms). Moreover, this attitude controller is simple and easy to implement. PMID:25614879
X-33 Attitude Control System Design for Ascent, Transition, and Entry Flight Regimes
NASA Technical Reports Server (NTRS)
Hall, Charles E.; Gallaher, Michael W.; Hendrix, Neal D.
1998-01-01
The Vehicle Control Systems Team at Marshall Space Flight Center, Systems Dynamics Laboratory, Guidance and Control Systems Division is designing under a cooperative agreement with Lockheed Martin Skunkworks, the Ascent, Transition, and Entry flight attitude control system for the X-33 experimental vehicle. Ascent flight control begins at liftoff and ends at linear aerospike main engine cutoff (NECO) while Transition and Entry flight control begins at MECO and concludes at the terminal area energy management (TAEM) interface. TAEM occurs at approximately Mach 3.0. This task includes not only the design of the vehicle attitude control systems but also the development of requirements for attitude control system components and subsystems. The X-33 attitude control system design is challenged by a short design cycle, the design environment (Mach 0 to about Mach 15), and the X-33 incremental test philosophy. The X-33 design-to-launch cycle of less than 3 years requires a concurrent design approach while the test philosophy requires design adaptation to vehicle variations that are a function of Mach number and mission profile. The flight attitude control system must deal with the mixing of aerosurfaces, reaction control thrusters, and linear aerospike engine control effectors and handle parasitic effects such as vehicle flexibility and propellant sloshing from the uniquely shaped propellant tanks. The attitude control system design is, as usual, closely linked to many other subsystems and must deal with constraints and requirements from these subsystems.
A brief measure of attitudes toward mixed methods research in psychology
Roberts, Lynne D.; Povee, Kate
2014-01-01
The adoption of mixed methods research in psychology has trailed behind other social science disciplines. Teaching psychology students, academics, and practitioners about mixed methodologies may increase the use of mixed methods within the discipline. However, tailoring and evaluating education and training in mixed methodologies requires an understanding of, and way of measuring, attitudes toward mixed methods research in psychology. To date, no such measure exists. In this article we present the development and initial validation of a new measure: Attitudes toward Mixed Methods Research in Psychology. A pool of 42 items developed from previous qualitative research on attitudes toward mixed methods research along with validation measures was administered via an online survey to a convenience sample of 274 psychology students, academics and psychologists. Principal axis factoring with varimax rotation on a subset of the sample produced a four-factor, 12-item solution. Confirmatory factor analysis on a separate subset of the sample indicated that a higher order four factor model provided the best fit to the data. The four factors; ‘Limited Exposure,’ ‘(in)Compatibility,’ ‘Validity,’ and ‘Tokenistic Qualitative Component’; each have acceptable internal reliability. Known groups validity analyses based on preferred research orientation and self-rated mixed methods research skills, and convergent and divergent validity analyses based on measures of attitudes toward psychology as a science and scientist and practitioner orientation, provide initial validation of the measure. This brief, internally reliable measure can be used in assessing attitudes toward mixed methods research in psychology, measuring change in attitudes as part of the evaluation of mixed methods education, and in larger research programs. PMID:25429281
Investigating On-Orbit Attitude Determination Anomalies for the Solar Dynamics Observatory Mission
NASA Technical Reports Server (NTRS)
Vess, Melissa F.; Starin, Scott R.; Chia-Kuo, Alice Liu
2011-01-01
The Solar Dynamics Observatory (SDO) was launched on February 11, 2010 from Kennedy Space Center on an Atlas V launch vehicle into a geosynchronous transfer orbit. SDO carries a suite of three scientific instruments, whose observations are intended to promote a more complete understanding of the Sun and its effects on the Earth's environment. After a successful launch, separation, and initial Sun acquisition, the launch and flight operations teams dove into a commissioning campaign that included, among other things, checkout and calibration of the fine attitude sensors and checkout of the Kalman filter (KF) and the spacecraft s inertial pointing and science control modes. In addition, initial calibration of the science instruments was also accomplished. During that process of KF and controller checkout, several interesting observations were noticed and investigated. The SDO fine attitude sensors consist of one Adcole Digital Sun Sensor (DSS), two Galileo Avionica (GA) quaternion-output Star Trackers (STs), and three Kearfott Two-Axis Rate Assemblies (hereafter called inertial reference units, or IRUs). Initial checkout of the fine attitude sensors indicated that all sensors appeared to be functioning properly. Initial calibration maneuvers were planned and executed to update scale factors, drift rate biases, and alignments of the IRUs. After updating the IRU parameters, the KF was initialized and quickly reached convergence. Over the next few hours, it became apparent that there was an oscillation in the sensor residuals and the KF estimation of the IRU bias. A concentrated investigation ensued to determine the cause of the oscillations, their effect on mission requirements, and how to mitigate them. The ensuing analysis determined that the oscillations seen were, in fact, due to an oscillation in the IRU biases. The low frequencies of the oscillations passed through the KF, were well within the controller bandwidth, and therefore the spacecraft was actually following the oscillating biases, resulting in movement of the spacecraft on the order of plus or minus 20 arcsec. Though this level of error met the ACS attitude knowledge requirement of [35, 70, 70] arcsec, 3 sigma, the desire of the ACS and instrument teams was to remove as much of the oscillation as possible. The Kearfott IRUs have an internal temperature controller, designed to maintain the IRU temperature at a constant temperature of approximately 70 C, thus minimizing the change in the bias drift and scale factors of the mechanical gyros. During ground testing of the observatory, it was discovered that the 83-Hz control cycle of the IRU heaters put a tremendous amount of stress on the spacecraft battery. Analysis by the power systems team indicated that the constant charge/discharge on the battery due to the IRU thermal control cycle could potentially limit the life of the battery. After much analysis, the decision was made not to run the internal IRU heaters. Analysis of on orbit data revealed that the oscillations in the IRU bias had a connection to the temperature of the IRU; changes in IRU temperature resulted in changes in the amplitude and period of the IRU biases. Several mitigating solutions were investigated, the result of which was to tune the KF with larger IRU noise assumptions which allows the KF to follow and correct for the time-varying IRU biases.
ATS-6 engineering performance report. Volume 2: Orbit and attitude controls
NASA Technical Reports Server (NTRS)
Wales, R. O. (Editor)
1981-01-01
Attitude control is reviewed, encompassing the attitude control subsystem, spacecraft attitude precision pointing and slewing adaptive control experiment, and RF interferometer experiment. The spacecraft propulsion system (SPS) is discussed, including subsystem, SPS design description and validation, orbital operations and performance, in-orbit anomalies and contingency operations, and the cesium bombardment ion engine experiment. Thruster failure due to plugging of the propellant feed passages, a major cause for mission termination, are considered among the critical generic failures on the satellite.
Attitude Control Propulsion Components, Volume 1
NASA Technical Reports Server (NTRS)
1974-01-01
Effort was made to include as much engineering information on each component as possible, consistent with usefulness and catalog size limitations. The contents of this catalog contain components which were qualified for use with spacecraft monopropellant hydrazine and inert gas attitude control systems. Thrust ranges up to 44.5 N (10.0 lbf) for hydrazine and inert gas sytems were considered. Additionally, some components qualified for uses other than spacecraft attitude control are included because they are suitable for use in attitude controls systems.
Research on Design of MUH Attitude Stability Augmentation Control System
NASA Astrophysics Data System (ADS)
Fan, Shigang
2017-09-01
Attitude stability augmentation control system with a lower cost need to be designed so that MUH (Mini Unmanned Helicopter) can adapt to different types of geographic environment and fly steadily although the weather may be bad. Attitude feedback was calculated mainly by filtering estimation within attitude acquisition module in this system. Stability augmentation can be improved mainly by PI. This paper will depict running principle and designing process of MUH attitude stability augmentation control system and algorithm that is considered as an important part in this system.
Satellite recovery - Attitude dynamics of the targets
NASA Technical Reports Server (NTRS)
Cochran, J. E., Jr.; Lahr, B. S.
1986-01-01
The problems of categorizing and modeling the attitude dynamics of uncontrolled artificial earth satellites which may be targets in recovery attempts are addressed. Methods of classification presented are based on satellite rotational kinetic energy, rotational angular momentum and orbit and on the type of control present prior to the benign failure of the control system. The use of approximate analytical solutions and 'exact' numerical solutions to the equations governing satellite attitude motions to predict uncontrolled attitude motion is considered. Analytical and numerical results are presented for the evolution of satellite attitude motions after active control termination.
Steady-state simulation program for attitude control propulsion systems
NASA Technical Reports Server (NTRS)
Heinmiller, P. J.
1973-01-01
The formulation and the engineering equations employed in the steady state attitude control propulsion system simulation program are presented. The objective of this program is to aid in the preliminary design and development of propulsion systems used for spacecraft attitude control. The program simulates the integrated operation of the many interdependent components typically comprising an attitude control propulsion system. Flexibility, generality, ease of operation, and speed consistent with adequate accuracy were overriding considerations during the development of this program. Simulation modules were developed representing the various types of fluid components typically encountered in an attitude control propulsion system. These modules are basically self-contained and may be arranged by the program user into desired configuration through the program input data.
Guo-Hua, Peng; Zhu-Hua, Hu; Wei, Hua; Ke, Qian; Xiao-Gang, Li; Zhi-Shu, Zhang; Zhi-Gang, Chen; Xiao-Wu, Feng
2017-06-26
To understand the present situation of the chronic schistosomiasis patients' knowledge, attitude and practice on schistosomiasis control in Nanchang City. The knowledge, attitude and values on schistosomiasis control of 523 chronic schistosomiasis patients in Nanchang County, Jinxian County and Xinjian District in the Poyang Lake District were investigated with questionnaires. And the accuracy rates of the knowledge, attitude and practice among the patient groups of different counties, genders, age groups, occupations and educational levels were analyzed. The accuracy rates of the knowledge, attitude and practice of patients on schistosomiasis control were 95.76%, 82.80%, and 81.73% in Nanchang County; 91.37%, 93.32%, and 76.48% in Jinxian County; 88.25%, 67.56%, and 49.40% in Xinjian District. In the accuracy rates of knowledge, attitude and practice, the differences among the three counties (districts) were statistically significant ( χ 2 = 57.511-301.378, all P < 0.05) . The accuracy rates of chronic schistosomiasis patients' attitude and practice on schistosomiasis control in Nanchang City remain low. Therefore, the intensity of attitude and practice intervention should be strengthened in the Poyang Lake District in order to enhance the self-protection awareness of the patients.
The dynamics and control of large flexible asymmetric spacecraft
NASA Astrophysics Data System (ADS)
Humphries, T. T.
1991-02-01
This thesis develops the equations of motion for a large flexible asymmetric Earth observation satellite and finds the characteristics of its motion under the influence of control forces. The mathematical model of the structure is produced using analytical methods. The equations of motion are formed using an expanded momentum technique which accounts for translational motion of the spacecraft hub and employs orthogonality relations between appendage and vehicle modes. The controllability and observability conditions of the full spacecraft motions using force and torque actuators are defined. A three axis reaction wheel control system is implemented for both slewing the spacecraft and controlling its resulting motions. From minor slew results it is shown that the lowest frequency elastic mode of the spacecraft is more important than higher frequency modes, when considering the effects of elastic motion on instrument pointing from the hub. Minor slews of the spacecraft configurations considered produce elastic deflections resulting in rotational attitude motions large enough to contravene pointing accuracy requirements of instruments aboard the spacecraft hub. Active vibration damping is required to reduce these hub motions to acceptable bounds in sufficiently small time. A comparison between hub mounted collocated and hub/appendage mounted non-collocated control systems verifies that provided the non-collocated system is stable, it can more effectively damp elastic modes whilst maintaining adequate damping of rigid modes. Analysis undertaken shows that the reaction wheel controller could be replaced by a thruster control system which decouples the modes of the spacecraft motion, enabling them to be individually damped.
Attitude Stability of a Spacecraft with Slosh Mass Subject to Parametric Excitation
NASA Astrophysics Data System (ADS)
Kang, Ja-Young
2003-09-01
The attitude motion of a spin-stabilized, upper-stage spacecraft is investigated based on a two-body model, consisting of a symmetric body, representing the spacecraft, and a spherical pendulum, representing the liquid slag pool entrapped in the aft section of the rocket motor. Exact time-varying nonlinear equations are derived and used to eliminate the drawbacks of conventional linear models. To study the stability of the spacecraft's attitude motion, both the spacecraft and pendulum are assumed to be in states of steady spin about the symmetry axis of the spacecraft and the coupled time-varying nonlinear equation of the pendulum is simplified. A quasi-stationary solution to that equation and approximate resonance conditions are determined in terms of the system parameters. The analysis shows that the pendulum is subject to a combination of parametric and external-type excitation by the main body and that energy from the excited pendulum is fed into the main body to develop the coning instability. In this paper, numerical examples are presented to explain the mechanism of the coning angle growth and how angular momenta and disturbance moments are generated.
Pointing Knowledge for SPARCLE and Space-Based Doppler Wind Lidars in General
NASA Technical Reports Server (NTRS)
Emmitt, G. D.; Miller, T.; Spiers, G.
1999-01-01
The SPAce Readiness Coherent Lidar Experiment (SPARCLE) will fly on a space shuttle to demonstrate the use of a coherent Doppler wind lidar to accurately measure global tropospheric winds. To achieve the LOS (Line of Sight) accuracy goal of approx. m/s, the lidar system must be able to account for the orbiter's velocity (approx. 7750 m/s) and the rotational component of the earth's surface motion (approx. 450 m/s). For SPARCLE this requires knowledge of the attitude (roll, pitch and yaw) of the laser beam axis within an accuracy of 80 microradians. (approx. 15 arcsec). Since SPARCLE can not use a dedicated star tracker from its earth-viewing orbiter bay location, a dedicated GPS/INS (Global Positioning System/Inertial Navigation System) will be attached to the lidar instrument rack. Since even the GPS/INS has unacceptable drifts in attitude information, the SPARCLE team has developed a way to periodically scan the instrument itself to obtain less than 10 microradian (2 arcsec) attitude knowledge accuracy that can then be used to correct the GPS/INS output on a 30 minute basis.
NASA Technical Reports Server (NTRS)
Tripp, John S.; Tcheng, Ping
1999-01-01
Statistical tools, previously developed for nonlinear least-squares estimation of multivariate sensor calibration parameters and the associated calibration uncertainty analysis, have been applied to single- and multiple-axis inertial model attitude sensors used in wind tunnel testing to measure angle of attack and roll angle. The analysis provides confidence and prediction intervals of calibrated sensor measurement uncertainty as functions of applied input pitch and roll angles. A comparative performance study of various experimental designs for inertial sensor calibration is presented along with corroborating experimental data. The importance of replicated calibrations over extended time periods has been emphasized; replication provides independent estimates of calibration precision and bias uncertainties, statistical tests for calibration or modeling bias uncertainty, and statistical tests for sensor parameter drift over time. A set of recommendations for a new standardized model attitude sensor calibration method and usage procedures is included. The statistical information provided by these procedures is necessary for the uncertainty analysis of aerospace test results now required by users of industrial wind tunnel test facilities.
Inui, Hiroshi; Taketomi, Shuji; Nakamura, Kensuke; Sanada, Takaki; Tanaka, Sakae; Nakagawa, Takumi
2013-05-01
Few studies have demonstrated improvement in accuracy of rotational alignment using image-free navigation systems mainly due to the inconsistent registration of anatomical landmarks. We have used an image-free navigation for total knee arthroplasty, which adopts the average algorithm between two reference axes (transepicondylar axis and axis perpendicular to the Whiteside axis) for femoral component rotation control. We hypothesized that addition of another axis (condylar twisting axis measured on a preoperative radiograph) would improve the accuracy. One group using the average algorithm (double-axis group) was compared with the other group using another axis to confirm the accuracy of the average algorithm (triple-axis group). Femoral components were more accurately implanted for rotational alignment in the triple-axis group (ideal: triple-axis group 100%, double-axis group 82%, P<0.05). Copyright © 2013 Elsevier Inc. All rights reserved.
Law, Suzanne; Haddad, Peter M.; Chaudhry, Imran B.; Husain, Nusrat; Drake, Richard J.; Flanagan, Robert J.; David, Anthony S.
2015-01-01
Background: This study aimed to explore predictive factors for future use of therapeutic drug monitoring (TDM) and to further examine psychiatrists’ current prescribing practices and perspectives regarding antipsychotic TDM using plasma concentrations. Method: A cross-sectional study for consultant psychiatrists using a postal questionnaire was conducted in north-west England. Data were combined with those of a previous London-based study and principal axis factor analysis was conducted to identify predictors of future use of TDM. Results: Most of the 181 participants (82.9%, 95% confidence interval 76.7–87.7%) agreed that ‘if TDM for antipsychotics were readily available, I would use it’. Factor analysis identified five factors from the original 35 items regarding TDM. Four of the factors significantly predicted likely future use of antipsychotic TDM and together explained 40% of the variance in a multivariate linear regression model. Likely future use increased with positive attitudes and expectations, and decreased with potential barriers, negative attitudes and negative expectations. Scientific perspectives of TDM and psychiatrist characteristics were not significant predictors. Conclusion: Most senior psychiatrists indicated that they would use antipsychotic TDM if available. However, psychiatrists’ attitudes and expectations and the potential barriers need to be addressed, in addition to the scientific evidence, before widespread use of antipsychotic TDM is likely in clinical practice. PMID:26301077
Mission Analysis and Orbit Control of Interferometric Wheel Formation Flying
NASA Astrophysics Data System (ADS)
Fourcade, J.
Flying satellite in formation requires maintaining the specific relative geometry of the spacecraft with high precision. This requirement raises new problem of orbit control. This paper presents the results of the mission analysis of a low Earth observation system, the interferometric wheel, patented by CNES. This wheel is made up of three receiving spacecraft, which follow an emitting Earth observation radar satellite. The first part of this paper presents trades off which were performed to choose orbital elements of the formation flying which fulfils all constraints. The second part presents orbit positioning strategies including reconfiguration of the wheel to change its size. The last part describes the station keeping of the formation. Two kinds of constraints are imposed by the interferometric system : a constraint on the distance between the wheel and the radar satellite, and constraints on the distance between the wheel satellites. The first constraint is fulfilled with a classical chemical station keeping strategy. The second one is fulfilled using pure passive actuators. Due to the high stability of the relative eccentricity of the formation, only the relative semi major axis had to be controlled. Differential drag due to differential attitude motion was used to control relative altitude. An autonomous orbit controller was developed and tested. The final accuracy is a relative station keeping better than few meters for a wheel size of one kilometer.