Sample records for axis pathophysiological implications

  1. Erratum to "CNS drugs in Cushing's disease: pathophysiological and therapeutic implications for mood disorders" [Prog. Neuro-Psycol. Biol. Psychiatry, 26, 763 (2002)].

    PubMed

    Sonino, Nicoletta; Fava, Giovanni A

    2002-06-01

    Cushing's syndrome is due to chronic glucocorticoid excess that may have various etiologies. The most common endogenous form is pituitary-dependent bilateral adrenal hyperplasia, which is termed Cushing's disease. Major depression occurs in more than half of the cases. The presence of depressive symptoms connotes severity of clinical presentation and, in patients with hypothalamic-pituitary forms, entails prognostic value. Medical treatment may be used while awaiting more definitive solutions for the illness by surgery. The inhibitors of steroid production (e.g., ketoconazole, metyrapone and aminoglutethimide), rather than antidepressant drugs, are generally successful in lifting depression as well as other disabling symptoms. Since central serotonergic regulation could have a role in the course of Cushing's disease, serotonin antagonists (e.g., cyproheptadine, ritanserin and ketanserin) have been employed. Findings related to the pharmacological response of depression in Cushing's disease were found to have implications for the pathophysiology of depression and the potential involvement of the hypothalamic-pituitary-adrenal axis (HPA axis) in resistance and tolerance to antidepressant drugs. The use of serotonergic drugs in Cushing's disease may yield important insights in the understanding of serotonergic regulation both in Cushing's disease and in the HPA axis in nonendocrine major depression.

  2. Is Dysregulation of the HPA-Axis a Core Pathophysiology Mediating Co-Morbid Depression in Neurodegenerative Diseases?

    PubMed Central

    Du, Xin; Pang, Terence Y.

    2015-01-01

    There is increasing evidence of prodromal manifestation of neuropsychiatric symptoms in a variety of neurodegenerative diseases such as Parkinson’s disease (PD) and Huntington’s disease (HD). These affective symptoms may be observed many years before the core diagnostic symptoms of the neurological condition. It is becoming more apparent that depression is a significant modifying factor of the trajectory of disease progression and even treatment outcomes. It is therefore crucial that we understand the potential pathophysiologies related to the primary condition, which could contribute to the development of depression. The hypothalamic–pituitary–adrenal (HPA)-axis is a key neuroendocrine signaling system involved in physiological homeostasis and stress response. Disturbances of this system lead to severe hormonal imbalances, and the majority of such patients also present with behavioral deficits and/or mood disorders. Dysregulation of the HPA-axis is also strongly implicated in the pathology of major depressive disorder. Consistent with this, antidepressant drugs, such as the selective serotonin reuptake inhibitors have been shown to alter HPA-axis activity. In this review, we will summarize the current state of knowledge regarding HPA-axis pathology in Alzheimer’s, PD and HD, differentiating between prodromal and later stages of disease progression when evidence is available. Both clinical and preclinical evidence will be examined, but we highlight animal model studies as being particularly useful for uncovering novel mechanisms of pathology related to co-morbid mood disorders. Finally, we purpose utilizing the preclinical evidence to better inform prospective, intervention studies. PMID:25806005

  3. The intestinal barrier in multiple sclerosis: implications for pathophysiology and therapeutics.

    PubMed

    Camara-Lemarroy, Carlos R; Metz, Luanne; Meddings, Jonathan B; Sharkey, Keith A; Wee Yong, V

    2018-05-30

    Biological barriers are essential for the maintenance of homeostasis in health and disease. Breakdown of the intestinal barrier is an essential aspect of the pathophysiology of gastrointestinal inflammatory diseases, such as inflammatory bowel disease. A wealth of recent studies has shown that the intestinal microbiome, part of the brain-gut axis, could play a role in the pathophysiology of multiple sclerosis. However, an essential component of this axis, the intestinal barrier, has received much less attention. In this review, we describe the intestinal barrier as the physical and functional zone of interaction between the luminal microbiome and the host. Besides its essential role in the regulation of homeostatic processes, the intestinal barrier contains the gut mucosal immune system, a guardian of the integrity of the intestinal tract and the whole organism. Gastrointestinal disorders with intestinal barrier breakdown show evidence of CNS demyelination, and content of the intestinal microbiome entering into the circulation can impact the functions of CNS microglia. We highlight currently available studies suggesting that there is intestinal barrier dysfunction in multiple sclerosis. Finally, we address the mechanisms by which commonly used disease-modifying drugs in multiple sclerosis could alter the intestinal barrier and the microbiome, and we discuss the potential of barrier-stabilizing strategies, including probiotics and stabilization of tight junctions, as novel therapeutic avenues in multiple sclerosis.

  4. Functional dyspepsia pathogenesis and therapeutic options--implications for management.

    PubMed

    Smith, M Lancaster

    2005-08-01

    Functional dyspepsia is far more common than dyspepsia due to organic disease, both in the community and general practice. Proposed aetiopathogenic factors include gastric acid, Helicobacter pylori infection, delayed emptying, hypersensitivity or impaired accommodation of the stomach, dysfunction of the duodenum or brain-gut axis, psychosocial morbidity and post-infective mucosal damage. More effective therapy will depend on the development of drugs targeted at these putative pathophysiological mechanisms. On current evidence tricyclic antidepressants appear to be more effective than either acid suppressants or H. pylori eradication.

  5. Neuropathophysiology of functional gastrointestinal disorders

    PubMed Central

    Wood, Jackie D

    2007-01-01

    The investigative evidence and emerging concepts in neurogastroenterology implicate dysfunctions at the levels of the enteric and central nervous systems as underlying causes of the prominent symptoms of many of the functional gastrointestinal disorders. Neurogastroenterological research aims for improved understanding of the physiology and pathophysiology of the digestive subsystems from which the arrays of functional symptoms emerge. The key subsystems for defecation-related symptoms and visceral hyper-sensitivity are the intestinal secretory glands, the musculature and the nervous system that controls and integrates their activity. Abdominal pain and discomfort arising from these systems adds the dimension of sensory neurophysiology. This review details current concepts for the underlying pathophysiology in terms of the physiology of intestinal secretion, motility, nervous control, sensing function, immuno-neural communication and the brain-gut axis. PMID:17457962

  6. Dysregulated diurnal cortisol pattern is associated with glucocorticoid resistance in women with major depressive disorder

    PubMed Central

    Jarcho, Michael R.; Slavich, George M.; Tylova-Stein, Hana; Wolkowitz, Owen M.; Burke, Heather M.

    2013-01-01

    Dysfunction of the hypothalamic–pituitary–adrenal (HPA) axis is believed to play a role in the pathophysiology of depression. To investigate mechanisms that may underlie this effect, we examined several indices of HPA axis function – specifically, diurnal cortisol slope, cortisol awakening response, and suppression of cortisol release following dexamethasone administration – in 26 pre-menopausal depressed women and 23 never depressed women who were matched for age and body mass index. Salivary cortisol samples were collected at waking, 30 min after waking, and at bedtime over three consecutive days. On the third day, immediately after the bedtime sample, participants ingested a 0.5 mg dexamethasone tablet; they then collected cortisol samples at waking and 30 min after waking the following morning. As predicted, depressed women exhibited flatter diurnal cortisol rhythms and more impaired suppression of cortisol following dexamethasone administration than non-depressed women over the three sampling days. In addition, flatter diurnal cortisol slopes were associated with reduced cortisol response to dexamethasone treatment, both for all women and for depressed women when considered separately. Finally, greater self-reported depression severity was associated with flatter diurnal cortisol slopes and with less dexamethasone-related cortisol suppression for depressed women. Depression in women thus appears to be characterized by altered HPA axis functioning, as indexed by flatter diurnal cortisol slopes and an associated impaired sensitivity of cortisol to dexamethasone. Given that altered HPA axis functioning has been implicated in several somatic conditions, the present findings may be relevant for understanding the pathophysiology of both depression and depression-related physical disease. PMID:23410758

  7. The HMGB1-RAGE Inflammatory Pathway: Implications for Brain Injury-Induced Pulmonary Dysfunction

    PubMed Central

    Weber, Daniel J.; Allette, Yohance M.; Wilkes, David S.

    2015-01-01

    Abstract Significance: Deceased patients who have suffered severe traumatic brain injury (TBI) are the largest source of organs for lung transplantation. However, due to severely compromised pulmonary lung function, only one-third of these patients are eligible organ donors, with far fewer capable of donating lungs (∼20%). As a result of this organ scarcity, understanding and controlling the pulmonary pathophysiology of potential donors are key to improving the health and long-term success of transplanted lungs. Recent Advances: Although the exact mechanism by which TBI produces pulmonary pathophysiology remains unclear, it may be related to the release of damage-associated molecular patterns (DAMPs) from the injured tissue. These heterogeneous, endogenous host molecules can be rapidly released from damaged or dying cells and mediate sterile inflammation following trauma. In this review, we highlight the interaction of the DAMP, high-mobility group box protein 1 (HMGB1) with the receptor for advanced glycation end-products (RAGE), and toll-like receptor 4 (TLR4). Critical Issues: Recently published studies are reviewed, implicating the release of HMGB1 as producing marked changes in pulmonary inflammation and physiology following trauma, followed by an overview of the experimental evidence demonstrating the benefits of blocking the HMGB1-RAGE axis. Future Directions: Targeting the HMGB1 signaling axis may increase the number of lungs available for transplantation and improve long-term benefits for organ recipient patient outcomes. Antioxid. Redox Signal. 23, 1316–1328. PMID:25751601

  8. Stress, glucocorticoid hormones, and hippocampal neural progenitor cells: implications to mood disorders.

    PubMed

    Kino, Tomoshige

    2015-01-01

    The hypothalamic-pituitary-adrenal (HPA) axis and its end-effectors glucocorticoid hormones play central roles in the adaptive response to numerous stressors that can be either internal or external. Thus, this system has a strong impact on the brain hippocampus and its major functions, such as cognition, memory as well as behavior, and mood. The hippocampal area of the adult brain contains neural stem cells or more committed neural progenitor cells, which retain throughout the human life the ability of self-renewal and to differentiate into multiple neural cell lineages, such as neurons, astrocytes, and oligodendrocytes. Importantly, these characteristic cells contribute significantly to the above-indicated functions of the hippocampus, while various stressors and glucocorticoids influence proliferation, differentiation, and fate of these cells. This review offers an overview of the current understanding on the interactions between the HPA axis/glucocorticoid stress-responsive system and hippocampal neural progenitor cells by focusing on the actions of glucocorticoids. Also addressed is a further discussion on the implications of such interactions to the pathophysiology of mood disorders.

  9. Microbiota, cirrhosis, and the emerging oral-gut-liver axis

    PubMed Central

    Acharya, Chathur; Bajaj, Jasmohan S.

    2017-01-01

    Cirrhosis is a prevalent cause of morbidity and mortality, especially for those at an advanced decompensated stage. Cirrhosis development and progression involves several important interorgan communications, and recently, the gut microbiome has been implicated in pathophysiology of the disease. Dysbiosis, defined as a pathological change in the microbiome, has a variable effect on the compensated versus decompensated stage of cirrhosis. Adverse microbial changes, both in composition and function, can act at several levels within the gut (stool and mucosal) and have also been described in the blood and oral cavity. While dysbiosis in the oral cavity could be a source of systemic inflammation, current cirrhosis treatment modalities are targeted toward the gut-liver axis and do not address the oral microbiome. As interventions designed to modulate oral dysbiosis may delay progression of cirrhosis, a better understanding of this process is of the utmost importance. The concept of oral microbiota dysbiosis in cirrhosis is relatively new; therefore, this review will highlight the emerging role of the oral-gut-liver axis and introduce perspectives for future research. PMID:28978799

  10. Role of hepcidin-ferroportin axis in the pathophysiology, diagnosis, and treatment of anemia of chronic inflammation.

    PubMed

    Langer, Arielle L; Ginzburg, Yelena Z

    2017-06-01

    Anemia of chronic inflammation (ACI) is a frequently diagnosed anemia and portends an independently increased morbidity and poor outcome associated with multiple underlying diseases. The pathophysiology of ACI is multifactorial, resulting from the effects of inflammatory cytokines which both directly and indirectly suppress erythropoiesis. Recent advances in molecular understanding of iron metabolism provide strong evidence that immune mediators, such as IL-6, lead to hepcidin-induced hypoferremia, iron sequestration, and decreased iron availability for erythropoiesis. The role of hepcidin-ferroportin axis in the pathophysiology of ACI is stimulating the development of new diagnostics and targeted therapies. In this review, we present an overview of and rationale for inflammation-, iron-, and erythropoiesis-related strategies currently in development. © 2017 International Society for Hemodialysis.

  11. The antidepressant fluoxetine normalizes the nuclear glucocorticoid receptor evoked by psychosocial stress

    NASA Astrophysics Data System (ADS)

    Mitić, M.; Simić, I.; Djordjević, J.; Radojčić, M. B.; Adžić, M.

    2011-12-01

    Dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis has been implicated in the pathophysiology of depression and stress disorders. Glucocorticoids, key regulators of the stress response, exert diverse effects on cellular processes in the hippocampus. Beside non-genomic pathways, glucocorticoid effects are mediated through activation of the glucocorticoid receptor (GR), a ligand activated transcriptional factor that belongs to the nuclear hormone receptor superfamily. We analysed the GR protein levels both in the cytoplasmic and nuclear compartments of the hippocampus of Wistar rats exposed to chronic psychosocial isolation stress upon chronic fluoxetine (FLU) treatment. Under chronic stress, corticosterone levels (CORT) were decreased compared to the control, and treatment with FLU did not change its level in the stressed rats. At the molecular level, FLU normalized the level of nuclear GR protein in the hippocampus of the stressed rats. Discrepancy between normalization of nuclear GR in the hippocampus and lack of normalization of HPA axis activity judged by CORT, suggests that other brain structures such as the amygdale and prefrontal cortex that also regulate HPA axis activity, seem not to be normalized by the FLU treatment used in our study.

  12. Residual symptoms in depression an emerging therapeutic concept.

    PubMed

    Sonino, Nicoletta; Fava, Giovanni A

    2002-05-01

    Cushing's syndrome is due to chronic glucocorticoid excess that may have various etiologies. The most common endogenous form is pituitary-dependent bilateral adrenal hyperplasia, which is termed Cushing's disease. Major depression occurs in more than half of the cases. The presence of depressive symptoms connotes severity of clinical presentation and, in patients with hypothalamic-pituitary forms, entails prognostic value. Medical treatment may be used while awaiting more definitive solutions for the illness by surgery. The inhibitors of steroid production (e.g., ketoconazole, metyrapone and aminoglutethimide), rather than antidepressant drugs, are generally successful in lifting depression as well as other disabling symptoms. Since central serotonergic regulation could have a role in the course of Cushing's disease, serotonin antagonists (e.g., cyproheptadine, ritanserin and ketanserin) have been employed. Findings related to the pharmacological response of depression in Cushing's disease were found to have implications for the pathophysiology of depression and the potential involvement of the hypothalamic-pituitary-adrenal axis (HPA axis) in resistance and tolerance to antidepressant drugs. The use of serotonergic drugs in Cushing's disease may yield important insights in the understanding of serotonergic regulation both in Cushing's disease and in the HPA axis in nonendocrine major depression.

  13. The Gut-Brain Axis and the Microbiome: Clues to Pathophysiology and Opportunities for Novel Management Strategies in Irritable Bowel Syndrome (IBS).

    PubMed

    Quigley, Eamonn M M

    2018-01-03

    Irritable bowel syndrome (IBS) is one of the most common of all medical disorders worldwide and, while for some it represents no more than a nuisance, for others it imposes significant negative impacts on daily life and activities. IBS is a heterogeneous disorder and may well have a number of causes which may lie anywhere from the external environment to the contents of the gut lumen and from the enteric neuromuscular apparatus and the gut immune system to the central nervous system. Consequently, the paradigm of the gut-brain axis, which includes the participation of these various factors, has proven a useful model to assist clinicians and patients alike in understanding the genesis of symptoms in IBS. Now, given the widespread interest in the gut microbiome in health and disease, in general, reports of disordered enteric bacterial communities in IBS, and experimental data to indicate that components of the gut microbiota can influence brain morphology and function, as well as behavior and cognition, this concept has been extended to encompass the microbiota-gut-brain axis. The implications of this novel concept to the assessment and management of IBS will be explored in this review.

  14. ATX-LPA1 axis contributes to proliferation of chondrocytes by regulating fibronectin assembly leading to proper cartilage formation

    PubMed Central

    Nishioka, Tatsuji; Arima, Naoaki; Kano, Kuniyuki; Hama, Kotaro; Itai, Eriko; Yukiura, Hiroshi; Kise, Ryoji; Inoue, Asuka; Kim, Seok-Hyung; Solnica-Krezel, Lilianna; Moolenaar, Wouter H.; Chun, Jerold; Aoki, Junken

    2016-01-01

    The lipid mediator lysophosphatidic acid (LPA) signals via six distinct G protein-coupled receptors to mediate both unique and overlapping biological effects, including cell migration, proliferation and survival. LPA is produced extracellularly by autotaxin (ATX), a secreted lysophospholipase D, from lysophosphatidylcholine. ATX-LPA receptor signaling is essential for normal development and implicated in various (patho)physiological processes, but underlying mechanisms remain incompletely understood. Through gene targeting approaches in zebrafish and mice, we show here that loss of ATX-LPA1 signaling leads to disorganization of chondrocytes, causing severe defects in cartilage formation. Mechanistically, ATX-LPA1 signaling acts by promoting S-phase entry and cell proliferation of chondrocytes both in vitro and in vivo, at least in part through β1-integrin translocation leading to fibronectin assembly and further extracellular matrix deposition; this in turn promotes chondrocyte-matrix adhesion and cell proliferation. Thus, the ATX-LPA1 axis is a key regulator of cartilage formation. PMID:27005960

  15. ATX-LPA1 axis contributes to proliferation of chondrocytes by regulating fibronectin assembly leading to proper cartilage formation.

    PubMed

    Nishioka, Tatsuji; Arima, Naoaki; Kano, Kuniyuki; Hama, Kotaro; Itai, Eriko; Yukiura, Hiroshi; Kise, Ryoji; Inoue, Asuka; Kim, Seok-Hyung; Solnica-Krezel, Lilianna; Moolenaar, Wouter H; Chun, Jerold; Aoki, Junken

    2016-03-23

    The lipid mediator lysophosphatidic acid (LPA) signals via six distinct G protein-coupled receptors to mediate both unique and overlapping biological effects, including cell migration, proliferation and survival. LPA is produced extracellularly by autotaxin (ATX), a secreted lysophospholipase D, from lysophosphatidylcholine. ATX-LPA receptor signaling is essential for normal development and implicated in various (patho)physiological processes, but underlying mechanisms remain incompletely understood. Through gene targeting approaches in zebrafish and mice, we show here that loss of ATX-LPA1 signaling leads to disorganization of chondrocytes, causing severe defects in cartilage formation. Mechanistically, ATX-LPA1 signaling acts by promoting S-phase entry and cell proliferation of chondrocytes both in vitro and in vivo, at least in part through β1-integrin translocation leading to fibronectin assembly and further extracellular matrix deposition; this in turn promotes chondrocyte-matrix adhesion and cell proliferation. Thus, the ATX-LPA1 axis is a key regulator of cartilage formation.

  16. Stress--the battle for hearts and minds: links between depression, stress and ischemic heart disease.

    PubMed

    Korszun, Ania; Frenneaux, Michael P

    2006-09-01

    Depression and ischemic heart disease (IHD) are strongly related common disorders. Depression itself is an independent cardiac risk factor and is associated with a two- to threefold increase in IHD mortality. Attention has now shifted to identifying the common underlying mechanisms that could make individuals susceptible to both disorders. Abnormalities that have been implicated in this relationship include abnormal platelet activation, decreased baroreceptor sensitivity and endothelial dysfunction. Depression and IHD both have a high association with environmental stress, and depression is characterized by abnormalities of the stress-hormone axis. This review provides a brief overview of some recent developments in our understanding of the pathophysiological links between stress, depression and IHD.

  17. The role of beta-endorphin in the pathophysiology of major depression.

    PubMed

    Hegadoren, K M; O'Donnell, T; Lanius, R; Coupland, N J; Lacaze-Masmonteil, N

    2009-10-01

    A role for beta-endorphin (beta-END) in the pathophysiology of major depressive disorder (MDD) is suggested by both animal research and studies examining clinical populations. The major etiological theories of depression include brain regions and neural systems that interact with opioid systems and beta-END. Recent preclinical data have demonstrated multiple roles for beta-END in the regulation of complex homeostatic and behavioural processes that are affected during a depressive episode. Additionally, beta-END inputs to regulatory pathways involving feeding behaviours, motivation, and specific types of motor activity have important implications in defining the biological foundations for specific depressive symptoms. Early research linking beta-END to MDD did so in the context of the hypothalamic-pituitary-adrenal (HPA) axis activity, where it was suggested that HPA axis dysregulation may account for depressive symptoms in some individuals. The primary aims of this paper are to use both preclinical and clinical research (a) to critically review data that explores potential roles for beta-END in the pathophysiology of MDD and (b) to highlight gaps in the literature that limit further development of etiological theories of depression and testable hypotheses. In addition to examining methodological and theoretical challenges of past clinical studies, we summarize studies that have investigated basal beta-END levels in MDD and that have used challenge tests to examine beta-END responses to a variety of experimental paradigms. A brief description of the synthesis, location in the CNS and behavioural pharmacology of this neuropeptide is also provided to frame this discussion. Given the lack of clinical improvement observed with currently available antidepressants in a significant proportion of depressed individuals, it is imperative that novel mechanisms be investigated for antidepressant potential. We conclude that the renewed interest in elucidating the role of beta-END in the pathophysiology of MDD must be paralleled by consensus building within the research community around the heterogeneity inherent in mood disorders, standardization of experimental protocols, improved discrimination of POMC products in analytical techniques and consistent attention paid to important confounds like age and gender.

  18. Metabotropic glutamate receptor subtype 7 ablation causes dysregulation of the HPA axis and increases hippocampal BDNF protein levels: implications for stress-related psychiatric disorders.

    PubMed

    Mitsukawa, Kayo; Mombereau, Cedric; Lötscher, Erika; Uzunov, Doncho P; van der Putten, Herman; Flor, Peter J; Cryan, John F

    2006-06-01

    Regulation of neurotransmission via group-III metabotropic glutamate receptors (mGluR4, -6, -7, and -8) has recently been implicated in the pathophysiology of affective disorders, such as major depression and anxiety. For instance, mice with a targeted deletion of the gene for mGluR7 (mGluR7-/-) showed antidepressant and anxiolytic-like effects in a variety of stress-related paradigms, including the forced swim stress and the stress-induced hyperthermia tests. Deletion of mGluR7 reduces also amygdala- and hippocampus-dependent conditioned fear and aversion responses. Since the hypothalamic-pituitary-adrenal (HPA) axis regulates the stress response we investigate whether parameters of the HPA axis at the levels of selected mRNA transcripts and endocrine hormones are altered in mGluR7-deficient mice. Over all, mGluR7-/- mice showed only moderately lower serum levels of corticosterone and ACTH compared with mGluR7+/+ mice. More strikingly however, we found strong evidence for upregulated glucocorticoid receptor (GR)-dependent feedback suppression of the HPA axis in mice with mGluR7 deficiency: (i) mRNA transcripts of GR were significantly upregulated in the hippocampus of mGluR7-/- animals, (ii) similar increases were seen with 5-HT1A receptor transcripts, which are thought to be directly controlled by the transcription factor GR and finally (iii) mGluR7-/- mice showed elevated sensitivity to dexamethasone-induced suppression of serum corticosterone when compared with mGluR7+/+ animals. These results indicate that mGluR7 deficiency causes dysregulation of HPA axis parameters, which may account, at least in part, for the phenotype of mGluR7-/- mice in animal models for anxiety and depression. In addition, we present evidence that protein levels of brain-derived neurotrophic factor are also elevated in the hippocampus of mGluR7-/- mice, which we discuss in the context of the antidepressant-like phenotype found in those animals. We conclude that genetic ablation of mGluR7 in mice interferes at multiple sites in the neuronal circuitry and molecular pathways implicated in affective disorders.

  19. The hypothalamic–pituitary–adrenal axis and sex hormones in chronic stress and obesity: pathophysiological and clinical aspects

    PubMed Central

    Pasquali, Renato

    2012-01-01

    Obesity, particularly the abdominal phenotype, has been ascribed to an individual maladaptation to chronic environmental stress exposure mediated by a dysregulation of related neuroendocrine axes. Alterations in the control and action of the hypothalamic–pituitary–adrenal axis play a major role in this context, with the participation of the sympathetic nervous system. The ability to adapt to chronic stress may differ according to sex, with specific pathophysiological events leading to the development of stress-related chronic diseases. This seems to be influenced by the regulatory effects of sex hormones, particularly androgens. Stress may also disrupt the control of feeding, with some differences according to sex. Finally, the amount of experimental data in both animals and humans may help to shed more light on specific phenotypes of obesity, strictly related to the chronic exposure to stress. This challenge may potentially imply a different pathophysiological perspective and, possibly, a specific treatment. PMID:22612409

  20. Disruption of Fetal Hormonal Programming (Prenatal Stress) Implicates Shared Risk for Sex Differences in Depression and Cardiovascular Disease

    PubMed Central

    Goldstein, JM; Handa, RJ; Tobet, SA

    2014-01-01

    Comorbidity of major depressive disorder (MDD) and cardiovascular disease (CVD) represents the fourth leading cause of morbidity and mortality worldwide, and women have a two times greater risk than men. Thus understanding the pathophysiology has widespread implications for attenuation and prevention of disease burden. We suggest that sex-dependent MDD-CVD comorbidity may result from alterations in fetal programming consequent to the prenatal maternal environments that produce excess glucocorticoids, which then drive sex-dependent developmental alterations of the fetal hypothalamic-pituitary-adrenal (HPA) axis circuitry impacting mood, stress regulation, autonomic nervous system (ANS), and the vasculature in adulthood. Evidence is consistent with the hypothesis that disruptions of pathways associated with gamma aminobutyric acid (GABA) in neuronal and vascular development and growth factors have critical roles in key developmental periods and adult responses to injury in heart and brain. Understanding the potential fetal origins of these sex differences will contribute to development of novel sex-dependent therapeutics. PMID:24355523

  1. [Cardio-renal axis: pathophysiological evidences and clinical implications].

    PubMed

    Di Lullo, Luca; Ronco, Claudio

    2017-03-01

    According to the recent definition proposed by the Consensus conference on Acute Dialysis Quality Initiative Group, the term cardio-renal syndrome CRS has been used to define different clinical conditions in which heart and kidney dysfunction overlap. Type 1 CRS acute cardio - renal syndrome is characterized by acute worsening of cardiac function leading to AKI in the setting of active cardiac disease such as ADHF, while type - 2 CRS occurs in a setting of chronic heart disease. Type 3 CRS is closely link to acute kidney injury, while type 4 represent cardiovascular involvement in chronic kidney disese patients. Type 5 CRS represent cardiac and renal involvement in several diseases such as sepsis, hepato - renal syndrome and immune - mediated diseases. Copyright by Società Italiana di Nefrologia SIN, Rome, Italy.

  2. Polycystic ovary syndrome, insulin resistance, and obesity: navigating the pathophysiologic labyrinth.

    PubMed

    Rojas, Joselyn; Chávez, Mervin; Olivar, Luis; Rojas, Milagros; Morillo, Jessenia; Mejías, José; Calvo, María; Bermúdez, Valmore

    2014-01-01

    Polycystic ovary syndrome (PCOS) is a highly prevalent endocrine-metabolic disorder that implies various severe consequences to female health, including alarming rates of infertility. Although its exact etiology remains elusive, it is known to feature several hormonal disturbances, including hyperandrogenemia, insulin resistance (IR), and hyperinsulinemia. Insulin appears to disrupt all components of the hypothalamus-hypophysis-ovary axis, and ovarian tissue insulin resistance results in impaired metabolic signaling but intact mitogenic and steroidogenic activity, favoring hyperandrogenemia, which appears to be the main culprit of the clinical picture in PCOS. In turn, androgens may lead back to IR by increasing levels of free fatty acids and modifying muscle tissue composition and functionality, perpetuating this IR-hyperinsulinemia-hyperandrogenemia cycle. Nonobese women with PCOS showcase several differential features, with unique biochemical and hormonal profiles. Nevertheless, lean and obese patients have chronic inflammation mediating the long term cardiometabolic complications and comorbidities observed in women with PCOS, including dyslipidemia, metabolic syndrome, type 2 diabetes mellitus, and cardiovascular disease. Given these severe implications, it is important to thoroughly understand the pathophysiologic interconnections underlying PCOS, in order to provide superior therapeutic strategies and warrant improved quality of life to women with this syndrome.

  3. Polycystic Ovary Syndrome, Insulin Resistance, and Obesity: Navigating the Pathophysiologic Labyrinth

    PubMed Central

    Rojas, Joselyn; Chávez, Mervin; Olivar, Luis; Rojas, Milagros; Morillo, Jessenia; Mejías, José; Calvo, María; Bermúdez, Valmore

    2014-01-01

    Polycystic ovary syndrome (PCOS) is a highly prevalent endocrine-metabolic disorder that implies various severe consequences to female health, including alarming rates of infertility. Although its exact etiology remains elusive, it is known to feature several hormonal disturbances, including hyperandrogenemia, insulin resistance (IR), and hyperinsulinemia. Insulin appears to disrupt all components of the hypothalamus-hypophysis-ovary axis, and ovarian tissue insulin resistance results in impaired metabolic signaling but intact mitogenic and steroidogenic activity, favoring hyperandrogenemia, which appears to be the main culprit of the clinical picture in PCOS. In turn, androgens may lead back to IR by increasing levels of free fatty acids and modifying muscle tissue composition and functionality, perpetuating this IR-hyperinsulinemia-hyperandrogenemia cycle. Nonobese women with PCOS showcase several differential features, with unique biochemical and hormonal profiles. Nevertheless, lean and obese patients have chronic inflammation mediating the long term cardiometabolic complications and comorbidities observed in women with PCOS, including dyslipidemia, metabolic syndrome, type 2 diabetes mellitus, and cardiovascular disease. Given these severe implications, it is important to thoroughly understand the pathophysiologic interconnections underlying PCOS, in order to provide superior therapeutic strategies and warrant improved quality of life to women with this syndrome. PMID:25763405

  4. One level up: abnormal proteolytic regulation of IGF activity plays a role in human pathophysiology.

    PubMed

    Argente, Jesús; Chowen, Julie A; Pérez-Jurado, Luis A; Frystyk, Jan; Oxvig, Claus

    2017-10-01

    The discovery of a mutation in a specific gene can be very important for determining the pathophysiology underlying the disease of a patient and may also help to decide the best treatment protocol on an individual basis. However, sometimes the discovery of mutations in new proteins advances our comprehension in a more widespread manner. The growth hormone (GH)/insulin-like growth factor (IGF)-1 axis is fundamental for systemic growth, but is also involved in many other important processes. Our understanding of this system in physiology and pathophysiology has advanced throughout the years with each discovery of mutations in members of this axis. This review focuses on the most recent discovery: mutations in the metalloproteinase pregnancy-associated plasma protein-A2 (PAPP-A2), one of the proteases involved in liberating IGF-1 from the complexes in which it circulates, in patients with delayed growth failure. We also discuss the advances in the stanniocalcins (STC1 and STC2), proteins that modulate PAPP-A2, as well as PAPP-A. These new advances not only bring us one step closer to understanding the strict spatial and temporal control of this axis in systemic growth and maturation, but also highlight possible therapeutic targets when this system goes awry. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.

  5. Microbiome-Gut-Brain Axis and Toll-Like Receptors in Parkinson's Disease.

    PubMed

    Caputi, Valentina; Giron, Maria Cecilia

    2018-06-06

    Parkinson’s disease (PD) is a progressively debilitating neurodegenerative disease characterized by α-synucleinopathy, which involves all districts of the brain-gut axis, including the central, autonomic and enteric nervous systems. The highly bidirectional communication between the brain and the gut is markedly influenced by the microbiome through integrated immunological, neuroendocrine and neurological processes. The gut microbiota and its relevant metabolites interact with the host via a series of biochemical and functional inputs, thereby affecting host homeostasis and health. Indeed, a dysregulated microbiota-gut-brain axis in PD might lie at the basis of gastrointestinal dysfunctions which predominantly emerge many years prior to the diagnosis, corroborating the theory that the pathological process is spread from the gut to the brain. Toll-like receptors (TLRs) play a crucial role in innate immunity by recognizing conserved motifs primarily found in microorganisms and a dysregulation in their signaling may be implicated in α-synucleinopathy, such as PD. An overstimulation of the innate immune system due to gut dysbiosis and/or small intestinal bacterial overgrowth, together with higher intestinal barrier permeability, may provoke local and systemic inflammation as well as enteric neuroglial activation, ultimately triggering the development of alpha-synuclein pathology. In this review, we provide the current knowledge regarding the relationship between the microbiota-gut⁻brain axis and TLRs in PD. A better understanding of the dialogue sustained by the microbiota-gut-brain axis and innate immunity via TLR signaling should bring interesting insights in the pathophysiology of PD and provide novel dietary and/or therapeutic measures aimed at shaping the gut microbiota composition, improving the intestinal epithelial barrier function and balancing the innate immune response in PD patients, in order to influence the early phases of the following neurodegenerative cascade.

  6. Pathogenesis, Experimental Models and Contemporary Pharmacotherapy of Irritable Bowel Syndrome: Story About the Brain-Gut Axis

    PubMed Central

    Tsang, S.W.; Auyeung, K.K.W.; Bian, Z.X.; Ko, J.K.S.

    2016-01-01

    Background Although the precise pathophysiology of irritable bowel syndrome (IBS) remains unknown, it is generally considered to be a disorder of the brain-gut axis, representing the disruption of communication between the brain and the digestive system. The present review describes advances in understanding the pathophysiology and experimental approaches in studying IBS, as well as providing an update of the therapies targeting brain-gut axis in the treatment of the disease. Methods Causal factors of IBS are reviewed. Following this, the preclinical experimental models of IBS will be introduced. Besides, both current and future therapeutic approaches of IBS will be discussed. Results When signal of the brain-gut axis becomes misinterpreted, it may lead to dysregulation of both central and enteric nervous systems, altered intestinal motility, increased visceral sensitivity and consequently contributing to the development of IBS. Interference of the brain-gut axis can be modulated by various psychological and environmental factors. Although there is no existing animal experiment that can represent this complex multifactorial disease, these in vivo models are clinically relevant readouts of gastrointestinal functions being essential to the identification of effective treatments of IBS symptoms as well as their molecular targets. Understanding the brain-gut axis is essential in developing the effective therapy for IBS. Therapies include improvement of GI motor functions, relief of visceral hypersensitivity and pain, attenuation of autonomic dysfunctions and suppression of mucosal immune activation. Conclusion Target-oriented therapies that provide symptomatic, psychological and physiological benefits could surely help to improve the quality of life of IBS patients. PMID:27009115

  7. Mitochondrial functions modulate neuroendocrine, metabolic, inflammatory, and transcriptional responses to acute psychological stress

    PubMed Central

    Picard, Martin; McManus, Meagan J.; Gray, Jason D.; Nasca, Carla; Moffat, Cynthia; Kopinski, Piotr K.; Seifert, Erin L.; McEwen, Bruce S.; Wallace, Douglas C.

    2015-01-01

    The experience of psychological stress triggers neuroendocrine, inflammatory, metabolic, and transcriptional perturbations that ultimately predispose to disease. However, the subcellular determinants of this integrated, multisystemic stress response have not been defined. Central to stress adaptation is cellular energetics, involving mitochondrial energy production and oxidative stress. We therefore hypothesized that abnormal mitochondrial functions would differentially modulate the organism’s multisystemic response to psychological stress. By mutating or deleting mitochondrial genes encoded in the mtDNA [NADH dehydrogenase 6 (ND6) and cytochrome c oxidase subunit I (COI)] or nuclear DNA [adenine nucleotide translocator 1 (ANT1) and nicotinamide nucleotide transhydrogenase (NNT)], we selectively impaired mitochondrial respiratory chain function, energy exchange, and mitochondrial redox balance in mice. The resulting impact on physiological reactivity and recovery from restraint stress were then characterized. We show that mitochondrial dysfunctions altered the hypothalamic–pituitary–adrenal axis, sympathetic adrenal–medullary activation and catecholamine levels, the inflammatory cytokine IL-6, circulating metabolites, and hippocampal gene expression responses to stress. Each mitochondrial defect generated a distinct whole-body stress-response signature. These results demonstrate the role of mitochondrial energetics and redox balance as modulators of key pathophysiological perturbations previously linked to disease. This work establishes mitochondria as stress-response modulators, with implications for understanding the mechanisms of stress pathophysiology and mitochondrial diseases. PMID:26627253

  8. Interface between hypothalamic-pituitary-adrenal axis and brain-derived neurotrophic factor in depression.

    PubMed

    Kunugi, Hiroshi; Hori, Hiroaki; Adachi, Naoki; Numakawa, Tadahiro

    2010-10-01

    Although the pathophysiology of depressive disorder remains elusive, two hypothetical frameworks seem to be promising: the involvement of hypothalamic pituitary-adrenal (HPA) axis abnormalities and brain-derived neurotrophic factor (BDNF) in the pathogenesis and in the mechanism of action of antidepressant treatments. In this review, we focused on research based on these two frameworks in relation to depression and related conditions and tried to formulate an integrated theory of the disorder. Hormonal challenge tests, such as the dexamethasone/corticotropin-releasing hormone test, have revealed elevated HPA activity (hypercortisolism) in at least a portion of patients with depression, although growing evidence has suggested that abnormally low HPA axis (hypocortisolism) has also been implicated in a variety of stress-related conditions. Several lines of evidence from postmortem studies, animal studies, blood levels, and genetic studies have suggested that BDNF is involved in the pathogenesis of depression and in the mechanism of action of biological treatments for depression. Considerable evidence has suggested that stress reduces the expression of BDNF and that antidepressant treatments increase it. Moreover, the glucocorticoid receptor interacts with the specific receptor of BDNF, TrkB, and excessive glucocorticoid interferes with BDNF signaling. Altered BDNF function is involved in the structural changes and possibly impaired neurogenesis in the brain of depressed patients. Based on these findings, an integrated schema of the pathological and recovery processes of depression is illustrated. © 2010 The Authors. Psychiatry and Clinical Neurosciences © 2010 Japanese Society of Psychiatry and Neurology.

  9. Non-celiac gluten sensitivity triggers gut dysbiosis, neuroinflammation, gut-brain axis dysfunction, and vulnerability for dementia.

    PubMed

    Daulatzai, Mak Adam

    2015-01-01

    The non-celiac gluten sensitivity (NCGS) is a chronic functional gastrointestinal disorder which is very common world wide. The human gut harbors microbiota which has a wide variety of microbial organisms; they are mainly symbiotic and important for well being. However, "dysbiosis" - i.e. an alteration in normal commensal gut microbiome with an increase in pathogenic microbes, impacts homeostasis/health. Dysbiosis in NCGS causes gut inflammation, diarrhea, constipation, visceral hypersensitivity, abdominal pain, dysfunctional metabolic state, and peripheral immune and neuro-immune communication. Thus, immune-mediated gut and extra-gut dysfunctions, due to gluten sensitivity with comorbid diarrhea, may last for decades. A significant proportion of NCGS patients may chronically consume alcohol, non-steroidal anti-inflammatory drugs, and fatty diet, as well as suffer from various comorbid disorders. The above pathophysiological substrate and dysbiosis are underpinned by dysfunctional bidirectional "Gut-Brain Axis" pathway. Pathogenic gut microbiota is known to upregulate gut- and systemic inflammation (due to lipopolysaccharide from pathogenic bacteria and synthesis of pro-inflammatory cytokines); they enhance energy harvest, cause obesity, insulin resistance, and dysfunctional vago-vagal gut-brain axis. Conceivably, the above cascade of pathology may promote various pathophysiological mechanisms, neuroinflammation, and cognitive dysfunction. Hence, dysbiosis, gut inflammation, and chronic dyshomeostasis are of great clinical relevance. It is argued here that we need to be aware of NCGS and its chronic pathophysiological impact. Therapeutic measures including probiotics, vagus nerve stimulation, antioxidants, alpha 7 nicotinic receptor agonists, and corticotropin-releasing factor receptor 1 antagonist may ameliorate neuroinflammation and oxidative stress in NCGS; they may therefore, prevent cognitive dysfunction and vulnerability to Alzheimer's disease.

  10. The Mycobiome: A Neglected Component in the Microbiota-Gut-Brain Axis

    PubMed Central

    Enaud, Raphaël; Vandenborght, Louise-Eva; Coron, Noémie; Bazin, Thomas; Prevel, Renaud; Schaeverbeke, Thierry; Berger, Patrick; Fayon, Michael; Delhaes, Laurence

    2018-01-01

    In recent years, the gut microbiota has been considered as a full-fledged actor of the gut–brain axis, making it possible to take a new step in understanding the pathophysiology of both neurological and psychiatric diseases. However, most of the studies have been devoted to gut bacterial microbiota, forgetting the non-negligible fungal flora. In this review, we expose how the role of the fungal component in the microbiota-gut-brain axis is legitimate, through its interactions with both the host, especially with the immune system, and the gut bacteria. We also discuss published data that already attest to a role of the mycobiome in the microbiota-gut-brain axis, and the impact of fungi on clinical and therapeutic research. PMID:29522426

  11. Role of ghrelin in the pathophysiology of eating disorders: implications for pharmacotherapy.

    PubMed

    Cardona Cano, Sebastian; Merkestein, Myrte; Skibicka, Karolina P; Dickson, Suzanne L; Adan, Roger A H

    2012-04-01

    Ghrelin is the only known circulating orexigenic hormone. It increases food intake by interacting with hypothalamic and brainstem circuits involved in energy balance, as well as reward-related brain areas. A heightened gut-brain ghrelin axis is an emerging feature of certain eating disorders such as anorexia nervosa and Prader-Willi syndrome. In common obesity, ghrelin levels are lowered, whereas post-meal ghrelin levels remain higher than in lean individuals. Agents that interfere with ghrelin signalling have therapeutic potential for eating disorders, including obesity. However, most of these drugs are only in the preclinical phase of development. Data obtained so far suggest that ghrelin agonists may have potential in the treatment of anorexia nervosa, while ghrelin antagonists seem promising for other eating disorders such as obesity and Prader-Willi syndrome. However, large clinical trials are needed to evaluate the efficacy and safety of these drugs.

  12. 20 years of leptin: role of leptin in human reproductive disorders.

    PubMed

    Chou, Sharon H; Mantzoros, Christos

    2014-10-01

    Leptin, as a key hormone in energy homeostasis, regulates neuroendocrine function, including reproduction. It has a permissive role in the initiation of puberty and maintenance of the hypothalamic-pituitary-gonadal axis. This is notable in patients with either congenital or acquired leptin deficiency from a state of chronic energy insufficiency. Hypothalamic amenorrhea is the best-studied, with clinical trials confirming a causative role of leptin in hypogonadotropic hypogonadism. Implications of leptin deficiency have also emerged in the pathophysiology of hypogonadism in type 1 diabetes. At the other end of the spectrum, hyperleptinemia may play a role in hypogonadism associated with obesity, polycystic ovarian syndrome, and type 2 diabetes. In these conditions of energy excess, mechanisms of reproductive dysfunction include central leptin resistance as well as direct effects at the gonadal level. Thus, reproductive dysfunction due to energy imbalance at both ends can be linked to leptin. © 2014 Society for Endocrinology.

  13. Role of negative affects in pathophysiology and clinical expression of irritable bowel syndrome

    PubMed Central

    Muscatello, Maria Rosaria A; Bruno, Antonio; Scimeca, Giuseppe; Pandolfo, Gianluca; Zoccali, Rocco A

    2014-01-01

    Irritable bowel syndrome (IBS) is regarded as a multifactorial disease in which alterations in the brain-gut axis signaling play a major role. The biopsychosocial model applied to the understanding of IBS pathophysiology assumes that psychosocial factors, interacting with peripheral/central neuroendocrine and immune changes, may induce symptoms of IBS, modulate symptom severity, influence illness experience and quality of life, and affect outcome. The present review focuses on the role of negative affects, including depression, anxiety, and anger, on pathogenesis and clinical expression of IBS. The potential role of the autonomic nervous system, stress-hormone system, and immune system in the pathophysiology of both negative affects and IBS are taken into account. Psychiatric comorbidity and subclinical variations in levels of depression, anxiety, and anger are further discussed in relation to the main pathophysiological and symptomatic correlates of IBS, such as sensorimotor functions, gut microbiota, inflammation/immunity, and symptom reporting. PMID:24976697

  14. Role of negative affects in pathophysiology and clinical expression of irritable bowel syndrome.

    PubMed

    Muscatello, Maria Rosaria A; Bruno, Antonio; Scimeca, Giuseppe; Pandolfo, Gianluca; Zoccali, Rocco A

    2014-06-28

    Irritable bowel syndrome (IBS) is regarded as a multifactorial disease in which alterations in the brain-gut axis signaling play a major role. The biopsychosocial model applied to the understanding of IBS pathophysiology assumes that psychosocial factors, interacting with peripheral/central neuroendocrine and immune changes, may induce symptoms of IBS, modulate symptom severity, influence illness experience and quality of life, and affect outcome. The present review focuses on the role of negative affects, including depression, anxiety, and anger, on pathogenesis and clinical expression of IBS. The potential role of the autonomic nervous system, stress-hormone system, and immune system in the pathophysiology of both negative affects and IBS are taken into account. Psychiatric comorbidity and subclinical variations in levels of depression, anxiety, and anger are further discussed in relation to the main pathophysiological and symptomatic correlates of IBS, such as sensorimotor functions, gut microbiota, inflammation/immunity, and symptom reporting.

  15. Chronic stress exacerbates tau pathology, neurodegeneration, and cognitive performance through a corticotropin-releasing factor receptor-dependent mechanism in a transgenic mouse model of tauopathy

    PubMed Central

    Carroll, Jenna C.; Iba, Michiyo; Bangasser, Debbie A.; Valentino, Rita J.; James, Michael J.; Brunden, Kurt R.; Lee, Virginia M.-Y.; Trojanowski, John Q.

    2011-01-01

    Since over-activation of the hypothalamic-pituitary-adrenal (HPA) axis occurs in Alzheimer’s disease (AD), dysregulation of stress neuromediators may play a mechanistic role in the pathophysiology of AD. However, the effects of stress on tau phosphorylation are poorly understood and the relationship between corticosterone and corticotropin-releasing factor (CRF) on both Aβ and tau pathology remain unclear. Therefore, we first established a model of chronic stress which exacerbates Aβ accumulation in Tg2576 mice and then extended this stress paradigm to a tau transgenic mouse model with the P301S mutation (PS19) which displays tau hyperphosphorylation, insoluble tau inclusions and neurodegeneration. We show for the first time that both Tg2576 and PS19 mice demonstrate a heightened HPA stress profile in the unstressed state. In Tg2576 mice, one month of restraint/isolation (RI) stress increased Aβ levels, suppressed microglial activation, and worsened spatial and fear memory compared to non-stressed mice. In PS19 mice, RI stress promoted tau hyperphosphorylation, insoluble tau aggregation, neurodegeneration and fear-memory impairments. These effects were not mimicked by chronic corticosterone administration but were prevented by pre-stress administration of a CRF receptor type 1 (CRF1) antagonist. The role for a CRF1-dependent mechanism was further supported by the finding that mice over-expressing CRF had increased hyperphosphorylated tau compared to wildtype littermates. Together, these results implicate HPA dysregulation in AD neuropathogenesis and suggest that prolonged stress may increase Aβ and tau hyperphosphorylation. These studies also implicate CRF in AD pathophysiology and suggest that pharmacological manipulation of this neuropeptide may be a potential therapeutic strategy for AD. PMID:21976528

  16. The non-motor syndrome of primary dystonia: clinical and pathophysiological implications

    PubMed Central

    Stamelou, Maria; Edwards, Mark J.; Hallett, Mark

    2012-01-01

    Dystonia is typically considered a movement disorder characterized by motor manifestations, primarily involuntary muscle contractions causing twisting movements and abnormal postures. However, growing evidence indicates an important non-motor component to primary dystonia, including abnormalities in sensory and perceptual functions, as well as neuropsychiatric, cognitive and sleep domains. Here, we review this evidence and discuss its clinical and pathophysiological implications. PMID:21933808

  17. Breaking down the barriers: the gut microbiome, intestinal permeability and stress-related psychiatric disorders

    PubMed Central

    Kelly, John R.; Kennedy, Paul J.; Cryan, John F.; Dinan, Timothy G.; Clarke, Gerard; Hyland, Niall P.

    2015-01-01

    The emerging links between our gut microbiome and the central nervous system (CNS) are regarded as a paradigm shift in neuroscience with possible implications for not only understanding the pathophysiology of stress-related psychiatric disorders, but also their treatment. Thus the gut microbiome and its influence on host barrier function is positioned to be a critical node within the brain-gut axis. Mounting preclinical evidence broadly suggests that the gut microbiota can modulate brain development, function and behavior by immune, endocrine and neural pathways of the brain-gut-microbiota axis. Detailed mechanistic insights explaining these specific interactions are currently underdeveloped. However, the concept that a “leaky gut” may facilitate communication between the microbiota and these key signaling pathways has gained traction. Deficits in intestinal permeability may underpin the chronic low-grade inflammation observed in disorders such as depression and the gut microbiome plays a critical role in regulating intestinal permeability. In this review we will discuss the possible role played by the gut microbiota in maintaining intestinal barrier function and the CNS consequences when it becomes disrupted. We will draw on both clinical and preclinical evidence to support this concept as well as the key features of the gut microbiota which are necessary for normal intestinal barrier function. PMID:26528128

  18. The thyroid axis in ageing.

    PubMed

    Leitol, Holger; Behrends, Jens; Brabant, Georg

    2002-01-01

    The hypothalmo-pituitary thyroid axis, among various endocrine systems, undergoes physiological alterations associated with the ageing process. Directly age-related changes have to be distinguished from indirect modifications which are caused by simultaneous thyroidal or non-thyroidal illness or other physiological or pathophysiological states whose incidence increases with age. In summary, direct changes of the hypothalmo-pituitary-thyroid axis seem to be subtle and suggestive of a decreased hypothalamic stimulation of thyroid function. In parallel, disease-specific alterations such as the development of thyroid autonomy or changes in energy intake or sleep lead to pronounced alterations of thyroid function with age which may dominate the underlying ageing of the hypothalmo-pituitary thyroid axis itself. The following article attempts to delineate some aspects of the interplay of the regulation of thyroid function and the ageing process.

  19. Psychosocial factors in the neurobiology of schizophrenia: a selective review.

    PubMed

    Lim, Caroline; Chong, Siow Ann; Keefe, Richard S E

    2009-05-01

    Various forms of social adversity have been implicated in the development and emergence of psychosis. However, how and when these events exert their influences are not clear. In this paper, we attempt to examine these putative psychosocial factors and place them in a temporal context and propose a neurobiological mechanism linking these factors. Medline databases were searched between 1966 and 2007 followed by the cross-checking of references using the following keywords: psychosocial, stress, stressors, life events, psychological, combined with psychosis and schizophrenia. While some findings are conflicting, there are a number of positive studies which suggest that factors like prenatal stress, urban birth and childhood trauma accentuate the vulnerability for schizophrenia and other psychoses while other factors like life events, migration particularly being a minority group, and high expressed emotions, which occur later in the vulnerable individual may move the individual towards the tipping point for psychosis. Overall, there is evidence to implicate psychosocial factors in the pathophysiology of schizophrenia. These factors may act via a common pathway, which involves stress-induced dysregulation of the HPA axis and the dopaminergic systems. To establish the causal relationship of the various factors would require prospective studies that are adequately powered.

  20. The bidirectional gut-brain-microbiota axis as a potential nexus between traumatic brain injury, inflammation, and disease.

    PubMed

    Sundman, Mark H; Chen, Nan-Kuei; Subbian, Vignesh; Chou, Ying-Hui

    2017-11-01

    As head injuries and their sequelae have become an increasingly salient matter of public health, experts in the field have made great progress elucidating the biological processes occurring within the brain at the moment of injury and throughout the recovery thereafter. Given the extraordinary rate at which our collective knowledge of neurotrauma has grown, new insights may be revealed by examining the existing literature across disciplines with a new perspective. This article will aim to expand the scope of this rapidly evolving field of research beyond the confines of the central nervous system (CNS). Specifically, we will examine the extent to which the bidirectional influence of the gut-brain axis modulates the complex biological processes occurring at the time of traumatic brain injury (TBI) and over the days, months, and years that follow. In addition to local enteric signals originating in the gut, it is well accepted that gastrointestinal (GI) physiology is highly regulated by innervation from the CNS. Conversely, emerging data suggests that the function and health of the CNS is modulated by the interaction between 1) neurotransmitters, immune signaling, hormones, and neuropeptides produced in the gut, 2) the composition of the gut microbiota, and 3) integrity of the intestinal wall serving as a barrier to the external environment. Specific to TBI, existing pre-clinical data indicates that head injuries can cause structural and functional damage to the GI tract, but research directly investigating the neuronal consequences of this intestinal damage is lacking. Despite this void, the proposed mechanisms emanating from a damaged gut are closely implicated in the inflammatory processes known to promote neuropathology in the brain following TBI, which suggests the gut-brain axis may be a therapeutic target to reduce the risk of Chronic Traumatic Encephalopathy and other neurodegenerative diseases following TBI. To better appreciate how various peripheral influences are implicated in the health of the CNS following TBI, this paper will also review the secondary biological injury mechanisms and the dynamic pathophysiological response to neurotrauma. Together, this review article will attempt to connect the dots to reveal novel insights into the bidirectional influence of the gut-brain axis and propose a conceptual model relevant to the recovery from TBI and subsequent risk for future neurological conditions. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Critical illness-related corticosteroid insufficiency (CIRCI): a narrative review from a Multispecialty Task Force of the Society of Critical Care Medicine (SCCM) and the European Society of Intensive Care Medicine (ESICM).

    PubMed

    Annane, Djillali; Pastores, Stephen M; Arlt, Wiebke; Balk, Robert A; Beishuizen, Albertus; Briegel, Josef; Carcillo, Joseph; Christ-Crain, Mirjam; Cooper, Mark S; Marik, Paul E; Meduri, Gianfranco Umberto; Olsen, Keith M; Rochwerg, Bram; Rodgers, Sophia C; Russell, James A; Van den Berghe, Greet

    2017-12-01

    To provide a narrative review of the latest concepts and understanding of the pathophysiology of critical illness-related corticosteroid insufficiency (CIRCI). A multispecialty task force of international experts in critical care medicine and endocrinology and members of the Society of Critical Care Medicine (SCCM) and the European Society of Intensive Care Medicine (ESICM). Medline, Database of Abstracts of Reviews of Effects (DARE), Cochrane Central Register of Controlled Trials (CENTRAL) and the Cochrane Database of Systematic Reviews. Three major pathophysiologic events were considered to constitute CIRCI: dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis, altered cortisol metabolism, and tissue resistance to glucocorticoids. The dysregulation of the HPA axis is complex, involving multidirectional crosstalk between the CRH/ACTH pathways, autonomic nervous system, vasopressinergic system, and immune system. Recent studies have demonstrated that plasma clearance of cortisol is markedly reduced during critical illness, explained by suppressed expression and activity of the primary cortisol-metabolizing enzymes in the liver and kidney. Despite the elevated cortisol levels during critical illness, tissue resistance to glucocorticoids is believed to occur due to insufficient glucocorticoid alpha-mediated anti-inflammatory activity. Novel insights into the pathophysiology of CIRCI add to the limitations of the current diagnostic tools to identify at-risk patients and may also impact how corticosteroids are used in patients with CIRCI.

  2. Pathophysiology of the Effects of Alcohol Abuse on the Endocrine System.

    PubMed

    Rachdaoui, Nadia; Sarkar, Dipak K

    2017-01-01

    Alcohol can permeate virtually every organ and tissue in the body, resulting in tissue injury and organ dysfunction. Considerable evidence indicates that alcohol abuse results in clinical abnormalities of one of the body's most important systems, the endocrine system. This system ensures proper communication between various organs, also interfacing with the immune and nervous systems, and is essential for maintaining a constant internal environment. The endocrine system includes the hypothalamic-pituitary-adrenal axis, the hypothalamic-pituitary-gonadal axis, the hypothalamic-pituitary-thyroid axis, the hypothalamic-pituitary-growth hormone/insulin-like growth factor-1 axis, and the hypothalamic-posterior pituitary axis, as well as other sources of hormones, such as the endocrine pancreas and endocrine adipose tissue. Alcohol abuse disrupts all of these systems and causes hormonal disturbances that may result in various disorders, such as stress intolerance, reproductive dysfunction, thyroid problems, immune abnormalities, and psychological and behavioral disorders. Studies in both humans and animal models have helped shed light on alcohol's effects on various components of the endocrine system and their consequences.

  3. Altered brain-gut axis in autism: comorbidity or causative mechanisms?

    PubMed

    Mayer, Emeran A; Padua, David; Tillisch, Kirsten

    2014-10-01

    The concept that alterated communications between the gut microbiome and the brain may play an important role in human brain disorders has recently received considerable attention. This is the result of provocative preclinical and some clinical evidence supporting early hypotheses about such communication in health and disease. Gastrointestinal symptoms are a common comorbidity in patients with autism spectrum disorders (ASD), even though the underlying mechanisms are largely unknown. In addition, alteration in the composition and metabolic products of the gut microbiome has long been implicated as a possible causative mechanism contributing to ASD pathophysiology, and this hypothesis has been supported by several recently published evidence from rodent models of autism induced by prenatal insults to the mother. Recent evidence in one such model involving maternal infection, that is characterized by alterations in behavior, gut physiology, microbial composition, and related metabolite profile, suggests a possible benefit of probiotic treatment on several of the observed abnormal behaviors. © 2014 WILEY Periodicals, Inc.

  4. Polycystic ovary syndrome: a major unrecognized cardiovascular risk factor in women.

    PubMed

    Alexander, Carolyn J; Tangchitnob, Edward P; Lepor, Norman E

    2009-01-01

    The prevalence of polycystic ovary syndrome (PCOS) is estimated to be nearly 10% among reproductive-age women. PCOS may represent the largest underappreciated segment of the female population at risk of cardiovascular disease. Clinicians providing care to women of childbearing age must recognize the presenting clues, including irregular menses, hirsutism, alopecia, hyperandrogenemia, and obesity. The pathophysiology of PCOS is complex, involving the hypothalamus-pituitary-ovarian axis, ovarian theca cell hyperplasia, hyperinsulinemia, and a multitude of other cytokine- and adipocyte-driven factors. Cardiac risk factors associated with PCOS have public health implications and should drive early screening and intervention measures. There are no consensus guidelines regarding screening for cardiovascular disease in patients with PCOS. Fasting lipid profiles and glucose examinations should be performed regularly. Carotid intimal medial thickness examinations should begin at age 30 years, and coronary calcium screening should begin at age 45 years. Treatment of the associated cardiovascular risk factors, including insulin resistance, hypertension, and dyslipidemia, should be incorporated into the routine PCOS patient wellness care program.

  5. Polycystic ovary syndrome: a major unrecognized cardiovascular risk factor in women.

    PubMed

    Alexander, Carolyn J; Tangchitnob, Edward P; Lepor, Norman E

    2009-01-01

    The prevalence of polycystic ovary syndrome (PCOS) is estimated to be nearly 10% among reproductive age women. PCOS may represent the largest underappreciated segment of the female population at risk of cardiovascular disease. Clinicians providing care to women of childbearing age must recognize the presenting clues, including irregular menses, hirsutism, alopecia, hyperandrogenemia, and obesity. The pathophysiology of PCOS is complex, involving the hypothalamus-pituitary-ovarian axis, ovarian theca cell hyperplasia, hyperinsulinemia, and a multitude of other cytokine- and adipocyte-driven factors. Cardiac risk factors associated with PCOS have public health implications and should drive early screening and intervention measures. There are no consensus guidelines regarding screening for cardiovascular disease in patients with PCOS. Fasting lipid profiles and glucose examinations should be performed regularly. Carotid intimal medial thickness examinations should begin at age 30 years, and coronary calcium screening should begin at age 45 years. Treatment of the associated cardiovascular risk factors, including insulin resistance, hypertension, and dyslipidemia, should be incorporated into the routine PCOS patient wellness care program.

  6. Hypothalamic-pituitary, ovarian and adrenal contributions to polycystic ovary syndrome.

    PubMed

    Baskind, N Ellissa; Balen, Adam H

    2016-11-01

    Polycystic ovary syndrome (PCOS) is a prevalent heterogeneous disorder linked with disturbances of reproductive, endocrine and metabolic function. The definition and aetiological hypotheses of PCOS are continually developing to incorporate evolving evidence of the syndrome, which appears to be both multifactorial and polygenic. The pathophysiology of PCOS encompasses inherent ovarian dysfunction that is strongly influenced by external factors including the hypothalamic-pituitary axis and hyperinsulinaemia. Neuroendocrine abnormalities including increased gonadotrophin-releasing hormone (GnRH) pulse frequency with consequent hypersecretion of luteinising hormone (LH) affects ovarian androgen synthesis, folliculogenesis and oocyte development. Disturbed ovarian-pituitary and hypothalamic feedback accentuates the gonadotrophin abnormalities, and there is emerging evidence putatively implicating dysfunction of the Kiss 1 system. Within the follicle subunit itself, there are intra-ovarian paracrine modulators, cytokines and growth factors, which appear to play a role. Adrenally derived androgens may also contribute to the pathogenesis of PCOS, but their role is less defined. Copyright © 2016. Published by Elsevier Ltd.

  7. Epigenetic Effects of Ethanol on the Liver and Gastrointestinal System

    PubMed Central

    Shukla, Shivendra D.; Lim, Robert W.

    2013-01-01

    The widening web of epigenetic regulatory mechanisms also encompasses ethanol-induced changes in the gastrointestinal (GI)–hepatic system. In the past few years, increasing evidence has firmly established that alcohol modifies several epigenetic parameters in the GI tract and liver. The major pathways affected include DNA methylation, different site-specific modifications in histone proteins, and microRNAs. Ethanol metabolism, cell-signaling cascades, and oxidative stress have been implicated in these responses. Furthermore, ethanol-induced fatty liver (i.e., steatohepatitis) and progression of liver cancer (i.e., hepatic carcinoma) may be consequences of the altered epigenetics. Modification of gene and/or protein expression via epigenetic changes also may contribute to the cross-talk among the GI tract and the liver as well as to systemic changes involving other organs. Thus, epigenetic effects of ethanol may have a central role in the various pathophysiological responses induced by ethanol in multiple organs and mediated via the liver–GI axis. PMID:24313164

  8. Experimental Myocardial Infarction Upregulates Circulating Fibroblast Growth Factor-23.

    PubMed

    Andrukhova, Olena; Slavic, Svetlana; Odörfer, Kathrin I; Erben, Reinhold G

    2015-10-01

    Myocardial infarction (MI) is a major cause of death worldwide. Epidemiological studies have linked vitamin D deficiency to MI incidence. Because fibroblast growth factor-23 (FGF23) is a master regulator of vitamin D hormone production and has been shown to be associated with cardiac hypertrophy per se, we explored the hypothesis that FGF23 may be a previously unrecognized pathophysiological factor causally linked to progression of cardiac dysfunction post-MI. Here, we show that circulating intact Fgf23 was profoundly elevated, whereas serum vitamin D hormone levels were suppressed, after induction of experimental MI in rat and mouse models, independent of changes in serum soluble Klotho or serum parathyroid hormone. Both skeletal and cardiac expression of Fgf23 was increased after MI. Although the molecular link between the cardiac lesion and circulating Fgf23 concentrations remains to be identified, our study has uncovered a novel heart-bone-kidney axis that may have important clinical implications and may inaugurate the new field of cardio-osteology. © 2015 American Society for Bone and Mineral Research.

  9. Space radiation exposure persistently increased leptin and IGF1 in serum and activated leptin-IGF1 signaling axis in mouse intestine.

    PubMed

    Suman, Shubhankar; Kumar, Santosh; Fornace, Albert J; Datta, Kamal

    2016-08-25

    Travel into outer space is fraught with risk of exposure to energetic heavy ion radiation such as (56)Fe ions, which due to its high linear energy transfer (high-LET) characteristics deposits higher energy per unit volume of tissue traversed and thus more damaging to cells relative to low-LET radiation such as γ rays. However, estimates of human health risk from energetic heavy ion exposure are hampered due to lack of tissue specific in vivo molecular data. We investigated long-term effects of (56)Fe radiation on adipokines and insulin-like growth factor 1 (IGF1) signaling axis in mouse intestine and colon. Six- to eight-week-old C57BL/6J mice were exposed to 1.6 Gy of (56)Fe ions. Serum and tissues were collected up to twelve months post-irradiation. Serum was analyzed for leptin, adiponectin, IGF1, and IGF binding protein 3. Receptor expressions and downstream signaling pathway alterations were studied in tissues. Irradiation increased leptin and IGF1 levels in serum, and IGF1R and leptin receptor expression in tissues. When considered along with upregulated Jak2/Stat3 pathways and cell proliferation, our data supports the notion that space radiation exposure is a risk to endocrine alterations with implications for chronic pathophysiologic changes in gastrointestinal tract.

  10. Inflammatory Disequilibrium in Stroke

    PubMed Central

    Petrovic-Djergovic, Danica; Goonewardena, Sascha N.; Pinsky, David J.

    2016-01-01

    Over the past several decades, there have been substantial advances in our knowledge of the pathophysiology of stroke. Understanding the benefits of timely reperfusion has led to the development of thrombolytic therapy as the cornerstone of current management of ischemic stroke, but there remains much to be learned about mechanisms of neuronal ischemic and reperfusion injury and associated inflammation. For ischemic stroke, novel therapeutic targets have continued to remain elusive. When considering modern molecular biologic techniques, advanced translational stroke models, and clinical studies, a consistent pattern emerges, implicating perturbation of the immune equilibrium by stroke in both central nervous system injury and repair responses. Stroke triggers activation of the neuroimmune axis, comprised of multiple cellular constituents of the immune system resident within the parenchyma of the brain, leptomeninges, and vascular beds, as well as through secretion of biological response modifiers and recruitment of immune effector cells. This neuroimmune activation can directly impact the initiation, propagation, and resolution phases of ischemic brain injury. In order to leverage a potential opportunity to modulate local and systemic immune responses to favorably affect the stroke disease curve, it is necessary to expand our mechanistic understanding of the neuroimmune axis in ischemic stroke. This review explores the frontiers of current knowledge of innate and adaptive immune responses in the brain and how these responses together shape the course of ischemic stroke. PMID:27340273

  11. Update of Endocrine Dysfunction following Pediatric Traumatic Brain Injury.

    PubMed

    Reifschneider, Kent; Auble, Bethany A; Rose, Susan R

    2015-07-31

    Traumatic brain injuries (TBI) are common occurrences in childhood, often resulting in long term, life altering consequences. Research into endocrine sequelae following injury has gained attention; however, there are few studies in children. This paper reviews the pathophysiology and current literature documenting risk for endocrine dysfunction in children suffering from TBI. Primary injury following TBI often results in disruption of the hypothalamic-pituitary-adrenal axis and antidiuretic hormone production and release, with implications for both acute management and survival. Secondary injuries, occurring hours to weeks after TBI, result in both temporary and permanent alterations in pituitary function. At five years after moderate to severe TBI, nearly 30% of children suffer from hypopituitarism. Growth hormone deficiency and disturbances in puberty are the most common; however, any part of the hypothalamic-pituitary axis can be affected. In addition, endocrine abnormalities can improve or worsen with time, having a significant impact on children's quality of life both acutely and chronically. Since primary and secondary injuries from TBI commonly result in transient or permanent hypopituitarism, we conclude that survivors should undergo serial screening for possible endocrine disturbances. High indices of suspicion for life threatening endocrine deficiencies should be maintained during acute care. Additionally, survivors of TBI should undergo endocrine surveillance by 6-12 months after injury, and then yearly, to ensure early detection of deficiencies in hormonal production that can substantially influence growth, puberty and quality of life.

  12. Update of Endocrine Dysfunction following Pediatric Traumatic Brain Injury

    PubMed Central

    Reifschneider, Kent; Auble, Bethany A.; Rose, Susan R.

    2015-01-01

    Traumatic brain injuries (TBI) are common occurrences in childhood, often resulting in long term, life altering consequences. Research into endocrine sequelae following injury has gained attention; however, there are few studies in children. This paper reviews the pathophysiology and current literature documenting risk for endocrine dysfunction in children suffering from TBI. Primary injury following TBI often results in disruption of the hypothalamic-pituitary-adrenal axis and antidiuretic hormone production and release, with implications for both acute management and survival. Secondary injuries, occurring hours to weeks after TBI, result in both temporary and permanent alterations in pituitary function. At five years after moderate to severe TBI, nearly 30% of children suffer from hypopituitarism. Growth hormone deficiency and disturbances in puberty are the most common; however, any part of the hypothalamic-pituitary axis can be affected. In addition, endocrine abnormalities can improve or worsen with time, having a significant impact on children’s quality of life both acutely and chronically. Since primary and secondary injuries from TBI commonly result in transient or permanent hypopituitarism, we conclude that survivors should undergo serial screening for possible endocrine disturbances. High indices of suspicion for life threatening endocrine deficiencies should be maintained during acute care. Additionally, survivors of TBI should undergo endocrine surveillance by 6–12 months after injury, and then yearly, to ensure early detection of deficiencies in hormonal production that can substantially influence growth, puberty and quality of life. PMID:26287247

  13. PPARδ modulates oxLDL-induced apoptosis of vascular smooth muscle cells through a TGF-β/FAK signaling axis.

    PubMed

    Hwang, Jung Seok; Eun, So Young; Ham, Sun Ah; Yoo, Taesik; Lee, Won Jin; Paek, Kyung Shin; Do, Jeong Tae; Lim, Dae-Seog; Seo, Han Geuk

    2015-05-01

    The peroxisome proliferator-activated receptor delta (PPARδ) has been implicated in the modulation of vascular homeostasis. However, its roles in the apoptotic cell death of vascular smooth muscle cells (VSMCs) are poorly understood. Here, we demonstrate that PPARδ modulates oxidized low-density lipoprotein (oxLDL)-induced apoptosis of VSMCs through the transforming growth factor-β (TGF-β) and focal adhesion kinase (FAK) signaling pathways. Activation of PPARδ by GW501516, which is a specific ligand, significantly inhibited oxLDL-induced cell death and generation of reactive oxygen species in VSMCs. These inhibitory effects were significantly reversed in the presence of small interfering (si)RNA against PPARδ, or by blockade of the TGF-β or FAK signaling pathways. Furthermore, PPARδ-mediated recovery of FAK phosphorylation suppressed by oxLDL was reversed by SB431542, a specific ALK5 receptor inhibitor, indicating that a TGF-β/FAK signaling axis is involved in the action of PPARδ. Among the protein kinases activated by oxLDL, p38 mitogen-activated protein kinase was suppressed by ligand-activated PPARδ. In addition, oxLDL-induced expression and translocation of pro-apoptotic or anti-apoptotic factors were markedly affected in the presence of GW501516. Those effects were reversed by PPARδ siRNA, or inhibitors of TGF-β or FAK, which also suggests that PPARδ exerts its anti-apoptotic effect via a TGF-β/FAK signaling axis. Taken together, these findings indicate that PPARδ plays an important role in the pathophysiology of disease associated with apoptosis of VSMC, such as atherosclerosis and restanosis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Pathophysiology of Pulmonary Hypertension in Chronic Parenchymal Lung Disease.

    PubMed

    Singh, Inderjit; Ma, Kevin Cong; Berlin, David Adam

    2016-04-01

    Pulmonary hypertension commonly complicates chronic obstructive pulmonary disease and interstitial lung disease. The association of chronic lung disease and pulmonary hypertension portends a worse prognosis. The pathophysiology of pulmonary hypertension differs in the presence or absence of lung disease. We describe the physiological determinants of the normal pulmonary circulation to better understand the pathophysiological factors implicated in chronic parenchymal lung disease-associated pulmonary hypertension. This review will focus on the pathophysiology of 3 forms of chronic lung disease-associated pulmonary hypertension: idiopathic pulmonary fibrosis, chronic obstructive pulmonary disease, and sarcoidosis. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. The assessment of personality disorders: implications for cognitive and behavior therapy.

    PubMed

    Van Velzen, C J; Emmelkamp, P M

    1996-08-01

    This article reviews the comorbidity of personality disorders (PDs) and Axis I disorders and discusses implications for assessment and treatment. Pros and cons of various assessment methods are discussed. The co-occurrence of PDs with Axis I disorders is considerable; roughly half of patients with anxiety disorders, depressive disorders or eating disorders received a PD diagnosis. Comorbidity models are discussed and implications for assessment and treatment are provided. Regarding the impact of PDs on cognitive-behavioral treatment outcome for Axis I disorders, conflicting results are found due to differences in assessment methods, treatment strategies, and patient samples. It is argued that additional Axis I pathology should be taken into account when studying the impact of PDs on treatment outcome for the target Axis I disorders. Finally, it is argued that the interpersonal behavior of the PD patient and the therapeutic relationship deserve more attention in the assessment and treatment of patients with PDs.

  16. Modern iron replacement therapy: clinical and pathophysiological insights.

    PubMed

    Girelli, Domenico; Ugolini, Sara; Busti, Fabiana; Marchi, Giacomo; Castagna, Annalisa

    2018-01-01

    Iron deficiency, with or without anemia, is extremely frequent worldwide, representing a major public health problem. Iron replacement therapy dates back to the seventeenth century, and has progressed relatively slowly until recently. Both oral and intravenous traditional iron formulations are known to be far from ideal, mainly because of tolerability and safety issues, respectively. At the beginning of this century, the discovery of hepcidin/ferroportin axis has represented a turning point in the knowledge of the pathophysiology of iron metabolism disorders, ushering a new era. In the meantime, advances in the pharmaceutical technologies are producing newer iron formulations aimed at minimizing the problems inherent with traditional approaches. The pharmacokinetic of oral and parenteral iron is substantially different, and diversities have become even clearer in light of the hepcidin master role in regulating systemic iron homeostasis. Here we review how iron therapy is changing because of such important advances in both pathophysiology and pharmacology.

  17. Neuroimmune Cross Talk in the Gut. Neuroendocrine and neuroimmune pathways contribute to the pathophysiology of irritable bowel syndrome.

    PubMed

    O'Malley, Dervla

    2016-11-01

    Irritable bowel syndrome (IBS) is a common disorder characterized by recurrent abdominal pain, bloating, and disturbed bowel habit, symptoms that impact the quality of life of sufferers. The pathophysiological changes underlying this multifactorial condition are complex and include increased sensitivity to luminal and mucosal factors, resulting in altered colonic transit and visceral pain. Moreover, dysfunctional communication in the bidirectional signaling axis between the brain and the gut, which involves efferent and afferent branches of the peripheral nervous system, circulating endocrine hormones, and local paracrine and neurocrine factors, including immune and perhaps even microbial signaling molecules, has a role to play in this disorder. This minireview will examine recent advances in our understanding of the pathophysiology of IBS and assess how cross talk between hormones, immune, and microbe-derived factors and their neuromodulatory effects on peripheral nerves may underlie IBS symptomatology. Copyright © 2016 the American Physiological Society.

  18. Pathophysiological relationships between heart failure and depression and anxiety.

    PubMed

    Chapa, Deborah W; Akintade, Bimbola; Son, Heesook; Woltz, Patricia; Hunt, Dennis; Friedmann, Erika; Hartung, Mary Kay; Thomas, Sue Ann

    2014-04-01

    Depression and anxiety are common comorbid conditions in patients with heart failure. Patients with heart failure and depression have increased mortality. The association of anxiety with increased mortality in patients with heart failure is not established. The purpose of this article is to illustrate the similarities of the underlying pathophysiology of heart failure, depression, and anxiety by using the Biopsychosocial Holistic Model of Cardiovascular Health. Depression and anxiety affect biological processes of cardiovascular function in patients with heart failure by altering neurohormonal function via activation of the hypothalamic-pituitary-adrenal axis, autonomic dysregulation, and activation of cytokine cascades and platelets. Patients with heart failure and depression or anxiety may exhibit a continued cycle of heart failure progression, increased depression, and increased anxiety. Understanding the underlying pathophysiological relationships in patients with heart failure who experience comorbid depression and/or anxiety is critical in order to implement appropriate treatments, educate patients and caregivers, and educate other health professionals.

  19. [Signaling pathways mTOR and AKT in epilepsy].

    PubMed

    Romero-Leguizamon, C R; Ramirez-Latorre, J A; Mora-Munoz, L; Guerrero-Naranjo, A

    2016-07-01

    The signaling pathway AKT/mTOR is a central axis in regulating cellular processes, particularly in neurological diseases. In the case of epilepsy, it has been observed alteration in the pathophysiological process of the same. However, they have not described all the mechanisms of these signaling pathways that could open the opportunity to new research and therapeutic strategies. To review existing partnerships between intracellular signaling pathways AKT and mTOR in the pathophysiology of epilepsy. Epilepsy is a disease with a high epidemiological impact globally, so it is widely investigated regarding the pathophysiological components thereof. In that search they have been involved different intracellular signaling pathways in neurons, as determinants epileptogenic. Advances in this field have even allowed the successful implementation of new therapeutic strategies and to open the way to new research in the field. Improving knowledge about the pathophysiological role of the signaling pathway mTOR/AKT in epilepsy can raise new investigations regarding therapeutic alternatives. The use of mTOR inhibitors, has emerged in recent years as effective in treating this disease entity alternative however is clear the necessity of continue the research for new drug therapies.

  20. The dual blocker of FAAH/TRPV1 N-arachidonoylserotonin reverses the behavioral despair induced by stress in rats and modulates the HPA-axis.

    PubMed

    Navarria, Andrea; Tamburella, Alessandra; Iannotti, Fabio A; Micale, Vincenzo; Camillieri, Giovanni; Gozzo, Lucia; Verde, Roberta; Imperatore, Roberta; Leggio, Gian Marco; Drago, Filippo; Di Marzo, Vincenzo

    2014-09-01

    In recent years, several studies have explored the involvement of the deregulation of the hypothalamus-pituitary-adrenal (HPA) axis in the pathophysiology of stress-related disorders. HPA hyper-activation as a consequence of acute/chronic stress has been found to play a major role in the neurobiological changes that are responsible for the onset of such states. Currently available medications for depression, one of the most relevant stress-related disorders, present several limitations, including a time lag for treatment response and low rates of efficacy. N-Arachidonoylserotonin (AA-5-HT), a dual blocker at fatty acid amide hydrolase (FAAH, the enzyme responsible for the inactivation of the endocannabinoid anandamide) and transient receptor potential vanilloid type-1 channel (TRPV1), produces anxiolytic-like effects in mice. The present study was designed to assess the capability of AA-5-HT to reverse the behavioral despair following exposure to stress in rats and the role of the HPA-axis. Behavioral tasks were performed, and corticosterone and endocannabinoid (anandamide and 2-arachidonoylglycerol) levels were measured in selected brain areas critically involved in the pathophysiology of stress-related disorders (medial PFC and hippocampus) under basal and stress conditions, and in response to treatment with AA-5-HT. Our data show that AA-5-HT reverses the rat behavioral despair in the forced swim test under stress conditions, and this effect is associated with the normalization of the HPA-axis deregulation that follows stress application and only in part with elevation of anandamide levels. Blockade of FAAH and TRPV1 may thus represent a novel target to design novel therapeutic strategies for the treatment of stress-related disorders. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Pathophysiological Mechanisms of Chronic Venous Disease and Implications for Venoactive Drug Therapy.

    PubMed

    Mansilha, Armando; Sousa, Joel

    2018-06-05

    Chronic venous disease (CVD) is a common pathology, with significant physical and psychological impacts for patients and high economic costs for national healthcare systems. Throughout the last decades, several risk factors for this condition have been identified, but only recently, have the roles of inflammation and endothelial dysfunction been properly assessed. Although still incompletely understood, current knowledge of the pathophysiological mechanisms of CVD reveals several potential targets and strategies for therapeutic intervention, some of which are addressable by currently available venoactive drugs. The roles of these drugs in the clinical improvement of venous tone and contractility, reduction of edema and inflammation, as well as in improved microcirculation and venous ulcer healing have been studied extensively, with favorable results reported in the literature. Here, we aim to review these pathophysiological mechanisms and their implications regarding currently available venoactive drug therapies.

  2. Elucidating the Role of Neurotensin in the Pathophysiology and Management of Major Mental Disorders

    PubMed Central

    Boules, Mona M; Fredrickson, Paul; Muehlmann, Amber M; Richelson, Elliott

    2014-01-01

    Neurotensin (NT) is a neuropeptide that is closely associated with, and is thought to modulate, dopaminergic and other neurotransmitter systems involved in the pathophysiology of various mental disorders. This review outlines data implicating NT in the pathophysiology and management of major mental disorders such as schizophrenia, drug addiction, and autism. The data suggest that NT receptor analogs have the potential to be used as novel therapeutic agents acting through modulation of neurotransmitter systems dys-regulated in these disorders. PMID:25379273

  3. Pathophysiology of the Effects of Alcohol Abuse on the Endocrine System

    PubMed Central

    Rachdaoui, Nadia; Sarkar, Dipak K.

    2017-01-01

    Alcohol can permeate virtually every organ and tissue in the body, resulting in tissue injury and organ dysfunction. Considerable evidence indicates that alcohol abuse results in clinical abnormalities of one of the body’s most important systems, the endocrine system. This system ensures proper communication between various organs, also interfacing with the immune and nervous systems, and is essential for maintaining a constant internal environment. The endocrine system includes the hypothalamic–pituitary–adrenal axis, the hypothalamic–pituitary–gonadal axis, the hypothalamic–pituitary–thyroid axis, the hypothalamic–pituitary–growth hormone/insulin-like growth factor-1 axis, and the hypothalamic–posterior pituitary axis, as well as other sources of hormones, such as the endocrine pancreas and endocrine adipose tissue. Alcohol abuse disrupts all of these systems and causes hormonal disturbances that may result in various disorders, such as stress intolerance, reproductive dysfunction, thyroid problems, immune abnormalities, and psychological and behavioral disorders. Studies in both humans and animal models have helped shed light on alcohol’s effects on various components of the endocrine system and their consequences. PMID:28988577

  4. Brain-derived neurotrophic factor Val66Met polymorphism and dexamethasone/CRH test results in depressed patients.

    PubMed

    Schüle, Cornelius; Zill, Peter; Baghai, Thomas C; Eser, Daniela; Zwanzger, Peter; Wenig, Nadine; Rupprecht, Rainer; Bondy, Brigitta

    2006-09-01

    Data suggest that both neurotrophic and hypothalamic-pituitary-adrenocortical (HPA) systems are involved in the pathophysiology of depression. The aim of the present study was to investigate whether the non-conservative brain-derived neurotrophic factor (BDNF) Val66Met polymorphism has an impact on HPA axis activity in depressed patients. At admission, the dexamethasone/CRH (DEX/CRH) test was performed in 187 drug-free in-patients suffering from major depression or depressed state of bipolar disorder (DSM-IV criteria). Moreover, genotyping of BDNF Val66Met polymorphism was carried out using the fluorescence resonance energy transfer method (FRET). Homozygous carriers of the Met/Met genotype showed a significantly higher HPA axis activity during the DEX/CRH test than patients carrying the Val/Val or Val/Met genotype (ACTH, cortisol). Our results further contribute to the hypothesized association between HPA axis dysregulation and reduced neuroplasticity in depression and are consistent with the assumption that BDNF is a stress-responsive intercellular messenger modifying HPA axis activity.

  5. Stress and visceral pain: focusing on irritable bowel syndrome.

    PubMed

    Fukudo, Shin

    2013-12-01

    Recent advances in brain science have shown that the brain function encoding emotion depends on interoceptive signals such as visceral pain. Visceral pain arose early in our evolutionary history. Bottom-up processing from gut-to-brain and top-down autonomic/neuroendocrine mechanisms in brain-to-gut signaling constitute a circuit. Brain imaging techniques have enabled us to depict the visceral pain pathway as well as the related emotional circuit. Irritable bowel syndrome (IBS) is characterized by chronic recurrent abdominal pain or abdominal discomfort associated with bowel dysfunction. It is also thought to be a disorder of the brain-gut link associated with an exaggerated response to stress. Corticotropin-releasing hormone (CRH), a major mediator of the stress response in the brain-gut axis, is an obvious candidate in the pathophysiology of IBS. Indeed, administration of CRH has been shown to aggravate the visceral sensorimotor response in IBS patients, and the administration of peptidergic CRH antagonists seems to alleviate IBS pathophysiology. Serotonin (5-HT) is another likely candidate associated with brain-gut function in IBS, as 5-HT3 antagonists, 5-HT4 agonists, and antidepressants were demonstrated to regulate 5-HT neurotransmission in IBS patients. Autonomic nervous system function, the neuroimmune axis, and the brain-gut-microbiota axis show specific profiles in IBS patients. Further studies on stress and visceral pain neuropathways in IBS patients are warranted. Copyright © 2013 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  6. Prenatal stress and inhibitory neuron systems: implications for neuropsychiatric disorders

    PubMed Central

    Fine, Rebecca; Zhang, Jie; Stevens, Hanna E.

    2014-01-01

    Prenatal stress is a risk factor for several psychiatric disorders in which inhibitory neuron pathology is implicated. A growing body of research demonstrates that inhibitory circuitry in the brain is directly and persistently affected by prenatal stress. This review synthesizes research that elucidates how this early, developmental risk factor impacts inhibitory neurons and how these findings intersect with research on risk factors and inhibitory neuron pathophysiology in schizophrenia, anxiety, autism and Tourette syndrome. The specific impact of prenatal stress on inhibitory neurons, particularly developmental mechanisms, may elucidate further the pathophysiology of these disorders. PMID:24751963

  7. Intestinal microbiota in pathophysiology and management of irritable bowel syndrome

    PubMed Central

    Lee, Kang Nyeong; Lee, Oh Young

    2014-01-01

    Irritable bowel syndrome (IBS) is a functional bowel disorder without any structural or metabolic abnormalities that sufficiently explain the symptoms, which include abdominal pain and discomfort, and bowel habit changes such as diarrhea and constipation. Its pathogenesis is multifactorial: visceral hypersensitivity, dysmotility, psychosocial factors, genetic or environmental factors, dysregulation of the brain-gut axis, and altered intestinal microbiota have all been proposed as possible causes. The human intestinal microbiota are composed of more than 1000 different bacterial species and 1014 cells, and are essential for the development, function, and homeostasis of the intestine, and for individual health. The putative mechanisms that explain the role of microbiota in the development of IBS include altered composition or metabolic activity of the microbiota, mucosal immune activation and inflammation, increased intestinal permeability and impaired mucosal barrier function, sensory-motor disturbances provoked by the microbiota, and a disturbed gut-microbiota-brain axis. Therefore, modulation of the intestinal microbiota through dietary changes, and use of antibiotics, probiotics, and anti-inflammatory agents has been suggested as strategies for managing IBS symptoms. This review summarizes and discusses the accumulating evidence that intestinal microbiota play a role in the pathophysiology and management of IBS. PMID:25083061

  8. Unravelling the pathophysiology of delirium: a focus on the role of aberrant stress responses

    PubMed Central

    MacLullich, Alasdair MJ; Ferguson, Karen J; Miller, Thomas; de Rooij, Sophia EJA; Cunningham, Colm

    2015-01-01

    Delirium is a common and serious acute neuropsychiatric syndrome with core features of inattention and cognitive impairment, and associated features including changes in arousal, altered sleep-wake cycle, and other changes in mental status. The main risk factors are old age, cognitive impairment, and other comorbidities. Though delirium has consistent core clinical features, it has a very wide range of precipitating factors, including acute illness, surgery, trauma, and drugs. The molecular mechanisms by which these precipitating factors lead to delirium are largely obscure. In this article we attempt to narrow down some specific causal pathways. We propose a basic classification for the aetiological factors: (a) direct brain insults, and (b) aberrant stress responses. Direct brain insults are largely indiscriminate and include general and regional energy deprivation (eg. hypoxia, hypoglycaemia, stroke), metabolic abnormalities (eg. hyponatraemia, hypercalcaemia), and the effects of drugs. Aberrant stress responses are conceptually and mechanistically distinct in that they constitute adverse effects of stress-response pathways which, in health, are adaptive. Ageing and central nervous system disease, two major predisposing factors for delirium, are associated with alterations in the magnitude or duration of stress and sickness behaviour responses, and increased vulnerability to the effects of these responses. We discuss in detail two stress response systems that are likely to be involved in the pathophysiology of delirium: inflammation and the sickness behaviour response, and activity of the limbic-hypothalamic-pituitary-adrenal axis. We conclude by discussing the implications for future research and the development of new therapies for delirium. PMID:18707945

  9. Are the Gut Bacteria Telling Us to Eat or Not to Eat? Reviewing the Role of Gut Microbiota in the Etiology, Disease Progression and Treatment of Eating Disorders

    PubMed Central

    Lam, Yan Y.; Maguire, Sarah; Palacios, Talia; Caterson, Ian D.

    2017-01-01

    Traditionally recognized as mental illnesses, eating disorders are increasingly appreciated to be biologically-driven. There is a growing body of literature that implicates a role of the gut microbiota in the etiology and progression of these conditions. Gut bacteria may act on the gut–brain axis to alter appetite control and brain function as part of the genesis of eating disorders. As the illnesses progress, extreme feeding patterns and psychological stress potentially feed back to the gut ecosystem that can further compromise physiological, cognitive, and social functioning. Given the established causality between dysbiosis and metabolic diseases, an altered gut microbial profile is likely to play a role in the co-morbidities of eating disorders with altered immune function, short-chain fatty acid production, and the gut barrier being the key mechanistic links. Understanding the role of the gut ecosystem in the pathophysiology of eating disorders will provide critical insights into improving current treatments and developing novel microbiome-based interventions that will benefit patients with eating disorders. PMID:28613252

  10. Neonatal Subventricular Zone Neural Stem Cells Release Extracellular Vesicles that Act as a Microglial Morphogen.

    PubMed

    Morton, Mary C; Neckles, Victoria N; Seluzicki, Caitlin M; Holmberg, Jennie C; Feliciano, David M

    2018-04-03

    Subventricular zone (SVZ) neural stem cells (NSCs) are the cornerstone of the perinatal neurogenic niche. Microglia are immune cells of the nervous system that are enriched in the neonatal SVZ. Although microglia regulate NSCs, the extent to which this interaction is bi-directional is unclear. Extracellular vesicles (EVs) are cell-derived particles that encase miRNA and proteins. Here, we demonstrate that SVZ NSCs generate and release EVs. Neonatal electroporated fluorescent EV fusion proteins were released by NSCs and subsequently cleared from the SVZ. EVs were preferentially targeted to microglia. Small RNA sequencing identified miRNAs within the EVs that regulate microglia physiology and morphology. EVs induced a transition to a CD11b/Iba1 non-stellate microglial morphology. The transition accompanied a microglial transcriptional state characterized by Let-7-regulated cytokine release and a negative feedback loop that controlled NSC proliferation. These findings implicate an NSC-EV-microglia axis and provide insight to normal and pathophysiological brain development. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  11. Are the Gut Bacteria Telling Us to Eat or Not to Eat? Reviewing the Role of Gut Microbiota in the Etiology, Disease Progression and Treatment of Eating Disorders.

    PubMed

    Lam, Yan Y; Maguire, Sarah; Palacios, Talia; Caterson, Ian D

    2017-06-14

    Traditionally recognized as mental illnesses, eating disorders are increasingly appreciated to be biologically-driven. There is a growing body of literature that implicates a role of the gut microbiota in the etiology and progression of these conditions. Gut bacteria may act on the gut-brain axis to alter appetite control and brain function as part of the genesis of eating disorders. As the illnesses progress, extreme feeding patterns and psychological stress potentially feed back to the gut ecosystem that can further compromise physiological, cognitive, and social functioning. Given the established causality between dysbiosis and metabolic diseases, an altered gut microbial profile is likely to play a role in the co-morbidities of eating disorders with altered immune function, short-chain fatty acid production, and the gut barrier being the key mechanistic links. Understanding the role of the gut ecosystem in the pathophysiology of eating disorders will provide critical insights into improving current treatments and developing novel microbiome-based interventions that will benefit patients with eating disorders.

  12. The Glutamatergic Aspects of Schizophrenia Molecular Pathophysiology: Role of the Postsynaptic Density, and Implications for Treatment

    PubMed Central

    Iasevoli, Felice; Tomasetti, Carmine; Buonaguro, Elisabetta F.; de Bartolomeis, Andrea

    2014-01-01

    Schizophrenia is one of the most debilitating psychiatric diseases with a lifetime prevalence of approximately 1%. Although the specific molecular underpinnings of schizophrenia are still unknown, evidence has long linked its pathophysiology to postsynaptic abnormalities. The postsynaptic density (PSD) is among the molecular structures suggested to be potentially involved in schizophrenia. More specifically, the PSD is an electron-dense thickening of glutamatergic synapses, including ionotropic and metabotropic glutamate receptors, cytoskeletal and scaffolding proteins, and adhesion and signaling molecules. Being implicated in the postsynaptic signaling of multiple neurotransmitter systems, mostly dopamine and glutamate, the PSD constitutes an ideal candidate for studying dopamine-glutamate disturbances in schizophrenia. Recent evidence suggests that some PSD proteins, such as PSD-95, Shank, and Homer are implicated in severe behavioral disorders, including schizophrenia. These findings, further corroborated by genetic and animal studies of schizophrenia, offer new insights for the development of pharmacological strategies able to overcome the limitations in terms of efficacy and side effects of current schizophrenia treatment. Indeed, PSD proteins are now being considered as potential molecular targets against this devastating illness. The current paper reviews the most recent hypotheses on the molecular mechanisms underlying schizophrenia pathophysiology. First, we review glutamatergic dysfunctions in schizophrenia and we provide an update on postsynaptic molecules involvement in schizophrenia pathophysiology by addressing both human and animal studies. Finally, the possibility that PSD proteins may represent potential targets for new molecular interventions in psychosis will be discussed. PMID:24851087

  13. Tics and Tourette's: update on pathophysiology and tic control.

    PubMed

    Ganos, Christos

    2016-08-01

    To describe recent advances in the pathophysiology of tics and Tourette syndrome, and novel insights on tic control. The cortico-basal ganglia-thalamo-cortical loops are implicated in generation of tics. Disruption of GABAergic inhibition lies at the core of tic pathophysiology, but novel animal models also implicate cholinergic and histaminergic neurotransmission. Tourette syndrome patients have altered awareness of volition and enhanced formation of habits. Premonitory urges are not the driving force behind all tics. The intensity of premonitory urges depends on patients' capacity to perceive interoceptive signals. The insular cortex is a key structure in this process. The trait intensity of premonitory urges is not a prerequisite of voluntary tic inhibition, a distinct form of motor control. Voluntary tic inhibition is most efficient in the body parts that tic the least. The prefrontal cortex is associated with the capacity to inhibit tics. The management of tics includes behavioral, pharmacological and surgical interventions. Treatment recommendations differ based on patients' age. The study of Tourette syndrome pathophysiology involves different neural disciplines and provides novel, exciting insights of brain function in health and disease. These in turn provide the basis for innovative treatment approaches of tics and their associations.

  14. Oxidative stress in sickle cell disease; pathophysiology and potential implications for disease management.

    PubMed

    Nur, Erfan; Biemond, Bart J; Otten, Hans-Martin; Brandjes, Dees P; Schnog, John-John B

    2011-06-01

    Sickle cell disease (SCD) is a hemoglobinopathy characterized by hemolytic anemia, increased susceptibility to infections and vaso-occlusion leading to a reduced quality of life and life expectancy. Oxidative stress is an important feature of SCD and plays a significant role in the pathophysiology of hemolysis, vaso-occlusion and ensuing organ damage in sickle cell patients. Reactive oxygen species (ROS) and the (end-)products of their oxidative reactions are potential markers of disease severity and could be targets for antioxidant therapies. This review will summarize the role of ROS in SCD and their potential implication for SCD management. Copyright © 2011 Wiley-Liss, Inc.

  15. Neurobiology of the premonitory urge in Tourette syndrome: Pathophysiology and treatment implications

    PubMed Central

    Cavanna, Andrea E.; Black, Kevin J; Hallett, Mark; Voon, Valerie

    2017-01-01

    Motor and vocal tics are relatively common motor manifestations identified as the core features of Tourette syndrome. Although traditional descriptions have focused on objective phenomenological observations, such as anatomical location, number and frequency of tics, patients’ first-person accounts have consistently reported characteristic subjective correlates. These sensory phenomena are often described as a feeling of mounting inner tension or urge to move (“premonitory urge”), which is transiently relieved by tic expression. This paper reviews the existing literature on the clinical and neurobiological aspects of the premonitory urge in patients with Tourette syndrome, with focus on its pathophysiology and possible treatment implications. PMID:28121259

  16. IMPACT OF ATRA ON OVALBUMIN AND MOLD-SENSITIZED F344 RATS AND REVERSAL OF HEALTH-RELATED IMPLICATIONS BY CITRAL.

    PubMed

    Farah, Ibrahim O; Holt-Gray, Carlene; Cameron, Joseph A; Tucci, Michelle; Benghuzzi, Hamed

    2017-01-01

    The role of retinoic acid (All Trans Retinoic Acid; ATRA) in the development of hypervitaminosis A pathophysiology is not well understood or established in the literature. As well, the role of Citral (inhibitor of retinoid function; a non-toxic chemical that exists in two forms (diethyl; C1 or cis-trans dimethyl; C2).) in the reversal of pathophysiological implications is also not ascertained under an in vivo setting. Therefore, it is hypothesized that ovalbumin exposure will sensitize the body to supra-physiologic levels of retinoic acid leading to a negative pathophysiological impact and that Citrals 1 and 2 will reverse or ameliorate the related damage to the body's pathophysiology. Even though ovalbumin and retinoic have been previously applied through intra-tracheal route in cancer prevention and immunological research, the objective of this study was to evaluate their interaction as a remedy for hypervitaminosis A. This IACUC approved in vivo study used Fischer 344 rats ( n = 80 ;229 to 273g), which were randomly assigned to controls as well as ovalbumin and mold-sensitized treatment groups (0.80 mg/kg and 1X109 mold spores combined from 4 strains/100 μl intra-tracheal; all others were dosed by intra-peritoneal injection at days 1 and 7 with 80 mg/kg each of ATRA as well as 20 and 50 mg/kg each of Citrals 1 or 2 individually or in combination to represent all four chemicals and mold spores treatments.. Positive and negative controls for each treatment were also included in the study. Animals were housed in rat cages at the JSU Research Animal Core Facilities and were placed on a 12:12 light dark cycle. A standard rodent diet and water access were provided ad-libidum. Rat weights were recorded on day 1 and 21, all animals were sacrificed on day 21 and blood was collected and processed for hematological parameters. Results showed that even though C1 and C2 were not toxic individually, their combination at high dosing was lethal. Exposure of ovalbumin-sensitized rats to ATRA showed various levels of weight losses and negative hematological implications that were ameliorated by exposure to Citrals at various combinations with retinoic acid. Taken together, the study showed that there are variable pathophysiological responses from the interaction of ovalbumin, mold spores and retinoic acid and that Citrals were found to be individually effective in reversing health-related pathophysiologies. These findings warrants further investigations as to the actual role of these interactions in relation to acute pathophysiologic health implications and the possibility of reversing hypervitaminosis A-mediated health-related impacts.

  17. Immunological Mechanisms Implicated in the Pathogenesis of Chronic Urticaria and Hashimoto Thyroiditis.

    PubMed

    Berghi, Nicolae Ovidiu

    2017-08-01

    Autoimmunity represents the attack of the immune system of an organism against its own cells and tissues. Autoimmune diseases may affect one organ (Hashimoto thyroiditis) or can be systemic (chronic urticaria). Many factors are implicated in the pathogenesis of autoimmunity (white cells, cytokines, chemokines). Hashimoto thyroiditis has been associated with chronic urticaria in the last 3 decades in a number of clinical studies. Anti-thyroid antibodies have been documented in a proportion ranging from 10% to 30% in chronic urticaria patients in different countries from 3 continents. Two of the factors involved in the mechanism of autoimmunity are present both in the pathophysiology of Hashimoto thyroiditis and chronic urticaria. According to recent studies, IL6 is implicated in the pathogenesis of both diseases. TregsCD4+CD25+Foxp3+ cells have also been implicated in the pathological mechanisms of these 2 entities. This review offers an explanation of the clinical and statistical association between these two diseases from the pathophysiological point of view.

  18. Process irregularity of cortisol and adrenocorticotropin secretion in men with major depressive disorder.

    PubMed

    Posener, Joel A; Charles DeBattista; Veldhuis, Johannes D; Province, Michael A; Williams, Gordon H; Schatzberg, Alan F

    2004-10-01

    Although evidence suggests that major depressive disorder (MDD) is associated with hyperactivity of the hypothalamic-pituitary-adrenal (HPA) axis, research on basal HPA axis hormone levels in MDD patients has been inconclusive. Definitive characterization of basal cortisol and adrenocorticotropin (ACTH) secretion may be important for understanding the pathophysiology of this disorder. In recent years, a new approach to the analysis of basal hormone secretion has been developed involving the approximate entropy (ApEn) statistic, which represents the degree of disorderliness or serial irregularity in a time series of hormone levels. ApEn has been shown to reflect the degree of coordination in integrated network systems and has provided new insights into the pathophysiology of a number of endocrine conditions. In the study reported here, 15 medication-free men with MDD and 15 healthy control men were admitted to a General Clinical Research Center and had blood sampled for cortisol and ACTH determinations every hour over a 24-h period. The cortisol and ACTH time series were characterized with a cosinor analysis and with analysis of ApEn. Depressed patients and control subjects did not differ significantly on any parameter derived from the cosinor analysis or on several other standard indices of basal hormone secretion. However, the depressed men had significantly increased cortisol ApEn and significantly decreased ACTH ApEn compared with the healthy subjects. The ApEn findings suggest a loss of regulatory control over cortisol secretion, and possibly increased cortisol feedback on the pituitary in the depressed patients. Together, these results are most consistent with a primary abnormality of the adrenal gland and suggest that further investigation of adrenal gland physiology may be informative for the pathophysiology of depression.

  19. Region-specific Alterations in Glucocorticoid Receptor Expression in the Postmortem Brain of Teenage Suicide Victims

    PubMed Central

    Pandey, Ghanshyam N.; Rizavi, Hooriyah S.; Ren, Xinguo; Dwivedi, Yogesh; Palkovits, Miklós

    2013-01-01

    Introduction Abnormal function of the hypothalamic-pituitary-adrenal (HPA) axis has been implicated in the pathophysiology of depression and suicide. The purpose of this study was to test the hypothesis that the reported dysregulation of the HPA axis in suicide may be related to a disturbed feedback inhibition caused by decreased corticoid receptors in the brain. We therefore determined the protein and gene expression of glucocorticoid (GR) and mineralocorticoid receptors (MR) in the postmortem brain of teenage suicide victims and matched normal controls. Methods Protein and mRNA expression of GR (GR-α and GR-β) and MR and the mRNA expression of glucocorticoid-induced leucine zipper (GILZ), a target gene for GR were determined by immunolabeling using Western blot technique and the real-time RT-polymerase chain reaction (qPCR) technique in the prefrontal cortex (PFC), hippocampus, subiculum, and amygdala obtained from 24 teenage suicide victims and 24 teenage control subjects. Results We observed that protein and gene expression of GR-α was significantly decreased in the PFC and amygdala, but not in the hippocampus or subiculum, of teenage suicide victims compared with normal control subjects. Also, the mRNA levels of GR inducible target gene GILZ was significantly decreased in PFC and amygdaloid nuclei but not in hippocampus compared with controls. In contrast, no significant differences were observed in protein or gene expression of MR in any of the areas studied between teenage suicide victims and normal control subjects. There was no difference in the expression of GR-β in the PFC between suicide victims and normal controls. Conclusions These results suggested that the observed dysregulation of the HPA axis in suicide may be related to a decreased expression of GR-α and GR inducible genes in the PFC and amygdala of teenage suicide victims. The reason why GR receptors are not dysregulated in the hippocampus or subiculum, presumably two sites of stress action, are not clear at this time. PMID:23845513

  20. Systemic N-terminal fragments of adrenocorticotropin reduce inflammation- and stress-induced anhedonia in rats.

    PubMed

    Markov, Dmitrii D; Yatsenko, Ksenia A; Inozemtseva, Lyudmila S; Grivennikov, Igor A; Myasoedov, Nikolai F; Dolotov, Oleg V

    2017-08-01

    Emerging evidence implicates impaired self-regulation of the hypothalamic-pituitary-adrenal (HPA) axis and inflammation as important and closely related components of the pathophysiology of major depression. Antidepressants show anti-inflammatory effects and are suggested to enhance glucocorticoid feedback inhibition of the HPA axis. HPA axis activity is also negatively self-regulated by the adrenocorticotropic hormone (ACTH), a potent anti-inflammatory peptide activating five subtypes of melanocortin receptors (MCRs). There are indications that ACTH-mediated feedback can be activated by noncorticotropic N-terminal ACTH fragments such as a potent anti-inflammatory MC1/3/4/5R agonist α-melanocyte-stimulating hormone (α-MSH), corresponding to ACTH(1-13), and a MC3/5R agonist ACTH(4-10). We investigated whether intraperitoneal administration of rats with these peptides affects anhedonia, which is a core symptom of depression. Inflammation-related anhedonia was induced by a single intraperitoneal administration of a low dose (0.025mg/kg) of lipopolysaccharide (LPS). Stress-related anhedonia was induced by the chronic unpredictable stress (CUS) procedure. The sucrose preference test was used to detect anhedonia. We found that ACTH(4-10) pretreatment decreased LPS-induced increase in serum corticosterone and tumor necrosis factor (TNF)-α, and a MC3/4R antagonist SHU9119 blocked this effect. Both α-MSH and ACTH(4-10) alleviated LPS-induced anhedonia. In the CUS model, these peptides reduced anhedonia and normalized body weight gain. The data indicate that systemic α-MSH and ACTH(4-10) produce an antidepressant-like effect on anhedonia induced by stress or inflammation, the stimuli that trigger the release of ACTH and α-MSH into the bloodstream. The results suggest a counterbalancing role of circulating melanocortins in depression and point to a new approach for antidepressant treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Functional Implications of the IL-23/IL-17 Immune Axis in Schizophrenia.

    PubMed

    Debnath, Monojit; Berk, Michael

    2017-12-01

    The aetiology of schizophrenia seems to stem from complex interactions amongst environmental, genetic, metabolic, immunologic and oxidative components. Chronic low-grade inflammation has been persistently linked to schizophrenia, and this has primarily been based on the findings derived from Th1/Th2 cytokine balance. While the IL-23/IL-17 axis plays crucial role in the pathogenesis of several immune-mediated disorders, it has remained relatively unexplored in neuropsychiatric disorders. Altered levels of cytokines related to IL-23/IL-17 axis have been observed in schizophrenia patients in a few studies. In addition, other indirect factors known to confer schizophrenia risk like complement activation and altered gut microbiota are shown to modulate the IL-23/IL-17 axis. These preliminary observations provide crucial clues about the functional implications of IL-23/IL-17 axis in schizophrenia. In this review, an attempt has been made to highlight the biology of IL-23/IL-17 axis and its relevance to schizophrenia risk and pathogenesis. Given the pathogenic potential of the IL-23/IL-17 axis, therapeutic targeting of this axis may be a promising approach to benefit patients suffering from this devastating disorder.

  2. Chronic fatigue syndrome: an update focusing on phenomenology and pathophysiology.

    PubMed

    Cho, Hyong Jin; Skowera, Anna; Cleare, Anthony; Wessely, Simon

    2006-01-01

    Chronic fatigue syndrome is a controversial condition especially concerning its clinical definition and aetiopathogenesis. Most recent research progress has been made in phenomenology and pathophysiology and we focused our review on these two areas. The phenomenology research supports the notion of a discrete fatigue syndrome which can be distinguished from depression and anxiety. The current case definition, however, may need an improvement based on empirical data. Recent advances in understanding the pathophysiology of chronic fatigue syndrome continue to demonstrate the involvement of the central nervous system. Hyperserotonergic state and hypoactivity of the hypothalamic-pituitary-adrenal axis constitute other findings, but the question of whether these alterations are a cause or consequence of chronic fatigue syndrome still remains unanswered. Immune system involvement in the pathogenesis seems certain but the findings on the specific mechanisms are still inconsistent. Genetic studies provide some evidence of the syndrome being a partly genetic condition, but environmental effects seem to be still predominant and identification of specific genes is still at a very early stage. The recent findings suggest that further research is needed in improving the current case definition; investigating overlaps and boundaries among various functional somatic syndromes; answering the question of whether the pathophysiologic findings are a cause or consequence; and elucidating the involvement of the central nervous system, immune system and genetic factors.

  3. Sex hormones in the modulation of irritable bowel syndrome.

    PubMed

    Mulak, Agata; Taché, Yvette; Larauche, Muriel

    2014-03-14

    Compelling evidence indicates sex and gender differences in epidemiology, symptomatology, pathophysiology, and treatment outcome in irritable bowel syndrome (IBS). Based on the female predominance as well as the correlation between IBS symptoms and hormonal status, several models have been proposed to examine the role of sex hormones in gastrointestinal (GI) function including differences in GI symptoms expression in distinct phases of the menstrual cycle, in pre- and post-menopausal women, during pregnancy, hormonal treatment or after oophorectomy. Sex hormones may influence peripheral and central regulatory mechanisms of the brain-gut axis involved in the pathophysiology of IBS contributing to the alterations in visceral sensitivity, motility, intestinal barrier function, and immune activation of intestinal mucosa. Sex differences in stress response of the hypothalamic-pituitary-adrenal axis and autonomic nervous system, neuroimmune interactions triggered by stress, as well as estrogen interactions with serotonin and corticotropin-releasing factor signaling systems are being increasingly recognized. A concept of "microgenderome" related to the potential role of sex hormone modulation of the gut microbiota is also emerging. Significant differences between IBS female and male patients regarding symptomatology and comorbidity with other chronic pain syndromes and psychiatric disorders, together with differences in efficacy of serotonergic medications in IBS patients confirm the necessity for more sex-tailored therapeutic approach in this disorder.

  4. Emerging role of amyloid beta in stress response: Implication for depression and diabetes.

    PubMed

    Morgese, Maria Grazia; Schiavone, Stefania; Trabace, Luigia

    2017-12-15

    Chronic stress is considered a widely accepted risk factor for the development of neuropsychiatric and neurological disorders. Indeed, high cortisol levels, and, thus, hypothalamic pituitary adrenal (HPA)-axis dysregulation, have been indicated as the most frequent alteration in patients affected by depression, as well as by Alzheimer's disease (AD). Furthermore, depressive state has been pointed as an early manifestation of AD, advocating an overlap between these neuropathological events. We have previously demonstrated that central soluble beta amyloid 1-42 (Aβ) administration peptide induces a depressive like-behavior in rats, with altered HPA axis activation, reduced cortical serotonin and neurotrophin levels. The crucial role of Aβ in stress response is becoming more and more evident, indeed many reports indicate that its release is increased in stressful conditions and stress-based paradigm. Furthermore, it has been reported that stress controls Aβ production and/or clearance. Chronic stress is responsible of inducing neuroinflammation processes and reduced serotoninergic tone, both pathophysiological mechanisms proposed in the association of depression with another chronic disease, such as diabetes. Likewise, AD has also been indicated as type 3 diabetes, considering the large body of literature that suggests common biological bases. Thus, the main aim of the present review is to evaluate the most recent literature findings in humans and animal models in regard to the role of Aβ in stress response and in relation to the biological substrates and pathological pathways common to AD and comorbid diseases, such as depression and diabetes. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Chemokine GPCR Signaling Inhibits β-Catenin during Zebrafish Axis Formation

    PubMed Central

    Wu, Shu-Yu; Shin, Jimann; Sepich, Diane S.; Solnica-Krezel, Lilianna

    2012-01-01

    Embryonic axis formation in vertebrates is initiated by the establishment of the dorsal Nieuwkoop blastula organizer, marked by the nuclear accumulation of maternal β-catenin, a transcriptional effector of canonical Wnt signaling. Known regulators of axis specification include the canonical Wnt pathway components that positively or negatively affect β-catenin. An involvement of G-protein coupled receptors (GPCRs) was hypothesized from experiments implicating G proteins and intracellular calcium in axis formation, but such GPCRs have not been identified. Mobilization of intracellular Ca2+ stores generates Ca2+ transients in the superficial blastomeres of zebrafish blastulae when the nuclear accumulation of maternal β-catenin marks the formation of the Nieuwkoop organizer. Moreover, intracellular Ca2+ downstream of non-canonical Wnt ligands was proposed to inhibit β-catenin and axis formation, but mechanisms remain unclear. Here we report a novel function of Ccr7 GPCR and its chemokine ligand Ccl19.1, previously implicated in chemotaxis and other responses of dendritic cells in mammals, as negative regulators of β-catenin and axis formation in zebrafish. We show that interference with the maternally and ubiquitously expressed zebrafish Ccr7 or Ccl19.1 expands the blastula organizer and the dorsoanterior tissues at the expense of the ventroposterior ones. Conversely, Ccr7 or Ccl19.1 overexpression limits axis formation. Epistatic analyses demonstrate that Ccr7 acts downstream of Ccl19.1 ligand and upstream of β-catenin transcriptional targets. Moreover, Ccl19/Ccr7 signaling reduces the level and nuclear accumulation of maternal β-catenin and its axis-inducing activity and can also inhibit the Gsk3β -insensitive form of β-catenin. Mutational and pharmacologic experiments reveal that Ccr7 functions during axis formation as a GPCR to inhibit β-catenin, likely by promoting Ca2+ transients throughout the blastula. Our study delineates a novel negative, Gsk3β-independent control mechanism of β-catenin and implicates Ccr7 as a long-hypothesized GPCR regulating vertebrate axis formation. PMID:23055828

  6. Exploring the influence of students' attributions for success on their self-regulation in pathophysiology.

    PubMed

    Dunn, Karee E; Osborne, Cara; Link, Hope J

    2012-06-01

    Pathophysiology is a difficult course both for students to take and for instructors to teach. However, little research has explored learner characteristics that teachers may address through targeted instruction to make both the teaching and learning experience better. This study examined the influence of students' causal attributions for success on their self-regulated learning, which is strongly associated with positive learning outcomes. Results indicated that ability, effort, and luck attributions for success collectively influenced Pathophysiology students' self-regulated learning and that ability was the most potent influence. The findings and the implication for teaching are discussed. Copyright 2012, SLACK Incorporated.

  7. Hypothalamic-Pituitary-Adrenal Hypofunction in Myalgic Encephalomyelitis (ME)/Chronic Fatigue Syndrome (CFS) as a Consequence of Activated Immune-Inflammatory and Oxidative and Nitrosative Pathways.

    PubMed

    Morris, Gerwyn; Anderson, George; Maes, Michael

    2017-11-01

    There is evidence that immune-inflammatory and oxidative and nitrosative stress (O&NS) pathways play a role in the pathophysiology of myalgic encephalomyelitis (ME)/chronic fatigue syndrome (CFS). There is also evidence that these neuroimmune diseases are accompanied by hypothalamic-pituitary-adrenal (HPA) axis hypoactivity as indicated by lowered baseline glucocorticoid levels. This paper aims to review the bidirectional communications between immune-inflammatory and O&NS pathways and HPA axis hypoactivity in ME/CFS, considering two possibilities: (a) Activation of immune-inflammatory pathways is secondary to HPA axis hypofunction via attenuated negative feedback mechanisms, or (b) chronic activated immune-inflammatory and O&NS pathways play a causative role in HPA axis hypoactivity. Electronic databases, i.e., PUBMED, Scopus, and Google Scholar, were used as sources for this narrative review by using keywords CFS, ME, cortisol, ACTH, CRH, HPA axis, glucocorticoid receptor, cytokines, immune, immunity, inflammation, and O&NS. Findings show that activation of immune-inflammatory and O&NS pathways in ME/CFS are probably not secondary to HPA axis hypoactivity and that activation of these pathways may underpin HPA axis hypofunction in ME/CFS. Mechanistic explanations comprise increased levels of tumor necrosis factor-α, T regulatory responses with elevated levels of interleukin-10 and transforming growth factor-β, elevated levels of nitric oxide, and viral/bacterial-mediated mechanisms. HPA axis hypoactivity in ME/CFS is most likely a consequence and not a cause of a wide variety of activated immune-inflammatory and O&NS pathways in that illness.

  8. Effect of sleeping position on nasal patency in newborns

    PubMed Central

    Olarinde, O; Banerjee, A R; O'Callaghan, C

    2006-01-01

    Sleeping posture has been implicated in the pathophysiology of sudden infant death syndrome. The effect of supine and lateral sleeping positions on nasal patency was investigated using acoustic rhinometry in 11 healthy newborns. The implications of the findings in sudden infant death syndrome are discussed. PMID:16923934

  9. Brain-gut-microbiota axis in Parkinson's disease.

    PubMed

    Mulak, Agata; Bonaz, Bruno

    2015-10-07

    Parkinson's disease (PD) is characterized by alpha-synucleinopathy that affects all levels of the brain-gut axis including the central, autonomic, and enteric nervous systems. Recently, it has been recognized that the brain-gut axis interactions are significantly modulated by the gut microbiota via immunological, neuroendocrine, and direct neural mechanisms. Dysregulation of the brain-gut-microbiota axis in PD may be associated with gastrointestinal manifestations frequently preceding motor symptoms, as well as with the pathogenesis of PD itself, supporting the hypothesis that the pathological process is spread from the gut to the brain. Excessive stimulation of the innate immune system resulting from gut dysbiosis and/or small intestinal bacterial overgrowth and increased intestinal permeability may induce systemic inflammation, while activation of enteric neurons and enteric glial cells may contribute to the initiation of alpha-synuclein misfolding. Additionally, the adaptive immune system may be disturbed by bacterial proteins cross-reacting with human antigens. A better understanding of the brain-gut-microbiota axis interactions should bring a new insight in the pathophysiology of PD and permit an earlier diagnosis with a focus on peripheral biomarkers within the enteric nervous system. Novel therapeutic options aimed at modifying the gut microbiota composition and enhancing the intestinal epithelial barrier integrity in PD patients could influence the initial step of the following cascade of neurodegeneration in PD.

  10. Corticotropin-releasing hormone regulates IL-6 expression during inflammation

    PubMed Central

    Venihaki, Maria; Dikkes, Pieter; Carrigan, Allison; Karalis, Katia P.

    2001-01-01

    Stimulation of the hypothalamic-pituitary-adrenal (HPA) axis by proinflammatory cytokines results in increased release of glucocorticoid that restrains further development of the inflammatory process. IL-6 has been suggested to stimulate the HPA axis during immune activation independent of the input of hypothalamic corticotropin-releasing hormone (CRH). We used the corticotropin-releasing hormone–deficient (Crh+/+) mouse to elucidate the effect of CRH deficiency on IL-6 expression and IL-6–induced HPA axis activation during turpentine-induced inflammation. We demonstrate that during inflammation CRH is required for a normal adrenocorticotropin hormone (ACTH) increase but not for adrenal corticosterone rise. The paradoxical increase of plasma IL-6 associated with CRH deficiency suggests that IL-6 release during inflammation is CRH-dependent. We also demonstrate that adrenal IL-6 expression is CRH-dependent, as its basal and inflammation-induced expression is blocked by CRH deficiency. Our findings suggest that during inflammation, IL-6 most likely compensates for the effects of CRH deficiency on food intake. Finally, we confirm that the HPA axis response is defective in Crh+/+/IL-6+/+ mice. These findings, along with the regulation of IL-6 by CRH, support the importance of the interaction between the immune system and the HPA axis in the pathophysiology of inflammatory diseases. PMID:11602623

  11. Reframing the Teenage Wasteland: Adolescent Microbiota-Gut-Brain Axis.

    PubMed

    McVey Neufeld, Karen-Anne; Luczynski, Pauline; Dinan, Timothy G; Cryan, John F

    2016-04-01

    Human adolescence is arguably one of the most challenging periods of development. The young adult is exposed to a variety of stressors and environmental stimuli on a backdrop of significant physiological change and development, which is especially apparent in the brain. It is therefore unsurprising that many psychiatric disorders are first observable during this time. The human intestine is inhabited by trillions of microorganisms, and evidence from both preclinical and clinical research focusing on the established microbiota-gut-brain axis suggests that the etiology and pathophysiology of psychiatric disorders may be influenced by intestinal dysbiosis. Provocatively, many if not all of the challenges faced by the developing teen have a documented impact on these intestinal commensal microbiota. In this review, we briefly summarize what is known about the developing adolescent brain and intestinal microbiota, discuss recent research investigating the microbiota-gut-brain axis during puberty, and propose that pre- and probiotics may prove useful in both the prevention and treatment of psychiatric disorders specifically benefitting the young adult. © The Author(s) 2016.

  12. Reframing the Teenage Wasteland: Adolescent Microbiota-Gut-Brain Axis

    PubMed Central

    McVey Neufeld, Karen-Anne; Luczynski, Pauline; Dinan, Timothy G.

    2016-01-01

    Human adolescence is arguably one of the most challenging periods of development. The young adult is exposed to a variety of stressors and environmental stimuli on a backdrop of significant physiological change and development, which is especially apparent in the brain. It is therefore unsurprising that many psychiatric disorders are first observable during this time. The human intestine is inhabited by trillions of microorganisms, and evidence from both preclinical and clinical research focusing on the established microbiota-gut-brain axis suggests that the etiology and pathophysiology of psychiatric disorders may be influenced by intestinal dysbiosis. Provocatively, many if not all of the challenges faced by the developing teen have a documented impact on these intestinal commensal microbiota. In this review, we briefly summarize what is known about the developing adolescent brain and intestinal microbiota, discuss recent research investigating the microbiota-gut-brain axis during puberty, and propose that pre- and probiotics may prove useful in both the prevention and treatment of psychiatric disorders specifically benefitting the young adult. PMID:27254413

  13. From Hans Selye’s Discovery of Biological Stress to the Identification of Corticotropin Releasing Factor signaling pathways: Implication in Stress-Related Functional Bowel Diseases

    PubMed Central

    Taché, Yvette; Brunnhuber, Stefan

    2010-01-01

    Selye’s pioneer the concept of biological stress in 1936 culminating to the identification of the corticotropin releasing factor (CRF) signaling pathways by Vale’s group in the last two decades. The characterization of the 41 amino-acid CRF and other peptide members of the mammalian CRF family, urocortin 1, urocortin 2 and urocortin 3, the cloning of CRF1 and CRF2 receptors, which display distinct affinity for CRF ligands, combined with the development of selective CRF receptor antagonists enable to unravel the importance of CRF1 receptor in the stress-related endocrine (activation of pituitary-adrenal axis), behavioral (anxiety/depression, altered feeding), autonomic (activation of sympathetic nervous system) and immune responses. The activation of CRF1 receptors is also part of key mechanisms through which various stressors impact the gut to stimulate colonic propulsive motor function and to induce hypersensitivity to colorectal distension as shown by the efficacy of the CRF1 receptor antagonists in blunting these stress-related components. The importance of CRF1 signaling pathways in the visceral response to stress in experimental animals provided new therapeutic approaches for treatment of functional bowel disorder such as irritable bowel syndrome, a multifactor functional disorder characterized by altered bowel habits and visceral pain for which stress has been implicated in the pathophysiology and is associated with anxiety-depression in subset of patients. PMID:19120089

  14. Implications of genetic research on the role of the serotonin in depression: emphasis on the serotonin type 1A receptor and the serotonin transporter.

    PubMed

    Neumeister, Alexander; Young, Theresa; Stastny, Juergen

    2004-08-01

    Serotonin systems appear to play a key role in the pathophysiology of major depressive disorder. Consequently, ongoing research determines whether serotonin related genes account for the very robust differential behavioral and neural mechanisms that discriminate patients with depression from healthy controls. Serotonin type 1(A) receptors and the serotonin transporters are reduced in depression, and recent genetic research in animals and humans has implicated both in depression. Preclinical studies have utilized a variety of animal models that have been used to explain pathophysiological mechanisms in humans, although it is not clear at all whether these models constitute relevant models for depression in humans. However, data from preclinical studies can generate hypotheses that are tested in humans by combining genetic data with behavioral and physiological challenge paradigms and neuroimaging. These studies will enhance our understanding about combined influences from multiple interacting genes, as well as from environmental factors on brain circuits and their function, and about how these mechanisms may contribute to the pathophysiology of neuropsychiatric disorders.

  15. A cognitive perspective on medical expertise: theory and implication.

    PubMed

    Schmidt, H G; Norman, G R; Boshuizen, H P

    1990-10-01

    A new theory of the development of expertise in medicine is outlined. Contrary to existing views, this theory assumes that expertise is not so much a matter of superior reasoning skills or in-depth knowledge of pathophysiological states as it is based on cognitive structures that describe the features of prototypical or even actual patients. These cognitive structures, referred to as "illness scripts," contain relatively little knowledge about pathophysiological causes of symptoms and complaints but a wealth of clinically relevant information about disease, its consequences, and the context under which illness develops. By contrast, intermediate-level students without clinical experience typically use pathophysiological, causal models of disease when solving problems. The authors review evidence supporting the theory and discuss its implications for the understanding of five phenomena extensively documented in the clinical-reasoning literature: (1) content specificity in diagnostic performance; (2) typical differences in data-gathering techniques between medical students and physicians; (3) difficulties involved in setting standards; (4) a decline in performance on certain measures of clinical reasoning with increasing expertise; and (5) a paradoxical association between errors and longer response times in visual diagnosis.

  16. Arginine pathways and the inflammatory response: interregulation of nitric oxide and polyamines: review article.

    PubMed

    Satriano, J

    2004-07-01

    An early response to an acute inflammatory insult, such as wound healing or experimental glomerulonephritis, is the conversion of arginine to the cytostatic molecule nitric oxide (NO). This 'anti-bacterial' phase is followed by the conversion of arginine to ornithine, which is the precursor for the pro-proliferative polyamines as well as proline for the production of extracellular matrix. This latter, pro-growth phase constitutes a 'repair' phase response. The temporal switch of arginine as a substrate for the cytostatic iNOS/NO axis to the pro-growth arginase/ ornithine/polyamine and proline axis is subject to regulation by inflammatory cytokines as well as interregulation by the arginine metabolites themselves. Arginine is also the precursor for another biogenic amine, agmatine. Here we describe the capacity of these three arginine pathways to interregulate, and propose a model whereby agmatine has the potential to serve in the coordination of the early and repair phase pathways of arginine in the inflammatory response by acting as a gating mechanism at the transition from the iNOS/NO axis to the arginase/ODC/polyamine axis. Due to the pathophysiologic and therapeutic potential, we will further examine the antiproliferative effects of agmatine on the polyamine pathway.

  17. Relationship of Advanced Glycation End Products With Cardiovascular Disease in Menopausal Women

    PubMed Central

    Pertynska-Marczewska, Magdalena

    2015-01-01

    Cardiovascular disease (CVD) represents the most significant cause of death in postmenopausal women. Advanced glycation end products (AGEs) are formed by nonenzymatic modification of proteins, lipids, and nucleic acids by glucose. This review focuses on the contribution of AGEs and their receptors to the development of CVD in menopause. Advanced glycation end products circulate and activate the proinflammatory endothelial cell surface receptor called RAGE, bind to the extracellular matrix of the cardiovascular system, or bind to the circulating anti-inflammatory soluble form of RAGE (sRAGE). Data emerging from human and animal studies suggest that AGEs and both receptors (RAGE and sRAGE) are implicated in the pathophysiology of CVD. Particular emphasis has been given to the role of AGE–RAGE axis in oxidative stress, inflammation, endothelial cell toxicity, and progression of atherosclerosis in menopause. Data accruing from human and animal studies suggest that RAGE expression level and circulating sRAGE level are associated with estradiol and are correlated with CVD risk factors, such as adiposity, dyslipidemia, insulin resistance, diabetes, and metabolic syndrome. By recognizing the impact of AGEs on atherosclerosis, pharmacological strategies targeting the AGE–RAGE pathway hold therapeutic potential for CVD in menopausal women. PMID:25228634

  18. Relationship of Advanced Glycation End Products With Cardiovascular Disease in Menopausal Women.

    PubMed

    Pertynska-Marczewska, Magdalena; Merhi, Zaher

    2015-07-01

    Cardiovascular disease (CVD) represents the most significant cause of death in postmenopausal women. Advanced glycation end products (AGEs) are formed by nonenzymatic modification of proteins, lipids, and nucleic acids by glucose. This review focuses on the contribution of AGEs and their receptors to the development of CVD in menopause. Advanced glycation end products circulate and activate the proinflammatory endothelial cell surface receptor called RAGE, bind to the extracellular matrix of the cardiovascular system, or bind to the circulating anti-inflammatory soluble form of RAGE (sRAGE). Data emerging from human and animal studies suggest that AGEs and both receptors (RAGE and sRAGE) are implicated in the pathophysiology of CVD. Particular emphasis has been given to the role of AGE-RAGE axis in oxidative stress, inflammation, endothelial cell toxicity, and progression of atherosclerosis in menopause. Data accruing from human and animal studies suggest that RAGE expression level and circulating sRAGE level are associated with estradiol and are correlated with CVD risk factors, such as adiposity, dyslipidemia, insulin resistance, diabetes, and metabolic syndrome. By recognizing the impact of AGEs on atherosclerosis, pharmacological strategies targeting the AGE-RAGE pathway hold therapeutic potential for CVD in menopausal women. © The Author(s) 2014.

  19. Experimental Myocardial Infarction Upregulates Circulating Fibroblast Growth Factor‐23

    PubMed Central

    Andrukhova, Olena; Slavic, Svetlana; Odörfer, Kathrin I; Erben, Reinhold G

    2015-01-01

    ABSTRACT Myocardial infarction (MI) is a major cause of death worldwide. Epidemiological studies have linked vitamin D deficiency to MI incidence. Because fibroblast growth factor‐23 (FGF23) is a master regulator of vitamin D hormone production and has been shown to be associated with cardiac hypertrophy per se, we explored the hypothesis that FGF23 may be a previously unrecognized pathophysiological factor causally linked to progression of cardiac dysfunction post‐MI. Here, we show that circulating intact Fgf23 was profoundly elevated, whereas serum vitamin D hormone levels were suppressed, after induction of experimental MI in rat and mouse models, independent of changes in serum soluble Klotho or serum parathyroid hormone. Both skeletal and cardiac expression of Fgf23 was increased after MI. Although the molecular link between the cardiac lesion and circulating Fgf23 concentrations remains to be identified, our study has uncovered a novel heart–bone–kidney axis that may have important clinical implications and may inaugurate the new field of cardio‐osteology. © 2015 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research (ASBMR). PMID:25858796

  20. Uncovering novel landscape of cardiovascular diseases and therapeutic targets for cardioprotection via long noncoding RNA-miRNA-mRNA axes.

    PubMed

    He, Liang; Chen, Yan; Hao, Shuqing; Qian, Jinqiao

    2018-05-01

    Protein coding sequences account for around 3% of the human genome, the rest are noncoding RNA (ncRNA) including long ncRNA (lncRNA) and miRNA. Accumulating evidence indicates that lncRNAs and miRNAs are candidate biomarkers for diagnosis, prognosis and therapy of cardiovascular diseases. The lncRNAs act as sponge-like effects on numerous miRNAs, subsequently regulating miRNAs and their targets, mRNA functions. The role of lncRNA-miRNA-mRNA axis in pathogenesis of cardiovascular diseases has been recently reported and highlighted. Herein, this review discusses emerging roles of lncRNA-miRNA-mRNA axis in cardiovascular pathophysiology and regulation, with a novel focus on cardioprotective network activities of the two subgroup ncRNAs.

  1. Effects of high fat diet on the Basal activity of the hypothalamus-pituitary-adrenal axis in mice: a systematic review.

    PubMed

    Auvinen, H E; Romijn, J A; Biermasz, N R; Havekes, L M; Smit, J W A; Rensen, P C N; Pereira, A M

    2011-12-01

    Hypothalamus-pituitary-adrenal-axis activity is suggested to be involved in the pathophysiology of the metabolic syndrome. In diet-induced obesity mouse models, features of the metabolic syndrome are induced by feeding high fat diet. However, the models reveal conflicting results with respect to the hypothalamus-pituitary-adrenal-axis activation. The aim of this review was to assess the effects of high fat feeding on the activity of the hypothalamus-pituitary-adrenal-axis in mice. PubMed, EMBASE, Web of Science, the Cochrane database, and Science Direct were electronically searched and reviewed by 2 individual researchers. We included only original mouse studies reporting parameters of the hypothalamus-pituitary-adrenal-axis after high fat feeding, and at least 1 basal corticosterone level with a proper control group. Studies with adrenalectomized mice, transgenic animals only, high fat diet for less than 2 weeks, or other interventions besides high fat diet, were excluded. 20 studies were included. The hypothalamus-pituitary-adrenal-axis evaluation was the primary research question in only 5 studies. Plasma corticosterone levels were unchanged in 40%, elevated in 30%, and decreased in 20% of the studies. The effects in the peripheral tissues and the central nervous system were also inconsistent. However, major differences were found between mouse strains, experimental conditions, and the content and duration of the diets. This systematic review demonstrates that the effects of high fat feeding on the basal activity of the hypothalamus-pituitary-adrenal-axis in mice are limited and inconclusive. Differences in experimental conditions hamper comparisons and accentuate the need for standardized evaluations to discern the effects of diet-induced obesity on the hypothalamus-pituitary-adrenal-axis. © Georg Thieme Verlag KG Stuttgart · New York.

  2. The interleukin-23/interleukin-17 immune axis as a promising new target in the treatment of spondyloarthritis.

    PubMed

    Yeremenko, Nataliya; Paramarta, Jacqueline E; Baeten, Dominique

    2014-07-01

    Various novel therapies for spondyloarthritis (SpA) are currently under development. In this review, we discuss the scientific rational to target the interleukin (IL)-23/IL-17 axis in SpA and give an overview of the proof-of-concept trials with drugs directed towards this axis. Cumulative evidence from genetics (e.g. the strong genetic association with the IL-23 receptor gene), in-vitro models (e.g. the increased IL-23 production upon HLA-B27 misfolding), human expression studies (e.g. the expansion of IL-17 producing innate cells in SpA) and animal models (e.g. the increased IL-17 production in HLA-B27 transgenic rats) strongly supports the involvement of the IL-23/IL-17 axis in the pathogenesis of SpA. Ustekinumab (a monoclonal antibody directed against the common p40 subunit of IL-23 and IL-12), secukinumab, ixekizumab (both monoclonal antibodies directed against IL-17A), and brodalumab a monoclonal antibody against the IL-17RA receptor) have been recently used in proof-of-concept and randomized trials in the ankylosing spondylitis and/or psoriatic arthritis subforms of SpA, with overall very promising clinical efficacy. The first results for novel drugs blocking key cytokines in the IL-23/IL-17 axis are promising in SpA and more novel compounds are upcoming. This will teach us more on the role of the IL-23/IL-17 axis in the pathophysiology of SpA.

  3. Prenatal and Postpartum Evening Salivary Cortisol Levels in Association with Peripartum Depressive Symptoms

    PubMed Central

    Iliadis, Stavros I.; Comasco, Erika; Sylvén, Sara; Hellgren, Charlotte; Sundström Poromaa, Inger; Skalkidou, Alkistis

    2015-01-01

    Background The biology of peripartum depression remains unclear, with altered stress and the Hypothalamus-Pituitary-Adrenal axis response having been implicated in its pathophysiology. Methods The current study was undertaken as a part of the BASIC project (Biology, Affect, Stress, Imaging, Cognition), a population-based longitudinal study of psychological wellbeing during pregnancy and the postpartum period in Uppsala County, Sweden, in order to assess the association between evening salivary cortisol levels and depressive symptoms in the peripartum period. Three hundred and sixty-five pregnant women from the BASIC cohort were recruited at pregnancy week 18 and instructed to complete a Swedish validated version of the Edinburgh Postnatal Depression Scale at the 36th week of pregnancy as well as the sixth week after delivery. At both times, they were also asked to provide evening salivary samples for cortisol analysis. A comprehensive review of the relevant literature is also provided. Results Women with postpartum EPDS score ≥ 10 had higher salivary evening cortisol at six weeks postpartum compared to healthy controls (median cortisol 1.19 vs 0.89 nmol/L). A logistic regression model showed a positive association between cortisol levels and depressive symptoms postpartum (OR = 4.1; 95% CI 1.7–9.7). This association remained significant even after controlling for history of depression, use of tobacco, partner support, breastfeeding, stressful life events, and sleep problems, as possible confounders (aOR = 4.5; 95% CI 1.5–14.1). Additionally, women with postpartum depressive symptoms had higher postpartum cortisol levels compared to both women with depressive symptoms antenatally and controls (p = 0.019 and p = 0.004, respectively). Conclusions Women with depressive symptoms postpartum had higher postpartum cortisol levels, indicating an altered response of the HPA-axis in postpartum depression. PMID:26322643

  4. Prenatal Stress Induces Long-Term Effects in Cell Turnover in the Hippocampus-Hypothalamus-Pituitary Axis in Adult Male Rats

    PubMed Central

    Baquedano, Eva; García-Cáceres, Cristina; Diz-Chaves, Yolanda; Lagunas, Natalia; Calmarza-Font, Isabel; Azcoitia, Iñigo; Garcia-Segura, Luis M.; Argente, Jesús; Chowen, Julie A.; Frago, Laura M.

    2011-01-01

    Subchronic gestational stress leads to permanent modifications in the hippocampus-hypothalamus-pituitary-adrenal axis of offspring probably due to the increase in circulating glucocorticoids known to affect prenatal programming. The aim of this study was to investigate whether cell turnover is affected in the hippocampus-hypothalamus-pituitary axis by subchronic prenatal stress and the intracellular mechanisms involved. Restraint stress was performed in pregnant rats during the last week of gestation (45 minutes; 3 times/day). Only male offspring were used for this study and were sacrificed at 6 months of age. In prenatally stressed adults a decrease in markers of cell death and proliferation was observed in the hippocampus, hypothalamus and pituitary. This was associated with an increase in insulin-like growth factor-I mRNA levels, phosphorylation of CREB and calpastatin levels and inhibition of calpain -2 and caspase -8 activation. Levels of the anti-apoptotic protein Bcl-2 were increased and levels of the pro-apoptotic factor p53 were reduced. In conclusion, prenatal restraint stress induces a long-term decrease in cell turnover in the hippocampus-hypothalamus-pituitary axis that might be at least partly mediated by an autocrine-paracrine IGF-I effect. These changes could condition the response of this axis to future physiological and pathophysiological situations. PMID:22096592

  5. Mutations causing syndromic autism define an axis of synaptic pathophysiology.

    PubMed

    Auerbach, Benjamin D; Osterweil, Emily K; Bear, Mark F

    2011-11-23

    Tuberous sclerosis complex and fragile X syndrome are genetic diseases characterized by intellectual disability and autism. Because both syndromes are caused by mutations in genes that regulate protein synthesis in neurons, it has been hypothesized that excessive protein synthesis is one core pathophysiological mechanism of intellectual disability and autism. Using electrophysiological and biochemical assays of neuronal protein synthesis in the hippocampus of Tsc2(+/-) and Fmr1(-/y) mice, here we show that synaptic dysfunction caused by these mutations actually falls at opposite ends of a physiological spectrum. Synaptic, biochemical and cognitive defects in these mutants are corrected by treatments that modulate metabotropic glutamate receptor 5 in opposite directions, and deficits in the mutants disappear when the mice are bred to carry both mutations. Thus, normal synaptic plasticity and cognition occur within an optimal range of metabotropic glutamate-receptor-mediated protein synthesis, and deviations in either direction can lead to shared behavioural impairments.

  6. Current and Novel Therapeutic Options for Irritable Bowel Syndrome Management

    PubMed Central

    Camilleri, Michael; Andresen, Viola

    2009-01-01

    Irritable bowel syndrome (IBS) is a functional gastrointestinal disorder affecting up to 3-15% of the general population in western countries. It is characterized by unexplained abdominal pain, discomfort, and bloating in association with altered bowel habits. The pathophysiology of IBS is multifactorial involving disturbances of the brain-gut-axis. The pathophysiology provides the rationale for pharmacotherapy: abnormal gastrointestinal motor functions, visceral hypersensitivity, psychosocial factors, autonomic dysfunction, and mucosal immune activation. Understanding the mechanisms, and their mediators or modulators including neurotransmitters and receptors have led to several therapeutic approaches including agents acting on the serotonin receptor or serotonin transporter system, antidepressants, novel selective anticholinergics, α-adrenergic agonists, opioid agents, cholecystokinin-antagonists, neurokinin-antagonists, somatostatin receptor agonists, corticotropin releasing factor antagonists, chloride-channel activators, guanylate-cyclase-c agonists, melatonin, atypical benzodiazepines, antibiotics, immune modulators and probiotics. The mechanisms and current evidence regarding efficacy of these agents are reviewed. PMID:19665953

  7. Starry Sky Pattern in Hematopoietic Neoplasms: A Review of Pathophysiology and Differential Diagnosis.

    PubMed

    Dy-Ledesma, Janelyn L; Khoury, Joseph D; Agbay, Rose Lou Marie C; Garcia, Mar; Miranda, Roberto N; Medeiros, L Jeffrey

    2016-11-01

    The starry sky pattern is a distinctive histologic feature wherein a rapidly proliferating hematolymphoid neoplasm contains scattered histiocytes with abundant pale cytoplasm in a background of monomorphic neoplastic cells. The cytoplasm of these histiocytes typically contains cellular remnants, also known as tingible bodies, incorporated through active phagocytosis. Although common and widely recognized, relatively little is known about the pathophysiological underpinnings of the starry sky pattern. Its resemblance to a similar pattern seen in the germinal centers of secondary follicles suggests a possible starting point for understanding the molecular basis of the starry sky pattern and potential routes for its exploitation for therapeutic purposes. In this review, we discuss the historical, pathophysiological, and clinical implications of the starry sky pattern.

  8. Healthy and unhealthy dependence: implications for major depression.

    PubMed

    Schulte, Fiona S; Mongrain, Myriam; Flora, David B

    2008-09-01

    To examine the contribution of varying levels of dependency to Axis I and Axis II disorders, and to the recurrence of major depression in a graduate student sample diagnosed with a history of the disorder. At Time 1, participants were interviewed to confirm a current or past episode of major depression along with the presence of Axis II and other current or past Axis I disorders. Various measures of dependency were administered including the Depressive Experiences Questionnaire (DEQ; Blatt, D'Afflitti, & Quinlan, 1976), the 3-Vector Dependency Inventory (3VDI; Pincus & Gurtman, 1995), and the Personal Style Inventory (PSI; Robins et al., 1994). Participants were interviewed 20 months later to determine the recurrence of a depressive episode. A factor analysis conducted on scale scores for each dependency measure resulted in three factors labelled 'unhealthy', 'intermediate', and 'healthy' dependence. Controlling for history of major depression, structural equation modelling found 'unhealthy' dependence to be the only predictor of recurrences of major depression and Axis II disorders, while 'healthy' dependence was related to fewer depressive symptoms. These results have important implications for the conceptualization of the dependency construct.

  9. Panhypopituitarism due to Absence of the Pituitary Stalk: A Rare Aetiology of Liver Cirrhosis.

    PubMed

    Gonzalez Rozas, Marta; Hernanz Roman, Lidia; Gonzalez, Diego Gonzalez; Pérez-Castrillón, José Luis

    2016-01-01

    Studies have established a relationship between hypothalamic-pituitary dysfunction and the onset of liver damage, which may occasionally progress to cirrhosis. Patients with hypopituitarism can develop a metabolic syndrome-like phenotype. Insulin resistance is the main pathophysiological axis of metabolic syndrome and is the causal factor in the development of nonalcoholic fatty liver disease (NAFLD). We present the case of a young patient with liver cirrhosis of unknown aetiology that was finally attributed to panhypopituitarism.

  10. Panhypopituitarism due to Absence of the Pituitary Stalk: A Rare Aetiology of Liver Cirrhosis

    PubMed Central

    Gonzalez Rozas, Marta; Hernanz Roman, Lidia; Gonzalez, Diego Gonzalez; Pérez-Castrillón, José Luis

    2016-01-01

    Studies have established a relationship between hypothalamic-pituitary dysfunction and the onset of liver damage, which may occasionally progress to cirrhosis. Patients with hypopituitarism can develop a metabolic syndrome-like phenotype. Insulin resistance is the main pathophysiological axis of metabolic syndrome and is the causal factor in the development of nonalcoholic fatty liver disease (NAFLD). We present the case of a young patient with liver cirrhosis of unknown aetiology that was finally attributed to panhypopituitarism. PMID:27213061

  11. Functional relevance of intestinal epithelial cells in inflammatory bowel disease.

    PubMed

    Okamoto, Ryuichi; Watanabe, Mamoru

    2016-01-01

    The intestinal epithelium constitutes a physical barrier between inner and outer side of our body. It also functions as a "hub" which connects factors that determine the development of inflammatory bowel disease, such as microbiota, susceptibility genes, and host immune response. Accordingly, recent studies have implicated and further featured the role of intestinal epithelial cell dysfunction in the pathophysiology of inflammatory bowel disease. For example, mucin producing goblet cells are usually "depleted" in ulcerative colitis patients. Studies have shown that those goblet cells exhibit various immune-regulatory functions in addition to mucin production, such as antigen presentation or cytokine production. Paneth cells are another key cell lineage that has been deeply implicated in the pathophysiology of Crohn's disease. Several susceptibility genes for Crohn's disease may lead to impairment of anti-bacterial peptide production and secretion by Paneth cells. Also, other susceptibility genes may determine the survival of Paneth cells, which leads to reduced Paneth cell function in the patient small intestinal mucosa. Further studies may reveal other unexpected roles of the intestinal epithelium in the pathophysiology of inflammatory bowel disease, and may help to develop alternative therapies targeted to intestinal epithelial cell functions.

  12. Influence of Tryptophan and Serotonin on Mood and Cognition with a Possible Role of the Gut-Brain Axis.

    PubMed

    Jenkins, Trisha A; Nguyen, Jason C D; Polglaze, Kate E; Bertrand, Paul P

    2016-01-20

    The serotonergic system forms a diffuse network within the central nervous system and plays a significant role in the regulation of mood and cognition. Manipulation of tryptophan levels, acutely or chronically, by depletion or supplementation, is an experimental procedure for modifying peripheral and central serotonin levels. These studies have allowed us to establish the role of serotonin in higher order brain function in both preclinical and clinical situations and have precipitated the finding that low brain serotonin levels are associated with poor memory and depressed mood. The gut-brain axis is a bi-directional system between the brain and gastrointestinal tract, linking emotional and cognitive centres of the brain with peripheral functioning of the digestive tract. An influence of gut microbiota on behaviour is becoming increasingly evident, as is the extension to tryptophan and serotonin, producing a possibility that alterations in the gut may be important in the pathophysiology of human central nervous system disorders. In this review we will discuss the effect of manipulating tryptophan on mood and cognition, and discuss a possible influence of the gut-brain axis.

  13. Hypothalamic-pituitary-adrenal axis hyperactivity is associated with decreased brain-derived neurotrophic factor in female suicide attempters.

    PubMed

    Ambrus, Livia; Lindqvist, Daniel; Träskman-Bendz, Lil; Westrin, Åsa

    2016-11-01

    Both decreased levels of brain-derived neurotrophic factor (BDNF) and hypothalamic-pituitary-adrenal (HPA) axis dysregulation may be involved in the pathophysiology of suicidal behaviour, as well as cognitive symptoms of depression. Pre-clinical and clinical studies have shown interactions between HPA-axis activity and BDNF, but this has not been studied in a clinical cohort of suicidal subjects. The purpose of this study was, therefore, to investigate associations between HPA-axis activity and BDNF in suicide attempters. Furthermore, this study examined the relationship between the HPA-axis, BDNF, and cognitive symptoms in suicidal patients. Since previous data indicate gender-related differences in BDNF and the HPA axis, males and females were examined separately. Seventy-five recent suicide attempters (n = 41 females; n = 34 males) were enrolled in the study. The Dexamethasone Suppression Test (DST) was performed and BDNF in plasma were analysed. Patients were evaluated with the Comprehensive Psychopathological Rating Scale (CPRS) from which items 'Concentration difficulties' and 'Failing memory' were extracted. Only among females, DST non-suppressors had significantly lower BDNF compared to DST suppressors (p = 0.022), and there was a significant correlation between post-DST serum cortisol at 8 a.m. and BDNF (rs = -0.437, p = 0.003). Concentration difficulties correlated significantly with post-DST cortisol in all patients (rs = 0.256, p = 0.035), in females (rs = 0.396, p = 0.015), and with BDNF in females (rs = -0.372, p = 0.020). The findings suggest an inverse relationship between the HPA-axis and BDNF in female suicide attempters. Moreover, concentration difficulties may be associated with low BDNF and DST non-suppression in female suicide attempters.

  14. ACTH and Cortisol Response to Dex/CRH Testing in Women with and without Premenstrual Dysphoria during GnRH Agonist-Induced Hypogonadism and Ovarian Steroid Replacement

    PubMed Central

    Lee, Ellen E.; Nieman, Lynnette K.; Martinez, Pedro E.; Harsh, Veronica L.; Rubinow, David R.

    2012-01-01

    Context: During conditions of ovarian suppression, women with premenstrual dysphoria (PMD) experience abnormal behavioral responses to physiological levels of ovarian steroids. Although hypothalamic-pituitary-adrenal (HPA) axis dysregulation frequently accompanies depression, and ovarian steroids regulate HPA axis responsivity, the role of HPA axis dysregulation in PMD is not known. We hypothesized that women with PMD would show abnormalities of HPA axis function analogous to those reported in depressive illness, and that ovarian steroids would differentially regulate HPA axis function in women with PMD compared with asymptomatic controls (AC). Objective: Our objective was to characterize the HPA axis response to physiological levels of estradiol and progesterone in women with PMD and AC. Design and Setting: We conducted an open-label trial of the GnRH agonist depot Lupron with ovarian steroid replacement administered in a double-blind crossover design in an outpatient clinic. Participants: Forty-three women (18 with prospectively confirmed PMD and 25 AC) participated. Interventions: Women received Lupron for 6 months. After 3 months of hypogonadism, women received 5 wk each of estradiol (100-μg patch daily) or progesterone (suppositories 200 mg twice daily). During each condition, combined dexamethasone-suppression/CRH-stimulation tests and 24-h urinary free cortisol levels were performed. Main Outcome Measures: Plasma cortisol and ACTH levels were evaluated. Results: HPA axis function was similar in PMD compared with AC. In all, progesterone significantly increased the secretion of cortisol compared with estradiol [area under the curve (t74 = 3.1; P < 0.01)] and urinary free cortisol (t74 = 3.2; P < 0.01) and ACTH compared with hypogonadism [area under the curve (t74 = 2.4; P < 0.05)]. Conclusions: HPA axis regulation is normal in PMD, suggesting that the pathophysiology of PMD differs from major depression. As observed previously, progesterone but not estradiol up-regulates HPA axis function in women. PMID:22466349

  15. Activation of the CXCL16/CXCR6 Axis by TNF-α Contributes to Ectopic Endometrial Stromal Cells Migration and Invasion.

    PubMed

    Peng, Yaoming; Ma, Junyan; Lin, Jun

    2018-01-01

    The activation of systemic and local inflammatory mechanisms, including elevated levels of chemokines and proinflammatory cytokines in endometriosis progression, is becoming more evident in the recent years. Here, we report the involvement of CXC chemokine 16 (CXCL16) and its sole receptor, CXC chemokine receptor 6 (CXCR6), in pathophysiology of endometriosis. Expression of CXCL16, but not CXCR6, was significantly upregulated in endometriotic lesions when compared to control endometrium. Additionally, serum CXCL16 was significantly elevated in women with endometriosis when compared to control group. Moreover, blockade of the CXCL16/CXCR6 axis by CXCR6 small-interfering RNA reduced the migration and invasion of ectopic endometrial stromal cells (EESCs) followed by decreased phosphorylation of ERK1/2. Furthermore, TNF-α treatment induced the expression of CXCL16 in EESCs. In conclusion, these results suggest that CXCL16/CXCR6 axis, whose expression was enhanced by TNF-α, may be associated with the increased motility of EESCs, through regulation of ERK1/2 signaling, thus contributing to the development of endometriosis. These findings indicate that the CXCL16/CXCR6 axis may contribute to the progression of endometriosis and could be served as a potential target for diagnosis and treatment.

  16. Modulation of HPA axis response to social stress in schizophrenia by childhood trauma.

    PubMed

    Lange, Claudia; Huber, Christian G; Fröhlich, Daniela; Borgwardt, Stefan; Lang, Undine E; Walter, Marc

    2017-08-01

    HPA axis functioning plays an important role in the etiology of schizophrenia spectrum disorders (SSD). However, only few studies have examined HPA axis responsivity to psychosocial stress in SSD, and results are heterogeneous. Furthermore, childhood trauma is known to influence psychopathology and treatment outcome in SSD, but studies on the influence of childhood trauma on stress related HPA axis activity are missing. The purpose of this study was to investigate cortisol response to a psychosocial stress challenge in SSD patients, and to examine its association with severity of childhood trauma. The present study included 25 subacutely ill patients with a current episode of a chronic SSD and 25 healthy controls. Participants underwent the modified Trier Social Stress Test, and salivary cortisol levels were assessed. The childhood trauma questionnaire was used to assess severity of adverse life events. Overall, cortisol response was blunted in the patient group compared to the control group (p<0.01). Furthermore, we identified two patient subgroups (cortisol responders (n=12) vs. non-responders (n=13) to the modified TSST) that differed in their severity of childhood trauma experience: responders had experienced more emotional abuse in their past (p<0.042). Therefore, childhood trauma might influence stress-related HPA axis activity in SSD. Our data contribute to the hypothesis that severity of childhood trauma may be of pathophysiological relevance in schizophrenia. In addition, it may be an overlooked factor contributing to inconsistent findings regarding HPA axis response to psychosocial stress in SSD. Copyright © 2017. Published by Elsevier Ltd.

  17. The potential impact of biochemical mediators on telomere attrition in major depressive disorder and implications for future study designs: A narrative review.

    PubMed

    Manoliu, Andrei; Bosch, Oliver G; Brakowski, Janis; Brühl, Annette B; Seifritz, Erich

    2018-01-01

    Major depressive disorder (MDD) has been proposed to represent a "disease of premature aging", which is associated with certain biomarkers of cellular ageing and numerous other age-related diseases. Over the last decade, telomere length (TL) arose as a surrogate for cellular aging. Recent data suggests that TL might be reduced in patients with MDD, however, results are still inconclusive. This might be explained by the lack of assessment of potential biochemical mediators that are directly associated with telomere shortening and frequently observed in patients with MDD. A narrative review was performed. The PubMed database was searched for relevant studies. We identified four major mediators, which are recurrently reported in patients with MDD and are associated with reduced TL: inflammation/oxidative stress, dysregulation of the hypothalamic-pituitary-adrenal axis, metabolic dysbalance including insulin resistance, and decreased brain-derived neurotrophic factor. These mediators are also mutually associated and were not systematically assessed in current studies investigating TL and MDD, which might explain inconclusive findings across current literature. Finally, we discuss possible ways to assess those mediators and potential implications of such approaches for future research. The majority of identified studies had cross-sectional designs and used heterogeneous methods to assess TL and associated relevant biochemical mediators. A better understanding of the complex interactions between biochemical mediators, somatic comorbidities and shortened telomeres in patients with MDD might further specify the pathophysiology-based conceptualization and, based on that, personalized treatment of MDD. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. The Microbiota, the Gut and the Brain in Eating and Alcohol Use Disorders: A ‘Ménage à Trois’?

    PubMed Central

    Temko, Jamie E.; Bouhlal, Sofia; Farokhnia, Mehdi; Lee, Mary R.; Cryan, John F.; Leggio, Lorenzo

    2017-01-01

    Abstract Aims Accumulating evidence for the influence of the gut microbiota on the bidirectional communication along the gut-brain axis suggests a role of the gut microbiota in eating disorders (EDs) and alcohol and substance use disorders. The potential influence of altered gut microbiota (dysbiosis) on behaviors associated with such disorders may have implications for developing therapeutic interventions. Methods A systematic review of preclinical and clinical studies evaluating the gut microbiota, EDs and alcohol and substance use disorders was conducted using MEDLINE, Embase and Web of Science databases with the objective being to examine the role of the gut microbiota in behavioral correlates of these disorders. Original papers focused on the gut microbiota and potential behavioral implications were deemed eligible for consideration. Results The resulting 12 publications were limited to gut microbiota studies related to EDs and alcohol and substance use disorders. Some studies suggest that dysbiosis and gut microbial byproducts may influence the pathophysiology of EDs via direct and indirect interference with peptide hormone signaling. Additionally, dysbiosis was shown to be correlated with alcohol use disorder-related symptoms, i.e. craving, depression and anxiety. Finally, a mouse study suggests that manipulations in the gut microbiota may affect cocaine-related behaviors. Conclusions Promising, albeit preliminary, findings suggest a potential role of the gut microbiota in behavioral correlates of EDs and alcohol and substance use disorders. Short summary Preliminary evidence exists supporting the role of the gut microbiota in eating disorders and alcohol and substance use disorders, although additional investigation is needed to determine what is causative versus epiphenomenological. PMID:28482009

  19. The kappa-opiate receptor impacts the pathophysiology and behavior of substance use.

    PubMed

    Mysels, David; Sullivan, Maria A

    2009-01-01

    There is increasing evidence that the kappa-opiate receptor, in addition to the mu-opiate receptor, plays an important role in substance use pathophysiology and behavior. As dopamine activity is upregulated through chronic substance use, kappa receptor activity, mediated through the peptide dynorphin, is upregulated in parallel. Dynorphin causes dysphoria and decreased locomotion, and the upregulation of its activity on the kappa receptor likely dampens the excitation caused by increased dopaminergic activity. This feedback mechanism may have significant clinical implications for treating drug dependent patients in various stages of their pathology.

  20. Proteomic analysis of zebrafish brain tissue following exposure to the pesticide prochloraz

    EPA Science Inventory

    The hypothalamus-pituitary-gonadal (HPG) axis plays a central role in the maintenance of homeostasis. Disruptions of this axis can have important implications for development and other critical biological processes. A number of compounds found in aquatic environments are known t...

  1. Adaptation to chemical perturbation in the HPG axis: Implications for assessment and monitoring

    EPA Science Inventory

    Over the past 15 years chemicals that impact the vertebrate hypothalamic-pituitary-gonadal (HPG) axis have arguably received more attention relative to research and regulation than any other class of environmental contaminants. Testing and monitoring programs to identify and ass...

  2. Vulvodynia: Definition, Prevalence, Impact, and Pathophysiological Factors.

    PubMed

    Pukall, Caroline F; Goldstein, Andrew T; Bergeron, Sophie; Foster, David; Stein, Amy; Kellogg-Spadt, Susan; Bachmann, Gloria

    2016-03-01

    Vulvodynia constitutes a highly prevalent form of chronic genital pain in women, and current information regarding its definition, prevalence, impact, and pathophysiologic factors involved is needed. To update the scientific evidence published in 2010 from the Third International Consultation of Sexual Medicine pertaining to the definition, prevalence, impact, and pathophysiologic factors of women's sexual pain. An expert committee, as part of the Fourth International Consultation of Sexual Medicine, comprised of researchers and clinicians from biological and social science disciplines, reviewed the scientific evidence on the definition, prevalence, impact, and pathophysiologic factors related to chronic genital pain. A review of the definition, prevalence, impact, and pathophysiological factors involved in vulvodynia. Vulvodynia is a prevalent and highly impactful genital pain condition. Numerous factors have been implicated in its development and maintenance. What is becoming increasingly apparent is that it likely represents the end point of different factors that can differ from patient to patient. Longitudinal research is needed to shed light on risk factors involved in the expression of vulvodynia, as well as in potential subgroups of affected patients, in order to develop an empirically supported treatment algorithm. Copyright © 2016 International Society for Sexual Medicine. Published by Elsevier Inc. All rights reserved.

  3. Physiological basis for the etiology, diagnosis, and treatment of adrenal disorders: Cushing's syndrome, adrenal insufficiency, and congenital adrenal hyperplasia.

    PubMed

    Raff, Hershel; Sharma, Susmeeta T; Nieman, Lynnette K

    2014-04-01

    The hypothalamic-pituitary-adrenal (HPA) axis is a classic neuroendocrine system. One of the best ways to understand the HPA axis is to appreciate its dynamics in the variety of diseases and syndromes that affect it. Excess glucocorticoid activity can be due to endogenous cortisol overproduction (spontaneous Cushing's syndrome) or exogenous glucocorticoid therapy (iatrogenic Cushing's syndrome). Endogenous Cushing's syndrome can be subdivided into ACTH-dependent and ACTH-independent, the latter of which is usually due to autonomous adrenal overproduction. The former can be due to a pituitary corticotroph tumor (usually benign) or ectopic ACTH production from tumors outside the pituitary; both of these tumor types overexpress the proopiomelanocortin gene. The converse of Cushing's syndrome is the lack of normal cortisol secretion and is usually due to adrenal destruction (primary adrenal insufficiency) or hypopituitarism (secondary adrenal insufficiency). Secondary adrenal insufficiency can also result from a rapid discontinuation of long-term, pharmacological glucocorticoid therapy because of HPA axis suppression and adrenal atrophy. Finally, mutations in the steroidogenic enzymes of the adrenal cortex can lead to congenital adrenal hyperplasia and an increase in precursor steroids, particularly androgens. When present in utero, this can lead to masculinization of a female fetus. An understanding of the dynamics of the HPA axis is necessary to master the diagnosis and differential diagnosis of pituitary-adrenal diseases. Furthermore, understanding the pathophysiology of the HPA axis gives great insight into its normal control. © 2014 American Physiological Society.

  4. Physiological Basis for the Etiology, Diagnosis, and Treatment of Adrenal Disorders: Cushing’s Syndrome, Adrenal Insufficiency, and Congenital Adrenal Hyperplasia

    PubMed Central

    Raff, Hershel; Sharma, Susmeeta T.; Nieman, Lynnette K.

    2014-01-01

    The hypothalamic-pituitary-adrenal (HPA) axis is a classic neuroendocrine system. One of the best ways to understand the HPA axis is to appreciate its dynamics in the variety of diseases and syndromes that affect it. Excess glucocorticoid activity can be due to endogenous cortisol overproduction (spontaneous Cushing’s syndrome) or exogenous glucocorticoid therapy (iatrogenic Cushing’s syndrome). Endogenous Cushing’s syndrome can be subdivided into ACTH-dependent and ACTH-independent, the latter of which is usually due to autonomous adrenal overproduction. The former can be due to a pituitary corticotroph tumor (usually benign) or ectopic ACTH production from tumors outside the pituitary; both of these tumor types overexpress the proopiomelanocortin gene. The converse of Cushing’s syndrome is the lack of normal cortisol secretion and is usually due to adrenal destruction (primary adrenal insufficiency) or hypopituitarism (secondary adrenal insufficiency). Secondary adrenal insufficiency can also result from a rapid discontinuation of long-term, pharmacological glucocorticoid therapy because of HPA axis suppression and adrenal atrophy. Finally, mutations in the steroidogenic enzymes of the adrenal cortex can lead to congenital adrenal hyperplasia and an increase in precursor steroids, particularly androgens. When present in utero, this can lead to masculinization of a female fetus. An understanding of the dynamics of the HPA axis is necessary to master the diagnosis and differential diagnosis of pituitary-adrenal diseases. Furthermore, understanding the pathophysiology of the HPA axis gives great insight into its normal control. PMID:24715566

  5. Inducible nitric oxide synthase (NOS-2) in subarachnoid hemorrhage: Regulatory mechanisms and therapeutic implications.

    PubMed

    Iqbal, Sana; Hayman, Erik G; Hong, Caron; Stokum, Jesse A; Kurland, David B; Gerzanich, Volodymyr; Simard, J Marc

    2016-01-01

    Aneurysmal subarachnoid hemorrhage (SAH) typically carries a poor prognosis. Growing evidence indicates that overabundant production of nitric oxide (NO) may be responsible for a large part of the secondary injury that follows SAH. Although SAH modulates the activity of all three isoforms of nitric oxide synthase (NOS), the inducible isoform, NOS-2, accounts for a majority of NO-mediated secondary injuries after SAH. Here, we review the indispensable physiological roles of NO that must be preserved, even while attempting to downmodulate the pathophysiologic effects of NO that are induced by SAH. We examine the effects of SAH on the function of the various NOS isoforms, with a particular focus on the pathological effects of NOS-2 and on the mechanisms responsible for its transcriptional upregulation. Finally, we review interventions to block NOS-2 upregulation or to counteract its effects, with an emphasis on the potential therapeutic strategies to improve outcomes in patients afflicted with SAH. There is still much to be learned regarding the apparently maladaptive response of NOS-2 and its harmful product NO in SAH. However, the available evidence points to crucial effects that, on balance, are adverse, making the NOS-2/NO/peroxynitrite axis an attractive therapeutic target in SAH.

  6. Beta-Arrestin1 Levels in Mononuclear Leukocytes Support Depression Scores for Women with Premenstrual Dysphoric Disorder.

    PubMed

    Alam, Farzana; Nayyar, Sanket; Richie, William; Archibong, Anthony; Nayyar, Tultul

    2015-12-22

    Depression is very common in reproductive women particularly with premenstrual dysphoric disorder (PMDD), which is a severe form of premenstrual syndrome (PMS). Beta-arrestins were previously implicated in the pathophysiology, diagnosis and treatment for mood disorders. This study examined whether a measurement for beta-arrestin1 levels in peripheral blood mononuclear leukocytes (PBMC), could aid to distinguish between PMDD and PMS. Study participants (n = 25) were non-pregnant women between 18-42 years of age with the symptoms of PMS/PMDD, but not taking any antidepressants/therapy and at the luteal phase of menstruation. The levels of beta-arrestin1 protein in the PBMCs were determined by ELISA using human beta-arrestin1 kit. The beta-arrestin1 levels were compared with the Hamilton Depression Rating Scale scores among these women. The magnitude of the different parameters for Axis 1 mental disorders were significantly higher and beta arrestin1 protein levels in PBMCs were significantly lower in women with PMDD as compared to PMS women. The reduction in beta arrestin1 protein levels was significantly correlated with the severity of depressive symptoms. Beta-arrestin1 measurements in women may potentially serve for biochemical diagnostic purposes for PMDD and might be useful as evidence-based support for questionnaires.

  7. Beta-Arrestin1 Levels in Mononuclear Leukocytes Support Depression Scores for Women with Premenstrual Dysphoric Disorder

    PubMed Central

    Alam, Farzana; Nayyar, Sanket; Richie, William; Archibong, Anthony; Nayyar, Tultul

    2015-01-01

    Depression is very common in reproductive women particularly with premenstrual dysphoric disorder (PMDD), which is a severe form of premenstrual syndrome (PMS). Beta-arrestins were previously implicated in the pathophysiology, diagnosis and treatment for mood disorders. This study examined whether a measurement for beta-arrestin1 levels in peripheral blood mononuclear leukocytes (PBMC), could aid to distinguish between PMDD and PMS. Study participants (n = 25) were non-pregnant women between 18–42 years of age with the symptoms of PMS/PMDD, but not taking any antidepressants/therapy and at the luteal phase of menstruation. The levels of beta-arrestin1 protein in the PBMCs were determined by ELISA using human beta-arrestin1 kit. The beta-arrestin1 levels were compared with the Hamilton Depression Rating Scale scores among these women. The magnitude of the different parameters for Axis 1 mental disorders were significantly higher and beta arrestin1 protein levels in PBMCs were significantly lower in women with PMDD as compared to PMS women. The reduction in beta arrestin1 protein levels was significantly correlated with the severity of depressive symptoms. Beta-arrestin1 measurements in women may potentially serve for biochemical diagnostic purposes for PMDD and might be useful as evidence-based support for questionnaires. PMID:26703643

  8. Inhibitors of Fatty Acid Amide Hydrolase and Monoacylglycerol Lipase: New Targets for Future Antidepressants.

    PubMed

    Ogawa, Shintaro; Kunugi, Hiroshi

    2015-01-01

    Cannabis and analogs of Δ<sup>9</sup>-tetrahydrocannabinol have been used for therapeutic purposes, but their therapeutic use remains limited because of various adverse effects. Endogenous cannabinoids have been discovered, and dysregulation of endocannabinoid signaling is implicated in the pathophysiology of major depressive disorder (MDD). Recently, endocannabinoid hydrolytic enzymes such as fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL) have become new therapeutic targets in the treatment of MDD. Several FAAH or MAGL inhibitors are reported to have no cannabimimetic side effects and, therefore, are new potential therapeutic options for patients with MDD who are resistant to first-line antidepressants (selective serotonin and serotonin-norepinephrine reuptake inhibitors). In this review, we focus on the possible relationships between MDD and the endocannabinoid system as well as the inhibitors' therapeutic potential. MAGL inhibitors may reduce inflammatory responses through activation of cannabinoid receptor type 2. In the hypothalamic-pituitary-adrenal axis, repeated FAAH inhibitor administration may be beneficial for reducing circulating glucocorticoid levels. Both FAAH and MAGL inhibitors may contribute to dopaminergic system regulation. Recently, several new inhibitors have been developed with strong potency and selectivity. FAAH inhibitor, MAGL inhibitor, or dual blocker use would be promising new treatments for MDD. Further pre-clinical studies and clinical trials using these inhibitors are warranted.

  9. Thyroid Functions and Bipolar Affective Disorder

    PubMed Central

    Chakrabarti, Subho

    2011-01-01

    Accumulating evidence suggests that hypothalamo-pituitary-thyroid (HPT) axis dysfunction is relevant to the pathophysiology and clinical course of bipolar affective disorder. Hypothyroidism, either overt or more commonly subclinical, appears to the commonest abnormality found in bipolar disorder. The prevalence of thyroid dysfunction is also likely to be greater among patients with rapid cycling and other refractory forms of the disorder. Lithium-treatment has potent antithyroid effects and can induce hypothyroidism or exacerbate a preexisting hypothyroid state. Even minor perturbations of the HPT axis may affect the outcome of bipolar disorder, necessitating careful monitoring of thyroid functions of patients on treatment. Supplementation with high dose thyroxine can be considered in some patients with treatment-refractory bipolar disorder. Neurotransmitter, neuroimaging, and genetic studies have begun to provide clues, which could lead to an improved understanding of the thyroid-bipolar disorder connection, and more optimal ways of managing this potentially disabling condition. PMID:21808723

  10. The neurobiology of adaptation to seasons: Relevance and correlations in bipolar disorders.

    PubMed

    Maruani, Julia; Anderson, George; Etain, Bruno; Lejoyeux, Michel; Bellivier, Frank; Geoffroy, Pierre A

    2018-06-25

    Bipolar disorders (BDs) are severe and common psychiatric disorders. BD pathogenesis, clinical manifestations and relapses are associated with numerous circadian rhythm abnormalities. In addition, infradian fluctuations of mood, social activity, weight and sleep patterns are very frequent in BD. Disease course with a seasonal pattern (SP) occurs in approximately 25% of depressive and 15% of manic episodes, which is coupled to a more severe disease symptomatology. The pathophysiological mechanisms of seasonal effects in BD await clarification, with likely important clinical consequences. This review aims at synthesizing available data regarding the underlying pathophysiological mechanisms of seasonality in BD patients, with implications for future research directions in the study of seasonality in BD. Three factors are suggested to play significant roles in BD with SP, namely the suprachiasmatic nuclei, as well as the melatonergic and photoperiodism systems. It is proposed that BD with SP may be considered as a complex disorder resulting from the interaction of clock gene vulnerabilities and biological clock neuroplasticity, with environmental factors, such as the response to light. Light seems to play a key role in BD with SP, mainly due to two seasonal signaling pathways: a light to cortex serotonin transporter pathway, as well as a pathway connecting light to melatonin synthesis. This provides a theoretical framework for BD with SP, including for future research and clinical management. The review proposes that future research should explore markers of seasonality in BD, such as plasma melatonin, sleep-wake rhythms (with actigraphy) and genetic or epigenetic variants within the melatonin synthesis pathway. The role of light in driving BD with SP is an active area of research. Seasonality may also be intimately linked to wider aspects of BD, including via interactions with the gut microbiome, the gut-liver axis, cholesterol regulation, aspects of metabolic syndrome, vitamin D, decreased longevity, suicide risk and medication treatment targets. Further research on the role of seasonality in BD is likely to clarify the etiology, course and treatment of BD more widely.

  11. Implications of sodium hydrogen exchangers in various brain diseases.

    PubMed

    Verma, Vivek; Bali, Anjana; Singh, Nirmal; Jaggi, Amteshwar Singh

    2015-09-01

    Na+/H+ exchangers (NHEs) are the transporter proteins that play an important role in intracellular pH (pHi) regulation, cell differentiation and cell volume and that mediate transepithelial Na+ and HCO3- absorption on the basis of chemical gradients across the plasma membrane. Its activation causes an increase in intracellular Na+, which further leads to Ca+ overload and cell death. The pharmacological inhibition of these transporter proteins prevents myocardial infarction and other heart diseases like congestive heart failure in experimental animal models as well as in clinical situations. The more recent studies have implicated the role of these exchangers in the pathophysiology of brain diseases. Out of nine NHE isoforms, NHE-1 is the major isoform present in the brain and regulates the trans-cellular ion transport through blood-brain barrier membrane, and alteration in their function leads to severe brain abnormalities. NHEs were shown to be involved in pathophysiologies of many brain diseases like epilepsy, Alzheimer's disease, neuropathic pain and ischemia/reperfusion-induced cerebral injury. Na+/H+-exchanger inhibitors (e.g., amiloride and cariporide) produce protective effects on ischemia/reperfusion-induced brain injury (e.g., stroke), exhibit good antiepileptic potential and attenuate neuropathic pain in various animal models. The present review focuses on the pathophysiological role of these ion exchangers in different brain diseases with possible mechanisms.

  12. PTSD: from neurobiology to pharmacological treatments

    PubMed Central

    Kelmendi, Benjamin; Adams, Thomas G.; Yarnell, Stephanie; Southwick, Steven; Abdallah, Chadi G.; Krystal, John H.

    2016-01-01

    Posttraumatic stress disorder (PTSD) is a chronic debilitating psychiatric disorder characterized by symptoms of re-experience, avoidance, and hyperarousal that can arise immediately or many years after exposure to a traumatic event and injury. Although extensive research has been done over the past 30 years, the etiology of PTSD remains largely unknown. Several neurobiological systems have been implicated in the pathophysiology and vulnerability for developing PTSD; however, first-line pharmacotherapies are limited. Less than 30% achieve full remission, and even then, approved pharmacological treatments often take weeks for therapeutic effect. This article aims to review the pathophysiology of PTSD within multiple neurobiological systems and how these mechanisms are used as pharmacologic targets of treatment, as well as their potential for future targets of intervention. Highlights of the article We reviewed the neurobiological abnormalities in PTSD as they relate to well-established, preliminary, and future targets for pharmacological interventions. Abnormalities across different neurotransmitter systems have been implicated in the pathophysiology of PTSD but none of these systems function uniformly among all patients with PTSD First-line pharmacotherapy for PTSD provides a suboptimal response rates. Future pharmacological targets for PTSD include the cannabinoid and oxytocin systems, as well glutamatergic modulating agents. Drug development for PTSD should specifically address various dimensions of PTSD symptomatology. PMID:27837583

  13. Hyper- and hypocortisolism in bipolar disorder - A beneficial influence of lithium on the HPA-axis?

    PubMed

    Maripuu, Martin; Wikgren, Mikael; Karling, Pontus; Adolfsson, Rolf; Norrback, Karl-Fredrik

    2017-04-15

    A hyperactive hypothalamic-pituitary-adrenal axis (HPA-axis) is a well-known phenomenon in bipolar disorder (BD). However, hypocortisolism has also been described and found associated with depression, low quality of life and cardiovascular risk factors in BD patients. Although the pathophysiology related to hypocortisolism in BD is largely unknown, hypocortisolism is associated with chronic stress exposure and after inducing an initial rise in cortisol long-term stress may result in a transition to hypocortisolism. BD patients are throughout life often exposed to chronic stress. We therefore hypothesized that higher age would be associated with lower HPA-axis activity especially among patients without previous mood stabilizing treatment. This cross-sectional study consisted of 159 bipolar outpatients and 258 controls. A low-dose-dexamethasone-suppression-test (DST) was used to measure HPA-axis activity. Patients with BD showed a negative association between post DST cortisol and age (-3.0 nmol/l per year; p=0.007). This association gradually increased in subgroups that were naïve to lithium (-7.7 nmol/l per year; p=0.001) and "all mood stabilizers" (-11.4 nmol/l per year; p=0.004). Patients exhibiting hypercortisolism were characterized by younger age and female gender, whereas patients exhibiting hypocortisolism were characterized by long disease duration without prophylactic lithium treatment as well as absence of current lithium medication. Cross sectional study design. There was a negative association between HPA-axis activity and age in BD, rendering BD patients at risk for developing hypocortisolism. This association was most pronounced among patients without previous or current lithium prophylaxis. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Depression and cardiovascular disease: Epidemiological evidence on their linking mechanisms.

    PubMed

    Penninx, Brenda W J H

    2017-03-01

    Depression's burden of disease goes beyond functioning and quality of life and extends to somatic health. Results from longitudinal cohort studies converge in illustrating that major depressive disorder (MDD) subsequently increases the risk of cardiovascular morbidity and mortality with about 80%. The impact of MDD on cardiovascular health may be partly explained by mediating mechanisms such as unhealthy lifestyle (smoking, excessive alcohol use, physical inactivity, unhealthy diet, therapy non-compliance) and unfavorable pathophysiological disturbances (autonomic, HPA-axis, metabolic and immuno-inflammatory dysregulations). A summary of the literature findings as well as relevant results from the large-scale Netherlands Study of Depression and Anxiety (N=2981) are presented. Persons with MDD have significantly worse lifestyles as well as more pathophysiological disturbances as compared to healthy controls. Some of these differences seem to be specific for (typical versus 'atypical', or antidepressant treated versus drug-naive) subgroups of MDD patients. Alternative explanations are also present, namely undetected confounding, iatrogenic effects or 'third factors' such as genetics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Bone Disease after Kidney Transplantation

    PubMed Central

    Bouquegneau, Antoine; Salam, Syrazah; Delanaye, Pierre; Eastell, Richard

    2016-01-01

    Bone and mineral disorders occur frequently in kidney transplant recipients and are associated with a high risk of fracture, morbidity, and mortality. There is a broad spectrum of often overlapping bone diseases seen after transplantation, including osteoporosis as well as persisting high– or low–turnover bone disease. The pathophysiology underlying bone disorders after transplantation results from a complex interplay of factors, including preexisting renal osteodystrophy and bone loss related to a variety of causes, such as immunosuppression and alterations in the parathyroid hormone-vitamin D-fibroblast growth factor 23 axis as well as changes in mineral metabolism. Management is complex, because noninvasive tools, such as imaging and bone biomarkers, do not have sufficient sensitivity and specificity to detect these abnormalities in bone structure and function, whereas bone biopsy is not a widely available diagnostic tool. In this review, we focus on recent data that highlight improvements in our understanding of the prevalence, pathophysiology, and diagnostic and therapeutic strategies of mineral and bone disorders in kidney transplant recipients. PMID:26912549

  16. [Irritable bowel syndrome: New pathophysiological hypotheses and practical issues].

    PubMed

    Duboc, H; Dior, M; Coffin, B

    2016-08-01

    In 2015, besides the fact that it still fills the gastroenterologists' offices and impairs patient's quality of life, the irritable bowel syndrome has considerably evolved on several points. The pathophysiology is now organized around a consensual hypothesis called the "brain-gut axis", which gather all the influences of peripheral factors as gut microbiota or local serotonin secretion, on the central pain perception, contributing to visceral hypersensitivity and transit modifications. About the diagnosis, the key message is "avoid over-prescription" of additional tests, and reminds that a positive clinical diagnosis based on Rome III criteria is possible after the elimination of simple clinical warning signs. Finally, the food component, a neglected and historical claim of patients, finally finds a strong scientific rational, with a diet low in fermentable sugar and polyols, that gives positive and reproducible results. Copyright © 2016 Société Nationale Française de Médecine Interne (SNFMI). Published by Elsevier SAS. All rights reserved.

  17. Influence of Tryptophan and Serotonin on Mood and Cognition with a Possible Role of the Gut-Brain Axis

    PubMed Central

    Jenkins, Trisha A.; Nguyen, Jason C. D.; Polglaze, Kate E.; Bertrand, Paul P.

    2016-01-01

    The serotonergic system forms a diffuse network within the central nervous system and plays a significant role in the regulation of mood and cognition. Manipulation of tryptophan levels, acutely or chronically, by depletion or supplementation, is an experimental procedure for modifying peripheral and central serotonin levels. These studies have allowed us to establish the role of serotonin in higher order brain function in both preclinical and clinical situations and have precipitated the finding that low brain serotonin levels are associated with poor memory and depressed mood. The gut-brain axis is a bi-directional system between the brain and gastrointestinal tract, linking emotional and cognitive centres of the brain with peripheral functioning of the digestive tract. An influence of gut microbiota on behaviour is becoming increasingly evident, as is the extension to tryptophan and serotonin, producing a possibility that alterations in the gut may be important in the pathophysiology of human central nervous system disorders. In this review we will discuss the effect of manipulating tryptophan on mood and cognition, and discuss a possible influence of the gut-brain axis. PMID:26805875

  18. Measurement and meaning of salivary cortisol: a focus on health and disease in children.

    PubMed

    Jessop, David S; Turner-Cobb, Julie M

    2008-01-01

    Measurement of salivary cortisol can provide important information about hypothalamic-pituitary-adrenal (HPA) axis activity under normal conditions and in response to stress. However, there are many variables relating to the measurement of cortisol in saliva which may introduce error and therefore may render difficult the comparison and interpretation of data between, and within, laboratories. This review addresses the effects of gender, age, time and location of sampling, units of measurement, assay conditions and compliance with the protocol, all of which have the potential to impact upon the precision, accuracy and reliability of salivary cortisol measurements in the literature. Some of these factors are applicable to both adults and children, but the measurement of salivary cortisol in children introduces aspects of unique variability which demand special attention. The specific focus of this review is upon the somewhat neglected area of methodological variability of salivary cortisol measurement in children. In addition to these methodological issues, the review highlights the use of salivary cortisol measurements to provide information about HPA axis dysfunction associated with psycho- and patho-physiological conditions in children. Novel applications for salivary cortisol measurements in future research into HPA axis activity in children are also discussed.

  19. Hypothalamic S1P/S1PR1 axis controls energy homeostasis.

    PubMed

    Silva, Vagner R R; Micheletti, Thayana O; Pimentel, Gustavo D; Katashima, Carlos K; Lenhare, Luciene; Morari, Joseane; Mendes, Maria Carolina S; Razolli, Daniela S; Rocha, Guilherme Z; de Souza, Claudio T; Ryu, Dongryeol; Prada, Patrícia O; Velloso, Lício A; Carvalheira, José B C; Pauli, José Rodrigo; Cintra, Dennys E; Ropelle, Eduardo R

    2014-09-25

    Sphingosine 1-phosphate receptor 1 (S1PR1) is a G-protein-coupled receptor for sphingosine-1-phosphate (S1P) that has a role in many physiological and pathophysiological processes. Here we show that the S1P/S1PR1 signalling pathway in hypothalamic neurons regulates energy homeostasis in rodents. We demonstrate that S1PR1 protein is highly enriched in hypothalamic POMC neurons of rats. Intracerebroventricular injections of the bioactive lipid, S1P, reduce food consumption and increase rat energy expenditure through persistent activation of STAT3 and the melanocortin system. Similarly, the selective disruption of hypothalamic S1PR1 increases food intake and reduces the respiratory exchange ratio. We further show that STAT3 controls S1PR1 expression in neurons via a positive feedback mechanism. Interestingly, several models of obesity and cancer anorexia display an imbalance of hypothalamic S1P/S1PR1/STAT3 axis, whereas pharmacological intervention ameliorates these phenotypes. Taken together, our data demonstrate that the neuronal S1P/S1PR1/STAT3 signalling axis plays a critical role in the control of energy homeostasis in rats.

  20. Cortisol dysregulation: the bidirectional link between stress, depression, and type 2 diabetes mellitus.

    PubMed

    Joseph, Joshua J; Golden, Sherita H

    2017-03-01

    Controversy exists over the role of stress and depression in the pathophysiology of type 2 diabetes mellitus. Depression has been shown to increase the risk for progressive insulin resistance and incident type 2 diabetes mellitus in multiple studies, whereas the association of stress with diabetes is less clear, owing to differences in study designs and in forms and ascertainment of stress. The biological systems involved in adaptation that mediate the link between stress and physiological functions include the hypothalamic-pituitary-adrenal (HPA) axis and the autonomic nervous and immune systems. The HPA axis is a tightly regulated system that represents one of the body's mechanisms for responding to acute and chronic stress. Depression is associated with cross-sectional and longitudinal alterations in the diurnal cortisol curve, including a blunted cortisol awakening response and flattening of the diurnal cortisol curve. Flattening of the diurnal cortisol curve is also associated with insulin resistance and type 2 diabetes mellitus. In this article, we review and summarize the evidence supporting HPA axis dysregulation as an important biological link between stress, depression, and type 2 diabetes mellitus. © 2016 New York Academy of Sciences.

  1. Desensitizing Mitochondrial Permeability Transition by ERK-Cyclophilin D Axis Contributes to the Neuroprotective Effect of Gallic Acid against Cerebral Ischemia/Reperfusion Injury

    PubMed Central

    Sun, Jing; Ren, Da-Dui; Wan, Jin-Yi; Chen, Chen; Chen, Dong; Yang, Huan; Feng, Chun-Lai; Gao, Jing

    2017-01-01

    Ischemic stroke is a devastating disease with complex pathophysiology. Much evidence confirms that opening of the mitochondrial permeability transition pore (MPTP) is related with mitochondrial dysfunction to apoptosis in ischemic stroke, thus elucidating its signaling mechanism and screening novel MPTP inhibitor is therefore of paramount importance. Our earlier studies identified that gallic acid (GA), a naturally occurring plant phenol, endows with effect on inhibition of mitochondrial dysfunction, which has significant neuroprotective effect in cerebral ischemia/reperfusion injury. However, its molecular mechanisms regulating mitochondrial dysfunction remain elusive. Here, we uncover a role of GA in protecting mitochondria via MPTP inhibition. In addition to inhibit CypD binding to adenine nucleotide translocator, GA potentiates extracellular signal-regulated kinases (ERK) phosphorylation, leading to a decrease in cyclophilin D (CypD) expression, resulting in a desensitization to induction of MPTP, thus inhibiting caspase activation and ultimately giving rise to cellular survival. Our study firstly identifies ERK-CypD axis is one of the cornerstones of the cell death pathways following ischemic stroke, and confirms GA is a novel inhibitor of MPTP, which inhibits apoptosis depending on regulating the ERK-CypD axis. PMID:28428752

  2. Cortisol dysregulation: the bidirectional link between stress, depression, and type 2 diabetes mellitus

    PubMed Central

    Joseph, Joshua J.; Golden, Sherita H.

    2016-01-01

    Controversy exists over the role of stress and depression in the pathophysiology of type 2 diabetes mellitus. Depression has been shown to increase the risk for progressive insulin resistance and incident type 2 diabetes mellitus in multiple studies, whereas the association of stress with diabetes is less clear, owing to differences in study designs and in forms and ascertainment of stress. The biological systems involved in adaptation that mediate the link between stress and physiological functions include the hypothalamic–pituitary–adrenal axis and the autonomic nervous and immune systems. The hypothalamic–pituitary–adrenal axis is a tightly regulated system that represents one of the body’s mechanisms for responding to acute and chronic stress. Depression is associated with cross-sectional and longitudinal alterations in the diurnal cortisol curve, including a blunted cortisol awakening response and flattening of the diurnal cortisol curve. Flattening of the diurnal cortisol curve is also associated with insulin resistance and type 2 diabetes mellitus. In this article, we review and summarize the evidence supporting hypothalamic–pituitary–adrenal axis dysregulation as an important biological link between stress, depression, and type 2 diabetes mellitus. PMID:27750377

  3. Modulation of neuroinflammation: Role and therapeutic potential of TRPV1 in the neuro-immune axis.

    PubMed

    Kong, Wei-Lin; Peng, Yuan-Yuan; Peng, Bi-Wen

    2017-08-01

    Transient receptor potential vanilloid type 1 channel (TRPV1), as a ligand-gated non-selective cation channel, has recently been demonstrated to have wide expression in the neuro-immune axis, where its multiple functions occur through regulation of both neuronal and non-neuronal activities. Growing evidence has suggested that TRPV1 is functionally expressed in glial cells, especially in the microglia and astrocytes. Glial cells perform immunological functions in response to pathophysiological challenges through pro-inflammatory or anti-inflammatory cytokines and chemokines in which TRPV1 is involved. Sustaining inflammation might mediate a positive feedback loop of neuroinflammation and exacerbate neurological disorders. Accumulating evidence has suggested that TRPV1 is closely related to immune responses and might be recognized as a molecular switch in the neuroinflammation of a majority of seizures and neurodegenerative diseases. In this review, we evidenced that inflammation modulates the expression and activity of TRPV1 in the central nervous system (CNS) and TRPV1 exerts reciprocal actions over neuroinflammatory processes. Together, the literature supports the hypothesis that TRPV1 may represent potential therapeutic targets in the neuro-immune axis. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Toll-like receptor 4-induced endoplasmic reticulum stress contributes to endothelial dysfunction

    USDA-ARS?s Scientific Manuscript database

    Impairment of vasodilator action of insulin is associated with endothelial dysfunction and insulin resistance. Endoplasmic reticulum (ER) stress is implicated as one of the mechanisms for pathophysiology of various cardiometabolic syndromes, including insulin resistance and endothelial dysfunction. ...

  5. MECHANISTIC CONSIDERATIONS FOR FORMALDEHYDE-INDUCED BRONCHOCONSTRICTION INVOLVING S-NITROSOGLUTATHIONE REDUCTASE

    EPA Science Inventory

    Inhalation of formaldehyde vapor has long been suspected of producing airway pathophysiology such as asthma and hyperresponsivity, presumably via irritant mechanisms. Recent studies on asthma and airway biology implicate changes in nitric oxide (NO) disposition in the adverse eff...

  6. Pathophysiology of major depressive disorder: mechanisms involved in etiology are not associated with clinical progression.

    PubMed

    Verduijn, J; Milaneschi, Y; Schoevers, R A; van Hemert, A M; Beekman, A T F; Penninx, B W J H

    2015-09-29

    Meta-analyses support the involvement of different pathophysiological mechanisms (inflammation, hypothalamic-pituitary (HPA)-axis, neurotrophic growth and vitamin D) in major depressive disorder (MDD). However, it remains unknown whether dysregulations in these mechanisms are more pronounced when MDD progresses toward multiple episodes and/or chronicity. We hypothesized that four central pathophysiological mechanisms of MDD are not only involved in etiology, but also associated with clinical disease progression. Therefore, we expected to find increasingly more dysregulation across consecutive stages of MDD progression. The sample from the Netherlands Study of Depression and Anxiety (18-65 years) consisted of 230 controls and 2333 participants assigned to a clinical staging model categorizing MDD in eight stages (0, 1A, 1B, 2, 3A, 3B, 3C and 4), from familial risk at MDD (stage 0) to chronic MDD (stage 4). Analyses of covariance examined whether pathophysiological mechanism markers (interleukin (IL)-6, C-reactive protein (CRP), cortisol, brain-derived neurotrophic factor and vitamin D) showed a linear trend across controls, those at risk for MDD (stages 0, 1A and 1B), and those with full-threshold MDD (stages 2, 3A, 3B, 3C and 4). Subsequently, pathophysiological differences across separate stages within those at risk and with full-threshold MDD were examined. A linear increase of inflammatory markers (CRP P=0.026; IL-6 P=0.090), cortisol (P=0.025) and decrease of vitamin D (P<0.001) was found across the entire sample (for example, from controls to those at risk and those with full-threshold MDD). Significant trends of dysregulations across stages were present in analyses focusing on at-risk individuals (IL-6 P=0.050; cortisol P=0.008; vitamin D P<0.001); however, no linear trends were found in dysregulations for any of the mechanisms across more progressive stages of full-threshold MDD. Our results support that the examined pathophysiological mechanisms are involved in MDD's etiology. These same mechanisms, however, are less important in clinical progression from first to later MDD episodes and toward chronicity.

  7. Pathophysiology of major depressive disorder: mechanisms involved in etiology are not associated with clinical progression

    PubMed Central

    Verduijn, J; Milaneschi, Y; Schoevers, R A; van Hemert, A M; Beekman, A T F; Penninx, B W J H

    2015-01-01

    Meta-analyses support the involvement of different pathophysiological mechanisms (inflammation, hypothalamic–pituitary (HPA)-axis, neurotrophic growth and vitamin D) in major depressive disorder (MDD). However, it remains unknown whether dysregulations in these mechanisms are more pronounced when MDD progresses toward multiple episodes and/or chronicity. We hypothesized that four central pathophysiological mechanisms of MDD are not only involved in etiology, but also associated with clinical disease progression. Therefore, we expected to find increasingly more dysregulation across consecutive stages of MDD progression. The sample from the Netherlands Study of Depression and Anxiety (18–65 years) consisted of 230 controls and 2333 participants assigned to a clinical staging model categorizing MDD in eight stages (0, 1A, 1B, 2, 3A, 3B, 3C and 4), from familial risk at MDD (stage 0) to chronic MDD (stage 4). Analyses of covariance examined whether pathophysiological mechanism markers (interleukin (IL)-6, C-reactive protein (CRP), cortisol, brain-derived neurotrophic factor and vitamin D) showed a linear trend across controls, those at risk for MDD (stages 0, 1A and 1B), and those with full-threshold MDD (stages 2, 3A, 3B, 3C and 4). Subsequently, pathophysiological differences across separate stages within those at risk and with full-threshold MDD were examined. A linear increase of inflammatory markers (CRP P=0.026; IL-6 P=0.090), cortisol (P=0.025) and decrease of vitamin D (P<0.001) was found across the entire sample (for example, from controls to those at risk and those with full-threshold MDD). Significant trends of dysregulations across stages were present in analyses focusing on at-risk individuals (IL-6 P=0.050; cortisol P=0.008; vitamin D P<0.001); however, no linear trends were found in dysregulations for any of the mechanisms across more progressive stages of full-threshold MDD. Our results support that the examined pathophysiological mechanisms are involved in MDD’s etiology. These same mechanisms, however, are less important in clinical progression from first to later MDD episodes and toward chronicity. PMID:26418277

  8. Tissue-selective alteration of ethanolamine plasmalogen metabolism in dedifferentiated colon mucosa.

    PubMed

    Lopez, Daniel H; Bestard-Escalas, Joan; Garate, Jone; Maimó-Barceló, Albert; Fernández, Roberto; Reigada, Rebeca; Khorrami, Sam; Ginard, Daniel; Okazaki, Toshiro; Fernández, José A; Barceló-Coblijn, Gwendolyn

    2018-08-01

    Human colon lipid analysis by imaging mass spectrometry (IMS) demonstrates that the lipid fingerprint is highly sensitive to a cell's pathophysiological state. Along the colon crypt axis, and concomitant to the differentiation process, certain lipid species tightly linked to signaling (phosphatidylinositols and arachidonic acid (AA)-containing diacylglycerophospholipids), change following a rather simple mathematical expression. We extend here our observations to ethanolamine plasmalogens (PlsEtn), a unique type of glycerophospholipid presenting a vinyl ether linkage at sn-1 position. PlsEtn distribution was studied in healthy, adenomatous, and carcinomatous colon mucosa sections by IMS. In epithelium, 75% of PlsEtn changed in a highly regular manner along the crypt axis, in clear contrast with diacyl species (67% of which remained constant). Consistently, AA-containing PlsEtn species were more abundant at the base, where stem cells reside, and decreased while ascending the crypt. In turn, mono-/diunsaturated species experienced the opposite change. These gradients were accompanied by a gradual expression of ether lipid synthesis enzymes. In lamina propria, 90% of stromal PlsEtn remained unchanged despite the high content of AA and the gradient in AA-containing diacylglycerophospholipids. Finally, both lipid and protein gradients were severely affected in polyps and carcinoma. These results link PlsEtn species regulation to cell differentiation for the first time and confirm that diacyl and ether species are differently regulated. Furthermore, they reaffirm the observations on cell lipid fingerprint image sensitivity to predict cell pathophysiological status, reinforcing the translational impact both lipidome and IMS might have in clinical research. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Alterations in the corticotropin-releasing hormone (CRH) neurocircuitry: Insights into post stroke functional impairments.

    PubMed

    Barra de la Tremblaye, P; Plamondon, H

    2016-07-01

    Although it is well accepted that changes in the regulation of the hypothalamic-pituitary adrenal (HPA) axis may increase susceptibility to affective disorders in the general population, this link has been less examined in stroke patients. Yet, the bidirectional association between depression and cardiovascular disease is strong, and stress increases vulnerability to stroke. Corticotropin-releasing hormone (CRH) is the central stress hormone of the HPA axis pathway and acts by binding to CRH receptors (CRHR) 1 and 2, which are located in several stress-related brain regions. Evidence from clinical and animal studies suggests a role for CRH in the neurobiological basis of depression and ischemic brain injury. Given its importance in the regulation of the neuroendocrine, autonomic, and behavioral correlates of adaptation and maladaptation to stress, CRH is likely associated in the pathophysiology of post stroke emotional impairments. The goals of this review article are to examine the clinical and experimental data describing (1) that CRH regulates the molecular signaling brain circuit underlying anxiety- and depression-like behaviors, (2) the influence of CRH and other stress markers in the pathophysiology of post stroke emotional and cognitive impairments, and (3) context and site specific interactions of CRH and BDNF as a basis for the development of novel therapeutic targets. This review addresses how the production and release of the neuropeptide CRH within the various regions of the mesocorticolimbic system influences emotional and cognitive behaviors with a look into its role in psychiatric disorders post stroke. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. ATP-sensitive potassium-channel inhibitor glibenclamide attenuates HPA axis hyperactivity, depression- and anxiety-related symptoms in a rat model of Alzheimer's disease.

    PubMed

    Esmaeili, Mohammad Hossein; Bahari, Behnam; Salari, Ali-Akbar

    2018-03-01

    Affective disorders including depression and anxiety are among the most prevalent behavioral abnormalities in patients with Alzheimer's disease (AD), which affect the quality of life and progression of the disease. Dysregulation of the hypothalamic-pituitary-adrenal-(HPA) axis has been reported in affective disorders and AD. Recent studies revealed that current antidepressant drugs are not completely effective for treating anxiety- and depression-related disorders in people with dementia. ATP-sensitive-potassium-(K ATP ) channels are well-known to be involved in AD pathophysiology, HPA axis function and the pathogenesis of depression and anxiety-related behaviors. Thus, targeting of K ATP channel may be a potential therapeutic strategy in AD. Hence, we investigated the effects of intracerebroventricular injection of Aβ25-35 alone or in combination with glibenclamide, K ATP channel inhibitor on depression- and anxiety-related behaviors as well as HPA axis response to stress in rats. To do this, non-Aβ25-35- and Aβ25-35-treated rats were orally treated with glibenclamide, then the behavioral consequences were assessed using sucrose preference, forced swim, light-dark box and plus maze tests. Stress-induced corticosterone levels following forced swim and plus maze tests were also evaluated as indicative of abnormal HPA-axis-function. Aβ25-35 induced HPA axis hyperreactivity and increased depression- and anxiety-related symptoms in rats. Our results showed that blockade of K ATP channels with glibenclamide decreased depression- and anxiety-related behaviors by normalizing HPA axis activity in Aβ25-35-treated rats. This study provides additional evidence that Aβ administration can induce depression- and anxiety-like symptoms in rodents, and suggests that K ATP channel inhibitors may be a plausible therapeutic strategy for treating affective disorders in AD patients. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Convergent evidence for abnormal striatal synaptic plasticity in dystonia

    PubMed Central

    Peterson, David A.; Sejnowski, Terrence J.; Poizner, Howard

    2010-01-01

    Dystonia is a functionally disabling movement disorder characterized by abnormal movements and postures. Although substantial recent progress has been made in identifying genetic factors, the pathophysiology of the disease remains a mystery. A provocative suggestion gaining broader acceptance is that some aspect of neural plasticity may be abnormal. There is also evidence that, at least in some forms of dystonia, sensorimotor “use” may be a contributing factor. Most empirical evidence of abnormal plasticity in dystonia comes from measures of sensorimotor cortical organization and physiology. However, the basal ganglia also play a critical role in sensorimotor function. Furthermore, the basal ganglia are prominently implicated in traditional models of dystonia, are the primary targets of stereotactic neurosurgical interventions, and provide a neural substrate for sensorimotor learning influenced by neuromodulators. Our working hypothesis is that abnormal plasticity in the basal ganglia is a critical link between the etiology and pathophysiology of dystonia. In this review we set up the background for this hypothesis by integrating a large body of disparate indirect evidence that dystonia may involve abnormalities in synaptic plasticity in the striatum. After reviewing evidence implicating the striatum in dystonia, we focus on the influence of two neuromodulatory systems: dopamine and acetylcholine. For both of these neuromodulators, we first describe the evidence for abnormalities in dystonia and then the means by which it may influence striatal synaptic plasticity. Collectively, the evidence suggests that many different forms of dystonia may involve abnormal plasticity in the striatum. An improved understanding of these altered plastic processes would help inform our understanding of the pathophysiology of dystonia, and, given the role of the striatum in sensorimotor learning, provide a principled basis for designing therapies aimed at the dynamic processes linking etiology to pathophysiology of the disease. PMID:20005952

  12. Pathophysiology and implications of intradialytic hypertension.

    PubMed

    Van Buren, Peter Noel

    2017-07-01

    Intradialytic hypertension occurs regularly in 10--15% of hemodialysis patients. A large observational study recently showed that intradialytic hypertension of any magnitude increased mortality risk comparable to the most severe degrees of intradialytic hypotension. The present review review discusses the most recent evidence underlying the pathophysiology of intradialytic hypertension and implications for its management. Patients with intradialytic hypertension typically have small interdialytic weight gains, but bioimpedance spectroscopy shows these patients have significant chronic extracellular volume excess. Intradialytic hypertension patients have lower albumin and predialysis urea nitrogen levels, which may contribute to small reductions in osmolarity that prevents blood pressure decreases. Intradialytic vascular resistance surges remain implicated as the driving force for blood pressure increases, but mediators other than endothelin-1 may be responsible. Beyond dry weight reduction, the only controlled intervention shown to interrupt the blood pressure increase is lowering dialysate sodium. Patients with recurrent intradialytic hypertension should be identified as high-risk patients. Dry weight should be re-evaluated, even if patients do not clinically appear volume overloaded. Antihypertensive drugs should be prescribed because of the persistently elevated ambulatory blood pressure. Dialysate sodium reduction should be considered, although the long term effects of this intervention are uncertain.

  13. Central nervous system regulation of intestinal lipid and lipoprotein metabolism.

    PubMed

    Farr, Sarah; Taher, Jennifer; Adeli, Khosrow

    2016-02-01

    In response to nutrient availability, the small intestine and brain closely communicate to modulate energy homeostasis and metabolism. The gut-brain axis involves complex nutrient sensing mechanisms and an integration of neuronal and hormonal signaling. This review summarizes recent evidence implicating the gut-brain axis in regulating lipoprotein metabolism, with potential implications for the dyslipidemia of insulin resistant states. The intestine and brain possess distinct mechanisms for sensing lipid availability, which triggers subsequent regulation of feeding, glucose homeostasis, and adipose tissue metabolism. More recently, central receptors, neuropeptides, and gut hormones that communicate with the brain have been shown to modulate hepatic and intestinal lipoprotein metabolism via parasympathetic and sympathetic signaling. Gut-derived glucagon-like peptides appear to be particularly important in modulating the intestinal secretion of chylomicron particles via a novel brain-gut axis. Dysregulation of these pathways may contribute to postprandial diabetic dyslipidemia. Emerging evidence implicates the central and enteric nervous systems in controlling many aspects of lipid and lipoprotein metabolism. Bidirectional communication between the gut and brain involving neuronal pathways and gut peptides is critical for regulating feeding and metabolism, and forms a neuroendocrine circuit to modulate dietary fat absorption and intestinal production of atherogenic chylomicron particles.

  14. A genome-wide approach accounting for body mass index identifies genetic variants influencing fasting glycemic traits and insulin resistance.

    PubMed

    Manning, Alisa K; Hivert, Marie-France; Scott, Robert A; Grimsby, Jonna L; Bouatia-Naji, Nabila; Chen, Han; Rybin, Denis; Liu, Ching-Ti; Bielak, Lawrence F; Prokopenko, Inga; Amin, Najaf; Barnes, Daniel; Cadby, Gemma; Hottenga, Jouke-Jan; Ingelsson, Erik; Jackson, Anne U; Johnson, Toby; Kanoni, Stavroula; Ladenvall, Claes; Lagou, Vasiliki; Lahti, Jari; Lecoeur, Cecile; Liu, Yongmei; Martinez-Larrad, Maria Teresa; Montasser, May E; Navarro, Pau; Perry, John R B; Rasmussen-Torvik, Laura J; Salo, Perttu; Sattar, Naveed; Shungin, Dmitry; Strawbridge, Rona J; Tanaka, Toshiko; van Duijn, Cornelia M; An, Ping; de Andrade, Mariza; Andrews, Jeanette S; Aspelund, Thor; Atalay, Mustafa; Aulchenko, Yurii; Balkau, Beverley; Bandinelli, Stefania; Beckmann, Jacques S; Beilby, John P; Bellis, Claire; Bergman, Richard N; Blangero, John; Boban, Mladen; Boehnke, Michael; Boerwinkle, Eric; Bonnycastle, Lori L; Boomsma, Dorret I; Borecki, Ingrid B; Böttcher, Yvonne; Bouchard, Claude; Brunner, Eric; Budimir, Danijela; Campbell, Harry; Carlson, Olga; Chines, Peter S; Clarke, Robert; Collins, Francis S; Corbatón-Anchuelo, Arturo; Couper, David; de Faire, Ulf; Dedoussis, George V; Deloukas, Panos; Dimitriou, Maria; Egan, Josephine M; Eiriksdottir, Gudny; Erdos, Michael R; Eriksson, Johan G; Eury, Elodie; Ferrucci, Luigi; Ford, Ian; Forouhi, Nita G; Fox, Caroline S; Franzosi, Maria Grazia; Franks, Paul W; Frayling, Timothy M; Froguel, Philippe; Galan, Pilar; de Geus, Eco; Gigante, Bruna; Glazer, Nicole L; Goel, Anuj; Groop, Leif; Gudnason, Vilmundur; Hallmans, Göran; Hamsten, Anders; Hansson, Ola; Harris, Tamara B; Hayward, Caroline; Heath, Simon; Hercberg, Serge; Hicks, Andrew A; Hingorani, Aroon; Hofman, Albert; Hui, Jennie; Hung, Joseph; Jarvelin, Marjo-Riitta; Jhun, Min A; Johnson, Paul C D; Jukema, J Wouter; Jula, Antti; Kao, W H; Kaprio, Jaakko; Kardia, Sharon L R; Keinanen-Kiukaanniemi, Sirkka; Kivimaki, Mika; Kolcic, Ivana; Kovacs, Peter; Kumari, Meena; Kuusisto, Johanna; Kyvik, Kirsten Ohm; Laakso, Markku; Lakka, Timo; Lannfelt, Lars; Lathrop, G Mark; Launer, Lenore J; Leander, Karin; Li, Guo; Lind, Lars; Lindstrom, Jaana; Lobbens, Stéphane; Loos, Ruth J F; Luan, Jian'an; Lyssenko, Valeriya; Mägi, Reedik; Magnusson, Patrik K E; Marmot, Michael; Meneton, Pierre; Mohlke, Karen L; Mooser, Vincent; Morken, Mario A; Miljkovic, Iva; Narisu, Narisu; O'Connell, Jeff; Ong, Ken K; Oostra, Ben A; Palmer, Lyle J; Palotie, Aarno; Pankow, James S; Peden, John F; Pedersen, Nancy L; Pehlic, Marina; Peltonen, Leena; Penninx, Brenda; Pericic, Marijana; Perola, Markus; Perusse, Louis; Peyser, Patricia A; Polasek, Ozren; Pramstaller, Peter P; Province, Michael A; Räikkönen, Katri; Rauramaa, Rainer; Rehnberg, Emil; Rice, Ken; Rotter, Jerome I; Rudan, Igor; Ruokonen, Aimo; Saaristo, Timo; Sabater-Lleal, Maria; Salomaa, Veikko; Savage, David B; Saxena, Richa; Schwarz, Peter; Seedorf, Udo; Sennblad, Bengt; Serrano-Rios, Manuel; Shuldiner, Alan R; Sijbrands, Eric J G; Siscovick, David S; Smit, Johannes H; Small, Kerrin S; Smith, Nicholas L; Smith, Albert Vernon; Stančáková, Alena; Stirrups, Kathleen; Stumvoll, Michael; Sun, Yan V; Swift, Amy J; Tönjes, Anke; Tuomilehto, Jaakko; Trompet, Stella; Uitterlinden, Andre G; Uusitupa, Matti; Vikström, Max; Vitart, Veronique; Vohl, Marie-Claude; Voight, Benjamin F; Vollenweider, Peter; Waeber, Gerard; Waterworth, Dawn M; Watkins, Hugh; Wheeler, Eleanor; Widen, Elisabeth; Wild, Sarah H; Willems, Sara M; Willemsen, Gonneke; Wilson, James F; Witteman, Jacqueline C M; Wright, Alan F; Yaghootkar, Hanieh; Zelenika, Diana; Zemunik, Tatijana; Zgaga, Lina; Wareham, Nicholas J; McCarthy, Mark I; Barroso, Ines; Watanabe, Richard M; Florez, Jose C; Dupuis, Josée; Meigs, James B; Langenberg, Claudia

    2012-05-13

    Recent genome-wide association studies have described many loci implicated in type 2 diabetes (T2D) pathophysiology and β-cell dysfunction but have contributed little to the understanding of the genetic basis of insulin resistance. We hypothesized that genes implicated in insulin resistance pathways might be uncovered by accounting for differences in body mass index (BMI) and potential interactions between BMI and genetic variants. We applied a joint meta-analysis approach to test associations with fasting insulin and glucose on a genome-wide scale. We present six previously unknown loci associated with fasting insulin at P < 5 × 10(-8) in combined discovery and follow-up analyses of 52 studies comprising up to 96,496 non-diabetic individuals. Risk variants were associated with higher triglyceride and lower high-density lipoprotein (HDL) cholesterol levels, suggesting a role for these loci in insulin resistance pathways. The discovery of these loci will aid further characterization of the role of insulin resistance in T2D pathophysiology.

  15. Intestinal barrier dysfunction in cirrhosis: Current concepts in pathophysiology and clinical implications

    PubMed Central

    Tsiaoussis, Georgios I; Assimakopoulos, Stelios F; Tsamandas, Athanassios C; Triantos, Christos K; Thomopoulos, Konstantinos C

    2015-01-01

    The intestinal lumen is a host place for a wide range of microbiota and sets a unique interplay between local immune system, inflammatory cells and intestinal epithelium, forming a physical barrier against microbial invaders and toxins. Bacterial translocation is the migration of viable or nonviable microorganisms or their pathogen-associated molecular patterns, such as lipopolysaccharide, from the gut lumen to the mesenteric lymph nodes, systemic circulation and other normally sterile extraintestinal sites. A series of studies have shown that translocation of bacteria and their products across the intestinal barrier is a commonplace in patients with liver disease. The deterioration of intestinal barrier integrity and the consulting increased intestinal permeability in cirrhotic patients play a pivotal pathophysiological role in the development of severe complications as high rate of infections, spontaneous bacterial peritonitis, hepatic encephalopathy, hepatorenal syndrome, variceal bleeding, progression of liver injury and hepatocellular carcinoma. Nevertheless, the exact cellular and molecular mechanisms implicated in the phenomenon of microbial translocation in liver cirrhosis have not been fully elucidated yet. PMID:26301048

  16. Adolescence fluoxetine increases serotonergic activity in the raphe-hippocampus axis and improves depression-like behaviors in female rats that experienced neonatal maternal separation.

    PubMed

    Yoo, Sang Bae; Kim, Bom-Taeck; Kim, Jin Young; Ryu, Vitaly; Kang, Dong-Won; Lee, Jong-Ho; Jahng, Jeong Won

    2013-06-01

    This study was conducted to examine if fluoxetine, a selective 5-hydroxytryptamine (5-HT) reuptake inhibitor, would reverse adverse behavioral effects of neonatal maternal separation in female rats. Sprague-Dawley pups were separated from dam daily for 3h during postnatal day (PND) 1-14 (maternal separation; MS) or left undisturbed (non-handled; NH). Female NH and MS pups received intraperitoneal injection of fluoxetine (10mg/kg) or vehicle daily from PND 35 until the end of the whole experimental period. Rats were either subjected to behavioral tests during PND 44-54, or sacrificed for neurochemical analyses during PND 43-45. Daily food intake and weight gain of both NH and MS pups were suppressed by fluoxetine, with greater effects in MS pups. MS experience increased immobility and decrease swimming in forced swim test. Swimming was increased, although immobility was not significantly decreased, in MS females by adolescence fluoxetine. However, adolescence fluoxetine increased immobility during forced swim test and decreased time spent in open arms during elevated plus maze test in NH females. Fluoxetine normalized MS-induced decrease of the raphe 5-HT levels and increased 5-HT metabolism in the hippocampus in MS females, and increased the hypothalamic 5-HT both in NH and MS. Fluoxetine decreased the raphe 5-HT and increased the plasma corticosterone in NH females. Results suggest that decreased 5-HTergic activity in the raphe nucleus is implicated in the pathophysiology of depression-like behaviors, and increased 5-HTergic activities in the raphe-hippocampus axis may be a part of anti-depressant efficacy of fluoxetine, in MS females. Also, an extra-hypothalamic 5-HTergic activity may contribute to the increased anorectic efficacy of fluoxetine in MS females. Additionally, decreased 5-HT in the raphe and elevated plasma corticosterone may be related with fluoxetine-induced depression- and/or anxiety-like behaviors in NH females. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Th1/Th17/Th22 immune response and their association with joint pain, imagenological bone loss, RANKL expression and osteoclast activity in temporomandibular joint osteoarthritis: A preliminary report.

    PubMed

    Monasterio, G; Castillo, F; Rojas, L; Cafferata, E A; Alvarez, C; Carvajal, P; Núñez, C; Flores, G; Díaz, W; Vernal, R

    2018-05-15

    It is well accepted that the presence of cytokines belonging to the Th1/Th17/Th22 axis of immuno-inflammatory response in the joint environment, such as IL-1β, IL-17 and IL-22, respectively, are associated with pathogenesis of several synovial joint degenerative disorders. During temporomandibular joint osteoarthritis (TMJ-OA), IL-1β and IL-17 have been implicated in the inflammation and resorption of sub-chondral bone; however, the role of Th22 response in the TMJ-OA pathophysiology has not been established. This study aimed to compare the expression of Th1/Th17/Th22-type cytokines, chemokines and chemokine receptors in synovial fluid samples obtained from TMJ-OA or disk displacement with reduction (DDWR) patients. In addition, it aimed to associate these levels with joint pain, imagenological signs of bone degeneration, RANKL production, osteoclastogenesis and osteoclast-induced bone resorption. Higher levels of IL-1β, IL-17 and IL-22 were expressed in TMJ-OA compared with DDWR subjects, and these increased levels significantly correlated with RANKL expression, joint pain and articular bone degeneration. Higher levels of CCR5, CCR6 and CCR7, as well as their respective ligands CCL5 and CCL20, responsible for recruitment of IL-1β, IL-17 and IL-22-producing cells, were over-expressed in TMJ-OA compared with DDWR subjects. Osteoclastogenesis and osteoclast-induced bone resorption were significantly greater in presence of synovial fluid from TMJ-OA compared with DDWR subjects. These data demonstrate that cytokines, CCLs and CCRs associated with the Th1/Th17/Th22 axis of immuno-inflammatory response are involved in TMJ-OA pathogenesis. These findings suggest that IL-22 is involved in the RANKL expression in TMJ-OA, which in turn induces differentiation of osteoclasts and subsequent resorption of sub-chondral bone. © 2018 John Wiley & Sons Ltd.

  18. Pharmacotherapy for Irritable Bowel Syndrome

    PubMed Central

    Camilleri, Michael

    2017-01-01

    Irritable bowel syndrome (IBS) is a disorder of the brain-gut axis; the pathophysiological mechanisms include altered colonic motility, bile acid metabolism, neurohormonal regulation, immune dysfunction, alterations in the epithelial barrier and secretory properties of the gut. This article reviews the mechanisms, efficacy, and safety of current pharmacotherapy, and medications that are in phase III trials for the treatment of IBS. There remains a significant unmet need for effective treatments—particularly for the pain component of IBS—although the introduction of drugs directed at secretion, motility and a non-absorbable antibiotic provide options for the bowel dysfunction in IBS. PMID:29077050

  19. Rethinking the bile acid/gut microbiome axis in cancer

    PubMed Central

    Phelan, John P.; Reen, F. Jerry; Caparros-Martin, Jose A.; O'Connor, Rosemary; O'Gara, Fergal

    2017-01-01

    Dietary factors, probiotic agents, aging and antibiotics/medicines impact on gut microbiome composition leading to disturbances in localised microbial populations. The impact can be profound and underlies a plethora of human disorders, including the focus of this review; cancer. Compromised microbiome populations can alter bile acid signalling and produce distinct pathophysiological bile acid profiles. These in turn have been associated with cancer development and progression. Exposure to high levels of bile acids, combined with localised molecular/genome instability leads to the acquisition of bile mediated neoplastic alterations, generating apoptotic resistant proliferation phenotypes. However, in recent years, several studies have emerged advocating the therapeutic benefits of bile acid signalling in suppressing molecular and phenotypic hallmarks of cancer progression. These studies suggest that in some instances, bile acids may reduce cancer phenotypic effects, thereby limiting metastatic potential. In this review, we contextualise the current state of the art to propose that the bile acid/gut microbiome axis can influence cancer progression to the extent that classical in vitro cancer hallmarks of malignancy (cell invasion, cell migration, clonogenicity, and cell adhesion) are significantly reduced. We readily acknowledge the existence of a bile acid/gut microbiome axis in cancer initiation, however, in light of recent advances, we focus exclusively on the role of bile acids as potentially beneficial molecules in suppressing cancer progression. Finally, we theorise that suppressing aggressive malignant phenotypes through bile acid/gut microbiome axis modulation could uncover new and innovative disease management strategies for managing cancers in vulnerable cohorts. PMID:29383197

  20. Energetic stress: The reciprocal relationship between energy availability and the stress response.

    PubMed

    Harrell, C S; Gillespie, C F; Neigh, G N

    2016-11-01

    The worldwide epidemic of metabolic syndromes and the recognized burden of mental health disorders have driven increased research into the relationship between the two. A maladaptive stress response is implicated in both mental health disorders and metabolic disorders, implicating the hypothalamic-pituitary-adrenal (HPA) axis as a key mediator of this relationship. This review explores how an altered energetic state, such as hyper- or hypoglycemia, as may be manifested in obesity or diabetes, affects the stress response and the HPA axis in particular. We propose that changes in energetic state or energetic demands can result in "energetic stress" that can, if prolonged, lead to a dysfunctional stress response. In this review, we summarize the role of the hypothalamus in modulating energy homeostasis and then briefly discuss the relationship between metabolism and stress-induced activation of the HPA axis. Next, we examine seven mechanisms whereby energetic stress interacts with neuroendocrine stress response systems, including by glucocorticoid signaling both within and beyond the HPA axis; by nutrient-induced changes in glucocorticoid signaling; by impacting the sympathetic nervous system; through changes in other neuroendocrine factors; by inducing inflammatory changes; and by altering the gut-brain axis. Recognizing these effects of energetic stress can drive novel therapies and prevention strategies for mental health disorders, including dietary intervention, probiotics, and even fecal transplant. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. The association between Diabetes mellitus and Depression.

    PubMed

    Bădescu, S V; Tătaru, C; Kobylinska, L; Georgescu, E L; Zahiu, D M; Zăgrean, A M; Zăgrean, L

    2016-01-01

    Depression occurrence is two to three times higher in people with diabetes mellitus, the majority of the cases remaining under-diagnosed. The purpose of this review was to show the links between depression and diabetes, point out the importance of identifying depression in diabetic patients and identify the possible ways to address both diseases. Possible common pathophysiological mechanisms as stress and inflammation were explained, while emphasis was made on screening for depression in diabetic patients. An important aspect for the diabetic specialist would be the understanding of the common origins of diabetes and depression and the awareness of this quite common comorbidity, in order to improve the outcomes of both diseases. DALYS = disability adjusted life years, DSM-5 = American Psychiatric Association Diagnostic and Statistical Manual of Mental Disorders, DM1 = Type 1 diabetes mellitus, DM2 = Type 2 diabetes mellitus, HPA-axis = hypothalamus - pituitary - adrenal axis, SNS = sympathetic nervous system, BDI = Beck Depression Inventory, CES-D = Centre for Epidemiologic Studies Depression Scale, HADS = Hospital Anxiety and Depression Scale, PHQ = Patient Health Questionnaire.

  2. Plasma biomarkers of chronic inflammation are elevated in overweight Mexican-American children

    USDA-ARS?s Scientific Manuscript database

    Excess body weight is associated with an accumulation of chronic, low-grade inflammation that has been implicated in the pathophysiology of various diseases. The obesity epidemic is more prevalent in certain ethnic groups. Despite this health disparity, few published studies have measured biomarke...

  3. A Comparison of Pathophysiology in Humans and Rodent Models of Subarachnoid Hemorrhage

    PubMed Central

    Leclerc, Jenna L.; Garcia, Joshua M.; Diller, Matthew A.; Carpenter, Anne-Marie; Kamat, Pradip K.; Hoh, Brian L.; Doré, Sylvain

    2018-01-01

    Non-traumatic subarachnoid hemorrhage (SAH) affects an estimated 30,000 people each year in the United States, with an overall mortality of ~30%. Most cases of SAH result from a ruptured intracranial aneurysm, require long hospital stays, and result in significant disability and high fatality. Early brain injury (EBI) and delayed cerebral vasospasm (CV) have been implicated as leading causes of morbidity and mortality in these patients, necessitating intense focus on developing preclinical animal models that replicate clinical SAH complete with delayed CV. Despite the variety of animal models currently available, translation of findings from rodent models to clinical trials has proven especially difficult. While the explanation for this lack of translation is unclear, possibilities include the lack of standardized practices and poor replication of human pathophysiology, such as delayed cerebral vasospasm and ischemia, in rodent models of SAH. In this review, we summarize the different approaches to simulating SAH in rodents, in particular elucidating the key pathophysiology of the various methods and models. Ultimately, we suggest the development of standardized model of rodent SAH that better replicates human pathophysiology for moving forward with translational research. PMID:29623028

  4. Pathophysiology of hypertension in obese children: a systematic review.

    PubMed

    Wirix, A J G; Kaspers, P J; Nauta, J; Chinapaw, M J M; Kist-van Holthe, J E

    2015-10-01

    Hypertension is increasingly common in overweight and obese children. The mechanisms behind the development of hypertension in obesity are complex, and evidence is limited. In order to effectively treat obese children for hypertension, it is important to have a deeper understanding of the pathophysiology of hypertension in obese children. The present review summarizes the main factors associated with hypertension in obese children and discusses their potential role in its pathophysiology. Systematic searches were conducted in PubMed and EMBASE for articles published up to October 2014. In total, 60 relevant studies were included. The methodological quality of the included studies ranged from weak to strong. Several factors important in the development of hypertension in obese children have been suggested, including endocrine determinants, such as corticosteroids and adipokines, sympathetic nervous system activity, disturbed sodium homeostasis, as well as oxidative stress, inflammation and endothelial dysfunction. Understanding the pathophysiology of hypertension in overweight and obese children is important and could have implications for its screening and treatment. Based on solely cross-sectional observational studies, it is impossible to infer causality. Longitudinal studies of high methodological quality are needed to gain more insight into the complex mechanisms behind the development of hypertension in obese children. © 2015 World Obesity.

  5. Brain Hypoactivation, Autonomic Nervous System Dysregulation, and Gonadal Hormones in Depression: A Preliminary Study

    PubMed Central

    Holsen, Laura M.; Lee, Jong-Hwan; Spaeth, Sarah B.; Ogden, Lauren A.; Klibanski, Anne; Whitfield-Gabrieli, Susan; Sloan, Richard P.; Goldstein, Jill M.

    2012-01-01

    The comorbidity of major depressive disorder (MDD) and cardiovascular disease (CVD) is among the 10th leading cause of morbidity and mortality worldwide. Thus, understanding the co-occurrence of these disorders will have major public health significance. MDD is associated with an abnormal stress response, manifested in brain circuitry deficits, gonadal dysfunction, and autonomic nervous system (ANS) dysregulation. Contribution of the relationships between these systems to the pathophysiology of MDD is not well understood. The objective of this preliminary study was to investigate, in parallel, relationships between HPG-axis functioning, stress response circuitry activation, and parasympathetic reactivity in healthy controls and women with MDD. Using fMRI with pulse oximetry [from which we calculated the high frequency (HF) component of R-R interval variability (HF-RRV), a measure of parasympathetic modulation] and hormone data, we studied eight women with recurrent MDD in remission and six controls during a stress response paradigm. We demonstrated that hypoactivations of hypothalamus, amygdala, hippocampus, anterior cingulate cortex (ACC), orbitofrontal cortex (OFC), and subgenual ACC were associated with lower parasympathetic cardiac modulation in MDD women. Estradiol and progesterone attenuated group differences in the effect of HF-RRV on hypoactivation in the amygdala, hippocampus, ACC, and OFC in MDD women. Findings have implications for understanding the relationship between mood, arousal, heart regulation, and gonadal hormones, and may provide insights into MDD and CVD risk comorbidity. PMID:22395084

  6. Curcumin Binding to Beta Amyloid: A Computational Study.

    PubMed

    Rao, Praveen P N; Mohamed, Tarek; Teckwani, Karan; Tin, Gary

    2015-10-01

    Curcumin, a chemical constituent present in the spice turmeric, is known to prevent the aggregation of amyloid peptide implicated in the pathophysiology of Alzheimer's disease. While curcumin is known to bind directly to various amyloid aggregates, no systematic investigations have been carried out to understand its ability to bind to the amyloid aggregates including oligomers and fibrils. In this study, we constructed computational models of (i) Aβ hexapeptide (16) KLVFFA(21) octamer steric-zipper β-sheet assembly and (ii) full-length Aβ fibril β-sheet assembly. Curcumin binding in these models was evaluated by molecular docking and molecular dynamics (MD) simulation studies. In both the models, curcumin was oriented in a linear extended conformation parallel to fiber axis and exhibited better stability in the Aβ hexapeptide (16) KLVFFA(21) octamer steric-zipper model (Ebinding  = -10.05 kcal/mol) compared to full-length Aβ fibril model (Ebinding  = -3.47 kcal/mol). Analysis of MD trajectories of curcumin bound to full-length Aβ fibril shows good stability with minimum Cα-atom RMSD shifts. Interestingly, curcumin binding led to marked fluctuations in the (14) HQKLVFFA(21) region that constitute the fibril spine with RMSF values ranging from 1.4 to 3.6 Å. These results show that curcumin binding to Aβ shifts the equilibrium in the aggregation pathway by promoting the formation of non-toxic aggregates. © 2015 John Wiley & Sons A/S.

  7. Overview of the Pathophysiological Implications of Organotins on the Endocrine System

    PubMed Central

    Marques, Vinicius Bermond; Faria, Rodrigo Alves; Dos Santos, Leonardo

    2018-01-01

    Organotins (OTs) are pollutants that are used widely by industry as disinfectants, pesticides, and most frequently as biocides in antifouling paints. This mini-review presents the main evidences from the literature about morphophysiological changes induced by OTs in the mammal endocrine system, focusing on the metabolism and reproductive control. Similar to other toxic compounds, the main effects with potential health risks to humans and experimental animals are not only related to dose and time of exposure but also to age, gender, and tissue/cell exposed. Regarding the underlying mechanisms, current literature indicates that OTs can directly damage endocrine glands, as well as interfere with neurohormonal control of endocrine function (i.e., in the hypothalamic–pituitary axis), altering hormone synthesis and/or bioavailability or activity of hormone receptors in the target cells. Importantly, OTs induces biochemical and morphological changes in gonads, abnormal steroidogenesis, both associated with reproductive dysfunctions such as irregular estrous cyclicity in female or spermatogenic disorders in male animals. Additionally, due to their role on endocrine systems predisposing to obesity, OTs are also included in the metabolism disrupting chemical hypothesis, either by central (e.g., accurate nucleus and lateral hypothalamus) or peripheral (e.g., adipose tissue) mechanisms. Thus, OTs should be indeed considered a major endocrine disruptor, being indispensable to understand the main toxic effects on the different tissues and its causative role for endocrine, metabolic, and reproductive dysfunctions observed. PMID:29615977

  8. Anti-inflammatory treatment for major depressive disorder: implications for patients with an elevated immune profile and non-responders to standard antidepressant therapy

    PubMed Central

    Kopschina Feltes, Paula; Doorduin, Janine; Klein, Hans C; Juárez-Orozco, Luis Eduardo; Dierckx, Rudi AJO; Moriguchi-Jeckel, Cristina M; de Vries, Erik FJ

    2017-01-01

    Major depressive disorder (MDD) is a prevalent and disabling psychiatric disease with rates of non-responsiveness to antidepressants ranging from 30–50%. Historically, the monoamine depletion hypothesis has dominated the view on the pathophysiology of depression. However, the lack of responsiveness to antidepressants and treatment resistance suggests that additional mechanisms might play a role. Evidence has shown that a subgroup of depressive patients may have an underlying immune deregulation that could explain the lack of therapeutic benefit from antidepressants. Stimuli like inflammation and infection can trigger the activation of microglia to release pro-inflammatory cytokines, acting on two main pathways: (1) activation of the hypothalamic–pituitary adrenal axis, generating an imbalance in the serotonergic and noradrenergic circuits; (2) increased activity of the enzyme indoleamine-2,3-dioxygenase, resulting in depletion of serotonin levels and the production of quinolinic acid. If this hypothesis is proven true, the subgroup of MDD patients with increased levels of pro-inflammatory cytokines, mainly IL-6, TNF-α and IL-1β, might benefit from an anti-inflammatory intervention. Here, we discuss the pre-clinical and clinical studies that have provided support for treatment with non-steroidal anti-inflammatory drugs in depressed patients with inflammatory comorbidities or an elevated immune profile, as well as evidences for anti-inflammatory properties of standard antidepressants. PMID:28653857

  9. Overview of the Pathophysiological Implications of Organotins on the Endocrine System.

    PubMed

    Marques, Vinicius Bermond; Faria, Rodrigo Alves; Dos Santos, Leonardo

    2018-01-01

    Organotins (OTs) are pollutants that are used widely by industry as disinfectants, pesticides, and most frequently as biocides in antifouling paints. This mini-review presents the main evidences from the literature about morphophysiological changes induced by OTs in the mammal endocrine system, focusing on the metabolism and reproductive control. Similar to other toxic compounds, the main effects with potential health risks to humans and experimental animals are not only related to dose and time of exposure but also to age, gender, and tissue/cell exposed. Regarding the underlying mechanisms, current literature indicates that OTs can directly damage endocrine glands, as well as interfere with neurohormonal control of endocrine function (i.e., in the hypothalamic-pituitary axis), altering hormone synthesis and/or bioavailability or activity of hormone receptors in the target cells. Importantly, OTs induces biochemical and morphological changes in gonads, abnormal steroidogenesis, both associated with reproductive dysfunctions such as irregular estrous cyclicity in female or spermatogenic disorders in male animals. Additionally, due to their role on endocrine systems predisposing to obesity, OTs are also included in the metabolism disrupting chemical hypothesis, either by central (e.g., accurate nucleus and lateral hypothalamus) or peripheral (e.g., adipose tissue) mechanisms. Thus, OTs should be indeed considered a major endocrine disruptor, being indispensable to understand the main toxic effects on the different tissues and its causative role for endocrine, metabolic, and reproductive dysfunctions observed.

  10. The role of mTOR in ovarian cancer, polycystic ovary syndrome and ovarian aging.

    PubMed

    Liu, Jin; Wu, Dai-Chao; Qu, Li-Hua; Liao, Hong-Qing; Li, Mei-Xiang

    2018-05-12

    The mammalian target of rapamycin, mTOR, is a serine-threonine protein kinase downstream of the phosphatidylinositol 3-kinase (PI3K)-AKT axis. The pathway can regulate cell growth, proliferation, and survival by activating ribosomal kinases. Recent studies have implicated the mTOR signaling pathway in ovarian neoplasms, polycystic ovary syndrome (PCOS) and premature ovarian failure (POF). Preclinical investigations have demonstrated that the PI3K/AKT/mTOR pathway is frequently activated in the control of various ovarian functions. mTOR allows cancer cells to escape the normal biochemical system and regulates the balance between apoptosis and survival. Some recent studies have suggested that involvement of the mTOR signaling system is an important pathophysiological basis of PCOS. Overexpression of the mTOR pathway can impair the interaction of cumulus cells, lead to insulin resistance, and affect the growth of follicles directly. The roles of mTOR signaling in follicular development have been extensively studied in recent years; abnormalities in this process lead to a series of pathologies such as POF and infertility. To improve understanding of the role of the mTOR signaling pathway in the pathogenesis and development of ovarian diseases, here we review the roles of mTOR signaling in such diseases and discuss the corresponding therapeutic strategies that target this pathway. This article is protected by copyright. All rights reserved. © 2018 Wiley Periodicals, Inc.

  11. Role of hormonal and inflammatory alterations in obesity-related reproductive dysfunction at the level of the hypothalamic-pituitary-ovarian axis.

    PubMed

    Goldsammler, Michelle; Merhi, Zaher; Buyuk, Erkan

    2018-05-09

    Besides being a risk factor for multiple metabolic disorders, obesity could affect female reproduction. While increased adiposity is associated with hormonal changes that could disrupt the function of the hypothalamus and the pituitary, compelling data suggest that obesity-related hormonal and inflammatory changes could directly impact ovarian function. To review the available data related to the mechanisms by which obesity, and its associated hormonal and inflammatory changes, could affect the female reproductive function with a focus on the hypothalamic-pituitary-ovarian (HPO) axis. PubMed database search for publications in English language until October 2017 pertaining to obesity and female reproductive function was performed. The obesity-related changes in hormone levels, in particular leptin, adiponectin, ghrelin, neuropeptide Y and agouti-related protein, are associated with reproductive dysfunction at both the hypothalamic-pituitary and the ovarian levels. The pro-inflammatory molecules advanced glycation end products (AGEs) and monocyte chemotactic protein-1 (MCP-1) are emerging as relatively new players in the pathophysiology of obesity-related ovarian dysfunction. There is an intricate crosstalk between the adipose tissue and the inflammatory system with the HPO axis function. Understanding the mechanisms behind this crosstalk could lead to potential therapies for the common obesity-related reproductive dysfunction.

  12. Recovery of spermatogenesis following testosterone replacement therapy or anabolic-androgenic steroid use

    PubMed Central

    McBride, J Abram; Coward, Robert M

    2016-01-01

    The use of testosterone replacement therapy (TRT) for hypogonadism continues to rise, particularly in younger men who may wish to remain fertile. Concurrently, awareness of a more pervasive use of anabolic-androgenic steroids (AAS) within the general population has been appreciated. Both TRT and AAS can suppress the hypothalamic-pituitary-gonadal (HPG) axis resulting in diminution of spermatogenesis. Therefore, it is important that clinicians recognize previous TRT or AAS use in patients presenting for infertility treatment. Cessation of TRT or AAS use may result in spontaneous recovery of normal spermatogenesis in a reasonable number of patients if allowed sufficient time for recovery. However, some patients may not recover normal spermatogenesis or tolerate waiting for spontaneous recovery. In such cases, clinicians must be aware of the pathophysiologic derangements of the HPG axis related to TRT or AAS use and the pharmacologic agents available to reverse them. The available agents include injectable gonadotropins, selective estrogen receptor modulators, and aromatase inhibitors, but their off-label use is poorly described in the literature, potentially creating a knowledge gap for the clinician. Reviewing their use clinically for the treatment of hypogonadotropic hypogonadism and other HPG axis abnormalities can familiarize the clinician with the manner in which they can be used to recover spermatogenesis after TRT or AAS use. PMID:26908067

  13. Altered White Matter Microstructure in Adolescents with Major Depression: A Preliminary Study

    ERIC Educational Resources Information Center

    Cullen, Kathryn R.; Klimes-Dougan, Bonnie; Muetzel, Ryan; Mueller, Bryon A.; Camchong, Jazmin; Houri, Alaa; Kurma, Sanjiv; Lim, Kelvin O.

    2010-01-01

    Objective: Major depressive disorder (MDD) occurs frequently in adolescents, but the neurobiology of depression in youth is poorly understood. Structural neuroimaging studies in both adult and pediatric populations have implicated frontolimbic neural networks in the pathophysiology of MDD. Diffusion tensor imaging (DTI), which measures white…

  14. Open-Label Memantine in Fragile X Syndrome

    ERIC Educational Resources Information Center

    Erickson, Craig A.; Mullett, Jennifer E.; McDougle, Christopher J.

    2009-01-01

    Glutamatergic dysfunction is implicated in the pathophysiology of fragile X syndrome (FXS). The purpose of this pilot study was to examine the effectiveness and tolerability of memantine for a number of target symptoms associated with FXS. Medical records describing open-label treatment with memantine in 6 patients with FXS and a comorbid…

  15. Vitamin D Axis in Inflammatory Bowel Diseases: Role, Current Uses and Future Perspectives

    PubMed Central

    Del Pinto, Rita; Ferri, Claudio; Cominelli, Fabio

    2017-01-01

    Increasing evidence supports the concept that the vitamin D axis possesses immunoregulatory functions, with vitamin D receptor (VDR) status representing the major determinant of vitamin D’s pleiotropic effects. Vitamin D promotes the production of anti-microbial peptides, including β-defensins and cathelicidins, the shift towards Th2 immune responses, and regulates autophagy and epithelial barrier integrity. Impairment of vitamin D-mediated pathways are associated with chronic inflammatory conditions, including inflammatory bowel diseases (IBD). Interestingly, inhibition of vitamin D pathways results in dysbiosis of the gut microbiome, which has mechanistically been implicated in the development of IBD. Herein, we explore the role of the vitamin D axis in immune-mediated diseases, with particular emphasis on its interplay with the gut microbiome in the pathogenesis of IBD. The potential clinical implications and therapeutic relevance of this interaction will also be discussed, including optimizing VDR function, both with vitamin D analogues and probiotics, which may represent a complementary approach to current IBD treatments. PMID:29112157

  16. Developmental and Contextual Considerations for Adrenal and Gonadal Hormone Functioning During Adolescence: Implications for Adolescent Mental Health

    PubMed Central

    Ruttle, Paula L.; Shirtcliff, Elizabeth A.; Essex, Marilyn J.; Susman, Elizabeth J.

    2014-01-01

    Substantial research has implicated the hypothalamic-pituitary-adrenal (HPA) and hypothalamic-pituitary-gonadal (HPG) axes independently in adolescent mental health problems, though this literature remains largely inconclusive. Given the cross-talk between the HPA and HPG axes and their increased activation in adolescence, a dual-axis approach that examines both axes simultaneously is proposed to predict the emergence and persistence of adolescent mental health problems. After briefly orienting readers to HPA and HPG axis functioning, we review the literature examining associations between hormone levels and changes with behavior during adolescence. Then, we provide a review of the literature supporting examination of both axes simultaneously and present the limited research that has taken a dual-axis approach. We propose future directions including consideration of between-person and within-person approaches to address questions of correlated changes in HPA and HPG hormones. Potential moderators are considered to increase understanding of the nuanced hormone–behavior associations during key developmental transitions. PMID:24729154

  17. Altered expression of BDNF, BDNF pro-peptide and their precursor proBDNF in brain and liver tissues from psychiatric disorders: rethinking the brain-liver axis.

    PubMed

    Yang, B; Ren, Q; Zhang, J-C; Chen, Q-X; Hashimoto, K

    2017-05-16

    Brain-derived neurotrophic factor (BDNF) has a role in the pathophysiology of psychiatric disorders. The precursor proBDNF is converted to mature BDNF and BDNF pro-peptide, the N-terminal fragment of proBDNF; however, the precise function of these proteins in psychiatric disorders is unknown. We sought to determine whether expression of these proteins is altered in the brain and peripheral tissues from patients with psychiatric disorders. We measured protein expression of proBDNF, mature BDNF and BDNF pro-peptide in the parietal cortex, cerebellum, liver and spleen from control, major depressive disorder (MDD), schizophrenia (SZ) and bipolar disorder (BD) groups. The levels of mature BDNF in the parietal cortex from MDD, SZ and BD groups were significantly lower than the control group, whereas the levels of BDNF pro-peptide in this area were significantly higher than controls. In contrast, the levels of proBDNF and BDNF pro-peptide in the cerebellum of MDD, SZ and BD groups were significantly lower than controls. Moreover, the levels of mature BDNF from the livers of MDD, SZ and BD groups were significantly higher than the control group. The levels of mature BDNF in the spleen did not differ among the four groups. Interestingly, there was a negative correlation between mature BDNF in the parietal cortex and mature BDNF in the liver in all the subjects. These findings suggest that abnormalities in the production of mature BDNF and BDNF pro-peptide in the brain and liver might have a role in the pathophysiology of psychiatric disorders, indicating a brain-liver axis in psychiatric disorders.

  18. History of postpartum depression in a clinic-based sample of women with premenstrual dysphoric disorder.

    PubMed

    Kepple, Alyson L; Lee, Ellen E; Haq, Nazli; Rubinow, David R; Schmidt, Peter J

    2016-04-01

    Overlapping comorbidities between premenstrual dysphoric disorder (PMDD) and postpartum depression (PPD) suggest that these disorders represent a continuum of vulnerability with shared pathophysiology. We report the past histories of PPD (and other Axis I psychiatric illnesses) in a clinic-based sample of women meeting criteria for PMDD. 215 women, ages 19 to 51 years, who attended the National Institute of Mental Health Mood Disorders Clinic between 1988 and 2013 seeking treatment for PMDD and in whom we confirmed the diagnosis of PMDD (DSM-IV), were identified. All were administered the Structured Clinical Interview for DSM-III-R or -IV. The frequency of PPD (major or minor) was established in the subgroup of women (n = 137) who had delivered at least 1 child. Ninety-three women (43.3%) had a past history of a mood disorder (ie, either major [n = 67; 31.2%] or minor [n = 10; 4.7%] depression or PPD [n = 16; 7.4%; 11.7% of parous women]). Nine of the 16 women with PMDD and a past PPD had either a past major depressive episode (MDE) or subsyndromal anxiety disorder. Thirty-three women (15.3%) had a past history of an Axis I anxiety disorder. A total of 40 women (18.6%) met criteria for past alcohol or drug abuse, 3 (1.4%) met criteria for bulimia nervosa, and 2 (0.9%) met criteria for anorexia nervosa. Our data demonstrate that PMDD and PPD do not frequently co-occur. These data do not suggest that PMDD and PPD share similar pathophysiology beyond being ovarian-steroid-triggered mood disorders. The high comorbidity of past MDE could contribute to the increased risk both for future MDE and for PPD in some women with PMDD. © Copyright 2016 Physicians Postgraduate Press, Inc.

  19. Obesity and reproductive function: a review of the evidence.

    PubMed

    Klenov, Violet E; Jungheim, Emily S

    2014-12-01

    Over the last decade, the evidence linking obesity to impaired reproductive function has grown. In this article, we review this evidence and discuss the underlying pathophysiology. Obese women are less likely than normal-weight women to achieve pregnancy. Female obesity adversely affects reproductive function through alterations in the hypothalamic-pituitary-ovarian axis, oocyte quality, and endometrial receptivity. It is unclear which mechanism contributes the most to subfecundity, and it is likely a cumulative process. Emerging data highlight the contribution of male obesity to impaired reproductive function and that couple obesity has synergistic adverse effects. Once pregnant, obese women are at higher risk for adverse pregnancy outcomes. Weight loss improves reproductive potential in obese patients. As obese women surpass 35 years of age, age may be more important than body mass index in determining reproductive potential. Obstetrician gynecologists need to be aware of the negative impact of obesity on reproductive function so that they appropriately counsel their patients. Further work is needed to clarify the underlying pathophysiology responsible for adverse effects of obesity on reproduction so that novel treatment approaches may be developed.

  20. The role of serotonergic system at the interface of aggression and suicide

    PubMed Central

    Bortolato, Marco; Pivac, Nela; Seler, Dorotea Muck; Perkovic, Matea Nikolac; Pessia, Mauro; Di Giovanni, Giuseppe

    2013-01-01

    Alterations in serotonin (5-HT) neurochemistry have been implicated in the aetiology of all major neuropsychiatric disorders, ranging from schizophrenia to mood and anxiety-spectrum disorders. This review will focus on the mulifaceted implications of 5-HT-ergic dysfunctions in the pathophysiology of aggressive and suicidal behaviours. After a brief overview of the anatomical distribution of the 5-HT-ergic system in the key brain areas that govern aggression and suicidal behaviours, the implication of 5-HT markers (5-HT receptors, transporter as well as synthetic and metabolic enzymes) in these conditions is discussed. In this regard, particular emphasis is placed on the integration of pharmacological and genetic evidence from animal studies with the findings of human experimental and genetic association studies. Traditional views postulated an inverse relationship between 5-HT and aggression and suicidal behaviours; however, ample evidence has shown that this perspective may be overly simplistic, and that such pathological manifestations may reflect alterations in 5-HT homeostasis due to the interaction of genetic, environmental and gender-related factors, particularly during early critical developmental stages. The development of animal models that may capture the complexity of such interactions promises to afford a powerful tool to elucidate the pathophysiology of impulsive aggression and suicidability, and find new effective therapies for these conditions. PMID:23333677

  1. Effect of the glucocorticoid receptor antagonist Org 34850 on basal and stress-induced corticosterone secretion.

    PubMed

    Spiga, F; Harrison, L R; Wood, S A; Atkinson, H C; MacSweeney, C P; Thomson, F; Craighead, M; Grassie, M; Lightman, S L

    2007-11-01

    The activity of the hypothalamic-pituitary-adrenal (HPA) axis is characterised both by an ultradian pulsatile pattern of glucocorticoid secretion and an endogenous diurnal rhythm. Glucocorticoid feedback plays a major role in regulating HPA axis activity and this mechanism occurs via two different receptors: mineralocorticoid (MR) and glucocorticoid receptors (GR). In the present study, the effects of both acute and subchronic treatment with the GR antagonist Org 34850 on basal and stress-induced HPA axis activity in male rats were evaluated. To investigate the effect of Org 34850 on basal diurnal corticosterone rhythm over the 24-h cycle, an automated blood sampling system collected samples every 10 min. Acute injection of Org 34850 (10 mg/kg, s.c.) did not affect basal or stress-induced corticosterone secretion, but was able to antagonise the inhibitory effect of the glucocorticoid agonist methylprednisolone on stress-induced corticosterone secretion. However, 5 days of treatment with Org 34850 (10 mg/kg, s.c., two times a day), compared to rats treated with vehicle (5% mulgofen in 0.9% saline, 1 ml/kg, s.c.), increased corticosterone secretion over the 24-h cycle and resulted in changes in the pulsatile pattern of hormone release, but had no significant effect on adrenocorticotrophic hormone secretion or on stress-induced corticosterone secretion. Subchronic treatment with Org 34850 did not alter GR mRNA expression in the hippocampus, paraventricular nucleus of the hypothalamus or anterior-pituitary, or MR mRNA expression in the hippocampus. Our data suggest that a prolonged blockade of GRs is required to increase basal HPA axis activity. The changes observed here with ORG 34850 are consistent with inhibition of GR-mediated negative feedback of the HPA axis. In light of the evidence showing an involvement of dysfunctional HPA axis in the pathophysiology of depression, Org 34850 could be a potential treatment for mood disorders.

  2. Somnambulism: clinical aspects and pathophysiological hypotheses.

    PubMed

    Zadra, Antonio; Desautels, Alex; Petit, Dominique; Montplaisir, Jacques

    2013-03-01

    Somnambulism, or sleepwalking, can give rise to a wide range of adverse consequences and is one of the leading causes of sleep-related injury. Accurate diagnosis is crucial for proper management and imperative in an ever-increasing number of medicolegal cases implicating sleep-related violence. Unfortunately, several widely held views of sleepwalking are characterised by key misconceptions, and some established diagnostic criteria are inconsistent with research findings. The traditional idea of somnambulism as a disorder of arousal might be too restrictive and a comprehensive view should include the idea of simultaneous interplay between states of sleep and wakefulness. Abnormal sleep physiology, state dissociation, and genetic factors might explain the pathophysiology of the disorder. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Therapeutic interventions for hypertension in metabolic syndrome: a comprehensive approach.

    PubMed

    Ganne, Sudha; Arora, Surender; Karam, Jocelyne; McFarlane, Samy I

    2007-03-01

    Hypertension is a major component of the metabolic syndrome and a major cardiovascular risk factor. Both disorders are rapidly increasing in frequency, with hypertension affecting nearly 60 million Americans and over 1 billion people worldwide, and metabolic syndrome affecting 44% of the US population above the age of 60 years. Sedentary lifestyle, together with obesity and aging of the population, are the major contributing factors for this growing epidemic. Hypertension in metabolic syndrome possesses unique pathophysiological aspects that have considerable implications on therapy of this disease. In this article, we review the pathophysiology and provide a rationale for the current therapeutic options in light of the most recent clinical trials in the field.

  4. Autism and 15q11-q13 disorders: behavioral, genetic, and pathophysiological issues.

    PubMed

    Dykens, Elisabeth M; Sutcliffe, James S; Levitt, Pat

    2004-01-01

    New insights into biological factors that underlie autism may be gained by comparing autism to other neurodevelopmental disorders that have autistic features and relatively well-delineated genetic etiologies or neurobiological findings. This review moves beyond global diagnoses of autism and instead uses an endophenotypic approach to compare specific clusters of autistic symptomatology to features of chromosome 15q11-q13 disorders. Paternally or maternally derived deficiencies of 15q11-q13 result in Prader-Willi or Angelman syndromes, and we first use a global approach to review potential autism susceptibility genes in the 15q11-q13 region. We then use a more trait-based approach to suggest possible ties between specific phenotypic characteristics of autism and Prader-Willi syndrome, namely savant-like skills. We conclude with insights from pathophysiological studies that implicate altered development of specific neuron types and circuits in the cerebral cortex as part of the pathophysiological processes associated with autism and mental retardation. Copyright 2004 Wiley-Liss, Inc.

  5. SREBP-regulated lipid metabolism: convergent physiology - divergent pathophysiology.

    PubMed

    Shimano, Hitoshi; Sato, Ryuichiro

    2017-12-01

    Cellular lipid metabolism and homeostasis are controlled by sterol regulatory-element binding proteins (SREBPs). In addition to performing canonical functions in the transcriptional regulation of genes involved in the biosynthesis and uptake of lipids, genome-wide system analyses have revealed that these versatile transcription factors act as important nodes of convergence and divergence within biological signalling networks. Thus, they are involved in myriad physiological and pathophysiological processes, highlighting the importance of lipid metabolism in biology. Changes in cell metabolism and growth are reciprocally linked through SREBPs. Anabolic and growth signalling pathways branch off and connect to multiple steps of SREBP activation and form complex regulatory networks. In addition, SREBPs are implicated in numerous pathogenic processes such as endoplasmic reticulum stress, inflammation, autophagy and apoptosis, and in this way, they contribute to obesity, dyslipidaemia, diabetes mellitus, nonalcoholic fatty liver disease, nonalcoholic steatohepatitis, chronic kidney disease, neurodegenerative diseases and cancers. This Review aims to provide a comprehensive understanding of the role of SREBPs in physiology and pathophysiology at the cell, organ and organism levels.

  6. Obesity, metabolic dysfunction and cardiac fibrosis: pathophysiologic pathways, molecular mechanisms and therapeutic opportunities

    PubMed Central

    Cavalera, Michele; Wang, Junhong; Frangogiannis, Nikolaos G

    2014-01-01

    Cardiac fibrosis is strongly associated with obesity and metabolic dysfunction and may contribute to the increased incidence of heart failure, atrial arrhythmias and sudden cardiac death in obese subjects. Our review discusses the evidence linking obesity and myocardial fibrosis in animal models and human patients, focusing on the fundamental pathophysiologic alterations that may trigger fibrogenic signaling, the cellular effectors of fibrosis and the molecular signals that may regulate the fibrotic response. Obesity is associated with a wide range of pathophysiologic alterations (such as pressure and volume overload, metabolic dysregulation, neurohumoral activation and systemic inflammation); their relative role in mediating cardiac fibrosis is poorly defined. Activation of fibroblasts likely plays a major role in obesity-associated fibrosis; however, inflammatory cells, cardiomyocytes and vascular cells may also contribute to fibrogenic signaling. Several molecular processes have been implicated in regulation of the fibrotic response in obesity. Activation of the Renin-Angiotensin-Aldosterone System, induction of Transforming Growth Factor-β, oxidative stress, advanced glycation end-products (AGEs), endothelin-1, Rho-kinase signaling, leptin-mediated actions and upregulation of matricellular proteins (such as thrombospondin-1) may play a role in the development of fibrosis in models of obesity and metabolic dysfunction. Moreover, experimental evidence suggests that obesity and insulin resistance profoundly affect the fibrotic and remodeling response following cardiac injury. Understanding the pathways implicated in obesity-associated fibrosis may lead to development of novel therapies to prevent heart failure and to attenuate post-infarction cardiac remodeling in obese patients. PMID:24880146

  7. Recent advances in the pathophysiology of arterial hypertension: potential implications for clinical practice.

    PubMed

    Hering, Dagmara; Trzebski, Andrzej; Narkiewicz, Krzysztof

    2017-03-01

    Hypertension remains a major and growing public health problem associated with the greatest global rate of cardiovascular morbidity and mortality. Although numerous factors contribute to poor control of blood pressure (BP) and to pseudoresistance (eg, unawareness, lifestyle habits, nonadherence to medication, insufficient treatment, drug‑induced hypertension, undiagnosed secondary causes), true resistant hypertension (RH) is reported in 10.1% of patients treated for elevated BP. While the mechanisms underlying RH remain complex and not entirely understood, sympathetic activation involved in the pathophysiology of hypertension, disease progression, and adverse complications is further augmented in patients with drug‑resistant hypertension. The well‑established contribution of neurogenic component of hypertension has led to the introduction of new alternative therapies aimed specifically at modulating central and neural reflexes mechanisms involved in BP control. Although clinical benefits of lowering BP with renal denervation, baroreflex activation therapy, carotid body denervation, central arteriovenous anastomosis, and deep brain stimulation have advanced our knowledge on uncontrolled hypertension, the variable BP response has prompted extensive ongoing research to define predictors of treatment effectiveness and further investigation of pathophysiology of RH. Very recently, research on the role of vasopressinergic neurons, masked tachycardia, and impaired brain neural activity has provided novel insights into hypertension. This review briefly summarizes the role of the centrally mediated sympathetic nervous system in hypertension, the therapeutic strategies that distinctively target impaired neural reflex mechanisms, and potential implications for future clinical research and therapies.

  8. Mammary Adipose Tissue-derived Lysophospholipids Promote Estrogen Receptor-negative Mammary Epithelial Cell Proliferation

    PubMed Central

    Volden, Paul A.; Skor, Maxwell N.; Johnson, Marianna B.; Singh, Puneet; Patel, Feenalie N.; McClintock, Martha K.; Brady, Matthew J.; Conzen, Suzanne D.

    2016-01-01

    Lysophosphatidic acid (LPA), acting in an autocrine or paracrine fashion through G protein-coupled receptors, has been implicated in many physiological and pathological processes including cancer. LPA is converted to lysophosphatidylcholine (LPC) by the secreted phospholipase, autotaxin (ATX). Although various cell types can produce ATX, adipocyte-derived ATX is believed to be the major source of circulating ATX and also to be the major regulator of plasma LPA. In addition to ATX, adipocytes secrete numerous other factors (adipokines); although several adipokines have been implicated in breast cancer biology, the contribution of mammary adipose tissue-derived LPC/ATX/LPA (LPA-axis) signaling to breast cancer is poorly understood. Using mammary fat-conditioned medium, we investigated the contribution of LPA signaling to mammary epithelial cancer cell biology and identified LPA signaling as a significant contributor to the oncogenic effects of the mammary adipose tissue secretome. To interrogate the role of mammary fat in the LPA-axis during breast cancer progression, we exposed mammary adipose tissue to secreted factors from estrogen receptor-negative mammary epithelial cell lines and monitored changes in the mammary fat pad LPA-axis. Our data indicate that bidirectional interactions between mammary cancer cells and mammary adipocytes alter the local LPA-axis and increase ATX expression in the mammary fat pad during breast cancer progression. Thus, the LPC/ATX/LPA axis may be a useful target for prevention in patients at risk of ER-negative breast cancer. PMID:26862086

  9. Erratum: Correction to: Emplacement controls for the basaltic-andesitic radial dikes of Summer Coon volcano and implications for flank vents at stratovolcanoes

    NASA Astrophysics Data System (ADS)

    Harp, A. G.; Valentine, G. A.

    2018-06-01

    In the article "Emplacement controls for the basaltic-andesitic radial dikes of Summer Coon volcano and implications for flank vents at stratovolcanoes", the vertical axis for Fig. 8 a was incorrectly labeled (i.e., the value for dikes per km2).

  10. Neurohormonal axis in patients with pulmonary arterial hypertension: friend or foe?

    PubMed

    de Man, Frances S; Handoko, M Louis; Guignabert, Christophe; Bogaard, Harm J; Vonk-Noordegraaf, Anton

    2013-01-01

    Despite its description some 25 years ago, neurohormonal activation has long been neglected as an important factor in the pathophysiology of pulmonary arterial hypertension (PAH). Neurohormonal activation was interpreted as a necessary compensatory response to maintain cardiac contractility and systemic blood pressure. Therefore, inhibitors of neurohormonal activity (like β-blockers or angiotensin-converting enzyme inhibitors) are considered contraindicated in current PAH management guidelines. However, recent data revealed that sympathetic overstimulation is strongly related to mortality, and blockade of neurohormonal activity in experimental PAH improved survival and cardiac function. These novel insights shed new light on the role of neurohormonal activity in PAH.

  11. Metabolic Imbalance Associated with Methylation Dysregulation and Oxidative Damage in Children with Autism

    ERIC Educational Resources Information Center

    Melnyk, Stepan; Fuchs, George J.; Schulz, Eldon; Lopez, Maya; Kahler, Stephen G.; Fussell, Jill J.; Bellando, Jayne; Pavliv, Oleksandra; Rose, Shannon; Seidel, Lisa; Gaylor, David W.; James, S. Jill

    2012-01-01

    Oxidative stress and abnormal DNA methylation have been implicated in the pathophysiology of autism. We investigated the dynamics of an integrated metabolic pathway essential for cellular antioxidant and methylation capacity in 68 children with autism, 54 age-matched control children and 40 unaffected siblings. The metabolic profile of unaffected…

  12. Pathophysiologic and Taxonomic Properties of Coagulase-Negative Micrococcaceae.

    DTIC Science & Technology

    1983-05-01

    implicated as the etiological agents of prosthetic valve endocarditis (Speller and Mitchell, 1973), infections of cerebrospinal fluid shunts (Holt...et al., 1978), peritonitis in patients receiving continuous peritoneal dialysis (Rubin et al., 1980), subacute bacterial endocarditis (Kaye, 1976...tions ( endocarditis , immunocompromised patients, patients with pro- stetic devices and patients with indwelling urinary catheters), one can

  13. Brief Report: Acamprosate in Fragile X Syndrome

    ERIC Educational Resources Information Center

    Erickson, Craig A.; Mullett, Jennifer E.; McDougle, Christopher J.

    2010-01-01

    Glutamatergic dysfunction is implicated in the pathophysiology of fragile X syndrome (FXS). We report on the first trial of acamprosate, a drug with putative mGluR5 antagonism, in three adults with FXS and autism. Medical records describing open-label treatment with acamprosate in 3 patients with FXS and a comorbid diagnosis of autistic disorder…

  14. A genome-wide approach accounting for body mass index identifies genetic variants influencing fasting glycemic traits and insulin resistance

    PubMed Central

    Manning, Alisa K.; Hivert, Marie-France; Scott, Robert A.; Grimsby, Jonna L.; Bouatia-Naji, Nabila; Chen, Han; Rybin, Denis; Liu, Ching-Ti; Bielak, Lawrence F.; Prokopenko, Inga; Amin, Najaf; Barnes, Daniel; Cadby, Gemma; Hottenga, Jouke-Jan; Ingelsson, Erik; Jackson, Anne U.; Johnson, Toby; Kanoni, Stavroula; Ladenvall, Claes; Lagou, Vasiliki; Lahti, Jari; Lecoeur, Cecile; Liu, Yongmei; Martinez-Larrad, Maria Teresa; Montasser, May E.; Navarro, Pau; Perry, John R. B.; Rasmussen-Torvik, Laura J.; Salo, Perttu; Sattar, Naveed; Shungin, Dmitry; Strawbridge, Rona J.; Tanaka, Toshiko; van Duijn, Cornelia M.; An, Ping; de Andrade, Mariza; Andrews, Jeanette S.; Aspelund, Thor; Atalay, Mustafa; Aulchenko, Yurii; Balkau, Beverley; Bandinelli, Stefania; Beckmann, Jacques S.; Beilby, John P.; Bellis, Claire; Bergman, Richard N.; Blangero, John; Boban, Mladen; Boehnke, Michael; Boerwinkle, Eric; Bonnycastle, Lori L.; Boomsma, Dorret I.; Borecki, Ingrid B.; Böttcher, Yvonne; Bouchard, Claude; Brunner, Eric; Budimir, Danijela; Campbell, Harry; Carlson, Olga; Chines, Peter S.; Clarke, Robert; Collins, Francis S.; Corbatón-Anchuelo, Arturo; Couper, David; de Faire, Ulf; Dedoussis, George V; Deloukas, Panos; Dimitriou, Maria; Egan, Josephine M; Eiriksdottir, Gudny; Erdos, Michael R.; Eriksson, Johan G.; Eury, Elodie; Ferrucci, Luigi; Ford, Ian; Forouhi, Nita G.; Fox, Caroline S; Franzosi, Maria Grazia; Franks, Paul W; Frayling, Timothy M; Froguel, Philippe; Galan, Pilar; de Geus, Eco; Gigante, Bruna; Glazer, Nicole L.; Goel, Anuj; Groop, Leif; Gudnason, Vilmundur; Hallmans, Göran; Hamsten, Anders; Hansson, Ola; Harris, Tamara B.; Hayward, Caroline; Heath, Simon; Hercberg, Serge; Hicks, Andrew A.; Hingorani, Aroon; Hofman, Albert; Hui, Jennie; Hung, Joseph; Jarvelin, Marjo Riitta; Jhun, Min A.; Johnson, Paul C.D.; Jukema, J Wouter; Jula, Antti; Kao, W.H.; Kaprio, Jaakko; Kardia, Sharon L. R.; Keinanen-Kiukaanniemi, Sirkka; Kivimaki, Mika; Kolcic, Ivana; Kovacs, Peter; Kumari, Meena; Kuusisto, Johanna; Kyvik, Kirsten Ohm; Laakso, Markku; Lakka, Timo; Lannfelt, Lars; Lathrop, G Mark; Launer, Lenore J.; Leander, Karin; Li, Guo; Lind, Lars; Lindstrom, Jaana; Lobbens, Stéphane; Loos, Ruth J. F.; Luan, Jian’an; Lyssenko, Valeriya; Mägi, Reedik; Magnusson, Patrik K. E.; Marmot, Michael; Meneton, Pierre; Mohlke, Karen L.; Mooser, Vincent; Morken, Mario A.; Miljkovic, Iva; Narisu, Narisu; O’Connell, Jeff; Ong, Ken K.; Oostra, Ben A.; Palmer, Lyle J.; Palotie, Aarno; Pankow, James S.; Peden, John F.; Pedersen, Nancy L.; Pehlic, Marina; Peltonen, Leena; Penninx, Brenda; Pericic, Marijana; Perola, Markus; Perusse, Louis; Peyser, Patricia A; Polasek, Ozren; Pramstaller, Peter P.; Province, Michael A.; Räikkönen, Katri; Rauramaa, Rainer; Rehnberg, Emil; Rice, Ken; Rotter, Jerome I.; Rudan, Igor; Ruokonen, Aimo; Saaristo, Timo; Sabater-Lleal, Maria; Salomaa, Veikko; Savage, David B.; Saxena, Richa; Schwarz, Peter; Seedorf, Udo; Sennblad, Bengt; Serrano-Rios, Manuel; Shuldiner, Alan R.; Sijbrands, Eric J.G.; Siscovick, David S.; Smit, Johannes H.; Small, Kerrin S.; Smith, Nicholas L.; Smith, Albert Vernon; Stančáková, Alena; Stirrups, Kathleen; Stumvoll, Michael; Sun, Yan V.; Swift, Amy J.; Tönjes, Anke; Tuomilehto, Jaakko; Trompet, Stella; Uitterlinden, Andre G.; Uusitupa, Matti; Vikström, Max; Vitart, Veronique; Vohl, Marie-Claude; Voight, Benjamin F.; Vollenweider, Peter; Waeber, Gerard; Waterworth, Dawn M; Watkins, Hugh; Wheeler, Eleanor; Widen, Elisabeth; Wild, Sarah H.; Willems, Sara M.; Willemsen, Gonneke; Wilson, James F.; Witteman, Jacqueline C.M.; Wright, Alan F.; Yaghootkar, Hanieh; Zelenika, Diana; Zemunik, Tatijana; Zgaga, Lina; Wareham, Nicholas J.; McCarthy, Mark I.; Barroso, Ines; Watanabe, Richard M.; Florez, Jose C.; Dupuis, Josée; Meigs, James B.; Langenberg, Claudia

    2013-01-01

    Recent genome-wide association studies have described many loci implicated in type 2 diabetes (T2D) pathophysiology and beta-cell dysfunction, but contributed little to our understanding of the genetic basis of insulin resistance. We hypothesized that genes implicated in insulin resistance pathways may be uncovered by accounting for differences in body mass index (BMI) and potential interaction between BMI and genetic variants. We applied a novel joint meta-analytical approach to test associations with fasting insulin (FI) and glucose (FG) on a genome-wide scale. We present six previously unknown FI loci at P<5×10−8 in combined discovery and follow-up analyses of 52 studies comprising up to 96,496non-diabetic individuals. Risk variants were associated with higher triglyceride and lower HDL cholesterol levels, suggestive of a role for these FI loci in insulin resistance pathways. The localization of these additional loci will aid further characterization of the role of insulin resistance in T2D pathophysiology. PMID:22581228

  15. Paleolithic vs. modern diets--selected pathophysiological implications.

    PubMed

    Eaton, S B; Eaton, S B

    2000-04-01

    The nutritional patterns of Paleolithic humans influenced genetic evolution during the time segment within which defining characteristics of contemporary humans were selected. Our genome can have changed little since the beginnings of agriculture, so, genetically, humans remain Stone Agers--adapted for a Paleolithic dietary regimen. Such diets were based chiefly on wild game, fish and uncultivated plant foods. They provided abundant protein; a fat profile much different from that of affluent Western nations; high fibre; carbohydrate from fruits and vegetables (and some honey) but not from cereals, refined sugars and dairy products; high levels of micronutrients and probably of phytochemicals as well. Differences between contemporary and ancestral diets have many pathophysiological implications. This review addresses phytochemicals and cancer; calcium, physical exertion, bone mineral density and bone structural geometry; dietary protein, potassium, renal acid secretion and urinary calcium loss; and finally sarcopenia, adiposity, insulin receptors and insulin resistance. While not, yet, a basis for formal recommendations, awareness of Paleolithic nutritional patterns should generate novel, testable hypotheses grounded in evolutionary theory and it should dispel complacency regarding currently accepted nutritional tenets.

  16. TorsinA dysfunction causes persistent neuronal nuclear pore defects.

    PubMed

    Pappas, Samuel S; Liang, Chun-Chi; Kim, Sumin; Rivera, CheyAnne O; Dauer, William T

    2018-02-01

    A critical challenge to deciphering the pathophysiology of neurodevelopmental disease is identifying which of the myriad abnormalities that emerge during CNS maturation persist to contribute to long-term brain dysfunction. Childhood-onset dystonia caused by a loss-of-function mutation in the AAA+ protein torsinA exemplifies this challenge. Neurons lacking torsinA develop transient nuclear envelope (NE) malformations during CNS maturation, but no NE defects are described in mature torsinA null neurons. We find that during postnatal CNS maturation torsinA null neurons develop mislocalized and dysfunctional nuclear pore complexes (NPC) that lack NUP358, normally added late in NPC biogenesis. SUN1, a torsinA-related molecule implicated in interphase NPC biogenesis, also exhibits localization abnormalities. Whereas SUN1 and associated nuclear membrane abnormalities resolve in juvenile mice, NPC defects persist into adulthood. These findings support a role for torsinA function in NPC biogenesis during neuronal maturation and implicate altered NPC function in dystonia pathophysiology. © The Author(s) 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Deep brain stimulation for severe autism: from pathophysiology to procedure.

    PubMed

    Sinha, Saurabh; McGovern, Robert A; Sheth, Sameer A

    2015-06-01

    Autism is a heterogeneous neurodevelopmental disorder characterized by early-onset impairment in social interaction and communication and by repetitive, restricted behaviors and interests. Because the degree of impairment may vary, a spectrum of clinical manifestations exists. Severe autism is characterized by complete lack of language development and potentially life-threatening self-injurious behavior, the latter of which may be refractory to medical therapy and devastating for affected individuals and their caretakers. New treatment strategies are therefore needed. Here, the authors propose deep brain stimulation (DBS) of the basolateral nucleus of the amygdala (BLA) as a therapeutic intervention to treat severe autism. The authors review recent developments in the understanding of the pathophysiology of autism. Specifically, they describe the genetic and environmental alterations that affect neurodevelopment. The authors also highlight the resultant microstructural, macrostructural, and functional abnormalities that emerge during brain development, which create a pattern of dysfunctional neural networks involved in socioemotional processing. They then discuss how these findings implicate the BLA as a key node in the pathophysiology of autism and review a reported case of BLA DBS for treatment of severe autism. Much progress has been made in recent years in understanding the pathophysiology of autism. The BLA represents a logical neurosurgical target for treating severe autism. Further study is needed that considers mechanistic and operative challenges.

  18. Pathways of Polyunsaturated Fatty Acid Utilization: Implications for Brain Function in Neuropsychiatric Health and Disease

    PubMed Central

    Liu, Joanne J.; Green, Pnina; Mann, J. John; Rapoport, Stanley I.; Sublette, M. Elizabeth

    2014-01-01

    Essential polyunsaturated fatty acids (PUFAs) have profound effects on brain development and function. Abnormalities of PUFA status have been implicated in neuropsychiatric diseases such as major depression, bipolar disorder, schizophrenia, Alzheimer’s disease, and attention deficit hyperactivity disorder. Pathophysiologic mechanisms could involve not only suboptimal PUFA intake, but also metabolic and genetic abnormalities, defective hepatic metabolism, and problems with diffusion and transport. This article provides an overview of physiologic factors regulating PUFA utilization, highlighting their relevance to neuropsychiatric disease. PMID:25498862

  19. Erectile dysfunction and coronary atherothrombosis in diabetic patients: pathophysiology, clinical features and treatment.

    PubMed

    Gazzaruso, Carmine

    2006-03-01

    The current review reports recent data available in the literature on the prevalence of erectile dysfunction and the association of erectile dysfunction with overt and silent coronary artery disease in patients with diabetes mellitus. The mechanisms by which erectile dysfunction is associated with coronary artery disease and potential clinical implications of this association have been extensively analysed. In particular, the role of endothelial dysfunction in the pathophysiology of erectile dysfunction and the potential clinical usefulness of erectile dysfunction to identify diabetic patients with silent coronary artery disease have been outlined. Finally, recent guidelines on the treatment of erectile dysfunction with phosphodiesterase-5 inhibitors in diabetic patients with and without coronary artery disease have been reported and discussed.

  20. Fundamentals of Neurogastroenterology: Basic Science

    PubMed Central

    Vanner, Stephen J.; Greenwood-Van Meerveld, Beverley; Mawe, Gary M.; Shea-Donohue, Terez; Verdu, Elena F.; Wood, Jackie; Grundy, David

    2017-01-01

    This review examines the fundamentals of neurogastroenterology that may underlie the pathophysiology of functional GI disorders (FGIDs). It was prepared by an invited committee of international experts and represents an abbreviated version of their consensus document that will be published in its entirety in the forthcoming book and online version entitled Rome IV. It emphasizes recent advances in our understanding of the enteric nervous system, sensory physiology underlying pain, and stress signaling pathways. There is also a focus on neuroimmmune signaling and intestinal barrier function, given the recent evidence implicating the microbiome, diet, and mucosal immune activation in FGIDs. Together, these advances provide a host of exciting new targets to identify and treat FGIDs, and new areas for future research into their pathophysiology. PMID:27144618

  1. Common pathophysiological mechanisms involved in luteal phase deficiency and polycystic ovary syndrome. Impact on fertility.

    PubMed

    Boutzios, Georgios; Karalaki, Maria; Zapanti, Evangelia

    2013-04-01

    Luteal phase deficiency (LPD) is a consequence of the corpus luteum (CL) inability to produce and preserve adequate levels of progesterone. This is clinically manifested by short menstrual cycles and infertility. Abnormal follicular development, defects in neo-angiogenesis or inadequate steroidogenesis in the lutein cells of the CL have been implicated in CL dysfunction and LPD. LPD and polycystic ovary syndrome (PCOS) are independent disorders sharing common pathophysiological profiles. Factors such as hyperinsulinemia, AMH excess, and defects in angiogenesis of CL are at the origin of both LPD and PCOS. In PCOS ovulatory cycles, infertility could result from dysfunctional CL. The aim of this review was to investigate common mechanisms of infertility in CL dysfunction and PCOS.

  2. Hypothalamic-pituitary-adrenal axis activity in patients with pathological gambling and internet use disorder.

    PubMed

    Geisel, Olga; Panneck, Patricia; Hellweg, Rainer; Wiedemann, Klaus; Müller, Christian A

    2015-03-30

    Alterations in secretion of stress hormones within the hypothalamic-pituitary-adrenal (HPA) axis have repeatedly been found in substance-related addictive disorders. It has been suggested that glucocorticoids might contribute to the development and maintenance of substance use disorders by facilitatory effects on behavioral responses to substances of abuse. The objective of this pilot study was to investigate HPA axis activity in patients with non-substance-related addictive disorders, i.e. pathological gambling and internet use disorder. We measured plasma levels of copeptin, a vasopressin surrogate marker, adrenocorticotropic hormone (ACTH) and cortisol in male patients with pathological gambling (n=14), internet use disorder (n=11) and matched healthy controls for pathological gambling (n=13) and internet use disorder (n=10). Plasma levels of copeptin, ACTH and cortisol in patients with pathological gambling or internet use disorder did not differ among groups. However, cortisol plasma levels correlated negatively with the severity of pathological gambling as measured by the PG-YBOCS. Together with our findings of increased serum levels of brain-derived neurotrophic factor (BDNF) in pathological gambling but not internet use disorder, these results suggest that the pathophysiology of pathological gambling shares some characteristics with substance-related addictive disorders on a neuroendocrinological level, whereas those similarities could not be observed in internet use disorder. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  3. Research Review: The Role of Cytokines in Depression in Adolescents: A Systematic Review

    ERIC Educational Resources Information Center

    Mills, Natalie T.; Scott, James G.; Wray, Naomi R.; Cohen-Woods, Sarah; Baune, Bernhard T.

    2013-01-01

    Background: While cytokines have been implicated in the pathophysiology of depression in adults, the potential role in younger age groups such as adolescents is less clear. This article therefore reviews the literature (a) to explore the relationship between cytokines and depression in adolescents, and (b) to examine how cytokines may be related…

  4. Exploring Genetic Attributions Underlying Radiotherapy-Induced Fatigue in Prostate Cancer Patients.

    PubMed

    Hashemi, Sepehr; Fernandez Martinez, Juan Luis; Saligan, Leorey; Sonis, Stephen

    2017-09-01

    Despite numerous proposed mechanisms, no definitive pathophysiology underlying radiotherapy-induced fatigue (RIF) has been established. However, the dysregulation of a set of 35 genes was recently validated to predict development of fatigue in prostate cancer patients receiving radiotherapy. To hypothesize novel pathways, and provide genetic targets for currently proposed pathways implicated in RIF development through analysis of the previously validated gene set. The gene set was analyzed for all phenotypic attributions implicated in the phenotype of fatigue. Initially, a "directed" approach was used by querying specific fatigue-related sub-phenotypes against all known phenotypic attributions of the gene set. Then, an "undirected" approach, reviewing the entirety of the literature referencing the 35 genes, was used to increase analysis sensitivity. The dysregulated genes attribute to neural, immunological, mitochondrial, muscular, and metabolic pathways. In addition, certain genes suggest phenotypes not previously emphasized in the context of RIF, such as ionizing radiation sensitivity, DNA damage, and altered DNA repair frequency. Several genes also associated with prostate cancer depression, possibly emphasizing variable radiosensitivity by RIF-prone patients, which may have palliative care implications. Despite the relevant findings, many of the 35 RIF-predictive genes are poorly characterized, warranting their investigation. The implications of herein presented RIF pathways are purely theoretical until specific end-point driven experiments are conducted in more congruent contexts. Nevertheless, the presented attributions are informative, directing future investigation to definitively elucidate RIF's pathoetiology. This study demonstrates an arguably comprehensive method of approaching known differential expression underlying a complex phenotype, to correlate feasible pathophysiology. Copyright © 2017 American Academy of Hospice and Palliative Medicine. All rights reserved.

  5. Biological indicators of illness risk in offspring of bipolar parents: targeting the hypothalamic-pituitary-adrenal axis and immune system.

    PubMed

    Duffy, Anne; Lewitzka, Ute; Doucette, Sarah; Andreazza, Ana; Grof, Paul

    2012-05-01

    The study aims to provide a selective review of the literature pertaining to the hypothalamic-pituitary-adrenal (HPA) axis and immune abnormalities as informative biological indicators of vulnerability in bipolar disorder (BD). We summarize key findings relating to HPA axis and immunological abnormalities in bipolar patients and their high-risk offspring. Findings derive from a review of selected original papers published in the literature, and supplemented by papers identified through bibliography review. Neurobiological findings are discussed in the context of emergent BD in those at genetic risk and synthesized into a neurodevelopmental model of illness onset and progression. BD is associated with a number of genetic and possibly epigenetic abnormalities associated with neurotransmitter, hormonal and immunologically mediated neurobiological pathways. Data from clinical and high-risk studies implicate HPA axis and immune system abnormalities, which may represent inherited vulnerabilities important for the transition to illness onset. Post-mortem and clinical studies implicate intracellular signal transduction processes and disturbance in energy metabolism associated with established BD. Specifically, long-standing maladaptive alterations such as changes in neuronal systems may be mediated through changes in intracellular signalling pathways, oxidative stress, cellular energy metabolism and apoptosis associated with substantial burden of illness. Prospective longitudinal studies of endophenotypes and biomarkers such as HPA axis and immune abnormalities in high-risk offspring will be helpful to understand genetically mediated biological pathways associated with illness onset and progression. A clinical staging model describing emergent illness in those at genetic risk should facilitate this line of investigation. © 2011 Blackwell Publishing Asia Pty Ltd.

  6. Lessons from ten years of genome-wide association studies of asthma

    PubMed Central

    Vicente, Cristina T; Revez, Joana A; Ferreira, Manuel A R

    2017-01-01

    Twenty-five genome-wide association studies (GWAS) of asthma were published between 2007 and 2016, the largest with a sample size of 157242 individuals. Across these studies, 39 genetic variants in low linkage disequilibrium (LD) with each other were reported to associate with disease risk at a significance threshold of P<5 × 10−8, including 31 in populations of European ancestry. Results from analyses of the UK Biobank data (n=380 503) indicate that at least 28 of the 31 associations reported in Europeans represent true-positive findings, collectively explaining 2.5% of the variation in disease liability (median of 0.06% per variant). We identified 49 transcripts as likely target genes of the published asthma risk variants, mostly based on LD with expression quantitative trait loci (eQTL). Of these genes, 16 were previously implicated in disease pathophysiology by functional studies, including TSLP, TNFSF4, ADORA1, CHIT1 and USF1. In contrast, at present, there is limited or no functional evidence directly implicating the remaining 33 likely target genes in asthma pathophysiology. Some of these genes have a known function that is relevant to allergic disease, including F11R, CD247, PGAP3, AAGAB, CAMK4 and PEX14, and so could be prioritized for functional follow-up. We conclude by highlighting three areas of research that are essential to help translate GWAS findings into clinical research or practice, namely validation of target gene predictions, understanding target gene function and their role in disease pathophysiology and genomics-guided prioritization of targets for drug development. PMID:29333270

  7. The Joint Structure of DSM–IV Axis I and Axis II Disorders

    PubMed Central

    Røysamb, Espen; Tambs, Kristian; Ørstavik, Ragnhild E.; Torgersen, Svenn; Kendler, Kenneth S.; Neale, Michael C.; Aggen, Steven H.; Reichborn-Kjennerud, Ted

    2011-01-01

    The Diagnostic and Statistical Manual (4th ed. [DSM–IV]; American Psychiatric Association, 1994) distinction between clinical disorders on Axis I and personality disorders on Axis II has become increasingly controversial. Although substantial comorbidity between axes has been demonstrated, the structure of the liability factors underlying these two groups of disorders is poorly understood. The aim of this study was to determine the latent factor structure of a broad set of common Axis I disorders and all Axis II personality disorders and thereby to identify clusters of disorders and account for comorbidity within and between axes. Data were collected in Norway, through a population-based interview study (N = 2,794 young adult twins). Axis I and Axis II disorders were assessed with the Composite International Diagnostic Interview (CIDI) and the Structured Interview for DSM–IV Personality (SIDP–IV), respectively. Exploratory and confirmatory factor analyses were used to investigate the underlying structure of 25 disorders. A four-factor model fit the data well, suggesting a distinction between clinical and personality disorders as well as a distinction between broad groups of internalizing and externalizing disorders. The location of some disorders was not consistent with the DSM–IV classification; antisocial personality disorder belonged primarily to the Axis I externalizing spectrum, dysthymia appeared as a personality disorder, and borderline personality disorder appeared in an interspectral position. The findings have implications for a meta-structure for the DSM. PMID:21319931

  8. Modulation of Gut Microbiota-Brain Axis by Probiotics, Prebiotics, and Diet.

    PubMed

    Liu, Xiaofei; Cao, Shangqing; Zhang, Xuewu

    2015-09-16

    There exists a bidirectional communication system between the gastrointestinal tract and the brain. Increasing evidence shows that gut microbiota can play a critical role in this communication; thus, the concept of a gut microbiota and brain axis is emerging. Here, we review recent findings in the relationship between intestinal microbes and brain function, such as anxiety, depression, stress, autism, learning, and memory. We highlight the advances in modulating brain development and behavior by probiotics, prebiotics, and diet through the gut microbiota-brain axis. A variety of mechanisms including immune, neural, and metabolic pathways may be involved in modulation of the gut microbiota-brain axis. We also discuss some future challenges. A deeper understanding of the relationship between the gut bacteria and their hosts is implicated in developing microbial-based therapeutic strategies for brain disorders.

  9. Visceral pain hypersensitivity in functional gastrointestinal disorders.

    PubMed

    Farmer, A D; Aziz, Q

    2009-01-01

    Functional gastrointestinal disorders (FGIDs) are a highly prevalent group of heterogeneous disorders whose diagnostic criteria are symptom based in the absence of a demonstrable structural or biochemical abnormality. Chronic abdominal pain or discomfort is a defining characteristic of these disorders and a proportion of patients may display heightened pain sensitivity to experimental visceral stimulation, termed visceral pain hypersensitivity (VPH). We examined the most recent literature in order to concisely review the evidence for some of the most important recent advances in the putative mechanisms concerned in the pathophysiology of VPH. VPH may occur due to anomalies at any level of the visceral nociceptive neuraxis. Important peripheral and central mechanisms of sensitization that have been postulated include a wide range of ion channels, neurotransmitter receptors and trophic factors. Data from functional brain imaging studies have also provided evidence for aberrant central pain processing in cortical and subcortical regions. In addition, descending modulation of visceral nociceptive pathways by the autonomic nervous system, hypothalamo-pituitary-adrenal axis and psychological factors have all been implicated in the generation of VPH. Particular areas of controversy have included the development of efficacious treatment of VPH. Therapies have been slow to emerge, mainly due to concerns regarding safety. The burgeoning field of genome wide association studies may provide further evidence for the pleiotropic genetic basis of VPH development. Tangible progress will only be made in the treatment of VPH when we begin to individually characterize patients with FGIDs based on their clinical phenotype, genetics and visceral nociceptive physiology.

  10. Monitoring Detrusor Oxygenation and Hemodynamics Noninvasively during Dysfunctional Voiding

    PubMed Central

    Macnab, Andrew J.; Stothers, Lynn S.; Shadgan, Babak

    2012-01-01

    The current literature indicates that lower urinary tract symptoms (LUTSs) related to benign prostatic hyperplasia (BPH) have a heterogeneous pathophysiology. Pressure flow studies (UDSs) remain the gold standard evaluation methodology for such patients. However, as the function of the detrusor muscle depends on its vasculature and perfusion, the underlying causes of LUTS likely include abnormalities of detrusor oxygenation and hemodynamics, and available treatment options include agents thought to act on the detrusor smooth muscle and/or vasculature. Hence, near infrared spectroscopy (NIRS), an established optical methodology for monitoring changes in tissue oxygenation and hemodynamics, has relevance as a means of expanding knowledge related to the pathophysiology of BPH and potential treatment options. This methodological report describes how to conduct simultaneous NIRS monitoring of detrusor oxygenation and hemodynamics during UDS, outlines the clinical implications and practical applications of NIRS, explains the principles of physiologic interpretation of NIRS voiding data, and proposes an exploratory hypothesis that the pathophysiological causes underlying LUTS include detrusor dysfunction due to an abnormal hemodynamic response or the onset of oxygen debt during voiding. PMID:23019422

  11. [Irritable bowel syndrome, levator ani syndrome, proctalgia fugax and chronic pelvic and perineal pain].

    PubMed

    Watier, Alain; Rigaud, Jérôme; Labat, Jean-Jacques

    2010-11-01

    To define functional gastrointestinal pain, irritable bowel syndrome (IBS), levator ani syndrome, proctalgia fugax, the pathophysiology of these syndromes and the treatments that can be proposed. Review of articles published on the theme based on a Medline (PubMed) search and consensus conferences selected according to their scientific relevance. IBS is very common. Patients report abdominal pain and/or discomfort, bloating, and abnormal bowel habit (diarrhoea, constipation or both), in the absence of any structural or biochemical abnormalities. IBS has a complex, multifactorial pathophysiology, involving biological and psychosocial interactions resulting in dysregulation of the brain-gut axis associated with disorders of intestinal motility, hyperalgesia, immune disorders and disorders of the intestinal bacterial microflora and autonomic and hormonal dysfunction. Many treatments have been proposed, ranging from diet to pharmacology and psychotherapy. Patients with various types of chronic pelvic and perineal pain, especially those seen in urology departments, very often report associated IBS. This syndrome is also part of a global and integrated concept of pelviperineal dysfunction, avoiding a rigorous distinction between the posterior segment and the midline and anterior segments of the perineum. Copyright © 2010 Elsevier Masson SAS. All rights reserved.

  12. The endothelin B receptor plays a crucial role in the adhesion of neutrophils to the endothelium in sickle cell disease

    PubMed Central

    Koehl, Bérengère; Nivoit, Pierre; El Nemer, Wassim; Lenoir, Olivia; Hermand, Patricia; Pereira, Catia; Brousse, Valentine; Guyonnet, Léa; Ghinatti, Giulia; Benkerrou, Malika; Colin, Yves; Le Van Kim, Caroline; Tharaux, Pierre-Louis

    2017-01-01

    Although the primary origin of sickle cell disease is a hemoglobin disorder, many types of cells contribute considerably to the pathophysiology of the disease. The adhesion of neutrophils to activated endothelium is critical in the pathophysiology of sickle cell disease and targeting neutrophils and their interactions with endothelium represents an important opportunity for the development of new therapeutics. We focused on endothelin-1, a mediator involved in neutrophil activation and recruitment in tissues, and investigated the involvement of the endothelin receptors in the interaction of neutrophils with endothelial cells. We used fluorescence intravital microscopy analyses of the microcirculation in sickle mice and quantitative microfluidic fluorescence microscopy of human blood. Both experiments on the mouse model and patients indicate that blocking endothelin receptors, particularly ETB receptor, strongly influences neutrophil recruitment under inflammatory conditions in sickle cell disease. We show that human neutrophils have functional ETB receptors with calcium signaling capability, leading to increased adhesion to the endothelium through effects on both endothelial cells and neutrophils. Intact ETB function was found to be required for tumor necrosis factor α-dependent upregulation of CD11b on neutrophils. Furthermore, we confirmed that human neutrophils synthesize endothelin-1, which may be involved in autocrine and paracrine pathophysiological actions. Thus, the endothelin-ETB axis should be considered as a cytokine-like potent pro-inflammatory pathway in sickle cell disease. Blockade of endothelin receptors, including ETB, may provide major benefits for preventing or treating vaso-occlusive crises in sickle cell patients. PMID:28385784

  13. Investigation of the hypothalamo-pituitary-adrenal axis (HPA) by 1 microg ACTH test and metyrapone test in patients with primary fibromyalgia syndrome.

    PubMed

    Calis, M; Gökçe, C; Ates, F; Ulker, S; Izgi, H B; Demir, H; Kirnap, M; Sofuoglu, S; Durak, A C; Tutus, A; Kelestimur, F

    2004-01-01

    Primary fibromyalgia syndrome (PFS) is characterized by widespread chronic pain that affects the musculoskeletal system, fatigue, anxiety, sleep disturbance, headache and postural hypotension. The pathophysiology of PFS is unknown. The hypothalamic-pituitary-adrenal (HPA) axis seems to play an important role in PFS. Both hyperactivity and hypoactivity of the HPA axis have been reported in patients with PFS. In this study we assessed the HPA axis by 1 microg ACTH stimulation test and metyrapone test in 22 patients with PFS and in 15 age-, sex-, and body mass index (BMI)- matched controls. Metyrapone (30 mg/kg) was administered orally at 23:00 h and blood was sampled at 08:30 h the following morning for 11-deoxycortisol. ACTH stimulation test was carried out by using 1 microg (iv) ACTH as a bolus injection after an overnight fast, and blood samples were drawn at 0, 30 and 60 min. Peak cortisol level (659.4 +/- 207.2 nmol/l) was lower in the patients with PFS than peak cortisol level (838.7 +/- 129.6 nmol/l) in the control subjects (p < 0.05). Ten patients (45%) with PFS had peak cortisol responses to 1 microg ACTH test lower than the lowest peak cortisol detected in healthy controls. After metyrapone test 11-deoxycortisol level was 123.7 +/- 26 nmol/l in patients with PFS and 184.2 +/- 17.3 nmol/l in the controls (p < 0.05). Ninety five percent of the patients with PFS had lower 11-deoxycortisol level after metyrapone than the lowest 11-deoxycortisol level after metyrapone detected in healthy controls. We also compared the adrenal size of the patients with that of the healthy subjects and we found that the adrenal size between the groups was similar. This study clearly shows that HPA axis is underactivated in PFS, rather than overactivated.

  14. Glucocorticoids Recruit Tgfbr3 and Smad1 to Shift Transforming Growth Factor-β Signaling from the Tgfbr1/Smad2/3 Axis to the Acvrl1/Smad1 Axis in Lung Fibroblasts*

    PubMed Central

    Schwartze, Julian T.; Becker, Simone; Sakkas, Elpidoforos; Wujak, Łukasz A.; Niess, Gero; Usemann, Jakob; Reichenberger, Frank; Herold, Susanne; Vadász, István; Mayer, Konstantin; Seeger, Werner; Morty, Rory E.

    2014-01-01

    Glucocorticoids represent the mainstay therapy for many lung diseases, providing outstanding management of asthma but performing surprisingly poorly in patients with acute respiratory distress syndrome, chronic obstructive pulmonary disease, lung fibrosis, and blunted lung development associated with bronchopulmonary dysplasia in preterm infants. TGF-β is a pathogenic mediator of all four of these diseases, prompting us to explore glucocorticoid/TGF-β signaling cross-talk. Glucocorticoids, including dexamethasone, methylprednisolone, budesonide, and fluticasone, potentiated TGF-β signaling by the Acvrl1/Smad1/5/8 signaling axis and blunted signaling by the Tgfbr1/Smad2/3 axis in NIH/3T3 cells, as well as primary lung fibroblasts, smooth muscle cells, and endothelial cells. Dexamethasone drove expression of the accessory type III TGF-β receptor Tgfbr3, also called betaglycan. Tgfbr3 was demonstrated to be a “switch” that blunted Tgfbr1/Smad2/3 and potentiated Acvrl1/Smad1 signaling in lung fibroblasts. The Acvrl1/Smad1 axis, which was stimulated by dexamethasone, was active in lung fibroblasts and antagonized Tgfbr1/Smad2/3 signaling. Dexamethasone acted synergistically with TGF-β to drive differentiation of primary lung fibroblasts to myofibroblasts, revealed by acquisition of smooth muscle actin and smooth muscle myosin, which are exclusively Smad1-dependent processes in fibroblasts. Administration of dexamethasone to live mice recapitulated these observations and revealed a lung-specific impact of dexamethasone on lung Tgfbr3 expression and phospho-Smad1 levels in vivo. These data point to an interesting and hitherto unknown impact of glucocorticoids on TGF-β signaling in lung fibroblasts and other constituent cell types of the lung that may be relevant to lung physiology, as well as lung pathophysiology, in terms of drug/disease interactions. PMID:24347165

  15. [Insomnia Between Neuro- and Social Sciences - A Psycho-Socio-Somatic Outview].

    PubMed

    Cohrs, S; Hacker, T; Marx, I; Goerke, M

    2016-10-01

    Insomnia is one of the most prevalent neuropsychiatric disorders throughout Europe. It is associated with a number of health-relevant problems including an increased risk of psychiatric and organic disorders. A variety of organic, social and psychological risk factors takes part in the genesis of these sleep disturbances. A key component of the pathophysiology is the multifaceted hyperarousal that is expressed in the cognitive, emotional, neuronal, neuroendocrine, the hypothalamo-pituitary-adrenal axis, and further neurovegetative domains. Recent studies document in addition to identified risk factors for insomnia a number of protective factors that are relevant for the individual as well as society. © Georg Thieme Verlag KG Stuttgart · New York.

  16. Divergences between clinical and research methods for assessing personality disorders: implications for research and the evolution of axis II.

    PubMed

    Westen, D

    1997-07-01

    The purpose of this study was to examine the extent to which instruments for assessing axis II diverge from clinical diagnostic processes. Subjects in the first study were 52 clinicians with experience in assessment and treatment of patients with personality disorders, who were surveyed about the methods they use in clinical practice to make diagnoses and other aspects of the diagnostic process. A second study replicated the major findings with a random national sample of 1,901 experienced psychiatrists and psychologists. Whereas current instruments rely primarily on direct questions derived from DSM-IV, clinicians of every theoretical persuasion found direct questions useful for assessing axis I disorders but only marginally so for axis II. They made axis II diagnoses, instead, by listening to patients describe interpersonal interactions and observing their behavior with the interviewer. In contrast to findings with current research instruments, most patients with personality disorders in clinical practice receive only one axis II diagnosis, and if they receive more than one, one is considered primary. Clinicians reported treating a substantial number of patients for enduring personality patterns that current axis II instruments do not assess, many of which meet neither axis I nor axis II criteria, notably problems with relatedness, work, self-esteem, and chronic subclinical depressive traits. Measurements of axis II were constructed by using a model derived from axis I instruments that diverges from clinical diagnostic procedures in a way that may be problematic for the assessment of personality disorders and the development of a more clinically and empirically sound taxonomy.

  17. Development of ghrelin transgenic mice for elucidation of clinical implication of ghrelin.

    PubMed

    Aotani, Daisuke; Ariyasu, Hiroyuki; Shimazu-Kuwahara, Satoko; Shimizu, Yoshiyuki; Nomura, Hidenari; Murofushi, Yoshiteru; Kaneko, Kentaro; Izumi, Ryota; Matsubara, Masaki; Kanda, Hajime; Noguchi, Michio; Tanaka, Tomohiro; Kusakabe, Toru; Miyazawa, Takashi; Nakao, Kazuwa

    2017-01-01

    To elucidate the clinical implication of ghrelin, we have been trying to generate variable models of transgenic (Tg) mice overexpressing ghrelin. We generated Tg mice overexpressing des-acyl ghrelin in a wide variety of tissues under the control of β-actin promoter. While plasma des-acyl ghrelin level in the Tg mice was 44-fold greater than that of control mice, there was no differences in the plasma ghrelin level between des-acyl ghrelin Tg and the control mice. The des-acyl ghrelin Tg mice exhibited the lower body weight and the shorter body length due to modulation of GH-IGF-1 axis. We tried to generate Tg mice expressing a ghrelin analog, which possessed ghrelin-like activity (Trp 3 -ghrelin Tg mice). The plasma Trp 3 -ghrelin concentration in Trp 3 -ghrelin Tg mice was approximately 85-fold higher than plasma ghrelin (acylated ghrelin) concentration seen in the control mice. Because Trp 3 -ghrelin is approximately 24-fold less potent than ghrelin, the plasma Trp 3 -ghrelin concentration in Trp 3 -ghrelin Tg mice was calculated to have approximately 3.5-fold biological activity greater than that of ghrelin (acylated ghrelin) in the control mice. Trp 3 -ghrelin Tg mice did not show any phenotypes except for reduced insulin sensitivity in 1-year old. After the identification of ghrelin O-acyltransferase (GOAT), we generated doubly Tg mice overexpressing both mouse des-acyl ghrelin and mouse GOAT in the liver by cross-mating the two kinds of Tg mice. The plasma ghrelin concentration of doubly Tg mice was approximately 2-fold higher than that of the control mice. No apparent phenotypic changes in body weight and food intake were observed in doubly Tg mice. Further studies are ongoing in our laboratory to generate Tg mice with the increased plasma ghrelin level to a greater extent. The better understanding of physiological and pathophysiological significance of ghrelin from experiments using an excellent animal model may provide a new therapeutic approach for human diseases.

  18. Rare and Unusual Endocrine Cancer Syndromes with Mutated Genes

    PubMed Central

    Lodish, Maya B.; Stratakis, Constantine A.

    2010-01-01

    The study of a number of rare familial syndromes associated with endocrine tumor development has led to the identification of genes involved in the development of these tumors. Major advances have been made expanding our understanding of the pathophysiology of these rare endocrine tumors, resulting in the elucidation of causative genes in rare familial diseases and a better understanding of the signaling pathways implicated in endocrine cancers. Recognition of the familial syndrome associated with a particular patient’s endocrine tumor has important implications in terms of prognosis, screening of family members, and screening for associated conditions. PMID:21167385

  19. Spasmodic Dysphonia: A Review. Part 2: Characterization of Pathophysiology.

    PubMed

    Hintze, Justin M; Ludlow, Christy L; Bansberg, Stephen F; Adler, Charles H; Lott, David G

    2017-10-01

    Objective The purpose of this review is to describe the recent advances in characterizing spasmodic dysphonia. Spasmodic dysphonia is a task-specific focal laryngeal dystonia characterized by irregular and uncontrolled voice breaks. The pathophysiology is poorly understood, and there are diagnostic difficulties. Data Sources PubMed, Google Scholar, and Cochrane Library. Review Methods The data sources were searched using the following search terms: ( spasmodic dysphonia or laryngeal dystonia) and ( etiology, aetiology, diagnosis, pathogenesis, or pathophysiology). Conclusion The diagnosis of spasmodic dysphonia can be difficult due to the lack of a scientific consensus on diagnostic criteria and the fact that other voice disorders may present similarly. Confusion can arise between spasmodic dysphonia and muscle tension dysphonia. Spasmodic dysphonia symptoms are tied to particular speech sounds, whereas muscle tension dysphonia is not. With the advent of more widespread use of high-speed laryngoscopy and videokymography, measures of the disruptions in phonation and delays in the onset of vocal fold vibration after vocal fold closure can be quantified. Recent technological developments have expanded our understanding of the pathophysiology of spasmodic dysphonia. Implications for Practice A 3-tiered approach, involving a questionnaire, followed by speech assessment and nasolaryngoscopy is the most widely accepted method for making the diagnosis in most cases. More experimental and invasive techniques such as electromyography and neuroimaging have been explored to further characterize spasmodic dysphonia and aid in diagnosing difficult cases.

  20. Lithium attenuated the depressant and anxiogenic effect of juvenile social stress through mitigating the negative impact of interlukin-1β and nitric oxide on hypothalamic-pituitary-adrenal axis function.

    PubMed

    Haj-Mirzaian, A; Amiri, S; Kordjazy, N; Momeny, M; Razmi, A; Rahimi-Balaei, M; Amini-Khoei, H; Haj-Mirzaian, A; Marzban, H; Mehr, S E; Ghaffari, S H; Dehpour, A R

    2016-02-19

    The neuroimmune-endocrine dysfunction has been accepted as one of fundamental mechanisms contributing to the pathophysiology of psychiatric disorders including depression and anxiety. In this study, we aimed to evaluate the involvement of hypothalamic-pituitary-adrenal (HPA) axis, interleukin-1β, and nitrergic system in mediating the negative behavioral impacts of juvenile social isolation stress (SIS) in male mice. We also investigated the possible protective effects of lithium on behavioral and neurochemical changes in socially isolated animals. Results showed that experiencing 4-weeks of juvenile SIS provoked depressive and anxiety-like behaviors that were associated with hyper responsiveness of HPA axis, upregulation of interleukin-1β, and nitric oxide (NO) overproduction in the pre-frontal cortex and hippocampus. Administration of lithium (10 mg/kg) significantly attenuated the depressant and anxiogenic effects of SIS in behavioral tests. Lithium also restored the negative effects of SIS on cortical and hippocampal interleukin-1β and NO as well as HPA axis deregulation. Unlike the neutralizing effects of l-arginine (NO precursor), administration of l-NAME (3 mg/kg) and aminoguanidine (20 mg/kg) potentiated the positive effects of lithium on the behavioral and neurochemical profile of isolated mice. In conclusion, our results revealed that juvenile SIS-induced behavioral deficits are associated with abnormalities in HPA-immune function. Also, we suggest that alleviating effects of lithium on behavioral profile of isolated mice may be partly mediated by mitigating the negative impact of NO on HPA-immune function. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  1. Hypothalamic-Pituitary-Adrenal Axis Dysfunction and Illness Progression in Bipolar Disorder

    PubMed Central

    Vasconcelos-Moreno, Mirela Paiva; Gubert, Carolina; dos Santos, Bárbara Tietböhl Martins Quadros; Sartori, Juliana; Eisele, Bárbara; Ferrari, Pamela; Fijtman, Adam; Rüegg, Joëlle; Gassen, Nils Christian; Kapczinski, Flávio; Rein, Theo; Kauer-Sant’Anna, Márcia

    2015-01-01

    Background: Impaired stress resilience and a dysfunctional hypothalamic-pituitary-adrenal (HPA) axis are suggested to play key roles in the pathophysiology of illness progression in bipolar disorder (BD), but the mechanisms leading to this dysfunction have never been elucidated. This study aimed to examine HPA axis activity and underlying molecular mechanisms in patients with BD and unaffected siblings of BD patients. Methods: Twenty-four euthymic patients with BD, 18 siblings of BD patients, and 26 healthy controls were recruited for this study. All subjects underwent a dexamethasone suppression test followed by analyses associated with the HPA axis and the glucocorticoid receptor (GR). Results: Patients with BD, particularly those at a late stage of illness, presented increased salivary post-dexamethasone cortisol levels when compared to controls (p = 0.015). Accordingly, these patients presented reduced ex vivo GR responsiveness (p = 0.008) and increased basal protein levels of FK506-binding protein 51 (FKBP51, p = 0.012), a co-chaperone known to desensitize GR, in peripheral blood mononuclear cells. Moreover, BD patients presented increased methylation at the FK506-binding protein 5 (FKBP5) gene. BD siblings presented significantly lower FKBP51 protein levels than BD patients, even though no differences were found in FKBP5 basal mRNA levels. Conclusions: Our data suggest that the epigenetic modulation of the FKBP5 gene, along with increased FKBP51 levels, is associated with the GR hyporesponsiveness seen in BD patients. Our findings are consistent with the notion that unaffected first-degree relatives of BD patients share biological factors that influence the disorder, and that such changes are more pronounced in the late stages of the illness. PMID:25522387

  2. Prevention of gut leakiness by a probiotic treatment leads to attenuated HPA response to an acute psychological stress in rats.

    PubMed

    Ait-Belgnaoui, Afifa; Durand, Henri; Cartier, Christel; Chaumaz, Gilles; Eutamene, Hélène; Ferrier, Laurent; Houdeau, Eric; Fioramonti, Jean; Bueno, Lionel; Theodorou, Vassilia

    2012-11-01

    Intestinal barrier impairment is incriminated in the pathophysiology of intestinal gut disorders associated with psychiatric comorbidity. Increased intestinal permeability associated with upload of lipopolysaccharides (LPS) translocation induces depressive symptoms. Gut microbiota and probiotics alter behavior and brain neurochemistry. Since Lactobacillus farciminis suppresses stress-induced hyperpermeability, we examined whether (i) L. farciminis affects the HPA axis stress response, (ii) stress induces changes in LPS translocation and central cytokine expression which may be reversed by L. farciminis, (iii) the prevention of "leaky" gut and LPS upload are involved in these effects. At the end of the following treatments female rats were submitted to a partial restraint stress (PRS) or sham-PRS: (i) oral administration of L. farciminis during 2 weeks, (ii) intraperitoneal administration of ML-7 (a specific myosin light chain kinase inhibitor), (iii) antibiotic administration in drinking water during 12 days. After PRS or sham-PRS session, we evaluated LPS levels in portal blood, plasma corticosterone and adrenocorticotropic hormone (ACTH) levels, hypothalamic corticotropin releasing factor (CRF) and pro-inflammatory cytokine mRNA expression, and colonic paracellular permeability (CPP). PRS increased plasma ACTH and corticosterone; hypothalamic CRF and pro-inflammatory cytokine expression; CPP and portal blood concentration of LPS. L. farciminis and ML-7 suppressed stress-induced hyperpermeability, endotoxemia and prevented HPA axis stress response and neuroinflammation. Antibiotic reduction of luminal LPS concentration prevented HPA axis stress response and increased hypothalamic expression of pro-inflammatory cytokines. The attenuation of the HPA axis response to stress by L. farciminis depends upon the prevention of intestinal barrier impairment and decrease of circulating LPS levels. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Signaling lymphocytic activation molecules Slam and cancers: friends or foes?

    PubMed

    Fouquet, Gregory; Marcq, Ingrid; Debuysscher, Véronique; Bayry, Jagadeesh; Rabbind Singh, Amrathlal; Bengrine, Abderrahmane; Nguyen-Khac, Eric; Naassila, Mickael; Bouhlal, Hicham

    2018-03-23

    Signaling Lymphocytic Activation Molecules (SLAM) family receptors are initially described in immune cells. These receptors recruit both activating and inhibitory SH2 domain containing proteins through their Immunoreceptor Tyrosine based Switch Motifs (ITSMs). Accumulating evidence suggest that the members of this family are intimately involved in different physiological and pathophysiological events such as regulation of immune responses and entry pathways of certain viruses. Recently, other functions of SLAM, principally in the pathophysiology of neoplastic transformations have also been deciphered. These new findings may prompt SLAM to be considered as new tumor markers, diagnostic tools or potential therapeutic targets for controlling the tumor progression. In this review, we summarize the major observations describing the implications and features of SLAM in oncology and discuss the therapeutic potential attributed to these molecules.

  4. Giessen international workshop on interactions of exocrine and endocrine pancreatic diseases. Castle of Rauischholzhausen of the Justus-Liebig-University, Giessen, Germany. March 18-19, 2005.

    PubMed

    Andren-Sandberg, Ake; Hardt, Philip D

    2005-07-08

    The 'Giessen International Workshop on Interactions of Exocrine and Endocrine Pancreatic Diseases' was held on March 18-19, 2005 at the Castle of Rauischolzhausen, Giessen University, Germany. About 50 international clinicians and researchers attended the workshop. It was structured into three sessions: A: Pancreatic Autoimmunity - Interaction Between Exocrine and Endocrine Tissue; B: Diabetes Mellitus - Possible Implications of Exocrine Pancreatic Insufficiency; C: Chronic Pancreatitis - Update on Prevalence, Understanding and Pathophysiological Concepts. Several new aspects of pancreatic diseases were discussed, including new classifications of pancreatitis, new insights into prevalence, pathophysiology and new therapeutical considerations. The meeting resulted in more cooperation and a number of new concepts for clinical study which will provide data for future developments.

  5. Alcohol and Atrial Fibrillation: A Sobering Review.

    PubMed

    Voskoboinik, Aleksandr; Prabhu, Sandeep; Ling, Liang-Han; Kalman, Jonathan M; Kistler, Peter M

    2016-12-13

    Alcohol is popular in Western culture, supported by a perception that modest intake is cardioprotective. However, excessive drinking has detrimental implications for cardiovascular disease. Atrial fibrillation (AF) following an alcohol binge or the "holiday heart syndrome" is well characterized. However, more modest levels of alcohol intake on a regular basis may also increase the risk of AF. The pathophysiological mechanisms responsible for the relationship between alcohol and AF may include direct toxicity and alcohol's contribution to obesity, sleep-disordered breathing, and hypertension. We aim to provide a comprehensive review of the epidemiology and pathophysiology by which alcohol may be responsible for AF and determine whether alcohol abstinence is required for patients with AF. Copyright © 2016 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  6. Electrophysiological Endophenotypes for Schizophrenia

    PubMed Central

    Owens, Emily; Bachman, Peter; Glahn, David C; Bearden, Carrie E

    2016-01-01

    Endophenotypes are quantitative, heritable traits that may help to elucidate the pathophysiologic mechanisms underlying complex disease syndromes, such as schizophrenia. They can be assessed at numerous levels of analysis; here, we review electrophysiological endophenotypes that have shown promise in helping us understand schizophrenia from a more mechanistic point of view. For each endophenotype, we describe typical experimental procedures, reliability, heritability, and reported gene and neurobiological associations. We discuss recent findings regarding the genetic architecture of specific electrophysiological endophenotypes, as well as converging evidence from EEG studies implicating disrupted balance of glutamatergic signaling and GABA-ergic inhibition in the pathophysiology of schizophrenia. We conclude that refining the measurement of electrophysiological endophenotypes, expanding genetic association studies, and integrating datasets are important next steps for understanding the mechanisms that connect identified genetic risk loci for schizophrenia to the disease phenotype. PMID:26954597

  7. Developmental origins of brain disorders: roles for dopamine

    PubMed Central

    Money, Kelli M.; Stanwood, Gregg D.

    2013-01-01

    Neurotransmitters and neuromodulators, such as dopamine, participate in a wide range of behavioral and cognitive functions in the adult brain, including movement, cognition, and reward. Dopamine-mediated signaling plays a fundamental neurodevelopmental role in forebrain differentiation and circuit formation. These developmental effects, such as modulation of neuronal migration and dendritic growth, occur before synaptogenesis and demonstrate novel roles for dopaminergic signaling beyond neuromodulation at the synapse. Pharmacologic and genetic disruptions demonstrate that these effects are brain region- and receptor subtype-specific. For example, the striatum and frontal cortex exhibit abnormal neuronal structure and function following prenatal disruption of dopamine receptor signaling. Alterations in these processes are implicated in the pathophysiology of neuropsychiatric disorders, and emerging studies of neurodevelopmental disruptions may shed light on the pathophysiology of abnormal neuronal circuitry in neuropsychiatric disorders. PMID:24391541

  8. Cocaine-induced renal disease.

    PubMed

    Gitman, Michael D; Singhal, Pravin C

    2004-09-01

    Cocaine has anaesthetic, vasoconstrictive and CNS stimulatory effects. Presently, it is used clinically as a local anaesthetic and abused as a recreational drug. It has been implicated in both acute and chronic renal failure and has been reported to affect every aspect of the nephron. This article will review the spectrum of cocaine-induced kidney disease and attempt to give insight into the pathophysiological mechanisms involved.

  9. Scombroid poisoning.

    PubMed

    Lange, W R

    1988-04-01

    The symptoms of scombroid poisoning resemble an acute allergic reaction. Tuna, albacore, mackerel and bonito are implicated, as are nonscombroid fish such as mahi-mahi and bluefish. The histamine content of affected fish is high, but the pathophysiology is more complex than the mere ingestion of histamine. Antihistamines and cimetidine appear to be effective in controlling symptoms. Prevention consists of prompt and adequate refrigeration of dark-meated fish.

  10. Dissecting spontaneous cerebrospinal fluid collection.

    PubMed

    Champagne, Pierre-Olivier; Decarie, Jean-Claude; Crevier, Louis; Weil, Alexander G

    2018-04-01

    Hydrocephalus is a common condition in the pediatric population known to have many causes and presentation patterns. We report from the analysis of 2 cases the existence of a new complication of pediatric hydrocephalus. Naming this entity "dissecting intraparenchymal cerebrospinal fluid collection", we advance a hypothesis regarding its pathophysiology and discuss its clinical implications and management. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. The melatonergic system in mood and anxiety disorders and the role of agomelatine: implications for clinical practice.

    PubMed

    De Berardis, Domenico; Marini, Stefano; Fornaro, Michele; Srinivasan, Venkataramanujam; Iasevoli, Felice; Tomasetti, Carmine; Valchera, Alessandro; Perna, Giampaolo; Quera-Salva, Maria-Antonia; Martinotti, Giovanni; di Giannantonio, Massimo

    2013-06-13

    Melatonin exerts its actions through membrane MT1/MT2 melatonin receptors, which belong to the super family of G-protein-coupled receptors consisting of the typical seven transmembrane domains. MT1 and MT2 receptors are expressed in various tissues of the body either as single ones or together. A growing literature suggests that the melatonergic system may be involved in the pathophysiology of mood and anxiety disorders. In fact, some core symptoms of depression show disturbance of the circadian rhythm in their clinical expression, such as diurnal mood and other symptomatic variation, or are closely linked to circadian system functioning, such as sleep-wake cycle alterations. In addition, alterations have been described in the circadian rhythms of several biological markers in depressed patients. Therefore, there is interest in developing antidepressants that have a chronobiotic effect (i.e., treatment of circadian rhythm disorders). As melatonin produces chronobiotic effects, efforts have been aimed at developing agomelatine, an antidepressant with melatonin agonist activity. The present paper reviews the role of the melatonergic system in the pathophysiology of mood and anxiety disorders and the clinical characteristics of agomelatine. Implications of agomelatine in "real world" clinical practice will be also discussed.

  12. Glucagon-like peptide 1 in the pathophysiology and pharmacotherapy of clinical obesity

    PubMed Central

    Anandhakrishnan, Ananthi; Korbonits, Márta

    2016-01-01

    Though the pathophysiology of clinical obesity is undoubtedly multifaceted, several lines of clinical evidence implicate an important functional role for glucagon-like peptide 1 (GLP-1) signalling. Clinical studies assessing GLP-1 responses in normal weight and obese subjects suggest that weight gain may induce functional deficits in GLP-1 signalling that facilitates maintenance of the obesity phenotype. In addition, genetic studies implicate a possible role for altered GLP-1 signalling as a risk factor towards the development of obesity. As reductions in functional GLP-1 signalling seem to play a role in clinical obesity, the pharmacological replenishment seems a promising target for the medical management of obesity in clinical practice. GLP-1 analogue liraglutide at a high dose (3 mg/d) has shown promising results in achieving and maintaining greater weight loss in obese individuals compared to placebo control, and currently licensed anti-obesity medications. Generally well tolerated, provided that longer-term data in clinical practice supports the currently available evidence of superior short- and long-term weight loss efficacy, GLP-1 analogues provide promise towards achieving the successful, sustainable medical management of obesity that remains as yet, an unmet clinical need. PMID:28031776

  13. Functional O-GlcNAc modifications: Implications in molecular regulation and pathophysiology

    PubMed Central

    Wells, Lance

    2016-01-01

    O-linked β-N-acetylglucosamine (O-GlcNAc) is a regulatory post-translational modification of intracellular proteins. The dynamic and inducible cycling of the modification is governed by O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA) in response to UDP-GlcNAc levels in the hexosamine biosynthetic pathway (HBP). Due to its reliance on glucose flux and substrate availability, a major focus in the field has been on how O-GlcNAc contributes to metabolic disease. For years this post-translational modification has been known to modify thousands of proteins implicated in various disorders, but direct functional connections have until recently remained elusive. New research is beginning to reveal the specific mechanisms through which O-GlcNAc influences cell dynamics and disease pathology including clear examples of O-GlcNAc modification at a specific site on a given protein altering its biological functions. The following review intends to focus primarily on studies in the last half decade linking O-GlcNAc modification of proteins with chromatin-directed gene regulation, developmental processes, and several metabolically related disorders including Alzheimer’s, heart disease and cancer. These studies illustrate the emerging importance of this post-translational modification in biological processes and multiple pathophysiologies. PMID:24524620

  14. Medication Overuse Headache: Pathophysiological Insights from Structural and Functional Brain MRI Research.

    PubMed

    Schwedt, Todd J; Chong, Catherine D

    2017-07-01

    Research imaging of brain structure and function has helped to elucidate the pathophysiology of medication overuse headache (MOH). This is a narrative review of imaging research studies that have investigated brain structural and functional alterations associated with MOH. Studies included in this review have investigated abnormal structure and function of pain processing regions in people with MOH, functional patterns that might predispose individuals to development of MOH, similarity of brain functional patterns in patients with MOH to those found in people with addiction, brain structure that could predict headache improvement following discontinuation of the overused medication, and changes in brain structure and function after discontinuation of medication overuse. MOH is associated with atypical structure and function of brain regions responsible for pain processing as well as brain regions that are commonly implicated in addiction. Several studies have shown "normalization" of structure and function in pain processing regions following discontinuation of the overused medication and resolution of MOH. However, some of the abnormalities in regions also implicated in addiction tend to persist following discontinuation of the overused medication, suggesting that they are a brain trait that predisposes certain individuals to medication overuse and MOH. © 2017 American Headache Society.

  15. THYROSIM App for Education and Research Predicts Potential Health Risks of Over-the-Counter Thyroid Supplements.

    PubMed

    Han, Simon X; Eisenberg, Marisa; Larsen, P Reed; DiStefano, Joseph

    2016-04-01

    Computer simulation tools for education and research are making increasingly effective use of the Internet and personal devices. To facilitate these activities in endocrinology and metabolism, a mechanistically based simulator of human thyroid hormone and thyrotropin (TSH) regulation dynamics was developed and further validated, and it was implemented as a facile and freely accessible web-based and personal device application: the THYROSIM app. This study elucidates and demonstrates its utility in a research context by exploring key physiological effects of over-the-counter thyroid supplements. THYROSIM has a simple and intuitive user interface for teaching and conducting simulated "what-if" experiments. User-selectable "experimental" test-input dosages (oral, intravenous pulses, intravenous infusions) are represented by animated graphical icons integrated with a cartoon of the hypothalamic-pituitary-thyroid axis. Simulations of familiar triiodothyronine (T3), thyroxine (T4), and TSH temporal dynamic responses to these exogenous stimuli are reported graphically, along with normal ranges on the same single interface page; and multiple sets of simulated experimental results are superimposable to facilitate comparative analyses. This study shows that THYROSIM accurately reproduces a wide range of published clinical study data reporting hormonal kinetic responses to large and small oral hormone challenges. Simulation examples of partial thyroidectomies and malabsorption illustrate typical usage by optionally changing thyroid gland secretion and/or gut absorption rates--expressed as percentages of normal--as well as additions of oral hormone dosing, all directly on the interface, and visualizing the kinetic responses to these challenges. Classroom and patient education usage--with public health implications--is illustrated by predictive simulated responses to nonprescription thyroid health supplements analyzed previously for T3 and T4 content. Notably, it was found that T3 in supplements has potentially more serious pathophysiological effects than does T4--concomitant with low-normal TSH levels. Some preparations contain enough T3 to generate thyrotoxic conditions, with supernormal serum T3-spiking and subnormal serum T4 and TSH levels and, in some cases, with normal or low-normal range TSH levels due to thyroidal axis negative feedback. These results suggest that appropriate regulation of these products is needed.

  16. Gut-CNS-Axis as Possibility to Modulate Inflammatory Disease Activity-Implications for Multiple Sclerosis.

    PubMed

    Fleck, Ann-Katrin; Schuppan, Detlef; Wiendl, Heinz; Klotz, Luisa

    2017-07-14

    In the last decade the role of environmental factors as modulators of disease activity and progression has received increasing attention. In contrast to classical environmental modulators such as exposure to sun-light or fine dust pollution, nutrition is an ideal tool for a personalized human intervention. Various studies demonstrate a key role of dietary factors in autoimmune diseases including Inflammatory Bowel Disease (IBD), rheumatoid arthritis or inflammatory central nervous system (CNS) diseases such as Multiple Sclerosis (MS). In this review we discuss the connection between diet and inflammatory processes via the gut-CNS-axis. This axis describes a bi-directional communication system and comprises neuronal signaling, neuroendocrine pathways and modulation of immune responses. Therefore, the gut-CNS-axis represents an emerging target to modify CNS inflammatory activity ultimately opening new avenues for complementary and adjunctive treatment of autoimmune diseases such as MS.

  17. Relationship between adverse childhood experiences and homelessness and the impact of axis I and II disorders.

    PubMed

    Roos, Leslie E; Mota, Natalie; Afifi, Tracie O; Katz, Laurence Y; Distasio, Jino; Sareen, Jitender

    2013-12-01

    We investigated the links between homelessness associated with serious mental and physical healthy disparities and adverse childhood experiences (ACEs) in nationally representative data, with Axis I and II disorders as potential mediators. We examined data from the National Epidemiologic Survey of Alcohol and Related Conditions in 2001-2002 and 2004-2005, and included 34,653 participants representative of the noninstitutionalized US population who were 20 years old or older. We studied the variables related to 4 classes of Axis I disorders, all 10 Axis II personality disorders, a wide range of ACEs, and a lifetime history of homelessness. Analyses revealed high prevalences of each ACE in individuals experiencing lifetime homelessness (17%-60%). A mediation model with Axis I and II disorders determined that childhood adversities were significantly related to homelessness through direct effects (adjusted odd ratios = 2.04, 4.24) and indirect effects, indicating partial mediation. Population attributable fractions were also reported. Although Axis I and II disorders partially mediated the relationship between ACEs and homelessness, a strong direct association remained. This novel finding has implications for interventions and policy. Additional research is needed to understand relevant causal pathways.

  18. Calorie-induced ER stress suppresses uroguanylin satiety signaling in diet-induced obesity.

    PubMed

    Kim, G W; Lin, J E; Snook, A E; Aing, A S; Merlino, D J; Li, P; Waldman, S A

    2016-05-23

    The uroguanylin-GUCY2C gut-brain axis has emerged as one component regulating feeding, energy homeostasis, body mass and metabolism. Here, we explore a role for this axis in mechanisms underlying diet-induced obesity (DIO). Intestinal uroguanylin expression and secretion, and hypothalamic GUCY2C expression and anorexigenic signaling, were quantified in mice on high-calorie diets for 14 weeks. The role of endoplasmic reticulum (ER) stress in suppressing uroguanylin in DIO was explored using tunicamycin, an inducer of ER stress, and tauroursodeoxycholic acid (TUDCA), a chemical chaperone that inhibits ER stress. The impact of consumed calories on uroguanylin expression was explored by dietary manipulation. The role of uroguanylin in mechanisms underlying obesity was examined using Camk2a-Cre-ER(T2)-Rosa-STOP(loxP/loxP)-Guca2b mice in which tamoxifen induces transgenic hormone expression in brain. DIO suppressed intestinal uroguanylin expression and eliminated its postprandial secretion into the circulation. DIO suppressed uroguanylin through ER stress, an effect mimicked by tunicamycin and blocked by TUDCA. Hormone suppression by DIO reflected consumed calories, rather than the pathophysiological milieu of obesity, as a diet high in calories from carbohydrates suppressed uroguanylin in lean mice, whereas calorie restriction restored uroguanylin in obese mice. However, hypothalamic GUCY2C, enriched in the arcuate nucleus, produced anorexigenic signals mediating satiety upon exogenous agonist administration, and DIO did not impair these responses. Uroguanylin replacement by transgenic expression in brain repaired the hormone insufficiency and reconstituted satiety responses opposing DIO and its associated comorbidities, including visceral adiposity, glucose intolerance and hepatic steatosis. These studies reveal a novel pathophysiological mechanism contributing to obesity in which calorie-induced suppression of intestinal uroguanylin impairs hypothalamic mechanisms regulating food consumption through loss of anorexigenic endocrine signaling. The correlative therapeutic paradigm suggests that, in the context of hormone insufficiency with preservation of receptor sensitivity, obesity may be prevented or treated by GUCY2C hormone replacement.

  19. Calorie-induced ER stress suppresses uroguanylin satiety signaling in diet-induced obesity

    PubMed Central

    Kim, G W; Lin, J E; Snook, A E; Aing, A S; Merlino, D J; Li, P; Waldman, S A

    2016-01-01

    Background/Objectives: The uroguanylin-GUCY2C gut–brain axis has emerged as one component regulating feeding, energy homeostasis, body mass and metabolism. Here, we explore a role for this axis in mechanisms underlying diet-induced obesity (DIO). Subjects/Methods: Intestinal uroguanylin expression and secretion, and hypothalamic GUCY2C expression and anorexigenic signaling, were quantified in mice on high-calorie diets for 14 weeks. The role of endoplasmic reticulum (ER) stress in suppressing uroguanylin in DIO was explored using tunicamycin, an inducer of ER stress, and tauroursodeoxycholic acid (TUDCA), a chemical chaperone that inhibits ER stress. The impact of consumed calories on uroguanylin expression was explored by dietary manipulation. The role of uroguanylin in mechanisms underlying obesity was examined using Camk2a-Cre-ERT2-Rosa-STOPloxP/loxP-Guca2b mice in which tamoxifen induces transgenic hormone expression in brain. Results: DIO suppressed intestinal uroguanylin expression and eliminated its postprandial secretion into the circulation. DIO suppressed uroguanylin through ER stress, an effect mimicked by tunicamycin and blocked by TUDCA. Hormone suppression by DIO reflected consumed calories, rather than the pathophysiological milieu of obesity, as a diet high in calories from carbohydrates suppressed uroguanylin in lean mice, whereas calorie restriction restored uroguanylin in obese mice. However, hypothalamic GUCY2C, enriched in the arcuate nucleus, produced anorexigenic signals mediating satiety upon exogenous agonist administration, and DIO did not impair these responses. Uroguanylin replacement by transgenic expression in brain repaired the hormone insufficiency and reconstituted satiety responses opposing DIO and its associated comorbidities, including visceral adiposity, glucose intolerance and hepatic steatosis. Conclusions: These studies reveal a novel pathophysiological mechanism contributing to obesity in which calorie-induced suppression of intestinal uroguanylin impairs hypothalamic mechanisms regulating food consumption through loss of anorexigenic endocrine signaling. The correlative therapeutic paradigm suggests that, in the context of hormone insufficiency with preservation of receptor sensitivity, obesity may be prevented or treated by GUCY2C hormone replacement. PMID:27214655

  20. Effects of ADMA upon Gene Expression: An Insight into the Pathophysiological Significance of Raised Plasma ADMA

    PubMed Central

    Smith, Caroline L; Anthony, Shelagh; Hubank, Mike; Leiper, James M; Vallance, Patrick

    2005-01-01

    Background Asymmetric dimethylarginine (ADMA) is a naturally occurring inhibitor of nitric oxide synthesis that accumulates in a wide range of diseases associated with endothelial dysfunction and enhanced atherosclerosis. Clinical studies implicate plasma ADMA as a major novel cardiovascular risk factor, but the mechanisms by which low concentrations of ADMA produce adverse effects on the cardiovascular system are unclear. Methods and Findings We treated human coronary artery endothelial cells with pathophysiological concentrations of ADMA and assessed the effects on gene expression using U133A GeneChips (Affymetrix). Changes in several genes, including bone morphogenetic protein 2 inducible kinase (BMP2K), SMA-related protein 5 (Smad5), bone morphogenetic protein receptor 1A, and protein arginine methyltransferase 3 (PRMT3; also known as HRMT1L3), were confirmed by Northern blotting, quantitative PCR, and in some instances Western blotting analysis to detect changes in protein expression. To determine whether these changes also occurred in vivo, tissue from gene deletion mice with raised ADMA levels was examined. More than 50 genes were significantly altered in endothelial cells after treatment with pathophysiological concentrations of ADMA (2 μM). We detected specific patterns of changes that identify pathways involved in processes relevant to cardiovascular risk and pulmonary hypertension. Changes in BMP2K and PRMT3 were confirmed at mRNA and protein levels, in vitro and in vivo. Conclusion Pathophysiological concentrations of ADMA are sufficient to elicit significant changes in coronary artery endothelial cell gene expression. Changes in bone morphogenetic protein signalling, and in enzymes involved in arginine methylation, may be particularly relevant to understanding the pathophysiological significance of raised ADMA levels. This study identifies the mechanisms by which increased ADMA may contribute to common cardiovascular diseases and thereby indicates possible targets for therapies. PMID:16190779

  1. Vitamin D in the Pathophysiology of Hypertension, Kidney Disease, and Diabetes: Examining the Relationship Between Vitamin D and the Renin-Angiotensin System in Human Diseases

    PubMed Central

    Vaidya, Anand; Williams, Jonathan S.

    2011-01-01

    Objective Vitamin D has been implicated in the pathophysiology of extra-skeletal conditions such as hypertension, kidney disease, and diabetes, via its ability to negatively regulate the renin-angiotensin system (RAS). This article reviews the evidence supporting a link between vitamin D and the RAS in these conditions, with specific emphasis on translational observations and their limitations. Methods Literature review of animal and human studies evaluating the role of vitamin D in hypertension, kidney disease, and diabetes. Results Excess activity of the RAS has been implicated in the pathogenesis of hypertension, chronic kidney disease, decreased insulin secretion, and insulin resistance. Animal studies provide strong support for 1,25(OH)2D mediated down-regulation of renin expression and RAS activity via its interaction with the vitamin D receptor. Furthermore, the activity of vitamin D metabolites in animals is associated with reductions in blood pressure, proteinuria and renal injury, and with improved β–cell function. Many observational, and a few interventional, studies in humans have supported these findings; however, there is a lack of well designed prospective human interventional studies to definitively assess clinical outcomes. Conclusion Animal studies implicate vitamin D receptor agonist therapy to lower RAS activity as a potential method to reduce the risk of hypertension, kidney disease, and diabetes. There is a need for more well designed prospective interventional studies to validate this hypothesis in human clinical outcomes. PMID:22075270

  2. Biomarker investigations related to pathophysiological pathways in schizophrenia and psychosis

    PubMed Central

    Chana, Gursharan; Bousman, Chad A.; Money, Tammie T.; Gibbons, Andrew; Gillett, Piers; Dean, Brian; Everall, Ian P.

    2013-01-01

    Post-mortem brain investigations of schizophrenia have generated swathes of data in the last few decades implicating candidate genes and protein. However, the relation of these findings to peripheral biomarker indicators and symptomatology remain to be elucidated. While biomarkers for disease do not have to be involved with underlying pathophysiology and may be largely indicative of diagnosis or prognosis, the ideal may be a biomarker that is involved in underlying disease processes and which is therefore more likely to change with progression of the illness as well as potentially being more responsive to treatment. One of the main difficulties in conducting biomarker investigations for major psychiatric disorders is the relative inconsistency in clinical diagnoses between disorders such as bipolar and schizophrenia. This has led some researchers to investigate biomarkers associated with core symptoms of these disorders, such as psychosis. The aim of this review is to evaluate the contribution of post-mortem brain investigations to elucidating the pathophysiology pathways involved in schizophrenia and psychosis, with an emphasis on major neurotransmitter systems that have been implicated. This data will then be compared to functional neuroimaging findings as well as findings from blood based gene expression investigations in schizophrenia in order to highlight the relative overlap in pathological processes between these different modalities used to elucidate pathogenesis of schizophrenia. In addition we will cover some recent and exciting findings demonstrating microRNA (miRNA) dysregulation in both the blood and the brain in patients with schizophrenia. These changes are pertinent to the topic due to their known role in post-transcriptional modification of gene expression with the potential to contribute or underlie gene expression changes observed in schizophrenia. Finally, we will discuss how post-mortem studies may aid future biomarker investigations. PMID:23805071

  3. Crossroads between peripheral atherosclerosis, western-type diet and skeletal muscle pathophysiology: emphasis on apolipoprotein E deficiency and peripheral arterial disease.

    PubMed

    Sfyri, Peggy; Matsakas, Antonios

    2017-07-08

    Atherosclerosis is a chronic inflammatory process that, in the presence of hyperlipidaemia, promotes the formation of atheromatous plaques in large vessels of the cardiovascular system. It also affects peripheral arteries with major implications for a number of other non-vascular tissues such as the skeletal muscle, the liver and the kidney. The aim of this review is to critically discuss and assimilate current knowledge on the impact of peripheral atherosclerosis and its implications on skeletal muscle homeostasis. Accumulating data suggests that manifestations of peripheral atherosclerosis in skeletal muscle originates in a combination of increased i)-oxidative stress, ii)-inflammation, iii)-mitochondrial deficits, iv)-altered myofibre morphology and fibrosis, v)-chronic ischemia followed by impaired oxygen supply, vi)-reduced capillary density, vii)- proteolysis and viii)-apoptosis. These structural, biochemical and pathophysiological alterations impact on skeletal muscle metabolic and physiologic homeostasis and its capacity to generate force, which further affects the individual's quality of life. Particular emphasis is given on two major areas representing basic and applied science respectively: a)-the abundant evidence from a well-recognised atherogenic model; the Apolipoprotein E deficient mouse and the role of a western-type diet and b)-on skeletal myopathy and oxidative stress-induced myofibre damage from human studies on peripheral arterial disease. A significant source of reactive oxygen species production and oxidative stress in cardiovascular disease is the family of NADPH oxidases that contribute to several pathologies. Finally, strategies targeting NADPH oxidases in skeletal muscle in an attempt to attenuate cellular oxidative stress are highlighted, providing a better understanding of the crossroads between peripheral atherosclerosis and skeletal muscle pathophysiology.

  4. Cushing's syndrome: from physiological principles to diagnosis and clinical care

    PubMed Central

    Raff, Hershel; Carroll, Ty

    2015-01-01

    The physiological control of cortisol synthesis in the adrenal cortex involves stimulation of adrenocorticotrophic hormone (ACTH) by hypothalamic corticotrophin-releasing hormone (CRH) and then stimulation of the adrenal by ACTH. The control loop of the hypothalamic–pituitary–adrenal (HPA) axis is closed by negative feedback of cortisol on the hypothalamus and pituitary. Understanding this system is required to master the diagnosis, differential diagnosis and treatment of endogenous hypercortisolism – Cushing's syndrome. Endogenous Cushing's syndrome is caused either by excess ACTH secretion or by autonomous cortisol release from the adrenal cortex. Diagnosis of cortisol excess exploits three physiological principles: failure to achieve the normal nadir in the cortisol diurnal rhythm, loss of sensitivity of ACTH-secreting tumours to cortisol negative feedback, and increased excretion of free cortisol in the urine. Differentiating a pituitary source of excess ACTH (Cushing's disease) from an ectopic source is accomplished by imaging the pituitary and sampling for ACTH in the venous drainage of the pituitary. With surgical removal of ACTH or cortisol-secreting tumours, secondary adrenal insufficiency ensues because of the prior suppression of the HPA axis by glucocorticoid negative feedback. Medical therapy is targeted to the anatomical location of the dysregulated component of the HPA axis. Future research will focus on new diagnostics and treatments of Cushing's syndrome. These are elegant examples of translational research: understanding basic physiology informs the development of new approaches to diagnosis and treatment. Appreciating pathophysiology generates new areas for inquiry of basic physiological and biochemical mechanisms. PMID:25480800

  5. Macrophage migration inhibitory factor (MIF) gene is associated with adolescents' cortisol reactivity and anxiety.

    PubMed

    Lipschutz, Rebecca; Bick, Johanna; Nguyen, Victoria; Lee, Maria; Leng, Lin; Grigorenko, Elena; Bucala, Richard; Mayes, Linda C; Crowley, Michael J

    2018-05-26

    Emerging evidence points to interactions between inflammatory markers and stress reactivity in predicting mental health risk, but underlying mechanisms are not well understood. Macrophage Migration Inhibitory Factor (MIF) is a pleiotropic cytokine involved in inflammatory signaling and Hypothalamus Pituitary Adrenal (HPA) axis stress-response, and has recently been identified as a candidate biomarker for depression and anxiety risk. We examined polymorphic variations of the MIF gene in association with baseline MIF levels, HPA axis reactivity, and self-reported anxiety responses to a social stressor in 74 adolescents, ages 10-14 years. Genotyping was performed for two polymorphisms, the -794 CATT5-8 tetranucleotide repeat and the -173*G/C single nucleotide polymorphism (SNP). Youth carrying the MIF-173*C and CATT7 alleles displayed attenuated cortisol reactivity when compared with non-carriers. Children with the CATT7-173*C haplotype displayed lower cortisol reactivity to the stressor compared to those without this haplotype. Additionally, the CATT5-173*C and CATT6-173*C haplotypes were associated with lower self-reported anxiety ratings across the stressor. Results extend prior work pointing to the influence of MIF signaling on neuroendocrine response to stress and suggest a potential pathophysiological pathway underlying risk for stress-related physical and mental health disorders. To our knowledge, these are the first data showing associations between the MIF gene, HPA axis reactivity, and anxiety symptoms during adolescence. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Renal Denervation Findings on Cardiac and Renal Fibrosis in Rats with Isoproterenol Induced Cardiomyopathy

    NASA Astrophysics Data System (ADS)

    Liu, Qian; Zhang, Qi; Wang, Kai; Wang, Shengchan; Lu, Dasheng; Li, Zhenzhen; Geng, Jie; Fang, Ping; Wang, Ying; Shan, Qijun

    2015-12-01

    Cardio-renal fibrosis plays key roles in heart failure and chronic kidney disease. We sought to determine the effects of renal denervation (RDN) on cardiac and renal fibrosis in rats with isoproterenol induced cardiomyopathy. Sixty male Sprague Dawley rats were randomly assigned to Control (n = 10) and isoproterenol (ISO)-induced cardiomyopathy group (n = 50). At week 5, 31 survival ISO-induced cardiomyopathy rats were randomized to RDN (n = 15) and Sham group (n = 16). Compared with Control group, ejection fraction was decreased, diastolic interventricular septal thickness and left atrial dimension were increased in ISO-induced cardiomyopathy group at 5 week. After 10 weeks, cardio-renal pathophysiologic results demonstrated that the collagen volume fraction of left atrio-ventricular and kidney tissues reduced significantly in RDN group compared with Sham group. Moreover the pro-fibrosis factors (TGF-β1, MMP2 and Collagen I), inflammatory cytokines (CRP and TNF-α), and collagen synthesis biomarkers (PICP, PINP and PIIINP) concentration significantly decreased in RDN group. Compared with Sham group, RDN group showed that release of noradrenaline and aldosterone were reduced, angiotensin-converting enzyme (ACE)/angiotensin II (Ang II)/angiotensin II type-1 receptor (AT1R) axis was downregulated. Meanwhile, angiotensin-converting enzyme 2 (ACE2)/angiotensin-1-7 (Ang-(1-7))/mas receptor (Mas-R) axis was upregulated. RDN inhibits cardio-renal fibrogenesis through multiple pathways, including reducing SNS over-activity, rebalancing RAAS axis.

  7. Polycystic ovarian disease: animal models.

    PubMed

    Mahajan, D K

    1988-12-01

    The reproductive systems of human beings and other vertebrates are grossly similar. In the ovary particularly, the biochemical and physiologic processes are identical not only in the formation of germ cells, the development of primordial follicles and their subsequent growth to Graafian follicles, and eventual ovulation but also in anatomic structure. In a noncarcinogenic human ovary, hypersecretion of androgen causes PCOD. Such hypersecretion may result from a nonpulsatile, constant elevated level of circulating LH or a disturbance in the action of neurotransmitters in the hypothalamus. In studying the pathophysiology of PCOD in humans, one must be aware of the limitations for manipulating the hypothalamic-pituitary axis. Although the rat is a polytocous rodent, the female has a regular ovarian cyclicity of 4 or 5 days, with distinct proestrus, estrus, and diestrus phases. Inasmuch as PCOD can be experimentally produced in the rat, that species is a good model for studying the pathophysiology of human PCOD. These PCOD models and their validity have been described: (1) estradiol-valerate, (2) DHA, (3) constant-light (LL), and (4) neonatally androgenized. Among these, the LL model is noninvasive and seems superior to the others for study of the pathophysiology of PCOD. The production of the polycystic ovarian condition in the rat by the injection of estrogens or androgens in neonate animals, or estradiol or DHA in adult rats, or the administration of antigonadotropins to these animals all cause a sudden appearance of the persistent estrus state by disturbing the metabolic and physiologic processes, whereas exposure of the adult rat to LL causes polycystic ovaries gradually, similar to what is seen in human idiopathic PCOD. After about 50 days of LL, the rat becomes anovulatory and the ovaries contain thickened tunica albuginea and many atretic follicles, and the tertiary follicles are considerably distended and cystic. The granulosa and theca cells appear normal histologically, although some of the stromal cells appear hypertrophic. The anatomic features consequent to polycystic ovaries resulting from LL are similar to those in human PCOD, and both rat and human PCOD ovarian cells still retain the ability to respond to FSH/LH, LHRH, and unilateral ovariectomy. In the estradiol valerate rat model, although the anatomy and physiology of the ovary resemble those of PCOD patients, the progressive degeneration of the hypothalamus and the altered response of the pituitary to LHRH make this model inappropriate for studying the hypothalamic-pituitary-ovarian axis in the polycystic ovary condition.(ABSTRACT TRUNCATED AT 400 WORDS)

  8. Development and calibration of an air-floating six-axis force measurement platform using self-calibration

    NASA Astrophysics Data System (ADS)

    Huang, Bin; Wang, Xiaomeng; Li, Chengwei; Yi, Jiajing; Lu, Rongsheng; Tao, Jiayue

    2016-09-01

    This paper describes the design, working principle, as well as calibration of an air-floating six-axis force measurement platform, where the floating plate and nozzles were connected without contact, preventing inter-dimensional coupling and increasing precision significantly. The measurement repeatability error of the force size in the platform is less than 0.2% full scale (FS), which is significantly better than the precision of 1% FS in the six-axis force sensors on the current market. We overcame the difficulties of weight loading device in high-precision calibration by proposing a self-calibration method based on the floating plate gravity and met the calibration precision requirement of 0.02% FS. This study has general implications for the development and calibration of high-precision multi-axis force sensors. In particular, the air-floating six-axis force measurement platform could be applied to the calibration of some special sensors such as flexible tactile sensors and may be used as a micro-nano mechanical assembly platform for real-time assembly force testing.

  9. The pathophysiology of migraine: implications for clinical management.

    PubMed

    Charles, Andrew

    2018-02-01

    The understanding of migraine pathophysiology is advancing rapidly. Improved characterisation and diagnosis of its clinical features have led to the view of migraine as a complex, variable disorder of nervous system function rather than simply a vascular headache. Recent studies have provided important new insights into its genetic causes, anatomical and physiological features, and pharmacological mechanisms. The identification of new migraine-associated genes, the visualisation of brain regions that are activated at the earliest stages of a migraine attack, a greater appreciation of the potential role of the cervical nerves, and the recognition of the crucial role for neuropeptides are among the advances that have led to novel targets for migraine therapy. Future management of migraine will have the capacity to tailor treatments based on the distinct mechanisms of migraine that affect individual patients. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. A search for association between schizophrenia and dopamine-related alleles.

    PubMed

    Jönsson, E; Brené, S; Geijer, T; Terenius, L; Tylec, A; Persson, M L; Sedvall, G

    1996-01-01

    Dopamine receptor dysfunction and altered tyrosine hydroxylase activity have both been implicated in the pathophysiology of schizophrenia. Schizophrenic patients and control subjects were examined for allele frequencies in the tyrosine hydroxylase and dopamine D2 and D4 receptor genes. No significant differences of allele or genotype frequencies were found between the two groups after adjustment for multiple comparisons. Neither were any significant relationships observed between allele frequencies and a number of clinical variables within the schizophrenic subsample. When no adjustment was made for multiple testing a few significant tendencies were obtained which warrant further research in extended patient and control materials. The results are compatible with the view that the tyrosine hydroxylase, dopamine receptor D2 and D4 gene polymorphisms examined are not of major importance in the aetiology or pathophysiology of schizophrenia.

  11. Synaptic Loss and the Pathophysiology of PTSD: Implications for Ketamine as a Prototype Novel Therapeutic

    PubMed Central

    Krystal, John H.; Abdallah, Chadi G.; Averill, Lynette A.; Kelmendi, Benjamin; Harpaz-Rotem, Ilan; Sanacora, Gerard; Southwick, Steven M.; Duman, Ronald S.

    2018-01-01

    Purpose of Review Studies of the neurobiology and treatment of PTSD have highlighted many aspects of the pathophysiology of this disorder that might be relevant to treatment. The purpose of this review is to highlight the potential clinical importance of an often-neglected consequence of stress models in animals that may be relevant to PTSD: the stress-related loss of synaptic connectivity. Recent Findings Here, we will briefly review evidence that PTSD might be a “synaptic disconnection syndrome” and highlight the importance of this perspective for the emerging therapeutic application of ketamine as a potential rapid-acting treatment for this disorder that may work, in part, by restoring synaptic connectivity. Summary Synaptic disconnection may contribute to the profile of PTSD symptoms that may be targeted by novel pharmacotherapeutics. PMID:28844076

  12. A systems approach to bone pathophysiology.

    PubMed

    Weiss, Aaron J; Lipshtat, Azi; Mechanick, Jeffrey I

    2010-11-01

    With evolving interest in multiscalar biological systems one could assume that reductionist approaches may not fully describe biological complexity. Instead, tools such as mathematical modeling, network analysis, and other multiplexed clinical- and research-oriented tests enable rapid analyses of high-throughput data parsed at the genomic, proteomic, metabolomic, and physiomic levels. A physiomic-level approach allows for recursive horizontal and vertical integration of subsystem coupling across and within spatiotemporal scales. Additionally, this methodology recognizes previously ignored subsystems and the strong, nonintuitively obvious and indirect connections among physiological events that potentially account for the uncertainties in medicine. In this review, we flip the reductionist research paradigm and review the concept of systems biology and its applications to bone pathophysiology. Specifically, a bone-centric physiome model is presented that incorporates systemic-level processes with their respective therapeutic implications. © 2010 New York Academy of Sciences.

  13. Translational Implications of the β Cell Epigenome in Diabetes Mellitus

    PubMed Central

    Johnson, Justin S.; Evans-Molina, Carmella

    2014-01-01

    Diabetes mellitus is a disorder of glucose homeostasis that affects over 24 million Americans and 382 million individuals worldwide. Dysregulated insulin secretion from the pancreatic β cells plays a central role in the pathophysiology of all forms of diabetes mellitus. Therefore an enhanced understanding of the pathways that contribute to β cell failure is imperative. Epigenetics refers to heritable changes in DNA transcription that occur in the absence of changes to the linear DNA nucleotide sequence. Recent evidence suggests an expanding role of the β cell epigenome in the regulation of metabolic health. The goal of this review is to discuss maladaptive changes in β cell DNA methylation patterns and chromatin architecture and their contribution to diabetes pathophysiology. Efforts to modulate the β cell epigenome as a means to prevent, diagnose, and treat diabetes will also be discussed. PMID:24686035

  14. [Pathophysiology of myopia: nature versus nurture].

    PubMed

    Cassagne, M; Malecaze, F; Soler, V

    2014-05-01

    Myopia is the most frequent refractive disorder in the world. It has become a real Public Health problem, due to its frequency and to high myopia-related blinding complications. Myopic progression depends on genetic and environmental factors. Genetic studies have identified more than forty candidate genes that take part in pathophysiological pathways, from retinal phototransduction to axial lengthening via scleral remodelling. Environmental factors also influence scleral remodelling by way of visual perception. In the case of predominant attention to near tasks, a physiological feedback loop leads to axial growth. This phenomenon, called active emmetropization, is particularly obvious in animal models and in some human populations. To date, research has failed to identify a molecule common to all the implicated metabolic pathways which could be a target for an effective preventive treatment against myopic progression. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  15. Diabetes and Associated Complications in the South Asian Population

    PubMed Central

    Shah, Arti; Kanaya, Alka M.

    2014-01-01

    The increasing prevalence of diabetes in South Asians has significant health and economic implications. South Asians are predisposed to the development of diabetes due to biologic and lifestyle factors. Furthermore, they experience significant morbidity and mortality from complications of diabetes, most notably coronary artery disease, cerebrovascular disease and chronic kidney disease. Therefore, understanding the pathophysiology and genetics of diabetes risk factors and its associated complications in South Asians is paramount to curbing the diabetes epidemic. With this understanding, the appropriate screening, preventative and therapeutic strategies can be implemented and further developed. In this review, we discuss in detail the biologic and lifestyle factors that predispose South Asians to diabetes and review the epidemiology and pathophysiology of microvascular and macrovascular complications of diabetes in South Asians. We also review the ongoing and completed diabetes prevention and management studies in South Asians. PMID:24643902

  16. Angiotensin II and its different receptor subtypes in placenta and fetal membranes.

    PubMed

    Kalenga, M K; de Gasparo, M; Thomas, K; de Hertogh, R

    1996-01-01

    The recent discovery of a local renin-angiotensin system in trophoblastic tissues has raised many questions regarding its role in the physiology of normal gestation and its implications in the pathophysiology of hypertension during pregnancy. In this article, the authors first review the most interesting aspects of the chorioplacental renin-angiotensin system, dwelling on the tissue distribution of angiotensin II and its receptor subtypes in the placenta and fetal membranes of different species. The relationship between angiotensin II and other locally synthesized chorioplacental substances is also analysed and the therapeutic implications of phenomena observed in pregnancy-associated hypertension are discussed.

  17. Role of altered coagulation-fibrinolytic system in the pathophysiology of diabetic retinopathy.

    PubMed

    Behl, Tapan; Velpandian, Thirumurthy; Kotwani, Anita

    2017-05-01

    The implications of altered coagulation-fibrinolytic system in the pathophysiology of several vascular disorders, such as stroke and myocardial infarction, have been well researched upon and established. However, its role in the progression of diabetic retinopathy has not been explored much. Since a decade, it is known that hyperglycemia is associated with a hypercoagulated state and the various impairments it causes are well acknowledged as independent risk factors for the development of cardiovascular diseases. But recent studies suggest that the hypercoagulative state and diminished fibrinolytic responses might also alter retinal homeostasis and induce several deleterious molecular changes in retinal cells which aggravate the already existing hyperglycemia-induced pathological conditions and thereby lead to the progression of diabetic retinopathy. The major mediators of coagulation-fibrinolytic system whose concentration or activity get altered during hyperglycemia include fibrinogen, antithrombin-III (AT-III), plasminogen activator inhibitor-1 (PAI-1) and von Willebrand factor (vWF). Inhibiting the pathways by which these altered mediators get involved in the pathophysiology of diabetic retinopathy can serve as potential targets for the development of an adjuvant novel alternative therapy for diabetic retinopathy. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Pathophysiology of wound healing and alterations in venous leg ulcers-review.

    PubMed

    Raffetto, Joseph D

    2016-03-01

    Venous leg ulcer (VLU) is one of the most common lower extremity ulcerated wound, and is a significant healthcare problem with implications that affect social, economic, and the well-being of a patient. VLU can have debilitating related problems which require weekly medical care and may take months to years to heal. The pathophysiology of VLU is complex, and healing is delayed in many patients due to a persistent inflammatory condition. Patient genetic and environmental factors predispose individuals to chronic venous diseases including VLU. Changes in shear stress affecting the glycocalyx are likely initiating events, leading to activation of adhesion molecules on endothelial cells, and leukocyte activation with attachment and migration into vein wall, microcirculation, and in the interstitial space. Multiple chemokines, cytokines, growth factors, proteases and matrix metalloproteinases are produced. The pathology of VLU involves an imbalance of inflammation, inflammatory modulators, oxidative stress, and proteinase activity. Understanding the cellular and biochemical events that lead to the progression of VLU is critical. With further understanding of inflammatory pathways and potential mechanisms, certain biomarkers could be revealed and studied as both involvement in the pathophysiology of VLU but also as therapeutic targets for VLU healing. © The Author(s) 2016.

  19. Protein Kinase D1 Signaling in Angiogenic Gene Expression and VEGF-Mediated Angiogenesis.

    PubMed

    Ren, Bin

    2016-01-01

    Protein kinase D 1 (PKD-1) is a signaling kinase important in fundamental cell functions including migration, proliferation, and differentiation. PKD-1 is also a key regulator of gene expression and angiogenesis that is essential for cardiovascular development and tumor progression. Further understanding molecular aspects of PKD-1 signaling in the regulation of angiogenesis may have translational implications in obesity, cardiovascular disease, and cancer. The author will summarize and provide the insights into molecular mechanisms by which PKD-1 regulates transcriptional expression of angiogenic genes, focusing on the transcriptional regulation of CD36 by PKD-1-FoxO1 signaling axis along with the potential implications of this axis in arterial differentiation and morphogenesis. He will also discuss a new concept of dynamic balance between proangiogenic and antiangiogenic signaling in determining angiogenic switch, and stress how PKD-1 signaling regulates VEGF signaling-mediated angiogenesis.

  20. Protein Kinase D1 Signaling in Angiogenic Gene Expression and VEGF-Mediated Angiogenesis

    PubMed Central

    Ren, Bin

    2016-01-01

    Protein kinase D 1 (PKD-1) is a signaling kinase important in fundamental cell functions including migration, proliferation, and differentiation. PKD-1 is also a key regulator of gene expression and angiogenesis that is essential for cardiovascular development and tumor progression. Further understanding molecular aspects of PKD-1 signaling in the regulation of angiogenesis may have translational implications in obesity, cardiovascular disease, and cancer. The author will summarize and provide the insights into molecular mechanisms by which PKD-1 regulates transcriptional expression of angiogenic genes, focusing on the transcriptional regulation of CD36 by PKD-1-FoxO1 signaling axis along with the potential implications of this axis in arterial differentiation and morphogenesis. He will also discuss a new concept of dynamic balance between proangiogenic and antiangiogenic signaling in determining angiogenic switch, and stress how PKD-1 signaling regulates VEGF signaling-mediated angiogenesis. PMID:27200349

  1. Affective disorders and endocrine disease. New insights from psychosomatic studies.

    PubMed

    Fava, G A

    1994-01-01

    This is a review of psychosomatic interactions between affective disorders (depressive and anxiety disturbances, irritable mood) and endocrine disease. Particular reference is made to stressful life events in the pathogenesis of endocrine disease, psychopathology of hormonal disturbances, and pathophysiology of hypothalamic-pituitary-adrenal axis function in depression and Cushing's disease. These psychosomatic interactions may lead to appraisal of common etiological mechanisms in endocrine and psychiatric disorders, of the value of retaining the category of organic affective syndromes in psychiatric classification, and of the need for research on quality-of-life measures in endocrine disease. The establishment of "psychoendocrine units," where both endocrinologists and psychiatrists should work, is advocated. Such psychoendocrine units may serve and benefit clinical populations who currently defy traditional medical subdivisions.

  2. Irritable bowel syndrome: contemporary nutrition management strategies.

    PubMed

    Mullin, Gerard E; Shepherd, Sue J; Chander Roland, Bani; Ireton-Jones, Carol; Matarese, Laura E

    2014-09-01

    Irritable bowel syndrome is a complex disorder whose pathophysiology involves alterations in the enteric microbiota, visceral hypersensitivity, gut immune/barrier function, hypothalamic-pituitary-adrenal axis regulation, neurotransmitters, stress response, psychological factors, and more. The importance of diet in the management of irritable bowel syndrome has taken center stage in recent times as the literature validates the relationship of certain foods with the provocation of symptoms. Likewise, a number of elimination dietary programs have been successful in alleviating irritable bowel syndrome symptoms. Knowledge of the dietary management strategies for irritable bowel syndrome will help guide nutritionists and healthcare practitioners to deliver optimal outcomes. This tutorial reviews the nutrition management strategies for irritable bowel syndrome. © 2014 American Society for Parenteral and Enteral Nutrition.

  3. IDO chronic immune activation and tryptophan metabolic pathway: A potential pathophysiological link between depression and obesity.

    PubMed

    Chaves Filho, Adriano José Maia; Lima, Camila Nayane Carvalho; Vasconcelos, Silvânia Maria Mendes; de Lucena, David Freitas; Maes, Michael; Macedo, Danielle

    2018-01-03

    Obesity and depression are among the most pressing health problems in the contemporary world. Obesity and depression share a bidirectional relationship, whereby each condition increases the risk of the other. By inference, shared pathways may underpin the comorbidity between obesity and depression. Activation of cell-mediated immunity (CMI) is a key factor in the pathophysiology of depression. CMI cytokines, including IFN-γ, TNFα and IL-1β, induce the catabolism of tryptophan (TRY) by stimulating indoleamine 2,3-dioxygenase (IDO) resulting in the synthesis of kynurenine (KYN) and other tryptophan catabolites (TRYCATs). In the CNS, TRYCATs have been related to oxidative damage, inflammation, mitochondrial dysfunction, cytotoxicity, excitotoxicity, neurotoxicity and lowered neuroplasticity. The pathophysiology of obesity is also associated with a state of aberrant inflammation that activates aryl hydrocarbon receptor (AHR), a pathway involved in the detection of intracellular or environmental changes as well as with increases in the production of TRYCATs, being KYN an agonists of AHR. Both AHR and TRYCATS are involved in obesity and related metabolic disorders. These changes in the TRYCAT pathway may contribute to the onset of neuropsychiatric symptoms in obesity. This paper reviews the role of immune activation, IDO stimulation and increased TRYCAT production in the pathophysiology of depression and obesity. Here we suggest that increased synthesis of detrimental TRYCATs is implicated in comorbid obesity and depression and is a new drug target to treat both diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Potential Role of the Gut Microbiome in ALS: A Systematic Review.

    PubMed

    Wright, Michelle L; Fournier, Christina; Houser, Madelyn C; Tansey, Malú; Glass, Jonathan; Hertzberg, Vicki Stover

    2018-01-01

    Amyotrophic lateral sclerosis (ALS) etiology and pathophysiology are not well understood. Recent data suggest that dysbiosis of gut microbiota may contribute to ALS etiology and progression. This review aims to explore evidence of associations between gut microbiota and ALS etiology and pathophysiology. Databases were searched for publications relevant to the gut microbiome in ALS. Three publications provided primary evidence of changes in microbiome profiles in ALS. An ALS mouse model revealed damaged tight junction structure and increased permeability in the intestine versus controls along with a shifted microbiome profile, including decreased levels of butyrate-producing bacteria. In a subsequent publication, again using an ALS mouse model, researchers showed that dietary supplementation with butyrate relieved symptoms and lengthened both time to onset of weight loss and survival time. In a small study of ALS patients and healthy controls, investigators also found decreased levels of butyrate-producing bacteria. Essential for maintaining gut barrier integrity, butyrate is the preferred energy source of intestinal epithelial cells. Ten other articles were reviews and commentaries providing indirect support for a role of gut microbiota in ALS pathophysiology. Thus, these studies provide a modicum of evidence implicating gut microbiota in ALS disease, although more research is needed to confirm the connection and determine pathophysiologic mechanisms. Nurses caring for these patients need to understand the gut microbiome and its potential role in ALS in order to effectively counsel patients and their families about emerging therapies (e.g., prebiotics, probiotics, and fecal microbial transplant) and their off-label uses.

  5. “Immune Gate” of Psychopathology—The Role of Gut Derived Immune Activation in Major Psychiatric Disorders

    PubMed Central

    Rudzki, Leszek; Szulc, Agata

    2018-01-01

    Interaction between the gastrointestinal tract (GI) and brain functions has recently become a topic of growing interest in psychiatric research. These multidirectional interactions take place in the so-called gut-brain axis or more precisely, the microbiota-gut-brain axis. The GI tract is the largest immune organ in the human body and is also the largest surface of contact with the external environment. Its functions and permeability are highly influenced by psychological stress, which are often a precipitating factor in the first episode, reoccurrence and/or deterioration of symptoms of psychiatric disorders. In recent literature there is growing evidence that increased intestinal permeability with subsequent immune activation has a major role in the pathophysiology of various psychiatric disorders. Numerous parameters measured in this context seem to be aftermaths of those mechanisms, yet at the same time they may be contributing factors for immune mediated psychopathology. For example, immune activation related to gut-derived bacterial lipopolysaccharides (LPS) or various food antigens and exorphins were reported in major depression, schizophrenia, bipolar disorder, alcoholism and autism. In this review the authors will summarize the evidence and roles of such parameters and their assessment in major psychiatric disorders. PMID:29896124

  6. Experimental characterization of vertical-axis wind turbine noise.

    PubMed

    Pearson, C E; Graham, W R

    2015-01-01

    Vertical-axis wind turbines are wind-energy generators suitable for use in urban environments. Their associated noise thus needs to be characterized and understood. As a first step, this work investigates the relative importance of harmonic and broadband contributions via model-scale wind-tunnel experiments. Cross-spectra from a pair of flush-mounted wall microphones exhibit both components, but further analysis shows that the broadband dominates at frequencies corresponding to the audible range in full-scale operation. This observation has detrimental implications for noise-prediction reliability and hence also for acoustic design optimization.

  7. Along-axis hydrothermal flow at the axis of slow spreading Mid-Ocean Ridges: Insights from numerical models of the Lucky Strike vent field (MAR)

    NASA Astrophysics Data System (ADS)

    Fontaine, Fabrice J.; Cannat, Mathilde; Escartin, Javier; Crawford, Wayne C.

    2014-07-01

    processes and efficiency of hydrothermal heat extraction along the axis of mid-ocean ridges are controlled by lithospheric thermal and permeability structures. Hydrothermal circulation models based on the structure of fast and intermediate spreading ridges predict that hydrothermal cell organization and vent site distribution are primarily controlled by the thermodynamics of high-temperature mid-ocean ridge hydrothermal fluids. Using recent constraints on shallow structure at the slow spreading Lucky Strike segment along the Mid-Atlantic Ridge, we present a physical model of hydrothermal cooling that incorporates the specificities of a magma-rich slow spreading environment. Using three-dimensional numerical models, we show that, in contrast to the aforementioned models, the subsurface flow at Lucky Strike is primarily controlled by across-axis permeability variations. Models with across-axis permeability gradients produce along-axis oriented hydrothermal cells and an alternating pattern of heat extraction highs and lows that match the distribution of microseismic clusters recorded at the Lucky Strike axial volcano. The flow is also influenced by temperature gradients at the base of the permeable hydrothermal domain. Although our models are based on the structure and seismicity of the Lucky Strike segment, across-axis permeability gradients are also likely to occur at faster spreading ridges and these results may also have important implications for the cooling of young crust at fast and intermediate spreading centers.

  8. Hemolysis in sickle cell mice causes pulmonary hypertension due to global impairment in nitric oxide bioavailability

    PubMed Central

    Champion, Hunter C.; Campbell-Lee, Sally A.; Bivalacqua, Trinity J.; Manci, Elizabeth A.; Diwan, Bhalchandra A.; Schimel, Daniel M.; Cochard, Audrey E.; Wang, Xunde; Schechter, Alan N.; Noguchi, Constance T.; Gladwin, Mark T.

    2007-01-01

    Pulmonary hypertension is a highly prevalent complication of sickle cell disease and is a strong risk factor for early mortality. However, the pathophysiologic mechanisms leading to pulmonary vasculopathy remain unclear. Transgenic mice provide opportunities for mechanistic studies of vascular pathophysiology in an animal model. By microcardiac catheterization, all mice expressing exclusively human sickle hemoglobin had pulmonary hypertension, profound pulmonary and systemic endothelial dysfunction, and vascular instability characterized by diminished responses to authentic nitric oxide (NO), NO donors, and endothelium-dependent vasodilators and enhanced responses to vasoconstrictors. However, endothelium-independent vasodilation in sickle mice was normal. Mechanisms of vasculopathy in sickle mice involve global dysregulation of the NO axis: impaired constitutive nitric oxide synthase activity (NOS) with loss of endothelial NOS (eNOS) dimerization, increased NO scavenging by plasma hemoglobin and superoxide, increased arginase activity, and depleted intravascular nitrite reserves. Light microscopy and computed tomography revealed no plexogenic arterial remodeling or thrombi/emboli. Transplanting sickle marrow into wild-type mice conferred the same phenotype, and similar pathobiology was observed in a nonsickle mouse model of acute alloimmune hemolysis. Although the time course is shorter than typical pulmonary hypertension in human sickle cell disease, these results demonstrate that hemolytic anemia is sufficient to produce endothelial dysfunction and global dysregulation of NO. PMID:17158223

  9. Central leptin gene therapy ameliorates diabetes type 1 and 2 through two independent hypothalamic relays

    PubMed Central

    Kalra, Satya P.

    2009-01-01

    Although its role in energy homeostasis is firmly established, the evidence accumulated over a decade linking the adipocyte leptin -hypothalamus axis in the pathogenesis of diabetes mellitus has received little attention in the contemporary thinking. In this context various lines of evidence are collated here to show that (1) under the direction of leptin two independent relays emanating from the hypothalamus restrain insulin secretion from the pancreas and mobilize peripheral organs - liver, skeletal muscle and brown adipose tissue - to upregulate glucose disposal, and (2), leptin insufficiency in the hypothalamus produced by either leptinopenia or restriction of leptin transport across the blood brain barrier due to hyperleptinemia of obesity and aging, initiate antecedent pathophysiological sequalae of diabetes type 1 and 2. Further, we document here the efficacy of leptin replenishment in vivo, especially by supplying it to the hypothalamus with the aid of gene therapy, in preventing the antecedent pathophysiological sequalae-hyperinsulinemia, insulin resistance and hyperglycemia - in various animal models and clinical paradigms of diabetes type 1 and 2 with or without attendant obesity. Overall, the new insights on the long-lasting antidiabetic potential of two independent hypothalamic relays engendered by central leptin gene therapy and the preclinical safety indicators in rodents warrant further validation in subhuman primates and humans. PMID:19647774

  10. Central leptin gene therapy ameliorates diabetes type 1 and 2 through two independent hypothalamic relays; a benefit beyond weight and appetite regulation.

    PubMed

    Kalra, Satya P

    2009-10-01

    Although its role in energy homeostasis is firmly established, the evidence accumulated over a decade linking the adipocyte leptin-hypothalamus axis in the pathogenesis of diabetes mellitus has received little attention in the contemporary thinking. In this context various lines of evidence are collated here to show that (1) under the direction of leptin two independent relays emanating from the hypothalamus restrain insulin secretion from the pancreas and mobilize peripheral organs--liver, skeletal muscle and brown adipose tissue--to upregulate glucose disposal, and (2), leptin insufficiency in the hypothalamus produced by either leptinopenia or restriction of leptin transport across the blood brain barrier due to hyperleptinemia of obesity and aging, initiate antecedent pathophysiological sequalae of diabetes type 1 and 2. Further, we document here the efficacy of leptin replenishment in vivo, especially by supplying it to the hypothalamus with the aid of gene therapy, in preventing the antecedent pathophysiological sequalae--hyperinsulinemia, insulin resistance and hyperglycemia--in various animal models and clinical paradigms of diabetes type 1 and 2 with or without attendant obesity. Overall, the new insights on the long-lasting antidiabetic potential of two independent hypothalamic relays engendered by central leptin gene therapy and the preclinical safety indicators in rodents warrant further validation in subhuman primates and humans.

  11. Trimethylamine and Trimethylamine N-Oxide, a Flavin-Containing Monooxygenase 3 (FMO3)-Mediated Host-Microbiome Metabolic Axis Implicated in Health and Disease

    PubMed Central

    Fennema, Diede; Phillips, Ian R.

    2016-01-01

    Flavin-containing monooxygenase 3 (FMO3) is known primarily as an enzyme involved in the metabolism of therapeutic drugs. On a daily basis, however, we are exposed to one of the most abundant substrates of the enzyme trimethylamine (TMA), which is released from various dietary components by the action of gut bacteria. FMO3 converts the odorous TMA to nonodorous TMA N-oxide (TMAO), which is excreted in urine. Impaired FMO3 activity gives rise to the inherited disorder primary trimethylaminuria (TMAU). Affected individuals cannot produce TMAO and, consequently, excrete large amounts of TMA. A dysbiosis in gut bacteria can give rise to secondary TMAU. Recently, there has been much interest in FMO3 and its catalytic product, TMAO, because TMAO has been implicated in various conditions affecting health, including cardiovascular disease, reverse cholesterol transport, and glucose and lipid homeostasis. In this review, we consider the dietary components that can give rise to TMA, the gut bacteria involved in the production of TMA from dietary precursors, the metabolic reactions by which bacteria produce and use TMA, and the enzymes that catalyze the reactions. Also included is information on bacteria that produce TMA in the oral cavity and vagina, two key microbiome niches that can influence health. Finally, we discuss the importance of the TMA/TMAO microbiome-host axis in health and disease, considering factors that affect bacterial production and host metabolism of TMA, the involvement of TMAO and FMO3 in disease, and the implications of the host-microbiome axis for management of TMAU. PMID:27190056

  12. Conversion of psychological stress into cellular stress response: roles of the sigma-1 receptor in the process.

    PubMed

    Hayashi, Teruo

    2015-04-01

    Psychiatrists empirically recognize that excessive or chronic psychological stress can result in long-lasting impairments of brain functions that partly involve neuronal cell damage. Recent studies begin to elucidate the molecular pathways activated/inhibited by psychological stress. Activation of the hypothalamic-pituitary-adrenal axis under psychological stress causes inflammatory oxidative stresses in the brain, in part due to elevation of cytokines. Psychological stress or neuropathological conditions (e.g., accumulation of β-amyloids) trigger 'cellular stress responses', which promote upregulation of molecular chaperones to protect macromolecules from degradation. The unfolded protein response, the endoplasmic reticulum (ER)-specific cellular stress response, has been recently implicated in the pathophysiology of neuropsychiatric disorders and the pharmacology of certain clinically used drugs. The sigma-1 receptor is an ER protein whose ligands are shown to exert antidepressant-like and neuroprotective actions. Recent studies found that the sigma-1 receptor is a novel ligand-operated ER chaperone that regulates bioenergetics, free radical generation, oxidative stress, unfolded protein response and cytokine signaling. The sigma-1 receptor also regulates morphogenesis of neuronal cells, such as neurite outgrowth, synaptogenesis, and myelination, which can be perturbed by cellular stress. The sigma-1 receptor may thus contribute to a cellular defense system that protects nervous systems against chronic psychological stress. Findings from sigma receptor research imply that not only cell surface monoamine effectors but also intracellular molecules, especially those at the ER, may provide novel therapeutic targets for future drug developments. © 2014 The Author. Psychiatry and Clinical Neurosciences © 2014 Japanese Society of Psychiatry and Neurology.

  13. Polycystic ovary syndrome in adolescent girls.

    PubMed

    Baldauff, Natalie Hecht; Witchel, Selma Feldman

    2017-02-01

    Polycystic ovary syndrome (PCOS) is a common heterogeneous disorder that appears to have its origins during the peripubertal years. The diagnostic conundrum is that the typical clinical features, irregular menses and acne, occur during normal female puberty. Understanding the physiologic origins and molecular basis of the dysregulated hypothalamic-pituitary-gonadal axis in PCOS is fundamental to interrupting the distinctive vicious cycle of hyperandrogenism and chronic anovulation. Newer ultrasound technology with better spatial resolution has generated controversy regarding the optimal imaging criteria to define polycystic ovary morphology. Using such equipment, the Androgen Excess PCOS Society Task Force Report recommends a threshold of at least 25 follicles per ovary as the definition of polycystic ovary morphology. The implementation and results of genome-wide association studies has opened a new window into the pathogenesis of PCOS. Recent genome-wide association studies have identified several loci near genes involved in gonadotropin secretion, ovarian function, and metabolism. Despite the impediments posed by phenotypic and genetic heterogeneity among women with PCOS, investigation into one locus, the DENND1A gene, is providing insight into the ovarian steroidogenesis. Anti-Mullerian hormone (AMH) has long been recognized to play a major role in the ovarian dysfunction. Recent animal data implicate AMH in the neuroendocrine dysregulation by demonstrating AMH-stimulated increased gonadotropin releasing hormone and luteinizing hormone secretion. PCOS is a common complex multifaceted disorder associated with genetic and environmental influences affecting steroidogenesis, steroid metabolism, neuroendocrine function, insulin sensitivity, pancreatic β cell function, and alternative adaptations to energy excess. Current research into the genetics and pathophysiology is reviewed. The difficulties inherent in diagnosing PCOS in adolescent girls are discussed.

  14. Soluble Receptor for Advanced Glycation End-Products Predicts Impaired Alveolar Fluid Clearance in Acute Respiratory Distress Syndrome.

    PubMed

    Jabaudon, Matthieu; Blondonnet, Raiko; Roszyk, Laurence; Bouvier, Damien; Audard, Jules; Clairefond, Gael; Fournier, Mathilde; Marceau, Geoffroy; Déchelotte, Pierre; Pereira, Bruno; Sapin, Vincent; Constantin, Jean-Michel

    2015-07-15

    Levels of the soluble form of the receptor for advanced glycation end-products (sRAGE) are elevated during acute respiratory distress syndrome (ARDS) and correlate with severity and prognosis. Alveolar fluid clearance (AFC) is necessary for the resolution of lung edema but is impaired in most patients with ARDS. No reliable marker of this process has been investigated to date. To verify whether sRAGE could predict AFC during ARDS. Anesthetized CD-1 mice underwent orotracheal instillation of hydrochloric acid. At specified time points, lung injury was assessed by analysis of blood gases, alveolar permeability, lung histology, AFC, and plasma/bronchoalveolar fluid measurements of proinflammatory cytokines and sRAGE. Plasma sRAGE and AFC rates were also prospectively assessed in 30 patients with ARDS. The rate of AFC was inversely correlated with sRAGE levels in the plasma and the bronchoalveolar fluid of acid-injured mice (Spearman's ρ = -0.73 and -0.69, respectively; P < 10(-3)), and plasma sRAGE correlated with AFC in patients with ARDS (Spearman's ρ = -0.59; P < 10(-3)). Similarly, sRAGE levels were significantly associated with lung injury severity, and decreased over time in mice, whereas AFC was restored and lung injury resolved. Our results indicate that sRAGE levels could be a reliable predictor of impaired AFC during ARDS, and should stimulate further studies on the pathophysiologic implications of RAGE axis in the mechanisms leading to edema resolution. Clinical trial registered with www.clinicaltrials.gov (NCT 00811629).

  15. Abnormal stress responsivity in a rodent developmental disruption model of schizophrenia.

    PubMed

    Zimmerman, Eric C; Bellaire, Mark; Ewing, Samuel G; Grace, Anthony A

    2013-10-01

    Although numerous studies have implicated stress in the pathophysiology of schizophrenia, less is known about how the effects of stress interact with genetic, developmental, and/or environmental determinants to promote disease progression. In particular, it has been proposed that in humans, stress exposure in adolescence could combine with a predisposition towards increased stress sensitivity, leading to prodromal symptoms and eventually psychosis. However, the neurobiological substrates for this interaction are not fully characterized. Previous work in our lab has demonstrated that rats born to dams administered with the DNA-methylating agent methylazoxymethanol acetate (MAM) at gestational day 17 exhibit as adults behavioral and anatomical abnormalities consistent with those observed in patients with schizophrenia. Here, we examined behavioral and neuroendocrine responses to stress in the MAM model of schizophrenia. MAM-treated male rats were exposed to acute and repeated footshock stress at prepubertal, peripubteral, and adult ages. Ultrasonic vocalizations (USVs), freezing, and corticosterone responses were quantified. We found that juvenile MAM-treated rats emitted significantly more calls, spent more time vocalizing, emitted calls at a higher rate, and showed more freezing in response to acute footshock stress when compared with their saline (SAL) treated counterparts, and that this difference is not present in older animals. In addition, adolescent MAM-treated animals displayed a blunted HPA axis corticosterone response to acute footshock that did not adapt after 10 days of stress exposure. These data demonstrate abnormal stress responsivity in the MAM model of schizophrenia and suggest that these animals are more sensitive to the effects of stress in youth.

  16. Gut instincts: microbiota as a key regulator of brain development, ageing and neurodegeneration

    PubMed Central

    Dinan, Timothy G.

    2016-01-01

    Abstract There is a growing realisation that the gut–brain axis and its regulation by the microbiota may play a key role in the biological and physiological basis of neurodevelopmental, age‐related and neurodegenerative disorders. The routes of communication between the microbiota and brain are being unravelled and include the vagus nerve, gut hormone signalling, the immune system, tryptophan metabolism or by way of microbial metabolites such as short chain fatty acids. The importance of early life gut microbiota in shaping future health outcomes is also emerging. Disturbances of this composition by way of antibiotic exposure, lack of breastfeeding, infection, stress and the environmental influences coupled with the influence of host genetics can result in long‐term effects on physiology and behaviour, at least in animal models. It is also worth noting that mode of delivery at birth influences microbiota composition with those born by Caesarean section having a distinctly different microbiota in early life to those born per vaginum. At the other extreme of life, ageing is associated with a narrowing in microbial diversity and healthy ageing correlates with a diverse microbiome. Recently, the gut microbiota has been implicated in a variety of conditions including depression, autism, schizophrenia and Parkinson's disease. There is still considerable debate as to whether or not the gut microbiota changes are core to the pathophysiology of such conditions or are merely epiphenomenal. It is plausible that such neuropsychiatric disorders might be treated in the future by targeting the microbiota either by microbiota transplantation, antibiotics or psychobiotics. PMID:27641441

  17. Relationship Between Adverse Childhood Experiences and Homelessness and the Impact of Axis I and II Disorders

    PubMed Central

    Roos, Leslie E.; Mota, Natalie; Afifi, Tracie O.; Katz, Laurence Y.; Distasio, Jino

    2013-01-01

    Objectives. We investigated the links between homelessness associated with serious mental and physical healthy disparities and adverse childhood experiences (ACEs) in nationally representative data, with Axis I and II disorders as potential mediators. Methods. We examined data from the National Epidemiologic Survey of Alcohol and Related Conditions in 2001–2002 and 2004–2005, and included 34 653 participants representative of the noninstitutionalized US population who were 20 years old or older. We studied the variables related to 4 classes of Axis I disorders, all 10 Axis II personality disorders, a wide range of ACEs, and a lifetime history of homelessness. Results. Analyses revealed high prevalences of each ACE in individuals experiencing lifetime homelessness (17%–60%). A mediation model with Axis I and II disorders determined that childhood adversities were significantly related to homelessness through direct effects (adjusted odd ratios = 2.04, 4.24) and indirect effects, indicating partial mediation. Population attributable fractions were also reported. Conclusions. Although Axis I and II disorders partially mediated the relationship between ACEs and homelessness, a strong direct association remained. This novel finding has implications for interventions and policy. Additional research is needed to understand relevant causal pathways. PMID:24148049

  18. Pathophysiology of Post Amputation Pain

    DTIC Science & Technology

    2013-10-01

    nerve conduction. Pain 1992;48:261-8. 21. Melzack R. Phantom limb pain: Implications for treatment of pathologic pain. Anesthesiology 1971;35:409-16...in the treatment of phantom pain. Acta Orthop Scand 1950;19:391-7. 9 62. Harden RN. Complex Regional Pain Syndrome. In: Fishman SM, Ballantyne...Noradrenaline-evoked pain in neuralgia. Pain 1995;63:11-20. 66. Baron R, Maier C. Reflex sympathetic dystrophy : skin blood flow, sympathetic

  19. Implications of Parkinson's disease pathophysiology for the development of cell replacement strategies and drug discovery in neurodegenerative diseases.

    PubMed

    Pan-Montojo, Francisco; Funk, Richard H W

    2012-11-01

    Parkinson's disease (PD) is a progressive neurodegenerative disorder traditionally characterized by the loss of dopaminergic neurons in the substantia nigra (SN) at the midbrain. The potential use of adult or embryonic stem cells, induced pluriputent stem (iPS) cells and endogenous neurogenesis in cell replacement strategies has lead to numerous studies and clinical trials in this direction. It is now possible to differentiate stem cells into dopaminergic neurons in vitro and clinical trials have shown an improvement in PD-related symptoms after intra-striatal embryonic transplants and acceptable cell survival rates on the mid term. However, clinical improvement is transitory and associated with a strong placebo effect. Interestingly, recent pathological studies in PD patients who received embryonic stem cells show that in PD patients, grafted neurons show PD-related pathology. In this manuscript we review the latest findings regarding PD pathophysiology and give an outlook on the implications of these findings in how cell replacement strategies for PD treatment should be tested. These include changes in the type of animal models used, the preparation/conditioning of the cells before intracerebral injection, specially regarding backbone chronic diseases in iPS cells and determining the optimal proliferation, survival, differentiation and migration capacity of the grafted cells.

  20. Polyunsaturated Fatty Acids and Recurrent Mood Disorders: Phenomenology, Mechanisms, and Clinical Application

    PubMed Central

    Messamore, Erik; Almeida, Daniel M.; Jandacek, Ronald J.; McNamara, Robert K.

    2017-01-01

    A body of evidence has implicated dietary deficiency in omega-3 polyunsaturated fatty acids (n-3 PUFA), including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), in the pathophysiology and etiology of recurrent mood disorders including major depressive disorder (MDD) and bipolar disorder. Cross-national and cross-sectional evidence suggests that greater habitual intake of n-3 PUFA is associated with reduced risk for developing mood symptoms. Meta-analyses provide strong evidence that patients with mood disorders exhibit low blood n-3 PUFA levels which are associated with increased risk for the initial development of mood symptoms in response to inflammation. While the etiology of this n-3 PUFA deficit may be multifactorial, n-3 PUFA supplementation is sufficient to correct this deficit and may also have antidepressant effects. Rodent studies suggest that n-3 PUFA deficiency during perinatal development can recapitulate key neuropathological, neurochemical, and behavioral features associated with mood disorders. Clinical neuroimaging studies suggest that low n-3 PUFA biostatus is associated with abnormalities in cortical structure and function also observed in mood disorders. Collectively, these findings implicate dietary n-3 PUFA insufficiency, particularly during development, in the pathophysiology of mood dysregulation, and support implementation of routine screening for and treatment of n-3 PUFA deficiency in patients with mood disorders. PMID:28069365

  1. Treatment of Diabetic Autonomic Neuropathy in Older Adults with Diabetes Mellitus.

    PubMed

    Scheinberg, Nataliya; Salbu, Rebecca L; Goswami, Gayotri; Cohen, Kenneth

    2016-11-01

    To review the epidemiology, pathophysiology, screening and diagnosis, and optimal treatment of diabetic autonomic neuropathy (DAN) and its implications in older adults. A search of PubMed using the Mesh terms "diabetes," "type 1," "insulin-dependent," "T1DM," and "diabetic autonomic neuropathy" was performed to find relevant primary literature. Additional search terms "epidemiology," "geriatric," and "risk" were employed. All English-language articles from 2005 to 2015 appearing in these searches were reviewed for relevance. Related articles suggested in the PubMed search and clinical guidelines from the American Diabetes Association and the American Association of Clinical Endocrinologists were reviewed. These uncovered further resources for risk stratification, pathophysiology, diagnosis, and treatment of DAN. DAN is highly prevalent in the diabetes population and increases the risk of morbidity and mortality in older adults, yet, often goes undiagnosed and untreated. Treatment of DAN is complex in the older adult because of poor tolerability of many pharmacologic treatment options; therefore, great care must be taken when selecting therapy as to avoid unwanted adverse effects. With increasing life-expectancy of patients with diabetes mellitus, awareness of DAN and its implications to older adults is needed in primary care. Consistent screening and appropriate treatment of DAN in older adults with diabetes mellitus is essential in helping to maintain functional status and avoid adverse events.

  2. Pulmonary Hypertension in Heart Failure Patients: Pathophysiology and Prognostic Implications.

    PubMed

    Guazzi, Marco; Labate, Valentina

    2016-12-01

    Pulmonary hypertension (PH) due to left heart disease (LHD), i.e., group 2 PH, is the most common reason for increased pressures in the pulmonary circuit. Although recent guidelines incorporate congenital heart disease in this classification, left-sided heart diseases of diastolic and systolic origin including valvular etiology are the vast majority. In these patients, an increased left-sided filling pressure triggers a multistage hemodynamic evolution that ends into right ventricular failure through an initial passive increase in pulmonary artery pressure complicated over time by pulmonary vasoconstriction, endothelial dysfunction, and remodeling of the small-resistance pulmonary arteries. Regardless of the underlying left heart pathology, when present, PH-LHD is associated with more severe symptoms, worse exercise tolerance, and outcome, especially when right ventricular dysfunction and failure are part of the picture. Compared with group 1 and other forms of pulmonary arterial hypertension, PH-LHD is more often seen in elderly patients with a higher prevalence of cardiovascular comorbidities and most, if not all, of the features of metabolic syndrome, especially in case of HF preserved ejection fraction. In this review, we provide an update on current knowledge and some potential challenges about the pathophysiology and established prognostic implications of group 2 PH in patients with HF of either preserved or reduced ejection fraction.

  3. The relationship between vitamin D and the renin-angiotensin system in the pathophysiology of hypertension, kidney disease, and diabetes.

    PubMed

    Vaidya, Anand; Williams, Jonathan S

    2012-04-01

    Vitamin D has been implicated in the pathophysiology of extraskeletal conditions such as hypertension, kidney disease, and diabetes via its ability to negatively regulate the renin-angiotensin system (RAS). This article reviews the evidence supporting a link between vitamin D and the RAS in these conditions, with specific emphasis on translational observations and their limitations. A literature review of animal and human studies evaluating the role of vitamin D in hypertension, kidney disease, and diabetes was performed. Excess activity of the RAS has been implicated in the pathogenesis of hypertension, chronic kidney disease, decreased insulin secretion, and insulin resistance. Animal studies provide strong support for 1,25-dihydroxyvitamin D(3)-mediated downregulation of renin expression and RAS activity via its interaction with the vitamin D receptor. Furthermore, the activity of vitamin D metabolites in animals is associated with reductions in blood pressure, proteinuria and renal injury, and with improved β-cell function. Many observational, and a few interventional, studies in humans have supported these findings; however, there is a lack of well-designed prospective human interventional studies to definitively assess clinical outcomes. There is a need for more well-designed prospective interventional studies to validate this hypothesis in human clinical outcomes. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Impaired cognitive control in Parkinson's disease patients with freezing of gait in response to cognitive load.

    PubMed

    Walton, Courtney C; Shine, James M; Mowszowski, Loren; Gilat, Moran; Hall, Julie M; O'Callaghan, Claire; Naismith, Sharon L; Lewis, Simon J G

    2015-05-01

    Freezing of gait is a frequent and disabling symptom experienced by many patients with Parkinson's disease. A number of executive deficits have been shown to be associated with the phenomenon suggesting a common underlying pathophysiology, which as of yet remains unclear. Neuroimaging studies have also implicated the role of the cognitive control network in patients with freezing. To explore this concept, the current study examined error-monitoring as a measure of cognitive control. Thirty-four patients with and 38 without freezing of gait, who were otherwise well matched on disease severity, completed a colour-word interference task that allowed the specific assessment of error monitoring during conflict. Whilst both groups performed colour-naming and word-reading tasks equally well, those patients with freezing showed a pattern between conditions whereby they were better able to monitor performance and self-correct errors in the pure inhibition task but not after a switching rule was introduced. The novel results shown here provide insight into possible pathophysiological mechanisms involved in cognitive load and error monitoring in patients with freezing of gait. These results provide further evidence for the role of functional frontostriatal circuitry impairments in patients with freezing of gait and have implications for future studies and possible therapeutic interventions.

  5. Maternal lipids in pregnancy are associated with increased offspring cortisol reactivity in childhood.

    PubMed

    Mina, Theresia H; Lahti, Marius; Drake, Amanda J; Forbes, Shareen; Denison, Fiona C; Räikkönen, Katri; Norman, Jane E; Reynolds, Rebecca M

    2017-09-01

    Prenatal programming of hypothalamic-pituitary-adrenal (HPA) axis activity has long term implications for offspring health. Biological mechanisms underlying programming of the offspring HPA axis are poorly understood. We hypothesised that altered maternal metabolism including higher maternal obesity, glucose and lipids are novel programming factors for altered offspring HPA axis activity. Salivary cortisol levels were measured in 54 children aged 3-5 years under experimental conditions (before and after a delay of self-gratification test). Associations of child cortisol responses with maternal obesity in early pregnancy and with fasting glucose, triglycerides, HDL and total cholesterol measured in each pregnancy trimester were tested. Higher levels of maternal triglycerides and total cholesterol throughout pregnancy were associated with increased offspring cortisol reactivity. The associations were independent of maternal obesity and other confounders, suggesting that exposure to maternal lipids could be a biological mechanism of in utero programming of the offspring's HPA axis. Copyright © 2017. Published by Elsevier Ltd.

  6. Obesity and psoriasis: inflammatory nature of obesity, relationship between psoriasis and obesity, and therapeutic implications.

    PubMed

    Carrascosa, J M; Rocamora, V; Fernandez-Torres, R M; Jimenez-Puya, R; Moreno, J C; Coll-Puigserver, N; Fonseca, E

    2014-01-01

    Obesity, particularly abdominal obesity, is currently considered a chronic low-grade inflammatory condition that plays an active role in the development of the pathophysiologic phenomena responsible for metabolic syndrome and cardiovascular disease through the secretion of proinflammatory adipokines and cytokines. In recent years clear genetic, pathogenic, and epidemiologic links have been established between psoriasis and obesity, with important implications for health. The relationship between the 2 conditions is probably bidirectional, with obesity predisposing to psoriasis and psoriasis favoring obesity. Obesity also has important implications in the treatment of psoriasis, such as a greater risk of adverse effects with conventional systemic drugs and reduced efficacy and/or increased cost with biologic agents, for which dosage should be adjusted to the patient's weight. Copyright © 2012 Elsevier España, S.L. and AEDV. All rights reserved.

  7. Effects of selective serotonin reuptake inhibitor treatment on plasma oxytocin and cortisol in major depressive disorder.

    PubMed

    Keating, Charlotte; Dawood, Tye; Barton, David A; Lambert, Gavin W; Tilbrook, Alan J

    2013-04-29

    Oxytocin is known for its capacity to facilitate social bonding, reduce anxiety and for its actions on the stress hypothalamopituitary adrenal (HPA) axis. Since oxytocin can physiologically suppress activity of the HPA axis, clinical applications of this neuropeptide have been proposed in conditions where the function of the HPA axis is dysregulated. One such condition is major depressive disorder (MDD). Dysregulation of the HPA system is the most prominent endocrine change seen with MDD, and normalizing the HPA axis is one of the major targets of recent treatments. The potential clinical application of oxytocin in MDD requires improved understanding of its relationship to the symptoms and underlying pathophysiology of MDD. Previous research has investigated potential correlations between oxytocin and symptoms of MDD, including a link between oxytocin and treatment related symptom reduction. The outcomes of studies investigating whether antidepressive treatment (pharmacological and non-pharmacological) influences oxytocin concentrations in MDD, have produced conflicting outcomes. These outcomes suggest the need for an investigation of the influence of a single treatment class on oxytocin concentrations, to determine whether there is a relationship between oxytocin, the HPA axis (e.g., oxytocin and cortisol) and MDD. Our objective was to measure oxytocin and cortisol in patients with MDD before and following treatment with selective serotonin reuptake inhibitors, SSRI. We sampled blood from arterial plasma. Patients with MDD were studied at the same time twice; pre- and post- 12 weeks treatment, in an unblinded sequential design (clinicaltrials.govNCT00168493). Results did not reveal differences in oxytocin or cortisol concentrations before relative to following SSRI treatment, and there were no significant relationships between oxytocin and cortisol, or these two physiological variables and psychological symptom scores, before or after treatment. These outcomes demonstrate that symptoms of MDD were reduced following effective treatment with an SSRI, and further, stress physiology was unlikely to be a key factor in this outcome. Further research is required to discriminate potential differences in underlying stress physiology for individuals with MDD who respond to antidepressant treatment, relative to those who experience treatment resistance.

  8. Prolonged hypothalamic-pituitary-adrenal axis activation after acute coronary syndrome in the GENESIS-PRAXY cohort.

    PubMed

    Tang, Andrew R; Rabi, Doreen M; Lavoie, Kim L; Bacon, Simon L; Pilote, Louise; Kline, Gregory A

    2018-01-01

    Background Glucocorticoid excess has been linked with cardiovascular disease. Little is known about the long-term cortisol response in patients after acute coronary syndrome. Design The objective of this study was to describe the distribution of salivary cortisol in the post-acute phase of acute coronary syndrome and to describe the association of late-night salivary cortisol with cardiovascular risk factors. Methods We used late-night salivary cortisol measurements post-discharge to estimate hypothalamic-pituitary-adrenal axis activity in 309 patients aged 18-55 years enrolled in the GENESIS-PRAXY study from January 2009-April 2013. We evaluated hypothalamic-pituitary-adrenal axis activity and its association with hypertension, dyslipidemia, diabetes, smoking, family history, prior acute coronary syndrome, psychiatric diseases, acute coronary syndrome severity, as well as mortality and rate of rehospitalization at 12 months. Results Persistently elevated late-night salivary cortisol>2.92 nmol/l was seen in 99 (32.0%) patients: within the range of what may be seen in Cushing's disease. Elevated late-night salivary cortisol was associated with previous acute coronary syndrome (13.3% vs 24.2%, p = 0.02), peripheral vascular disease (3.8% vs 13.1%, p = 0.002), and smoking (32.9% vs 46.5% p = 0.02). Elevated late-night salivary cortisol was associated with higher hemoglobin A1c values (5.6 ± 3.0 vs 6.1 ± 2.9, p = 0.008) and lower high density lipoprotein values (0.94 ± 0.53 vs 0.86 ± 0.50, p = 0.01). There were no differences in psychiatric symptom scores, acute coronary syndrome severity or mortality, and rate of rehospitalization at 12 months. Conclusions Many patients post-acute coronary syndrome have prolonged, marked activation of the hypothalamic-pituitary-adrenal axis. Late-night salivary cortisol co-associates with several cardiovascular risk factors. Further studies are needed to confirm the exact role of hypothalamic-pituitary-adrenal axis activity in the pathophysiology of cardiovascular disease.

  9. Coeliac Disease – New Pathophysiological Findings and Their Implications for Therapy

    PubMed Central

    Stein, Jürgen; Schuppan, Detlef

    2014-01-01

    Summary Coeliac disease (CD) is one of the most common diseases worldwide, resulting from a combination of environmental (gluten) and genetic (human leucocyte antigen (HLA) and non-HLA genes) factors. Depending on the geographical location, the prevalence of CD has been estimated to approximate 0.5-1%. The only treatment currently available for CD is a gluten-free diet (GFD) excluding gluten-containing cereals such as wheat, rye, and barley, and other foodstuffs with natural or added gluten. However, adherence rates and patient acceptance are often poor. Moreover, even in fully adherent patients, the diet may fail to induce clinical or histological improvement. Hence, it is unsurprising that studies show CD patients to be highly interested in non-dietary alternatives. The following review focuses on current pathophysiological concepts of CD, spotlighting those pathways which may serve as new possible, non-dietary therapeutic targets in the treatment of CD. PMID:26288589

  10. Postoperative Adhesion Development Following Cesarean and Open Intra-Abdominal Gynecological Operations

    PubMed Central

    Awonuga, Awoniyi O.; Fletcher, Nicole M.; Saed, Ghassan M.; Diamond, Michael P.

    2011-01-01

    In this review, we discuss the pathophysiology of adhesion development, the impact of physiological changes associated with pregnancy on markers of adhesion development, and the clinical implications of adhesion development following cesarean delivery (CD). Although peritoneal adhesions develop after the overwhelming majority of intra-abdominal and pelvic surgery, there is evidence in the literature that suggests that patients having CD may develop adhesions less frequently. However, adhesions continue to be a concern after CD, and are likely significant, albeit on average less than after gynecological operations, but with potential to cause significant delay in the delivery of the baby with serious, lifelong consequences. Appreciation of the pathophysiology of adhesion development described herein should allow a more informed approach to the rapidly evolving field of intra-abdominal adhesions and should serve as a reference for an evidence-based approach to consideration for the prevention and treatment of adhesions. PMID:21775773

  11. Physics and (patho)physiology in confined flows: from colloidal patterns to cytoplasmic rheology and sickle cell anemia

    NASA Astrophysics Data System (ADS)

    Mahadevan, L.

    2015-03-01

    I will discuss a few problems that involve the interaction of fluids and solids in confined spaces. (i) Jamming in pressure-driven suspension flows that show a transition from Stokes flows to Darcy flows as the solids start to lock, as in evaporative patterning in colloids (e.g. coffee stain formation) .(ii) Jamming and clogging of red blood cells, as in sickle-cell pathophysiology, with implications for other diseases that involve jamming. (iii) The mechanical response of crowded networks of filaments bathed in a fluid, as in the cytoskeleton, that can be described by poroelasticity theory. In each case, I will show how simple theories of multiphase flow and deformation can be used to explain a range of experimental observations, while failing to account for others, along with some thoughts on how to improve them.

  12. Diabetes and associated complications in the South Asian population.

    PubMed

    Shah, Arti; Kanaya, Alka M

    2014-05-01

    The rising prevalence of diabetes in South Asians has significant health and economic implications. South Asians are predisposed to the development of diabetes due to biologic causes which are exacerbated by lifestyle and environmental factors. Furthermore, they experience significant morbidity and mortality from complications of diabetes, most notably coronary artery disease, cerebrovascular disease, and chronic kidney disease. Therefore, understanding the pathophysiology and genetics of diabetes risk factors and its associated complications in South Asians is paramount to curbing the diabetes epidemic. With this understanding, the appropriate screening, preventative and therapeutic strategies can be implemented and further developed. In this review, we discuss in detail the biologic and lifestyle factors that predispose South Asians to diabetes and review the epidemiology and pathophysiology of microvascular and macrovascular complications of diabetes in South Asians. We also review the ongoing and completed diabetes prevention and management studies in South Asians.

  13. [Current aspects of the physiopathology of the infectious process. II. Cybernetic elements in the pathogenetic structure of infectious diseases].

    PubMed

    Dragomirescu, M; Buzinschi, S

    1980-01-01

    The authors discuss the applicability of general cybernetic principles (the theory of systems and self-regulated mechanisms based on inversed connections) to the pathophysiologic structure of infections. With reference to concrete examples they outline the following elements: the appartenance of the infectious process to the notion of system (as conceived in the theory of systems), the previsible character of the functional potential of the structured system in the components of infection, and the sequental correspondence between system dynamics and the dynamics of the infectious process. Starting from the mechanism of action of the main microbial toxins, the aptitude of the latter to act upon the functional code of the macroorganism, altering the cellular and supracellular self-regulated biosystems, is demonstrated. Finally, the practical implications of assimilating cybernetic processes in the pathophysiology of infectious diseases are analyzed.

  14. Impaired Functional Connectivity in the Prefrontal Cortex: A Mechanism for Chronic Stress-Induced Neuropsychiatric Disorders

    PubMed Central

    Negrón-Oyarzo, Ignacio; Aboitiz, Francisco; Fuentealba, Pablo

    2016-01-01

    Chronic stress-related psychiatric diseases, such as major depression, posttraumatic stress disorder, and schizophrenia, are characterized by a maladaptive organization of behavioral responses that strongly affect the well-being of patients. Current evidence suggests that a functional impairment of the prefrontal cortex (PFC) is implicated in the pathophysiology of these diseases. Therefore, chronic stress may impair PFC functions required for the adaptive orchestration of behavioral responses. In the present review, we integrate evidence obtained from cognitive neuroscience with neurophysiological research with animal models, to put forward a hypothesis that addresses stress-induced behavioral dysfunctions observed in stress-related neuropsychiatric disorders. We propose that chronic stress impairs mechanisms involved in neuronal functional connectivity in the PFC that are required for the formation of adaptive representations for the execution of adaptive behavioral responses. These considerations could be particularly relevant for understanding the pathophysiology of chronic stress-related neuropsychiatric disorders. PMID:26904302

  15. Exercise Dynamics in Secondary Mitral Regurgitation: Pathophysiology and Therapeutic Implications

    PubMed Central

    Bertrand, Philippe B.; Schwammenthal, Ehud; Levine, Robert A.; Vandervoort, Pieter M.

    2016-01-01

    Secondary mitral valve regurgitation (MR) remains a challenging problem in the diagnostic work-up and treatment of heart failure patients. Although secondary MR is characteristically dynamic in nature and sensitive to changes in ventricular geometry and loading, current therapy is mainly focused on resting conditions. Exercise-induced increase in secondary MR, however, is associated with impaired exercise capacity and increased mortality. In an era where a multitude of percutaneous solutions are emerging for the treatment of HF patients it becomes important to address the dynamic component of secondary MR during exercise as well. A critical reappraisal of the underlying disease mechanisms, and in particular of the dynamic component during exercise is of timely importance. This review summarizes the pathophysiologic mechanisms involved in the dynamic deterioration of secondary MR during exercise, its functional and prognostic impact, and the way current treatment options affect the dynamic lesion and exercise hemodynamics in general. PMID:28093494

  16. Gastrointestinal disorders in joint hypermobility syndrome/Ehlers-Danlos syndrome hypermobility type: A review for the gastroenterologist.

    PubMed

    Beckers, A B; Keszthelyi, D; Fikree, A; Vork, L; Masclee, A; Farmer, A D; Aziz, Q

    2017-08-01

    Joint hypermobility syndrome (JHS)/Ehlers-Danlos syndrome hypermobility type (EDS-HT) is the most common hereditary non-inflammatory disorder of connective tissue, characterized by a wide range of symptoms, mainly joint hyperextensibility and musculoskeletal symptoms. A majority of patients also experiences gastrointestinal (GI) symptoms. Furthermore, JHS/EDS-HT has specifically been shown to be highly prevalent in patients with functional GI disorders, such as functional dyspepsia and irritable bowel syndrome. The aim of this review was to examine the nature of GI symptoms and their underlying pathophysiology in JHS/EDS-HT. In addition, we consider the clinical implications of the diagnosis and treatment of JHS/EDS-HT for practicing clinicians in gastroenterology. Observations summarized in this review may furthermore represent the first step toward the identification of a new pathophysiological basis for a substantial subgroup of patients with functional GI disorders. © 2017 John Wiley & Sons Ltd.

  17. Hypertension and atrial fibrillation: epidemiology, pathophysiology and therapeutic implications.

    PubMed

    Lau, Y-F; Yiu, K-H; Siu, C-W; Tse, H-F

    2012-10-01

    Hypertension is one of the most important risk factors associated with atrial fibrillation (AF) and increased the risk of cardiovascular events in patients with AF. However, the pathophysiological link between hypertension and AF is unclear. Nevertheless, this can be explained by the hemodynamic changes of the left atrium secondary to long standing hypertension, resulting in elevated left atrium pressure and subsequently left atrial enlargement. Moreover, the activation of renin-angiotensin-aldosterone system (RAAS) activation in patients with hypertension induces left atrial fibrosis and conduction block in the left atrium, resulting in the development of AF. Accordingly, recent studies have shown that effective blockage of RAAS by angiotensin converting enzyme inhibitors or angiotensin receptor antagonist may be effective in both primary and secondary prevention of AF in patients with hypertension, although with controversies. In addition, optimal antithrombotic therapy, blood pressure control as well as rate control for AF are key to the management of patients with AF.

  18. Physiological phenotyping of dementias using emotional sounds.

    PubMed

    Fletcher, Phillip D; Nicholas, Jennifer M; Shakespeare, Timothy J; Downey, Laura E; Golden, Hannah L; Agustus, Jennifer L; Clark, Camilla N; Mummery, Catherine J; Schott, Jonathan M; Crutch, Sebastian J; Warren, Jason D

    2015-06-01

    Emotional behavioral disturbances are hallmarks of many dementias but their pathophysiology is poorly understood. Here we addressed this issue using the paradigm of emotionally salient sounds. Pupil responses and affective valence ratings for nonverbal sounds of varying emotional salience were assessed in patients with behavioral variant frontotemporal dementia (bvFTD) (n = 14), semantic dementia (SD) (n = 10), progressive nonfluent aphasia (PNFA) (n = 12), and AD (n = 10) versus healthy age-matched individuals (n = 26). Referenced to healthy individuals, overall autonomic reactivity to sound was normal in Alzheimer's disease (AD) but reduced in other syndromes. Patients with bvFTD, SD, and AD showed altered coupling between pupillary and affective behavioral responses to emotionally salient sounds. Emotional sounds are a useful model system for analyzing how dementias affect the processing of salient environmental signals, with implications for defining pathophysiological mechanisms and novel biomarker development.

  19. Bone Marrow Adipose Tissue and Skeletal Health.

    PubMed

    Muruganandan, Shanmugam; Govindarajan, Rajgopal; Sinal, Christopher J

    2018-05-31

    To summarize and discuss recent progress and novel signaling mechanisms relevant to bone marrow adipocyte formation and its physiological/pathophysiological implications for bone remodeling. Skeletal remodeling is a coordinated process entailing removal of old bone and formation of new bone. Several bone loss disorders such as osteoporosis are commonly associated with increased bone marrow adipose tissue. Experimental and clinical evidence supports that a reduction in osteoblastogenesis from mesenchymal stem cells at the expense of adipogenesis, as well as the deleterious effects of adipocyte-derived signaling, contributes to the etiology of osteoporosis as well as bone loss associated with aging, diabetes mellitus, post-menopause, and chronic drug therapy. However, this view is challenged by findings indicating that, in some contexts, bone marrow adipose tissue may have a beneficial impact on skeletal health. Further research is needed to better define the role of marrow adipocytes in bone physiology/pathophysiology and to determine the therapeutic potential of manipulating mesenchymal stem cell differentiation.

  20. Behavioural prevention of ischemic heart disease.

    PubMed Central

    Hartman, L. M.

    1978-01-01

    Heart disease continues to be a major cause of disablement and death in Canada. Elevated serum cholesterol concentrations, hypertension and cigarette smoking are among the standard risk factors associated with ischemic heart disease. Research attention has also been directed at the role of behavioural factors in the development of atherosclerosis and myocardial infarction. Experimental findings support a conceptual approach to the interplay of psychologic stress, the type A "coronary"-prone behaviour pattern and pathophysiologic mechanisms that have been implicated in the development of coronary artery disease. It is concluded that type A behaviour and stress contribute substantially to the pathogenesis of cardiovascular disease. However, assessment of the manner in which these two variables influence the pathophysiology of ischemic heart disease requires further research, with systematic examination of physiologic and biochemical processes. Potential strategies for modifying type A behaviour are reviewed. However, unequivocal support for the preventive efficacy of behavioural approaches must await future research. PMID:361191

  1. Ocular toxoplasmosis: recent aspects of pathophysiology and clinical implications.

    PubMed

    Pleyer, Uwe; Schlüter, Dirk; Mänz, Martin

    2014-01-01

    Toxoplasma gondii is an extremely successful opportunistic parasite which infects approximately one third of the human population worldwide. The impact of this parasite on human health becomes particularly manifest in congenital damage with infection and subsequent inflammation of neuronal tissues including the retina. Although advances in our understanding could be achieved in ocular toxoplasmosis, large gaps still exist on factors influencing the epidemiology and pathophysiology of this potentially blinding disease. We are only at the beginning of understanding the complex biology of this parasite and its mechanisms of invasion, virulence and interaction with the host's immune response. Since it is a preventable cause of blindness, it is necessary to assess factors that have the potential to control this disease in the future. This mini review will focus on recent advances in postnatal acquired ocular infection and the factors that may influence its prevalence and functional outcome. © 2014 S. Karger AG, Basel.

  2. Activation of the hypothalamic-pituitary-adrenal axis in lithium-induced conditioned taste aversion learning.

    PubMed

    Jahng, Jeong Won; Lee, Jong-Ho

    2015-12-05

    Intraperitoneal injections (ip) of lithium chloride at large doses induce c-Fos expression in the brain regions implicated in conditioned taste aversion (CTA) learning, and also activate the hypothalamic-pituitary-adrenal (HPA) axis and increase the plasma corticosterone levels in rats. A pharmacologic treatment blunting the lithium-induced c-Fos expression in the brain regions, but not the HPA axis activation, induced CTA formation. Synthetic glucocorticoids at conditioning, but not glucocorticoid antagonist, attenuated the lithium-induced CTA acquisition. The CTA acquisition by ip lithium was not affected by adrenalectomy regardless of basal corticosterone supplement, but the extinction was delayed in the absence of basal corticosterone. Glucocorticoids overloading delayed the extinction memory formation of lithium-induced CTA. ip lithium consistently induced the brain c-Fos expression, the HPA activation and CTA formation regardless of the circadian activation of the HPA axis. Intracerebroventricular (icv) injections of lithium at day time also increased the brain c-Fos expression, activated the HPA axis and induced CTA acquisition. However, icv lithium at night, when the HPA axis shows its circadian activation, did not induce CTA acquisition nor activate the HPA axis, although it increased the brain c-Fos expression. These results suggest that the circadian activation of the HPA axis may affect central, but not peripheral, effect of lithium in CTA learning in rats, and the HPA axis activation may be necessary for the central effect of lithium in CTA formation. Also, glucocorticoids may be required for a better extinction; however, increased glucocorticoids hinder both the acquisition and the extinction of lithium-induced CTA. Copyright © 2015. Published by Elsevier B.V.

  3. Cortisol, callous-unemotional traits, and pathways to antisocial behavior.

    PubMed

    Hawes, David J; Brennan, John; Dadds, Mark R

    2009-07-01

    Two decades of research has implicated the hypothalamic-pituitary-adrenal (HPA) axis in the development of antisocial behavior in children. However, findings regarding the association between cortisol and antisocial behavior have been largely inconsistent, and the role of the HPA axis in relation to broader etiological processes remains unclear. We examine evidence that the role of the HPA axis in the development of antisocial behavior may differ across subgroups of children. A meta-analysis has supported the prediction that low levels of cortisol are associated with risk for childhood antisocial behavior, but the relationship is weaker than previously assumed. Recent studies suggest the association between cortisol levels and antisocial behavior may vary depending on type of antisocial behavior, patterns of internalizing comorbidity, and early environmental adversity. The findings are consistent with evidence that two early-onset pathways to antisocial behavior can be distinguished based on the presence or absence of callous-unemotional traits. We speculate that early adversity is important to the development of chronic antisocial behavior in children with low levels of callous-unemotional traits and HPA-axis hyperactivity, but that high levels of callous-unemotional traits and HPA-axis hypoactivity characterize a particularly severe subgroup, for whom antisocial behavior develops somewhat independently of adversity.

  4. Therapeutic efficacy of atypical antipsychotic drugs by targeting multiple stress-related metabolic pathways

    PubMed Central

    Cai, H L; Jiang, P; Tan, Q Y; Dang, R L; Tang, M M; Xue, Y; Deng, Y; Zhang, B K; Fang, P F; Xu, P; Xiang, D X; Li, H D; Yao, J K

    2017-01-01

    Schizophrenia (SZ) is considered to be a multifactorial brain disorder with defects involving many biochemical pathways. Patients with SZ show variable responses to current pharmacological treatments of SZ because of the heterogeneity of this disorder. Stress has a significant role in the pathophysiological pathways and therapeutic responses of SZ. Atypical antipsychotic drugs (AAPDs) can modulate the stress response of the hypothalamic–pituitary–adrenal (HPA) axis and exert therapeutic effects on stress by targeting the prefrontal cortex (PFC) and hippocampus. To evaluate the effects of AAPDs (such as clozapine, risperidone and aripiprazole) on stress, we compared neurochemical profile variations in the PFC and hippocampus between rat models of chronic unpredictable mild stress (CUMS) for HPA axis activation and of long-term dexamethasone exposure (LTDE) for HPA axis inhibition, using an ultraperformance liquid chromatography–mass spectrometry (UPLC–MS/MS)-based metabolomic approach and a multicriteria assessment. We identified a number of stress-induced biomarkers comprising creatine, choline, inosine, hypoxanthine, uric acid, allantoic acid, lysophosphatidylcholines (LysoPCs), phosphatidylethanolamines (PEs), corticosterone and progesterone. Specifically, pathway enrichment and correlation analyses suggested that stress induces oxidative damage by disturbing the creatine–phosphocreatine circuit and purine pathway, leading to excessive membrane breakdown. Moreover, our data suggested that the AAPDs tested partially restore stress-induced deficits by increasing the levels of creatine, progesterone and PEs. Thus, the present findings provide a theoretical basis for the hypothesis that a combined therapy using adenosine triphosphate fuel, antioxidants and omega-3 fatty acids as supplements may have synergistic effects on the therapeutic outcome following AAPD treatment. PMID:28509906

  5. Cushing's syndrome: from physiological principles to diagnosis and clinical care.

    PubMed

    Raff, Hershel; Carroll, Ty

    2015-02-01

    The physiological control of cortisol synthesis in the adrenal cortex involves stimulation of adrenocorticotrophic hormone (ACTH) by hypothalamic corticotrophin-releasing hormone (CRH) and then stimulation of the adrenal by ACTH. The control loop of the hypothalamic-pituitary-adrenal (HPA) axis is closed by negative feedback of cortisol on the hypothalamus and pituitary. Understanding this system is required to master the diagnosis, differential diagnosis and treatment of endogenous hypercortisolism--Cushing's syndrome. Endogenous Cushing's syndrome is caused either by excess ACTH secretion or by autonomous cortisol release from the adrenal cortex. Diagnosis of cortisol excess exploits three physiological principles: failure to achieve the normal nadir in the cortisol diurnal rhythm, loss of sensitivity of ACTH-secreting tumours to cortisol negative feedback, and increased excretion of free cortisol in the urine. Differentiating a pituitary source of excess ACTH (Cushing's disease) from an ectopic source is accomplished by imaging the pituitary and sampling for ACTH in the venous drainage of the pituitary. With surgical removal of ACTH or cortisol-secreting tumours, secondary adrenal insufficiency ensues because of the prior suppression of the HPA axis by glucocorticoid negative feedback. Medical therapy is targeted to the anatomical location of the dysregulated component of the HPA axis. Future research will focus on new diagnostics and treatments of Cushing's syndrome. These are elegant examples of translational research: understanding basic physiology informs the development of new approaches to diagnosis and treatment. Appreciating pathophysiology generates new areas for inquiry of basic physiological and biochemical mechanisms. © 2014 The Authors. The Journal of Physiology © 2014 The Physiological Society.

  6. Genome-wide association studies in cardiac electrophysiology: recent discoveries and implications for clinical practice.

    PubMed

    Milan, David J; Lubitz, Steven A; Kääb, Stefan; Ellinor, Patrick T

    2010-08-01

    Genome-wide association studies have been increasingly used to study the genetics of complex human diseases. Within the field of cardiac electrophysiology, this technique has been applied to conditions such as atrial fibrillation, and several electrocardiographic parameters including the QT interval. While these studies have identified multiple genomic regions associated with each trait, questions remain, including the best way to explore the pathophysiology of each association and the potential for clinical utility. This review will summarize recent genome-wide association study results within cardiac electrophysiology and discuss their broader implications in basic science and clinical medicine. Copyright 2010 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  7. Cognitive behavioral therapy for irritable bowel syndrome: the effects on state and trait anxiety and the autonomic nervous system during induced rectal distensions - An uncontrolled trial.

    PubMed

    Edebol-Carlman, Hanna; Schrooten, Martien; Ljótsson, Brjánn; Boersma, Katja; Linton, Steven; Brummer, Robert Jan

    2018-01-26

    Irritable bowel syndrome (IBS), is a common multifactorial gastrointestinal disorder linked to disturbances in the microbe gut-brain axis. Cognitive behavioral therapy (CBT), in face-to-face format has showed promising results on IBS and its associated psychological symptoms. The present study explored for the first time if CBT for IBS affects the autonomic nervous system (ANS) during experimentally induced visceral pain and cognitive stress, respectively. The levels of state and trait anxiety, current and perceived stress were also evaluated. In this uncontrolled trial, individual CBT was performed in face-to-face format for 12 weeks in 18 subjects with IBS. Heart rate variability and skin conductance were measured during experimentally induced visceral pain and during a cognitive task (Stroop color-word test), before and after intervention. The levels of state and trait anxiety as well as self-rated current and perceived stress were also measured before and after the intervention. CBT did not affect ANS activity during experimentally induced visceral pain and cognitive stress. The sympathetic activity was high, typical for IBS and triggered during both visceral pain and cognitive stress. The levels of state and trait anxiety significantly decreased after the intervention. No significant changes in self-rated current or perceived stress were found. Results suggest that face-to-face CBT for IBS improved anxiety- a key psychological mechanism for the IBS pathophysiology, rather than the autonomic stress response to experimentally induced visceral pain and cognitive stress, respectively. This study indicates that IBS patients present high levels of stress and difficulties coping with anxiety and ANS activity during visceral pain and a cognitive stress test, respectively. These manifestations of IBS are however not targeted by CBT, and do not seem to be central for the study participants IBS symptoms according to the current and our previous study. Face-to-face CBT for IBS, it does not seem to affect modulation of ANS activity in response to induced visceral pain or cognitive stress. Instead, face-to-face CBT decreased levels of state and trait anxiety. Implications for further studies include that anxiety seems to be important in the IBS pathophysiology, and needs further scientific attention. This is in line with the fear-avoidance model which suggests that anxious responses to pain and discomfort drive hypervigilance to, and (behavioral) avoidance of, symptom provoking stimuli and vice versa. Catastrophic cognitions, hypervigilance and avoidant behavioral responses are proposed to produce vicious circles that withhold and exacerbate pain-related symptoms and disability, and lead to lower quality of life. Larger scale studies of potential autonomic changes are needed in order to elucidate which mechanisms elicit its effects in face-to-face CBT for IBS, and provide new avenues in understanding the pathophysiology of IBS.

  8. Impact of gastrointestinal disease states on oral drug absorption - implications for formulation design - a PEARRL review.

    PubMed

    Effinger, Angela; O'Driscoll, Caitriona M; McAllister, Mark; Fotaki, Nikoletta

    2018-05-16

    Drug product performance in patients with gastrointestinal (GI) diseases can be altered compared to healthy subjects due to pathophysiological changes. In this review, relevant differences in patients with inflammatory bowel diseases, coeliac disease, irritable bowel syndrome and short bowel syndrome are discussed and possible in vitro and in silico tools to predict drug product performance in this patient population are assessed. Drug product performance was altered in patients with GI diseases compared to healthy subjects, as assessed in a limited number of studies for some drugs. Underlying causes can be observed pathophysiological alterations such as the differences in GI transit time, the composition of the GI fluids and GI permeability. Additionally, alterations in the abundance of metabolising enzymes and transporter systems were observed. The effect of the GI diseases on each parameter is not always evident as it may depend on the location and the state of the disease. The impact of the pathophysiological change on drug bioavailability depends on the physicochemical characteristics of the drug, the pharmaceutical formulation and drug metabolism. In vitro and in silico methods to predict drug product performance in patients with GI diseases are currently limited but could be a useful tool to improve drug therapy. Development of suitable in vitro dissolution and in silico models for patients with GI diseases can improve their drug therapy. The likeliness of the models to provide accurate predictions depends on the knowledge of pathophysiological alterations, and thus, further assessment of physiological differences is essential. © 2018 Royal Pharmaceutical Society.

  9. Neurophysiological mechanisms and functional impact of mirror movements in children with unilateral spastic cerebral palsy.

    PubMed

    Kuo, Hsing-Ching; Friel, Kathleen M; Gordon, Andrew M

    2018-02-01

    Children with unilateral spastic cerebral palsy (CP) often have mirror movements, i.e. involuntary imitations of unilateral voluntary movements of the contralateral upper extremity. The pathophysiology of mirror movements has been investigated in small and heterogeneous cohorts in the literature. Specific pathophysiology of mirror movements and their impact on upper extremity function require systematic investigation in larger and homogeneous cohorts of children with unilateral spastic CP. Here we review two possible neurophysiological mechanisms underlying mirror movements in children with CP and those with typical development: (1) an ipsilateral corticospinal tract projecting from the contralesional motor cortex (M1) to both upper extremities; (2) insufficient interhemispheric inhibition between the two M1s. We also discuss clinical implications of mirror movements in children with unilateral CP and suggest that a thorough examination of the relationship between the pathophysiology and clinical manifestations of mirror movements is warranted. We suggest two premises: (1) the presence of mirror movements is indicative of an ipsilateral corticospinal tract reorganization; and (2) the corticospinal tract organization may affect patients' responses to certain treatment. If these premises are supported through future research, mirror movements should be clinically evaluated for patient selection to maximize benefits of therapy, hence promoting individualized medicine in this population. Mirror movements may be indicative of the underlying corticospinal tract reorganization in children with unilateral spastic cerebral palsy (CP). Future research will benefit from systematic investigations of the relationship between mirror movements and its pathophysiology. Mirror movements may be a potential biomarker for individualized medicine in children with unilateral spastic CP. © 2017 Mac Keith Press.

  10. Targeting the IL-33/IL-13 Axis for Respiratory Viral Infections.

    PubMed

    Donovan, Chantal; Bourke, Jane E; Vlahos, Ross

    2016-04-01

    Lung diseases, such as asthma and chronic obstructive pulmonary disease (COPD), are highly prevalent worldwide. One of the major factors that limits the efficacy of current medication in these patients are viral infections, leading to exacerbations of symptoms and decreased quality of life. Current pharmacological strategies targeting virus-induced lung disease are problematic due to antiviral resistance and the requirement for strain-specific vaccination. Thus, new therapeutic strategies are urgently required. In this Opinion article, we provide state-of-the-art evidence from humans and preclinical animal models implicating the interleukin (IL)-33/IL-13 axis in virus-induced lung disease. Thus, targeting the IL-33/IL-13 axis may be a feasible way to overcome the limitations of current therapy used to treat virus-induced exacerbations of lung disease. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Addressing the challenges of phenotyping pediatric pulmonary vascular disease

    PubMed Central

    Goss, Kara N.; Everett, Allen D.; Mourani, Peter M.; Baker, Christopher D.; Abman, Steven H.

    2017-01-01

    Pediatric pulmonary vascular disease (PVD) and pulmonary hypertension (PH) represent phenotypically and pathophysiologically diverse disease categories, contributing substantial morbidity and mortality to a complex array of pediatric conditions. Here, we review the multifactorial nature of pediatric PVD, with an emphasis on improved recognition, phenotyping, and endotyping strategies for pediatric PH. Novel tailored approaches to diagnosis and treatment in pediatric PVD, as well as the implications for long-term outcomes, are highlighted. PMID:28680562

  12. An update on Cushing syndrome in pediatrics.

    PubMed

    Stratakis, Constantine A

    2018-04-09

    Cushing syndrome (CS) in childhood results mostly from the exogenous administration of glucocorticoids; endogenous CS is a rare disease. The latter is the main reason pediatric patients with CS escape diagnosis for too long. Other barriers to optimal care of a pediatric patient with CS include improper following of the proper sequence of testing for diagnosing CS, which stems from lack of understanding of pathophysiology of the hypothalamic-pituitary-adrenal axis; lack of access to proper (i.e., experienced, state-of-the-art) surgical treatment; and unavailability of well-tolerated and effective medications to control hypercortisolemia. This report reviews the state-of-the-art in diagnosing CS and provides an update on the most recent discoveries in its genetics and treatment. Copyright © 2018. Published by Elsevier Masson SAS.

  13. The pharmacological treatment and management of obesity.

    PubMed

    Hussain, Syed Sufyan; Bloom, Stephen Robert

    2011-01-01

    Obesity is a pandemic with many complications that increase the societal disease burden and cost of health care, and decrease longevity and quality of life. Currently, 1 in 3 adults in the United States is obese. Physicians must therefore regularly confront obesity and its consequent diseases, and develop strategies for effective treatment and management. This article summarizes current lifestyle modifications, pharmacological treatment, and surgical options for the management of obesity and discusses the benefits, limitations, and risks of each. As insights are gained into the pathophysiology of a gut-brain neurochemical feedback axis governing satiety and feeding behavior, targets for new pharmacotherapies are being developed. In particular, gut hormone analogs are an attractive antiobesity therapy because they appear to lack the adverse effects historically associated with central nervous system-acting agents.

  14. Male hypogonadism: an extended classification based on a developmental, endocrine physiology-based approach.

    PubMed

    Rey, R A; Grinspon, R P; Gottlieb, S; Pasqualini, T; Knoblovits, P; Aszpis, S; Pacenza, N; Stewart Usher, J; Bergadá, I; Campo, S M

    2013-01-01

    Normal testicular physiology results from the integrated function of the tubular and interstitial compartments. Serum markers of interstitial tissue function are testosterone and insulin-like factor 3 (INSL3), whereas tubular function can be assessed by sperm count, morphology and motility, and serum anti-Müllerian hormone (AMH) and inhibin B. The classical definition of male hypogonadism refers to testicular failure associated with androgen deficiency, without considering potential deficiencies in germ and Sertoli cells. Furthermore, the classical definition does not consider the fact that low basal serum testosterone cannot be equated to hypogonadism in childhood, because Leydig cells are normally quiescent. A broader clinical definition of hypogonadism that could be applied to male patients in different periods of life requires a comprehensive consideration of the physiology of the hypothalamic-pituitary-testicular axis and its disturbances along development. Here we propose an extended classification of male hypogonadism based on the pathophysiology of the hypothalamic-pituitary-testicular axis in different periods of life. The clinical and biochemical features of male hypogonadism vary according to the following: (i) the level of the hypothalamic-pituitary-testicular axis primarily affected: central, primary or combined; (ii) the testicular cell population initially impaired: whole testis dysfunction or dissociated testicular dysfunction, and: (iii) the period of life when the gonadal function begins to fail: foetal-onset or postnatal-onset. The evaluation of basal testicular function in infancy and childhood relies mainly on the assessment of Sertoli cell markers (AMH and inhibin B). Hypergonadotropism should not be considered a sine qua non condition for the diagnosis of primary hypogonadism in childhood. Finally, the lack of elevation of gonadotropins in adolescents or adults with primary gonadal failure is indicative of a combined hypogonadism involving the gonads and the hypothalamic-pituitary axis. © 2012 American Society of Andrology and European Academy of Andrology.

  15. A review of the clinical implications of bisphosphonates in dentistry.

    PubMed

    Borromeo, G L; Tsao, C E; Darby, I B; Ebeling, P R

    2011-03-01

    Bisphosphonates are drugs that suppress bone turnover and are commonly prescribed to prevent skeletal related events in malignancy and for benign bone diseases such as osteoporosis. Bisphosphonate associated jaw osteonecrosis (ONJ) is a potentially debilitating, yet poorly understood condition. A literature review was undertaken to review the dental clinical implications of bisphosphonates. The present paper briefly describes the postulated pathophysiology of ONJ and conditions with similar clinical presentations. The implications of bisphosphonates for implantology, periodontology, orthodontics and endodontics are reviewed. Whilst bisphosphonates have potential positive applications in some clinical settings, periodontology particularly, further clinical research is limited by the risk of ONJ. Prevention and management are reviewed, including guidelines for reducing cumulative intravenous bisphosphonate dose, cessation of bisphosphonates prior to invasive dental treatment or after ONJ development, and the use of serum beta-CTX-1 in assessing risk. In the context of substantial uncertainty, the implications of bisphosphonate use in the dental clinical setting are still being determined. © 2010 Australian Dental Association.

  16. Review of the pathophysiological aspects involved in urological disease associated with metabolic syndrome.

    PubMed

    Sáenz Medina, J; Carballido Rodríguez, J

    2016-06-01

    Metabolic syndrome is a constellation of disorders that includes insulin resistance, central obesity, arterial hypertension and hyperlipidaemia. These disorders can have implications for the genitourinary apparatus. To conduct a review on the pathophysiological aspects that explain the relationship between metabolic syndrome and sexual dysfunction, lower urinary tract syndrome, prostate cancer and stone disease. We performed a qualitative, narrative literature review through a literature search on PubMed of articles published between 1997 and 2015, using the terms pathophysiology, metabolic syndrome, endothelial dysfunction, lipotoxicity, mitochondrial dysfunction, kidney stones, hypogonadism, erectile dysfunction, lower urinary tract syndrome and prostate cancer. Metabolic syndrome constitutes an established complex of symptoms, defined as the presence of insulin resistance, central obesity, hypertension and hyperlipidaemia. Endothelial dysfunction secondary to lipotoxicity generates an inflammatory state, which involves renal cell metabolism, vascularisation of the pelvis and androgen production. These facts explain the relationship between metabolic syndrome, nephrolithiasis, lower urinary tract syndrome, hypogonadism and erectile dysfunction in men. Strategies such as proper diet, regular exercise, insulin treatment, testosterone-replacement therapy, therapy with antioxidants and free-radical inhibitors and urological treatments classically used for lower urinary tract syndrome have shown promising results in this syndrome. Copyright © 2015 AEU. Publicado por Elsevier España, S.L.U. All rights reserved.

  17. Sympathetic Nerve Hyperactivity in the Spleen: Causal for Nonpathogenic-Driven Chronic Immune-Mediated Inflammatory Diseases (IMIDs)?

    PubMed

    Bellinger, Denise L; Lorton, Dianne

    2018-04-13

    Immune-Mediated Inflammatory Diseases (IMIDs) is a descriptive term coined for an eclectic group of diseases or conditions that share common inflammatory pathways, and for which there is no definitive etiology. IMIDs affect the elderly most severely, with many older individuals having two or more IMIDs. These diseases include, but are not limited to, type-1 diabetes, obesity, hypertension, chronic pulmonary disease, coronary heart disease, inflammatory bowel disease, and autoimmunity, such as rheumatoid arthritis (RA), Sjőgren's syndrome, systemic lupus erythematosus, psoriasis, psoriatic arthritis, and multiple sclerosis. These diseases are ostensibly unrelated mechanistically, but increase in frequency with age and share chronic systemic inflammation, implicating major roles for the spleen. Chronic systemic and regional inflammation underlies the disease manifestations of IMIDs. Regional inflammation and immune dysfunction promotes targeted end organ tissue damage, whereas systemic inflammation increases morbidity and mortality by affecting multiple organ systems. Chronic inflammation and skewed dysregulated cell-mediated immune responses drive many of these age-related medical disorders. IMIDs are commonly autoimmune-mediated or suspected to be autoimmune diseases. Another shared feature is dysregulation of the autonomic nervous system and hypothalamic pituitary adrenal (HPA) axis. Here, we focus on dysautonomia. In many IMIDs, dysautonomia manifests as an imbalance in activity/reactivity of the sympathetic and parasympathetic divisions of the autonomic nervous system (ANS). These major autonomic pathways are essential for allostasis of the immune system, and regulating inflammatory processes and innate and adaptive immunity. Pathology in ANS is a hallmark and causal feature of all IMIDs. Chronic systemic inflammation comorbid with stress pathway dysregulation implicate neural-immune cross-talk in the etiology and pathophysiology of IMIDs. Using a rodent model of inflammatory arthritis as an IMID model, we report disease-specific maladaptive changes in β₂-adrenergic receptor (AR) signaling from protein kinase A (PKA) to mitogen activated protein kinase (MAPK) pathways in the spleen. Beta₂-AR signal "shutdown" in the spleen and switching from PKA to G-coupled protein receptor kinase (GRK) pathways in lymph node cells drives inflammation and disease advancement. Based on these findings and the existing literature in other IMIDs, we present and discuss relevant literature that support the hypothesis that unresolvable immune stimulation from chronic inflammation leads to a maladaptive disease-inducing and perpetuating sympathetic response in an attempt to maintain allostasis. Since the role of sympathetic dysfunction in IMIDs is best studied in RA and rodent models of RA, this IMID is the primary one used to evaluate data relevant to our hypothesis. Here, we review the relevant literature and discuss sympathetic dysfunction as a significant contributor to the pathophysiology of IMIDs, and then discuss a novel target for treatment. Based on our findings in inflammatory arthritis and our understanding of common inflammatory process that are used by the immune system across all IMIDs, novel strategies to restore SNS homeostasis are expected to provide safe, cost-effective approaches to treat IMIDs, lower comorbidities, and increase longevity.

  18. The association between the hypothalamic pituitary adrenal axis and tryptophan metabolism in persons with recurrent major depressive disorder and healthy controls.

    PubMed

    Sorgdrager, F J H; Doornbos, B; Penninx, B W J H; de Jonge, P; Kema, I P

    2017-11-01

    Persistent changes in serotonergic and hypothalamic pituitary adrenal (HPA) axis functioning are implicated in recurrent types of major depressive disorder (MDD). Systemic tryptophan levels, which influence the rate of serotonin synthesis, are regulated by glucocorticoids produced along the HPA axis. We investigated tryptophan metabolism and its association with HPA axis functioning in single episode MDD, recurrent MDD and non-depressed individuals. We included depressed individuals (n = 1320) and controls (n = 406) from the Netherlands Study of Depression and Anxiety (NESDA). The kynurenine to tryptophan ratio (kyn/trp ratio) was established using serum kynurenine and tryptophan levels. Several HPA axis parameters were calculated using salivary cortisol samples. We adjusted the regression analyses for a wide range of potential confounders and differentiated between single episode MDD, recurrent MDD and control. Tryptophan, kynurenine and the kyn/trp ratio did not differ between controls and depressed individuals. Increased evening cortisol levels were associated with a decreased kyn/trp ratio in the total sample (Crude: β = -.102, p < .001; Adjusted: β = -.083, p < .001). This association was found to be restricted to recurrently depressed individuals (Crude: β = -.196, p < .001; Adjusted: β = -.145, p = .001). Antidepressant treatment did not affect this association. Our results suggest that an imbalance between HPA axis function and tryptophan metabolism could be involved in recurrent depression. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Microbiota-gut-brain axis: Interaction of gut microbes and their metabolites with host epithelial barriers.

    PubMed

    Bhattarai, Y

    2018-06-01

    The gastrointestinal barrier and the blood brain barrier represent an important line of defense to protect the underlying structures against harmful external stimuli. These host barriers are composed of epithelial and endothelial cells interconnected by tight junction proteins along with several other supporting structures. Disruption in host barrier structures has therefore been implicated in various diseases of the gastrointestinal tract and the central nervous system. While there are several factors that influence host barrier, recently there is an increasing appreciation of the role of gut microbiota and their metabolites in regulating barrier integrity. In the current issue of Neurogastroenterology and Motility, Marungruang et al. describe the effect of gastrointestinal barrier maturation on gut microbiota and the blood brain barrier adding to the growing evidence of microbiota-barrier interactions. In this mini-review I will discuss the effect of gut microbiota on host epithelial barriers and its implications for diseases associated with disrupted gut-brain axis. © 2018 John Wiley & Sons Ltd.

  20. Fetal over- and undernutrition differentially program thyroid axis adaptability in adult sheep.

    PubMed

    Johnsen, L; Lyckegaard, N B; Khanal, P; Quistorff, B; Raun, K; Nielsen, M O

    2018-05-01

    We aimed to test, whether fetal under- or overnutrition differentially program the thyroid axis with lasting effects on energy metabolism, and if early-life postnatal overnutrition modulates implications of prenatal programming. Twin-pregnant sheep ( n  = 36) were either adequately (NORM), under- (LOW; 50% of NORM) or overnourished (HIGH; 150% of energy and 110% of protein requirements) in the last-trimester of gestation. From 3 days-of-age to 6 months-of-age, twin lambs received a conventional (CONV) or an obesogenic, high-carbohydrate high-fat (HCHF) diet. Subgroups were slaughtered at 6-months-of-age. Remaining lambs were fed a low-fat diet until 2½ years-of-age (adulthood). Serum hormone levels were determined at 6 months- and 2½ years-of-age. At 2½ years-of-age, feed intake capacity (intake over 4-h following 72-h fasting) was determined, and an intravenous thyroxine tolerance test (iTTT) was performed, including measurements of heart rate, rectal temperature and energy expenditure (EE). In the iTTT, the LOW and nutritionally mismatched NORM:HCHF and HIGH:CONV sheep increased serum T 3 , T 3 :T 4 and T 3 :TSH less than NORM:CONV, whereas TSH was decreased less in HIGH, NORM:HCHF and LOW:HCHF. Early postnatal exposure to the HCHF diet decreased basal adult EE in NORM and HIGH, but not LOW, and increased adult feed intake capacity in NORM and LOW, but not HIGH. Conclusions : The iTTT revealed a differential programming of central and peripheral HPT axis function in response to late fetal malnutrition and an early postnatal obesogenic diet, with long-term implications for adult HPT axis adaptability and associated consequences for adiposity risk. © 2018 The authors.

  1. Fetal over- and undernutrition differentially program thyroid axis adaptability in adult sheep

    PubMed Central

    Johnsen, L; Lyckegaard, N B; Khanal, P; Quistorff, B; Raun, K; Nielsen, M O

    2018-01-01

    Objective We aimed to test, whether fetal under- or overnutrition differentially program the thyroid axis with lasting effects on energy metabolism, and if early-life postnatal overnutrition modulates implications of prenatal programming. Design Twin-pregnant sheep (n = 36) were either adequately (NORM), under- (LOW; 50% of NORM) or overnourished (HIGH; 150% of energy and 110% of protein requirements) in the last-trimester of gestation. From 3 days-of-age to 6 months-of-age, twin lambs received a conventional (CONV) or an obesogenic, high-carbohydrate high-fat (HCHF) diet. Subgroups were slaughtered at 6-months-of-age. Remaining lambs were fed a low-fat diet until 2½ years-of-age (adulthood). Methods Serum hormone levels were determined at 6 months- and 2½ years-of-age. At 2½ years-of-age, feed intake capacity (intake over 4-h following 72-h fasting) was determined, and an intravenous thyroxine tolerance test (iTTT) was performed, including measurements of heart rate, rectal temperature and energy expenditure (EE). Results In the iTTT, the LOW and nutritionally mismatched NORM:HCHF and HIGH:CONV sheep increased serum T3, T3:T4 and T3:TSH less than NORM:CONV, whereas TSH was decreased less in HIGH, NORM:HCHF and LOW:HCHF. Early postnatal exposure to the HCHF diet decreased basal adult EE in NORM and HIGH, but not LOW, and increased adult feed intake capacity in NORM and LOW, but not HIGH. Conclusions: The iTTT revealed a differential programming of central and peripheral HPT axis function in response to late fetal malnutrition and an early postnatal obesogenic diet, with long-term implications for adult HPT axis adaptability and associated consequences for adiposity risk. PMID:29794141

  2. DE NOVO MUTATIONS IN AUTISM IMPLICATE THE SYNAPTIC ELIMINATION NETWORK.

    PubMed

    Ram Venkataraman, Guhan; O'Connell, Chloe; Egawa, Fumiko; Kashef-Haghighi, Dorna; Wall, Dennis P

    2017-01-01

    Autism has been shown to have a major genetic risk component; the architecture of documented autism in families has been over and again shown to be passed down for generations. While inherited risk plays an important role in the autistic nature of children, de novo (germline) mutations have also been implicated in autism risk. Here we find that autism de novo variants verified and published in the literature are Bonferroni-significantly enriched in a gene set implicated in synaptic elimination. Additionally, several of the genes in this synaptic elimination set that were enriched in protein-protein interactions (CACNA1C, SHANK2, SYNGAP1, NLGN3, NRXN1, and PTEN) have been previously confirmed as genes that confer risk for the disorder. The results demonstrate that autism-associated de novos are linked to proper synaptic pruning and density, hinting at the etiology of autism and suggesting pathophysiology for downstream correction and treatment.

  3. Modulation of GH/IGF-1 axis: potential strategies to counteract sarcopenia in older adults.

    PubMed

    Giovannini, Silvia; Marzetti, Emanuele; Borst, Stephen E; Leeuwenburgh, Christiaan

    2008-10-01

    Aging is associated with progressive decline of skeletal muscle mass and function. This condition, termed sarcopenia, is associated with several adverse outcomes, including loss of autonomy and mortality. Due to the high prevalence of sarcopenia, a deeper understanding of its pathophysiology and possible remedies represents a high public health priority. Evidence suggests the existence of a relationship between declining growth hormone (GH) and insulin-like growth factor-1 (IGF-1) levels and age-related changes in body composition and physical function. Therefore, the age-dependent decline of GH and IGF-1 serum levels may promote frailty by contributing to the loss of muscle mass and strength. Preclinical studies showed that infusion of angiotensin II produced a marked reduction in body weight, accompanied by decreased serum and muscle levels of IGF-1. Conversely, overexpression of muscle-specific isoform of IGF-1 mitigates angiotensin II-induced muscle loss. Moreover, IGF-1 serum levels have been shown to increase following angiotensin converting enzyme inhibitors (ACEIs) treatment. Here we will review the most recent evidence regarding age-related changes of the GH/IGF-1 axis and its modulation by several interventions, including ACEIs which might represent a potential novel strategy to delay the onset and impede the progression of sarcopenia.

  4. The microbial-mammalian metabolic axis: a critical symbiotic relationship.

    PubMed

    Chilloux, Julien; Neves, Ana Luisa; Boulangé, Claire L; Dumas, Marc-Emmanuel

    2016-07-01

    The microbial-mammalian symbiosis plays a critical role in metabolic health. Microbial metabolites emerge as key messengers in the complex communication between the gut microbiota and their host. These chemical signals are mainly derived from nutritional precursors, which in turn are also able to modify gut microbiota population. Recent advances in the characterization of the gut microbiome and the mechanisms involved in this symbiosis allow the development of nutritional interventions. This review covers the latest findings on the microbial-mammalian metabolic axis as a critical symbiotic relationship particularly relevant to clinical nutrition. The modulation of host metabolism by metabolites derived from the gut microbiota highlights the importance of gut microbiota in disease prevention and causation. The composition of microbial populations in our gut ecosystem is a critical pathophysiological factor, mainly regulated by diet, but also by the host's characteristics (e.g. genetics, circadian clock, immune system, age). Tailored interventions, including dietary changes, the use of antibiotics, prebiotic and probiotic supplementation and faecal transplantation are promising strategies to manipulate microbial ecology. The microbiome is now considered as an easily reachable target to prevent and treat related diseases. Recent findings in both mechanisms of its interactions with host metabolism and in strategies to modify gut microbiota will allow us to develop more effective treatments especially in metabolic diseases.

  5. Gut Microbiota Dysfunction as Reliable Non-invasive Early Diagnostic Biomarkers in the Pathophysiology of Parkinson’s Disease: A Critical Review

    PubMed Central

    Nair, Arun T; Ramachandran, Vadivelan; Joghee, Nanjan M; Antony, Shanish; Ramalingam, Gopalakrishnan

    2018-01-01

    Recent investigations suggest that gut microbiota affects the brain activity through the microbiota-gut-brain axis under both physiological and pathological disease conditions like Parkinson’s disease. Further dopamine synthesis in the brain is induced by dopamine producing enzymes that are controlled by gut microbiota via the microbiota-gut-brain axis. Also alpha synuclein deposition and the associated neurodegeneration in the enteric nervous system that increase intestinal permeability, oxidative stress, and local inflammation, accounts for constipation in Parkinson’s disease patients. The trigger that causes blood brain barrier leakage, immune cell activation and inflammation, and ultimately neuroinflammation in the central nervous system is believed to be due to the chronic low-grade inflammation in the gut. The non-motor symptoms that appear years before motor symptoms could be reliable early biomarkers, if they could be correlated with the established and reliable neuroimaging techniques or behavioral indices. The future directions should therefore, focus on the exploration of newer investigational techniques to identify these reliable early biomarkers and define the specific gut microbes that contribute to the development of Parkinson’s disease. This ultimately should pave the way to safer and novel therapeutic approaches that avoid the complications of the drugs delivered today to the brain of Parkinson’s disease patients. PMID:29291606

  6. Human Enteroids as a Model of Upper Small Intestinal Ion Transport Physiology and Pathophysiology.

    PubMed

    Foulke-Abel, Jennifer; In, Julie; Yin, Jianyi; Zachos, Nicholas C; Kovbasnjuk, Olga; Estes, Mary K; de Jonge, Hugo; Donowitz, Mark

    2016-03-01

    Human intestinal crypt-derived enteroids are a model of intestinal ion transport that require validation by comparison with cell culture and animal models. We used human small intestinal enteroids to study neutral Na(+) absorption and stimulated fluid and anion secretion under basal and regulated conditions in undifferentiated and differentiated cultures to show their functional relevance to ion transport physiology and pathophysiology. Human intestinal tissue specimens were obtained from an endoscopic biopsy or surgical resections performed at Johns Hopkins Hospital. Crypts were isolated, enteroids were propagated in culture, induced to undergo differentiation, and transduced with lentiviral vectors. Crypt markers, surface cell enzymes, and membrane ion transporters were characterized using quantitative reverse-transcription polymerase chain reaction, immunoblot, or immunofluorescence analyses. We used multiphoton and time-lapse confocal microscopy to monitor intracellular pH and luminal dilatation in enteroids under basal and regulated conditions. Enteroids differentiated upon withdrawal of WNT3A, yielding decreased crypt markers and increased villus-like characteristics. Na(+)/H(+) exchanger 3 activity was similar in undifferentiated and differentiated enteroids, and was affected by known inhibitors, second messengers, and bacterial enterotoxins. Forskolin-induced swelling was completely dependent on cystic fibrosis transmembrane conductance regulator and partially dependent on Na(+)/H(+) exchanger 3 and Na(+)/K(+)/2Cl(-) cotransporter 1 inhibition in undifferentiated and differentiated enteroids. Increases in cyclic adenosine monophosphate with forskolin caused enteroid intracellular acidification in HCO3(-)-free buffer. Cyclic adenosine monophosphate-induced enteroid intracellular pH acidification as part of duodenal HCO3(-) secretion appears to require cystic fibrosis transmembrane conductance regulator and electrogenic Na(+)/HCO3(-) cotransporter 1. Undifferentiated or crypt-like, and differentiated or villus-like, human enteroids represent distinct points along the crypt-villus axis; they can be used to characterize electrolyte transport processes along the vertical axis of the small intestine. The duodenal enteroid model showed that electrogenic Na(+)/HCO3(-) cotransporter 1 might be a target in the intestinal mucosa for treatment of secretory diarrheas. Copyright © 2016 AGA Institute. Published by Elsevier Inc. All rights reserved.

  7. Cushing Disease Presenting as Primary Psychiatric Illness: A Case Report and Literature Review.

    PubMed

    Rasmussen, Sean A; Rosebush, Patricia I; Smyth, Harley S; Mazurek, Michael F

    2015-11-01

    We report the case of a woman with long-standing refractory depression and psychotic features who was eventually diagnosed with Cushing disease. After surgical treatment of a pituitary adenoma, she experienced gradual psychiatric recovery and was eventually able to discontinue all psychotropic medication. We review the psychiatric components of Cushing disease, implications of psychiatric illnesses for the treatment and prognosis of Cushing disease, and potential pathophysiological mechanisms linking glucocorticoid excess to psychiatric illness.

  8. Sleep-Disordered Breathing in Hypertrophic Cardiomyopathy

    PubMed Central

    Somers, Virend K.

    2014-01-01

    Sleep-disordered breathing (SDB) may be a treatable risk factor in patients with hypertrophic cardiomyopathy (HCM), the most common inherited cardiomyopathy. Evidence suggests a high prevalence of SDB in HCM. We summarize the pathophysiology of SDB as it relates to hypertension, coronary artery disease, atrial fibrillation, and sudden cardiac death in patients with HCM. The implications regarding the care of patients with HCM and SDB are discussed as well as the knowledge deficits needing further exploration. PMID:25010966

  9. Distinguished Neuropsychologist Award Lecture 1999. The lesion(s) in traumatic brain injury: implications for clinical neuropsychology.

    PubMed

    Bigler, E D

    2001-02-01

    This paper overviews the current status of neuroimaging in neuropsychological outcome in traumatic brain injury (TBI). The pathophysiology of TBI is reviewed and integrated with expected neuroimaging and neuropsychological findings. The integration of clinical and quantitative magnetic resonance (QMR) imaging is the main topic of review, but these findings are integrated with single photon emission computed tomography (SPECT) and magnetoencephalography (MEG). Various clinical caveats are offered for the clinician.

  10. Polymylagia rheumatica: common disease, elusive diagnosis.

    PubMed

    Mager, Diana R

    2015-03-01

    Polymyalgia rheumatica (PMR) is a common inflammatory rheumatic disease with little known about its etiology or incidence. Frequently found in older adult women, this disease can be debilitating, painful, and dangerous. Diagnosing PMR can be elusive due to lack of specific laboratory tests, and treatment with use of long-term glucocorticoids can be difficult due to side effects. The following article describes the pathophysiology, diagnosis, signs and symptoms, and treatment of PMR, as well as implications for home healthcare.

  11. Rotenone, Paraquat, and Parkinson’s Disease

    PubMed Central

    Tanner, Caroline M.; Kamel, Freya; Ross, G. Webster; Hoppin, Jane A.; Goldman, Samuel M.; Korell, Monica; Marras, Connie; Bhudhikanok, Grace S.; Kasten, Meike; Chade, Anabel R.; Comyns, Kathleen; Richards, Marie Barber; Meng, Cheryl; Priestley, Benjamin; Fernandez, Hubert H.; Cambi, Franca; Umbach, David M.; Blair, Aaron; Sandler, Dale P.; Langston, J. William

    2011-01-01

    Background Mitochondrial dysfunction and oxidative stress are pathophysiologic mechanisms implicated in experimental models and genetic forms of Parkinson’s disease (PD). Certain pesticides may affect these mechanisms, but no pesticide has been definitively associated with PD in humans. Objectives Our goal was to determine whether pesticides that cause mitochondrial dysfunction or oxidative stress are associated with PD or clinical features of parkinsonism in humans. Methods We assessed lifetime use of pesticides selected by mechanism in a case–control study nested in the Agricultural Health Study (AHS). PD was diagnosed by movement disorders specialists. Controls were a stratified random sample of all AHS participants frequency-matched to cases by age, sex, and state at approximately three controls: one case. Results In 110 PD cases and 358 controls, PD was associated with use of a group of pesticides that inhibit mitochondrial complex I [odds ratio (OR) = 1.7; 95% confidence interval (CI), 1.0–2.8] including rotenone (OR = 2.5; 95% CI, 1.3–4.7) and with use of a group of pesticides that cause oxidative stress (OR = 2.0; 95% CI, 1.2–3.6), including paraquat (OR = 2.5; 95% CI, 1.4–4.7). Conclusions PD was positively associated with two groups of pesticides defined by mechanisms implicated experimentally—those that impair mitochondrial function and those that increase oxidative stress—supporting a role for these mechanisms in PD pathophysiology. PMID:21269927

  12. Transcriptomic profile induced in bone marrow mesenchymal stromal cells after interaction with multiple myeloma cells: implications in myeloma progression and myeloma bone disease

    PubMed Central

    Garcia-Gomez, Antonio; Las Rivas, Javier De; Ocio, Enrique M.; Díaz-Rodríguez, Elena; Montero, Juan C.; Martín, Montserrat; Blanco, Juan F.; Sanchez-Guijo, Fermín M.; Pandiella, Atanasio; San Miguel, Jesús F.; Garayoa, Mercedes

    2014-01-01

    Despite evidence about the implication of the bone marrow (BM) stromal microenvironment in multiple myeloma (MM) cell growth and survival, little is known about the effects of myelomatous cells on BM stromal cells. Mesenchymal stromal cells (MSCs) from healthy donors (dMSCs) or myeloma patients (pMSCs) were co-cultured with the myeloma cell line MM.1S, and the transcriptomic profile of MSCs induced by this interaction was analyzed. Deregulated genes after co-culture common to both d/pMSCs revealed functional involvement in tumor microenvironment cross-talk, myeloma growth induction and drug resistance, angiogenesis and signals for osteoclast activation and osteoblast inhibition. Additional genes induced by co-culture were exclusively deregulated in pMSCs and predominantly associated to RNA processing, the ubiquitine-proteasome pathway, cell cycle regulation, cellular stress and non-canonical Wnt signaling. The upregulated expression of five genes after co-culture (CXCL1, CXCL5 and CXCL6 in d/pMSCs, and Neuregulin 3 and Norrie disease protein exclusively in pMSCs) was confirmed, and functional in vitro assays revealed putative roles in MM pathophysiology. The transcriptomic profile of pMSCs co-cultured with myeloma cells may better reflect that of MSCs in the BM of myeloma patients, and provides new molecular insights to the contribution of these cells to MM pathophysiology and to myeloma bone disease. PMID:25268740

  13. Etiopathology of chronic tubular, glomerular and renovascular nephropathies: Clinical implications

    PubMed Central

    2011-01-01

    Chronic kidney disease (CKD) comprises a group of pathologies in which the renal excretory function is chronically compromised. Most, but not all, forms of CKD are progressive and irreversible, pathological syndromes that start silently (i.e. no functional alterations are evident), continue through renal dysfunction and ends up in renal failure. At this point, kidney transplant or dialysis (renal replacement therapy, RRT) becomes necessary to prevent death derived from the inability of the kidneys to cleanse the blood and achieve hydroelectrolytic balance. Worldwide, nearly 1.5 million people need RRT, and the incidence of CKD has increased significantly over the last decades. Diabetes and hypertension are among the leading causes of end stage renal disease, although autoimmunity, renal atherosclerosis, certain infections, drugs and toxins, obstruction of the urinary tract, genetic alterations, and other insults may initiate the disease by damaging the glomerular, tubular, vascular or interstitial compartments of the kidneys. In all cases, CKD eventually compromises all these structures and gives rise to a similar phenotype regardless of etiology. This review describes with an integrative approach the pathophysiological process of tubulointerstitial, glomerular and renovascular diseases, and makes emphasis on the key cellular and molecular events involved. It further analyses the key mechanisms leading to a merging phenotype and pathophysiological scenario as etiologically distinct diseases progress. Finally clinical implications and future experimental and therapeutic perspectives are discussed. PMID:21251296

  14. Psychological Co-morbidity in Functional Gastrointestinal Disorders: Epidemiology, Mechanisms and Management

    PubMed Central

    2012-01-01

    Functional gastrointestinal disorder (FGID) is one of the commonest digestive diseases worldwide and leads to significant morbidity and burden on healthcare resource. The putative bio-psycho-social pathophysiological model for FGID underscores the importance of psychological distress in the pathogenesis of FGID. Concomitant psychological disorders, notably anxiety and depressive disorders, are strongly associated with FGID and these psychological co-morbidities correlate with severity of FGID symptoms. Early life adversity such as sexual and physical abuse is more commonly reported in patients with FGID. There is mounting evidence showing that psychological disorders are commonly associated with abnormal central processing of visceral noxious stimuli. The possible causal link between psychological disorders and FGID involves functional abnormalities in various components of the brain-gut axis, which include hypothalamic-pituitary-adrenal system, sympathetic and parasympathetic nervous system, serotonergic and endocannabinoid systems. Moreover, recent studies have also shown that psychological distress may alter the systemic and gut immunity, which is increasingly recognized as a pathophysiologic feature of FGID. Psychotropic agent, in particular antidepressant, and psychological intervention such as cognitive behavioral therapy and meditation have been reported to be effective for alleviation of gastrointestinal symptoms and quality of life in FGID patients. Further studies are needed to evaluate the impact of early detection and management of co-morbid psychological disorders on the long-term clinical outcome and disease course of FGID. PMID:22323984

  15. Marginal Iodide Deficiency and Thyroid Function: Dose-response analysis for quantitative pharmacokinetic modeling

    EPA Science Inventory

    Severe iodine deficiency is known to cause adverse health outcomes and remains a benchmark for understanding the effects of hypothyroidism. However, the implications of marginal iodine deficiency on function of the thyroid axis remain less well known. The current study examined t...

  16. Implications of microbiota and bile acid in liver injury and regeneration

    PubMed Central

    Liu, Hui-Xin; Keane, Ryan; Sheng, Lili; Wan, Yu-Jui Yvonne

    2015-01-01

    Summary Studies examining the mechanisms by which the liver injures and regenerates usually focus on factors and pathways within the liver, neglecting the signaling derived from the gut-liver axis. The intestinal content is rich in microorganisms as well as metabolites generated from both the host and colonizing bacteria. Via the gut-liver axis, this complex “soup” exerts an immense impact on liver integrity and function. This review article summarizes data published in the past 30 years that have demonstrated the signaling derived from the gut-liver axis in relation to liver injury and regeneration. Despite many correlative findings, the intricate networks of pathways involved along with a scarcity of mechanistic data urgently require nutrigenomic, metabolomics, and microbiota profiling approaches to provide a deep understanding of the interplay between nutrition, bacteria, and host response. Such knowledge would better elucidate the molecular mechanisms that link microbiota alteration to host physiological response and vice-versa. PMID:26256437

  17. Radiotherapy-induced hypopituitarism: a review.

    PubMed

    Sathyapalan, Thozhukat; Dixit, Sanjay

    2012-05-01

    Hypopituitarism is a disorder caused by impaired hormonal secretions from the hypothalamic-pituitary axis. Radiotherapy is the most common cause of iatrogenic hypopituitarism. The hypothalamic-pituitary axis inadvertently gets irradiated in patients receiving prophylactic cranial radiotherapy for leukemia, total body irradiation and radiotherapy for intracranial, base skull, sinonasal and nasopharyngeal tumors. Radiation-induced hypopituitarism (RIH) is insidious, progressive and largely nonreversible. Mostly, RIH involves one hypothalamic-pituitary axis; however, multiple hormonal axes deficiency starts developing at higher doses. Although the clinical effects of the hypopituitarism are more profound in children and young adults, its implications in older adults are being increasingly recognized. The risk continues to persist or increase up to 10 years following radiation exposure. The clinical management of hypopituitarism is challenging both for the patients and healthcare providers. Here we have reviewed the scale of the problem, the risk factors and the management of RIH.

  18. Distribution of Particles in the Z-axis of Tissue Sections: Relevance for Counting Methods.

    PubMed

    von Bartheld, Christopher S

    2012-01-01

    The distribution of particles in the z-axis of thick tissue sections has gained considerable attention, primarily because of implications for the accuracy of modern stereological counting methods. Three major types of artifacts can affect these sections: loss of particles from the surfaces of tissue sections (lost caps), homogeneous collapse in the z-axis, and differential deformation in the z-axis. Initially it was assumed that thick sections were not compromised by differential shrinkage or compression (differential uniform deformation). Studies in the last decade showed that such artifacts are common and that they depend on embedding media and sectioning devices. Paraffin, glycolmethacrylate and vibratome sections are affected by this artifact, but not celloidin sections or cryostat-derived cryosections. Differential distribution of particles in the z-axis is likely due to compression of the surface areas (margins) during sectioning, resulting in differential particle densities in the core and margin of tissue sections. This deformation of tissue sections can be rapidly assessed by measuring the position of particles in the z-axis. The analysis is complicated by potential secondary effects on section surfaces through loss of particles, the so-called "lost caps" phenomenon. Secondary effects necessitate the use of guard spaces, while their use in case of primary effects (compression due to sectioning) would enhance the artifact's impact on bias. Symmetric versus asymmetric patterns of z-axis distortion can give clues to distinguish primary and secondary effects. Studies that use the optical disector need to take these parameters into account to minimize biases.

  19. The Impact of Obsessive Compulsive Personality Disorder on Cognitive Behaviour Therapy for Obsessive Compulsive Disorder.

    PubMed

    Gordon, Olivia M; Salkovskis, Paul M; Bream, Victoria

    2016-07-01

    It is often suggested that, in general, co-morbid personality disorders are likely to interfere with CBT based treatment of Axis I disorders, given that personality disorders are regarded as dispositional and are therefore considered less amenable to change than axis I psychiatric disorders. The present study aimed to investigate the impact of co-occurring obsessive-compulsive disorder (OCD) and obsessive-compulsive personality disorder (OCPD) on cognitive-behavioural treatment for OCD. 92 individuals with a diagnosis of OCD participated in this study. Data were drawn from measures taken at initial assessment and following cognitive-behavioural treatment at a specialist treatment centre for anxiety disorders. At assessment, participants with OCD and OCPD had greater overall OCD symptom severity, as well as doubting, ordering and hoarding symptoms relative to those without OCPD; however, participants with co-morbid OCD and OCPD demonstrated greater treatment gains in terms of OCD severity, checking and ordering than those without OCPD. Individuals with OCD and OCPD had higher levels of checking, ordering and overall OCD severity at initial assessment; however, at post-treatment they had similar scores to those without OCPD. The implications of these findings are discussed in the light of research on axis I and II co-morbidity and the impact of axis II disorders on treatment for axis I disorders.

  20. [Inter-rater reliability and construct validity of the OPD-CA axis structure: first study results regarding the integration of OPD-CA into clinical practice].

    PubMed

    Cropp, Carola; Salzer, Simone; Häusser, Leonard F; Streeck-Fischer, Annette

    2013-01-01

    The axis structure of the Operationalized Psychodynamic Diagnostics in childhood and adolescence (OPD-CA) has proven to be a reliable and valid diagnostic tool under research conditions. However, corresponding data regarding the integration of OPD-CA axis structure into clinical practice is still lacking. Hence, this aspect was examined as part of a randomized controlled clinical trial realized at Asklepios Fachklinikum Tiefenbrunn. Here, the OPD-CA axis structure has been applied to assess the structural level of 42 adolescent patients (15-19 years). In contrast to previous studies, the assessment was not carried out by independent raters using a videotaped OPD-CA interview, but the rating was part of clinical routine procedures. Also under these conditions, inter-rater reliability was high, in particular regarding the four subscales of the OPD-CA axis structure. With respect to construct validity, the results of our study supported a two-factor solution, which is in accordance with the findings of two previous works. One factor corresponded to the dimension "self-regulation" while the other factor included both the dimension "self-perception and object perception" as well as the dimension "communication skills". Implications of the findings for research and practice are discussed.

  1. Function of membranous lysyl-tRNA synthetase and its implication for tumorigenesis.

    PubMed

    Young, Ho Jeon; Lee, Jung Weon; Kim, Sunghoon

    2016-12-01

    Aminoacyl-tRNA synthetases (ARSs) are essential enzymes that conjugate specific amino acids to their cognate tRNAs for protein synthesis. Besides their catalytic activity, recent studies have uncovered many additional functions of these enzymes through their interactions with diverse cellular factors. Among human ARSs, cytosolic lysyl-tRNA synthetase (KRS) is often highly expressed in cancer cells and tissues, and facilitates cancer cell migration and invasion through the interaction with the 67kDa laminin receptor on the plasma membrane. Specific modulation of this interaction by small molecule inhibitors has revealed a new way to control metastasis. Here, we summarize the pro-metastatic functions of KRS and their patho-physiological implications. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Atrial Fibrillation and Gastro-Oesophageal Reflux Disease - Controversies and Challenges.

    PubMed

    Floria, Mariana; Barboi, Oana; Rezus, Ciprian; Ambarus, Valentin; Cijevschi-Prelipcean, Cristina; Balan, Gheorghe; Drug, Vasile Liviu

    2015-01-01

    Atrial fibrillation and gastro-oesophageal reflux are common manifestations in daily practice. The atria and the oesophagus are closely located and have similar nerve innervations. Over the last years, it has been observed that atrial fibrillation development and reflux disease could be related. Atrial fibrillation occurrence could be due to vagal nerve overstimulation. This, in association with vagal nerve-mediated parasympathetic stimulation, has also been observed in patients with gastro-oesophageal reflux. These mechanisms, in addition to inflammation, seem to be implicated in the pathophysiology of both diseases. Despite these associations supported by clinical and experimental studies, this relationship is still considered controversial. This review summarizes critical data regarding the association of gastro-oesophageal reflux and atrial fibrillation as well as their clinical implications.

  3. Insulin-Like Growth Factor-I is a Marker for the Nutritional State

    PubMed Central

    Hawkes, Colin P; Grimberg, Adda

    2017-01-01

    Measurement of the serum concentration of insulin-like growth factor-1 (IGF-I) is generally used as a screening investigation for disorders of the growth hormone (GH)/IGF-I axis in children and adolescents with short stature. IGF-I concentration is sensitive to short-term and chronic alterations in the nutritional state, and the interpretation of IGF-I measurements requires knowledge of the child’s nutritional status. In this review, we summarize the effects of nutrition on the GH/IGF-I axis, and review the clinical implications of these interactions throughout childhood, both in under-nutrition and over-nutrition. PMID:26841638

  4. Targeting Human Central Nervous System Protein Kinases: An Isoform Selective p38αMAPK Inhibitor That Attenuates Disease Progression in Alzheimer’s Disease Mouse Models

    PubMed Central

    2015-01-01

    The first kinase inhibitor drug approval in 2001 initiated a remarkable decade of tyrosine kinase inhibitor drugs for oncology indications, but a void exists for serine/threonine protein kinase inhibitor drugs and central nervous system indications. Stress kinases are of special interest in neurological and neuropsychiatric disorders due to their involvement in synaptic dysfunction and complex disease susceptibility. Clinical and preclinical evidence implicates the stress related kinase p38αMAPK as a potential neurotherapeutic target, but isoform selective p38αMAPK inhibitor candidates are lacking and the mixed kinase inhibitor drugs that are promising in peripheral tissue disease indications have limitations for neurologic indications. Therefore, pursuit of the neurotherapeutic hypothesis requires kinase isoform selective inhibitors with appropriate neuropharmacology features. Synaptic dysfunction disorders offer a potential for enhanced pharmacological efficacy due to stress-induced activation of p38αMAPK in both neurons and glia, the interacting cellular components of the synaptic pathophysiological axis, to be modulated. We report a novel isoform selective p38αMAPK inhibitor, MW01-18-150SRM (=MW150), that is efficacious in suppression of hippocampal-dependent associative and spatial memory deficits in two distinct synaptic dysfunction mouse models. A synthetic scheme for biocompatible product and positive outcomes from pharmacological screens are presented. The high-resolution crystallographic structure of the p38αMAPK/MW150 complex documents active site binding, reveals a potential low energy conformation of the bound inhibitor, and suggests a structural explanation for MW150’s exquisite target selectivity. As far as we are aware, MW150 is without precedent as an isoform selective p38MAPK inhibitor or as a kinase inhibitor capable of modulating in vivo stress related behavior. PMID:25676389

  5. Acute reversible inactivation of the bed nucleus of stria terminalis induces antidepressant-like effect in the rat forced swimming test

    PubMed Central

    2010-01-01

    Background The bed nucleus of stria terminalis (BNST) is a limbic forebrain structure involved in hypothalamo-pituitary-adrenal axis regulation and stress adaptation. Inappropriate adaptation to stress is thought to compromise the organism's coping mechanisms, which have been implicated in the neurobiology of depression. However, the studies aimed at investigating BNST involvement in depression pathophysiology have yielded contradictory results. Therefore, the objective of the present study was to investigate the effects of temporary acute inactivation of synaptic transmission in the BNST by local microinjection of cobalt chloride (CoCl2) in rats subjected to the forced swimming test (FST). Methods Rats implanted with cannulae aimed at the BNST were submitted to 15 min of forced swimming (pretest). Twenty-four hours later immobility time was registered in a new 5 min forced swimming session (test). Independent groups of rats received bilateral microinjections of CoCl2 (1 mM/100 nL) before or immediately after pretest or before the test session. Additional groups received the same treatment and were submitted to the open field test to control for unspecific effects on locomotor behavior. Results CoCl2 injection into the BNST before either the pretest or test sessions reduced immobility in the FST, suggesting an antidepressant-like effect. No significant effect of CoCl2 was observed when it was injected into the BNST immediately after pretest. In addition, no effect of BNST inactivation was observed in the open field test. Conclusion These results suggest that acute reversible inactivation of synaptic transmission in the BNST facilitates adaptation to stress and induces antidepressant-like effects. PMID:20515458

  6. Sex, stress and sleep apnoea: Decreased susceptibility to upper airway muscle dysfunction following intermittent hypoxia in females.

    PubMed

    O'Halloran, Ken D; Lewis, Philip; McDonald, Fiona

    2017-11-01

    Obstructive sleep apnoea syndrome (OSAS) is a devastating respiratory control disorder more common in men than women. The reasons for the sex difference in prevalence are multifactorial, but are partly attributable to protective effects of oestrogen. Indeed, OSAS prevalence increases in post-menopausal women. OSAS is characterized by repeated occlusions of the pharyngeal airway during sleep. Dysfunction of the upper airway muscles controlling airway calibre and collapsibility is implicated in the pathophysiology of OSAS, and sex differences in the neuro-mechanical control of upper airway patency are described. It is widely recognized that chronic intermittent hypoxia (CIH), a cardinal feature of OSAS due to recurrent apnoea, drives many of the morbid consequences characteristic of the disorder. In rodents, exposure to CIH-related redox stress causes upper airway muscle weakness and fatigue, associated with mitochondrial dysfunction. Of interest, in adults, there is female resilience to CIH-induced muscle dysfunction. Conversely, exposure to CIH in early life, results in upper airway muscle weakness equivalent between the two sexes at 3 and 6 weeks of age. Ovariectomy exacerbates the deleterious effects of exposure to CIH in adult female upper airway muscle, an effect partially restored by oestrogen replacement therapy. Intriguingly, female advantage intrinsic to upper airway muscle exists with evidence of substantially greater loss of performance in male muscle during acute exposure to severe hypoxic stress. Sex differences in upper airway muscle physiology may have relevance to human OSAS. The oestrogen-oestrogen receptor α axis represents a potential therapeutic target in OSAS, particularly in post-menopausal women. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. GABA and glutamate levels in occlusal splint-wearing males with possible bruxism.

    PubMed

    Dharmadhikari, Shalmali; Romito, Laura M; Dzemidzic, Mario; Dydak, Ulrike; Xu, Jun; Bodkin, Cynthia L; Manchanda, Shalini; Byrd, Kenneth E

    2015-07-01

    The inhibitory neurotransmitter γ-aminobutyric acid (GABA) plays an important role in the pathophysiology of anxiety behavioural disorders such as panic disorder and post-traumatic stress disorder and is also implicated in the manifestation of tooth-grinding and clenching behaviours generally known as bruxism. In order to test whether the stress-related behaviours of tooth-grinding and clenching share similar underlying mechanisms involving GABA and other metabolites as do anxiety-related behavioural disorders, we performed a Magnetic Resonance Spectroscopy (MRS) study for accurate, in vivo metabolite quantification in anxiety-related brain regions. MRS was performed in the right hippocampus and right thalamus involved in the hypothalamic-pituitary-adrenal axis system, together with a motor planning region (dorsal anterior cingulate cortex/pre-supplementary motor area) and right dorsolateral prefrontal cortex (DLPFC). Eight occlusal splint-wearing men (OCS) with possible tooth-grinding and clenching behaviours and nine male controls (CON) with no such behaviour were studied. Repeated-measures ANOVA showed significant Group×Region interaction for GABA+ (p = 0.001) and glutamate (Glu) (p = 0.031). Between-group post hoc ANOVA showed significantly lower levels of GABA+ (p = 0.003) and higher levels of Glu (p = 0.002) in DLPFC of OCS subjects. These GABA+ and Glu group differences remained significant (GABA+, p = 0.049; Glu, p = 0.039) after the inclusion of anxiety as a covariate. Additionally, GABA and Glu levels in the DLPFC of all subjects were negatively related (Pearson's r = -0.75, p = 0.003). These findings indicate that the oral behaviours of tooth-grinding and clenching, generally known as bruxism, may be associated with disturbances in brain GABAergic and glutamatergic systems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Platelet CLEC-2 protects against lung injury via effects of its ligand podoplanin on inflammatory alveolar macrophages in the mouse

    PubMed Central

    Rayes, Julie; Wichaiyo, Surasak; Haining, Elizabeth J.; Lowe, Kate; Grygielska, Beata; Laloo, Ryan; Flodby, Per; Borok, Zea; Crandall, Edward D.; Thickett, David R.; Watson, Steve P.

    2017-01-01

    There is no therapeutic intervention proven to prevent acute respiratory distress syndrome (ARDS). Novel mechanistic insights into the pathophysiology of ARDS are therefore required. Platelets are implicated in regulating many of the pathogenic processes that occur during ARDS; however, the mechanisms remain elusive. The platelet receptor CLEC-2 has been shown to regulate vascular integrity at sites of acute inflammation. Therefore the purpose of this study was to establish the role of CLEC-2 and its ligand podoplanin in a mouse model of ARDS. Platelet-specific CLEC-2-deficient, as well as alveolar epithelial type I cell (AECI)-specific or hematopoietic-specific podoplanin deficient, mice were established using cre-loxP strategies. Combining these with intratracheal (IT) instillations of lipopolysaccharide (LPS), we demonstrate that arterial oxygen saturation decline in response to IT-LPS in platelet-specific CLEC-2-deficient mice is significantly augmented. An increase in bronchoalveolar lavage (BAL) neutrophils and protein was also observed 48 h post-IT-LPS, with significant increases in pro-inflammatory chemokines detected in BAL of platelet-specific CLEC-2-deficient animals. Deletion of podoplanin from hematopoietic cells but not AECIs also reduces lung function and increases pro-inflammatory chemokine expression following IT-LPS. Furthermore, we demonstrate that following IT-LPS, platelets are present in BAL in aggregates with neutrophils, which allows for CLEC-2 interaction with podoplanin expressed on BAL inflammatory alveolar macrophages. Taken together, these data suggest that the platelet CLEC-2-podoplanin signaling axis regulates the severity of lung inflammation in mice and is a possible novel target for therapeutic intervention in patients at risk of developing ARDS. PMID:28839100

  9. Bile acids-mediated overexpression of MUC4 via FAK-dependent c-Jun activation in pancreatic cancer.

    PubMed

    Joshi, Suhasini; Cruz, Eric; Rachagani, Satyanarayana; Guha, Sushovan; Brand, Randall E; Ponnusamy, Moorthy P; Kumar, Sushil; Batra, Surinder K

    2016-08-01

    The majority of pancreatic cancer (PC) patients are clinically presented with obstructive jaundice with elevated levels of circulatory bilirubin and alkaline phosphatases. In the current study, we examined the implications of bile acids (BA), an important component of bile, on the pathophysiology of PC and investigated their mechanistic association in tumor-promoting functions. Integration of results from PC patient samples and autochthonous mouse models showed an elevated levels of BA (p < 0.05) in serum samples compared to healthy controls. Similarly, an elevated BA levels was observed in pancreatic juice derived from PC patients (p < 0.05) than non-pancreatic non-healthy (NPNH) controls, further establishing the clinical association of BA with the pathogenesis of PC. The tumor-promoting functions of BA were established by observed transcriptional upregulation of oncogenic MUC4 expression. Luciferase reporter assay revealed distal MUC4 promoter as the primary responsive site to BA. In silico analysis recognized two c-Jun binding sites at MUC4 distal promoter, which was biochemically established using ChIP assay. Interestingly, BA treatment led to an increased transcription and activation of c-Jun in a FAK-dependent manner. Additionally, BA receptor, namely FXR, which is also upregulated at transcriptional level in PC patient samples, was demonstrated as an upstream molecule in BA-mediated FAK activation, plausibly by regulating Src activation. Altogether, these results demonstrate that elevated levels of BA increase the tumorigenic potential of PC cells by inducing FXR/FAK/c-Jun axis to upregulate MUC4 expression, which is overexpressed in pancreatic tumors and is known to be associated with progression and metastasis of PC. Published by Elsevier B.V.

  10. Aiming for the Insulin-like Growth Factor-1 system in breast cancer therapeutics.

    PubMed

    Christopoulos, Panagiotis F; Corthay, Alexandre; Koutsilieris, Michael

    2018-02-01

    Despite the major discoveries occurred in oncology the recent years, breast malignancies remain one of the most common causes of cancer-related deaths for women in developed countries. Development of HER2-targeting drugs has been considered a breakthrough in anti-cancer approaches and alluded to the potential of targeting growth factors in breast cancer (BrCa) therapeutics. More than twenty-five years have passed since the Insulin-like Growth Factor-1 (IGF-1) system was initially recognized as a potential target candidate in BrCa therapy. To date, a growing body of studies have implicated the IGF-1 signaling with the BrCa biology. Despite the promising experimental evidence, the impression from clinical trials is rather disappointing. Several reasons may account for this and the last word regarding the efficacy of this system as a target candidate in BrCa therapeutics is probably not written yet. Herein, we provide the theoretical basis, as well as, a comprehensive overview of the current literature, regarding the different strategies targeting the various components of the IGF-1/IGF-1R axis in several pathophysiological aspects of BrCa, including the tumor micro-environment and cancer stemness. In addition, we review the rationale for targeting the IGF-1 system in the different BrCa molecular subtypes and in treatment resistant breast tumors with a focus on both the molecular mechanisms and on the clinical perspectives of such approaches in specific population subgroups. We also discuss the future challenges, as well as, the development of novel molecules and strategies targeting the system and suggest potential improvements in the field. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Translating neurotrophic and cellular plasticity: from pathophysiology to improved therapeutics for bipolar disorder

    PubMed Central

    Soeiro-de-Souza, M. G.; Dias, V. V.; Figueira, M. L.; Forlenza, O. V.; Gattaz, W. F.; Zarate, C. A.; Machado-Vieira, R.

    2014-01-01

    Objective Bipolar disorder (BD) likely involves, at a molecular and cellular level, dysfunctions of critical neurotrophic, cellular plasticity and resilience pathways and neuroprotective processes. Therapeutic properties of mood stabilizers are presumed to result from a restoration of the function of these altered pathways and processes through a wide range of biochemical and molecular effects. We aimed to review the altered pathways and processes implicated in BD, such as neurotrophic factors, mitogen-activated protein kinases, Bcl-2, phosphoinositol signaling, intracellular calcium and glycogen synthase kinase-3. Methods We undertook a literature search of recent relevant journal articles, book chapter and reviews on neurodegeneration and neuroprotection in BD. Search words entered were ‘brain-derived neurotrophic factor,’ ‘Bcl-2,’ ‘mitogen-activated protein kinases,’ ‘neuroprotection,’ ‘calcium,’ ‘bipolar disorder,’ ‘mania,’ and ‘depression.’ Results The most consistent and replicated findings in the pathophysiology of BD may be classified as follows: i) calcium dysregulation, ii) mitochondrial/endoplasmic reticulum dysfunction, iii) glial and neuronal death/atrophy and iv) loss of neurotrophic/plasticity effects in brain areas critically involved in mood regulation. In addition, the evidence supports that treatment with mood stabilizers; in particular, lithium restores these pathophysiological changes. Conclusion Bipolar disorder is associated with impairments in neurotrophic, cellular plasticity and resilience pathways as well as in neuroprotective processes. The evidence supports that treatment with mood stabilizers, in particular lithium, restores these pathophysiological changes. Studies that attempt to prevent (intervene before the onset of the molecular and cellular changes), treat (minimize severity of these deficits over time), and rectify (reverse molecular and cellular deficits) are promising therapeutic strategies for developing improved treatments for bipolar disorder. PMID:22676371

  12. Translating neurotrophic and cellular plasticity: from pathophysiology to improved therapeutics for bipolar disorder.

    PubMed

    Soeiro-de-Souza, M G; Dias, V V; Figueira, M L; Forlenza, O V; Gattaz, W F; Zarate, C A; Machado-Vieira, R

    2012-11-01

    Bipolar disorder (BD) likely involves, at a molecular and cellular level, dysfunctions of critical neurotrophic, cellular plasticity and resilience pathways and neuroprotective processes. Therapeutic properties of mood stabilizers are presumed to result from a restoration of the function of these altered pathways and processes through a wide range of biochemical and molecular effects. We aimed to review the altered pathways and processes implicated in BD, such as neurotrophic factors, mitogen-activated protein kinases, Bcl-2, phosphoinositol signaling, intracellular calcium and glycogen synthase kinase-3. We undertook a literature search of recent relevant journal articles, book chapter and reviews on neurodegeneration and neuroprotection in BD. Search words entered were 'brain-derived neurotrophic factor,''Bcl-2,''mitogen-activated protein kinases,''neuroprotection,''calcium,''bipolar disorder,''mania,' and 'depression.' The most consistent and replicated findings in the pathophysiology of BD may be classified as follows: i) calcium dysregulation, ii) mitochondrial/endoplasmic reticulum dysfunction, iii) glial and neuronal death/atrophy and iv) loss of neurotrophic/plasticity effects in brain areas critically involved in mood regulation. In addition, the evidence supports that treatment with mood stabilizers; in particular, lithium restores these pathophysiological changes. Bipolar disorder is associated with impairments in neurotrophic, cellular plasticity and resilience pathways as well as in neuroprotective processes. The evidence supports that treatment with mood stabilizers, in particular lithium, restores these pathophysiological changes. Studies that attempt to prevent (intervene before the onset of the molecular and cellular changes), treat (minimize severity of these deficits over time), and rectify (reverse molecular and cellular deficits) are promising therapeutic strategies for developing improved treatments for bipolar disorder. © 2012 John Wiley & Sons A/S.

  13. Psychotherapy of Personality Disorders

    PubMed Central

    Gabbard, Glen O.

    2000-01-01

    Although personality disorders are often regarded as “untreatable” by third-party payers, there is actually a growing empirical literature suggesting that Axis II conditions may be eminently treatable by psychotherapy. This literature is critically reviewed, the implications for length of treatment are discussed, and cost-effectiveness issues are examined. PMID:10608903

  14. In vivo deiodinase inhibition by iopanoic acid causes thyroid axis disruption and dysmorphogenesis in model amphibian species Xenopus laevis

    EPA Science Inventory

    Deiodinase (DIO) enzymes activate, deactivate and catabolize thyroid hormones (THs) and play an important role in thyroid-mediated amphibian metamorphosis. DIOs have been implicated as putative targets of xenobiotics leading to thyroid disruption. In an effort to characterize bi...

  15. An FGF3-BMP Signaling Axis Regulates Caudal Neural Tube Closure, Neural Crest Specification and Anterior-Posterior Axis Extension

    PubMed Central

    Anderson, Matthew J.; Schimmang, Thomas; Lewandoski, Mark

    2016-01-01

    During vertebrate axis extension, adjacent tissue layers undergo profound morphological changes: within the neuroepithelium, neural tube closure and neural crest formation are occurring, while within the paraxial mesoderm somites are segmenting from the presomitic mesoderm (PSM). Little is known about the signals between these tissues that regulate their coordinated morphogenesis. Here, we analyze the posterior axis truncation of mouse Fgf3 null homozygotes and demonstrate that the earliest role of PSM-derived FGF3 is to regulate BMP signals in the adjacent neuroepithelium. FGF3 loss causes elevated BMP signals leading to increased neuroepithelium proliferation, delay in neural tube closure and premature neural crest specification. We demonstrate that elevated BMP4 depletes PSM progenitors in vitro, phenocopying the Fgf3 mutant, suggesting that excessive BMP signals cause the Fgf3 axis defect. To test this in vivo we increased BMP signaling in Fgf3 mutants by removing one copy of Noggin, which encodes a BMP antagonist. In such mutants, all parameters of the Fgf3 phenotype were exacerbated: neural tube closure delay, premature neural crest specification, and premature axis termination. Conversely, genetically decreasing BMP signaling in Fgf3 mutants, via loss of BMP receptor activity, alleviates morphological defects. Aberrant apoptosis is observed in the Fgf3 mutant tailbud. However, we demonstrate that cell death does not cause the Fgf3 phenotype: blocking apoptosis via deletion of pro-apoptotic genes surprisingly increases all Fgf3 defects including causing spina bifida. We demonstrate that this counterintuitive consequence of blocking apoptosis is caused by the increased survival of BMP-producing cells in the neuroepithelium. Thus, we show that FGF3 in the caudal vertebrate embryo regulates BMP signaling in the neuroepithelium, which in turn regulates neural tube closure, neural crest specification and axis termination. Uncovering this FGF3-BMP signaling axis is a major advance toward understanding how these tissue layers interact during axis extension with important implications in human disease. PMID:27144312

  16. ACE2 and vasoactive peptides: novel players in cardiovascular/renal remodeling and hypertension.

    PubMed

    Mendoza-Torres, Evelyn; Oyarzún, Alejandra; Mondaca-Ruff, David; Azocar, Andrés; Castro, Pablo F; Jalil, Jorge E; Chiong, Mario; Lavandero, Sergio; Ocaranza, María Paz

    2015-08-01

    The renin-angiotensin system (RAS) is a key component of cardiovascular physiology and homeostasis due to its influence on the regulation of electrolyte balance, blood pressure, vascular tone and cardiovascular remodeling. Deregulation of this system contributes significantly to the pathophysiology of cardiovascular and renal diseases. Numerous studies have generated new perspectives about a noncanonical and protective RAS pathway that counteracts the proliferative and hypertensive effects of the classical angiotensin-converting enzyme (ACE)/angiotensin (Ang) II/angiotensin type 1 receptor (AT1R) axis. The key components of this pathway are ACE2 and its products, Ang-(1-7) and Ang-(1-9). These two vasoactive peptides act through the Mas receptor (MasR) and AT2R, respectively. The ACE2/Ang-(1-7)/MasR and ACE2/Ang-(1-9)/AT2R axes have opposite effects to those of the ACE/Ang II/AT1R axis, such as decreased proliferation and cardiovascular remodeling, increased production of nitric oxide and vasodilation. A novel peptide from the noncanonical pathway, alamandine, was recently identified in rats, mice and humans. This heptapeptide is generated by catalytic action of ACE2 on Ang A or through a decarboxylation reaction on Ang-(1-7). Alamandine produces the same effects as Ang-(1-7), such as vasodilation and prevention of fibrosis, by interacting with Mas-related GPCR, member D (MrgD). In this article, we review the key roles of ACE2 and the vasoactive peptides Ang-(1-7), Ang-(1-9) and alamandine as counter-regulators of the ACE-Ang II axis as well as the biological properties that allow them to regulate blood pressure and cardiovascular and renal remodeling. © The Author(s), 2015.

  17. Multiple forms of hypogonadism of central, peripheral or combined origin in males with Prader-Willi syndrome.

    PubMed

    Radicioni, A F; Di Giorgio, G; Grugni, G; Cuttini, M; Losacco, V; Anzuini, A; Spera, S; Marzano, C; Lenzi, A; Cappa, M; Crinò, A

    2012-01-01

    Hypogonadism in Prader-Willi syndrome (PWS) is generally attributed to hypothalamic dysfunction or to primary gonadal defect, but pathophysiology is still unclear. To investigate the aetiology of hypothalamic-pituitary-gonadal axis dysfunction in PWS males. Clinical examination and blood sampling for luteinizing hormone (LH), follicle-stimulating hormone (FSH), testosterone, inhibin B and sexhormone-binding globulin (SHBG) were performed in 34 PWS patients, age 5·1-42·7 years, and in 125 healthy males of same age range. All participants were divided into two groups : < or ≥13·5 years. Pubertal PWS patients showed an arrest of pubertal development. Patients <13·5 years had normal LH, FSH, testosterone and 7/10 had low inhibin B. Among those ≥13·5 years, 8/24 patients had normal LH and testosterone, high FSH and low inhibin B. 5/24 had low FSH, LH, testosterone and inhibin B; one showed normal LH and FSH despite low testosterone and inhibin B; 4/24 had low testosterone and LH but normal FSH despite low inhibin B; 6/24 showed high FSH, low inhibin B and normal LH despite low testosterone. Compared with controls, patients <13·5 years had lower LH, inhibin B, similar FSH, testosterone, SHBG levels and testicular volume; those ≥13·5 years had smaller testicular volume, near-significantly lower LH, testosterone, SHBG, inhibin B and higher FSH. PWS patients display heterogeneity of hypogonadism: (i) hypogonadotropic hypogonadism of central origin for LH and/or FSH; (ii) early primary testicular dysfunction (Sertoli cells damage); and (iii) a combined hypogonadism (testicular origin for FSH-inhibin B axis and central origin for LH-T axis). © 2011 Blackwell Publishing Ltd.

  18. Increased plasma levels of circulating cell-free mitochondrial DNA in suicide attempters: associations with HPA-axis hyperactivity

    PubMed Central

    Lindqvist, D; Fernström, J; Grudet, C; Ljunggren, L; Träskman-Bendz, L; Ohlsson, L; Westrin, Å

    2016-01-01

    Preclinical data suggest that chronic stress may cause cellular damage and mitochondrial dysfunction, potentially leading to the release of mitochondrial DNA (mtDNA) into the bloodstream. Major depressive disorder has been associated with an increased amount of mtDNA in leukocytes from saliva samples and blood; however, no previous studies have measured plasma levels of free-circulating mtDNA in a clinical psychiatric sample. In this study, free circulating mtDNA was quantified in plasma samples from 37 suicide attempters, who had undergone a dexamethasone suppression test (DST), and 37 healthy controls. We hypothesized that free circulating mtDNA would be elevated in the suicide attempters and would be associated with hypothalamic–pituitary–adrenal (HPA)-axis hyperactivity. Suicide attempters had significantly higher plasma levels of free-circulating mtDNA compared with healthy controls at different time points (pre- and post-DST; all P-values<2.98E−12, Cohen's d ranging from 2.55 to 4.01). Pre-DST plasma levels of mtDNA were positively correlated with post-DST cortisol levels (rho=0.49, P<0.003). Suicide attempters may have elevated plasma levels of free-circulating mtDNA, which are related to impaired HPA-axis negative feedback. This peripheral index is consistent with an increased cellular or mitochondrial damage. The specific cells and tissues contributing to plasma levels of free-circulating mtDNA are not known, as is the specificity of this finding for suicide attempters. Future studies are needed in order to better understand the relevance of increased free-circulating mtDNA in relation to the pathophysiology underlying suicidal behavior and depression. PMID:27922635

  19. Oestrogen: an overlooked mediator in the neuropsychopharmacology of treatment response?

    PubMed

    Keating, Charlotte; Tilbrook, Alan; Kulkarni, Jayashri

    2011-05-01

    Major depression (MD) and anorexia nervosa (AN) often present comorbidly and both share some affective symptoms, despite obvious phenotypic differences. In the illness phase, pathophysiological evidence indicates similar abnormalities in both clinical groups including dysfunction in the serotonin (5-HT) system (of which some abnormalities persist following recovery) and between 60% and 80% of patients in both groups present with significant hyperactivity of the hypothalamo-pituitary-adrenal (HPA) axis. First-line approach to treatment for MD involves modulation of the 5-HT system using selective serotonin reuptake inhibitors (SSRIs). For AN, treatment with SSRIs has been shown to be considerably less effective compared to MD. Both illnesses show marked dysregulation in the HPA axis. A consequence of SSRI treatment is a reduction and/or normalization of indices of the HPA axis [i.e. cortisol, adrenocorticotropic hormone (ACTH)], which is consistent with recovery levels in both clinical groups. Oestrogen (in high doses) has been shown to exert antidepressant effects and positively impact on MD symptoms as a treatment in its own right, or in combination with antidepressants, in women of menopausal age. It is proposed that a combination of SSRIs and oestrogen therapy may facilitate physiological normalization in MD in women of non-menopausal age and in AN. Preliminary evidence suggests oestrogen treatment alone is of some benefit to patients and it is proposed that a combination of SSRI and oestrogen will precipitate and potentially accelerate symptomatic remission. Should this approach be successful, it offers the capacity for improvement over traditional antidepressant use in women diagnosed with MD and a novel strategy for the treatment of AN, a serious clinical illness associated with the highest mortality of any psychiatric condition.

  20. Gut microbiota and liver diseases

    PubMed Central

    Minemura, Masami; Shimizu, Yukihiro

    2015-01-01

    Several studies revealed that gut microbiota are associated with various human diseases, e.g., metabolic diseases, allergies, gastroenterological diseases, and liver diseases. The liver can be greatly affected by changes in gut microbiota due to the entry of gut bacteria or their metabolites into the liver through the portal vein, and the liver-gut axis is important to understand the pathophysiology of several liver diseases, especially non-alcoholic fatty liver disease and hepatic encephalopathy. Moreover, gut microbiota play a significant role in the development of alcoholic liver disease and hepatocarcinogenesis. Based on these previous findings, trials using probiotics have been performed for the prevention or treatment of liver diseases. In this review, we summarize the current understanding of the changes in gut microbiota associated with various liver diseases, and we describe the therapeutic trials of probiotics for those diseases. PMID:25684933

  1. [Role of stress in depression insomnia and sleep characteristics of commonly used animal stress models].

    PubMed

    Li, Yi-Ying; Hu, Zhen-Zhen; Huang, Zhi-Li; Yang, Su-Rong

    2012-01-01

    Depression and insomnia are intimately related. Depressed patients usually manifest sleep discontinuity and early awakening, reduced or no slow wave sleep (SWS) and shortened latency of rapid eye movement (REM) sleep. These sleep abnormalities are very similar to those caused by over activated hypothalamic-pituitary-adrenal (HPA) axis with stress. Therefore, the animal models developed by post-traumatic stress disorder or chronic unpredictable mild stress could be used to evaluate drugs which have effects of both anti-depression and improvement of sleep quality, and to provide a more reliable platform for further studis on the mechanisms of depression and accompanied insomnia. This review mainly focuses on the typical features of sleep disturbance of depression, possible pathophysiological mechanisms, establishment of animal stress models and analysis of their abnormal sleep characteristics.

  2. Maternal immune activation dysregulation of the fetal brain transcriptome and relevance to the pathophysiology of autism spectrum disorder.

    PubMed

    Lombardo, M V; Moon, H M; Su, J; Palmer, T D; Courchesne, E; Pramparo, T

    2018-04-01

    Maternal immune activation (MIA) via infection during pregnancy is known to increase risk for autism spectrum disorder (ASD). However, it is unclear how MIA disrupts fetal brain gene expression in ways that may explain this increased risk. Here we examine how MIA dysregulates rat fetal brain gene expression (at a time point analogous to the end of the first trimester of human gestation) in ways relevant to ASD-associated pathophysiology. MIA downregulates expression of ASD-associated genes, with the largest enrichments in genes known to harbor rare highly penetrant mutations. MIA also downregulates expression of many genes also known to be persistently downregulated in the ASD cortex later in life and which are canonically known for roles in affecting prenatally late developmental processes at the synapse. Transcriptional and translational programs that are downstream targets of highly ASD-penetrant FMR1 and CHD8 genes are also heavily affected by MIA. MIA strongly upregulates expression of a large number of genes involved in translation initiation, cell cycle, DNA damage and proteolysis processes that affect multiple key neural developmental functions. Upregulation of translation initiation is common to and preserved in gene network structure with the ASD cortical transcriptome throughout life and has downstream impact on cell cycle processes. The cap-dependent translation initiation gene, EIF4E, is one of the most MIA-dysregulated of all ASD-associated genes and targeted network analyses demonstrate prominent MIA-induced transcriptional dysregulation of mTOR and EIF4E-dependent signaling. This dysregulation of translation initiation via alteration of the Tsc2-mTor-Eif4e axis was further validated across MIA rodent models. MIA may confer increased risk for ASD by dysregulating key aspects of fetal brain gene expression that are highly relevant to pathophysiology affecting ASD.

  3. Ventromedial prefrontal cortex modulates fatigue after penetrating traumatic brain injury

    PubMed Central

    Pardini, Matteo; Krueger, Frank; Raymont, Vanessa; Grafman, Jordan

    2010-01-01

    Background: Fatigue is a common and disabling symptom in neurologic disorders including traumatic penetrating brain injury (PBI). Despite fatigue's prevalence and impact on quality of life, its pathophysiology is not understood. Studies on effort perception in healthy subjects, animal behavioral paradigms, and recent evidence in different clinical populations suggest that ventromedial prefrontal cortex could play a significant role in fatigue pathophysiology in neurologic conditions. Methods: We enrolled 97 PBI patients and 37 control subjects drawn from the Vietnam Head Injury Study registry. Fatigue was assessed with a self-report questionnaire and a clinician-rated instrument; lesion location and volume were evaluated on CT scans. PBI patients were divided in 3 groups according to lesion location: a nonfrontal lesion group, a ventromedial prefrontal cortex lesion (vmPFC) group, and a dorso/lateral prefrontal cortex (d/lPFC) group. Fatigue scores were compared among the 3 PBI groups and the healthy controls. Results: Individuals with vmPFC lesions were significantly more fatigued than individuals with d/lPFC lesions, individuals with nonfrontal lesions, and healthy controls, while these 3 latter groups were equally fatigued. VmPFC volume was correlated with fatigue scores, showing that the larger the lesion volume, the higher the fatigue scores. Conclusions: We demonstrated that ventromedial prefrontal cortex lesion (vmPFC) plays a critical role in penetrating brain injury–related fatigue, providing a rationale to link fatigue to different vmPFC functions such as effort and reward perception. The identification of the anatomic and cognitive basis of fatigue can contribute to developing pathophysiology-based treatments for this disabling symptom. GLOSSARY AAL = Automated Anatomic Labeling; ANOVA = analysis of variance; BDI = Beck Depression Inventory; d/lPFC = dorso/lateral prefrontal cortex; DSM-IV = Diagnostic and Statistical Manual of Mental Disorders, 4th edition; NBRS = Neurobehavioral Rating Scale; NF = nonfrontal lesion; PBI = penetrating brain injury; ROI = region of interest; SCID-I = Structured Clinical Interview for DSM-IV, Axis I; VHIS = Vietnam Head Injury Study; vmPFC = ventromedial prefrontal cortex lesion. PMID:20194914

  4. [Trigeminal autonomic cephalgias: diagnostic and therapeutic implications].

    PubMed

    Rosenberg-Nordmann, Mirjam; Tölle, Thomas R; Sprenger, Till

    2007-09-06

    Trigeminal autonomic cephalgias (TACs) are primary headache syndromes characterized by severe short-lasting headaches accompanied by ipsilateral facial autonomic symptoms. The group includes cluster headache (CH), paroxysmal hemicrania (PH), and short-lasting neuralgiform headache with conjunctival injection and tearing (SUNCT). By far, Cluster headache is the most frequent of these syndromes. Similar hypothalamic and trigeminovascular mechanisms have been discussed as pathophysiologic mechanisms for all TACs. The therapeutic strategies, however, differ considerably. Although unusual, structural lesions in TACs have been described, affecting the therapeutic management.

  5. Role of Altered mGluR Activity in Cognitive Impairments in TSC: Implications for a Novel Method of Treatment

    DTIC Science & Technology

    2012-04-01

    defining factor. The most common clinical features are mental retardation, epilepsy, autism , anxiety and mood disorders. Fragile X syndrome (FXS...another form of inherited mental retardation and autism , shares many of the same molecular and clinical features as TSC. Much of the pathophysiology in FXS...modulation of mGluR activity with PAMs may serve as a therapeutic intervention for the treatment of TSC. 15. SUBJECT TERMS autism , Tuberous Sclerosis

  6. Recent advances in targeting the ionotropic glutamate receptors in treating schizophrenia

    PubMed Central

    McCullumsmith, Robert E.; Hammond, John; Funk, Adam; Meador-Woodruff, James H.

    2013-01-01

    The treatment of schizophrenia has been focused on modulation of dopamine receptors for over 50 years. Recent developments have implicated other neurotransmitter systems in the pathophysiology of this illness. The discovery and characterization of glutamate receptors and their roles in the brain has lead to novel approaches for the treatment of schizophrenia. In this article, we review drugs that modulate ionotropic gluamate receptors and discuss their efficacy for the treatment of this often debilitating severe mental illness. PMID:22283761

  7. Studying Protein Synthesis-Dependent Synaptic Changes in Tuberous Sclerosis

    DTIC Science & Technology

    2013-04-01

    proteins have been implicated in autism . For example, both Shank 2 and 3 are mutated in families with autism (3, 4). Shank 3 is also associated with...obsessive-compulsive disorder as well as stereotypy in autism . Shank3 deleted mice also show poor social interaction. Furthermore, two patients with a...pathophysiology of autism where it is elevated in CSF (Veenstra-VanderWeele and Blakely). (3) 5-HT2CR has a PDZ-binding domain and has been shown to interact with

  8. The Predator becomes the Prey: Regulating the Ubiquitin System by Ubiquitylation and Degradation

    PubMed Central

    Weissman, Allan M.; Shabek, Nitzan; Ciechanover, Aaron

    2012-01-01

    Ubiquitylation (also known as ubiquitination) regulates essentially all intracellular processes in eukaryotes through highly specific, and often tightly spatially and temporally regulated, modification of numerous cellular proteins. Although most often associated with proteasomal degradation, ubiquitylation frequently serves non-proteolytic functions. In light of its central roles in cellular regulation, it has not been surprising to find that many of the components of the ubiquitin system itself are regulated by ubiquitylation. This observation has broad implications for pathophysiology. PMID:21860393

  9. Respiratory physiology and pathological anxiety.

    PubMed

    Gorman, J M; Uy, J

    1987-11-01

    There has been comparatively little attention paid to the respiratory derangements in anxiety disorders. Some authorities contend, however, that indices of respiratory function may be the best objective marker of anxiety state. Furthermore, an understanding of the ventilatory status of patients with anxiety disorder has shed light on the basic pathophysiology of abnormal anxiety. For example, it is now clear that patients with a wide variety of anxiety disorders hyperventilate both chronically and acutely. Therefore, we present an explanation of the physiological changes produced by hyperventilation. In order to further study ventilatory physiology in patients with anxiety disorder, our group and others have used the carbon dioxide challenge test. The data from these experiments suggest that patients with panic disorder are hypersensitive to carbon dioxide and that carbon dioxide inhalation induces panic attacks in susceptible patients. Hyperventilation appears to be a secondary, but pathophysiologically important, event in the generation of acute panic. The implications of work in respiratory physiology for clinical management of patients with anxiety disorder are discussed.

  10. Mechanism and Implications of the Tricuspid Regurgitation: From the Pathophysiology to the Current and Future Therapeutic Options.

    PubMed

    Mangieri, Antonio; Montalto, Claudio; Pagnesi, Matteo; Jabbour, Richard J; Rodés-Cabau, Josep; Moat, Neil; Colombo, Antonio; Latib, Azeem

    2017-07-01

    The tricuspid valve was virtually ignored for a long time in the past. However, significant tricuspid regurgitation (TR) often accompanies left-side heart valve pathology and does not always reverse with its correction. If left untreated, TR can progress and result in progressive right ventricular failure. Current guideline recommendations still hold minor differences. Nevertheless, there is a consensus to operate on patients with severe TR undergoing left-sided valve surgery (class I) or those with mild to moderate TR with a dilated annulus (≥40 or ≥21 mm 2 , Class IIa). However, in case of the primary TR, surgical options is limited by a relatively high risk of mortality and morbidity. For these patients, new percutaneous approaches are becoming available but no long-term data are still available. In this review, we provide a comprehensive overview of the epidemiological and pathophysiological aspects of TR, and the current and future directions of therapy. © 2017 American Heart Association, Inc.

  11. Reduced α-MSH Underlies Hypothalamic ER-Stress-Induced Hepatic Gluconeogenesis.

    PubMed

    Schneeberger, Marc; Gómez-Valadés, Alicia G; Altirriba, Jordi; Sebastián, David; Ramírez, Sara; Garcia, Ainhoa; Esteban, Yaiza; Drougard, Anne; Ferrés-Coy, Albert; Bortolozzi, Analía; Garcia-Roves, Pablo M; Jones, John G; Manadas, Bruno; Zorzano, Antonio; Gomis, Ramon; Claret, Marc

    2015-07-21

    Alterations in ER homeostasis have been implicated in the pathophysiology of obesity and type-2 diabetes (T2D). Acute ER stress induction in the hypothalamus produces glucose metabolism perturbations. However, the neurobiological basis linking hypothalamic ER stress with abnormal glucose metabolism remains unknown. Here, we report that genetic and induced models of hypothalamic ER stress are associated with alterations in systemic glucose homeostasis due to increased gluconeogenesis (GNG) independent of body weight changes. Defective alpha melanocyte-stimulating hormone (α-MSH) production underlies this metabolic phenotype, as pharmacological strategies aimed at rescuing hypothalamic α-MSH content reversed this phenotype at metabolic and molecular level. Collectively, our results posit defective α-MSH processing as a fundamental mediator of enhanced GNG in the context of hypothalamic ER stress and establish α-MSH deficiency in proopiomelanocortin (POMC) neurons as a potential contributor to the pathophysiology of T2D. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Scientific Statement on the Diagnostic Criteria, Epidemiology, Pathophysiology, and Molecular Genetics of Polycystic Ovary Syndrome

    PubMed Central

    Dumesic, Daniel A.; Oberfield, Sharon E.; Stener-Victorin, Elisabet; Marshall, John C.; Laven, Joop S.

    2015-01-01

    Polycystic ovary syndrome (PCOS) is a heterogeneous and complex disorder that has both adverse reproductive and metabolic implications for affected women. However, there is generally poor understanding of its etiology. Varying expert-based diagnostic criteria utilize some combination of oligo-ovulation, hyperandrogenism, and the presence of polycystic ovaries. Criteria that require hyperandrogenism tend to identify a more severe reproductive and metabolic phenotype. The phenotype can vary by race and ethnicity, is difficult to define in the perimenarchal and perimenopausal period, and is exacerbated by obesity. The pathophysiology involves abnormal gonadotropin secretion from a reduced hypothalamic feedback response to circulating sex steroids, altered ovarian morphology and functional changes, and disordered insulin action in a variety of target tissues. PCOS clusters in families and both female and male relatives can show stigmata of the syndrome, including metabolic abnormalities. Genome-wide association studies have identified a number of candidate regions, although their role in contributing to PCOS is still largely unknown. PMID:26426951

  13. Evidence That High Catecholamine Levels Produced by Pheochromocytoma May be Responsible for Tako-Tsubo Cardiomyopathy.

    PubMed

    Sharkey, Scott W; McAllister, Nancy; Dassenko, David; Lin, David; Han, Kelly; Maron, Barry J

    2015-06-01

    Tako-tsubo cardiomyopathy (TC) is a novel form of acute heart failure, characterized by regional left ventricular dysfunction without coronary artery obstruction, and usually triggered by a stressful event. Excessive circulating catecholamines have been implicated in the pathophysiology of this condition. This report documents the unusual occurrence of acute TC events in 2 male subjects of disparate ages, 16 and 66 years, for whom subsequent investigation in both led to the unexpected discovery of catecholamine-producing pheochromocytoma. Marked elevation of plasma catecholamines (epinephrine, norepinephrine, and dopamine) was present in both subjects and were remarkably similar to those previously reported in female patients with TC triggered by emotional stress. These observations show a common link between TC occurrence and elevated catecholamine levels in both male and female patients and, therefore, support the hypothesis that excessive levels of catecholamines may be involved in the pathophysiology of TC independent of age or gender. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Chronic bowel inflammation and inflammatory joint disease: Pathophysiology.

    PubMed

    Speca, Silvia; Dubuquoy, Laurent

    2017-07-01

    Bowel inflammation is closely linked to chronic joint inflammation. Research reported in the 1980s demonstrated bowel inflammation with gross and microscopic pathological features identical to those of Crohn's disease in over 60% of patients with spondyloarthritis (SpA). Numerous prospective studies have evidenced joint involvement in patients with chronic inflammatory bowel disease (IBD) and bowel inflammation in patients with SpA. Nevertheless, the interactions of joint disease and chronic bowel inflammation remain incompletely elucidated. Two main hypotheses have been suggested to explain potential links between inflammation of the mucosal immune system and peripheral arthritis: one identifies gut bacteria as potentially implicated in the development of joint inflammation and the other involves the recruitment of gut lymphocytes or activated macrophages to the joints. Pathophysiological investigations have established that HLA-B27 is a pivotal pathogenic factor. Here, we review current data on links between chronic bowel inflammation and inflammatory joint disease. Copyright © 2017 Société française de rhumatologie. Published by Elsevier SAS. All rights reserved.

  15. Isolated Systolic Hypertension: An Update After SPRINT.

    PubMed

    Bavishi, Chirag; Goel, Sangita; Messerli, Franz H

    2016-12-01

    Isolated systolic hypertension is the most common hemodynamic form of hypertension in the elderly. With a rapidly aging population, the prevalence of hypertension, particularly isolated systolic hypertension, is expected to increase substantially. This phenomenon of increasing systolic pressure in the elderly is believed to be secondary to pathophysiological changes of aging as well as modifiable risk factors. Isolated systolic hypertension is associated with substantial mortality and morbidity, particularly of cerebrovascular disease. It is a rapidly growing public health concern and its management continues to remain a challenge to practicing physicians. Recent studies like the Systolic Blood Pressure Intervention Trial (SPRINT) and Heart Outcomes Prevention Evaluation (HOPE)-3 have implications for antihypertensive therapy in general and for the management of isolated systolic hypertension in particular. In this article we will review: 1) epidemiology and pathophysiologic mechanisms, 2) impact of isolated systolic hypertension on cardiovascular outcomes, 3) optimal management strategies, and 4) systolic blood pressure goals in the light of SPRINT and HOPE 3 trials. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Eye Tracking Dysfunction in Schizophrenia: Characterization and Pathophysiology

    PubMed Central

    Sereno, Anne B.; Gooding, Diane C.; O’Driscoll, Gilllian A.

    2011-01-01

    Eye tracking dysfunction (ETD) is one of the most widely replicated behavioral deficits in schizophrenia and is over-represented in clinically unaffected first-degree relatives of schizophrenia patients. Here, we provide an overview of research relevant to the characterization and pathophysiology of this impairment. Deficits are most robust in the maintenance phase of pursuit, particularly during the tracking of predictable target movement. Impairments are also found in pursuit initiation and correlate with performance on tests of motion processing, implicating early sensory processing of motion signals. Taken together, the evidence suggests that ETD involves higher-order structures, including the frontal eye fields, which adjust the gain of the pursuit response to visual and anticipated target movement, as well as early parts of the pursuit pathway, including motion areas (the middle temporal area and the adjacent medial superior temporal area). Broader application of localizing behavioral paradigms in patient and family studies would be advantageous for refining the eye tracking phenotype for genetic studies. PMID:21312405

  17. Mechanism of Sleep Disturbance in Children with Atopic Dermatitis and the Role of the Circadian Rhythm and Melatonin

    PubMed Central

    Chang, Yung-Sen; Chiang, Bor-Luen

    2016-01-01

    Sleep disturbance is common in children with atopic dermatitis (AD). It is a major factor leading to impaired quality of life in these patients and could have negative effects on neurocognitive function and behavior. However, the pathophysiology of sleep disturbance in children with AD is poorly understood, and there is no consensus on how to manage sleep problems in these patients. Pruritus and scratching could lead to sleep disruption but is unlikely the sole etiology. The circadian rhythm of cytokines, the immune system, and skin physiology such as transcutaneous water loss and skin blood flow might also play a role. Recent studies have suggested that melatonin could also be involved due to its multiple effects on sleep, immunomodulation, and anti-oxidant ability. Environmental factors should also be considered. In this review, we summarize the current understanding of the pathophysiology of sleep disturbance in children with AD, and discuss possible therapeutic implications. PMID:27043528

  18. Functional Biomarkers of Depression: Diagnosis, Treatment, and Pathophysiology

    PubMed Central

    Schmidt, Heath D; Shelton, Richard C; Duman, Ronald S

    2011-01-01

    Major depressive disorder (MDD) is a heterogeneous illness for which there are currently no effective methods to objectively assess severity, endophenotypes, or response to treatment. Increasing evidence suggests that circulating levels of peripheral/serum growth factors and cytokines are altered in patients with MDD, and that antidepressant treatments reverse or normalize these effects. Furthermore, there is a large body of literature demonstrating that MDD is associated with changes in endocrine and metabolic factors. Here we provide a brief overview of the evidence that peripheral growth factors, pro-inflammatory cytokines, endocrine factors, and metabolic markers contribute to the pathophysiology of MDD and antidepressant response. Recent preclinical studies demonstrating that peripheral growth factors and cytokines influence brain function and behavior are also discussed along with their implications for diagnosing and treating patients with MDD. Together, these studies highlight the need to develop a biomarker panel for depression that aims to profile diverse peripheral factors that together provide a biological signature of MDD subtypes as well as treatment response. PMID:21814182

  19. Noncardiac Comorbidities in Heart Failure With Reduced Versus Preserved Ejection Fraction

    PubMed Central

    Mentz, Robert J.; Kelly, Jacob P.; von Lueder, Thomas G.; Voors, Adriaan A.; Lam, Carolyn S. P.; Cowie, Martin R.; Kjeldsen, Keld; Jankowska, Ewa A.; Atar, Dan; Butler, Javed; Fiuzat, Mona; Zannad, Faiez; Pitt, Bertram; O’Connor, Christopher M.

    2014-01-01

    Heart failure patients are classified by ejection fraction (EF) into distinct groups: heart failure with preserved EF (HFpEF) or heart failure with reduced EF (HFrEF). Although patients with heart failure commonly have multiple comorbidities that complicate management and may adversely affect outcomes, their role in the HFpEF and HFrEF groups is not well-characterized. This review summarizes the role of noncardiac comorbidities in patients with HFpEF versus HFrEF, emphasizing prevalence, underlying pathophysiologic mechanisms, and outcomes. Pulmonary disease, diabetes mellitus, anemia, and obesity tend to be more prevalent in HFpEF patients, but renal disease and sleep-disordered breathing burdens are similar. These comorbidities similarly increase morbidity and mortality risk in HFpEF and HFrEF patients. Common pathophysiologic mechanisms include systemic and endomyocardial inflammation with fibrosis. We also discuss implications for clinical care and future HF clinical trial design. The basis for this review was discussions between scientists, clinical trialists, and regulatory representatives at the 10th Global CardioVascular Clinical Trialists Forum. PMID:25456761

  20. Migraine Management During Menstruation and Menopause.

    PubMed

    MacGregor, E Anne

    2015-08-01

    Migraine is most prevalent in women during their reproductive years. An understanding of the effects of menstruation and menopause on migraine can enable neurologists to provide targeted and appropriate medical and hormonal strategies, enabling their patients to achieve better control of migraine and reduced disability. This article reviews the effects of hormonal events on migraine and summarizes the evidence-based options available for management. Estrogen "withdrawal" during the late luteal phase of the natural menstrual cycle and the hormone-free interval of combined hormonal contraceptives has long been implicated in the pathophysiology of menstrual migraine. However, more recent research suggests that other independent mechanisms may be relevant. Prostaglandin inhibitors used for management of dysmenorrhea are effective for associated menstrual migraine, suggesting a common pathophysiology. The interplay between serotonin and estrogen also deserves further research. Menstrual and perimenopausal migraine can be managed effectively using a variety of strategies, the choice of which depends on the efficacy of acute treatment, predictability and regularity of menstruation, use of contraception, and presence of menstrual disorders or perimenopausal vasomotor symptoms.

  1. Studies on the Pathophysiology and Genetic Basis of Migraine

    PubMed Central

    Gasparini, Claudia F; Sutherland, Heidi G.; Griffiths, Lyn R

    2013-01-01

    Migraine is a neurological disorder that affects the central nervous system causing painful attacks of headache. A genetic vulnerability and exposure to environmental triggers can influence the migraine phenotype. Migraine interferes in many facets of people’s daily life including employment commitments and their ability to look after their families resulting in a reduced quality of life. Identification of the biological processes that underlie this relatively common affliction has been difficult because migraine does not have any clearly identifiable pathology or structural lesion detectable by current medical technology. Theories to explain the symptoms of migraine have focused on the physiological mechanisms involved in the various phases of headache and include the vascular and neurogenic theories. In relation to migraine pathophysiology the trigeminovascular system and cortical spreading depression have also been implicated with supporting evidence from imaging studies and animal models. The objective of current research is to better understand the pathways and mechanisms involved in causing pain and headache to be able to target interventions. The genetic component of migraine has been teased apart using linkage studies and both candidate gene and genome-wide association studies, in family and case-control cohorts. Genomic regions that increase individual risk to migraine have been identified in neurological, vascular and hormonal pathways. This review discusses knowledge of the pathophysiology and genetic basis of migraine with the latest scientific evidence from genetic studies. PMID:24403849

  2. Wolfram Syndrome: A Case Report and Review of Clinical Manifestations, Genetics Pathophysiology, and Potential Therapies

    PubMed Central

    McMillan, J. M.; Au, P. Y. B.; Suchowersky, O.

    2018-01-01

    Background Classical Wolfram syndrome (WS) is a rare autosomal recessive disorder caused by mutations in WFS1, a gene implicated in endoplasmic reticulum (ER) and mitochondrial function. WS is characterized by insulin-requiring diabetes mellitus and optic atrophy. A constellation of other features contributes to the acronym DIDMOAD (Diabetes Insipidus, Diabetes Mellitus, Optic Atrophy, and Deafness). This review seeks to raise awareness of this rare form of diabetes so that individuals with WS are identified and provided with appropriate care. Case We describe a woman without risk factors for gestational or type 2 diabetes who presented with gestational diabetes (GDM) at the age of 39 years during her first and only pregnancy. Although she had optic atrophy since the age of 10 years, WS was not considered as her diagnosis until she presented with GDM. Biallelic mutations in WFS1 were identified, supporting a diagnosis of classical WS. Conclusions The distinct natural history, complications, and differences in management reinforce the importance of distinguishing WS from other forms of diabetes. Recent advances in the genetics and pathophysiology of WS have led to promising new therapeutic considerations that may preserve β-cell function and slow progressive neurological decline. Insight into the pathophysiology of WS may also inform strategies for β-cell preservation for individuals with type 1 and 2 diabetes. PMID:29850290

  3. Air leak after lung resection: pathophysiology and patients' implications.

    PubMed

    Pompili, Cecilia; Miserocchi, Giuseppe

    2016-02-01

    Protocols for the management of air leaks are critical aspects in the postoperative course of patients following lung resections. Many investigations in the last decade are focusing on the chest tube modalities or preventative measures, however, little is known about the pathophysiology of air leak and the patient perception of this common complication. This review concentrates on understanding the reasons why a pulmonary parenchyma may start to leak or an air leak may be longer than others. Experimental works support the notion that lung overdistension may favor air leak. These studies may represent the basis of future investigations. Furthermore, the standardization of nomenclature in the field of pleural space management and the creation of novel air leak scoring systems have contributed to improve the knowledge among thoracic surgeons and facilitate the organization of trials on this matter. We tried to summarize available evidences about the patient perception of a prolonged air leak and about what would be useful for them in order to prevent worsening of their quality of life. Future investigations are warranted to better understand the pathophysiologic mechanisms responsible of prolonged air leak in order to define tailored treatments and protocols. Improving the care at home with web-based telemonitoring or real time connected chest drainage may in a future improve the quality of life of the patients experience this complication and also enhance hospital finances.

  4. Air leak after lung resection: pathophysiology and patients’ implications

    PubMed Central

    Miserocchi, Giuseppe

    2016-01-01

    Protocols for the management of air leaks are critical aspects in the postoperative course of patients following lung resections. Many investigations in the last decade are focusing on the chest tube modalities or preventative measures, however, little is known about the pathophysiology of air leak and the patient perception of this common complication. This review concentrates on understanding the reasons why a pulmonary parenchyma may start to leak or an air leak may be longer than others. Experimental works support the notion that lung overdistension may favor air leak. These studies may represent the basis of future investigations. Furthermore, the standardization of nomenclature in the field of pleural space management and the creation of novel air leak scoring systems have contributed to improve the knowledge among thoracic surgeons and facilitate the organization of trials on this matter. We tried to summarize available evidences about the patient perception of a prolonged air leak and about what would be useful for them in order to prevent worsening of their quality of life. Future investigations are warranted to better understand the pathophysiologic mechanisms responsible of prolonged air leak in order to define tailored treatments and protocols. Improving the care at home with web-based telemonitoring or real time connected chest drainage may in a future improve the quality of life of the patients experience this complication and also enhance hospital finances. PMID:26941970

  5. Understanding the complete pathophysiology of chronic mild to moderate neck pain: Implications for the inclusion of a comprehensive sensorimotor evaluation.

    PubMed

    Cheever, Kelly M; Myrer, J William; Johnson, A Wayne; Fellingham, Gilbert W

    2017-09-22

    Inconsistencies in the literature concerning the effect of neck pain have led to a lack of understanding concerning the complete pathophysiology of neck pain. While the effect of neck pain on motor function as measured by active range of motion and isometric neck strength is well documented the effect of neck pain on sensory measures such as tactical acuity and neck reposition error (NRE) remain poorly understood. The purpose of this study was to evaluate a combined sensorimotor evaluation to explore the potential benefits of incorporating both sensory and motor task into a physical evaluation of neck pain suffers to gain an added knowledge of the complete pathophysiology of their health status. A cross-sectional study that measured neck joint reposition error, tactical acuity, neck isometric strength and range of motion in 40 volunteer participants (22 pain, 18 control). A statistically significant increase in NRE in flexion (2.75∘± 1.52∘ vs. 4.53∘± 1.74∘ and in extension (3.78∘± 1.95∘ vs 5.77∘± 2.73∘ in participants suffering from neck pain was observed. Additionally, the dermatome C5 was found to be the most affected. No differences were found in neck strength or neck range of motion between healthy controls and patients with chronic moderate neck pain.

  6. Concussion: the history of clinical and pathophysiological concepts and misconceptions.

    PubMed

    McCrory, P R; Berkovic, S F

    2001-12-26

    Concussion is a well-recognized clinical entity; however, its pathophysiologic basis remains a mystery. One unresolved issue is whether concussion is associated with lesser degrees of diffuse structural change seen in severe traumatic brain injury, or is the mechanism entirely caused by reversible functional changes. This issue is clouded not only by the lack of critical data, but also by confusion in terminology, even in contemporary literature. This confusion began in ancient times when no distinction was made between the transient effects of concussion and severe traumatic brain injury. The first clear separate recognition of concussion was made by the Persian physician, Rhazes, in the 10th century. Lanfrancus subsequently expanded this concept as brain "commotion" in the 13th century, although other Renaissance physicians continued to obscure this concept. By the 18th century, a variety of hypotheses for concussion had emerged. The 19th century discovery of petechial hemorrhagic lesions in severe traumatic brain injury led to these being posited as the basis of concussion, and a similar logic was used later to suggest diffuse axonal injury was responsible. The neuropathology and pathophysiology of concussion has important implications in neurology, sports medicine, medicolegal medicine, and in the understanding of consciousness. Fresh approaches to these questions are needed and modern research tools, including functional imaging and experimental studies of ion-channel function, could help elucidate this puzzle that has evolved over the past 3,000 years.

  7. Stress and the gut: pathophysiology, clinical consequences, diagnostic approach and treatment options.

    PubMed

    Konturek, Peter C; Brzozowski, T; Konturek, S J

    2011-12-01

    Stress, which is defined as an acute threat to homeostasis, shows both short- and long-term effects on the functions of the gastrointestinal tract. Exposure to stress results in alterations of the brain-gut interactions ("brain-gut axis") ultimately leading to the development of a broad array of gastrointestinal disorders including inflammatory bowel disease (IBD), irritable bowel syndrome (IBS) and other functional gastrointestinal diseases, food antigen-related adverse responses, peptic ulcer and gastroesophageal reflux disease (GERD). The major effects of stress on gut physiology include: 1) alterations in gastrointestinal motility; 2) increase in visceral perception; 3) changes in gastrointestinal secretion; 4) increase in intestinal permeability; 5) negative effects on regenerative capacity of gastrointestinal mucosa and mucosal blood flow; and 6) negative effects on intestinal microbiota. Mast cells (MC) are important effectors of brain-gut axis that translate the stress signals into the release of a wide range of neurotransmitters and proinflammatory cytokines, which may profoundly affect the gastrointestinal physiology. IBS represents the most important gastrointestinal disorder in humans, and is characterized by chronic or recurrent pain associated with altered bowel motility. The diagnostic testing for IBS patients include routine blood tests, stool tests, celiac disease serology, abdominal sonography, breath testing to rule out carbohydrate (lactose, fructose, etc.) intolerance and small intestinal bacterial overgrowth. Colonoscopy is recommended if alarming symptoms are present or to obtain colonic biopsies especially in patients with diarrhoea predominant IBS. The management of IBS is based on a multifactorial approach and includes pharmacotherapy targeted against the predominant symptom, behavioural and psychological treatment, dietary alterations, education, reassurance and effective patient-physician relationship. When evaluating for the stress-induced condition in the upper GI tract, the diagnostic testing includes mainly blood tests and gastroscopy to rule out GERD and peptic ulcer disease. The therapy for these conditions is mainly based on the inhibition of gastric acid by proton pump inhibitors and eradication of Helicobacter pylori-infection. Additionally, melatonin an important mediator of brain gut axis has been shown to exhibit important protective effects against stress-induced lesions in the gastrointestinal tract. Finally, probiotics may profoundly affect the brain-gut interactions ("microbiome-gut-brain axis") and attenuate the development of stress-induced disorders in both the upper and lower gastrointestinal tract. Further studies on the brain-gut axis are needed to open new therapeutic avenues in the future.

  8. The Missing Link in the Pathophysiology of Vascular Cognitive Impairment: Design of the Heart-Brain Study

    PubMed Central

    Hooghiemstra, Astrid M.; Bertens, Anne Suzanne; Leeuwis, Anna E.; Bron, Esther E.; Bots, Michiel L.; Brunner-La Rocca, Hans-Peter; de Craen, Anton J.M.; van der Geest, Rob J.; Greving, Jacoba P.; Kappelle, L. Jaap; Niessen, Wiro J.; van Oostenbrugge, Robert J.; van Osch, Matthias J.P.; de Roos, Albert; van Rossum, Albert C.; Biessels, Geert Jan; van Buchem, Mark A.; Daemen, Mat J.A.P.; van der Flier, Wiesje M.

    2017-01-01

    Background Hemodynamic balance in the heart-brain axis is increasingly recognized as a crucial factor in maintaining functional and structural integrity of the brain and thereby cognitive functioning. Patients with heart failure (HF), carotid occlusive disease (COD), and vascular cognitive impairment (VCI) present themselves with complaints attributed to specific parts of the heart-brain axis, but hemodynamic changes often go beyond the part of the axis for which they primarily seek medical advice. The Heart-Brain Study hypothesizes that the hemodynamic status of the heart and the brain is an important but underestimated cause of VCI. We investigate this by studying to what extent hemodynamic changes contribute to VCI and what the mechanisms involved are. Here, we provide an overview of the design and protocol. Methods The Heart-Brain Study is a multicenter cohort study with a follow-up measurement after 2 years among 645 participants (175 VCI, 175 COD, 175 HF, and 120 controls). Enrollment criteria are the following: 1 of the 3 diseases diagnosed according to current guidelines, age ≥50 years, no magnetic resonance contraindications, ability to undergo cognitive testing, and independence in daily life. A core clinical dataset is collected including sociodemographic factors, cardiovascular risk factors, detailed neurologic, cardiac, and medical history, medication, and a physical examination. In addition, we perform standardized neuropsychological testing, cardiac, vascular and brain MRI, and blood sampling. In subsets of participants we assess Alz­heimer biomarkers in cerebrospinal fluid, and assess echocardiography and 24-hour blood pressure monitoring. Follow-up measurements after 2 years include neuropsychological testing, brain MRI, and blood samples for all participants. We use centralized state-of-the-art storage platforms for clinical and imaging data. Imaging data are processed centrally with automated standardized pipelines. Results and Conclusions The Heart-Brain Study investigates relationships between (cardio-)vascular factors, the hemodynamic status of the heart and the brain, and cognitive impairment. By studying the complete heart-brain axis in patient groups that represent components of this axis, we have the opportunity to assess a combination of clinical and subclinical manifestations of disorders of the heart, vascular system and brain, with hemodynamic status as a possible binding factor. PMID:29017156

  9. Ghrelin and Metabolic Surgery

    PubMed Central

    Pournaras, Dimitrios J.; le Roux, Carel W.

    2010-01-01

    Metabolic surgery is the most effective treatment for morbid obesity. Ghrelin has been implicated to play a role in the success of these procedures. Furthermore, these operations have been used to study the gut-brain axis. This article explores this interaction, reviewing the available data on changes in ghrelin levels after different surgical procedures. PMID:20700402

  10. The gut microbiome as a virtual endocrine organ with implications for farm and domestic animal endocrinology.

    PubMed

    O'Callaghan, T F; Ross, R P; Stanton, C; Clarke, G

    2016-07-01

    The gut microbiome exerts a marked influence on host physiology, and manipulation of its composition has repeatedly been shown to influence host metabolism and body composition. This virtual endocrine organ also has a role in the regulation of the plasma concentrations of tryptophan, an essential amino acid and precursor to serotonin, a key neurotransmitter within both the enteric and central nervous systems. Control over the hypothalamic-pituitary-adrenal axis also appears to be under the influence of the gut microbiota. This is clear from studies in microbiota-deficient germ-free animals with exaggerated responses to psychological stress that can be normalized by monocolonization with certain bacterial species including Bifidobacterium infantis. Therapeutic targeting of the gut microbiota may thus be useful in treating or preventing stress-related microbiome-gut-brain axis disorders and metabolic diseases, much the same way as redirections of metabolopathies can be achieved through more traditional endocrine hormone-based interventions. Moreover, the implications of these findings need to be considered in the context of farm and domestic animal physiology, behavior, and food safety. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Crystallographic orientation of the c-axis of biological apatite as a new index of the quality of subchondral bone in knee joint osteoarthritis.

    PubMed

    Lee, Jee-Wook; Kobayashi, Akio; Nakano, Takayoshi

    2017-05-01

    The aim of the present study was to investigate the preferred orientation of biological apatite (BAp) as a new index of the quality of subchondral bone (SB) in knee joint osteoarthritis (OA). Ten OA and five normal knee joints were obtained. Thickness, quantity and bone mineral density (BMD) of SB were analyzed at the medial condyle of the femur in dry conditions by peripheral quantitative computed tomography. In addition, the preferred crystallographic orientation of the c-axis of BAp was evaluated as bone quality parameter using a microbeam X-ray diffractometer technique. BMD and thickness of SB were significantly increased in OA specimens compared to normal knee specimens (P < 0.01), and the preferred orientation of the c-axis of BAp along the normal direction of SB surface was significantly higher in OA specimens (P < 0.01), reflecting the change in stress of concentration in the pathological portion without cartilage. SB sclerosis in OA results in both proliferation of bone tissues and enhanced degree of preferential alignment of the c-axis of BAp. Our findings could have major implications for the diagnosis of clinical studies, including pathologic elucidation in OA.

  12. Cardiovascular disease risk factors in adolescents: do negative emotions and hypothalamic-pituitary-adrenal axis function play a role?

    PubMed

    Pajer, Kathleen A

    2007-10-01

    Negative emotions such as depression and hostility/anger are important risk factors for cardiovascular disease in adults, but are often neglected in treatment or prevention programs. Adolescence is a stage of life when negative emotions often first become problematic and is also a time when the pathogenesis of cardiovascular disease appears to accelerate. The literature on negative emotions and cardiovascular disease risk factors in adolescents is reviewed here. Research indicates that negative emotions are associated with cardiovascular disease risk factors in adolescence. Negative emotions are also associated with several types of hypothalamic-pituitary-adrenal axis dysregulation. Such dysregulation appears to have a facilitatory effect on cardiovascular disease development and progression in adults. Thus, it is possible that negative emotions in adolescents may be risk factors for the development of cardiovascular disease via dysregulation of the hypothalamic-pituitary-adrenal axis. Although this hypothesis has not been directly tested, some studies indirectly support the hypothesis. Negative emotions are associated with cardiovascular disease risk factors in adolescents; it is possible that hypothalamic-pituitary-adrenal axis dysregulation is an important mechanism. This hypothesis merits further research. If the hypothesis is valid, it has significant implications for early prevention of cardiovascular disease.

  13. Intraperitoneal injection of neuropeptide Y (NPY) alters neurotrophin rat hypothalamic levels: Implications for NPY potential role in stress-related disorders.

    PubMed

    Gelfo, Francesca; De Bartolo, Paola; Tirassa, Paola; Croce, Nicoletta; Caltagirone, Carlo; Petrosini, Laura; Angelucci, Francesco

    2011-06-01

    Neuropeptide Y (NPY) is a 36-amino acid peptide which exerts several regulatory actions within peripheral and central nervous systems. Among NPY actions preclinical and clinical data have suggested that the anxiolytic and antidepressant actions of NPY may be related to its antagonist action on the hypothalamic-pituitary-adrenal (HPA) axis. The neurotrophins brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) are proteins involved in the growth, survival and function of neurons. In addition to this, a possible role of neurotrophins, particularly BDNF, in HPA axis hyperactivation has been proposed. To characterize the effect of NPY on the production of neurotrophins in the hypothalamus we exposed young adult rats to NPY intraperitoneal administration for three consecutive days and then evaluated BDNF and NGF synthesis in this brain region. We found that NPY treatment decreased BDNF and increased NGF production in the hypothalamus. Given the role of neurotrophins in the hypothalamus, these findings, although preliminary, provide evidence for a role of NPY as inhibitor of HPA axis and support the idea that NPY might be involved in pathologies characterized by HPA axis dysfunctions. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. Early maternal separation followed by later stressors leads to dysregulation of the HPA-axis and increases in hippocampal NGF and NT-3 levels in a rat model.

    PubMed

    Faure, Jacqueline; Uys, Joachim D K; Marais, Lelanie; Stein, Dan J; Daniels, Willie M U

    2006-09-01

    Early adverse life events, followed by subsequent stressors, appear to increase susceptibility for subsequent onset of psychiatric disorders in humans. The molecular mechanisms that underlie this phenomenon remain unclear, but dysregulation of the HPA axis and alterations in neurotrophic factors have been implicated. The present study investigated the effects in rodents of early maternal separation, followed by stress in adolescence and adulthood on later HPA-axis activity and hippocampal neurotrophin levels (brain-derived neurotrophic factor, nerve growth factor, and neurotrophin-3). Animals subjected to repeated stressors showed a significant decrease in basal ACTH (p < 0.05) and CORT (p < 0.05) levels when compared to controls, as well as significantly increased levels of NGF in the dorsal (p < 0.001) and ventral hippocampus (p < 0.01), and of NT-3 in the dorsal hippocampus (p < 0.01). Dysregulation of the HPA axis after multiple stressors is consistent with previous preclinical and clinical work. Given that neurotrophins are important in neuronal survival and plasticity, it is possible to speculate that their elevation reflects a compensatory mechanism.

  15. Downregulation of MicroRNA eca-mir-128 in Seminal Exosomes and Enhanced Expression of CXCL16 in the Stallion Reproductive Tract Are Associated with Long-Term Persistence of Equine Arteritis Virus.

    PubMed

    Carossino, Mariano; Dini, Pouya; Kalbfleisch, Theodore S; Loynachan, Alan T; Canisso, Igor F; Shuck, Kathleen M; Timoney, Peter J; Cook, R Frank; Balasuriya, Udeni B R

    2018-05-01

    Equine arteritis virus (EAV) can establish long-term persistent infection in the reproductive tract of stallions and is shed in the semen. Previous studies showed that long-term persistence is associated with a specific allele of the CXCL16 gene ( CXCL16S ) and that persistent infection is maintained despite the presence of a local inflammatory and humoral and mucosal antibody responses. In this study, we demonstrated that equine seminal exosomes (SEs) are enriched in a small subset of microRNAs (miRNAs). Most importantly, we demonstrated that long-term EAV persistence is associated with the downregulation of an SE-associated miRNA (eca-mir-128) and with an enhanced expression of CXCL16 in the reproductive tract, a putative target of eca-mir-128. The findings presented here suggest that SE eca-mir-128 is implicated in the regulation of the CXCL16/CXCR6 axis in the reproductive tract of persistently infected stallions, a chemokine axis strongly implicated in EAV persistence. This is a novel finding and warrants further investigation to identify its specific mechanism in modulating the CXCL16/CXCR6 axis in the reproductive tract of the EAV long-term carrier stallion. IMPORTANCE Equine arteritis virus (EAV) has the ability to establish long-term persistent infection in the stallion reproductive tract and to be shed in semen, which jeopardizes its worldwide control. Currently, the molecular mechanisms of viral persistence are being unraveled, and these are essential for the development of effective therapeutics to eliminate persistent infection. Recently, it has been determined that long-term persistence is associated with a specific allele of the CXCL16 gene ( CXCL16S ) and is maintained despite induction of local inflammatory, humoral, and mucosal antibody responses. This study demonstrated that long-term persistence is associated with the downregulation of seminal exosome miRNA eca-mir-128 and enhanced expression of its putative target, CXCL16, in the reproductive tract. For the first time, this study suggests complex interactions between eca-mir-128 and cellular elements at the site of EAV persistence and implicates this miRNA in the regulation of the CXCL16/CXCR6 axis in the reproductive tract during long-term persistence. Copyright © 2018 American Society for Microbiology.

  16. Pathological narcissism and narcissistic personality disorder in Axis I disorders.

    PubMed

    Ronningstam, E

    1996-01-01

    This paper presents available information on the comorbidity of narcissistic personality disorder (NPD) and pathological narcissism with major mental illness. A review of empirical studies reporting on the prevalence of NPD in Axis I disorders, and of theoretical and clinical literature on narcissistic pathology in major mental illness, forms the basis for an analysis of this interface. The results show that prevalence rates of NPD in Axis I disorders rarely exceed those found in the general psychiatric or personality disorder populations (i.e., less than 22%). NPD was found at high rates in individuals with a substance use disorder (12-38%) or bipolar disorder (4-47%); it was present at very low rates or absent in persons with obsessive-compulsive disorder. Higher prevalence rates were reported in the studies that used the Millon Clinical Multiaxial Inventory I or II than in those that employed the Structured interview for DSM-III Personality Disorders or the Structured Interview for DSM-III-R Personality Disorders--Revised. There is no evidence implicating a significant relationship between NPD and any specific Axis I disorder. A comparison of theoretical and clinical studies with empirical ones reveals major differences in the views regarding the presence and significance of NPD in Axis I disorders. However, the results highlight trends of interacting comorbidity between NPD and substance use disorders, bipolar disorder, depression, and anorexia nervosa.

  17. TNF-α signaling in Fanconi anemia

    PubMed Central

    Du, Wei; Erden, Ozlem; Pang, Qishen

    2013-01-01

    Tumor necrosis factor-alpha (TNF-α is a major pro-inflammatory cytokine involved in systemic inflammation and the acute phase reaction. Dysregulation of TNF production has been implicated in a variety of human diseases including Fanconi anemia (FA). FA is a genomic instability syndrome characterized by progressive bone marrow failure and cancer susceptibility. The patients with FA are often found overproducing TNF-α, which may directly affect hematopoietic stem cell (HSC) function by impairing HSC survival, homing and proliferation, or indirectly change the bone marrow microenvironment critical for HSC homeostasis and function, therefore contribute to disease progression in FA. In this brief review, we discuss the link between TNF-α signaling and FA pathway with emphasis on the implication of inflammation in the pathophysiology and abnormal hematopoiesis in FA. PMID:23890415

  18. TNF-α signaling in Fanconi anemia.

    PubMed

    Du, Wei; Erden, Ozlem; Pang, Qishen

    2014-01-01

    Tumor necrosis factor-alpha (TNF-α) is a major pro-inflammatory cytokine involved in systemic inflammation and the acute phase reaction. Dysregulation of TNF production has been implicated in a variety of human diseases including Fanconi anemia (FA). FA is a genomic instability syndrome characterized by progressive bone marrow failure and cancer susceptibility. The patients with FA are often found overproducing TNF-α, which may directly affect hematopoietic stem cell (HSC) function by impairing HSC survival, homing and proliferation, or indirectly change the bone marrow microenvironment critical for HSC homeostasis and function, therefore contributing to disease progression in FA. In this brief review, we discuss the link between TNF-α signaling and FA pathway with emphasis on the implication of inflammation in the pathophysiology and abnormal hematopoiesis in FA. © 2013.

  19. Vitamin D and its effects on cardiovascular diseases: a comprehensive review.

    PubMed

    Pérez-Hernández, Nonanzit; Aptilon-Duque, Gad; Nostroza-Hernández, María Cristina; Vargas-Alarcón, Gilberto; Rodríguez-Pérez, José Manuel; Blachman-Braun, Ruben

    2016-11-01

    Vitamin D is a molecule that is actively involved in multiple metabolic pathways. It is mostly known for its implications related to calcium metabolism. It has also been determined that it actively participates in the cardiovascular system, influencing blood pressure, coronary artery disease and other vascular diseases, such as heart failure and atrial fibrillation. Furthermore, it has been established that this vitamin is extensively involved in the regulation of both the renin angiotensin aldosterone system and the immune system. In this review, we present the different vitamin D metabolic pathways associated with the cardiovascular pathophysiology, and we include studies in animal and human models, as well as some of the controversies found in the literature. This review also incorporates an overview of the implications in the molecular biology and public health fields.

  20. Obsessive–Compulsive Disorder Comorbidity: Clinical Assessment and Therapeutic Implications

    PubMed Central

    Pallanti, Stefano; Grassi, Giacomo; Sarrecchia, Elisa Dinah; Cantisani, Andrea; Pellegrini, Matteo

    2011-01-01

    Obsessive–compulsive disorder (OCD) is a neuropsychiatric disorder affecting approximately 1–3% of the population. OCD is probably an etiologically heterogeneous condition. Individuals with OCD frequently have additional psychiatric disorders concomitantly or at some time during their lifetime. Recently, some authors proposed an OCD sub-classification based on comorbidity. An important issue in assessing comorbidity is the fact that the non-response to treatment often involves the presence of comorbid conditions. Non-responsive patients are more likely to meet criteria for comorbid axis I or axis II disorders and the presence of a specific comorbid condition could be a distinguishing feature in OCD, with influence on the treatment adequacy and outcome. PMID:22203806

  1. Aging in the Shadow of Violence: A Phenomenological Conceptual Framework for Understanding Elderly Women Who Experienced Lifelong IPV.

    PubMed

    Band-Winterstein, Tova

    2015-01-01

    This article suggests a heuristic framework for understanding elderly women's "lived experience" of lifelong intimate partner violence (IPV). This framework is based on the phenomenological qualitative studies of 31 women, aged 60-83, using a semistructured interview guide. From the results, a matrix emerged built on two axes. The first axis consists of three phenomenological dimensions: suffering, a "ticking clock," and life wisdom. The second axis consists of four themes that emerged from the content analysis: loneliness, regret, being in a state of waiting, and being a living monument to perpetual victimhood. The practical implications of these phenomenological findings are then discussed.

  2. PKCε promotes human Th17 differentiation: Implications in the pathophysiology of psoriasis.

    PubMed

    Martini, Silvia; Pozzi, Giulia; Carubbi, Cecilia; Masselli, Elena; Galli, Daniela; Di Nuzzo, Sergio; Banchini, Antonio; Gobbi, Giuliana; Vitale, Marco; Mirandola, Prisco

    2018-04-01

    PKCε is implicated in T cell activation and proliferation and is overexpressed in CD4 + -T cells from patients with autoimmune Hashimoto's thyroiditis. Although this might induce the suspicion that PKCε takes part in autoimmunity, its role in the molecular pathophysiology of immune-mediated disorders is still largely unknown. We studied PKCε expression in circulating CD4 + -T cells from patients with psoriasis, a skin disorder characterized by an increased amount of Th17 cells, a CD4 + subset that is critical in the development of autoimmunity. Although the mechanisms that underlie Th17 differentiation in humans are still unclear, we here show that: (i) PKCε is overexpressed in CD4 + -T cells from psoriatic patients, and its expression positively correlates with the severity of the disease, being reduced by effective phototherapy; (ii) PKCε interacts with Stat3 during Th17 differentiation and its overexpression results in an enhanced expression of Stat3 and pStat3(Ser727); iii) conversely, when PKCε is forcibly downregulated, CD4 + -T cells show lower levels of pStat3(Ser727) expression and defective in vitro expansion into the Th17-lineage. These data provide a novel insight into the molecular mechanisms of Th17 cell polarization that is known to play a crucial role in autoimmunity, pinpointing PKCε as a potential target in Th17-mediated diseases. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. VASCULAR ACTIONS OF ESTROGENS: FUNCTIONAL IMPLICATIONS

    PubMed Central

    Miller, Virginia M.; Duckles, Sue P.

    2009-01-01

    The impact of estrogen exposure in preventing or treating cardiovascular disease is controversial. But it is clear that estrogen has important effects on vascular physiology and pathophysiology, with potential therapeutic implications. Therefore, it is the goal of this review to summarize, using an integrated approach, current knowledge of the vascular effects of estrogen, both in humans and in experimental animals. Aspects of estrogen synthesis and receptors, as well as general mechanisms of estrogenic action are reviewed with an emphasis on issues particularly relevant to the vascular system. Recent understanding of the impact of estrogen on mitochondrial function suggests that the longer lifespan of women compared to men may depend in part on the ability of estrogen to decrease production of reactive oxygen species in mitochondria. Mechanisms by which estrogen increases endothelial vasodilator function, promotes angiogenesis and modulates autonomic function are summarized. Key aspects of the relevant pathophysiology of inflammation, atherosclerosis, stroke, migraine and thrombosis are reviewed concerning current knowledge of estrogenic effects. A number of emerging concepts are addressed throughout. These include the importance of estrogenic formulation and route of administration and the impact of genetic polymorphisms, either in estrogen receptors or in enzymes responsible for estrogen metabolism, on responsiveness to hormone treatment. The importance of local metabolism of estrogenic precursors and the impact of timing for initiation of treatment and its duration are also considered. While consensus opinions are emphasized, controversial views are presented in order to stimulate future research. PMID:18579753

  4. The shared neuroanatomy and neurobiology of comorbid chronic pain and PTSD: therapeutic implications.

    PubMed

    Scioli-Salter, Erica R; Forman, Daniel E; Otis, John D; Gregor, Kristin; Valovski, Ivan; Rasmusson, Ann M

    2015-04-01

    Chronic pain and posttraumatic stress disorder (PTSD) are disabling conditions that affect biological, psychological, and social domains of functioning. Clinical research demonstrates that patients who are affected by chronic pain and PTSD in combination experience greater pain, affective distress, and disability than patients with either condition alone. Additional research is needed to delineate the interrelated pathophysiology of chronic pain and PTSD, with the goal of facilitating more effective therapies to treat both conditions more effectively; current treatment strategies for chronic pain associated with PTSD have limited efficacy and place a heavy burden on patients, who must visit various specialists to manage these conditions separately. This article focuses on neurobiological factors that may contribute to the coprevalence and synergistic interactions of chronic pain and PTSD. First, we outline how circuits that mediate emotional distress and physiological threat, including pain, converge. Secondly, we discuss specific neurobiological mediators and modulators of these circuits that may contribute to chronic pain and PTSD symptoms. For example, neuropeptide Y, and the neuroactive steroids allopregnanolone and pregnanolone (together termed ALLO) have antistress and antinociceptive properties. Reduced levels of neuropeptide Y and ALLO have been implicated in the pathophysiology of both chronic pain and PTSD. The potential contribution of opioid and cannabinoid system factors also will be discussed. Finally, we address potential novel methods to restore the normal function of these systems. Such novel perspectives regarding disease and disease management are vital to the pursuit of relief for the many individuals who struggle with these disabling conditions.

  5. The potential role of the medial olivocochlear bundle in the generation of tinnitus: controversies and weaknesses in the existing clinical studies.

    PubMed

    Riga, Maria; Katotomichelakis, Michael; Danielides, Vasilios

    2015-02-01

    The physiology of the efferent cochlear innervation and the pathophysiology of tinnitus are 2 important but rather obscure chapters of neuro-otology. The possible interference of the medial olivocochlear bundle (MOCB) in the pathophysiology of tinnitus is not only a matter of strong controversy but also a field with possible important clinical and therapeutic implications. The aim of this study was to reveal the differences in study population, design, and methodology that may have attributed the conflicting results in the existing clinical trials. A review of the relevant literature published between January 1990 and June 2013 was conducted via the PubMed database (www.pubmed.org) with the search terms "tinnitus" and "otoacoustic emissions and suppression or efferent." Clinical studies on patients with additional pathologic abnormalities that may implicate the MOCB, such as hyperacousis or auditory neuropathy, were excluded. The 15 relevant studies were reviewed for critical differences in the recruitment of their study population and control group, as well as their methods of testing and evaluating the results. The different methods and study parameters are compared to each other. Factors known to attribute different MOCB responses, possibly responsible for the controversial results, are highlighted. The remarkable heterogeneity of the existing studies does not allow for safe conclusions. Insufficient knowledge on the physiology of the MOCB reflex seems to preclude the formation of a consensus on the optimal protocol for the evaluation of its function. Further research is definitely needed.

  6. Effects of a alpha 2C-adrenoreceptor gene polymorphism on neural responses to facial expressions in depression.

    PubMed

    Neumeister, Alexander; Drevets, Wayne C; Belfer, Inna; Luckenbaugh, David A; Henry, Shannan; Bonne, Omer; Herscovitch, Peter; Goldman, David; Charney, Dennis S

    2006-08-01

    Alterations in processing of emotionally salient information have been reported in individuals with major depressive disorder (MDD). Evidence suggests a role for noradrenaline in the regulation of a cortico-limbic-striatal circuit that has also been implicated in the pathophysiology of MDD. Herein, we studied the physiological consequences of a common coding polymorphism of the gene for the alpha(2C)-adrenoreceptor (AR) subtype--the deletion of four consecutive amino acids at codons 322-325 of the alpha2C-AR (alpha2CDel322-325-AR) in medication-free, remitted individuals with MDD (rMDD), and healthy control subjects. After injection of 10 mCi of H2(15)O, positron emission tomography (PET) measures of neural activity were acquired while subjects were viewing unmasked sad, happy, and fearful faces. The neural responses to sad facial expressions were increased in the amygdala and decreased in the left ventral striatum in rMDD patients relative to healthy control subjects. Furthermore, we report that rMDD carriers of one or two copies of the alpha2CDel322-325-AR exhibit greater amygdala as well as pregenual and subgenual anterior cingulate gyrus neuronal activity in response to sad faces than healthy alpha2CDel322-325-AR carriers and rMDD noncarriers. These results suggest that the alpha2CDel322-325-AR confers a change in brain function implicating this alpha2-AR subtype into the pathophysiology of MDD.

  7. A UNIFIED FRAMEWORK FOR THE ORBITAL STRUCTURE OF BARS AND TRIAXIAL ELLIPSOIDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valluri, Monica; Abbott, Caleb; Shen, Juntai

    We examine a large random sample of orbits in two self-consistent simulations of N-body bars. Orbits in these bars are classified both visually and with a new automated orbit classification method based on frequency analysis. The well-known prograde x1 orbit family originates from the same parent orbit as the box orbits in stationary and rotating triaxial ellipsoids. However, only a small fraction of bar orbits (∼4%) have predominately prograde motion like their periodic parent orbit. Most bar orbits arising from the x1 orbit have little net angular momentum in the bar frame, making them equivalent to box orbits in rotatingmore » triaxial potentials. In these simulations a small fraction of bar orbits (∼7%) are long-axis tubes that behave exactly like those in triaxial ellipsoids: they are tipped about the intermediate axis owing to the Coriolis force, with the sense of tipping determined by the sign of their angular momentum about the long axis. No orbits parented by prograde periodic x2 orbits are found in the pure bar model, but a tiny population (∼2%) of short-axis tube orbits parented by retrograde x4 orbits are found. When a central point mass representing a supermassive black hole (SMBH) is grown adiabatically at the center of the bar, those orbits that lie in the immediate vicinity of the SMBH are transformed into precessing Keplerian orbits that belong to the same major families (short-axis tubes, long-axis tubes and boxes) occupying the bar at larger radii. During the growth of an SMBH, the inflow of mass and outward transport of angular momentum transform some x1 and long-axis tube orbits into prograde short-axis tubes. This study has important implications for future attempts to constrain the masses of SMBHs in barred galaxies using orbit-based methods like the Schwarzschild orbit superposition scheme and for understanding the observed features in barred galaxies.« less

  8. Activation of 5-HT1A receptors in the rat dorsomedial hypothalamus inhibits stress-induced activation of the hypothalamic-pituitary-adrenal axis.

    PubMed

    Stamper, Christopher E; Hassell, James E; Kapitz, Adam J; Renner, Kenneth J; Orchinik, Miles; Lowry, Christopher A

    2017-03-01

    Acute activation of the hypothalamic-pituitary-adrenal (HPA) axis, leading to the release of corticosteroid hormones into the circulation, is an adaptive response to perceived threats. Persistent activation of the HPA axis can lead to impaired physiological or behavioral function with maladaptive consequences. Thus, efficient control and termination of stress responses is essential for well-being. However, inhibitory control mechanisms governing the HPA axis are poorly understood. Previous studies suggest that serotonergic systems, acting within the medial hypothalamus, play an important role in inhibitory control of stress-induced HPA axis activity. To test this hypothesis, we surgically implanted chronic jugular cannulae in adult male rats and conducted bilateral microinjection of vehicle or the 5-HT 1A receptor agonist, 8-hydroxy-2-(di-n-propylamino) tetralin hydrobromide (8-OH-DPAT; 8 nmol, 0.2 μL, 0.1 μL/min, per side) into the dorsomedial hypothalamus (DMH) immediately prior to a 40 min period of restraint stress. Repeated blood sampling was conducted using an automated blood sampling system and plasma corticosterone concentrations were determined using enzyme-linked immunosorbent assay. Bilateral intra-DMH microinjections of 8-OH-DPAT suppressed stress-induced increases in plasma corticosterone within 10 min of the onset of handling prior to restraint and, as measured by area-under-the-curve analysis of plasma corticosterone concentrations, during the 40 min period of restraint. These data support an inhibitory role for serotonergic systems, acting within the DMH, on stress-induced activation of the HPA axis. Lay summary: Inhibitory control of the hypothalamic-pituitary-adrenal (HPA) stress hormone response is important for well-being. One neurochemical implicated in inhibitory control of the HPA axis is serotonin. In this study we show that activation of serotonin receptors, specifically inhibitory 5-HT 1A receptors in the dorsomedial hypothalamus, is sufficient to inhibit stress-induced HPA axis activity in rats.

  9. Stress and serial adult metamorphosis: multiple roles for the stress axis in socially regulated sex change.

    PubMed

    Solomon-Lane, Tessa K; Crespi, Erica J; Grober, Matthew S

    2013-01-01

    Socially regulated sex change in teleost fishes is a striking example of social status information regulating biological function in the service of reproductive success. The establishment of social dominance in sex changing species is translated into a cascade of changes in behavior, physiology, neuroendocrine function, and morphology that transforms a female into a male, or vice versa. The hypothalamic-pituitary-interrenal axis (HPI, homologous to HP-adrenal axis in mammals and birds) has been hypothesized to play a mechanistic role linking status to sex change. The HPA/I axis responds to environmental stressors by integrating relevant external and internal cues and coordinating biological responses including changes in behavior, energetics, physiology, and morphology (i.e., metamorphosis). Through actions of both corticotropin-releasing factor and glucocorticoids, the HPA/I axis has been implicated in processes central to sex change, including the regulation of agonistic behavior, social status, energetic investment, and life history transitions. In this paper, we review the hypothesized roles of the HPA/I axis in the regulation of sex change and how those hypotheses have been tested to date. We include original data on sex change in the bluebanded goby (Lythyrpnus dalli), a highly social fish capable of bidirectional sex change. We then propose a model for HPA/I involvement in sex change and discuss how these ideas might be tested in the future. Understanding the regulation of sex change has the potential to elucidate evolutionarily conserved mechanisms responsible for translating pertinent information about the environment into coordinated biological changes along multiple body axes.

  10. Stress and serial adult metamorphosis: multiple roles for the stress axis in socially regulated sex change

    PubMed Central

    Solomon-Lane, Tessa K.; Crespi, Erica J.; Grober, Matthew S.

    2013-01-01

    Socially regulated sex change in teleost fishes is a striking example of social status information regulating biological function in the service of reproductive success. The establishment of social dominance in sex changing species is translated into a cascade of changes in behavior, physiology, neuroendocrine function, and morphology that transforms a female into a male, or vice versa. The hypothalamic-pituitary-interrenal axis (HPI, homologous to HP-adrenal axis in mammals and birds) has been hypothesized to play a mechanistic role linking status to sex change. The HPA/I axis responds to environmental stressors by integrating relevant external and internal cues and coordinating biological responses including changes in behavior, energetics, physiology, and morphology (i.e., metamorphosis). Through actions of both corticotropin-releasing factor and glucocorticoids, the HPA/I axis has been implicated in processes central to sex change, including the regulation of agonistic behavior, social status, energetic investment, and life history transitions. In this paper, we review the hypothesized roles of the HPA/I axis in the regulation of sex change and how those hypotheses have been tested to date. We include original data on sex change in the bluebanded goby (Lythyrpnus dalli), a highly social fish capable of bidirectional sex change. We then propose a model for HPA/I involvement in sex change and discuss how these ideas might be tested in the future. Understanding the regulation of sex change has the potential to elucidate evolutionarily conserved mechanisms responsible for translating pertinent information about the environment into coordinated biological changes along multiple body axes. PMID:24265604

  11. Gut-Microbiota-Brain Axis and Its Effect on Neuropsychiatric Disorders With Suspected Immune Dysregulation.

    PubMed

    Petra, Anastasia I; Panagiotidou, Smaro; Hatziagelaki, Erifili; Stewart, Julia M; Conti, Pio; Theoharides, Theoharis C

    2015-05-01

    Gut microbiota regulate intestinal function and health. However, mounting evidence indicates that they can also influence the immune and nervous systems and vice versa. This article reviews the bidirectional relationship between the gut microbiota and the brain, termed the microbiota-gut-brain (MGB) axis, and discusses how it contributes to the pathogenesis of certain disorders that may involve brain inflammation. Articles were identified with a search of Medline (starting in 1980) by using the key words anxiety, attention-deficit hypersensitivity disorder (ADHD), autism, cytokines, depression, gut, hypothalamic-pituitary-adrenal (HPA) axis, inflammation, immune system, microbiota, nervous system, neurologic, neurotransmitters, neuroimmune conditions, psychiatric, and stress. Various afferent or efferent pathways are involved in the MGB axis. Antibiotics, environmental and infectious agents, intestinal neurotransmitters/neuromodulators, sensory vagal fibers, cytokines, and essential metabolites all convey information to the central nervous system about the intestinal state. Conversely, the hypothalamic-pituitary-adrenal axis, the central nervous system regulatory areas of satiety, and neuropeptides released from sensory nerve fibers affect the gut microbiota composition directly or through nutrient availability. Such interactions seem to influence the pathogenesis of a number of disorders in which inflammation is implicated, such as mood disorder, autism-spectrum disorders, attention-deficit hypersensitivity disorder, multiple sclerosis, and obesity. Recognition of the relationship between the MGB axis and the neuroimmune systems provides a novel approach for better understanding and management of these disorders. Appropriate preventive measures early in life or corrective measures such as use of psychobiotics, fecal microbiota transplantation, and flavonoids are discussed. Copyright © 2015 Elsevier HS Journals, Inc. All rights reserved.

  12. Neuroactive steroids modulate HPA axis activity and cerebral brain-derived neurotrophic factor (BDNF) protein levels in adult male rats.

    PubMed

    Naert, Gaëlle; Maurice, Tangui; Tapia-Arancibia, Lucia; Givalois, Laurent

    2007-01-01

    Depression is characterized by hypothalamo-pituitary-adrenocortical (HPA) axis hyperactivity. In this major mood disorder, neurosteroids and neurotrophins, particularly brain-derived neurotrophic factor (BDNF), seem to be implicated and have some antidepressant effects. BDNF is highly involved in regulation of the HPA axis, whereas neurosteroids effects have never been clearly established. In this systematic in vivo study, we showed that the principal neuroactive steroids, namely dehydroepiandrosterone (DHEA), pregnenolone (PREG) and their sulfate esters (DHEA-S and PREG-S), along with allopregnanolone (ALLO), stimulated HPA axis activity, while also modulating central BDNF contents. In detail, DHEA, DHEA-S, PREG, PREG-S and ALLO induced corticotropin-releasing hormone (CRH) and/or arginine vasopressin (AVP) synthesis and release at the hypothalamic level, thus enhancing plasma adrenocorticotropin hormone (ACTH) and corticosterone (CORT) concentrations. This stimulation of the HPA axis occurred concomitantly with BDNF modifications at the hippocampus, amygdala and hypothalamus levels. We showed that these neurosteroids induced rapid effects, probably via neurotransmitter receptors and delayed effects perhaps after metabolization in other neuroactive steroids. We highlighted that they had peripheral effects directly at the adrenal level by inducing CORT release, certainly after estrogenic metabolization. In addition, we showed that, at the dose used, only DHEA, DHEA-S and PREG-S had antidepressant effects. In conclusion, these results highly suggest that part of the HPA axis and antidepressant effects of neuroactive steroids could be mediated by BDNF, particularly at the amygdala level. They also suggest that neurosteroids effects on central BDNF could partially explain the trophic properties of these molecules.

  13. Gastrointestinal disorders associated with migraine: A comprehensive review

    PubMed Central

    Cámara-Lemarroy, Carlos R; Rodriguez-Gutierrez, Rene; Monreal-Robles, Roberto; Marfil-Rivera, Alejandro

    2016-01-01

    Migraine is a recurrent and commonly disabling primary headache disorder that affects over 17% of women and 5%-8% of men. Migraine susceptibility is multifactorial with genetic, hormonal and environmental factors all playing an important role. The physiopathology of migraine is complex and still not fully understood. Many different neuropeptides, neurotransmitters and brain pathways have been implicated. In connection with the myriad mechanisms and pathways implicated in migraine, a variety of multisystemic comorbidities (e.g., cardiovascular, psychiatric and other neurological conditions) have been found to be closely associated with migraine. Recent reports demonstrate an increased frequency of gastrointestinal (GI) disorders in patients with migraine compared with the general population. Helicobacter pylori infection, irritable bowel syndrome, gastroparesis, hepatobiliary disorders, celiac disease and alterations in the microbiota have been linked to the occurrence of migraine. Several mechanisms involving the gut-brain axis, such as a chronic inflammatory response with inflammatory and vasoactive mediators passing to the circulatory system, intestinal microbiota modulation of the enteric immunological milieu and dysfunction of the autonomic and enteric nervous system, have been postulated to explain these associations. However, the precise mechanisms and pathways related to the gut-brain axis in migraine need to be fully elucidated. In this review, we survey the available literature linking migraine with GI disorders. We discuss the possible physiopathological mechanisms, and clinical implications as well as several future areas of interest for research. PMID:27688656

  14. Gastrointestinal disorders associated with migraine: A comprehensive review.

    PubMed

    Cámara-Lemarroy, Carlos R; Rodriguez-Gutierrez, Rene; Monreal-Robles, Roberto; Marfil-Rivera, Alejandro

    2016-09-28

    Migraine is a recurrent and commonly disabling primary headache disorder that affects over 17% of women and 5%-8% of men. Migraine susceptibility is multifactorial with genetic, hormonal and environmental factors all playing an important role. The physiopathology of migraine is complex and still not fully understood. Many different neuropeptides, neurotransmitters and brain pathways have been implicated. In connection with the myriad mechanisms and pathways implicated in migraine, a variety of multisystemic comorbidities (e.g., cardiovascular, psychiatric and other neurological conditions) have been found to be closely associated with migraine. Recent reports demonstrate an increased frequency of gastrointestinal (GI) disorders in patients with migraine compared with the general population. Helicobacter pylori infection, irritable bowel syndrome, gastroparesis, hepatobiliary disorders, celiac disease and alterations in the microbiota have been linked to the occurrence of migraine. Several mechanisms involving the gut-brain axis, such as a chronic inflammatory response with inflammatory and vasoactive mediators passing to the circulatory system, intestinal microbiota modulation of the enteric immunological milieu and dysfunction of the autonomic and enteric nervous system, have been postulated to explain these associations. However, the precise mechanisms and pathways related to the gut-brain axis in migraine need to be fully elucidated. In this review, we survey the available literature linking migraine with GI disorders. We discuss the possible physiopathological mechanisms, and clinical implications as well as several future areas of interest for research.

  15. Non-uniform muscle fat replacement along the proximodistal axis in Duchenne muscular dystrophy.

    PubMed

    Hooijmans, M T; Niks, E H; Burakiewicz, J; Anastasopoulos, C; van den Berg, S I; van Zwet, E; Webb, A G; Verschuuren, J J G M; Kan, H E

    2017-05-01

    The progressive replacement of muscle tissue by fat in Duchenne muscular dystrophy (DMD) has been studied using quantitative MRI between, but not within, individual muscles. We studied fat replacement along the proximodistal muscle axis using the Dixon technique on a 3T MR scanner in 22 DMD patients and 12 healthy controls. Mean fat fractions per muscle per slice for seven lower and upper leg muscles were compared between and within groups assuming a parabolic distribution. Average fat fraction for a small central slice stack and a large coverage slice stack were compared to the value when the stack was shifted one slice (15 mm) up or down. Higher fat fractions were observed in distal and proximal muscle segments compared to the muscle belly in all muscles of the DMD subjects (p <0.001). A shift of 15 mm resulted in a difference in mean fat fraction which was on average 1-2% ranging up to 12% (p <0.01). The muscle end regions are exposed to higher mechanical strain, which points towards mechanical disruption of the sarcolemma as one of the key factors in the pathophysiology. Overall, this non-uniformity in fat replacement needs to be taken into account to prevent sample bias when applying quantitative MRI as biomarker in clinical trials for DMD. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. AP-1 proteins in the adult brain: facts and fiction about effectors of neuroprotection and neurodegeneration.

    PubMed

    Herdegen, T; Waetzig, V

    2001-04-30

    Jun and Fos proteins are induced and activated following most physiological and pathophysiological stimuli in the brain. Only few data allow conclusions about distinct functions of AP-1 proteins in neurodegeneration and neuroregeneration, and these functions mainly refer to c-Jun and its activation by JNKs. Apoptotic functions of activated c-Jun affect hippocampal, nigral and primary cultured neurons following excitotoxic stimulation and destruction of the neuron-target-axis including withdrawal of trophic molecules. The inhibition of JNKs might exert neuroprotection by subsequent omission of c-Jun activation. Besides endogenous neuronal functions, the c-Jun/AP-1 proteins can damage the nervous system by upregulation of harmful programs in non-neuronal cells (e.g. microglia) with release of neurodegenerative molecules. In contrast, the differentiation with neurite extension and maturation of neural cells in vitro indicate physiological and potentially neuroprotective functions of c-Jun and JNKs including sensoring for alterations in the cytoskeleton. This review summarizes the multiple molecular interfunctions which are involved in the shift from the physiological role to degenerative effects of the Jun/JNK-axis such as cell type-specific expression and intracellular localization of scaffold proteins and upstream activators, antagonistic phosphatases, interaction with other kinase systems, or the activation of transcription factors competing for binding to JNK proteins and AP-1 DNA elements.

  17. Breath volatile organic compounds for the gut-fatty liver axis: Promise, peril, and path forward

    PubMed Central

    Solga, Steven Francis

    2014-01-01

    The worldwide interest in the gut microbiome and its impact on the upstream liver highlight a critical upside to breath research: it can uniquely measure otherwise unmeasurable biology. Bacteria make gases [volatile organic compounds (VOCs)] that are directly relevant to pathophysiology of the fatty liver and associated conditions, including obesity. Measurement of these VOCs and their metabolites in the exhaled breath, therefore, present an opportunity to safely and easily evaluate, on both a personal and a population level, some of our most pressing public health threats. This is an opportunity that must be pursued. To date, however, breath analysis remains a slowly evolving field which only occasionally impacts clinical research or patient care. One major obstacle to progress is that breath analysis is inherently and emphatically mutli-disciplinary: it connects engineering, chemistry, breath mechanics, biology and medicine. Unbalanced or incomplete teams may produce inconsistent and often unsatisfactory results. A second impediment is the lack of a well-known stepwise structure for the development of non-invasive diagnostics. As a result, the breath research landscape is replete with orphaned single-center pilot studies. Often, important hypotheses and key observations have not been pursued to maturation. This paper reviews the rationale and requirements for breath VOC research applied to the gut-fatty liver axis and offers some suggestions for future development. PMID:25083075

  18. The microbial-mammalian metabolic axis, a critical symbiotic relationship

    PubMed Central

    Boulangé, Claire L.

    2016-01-01

    Purpose of review The microbial-mammalian symbiosis plays a critical role in metabolic health. Microbial metabolites emerge as key messengers in the complex communication between the gut microbiota and their host. These chemical signals are mainly derived from nutritional precursors, which also are in turn also able to modify gut microbiota population. Recent advances in the characterization of the gut microbiome and the mechanisms involved in this symbiosis allow the development of nutritional interventions. This review covers the latest findings on the microbial-mammalian metabolic axis as a critical symbiotic relationship particularly relevant to clinical nutrition. Recent findings The modulation of host metabolism by metabolites derived from the gut microbiota highlights the importance of gut microbiota in disease prevention and causation. The composition of microbial populations in our gut ecosystem is a critical pathophysiological factor, mainly regulated by diet, but also by the host’s characteristics (e.g. genetics, circadian clock, immune system, age). Tailored interventions, including dietary changes, the use of antibiotics, prebiotic and probiotic supplementation and faecal transplantation are promising strategies to manipulate microbial ecology. Summary The microbiota is now considered as an easily reachable target to prevent and treat related diseases. Recent findings in both mechanisms of its interactions with host metabolism and in strategies to modify gut microbiota will allow us to develop more effective treatments especially in metabolic diseases. PMID:27137897

  19. Prognostic and diagnostic value of EEG signal coupling measures in coma.

    PubMed

    Zubler, Frederic; Koenig, Christa; Steimer, Andreas; Jakob, Stephan M; Schindler, Kaspar A; Gast, Heidemarie

    2016-08-01

    Our aim was to assess the diagnostic and predictive value of several quantitative EEG (qEEG) analysis methods in comatose patients. In 79 patients, coupling between EEG signals on the left-right (inter-hemispheric) axis and on the anterior-posterior (intra-hemispheric) axis was measured with four synchronization measures: relative delta power asymmetry, cross-correlation, symbolic mutual information and transfer entropy directionality. Results were compared with etiology of coma and clinical outcome. Using cross-validation, the predictive value of measure combinations was assessed with a Bayes classifier with mixture of Gaussians. Five of eight measures showed a statistically significant difference between patients grouped according to outcome; one measure revealed differences in patients grouped according to the etiology. Interestingly, a high level of synchrony between the left and right hemisphere was associated with mortality on intensive care unit, whereas higher synchrony between anterior and posterior brain regions was associated with survival. The combination with the best predictive value reached an area-under the curve of 0.875 (for patients with post anoxic encephalopathy: 0.946). EEG synchronization measures can contribute to clinical assessment, and provide new approaches for understanding the pathophysiology of coma. Prognostication in coma remains a challenging task. qEEG could improve current multi-modal approaches. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  20. How Well Do We Understand the Long-Term Health Implications of Childhood Bullying?

    PubMed

    Zarate-Garza, Pablo Patricio; Biggs, Bridget K; Croarkin, Paul; Morath, Brooke; Leffler, Jarrod; Cuellar-Barboza, Alfredo; Tye, Susannah J

    Once dismissed as an innocuous experience of childhood, bullying is now recognized as having significant psychological effects, particularly with chronic exposure. Victims of bullying are at risk for a number of psychiatric disturbances, and growing evidence suggests that the pathophysiological effects of bullying, as with other forms of trauma and chronic stress, create additional health risks. We review the literature on the known sequelae of bullying, including psychiatric and physiological health effects, with a focus on implications for the victim. In addition, since it is now well established that early and chronic exposure to stress has a significant negative impact on health outcomes, we explore the implications of this research in relation to bullying and victimization in childhood. In particular, we examine how aspects of the stress response, via epigenetic, inflammatory, and metabolic mediators, have the capacity to compromise mental and physical health, and to increase the risk of disease. Research on the relevant mechanisms associated with bullying and on potential interventions to decrease morbidity is urgently needed.

  1. Individual differences in early adolescents' latent trait cortisol (LTC): Relation to early adversity.

    PubMed

    Stroud, Catherine B; Chen, Frances R; Doane, Leah D; Granger, Douglas A

    2016-09-01

    Substantial evidence suggests that youth who experience early adversity exhibit alterations in hypothalamic pituitary adrenal (HPA) axis functioning, thereby increasing risk for negative health outcomes. However, few studies have explored whether early adversity alters enduring trait indicators of HPA axis activity. Using objective contextual stress interviews with adolescents and their mothers to assess early adversity, we examined the cumulative impact of nine types of early adversity on early adolescents girls' latent trait cortisol (LTC). Adolescents (n = 122; M age = 12.39 years) provided salivary cortisol samples three times a day (waking, 30 min post-waking, and bedtime) over 3 days. Latent state-trait modeling indicated that the waking and 30 min post-waking samples contributed to a LTC factor. Moreover, greater early adversity was associated with a lower LTC level. Implications of LTC for future research examining the impact of early adversity on HPA axis functioning are discussed. © 2016 Wiley Periodicals, Inc. Dev Psychobiol 58:700-713, 2016. © 2016 Wiley Periodicals, Inc.

  2. Impact of food restriction on ovarian development, RFamide-related peptide-3 and the hypothalamic-pituitary-ovarian axis in pre-pubertal ewes.

    PubMed

    Li, H; Song, H; Huang, M; Nie, H; Wang, Z; Wang, F

    2014-10-01

    RFamide-related peptide-3 (RFRP-3), the mammalian ortholog of gonadotropin-inhibiting hormone, has been implicated as a mediator between reproduction and energy balance. This study aimed to investigate the physiological effects of RFRP-3 on the process of ovarian development in food-restricted pre-pubertal ewes. The results showed that food restriction significantly inhibited the ovarian development and follicular growth. The data of qPCR in the hypothalamic-pituitary-ovarian (HPO) axis showed that food restriction not only upregulated RFRP-3 mRNA expression but also downregulated the mRNA expression of gonadotropin-releasing-hormone receptor, follicle-stimulating hormone receptor and luteinizing hormone receptor (LHR). Immunohistochemistry of RFRP-3 in the ovaries suggested that RFRP-3 may regulate the follicular development. These results suggested that the changes of RFRP-3 in response to food restriction might influence the HPO axis and inhibit ovarian development. © 2014 Blackwell Verlag GmbH.

  3. Examining reference frame interaction in spatial memory using a distribution analysis.

    PubMed

    Street, Whitney N; Wang, Ranxiao Frances

    2016-02-01

    Previous research showed competition among reference frames in spatial attention and language. The present studies developed a new distribution analysis to examine reference frame interactions in spatial memory. Participants viewed virtual arrays of colored pegs and were instructed to remember them either from their own perspective or from the perspective aligned with the rectangular floor. Then they made judgments of relative directions from their respective encoding orientation. Those taking the floor-axis perspective showed systematic bias in the signed errors toward their egocentric perspective, while those taking their own perspective showed no systematic bias, both for random and symmetrical object arrays. The bias toward the egocentric perspective was observed when learning a real symmetric regular object array with strong environmental cues for the aligned axis. These results indicate automatic processing of the self reference while taking the floor-axis perspective but not vice versa, and suggest that research on spatial memory needs to consider the implications of competition effects in reference frame use.

  4. The role of neuroinflammation and neurovascular dysfunction in major depressive disorder.

    PubMed

    Jeon, Sang Won; Kim, Yong-Ku

    2018-01-01

    Although depression has generally been explained with monoamine theory, it is far more multifactorial, and therapies that address the disease's pathway have not been developed. In this context, an understanding of neuroinflammation and neurovascular dysfunction would enable a more comprehensive approach to depression. Inflammation is in a sense a type of allostatic load involving the immune, endocrine, and nervous systems. Neuroinflammation is involved in the pathophysiology of depression by increasing proinflammatory cytokines, activating the hypothalamus-pituitary-adrenal axis, increasing glucocorticoid resistance, and affecting serotonin synthesis and metabolism, neuronal apoptosis and neurogenesis, and neuroplasticity. In future, identifying the subtypes of depression with increased vulnerability to inflammation and testing the effects of inflammatory modulating agents in these patient groups through clinical trials will lead to more concrete conclusions on the matter. The vascular depression hypothesis is supported by evidence for the association between vascular disease and late-onset depression and between ischemic brain lesions and distinctive depressive symptoms. Vascular depression may be the entity most suitable for studies of the mechanisms of depression. Pharmacotherapies used in the prevention and treatment of cerebrovascular disease may help prevent vascular depression. In future, developments in structural and functional imaging, electrophysiology, chronobiology, and genetics will reveal the association between depression and brain lesions. This article aims to give a general review of the existing issues examined in the literature pertaining to depression-related neuroinflammatory and vascular functions, related pathophysiology, applicability to depression treatment, and directions for future research.

  5. The role of neuroinflammation and neurovascular dysfunction in major depressive disorder

    PubMed Central

    Jeon, Sang Won; Kim, Yong-Ku

    2018-01-01

    Although depression has generally been explained with monoamine theory, it is far more multifactorial, and therapies that address the disease’s pathway have not been developed. In this context, an understanding of neuroinflammation and neurovascular dysfunction would enable a more comprehensive approach to depression. Inflammation is in a sense a type of allostatic load involving the immune, endocrine, and nervous systems. Neuroinflammation is involved in the pathophysiology of depression by increasing proinflammatory cytokines, activating the hypothalamus–pituitary–adrenal axis, increasing glucocorticoid resistance, and affecting serotonin synthesis and metabolism, neuronal apoptosis and neurogenesis, and neuroplasticity. In future, identifying the subtypes of depression with increased vulnerability to inflammation and testing the effects of inflammatory modulating agents in these patient groups through clinical trials will lead to more concrete conclusions on the matter. The vascular depression hypothesis is supported by evidence for the association between vascular disease and late-onset depression and between ischemic brain lesions and distinctive depressive symptoms. Vascular depression may be the entity most suitable for studies of the mechanisms of depression. Pharmacotherapies used in the prevention and treatment of cerebrovascular disease may help prevent vascular depression. In future, developments in structural and functional imaging, electrophysiology, chronobiology, and genetics will reveal the association between depression and brain lesions. This article aims to give a general review of the existing issues examined in the literature pertaining to depression-related neuroinflammatory and vascular functions, related pathophysiology, applicability to depression treatment, and directions for future research. PMID:29773951

  6. [The physiopathology of critical ischemia of the lower limbs].

    PubMed

    Novo, S; Abrignani, M G; Liquori, M; Sangiorgi, G B; Strano, A

    1993-10-01

    Peripheral obstructive arterial disease (POAD) of the lower limbs is the third main complication of atherosclerosis, after coronary artery disease and cerebrovascular disease. In 15-20% of cases POAD have an unfavourable evolution toward critical leg ischemia (CLI). This clinical condition is characterized by the onset of rest pain and/or trophic cutaneous lesions until gangrene appears. In some cases amputation is needed. The pathophysiological, clinical and therapeutic aspects of CLI were recently discussed in two Consensus Conferences held in Berlin in 1989 and in Rudesheim in 1991, with the elaboration of a final draft published on circulation. CLI appears when peripheral perfusion critically decreases due to macro and microcirculatory alterations. Atherosclerotic plaque is the primum movens, but often there are more plaques in sequence along the ilio-femoro-popliteal axis. The pathophysiological and clinical consequences are more severe if the stenosis is haemodynamically important, after a rapid progression of plaque growth or when thrombotic complications develop. The reduction in distal perfusion induces troubles in the microcirculation and an embalancement between the microvascular defense system (MDS) and the microvascular flow regulating system (MFRS) with endothelial dysfunction, platelet and leucocytes activation, worsening of blood viscosity due to the increase in fibrinogen levels and to the red cells deformability changes, activation of coagulation and impairment of fibrinolysis. So, a vicious circle appears with further worsening of distal perfusion and onset of trophic lesions. A further worsening of CLI can derive from local recurrent infections particularly frequent in diabetic patients.

  7. Metabolic syndrome induced by anticancer treatment in childhood cancer survivors.

    PubMed

    Chueh, Hee Won; Yoo, Jae Ho

    2017-06-01

    The number of childhood cancer survivors is increasing as survival rates improve. However, complications after treatment have not received much attention, particularly metabolic syndrome. Metabolic syndrome comprises central obesity, dyslipidemia, hypertension, and insulin resistance, and cancer survivors have higher risks of cardiovascular events compared with the general population. The mechanism by which cancer treatment induces metabolic syndrome is unclear. However, its pathophysiology can be categorized based on the cancer treatment type administered. Brain surgery or radiotherapy may induce metabolic syndrome by damaging the hypothalamic-pituitary axis, which may induce pituitary hormone deficiencies. Local therapy administered to particular endocrine organs directly damages the organs and causes hormone deficiencies, which induce obesity and dyslipidemia leading to metabolic syndrome. Chemotherapeutic agents interfere with cell generation and growth, damage the vascular endothelial cells, and increase the cardiovascular risk. Moreover, chemotherapeutic agents induce oxidative stress, which also induces metabolic syndrome. Physical inactivity caused by cancer treatment or the cancer itself, dietary restrictions, and the frequent use of antibiotics may also be risk factors for metabolic syndrome. Since childhood cancer survivors with metabolic syndrome have higher risks of cardiovascular events at an earlier age, early interventions should be considered. The optimal timing of interventions and drug use has not been established, but lifestyle modifications and exercise interventions that begin during cancer treatment might be beneficial and tailored education and interventions that account for individual patients' circumstances are needed. This review evaluates the recent literature that describes metabolic syndrome in cancer survivors, with a focus on its pathophysiology.

  8. Hepatic encephalopathy in acute-on-chronic liver failure.

    PubMed

    Lee, Guan-Huei

    2015-10-01

    The presence of hepatic encephalopathy (HE) within 4 weeks is part of the criteria for defining acute-on-chronic liver failure (ACLF). The pathophysiology of HE is complex, and hyperammonemia and cerebral hemodynamic dysfunction appear to be central in the pathogenesis of encephalopathy. Recent data also suggest that inflammatory mediators may have a significant role in modulating the cerebral effect of ammonia. Multiple prospective and retrospective studies have shown that hepatic encephalopathy in ACLF patients is associated with higher mortality, especially in those with grade III-IV encephalopathy, similar to that of acute liver failure (ALF). Although significant cerebral edema detected by CT in ACLF patients appeared to be less common, specialized MRI imaging was able to detect cerebral edema even in low grade HE. Ammonia-focused therapy constitutes the basis of current therapy, as in the treatment of ALF. Emerging treatment strategies focusing on modulating the gut-liver-circulation-brain axis are discussed.

  9. Probiotics and irritable bowel syndrome.

    PubMed

    Dai, Cong; Zheng, Chang-Qing; Jiang, Min; Ma, Xiao-Yu; Jiang, Li-Juan

    2013-09-28

    Irritable bowel syndrome (IBS) is common gastrointestinal problems. It is characterized by abdominal pain or discomfort, and is associated with changes in stool frequency and/or consistency. The etiopathogenesis of IBS may be multifactorial, as is the pathophysiology, which is attributed to alterations in gastrointestinal motility, visceral hypersensitivity, intestinal microbiota, gut epithelium and immune function, dysfunction of the brain-gut axis or certain psychosocial factors. Current therapeutic strategies are often unsatisfactory. There is now increasing evidence linking alterations in the gastrointestinal microbiota and IBS. Probiotics are living organisms which, when ingested in certain numbers, exert health benefits beyond inherent basic nutrition. Probiotics have numerous positive effects in the gastrointestinal tract. Recently, many studies have suggested that probiotics are effective in the treatment of IBS. The mechanisms of probiotics in IBS are very complex. The purpose of this review is to summarize the evidence and mechanisms for the use of probiotics in the treatment of IBS.

  10. Irritable Bowel Syndrome: Yoga as Remedial Therapy

    PubMed Central

    Kavuri, Vijaya; Raghuram, Nagarathna; Malamud, Ariel; Selvan, Senthamil R.

    2015-01-01

    Irritable bowel syndrome (IBS) is a group of symptoms manifesting as a functional gastrointestinal (GI) disorder in which patients experience abdominal pain, discomfort, and bloating that is often relieved with defecation. IBS is often associated with a host of secondary comorbidities such as anxiety, depression, headaches, and fatigue. In this review, we examined the basic principles of Pancha Kosha (five sheaths of human existence) concept from an Indian scripture Taittiriya Upanishad and the pathophysiology of a disease from the Yoga approach, Yoga Vasistha's Adhi (originated from mind) and Vyadhi (ailment/disease) concept. An analogy between the age old, the most profound concept of Adhi-Vyadhi, and modern scientific stress-induced dysregulation of brain-gut axis, as it relates to IBS that could pave way for impacting IBS, is emphasized. Based on these perspectives, a plausible Yoga module as a remedial therapy is provided to better manage the primary and secondary symptoms of IBS. PMID:26064164

  11. Gut microbiota, metabolism and psychopathology: A critical review and novel perspectives.

    PubMed

    Groen, Robin N; de Clercq, Nicolien C; Nieuwdorp, Max; Hoenders, H J Rogier; Groen, Albert K

    2018-06-01

    Psychiatric disorders are often associated with metabolic comorbidities. However, the mechanisms through which metabolic and psychiatric disorders are connected remain unclear. Pre-clinical studies in rodents indicate that the bidirectional signaling between the intestine and the brain, the so-called microbiome-gut-brain axis, plays an important role in the regulation of both metabolism and behavior. The gut microbiome produces a vast number of metabolites that may be transported into the host and play a part in homeostatic control of metabolism as well as brain function. In addition to short chain fatty acids, many of these metabolites have been identified in recent years. To what extent both microbiota and their products control human metabolism and behavior is a subject of intense investigation. In this review, we will discuss the most recent findings concerning alterations in the gut microbiota as a possible pathophysiological factor for the co-occurrence of metabolic comorbidities in psychiatric disorders.

  12. Permanent Central Diabetes Insipidus as a Complication of S. pneumoniae Meningitis in the Pediatric Population.

    PubMed

    Statz, Hannah; Hsu, Benson S

    2016-05-01

    Diabetes insipidus is a rare but recognized complication of meningitis. The occurrence of diabetes insidipus has been previously attributed to Streptococcus pneumoniae (S. pneumoniae) in a handful of patients and only once within the pediatric subpopulation. We present the clinical course of a previously healthy 2-year, 8-month-old male child ultimately diagnosed with central diabetes insipidus (CDI) secondary to S. pneumoniae meningitis. Permanent CDI following S. pneumoniae meningitis is unique to our case and has not been previously described. Following the case presentation, we describe the etiology, pathophysiology, diagnosis, and treatment of CDI. The mechanism proposed for this clinical outcome is cerebral herniation for a sufficient duration and subsequent ischemia leading to the development of permanent CDI. Providers should be aware of CDI resulting from S. pneumoniae meningitis as prompt diagnosis and management may decrease the risk of permanent hypothalamo-pituitary axis damage. Copyright© South Dakota State Medical Association.

  13. Diabetes Insipidus.

    PubMed

    Lu, H A Jenny

    2017-01-01

    Disruption of water and electrolyte balance is frequently encountered in clinical medicine. Regulating water metabolism is critically important. Diabetes insipidus (DI) presented with excessive water loss from the kidney is a major disorder of water metabolism. To understand the molecular and cellular mechanisms and pathophysiology of DI and rationales of clinical management of DI is important for both research and clinical practice. This chapter will first review various forms of DI focusing on central diabetes insipidus (CDI) and nephrogenic diabetes insipidus (NDI ) . This is followed by a discussion of regulatory mechanisms underlying CDI and NDI , with a focus on the regulatory axis of vasopressin, vasopressin receptor 2 (V2R ) and the water channel molecule, aquaporin 2 (AQP2 ). The clinical manifestation, diagnosis and management of various forms of DI will also be discussed with highlights of some of the latest therapeutic strategies that are developed from in vitro experiments and animal studies.

  14. New Insights into Thyroid Hormone Action

    PubMed Central

    Mendoza, Arturo; Hollenberg, Anthony N.

    2017-01-01

    Thyroid hormones (TH) are endocrine messengers essential for normal development and function of virtually every vertebrate. The hypothalamic-pituitary-thyroid axis is exquisitely modulated to maintain nearly constant TH (T4 and T3) concentrations in circulation. However peripheral tissues and the CNS control the intracellular availability of TH, suggesting that circulating concentrations of TH are not fully representative of what each cell type sees. Indeed, recent work in the field has identified that TH transporters, deiodinases and thyroid hormone receptor coregulators can strongly control tissue-specific sensitivity to a set amount of TH. Furthermore, the mechanism by which the thyroid hormone receptors regulate target gene expression can vary by gene, tissue and cellular context. This review will highlight novel insights into the machinery that controls the cellular response to TH, which include unique signaling cascades. These findings shed new light into the pathophysiology of human diseases caused by abnormal TH signaling. PMID:28174093

  15. The serotonin axis: Shared mechanisms in seizures, depression and SUDEP

    PubMed Central

    Richerson, George B.; Buchanan, Gordon F.

    2010-01-01

    Summary There is a growing appreciation that patients with seizures are also affected by a number of co-morbid conditions, including an increase in prevalence of depression (Kanner, 2009), sleep apnea (Chihorek et al, 2007), and sudden death (Ryvlin et al, 2006; Tomson et al, 2008). The mechanisms responsible for these associations are unclear. Here we discuss the possibility that underlying pathology in the serotonin (5-HT) system of epilepsy patients lowers the threshold for seizures, while also increasing the risk of depression and sudden death. We propose that post-ictal dysfunction of 5-HT neurons causes depression of breathing and arousal in some epilepsy patients, and this can lead to sudden unexpected death in epilepsy (SUDEP). We further draw parallels between SUDEP and sudden infant death syndrome (SIDS), which may share pathophysiological mechanisms, and which have both been linked to defects in the 5-HT system. PMID:21214537

  16. ER-mediated stress induces mitochondrial-dependent caspases activation in NT2 neuron-like cells.

    PubMed

    Arduino, Daniela M; Esteves, A Raquel; Domingues, A Filipa; Pereira, Claudia M F; Cardoso, Sandra M; Oliveira, Catarina R

    2009-11-30

    Recent studies have revealed that endoplasmic reticulum (ER) disturbance is involved in the pathophysiology of neurodegenerative disorders, contributing to the activation of the ER stress-mediated apoptotic pathway. Therefore, we investigated here the molecular mechanisms underlying the ER-mitochondria axis, focusing on calcium as a potential mediator of cell death signals. Using NT2 cells treated with brefeldin A or tunicamycin, we observed that ER stress induces changes in the mitochondrial function, impairing mitochondrial membrane potential and distressing mitochondrial respiratory chain complex Moreover, stress stimuli at ER level evoked calcium fluxes between ER and mitochondria. Under these conditions, ER stress activated the unfolded protein response by an overexpression of GRP78, and also caspase-4 and-2, both involved upstream of caspase-9. Our findings show that ER and mitochondria interconnection plays a prominent role in the induction of neuronal cell death under particular stress circumstances.

  17. Pathophysiology of avian intestinal ion transport.

    PubMed

    Nighot, Meghali; Nighot, Prashant

    2018-06-01

    The gut has great importance for the commercial success of poultry production. Numerous ion transporters, exchangers, and channels are present on both the apical and the basolateral membrane of intestinal epithelial cells, and their differential expression along the crypt-villus axis within the various intestinal segments ensures efficient intestinal absorption and effective barrier function. Recent studies have shown that intensive production systems, microbial exposure, and nutritional management significantly affect intestinal physiology and intestinal ion transport. Dysregulation of normal intestinal ion transport is manifested as diarrhoea, malabsorption, and intestinal inflammation resulting into poor production efficiency. This review discusses the basic mechanisms involved in avian intestinal ion transport and the impact of development during growth, nutritional and environmental alterations, and intestinal microbial infections on it. The effect of intestinal microbial infections on avian intestinal ion transport depends on factors such as host immunity, pathogen virulence, and the mucosal organisation of the particular intestinal segment.

  18. A three-dimensional axis for the study of femoral neck orientation

    PubMed Central

    Bonneau, Noémie; Libourel, Paul-Antoine; Simonis, Caroline; Puymerail, Laurent; Baylac, Michel; Tardieu, Christine; Gagey, Olivier

    2012-01-01

    A common problem in the quantification of the orientation of the femoral neck is the difficulty to determine its true axis; however, this axis is typically estimated visually only. Moreover, the orientation of the femoral neck is commonly analysed using angles that are dependent on anatomical planes of reference and only quantify the orientation in two dimensions. The purpose of this study is to establish a method to determine the three-dimensional orientation of the femoral neck using a three-dimensional model. An accurate determination of the femoral neck axis requires a reconsideration of the complex architecture of the proximal femur. The morphology of the femoral neck results from both the medial and arcuate trabecular systems, and the asymmetry of the cortical bone. Given these considerations, two alternative models, in addition to the cylindrical one frequently assumed, were tested. The surface geometry of the femoral neck was subsequently used to fit one cylinder, two cylinders and successive cross-sectional ellipses. The model based on successive ellipses provided a significantly smaller average deviation than the two other models (P < 0.001) and reduced the observer-induced measurement error. Comparisons with traditional measurements and analyses on a sample of 91 femora were also performed to assess the validity of the model based on successive ellipses. This study provides a semi-automatic and accurate method for the determination of the functional three-dimensional femoral neck orientation avoiding the use of a reference plane. This innovative method has important implications for future studies that aim to document and understand the change in the orientation of the femoral neck associated with the acquisition of a bipedal gait in humans. Moreover, the precise determination of the three-dimensional orientation has implications in current research involved in developing clinical applications in diagnosis, hip surgery and rehabilitation. PMID:22967192

  19. [Stress and psychotic transition: A literature review].

    PubMed

    Chaumette, B; Kebir, O; Mam Lam Fook, C; Bourgin, J; Godsil, B P; Gaillard, R; Jay, T M; Krebs, M-O

    2016-08-01

    Psychiatric disorders are consistent with the gene x environment model, and non-specific environmental factors such as childhood trauma, urbanity, and migration have been implicated. All of these factors have in common to dysregulate the biological pathways involved in response to stress. Stress is a well-known precipitating factor implicated in psychiatric disorders such as depression, bipolar disorder, anxiety, and possibly schizophrenia. More precisely, psychosocial stress induces dysregulation of the hypothalamic-pituitary-adrenal axis (HPA) and could modify neurotransmission, which raises the question of the involvement of stress-related biological changes in psychotic disorders. Indeed, the literature reveals dysregulation of the HPA axis in schizophrenia. This dysregulation seems to be present in the prodromal phases (UHR subjects for ultra-high risk) and early schizophrenia (FEP for first episode psychosis). Thus, and following the stress-vulnerability model, stress could act directly on psychotic onset and precipitate the transition of vulnerable subjects to a full-blown psychosis. The present paper reviews the literature on stress and onset of schizophrenia, with consideration for the causal role vs. associated role of HPA axis dysregulation in schizophrenia and the factors that influence it, in particular during prodromal and earlier phases. We also discuss different methods developed to measure stress in humans. We performed a bibliographic search using the keywords 'cortisol', 'glucocorticoid', 'HPA' with 'UHR', 'CHR', 'at-risk mental state', 'first episode psychosis', 'schizotypal', 'prodromal schizophrenia' in Medline, Web of Knowledge (WOS), and EBSCO completed by a screening of the references of the selected articles. Stress has been studied for many years in schizophrenia, either by subjective methods (questionnaires), or objective methods (standardized experimental protocols) with biological sampling and/or brain imaging methods. These methods have suggested a link between dysregulation of the HPA axis and psychotic symptoms both through abnormal basal levels of cortisol and flattened reactivity to social stress. Imaging results suggest indirect modifications, including abnormal pituitary or hippocampal volume. Several factors dysregulating the HPA axis have also been highlighted, such as consumption of drugs (i.e. cannabis), childhood trauma or genetic factors (such as COMT, or MTHFR variants). Psychological stress induces subcortical dopaminergic activation attributable to hypothalamic-pituitary-adrenal (HPA) axis dysregulation. This dysregulation is present in the prodromal phase (UHR) in patients who have experienced a first psychotic episode (FEP) and in siblings of schizophrenic patients. Stress dysregulation is a plausible hypothesis to understand the psychosis onset. The effect of stress on brain pathways could participate to the mechanisms underlying the onset of psychotic symptoms, both as a precipitating factor and as a marker of a predisposing vulnerability. This dysregulation fits into the gene x environment model: in subjects with genetic predispositions, stressful environmental factors can modify biological pathways implicated in psychiatric disorders, promoting the emergence of symptoms. However, many confounding factors obscure the literature, and further studies are needed in schizophrenic patients, UHR and FEP patients to clarify the precise role of stress in psychotic transition. Identification of stress biomarkers could help diagnosis and prognosis, and pave the way for specific care strategies based on stress-targeted therapies. Copyright © 2016 L’Encéphale, Paris. Published by Elsevier Masson SAS. All rights reserved.

  20. Anal Fissure

    PubMed Central

    Beaty, Jennifer Sam; Shashidharan, M.

    2016-01-01

    Anal fissure (fissure-in-ano) is a very common anorectal condition. The exact etiology of this condition is debated; however, there is a clear association with elevated internal anal sphincter pressures. Though hard bowel movements are implicated in fissure etiology, they are not universally present in patients with anal fissures. Half of all patients with fissures heal with nonoperative management such as high fiber diet, sitz baths, and pharmacological agents. When nonoperative management fails, surgical treatment with lateral internal sphincterotomy has a high success rate. In this chapter, we will review the symptoms, pathophysiology, and management of anal fissures. PMID:26929749

  1. Rasmussen's encephalitis presenting as focal cortical dysplasia

    PubMed Central

    O'Rourke, D.J.; Bergin, A.; Rotenberg, A.; Peters, J.; Gorman, M.; Poduri, A.; Cryan, J.; Lidov, H.; Madsen, J.; Harini, C.

    2014-01-01

    Rasmussen's encephalitis is a rare syndrome characterized by intractable seizures, often associated with epilepsia partialis continua and symptoms of progressive hemispheric dysfunction. Seizures are usually the hallmark of presentation, but antiepileptic drug treatment fails in most patients and is ineffective against epilepsia partialis continua, which often requires surgical intervention. Co-occurrence of focal cortical dysplasia has only rarely been described and may have implications regarding pathophysiology and management. We describe a rare case of dual pathology of Rasmussen's encephalitis presenting as a focal cortical dysplasia (FCD) and discuss the literature on this topic. PMID:25667877

  2. Post-Operative Cognitive Dysfunction: An exploration of the inflammatory hypothesis and novel therapies.

    PubMed

    Skvarc, David R; Berk, Michael; Byrne, Linda K; Dean, Olivia M; Dodd, Seetal; Lewis, Matthew; Marriott, Andrew; Moore, Eileen M; Morris, Gerwyn; Page, Richard S; Gray, Laura

    2018-01-01

    Post-Operative Cognitive Dysfunction (POCD) is a highly prevalent condition with significant clinical, social and financial impacts for patients and their communities. The underlying pathophysiology is becoming increasingly understood, with the role of neuroinflammation and oxidative stress secondary to surgery and anaesthesia strongly implicated. This review aims to describe the putative mechanisms by which surgery-induced inflammation produces cognitive sequelae, with a focus on identifying potential novel therapies based upon their ability to modify these pathways. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  3. Rosacea, Reactive Oxygen Species, and Azelaic Acid

    PubMed Central

    2009-01-01

    Rosacea is a common skin condition thought to be primarily an inflammatory disorder. Neutrophils, in particular, have been implicated in the inflammation associated with rosacea and mediate many of their effects through the release of reactive oxygen species. Recently, the role of reactive oxygen species in the pathophysiology of rosacea has been recognized. Many effective agents for rosacea, including topical azelaic acid and topical metronidazole, have anti-inflammatory properties. in-vitro models have demonstrated the potent antioxidant effects of azelaic acid, providing a potential mechanistic explanation for its efficacy in the treatment of rosacea. PMID:20967185

  4. Rosacea, reactive oxygen species, and azelaic Acid.

    PubMed

    Jones, David A

    2009-01-01

    Rosacea is a common skin condition thought to be primarily an inflammatory disorder. Neutrophils, in particular, have been implicated in the inflammation associated with rosacea and mediate many of their effects through the release of reactive oxygen species. Recently, the role of reactive oxygen species in the pathophysiology of rosacea has been recognized. Many effective agents for rosacea, including topical azelaic acid and topical metronidazole, have anti-inflammatory properties. in-vitro models have demonstrated the potent antioxidant effects of azelaic acid, providing a potential mechanistic explanation for its efficacy in the treatment of rosacea.

  5. Functional dyspepsia and nonerosive reflux disease: clinical interactions and their implications.

    PubMed

    Keohane, John; Quigley, Eamonn M M

    2007-08-08

    Functional dyspepsia or nonulcer dyspepsia, and nonerosive reflux disease (NERD) or endoscopy-negative reflux disease, are common reasons for referral to a gastroenterologist. Although there is much confusion with regard to definition, recent research would suggest that these 2 conditions are linked and may represent components in the spectrum of the same disease entity, in terms of both symptoms and pathophysiology. Several theories have been proposed regarding the etiology of these disorders, including acid exposure, visceral hypersensitivity, impaired fundal accommodation, delayed gastric emptying, and Helicobacter pylori infection.

  6. Pain management in lung cancer.

    PubMed

    Nurwidya, Fariz; Syahruddin, Elisna; Yunus, Faisal

    2016-01-01

    Lung cancer is the leading cause of cancer-related mortality worldwide. Not only burdened by the limited overall survival, lung cancer patient also suffer from various symptoms, such as pain, that implicated in the quality of life. Cancer pain is a complicated and transiently dynamic symptom that results from multiple mechanisms. This review will describe the pathophysiology of cancer pain and general approach in managing a patient with lung cancer pain. The use of opioids, nonsteroidal anti-inflammatory drugs (NSAIDs), and adjuvant analgesia, as part of the pharmacology therapy along with interventional strategy, will also be discussed.

  7. Cachexia in chronic obstructive pulmonary disease: new insights and therapeutic perspective

    PubMed Central

    Sanders, Karin J. C.; Kneppers, Anita E. M.; van de Bool, Coby; Langen, Ramon C. J.

    2015-01-01

    Abstract Cachexia and muscle wasting are well recognized as common and partly reversible features of chronic obstructive pulmonary disease (COPD), adversely affecting disease progression and prognosis. This argues for integration of weight and muscle maintenance in patient care. In this review, recent insights are presented in the diagnosis of muscle wasting in COPD, the pathophysiology of muscle wasting, and putative mechanisms involved in a disturbed energy balance as cachexia driver. We discuss the therapeutic implications of these new insights for optimizing and personalizing management of COPD‐induced cachexia. PMID:27066314

  8. Pathophysiological implications of neurovascular P450 in brain disorders

    PubMed Central

    Ghosh, Chaitali; Hossain, Mohammed; Solanki, Jesal; Dadas, Aaron; Marchi, Nicola; Janigro, Damir

    2016-01-01

    Over the past decades, the significance of cytochrome P450 (CYP) enzymes has expanded beyond their role as peripheral drug metabolizers in the liver and gut. CYP enzymes are also functionally active at the neurovascular interface. CYP expression is modulated by disease states, impacting cellular functions, detoxification, and reactivity to toxic stimuli and brain drug biotransformation. Unveiling the physiological and molecular complexity of brain P450 enzymes will improve our understanding of the mechanisms underlying brain drug availability, pharmacological efficacy, and neurotoxic adverse effects from pharmacotherapy targeting brain disorders. PMID:27312874

  9. Sleep Disorders in Childhood Neurological Diseases

    PubMed Central

    Liu, Zhao

    2017-01-01

    Sleep problems are frequently addressed as a primary or secondary concern during the visit to the pediatric neurology clinic. Sleep disorders can mimic other neurologic diseases (e.g., epilepsy and movement disorders), and this adds challenges to the diagnostic process. Sleep disorders can significantly affect the quality of life and functionality of children in general and those with comorbid neurological diseases in particular. Understanding the pathophysiology of sleep disorders, recognizing the implications of sleep disorder in children with neurologic diseases and behavioral difficulties, and early intervention continue to evolve resulting in better neurocognitive outcomes. PMID:28937639

  10. Low serotonin1B receptor binding potential in the anterior cingulate cortex in drug-free patients with recurrent major depressive disorder.

    PubMed

    Tiger, Mikael; Farde, Lars; Rück, Christian; Varrone, Andrea; Forsberg, Anton; Lindefors, Nils; Halldin, Christer; Lundberg, Johan

    2016-07-30

    The pathophysiology of major depressive disorder (MDD) is not fully understood and the diagnosis is largely based on history and clinical examination. So far, several lines of preclinical data and a single imaging study implicate a role for the serotonin1B (5-HT1B) receptor subtype. We sought to study 5-HT1B receptor binding in brain regions of reported relevance in patients with MDD. Subjects were examined at the Karolinska Institutet PET centre using positron emission tomography (PET) and the 5-HT1B receptor selective radioligand [(11)C]AZ10419369. Ten drug-free patients with recurrent MDD and ten control subjects matched for age and sex were examined. The main outcome measure was [(11)C]AZ10419369 binding in brain regions of reported relevance in the pathophysiology of MDD. The [(11)C]AZ10419369 binding potential was significantly lower in the MDD group compared with the healthy control group in the anterior cingulate cortex (20% between-group difference), the subgenual prefrontal cortex (17% between-group difference), and in the hippocampus (32% between-group difference). The low anterior cingulate [(11)C]AZ10419369 binding potential in patients with recurrent MDD positions 5-HT1B receptor binding in this region as a putative biomarker for MDD and corroborate a role of the anterior cingulate cortex and associated areas in the pathophysiology of recurrent MDD. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  11. Congenital coronary artery anomalies: a bridge from embryology to anatomy and pathophysiology--a position statement of the development, anatomy, and pathology ESC Working Group.

    PubMed

    Pérez-Pomares, José María; de la Pompa, José Luis; Franco, Diego; Henderson, Deborah; Ho, Siew Yen; Houyel, Lucile; Kelly, Robert G; Sedmera, David; Sheppard, Mary; Sperling, Silke; Thiene, Gaetano; van den Hoff, Maurice; Basso, Cristina

    2016-02-01

    Congenital coronary artery anomalies are of major significance in clinical cardiology and cardiac surgery due to their association with myocardial ischaemia and sudden death. Such anomalies are detectable by imaging modalities and, according to various definitions, their prevalence ranges from 0.21 to 5.79%. This consensus document from the Development, Anatomy and Pathology Working Group of the European Society of Cardiology aims to provide: (i) a definition of normality that refers to essential anatomical and embryological features of coronary vessels, based on the integrated analysis of studies of normal and abnormal coronary embryogenesis and pathophysiology; (ii) an animal model-based systematic survey of the molecular and cellular mechanisms that regulate coronary blood vessel development; (iii) an organization of the wide spectrum of coronary artery anomalies, according to a comprehensive anatomical and embryological classification scheme; (iv) current knowledge of the pathophysiological mechanisms underlying symptoms and signs of coronary artery anomalies, with diagnostic and therapeutic implications. This document identifies the mosaic-like embryonic development of the coronary vascular system, as coronary cell types differentiate from multiple cell sources through an intricate network of molecular signals and haemodynamic cues, as the necessary framework for understanding the complex spectrum of coronary artery anomalies observed in human patients. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2016. For permissions please email: journals.permissions@oup.com.

  12. Glutaminase-Deficient Mice Display Hippocampal Hypoactivity, Insensitivity to Pro-Psychotic Drugs and Potentiated Latent Inhibition: Relevance to Schizophrenia

    PubMed Central

    Gaisler-Salomon, Inna; Miller, Gretchen M; Chuhma, Nao; Lee, Sooyeon; Zhang, Hong; Ghoddoussi, Farhad; Lewandowski, Nicole; Fairhurst, Stephen; Wang, Yvonne; Conjard-Duplany, Agnès; Masson, Justine; Balsam, Peter; Hen, René; Arancio, Ottavio; Galloway, Matthew P; Moore, Holly M; Small, Scott A; Rayport, Stephen

    2009-01-01

    Dysregulated glutamatergic neurotransmission has been strongly implicated in the pathophysiology of schizophrenia (SCZ). Recently, presynaptic modulation of glutamate transmission has been shown to have therapeutic promise. We asked whether genetic knockdown of glutaminase (gene GLS1) to reduce glutamatergic transmission presynaptically by slowing the recycling of glutamine to glutamate, would produce a phenotype relevant to SCZ and its treatment. GLS1 heterozygous (GLS1 het) mice showed about a 50% global reduction in glutaminase activity, and a modest reduction in glutamate levels in brain regions relevant to SCZ pathophysiology, but displayed neither general behavioral abnormalities nor SCZ-associated phenotypes. Functional imaging, measuring regional cerebral blood volume, showed hippocampal hypometabolism mainly in the CA1 subregion and subiculum, the inverse of recent clinical imaging findings in prodromal and SCZ patients. GLS1 het mice were less sensitive to the behavioral stimulating effects of amphetamine, showed a reduction in amphetamine-induced striatal dopamine release and in ketamine-induced frontal cortical activation, suggesting that GLS1 het mice are resistant to the effects of these pro-psychotic challenges. Moreover, GLS1 het mice showed clozapine-like potentiation of latent inhibition, suggesting that reduction in glutaminase has antipsychotic-like properties. These observations provide further support for the pivotal role of altered glutamatergic synaptic transmission in the pathophysiology of SCZ, and suggest that presynaptic modulation of the glutamine–glutamate pathway through glutaminase inhibition may provide a new direction for the pharmacotherapy of SCZ. PMID:19516252

  13. Paroxysmal exercise-induced dyskinesia and epilepsy is due to mutations in SLC2A1, encoding the glucose transporter GLUT1

    PubMed Central

    Suls, Arvid; Dedeken, Peter; Goffin, Karolien; Van Esch, Hilde; Dupont, Patrick; Cassiman, David; Kempfle, Judith; Wuttke, Thomas V.; Weber, Yvonne; Lerche, Holger; Afawi, Zaid; Vandenberghe, Wim; Korczyn, Amos D.; Berkovic, Samuel F.; Ekstein, Dana; Kivity, Sara; Ryvlin, Philippe; Claes, Lieve R. F.; Deprez, Liesbet; Maljevic, Snezana; Vargas, Alberto; Van Dyck, Tine; Goossens, Dirk; Del-Favero, Jurgen; Van Laere, Koen; De Jonghe, Peter

    2008-01-01

    Paroxysmal exercise-induced dyskinesia (PED) can occur in isolation or in association with epilepsy, but the genetic causes and pathophysiological mechanisms are still poorly understood. We performed a clinical evaluation and genetic analysis in a five-generation family with co-occurrence of PED and epilepsy (n = 39), suggesting that this combination represents a clinical entity. Based on a whole genome linkage analysis we screened SLC2A1, encoding the glucose transporter of the blood-brain-barrier, GLUT1 and identified heterozygous missense and frameshift mutations segregating in this and three other nuclear families with a similar phenotype. PED was characterized by choreoathetosis, dystonia or both, affecting mainly the legs. Predominant epileptic seizure types were primary generalized. A median CSF/blood glucose ratio of 0.52 (normal >0.60) in the patients and a reduced glucose uptake by mutated transporters compared with the wild-type as determined in Xenopus oocytes confirmed a pathogenic role of these mutations. Functional imaging studies implicated alterations in glucose metabolism in the corticostriate pathways in the pathophysiology of PED and in the frontal lobe cortex in the pathophysiology of epileptic seizures. Three patients were successfully treated with a ketogenic diet. In conclusion, co-occurring PED and epilepsy can be due to autosomal dominant heterozygous SLC2A1 mutations, expanding the phenotypic spectrum associated with GLUT1 deficiency and providing a potential new treatment option for this clinical syndrome. PMID:18577546

  14. Glutaminase-deficient mice display hippocampal hypoactivity, insensitivity to pro-psychotic drugs and potentiated latent inhibition: relevance to schizophrenia.

    PubMed

    Gaisler-Salomon, Inna; Miller, Gretchen M; Chuhma, Nao; Lee, Sooyeon; Zhang, Hong; Ghoddoussi, Farhad; Lewandowski, Nicole; Fairhurst, Stephen; Wang, Yvonne; Conjard-Duplany, Agnès; Masson, Justine; Balsam, Peter; Hen, René; Arancio, Ottavio; Galloway, Matthew P; Moore, Holly M; Small, Scott A; Rayport, Stephen

    2009-09-01

    Dysregulated glutamatergic neurotransmission has been strongly implicated in the pathophysiology of schizophrenia (SCZ). Recently, presynaptic modulation of glutamate transmission has been shown to have therapeutic promise. We asked whether genetic knockdown of glutaminase (gene GLS1) to reduce glutamatergic transmission presynaptically by slowing the recycling of glutamine to glutamate, would produce a phenotype relevant to SCZ and its treatment. GLS1 heterozygous (GLS1 het) mice showed about a 50% global reduction in glutaminase activity, and a modest reduction in glutamate levels in brain regions relevant to SCZ pathophysiology, but displayed neither general behavioral abnormalities nor SCZ-associated phenotypes. Functional imaging, measuring regional cerebral blood volume, showed hippocampal hypometabolism mainly in the CA1 subregion and subiculum, the inverse of recent clinical imaging findings in prodromal and SCZ patients. GLS1 het mice were less sensitive to the behavioral stimulating effects of amphetamine, showed a reduction in amphetamine-induced striatal dopamine release and in ketamine-induced frontal cortical activation, suggesting that GLS1 het mice are resistant to the effects of these pro-psychotic challenges. Moreover, GLS1 het mice showed clozapine-like potentiation of latent inhibition, suggesting that reduction in glutaminase has antipsychotic-like properties. These observations provide further support for the pivotal role of altered glutamatergic synaptic transmission in the pathophysiology of SCZ, and suggest that presynaptic modulation of the glutamine-glutamate pathway through glutaminase inhibition may provide a new direction for the pharmacotherapy of SCZ.

  15. Glutamate and its receptors in the pathophysiology and treatment of major depressive disorder

    PubMed Central

    Ionescu, Dawn F.; Richards, Erica M.; Zarate, Carlos A.

    2014-01-01

    Monoaminergic neurotransmitter (serotonin, norepinephrine and dopamine) mechanisms of disease dominated the research landscape in the pathophysiology and treatment of major depressive disorder (MDD) for more than 50 years and still dominate available treatment options. However, the sum of all brain neurons that use monoamines as their primary neurotransmitter is <20 %. In addition, most patients treated with monoaminergic antidepressants are left with significant residual symptoms and psychosocial disability not to mention side effects, e.g., sexual dysfunction. In the past several decades, there has been greater focus on the major excitatory neurotransmitter in the human brain, glutamate, in the pathophysiology and treatment of MDD. Although several preclinical and human magnetic resonance spectroscopy studies had already implicated glutamatergic abnormalities in the human brain, it was rocketed by the discovery that the N-methyl-D-aspartate receptor antagonist ketamine has rapid and potent antidepressant effects in even the most treatment-resistant MDD patients, including those who failed to respond to electroconvulsive therapy and who have active suicidal ideation. In this review, we will first provide a brief introduction to glutamate and its receptors in the mammalian brain. We will then review the clinical evidence for glutamatergic dysfunction in MDD, the discovery and progress-to-date with ketamine as a rapidly acting antidepressant, and other glutamate receptor modulators (including proprietary medications) for treatment-resistant depression. We will finally conclude by offering potential future directions necessary to realize the enormous therapeutic promise of glutamatergic antidepressants. PMID:24318540

  16. Tipping the Balance of Autism Risk: Potential Mechanisms Linking Pesticides and Autism

    PubMed Central

    Hertz-Picciotto, Irva; Pessah, Isaac N.

    2012-01-01

    Background: Autism spectrum disorders (ASDs) have been increasing in many parts of the world and a portion of cases are attributable to environmental exposures. Conclusive replicated findings have yet to appear on any specific exposure; however, mounting evidence suggests gestational pesticides exposures are strong candidates. Because multiple developmental processes are implicated in ASDs during gestation and early life, biological plausibility is more likely if these agents can be shown to affect core pathophysiological features. Objectives: Our objectives were to examine shared mechanisms between autism pathophysiology and the effects of pesticide exposures, focusing on neuroexcitability, oxidative stress, and immune functions and to outline the biological correlates between pesticide exposure and autism risk. Methods: We review and discuss previous research related to autism risk, developmental effects of early pesticide exposure, and basic biological mechanisms by which pesticides may induce or exacerbate pathophysiological features of autism. Discussion: On the basis of experimental and observational research, certain pesticides may be capable of inducing core features of autism, but little is known about the timing or dose, or which of various mechanisms is sufficient to induce this condition. Conclusions: In animal studies, we encourage more research on gene × environment interactions, as well as experimental exposure to mixtures of compounds. Similarly, epidemiologic studies in humans with exceptionally high exposures can identify which pesticide classes are of greatest concern, and studies focused on gene × environment are needed to determine if there are susceptible subpopulations at greater risk from pesticide exposures. PMID:22534084

  17. Early Developmental Conditioning of Later Health and Disease: Physiology or Pathophysiology?

    PubMed Central

    Hanson, M. A.; Gluckman, P. D.

    2014-01-01

    Extensive experimental animal studies and epidemiological observations have shown that environmental influences during early development affect the risk of later pathophysiological processes associated with chronic, especially noncommunicable, disease (NCD). This field is recognized as the developmental origins of health and disease (DOHaD). We discuss the extent to which DOHaD represents the result of the physiological processes of developmental plasticity, which may have potential adverse consequences in terms of NCD risk later, or whether it is the manifestation of pathophysiological processes acting in early life but only becoming apparent as disease later. We argue that the evidence suggests the former, through the operation of conditioning processes induced across the normal range of developmental environments, and we summarize current knowledge of the physiological processes involved. The adaptive pathway to later risk accords with current concepts in evolutionary developmental biology, especially those concerning parental effects. Outside the normal range, effects on development can result in nonadaptive processes, and we review their underlying mechanisms and consequences. New concepts concerning the underlying epigenetic and other mechanisms involved in both disruptive and nondisruptive pathways to disease are reviewed, including the evidence for transgenerational passage of risk from both maternal and paternal lines. These concepts have wider implications for understanding the causes and possible prevention of NCDs such as type 2 diabetes and cardiovascular disease, for broader social policy and for the increasing attention paid in public health to the lifecourse approach to NCD prevention. PMID:25287859

  18. Patterns of fracture and tidal stresses due to nonsynchronous rotation - Implications for fracturing on Europa

    NASA Technical Reports Server (NTRS)

    Helfenstein, P.; Parmentier, E. M.

    1985-01-01

    This study considers the global patterns of fracture that would result from nonsynchronous rotation of a tidally distorted planetary body. The incremental horizontal stresses in a thin elastic or viscous shell due to a small displacement of the axis of maximum tidal elongation are derived, and the resulting stress distributions are applied to interpret the observed pattern of fracture lineaments on Europa. The observed pattern of lineaments can be explained by nonsynchronous rotation if these features formed by tension fracturing and dike emplacement. Tension fracturing can occur for a small displacement of the tidal axis, so that the resulting lineaments may be consistent with other evidence suggesting a young age for the surface.

  19. Puberty and Perimenopause: Reproductive Transitions and their Implications for Women's Health

    PubMed Central

    Hoyt, Lindsay T.; Falconi, April

    2015-01-01

    This scoping review synthesizes existing research on two major transitions in females’ lives: puberty and perimenopause. These two periods of vast physiological change demarcate the beginning and the end of the reproductive life cycle and are associated with major neuroendocrine reorganization across two key systems, the hypothalamic-pituitary-gonadal (HPG) axis the hypothalamus-pituitary-adrenal (HPA) axis. Despite growing evidence suggesting that the timing and experience of puberty and perimenopause are related to various physical and mental health outcomes (e.g., mood disorders, metabolism, cardiovascular health, autoimmune conditions and cancer), these two processes are rarely examined together. In this paper, we bridge these disparate literatures to highlight similarities, isolate inconsistencies, and identify important areas for future research in women’s health. PMID:25797100

  20. How the Invisible Hand is Supposed to Adjust the Natural Thermostat: A Guide for the Perplexed.

    PubMed

    Storm, Servaas

    2017-10-01

    Mainstream climate economics takes global warming seriously, but perplexingly concludes that the optimal economic policy is to almost do nothing about it. This conclusion can be traced to just a few "normative" assumptions, over which there exists fundamental disagreement amongst economists. This paper explores two axes of this disagreement. The first axis ("market vs. regulation") measures faith in the invisible hand to adjust the natural thermostat. The second axis expresses differences in views on the efficiency and equity implications of climate action. The two axes combined lead to a classification of conflicting approaches in climate economics. The variety of approaches does not imply a post-modern "anything goes", as the contradictions between climate and capitalism cannot be wished away.

  1. Visceral obesity and psychosocial stress: a generalised control theory model

    NASA Astrophysics Data System (ADS)

    Wallace, Rodrick

    2016-07-01

    The linking of control theory and information theory via the Data Rate Theorem and its generalisations allows for construction of necessary conditions statistical models of body mass regulation in the context of interaction with a complex dynamic environment. By focusing on the stress-related induction of central obesity via failure of HPA axis regulation, we explore implications for strategies of prevention and treatment. It rapidly becomes evident that individual-centred biomedical reductionism is an inadequate paradigm. Without mitigation of HPA axis or related dysfunctions arising from social pathologies of power imbalance, economic insecurity, and so on, it is unlikely that permanent changes in visceral obesity for individuals can be maintained without constant therapeutic effort, an expensive - and likely unsustainable - public policy.

  2. Developmental Patterning as a Quantitative Trait: Genetic Modulation of the Hoxb6 Mutant Skeletal Phenotype

    PubMed Central

    Kappen, Claudia

    2016-01-01

    The process of patterning along the anterior-posterior axis in vertebrates is highly conserved. The function of Hox genes in the axis patterning process is particularly well documented for bone development in the vertebral column and the limbs. We here show that Hoxb6, in skeletal elements at the cervico-thoracic junction, controls multiple independent aspects of skeletal pattern, implicating discrete developmental pathways as substrates for this transcription factor. In addition, we demonstrate that Hoxb6 function is subject to modulation by genetic factors. These results establish Hox-controlled skeletal pattern as a quantitative trait modulated by gene-gene interactions, and provide evidence that distinct modifiers influence the function of conserved developmental genes in fundamental patterning processes. PMID:26800342

  3. Vitamin D and its effects on cardiovascular diseases: a comprehensive review

    PubMed Central

    Pérez-Hernández, Nonanzit; Aptilon-Duque, Gad; Nostroza-Hernández, María Cristina; Vargas-Alarcón, Gilberto; Rodríguez-Pérez, José Manuel; Blachman-Braun, Ruben

    2016-01-01

    Vitamin D is a molecule that is actively involved in multiple metabolic pathways. It is mostly known for its implications related to calcium metabolism. It has also been determined that it actively participates in the cardiovascular system, influencing blood pressure, coronary artery disease and other vascular diseases, such as heart failure and atrial fibrillation. Furthermore, it has been established that this vitamin is extensively involved in the regulation of both the renin angiotensin aldosterone system and the immune system. In this review, we present the different vitamin D metabolic pathways associated with the cardiovascular pathophysiology, and we include studies in animal and human models, as well as some of the controversies found in the literature. This review also incorporates an overview of the implications in the molecular biology and public health fields. PMID:27117316

  4. Late Tertiary Motion of the Hawaiian Hot Spot Relative to the Spin Axis and Implications for True Polar Wander

    NASA Astrophysics Data System (ADS)

    Gaastra, K.; Gordon, R. G.

    2017-12-01

    Recent work on Pacific plate paleomagnetic poles, when combined with analyses of equatorial sediment facies [Suárez and Molnar, 1980; Gordon and Cape, 1981; Parés and Moore, 2005], demonstrates that the Hawaiian hotspot lay 3° to 4° north of its present latitude during formation of most of the Hawaiian chain [Woodworth et al., this meeting]. Available Pacific plate paleomagnetic and equatorial sediment facies data constrain the hotspot to this latitude from 44 Ma until 12 Ma, with the hotspot shifting to its present latitude since 12 Ma. Comparison with the apparent polar wander of the Indo-Atlantic hotspots inferred from continental paleomagnetic poles combined with plate reconstructions indicates that global hotspots have moved in unison relative to the spin axis since 12 Ma, indicating the occurrence of an episode of true polar wander, but the timing is not well constrained from available data. The direction of the indicated true polar wander is similar to that observed over the past few decades from space geodetic data [Argus and Gross, 2004], which suggests that the same episode of true polar wander may be occurring today.For these reasons we present a skewness analysis of marine magnetic anomaly 3r ( 5.5 Ma) with the goal of limiting the timing and rate of the shift of the Hawaiian hotspot (and other hotspots) relative to the spin axis. We will determine whether the shift occurred partly or entirely in the past 5.5 Ma, which has implications for the hotspot and paleomagnetic reference frames.

  5. Chemotactic Cues for NOTCH1-Dependent Leukemia

    PubMed Central

    Piovan, Erich; Tosello, Valeria; Amadori, Alberto; Zanovello, Paola

    2018-01-01

    The NOTCH signaling pathway is a conserved signaling cascade that regulates many aspects of development and homeostasis in multiple organ systems. Aberrant activity of this signaling pathway is linked to the initiation and progression of several hematological malignancies, exemplified by T-cell acute lymphoblastic leukemia (T-ALL). Interestingly, frequent non-mutational activation of NOTCH1 signaling has recently been demonstrated in B-cell chronic lymphocytic leukemia (B-CLL), significantly extending the pathogenic significance of this pathway in B-CLL. Leukemia patients often present with high-blood cell counts, diffuse disease with infiltration of the bone marrow, secondary lymphoid organs, and diffusion to the central nervous system (CNS). Chemokines are chemotactic cytokines that regulate migration of cells between tissues and the positioning and interactions of cells within tissue. Homeostatic chemokines and their receptors have been implicated in regulating organ-specific infiltration, but may also directly and indirectly modulate tumor growth. Recently, oncogenic NOTCH1 has been shown to regulate infiltration of leukemic cells into the CNS hijacking the CC-chemokine ligand 19/CC-chemokine receptor 7 chemokine axis. In addition, a crucial role for the homing receptor axis CXC-chemokine ligand 12/CXC-chemokine receptor 4 has been demonstrated in leukemia maintenance and progression. Moreover, the CCL25/CCR9 axis has been implicated in the homing of leukemic cells into the gut, particularly in the presence of phosphatase and tensin homolog tumor suppressor loss. In this review, we summarize the latest developments regarding the role of NOTCH signaling in regulating the chemotactic microenvironmental cues involved in the generation and progression of T-ALL and compare these findings to B-CLL. PMID:29666622

  6. [The hypothalamic-pituitary-adrenal axis and depressive disorder: recent progress].

    PubMed

    Kunugi, Hiroshi; Hori, Hiroaki; Numakawa, Tadahiro; Ota, Miho

    2012-08-01

    Depression is a stress-induced disorder and there is compelling evidence for the involvement of hypothalamic-pituitary-adrenal (HPA) axis abnormalities in the disease. Chronic hyperactivity of the HPA axis and resultant excessive glucocorticoid (hypercortisolism) may be causal to depression. We demonstrated that the dexamethasone (DEX)/CRH test is a sensitive state-dependent marker to monitor HPA axis abnormalities. Restoration from HPA axis abnormalities occurs with clinical responses to treatment. Brain-derived neurotrophic factor (BDNF) has also been implicated in depression. We found that glucocorticoid (DEX) suppresses BDNF-induced dendrite outgrowth and synaptic formation via blocking the MAPK pathway in early-developing cultured hippocampal neurons. Furthermore, we demonstrated that glucocorticoid receptor (GR) and TrkB (a specific receptor of BDNF) interact and that DEX acutely suppresses BDNF-induced glutamate release by affecting the PLC-gamma pathway in cultured cortical neurons, indicating a mechanism underlying the effect of excessive glucocorticoid on BDNF function and resultant damage in cortical neurons. In a macroscopic view using magnetic resonance imaging (MRI), we found that individuals with hypercortisolism detected by the DEX/CRH test demonstrated volume loss in gray matter and reduced neural network assessed with diffusion tensor imaging in several brain regions. Finally, we observed that individuals with hypocortisolism detected by the DEX/CRH test tend to present more distress symptoms, maladaptive coping styles, and schizotypal personality traits than their counterparts, which points to the important role of hypocortisolism as well as hypercortisolism in depression spectrum disorders.

  7. Repeated handling, restraint, or chronic crowding impair the hypothalamic-pituitary-adrenocortical response to acute restraint stress.

    PubMed

    Gadek-Michalska, A; Bugajski, J

    2003-09-01

    The purpose of the present study was to assess whether, and to what extent prior handling, restraint or social crowding stress during 3-10 days affects the hypothalamic-pituitary-adrenocortical (HPA) response to an acute short-lasting restraint stress. Also the effect of a feedback inhibitory mechanism of corticosterone in the impairment of HPA axis by these stressors was investigated. Male Wistar rats were pretreated with handling 1 min/day for 3-10 days, restraint 2 times daily for 3-7 days and crowding stress for 7 days before exposure to acute restraint stress in metal tubes for 10 min. Some group of rats received exogenous s.c. corticosterone either once 25 mg/kg or 2 times daily 10 mg/kg for 3-10 days before restraint stress. After the last restraint the rats were decapitated and their trunk blood was collected for the measurement of plasma ACTH and serum corticosterone levels. Handling for 3-7 days, restraint for 3-7 days, and crowding for 7 days and a single pretreatment with corticosterone--all significantly and to a similar extent inhibited the restraint stress-induced increase in ACTH and corticosterone secretion. Chronic pretreatment with corticosterone blunted the restraint stress-induced increase in HPA axis activity. These results indicate that repeated short-lasting stress induced by handling, restraint, or crowding potently attenuates the acute restraint stress-induced stimulatory action of the HPA axis. They also indicate adaptive action of moderate stress on the HPA axis response to acute stress. The results also suggest that a short-lasting hypersecretion of corticosterone during psychological stress may induce a prolonged feedback inhibition of the HPA axis activity. The attenuation of HPA axis response by prior handling has also obvious methodological implications.

  8. The Defecation Index as a Measure of Emotionality: Questions Raised by HPA Axis and Prolactin Response to Stress in the Maudsley Model.

    PubMed

    Blizard, David A; Eldridge, J Charles; Jones, Byron C

    2015-05-01

    The Maudsley Reactive and Maudsley Non-Reactive strains have been selectively bred for differences in open-field defecation (OFD), a putative index of stress. We investigated whether variations in the hypothalamic-pituitary-adrenal (HPA) axis are correlated with strain differences in OFD in the Maudsley model. Exposure to the open-field test did not result in increases in ACTH in male rats of either strain and there were no strain differences in the large increases in ACTH and corticosteroid that occurred in response to intermittent footshock. Parallel studies of prolactin showed that Maudsley Reactive rats had greater response to the open-field and to footshock than Maudsley Non-Reactive rats. The lack of correlation between strain differences in OFD and reactivity of the HPA axis is consistent with the idea that HPA response to stress and OFD reflect the output of different neural systems and that individual differences in emotionality, as indexed by OFD do not influence other measures of stress-reactivity in a simple manner, if at all. The reactivity of the prolactin system to the open-field test and lack of response of ACTH to the same situation is consistent with the idea that the prolactin system is sensitive to lower levels of stress than the HPA axis, a finding at variance with the presumed extreme sensitivity of the latter system. Earlier comparisons of the HPA axis in these strains implicate local factors such as neuropeptide-Y peptide in the adrenal in attenuating the response of the adrenal cortex to ACTH and hints at the complexity of regulation of the HPA axis.

  9. A morphospace for reef fishes: elongation is the dominant axis of body shape evolution.

    PubMed

    Claverie, Thomas; Wainwright, Peter C

    2014-01-01

    Tropical reef fishes are widely regarded as being perhaps the most morphologically diverse vertebrate assemblage on earth, yet much remains to be discovered about the scope and patterns of this diversity. We created a morphospace of 2,939 species spanning 56 families of tropical Indo-Pacific reef fishes and established the primary axes of body shape variation, the phylogenetic consistency of these patterns, and whether dominant patterns of shape change can be accomplished by diverse underlying changes. Principal component analysis showed a major axis of shape variation that contrasts deep-bodied species with slender, elongate forms. Furthermore, using custom methods to compare the elongation vector (axis that maximizes elongation deformation) and the main vector of shape variation (first principal component) for each family in the morphospace, we showed that two thirds of the families diversify along an axis of body elongation. Finally, a comparative analysis using a principal coordinate analysis based on the angles among first principal component vectors of each family shape showed that families accomplish changes in elongation with a wide range of underlying modifications. Some groups such as Pomacentridae and Lethrinidae undergo decreases in body depth with proportional increases in all body regions, while other families show disproportionate changes in the length of the head (e.g., Labridae), the trunk or caudal region in all combinations (e.g., Pempheridae and Pinguipedidae). In conclusion, we found that evolutionary changes in body shape along an axis of elongation dominates diversification in reef fishes. Changes in shape on this axis are thought to have immediate implications for swimming performance, defense from gape limited predators, suction feeding performance and access to some highly specialized habitats. The morphological modifications that underlie changes in elongation are highly diverse, suggesting a role for a range of developmental processes and functional consequences.

  10. Social strain and cortisol regulation in midlife in the US.

    PubMed

    Friedman, Esther M; Karlamangla, Arun S; Almeida, David M; Seeman, Teresa E

    2012-02-01

    Chronic stress has been implicated in a variety of adverse health outcomes, from compromised immunity to cardiovascular disease to cognitive decline. The hypothalamic pituitary adrenal (HPA) axis has been postulated to play the primary biological role in translating chronic stress into ill health. Stressful stimuli activate the HPA-axis and cause an increase in circulating levels of cortisol. Frequent and long-lasting activation of the HPA-axis, as occurs in recurrently stressful environments, can in the long run compromise HPA-axis functioning and ultimately affect health. Negative social interactions with family and friends may be a significant source of stress in daily life, constituting the type of recurrently stressful environment that could lead to compromised HPA functioning and altered diurnal cortisol rhythms. We use data from two waves (1995 and 2004-2005) of the Midlife in the U.S. (MIDUS) study and from the National Study of Daily Experiences (NSDE) and piecewise growth curve models to investigate relationships between histories of social strain and patterns of diurnal cortisol rhythms. We find that reported levels of social strain were significantly associated with their diurnal cortisol rhythm. These effects were more pronounced for individuals with a history of greater reported strain across a ten-year period. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Polycystic Ovarian Syndrome: Is It Time to Rename PCOS to HA-PODS?

    PubMed

    Khadilkar, Suvarna Satish

    2016-04-01

    The term polycystic ovarian syndrome (PCOS) came into existence 80 years ago. Pathophysiology of PCOS remains ill understood despite extensive research in this field. It is now accepted that the manifestations of PCOS are not confined to the reproductive dysfunction, and there are endocrine-metabolic implications to PCOS with several consequences to female health. PCOS is a misnomer as ovaries do not contain epithelial cysts, but they are actually antral follicles. Moreover, the name PCOS neither reflects the hyperandrogenism which is essential for diagnosis nor the metabolic derangements. While various authors have expressed the need for change of the name, a suitable new option has not yet been established. This review aims to analyse the current understanding of pathophysiology of PCOS and addresses to the controversies associated with its diagnosis and nomenclature. The name "Hyperandrogenic Persistent Ovulatory Dysfunction Syndrome or HA-PODS" is proposed here to overcome diagnostic pitfalls of previous nomenclature. This new name will help formulate appropriate treatment and promote consistency in research as well. Further categorizations of HA-PODS are also discussed in the article.

  12. Mitochondrial permeability transition pore: a promising target for the treatment of Parkinson's disease.

    PubMed

    Rasheed, Md Zeeshan; Tabassum, Heena; Parvez, Suhel

    2017-01-01

    Among the neurodegenerative diseases (ND), Parkinson's disease affects 6.3 million people worldwide characterized by the progressive loss of dopaminergic neurons in substantia nigra. The mitochondrial permeability transition pore (mtPTP) is a non-selective voltage-dependent mitochondrial channel whose opening modifies the permeability properties of the mitochondrial inner membrane. It is recognized as a potent pharmacological target for diseases associated with mitochondrial dysfunction and excessive cell death including ND such as Parkinson's disease (PD). Imbalance in Ca 2+ concentration, change in mitochondrial membrane potential, overproduction of reactive oxygen species (ROS), or mutation in mitochondrial genome has been implicated in the pathophysiology of the opening of the mtPTP. Different proteins are released by permeability transition including cytochrome c which is responsible for apoptosis. This review aims to discuss the importance of PTP in the pathophysiology of PD and puts together different positive as well as negative aspects of drugs such as pramipexole, ropinirole, minocyclin, rasagilin, and safinamide which act as a blocker or modifier for mtPTP. Some of them may be detrimental in their neuroprotective nature.

  13. New criteria for Alzheimer disease and mild cognitive impairment: implications for the practicing clinician.

    PubMed

    Budson, Andrew E; Solomon, Paul R

    2012-11-01

    In most research studies and clinical trials, Alzheimer disease (AD) has been diagnosed using the criteria developed by the National Institute of Neurological and Communicative Disorders and Stroke and the Alzheimer's Disease and Related Disorders Association work group in 1984. Developments over the last 27 years have lead to the need for new diagnostic criteria. Four articles in the journal Alzheimer's & Dementia in 2011 describe new criteria for AD dementia and mild cognitive impairment (MCI) due to the AD pathophysiological process (MCI due to AD) and the underlying rationale for them. These new criteria emphasize that the AD pathophysiological process starts years and perhaps decades before clinical symptoms, and that biomarkers can be used to detect amyloid β deposition and the effects of neurodegeneration in the brain. These new criteria are immediately helpful to the practicing clinician, providing more accurate and specific guidelines for the diagnosis of AD dementia and MCI due to AD. As new diagnostic tools and new treatments for AD become available, diagnosis using these criteria will enable patients with this disorder to receive the best possible care.

  14. Favorable outcome of early treatment of new onset child and adolescent migraine-implications for disease modification.

    PubMed

    Charles, James A; Peterlin, B L; Rapoport, Alan M; Linder, Steven L; Kabbouche, Marielle A; Sheftell, Fred D

    2009-08-01

    There is evidence that the prevalence of migraine in children and adolescents may be increasing. Current theories of migraine pathophysiology in adults suggest activation of central cortical and brainstem pathways in conjunction with the peripheral trigeminovascular system, which ultimately results in release of neuropeptides, facilitation of central pain pathways, neurogenic inflammation surrounding peripheral vessels, and vasodilatation. Although several risk factors for frequent episodic, chronic, and refractory migraine have been identified, the causes of migraine progression are not known. Migraine pathophysiology has not been fully evaluated in children. In this review, we will first discuss the evidence that early therapeutic interventions in the child or adolescent new onset migraineur, may halt or limit progression and disability. We will then review the evidence suggesting that many adults with chronic or refractory migraine developed their migraine as children or adolescents and may not have been treated adequately with migraine-specific therapy. Finally, we will show that early, appropriate and optimal treatment of migraine during childhood and adolescence may result in disease modification and prevent progression of this disease.

  15. Pathological classification of equine recurrent laryngeal neuropathy.

    PubMed

    Draper, Alexandra C E; Piercy, Richard J

    2018-04-24

    Recurrent Laryngeal Neuropathy (RLN) is a highly prevalent and predominantly left-sided, degenerative disorder of the recurrent laryngeal nerves (RLn) of tall horses, that causes inspiratory stridor at exercise because of intrinsic laryngeal muscle paresis. The associated laryngeal dysfunction and exercise intolerance in athletic horses commonly leads to surgical intervention, retirement or euthanasia with associated financial and welfare implications. Despite speculation, there is a lack of consensus and conflicting evidence supporting the primary classification of RLN, as either a distal ("dying back") axonopathy or as a primary myelinopathy and as either a (bilateral) mononeuropathy or a polyneuropathy; this uncertainty hinders etiological and pathophysiological research. In this review, we discuss the neuropathological changes and electrophysiological deficits reported in the RLn of affected horses, and the evidence for correct classification of the disorder. In so doing, we summarize and reveal the limitations of much historical research on RLN and propose future directions that might best help identify the etiology and pathophysiology of this enigmatic disorder. Copyright © 2018 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.

  16. Fish oil metabolites: translating promising findings from bench to bedside to reduce cardiovascular disease

    PubMed Central

    Calderon Artero, P; Champagne, C; Garigen, S; Mousa, SA; Block, RC

    2012-01-01

    Cardiovascular disease is an inflammatory process and the leading cause of death in the United States. Novel omega-3 derived potent lipid mediators, termed resolvins and protectins, have been identified as major pathophysiologic players in the resolution phase of the inflammatory response. Potent lipid mediators offer tremendous metabolic and pathophysiologic insights in regard to the risk and treatment of cardiovascular disease. In this review, resolvins and protectins are described and analyzed as accelerators of discovery via their potential role as biomarkers for research and clinical decision making in cardiovascular disease. Specific barriers relating to biomarker validation, laboratory methods, and improvement of risk models are introduced and discussed. Potential therapeutic impacts in cardiovascular disease are also mentioned with special consideration for cost-saving implications with respect to dietary fish oil as an alternative to resolvin and protectin treatment. Given the high tolerability of fish oil supplements and previously described benefits of omega-3 fatty acid intake in cardiovascular disease, we conclude that resolvins and protectins are set to soon take center stage as future biomarkers and well-tolerated therapies for cardiovascular disease. PMID:22708071

  17. Nitric Oxide: Perspectives and Emerging Studies of a Well Known Cytotoxin

    PubMed Central

    Paradise, William A.; Vesper, Benjamin J.; Goel, Ajay; Waltonen, Joshua D.; Altman, Kenneth W.; Haines, G. Kenneth; Radosevich, James A.

    2010-01-01

    The free radical nitric oxide (NO•) is known to play a dual role in human physiology and pathophysiology. At low levels, NO• can protect cells; however, at higher levels, NO• is a known cytotoxin, having been implicated in tumor angiogenesis and progression. While the majority of research devoted to understanding the role of NO• in cancer has to date been tissue-specific, we herein review underlying commonalities of NO• which may well exist among tumors arising from a variety of different sites. We also discuss the role of NO• in human physiology and pathophysiology, including the very important relationship between NO• and the glutathione-transferases, a class of protective enzymes involved in cellular protection. The emerging role of NO• in three main areas of epigenetics—DNA methylation, microRNAs, and histone modifications—is then discussed. Finally, we describe the recent development of a model cell line system in which human tumor cell lines were adapted to high NO• (HNO) levels. We anticipate that these HNO cell lines will serve as a useful tool in the ongoing efforts to better understand the role of NO• in cancer. PMID:20717533

  18. Healthy aging and myocardium: A complicated process with various effects in cardiac structure and physiology.

    PubMed

    Nakou, E S; Parthenakis, F I; Kallergis, E M; Marketou, M E; Nakos, K S; Vardas, P E

    2016-04-15

    It is known that there is an ongoing increase in life expectancy worldwide, especially in the population older than 65years of age. Cardiac aging is characterized by a series of complex pathophysiological changes affecting myocardium at structural, cellular, molecular and functional levels. These changes make the aged myocardium more susceptible to stress, leading to a high prevalence of cardiovascular diseases (heart failure, atrial fibrillation, left ventricular hypertrophy, coronary artery disease) in the elderly population. The aging process is genetically programmed but modified by environmental influences, so that the rate of aging can vary widely among people. We summarized the entire data concerning all the multifactorial changes in aged myocardium and highlighting the recent evidence for the pathophysiological basis of cardiac aging. Keeping an eye on the clinical side, this review will explore the potential implications of the age-related changes in the clinical management and on novel therapeutic strategies potentially deriving from the scientific knowledge currently acquired on cardiac aging process. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  19. The Endoplasmic Reticulum Stress Response in Neuroprogressive Diseases: Emerging Pathophysiological Role and Translational Implications.

    PubMed

    Morris, Gerwyn; Puri, Basant K; Walder, Ken; Berk, Michael; Stubbs, Brendon; Maes, Michael; Carvalho, André F

    2018-03-29

    The endoplasmic reticulum (ER) is the main cellular organelle involved in protein synthesis, assembly and secretion. Accumulating evidence shows that across several neurodegenerative and neuroprogressive diseases, ER stress ensues, which is accompanied by over-activation of the unfolded protein response (UPR). Although the UPR could initially serve adaptive purposes in conditions associated with higher cellular demands and after exposure to a range of pathophysiological insults, over time the UPR may become detrimental, thus contributing to neuroprogression. Herein, we propose that immune-inflammatory, neuro-oxidative, neuro-nitrosative, as well as mitochondrial pathways may reciprocally interact with aberrations in UPR pathways. Furthermore, ER stress may contribute to a deregulation in calcium homoeostasis. The common denominator of these pathways is a decrease in neuronal resilience, synaptic dysfunction and even cell death. This review also discusses how mechanisms related to ER stress could be explored as a source for novel therapeutic targets for neurodegenerative and neuroprogressive diseases. The design of randomised controlled trials testing compounds that target aberrant UPR-related pathways within the emerging framework of precision psychiatry is warranted.

  20. The role of hypernitrosylation in the pathogenesis and pathophysiology of neuroprogressive diseases.

    PubMed

    Morris, Gerwyn; Walder, Ken; Carvalho, André F; Tye, Susannah J; Lucas, Kurt; Berk, Michael; Maes, Michael

    2018-01-01

    There is a wealth of data indicating that de novo protein S-nitrosylation in general and protein transnitrosylation in particular mediates the bulk of nitric oxide signalling. These processes enable redox sensing and facilitate homeostatic regulation of redox dependent protein signalling, function, stability and trafficking. Increased S-nitrosylation in an environment of increasing oxidative and nitrosative stress (O&NS) is initially a protective mechanism aimed at maintaining protein structure and function. When O&NS becomes severe, mechanisms governing denitrosylation and transnitrosylation break down leading to the pathological state referred to as hypernitrosylation (HN). Such a state has been implicated in the pathogenesis and pathophysiology of several neuropsychiatric and neurodegenerative diseases and we investigate its potential role in the development and maintenance of neuroprogressive disorders. In this paper, we propose a model whereby the hypernitrosylation of a range of functional proteins and enzymes lead to changes in activity which conspire to produce at least some of the core abnormalities contributing to the development and maintenance of pathology in these illnesses. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. TRPV1: A Potential Drug Target for Treating Various Diseases

    PubMed Central

    Brito, Rafael; Sheth, Sandeep; Mukherjea, Debashree; Rybak, Leonard P.; Ramkumar, Vickram

    2014-01-01

    Transient receptor potential vanilloid 1 (TRPV1) is an ion channel present on sensory neurons which is activated by heat, protons, capsaicin and a variety of endogenous lipids termed endovanilloids. As such, TRPV1 serves as a multimodal sensor of noxious stimuli which could trigger counteractive measures to avoid pain and injury. Activation of TRPV1 has been linked to chronic inflammatory pain conditions and peripheral neuropathy, as observed in diabetes. Expression of TRPV1 is also observed in non-neuronal sites such as the epithelium of bladder and lungs and in hair cells of the cochlea. At these sites, activation of TRPV1 has been implicated in the pathophysiology of diseases such as cystitis, asthma and hearing loss. Therefore, drugs which could modulate TRPV1 channel activity could be useful for the treatment of conditions ranging from chronic pain to hearing loss. This review describes the roles of TRPV1 in the normal physiology and pathophysiology of selected organs of the body and highlights how drugs targeting this channel could be important clinically. PMID:24861977

  2. Pathophysiology of diverticular disease.

    PubMed

    Schieffer, Kathleen M; Kline, Bryan P; Yochum, Gregory S; Koltun, Walter A

    2018-06-07

    Inflammation of diverticula, or outpouchings of the colonic mucosa and submucosa through the muscularis layer, leads to diverticulitis. The development of diverticular disease, encompassing both diverticulosis and diverticulitis, is a result of genetic predisposition, lifestyle, and environmental factors, including the microbiome. Areas covered: Previous reports implicated genetic predisposition, environmental factors, and colonic dysmotility in diverticular disease. Recent studies have associated specific host immune responses and the microbiome as contributors to diverticulitis. To review pertinent literature describing pathophysiological factors associated with diverticulosis or diverticulitis, we searched the PubMed database (March 2018) for articles considering the role of colonic architecture, genetic predisposition, environment, colonic motility, immune response, and the microbiome. Expert commentary: In the recent years, research into the molecular underpinnings of diverticular disease has enhanced our understanding of diverticular disease pathogenesis. Although acute uncomplicated diverticulitis is treated with broad spectrum antibiotics, evaluation of the microbiome has been limited and requires further comprehensive studies. Evidence suggests that a deregulation of the host immune response is associated with both diverticulosis and diverticulitis. Further examining these pathways may reveal proteins that can be therapeutic targets or aid in identifying biological determinants of clinical or surgical decision making.

  3. The effects of heart rate control in chronic heart failure with reduced ejection fraction.

    PubMed

    Grande, Dario; Iacoviello, Massimo; Aspromonte, Nadia

    2018-07-01

    Elevated heart rate has been associated with worse prognosis both in the general population and in patients with heart failure. Heart rate is finely modulated by neurohormonal signals and it reflects the balance between the sympathetic and the parasympathetic limbs of the autonomic nervous system. For this reason, elevated heart rate in heart failure has been considered an epiphenomenon of the sympathetic hyperactivation during heart failure. However, experimental and clinical evidence suggests that high heart rate could have a direct pathogenetic role. Consequently, heart rate might act as a pathophysiological mediator of heart failure as well as a marker of adverse outcome. This hypothesis has been supported by the observation that the positive effect of beta-blockade could be linked to the degree of heart rate reduction. In addition, the selective heart rate control with ivabradine has recently been demonstrated to be beneficial in patients with heart failure and left ventricular systolic dysfunction. The objective of this review is to examine the pathophysiological implications of elevated heart rate in chronic heart failure and explore the mechanisms underlying the effects of pharmacological heart rate control.

  4. Pathological basis of symptoms and crises in sickle cell disorder: implications for counseling and psychotherapy

    PubMed Central

    Ilesanmi, Oluwatoyin Olatundun

    2010-01-01

    Sickle Cell Disorder (SCD) is a congenital hemoglobinopathy. There is little in literature regarding the psychological variables affecting individuals living with SCD and all of the significant people around them. There are also limited numbers of trained clinical psychologists and genetic counselors to cater for the psychotherapeutic needs of individuals living with SCD. Even among those who have been trained, only a few might have fully grasped the complexities of the disease pathology. Early understanding of its pathological nature, sources, types, complications, pathophysiological basis, and clinical severity of symptoms among clinical psychologists, genetic counselors and psychotherapists, as well as general medical practitioners, could guide them in providing holistic care for dealing with and reducing pain among individuals living with SCD. It could allow risk-based counseling for families and individuals. It could also justify the early use of disease-modifying or curative interventions, such as hydroxyurea (HU), chronic transfusions (CTs), or stem-cell transplantation (SCT) by general medical practitioners. Hence, the need for this paper on the pathophysiology of SCD. PMID:22184515

  5. Eosinophils from Physiology to Disease: A Comprehensive Review

    PubMed Central

    Yacoub, Mona-Rita; Ripa, Marco; Mannina, Daniele; Cariddi, Adriana; Saporiti, Nicoletta; Ciceri, Fabio; Castagna, Antonella; Dagna, Lorenzo

    2018-01-01

    Despite being the second least represented granulocyte subpopulation in the circulating blood, eosinophils are receiving a growing interest from the scientific community, due to their complex pathophysiological role in a broad range of local and systemic inflammatory diseases as well as in cancer and thrombosis. Eosinophils are crucial for the control of parasitic infections, but increasing evidence suggests that they are also involved in vital defensive tasks against bacterial and viral pathogens including HIV. On the other side of the coin, eosinophil potential to provide a strong defensive response against invading microbes through the release of a large array of compounds can prove toxic to the host tissues and dysregulate haemostasis. Increasing knowledge of eosinophil biological behaviour is leading to major changes in established paradigms for the classification and diagnosis of several allergic and autoimmune diseases and has paved the way to a “golden age” of eosinophil-targeted agents. In this review, we provide a comprehensive update on the pathophysiological role of eosinophils in host defence, inflammation, and cancer and discuss potential clinical implications in light of recent therapeutic advances. PMID:29619379

  6. The role of cerebellar circuitry alterations in the pathophysiology of autism spectrum disorders

    PubMed Central

    Mosconi, Matthew W.; Wang, Zheng; Schmitt, Lauren M.; Tsai, Peter; Sweeney, John A.

    2015-01-01

    The cerebellum has been repeatedly implicated in gene expression, rodent model and post-mortem studies of autism spectrum disorder (ASD). How cellular and molecular anomalies of the cerebellum relate to clinical manifestations of ASD remains unclear. Separate circuits of the cerebellum control different sensorimotor behaviors, such as maintaining balance, walking, making eye movements, reaching, and grasping. Each of these behaviors has been found to be impaired in ASD, suggesting that multiple distinct circuits of the cerebellum may be involved in the pathogenesis of patients' sensorimotor impairments. We will review evidence that the development of these circuits is disrupted in individuals with ASD and that their study may help elucidate the pathophysiology of sensorimotor deficits and core symptoms of the disorder. Preclinical studies of monogenetic conditions associated with ASD also have identified selective defects of the cerebellum and documented behavioral rescues when the cerebellum is targeted. Based on these findings, we propose that cerebellar circuits may prove to be promising targets for therapeutic development aimed at rescuing sensorimotor and other clinical symptoms of different forms of ASD. PMID:26388713

  7. Response Inhibition and Interference Control in Obsessive–Compulsive Spectrum Disorders

    PubMed Central

    van Velzen, Laura S.; Vriend, Chris; de Wit, Stella J.; van den Heuvel, Odile A.

    2014-01-01

    Over the past 20 years, motor response inhibition and interference control have received considerable scientific effort and attention, due to their important role in behavior and the development of neuropsychiatric disorders. Results of neuroimaging studies indicate that motor response inhibition and interference control are dependent on cortical–striatal–thalamic–cortical (CSTC) circuits. Structural and functional abnormalities within the CSTC circuits have been reported for many neuropsychiatric disorders, including obsessive–compulsive disorder (OCD) and related disorders, such as attention-deficit hyperactivity disorder, Tourette’s syndrome, and trichotillomania. These disorders also share impairments in motor response inhibition and interference control, which may underlie some of their behavioral and cognitive symptoms. Results of task-related neuroimaging studies on inhibitory functions in these disorders show that impaired task performance is related to altered recruitment of the CSTC circuits. Previous research has shown that inhibitory performance is dependent upon dopamine, noradrenaline, and serotonin signaling, neurotransmitters that have been implicated in the pathophysiology of these disorders. In this narrative review, we discuss the common and disorder-specific pathophysiological mechanisms of inhibition-related dysfunction in OCD and related disorders. PMID:24966828

  8. Controversies and Evolving New Mechanisms in Subarachnoid Hemorrhage

    PubMed Central

    Chen, Sheng; Feng, Hua; Sherchan, Prativa; Klebe, Damon; Zhao, Gang; Sun, Xiaochuan; Zhang, Jianmin; Tang, Jiping; Zhang, John H.

    2013-01-01

    Despite decades of study, subarachnoid hemorrhage (SAH) continues to be a serious and significant health problem in the United States and worldwide. The mechanisms contributing to brain injury after SAH remain unclear. Traditionally, most in vivo research has heavily emphasized the basic mechanisms of SAH over the pathophysiological or morphological changes of delayed cerebral vasospasm after SAH. Unfortunately, the results of clinical trials based on this premise have mostly been disappointing, implicating some other pathophysiological factors, independent of vasospasm, as contributors to poor clinical outcomes. Delayed cerebral vasospasm is no longer the only culprit. In this review, we summarize recent data from both experimental and clinical studies of SAH and discuss the vast array of physiological dysfunctions following SAH that ultimately lead to cell death. Based on the progress in neurobiological understanding of SAH, the terms “early brain injury” and “delayed brain injury” are used according to the temporal progression of SAH-induced brain injury. Additionally, a new concept of the vasculo-neuronal-glia triad model for SAH study is highlighted and presents the challenges and opportunities of this model for future SAH applications. PMID:24076160

  9. Diagnostic classification past, present, and future: implications for pharmacotherapy.

    PubMed

    Howland, Robert H

    2013-04-01

    Making a diagnosis is a key step in understanding the natural course of a disorder, selecting an appropriate treatment for the disorder, and predicting its response to treatment. Diagnostic proposals can be evaluated in two ways: reliability and validity. The reliability and validity of diagnoses are not one and the same, although establishing reliability is usually a necessary step before being able to evaluate and determine validity. There is little evidence that most psychiatric diagnoses are valid, but the reliability of diagnoses using classification systems developed since 1970 have greatly improved and are important for clinical practice and research. Past and current diagnostic systems have not optimally assisted the search for disorder-specific pathophysiological mechanisms, and they do not provide the specificity that clinicians would like when selecting medication. The Research Domain Criteria project is intended to shift research away from categorical diagnoses to focus on dysregulated neurobiological systems, and this approach ultimately may be more useful for understanding the pathophysiology of mental disorders and improving the development and use of treatment interventions. Copyright 2013, SLACK Incorporated.

  10. A Pathophysiologic Approach to Biomarkers in Acute Respiratory Distress Syndrome

    PubMed Central

    Blondonnet, Raiko; Constantin, Jean-Michel; Sapin, Vincent; Jabaudon, Matthieu

    2016-01-01

    Acute respiratory distress syndrome (ARDS) is an acute-onset hypoxic condition with radiographic bilateral lung infiltration. It is characterized by an acute exudative phase combining diffuse alveolar damage and lung edema followed by a later fibroproliferative phase. Despite an improved understanding of ARDS pathobiology, our ability to predict the development of ARDS and risk-stratify patients with the disease remains limited. Biomarkers may help to identify patients at the highest risk of developing ARDS, assess response to therapy, predict outcome, and optimize enrollment in clinical trials. After a short description of ARDS pathobiology, here, we review the scientific evidence that supports the value of various ARDS biomarkers with regard to their major biological roles in ARDS-associated lung injury and/or repair. Ongoing research aims at identifying and characterizing novel biomarkers, in order to highlight relevant mechanistic explorations of lung injury and repair, and to ultimately develop innovative therapeutic approaches for ARDS patients. This review will focus on the pathophysiologic, diagnostic, and therapeutic implications of biomarkers in ARDS and on their utility to ultimately improve patient care. PMID:26980924

  11. Rehabilitation Outcomes: Ischemic versus Hemorrhagic Strokes.

    PubMed

    Perna, Robert; Temple, Jessica

    2015-01-01

    Background. Ischemic and hemorrhagic strokes have different pathophysiologies and possibly different long-term cerebral and functional implications. Hemorrhagic strokes expose the brain to irritating effects of blood and ischemic strokes reflect localized or diffuse cerebral vascular pathology. Methods. Participants were individuals who suffered either an ischemic (n = 172) or hemorrhagic stroke (n = 112) within the past six months and were involved in a postacute neurorehabilitation program. Participants completed three months of postacute neurorehabilitation and the Mayo Portland Adaptability Inventory-4 (MPAI-4) at admission and discharge. Admission MPAI-4 scores and level of functioning were comparable. Results. Group ANOVA comparisons show no significant group differences at admission or discharge or difference in change scores. Both groups showed considerably reduced levels of productivity/employment after discharge as compared to preinjury levels. Conclusions. Though the pathophysiology of these types of strokes is different, both ultimately result in ischemic injuries, possibly accounting for lack of findings of differences between groups. In the present study, participants in both groups experienced similar functional levels across all three MPAI-4 domains both at admission and discharge. Limitations of this study include a highly educated sample and few outcome measures.

  12. With a Little Help from My Friends: Psychological, Endocrine and Health Corollaries of Social Support in Parental Caregivers of Children with Autism or ADHD

    ERIC Educational Resources Information Center

    Lovell, Brian; Moss, Mark; Wetherell, Mark A.

    2012-01-01

    Elevated psychological distress and concomitant dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis has been implicated as one pathway that links the stress of caregiving with adverse health outcomes. This study assessed whether perceived social support might mitigate the psychological, endocrine and health consequences of caregiver…

  13. Dose distribution for dental cone beam CT and its implication for defining a dose index

    PubMed Central

    Pauwels, R; Theodorakou, C; Walker, A; Bosmans, H; Jacobs, R; Horner, K; Bogaerts, R

    2012-01-01

    Objectives To characterize the dose distribution for a range of cone beam CT (CBCT) units, investigating different field of view sizes, central and off-axis geometries, full or partial rotations of the X-ray tube and different clinically applied beam qualities. The implications of the dose distributions on the definition and practicality of a CBCT dose index were assessed. Methods Dose measurements on CBCT devices were performed by scanning cylindrical head-size water and polymethyl methacrylate phantoms, using thermoluminescent dosemeters, a small-volume ion chamber and radiochromic films. Results It was found that the dose distribution can be asymmetrical for dental CBCT exposures throughout a homogeneous phantom, owing to an asymmetrical positioning of the isocentre and/or partial rotation of the X-ray source. Furthermore, the scatter tail along the z-axis was found to have a distinct shape, generally resulting in a strong drop (90%) in absorbed dose outside the primary beam. Conclusions There is no optimal dose index available owing to the complicated exposure geometry of CBCT and the practical aspects of quality control measurements. Practical validation of different possible dose indices is needed, as well as the definition of conversion factors to patient dose. PMID:22752320

  14. Neuroendocrine and neurotrophic signaling in Huntington's disease: Implications for pathogenic mechanisms and treatment strategies.

    PubMed

    Bartlett, Danielle M; Cruickshank, Travis M; Hannan, Anthony J; Eastwood, Peter R; Lazar, Alpar S; Ziman, Mel R

    2016-12-01

    Huntington's disease (HD) is a fatal neurodegenerative disease caused by an extended polyglutamine tract in the huntingtin protein. Circadian, sleep and hypothalamic-pituitary-adrenal (HPA) axis disturbances are observed in HD as early as 15 years before clinical disease onset. Disturbances in these key processes result in increased cortisol and altered melatonin release which may negatively impact on brain-derived neurotrophic factor (BDNF) expression and contribute to documented neuropathological and clinical disease features. This review describes the normal interactions between neurotrophic factors, the HPA-axis and circadian rhythm, as indicated by levels of BDNF, cortisol and melatonin, and the alterations in these intricately balanced networks in HD. We also discuss the implications of these alterations on the neurobiology of HD and the potential to result in hypothalamic, circadian, and sleep pathologies. Measurable alterations in these pathways provide targets that, if treated early, may reduce degeneration of brain structures. We therefore focus here on the means by which multidisciplinary therapy could be utilised as a non-pharmaceutical approach to restore the balance of these pathways. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. Gender-specific behavioral health and community release patterns among New Jersey prison inmates: implications for treatment and community reentry.

    PubMed

    Blitz, Cynthia L; Wolff, Nancy; Pan, Ko-Yu; Pogorzelski, Wendy

    2005-10-01

    We describe behavioral health diagnoses and community release patterns among adult male and female inmates in New Jersey prisons and assess their implications for correctional health care and community reentry. We used clinical and classification data on a census of "special needs" inmates (those with behavioral health disorders) in New Jersey (n=3189) and a census of all special needs inmates released to New Jersey communities over a 12-month period (n=974). Virtually all adult inmates with special needs had at least 1 Axis I mental disorder, and 68% of these had at least 1 additional Axis I mental disorder, a personality disorder, or addiction problem (67% of all male and 75% of all female special needs inmates). Of those special needs inmates released, 25% returned to the most disadvantaged counties in New Jersey (27% of all male and 18% of all female special needs inmates). Two types of clustering were found: gender-specific clustering of disorders among inmates and spatial clustering of ex-offenders in impoverished communities. These findings suggest a need for gendered treatment strategies within correctional settings and need for successful reentry strategies.

  16. Activation of ATP-sensitive potassium channel by iptakalim normalizes stress-induced HPA axis disorder and depressive behaviour by alleviating inflammation and oxidative stress in mouse hypothalamus.

    PubMed

    Zhao, Xiao-Jie; Zhao, Zhan; Yang, Dan-Dan; Cao, Lu-Lu; Zhang, Ling; Ji, Juan; Gu, Jun; Huang, Ji-Ye; Sun, Xiu-Lan

    2017-04-01

    Stress-induced disturbance of the hypothalamic-pituitary-adrenal (HPA) axis is strongly implicated in incidence of mood disorders. A heightened neuroinflammatory response and oxidative stress play a fundamental role in the dysfunction of the HPA axis. We have previously demonstrated that iptakalim (Ipt), a new ATP-sensitive potassium (K-ATP) channel opener, could prevent oxidative injury and neuroinflammation against multiple stimuli-induced brain injury. The present study was to demonstrate the impacts of Ipt in stress-induced HPA axis disorder and depressive behavior. We employed 2 stress paradigms: 8 weeks of continuous restraint stress (chronic restraint stress, CRS) and 2h of restraint stress (acute restraint stress, ARS), to mimic both chronic stress and severe acute stress. Prolonged (4 weeks) and short-term (a single injection) Ipt treatment was administered 30min before each stress paradigm. We found that HPA axis was altered after stress, with different responses to CRS (lower ACTH and CORT, higher AVP, but normal CRH) and ARS (higher CRH, ACTH and CORT, but normal AVP). Both prolonged and short-term Ipt treatment normalized stress-induced HPA axis disorders and abnormal behaviors in mice. CRS and ARS up-regulated mRNA levels of inflammation-related molecules (TNFα, IL-1β, IL-6 and TLR4) and oxidative stress molecules (gp91phox, iNOS and Nrf2) in the mouse hypothalamus. Double immunofluorescence showed CRS and ARS increased microglia activation (CD11b and TNFα) and oxidative stress in neurons (NeuN and gp91phox), which were alleviated by Ipt. Therefore, the present study reveals that Ipt could prevent against stress-induced HPA axis disorders and depressive behavior by alleviating inflammation and oxidative stress in the hypothalamus. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. HPA-axis and inflammatory reactivity to acute stress is related with basal HPA-axis activity.

    PubMed

    Chen, Xuejie; Gianferante, Danielle; Hanlin, Luke; Fiksdal, Alexander; Breines, Juliana G; Thoma, Myriam V; Rohleder, Nicolas

    2017-04-01

    Inflammation is drawing attention as pathway between psychosocial stress and health, and basal HPA axis activity has been suggested to exert a consistent regulatory influence on peripheral inflammation. Here we studied the relationship between basal HPA axis activity and inflammatory and HPA axis acute stress reactivity. We recruited 48 healthy individuals and collected saliva for diurnal cortisol sampling at 6 points. Participants were previously exposed to the Trier Social Stress Test (TSST) on two consecutive days. Plasma interleukin-6 (IL-6) and salivary cortisol reactivity to acute stress were measured, and their relationships with basal HPA axis activity were analyzed. Steeper cortisol awakening response (CAR) linear increase was related with stronger cortisol stress reactivity (γ=0.015; p=0.042) and marginally significantly with greater habituation (γ=0.01; p=0.066). Greater curvilinearity of CAR was related with stronger cortisol reactivity (γ=-0.014; p=0.021) and greater cortisol habituation (γ=-0.011; p=0.006). Steeper daily linear decline was related with significant or marginally significantly stronger cortisol and IL-6 reactivity (cortisol: γ=-0.0004; p=0.06; IL-6: γ=-0.028; p=0.031) and greater habituation (cortisol: γ=-0.002; p=0.009, IL-6: γ=-0.015; p=0.033). Greater curvilinearity of daily decline was related with stronger IL-6 reactivity (γ=0.002; p=0.024) and also greater cortisol and IL-6 habituation (cortisol: γ=0.00009; p=0.03, IL-6: γ=0.001; p=0.024). Patterns of basal HPA axis activity that are related with healthier outcomes were found to be related with stronger initial cortisol and IL-6 reactivity and greater habituation. This is an important step in understanding the long-term health implications of acute stress responsiveness, and future studies should employ longitudinal designs to identify the direction of these relationships. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Lone atrial fibrillation: what is known and what is to come.

    PubMed

    Potpara, T S; Lip, G Y H

    2011-04-01

    Atrial fibrillation (AF) is the most prevalent sustained cardiac arrhythmia in adults, affecting >1% of general population. Atrial fibrillation is commonly associated with structural heart disease and is a major cause of significant cardiovascular morbidity and mortality. AF sometimes develops in a subset of young patients (e.g. aged ≤60 years), with no evidence of associated cardiopulmonary or other comorbid disease (including hypertension), and has been referred to as 'lone AF'. The latter generally has a favourable prognosis; the prognostic and therapeutic implications of an accurate identification of patients with truly lone AF (that is, truly at low risk of complications), if any, would be of the utmost importance. The true prevalence of lone AF is unknown, varying between 1.6% and 30%, depending on the particular study population. Nonetheless, novel risk factors for AF, including obesity, metabolic syndrome, sleep apnea, alcohol consumption, endurance sports, anger, hostility, subclinical atherosclerosis and others, have been increasingly recognised. Also, various underlying pathophysiological mechanisms predisposing to AF, including increased atrial stretch, structural and electrophysiological alterations, autonomic imbalance, systemic inflammation, oxidative stress and genetic predisposition, have been proposed. The growing evidence of these diverse (and numerous) pathogenic mechanisms and factors related to AF inevitably raises the question of whether 'lone AF' does exist at all. In this review article, we summarise the current knowledge of the epidemiology, pathophysiology, clinical course and treatment of patients with so-called 'lone AF' and outline emerging insights into its pathogenesis and the potential therapeutic implications of a diagnosis of lone AF. © 2011 Blackwell Publishing Ltd.

  19. Intracellular amyloid beta expression leads to dysregulation of the mitogen-activated protein kinase and bone morphogenetic protein-2 signaling axis

    PubMed Central

    Cruz, Eric; Kumar, Sushil; Yuan, Li; Arikkath, Jyothi

    2018-01-01

    Alzheimer’s disease (AD) is a neurodegenerative syndrome classically depicted by the parenchymal accumulation of extracellular amyloid beta plaques. However, recent findings suggest intraneuronal amyloid beta (iAβ1–42) accumulation precedes extracellular deposition. Furthermore, the pathologic increase in iAβ1–42 has been implicated in dysregulation of cellular mechanisms critically important in axonal transport. Owing to neuronal cell polarity, retrograde and anterograde axonal transport are essential trafficking mechanism necessary to convey membrane bound neurotransmitters, neurotrophins, and endosomes between soma and synaptic interfaces. Although iAβ1–42 disruption of axonal transport has been implicated in dysregulation of neuronal synaptic transmission, the role of iAβ1–42 and its influence on signal transduction involving the mitogen-activated protein kinase (MAPK) and morphogenetic signaling axis are unknown. Our biochemical characterization of intracellular amyloid beta accumulation on MAPK and morphogenetic signaling have revealed increased iAβ1–42 expression leads to significant reduction in ERK 1/2 phosphorylation and increased bone morphogenetic protein 2 dependent Smad 1/5/8 phosphorylation. Furthermore, rescue of iAβ1–42 mediated attenuation of MAPK signaling can be accomplished with the small molecule PLX4032 as a downstream enhancer of the MAPK pathway. Consequently, our observations regarding the dysregulation of these gatekeepers of neuronal viability may have important implications in understanding the iAβ1–42 mediated effects observed in AD. PMID:29470488

  20. Constipation: Pathophysiology and Current Therapeutic Approaches.

    PubMed

    Sharma, Amol; Rao, Satish

    2017-01-01

    Chronic constipation is a common, persistent condition affecting many patients worldwide, presenting significant economic burden and resulting in substantial healthcare utilization. In addition to infrequent bowel movements, the definition of constipation includes excessive straining, a sense of incomplete evacuation, failed or lengthy attempts to defecate, use of digital manoeuvres for evacuation of stool, abdominal bloating, and hard consistency of stools. After excluding secondary causes of constipation, chronic idiopathic or primary constipation can be classified as functional defecation disorder, slow-transit constipation (STC), and constipation-predominant irritable bowel syndrome (IBS-C). These classifications are not mutually exclusive and significant overlap exists. Initial therapeutic approach to primary constipation, regardless of aetiology, consists of diet and lifestyle changes such as encouraging adequate fluid and fibre intake, regular exercise, and dietary modification. Laxatives are the mainstay of pharmacologic treatment for potential long-term therapy in patients who do not respond to lifestyle or dietary modification. After a failed empiric trial of laxatives, diagnostic testing is necessary to understand underlying anorectal and/or colonic pathophysiology. No single test provides a comprehensive assessment for primary constipation; therefore, multiple tests are used to provide complementary information to one another. Dyssynergic defecation, a functional defecation disorder, is an acquired behavioural disorder of defecation present in two-thirds of adult patients, where an inability to coordinate the abdominal, recto-anal, and pelvic floor muscles during attempted defecation exists. Biofeedback therapy is the mainstay treatment for dyssynergic defecation aimed at improving coordination of abdominal and anorectal muscles. A large percentage of patients with dyssynergic defecation also exhibit rectal hyposensitivity and may benefit from the addition of sensory retraining. Our understanding of the pathophysiology of STC is evolving. The advent of high-resolution colonic manometry allows for the improved identification of colonic motor patterns and may provide further insight into pathophysiological mechanisms. In a minority of cases of STC, identification of colonic neuropathy suggests a medically refractory condition, warranting consideration of colectomy. The pathophysiology of IBS-C is poorly understood with multiple etiological factors implicated. Pharmacological advances in the treatment of primary constipation have added therapeutic options to the armamentarium of this disorder. Drug development in the secretagogue, serotonergic prokinetic, and ileal bile acid transporter inhibition pathways has yielded current and future medical treatment options for primary chronic constipation.

Top