Science.gov

Sample records for axis tidal turbines

  1. Research on the unsteady hydrodynamic characteristics of vertical axis tidal turbine

    NASA Astrophysics Data System (ADS)

    Zhang, Xue-wei; Zhang, Liang; Wang, Feng; Zhao, Dong-ya; Pang, Cheng-yan

    2014-03-01

    The unsteady hydrodynamic characteristics of vertical axis tidal turbine are investigated by numerical simulation based on viscous CFD method. The starting mechanism of the turbine is revealed through analyzing the interaction of its motion and dynamics during starting process. The operating hydrodynamic characteristics of the turbine in wave-current condition are also explored by combining with the linear wave theory. According to possible magnification of the cyclic loads in the maximum power tracking control of vertical axis turbine, a novel torque control strategy is put forward, which can improve the structural characteristics significantly without effecting energy efficiency.

  2. Three-dimensional Numerical Analysis on Blade Response of Vertical Axis Tidal Current Turbine Under Operational Condition

    SciTech Connect

    Li, Ye; Karri, Naveen K.; Wang, Qi

    2014-04-30

    Tidal power as a large-scale renewable source of energy has been receiving significant attention recently because of its advantages over the wind and other renewal energy sources. The technology used to harvest energy from tidal current is called a tidal current turbine. Though some of the principles of wind turbine design are applicable to tidal current turbines, the design of latter ones need additional considerations like cavitation damage, corrosion etc. for the long-term reliability of such turbines. Depending up on the orientation of axis, tidal current turbines can be classified as vertical axis turbines or horizontal axis turbines. Existing studies on the vertical axis tidal current turbine focus more on the hydrodynamic aspects of the turbine rather than the structural aspects. This paper summarizes our recent efforts to study the integrated hydrodynamic and structural aspects of the vertical axis tidal current turbines. After reviewing existing methods in modeling tidal current turbines, we developed a hybrid approach that combines discrete vortex method -finite element method that can simulate the integrated hydrodynamic and structural response of a vertical axis turbine. This hybrid method was initially employed to analyze a typical three-blade vertical axis turbine. The power coefficient was used to evaluate the hydrodynamic performance, and critical deflection was considered to evaluate the structural reliability. A sensitivity analysis was also conducted with various turbine height-to-radius ratios. The results indicate that both the power output and failure probability increase with the turbine height, suggesting a necessity for optimal design. An attempt to optimize a 3-blade vertical axis turbine design with hybrid method yielded a ratio of turbine height to radius (H/R) about 3.0 for reliable maximum power output.

  3. Numerical investigation of flow motion and performance of a horizontal axis tidal turbine subjected to a steady current

    NASA Astrophysics Data System (ADS)

    Li, Lin-juan; Zheng, Jin-hai; Peng, Yu-xuan; Zhang, Ji-sheng; Wu, Xiu-guang

    2015-04-01

    Horizontal axis tidal turbines have attracted more and more attentions nowadays, because of their convenience and low expense in construction and high efficiency in extracting tidal energy. The present study numerically investigates the flow motion and performance of a horizontal axis tidal turbine with a supporting vertical cylinder under steady current. In the numerical model, the continuous equation and incompressible Reynolds-averaged Navier-Stokes equations are solved, and the volume of fluid method is employed to track free surface motion. The RNG k- ɛ model is adopted to calculate turbulence transport while the fractional area/volume obstacle representation method is used to describe turbine characteristics and movement. The effects of installation elevation of tidal turbine and inlet velocity on the water elevation, and current velocity, rotating speed and resultant force on turbine are discussed. Based on the comparison of the numerical results, a better understanding of flow structure around horizontal axis tidal turbine and turbine performance is achieved.

  4. CFD simulation of fixed and variable pitch vertical axis tidal turbine

    NASA Astrophysics Data System (ADS)

    Sheng, Qihu; Khalid, Syed Shah; Xiong, Zhimin; Sahib, Ghazala; Zhang, Liang

    2013-06-01

    In this paper, hydrodynamic analysis of vertical axis tidal turbine (both fixed pitch & variable pitch) is numerically analyzed. Two-dimensional numerical modeling & simulation of the unsteady flow through the blades of the turbine is performed using ANSYS CFX, hereafter CFX, which is based on a Reynolds-Averaged Navier-Stokes (RANS) model. A transient simulation is done for fixed pitch and variable pitch vertical axis tidal turbine using a Shear Stress Transport turbulence (SST) scheme. Main hydrodynamic parameters like torque T, combined moment C M , coefficients of performance C P and coefficient of torque C T , etc. are investigated. The modeling and meshing of turbine rotor is performed in ICEM-CFD. Moreover, the difference in meshing schemes between fixed pitch and variable pitch is also mentioned. Mesh motion option is employed for variable pitch turbine. This article is one part of the ongoing research on turbine design and developments. The numerical simulation results are validated with well reputed analytical results performed by Edinburgh Design Ltd. The article concludes with a parametric study of turbine performance, comparison between fixed and variable pitch operation for a four-bladed turbine. It is found that for variable pitch we get maximum C P and peak power at smaller revolution per minute N and tip sped ratio λ.

  5. Development of a model counter-rotating type horizontal-axis tidal turbine

    NASA Astrophysics Data System (ADS)

    Huang, B.; Yoshida, K.; Kanemoto, T.

    2016-05-01

    In the past decade, the tidal energies have caused worldwide concern as it can provide regular and predictable renewable energy resource for power generation. The majority of technologies for exploiting the tidal stream energy are based on the concept of the horizontal axis tidal turbine (HATT). A unique counter-rotating type HATT was proposed in the present work. The original blade profiles were designed according to the developed blade element momentum theory (BEMT). CFD simulations and experimental tests were adopted to the performance of the model counter-rotating type HATT. The experimental data provides an evidence of validation of the CFD model. Further optimization of the blade profiles was also carried out based on the CFD results.

  6. Structural Design of a Horizontal-Axis Tidal Current Turbine Composite Blade

    SciTech Connect

    Bir, G. S.; Lawson, M. J.; Li, Y.

    2011-10-01

    This paper describes the structural design of a tidal composite blade. The structural design is preceded by two steps: hydrodynamic design and determination of extreme loads. The hydrodynamic design provides the chord and twist distributions along the blade length that result in optimal performance of the tidal turbine over its lifetime. The extreme loads, i.e. the extreme flap and edgewise loads that the blade would likely encounter over its lifetime, are associated with extreme tidal flow conditions and are obtained using a computational fluid dynamics (CFD) software. Given the blade external shape and the extreme loads, we use a laminate-theory-based structural design to determine the optimal layout of composite laminas such that the ultimate-strength and buckling-resistance criteria are satisfied at all points in the blade. The structural design approach allows for arbitrary specification of the chord, twist, and airfoil geometry along the blade and an arbitrary number of shear webs. In addition, certain fabrication criteria are imposed, for example, each composite laminate must be an integral multiple of its constituent ply thickness. In the present effort, the structural design uses only static extreme loads; dynamic-loads-based fatigue design will be addressed in the future. Following the blade design, we compute the distributed structural properties, i.e. flap stiffness, edgewise stiffness, torsion stiffness, mass, moments of inertia, elastic-axis offset, and center-of-mass offset along the blade. Such properties are required by hydro-elastic codes to model the tidal current turbine and to perform modal, stability, loads, and response analyses.

  7. Numerical and experimental study of the 3D effect on connecting arm of vertical axis tidal current turbine

    NASA Astrophysics Data System (ADS)

    Guo, Wei; Kang, Hai-gui; Chen, Bing; Xie, Yu; Wang, Yin

    2016-03-01

    Vertical axis tidal current turbine is a promising device to extract energy from ocean current. One of the important components of the turbine is the connecting arm, which can bring about a significant effect on the pressure distribution along the span of the turbine blade, herein we call it 3D effect. However, so far the effect is rarely reported in the research, moreover, in numerical simulation. In the present study, a 3D numerical model of the turbine with the connecting arm was developed by using FLUENT software compiling the UDF (User Defined Function) command. The simulation results show that the pressure distribution along the span of blade with the connecting arm model is significantly different from those without the connecting arm. To facilitate the validation of numerical model, the laboratory experiment has been carried out by using three different types of NACA aerofoil connecting arm and circle section connecting arm. And results show that the turbine with NACA0012 connecting arm has the best start-up performance which is 0.346 m/s and the peak point of power conversion coefficient is around 0.33. A further study has been performed and a conclusion is drawn that the aerofoil and thickness of connecting arm are the most important factors on the power conversion coefficient of the vertical axis tidal current turbine.

  8. Development and Verification of a Computational Fluid Dynamics Model of a Horizontal-Axis Tidal Current Turbine

    SciTech Connect

    Lawson, M. J.; Li, Y.; Sale, D. C.

    2011-10-01

    This paper describes the development of a computational fluid dynamics (CFD) methodology to simulate the hydrodynamics of horizontal-axis tidal current turbines. Qualitative measures of the CFD solutions were independent of the grid resolution. Conversely, quantitative comparisons of the results indicated that the use of coarse computational grids results in an under prediction of the hydrodynamic forces on the turbine blade in comparison to the forces predicted using more resolved grids. For the turbine operating conditions considered in this study, the effect of the computational timestep on the CFD solution was found to be minimal, and the results from steady and transient simulations were in good agreement. Additionally, the CFD results were compared to corresponding blade element momentum method calculations and reasonable agreement was shown. Nevertheless, we expect that for other turbine operating conditions, where the flow over the blade is separated, transient simulations will be required.

  9. Application of 2D numerical model to unsteady performance evaluation of vertical-axis tidal current turbine

    NASA Astrophysics Data System (ADS)

    Liu, Zhen; Qu, Hengliang; Shi, Hongda; Hu, Gexing; Hyun, Beom-Soo

    2016-09-01

    Tidal current energy is renewable and sustainable, which is a promising alternative energy resource for the future electricity supply. The straight-bladed vertical-axis turbine is regarded as a useful tool to capture the tidal current energy especially under low-speed conditions. A 2D unsteady numerical model based on Ansys-Fluent 12.0 is established to conduct the numerical simulation, which is validated by the corresponding experimental data. For the unsteady calculations, the SST model, 2×105 and 0.01 s are selected as the proper turbulence model, mesh number, and time step, respectively. Detailed contours of the velocity distributions around the rotor blade foils have been provided for a flow field analysis. The tip speed ratio (TSR) determines the azimuth angle of the appearance of the torque peak, which occurs once for a blade in a single revolution. It is also found that simply increasing the incident flow velocity could not improve the turbine performance accordingly. The peaks of the averaged power and torque coefficients appear at TSRs of 2.1 and 1.8, respectively. Furthermore, several shapes of the duct augmentation are proposed to improve the turbine performance by contracting the flow path gradually from the open mouth of the duct to the rotor. The duct augmentation can significantly enhance the power and torque output. Furthermore, the elliptic shape enables the best performance of the turbine. The numerical results prove the capability of the present 2D model for the unsteady hydrodynamics and an operating performance analysis of the vertical tidal stream turbine.

  10. Shape design and CFD analysis on a 1MW-class horizontal axis tidal current turbine blade

    NASA Astrophysics Data System (ADS)

    Singh, P. M.; Choi, Y. D.

    2013-12-01

    This study aims to develop a 1MW-class horizontal axis tidal current turbine rotor blade which can be applied near the southwest island regions of South Korea. On the basis of actual tidal current conditions of southern region of Korea, configuration design of 1MW class turbine rotor blade is carried out by BEMT (Blade element momentum theory). The hydrodynamic performance including the lift and drag forces, is conducted with the variation of the angle of attack using an open source code of X-Foil. The purpose of the study is to study the shape of the hydrofoil used and how it affects the performance of the turbine. After a thorough study of many airfoils, a new hydrofoil is developed using the S814 and DU-91-W2- 250 airfoils, which show good performance for rough conditions. A combination of the upper and lower surface of the two hydrofoils is tested. Three dimensional models were developed and the optimized blade geometry is used for CFD (Computational Fluid Dynamics) analysis with hexahedral numerical grids. Power coefficient, pressure coefficient and velocity distributions are investigated according to Tip Speed Ratio by CFD analysis.

  11. Development and Verification of a Computational Fluid Dynamics Model of a Horizontal-Axis Tidal Current Turbine

    SciTech Connect

    Lawson, Mi. J.; Li, Y.; Sale, D. C.

    2011-01-01

    This paper describes the development of a computational fluid dynamics (CFD) methodology to simulate the hydrodynamics of horizontal-axis tidal current turbines (HATTs). First, an HATT blade was designed using the blade element momentum method in conjunction with a genetic optimization algorithm. Several unstructured computational grids were generated using this blade geometry and steady CFD simulations were used to perform a grid resolution study. Transient simulations were then performed to determine the effect of time-dependent flow phenomena and the size of the computational timestep on the numerical solution. Qualitative measures of the CFD solutions were independent of the grid resolution. Conversely, quantitative comparisons of the results indicated that the use of coarse computational grids results in an under prediction of the hydrodynamic forces on the turbine blade in comparison to the forces predicted using more resolved grids. For the turbine operating conditions considered in this study, the effect of the computational timestep on the CFD solution was found to be minimal, and the results from steady and transient simulations were in good agreement. Additionally, the CFD results were compared to corresponding blade element momentum method calculations and reasonable agreement was shown. Nevertheless, we expect that for other turbine operating conditions, where the flow over the blade is separated, transient simulations will be required.

  12. Vertical axis wind turbine

    SciTech Connect

    Kato, Y.; Seki, K.; Shimizu, Y.

    1981-01-27

    Wind turbines are largely divided into vertical axis wind turbines and propeller (Horizontal axis) wind turbines. The present invention discloses a vertical axis high speed wind turbine provided with a starting and braking control system. This vertical axis wind turbine is formed by having blades of a proper airfoil fitted to respective supporting arms provided radially from a vertical rotary axis by keeping the blade span-wise direction in parallel with the axis and being provided with a low speed control windmill in which the radial position of each operating piece varies with a centrifugal force produced by the rotation of the vertical rotary axis.

  13. Vertical Axis Wind Turbine

    2002-04-01

    Blade fatigue life is an important element in determining the economic viability of the Vertical-Axis Wind Turbine (VAWT). VAWT-SAL Vertical Axis Wind Turbine- Stochastic Aerodynamic Loads Ver 3.2 numerically simulates the stochastic (random0 aerodynamic loads of the Vertical-Axis Wind Turbine (VAWT) created by the atomspheric turbulence. The program takes into account the rotor geometry, operating conditions, and assumed turbulence properties.

  14. Flow-driven rotor simulation of vertical axis tidal turbines: A comparison of helical and straight blades

    NASA Astrophysics Data System (ADS)

    Le, Tuyen Quang; Lee, Kwang-Soo; Park, Jin-Soon; Ko, Jin Hwan

    2014-06-01

    In this study, flow-driven rotor simulations with a given load are conducted to analyze the operational characteristics of a vertical-axis Darrieus turbine, specifically its self-starting capability and fluctuations in its torque as well as the RPM. These characteristics are typically observed in experiments, though they cannot be acquired in simulations with a given tip speed ratio (TSR). First, it is shown that a flow-driven rotor simulation with a two-dimensional (2D) turbine model obtains power coefficients with curves similar to those obtained in a simulation with a given TSR. 3D flowdriven rotor simulations with an optimal geometry then show that a helical-bladed turbine has the following prominent advantages over a straight-bladed turbine of the same size: an improvement of its self-starting capabilities and reduced fluctuations in its torque and RPM curves as well as an increase in its power coefficient from 33% to 42%. Therefore, it is clear that a flow-driven rotor simulation provides more information for the design of a Darrieus turbine than a simulation with a given TSR before experiments.

  15. Vertical axis wind turbines

    DOEpatents

    Krivcov, Vladimir; Krivospitski, Vladimir; Maksimov, Vasili; Halstead, Richard; Grahov, Jurij

    2011-03-08

    A vertical axis wind turbine is described. The wind turbine can include a top ring, a middle ring and a lower ring, wherein a plurality of vertical airfoils are disposed between the rings. For example, three vertical airfoils can be attached between the upper ring and the middle ring. In addition, three more vertical airfoils can be attached between the lower ring and the middle ring. When wind contacts the vertically arranged airfoils the rings begin to spin. By connecting the rings to a center pole which spins an alternator, electricity can be generated from wind.

  16. Vertical axis wind turbine airfoil

    DOEpatents

    Krivcov, Vladimir; Krivospitski, Vladimir; Maksimov, Vasili; Halstead, Richard; Grahov, Jurij Vasiljevich

    2012-12-18

    A vertical axis wind turbine airfoil is described. The wind turbine airfoil can include a leading edge, a trailing edge, an upper curved surface, a lower curved surface, and a centerline running between the upper surface and the lower surface and from the leading edge to the trailing edge. The airfoil can be configured so that the distance between the centerline and the upper surface is the same as the distance between the centerline and the lower surface at all points along the length of the airfoil. A plurality of such airfoils can be included in a vertical axis wind turbine. These airfoils can be vertically disposed and can rotate about a vertical axis.

  17. Finite element based damage assessment of composite tidal turbine blades

    NASA Astrophysics Data System (ADS)

    Fagan, Edward M.; Leen, Sean B.; Kennedy, Ciaran R.; Goggins, Jamie

    2015-07-01

    With significant interest growing in the ocean renewables sector, horizontal axis tidal current turbines are in a position to dominate the marketplace. The test devices that have been placed in operation so far have suffered from premature failures, caused by difficulties with structural strength prediction. The goal of this work is to develop methods of predicting the damage level in tidal turbines under their maximum operating tidal velocity. The analysis was conducted using the finite element software package Abaqus; shell models of three representative tidal turbine blades are produced. Different construction methods will affect the damage level in the blade and for this study models were developed with varying hydrofoil profiles. In order to determine the risk of failure, a user material subroutine (UMAT) was created. The UMAT uses the failure criteria designed by Alfred Puck to calculate the risk of fibre and inter-fibre failure in the blades. The results show that degradation of the stiffness is predicted for the operating conditions, having an effect on the overall tip deflection. The failure criteria applied via the UMAT form a useful tool for analysis of high risk regions within the blade designs investigated.

  18. Vertical Axis Wind Turbine Foundation parameter study

    SciTech Connect

    Lodde, P.F.

    1980-07-01

    The dynamic failure criterion governing the dimensions of prototype Vertical Axis Wind Turbine Foundations is treated as a variable parameter. The resulting change in foundation dimensions and costs is examined.

  19. Optimal design of a tidal turbine

    NASA Astrophysics Data System (ADS)

    Kueny, J. L.; Lalande, T.; Herou, J. J.; Terme, L.

    2012-11-01

    An optimal design procedure has been applied to improve the design of an open-center tidal turbine. A specific software developed in C++ enables to generate the geometry adapted to the specific constraints imposed to this machine. Automatic scripts based on the AUTOGRID, IGG, FINE/TURBO and CFView software of the NUMECA CFD suite are used to evaluate all the candidate geometries. This package is coupled with the optimization software EASY, which is based on an evolutionary strategy completed by an artificial neural network. A new technique is proposed to guarantee the robustness of the mesh in the whole range of the design parameters. An important improvement of the initial geometry has been obtained. To limit the whole CPU time necessary for this optimization process, the geometry of the tidal turbine has been considered as axisymmetric, with a uniform upstream velocity. A more complete model (12 M nodes) has been built in order to analyze the effects related to the sea bed boundary layer, the proximity of the sea surface, the presence of an important triangular basement supporting the turbine and a possible incidence of the upstream velocity.

  20. Turbulence in vertical axis wind turbine canopies

    NASA Astrophysics Data System (ADS)

    Kinzel, Matthias; Araya, Daniel B.; Dabiri, John O.

    2015-11-01

    Experimental results from three different full scale arrays of vertical-axis wind turbines (VAWTs) under natural wind conditions are presented. The wind velocities throughout the turbine arrays are measured using a portable meteorological tower with seven, vertically staggered, three-component ultrasonic anemometers. The power output of each turbine is recorded simultaneously. The comparison between the horizontal and vertical energy transport for the different turbine array sizes shows the importance of vertical transport for large array configurations. Quadrant-hole analysis is employed to gain a better understanding of the vertical energy transport at the top of the VAWT arrays. The results show a striking similarity between the flows in the VAWT arrays and the adjustment region of canopies. Namely, an increase in ejections and sweeps and decrease in inward and outward interactions occur inside the turbine array. Ejections are the strongest contributor, which is in agreement with the literature on evolving and sparse canopy flows. The influence of the turbine array size on the power output of the downstream turbines is examined by comparing a streamwise row of four single turbines with square arrays of nine turbine pairs. The results suggest that a new boundary layer forms on top of the larger turbine arrays as the flow adjusts to the new roughness length. This increases the turbulent energy transport over the whole planform area of the turbine array. By contrast, for the four single turbines, the vertical energy transport due to turbulent fluctuations is only increased in the near wake of the turbines. These findings add to the knowledge of energy transport in turbine arrays and therefore the optimization of the turbine spacing in wind farms.

  1. Large, horizontal-axis wind turbines

    NASA Technical Reports Server (NTRS)

    Linscott, B. S.; Perkins, P.; Dennett, J. T.

    1984-01-01

    Development of the technology for safe, reliable, environmentally acceptable large wind turbines that have the potential to generate a significant amount of electricity at costs competitive with conventional electric generating systems are presented. In addition, these large wind turbines must be fully compatible with electric utility operations and interface requirements. There are several ongoing large wind system development projects and applied research efforts directed toward meeting the technology requirements for utility applications. Detailed information on these projects is provided. The Mod-O research facility and current applied research effort in aerodynamics, structural dynamics and aeroelasticity, composite and hybrid composite materials, and multiple system interaction are described. A chronology of component research and technology development for large, horizontal axis wind turbines is presented. Wind characteristics, wind turbine economics, and the impact of wind turbines on the environment are reported. The need for continued wind turbine research and technology development is explored. Over 40 references are sited and a bibliography is included.

  2. The prediction of the hydrodynamic performance of tidal current turbines

    NASA Astrophysics Data System (ADS)

    Y Xiao, B.; Zhou, L. J.; Xiao, Y. X.; Wang, Z. W.

    2013-12-01

    Nowadays tidal current energy is considered to be one of the most promising alternative green energy resources and tidal current turbines are used for power generation. Prediction of the open water performance around tidal turbines is important for the reason that it can give some advice on installation and array of tidal current turbines. This paper presents numerical computations of tidal current turbines by using a numerical model which is constructed to simulate an isolated turbine. This paper aims at studying the installation of marine current turbine of which the hydro-environmental impacts influence by means of numerical simulation. Such impacts include free-stream velocity magnitude, seabed and inflow direction of velocity. The results of the open water performance prediction show that the power output and efficiency of marine current turbine varies from different marine environments. The velocity distribution should be clearly and the suitable unit installation depth and direction be clearly chosen, which can ensure the most effective strategy for energy capture before installing the marine current turbine. The findings of this paper are expected to be beneficial in developing tidal current turbines and array in the future.

  3. Interactions between tidal turbine wakes: experimental study of a group of three-bladed rotors.

    PubMed

    Stallard, T; Collings, R; Feng, T; Whelan, J

    2013-02-28

    It is well known that a wake will develop downstream of a tidal stream turbine owing to extraction of axial momentum across the rotor plane. To select a suitable layout for an array of horizontal axis tidal stream turbines, it is important to understand the extent and structure of the wakes of each turbine. Studies of wind turbines and isolated tidal stream turbines have shown that the velocity reduction in the wake of a single device is a function of the rotor operating state (specifically thrust), and that the rate of recovery of wake velocity is dependent on mixing between the wake and the surrounding flow. For an unbounded flow, the velocity of the surrounding flow is similar to that of the incident flow. However, the velocity of the surrounding flow will be increased by the presence of bounding surfaces formed by the bed and free surface, and by the wake of adjacent devices. This paper presents the results of an experimental study investigating the influence of such bounding surfaces on the structure of the wake of tidal stream turbines. PMID:23319702

  4. An Experimental Study on the Darrieus-Savonius Turbine for the Tidal Current Power Generation

    NASA Astrophysics Data System (ADS)

    Kyozuka, Yusaku

    The Darrieus turbine is popular for tidal current power generation in Japan. It is simple in structure with straight wings rotating around a vertical axis, so that it has no directionality against the motion of tidal flow which changes its direction twice a day. However, there is one defect in the Darrieus turbine; its small starting torque. Once it stops, a Darrieus turbine is hard to re-start until a fairly fast current is exerted on it. To improve the starting torque of the Darrieus turbine used for tidal power generation, a hybrid turbine, composed of a Darrieus turbine and a Savonius rotor is proposed. Hydrodynamic characteristics of a semi-circular section used for the Savonius bucket were measured in a wind tunnel. The torque of a two bucket Savonius rotor was measured in a circulating water channel, where four different configurations of the bucket were compared. A combined Darrieus and Savonius turbine was tested in the circulating water channel, where the effect of the attaching angle between Darrieus wing and Savonius rotor was studied. Finally, power generation experiments using a 48 pole electric generator were conducted in a towing tank and the power coefficients were compared with the results of experiments obtained in the circulating water channel.

  5. The Effect of Surface Waves on the Performance Characteristics of a Model Tidal Turbine

    NASA Astrophysics Data System (ADS)

    Flack, K.; Luznik, L.; Lust, E.; Taylor, K.

    2011-12-01

    A 0.5 m diameter 3-bladed horizontal axis model tidal turbine has been designed and tested at the United States Naval Academy Hydrodynamics Laboratory. The blades section for the turbine is based on the E387 foil and includes a 50% taper and 20 degree twist from root to tip. Tests were conducted in the 120 ft tow tank for a range of tow speeds of 0.5 - 1.5 m/s. The experimental rig consists of the following parts: a 90 degree gear box attached to the turbine shaft, a rotary encoder to measure RPM, a torque meter, and a differential electromagnetic brake to apply a load to the shaft. The turbine was placed 1 diameter below the free surface. Preliminary results show excellent agreement of the experimentally measured power coefficient as a function of tip-speed ratio with predicted results from blade-element-momentum theory. Additional experiments are being conducted which include the influence of surface waves on tidal turbine performance. A full uncertainty analysis of the experimental results will also be included. This is part of larger effort at the Naval Academy to develop a testing program for tidal turbine research in the large tow tank facilities.

  6. An analytic approach to optimize tidal turbine fields

    NASA Astrophysics Data System (ADS)

    Pelz, P.; Metzler, M.

    2013-12-01

    Motivated by global warming due to CO2-emission various technologies for harvesting of energy from renewable sources are developed. Hydrokinetic turbines get applied to surface watercourse or tidal flow to gain electrical energy. Since the available power for hydrokinetic turbines is proportional to the projected cross section area, fields of turbines are installed to scale shaft power. Each hydrokinetic turbine of a field can be considered as a disk actuator. In [1], the first author derives the optimal operation point for hydropower in an open-channel. The present paper concerns about a 0-dimensional model of a disk-actuator in an open-channel flow with bypass, as a special case of [1]. Based on the energy equation, the continuity equation and the momentum balance an analytical approach is made to calculate the coefficient of performance for hydrokinetic turbines with bypass flow as function of the turbine head and the ratio of turbine width to channel width.

  7. Evaluation of the durability of composite tidal turbine blades.

    PubMed

    Davies, Peter; Germain, Grégory; Gaurier, Benoît; Boisseau, Amélie; Perreux, Dominique

    2013-02-28

    The long-term reliability of tidal turbines is critical if these structures are to be cost effective. Optimized design requires a combination of material durability models and structural analyses. Composites are a natural choice for turbine blades, but there are few data available to predict material behaviour under coupled environmental and cycling loading. The present study addresses this problem, by introducing a multi-level framework for turbine blade qualification. At the material scale, static and cyclic tests have been performed, both in air and in sea water. The influence of ageing in sea water on fatigue performance is then quantified, and much lower fatigue lives are measured after ageing. At a higher level, flume tank tests have been performed on three-blade tidal turbines. Strain gauging of blades has provided data to compare with numerical models. PMID:23319705

  8. Vertical-Axis Wind Turbine Mesh Generator

    SciTech Connect

    2014-01-24

    VAWTGen is a mesh generator for creating a finite element beam mesh of arbitrary vertical-axis wind turbines (VAWT). The software accepts input files specifying tower and blade structural and aerodynamic descriptions and constructs a VAWT using a minimal set of inputs. VAWTs with an arbitrary number of blades can be constructed with or without a central tower. Strut connections between the tower and blades can be specified in an arbitrary manner. The software also facilitates specifying arbitrary joints between structural components and concentrated structural tenns (mass and stiffness). The output files which describe the VAWT configuration are intended to be used with the Offshore Wind ENergy Simulation (OWENS) Toolkit software for structural dynamics analysis of VAWTs. Furthermore, VAWTGen is useful for visualizing output from the OWENS analysis software.

  9. Vertical-Axis Wind Turbine Mesh Generator

    2014-01-24

    VAWTGen is a mesh generator for creating a finite element beam mesh of arbitrary vertical-axis wind turbines (VAWT). The software accepts input files specifying tower and blade structural and aerodynamic descriptions and constructs a VAWT using a minimal set of inputs. VAWTs with an arbitrary number of blades can be constructed with or without a central tower. Strut connections between the tower and blades can be specified in an arbitrary manner. The software also facilitatesmore » specifying arbitrary joints between structural components and concentrated structural tenns (mass and stiffness). The output files which describe the VAWT configuration are intended to be used with the Offshore Wind ENergy Simulation (OWENS) Toolkit software for structural dynamics analysis of VAWTs. Furthermore, VAWTGen is useful for visualizing output from the OWENS analysis software.« less

  10. Aeroelastically coupled blades for vertical axis wind turbines

    DOEpatents

    Paquette, Joshua; Barone, Matthew F.

    2016-02-23

    Various technologies described herein pertain to a vertical axis wind turbine blade configured to rotate about a rotation axis. The vertical axis wind turbine blade includes at least an attachment segment, a rear swept segment, and optionally, a forward swept segment. The attachment segment is contiguous with the forward swept segment, and the forward swept segment is contiguous with the rear swept segment. The attachment segment includes a first portion of a centroid axis, the forward swept segment includes a second portion of the centroid axis, and the rear swept segment includes a third portion of the centroid axis. The second portion of the centroid axis is angularly displaced ahead of the first portion of the centroid axis and the third portion of the centroid axis is angularly displaced behind the first portion of the centroid axis in the direction of rotation about the rotation axis.

  11. Computational studies of horizontal axis wind turbines

    NASA Astrophysics Data System (ADS)

    Xu, Guanpeng

    A numerical technique has been developed for efficiently simulating fully three-dimensional viscous fluid flow around horizontal axis wind turbines (HAWT) using a zonal approach. The flow field is viewed as a combination of viscous regions, inviscid regions and vortices. The method solves the costly unsteady Reynolds averaged Navier-Stokes (RANS) equations only in the viscous region around the turbine blades. It solves the full potential equation in the inviscid region where flow is irrotational and isentropic. The tip vortices are simulated using a Lagrangean approach, thus removing the need to accurately resolve them on a fine grid. The hybrid method is shown to provide good results with modest CPU resources. A full Navier-Stokes based methodology has also been developed for modeling wind turbines at high wind conditions where extensive stall may occur. An overset grid based version that can model rotor-tower interactions has been developed. Finally, a blade element theory based methodology has been developed for the purpose of developing improved tip loss models and stall delay models. The effects of turbulence are simulated using a zero equation eddy viscosity model, or a one equation Spalart-Allmaras model. Two transition models, one based on the Eppler's criterion, and the other based on Michel's criterion, have been developed and tested. The hybrid method has been extensively validated for axial wind conditions for three rotors---NREL Phase II, Phase III, and Phase VI configurations. A limited set of calculations has been done for rotors operating under yaw conditions. Preliminary simulations have also been carried out to assess the effects of the tower wake on the rotor. In most of these cases, satisfactory agreement has been obtained with measurements. Using the numerical results from present methodologies as a guide, Prandtl's tip loss model and Corrigan's stall delay model were correlated with present calculations. An improved tip loss model has been

  12. Yaw dynamics of horizontal axis wind turbines

    SciTech Connect

    Hansen, A.C. )

    1992-05-01

    Designers of a horizontal axis wind turbine yaw mechanism are faced with a difficult decision. They know that if they elect to use a yaw- controlled rotor then the system will suffer increased initial cost and increased inherent maintenance and reliability problems. On the other hand, if they elect to allow the rotor to freely yaw they known they will have to account for unknown and random, though bounded, yaw rates. They will have a higher-risk design to trade-off against the potential for cost savings and reliability improvement. The risk of a yaw-free system could be minimized if methods were available for analyzing and understanding yaw behavior. The complexity of yaw behavior has, until recently, discouraged engineers from developing a complete yaw analysis method. The objectives of this work are to (1) provide a fundamental understanding of free-yaw mechanics and the design concepts most effective at eliminating yaw problems, and (2) provide tested design tools and guidelines for use by free-yaw wind systems manufacturers. The emphasis is on developing practical and sufficiently accurate design methods.

  13. Electrical generation using a vertical-axis wind turbine

    SciTech Connect

    Clark, R.N.

    1982-12-01

    Traditionally, windmills have been of the propeller or multiblade types, both of which have their rotational axis parallel to the flow of the wind. A vertical-axis wind turbine has its rotational axis perpendicular to the flow of wind and requires no orientation to keep the rotor in the windstream. The vertical-axis wind turbine operates on the same principle as an airfoil and produces lift and drag as any airfoil. A newly designed 100-kW vertical-axis wind turbine has been operated for one year at the USDA Conservation and Production Research Laboratory, Bushland, TX. The turbine has an induction generator and supplies power to a sprinkler irrigation system with excess power being sold to the electric utility. The turbine begins producing power at 5.5 m/s windspeed and reaches its rated output of 100-kW at 15 m/s. The unit has obtained a peak efficiency of 48% at a windspeed of 8 m/s or 81% of theoretical maximum. Using 17 years of windspeed data from the National Weather Service, the annual energy output is estimated at 200,000 kWh. The unit has experienced several operational problems during its initial testing. Guy cables were enlarged to provide greater stiffness to reduce blade stress levels, lightning shorted the main contactor, and the brake system required a complete redesign and modification. The turbine was operational about 60% of the time.

  14. A new vertical axis wind turbine design for urban areas

    NASA Astrophysics Data System (ADS)

    Frunzulica, Florin; Cismilianu, Alexandru; Boros, Alexandru; Dumitrache, Alexandru; Suatean, Bogdan

    2016-06-01

    In this paper we aim at developing the model of a Vertical Axis Wind Turbine (VAWT) with the short-term goal of physically realising this turbine to operate at a maximmum power of 5 kW. The turbine is designed for household users in the urban or rural areas and remote or isolated residential areas (hardly accsessible). The proposed model has a biplane configuration on each arm of the VAWT (3 × 2 = 6 blades), allowing for increased performance of the turbine at TSR between 2 and 2.5 (urban area operation) compared to the classic vertical axis turbines. Results that validate the proposed configuration as well as passive control methods to increase the performance of the classic VAWTs are presented.

  15. Determining tidal turbine farm efficiency in the Western Passage using the disc actuator theory

    NASA Astrophysics Data System (ADS)

    Rao, Shivanesh; Xue, Huijie; Bao, Min; Funke, Simon

    2016-01-01

    Tidal power potential is determined across the Western Passage in Passamaquoddy Bay using the Finite Volume Community Ocean Model (FVCOM). The tidal turbines are implemented in FVCOM using the disc actuator theory method to determine the power potential for different densities and arrangements of tidal turbines. At the most efficient setting for 10 turbines across the Western Passage, the optimal turbine drag coefficient is 2.0 and the average power output, in a 2-week period, is ˜819 kW. Results suggest that for a single row of turbines, the addition of turbines decreases the efficiency of the turbine farm, but this decrease in efficiency is less than 7 %. A parallel distribution of turbines in an array diminishes the average power for turbines in the shadow of other turbines, while staggered distribution in an array increases the average power extraction for some turbines, due to the speed gains in the gaps between turbines. A simple tidal farm optimization using the OpenTidalFarm (OTF) model suggests a similar tidal farm distribution.

  16. Energy storage inherent in large tidal turbine farms.

    PubMed

    Vennell, Ross; Adcock, Thomas A A

    2014-06-01

    While wind farms have no inherent storage to supply power in calm conditions, this paper demonstrates that large tidal turbine farms in channels have short-term energy storage. This storage lies in the inertia of the oscillating flow and can be used to exceed the previously published upper limit for power production by currents in a tidal channel, while simultaneously maintaining stronger currents. Inertial storage exploits the ability of large farms to manipulate the phase of the oscillating currents by varying the farm's drag coefficient. This work shows that by optimizing how a large farm's drag coefficient varies during the tidal cycle it is possible to have some flexibility about when power is produced. This flexibility can be used in many ways, e.g. producing more power, or to better meet short predictable peaks in demand. This flexibility also allows trading total power production off against meeting peak demand, or mitigating the flow speed reduction owing to power extraction. The effectiveness of inertial storage is governed by the frictional time scale relative to either the duration of a half tidal cycle or the duration of a peak in power demand, thus has greater benefits in larger channels. PMID:24910516

  17. Energy storage inherent in large tidal turbine farms

    PubMed Central

    Vennell, Ross; Adcock, Thomas A. A.

    2014-01-01

    While wind farms have no inherent storage to supply power in calm conditions, this paper demonstrates that large tidal turbine farms in channels have short-term energy storage. This storage lies in the inertia of the oscillating flow and can be used to exceed the previously published upper limit for power production by currents in a tidal channel, while simultaneously maintaining stronger currents. Inertial storage exploits the ability of large farms to manipulate the phase of the oscillating currents by varying the farm's drag coefficient. This work shows that by optimizing how a large farm's drag coefficient varies during the tidal cycle it is possible to have some flexibility about when power is produced. This flexibility can be used in many ways, e.g. producing more power, or to better meet short predictable peaks in demand. This flexibility also allows trading total power production off against meeting peak demand, or mitigating the flow speed reduction owing to power extraction. The effectiveness of inertial storage is governed by the frictional time scale relative to either the duration of a half tidal cycle or the duration of a peak in power demand, thus has greater benefits in larger channels. PMID:24910516

  18. Energy storage inherent in large tidal turbine farms.

    PubMed

    Vennell, Ross; Adcock, Thomas A A

    2014-06-01

    While wind farms have no inherent storage to supply power in calm conditions, this paper demonstrates that large tidal turbine farms in channels have short-term energy storage. This storage lies in the inertia of the oscillating flow and can be used to exceed the previously published upper limit for power production by currents in a tidal channel, while simultaneously maintaining stronger currents. Inertial storage exploits the ability of large farms to manipulate the phase of the oscillating currents by varying the farm's drag coefficient. This work shows that by optimizing how a large farm's drag coefficient varies during the tidal cycle it is possible to have some flexibility about when power is produced. This flexibility can be used in many ways, e.g. producing more power, or to better meet short predictable peaks in demand. This flexibility also allows trading total power production off against meeting peak demand, or mitigating the flow speed reduction owing to power extraction. The effectiveness of inertial storage is governed by the frictional time scale relative to either the duration of a half tidal cycle or the duration of a peak in power demand, thus has greater benefits in larger channels.

  19. Effects of structure flexibility on horizontal axis wind turbine performances

    NASA Astrophysics Data System (ADS)

    Coiro, D. P.; Daniele, E.; Scherillo, F.

    2013-10-01

    This work illustrates the effects of flexibility of rotor blades and turbine tower on the performances of an horizontal axis wind turbine (HAWT) designed by our ADAG research group, by means of several example applied on a recent project for a active pitch controlled upwind 60 kW HAWT. The influence of structural flexibility for blade only, tower only and blade coupled with tower configuration is investigated using an aero-elastic computer-aided engineering (CAE) tool for horizontal axis wind turbines named FAST developed at National Renewable Energy Laboratory (NREL) of USA. For unsteady inflow conditions in front of the isolated HAWT the performances in rigid and flexible operation mode are computed and compared in order to illustrate the limitation included within a classical rigid body approach to wind turbine simulation.

  20. Large Horizontal-Axis Wind Turbines

    NASA Technical Reports Server (NTRS)

    Thresher, R. W. (Editor)

    1982-01-01

    The proceedings of a workshop held in Cleveland, July 28-30, 1981 are described. The workshop emphasized recent experience in building and testing large propeller-type wind turbines, expanding upon the proceedings of three previous DOE/NASA workshops at which design and analysis topics were considered. A total of 41 papers were presented on the following subjects: current and advanced large wind turbine systems, rotor blade design and manufacture, electric utility activities, research and supporting technology, meteorological characteristics for design and operation, and wind resources assessments for siting.

  1. Estimation of power in low velocity vertical axis wind turbine

    NASA Astrophysics Data System (ADS)

    Sampath, S. S.; Shetty, Sawan; Chithirai Pon Selvan, M.

    2015-06-01

    The present work involves in the construction of a vertical axis wind turbine and the determination of power. Various different types of turbine blades are considered and the optimum blade is selected. Mechanical components of the entire setup are built to obtain maximum rotation per minute. The mechanical energy is converted into the electrical energy by coupling coaxially between the shaft and the generator. This setup produces sufficient power for consumption of household purposes which is economic and easily available.

  2. Impact of Tidal-Stream Turbines on the Generation of the Higher Tidal Harmonics

    NASA Astrophysics Data System (ADS)

    Potter, Daniel; Ilic, Suzana; Folkard, Andrew

    2016-04-01

    The higher tidal harmonics result from the interaction of the astronomic tides with both themselves and each other through non-linear processes. In shallower waters such as those near the coast these non-linear processes become more significant and thus, so too do the higher tidal harmonics become more significant. The interaction of the tide with tidal-stream turbines (TSTs), through thrust and drag processes will be non-linear and as such will contribute to the generation of higher tidal harmonics, thus changing the nature of the tide downstream of the turbines. The change to the tide may potentially impact on the downstream energy resource (Robins et al. 2015) and sediment transport processes (Pingree & Griffiths 1979). This paper will present analytical results, which suggest that TSTs will impact on the generation of all higher harmonics but with odd overtides being impacted more than even overtides, the most important examples of which are the M6 and M4 tides respectively, which are the first odd and even overtides of the M2 tide. Change in phase and amplitude of the M6 tide by TSTs will distort the tide but will not cause an asymmetry between the flood and ebb of the tide. Change in the phase and amplitude of the M4 can not only distort the tide but also cause asymmetry. Hence any change to the M4 tide by the turbines is more significant, despite the magnitude of change to the M6 being greater. In order to gain a fuller understanding of the way in which TSTs change the tide downstream and the significance of any change for transport processes or energy resource, a numerical modelling study will be carried out, which will be presented in a future paper. Robins, P.E., Neill, S.P., Lewis, M. & Ward, S.L., 2015. Characterising the spatial and temporal variability of the tidal-stream energy resource over the northwest European shelf seas. Applied Energy, 147: 510-522. Pingree, R.D. & Griffiths, D.K., 1979. Sand transport paths around the British Isles resulting

  3. Vertical axis wind turbine drive train transient dynamics

    NASA Technical Reports Server (NTRS)

    Clauss, D. B.; Carne, T. G.

    1982-01-01

    Start up of a vertical axis wind turbine causes transient torque oscillations in the drive train with peak torques which may be over two and one half times the rated torque of the turbine. A computer code, based on a lumped parameter model of the drive train, was developed and tested for the low cost 17 meter turbine; the results show excellent agreement with field data. The code was used to predict the effect of a slip clutch on transient torque oscillations. It was demonstrated that a slip clutch located between the motor and brake can reduce peak torques by thirty eight percent.

  4. Guy cable design and damping for vertical axis wind turbines

    NASA Technical Reports Server (NTRS)

    Carne, T. G.

    1981-01-01

    Guy cables are frequently used to support vertical axis wind turbines since guying the turbine reduces some of the structural requirements on the tower. The guys must be designed to provide both the required strength and the required stiffness at the top of the turbine. The axial load which the guys apply to the tower, bearings, and foundations is an undesirable consequence of using guys to support the turbine. Limiting the axial load so that it does not significantly affect the cost of the turbine is an important objective of the cable design. The lateral vibrations of the cables is another feature of the cable design which needs to be considered. These aspects of the cable design are discussed, and a technique for damping cable vibrations was mathematically analyzed and demonstrated with experimental data.

  5. Survey of Unsteady Computational Aerodynamics for Horizontal Axis Wind Turbines

    NASA Astrophysics Data System (ADS)

    Frunzulicǎ, F.; Dumitrescu, H.; Cardoş, V.

    2010-09-01

    We present a short review of aerodynamic computational models for horizontal axis wind turbines (HAWT). Models presented have a various level of complexity to calculate aerodynamic loads on rotor of HAWT, starting with the simplest blade element momentum (BEM) and ending with the complex model of Navier-Stokes equations. Also, we present some computational aspects of these models.

  6. Fixed geometry self starting transverse axis wind turbine

    SciTech Connect

    Dereng, V.G.

    1981-04-28

    This invention relates to a fixed geometry self starting wind turbine having a blade rotatable about a vertical axis. The blade is of a wide streamlined cambered airfoil shape and has a forward portion that includes a well rounded leading edge and thickness distribution that is conducive to high lift to drag ratios and having a high drag characteristic in reversed flows. The concave curvature of this camber line of said airfoil is directed to the rotational axis. The wide blade in combination with the well rounded leading edge, camber and airfoil thickness gives the turbine improved self-starting characteristics and causes the turbine to have improved acceleration characteristics through the intermediate speed range and up to full operating speed.

  7. Comparison of Water Turbine Characteristics using Different Blades in Darrieus Water Turbines used for Tidal Current Generations

    NASA Astrophysics Data System (ADS)

    Shiono, Mitsuhiro; Suzuki, Katsuyuki; Kiho, Seiji

    The use of renewable energies has been focused on for preserving environments and coping with the shortage of future energy supplies. In oceans, a tide reverses its current direction every six hours, and the current velocity changes into a sine wave after a period of time. Tidal current generation uses a generator to produce energy, changing the kinetic energy of current into a turning force by setting a water turbine in the tidal current. Therefore, it is considered to be very advantageous to use a water turbine that can always revolve in a fixed direction without any influence from tidal current directions. Water turbines with these characteristics are known as Darrieus water turbines. The Darrieus water turbines were modified for water from turbines originally developed for windmills. Darrieus water turbines have a difficulty in starting, but these days Darrieus water turbines have been developed with spiral blades, which make it easy to get the turbines started. However, there are very few reports regarding Darrieus water turbines with spiral blades, and therefore their characteristics are unknown. From the above points of view, this study devises and investigates spiral blade-Darrieus water turbines to clarify their characteristics through hydrographic experiments, and at the same time, it compares the characteristics of spiral-blade Darrieus water turbines with those of straight-blade ones.

  8. Accuracy of the actuator disc-RANS approach for predicting the performance and wake of tidal turbines.

    PubMed

    Batten, W M J; Harrison, M E; Bahaj, A S

    2013-02-28

    The actuator disc-RANS model has widely been used in wind and tidal energy to predict the wake of a horizontal axis turbine. The model is appropriate where large-scale effects of the turbine on a flow are of interest, for example, when considering environmental impacts, or arrays of devices. The accuracy of the model for modelling the wake of tidal stream turbines has not been demonstrated, and flow predictions presented in the literature for similar modelled scenarios vary significantly. This paper compares the results of the actuator disc-RANS model, where the turbine forces have been derived using a blade-element approach, to experimental data measured in the wake of a scaled turbine. It also compares the results with those of a simpler uniform actuator disc model. The comparisons show that the model is accurate and can predict up to 94 per cent of the variation in the experimental velocity data measured on the centreline of the wake, therefore demonstrating that the actuator disc-RANS model is an accurate approach for modelling a turbine wake, and a conservative approach to predict performance and loads. It can therefore be applied to similar scenarios with confidence.

  9. Accuracy of the actuator disc-RANS approach for predicting the performance and wake of tidal turbines.

    PubMed

    Batten, W M J; Harrison, M E; Bahaj, A S

    2013-02-28

    The actuator disc-RANS model has widely been used in wind and tidal energy to predict the wake of a horizontal axis turbine. The model is appropriate where large-scale effects of the turbine on a flow are of interest, for example, when considering environmental impacts, or arrays of devices. The accuracy of the model for modelling the wake of tidal stream turbines has not been demonstrated, and flow predictions presented in the literature for similar modelled scenarios vary significantly. This paper compares the results of the actuator disc-RANS model, where the turbine forces have been derived using a blade-element approach, to experimental data measured in the wake of a scaled turbine. It also compares the results with those of a simpler uniform actuator disc model. The comparisons show that the model is accurate and can predict up to 94 per cent of the variation in the experimental velocity data measured on the centreline of the wake, therefore demonstrating that the actuator disc-RANS model is an accurate approach for modelling a turbine wake, and a conservative approach to predict performance and loads. It can therefore be applied to similar scenarios with confidence. PMID:23319711

  10. Hydrodynamic Modeling, Optimization and Performance Assessment for Ducted and Non-ducted Tidal Turbines

    NASA Astrophysics Data System (ADS)

    Shives, Michael Robert

    This thesis examines methods for designing and analyzing kinetic turbines based on blade element momentum (BEM) theory and computational fluid dynamics (CFD). The underlying goal of the work was to assess the potential augmentation of power production associated with enclosing the turbine in an expanding duct. Thus, a comparison of the potential performance of ducted and non-ducted turbines was carried out. This required defining optimal turbine performance for both concepts. BEM is the typical tool used for turbine optimization and is very well established in the context of wind turbine design. BEM was suitable for conventional turbines, but could not account for the influence of ducts, and no established methodology for designing ducted turbines could be found in the literature. Thus, methods were established to design and analyze ducted turbines based on an extended version of BEM (with CFD-derived coefficients), and based on CFD simulation. Additional complications arise in designing tidal turbines because traditional techniques for kinetic turbine design have been established for wind turbines, which are similar in their principle of operation but are driven by flows with inherently different boundary conditions than tidal currents. The major difference is that tidal flows are bounded by the ocean floor, the water surface and channel walls. Thus, analytical and CFD-based methods were established to account for the effects of these boundaries (called blockage effects) on the optimal design and performance of turbines. Additionally, tidal flows are driven by changes in the water surface height in the ocean and their velocity is limited by viscous effects. Turbines introduced into a tidal flow increase the total drag in the system and reduce the total flow in a region (e.g. a tidal channel). An analytical method to account for this was taken from the field of tidal resource assessment, and along with the methods to account for ducts and blockage effects, was

  11. A Framework for Optimizing the Placement of Tidal Turbines

    NASA Astrophysics Data System (ADS)

    Nelson, K. S.; Roberts, J.; Jones, C.; James, S. C.

    2013-12-01

    Power generation with marine hydrokinetic (MHK) current energy converters (CECs), often in the form of underwater turbines, is receiving growing global interest. Because of reasonable investment, maintenance, reliability, and environmental friendliness, this technology can contribute to national (and global) energy markets and is worthy of research investment. Furthermore, in remote areas, small-scale MHK energy from river, tidal, or ocean currents can provide a local power supply. However, little is known about the potential environmental effects of CEC operation in coastal embayments, estuaries, or rivers, or of the cumulative impacts of these devices on aquatic ecosystems over years or decades of operation. There is an urgent need for practical, accessible tools and peer-reviewed publications to help industry and regulators evaluate environmental impacts and mitigation measures, while establishing best sitting and design practices. Sandia National Laboratories (SNL) and Sea Engineering, Inc. (SEI) have investigated the potential environmental impacts and performance of individual tidal energy converters (TECs) in Cobscook Bay, ME; TECs are a subset of CECs that are specifically deployed in tidal channels. Cobscook Bay is the first deployment location of Ocean Renewable Power Company's (ORPC) TidGenTM unit. One unit is currently in place with four more to follow. Together, SNL and SEI built a coarse-grid, regional-scale model that included Cobscook Bay and all other landward embayments using the modeling platform SNL-EFDC. Within SNL-EFDC tidal turbines are represented using a unique set of momentum extraction, turbulence generation, and turbulence dissipation equations at TEC locations. The global model was then coupled to a local-scale model that was centered on the proposed TEC deployment locations. An optimization frame work was developed that used the refined model to determine optimal device placement locations that maximized array performance. Within the

  12. The influence of surface waves on tidal turbine performance characteristics

    NASA Astrophysics Data System (ADS)

    Van Benthem, M.; Luznik, L.; Flack, K.; Lust, E.

    2012-12-01

    Performance characteristics are presented for a 1/25th scale horizontal axis marine current turbine operating in calm conditions and in the presence of intermediate and deep water waves. The two-bladed turbine has radius of 0.4 m and a maximum blade pitch of 17°. The hydrofoil is a NACA63-618 which was selected to be Reynolds number independent in the operational range (ReC = 2 - 4 x 105). The experiments were performed in the 116 m towing tank at the United States Naval Academy at two depths 0.8D and 1.6D measured from the blade tip to the mean free surface. The performance characteristics without waves match expected results from blade-element-momentum theory. Results show that the average power coefficient is unaffected by the presence of waves, however, the phase averaged results indicate significant variation with wave phase.

  13. Optimization of blade motion of vertical axis turbine

    NASA Astrophysics Data System (ADS)

    Ma, Yong; Zhang, Liang; Zhang, Zhi-yang; Han, Duan-feng

    2016-04-01

    In this paper, a method is proposed to improve the energy efficiency of the vertical axis turbine. First of all, a single disk multiple stream-tube model is used to calculate individual fitness. Genetic algorithm is adopted to optimize blade pitch motion of vertical axis turbine with the maximum energy efficiency being selected as the optimization objective. Then, a particular data processing method is proposed, fitting the result data into a cosine-like curve. After that, a general formula calculating the blade motion is developed. Finally, CFD simulation is used to validate the blade pitch motion formula. The results show that the turbine's energy efficiency becomes higher after the optimization of blade pitch motion; compared with the fixed pitch turbine, the efficiency of variable-pitch turbine is significantly improved by the active blade pitch control; the energy efficiency declines gradually with the growth of speed ratio; besides, compactness has lager effect on the blade motion while the number of blades has little effect on it.

  14. Effect of Leading Edge Tubercles on Marine Tidal Turbine Blades

    NASA Astrophysics Data System (ADS)

    Murray, Mark; Gruber, Timothy; Fredriksson, David

    2010-11-01

    This project investigated the impact that the addition of leading edge protuberances (tubercles) have on the effectiveness of marine tidal turbine blades, especially at lower flow speeds. The addition of leading edge tubercles to lifting foils has been shown, in previous research, to delay the onset of stall without significant hydrodynamic costs. The experimental results obtained utilizing three different blade designs (baseline and two tubercle modified) are compared. All blades were designed in SolidWorks and manufactured utilizing rapid prototype techniques. All tests were conducted in the 120 ft tow tank at the U.S. Naval Academy using a specifically designed experimental apparatus. Results for power coefficients are presented for a range of tip speed ratios. Cut-in velocity is also compared between the blade designs. For all test criteria, the tubercle modified blades significantly outperformed the smooth leading edge baseline design blades.

  15. Design of Bi-Directional Hydrofoils for Tidal Current Turbines

    NASA Astrophysics Data System (ADS)

    Nedyalkov, Ivaylo; Wosnik, Martin

    2015-11-01

    Tidal Current Turbines operate in flows which reverse direction. Bi-directional hydrofoils have rotational symmetry and allow such turbines to operate without the need for pitch or yaw control, decreasing the initial and maintenance costs. A numerical test-bed was developed to automate the simulations of hydrofoils in OpenFOAM and was utilized to simulate the flow over eleven classes of hydrofoils comprising a total of 700 foil shapes at different angles of attack. For promising candidate foil shapes physical models of 75 mm chord and 150 mm span were fabricated and tested in the University of New Hampshire High-Speed Cavitation Tunnel (HiCaT). The experimental results were compared to the simulations for model validation. The numerical test-bed successfully generated simulations for a wide range of foil shapes, although, as expected, the k - ω - SST turbulence model employed here was not adequate for some of the foils and for large angles of attack at which separation occurred. An optimization algorithm is currently being coupled with the numerical test-bed and additional turbulence models will be implemented in the future.

  16. The Wake of a Single Vertical Axis Wind Turbine

    NASA Astrophysics Data System (ADS)

    Barsky, Danielle

    Vertical axis wind turbines (VAWTs) pose various advantages over traditional horizontal axis wind turbines (HAWTs), including their smaller size and footprint, quiet operation, and ability to produce power under a greater variety of wind directions and wind speeds. To determine the optimal spacing of an array of VAWTs for maximum power output, an understanding of the fundamental wake structure of a single VAWT is needed. This study is among the first attempts to experimentally visualize the wake of a VAWT using stereo particle image velocimetry (PIV). A scale VAWT is placed inside a wind tunnel and a motor rotates the scale model at a constant rotational speed. Wake data at several Reynolds numbers and tip speed ratios indicate that vortices are shed by each blade of the spinning VAWT, demonstrating significant differences between the wake of a VAWT and a spinning cylinder.

  17. Summary of tower designs for large horizontal axis wind turbines

    NASA Technical Reports Server (NTRS)

    Frederick, G. R.; Savino, J. M.

    1986-01-01

    Towers for large horizontal axis wind turbines, machines with a rotor axis height above 30 meters and rated at more than 500 kW, have varied in configuration, materials of construction, type of construction, height, and stiffness. For example, the U.S. large HAWTs have utilized steel truss type towers and free-standing steel cylindrical towers. In Europe, the trend has been to use only free-standing and guyed cylindrical towers, but both steel and reinforced concrete have been used as materials of construction. These variations in materials of construction and type of construction reflect different engineering approaches to the design of cost effective towers for large HAWTs. Tower designs are the NASA/DOE Mod-5B presently being fabricated. Design goals and requirements that influence tower configuration, height and materials are discussed. In particular, experiences with United States large wind turbine towers are elucidated. Finally, current trends in tower designs for large HAWTs are highlighted.

  18. Downwind rotor horizontal axis wind turbine noise prediction

    NASA Technical Reports Server (NTRS)

    Metzger, F. B.; Klatte, R. J.

    1981-01-01

    NASA and industry are currently cooperating in the conduct of extensive experimental and analytical studies to understand and predict the noise of large, horizontal axis wind turbines. This effort consists of (1) obtaining high quality noise data under well controlled and documented test conditions, (2) establishing the annoyance criteria for impulse noise of the type generated by horizontal axis wind turbines with rotors downwind of the support tower, (3) defining the wake characteristics downwind of the axial location of the plane of rotation, (4) comparing predictions with measurements made by use of wake data, and (5) comparing predictions with annoyance criteria. The status of work by Hamilton Standard in the above areas which was done in support of the cooperative NASA and industry studies is briefly summarized.

  19. New airfoils for small horizontal axis wind turbines

    SciTech Connect

    Giguere, P.; Selig, M.S.

    1997-12-31

    In a continuing effort to enhance the performance of small energy systems, one root airfoil and three primary airfoils were specifically designed for small horizontal axis wind turbines. These airfoils are intended primarily for 1-10 kW variable-speed wind turbines for both conventional (tapered/twisted) or pultruded blades. The four airfoils were wind-tunnel tested at Reynolds numbers between 100,000 and 500,000. Tests with simulated leading-edge roughness were also conducted. The results indicate that small variable-speed wind turbines should benefit from the use of the new airfoils which provide enhanced lift-to-drag ratio performance as compared with previously existing airfoils.

  20. Computational analysis of vertical axis wind turbine arrays

    NASA Astrophysics Data System (ADS)

    Bremseth, J.; Duraisamy, K.

    2016-03-01

    Canonical problems involving single, pairs, and arrays of vertical axis wind turbines (VAWTs) are investigated numerically with the objective of understanding the underlying flow structures and their implications on energy production. Experimental studies by Dabiri (J Renew Sustain Energy 3, 2011) suggest that VAWTs demand less stringent spacing requirements than their horizontal axis counterparts and additional benefits may be obtained by optimizing the placement and rotational direction of VAWTs. The flowfield of pairs of co-/counter-rotating VAWTs shows some similarities with pairs of cylinders in terms of wake structure and vortex shedding. When multiple VAWTs are placed in a column, the extent of the wake is seen to spread further downstream, irrespective of the direction of rotation of individual turbines. However, the aerodynamic interference between turbines gives rise to regions of excess momentum between the turbines which lead to significant power augmentations. Studies of VAWTs arranged in multiple columns show that the downstream columns can actually be more efficient than the leading column, a proposition that could lead to radical improvements in wind farm productivity.

  1. The wake of a single vertical axis wind turbine

    NASA Astrophysics Data System (ADS)

    Barsky, Danielle A.; Leftwich, Megan C.

    2013-11-01

    The purpose of this study is to measure the wake of a Windspire vertical axis wind turbine (VAWT). In recent years, research on VAWTs has increased due to various potential advantages over the more common horizontal axis wind turbines (HAWTs). Unlike very large HAWTs, moderately sized-and virtually silent-VAWTs can be placed in urban and suburban regions where land space is limited. To date, many VAWT studies have assumed that the turbine has the same aerodynamic structure as a spinning cylinder despite a significant increase in geometric complexity. This experiment attempts to understand the fundamental wake structure of a single VAWT (and compare it to the wake structure of a spinning cylinder). In this experiment, a scaled-down VAWT is placed inside a wind tunnel under a controlled laboratory setting. A motor rotates the scale model at a constant angular speed. Stereo particle image velocimetry (PIV) is used to visualize the wake of the turbine and image processing techniques are used to quantify the velocity and vorticity of the wake.

  2. Computational analysis of vertical axis wind turbine arrays

    NASA Astrophysics Data System (ADS)

    Bremseth, J.; Duraisamy, K.

    2016-10-01

    Canonical problems involving single, pairs, and arrays of vertical axis wind turbines (VAWTs) are investigated numerically with the objective of understanding the underlying flow structures and their implications on energy production. Experimental studies by Dabiri (J Renew Sustain Energy 3, 2011) suggest that VAWTs demand less stringent spacing requirements than their horizontal axis counterparts and additional benefits may be obtained by optimizing the placement and rotational direction of VAWTs. The flowfield of pairs of co-/counter-rotating VAWTs shows some similarities with pairs of cylinders in terms of wake structure and vortex shedding. When multiple VAWTs are placed in a column, the extent of the wake is seen to spread further downstream, irrespective of the direction of rotation of individual turbines. However, the aerodynamic interference between turbines gives rise to regions of excess momentum between the turbines which lead to significant power augmentations. Studies of VAWTs arranged in multiple columns show that the downstream columns can actually be more efficient than the leading column, a proposition that could lead to radical improvements in wind farm productivity.

  3. Modelling of the flow field surrounding tidal turbine arrays for varying positions in a channel.

    PubMed

    Daly, T; Myers, L E; Bahaj, A S

    2013-02-28

    The modelling of tidal turbines and the hydrodynamic effects of tidal power extraction represents a relatively new challenge in the field of computational fluid dynamics. Many different methods of defining flow and boundary conditions have been postulated and examined to determine how accurately they replicate the many parameters associated with tidal power extraction. This paper outlines the results of numerical modelling analysis carried out to investigate different methods of defining the inflow velocity boundary condition. This work is part of a wider research programme investigating flow effects in tidal turbine arrays. Results of this numerical analysis were benchmarked against previous experimental work conducted at the University of Southampton Chilworth hydraulics laboratory. Results show significant differences between certain methods of defining inflow velocities. However, certain methods do show good correlation with experimental results. This correlation would appear to justify the use of these velocity inflow definition methods in future numerical modelling of the far-field flow effects of tidal turbine arrays.

  4. Modelling of the flow field surrounding tidal turbine arrays for varying positions in a channel.

    PubMed

    Daly, T; Myers, L E; Bahaj, A S

    2013-02-28

    The modelling of tidal turbines and the hydrodynamic effects of tidal power extraction represents a relatively new challenge in the field of computational fluid dynamics. Many different methods of defining flow and boundary conditions have been postulated and examined to determine how accurately they replicate the many parameters associated with tidal power extraction. This paper outlines the results of numerical modelling analysis carried out to investigate different methods of defining the inflow velocity boundary condition. This work is part of a wider research programme investigating flow effects in tidal turbine arrays. Results of this numerical analysis were benchmarked against previous experimental work conducted at the University of Southampton Chilworth hydraulics laboratory. Results show significant differences between certain methods of defining inflow velocities. However, certain methods do show good correlation with experimental results. This correlation would appear to justify the use of these velocity inflow definition methods in future numerical modelling of the far-field flow effects of tidal turbine arrays. PMID:23319708

  5. Development of large, horizontal-axis wind turbines

    NASA Technical Reports Server (NTRS)

    Baldwin, D. H.; Kennard, J.

    1985-01-01

    A program to develop large, horizontal-axis wind turbines is discussed. The program is directed toward developing the technology for safe, reliable, environmentally acceptable large wind turbines that can generate a significant amount of electricity at costs competitive with those of conventional electricity-generating systems. In addition, these large wind turbines must be fully compatible with electric utility operations and interface requirements. Several ongoing projects in large-wind-turbine development are directed toward meeting the technology requirements for utility applications. The machines based on first-generation technology (Mod-OA and Mod-1) successfully completed their planned periods of experimental operation in June, 1982. The second-generation machines (Mod-2) are in operation at selected utility sites. A third-generation machine (Mod-5) is under contract. Erection and initial operation of the Mod-5 in Hawaii should take place in 1986. Each successive generation of technology increased reliability and energy capture while reducing the cost of electricity. These advances are being made by gaining a better understanding of the system-design drivers, improving the analytical design tools, verifying design methods with operating field data, and incorporating new technology and innovative designs. Information is given on the results from the first- and second-generation machines (Mod-OA, - 1, and -2), the status of the Department of Interior, and the status of the third-generation wind turbine (Mod-5).

  6. Preview Scheduled Model Predictive Control For Horizontal Axis Wind Turbines

    NASA Astrophysics Data System (ADS)

    Laks, Jason H.

    This research investigates the use of model predictive control (MPC) in application to wind turbine operation from start-up to cut-out. The studies conducted are focused on the design of an MPC controller for a 650˜KW, three-bladed horizontal axis turbine that is in operation at the National Renewable Energy Laboratory's National Wind Technology Center outside of Golden, Colorado. This turbine is at the small end of utility scale turbines, but it provides advanced instrumentation and control capabilities, and there is a good probability that the approach developed in simulation for this thesis, will be field tested on the actual turbine. A contribution of this thesis is a method to combine the use of preview measurements with MPC while also providing regulation of turbine speed and cyclic blade loading. A common MPC technique provides integral-like control to achieve offset-free operation. At the same time in wind turbine applications, multiple studies have developed "feed-forward" controls based on applying a gain to an estimate of the wind speed changes obtained from an observer incorporating a disturbance model. These approaches are based on a technique that can be referred to as disturbance accommodating control (DAC). In this thesis, it is shown that offset-free tracking MPC is equivalent to a DAC approach when the disturbance gain is computed to satisfy a regulator equation. Although the MPC literature has recognized that this approach provides "structurally stable" disturbance rejection and tracking, this step is not typically divorced from the MPC computations repeated each sample hit. The DAC formulation is conceptually simpler, and essentially uncouples regulation considerations from MPC related issues. This thesis provides a self contained proof that the DAC formulation (an observer-controller and appropriate disturbance gain) provides structurally stable regulation.

  7. Large Eddy Simulation of Vertical Axis Wind Turbine Wakes

    NASA Astrophysics Data System (ADS)

    Shamsoddin, Sina; Porté-Agel, Fernando

    2014-05-01

    In this study, large-eddy simulation (LES) is combined with a turbine model to investigate the wake behind a vertical-axis wind turbine (VAWT) in a three dimensional turbulent flow. Two methods are used to model the subgrid-scale (SGS) stresses: (a) the Smagorinsky model, and (b) the modulated gradient model. To parameterize the effects of the VAWT on the flow, two VAWT models are developed: (a) the actuator surface model (ASM), in which the time-averaged turbine-induced forces are distributed on a surface swept by the turbine blades, i.e. the actuator surface, and (b) the actuator line model (ALM), in which the instantaneous blade forces are only spatially distributed on lines representing the blades, i.e. the actuator lines. This is the first time that LES is applied and validated for simulation of VAWT wakes by using either the ASM or the ALM techniques. In both models, blade-element theory is used to calculate the lift and drag forces on the blades. The results are compared with flow measurements in the wake of a model straight-bladed VAWT, carried out in the Institute de Méchanique et Statistique de la Turbulence (IMST) water channel. Different combinations of SGS models with VAWT models are studied and a fairly good overall agreement between simulation results and measurement data is observed. In general, the ALM is found to better capture the unsteady-periodic nature of the wake and shows a better agreement with the experimental data compared with the ASM. The modulated gradient model is also found to be a more reliable SGS stress modeling technique, compared with the Smagorinsky model, and it yields reasonable predictions of the mean flow and turbulence characteristics of a VAWT wake using its theoretically-determined model coefficient. Keywords: Vertical-axis wind turbines (VAWTs); VAWT wake; Large-eddy simulation; Actuator surface model; Actuator line model; Smagorinsky model; Modulated gradient model

  8. Aeroelastic stability and response of horizontal axis wind turbine blades

    NASA Technical Reports Server (NTRS)

    Kottapalli, S. B. R.; Friedmann, P. P.; Rosen, A.

    1978-01-01

    The coupled flap-lag-torsion equations of motion of an isolated horizontal axis wind turbine blade are formulated. Quasi-steady blade-element strip theory was applied to derive the aerodynamic operator which includes boundary layer type gradient winds. The final equations which have periodic coefficients were solved in order to obtain the aeroelastic response and stability of large horizontal axis wind turbine blade. A new method of generating an appropriate time-dependent equilibrium position (required for the stability analysis) has been implemented. Representative steady-state responses and stability boundaries, applicable mainly to an existing blade design (NASA/-ERDA MOD-0), are presented. The results indicate that the MOD-0 configuration is a basically stable design and that blade stability is not sensitive to offsets between blade elastic axis and aerodynamic center. Blade stability appears to be sensitive to precone. The tower shadow (or wake) has a considerable effect on the flap response but leaves blade stability unchanged. Finally, it was found that non linear terms in the equations of motion can significantly affect the linearized stability boundaries, however, these terms have a negligible effect on blade response at operating conditions.

  9. Dual-axis resonance testing of wind turbine blades

    DOEpatents

    Hughes, Scott; Musial, Walter; White, Darris

    2014-01-07

    An apparatus (100) for fatigue testing test articles (104) including wind turbine blades. The apparatus (100) includes a test stand (110) that rigidly supports an end (106) of the test article (104). An actuator assembly (120) is attached to the test article (104) and is adapted for substantially concurrently imparting first and second forcing functions in first and second directions on the test article (104), with the first and second directions being perpendicular to a longitudinal axis. A controller (130) transmits first and second sets of displacement signals (160, 164) to the actuator assembly (120) at two resonant frequencies of the test system (104). The displacement signals (160, 164) initiate the actuator assembly (120) to impart the forcing loads to concurrently oscillate the test article (104) in the first and second directions. With turbine blades, the blades (104) are resonant tested concurrently for fatigue in the flapwise and edgewise directions.

  10. Tidal friction and generalized Cassini's laws in the solar system. [for planetary spin axis rotation

    NASA Technical Reports Server (NTRS)

    Ward, W. R.

    1975-01-01

    The tidal drift toward a generalized Cassini state of rotation of the spin axis of a planet or satellite in a precessing orbit is described. Generalized Cassini's laws are applied to several solar system objects and the location of their spin axes estimated. Of those considered only the moon definitely occupies state 2 with the spin axis near to the normal of the invariable plane. Most objects appear to occupy state 1 with the spin axis near to the orbit normal. Iapetus could occupy either state depending on its oblateness. In addition, the resonant rotation of Mercury is found to have little effect on the tidal drift of its spin axis toward state 1.

  11. Vertical-axis wind turbines -- The current status of an old technology

    SciTech Connect

    Berg, D.E.

    1996-12-31

    Vertical-axis wind turbine technology is not well understood, even though the earliest wind machines rotated about a vertical axis. The operating environment of a vertical-axis wind turbine is quite complex, but detailed analysis capabilities have been developed and verified over the last 30 years. Although vertical-axis technology has not been widely commercialized, it exhibits both advantages and disadvantages compared to horizontal-axis technology, and in some applications, it appears to offer significant advantages.

  12. Experimental characterization of vertical-axis wind turbine noise.

    PubMed

    Pearson, C E; Graham, W R

    2015-01-01

    Vertical-axis wind turbines are wind-energy generators suitable for use in urban environments. Their associated noise thus needs to be characterized and understood. As a first step, this work investigates the relative importance of harmonic and broadband contributions via model-scale wind-tunnel experiments. Cross-spectra from a pair of flush-mounted wall microphones exhibit both components, but further analysis shows that the broadband dominates at frequencies corresponding to the audible range in full-scale operation. This observation has detrimental implications for noise-prediction reliability and hence also for acoustic design optimization.

  13. Dynamic Analysis of Darrieus Vertical Axis Wind Turbine Rotors

    NASA Technical Reports Server (NTRS)

    Lobitz, D. W.

    1981-01-01

    The dynamic response characteristics of the vertical axis wind turbine (VAWT) rotor are important factors governing the safety and fatigue life of VAWT systems. The principal problems are the determination of critical rotor speeds (resonances) and the assessment of forced vibration response amplitudes. The solution to these problems is complicated by centrifugal and Coriolis effects which can have substantial influence on rotor resonant frequencies and mode shapes. The primary tools now in use for rotor analysis are described and discussed. These tools include a lumped spring mass model (VAWTDYN) and also finite-element based approaches. The accuracy and completeness of current capabilities are also discussed.

  14. Wake Development of a Model Vertical Axis Wind Turbine

    NASA Astrophysics Data System (ADS)

    Kadum, Hawwa; Friedman, Sasha; Camp, Elizabeth; Cal, Rau'l.

    2015-11-01

    At the Portland State University wind tunnel facility, an experiment is conducted to observe the downstream development of the wake past a model vertical axis wind turbine (VAWT). The flow domain is composed of streamwise-spanwise planes at mid-height of the VAWT rotor and data is obtained via particle image velocimetry (PIV). The flow field is assessed by analyzing contours of mean velocities and the full Reynolds stress tensor. Furthermore, profiles of the aforementioned quantities and flow parameters are discussed in the context of downstream evolution/flow development.

  15. Experimental characterization of vertical-axis wind turbine noise.

    PubMed

    Pearson, C E; Graham, W R

    2015-01-01

    Vertical-axis wind turbines are wind-energy generators suitable for use in urban environments. Their associated noise thus needs to be characterized and understood. As a first step, this work investigates the relative importance of harmonic and broadband contributions via model-scale wind-tunnel experiments. Cross-spectra from a pair of flush-mounted wall microphones exhibit both components, but further analysis shows that the broadband dominates at frequencies corresponding to the audible range in full-scale operation. This observation has detrimental implications for noise-prediction reliability and hence also for acoustic design optimization. PMID:25618090

  16. Lifting surface performance analysis for horizontal axis wind turbines

    NASA Astrophysics Data System (ADS)

    Kocurek, D.

    1987-06-01

    This report describes how numerical lifting-surface theory is applied to the calculation of a horizontal-axis wind turbine's aerodynamic characteristics and performance. The report also describes how such an application is implemented as a computer program. The method evolved from rotary-wing and helicopter applications and features a detailed, prescribed wake. The wake model extends from a hovering-rotor experimental generalization to include the effect of the windmill brake state on the radial and axial displacement rates of the trailing vortex system. Performance calculations are made by coupling the lifting-surface circulation solution to a blade-element analysis that incorporates two-dimensional airfoil characteristics as functions of angle of attack and Reynolds number. Several analytical stall models are also provided to extend the airfoil characteristics beyond the limits of available data. Although this work focuses on the steady-performance problem, the method includes ways to investigate the effects of wind-shear profile, tower shadow, and off-axis shaft alignment. Correlating the method to measured wind-turbine performance, and comparing it to blade-element momentum theory calculations, validate and highlight the extreme sensitivity of predictions to the quality of early post-stall airfoil behavior.

  17. Numerical study on small scale vertical axis wind turbine

    NASA Astrophysics Data System (ADS)

    Parra-Santos, Teresa; Gallegos, Armando; Uzarraga, Cristóbal N.; Rodriguez, Miguel A.

    2016-03-01

    The performance of a Vertical Axis Wind Turbine (VAWT) is numerically analyzed. The set-up is Hdarrieus with three straight blades airfoils NACA attached to a rotating vertical shaft. The wind turbine has solidity equals to the unity operating with wind velocity of 7 m/s. Influence of pitch angle is tested to get design tendencies. 2D, transient, Navier Stokes equations are solved using the code Ansys-Fluent. Conservation equations were solved with a Third-Order MUSCL scheme using SIMPLE to couple pressure and velocity. More than six revolutions must be simulated to get the periodic behavior. Two models of turbulence have been contrasted Realizable k-epsilon and Transition SST concluding the last one show more realistic flow features. Pitch angles of 0º, -6º and -10º have been tested with Tip Speed Ratios ranging from 0.7 and 1.6. The no null pitch angles improve the performance of the wind turbine. Instantaneous and averaged power coefficients as well as detailed flow field around the airfoils are showed.

  18. Effects of stream turbine array configuration on tidal current energy extraction near an island

    NASA Astrophysics Data System (ADS)

    Chen, Yaling; Lin, Binliang; Lin, Jie; Wang, Shujie

    2015-04-01

    Enhanced tidal currents around islands appear to present the potential for power extraction. In this research, a three-dimensional numerical model is applied to investigate the naturally occurring tidal dynamics and the extractable energy from turbines close to Zhaitang Island, located off the east coast of China. In the model, the effect of tidal turbine is represented by a horizontal thrust and added to the momentum equations. To determine a better configuration of turbine array, a detailed work has been undertaken to investigate the combined influences of the topographic features and array arrangement on the performance of power generation. First, three single row arrays are examined with lateral spacing being 2, 3 and 4 times rotor diameters. Then, corresponding to each lateral spacing, three multi-row arrays in a staggered manner with longitudinal spacing being 5, 10 and 15 times rotor diameters are developed. It has been found that single row arrays with higher local blockage outperform arrays with lower blockage. While for multi-row arrays, the performance of inside turbine is significantly experienced the wake influence of upstream turbines, which can be weakened with an increment of turbine spacing. And a remarkable improvement of turbine performance is observed as the longitudinal spacing increases to 10 times rotor diameters. However, the change pattern of power extraction is mainly dependent on that of naturally kinetic energy when the turbine density is further decreasing in the given region.

  19. Theoretical performance of cross-wind axis turbines with results for a catenary vertical axis configuration

    NASA Technical Reports Server (NTRS)

    Muraca, R. J.; Stephens, M. V.; Dagenhart, J. R.

    1975-01-01

    A general analysis capable of predicting performance characteristics of cross-wind axis turbines was developed, including the effects of airfoil geometry, support struts, blade aspect ratio, windmill solidity, blade interference and curved flow. The results were compared with available wind tunnel results for a catenary blade shape. A theoretical performance curve for an aerodynamically efficient straight blade configuration was also presented. In addition, a linearized analytical solution applicable for straight configurations was developed. A listing of the computer program developed for numerical solutions of the general performance equations is included in the appendix.

  20. Dynamic Stall on Vertical Axis Wind Turbine Blades

    NASA Astrophysics Data System (ADS)

    Dunne, Reeve

    In this study the dynamics of flow over the blades of vertical axis wind turbines was investigated using a simplified periodic motion to uncover the fundamental flow physics and provide insight into the design of more efficient turbines. Time-resolved, two-dimensional velocity measurements were made with particle image velocimetry on a wing undergoing pitching and surging motion to mimic the flow on a turbine blade in a non-rotating frame. Dynamic stall prior to maximum angle of attack and a leading edge vortex development were identified in the phase-averaged flow field and captured by a simple model with five modes, including the first two harmonics of the pitch/surge frequency identified using the dynamic mode decomposition. Analysis of these modes identified vortical structures corresponding to both frequencies that led the separation and reattachment processes, while their phase relationship determined the evolution of the flow. Detailed analysis of the leading edge vortex found multiple regimes of vortex development coupled to the time-varying flow field on the airfoil. The vortex was shown to grow on the airfoil for four convection times, before shedding and causing dynamic stall in agreement with 'optimal' vortex formation theory. Vortex shedding from the trailing edge was identified from instantaneous velocity fields prior to separation. This shedding was found to be in agreement with classical Strouhal frequency scaling and was removed by phase averaging, which indicates that it is not exactly coupled to the phase of the airfoil motion. The flow field over an airfoil undergoing solely pitch motion was shown to develop similarly to the pitch/surge motion; however, flow separation took place earlier, corresponding to the earlier formation of the leading edge vortex. A similar reduced-order model to the pitch/surge case was developed, with similar vortical structures leading separation and reattachment; however, the relative phase lead of the separation mode

  1. Active Circulation Control for Horizontal Axis Wind Turbine

    NASA Astrophysics Data System (ADS)

    Dumitrache, Alexandru; Dumitrescu, Horia; Preotu, Octavian

    2011-09-01

    A based method for modeling the aerodynamics of horizontal axis wind turbine has been developed. Circulation control is implemented by tangentially blowing a small high-velocity jet over a highly curved surface, such as a rounded trailing edge. This causes the boundary layer and the jet sheet to remain attached along the curved surface due to the Coanda effect and causing the jet to turn without separation. This analysis has been validated for the experimental data of a rotor tested at NASA Ames Research Center. Comparisons have been done against measurements for surface pressure distribution, force coefficients normal and tangential to the chord line, torque and root bending moments. This approach for enhancing the circulation around the airfoil sections (and hence L/D and power production) has been examined and found to produce useful increases in power at low wind speeds.

  2. Aerodynamic performance of vertical and horizontal axis wind turbines

    NASA Astrophysics Data System (ADS)

    Maydew, R. C.; Klimas, P. C.

    1981-06-01

    The aerodynamic performance of vertical and horizontal axis wind turbines is investigated, and comparison of data of the 17-m Darrieus VAWT with the 60.7-m Mod-1 HAWT and 37.8-m Mod-0A HAWT is discussed. It is concluded that the maximum average measured power coefficients of the VAWT are about 0%-15% higher than those of the HAWTs. It is suggested that vertical wind shear may have lowered the Mod-1 HAWT aerodynamic performance, but, the magnitude of this effect could not be evaluated. It is included that generalizations which refer to the Darrieus VAWT as aerodynamically less efficient than the HAWT should be used carefully.

  3. Hydrodynamic effects of kinetic power extraction by in-stream tidal turbines

    NASA Astrophysics Data System (ADS)

    Polagye, Brian L.

    The hydrodynamic effects of extracting kinetic power from tidal streams presents unique challenges to the development of in-stream tidal power. In-stream tidal turbines superficially resemble wind turbines and extract kinetic power from the ebb and flood of strong tidal currents. Extraction increases the resistance to flow, leading to changes in tidal range, transport, mixing, and the kinetic resource itself. These far-field changes have environmental, social, and economic implications that must be understood to develop the in-stream resource. This dissertation describes the development of a one-dimensional numerical channel model and its application to the study of these effects. The model is applied to determine the roles played by site geometry, network topology, tidal regime, and device dynamics. A comparison is also made between theoretical and modeled predictions for the maximum amount of power which could be extracted from a tidal energy site. The model is extended to a simulation of kinetic power extraction from Puget Sound, Washington. In general, extracting tidal energy will have a number of far-field effects, in proportion to the level of power extraction. At the theoretical limit, these effects can be very significant (e.g., 50% reduction in transport), but are predicted to be immeasurably small for pilot-scale projects. Depending on the specifics of the site, far-field effects may either augment or reduce the existing tidal regime. Changes to the tide, in particular, have significant spatial variability. Since tidal streams are generally subcritical, effects are felt throughout the estuary, not just at the site of extraction. The one dimensional numerical modeling is supported by a robust theory for predicting the performance characteristics of in-stream devices. The far-field effects of tidal power depend on the total power dissipated by turbines, rather than the power extracted. When the low-speed wake downstream of a turbine mixes with the free

  4. Morping blade design for vertical axis wind turbines

    NASA Astrophysics Data System (ADS)

    Macphee, David; Beyene, Asfaw

    2015-11-01

    Wind turbines operate at peak efficiency at a certain set of operational conditions. Away from these conditions, conversion efficiency drops significantly, requiring pitch and yaw control schemes to mitigate these losses. These efforts are an example of geometric variability, allowing for increased power production but with an unfortunate increase in investment cost to the energy conversion system. In Vertical-Axis Wind Turbines (VAWTs), the concept of pitch control is especially complicated due to a dependence of attack angle on armature azimuth. As a result, VAWT pitch control schemes, both active and passive, are as of yet unfeasible. This study investigates a low-cost, passive pitch control system, in which VAWT blades are constructed of a flexible material, allowing for continuous shape-morphing in response to local aerodynamic loading. This design is analyzed computationally using a finite-volume fluid-structure interaction routine and compared to a geometrically identical rigid rotor. The results indicate that the flexible blade increases conversion efficiency by reducing the severity of vortex shedding, allowing for greater average torque over a complete revolution.

  5. On the theory of the horizontal-axis wind turbine

    NASA Astrophysics Data System (ADS)

    de Vries, O.

    The fluid mechanical theory of horizontal axis wind turbines (HAWT) in homogeneous, steady flows is presented. HAWT aerodynamic performance is governed by rotor torque and drag, the angular velocity, and power output, with governing equations for momentum, mass, and energy. The lift force and profile drag acting on the airfoil blades depend on the flow velocity, the chord length, the angle of attack, and the lift and drag coefficients. Single streamtube and multiple-stream tube and angular momentum analyses are employed to quantify the maximum wind turbine performance. Optimization studies for HAWT blades have indicated that a considerable amount of blade twist and taper enhances HAWT performance. Blade-element and vortex theory combined with panel methods are used to study optimum blade shapes. Techniques for assuring that wind tunnel studies of scale models are valid for full scale machines are defined. Sample runs have shown the accuracy of the blade element theory and the inaccuracies of two-dimensional analyses when stall is reached. The acquisition of more aerodynamic data on HAWT performance is indicated.

  6. Simplified aeroelastic modeling of horizontal axis wind turbines

    NASA Technical Reports Server (NTRS)

    Wendell, J. H.

    1982-01-01

    Certain aspects of the aeroelastic modeling and behavior of the horizontal axis wind turbine (HAWT) are examined. Two simple three degree of freedom models are described in this report, and tools are developed which allow other simple models to be derived. The first simple model developed is an equivalent hinge model to study the flap-lag-torsion aeroelastic stability of an isolated rotor blade. The model includes nonlinear effects, preconing, and noncoincident elastic axis, center of gravity, and aerodynamic center. A stability study is presented which examines the influence of key parameters on aeroelastic stability. Next, two general tools are developed to study the aeroelastic stability and response of a teetering rotor coupled to a flexible tower. The first of these tools is an aeroelastic model of a two-bladed rotor on a general flexible support. The second general tool is a harmonic balance solution method for the resulting second order system with periodic coefficients. The second simple model developed is a rotor-tower model which serves to demonstrate the general tools. This model includes nacelle yawing, nacelle pitching, and rotor teetering. Transient response time histories are calculated and compared to a similar model in the literature. Agreement between the two is very good, especially considering how few harmonics are used. Finally, a stability study is presented which examines the effects of support stiffness and damping, inflow angle, and preconing.

  7. Simplified aeroelastic modeling of horizontal axis wind turbines

    NASA Astrophysics Data System (ADS)

    Wendell, J. H.

    1982-09-01

    Certain aspects of the aeroelastic modeling and behavior of the horizontal axis wind turbine (HAWT) are examined. Two simple three degree of freedom models are described in this report, and tools are developed which allow other simple models to be derived. The first simple model developed is an equivalent hinge model to study the flap-lag-torsion aeroelastic stability of an isolated rotor blade. The model includes nonlinear effects, preconing, and noncoincident elastic axis, center of gravity, and aerodynamic center. A stability study is presented which examines the influence of key parameters on aeroelastic stability. Next, two general tools are developed to study the aeroelastic stability and response of a teetering rotor coupled to a flexible tower. The first of these tools is an aeroelastic model of a two-bladed rotor on a general flexible support. The second general tool is a harmonic balance solution method for the resulting second order system with periodic coefficients. The second simple model developed is a rotor-tower model which serves to demonstrate the general tools. This model includes nacelle yawing, nacelle pitching, and rotor teetering. Transient response time histories are calculated and compared to a similar model in the literature. Agreement between the two is very good, especially considering how few harmonics are used. Finally, a stability study is presented which examines the effects of support stiffness and damping, inflow angle, and preconing.

  8. Study of the turbulent wake behind a tidal turbine through different numerical models

    NASA Astrophysics Data System (ADS)

    Teymour Javaherchi Mozafari, Amir; Aliseda, Alberto; Antheaume, Sylvain; Seydel, Joseph; Polagye, Brian

    2009-11-01

    As developing sources of renewable energy becomes a critical priority, research in this field become more essential. A novel method to produce clean renewable energy is extraction from ocean tides via a turbine. Although energy generation from tidal currents has many similarities to wind, the balance between kinetic and potential energy is a key element in tidal channels that invalidates ``Betz's'' limit. Other practical differences arise from the concentrated nature of tidal resources which impose very close turbine spacing for economic reasons. These, together with the potential influence of geometric constraints imposed by free surface and tidal channel walls, makes the study of the turbulent wake in tidal energy extraction a very important problem in development of this technology from economical and environmental aspects. We will present numerical simulations of turbulent wake behind a well characterized two-bladed turbine using a hierarchy of different models: Actuator Disk, Virtual Blade, the Single and Multiple Reference Frame and Sliding Mesh model with various boundary conditions and inlet velocity profiles. We will compare the results, discuss the differences among these models and the potential for each one to answer questions about optimization of energy extraction and environmental impacts.

  9. Study of the Acoustic Effects of Hydrokinetic Tidal Turbines in Admiralty Inlet, Puget Sound

    SciTech Connect

    Brian Polagye; Jim Thomson; Chris Bassett; Jason Wood; Dom Tollit; Robert Cavagnaro; Andrea Copping

    2012-03-30

    Hydrokinetic turbines will be a source of noise in the marine environment - both during operation and during installation/removal. High intensity sound can cause injury or behavioral changes in marine mammals and may also affect fish and invertebrates. These noise effects are, however, highly dependent on the individual marine animals; the intensity, frequency, and duration of the sound; and context in which the sound is received. In other words, production of sound is a necessary, but not sufficient, condition for an environmental impact. At a workshop on the environmental effects of tidal energy development, experts identified sound produced by turbines as an area of potentially significant impact, but also high uncertainty. The overall objectives of this project are to improve our understanding of the potential acoustic effects of tidal turbines by: (1) Characterizing sources of existing underwater noise; (2) Assessing the effectiveness of monitoring technologies to characterize underwater noise and marine mammal responsiveness to noise; (3) Evaluating the sound profile of an operating tidal turbine; and (4) Studying the effect of turbine sound on surrogate species in a laboratory environment. This study focuses on a specific case study for tidal energy development in Admiralty Inlet, Puget Sound, Washington (USA), but the methodologies and results are applicable to other turbine technologies and geographic locations. The project succeeded in achieving the above objectives and, in doing so, substantially contributed to the body of knowledge around the acoustic effects of tidal energy development in several ways: (1) Through collection of data from Admiralty Inlet, established the sources of sound generated by strong currents (mobilizations of sediment and gravel) and determined that low-frequency sound recorded during periods of strong currents is non-propagating pseudo-sound. This helped to advance the debate within the marine and hydrokinetics acoustic

  10. Aeroelastic stability and response of horizontal axis wind turbine blades

    NASA Technical Reports Server (NTRS)

    Kottapalli, S. B. R.; Friedmann, P. P.; Rosen, A.

    1979-01-01

    Coupled flap-lag-torsion equations of motion of an isolated horizontal axis wind turbine (HAWT) blade have been formulated. The analysis neglects blade-tower coupling. The final nonlinear equations have periodic coefficients. A new and convenient method of generating an appropriate time-dependent equilibrium position, required for the stability analysis, has been implemented and found to be computationally efficient. Steady-state response and stability boundaries for an existing (typical) HAWT blade are presented. Such stability boundaries have never been published in the literature. The results show that the isolated blade under study is basically stable. The tower shadow (wake) has a considerable effect on the out-of-plane response but leaves blade stability unchanged. Nonlinear terms can significantly affect linearized stability boundaries; however, they have a negligible effect on response, thus implying that a time-dependent equilibrium position (or steady-state response), based completely on the linear system, is appropriate for the type of HAWT blades under study.

  11. Design of h-Darrieus vertical axis wind turbine

    NASA Astrophysics Data System (ADS)

    Parra, Teresa; Vega, Carmen; Gallegos, A.; Uzarraga, N. C.; Castro, F.

    2015-05-01

    Numerical simulation is used to predict the performance of a Vertical Axis Wind Turbine (VAWT) H-Darrieus. The rotor consists of three straight blades with shape of aerofoil of the NACA family attached to a rotating vertical shaft. The influence of the solidity is tested to get design tendencies. The mesh has two fluid volumes: one sliding mesh for the rotor where the rotation velocity is established while the other is the environment of the rotor. Bearing in mind the overall flow is characterized by important secondary flows, the turbulence model selected was realizable k-epsilon with non-equilibrium wall functions. Conservation equations were solved with a Third-Order Muscl scheme using SIMPLE to couple pressure and velocity. During VAWT operation, the performance depends mainly on the relative motion of the rotating blade and has a fundamental period which depends both on the rate of rotation and the number of blades. The transient study is necessary to characterise the hysteresis phenomenon. Hence, more than six revolutions get the periodic behaviour. Instantaneous flows provide insight about wake structure interaction. Time averaged parameters let obtain the characteristic curves of power coefficient.

  12. The development and testing of a novel cross axis wind turbine

    NASA Astrophysics Data System (ADS)

    Chong, W. T.; Muzammil, W. K.; Gwani, M.; Wong, K. H.; Fazlizan, A.; Wang, C. T.; Poh, S. C.

    2016-06-01

    A novel cross axis wind turbine (CAWT) which comprises of a cross axis blades arrangement was presented and investigated experimentally. The CAWT is a new type of wind turbine that extracts wind energy from airflow coming from the horizontal and vertical directions. The wind turbine consists of three vertical blades and six horizontal blades arranged in a cross axis orientation. Hubs in the middle of the CAWT link the horizontal and vertical blades through connectors to form the CAWT. The study used a 45° deflector to guide the oncoming airflow upward (vertical wind direction). The results from the study showed that the CAWT produced significant improvements in power output and rotational speed performance compared to a conventional straight-bladed vertical axis wind turbine (VAWT).

  13. Experimental Test Plan DOE Tidal and River Reference Turbines

    SciTech Connect

    Neary, Vincent S; Hill, Craig; Chamorro, Leonardo; Gunawan, Budi

    2012-09-01

    Our aim is to provide details of the experimental test plan for scaled model studies in St. Anthony Falls Laboratory (SAFL) Main Channel at the University of Minnesota, including a review of study objectives, descriptions of the turbine models, the experimental set-up, instrumentation details, instrument measurement uncertainty, anticipated experimental test cases, post-processing methods, and data archiving for model developers.

  14. Conceptual Design of a 100kW Energy Integrated Type Bi-Directional Tidal Current Turbine

    NASA Astrophysics Data System (ADS)

    Kim, Ki Pyoung; Ahmed, M. Rafiuddin; Lee, Young Ho

    2010-06-01

    The development of a tidal current turbine that can extract maximum energy from the tidal current will be extremely beneficial for supplying continuous electric power. The present paper presents a conceptual design of a 100kW energy integrated type tidal current turbine for tidal power generation. The instantaneous power density of a flowing fluid incident on an underwater turbine is proportional to the cubic power of current velocity which is approximately 2.5m/s. A cross-flow turbine, provided with a nozzle and a diffuser, is designed and analyzed. The potential advantages of ducted and diffuser-augmented turbines were taken into consideration in order to achieve higher output at a relatively low speed. This study looks at a cross-flow turbine system which is placed in an augmentation channel to generate electricity bi-directionally. The compatibility of this turbine system is verified using a commercial CFD code, ANSYSCFX. This paper presents the results of the numerical analysis in terms of pressure, streaklines, velocity vectors and performance curves for energy integrated type bi-directional tidal current turbine (BDT) with augmentation.

  15. Numerical Modeling and Experimental Analysis of Scale Horizontal Axis Marine Hydrokinetic (MHK) Turbines

    NASA Astrophysics Data System (ADS)

    Javaherchi, Teymour; Stelzenmuller, Nick; Seydel, Joseph; Aliseda, Alberto

    2013-11-01

    We investigate, through a combination of scale model experiments and numerical simulations, the evolution of the flow field around the rotor and in the wake of Marine Hydrokinetic (MHK) turbines. Understanding the dynamics of this flow field is the key to optimizing the energy conversion of single devices and the arrangement of turbines in commercially viable arrays. This work presents a comparison between numerical and experimental results from two different case studies of scaled horizontal axis MHK turbines (45:1 scale). In the first case study, we investigate the effect of Reynolds number (Re = 40,000 to 100,000) and Tip Speed Ratio (TSR = 5 to 12) variation on the performance and wake structure of a single turbine. In the second case, we study the effect of the turbine downstream spacing (5d to 14d) on the performance and wake development in a coaxial configuration of two turbines. These results provide insights into the dynamics of Horizontal Axis Hydrokinetic Turbines, and by extension to Horizontal Axis Wind Turbines in close proximity to each other, and highlight the capabilities and limitations of the numerical models. Once validated at laboratory scale, the numerical model can be used to address other aspects of MHK turbines at full scale. Supported by DOE through the National Northwest Marine Renewable Energy Center.

  16. Fixed pitch rotor performance of large horizontal axis wind turbines

    NASA Technical Reports Server (NTRS)

    Viterna, L. A.; Corrigan, R. D.

    1982-01-01

    Experimental fixed pitch wind turbine performance data is presented for both the DOE/NASA Mod-0 and the Danish Gedser wind turbines. Furthermore, a method for calculating the output power from large fixed pitch wind turbines is presented. Modifications to classical blade element momentum theory are given that improve correlation with measured data. Improvement is particularly evident in high winds (low tip speed ratios) where aerodynamic stall occurs as the blade experiences high angles of attack.

  17. Fixed pitch rotor performance of large horizontal axis wind turbines

    NASA Astrophysics Data System (ADS)

    Viterna, L. A.; Corrigan, R. D.

    Experimental fixed pitch wind turbine performance data is presented for both the DOE/NASA Mod-0 and the Danish Gedser wind turbines. Furthermore, a method for calculating the output power from large fixed pitch wind turbines is presented. Modifications to classical blade element momentum theory are given that improve correlation with measured data. Improvement is particularly evident in high winds (low tip speed ratios) where aerodynamic stall occurs as the blade experiences high angles of attack.

  18. Large HAWT (Horizontal-Axis Wind Turbine) wake measurement and analysis

    NASA Astrophysics Data System (ADS)

    Miller, A. H.; Wegley, H. L.; Buck, J. W.

    1984-05-01

    From the theoretical fluid dynamics point of view, the wake region of a large horizontal-axis wind turbine was defined and described, and numerical models of wake behavior were developed. Wind tunnel studies of single turbine wakes and turbine array wakes were used to verify the theory and further refine the numerical models. The effects of scaling, rotor solidity, and topography on wake behavior are questions that remain unanswered. In the wind tunnel studies, turbines were represented by anything from scaled models to tea strainers or wire mesh disks whose solidity was equivalent to that of a typical wind turbine. The scale factor compensation for the difference in Reynolds number between the scale model and an actual turbine is complex, and not typically accounted for. Though it is wise to study the simpler case of wakes in flat topography, current indications are that wind turbine farm development is actually occurring in somewhat more complex terrain.

  19. A theoretical model for the prediction of vertical axis wind turbine performance

    NASA Astrophysics Data System (ADS)

    Fortunato, B.; Dadone, A.; Trifoni, V.

    1993-01-01

    The present paper provides a two-dimensional model for the computation of the flow field around vertical axis wind turbines. The model considers the effect of the blades in a time averaged sense by means of an actuator porous cylinder, having the turbine radius. The numerical method here employed is the 'fast solver', which is a natural extension of the classical lambda formulation and is based on the integration of the compatibility conditions along bicharacteristic lines. The vertical axis wind turbine performance obtained with the present method are compared with other theoretical and experimental results.

  20. Forced vibration analysis of rotating structures with application to vertical axis wind turbines

    NASA Astrophysics Data System (ADS)

    Lobitz, D. W.

    Predictive methods for the dynamic analysis of wind turbine systems are important for assessing overall structural integrity and fatigue life. For the former, the identification of resonance points (spectral analysis) is of primary concern. For the latter forced vibration analysis is necessary. These analyses are complicated by the fact that, for a spinning turbine, the stress-producing deformations take place in both fixed and rotating reference systems simultaneously. As an example, the tower of a horizontal axis wind turbine (HAWT) must be analyzed in a fixed frame, and the rotor in a rotating one. Forced vibration analysis is further complicated in that accurate models need to be developed for aeroload prediction. Methods which are available for forced vibration analysis of both horizontal and vertical axis machines are identified and the method which was developed for vertical axis wind turbines is emphasized, with some comparisons of the predictions to experimental data.

  1. Advanced Fluid--Structure Interaction Techniques in Application to Horizontal and Vertical Axis Wind Turbines

    NASA Astrophysics Data System (ADS)

    Korobenko, Artem

    During the last several decades engineers and scientists put significant effort into developing reliable and efficient wind turbines. As a wind power production demands grow, the wind energy research and development need to be enhanced with high-precision methods and tools. These include time-dependent, full-scale, complex-geometry advanced computational simulations at large-scale. Those, computational analysis of wind turbines, including fluid-structure interaction simulations (FSI) at full scale is important for accurate and reliable modeling, as well as blade failure prediction and design optimization. In current dissertation the FSI framework is applied to most challenging class of problems, such as large scale horizontal axis wind turbines and vertical axis wind turbines. The governing equations for aerodynamics and structural mechanics together with coupled formulation are explained in details. The simulations are performed for different wind turbine designs, operational conditions and validated against field-test and wind tunnel experimental data.

  2. Development of a stereo-optical camera system for monitoring tidal turbines

    NASA Astrophysics Data System (ADS)

    Joslin, James; Polagye, Brian; Parker-Stetter, Sandra

    2014-01-01

    The development, implementation, and testing of a stereo-optical imaging system suitable for environmental monitoring of a tidal turbine is described. This monitoring system is intended to provide real-time stereographic imagery in the near-field (<10 m) of tidal turbines proposed for deployment in Admiralty Inlet, Puget Sound, Washington. Postdeployment observations will provide the necessary information about the frequency and type of interactions between marine animals and the turbine. A method for optimizing the stereo camera arrangement is given, along with a quantitative assessment of the system's ability to measure and track targets in three-dimensional space. Optical camera effectiveness is qualitatively evaluated under realistic field conditions to determine the range within which detection, discrimination, and classification of targets is possible. These field evaluations inform optimal system placement relative to the turbine rotor. Tests suggest that the stereographic cameras will likely be able to discriminate and classify targets at ranges up to 3.5 m and detect targets at ranges up to, and potentially beyond, 4.5 m. Future system testing will include the use of an imaging sonar ("acoustical camera") to evaluate behavioral disturbances associated with artificial lighting.

  3. Fish schooling as a basis for vertical axis wind turbine farm design.

    PubMed

    Whittlesey, Robert W; Liska, Sebastian; Dabiri, John O

    2010-09-01

    Most wind farms consist of horizontal axis wind turbines (HAWTs) due to the high power coefficient (mechanical power output divided by the power of the free-stream air through the turbine cross-sectional area) of an isolated turbine. However when in close proximity to neighboring turbines, HAWTs suffer from a reduced power coefficient. In contrast, previous research on vertical axis wind turbines (VAWTs) suggests that closely spaced VAWTs may experience only small decreases (or even increases) in an individual turbine's power coefficient when placed in close proximity to neighbors, thus yielding much higher power outputs for a given area of land. A potential flow model of inter-VAWT interactions is developed to investigate the effect of changes in VAWT spatial arrangement on the array performance coefficient, which compares the expected average power coefficient of turbines in an array to a spatially isolated turbine. A geometric arrangement based on the configuration of shed vortices in the wake of schooling fish is shown to significantly increase the array performance coefficient based upon an array of 16 x 16 wind turbines. The results suggest increases in power output of over one order of magnitude for a given area of land as compared to HAWTs. PMID:20729568

  4. Fish schooling as a basis for vertical axis wind turbine farm design.

    PubMed

    Whittlesey, Robert W; Liska, Sebastian; Dabiri, John O

    2010-09-01

    Most wind farms consist of horizontal axis wind turbines (HAWTs) due to the high power coefficient (mechanical power output divided by the power of the free-stream air through the turbine cross-sectional area) of an isolated turbine. However when in close proximity to neighboring turbines, HAWTs suffer from a reduced power coefficient. In contrast, previous research on vertical axis wind turbines (VAWTs) suggests that closely spaced VAWTs may experience only small decreases (or even increases) in an individual turbine's power coefficient when placed in close proximity to neighbors, thus yielding much higher power outputs for a given area of land. A potential flow model of inter-VAWT interactions is developed to investigate the effect of changes in VAWT spatial arrangement on the array performance coefficient, which compares the expected average power coefficient of turbines in an array to a spatially isolated turbine. A geometric arrangement based on the configuration of shed vortices in the wake of schooling fish is shown to significantly increase the array performance coefficient based upon an array of 16 x 16 wind turbines. The results suggest increases in power output of over one order of magnitude for a given area of land as compared to HAWTs.

  5. Wind response characteristics of horizontal axis wind turbines

    NASA Technical Reports Server (NTRS)

    Thresher, R. W.; Holley, W. E.; Jafarey, N.

    1981-01-01

    It was the objective of the work reported here, and in the companion paper 1 . A broader examination of wind turbine dynamic response to turbulence, and attempts to ascertain the features of turbulence that wind turbines are most sensitive to were made. A statistical description of the wind input including all three wind components and allowing linear wind gradients across the rotor disk, was used together with quasi-static aerodynamic theory and an elementary structural model involving only a few degrees of freedom. The idea was to keep the turbine model simple and show the benefits of this type of statistical wind representation before attempting to use a more complex turbine model. As far as possible, the analysis was kept in the simplest form, while still preserving key physical responses.

  6. Low frequency acoustic emissions from large horizontal axis wind turbines

    NASA Technical Reports Server (NTRS)

    Hubbard, Harvey H.; Shepherd, Kevin P.

    1989-01-01

    Available test data and theoretical predictions of LF noise from large wind turbines of the type to be used for energy generation are briefly summarized. The main LF noise sources are identified as tower-wake/blade interactions and rotor-plane inflow gradients. Sound-pressure time histories, measured and calculated narrow-band and rotational noise spectra, and noise radiation patterns for the WTS-4 and WWG-0600 wind turbines are presented graphically.

  7. Overview and Design of self-acting pitch control mechanism for vertical axis wind turbine using multi body simulation approach

    NASA Astrophysics Data System (ADS)

    Chougule, Prasad; Nielsen, Søren

    2014-06-01

    Awareness about wind energy is constantly growing in the world. Especially a demand for small scale wind turbine is increasing and various products are available in market. There are mainly two types of wind turbines, horizontal axis wind turbine and vertical axis wind turbines. Horizontal axis wind turbines are suitable for high wind speed whereas vertical axis wind turbines operate relatively low wind speed area. Vertical axis wind turbines are cost effective and simple in construction as compared to the horizontal axis wind turbine. However, vertical axis wind turbines have inherent problem of self-start inability and has low power coefficient as compare to the horizontal axis wind turbine. These two problems can be eliminated by incorporating the blade pitching mechanism. So, in this paper overview of various pitch control systems is discussed and design of self-acting pitch mechanism is given. A pitch control linkage mechanism for vertical axis wind turbine is modeled by multi-body approach using MSC Software. Aerodynamic loads are predicted from a mathematical model based on double multiple stream tube method. An appropriate airfoil which works at low Reynolds number is selected for blade design. It is also focused on commercialization of the vertical axis wind turbine which incorporates the self-acting pitch control system. These aerodynamic load model will be coupled with the multi-body model in future work for optimization of the pitch control linkage mechanism. A 500 Watt vertical axis wind turbine is designed and it is planned to implement the self-acting pitch control mechanism in real model.

  8. Experimental study on hydrodynamic characteristics of vertical-axis floating tidal current energy power generation device

    NASA Astrophysics Data System (ADS)

    Ma, Yong; Li, Teng-fei; Zhang, Liang; Sheng, Qi-hu; Zhang, Xue-wei; Jiang, Jin

    2016-10-01

    To study the characteristics of attenuation, hydrostatic towage and wave response of the vertical-axis floating tidal current energy power generation device (VAFTCEPGD), a prototype is designed and experiment is carried out in the towing tank. Free decay is conducted to obtain attenuation characteristics of the VAFTCEPGD, and characteristics of mooring forces and motion response, floating condition, especially the lateral displacement of the VAFTCEPGD are obtained from the towing in still water. Tension response of the #1 mooring line and vibration characteristics of the VAFTCEPGD in regular waves as well as in level 4 irregular wave sea state with the current velocity of 0.6 m/s. The results can be reference for theoretical study and engineering applications related to VAFTCEPGD.

  9. Numerical Simulation of Admiralty Inlet, WA, with Tidal Hydrokinetic Turbine Siting Application

    NASA Astrophysics Data System (ADS)

    Thyng, Kristen M.

    Tidal hydrokinetic energy has been recognized as a potential source of sustainable, renewable energy. In order to properly site turbines for commercial-scale development, the complex flow conditions in a potential deployment region must be understood. Viable locations for turbines are limited by many factors, including underwater space that is above the bottom boundary layer, below shipping traffic, within areas of strong currents, and yet avoids additional fatiguing stresses. The primary area of interest in the Puget Sound for commercial tidal energy development is Admiralty Inlet, which includes potentially disruptive flow features such as vortices and strong turbulence. This dissertation seeks to increase the body of knowledge of these features both from an oceanographic perspective and as they pertain to turbine site characterization. The primary means of studying Admiralty Inlet in this document is through numerical simulation of the region using the Regional Ocean Modeling System (ROMS). The model output is found to compare well with field data, capturing eddy fields, turbulence properties, relative tidal phases, and illuminating many flow features. Horizontal velocities in the simulation are, on average, approximately 75% the size of those found in the data. This speed deficiency is inherited from the forcing model in which the Admiralty Inlet simulation is nested. The model output also shows that the flow field of this fjord-like estuary is largely affected by a headland on the northeast side of the Inlet. Vortices generated by this headland, Admiralty Head, are found to vary considerably depending on the tidal cycle. The eddies can persist beyond the half-cycle of generation to significantly affect the horizontal speed and other flow field properties in the subsequent half-cycle. Detailed analysis of the vertical vorticity governing equation shows that advection, tilting, stretching, and boundary generation are the most significant processes dictating the

  10. An operating 200-kW horizontal axis wind turbine

    NASA Technical Reports Server (NTRS)

    Hunnicutt, C. L.; Linscott, B.; Wolf, R. A.

    1978-01-01

    The Mod-OA wind turbine blades were rotated for the first time on November 30, 1977, establishing the Mod-OA as the first wind-driven generator in 35 years to be continually tied into an electrical power system which services a community. Tower-mounted equipment and blade structural design and fabrication are discussed.

  11. Determination of Elastic Twist in Horizontal Axis Wind Turbines (HAWTs)

    SciTech Connect

    Stoddard, F.; Nelson, V.; Starcher, K.; Andrews, B.

    2006-06-01

    This report presents the results of a project at the Alternative Energy Institute (AEI) which measured and calculated the elastic twist of three representative composite horizontal-axis blades: Carter 300, Gougeon ESI 54, and UTRC 8 kW.

  12. A Free Wake Numerical Simulation for Darrieus Vertical Axis Wind Turbine Performance Prediction

    NASA Astrophysics Data System (ADS)

    Belu, Radian

    2010-11-01

    In the last four decades, several aerodynamic prediction models have been formulated for the Darrieus wind turbine performances and characteristics. We can identified two families: stream-tube and vortex. The paper presents a simplified numerical techniques for simulating vertical axis wind turbine flow, based on the lifting line theory and a free vortex wake model, including dynamic stall effects for predicting the performances of a 3-D vertical axis wind turbine. A vortex model is used in which the wake is composed of trailing stream-wise and shedding span-wise vortices, whose strengths are equal to the change in the bound vortex strength as required by the Helmholz and Kelvin theorems. Performance parameters are computed by application of the Biot-Savart law along with the Kutta-Jukowski theorem and a semi-empirical stall model. We tested the developed model with an adaptation of the earlier multiple stream-tube performance prediction model for the Darrieus turbines. Predictions by using our method are shown to compare favorably with existing experimental data and the outputs of other numerical models. The method can predict accurately the local and global performances of a vertical axis wind turbine, and can be used in the design and optimization of wind turbines for built environment applications.

  13. Aerodynamic study of a stall regulated horizontal-axis wind turbine

    NASA Astrophysics Data System (ADS)

    Constantinescu, S. G.; Crunteanu, D. E.; Niculescu, M. L.

    2013-10-01

    The wind energy is deemed as one of the most durable energetic variants of the future because the wind resources are immense. Furthermore, one predicts that the small wind turbines will play a vital role in the urban environment. Unfortunately, the complexity and the price of pitch regulated small horizontal-axis wind turbines represent ones of the main obstacles to widespread the use in populated zones. Moreover, the energetic efficiency of small stall regulated wind turbines has to be high even at low and medium wind velocities because, usually the cities are not windy places. During the running stall regulated wind turbines, due to the extremely broad range of the wind velocity, the angle of attack can reach high values and some regions of the blade will show stall and post-stall behavior. This paper deals with stall and post-stall regimes because they can induce significant vibrations, fatigue and even the wind turbine failure.

  14. Guy-cable design and damping for vertical-axis wind turbines

    SciTech Connect

    Carne, T.G.

    1981-05-01

    Guy cables are frequently used to support vertical axis wind turbines since guying the turbine reduces some of the structural requirements on the tower. The guys must be designed to provide both the required strength and the required stiffness at the top of the turbine. The axial load which the guys apply to the tower, bearings, and foundations is an undesirable consequence of using guys to support the turbine. Limiting the axial load so that it does not significantly affect the cost of the turbine is an important objective of the cable design. The lateral vibration of the cables is another feature of the cable design which needs to be considered. These aspects of the cable design are discussed in this paper, and a technique for damping cable vibrations is mathematically analyzed and demonstrated with experimental data.

  15. Flow structure in the near wake of a horizontal axis marine current turbine under steady and unsteady inflow conditions

    NASA Astrophysics Data System (ADS)

    Luznik, Luksa; Lust, Ethan; Flack, Karen

    2015-11-01

    Near wake flow field results are presented for a 1/25 scale, 0.8 m diameter (D) two bladed horizontal axis tidal turbine. The 2D PIV measurements were obtained in the USNA 380 ft tow tank for two inflow conditions. The first case had steady inflow conditions, i.e. the turbine was towed at a constant carriage speed (Utow = 1.68 m/s) and the second case had a constant carriage speed and incoming regular waves with a period of 2.3 seconds and 0.18 m wave height. The underwater PIV system is comprised of two submersible housings with forward looking submersible containing laser sheet forming optics, and the side looking submersible includes a camera and remote focus/aperture electronics. The resulting individual field of view for this experiment was nominally 30x30 cm2. Near wake mapping is accomplished by ``tiling'' individual fields of view with approximately 5 cm overlap. All measurements were performed at the nominal tip speed ratio (TSR) of 7. The mapping is accomplished in a vertical streamwise plane (x-z plane) centered on the turbine nacelle and the image pair captures were phase locked to two phases: reference blade horizontal and reference blade vertical. Results presented include distribution of mean velocities, Reynolds stresses, 2D turbulent kinetic energy. The discussion will focus on comparisons between steady and unsteady case. Further discussion will include comparisons between the current high resolution PIV measurements and the previous point measurements with the same turbine at different lateral planes in the same flow conditions.

  16. Marine Hydrokinetic (MHK) Energy Conversion Research at UNH: From Fundamental Studies of Hydrofoil Sections, to Moderate Reynolds Number Turbine Tests in a Tow Tank, to Open Water Deployments at Tidal Energy Test Sites (Invited)

    NASA Astrophysics Data System (ADS)

    Wosnik, M.; Bachant, P.; Nedyalkov, I.; Rowell, M.; Dufresne, N.; Lyon, V.

    2013-12-01

    tall three-bladed cross-flow axis turbine (UNH RVAT) in a tow tank. For cross-flow axis turbines hydrofoil performance remains Reynolds number dependent at intermediate scales due to the large range of angles of attack encountered during turbine rotation. The experiments, with turbine diameter Reynolds numbers ReD = 0.5 x105 to 2.0 x106, were aimed at providing detailed data for model comparison at significantly higher Reynolds numbers than previously available. Measurements include rotor power, thrust, tip speed ratio, and detailed maps of mean flow and turbulence components in the near-wake. Mechanical exergy efficiency was calculated from power and drag measurements using an actuator disk approach. The spatial and temporal resolutions of different flow measurement techniques (ADCP, ADV, PIV) were systematically characterized. Finally, Reynolds-averaged Navier-Stokes (RANS) simulations were performed to assess their ability to predict the experimental results. A scaled version of a mixer-ejector hydrokinetic turbine, with a specially designed shroud to promotes wake mixing to enable increased mass flow through the turbine rotor, was evaluated experimentally at the UNH Tidal Energy Test Site in Great Bay Estuary, NH and in Muskeget Channel, MA. State-of-the-art instrumentation was used to measure the tidal energy resource and turbine wake flow velocities, turbine power extraction, test platform loadings and platform motion induced by sea state.

  17. Turbine Siting Metrics for Simulated Tidal Flow in a Double-Silled Channel

    NASA Astrophysics Data System (ADS)

    Thyng, K. M.; Kawase, M.; Riley, J. J.; Northwest National Marine Renewable Energy Center

    2010-12-01

    An important component of site and resource characterization for marine renewable energy projects is to identify areas with large potential resource but also with easy extractability of the available resource for commercial develop- ment. Metrics that characterize potential resource include mean kinetic power density and speed over a tidal cycle, while important metrics for extractability include measures of the bidirectionality of the tidal flow (asymmetry, directional deviation, and power bias of ebb versus flood tide) as well as percentage of time spent by the device producing power at the particular site. This study examines the character of a tidal flow over an idealized two- dimensional (x-z) double sill in a rectangular channel in terms of these resource characterization metrics. This domain is meant to capture the bulk features of Admiralty Inlet, the main entrance to the Puget Sound, a fjord-like estuary in western Washington State. Admiralty Inlet is an area of interest for build- ing a commercial-scale tidal turbine array, and is currently the location of two potential pilot-scale tidal hydrokinetic projects. Initial results point to the speed up of the incoming flow due to the shallowest sill as an area of strong resource. The presence of the deeper sill affects the character of this strong resource in a way that the metrics can help quantify in terms of extractability of the resource and vertical structure. Together, these metrics will give a clear understanding of the tidal turbine siting characteristics of the domain. In the case of the idealized double sill simulation, the mean speed is increased by a factor of more than 2 over the mean incoming speed at the entrance of the channel due to the shallower, more prominent sill, while the deeper sill sees a multiplication factor of close to 1.5. This is a modest increase in mean speed, but translates to a multiplication factor of over 8 from the nominal far field value near the shallow sill in the mean

  18. Meandering patterns in the wake of horizontal-axis wind and river turbines

    NASA Astrophysics Data System (ADS)

    Guala, Michele; Howard, Kevin; Singh, Arvind; Hill, Craig; Musa, Mirko; Feist, Christopher; Sotiropoulos, Fotis

    2014-11-01

    Energy harvesting devices with rotor axis oriented with the flow generate a wake which is unstable due to the complex interactions among turbulent structures from the incoming flow, root, hub and tip vortices (see Foti et al. APS/DFD 2014). Experiments in wind tunnel and open-channel flow with erodible surface show similar meandering patterns in the velocity field, which are responsible for the far wake expansion and the incoming turbulence experienced by down-wind/stream units. Wake meandering statistics were observed to depend on the operating turbine conditions (tip speed ratio), upstream device siting (turbine - turbine interaction) or specific turbine kinematics (floating turbine under waves). In addition, for wall boundary conditions defined by an erodible surface, where sand grains respond to local shear stress by moving (erosion) or settling (deposition), turbines were observed to induce dynamic topographic perturbations also exhibiting meandering patterns. This occurred in limited mobility conditions and under migrating bedforms, with large scale topographic features amplified under specific asymmetric turbine configurations. The work opens up the possibility to place turbines in complex flows optimizing their performance while maintaining, or reshaping, the surrounding topography by specific control or siting strategies. Resarch supported by NSF CAREER: CBET-1351303, IREE early career UMN, DOE Grant DE-EE0005482, NSF PFI Grant IIP-1318201.

  19. Review of wind simulation methods for horizontal-axis wind turbine analysis

    NASA Astrophysics Data System (ADS)

    Powell, D. C.; Connell, J. R.

    1986-06-01

    This report reviews three reports on simulation of winds for use in wind turbine fatigue analysis. The three reports are presumed to represent the state of the art. The Purdue and Sandia methods simulate correlated wind data at two points rotating as on the rotor of a horizontal-axis wind turbine. The PNL method at present simulates only one point, which rotates either as on a horizontal-axis wind turbine blade or as on a vertical-axis wind turbine blade. The spectra of simulated data are presented from the Sandia and PNL models under comparable input conditions, and the energy calculated in the rotational spikes in the spectra by the two models is compared. Although agreement between the two methods is not impressive at this time, improvement of the Sandia and PNL methods is recommended as the best way to advance the state of the art. Physical deficiencies of the models are cited in the report and technical recommendations are made for improvement. The report also reviews two general methods for simulating single-point data, called the harmonic method and the white noise method. The harmonic method, which is the basis of all three specific methods reviewed, is recommended over the white noise method in simulating winds for wind turbine analysis.

  20. Test plan for the 34 meter vertical axis wind turbine test bed located at Bushland, Texas

    SciTech Connect

    Stephenson, W.A.

    1986-12-01

    A plan is presented for the testing and evaluation of a new 500 kw vertical axis wind turbine test bed. The plan starts with the initial measurements made during construction, proceeds through evaluation of the design, the development of control methods, and finally to the test bed phase where new concepts are evaluated and in-depth studies are performed.

  1. Recent Darrieus vertical axis wind turbine aerodynamical experiments at Sandia National Laboratories

    NASA Technical Reports Server (NTRS)

    Klimas, P. C.

    1981-01-01

    Experiments contributing to the understanding of the aerodynamics of airfoils operating in the vertical axis wind turbine (VAWT) environment are described. These experiments are ultimately intended to reduce VAWT cost of energy and increase system reliability. They include chordwise pressure surveys, circumferential blade acceleration surveys, effects of blade camber, pitch and offset, blade blowing, and use of sections designed specifically for VAWT application.

  2. A comparison between the dynamics of horizontal and vertical axis offshore floating wind turbines.

    PubMed

    Borg, M; Collu, M

    2015-02-28

    The need to further exploit offshore wind resources in deeper waters has led to a re-emerging interest in vertical axis wind turbines (VAWTs) for floating foundation applications. However, there has been little effort to systematically compare VAWTs to the more conventional horizontal axis wind turbine (HAWT). This article initiates this comparison based on prime principles, focusing on the turbine aerodynamic forces and their impact on the floating wind turbine static and dynamic responses. VAWTs generate substantially different aerodynamic forces on the support structure, in particular, a potentially lower inclining moment and a substantially higher torque than HAWTs. Considering the static stability requirements, the advantages of a lower inclining moment, a lower wind turbine mass and a lower centre of gravity are illustrated, all of which are exploitable to have a less costly support structure. Floating VAWTs experience increased motion in the frequency range surrounding the turbine [number of blades]×[rotational speed] frequency. For very large VAWTs with slower rotational speeds, this frequency range may significantly overlap with the range of wave excitation forces. Quantitative considerations are undertaken comparing the reference NREL 5 MW HAWT with the NOVA 5 MW VAWT.

  3. A comparison between the dynamics of horizontal and vertical axis offshore floating wind turbines.

    PubMed

    Borg, M; Collu, M

    2015-02-28

    The need to further exploit offshore wind resources in deeper waters has led to a re-emerging interest in vertical axis wind turbines (VAWTs) for floating foundation applications. However, there has been little effort to systematically compare VAWTs to the more conventional horizontal axis wind turbine (HAWT). This article initiates this comparison based on prime principles, focusing on the turbine aerodynamic forces and their impact on the floating wind turbine static and dynamic responses. VAWTs generate substantially different aerodynamic forces on the support structure, in particular, a potentially lower inclining moment and a substantially higher torque than HAWTs. Considering the static stability requirements, the advantages of a lower inclining moment, a lower wind turbine mass and a lower centre of gravity are illustrated, all of which are exploitable to have a less costly support structure. Floating VAWTs experience increased motion in the frequency range surrounding the turbine [number of blades]×[rotational speed] frequency. For very large VAWTs with slower rotational speeds, this frequency range may significantly overlap with the range of wave excitation forces. Quantitative considerations are undertaken comparing the reference NREL 5 MW HAWT with the NOVA 5 MW VAWT. PMID:25583856

  4. Optimization of multiple turbine arrays in a channel with tidally reversing flow by numerical modelling with adaptive mesh.

    PubMed

    Divett, T; Vennell, R; Stevens, C

    2013-02-28

    At tidal energy sites, large arrays of hundreds of turbines will be required to generate economically significant amounts of energy. Owing to wake effects within the array, the placement of turbines within will be vital to capturing the maximum energy from the resource. This study presents preliminary results using Gerris, an adaptive mesh flow solver, to investigate the flow through four different arrays of 15 turbines each. The goal is to optimize the position of turbines within an array in an idealized channel. The turbines are represented as areas of increased bottom friction in an adaptive mesh model so that the flow and power capture in tidally reversing flow through large arrays can be studied. The effect of oscillating tides is studied, with interesting dynamics generated as the tidal current reverses direction, forcing turbulent flow through the array. The energy removed from the flow by each of the four arrays is compared over a tidal cycle. A staggered array is found to extract 54 per cent more energy than a non-staggered array. Furthermore, an array positioned to one side of the channel is found to remove a similar amount of energy compared with an array in the centre of the channel. PMID:23319710

  5. Numerical modeling and preliminary validation of drag-based vertical axis wind turbine

    NASA Astrophysics Data System (ADS)

    Krysiński, Tomasz; Buliński, Zbigniew; Nowak, Andrzej J.

    2015-03-01

    The main purpose of this article is to verify and validate the mathematical description of the airflow around a wind turbine with vertical axis of rotation, which could be considered as representative for this type of devices. Mathematical modeling of the airflow around wind turbines in particular those with the vertical axis is a problematic matter due to the complex nature of this highly swirled flow. Moreover, it is turbulent flow accompanied by a rotation of the rotor and the dynamic boundary layer separation. In such conditions, the key aspects of the mathematical model are accurate turbulence description, definition of circular motion as well as accompanying effects like centrifugal force or the Coriolis force and parameters of spatial and temporal discretization. The paper presents the impact of the different simulation parameters on the obtained results of the wind turbine simulation. Analysed models have been validated against experimental data published in the literature.

  6. Flow augmenters for vertical-axis windmills and turbines

    SciTech Connect

    Evans, F.C.

    1981-03-10

    A windmill is disclosed, the windmill including a vertical shaft mounted for rotation about its longitudinal axis, a number of blades spaced circumferentially around the longitudinal axis, and being disposed generally parallel to the axis of rotation of the vertical shaft, and supporting arms extending radially outwardly from the vertical shaft for supporting the blades. The windmill also includes a first member connected to an upper end of one of the blades and defining a first surface having a leading edge with respect to the direction of movement of the blade and a trailing edge rearward of the leading edge, the leading edge being lower than the trailing edge. The first surface also includes an inside lateral edge and an outer lateral edge spaced radially outwardly from the inside lateral edge, the inside lateral edge being higher than the outer lateral edge. A second member is connected to the lower end of the blade and defines a second surface, the second surface having a leading edge with respect to the direction of movement of the blade and a trailing surface rearward of the second surface leading edge, the second surface leading edge being higher than the trailing edge. The second surface also includes an inside lateral edge and an outer lateral edge spaced radially outwardly from the second surface inside lateral edge, the second surface inside lateral edge being lower than the second surface outside lateral edge.

  7. Desirable airfoil characteristics for large variable-speed horizontal axis wind turbines

    SciTech Connect

    Giguere, P.; Selig, M.S.

    1997-08-01

    In an effort to define the desirable airfoil characteristics for large variable-speed wind turbines, a systematic study was performed using a series of airfoils designed to have similar aerodynamic properties, except for the amount of lift, which varied over a wide range. For several airfoil combinations, blade shapes were designed for a 750-kW wind turbine with a 48.8-m diameter rotor using the optimization code PROPGA together with PROPID, which is an inverse design method for horizontal-axis wind turbines. Roughness effects, including the consideration of dirty-blade performance in the blade-shape optimization process, were also considered and are discussed. The results and conclusions reveal practical design implications that should aid in the aerodynamic blade design of not only large but also other sizes of variable-speed wind turbines.

  8. Large-Eddy Simulation Study of Wake Propagation and Power Production in an Array of Tidal-Current Turbines: Preprint

    SciTech Connect

    Churchfield, M. J.; Li, Y.; Moriarty, P. J.

    2012-07-01

    This paper presents our initial work in performing large-eddy simulations of tidal turbine array flows. First, a horizontally-periodic precursor simulation is performed to create turbulent flow data. Then that data is used as inflow into a tidal turbine array two rows deep and infinitely wide. The turbines are modeled using rotating actuator lines, and the finite-volume method is used to solve the governing equations. In studying the wakes created by the turbines, we observed that the vertical shear of the inflow combined with wake rotation causes lateral wake asymmetry. Also, various turbine configurations are simulated, and the total power production relative to isolated turbines is examined. Staggering consecutive rows of turbines in the simulated configurations allows the greatest efficiency using the least downstream row spacing. Counter-rotating consecutive downstream turbines in a non-staggered array shows a small benefit. This work has identified areas for improvement, such as the use of a larger precursor domain to better capture elongated turbulent structures, the inclusion of salinity and temperature equations to account for density stratification and its effect on turbulence, improved wall shear stress modelling, and the examination of more array configurations.

  9. A large-eddy simulation study of wake propagation and power production in an array of tidal-current turbines.

    PubMed

    Churchfield, Matthew J; Li, Ye; Moriarty, Patrick J

    2013-02-28

    This paper presents our initial work in performing large-eddy simulations of tidal turbine array flows. First, a horizontally periodic precursor simulation is performed to create turbulent flow data. Then those data are used as inflow into a tidal turbine array two rows deep and infinitely wide. The turbines are modelled using rotating actuator lines, and the finite-volume method is used to solve the governing equations. In studying the wakes created by the turbines, we observed that the vertical shear of the inflow combined with wake rotation causes lateral wake asymmetry. Also, various turbine configurations are simulated, and the total power production relative to isolated turbines is examined. We found that staggering consecutive rows of turbines in the simulated configurations allows the greatest efficiency using the least downstream row spacing. Counter-rotating consecutive downstream turbines in a non-staggered array shows a small benefit. This work has identified areas for improvement. For example, using a larger precursor domain would better capture elongated turbulent structures, and including salinity and temperature equations would account for density stratification and its effect on turbulence. Additionally, the wall shear stress modelling could be improved, and more array configurations could be examined.

  10. Large-Eddy Simulation Study of Wake Propagation and Power Production in an Array of Tidal-Current Turbines: Preprint

    SciTech Connect

    Churchfield, M. J.; Li, Y.; Moriarty, P. J.

    2011-07-01

    This paper presents our initial work in performing large-eddy simulations of tidal turbine array flows. First, a horizontally-periodic precursor simulation is performed to create turbulent flow data. Then that data is used to determine the inflow into a tidal turbine array two rows deep and infinitely wide. The turbines are modeled using rotating actuator lines, and the finite-volume method is used to solve the governing equations. In studying the wakes created by the turbines, we observed that the vertical shear of the inflow combined with wake rotation causes lateral wake asymmetry. Also, various turbine configurations are simulated, and the total power production relative to isolated turbines is examined. Staggering consecutive rows of turbines in the simulated configurations allows the greatest efficiency using the least downstream row spacing. Counter-rotating consecutive downstream turbines in a non-staggered array shows a small benefit. This work has identified areas for improvement, such as the use of a larger precursor domain to better capture elongated turbulent structures, the inclusion of salinity and temperature equations to account for density stratification and its effect on turbulence, improved wall shear stress modeling, and the examination of more array configurations.

  11. A large-eddy simulation study of wake propagation and power production in an array of tidal-current turbines.

    PubMed

    Churchfield, Matthew J; Li, Ye; Moriarty, Patrick J

    2013-02-28

    This paper presents our initial work in performing large-eddy simulations of tidal turbine array flows. First, a horizontally periodic precursor simulation is performed to create turbulent flow data. Then those data are used as inflow into a tidal turbine array two rows deep and infinitely wide. The turbines are modelled using rotating actuator lines, and the finite-volume method is used to solve the governing equations. In studying the wakes created by the turbines, we observed that the vertical shear of the inflow combined with wake rotation causes lateral wake asymmetry. Also, various turbine configurations are simulated, and the total power production relative to isolated turbines is examined. We found that staggering consecutive rows of turbines in the simulated configurations allows the greatest efficiency using the least downstream row spacing. Counter-rotating consecutive downstream turbines in a non-staggered array shows a small benefit. This work has identified areas for improvement. For example, using a larger precursor domain would better capture elongated turbulent structures, and including salinity and temperature equations would account for density stratification and its effect on turbulence. Additionally, the wall shear stress modelling could be improved, and more array configurations could be examined. PMID:23319713

  12. Horizontal axis wind turbine post stall airfoil characteristics synthesization

    NASA Technical Reports Server (NTRS)

    Tangler, James L.; Ostowari, Cyrus

    1995-01-01

    Blade-element/momentum performance prediction codes are routinely used for wind turbine design and analysis. A weakness of these codes is their inability to consistently predict peak power upon which the machine structural design and cost are strongly dependent. The purpose of this study was to compare post-stall airfoil characteristics synthesization theory to a systematically acquired wind tunnel data set in which the effects of aspect ratio, airfoil thickness, and Reynolds number were investigated. The results of this comparison identified discrepancies between current theory and the wind tunnel data which could not be resolved. Other factors not previously investigated may account for these discrepancies and have a significant effect on peak power prediction.

  13. The effect of tip speed ratio on a vertical axis wind turbine at high Reynolds numbers

    NASA Astrophysics Data System (ADS)

    Parker, Colin M.; Leftwich, Megan C.

    2016-05-01

    This work visualizes the flow surrounding a scaled model vertical axis wind turbine at realistic operating conditions. The model closely matches geometric and dynamic properties—tip speed ratio and Reynolds number—of a full-size turbine. The flow is visualized using particle imaging velocimetry (PIV) in the midplane upstream, around, and after (up to 4 turbine diameters downstream) the turbine, as well as a vertical plane behind the turbine. Time-averaged results show an asymmetric wake behind the turbine, regardless of tip speed ratio, with a larger velocity deficit for a higher tip speed ratio. For the higher tip speed ratio, an area of averaged flow reversal is present with a maximum reverse flow of -0.04U_∞. Phase-averaged vorticity fields—achieved by syncing the PIV system with the rotation of the turbine—show distinct structures form from each turbine blade. There were distinct differences in results by tip speed ratios of 0.9, 1.3, and 2.2 of when in the cycle structures are shed into the wake—switching from two pairs to a single pair of vortices being shed—and how they convect into the wake—the middle tip speed ratio vortices convect downstream inside the wake, while the high tip speed ratio pair is shed into the shear layer of the wake. Finally, results show that the wake structure is much more sensitive to changes in tip speed ratio than to changes in Reynolds number.

  14. A numerical investigation of the wake structure of vertical axis wind turbines

    NASA Astrophysics Data System (ADS)

    Balaras, Elias; Posa, Antonio; Leftwich, Megan

    2014-11-01

    Recent field-testing has shown that vertical axis wind turbines (VAWT) in wind farm configurations have the potential to reach higher power densities, when compared to the more widespread horizontal axis turbines. A critical component in achieving this goal is a good understanding of the wake structure and how it is influenced by operating conditions. In the present study the Large-Eddy Simulation technique is adopted to characterize the wake of a small vertical axis wind turbine and to explore its dependence on the value of its Tip Speed Ratio (TSR). It will be shown that its wake significantly differs from that of a spinning cylinder, often adopted to model this typology of machines: the displacement of the momentum deficit towards the windward side follows the same behavior, but turbulence is higher on the leeward side. An initial increase of the momentum deficit is observed moving downstream, with central peaks in the core of the near wake for both momentum and turbulent kinetic energy, especially at lower TSRs. No back-flow is produced downstream of the turbine. The interaction between blades is stronger at higher values of the TSR, while the production of coherent structures is enhanced at lower TSRs, with large rollers populating the leeward side of the wake.

  15. Mercury's gravity field, tidal Love number k2, and spin axis orientation revealed with MESSENGER radio tracking data

    NASA Astrophysics Data System (ADS)

    Verma, A. K.; Margot, J. L.

    2015-12-01

    We are conducting an independent analysis of two-way Doppler and two-way range radio tracking data from the MESSENGER spacecraft in orbit around Mercury from 2011 to 2015. Our goals are to estimate Mercury's gravity field and to obtain independent estimates of the tidal Love number k2 and spin axis orientation. Our gravity field solution reproduces existing values with high fidelity, and prospects for recovery of the other quantities are excellent. The tidal Love number k2 provides powerful constraints on interior models of Mercury, including the mechanical properties of the mantle and the possibility of a solid FeS layer at the top of the core. Current gravity analyses cannot rule out a wide range of values (k2=43-0.50) and a variety of plausible interior models. We are seeking an independent estimate of tidal Love number k2 with improved errors to further constrain these models. Existing gravity-based solutions for Mercury's spin axis orientation differ from those of Earth-based radar and topography-based solutions. This difference may indicate an error in one of the determinations, or a real difference between the orientations about which the gravity field and the crust rotate, which can exist in a variety of plausible configuration. Securing an independent estimate of the spin axis orientation is vital because this quantity has a profound impact on the determination of the moment of inertia and interior models. We have derived a spherical harmonic solution of the gravity field to degree and order 40 as well as estimates of the tidal Love number k2 and spin axis orientation.

  16. Mercury’s gravity field, tidal Love number k2, and spin axis orientation revealed with MESSENGER radio tracking data

    NASA Astrophysics Data System (ADS)

    Verma, Ashok Kumar; Margot, Jean-Luc

    2015-11-01

    We are conducting an independent analysis of two-way Doppler and two-way range radio tracking data from the MESSENGER spacecraft in orbit around Mercury from 2011 to 2015. Our goals are to estimate Mercury’s gravity field and to obtain independent estimates of the tidal Love number k2 and spin axis orientation. Our gravity field solution reproduces existing values with high fidelity, and prospects for recovery of the other quantities are excellent.The tidal Love number k2 provides powerful constraints on interior models of Mercury, including the mechanical properties of the mantle and the possibility of a solid FeS layer at the top of the core. Current gravity analyses cannot rule out a wide range of values (k2=43-0.50) and a variety of plausible interior models. We are seeking an independent estimate of tidal Love number k2 with improved errors to further constrain these models.Existing gravity-based solutions for Mercury's spin axis orientation differ from those of Earth-based radar and topography-based solutions. This difference may indicate an error in one of the determinations, or a real difference between the orientations about which the gravity field and the crust rotate, which can exist in a variety of plausible configuration. Securing an independent estimate of the spin axis orientation is vital because this quantity has a profound impact on the determination of the moment of inertia and interior models.We have derived a spherical harmonic solution of the gravity field to degree and order 40 as well as estimates of the tidal Love number k2 and spin axis orientation

  17. A Straight-bladed Vertical Axis Wind Turbine with a Directed Guide Vane Row

    NASA Astrophysics Data System (ADS)

    Takao, Manabu; Maeda, Takao; Kamada, Yasunari; Oki, Michiaki; Kuma, Hideki

    A straight-bladed vertical axis wind turbine with a directed guide vane row has been proposed in order to enhance its torque. The experimental study of the proposed wind turbine was carried out by a wind tunnel with an outlet diameter of 1.8m. The tested rotor has some straight rotor blades with a profile of NACA0015, a diameter of 0.6 m and a height of 0.7 m. The guide vane row having 3 arc plates rotates around the rotor and is directed to the wind by aerodynamic force generated by tail vanes, so as to put the guide vane row in upstream of the rotor. As a result, the performance of the straight-bladed vertical axis turbine was improved by means of the directed guide vane row. Further, by the use of the guide vane row adopted in the study, the power coefficient of the proposed wind turbine was approximately 1.5 times higher than that of the original wind turbine which has no guide vane.

  18. Three-dimensional velocity measurements around a rotating vertical axis wind turbine

    NASA Astrophysics Data System (ADS)

    Coletti, Filippo; Ryan, Kevin; Dabiri, John; Eaton, John

    2013-11-01

    Vertical axis wind turbines (VAWT) can be more closely spaced than conventional horizontal axis wind turbines (HAWT), which points to a potentially greater power that can be extracted from a given wind farm footprint. In order to optimize the inter-turbine spacing and to investigate the potential for constructive aerodynamic interactions, the complex dynamics of VAWT wakes need to be analyzed. To date, only single-point or at best two-dimensional measurements of such wakes have been documented. We have measured the full three-component mean velocity field around and downstream the scaled-down model of a rotating VAWT by Magnetic Resonance Velocimetry (MRV). The high spatial resolution allows to quantitatively explore the structure of the wake, its interaction with the floor, and its development. The flow is shown to be highly three-dimensional and asymmetric for the whole investigated region (up to 7 diameters downstream of the turbine). These results can inform low-order models to predict the performance of turbine arrays.

  19. Sound propagation studies for a large horizontal axis wind turbine

    NASA Technical Reports Server (NTRS)

    Shepherd, K. P.; Hubbard, H. H.

    1985-01-01

    Systematic noise measurements in three directions with respect to the wind vector, over a range of distances to 1050 m, over a range of frequencies from 8 Hz to 2000 Hz, and for a stable wind turbine noise source (WTS-4) in windy conditions (V = 9.4 to 13.0 m/s) are presented. At frequencies above 63 Hz in the downwind and crosswind directions the sound pressure levels decay with distance according to predictions based on atmospheric absorption and spherical spreading, assuming no excess attenuation due to ground effects. In the upwind direction there is excess attenuation due to an acoustic shadow zone. The assumption of a distributed noise source leads to better noise estimates in the upwind direction. For very low frequencies 8 to 16 Hz no excess attenuation was observed in the upwind direction at distances up to 1050 m and a sound pressure level decay rate of approximately 3 dB per doubling of distance was observed in the downwind direction.

  20. Speed and Torque Control Strategies for Loss Reduction of Vertical Axis Wind Turbines

    NASA Astrophysics Data System (ADS)

    Argent, Michael; McDonald, Alasdair; Leithead, Bill; Giles, Alexander

    2016-09-01

    This paper builds on the work into modelling the generator losses for Vertical Axis Wind Turbines from their intrinsic torque cycling to investigate the effects of aerodynamic inefficiencies caused by the varying rotational speed resulting from different torque control strategies to the cyclic torque. This is achieved by modelling the wake that builds up from the rotation of the VAWT rotor to investigate how the wake responds to a changing rotor speed and how this in turn affects the torque produced by the blades as well as the corresponding change in generator losses and any changes to the energy extracted by the wind turbine rotor.

  1. SNL-EFDC Simulations of Tidal Turbine-Related Changes to Hydrodynamics and Flushing

    NASA Astrophysics Data System (ADS)

    Roberts, J. D.; Johnson, E.; James, S. C.; Barco, J.; Jones, C.

    2012-12-01

    The marine and hydrokinetic (MHK) industry in the United States faces challenges associated with siting, permitting, construction, and operation of pilot- and full-scale facilities that must be addressed to accelerate environmentally sound deployment of these renewable energy technologies. Little is known about the potential effects of MHK device operation in coastal areas, estuaries, or rivers, or of the cumulative impacts of these devices on aquatic ecosystems. This lack of knowledge affects the actions of regulatory agencies, the opinions of stakeholder groups, and the commitment of energy project developers and investors. Two particularly important factors that can be used as a precursor for MHK-driven environmental changes in estuaries are the effect of decreased tidal range and flushing. For example, tidal-range changes could affect wetland systems that are only wetted under the highest of tides. Significant changes in tidal range could completely change the character of the wetlands through long-term drying. Changes to flushing must also be understood, especially when municipal wastewater and other pollutant sources are discharged into a bay. When MHK operation alters flow rates, decreased flushing of an embayment could yield increased residence times, decreased nutrient and contaminant dispersion, and even the possibility of algal blooms. Small changes to the flow could manifest as noticeable changes to sediment transport and water quality. This work provides example assessments of changes to the physical environment (i.e. currents, tidal ranges, water age, and e-folding time) potentially imposed by the operation of MHK turbine arrays in marine estuary environments using the modeling platform SNL-EFDC. Comparing model results with and without an MHK array facilitates an understanding of how an array of turbines might alter the environment. By using models to simulate water circulation, commensurate changes in water quality, benthic habitat quality, and

  2. Effects of Tidal Turbine Noise on Fish Hearing and Tissues - Draft Final Report - Environmental Effects of Marine and Hydrokinetic Energy

    SciTech Connect

    Halvorsen, Michele B.; Carlson, Thomas J.; Copping, Andrea E.

    2011-09-30

    Snohomish Public Utility District No.1 plans to deploy two 6 meter OpenHydro tidal turbines in Admiralty Inlet in Puget Sound, under a FERC pilot permitting process. Regulators and stakeholders have raised questions about the potential effect of noise from the turbines on marine life. Noise in the aquatic environment is known to be a stressor to many types of aquatic life, including marine mammals, fish and birds. Marine mammals and birds are exceptionally difficult to work with for technical and regulatory reasons. Fish have been used as surrogates for other aquatic organisms as they have similar auditory structures. This project was funded under the FY09 Funding Opportunity Announcement (FOA) to Snohomish PUD, in partnership with the University of Washington - Northwest National Marine Renewable Energy Center, the Sea Mammal Research Unit, and Pacific Northwest National Laboratory. The results of this study will inform the larger research project outcomes. Proposed tidal turbine deployments in coastal waters are likely to propagate noise into nearby waters, potentially causing stress to native organisms. For this set of experiments, juvenile Chinook salmon (Oncorhynchus tshawytscha) were used as the experimental model. Plans exist for prototype tidal turbines to be deployed into their habitat. Noise is known to affect fish in many ways, such as causing a threshold shift in auditory sensitivity or tissue damage. The characteristics of noise, its spectra and level, are important factors that influence the potential for the noise to injure fish. For example, the frequency range of the tidal turbine noise includes the audiogram (frequency range of hearing) of most fish. This study was performed during FY 2011 to determine if noise generated by a 6-m diameter OpenHydro turbine might affect juvenile Chinook salmon hearing or cause barotrauma. Naturally spawning stocks of Chinook salmon that utilize Puget Sound are listed as threatened (http://www.nwr.noaa

  3. Increasing power generation in horizontal axis wind turbines using optimized flow control

    NASA Astrophysics Data System (ADS)

    Cooney, John A., Jr.

    In order to effectively realize future goals for wind energy, the efficiency of wind turbines must increase beyond existing technology. One direct method for achieving increased efficiency is by improving the individual power generation characteristics of horizontal axis wind turbines. The potential for additional improvement by traditional approaches is diminishing rapidly however. As a result, a research program was undertaken to assess the potential of using distributed flow control to increase power generation. The overall objective was the development of validated aerodynamic simulations and flow control approaches to improve wind turbine power generation characteristics. BEM analysis was conducted for a general set of wind turbine models encompassing last, current, and next generation designs. This analysis indicated that rotor lift control applied in Region II of the turbine power curve would produce a notable increase in annual power generated. This was achieved by optimizing induction factors along the rotor blade for maximum power generation. In order to demonstrate this approach and other advanced concepts, the University of Notre Dame established the Laboratory for Enhanced Wind Energy Design (eWiND). This initiative includes a fully instrumented meteorological tower and two pitch-controlled wind turbines. The wind turbines are representative in their design and operation to larger multi-megawatt turbines, but of a scale that allows rotors to be easily instrumented and replaced to explore new design concepts. Baseline data detailing typical site conditions and turbine operation is presented. To realize optimized performance, lift control systems were designed and evaluated in CFD simulations coupled with shape optimization tools. These were integrated into a systematic design methodology involving BEM simulations, CFD simulations and shape optimization, and selected experimental validation. To refine and illustrate the proposed design methodology, a

  4. Aerodynamic design and analysis of small horizontal axis wind turbine blades

    NASA Astrophysics Data System (ADS)

    Tang, Xinzi

    This work investigates the aerodynamic design and analysis of small horizontal axis wind turbine blades via the blade element momentum (BEM) based approach and the computational fluid dynamics (CFD) based approach. From this research, it is possible to draw a series of detailed guidelines on small wind turbine blade design and analysis. The research also provides a platform for further comprehensive study using these two approaches. The wake induction corrections and stall corrections of the BEM method were examined through a case study of the NREL/NASA Phase VI wind turbine. A hybrid stall correction model was proposed to analyse wind turbine power performance. The proposed model shows improvement in power prediction for the validation case, compared with the existing stall correction models. The effects of the key rotor parameters of a small wind turbine as well as the blade chord and twist angle distributions on power performance were investigated through two typical wind turbines, i.e. a fixed-pitch variable-speed (FPVS) wind turbine and a fixed-pitch fixed-speed (FPFS) wind turbine. An engineering blade design and analysis code was developed in MATLAB to accommodate aerodynamic design and analysis of the blades.. The linearisation for radial profiles of blade chord and twist angle for the FPFS wind turbine blade design was discussed. Results show that, the proposed linearisation approach leads to reduced manufacturing cost and higher annual energy production (AEP), with minimal effects on the low wind speed performance. Comparative studies of mesh and turbulence models in 2D and 3D CFD modelling were conducted. The CFD predicted lift and drag coefficients of the airfoil S809 were compared with wind tunnel test data and the 3D CFD modelling method of the NREL/NASA Phase VI wind turbine were validated against measurements. Airfoil aerodynamic characterisation and wind turbine power performance as well as 3D flow details were studied. The detailed flow

  5. Theoretical and experimental power from large horizontal-axis wind turbines

    NASA Astrophysics Data System (ADS)

    Viterna, L. A.; Janetzke, D. C.

    1982-09-01

    A method for calculating the output power from large horizontal-axis wind turbines is presented. Modifications to the airfoil characteristics and the momentum portion of classical blade element-momentum theory are given that improve correlation with measured data. Improvement is particularly evident at low tip-speed ratios where aerodynamic stall can occur as the blade experiences high angles of attack. Output power calculated using the modified theory is compared with measured data for several large wind turbines. These wind turbines range in size from the DOE/NASA 100 kW Mod-0 (38 m rotor diameter) to the 2000 kW Mod-1 (61 m rotor diameter). The calculated results are in good agreement with measured data from these machines.

  6. Theoretical and experimental power from large horizontal-axis wind turbines

    SciTech Connect

    Viterna, L A; Janetzke, D C

    1982-09-01

    A method for calculating the output power from large horizontal-axis wind turbines is presented. Modifications to the airfoil characteristics and the momentum portion of classical blade element-momentum theory are given that improve correlation with measured data. Improvement is particularly evident at low tip speed ratios where aerodynamic stall can occur as the blade experiences high angles of attack. Output power calculated using the modified theory is compared with measured data for several large wind turbines. These wind turbines range in size from the DOE/NASA 100 kW Mod-O (38 m rotor diameter) to the 2000 kW Mod-1 (61 m rotor diameter). The calculated results are in good agreement with measured data from these machines.

  7. Low-order flow modeling of vertical-axis wind turbine arrays

    NASA Astrophysics Data System (ADS)

    Araya, Daniel; Craig, Anna; Dabiri, John

    2012-11-01

    We present a potential flow model of recent experimental measurements of a full-scale array of vertical-axis wind turbines. Potential flow elements are used to approximate the flow physics of the array. Average velocity measurements, taken over the course of several months from different locations within the array, are used to compute velocity residuals, which are minimized to find the best-fit model. In addition, we present an approach to extend the empirical model to larger turbine array sizes by deducing the relation of the local flow velocity to the potential flow element strengths. This low-order modeling approach has the advantage of being simple enough for rapid optimization of small turbine arrays, yet robust enough for also at least qualitatively predicting the performance of larger arrays. This work was partially supported by the Department of Defense (DoD) through the National Defense Science & Engineering Graduate Fellowship (NDSEG) Program.

  8. The UTRC wind energy conversion system performance analysis for horizontal axis wind turbines (WECSPER)

    NASA Technical Reports Server (NTRS)

    Egolf, T. A.; Landgrebe, A. J.

    1981-01-01

    The theory for the UTRC Energy Conversion System Performance Analysis (WECSPER) for the prediction of horizontal axis wind turbine performance is presented. Major features of the analysis are the ability to: (1) treat the wind turbine blades as lifting lines with a prescribed wake model; (2) solve for the wake-induced inflow and blade circulation using real nonlinear airfoil data; and (3) iterate internally to obtain a compatible wake transport velocity and blade loading solution. This analysis also provides an approximate treatment of wake distortions due to tower shadow or wind shear profiles. Finally, selected results of internal UTRC application of the analysis to existing wind turbines and correlation with limited test data are described.

  9. In Situ Measurements of the Flow around a Single Vertical-Axis Wind Turbine

    NASA Astrophysics Data System (ADS)

    Brownstein, Ian; Araya, Daniel; Kinzel, Matthias; Dabiri, John

    2014-11-01

    Laboratory studies of model vertical-axis wind turbines (VAWTs) are typically unable to match both the Reynolds number (Re) and tip speed ratio (TSR) of full-scale wind turbines. In order to match both relevant parameters, a quantitative flow visualization method was developed to take in situ measurements of the flow around full-scale VAWTs. An apparatus was constructed to deploy a horizontal sheet of smoke upstream of the turbine at the mid-span of the rotor. Quantitative results were obtained by tracking the evolution of this smoke sheet using a PIV algorithm. This method will be demonstrated through a comparative study of three- and five-bladed VAWTs at the Field Laboratory for Optimized Wind Energy (FLOWE) in Lancaster, CA. Additionally, results will be presented in comparison with previous laboratory studies to help determine the dependence of the flow physics on Re and TSR.

  10. Theoretical and experimental power from large horizontal-axis wind turbines

    NASA Technical Reports Server (NTRS)

    Viterna, L. A.; Janetzke, D. C.

    1982-01-01

    A method for calculating the output power from large horizontal-axis wind turbines is presented. Modifications to the airfoil characteristics and the momentum portion of classical blade element-momentum theory are given that improve correlation with measured data. Improvement is particularly evident at low tip-speed ratios where aerodynamic stall can occur as the blade experiences high angles of attack. Output power calculated using the modified theory is compared with measured data for several large wind turbines. These wind turbines range in size from the DOE/NASA 100 kW Mod-0 (38 m rotor diameter) to the 2000 kW Mod-1 (61 m rotor diameter). The calculated results are in good agreement with measured data from these machines.

  11. The Development of Duct for a Horizontal Axis Turbine Using CFD

    NASA Astrophysics Data System (ADS)

    Ghani, Mohamad Pauzi Abdul; Yaacob, Omar; Aziz, Azliza Abdul

    2010-06-01

    Malaysia is heavily dependent on the fossil fuels to satisfy its energy demand. Nowadays, renewable energy which has attracted great interest is marine current energy, which extracted by a device called a device called marine current turbine. This energy resource has agreat potential to be exploited on a large scale because of its predictability and intensity. This paper will focus on developing a Horizontal Axis Marine Current Turbine (HAMCT) rotor to extract marine current energy suitable for Malaysian sea conditions. This work incorporates the characteristic of Malaysia's ocean of shallow water and low speed current in developing the turbines. The HAMCT rotor will be developed and simulated using CAD and CFD software for various combination of inlet and oulet duct design. The computer simulation results of the HAMCT being developed will be presented.

  12. Vertical-axis wind-turbine drive-train transient dynamics

    SciTech Connect

    Clauss, D.B.; Carne, T.G.

    1981-03-01

    Start-up of a vertical-axis wind-turbine causes transient torque oscillations in the drivek-train with peak torques which may be over two and one-half times the rated torque of the turbine. These peak torques are of sufficient magnitude to possibly damage the drive train; safe and reliable operation requires that mechanical components be overdesigned to carry the peak torques caused by transient events. A computer code, based on a lumped parameter model of the drive train, has been developed and tested for the Low Cost 17-Meter turbine; the results show excellent agreement with field data. The code has subsequently been used to predict the effect of a slip clutch on transient torque oscillations. It has been demonstrated that a slip clutch located between the motor and brake can reduce peak torques by thirty-eight percent.

  13. Comparison of measured and calculated sound pressure levels around a large horizontal axis wind turbine generator

    NASA Technical Reports Server (NTRS)

    Shepherd, Kevin P.; Willshire, William L., Jr.; Hubbard, Harvey H.

    1989-01-01

    Results are reported from a large number of simultaneous acoustic measurements around a large horizontal axis downwind configuration wind turbine generator. In addition, comparisons are made between measurements and calculations of both the discrete frequency rotational harmonics and the broad band noise components. Sound pressure time histories and noise radiation patterns as well as narrow band and broadband noise spectra are presented for a range of operating conditions. The data are useful for purposes of environmental impact assessment.

  14. An experimental verification of the local circulation method for a horizontal axis wind turbine

    SciTech Connect

    Nasu, K.I.; Azuma, A.

    1983-08-01

    The Local Circulation Method (LCM) was developed by the authors as a useful method for the prediction of rotary wing unsteady aerodynamics. In order to examine empirically the validity of the LCM, an experimental test of horizontal axis wind turbine was conducted in a low speed wind tunnel. The results obtained were compared with the computational results predicted by the LCM. The coverage of this experiment is from static performances to time-varying airloading of the wing in yawed wind.

  15. Numerical simulation on a straight-bladed vertical axis wind turbine with auxiliary blade

    NASA Astrophysics Data System (ADS)

    Li, Y.; Zheng, Y. F.; Feng, F.; He, Q. B.; Wang, N. X.

    2016-08-01

    To improve the starting performance of the straight-bladed vertical axis wind turbine (SB-VAWT) at low wind speed, and the output characteristics at high wind speed, a flexible, scalable auxiliary vane mechanism was designed and installed into the rotor of SB-VAWT in this study. This new vertical axis wind turbine is a kind of lift-to-drag combination wind turbine. The flexible blade expanded, and the driving force of the wind turbines comes mainly from drag at low rotational speed. On the other hand, the flexible blade is retracted at higher speed, and the driving force is primarily from a lift. To research the effects of the flexible, scalable auxiliary module on the performance of SB-VAWT and to find its best parameters, the computational fluid dynamics (CFD) numerical calculation was carried out. The calculation result shows that the flexible, scalable blades can automatic expand and retract with the rotational speed. The moment coefficient at low tip speed ratio increased substantially. Meanwhile, the moment coefficient has also been improved at high tip speed ratios in certain ranges.

  16. Free yaw performance of the Mod-0 large horizontal axis 100 kW wind turbine

    NASA Astrophysics Data System (ADS)

    Corrigan, R. D.; Viterna, L. A.

    The NASA Mod-0 Large Horizontal Axis 100 kW Wind Turbine was operated in free yaw with an unconed teetered, downwind rotor mounted on a nacelle having 8-1/2 deg tilt. Two series of tests were run, the first series with 19 meter twisted aluminum blades and the second series with 19 meter untwisted steel spar blades with tip control. Rotor speed were nominally 20, 26 and 31 rpm. It was found the nacelle stabilized in free yaw at a yaw angle of between -55 deg to -45 deg was relatively independent of wind speed and was well damped to short term variations in wind direction. Power output of the wind turbine in free yaw, aligned at a large yaw angle, was considerably less than that if the wind turbine were aligned with the wind. For the Mod-0 wind turbine at 26 rpm, the MOSTAB computer code calculations of the free yaw alignment angle and power output compare reasonably well with experimental data. MOSTAB calculations indicate that elimination of tilt and adding coning will improve wind turbine alignment with the wind and that wind shear has a slight detrimental effect on the free yaw alignment angle.

  17. Numerical Simulations and Experimental Measurements of Scale-Model Horizontal Axis Hydrokinetic Turbines (HAHT) Arrays

    NASA Astrophysics Data System (ADS)

    Javaherchi, Teymour; Stelzenmuller, Nick; Seydel, Joseph; Aliseda, Alberto

    2014-11-01

    The performance, turbulent wake evolution and interaction of multiple Horizontal Axis Hydrokinetic Turbines (HAHT) is analyzed in a 45:1 scale model setup. We combine experimental measurements with different RANS-based computational simulations that model the turbines with sliding-mesh, rotating reference frame and blame element theory strategies. The influence of array spacing and Tip Speed Ratio on performance and wake velocity structure is investigated in three different array configurations: Two coaxial turbines at different downstream spacing (5d to 14d), Three coaxial turbines with 5d and 7d downstream spacing, and Three turbines with lateral offset (0.5d) and downstream spacing (5d & 7d). Comparison with experimental measurements provides insights into the dynamics of HAHT arrays, and by extension to closely packed HAWT arrays. The experimental validation process also highlights the influence of the closure model used (k- ω SST and k- ɛ) and the flow Reynolds number (Re=40,000 to 100,000) on the computational predictions of devices' performance and characteristics of the flow field inside the above-mentioned arrays, establishing the strengths and limitations of existing numerical models for use in industrially-relevant settings (computational cost and time). Supported by DOE through the National Northwest Marine Renewable Energy Center (NNMREC).

  18. Simulation of winds as seen by a rotating vertical axis wind turbine blade

    SciTech Connect

    George, R.L.

    1984-02-01

    The objective of this report is to provide turbulent wind analyses relevant to the design and testing of Vertical Axis Wind Turbines (VAWT). A technique was developed for utilizing high-speed turbulence wind data from a line of seven anemometers at a single level to simulate the wind seen by a rotating VAWT blade. Twelve data cases, representing a range of wind speeds and stability classes, were selected from the large volume of data available from the Clayton, New Mexico, Vertical Plane Array (VPA) project. Simulations were run of the rotationally sampled wind speed relative to the earth, as well as the tangential and radial wind speeds, which are relative to the rotating wind turbine blade. Spectral analysis is used to compare and assess wind simulations from the different wind regimes, as well as from alternate wind measurement techniques. The variance in the wind speed at frequencies at or above the blade rotation rate is computed for all cases, and is used to quantitatively compare the VAWT simulations with Horizontal Axis Wind Turbine (HAWT) simulations. Qualitative comparisons are also made with direct wind measurements from a VAWT blade.

  19. A numerical analysis to evaluate Betz's Law for vertical axis wind turbines

    NASA Astrophysics Data System (ADS)

    Thönnißen, F.; Marnett, M.; Roidl, B.; Schröder, W.

    2016-09-01

    The upper limit for the energy conversion rate of horizontal axis wind turbines (HAWT) is known as the Betz limit. Often this limit is also applied to vertical axis wind turbines (VAWT). However, a literature review reveals that early analytical and recent numerical approaches predicted values for the maximum power output of VAWTs close to or even higher than the Betz limit. Thus, it can be questioned whether the application of Betz's Law to VAWTs is justified. To answer this question, the current approach combines a free vortex model with a 2D inviscid panel code to represent the flow field of a generic VAWT. To ensure the validity of the model, an active blade pitch control system is used to avoid flow separation. An optimal pitch curve avoiding flow separation is determined for one specific turbine configuration by applying an evolutionary algorithm. The analysis yields a net power output that is slightly (≈6%) above the Betz limit. Besides the numerical result of an increased energy conversion rate, especially the identification of two physical power increasing mechanisms shows, that the application of Betz's Law to VAWTs is not justified.

  20. The horizontal planar structure of kinetic energy in a model vertical-axis wind turbine array

    NASA Astrophysics Data System (ADS)

    Craig, Anna; Zeller, Robert; Zarama, Francisco; Weitzman, Joel; Dabiri, John; Koseff, Jeffrey

    2013-11-01

    Recent studies have indicated that arrays of vertical axis wind turbines (VAWTs) could potentially harvest significantly more power per unit land area than arrays composed of conventional horizontal axis wind turbines. However, to design VAWT arrays for optimal power conversion, a more comprehensive understanding of inter-turbine energy transfer is needed. In the presented study, a geometrically scaled array of rotating circular cylinders is used to model a VAWT array. The horizontal inter-cylinder mean fluid velocities and Reynolds stresses are measured on several cross-sections using 2D particle image velocimetry in a flume. Two orientations of the array relative to the incoming flow are tested. The results indicate that cylinder rotation drives asymmetric mean flow patterns within and above the array, resulting in non-uniform distributions of turbulent kinetic energy. The variability is observed to be directly related to the ratio of the cylinder rotation speed to the streamwise water velocity. Emphasis is placed on the implications of the asymmetries for power production. Work supported by a Stanford Graduate Fellowship to A.E.C, by funding to J.O.D. from ONR N000141211047 and the Gordon and Betty Moore Foundation through Grant GBMF2645, and by funding from the Environmental Fluid Mechanics Laboratory, Stanford University.

  1. Evaluation of drag forcing models for vertical axis wind turbine farms

    NASA Astrophysics Data System (ADS)

    Pierce, Brian; Moin, Parviz; Dabiri, John

    2013-11-01

    Vertical axis wind turbines (VAWTs) have the potential to produce more power per unit area than horizontal axis wind turbines (HAWTs) in a wind farm setting (Kinzel et al. J. Turb. [2012]), but further understanding of the flow physics is required to design such farms. In this study we will model a large wind farm of VAWTs as an array of 100 circular cylinders which will allow a comparison with a laboratory experiment (Craig et al. DFD 2013). The geometric complexity and high Reynolds numbers necessitate phenomenological modeling of the interaction of the turbine with the fluid, which is done through point drag models similar to those found in canopy flow simulations (e.g. Dupont et al. J. Fluid Mech. [2010]). We will present a detailed study of the point drag model performance for flow over one cylinder, providing an evaluation of the model's fidelity as it relates to quantities of interest for the VAWT farm. Next we will present results for flow through the cylinder array, emphasizing validation of the model and insight into VAWT wind farm dynamics. We will also discuss the effect of wall modeling on the calculations, as the Reynolds number of the problem requires the application of wall modeling of the turbulent boundary layer above the ground to keep the cost manageable. Brian Pierce acknowledges support from the Stanford Graduate Fellowship.

  2. Simulations of Vertical Axis Wind Turbine Farms in the Atmospheric Boundary Layer

    NASA Astrophysics Data System (ADS)

    Hezaveh, Seyed Hossein; Bou-Zeid, Elie; Lohry, Mark; Martinelli, Luigi

    2014-11-01

    Wind power is an abundant and clean source of energy that is increasingly being tapped to reduce the environmental footprint of anthropogenic activities. The vertical axis wind turbine (VAWT) technology is now being revisited due to some important advantages over horizontal axis wind turbines (HAWTS) that are particularly important for farms deployed offshore or in complex terrain. In this talk, we will present the implementation and testing of an actuator line model (ALM) for VAWTs in a large eddy simulation (LES) code for the atmospheric boundary layer, with the aim of optimizing large VAWT wind farm configurations. The force coefficients needed for the ALM are here obtained from blade resolving RANS simulations of individual turbines for each configuration. Comparison to various experimental results show that the model can very successfully reproduce observed wake characteristic. The influence of VAWT design parameters such as solidity, height to radius ratio, and tip speed ratio (TSR) on these wake characteristics, particularly the velocity deficit profile, is then investigated.

  3. Numerical investigations of passive flow control elements for vertical axis wind turbine

    NASA Astrophysics Data System (ADS)

    Frunzulica, Florin; Dumitrache, Alexandru; Suatean, Bogdan

    2014-12-01

    In this paper we numerically investigate the possibilities to control the dynamic stall phenomenon, with application to vertical axis wind turbines. The dynamic stall appears at low tip speed ratio (TSR<4) and it has a great impact on structural integrity of the wind turbine and power performances. For this reason we performed a CFD 2D analysis of the dynamic stall phenomenon around NACA 0012 airfoil equipped with a passive flow control device, in pitching motion at relative low Reynolds number (˜105). Three passive flow control devices are numerically investigated: a turbulence promoter mounted on the leading edge, a thin channel and a step on the upper surface of the airfoil. For the present studies, the unsteady Reynolds averaged Navier-Stokes (RANS) model is the suitable approach to perform the dynamic stall simulations with an acceptable computational cost and reasonable accuracy. The results are compared to those of an existing experimental case test for unmodified NACA 0012 airfoil. The capability of this device was investigated numerically on a vertical axis wind turbine (2D model), where blades are generated with NACA 0018 airfoil.

  4. Reliability Estimation of Parameters of Helical Wind Turbine with Vertical Axis.

    PubMed

    Dumitrascu, Adela-Eliza; Lepadatescu, Badea; Dumitrascu, Dorin-Ion; Nedelcu, Anisor; Ciobanu, Doina Valentina

    2015-01-01

    Due to the prolonged use of wind turbines they must be characterized by high reliability. This can be achieved through a rigorous design, appropriate simulation and testing, and proper construction. The reliability prediction and analysis of these systems will lead to identifying the critical components, increasing the operating time, minimizing failure rate, and minimizing maintenance costs. To estimate the produced energy by the wind turbine, an evaluation approach based on the Monte Carlo simulation model is developed which enables us to estimate the probability of minimum and maximum parameters. In our simulation process we used triangular distributions. The analysis of simulation results has been focused on the interpretation of the relative frequency histograms and cumulative distribution curve (ogive diagram), which indicates the probability of obtaining the daily or annual energy output depending on wind speed. The experimental researches consist in estimation of the reliability and unreliability functions and hazard rate of the helical vertical axis wind turbine designed and patented to climatic conditions for Romanian regions. Also, the variation of power produced for different wind speeds, the Weibull distribution of wind probability, and the power generated were determined. The analysis of experimental results indicates that this type of wind turbine is efficient at low wind speed.

  5. A 3-D aerodynamic method for the analysis of isolated horizontal-axis wind turbines

    SciTech Connect

    Ammara, I.; Masson, C.; Paraschivoiu, I.

    1997-12-31

    In most existing performance-analysis methods, wind turbines are considered isolated so that interference effects caused by other rotors or by the site topography are neglected. The main objective of this paper is to propose a practical 3-D method suitable for the study of these effects, in order to optimize the arrangement and the positioning of Horizontal-Axis Wind Turbines (HAWTs) in a wind farm. In the proposed methodology, the flow field around isolated HAWTs is predicted by solving the 3-D, time-averaged, steady-state, incompressible, Navier-Stokes equations in which the turbines are represented by distributions of momentum sources. The resulting governing equations are solved using a Control-Volume Finite Element Method (CVFEM). The fundamental aspects related to the development of a practical 3-D method are discussed in this paper, with an emphasis on some of the challenges that arose during its implementation. The current implementation is limited to the analysis of isolated HAWTs. Preliminary results have indicated that, the proposed 3-D method reaches the same level of accuracy, in terms of performance predictions, that the previously developed 2-D axisymmetric model and the well-known momentum-strip theory, while still using reasonable computers resources. It can be considered as a useful tool for the design of HAWTs. Its main advantages, however, are its intrinsic capacity to predict the details of the flow in the wake, and its capabilities of modelling arbitrary wind-turbine arrangements and including ground effects.

  6. Reliability Estimation of Parameters of Helical Wind Turbine with Vertical Axis

    PubMed Central

    Dumitrascu, Adela-Eliza; Lepadatescu, Badea; Dumitrascu, Dorin-Ion; Nedelcu, Anisor; Ciobanu, Doina Valentina

    2015-01-01

    Due to the prolonged use of wind turbines they must be characterized by high reliability. This can be achieved through a rigorous design, appropriate simulation and testing, and proper construction. The reliability prediction and analysis of these systems will lead to identifying the critical components, increasing the operating time, minimizing failure rate, and minimizing maintenance costs. To estimate the produced energy by the wind turbine, an evaluation approach based on the Monte Carlo simulation model is developed which enables us to estimate the probability of minimum and maximum parameters. In our simulation process we used triangular distributions. The analysis of simulation results has been focused on the interpretation of the relative frequency histograms and cumulative distribution curve (ogive diagram), which indicates the probability of obtaining the daily or annual energy output depending on wind speed. The experimental researches consist in estimation of the reliability and unreliability functions and hazard rate of the helical vertical axis wind turbine designed and patented to climatic conditions for Romanian regions. Also, the variation of power produced for different wind speeds, the Weibull distribution of wind probability, and the power generated were determined. The analysis of experimental results indicates that this type of wind turbine is efficient at low wind speed. PMID:26167524

  7. Reliability Estimation of Parameters of Helical Wind Turbine with Vertical Axis.

    PubMed

    Dumitrascu, Adela-Eliza; Lepadatescu, Badea; Dumitrascu, Dorin-Ion; Nedelcu, Anisor; Ciobanu, Doina Valentina

    2015-01-01

    Due to the prolonged use of wind turbines they must be characterized by high reliability. This can be achieved through a rigorous design, appropriate simulation and testing, and proper construction. The reliability prediction and analysis of these systems will lead to identifying the critical components, increasing the operating time, minimizing failure rate, and minimizing maintenance costs. To estimate the produced energy by the wind turbine, an evaluation approach based on the Monte Carlo simulation model is developed which enables us to estimate the probability of minimum and maximum parameters. In our simulation process we used triangular distributions. The analysis of simulation results has been focused on the interpretation of the relative frequency histograms and cumulative distribution curve (ogive diagram), which indicates the probability of obtaining the daily or annual energy output depending on wind speed. The experimental researches consist in estimation of the reliability and unreliability functions and hazard rate of the helical vertical axis wind turbine designed and patented to climatic conditions for Romanian regions. Also, the variation of power produced for different wind speeds, the Weibull distribution of wind probability, and the power generated were determined. The analysis of experimental results indicates that this type of wind turbine is efficient at low wind speed. PMID:26167524

  8. Tandem-disk theory - With particular reference to vertical axis wind turbines

    NASA Astrophysics Data System (ADS)

    Healey, J. V.

    1981-08-01

    The effect of blade shape on the performance of straight-blade turbines is investigated, and an attempt is made to establish the tandem disk system as a model for vertical axis wind turbines. Two unknowns are chosen as independent parameters, and expressions for the windspeeds and power coefficients are obtained in terms of these parameters. Pressure is varied between the two disks, and the power coefficient for the tandem disk model is evaluated. The range of validity of the momentum theory is determined, although with some difficulty, for the single-disk and tandem models. Finally, the theory can be alternatively combined with the blade-element theory, which yields two additional equations, thus resolving the indeterminacy.

  9. Prediction of broadband noise from large horizontal axis wind turbine generators

    NASA Technical Reports Server (NTRS)

    Grosveld, F. W.

    1984-01-01

    A method is presented for predicting the broadband noise spectra of large horizontal axis wind turbine generators. It includes contributions from such noise sources as the inflow turbulence to the rotor, the interactions between the turbulent boundary layers on the blade surfaces with their trailing edges and the wake due to a blunt trailing edge. The method is partly empirical and is based on acoustic measurements of large wind turbines and airfoil models. The predicted frequency spectra are compared with measured data from several machines including the MOD-OA, the MOD-2, the WTS-4 and the U.S. Wind-power Inc. machine. Also included is a broadband noise prediction for the proposed MOD-5B. The significance of the effects of machine size, power output, trailing edge bluntness and distance to the receiver is illustrated. Good agreement is obtained between the predicted and measured far field noise spectra.

  10. A numerical investigation of the stall-delay phenomenon for horizontal axis wind turbine

    NASA Astrophysics Data System (ADS)

    Frunzulica, Florin; Mahu, Razvan; Dumitrescu, Horia

    2012-11-01

    The flow characteristics and stall delay phenomenon of a stall regulated wind turbine rotor due to blade rotation in steady state non-yawed conditions are investigated. An incompressible Reynolds-averaged Navier-Stokes solver is applied to carry out the separate flow cases at high wind speeds from 11 m/s to 25 m/s with an interval of 2 m/s. The objective of the present research effort is to validate a first-principles based approach for modeling horizontal axis wind turbines (HAWT) under stalled flow conditions using NREL/ Phase VI rotor data. The computational results are compared with the experimental data and predicted values derived by a new stall-delay model.

  11. The Influence of Rotor Configurations on the Energy Production in an Array of Vertical-Axis Wind Turbines

    NASA Astrophysics Data System (ADS)

    Kinzel, Matthias; Araya, Daniel; Dabiri, John

    2012-11-01

    We analyze the flow field within an array of 18 vertical-axis wind turbines (VAWTs) at full-scale and under natural wind conditions. The emphasis is on the energy flux into the turbine array and the energy extraction by the turbines. The wind velocities throughout the turbine array are measured using a portable meteorological tower with seven, vertically-staggered, three-component ultrasonic anemometers. These measurements yield a detailed insight into the turbine wakes and the recovery of the flow. A high planform kinetic energy flux is detected, which enables the flow velocities to return to 95% of the upwind value within six rotor diameters downwind from a turbine row. This is significantly faster than the recovery behind a typical horizontal-axis wind turbine (HAWT). The Presentation will compare the results for different rotor configurations. Conclusions will be drawn about the influence of these configurations on the power production of the individual turbines as well as the turbine array as a whole. The authors gratefully acknowledge funding from the National Science Foundation Energy for Sustainability program (Grant No. CBET-0725164) and the Gordon and Betty Moore Foundation.

  12. Proceedings of the vertical axis wind turbine (VAWT) design technology seminar for industry

    SciTech Connect

    Johnston, S.F. Jr.

    1980-08-01

    The objective of the Vertical Axis Wind Turbine (VAWT) Program at Sandia National Laboratories is to develop technology that results in economical, industry-produced, and commercially marketable wind energy systems. The purpose of the VAWT Design Technology Seminar or Industry was to provide for the exchange of the current state-of-the-art and predictions for future VAWT technology. Emphasis was placed on technology transfer on Sandia's technical developments and on defining the available analytic and design tools. Separate abstracts are included for presented papers.

  13. Structural effects of unsteady aerodynamic forces on horizontal-axis wind turbines

    SciTech Connect

    Miller, M.S.; Shipley, D.E.

    1994-08-01

    Due to its renewable nature and abundant resources, wind energy has the potential to fulfill a large portion of this nation`s energy needs. The simplest means of utilizing wind energy is through the use of downwind, horizontal-axis wind turbines (HAWT) with fixed-pitch rotors. This configuration regulates the peak power by allowing the rotor blade to aerodynamically stall. The stall point, the point of maximum coefficient of lift, is currently predicted using data obtained from wind tunnel tests. Unfortunately, these tests do not accurately simulate conditions encountered in the field. Flow around the tower and nacelle coupled with inflow turbulence and rotation of the turbine blades create unpredicted aerodynamic forces. Dynamic stall is hypothesized to occur. Such aerodynamic loads are transmitted into the rotor and tower causing structural resonance that drastically reduces the design lifetime of the wind turbine. The current method of alleviating this problem is to structurally reinforce the tower and blades. However, this adds unneeded mass and, therefore, cost to the turbines. A better understanding of the aerodynamic forces and the manner in which they affect the structure would allow for the design of more cost effective and durable wind turbines. Data compiled by the National Renewable Energy Laboratory (NREL) for a downwind HAWT with constant chord, untwisted, fixed-pitch rotors is analyzed. From these data, the actual aerodynamic characteristics of the rotor are being portrayed and the potential effects upon the structure can for the first time be fully analyzed. Based upon their understanding, solutions to the problem of structural resonance are emerging.

  14. Structural effects of unsteady aerodynamic forces on horizontal-axis wind turbines

    NASA Astrophysics Data System (ADS)

    Miller, M. S.; Shipley, D. E.

    1994-08-01

    Due to its renewable nature and abundant resources, wind energy has the potential to fulfill a large portion of this nation's energy needs. The simplest means of utilizing wind energy is through the use of downwind, horizontal-axis wind turbines (HAWT) with fixed-pitch rotors. This configuration regulates the peak power by allowing the rotor blade to aerodynamically stall. The stall point, the point of maximum coefficient of lift, is currently predicted using data obtained from wind tunnel tests. Unfortunately, these tests do not accurately simulate conditions encountered in the field. Flow around the tower and nacelle coupled with inflow turbulence and rotation of the turbine blades create unpredicted aerodynamic forces. Dynamic stall is hypothesized to occur. Such aerodynamic loads are transmitted into the rotor and tower causing structural resonance that drastically reduces the design lifetime of the wind turbine. The current method of alleviating this problem is to structurally reinforce the tower and blades. However, this adds unneeded mass and, therefore, cost to the turbines. A better understanding of the aerodynamic forces and the manner in which they affect the structure would allow for the design of more cost effective and durable wind turbines. Data compiled by the National Renewable Energy Laboratory (NREL) for a downwind HAWT with constant chord, untwisted, fixed-pitch rotors is analyzed. From these data, the actual aerodynamic characteristics of the rotor are being portrayed and the potential effects upon the structure can for the first time be fully analyzed. Based upon their understanding, solutions to the problem of structural resonance are emerging.

  15. Experimental Study of a Reference Model Vertical-Axis Cross-Flow Turbine

    PubMed Central

    Wosnik, Martin; Gunawan, Budi; Neary, Vincent S.

    2016-01-01

    The mechanical power, total rotor drag, and near-wake velocity of a 1:6 scale model (1.075 m diameter) of the US Department of Energy’s Reference Model vertical-axis cross-flow turbine were measured experimentally in a towing tank, to provide a comprehensive open dataset for validating numerical models. Performance was measured for a range of tip speed ratios and at multiple Reynolds numbers by varying the rotor’s angular velocity and tow carriage speed, respectively. A peak power coefficient CP = 0.37 and rotor drag coefficient CD = 0.84 were observed at a tip speed ratio λ0 = 3.1. A regime of weak linear Re-dependence of the power coefficient was observed above a turbine diameter Reynolds number ReD ≈ 106. The effects of support strut drag on turbine performance were investigated by covering the rotor’s NACA 0021 struts with cylinders. As expected, this modification drastically reduced the rotor power coefficient. Strut drag losses were also measured for the NACA 0021 and cylindrical configurations with the rotor blades removed. For λ = λ0, wake velocity was measured at 1 m (x/D = 0.93) downstream. Mean velocity, turbulence kinetic energy, and mean kinetic energy transport were compared with results from a high solidity turbine acquired with the same test apparatus. Like the high solidity case, mean vertical advection was calculated to be the largest contributor to near-wake recovery. However, overall, lower levels of streamwise wake recovery were calculated for the RM2 case—a consequence of both the relatively low solidity and tapered blades reducing blade tip vortex shedding—responsible for mean vertical advection—and lower levels of turbulence caused by higher operating tip speed ratio and therefore reduced dynamic stall. Datasets, code for processing and visualization, and a CAD model of the turbine have been made publicly available. PMID:27684076

  16. Wind tunnel study of a vertical axis wind turbine in a turbulent boundary layer flow

    NASA Astrophysics Data System (ADS)

    Rolin, Vincent; Porté-Agel, Fernando

    2015-04-01

    Vertical axis wind turbines (VAWTs) are in a relatively infant state of development when compared to their cousins the horizontal axis wind turbines. Very few studies have been carried out to characterize the wake flow behind VAWTs, and virtually none to observe the influence of the atmospheric boundary layer. Here we present results from an experiment carried out at the EPFL-WIRE boundary-layer wind tunnel and designed to study the interaction between a turbulent boundary layer flow and a VAWT. Specifically we use stereoscopic particle image velocimetry to observe and quantify the influence of the boundary layer flow on the wake generated by a VAWT, as well as the effect the VAWT has on the boundary layer flow profile downstream. We find that the wake behind the VAWT is strongly asymmetric, due to the varying aerodynamic forces on the blades as they change their position around the rotor. We also find that the wake adds strong turbulence levels to the flow, particularly on the periphery of the wake where vortices and strong velocity gradients are present. The boundary layer is also shown to cause greater momentum to be entrained downwards rather than upwards into the wake.

  17. Numerical study on aerodynamic damping of floating vertical axis wind turbines

    NASA Astrophysics Data System (ADS)

    Cheng, Zhengshun; Aagaard Madsen, Helge; Gao, Zhen; Moan, Torgeir

    2016-09-01

    Harvesting offshore wind energy resources using floating vertical axis wind turbines (VAWTs) has attracted an increasing interest in recent years. Due to its potential impact on fatigue damage, the aerodynamic damping should be considered in the preliminary design of a floating VAWT based on the frequency domain method. However, currently the study on aerodynamic damping of floating VAWTs is very limited. Due to the essential difference in aerodynamic load characteristics, the aerodynamic damping of a floating VAWT could be different from that of a floating horizontal axis wind turbine (HAWT). In this study, the aerodynamic damping of floating VAWTs was studied in a fully coupled manner, and its influential factors and its effects on the motions, especially the pitch motion, were demonstrated. Three straight-bladed floating VAWTs with identical solidity and with a blade number varying from two to four were considered. The aerodynamic damping under steady and turbulent wind conditions were estimated using fully coupled aero-hydro-servo-elastic time domain simulations. It is found that the aerodynamic damping ratio of the considered floating VAWTs ranges from 1.8% to 5.3%. Moreover, the aerodynamic damping is almost independent of the rotor azimuth angle, and is to some extent sensitive to the blade number.

  18. Development of passive-controlled HUB (teetered brake & damper mechanism) of horizontal axis wind turbine

    SciTech Connect

    Shimizu, Yukimaru; Kamada, Yasunari; Maeda, Takao

    1997-12-31

    For the purpose of the improvement of reliability of the Mega-Watt wind turbine, this paper indicates the development of an original mechanism for the passive-controlled hub, which has the effects of braking and damping on aerodynamic forces. This mechanism is useful for variable speed control of the large wind turbine. The passive-controlled hub is the combination of two mechanisms. One is the passive-teetered and damping mechanism, and the other is the passive-variable-pitch mechanism. These mechanism are carried out by the combination of the teetering and feathering motions. When the wind speed exceeds the rated wind speed, the blade is passively teetered in a downwind direction and, simultaneously, a feathering mechanism, which is linked to the teetering mechanism through a connecting rods, is activated. Testing of the model horizontal axis wind turbine in a wind tunnel showed that the passive-controlled hub mechanism can suppress the over-rotational speed of the rotor. By the application of the passive-controlled hub mechanism, the maximum rotor speed is reduced to about 60%.

  19. Development and testing of vortex generators for small horizontal axis wind turbines

    NASA Technical Reports Server (NTRS)

    Gyatt, G. W.

    1986-01-01

    Vortex generators (VGs) for a small (32 ft diameter) horizontal axis wind turbine, the Carter Model 25, have been developed and tested. Arrays of VGs in a counterrotating arrangement were tested on the inbound half-span, outboard half-span, and on the entire blade. VG pairs had their centerlines spaced at a distance of 15% of blade chord, with a spanwise width of 10% of blade chord. Each VG had a length/height ratio of 4, with a height of between 0.5% and 1.0% of the blade chord. Tests were made with roughness strips to determine whether VGs alleviated the sensitivity of some turbines to an accumulation of bugs and dirt on the leading edge. Field test data showed that VGs increased power output up to 20% at wind speeds above 10 m/s with only a small (less than 4%) performance penalty at lower speeds. The VGs on the outboard span of the blade were more effective than those on inner sections. For the case of full span coverage, the energy yearly output increased almost 6% at a site with a mean wind speed of 16 mph. The VGs did reduce the performance loss caused by leading edge roughness. An increase in blade pitch angle has an effect on the power curve similar to the addition of VGs. VGs alleviate the sensitivity of wind turbine rotors to leading edge roughness caused by bugs and drift.

  20. Transition to bluff body dynamics in the wake of vertical axis turbines

    NASA Astrophysics Data System (ADS)

    Araya, Daniel; Dabiri, John

    2015-11-01

    A unifying characteristic among bluff bodies is a similar wake structure independent of the shape of the body. We present experimental data to demonstrate that the wake of a vertical axis wind/water turbine (VAWT) shares similar features to that of a bluff body, namely a circular cylinder. For a fixed Reynolds number (Re ~ 104) and variable tip-speed ratio, 2D particle image velocimetry (PIV) is used to measure the velocity field in the wake of three different laboratory-scale turbines: a 2-bladed, 3-bladed, and 5-bladed VAWT, each with similar geometry. From the PIV measurements, the time-averaged and dynamic characteristics of the wake are evaluated. In all cases, we observe three distinct regions in the VAWT wake: (1) the near wake, where periodic blade shedding dominates; (2) a transition region, where blade vortices decay and growth of a shear layer instability occurs; (3) the far wake, where bluff body wake oscillations dominate. We further characterize this wake transition with regard to turbine solidity and examine its relation to the mean flow, an important metric for power production within a wind farm.

  1. Vertical axis wind turbine wake in boundary layer flow in a wind tunnel

    NASA Astrophysics Data System (ADS)

    Rolin, Vincent; Porté-Agel, Fernando

    2016-04-01

    A vertical axis wind turbine is placed in a boundary layer flow in a wind tunnel, and its wake is investigated. Measurements are performed using an x-wire to measure two components of velocity and turbulence statistics in the wake of the wind turbine. The study is performed at various heights and crosswind positions in order to investigate the full volume of the wake for a range of tip speed ratios. The velocity deficit and levels of turbulence in the wake are related to the performance of the turbine. The asymmetric incoming boundary layer flow causes the rate of recovery in the wake to change as a function of height. Higher shear between the wake and unperturbed flow occurs at the top edge of the wake, inducing stronger turbulence and mixing in this region. The difference in flow relative to the blades causes the velocity deficit and turbulence level to change as a function of crosswind position behind the rotor. The relative difference diminishes with increasing tip speed ratio. Therefore, the wake becomes more homogeneous as tip speed ratio increases.

  2. Evaluation of horizontal-axis wind-turbine-blade loads using unsteady aerodynamics

    SciTech Connect

    Hartin, J.R.

    1989-01-01

    Most existing analyses of the blade loads on horizontal axis wind turbines are conducted using linear steady-state aerodynamics, but evaluation of loads resulting from wind turbulence or gusts may not be adequate using these techniques. This study develops single-parameter approximations for both the shed wake and trailing wake components of the unsteady aerodynamics and incorporates them into a code that evaluates mean and cyclic blade loading. The effect on loads due to the deterministic effects of wind shear and tower interference and the stochastic effects of wind turbulence are examined. The aeroelastic equations including degrees of freedom for blade flexing and axial tower motion are solved in the time domain using turbulent wind input. Verification of the single-parameter models is by comparison to general analytic solutions and test data available in the literature. The model for shed wake is compared to exact solutions for translating airfoils and to two-dimensional approximations for rotary-wing effects. Two trailing wake models are evaluated using results from wind turbine tests and helicopter analysis. Comparison of loads predictions is made to Howden 330/26 Wind Turbine data showing good agreement for cyclic and mean loads. Results show that the largest contribution from unsteady aerodynamics is an increase in mean loads due to the induced velocity lag caused by the trailing wake.

  3. A Numerical Investigation to Identify Dimensionless Parameters for Dual-Rotor Horizontal Axis Wind Turbines

    NASA Astrophysics Data System (ADS)

    Slew, K. Lee; Miller, M.; Matida, E.

    2016-09-01

    A numerical study was carried out to identify non-dimensional parameters for dual-rotor horizontal axis wind turbines (DRWTs). Based on some important DRWT parameters such as the rotor speeds, rotor diameters and the distance between the rotors, three dimensionless parameters were derived from the Buckingham Pi theorem. Hypothetical DRWT models were created using geometrically-scaled National Renewable Energy Laboratory (NREL) Phase VI rotor geometry and operating conditions in order to confirm the validity of these parameters. The performance of each turbine was simulated using DR_HAWT, an inhouse prediction tool for single and dual-rotor wind turbines created by the current authors. The variation in normalized output power as a function of the dimensionless parameters suggests that an improved performance of DRWTs can be obtained at lower diameter and gap ratios. The NREL Phase VI rotor equipped with a 5 m geometrically-scaled upwind rotor can generate about 88% of the combined power output of two equivalent single-rotors. In addition, the effect of having an auxiliary upwind rotor reduces the angle of attack along the inboard section of the downwind blade.

  4. Measurement of Unsteady Aerodynamics Load on the Blade of Field Horizontal Axis Wind Turbine

    NASA Astrophysics Data System (ADS)

    Kamada, Yasunari; Maeda, Takao; Naito, Keita; Ouchi, Yuu; Kozawa, Masayoshi

    This paper describes an experimental field study of the rotor aerodynamics of wind turbines. The test wind turbine is a horizontal axis wind turbine, or: HAWT with a diameter of 10m. The pressure distributions on the rotating blade are measured with multi point pressure transducers. Sectional aerodynamic forces are analyzed from pressure distribution. Blade root moments are measured simultaneously by a pair of strain gauges. The inflow wind is measured by a three component sonic anemometer, the local inflow of the blade section are measured by a pair of 7 hole Pitot tubes. The relation between the aerodynamic moments on the blade root from pressure distribution and the mechanical moment from strain gauges is discussed. The aerodynamic moments are estimated from the sectional aerodynamic forces and show oscillation caused by local wind speed and direction change. The mechanical moment shows similar oscillation to the aerodynamic excepting the short period oscillation of the blade first mode frequency. The fluctuation of the sectional aerodynamic force triggers resonant blade oscillations. Where stall is present along the blade section, the blade's first mode frequency is dominant. Without stall, the rotating frequency is dominant in the blade root moment.

  5. High fidelity CFD-CSD aeroelastic analysis of slender bladed horizontal-axis wind turbine

    NASA Astrophysics Data System (ADS)

    Sayed, M.; Lutz, Th.; Krämer, E.; Shayegan, Sh.; Ghantasala, A.; Wüchner, R.; Bletzinger, K.-U.

    2016-09-01

    The aeroelastic response of large multi-megawatt slender horizontal-axis wind turbine blades is investigated by means of a time-accurate CFD-CSD coupling approach. A loose coupling approach is implemented and used to perform the simulations. The block- structured CFD solver FLOWer is utilized to obtain the aerodynamic blade loads based on the time-accurate solution of the unsteady Reynolds-averaged Navier-Stokes equations. The CSD solver Carat++ is applied to acquire the blade elastic deformations based on non-linear beam elements. In this contribution, the presented coupling approach is utilized to study the aeroelastic response of the generic DTU 10MW wind turbine. Moreover, the effect of the coupled results on the wind turbine performance is discussed. The results are compared to the aeroelastic response predicted by FLOWer coupled to the MBS tool SIMPACK as well as the response predicted by SIMPACK coupled to a Blade Element Momentum code for aerodynamic predictions. A comparative study among the different modelling approaches for this coupled problem is discussed to quantify the coupling effects of the structural models on the aeroelastic response.

  6. Analysis and Improvement of Aerodynamic Performance of Straight Bladed Vertical Axis Wind Turbines

    NASA Astrophysics Data System (ADS)

    Ahmadi-Baloutaki, Mojtaba

    Vertical axis wind turbines (VAWTs) with straight blades are attractive for their relatively simple structure and aerodynamic performance. Their commercialization, however, still encounters many challenges. A series of studies were conducted in the current research to improve the VAWTs design and enhance their aerodynamic performance. First, an efficient design methodology built on an existing analytical approach is presented to formulate the design parameters influencing a straight bladed-VAWT (SB-VAWT) aerodynamic performance and determine the optimal range of these parameters for prototype construction. This work was followed by a series of studies to collectively investigate the role of external turbulence on the SB-VAWTs operation. The external free-stream turbulence is known as one of the most important factors influencing VAWTs since this type of turbines is mainly considered for urban applications where the wind turbulence is of great significance. Initially, two sets of wind tunnel testing were conducted to study the variation of aerodynamic performance of a SB-VAWT's blade under turbulent flows, in two major stationary configurations, namely two- and three-dimensional flows. Turbulent flows generated in the wind tunnel were quasi-isotropic having uniform mean flow profiles, free of any wind shear effects. Aerodynamic force measurements demonstrated that the free-stream turbulence improves the blade aerodynamic performance in stall and post-stall regions by delaying the stall and increasing the lift-to-drag ratio. After these studies, a SB-VAWT model was tested in the wind tunnel under the same type of turbulent flows. The turbine power output was substantially increased in the presence of the grid turbulence at the same wind speeds, while the increase in turbine power coefficient due to the effect of grid turbulence was small at the same tip speed ratios. The final section presents an experimental study on the aerodynamic interaction of VAWTs in arrays

  7. Numerical investigation of the aerodynamic performance for the newly designed cavity vane type vertical axis wind turbine

    NASA Astrophysics Data System (ADS)

    Suffer, K. H.; Usubamatov, R.; Quadir, G. A.; Ismail, K. A.

    2015-05-01

    Research and development activities in the field of renewable energy, especially wind and solar, have been considerably increased, due to the worldwide energy crisis and high global emission. However, the available technical designs are not yet adequate to develop a reliable distributed wind energy converter for low wind speed conditions. The last few years have proved that Vertical Axis Wind Turbines (VAWTs) are more suitable for urban areas than Horizontal Axis Wind Turbines (HAWTs). To date, very little has been published in this area to assess good performance and lifetime of VAWTs either in open or urban areas. The power generated by vertical axis wind turbines is strongly dependent on the aerodynamic performance of the turbines. The main goal of this current research is to investigate numerically the aerodynamic performance of a newly designed cavity type vertical axis wind turbine. In the current new design the power generated depends on the drag force generated by the individual blades and interactions between them in a rotating configuration. For numerical investigation, commercially available computational fluid dynamic (CFD) software GAMBIT and FLUENT were used. In this numerical analysis the Shear Stress Transport (SST) k-ω turbulence model is used which is better than the other turbulence models available as suggested by some researchers. The computed results show good agreement with published experimental results.

  8. Optical vortex tracking studies of a horizontal axis wind turbine in yaw using laser-sheet, flow visualisation

    NASA Astrophysics Data System (ADS)

    Grant, I.; Parkin, P.; Wang, X.

    Experimental studies have been conducted on a 0.9 m diameter, horizontal axis wind turbine (HAWT) placed in the open jet of a closed return wind tunnel. The turbine was tested in a three blade and a two blade configuration. The power coefficient of the turbine was measured and wake flow studies conducted for a range of yawed flows by tilting the rotor plane at various angles up to 30° to the incident wind direction. The motion of the shed vorticity was followed using laser-sheet flow visualisation with the overall wake deflection being measured. The results were compared with theoretical predictions and with studies conducted elsewhere.

  9. Experimental Study on the Effects of Winglets on the Performance of Two Interacting Horizontal Axis Model Wind Turbines

    NASA Astrophysics Data System (ADS)

    Ostovan, Y.; Uzol, O.

    2016-09-01

    The focus of this experimental study is to investigate the effects of winglets on the performance of two interacting similar horizontal axis model wind turbines. For this purpose, a downwind winglet is designed and manufactured to be attached to the blade tips of the upstream turbine. A set of wing extensions with the same length as the winglets is also produced to be compared to the winglets. Power and thrust coefficients of both turbines are measured with winglets as well as with wing extensions attached to the blade tips of the upstream turbine and are compared to the baseline case (rectangular tip without any tip devices). The model turbines are three bladed and have a rotor diameter of 0.94 m. The measurements are performed in two different wind tunnels (closed test section and open jet). For both sets of measurements, winglets have a noticeable increasing effect on the power coefficient of the individual turbine. There is an increase in the thrust coefficient as well. Measurements on the second turbine are done while it is positioned at downstream locations in line with the upstream turbine. Results show that it produces less power while operating in the wake of the upstream turbine with winglets. However, the overall power efficiency of two turbines can increase for the wingletted case. Moreover, results with wing extensions show that although upstream turbine produces more power with wing extensions attached, the power coefficient remains the same as the baseline case due to growth in rotor swept area and hence, it is less than the power coefficient of wingletted turbine.

  10. Assessment of arrays of in-stream tidal turbines in the Bay of Fundy.

    PubMed

    Karsten, Richard; Swan, Amanda; Culina, Joel

    2013-02-28

    Theories of in-stream turbines are adapted to analyse the potential electricity generation and impact of turbine arrays deployed in Minas Passage, Bay of Fundy. Linear momentum actuator disc theory (LMADT) is combined with a theory that calculates the flux through the passage to determine both the turbine power and the impact of rows of turbine fences. For realistically small blockage ratios, the theory predicts that extracting 2000-2500 MW of turbine power will result in a reduction in the flow of less than 5 per cent. The theory also suggests that there is little reason to tune the turbines if the blockage ratio remains small. A turbine array model is derived that extends LMADT by using the velocity field from a numerical simulation of the flow through Minas Passage and modelling the turbine wakes. The model calculates the resulting speed of the flow through and around a turbine array, allowing for the sequential positioning of turbines in regions of strongest flow. The model estimates that over 2000 MW of power is possible with only a 2.5 per cent reduction in the flow. If turbines are restricted to depths less than 50 m, the potential power generation is reduced substantially, down to 300 MW. For large turbine arrays, the blockage ratios remain small and the turbines can produce maximum power with a drag coefficient equal to the Betz-limit value.

  11. Aeroelastic equations of motion of a Darrieus vertical-axis wind-turbine blade

    NASA Technical Reports Server (NTRS)

    Kaza, K. R. V.; Kvaternik, R. G.

    1979-01-01

    The second-degree nonlinear aeroelastic equations of motion for a slender, flexible, nonuniform, Darrieus vertical-axis wind turbine blade which is undergoing combined flatwise bending, edgewise bending, torsion, and extension are developed using Hamilton's principle. The blade aerodynamic loading is obtained from strip theory based on a quasi-steady approximation of two-dimensional incompressible unsteady airfoil theory. The derivation of the equations has its basis in the geometric nonlinear theory of elasticity and the resulting equations are consistent with the small deformation approximation in which the elongations and shears are negligible compared to unity. These equations are suitable for studying vibrations, static and dynamic aeroelastic instabilities, and dynamic response. Several possible methods of solution of the equations, which have periodic coefficients, are discussed.

  12. Customized airfoils and their impact on VAWT (Vertical-Axis Wind Turbine) cost of energy

    SciTech Connect

    Berg, D.E.

    1990-01-01

    Sandia National Laboratories has developed a family of airfoils specifically designed for use in the equatorial portion of a Vertical-Axis Wind Turbine (VAWT) blade. An airfoil of that family has been incorporated into the rotor blades of the DOE/Sandia 34-m diameter VAWT Test Bed. The airfoil and rotor design process is reviewed. Comparisons with data recently acquired from flow visualization tests and from the DOE/Sandia 34-m diameter VAWT Test Bed illustrate the success that was achieved in the design. The economic optimization model used in the design is described and used to evaluate the effect of modifications to the current Test Bed blade. 1 tab., 11 figs., 13 refs.

  13. Visualization study on the static flow field around a straight-bladed vertical axis wind turbine

    NASA Astrophysics Data System (ADS)

    Li, Yan; Tagawa, Kotaro

    2010-03-01

    Visual experiments based on the smoke wire way were carried out on a small model of Straight-blade Vertical Axis Wind Turbine (SB-VAWT) to invest the relationship between the static flow field characteristics and the rotor azimuth angle. The test rotor had 3 blades with NACA0018 aerofoil. The rotor diameter and blade chord were 0.3m and 0.07m, respectively. Visual photos of the static flow path lines in and around the rotor were obtained at every 5 degrees of the azimuth angle. Further, numerical computations of the static flow filed were also carried out for comparison with the same situation as the visual tests and the static torques at different azimuth angles were calculated. According to the results of visual tests and computations, the dependence of the starting performance on the azimuth angle was discussed. The solidity is an important factor affecting the starting performance of the SB-VAWT.

  14. Visualization study on the static flow field around a straight-bladed vertical axis wind turbine

    NASA Astrophysics Data System (ADS)

    Li, Yan; Tagawa, Kotaro

    2009-12-01

    Visual experiments based on the smoke wire way were carried out on a small model of Straight-blade Vertical Axis Wind Turbine (SB-VAWT) to invest the relationship between the static flow field characteristics and the rotor azimuth angle. The test rotor had 3 blades with NACA0018 aerofoil. The rotor diameter and blade chord were 0.3m and 0.07m, respectively. Visual photos of the static flow path lines in and around the rotor were obtained at every 5 degrees of the azimuth angle. Further, numerical computations of the static flow filed were also carried out for comparison with the same situation as the visual tests and the static torques at different azimuth angles were calculated. According to the results of visual tests and computations, the dependence of the starting performance on the azimuth angle was discussed. The solidity is an important factor affecting the starting performance of the SB-VAWT.

  15. Combined Experiment Phase 1. [Horizontal axis wind turbines: wind tunnel testing versus field testing

    SciTech Connect

    Butterfield, C.P.; Musial, W.P.; Simms, D.A.

    1992-10-01

    How does wind tunnel airfoil data differ from the airfoil performance on an operating horizontal axis wind turbine (HAWT) The National Renewable Energy laboratory has been conducting a comprehensive test program focused on answering this question and understanding the basic fluid mechanics of rotating HAWT stall aerodynamics. The basic approach was to instrument a wind rotor, using an airfoil that was well documented by wind tunnel tests, and measure operating pressure distributions on the rotating blade. Based an the integrated values of the pressure data, airfoil performance coefficients were obtained, and comparisons were made between the rotating data and the wind tunnel data. Care was taken to the aerodynamic and geometric differences between the rotating and the wind tunnel models. This is the first of two reports describing the Combined Experiment Program and its results. This Phase I report covers background information such as test setup and instrumentation. It also includes wind tunnel test results and roughness testing.

  16. Development and testing of tip devices for horizontal axis wind turbines

    NASA Technical Reports Server (NTRS)

    Gyatt, G. W.; Lissaman, P. B. S.

    1985-01-01

    A theoretical and field experimental program has been carried out to investigate the use of tip devices on horizontal axis wind turbine rotors. The objective was to improve performance by the reduction of tip losses. While power output can always be increased by a simple radial tip extension, such a modification also results in an increased gale load both because of the extra projected area and longer moment arm. Tip devices have the potential to increase power output without such a structural penalty. A vortex lattice computer model was used to optimize three basic tip configuration types for a 25 kW stall limited commercial wind turbine. The types were a change in tip planform, and a single-element and double-element nonplanar tip extension (winglets). A complete data acquisition system was developed which recorded three wind speed components, ambient pressure, temperature, and turbine output. The system operated unattended and could perform real-time processing of the data, displaying the measured power curve as data accumulated in either a bin sort mode or polynomial curve fit. Approximately 270 hr of perormance data were collected over a three-month period. The sampling interval was 2.4 sec; thrus over 400,000 raw data points were logged. Results for each of the three new tip devices, compared with the original tip, showed a small decrease (of the order of 1 kW) in power output over the measured range of wind speeds from cut-in at about 4 m/s to over 20 m/s, well into the stall limiting region. Changes in orientation and angle-of-attack of the winglets were not made. For aircraft wing tip devices, favorable tip shapes have been reported and it is likely that the tip devices tested in this program did not improve rotor performance because they were not optimally adjusted.

  17. Vortex shedding from vertical axis wind turbine blades under linear motion

    NASA Astrophysics Data System (ADS)

    Dunne, Reeve; McKeon, Beverley

    2014-11-01

    A NACA 0018 airfoil was pitched and surged sinusoidally in in a mean free stream flow at Rec = 100 , 000 to simulate the flow over vertical axis wind turbine (VAWT) blades. Angle of attack variations between α = +/-30° and velocity variation of Umax/-Umin Umean = . 80 at a reduced frequency k =Ωc/2U∞ = . 12 result in strong dynamic stall on the blade. Multiple flow regimes occur during the airfoil motion resulting in vortex shedding over a large range of frequencies. A model of the phase averaged (based on airfoil angle of attack and velocity) flow developed using dynamic mode decomposition highlights the evolution of the leading edge or dynamic stall vortex at the airfoil frequency. Instantaneous results show vortex shedding at frequencies up to 100 times higher than the frequency of the pitch/surge motion and smeared out by the phase averaging process. The implications for forcing on the blade (and associated wind turbine) are described. This research is funded by the Gordon and Betty Moore Foundation through Grant GBMF #2645 to the California Institute of Technology.

  18. Feasibility study of aileron and spoiler control systems for large horizontal axis wind turbines

    NASA Technical Reports Server (NTRS)

    Wentz, W. H., Jr.; Snyder, M. H.; Calhoun, J. T.

    1980-01-01

    The feasibility of using aileron or spoiler controls as alternates to pitch control for large horizontal axis wind turbines was studied. The NASA Mod-0 100 kw machine was used as the basis for the study. Specific performance studies were conducted for 20% chord ailerons over the outboard 30% span, and for 10% chord spoilers over the same portion of the span. Both control systems utilized control deflections up to 60 deg. Results of the study show that either ailerons or spoilers can provide the control necessary to limit turbine power in high wind conditions. The aileron system, as designed, provides overspeed protection at hurricane wind speeds, low wind speed starting torque of 778 N-m (574 ft. lb) at 3.6 m/sec, and a 1.3 to 1.5% increase in annual energy compared to a fixed pitch rotor. The aileron control system preliminary design study includes aileron loads analysis and the design of a failsafe flyweight actuator for overspeed protection in the event of a hydraulic system failure.

  19. Wind Tunnel Investigation of the Near-wake Flow Dynamics of a Horizontal Axis Wind Turbine

    NASA Astrophysics Data System (ADS)

    Hashemi-Tari, P.; Siddiqui, K.; Refan, M.; Hangan, H.

    2014-06-01

    Experiments conducted in a large wind tunnel set-up investigate the 3D flow dynamics within the near-wake region of a horizontal axis wind turbine. Particle Image Velocimetry (PIV) measurements quantify the mean and turbulent components of the flow field. Measurements are performed in multiple adjacent horizontal planes in order to cover the area behind the rotor in a large radial interval, at several locations downstream of the rotor. The measurements were phase-locked in order to facilitate the re-construction of the threedimensional flow field. The mean velocity and turbulence characteristics clearly correlate with the near-wake vortex dynamics and in particular with the helical structure of the flow, formed immediately behind the turbine rotor. Due to the tip and root vortices, the mean and turbulent characteristics of the flow are highly dependent on the azimuth angle in regions close to the rotor and close to the blade tip and root. Further from the rotor, the characteristics of the flow become phase independent. This can be attributed to the breakdown of the vortical structure of the flow, resulting from the turbulent diffusion. In general, the highest levels of turbulence are observed in shear layer around the tip of the blades, which decrease rapidly downstream. The shear zone grows in the radial direction as the wake moves axially, resulting in velocity recovery toward the centre of the rotor due to momentum transport.

  20. Experimental investigation of the leading edge vortex on vertical axis wind turbine blades

    NASA Astrophysics Data System (ADS)

    Dunne, Reeve; McKeon, Beverley

    2012-11-01

    A NACA 0018 airfoil is pitched about the leading edge over a large angle of attack range (+/- ~40°) at a chord Reynolds number of 110,000 to simulate the flow over a single blade in a vertical axis wind turbine (VAWT). Particle image velocimetry (PIV) measurements are made to investigate the effects of pitching on leading edge vortex (LEV) development and separation. Time resolved experiments are performed to track vortex formation and convection over the airfoil for sinusoidal pitching motions corresponding to a VAWT trajectory as well as impulsive pitch up and pitch down motions. These results are compared to the wake of steady, post stall, high angle of attack airfoils (α =20° -30°). The characteristics of the leading edge vortex development and subsequent separation from the airfoil are discussed, with a view to characterizing its effect on power generation with VAWTs and future flow control strategies for turbine performance improvement. Funding from the Gordon and Betty Moore Foundation is gratefully acknowledged.

  1. Three-dimensional flow field around and downstream of a subscale model rotating vertical axis wind turbine

    NASA Astrophysics Data System (ADS)

    Ryan, Kevin J.; Coletti, Filippo; Elkins, Christopher J.; Dabiri, John O.; Eaton, John K.

    2016-03-01

    Three-dimensional, three-component mean velocity fields have been measured around and downstream of a scale model vertical axis wind turbine (VAWT) operated at tip speed ratios (TSRs) of 1.25 and 2.5, in addition to a non-rotating case. The five-bladed turbine model has an aspect ratio (height/diameter) of 1 and is operated in a water tunnel at a Reynolds number based on turbine diameter of 11,600. Velocity fields are acquired using magnetic resonance velocimetry (MRV) at an isotropic resolution of 1/50 of the turbine diameter. Mean flow reversal is observed immediately behind the turbine for cases with rotation. The turbine wake is highly three-dimensional and asymmetric throughout the investigated region, which extends up to 7 diameters downstream. A vortex pair, generated at the upwind-turning side of the turbine, plays a dominant role in wake dynamics by entraining faster fluid from the freestream and aiding in wake recovery. The higher TSR case shows a larger region of reverse flow and greater asymmetry in the near wake of the turbine, but faster wake recovery due to the increase in vortex pair strength with increasing TSR. The present measurement technique also provides detailed information about flow in the vicinity of the turbine blades and within the turbine rotor. The details of the flow field around VAWTs and in their wakes can inform the design of high-density VAWT wind farms, where wake interaction between turbines is a principal consideration.

  2. Simulation of flow over double-element airfoil and wind tunnel test for use in vertical axis wind turbine

    NASA Astrophysics Data System (ADS)

    Chougule, Prasad; Nielsen, Søren R. K.

    2014-06-01

    Nowadays, small vertical axis wind turbines are receiving more attention due to their suitability in micro-electricity generation. There are few vertical axis wind turbine designs with good power curve. However, the efficiency of power extraction has not been improved. Therefore, an attempt has been made to utilize high lift technology for vertical axis wind turbines in order to improve power efficiency. High lift is obtained by double-element airfoil mainly used in aeroplane wing design. In this current work a low Reynolds number airfoil is selected to design a double-element airfoil blade for use in vertical axis wind turbine to improve the power efficiency. Double-element airfoil blade design consists of a main airfoil and a slat airfoil. Orientation of slat airfoil is a parameter of investigation in this paper and air flow simulation over double-element airfoil. With primary wind tunnel test an orientation parameter for the slat airfoil is initially obtained. Further a computational fluid dynamics (CFD) has been used to obtain the aerodynamic characteristics of double-element airfoil. The CFD simulations were carried out using ANSYS CFX software. It is observed that there is an increase in the lift coefficient by 26% for single-element airfoil at analysed conditions. The CFD simulation results were validated with wind tunnel tests. It is also observe that by selecting proper airfoil configuration and blade sizes an increase in lift coefficient can further be achieved.

  3. Dynamics modeling and periodic control of horizontal-axis wind turbines

    NASA Astrophysics Data System (ADS)

    Stol, Karl Alexander

    2001-07-01

    The development of large multi-megawatt wind turbines has increased the need for active feedback control to meet multiple performance objectives. Power regulation is still of prime concern but there is an increasing interest in mitigating loads for these very large, dynamically soft and highly integrated power systems. This work explores the opportunities for utilizing state space modeling, modal analysis, and multi-objective controllers in advanced horizontal-axis wind turbines. A linear state-space representation of a generic, multiple degree-of-freedom wind turbine is developed to test various control methods and paradigms. The structural model, SymDyn, provides for limited flexibility in the tower, drive train and blades assuming a rigid component architecture with joint springs and dampers. Equations of motion are derived symbolically, verified by numerical simulation, and implemented in the Matlab with Simulink computational environment. AeroDyn, an industry-standard aerodynamics package for wind turbines, provides the aerodynamic load data through interfaced subroutines. Linearization of the structural model produces state equations with periodic coefficients due to the interaction of rotating and non-rotating components. Floquet theory is used to extract the necessary modal properties and several parametric studies identify the damping levels and dominant dynamic coupling influences. Two separate issues of control design are investigated: full-state feedback and state estimation. Periodic gains are developed using time-varying LQR techniques and many different time-invariant control designs are constructed, including a classical PID controller. Disturbance accommodating control (DAC) allows the estimation of wind speed for minimization of the disturbance effects on the system. Controllers are tested in simulation for multiple objectives using measurement of rotor position and rotor speed only and actuation of independent blade pitch. It is found that

  4. Design and fabrication of a low cost Darrieus vertical axis wind turbine system: Phase 2, volume 1: Executive summary

    NASA Astrophysics Data System (ADS)

    1983-03-01

    Described is the successful fabrication, installation, and checkout of 100 kW 17 meter Vertical Axis Wind Turbines (VAWTs). The turbines are Darrieus-type VAWTs with rotors 17 meters (55 feet) in diameter and 25.15 meters (83 feet) in height. They can produce 100 kW of electric power at a cost of energy as low as 3 cents per kWh, in an 18 mph wind regime using 12% annualized costs. Four turbines were produced; three are installed and are operable at: (1) Wind Systems Test Center, Rocky Flats, Colorado; (2) the US Department of Agriculture Conservation and Production Research Center at Bushland, Texas; and (3) Tisbury Water Authority, Vineyard Haven, Massachusetts, on the island of Martha's Vineyard. The fourth turbine is stored at Bushland, Texas awaiting selection of an erection site.

  5. Dual-core photonic crystal fiber Doppler velocimeter for small horizontal axis wind turbine blade rotational speed measurement

    NASA Astrophysics Data System (ADS)

    Huang, Xue-Feng; Li, Sheng-Ji; Wang, Wei-Chih

    2014-03-01

    The blades are crucial components of a wind turbine, and its steady and reliable operation is directly related to the power output. Thus, condition monitoring and fault diagnosis of the wind turbine blades is highly beneficial to the operational cost. This paper presents a study of small horizontal axis wind turbine blade rotational speed measurement by laser Doppler velocimeter based on dual-core photonic crystal fiber (DC-PCF). The theory on the DC-PCF Doppler velocimeter is presented, and the measurement system is designed and tested. Experimental results show that the DC-PCF Doppler velocimeter has been proved to work successfully. The uncertainty of the rotational speed is about 0 ~ 4 rpm. The accuracy can meet the requirements for monitoring the rotational operation of the wind turbine.

  6. Design, Analysis, Hybrid Testing and Orientation Control of a Floating Platform with Counter-Rotating Vertical-Axis Wind Turbines

    NASA Astrophysics Data System (ADS)

    Kanner, Samuel Adam Chinman

    The design and operation of two counter-rotating vertical-axis wind turbines on a floating, semi-submersible platform is studied. The technology, called the Multiple Integrated and Synchronized Turbines (MIST) platform has the potential to reduce the cost of offshore wind energy per unit of installed capacity. Attached to the platform are closely-spaced, counter-rotating turbines, which can achieve a higher power density per planform area because of synergistic interaction effects. The purpose of the research is to control the orientation of the platform and rotational speeds of the turbines by modifying the energy absorbed by each of the generators of the turbines. To analyze the various aspects of the platform and wind turbines, the analysis is drawn from the fields of hydrodynamics, electromagnetics, aerodynamics and control theory. To study the hydrodynamics of the floating platform in incident monochromatic waves, potential theory is utilized, taking into account the slow-drift yaw motion of the platform. Steady, second-order moments that are spatially dependent (i.e., dependent on the platform's yaw orientation relative to the incident waves) are given special attention since there are no natural restoring yaw moment. The aerodynamics of the counter-rotating turbines are studied in collaboration with researchers at the UC Berkeley Mathematics Department using a high-order, implicit, large-eddy simulation. An element flipping technique is utilized to extend the method to a domain with counter-rotating turbines and the effects from the closely-spaced turbines is compared with existing experimental data. Hybrid testing techniques on a model platform are utilized to prove the controllability of the platform in lieu of a wind-wave tank. A 1:82 model-scale floating platform is fabricated and tested at the UC Berkeley Physical-Model Testing Facility. The vertical-axis wind turbines are simulated by spinning, controllable actuators that can be updated in real-time of

  7. A comparison of wind turbulence simulation models for stochastic loads analysis for horizontal-axis wind turbines

    NASA Astrophysics Data System (ADS)

    Walker, S. N.; Weber, T. L.; Wilson, R. E.

    1989-06-01

    Four wind turbine turbulence codes, the Pacific Northwest Laboratory (PNL) Rotational Code, the PNL Simulation Code, the Holley Code, and the Sandia National Laboratories Code, were examined. Hub-height simulations were made with each code and were compared to hub-height wind data from the vertical plane array of anemometers at the Howden 330-kW horizontal-axis wind turbine (HAWT). Blade tip simulations were made with each code and were compared to rotational wind data taken from the Howden-330 kW HAWT. The PNL Rotational Code was given an overall rating of satisfactory for large wind turbine applications and an overall rating of good for small wind turbine applications. The PNL Simulation Code was given a rating of good when used with large turbines and a rating of very good when used with small turbines. The Holley Code and the Sandia Code were given ratings of good and satisfactory, respectively, for both large and small wind turbine applications. The Sandia Code could be upgraded if documentation were made available. Further upgrades for any of the codes would require major revision.

  8. Active stall control for large offshore horizontal axis wind turbines; a conceptual study considering different actuation methods

    NASA Astrophysics Data System (ADS)

    Pereira, R.; van Bussel, G. J. W.; Timmer, W. A.

    2014-12-01

    The increasing size of Horizontal Axis Wind Turbines and the trend to install wind farms further offshore demand more robust design options. If the pitch system could be eliminated, the availability of Horizontal Axis Wind Turbines should increase. This research investigates the use of active stall control to regulate power production in replacement of the pitch system. A feasibility study is conducted using a blade element momentum code and taking the National Renewable Energy Laboratory 5 MW turbine as baseline case. Considering half of the blade span is equipped with actuators, the required change in the lift coefficient to regulate power was estimated in ΔCl = 0.7. Three actuation technologies are investigated, namely Boundary Layer Transpiration, Trailing Edge Jets and Dielectric Barrier Discharge actuators. Results indicate the authority of the actuators considered is not sufficient to regulate power, since the change in the lift coefficient is not large enough. Active stall control of Horizontal Axis Wind Turbines appears feasible only if the rotor is re-designed from the start to incorporate active-stall devices.

  9. Aerodynamic Response of a Pitching Airfoil with Pulsed Circulation Control for Vertical Axis Wind Turbine Applications

    NASA Astrophysics Data System (ADS)

    Panther, Chad C.

    Vertical Axis Wind Turbines (VAWTs) have experienced a renewed interest in development for urban, remote, and offshore applications. Past research has shown that VAWTs cannot compete with Horizontals Axis Wind Turbines (HAWTs) in terms of energy capture efficiency. VAWT performance is plagued by dynamic stall (DS) effects at low tip-speed ratios (lambda), where each blade pitches beyond static stall multiple times per revolution. Furthermore, for lambda<2, blades operate outside of stall during over 70% of rotation. However, VAWTs offer many advantages such as omnidirectional operation, ground proximity of generator, lower sound emission, and non-cantilevered blades with longer life. Thus, mitigating dynamic stall and improving VAWT blade aerodynamics for competitive power efficiency has been a popular research topic in recent years and the directive of this study. Past research at WVU focused on the addition of circulation control (CC) technology to improve VAWT aerodynamics and expand the operational envelope. A novel blade design was generated from the augmentation of a NACA0018 airfoil to include CC capabilities. Static wind tunnel data was collected for a range of steady jet momentum coefficients (0.01≤ Cmu≤0.10) for analytical vortex model performance projections. Control strategies were developed to optimize CC jet conditions throughout rotation, resulting in improved power output for 2≤lambda≤5. However, the pumping power required to produce steady CC jets reduced net power gains of the augmented turbine by approximately 15%. The goal of this work was to investigate pulsed CC jet actuation to match steady jet performance with reduced mass flow requirements. To date, no experimental studies have been completed to analyze pulsed CC performance on a pitching airfoil. The research described herein details the first study on the impact of steady and pulsed jet CC on pitching VAWT blade aerodynamics. Both numerical and experimental studies were

  10. Investigating the Influence of the Added Mass Effect to Marine Hydrokinetic Horizontal-Axis Turbines Using a General Dynamic Wake Wind Turbine Code: Preprint

    SciTech Connect

    Maniaci, D. C.; Li, Y.

    2012-04-01

    This paper describes a recent study to investigate the applicability of a horizontal-axis wind turbine (HAWT) structural dynamics and unsteady aerodynamics analysis program (FAST and AeroDyn respectively) to modeling the forces on marine hydrokinetic (MHK) turbines. It summarizes the added mass model that has been added to AeroDyn. The added mass model only includes flow acceleration perpendicular to the rotor disc, and ignores added mass forces caused by blade deflection. A model of the National Renewable Energy Laboratory's (NREL) Unsteady Aerodynamics Experiment (UAE) Phase VI wind turbine was analyzed using FAST and AeroDyn with sea water conditions and the new added mass model. The results of this analysis exhibited a 3.6% change in thrust for a rapid pitch case and a slight change in amplitude and phase of thrust for a case with 30 degrees of yaw.

  11. Investigating the Influence of the Added Mass Effect to Marine Hydrokinetic Horizontal-Axis Turbines Using a General Dynamic Wake Wind Turbine Code

    SciTech Connect

    Maniaci, D. C.; Li, Y.

    2011-10-01

    This paper describes a recent study to investigate the applicability of a horizontal-axis wind turbine (HAWT) structural dynamics and unsteady aerodynamics analysis program (FAST and AeroDyn respectively) to modeling the forces on marine hydrokinetic (MHK) turbines. This paper summarizes the added mass model that has been added to AeroDyn. The added mass model only includes flow acceleration perpendicular to the rotor disc, and ignores added mass forces caused by blade deflection. A model of the National Renewable Energy Laboratory's (NREL) Unsteady Aerodynamics Experiment (UAE) Phase VI wind turbine was analyzed using FAST and AeroDyn with sea water conditions and the new added mass model. The results of this analysis exhibited a 3.6% change in thrust for a rapid pitch case and a slight change in amplitude and phase of thrust for a case with 30{sup o} of yaw.

  12. A Large-eddy Simulation Study of Vertical Axis Wind Turbine Wakes in the Atmospheric Boundary Layer

    NASA Astrophysics Data System (ADS)

    Shamsoddin, Sina; Porté-Agel, Fernando

    2016-04-01

    Vertical axis wind turbines (VAWTs) offer some advantages over their horizontal axis counterparts, and are being considered as a viable alternative to conventional horizontal axis wind turbines (HAWTs). Nevertheless, a relative shortage of scientific, academic and technical investigations of VAWTs is observed in the wind energy community with respect to HAWTs. Having this in mind, in this work, we aim to study the wake of a single VAWT, placed in the atmospheric boundary layer, using large-eddy simulation (LES) coupled with actuator line model (ALM). It is noteworthy that this is the first time that such a study is being performed. To do this, for a typical 1 MW VAWT design, first, the variation of power coefficient with both the chord length of the blades and the tip-speed ratio is analyzed using LES-ALM, and an optimum combination of chord length and tip-speed ratio is obtained. Subsequently, the wake of a VAWT with these optimum specifications is thoroughly examined by showing different relevant mean and turbulent wake flow statistics. Keywords: vertical axis wind turbine (VAWT); VAWT wake; Atmospheric Boundary Layer (ABL); large eddy simulation (LES); actuator line model (ALM); turbulence.

  13. Evaluation of techniques for computer modeling and real time control of a horizontal axis wind turbine blade

    NASA Astrophysics Data System (ADS)

    Wesenberg, Alan

    1995-05-01

    Wind power generating turbines operate under constant as well as rapidly changing conditions. With fixed pitch blades, many wind turbines are allowed to operate regardless of wind conditions as long as they are able to produce more electricity than it takes to get them started. However, the lifecycle of the turbine blades is often much shorter than expected because of the unsteady aerodynamic environment under which they rotate. Therefore, the National Renewable Energy Laboratory (NREL) has implemented a testing program to determine the aerodynamic conditions, and the frequency with which they occur, which cause the largest amount of fatigue on their variable pitch, three bladed downwind horizontal axis wind turbine (HAWT). Different techniques will be examined for analytically modeling the flow conditions with separation over a rotating turbine blade. Then, some different techniques for implementing a feedback control loop will be investigated to optimize the movement of the variable pitch blades on the NREL HAWT. The different methods analyzed will fall in the two-dimensional, incompressible area with most also being for steady state conditions. The final objective is to provide the reader with a background in dealing with the aerodynamic conditions surrounding a rotating wind turbine in an unsteady aerodynamic environment.

  14. A NASTRAN-based computer program for structural dynamic analysis of Horizontal Axis Wind Turbines

    NASA Technical Reports Server (NTRS)

    Lobitz, Don W.

    1995-01-01

    This paper describes a computer program developed for structural dynamic analysis of horizontal axis wind turbines (HAWT's). It is based on the finite element method through its reliance on NASTRAN for the development of mass, stiffness, and damping matrices of the tower end rotor, which are treated in NASTRAN as separate structures. The tower is modeled in a stationary frame and the rotor in one rotating at a constant angular velocity. The two structures are subsequently joined together (external to NASTRAN) using a time-dependent transformation consistent with the hub configuration. Aerodynamic loads are computed with an established flow model based on strip theory. Aeroelastic effects are included by incorporating the local velocity and twisting deformation of the blade in the load computation. The turbulent nature of the wind, both in space and time, is modeled by adding in stochastic wind increments. The resulting equations of motion are solved in the time domain using the implicit Newmark-Beta integrator. Preliminary comparisons with data from the Boeing/NASA MOD2 HAWT indicate that the code is capable of accurately and efficiently predicting the response of HAWT's driven by turbulent winds.

  15. Multi-flexible-body Dynamic Analysis of Horizontal Axis Wind Turbines

    NASA Astrophysics Data System (ADS)

    Lee, Donghoon; Hodges, Dewey H.; Patil, Mayuresh J.

    2002-10-01

    This article presents a structural dynamic analysis of horizontal axis wind turbines (HAWTs) using a new methodology. The methodology is based on representing a HAWT as a multi-flexible-body system with both rigid- and flexible-body subsystems. The rigid-body subsystems (nacelle, hub) are modelled as interconnected sets of rigid bodies using Kane's method. Kane's method leads to compact equations of motion for rigid-body mechanisms. The flexible-body subsystems (blades, tower) are modelled using geometrically exact, non-linear beam finite elements derived from a mixed variational formulation for the dynamics of moving beams. The use of the mixed formulation allows for the direct determination of constraint forces and moments within the beam finite element and at the boundaries, thus allowing simple connectivity between the finite elements and rigid bodies. The equations for the rigid and flexible subsystems are coupled to obtain a unified framework that models the dynamic behaviour of the complete system. Linearization of the dynamic equations about the steady state solution yields system equations with periodic coefficients that must be solved by Floquet theory to extract the dynamic characteristics. Numerical studies are presented to investigate the natural frequencies and mode shapes for a HAWT with flexible blades and tower.

  16. A NASTRAN-based computer program for structural dynamic analysis of Horizontal Axis Wind Turbines

    NASA Astrophysics Data System (ADS)

    Lobitz, Don W.

    1995-05-01

    This paper describes a computer program developed for structural dynamic analysis of horizontal axis wind turbines (HAWT's). It is based on the finite element method through its reliance on NASTRAN for the development of mass, stiffness, and damping matrices of the tower end rotor, which are treated in NASTRAN as separate structures. The tower is modeled in a stationary frame and the rotor in one rotating at a constant angular velocity. The two structures are subsequently joined together (external to NASTRAN) using a time-dependent transformation consistent with the hub configuration. Aerodynamic loads are computed with an established flow model based on strip theory. Aeroelastic effects are included by incorporating the local velocity and twisting deformation of the blade in the load computation. The turbulent nature of the wind, both in space and time, is modeled by adding in stochastic wind increments. The resulting equations of motion are solved in the time domain using the implicit Newmark-Beta integrator. Preliminary comparisons with data from the Boeing/NASA MOD2 HAWT indicate that the code is capable of accurately and efficiently predicting the response of HAWT's driven by turbulent winds.

  17. Aeroelastic Stability Investigations for Large-scale Vertical Axis Wind Turbines

    NASA Astrophysics Data System (ADS)

    Owens, B. C.; Griffith, D. T.

    2014-06-01

    The availability of offshore wind resources in coastal regions, along with a high concentration of load centers in these areas, makes offshore wind energy an attractive opportunity for clean renewable electricity production. High infrastructure costs such as the offshore support structure and operation and maintenance costs for offshore wind technology, however, are significant obstacles that need to be overcome to make offshore wind a more cost-effective option. A vertical-axis wind turbine (VAWT) rotor configuration offers a potential transformative technology solution that significantly lowers cost of energy for offshore wind due to its inherent advantages for the offshore market. However, several potential challenges exist for VAWTs and this paper addresses one of them with an initial investigation of dynamic aeroelastic stability for large-scale, multi-megawatt VAWTs. The aeroelastic formulation and solution method from the BLade Aeroelastic STability Tool (BLAST) for HAWT blades was employed to extend the analysis capability of a newly developed structural dynamics design tool for VAWTs. This investigation considers the effect of configuration geometry, material system choice, and number of blades on the aeroelastic stability of a VAWT, and provides an initial scoping for potential aeroelastic instabilities in large-scale VAWT designs.

  18. Coriolis effect on dynamic stall in a vertical axis wind turbine

    NASA Astrophysics Data System (ADS)

    Tsai, Hsieh-Chen; Colonius, Tim

    2013-11-01

    The immersed boundary method is used to simulate the flow around a two-dimensional rotating NACA 0018 airfoil at moderate (sub-scale) Reynolds number in order to investigate separated flow occurring on a vertical-axis wind turbine (VAWT). The influence of dynamic stall on the forces is characterized as a function of tip-speed ratio. The influence of the Coriolis effect is also investigated by comparing the rotating airfoil to one undergoing a surging and pitching motion that produces an equivalent speed and angle-of-attack variation over the cycle. While the Coriolis force produces only small differences in the averaged forces, it plays an important role during dynamic stall. Due to the fact that the Coriolis force deflects the fluid and propagates the vortices differently, the wake-capturing phenomenon of the trailing edge vortex is observed in the flow around the rotating airfoil during a certain range of azimuthal angle. This wake-capturing of the trailing edge vortex leads to a large decrease in lift. However, because of the phase difference between each wake-capturing, there are only small differences in the average forces. The simulations are also compared to results from companion water-tunnel experiments at Caltech. This project is supported by the Gordon and Betty Moore Foundation.

  19. Numerical investigation of the self-starting of a vertical axis wind turbine

    NASA Astrophysics Data System (ADS)

    Tsai, Hsieh-Chen; Colonius, Tim

    2014-11-01

    The immersed boundary method is used to simulate the incompressible flow around two-dimensional airfoils at sub-scale Reynolds number in order to investigate the self-starting capability of a vertical-axis wind turbine (VAWT). By investigating a single blade fixed at various angle of attacks, the leading edge vortex (LEV) is shown to play an important role in the starting mechanism for both flat-plate and NACA 0018 blades. Depending on the angle of attack of the blade, as the LEV grows, the corresponding low pressure region results in a thrust in the tangential direction, which produces a positive torque to VAWT. Due to the characteristics of the blades, a NACA 0018 blade produces a larger thrust over a wider range of angle of attacks than a flat-plate blade. Therefore, a VAWT with NACA 0018 blades can self-start more easily than one with flat-plate blades. Moreover, by investigating the starting torque of three-bladed VAWTs fixed at various orientations, the optimal orientation that produces the largest torque to start both VAWTs is with a blade parallel to the flow and facing downstream. The simulations are also compared to results from companion water-tunnel experiments at Caltech. This project is supported by Caltech FLOWE center/Gordon and Betty Moore Foundation.

  20. A study of rotor and platform design trade-offs for large-scale floating vertical axis wind turbines

    NASA Astrophysics Data System (ADS)

    Griffith, D. Todd; Paquette, Joshua; Barone, Matthew; Goupee, Andrew J.; Fowler, Matthew J.; Bull, Diana; Owens, Brian

    2016-09-01

    Vertical axis wind turbines are receiving significant attention for offshore siting. In general, offshore wind offers proximity to large populations centers, a vast & more consistent wind resource, and a scale-up opportunity, to name a few beneficial characteristics. On the other hand, offshore wind suffers from high levelized cost of energy (LCOE) and in particular high balance of system (BoS) costs owing to accessibility challenges and limited project experience. To address these challenges associated with offshore wind, Sandia National Laboratories is researching large-scale (MW class) offshore floating vertical axis wind turbines (VAWTs). The motivation for this work is that floating VAWTs are a potential transformative technology solution to reduce offshore wind LCOE in deep-water locations. This paper explores performance and cost trade-offs within the design space for floating VAWTs between the configurations for the rotor and platform.

  1. Modeling, Simulation, Hardware Implementation of a Novel Variable Pitch Control for H-Type Vertical Axis Wind Turbine

    NASA Astrophysics Data System (ADS)

    Liu, Liqun; Liu, Chunxia; Zheng, Xuyang

    2015-09-01

    It is well known that the fixed pitch vertical axis wind turbine (FP-VAWT) has some disadvantages such as the low start-up torque and inefficient output efficiency. In this paper, the variable pitch vertical axis wind turbine (VP-VAWT) is analyzed to improve the output characteristics of FP-VAWT by discussing the force of the six blade H type vertical axis wind turbine (VAWT) under the stationary and rotating conditions using built the H-type VAWT model. First, the force of single blade at variable pitch and fixed pitch is analyzed, respectively. Then, the resultant force of six blades at different pitch is gained. Finally, a variable pitch control method based on a six blade H type VP-VAWT is proposed, moreover, the technical analysis and simulation results validate that the variable pitch method can improve the start-up torque of VAWT, and increase the utilization efficiency of wind energy, and reduce the blade oscillation, as comparable with that of FP-VAWT.

  2. Tow tank measurements of turbulent flow in the near wake of a horizontal axis marine current turbine under steady and unsteady inflow conditions

    NASA Astrophysics Data System (ADS)

    Luznik, Luksa; van Benthem, Max; Flack, Karen; Lust, Ethan

    2013-11-01

    Near wake measurements are presented for a 0.8 m diameter (D) two bladed horizontal axis tidal turbine model for two inflow conditions. The first case had steady inflow conditions, i.e. turbine was towed at a constant carriage speed and the second case had a constant carriage speed and incoming regular waves with a period of 1.6 seconds and 0.09 m wave height. The test matrix in the wake covered four radial positions from r/D = 0.3 to 0.5 and five axial positions from x/D = 0.19 to 0.95. All measurements were performed at the nominal tip speed ratio (TSR) of 7.4. The distribution of mean velocities for the steady inflow case exhibit significant spatial variability in the wake region. Normalized mean streamwise velocity show a decrease in magnitude with the axial direction for all radial locations ranging from U/Utow = 0.55 at r/D = 0.49 to 0.35 at r/D = 0.3. Vertical and lateral mean velocities are small but consistent with counterclockwise fluid angular momentum for a clockwise rotor rotation. The Reynolds shear stresses consistently show elevated levels for measurements near the rotor tip (r/D = 0.49) and are significantly reduced by x/D = 0.6 downstream. This suggests low turbulence levels in the wake which is consistent with very low free stream turbulence. For the case with waves, evidence of enhanced turbulence intensities and shear stresses within spatial coverage of the experiment suggest increased in localized turbulence production in the blade tip region over the entire near wake region.

  3. DOE large horizontal axis wind turbine development at NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Linscott, B. S.

    1982-01-01

    Large wind turbine activities managed by NASA Lewis are reviewed. These activities include results from the first and second generation field machines (Mod-OA, -1, and -2), the status of the Department of Interior WTS-4 machine for which NASA is responsible for technical management, and the design phase of the third generation wind turbines (Mod-5).

  4. User's manual for the vertical axis wind turbine performance computer code darter

    SciTech Connect

    Klimas, P. C.; French, R. E.

    1980-05-01

    The computer code DARTER (DARrieus, Turbine, Elemental Reynolds number) is an aerodynamic performance/loads prediction scheme based upon the conservation of momentum principle. It is the latest evolution in a sequence which began with a model developed by Templin of NRC, Canada and progressed through the Sandia National Laboratories-developed SIMOSS (SSImple MOmentum, Single Streamtube) and DART (SARrieus Turbine) to DARTER.

  5. Numerical simulation of cavitation for a horizontal axis marine current turbine

    NASA Astrophysics Data System (ADS)

    Guo, Q.; Zhou, L. J.; Wang, Z. W.

    2015-01-01

    Marine current turbines, compared with the analogous wind turbines, have the potential to suffer cavitation. This paper focuses on the effect of cavitation on a marine current turbine and implements the two-phase flow simulations based on the Rayleigh-Plesset cavitation model. It can be found that under the influence of cavitation, the power and thrust coefficients of turbine decrease and especially near the blade tips. Due to the non-uniform hydrostatic pressure along the depth of water, the present work takes this effect into account and finds a larger cavitation area appears on the blade tips at a shallow submergence. Meanwhile the power and thrust performance of one blade change during its rotating period. In order to analyze the cavitation performance of turbine locates at a certain water depth, the variations of inflow velocity and rotor rotating speed are implemented. It indicates that, with the inflow velocity increasing, the CP and CT of turbine with higher rotation speed will significantly reduce due to the occurrence of cavitation, and the influence on the turbine with lower speed is small. These predicting results can provide implications for the safe and stable operation of marine current turbines.

  6. Implementation of a Two-Axis Servo-Hydraulic System for Full-Scale Fatigue Testing of Wind Turbine Blades

    SciTech Connect

    Hughes, S. D.; Musial, W. D.; Stensland, T.

    1999-09-09

    Recently, the blade fatigue testing capabilities at NREL were upgraded from single-axis to two-axis loading. To implement this, several practical challenges were addressed, as hardware complexity increased dramatically with two actuators applying the loads at right angles to each other. A custom bellcrank was designed and implemented to minimize the load angle errors and to prevent actuator side loading. The control system was upgraded to accept load and displacement feedback from two actuators. The inherent long strokes uniquely associated with wind turbine blade-tests required substantial real-time corrections for both the control and data systems. A custom data acquisition and control system was developed using a National Instruments LabVIEW platform that interfaces with proprietary servo-hydraulic software developed by MTS Corporation. Before testing, the program is run under quasi-static (slow speed) conditions and iterates to determine the correct operational control parameters for the controller, taking into consideration geometry, test speed, and phase angle errors between the two actuators. Comparisons are made between single-axis and two-axis test loads using actual test load data and load uncertainties are qualitatively described. To date, two fatigue tests have been completed and another is currently ongoing using NREL's two-axis capability.

  7. Response measurements for two building structures excited by noise from a large horizontal axis wind turbine generator

    NASA Technical Reports Server (NTRS)

    Hubbard, H. H.; Shepherd, K. P.

    1984-01-01

    Window and wall acceleration measurements and interior noise measurements ere made for two different building structures during excitation by noise from the WTS-4 horizontal axis wind turbine generator operating in a normal power generation mode. With turbine noise input pulses resulted in acceleration pulses for the wall and window elements of the two tests buildings. Response spectra suggest that natural vibration modes of the structures are excited. Responses of a house trailer were substantially greater than those for a building of sturdier construction. Peak acceleration values correlate well with similar data for houses excited by flyover noise from commercial and military airplanes and helicopters, and sonic booms from supersonic aircraft. Interior noise spectra have peaks at frequencies corresponding to structural vibration modes and room standing waves; and the levels for particular frequencies and locations can be higher than the outside levels.

  8. Whirl flutter analysis of a horizontal-axis wind turbine with a two-bladed teetering rotor

    NASA Technical Reports Server (NTRS)

    Janetzke, D. C.; Kaza, K. R. V.

    1981-01-01

    Whirl flutter and the effect of pitch-flap coupling on teetering motion of a wind turbine were investigated. The equations of motion are derived for an idealized five-degree-of-freedom mathematical model of a horizontal-axis wind turbine with a two-bladed teetering rotor. The model accounts for the out-of-plane bending motion of each blade, the teetering motion of the rotor, and both the pitching and yawing motions of the rotor support. Results show that the design is free from whirl flutter. Selected results are presented indicating the effect of variations in rotor support damping, rotor support stiffness, and pitch-flap coupling on pitching, yawing, teetering, and blade bending motions.

  9. Effect of Selection of Design Parameters on the Optimization of a Horizontal Axis Wind Turbine via Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Alpman, Emre

    2014-06-01

    The effect of selecting the twist angle and chord length distributions on the wind turbine blade design was investigated by performing aerodynamic optimization of a two-bladed stall regulated horizontal axis wind turbine. Twist angle and chord length distributions were defined using Bezier curve using 3, 5, 7 and 9 control points uniformly distributed along the span. Optimizations performed using a micro-genetic algorithm with populations composed of 5, 10, 15, 20 individuals showed that, the number of control points clearly affected the outcome of the process; however the effects were different for different population sizes. The results also showed the superiority of micro-genetic algorithm over a standard genetic algorithm, for the selected population sizes. Optimizations were also performed using a macroevolutionary algorithm and the resulting best blade design was compared with that yielded by micro-genetic algorithm.

  10. PIV and Hotwire Measurement and Analysis of Tip Vortices and Turbulent Wake Generated by a Model Horizontal Axis Wind Turbine

    NASA Astrophysics Data System (ADS)

    Green, D.; Tan, Y. M.; Chamorro, L. P.; Arndt, R.; Sotiropoulos, F.; Sheng, J.

    2011-12-01

    Understanding vortical flow structures and turbulence in the wake flow behind a Horizontal Axis Wind Turbine (HAWT) has widespread applications in efficient blade design. Moreover, the knowledge of wake-turbine interactions allows us to devise optimal operational parameters, such as the spatial allocation and control algorithms of wind turbines, for a densely populated wind farm. To understand the influence of tip vortices on energy containing mean flow and turbulence, characteristics of vortical structures and turbulence must be quantified thoroughly. In this study, we conduct phase-locked Particle Image Velocimetry (PIV) measurements of the flow before and after a model HAWT, which is located in a zero-pressure gradient wind tunnel with a cross section of 1.7 × 1.7 m and a test section of 16 m in length. A three-blade model HAWT with a diameter of 605 mm and tip-speed ratio of 5 is used. PIV images are recorded by a 2048 × 2048 CCD camera and streamed at 6 Hz continuously; and phased locked with the passage of the blade at its vertical position. Each PIV measurement covers a 0.13 × 0.13 m2 sample area with the spatial resolution of 63 μm and a vector spacing of 0.5 mm. All experiments are conducted at the free-stream wind speed of 10 m/s. Flow fields at thirty consecutive downstream locations up to six rotor diameters and 144 mid chord lengths are measured. At each location, we obtain at least 10,000 instantaneous PIV realizations or 20,000 images. Three different configurations: single, dual, and trio turbines located at 5 rotor diameter upstream to each other, are examined experimentally. The flow statistics include mean wake velocity distributions, characteristics of tip vortices evolving downstream, fluctuation velocity, turbulent kinetic energy, stresses, and energy spectra. We find that tip vortices decay much faster in the wake of the upstream turbines (multiple-turbine configurations), whereas they maintain the coherence and strength behind a single

  11. Preliminary analysis of the audible noise of constant-speed, horizontal-axis wind-turbine generators

    SciTech Connect

    Keast, D. N.; Potter, R. C.

    1980-07-01

    An analytical procedure has been developed for calculating certain aerodynamic sound levels produced by large, horizontal-axis wind-turbine generators (WTG's) such as the DOE/NASA Mods-0, -0A, -1, and -2. This preliminary procedure is based upon very limited field data from the Mod-0. It postulates a noise component due to the (constant) rotation of the blades of the WTG, plus a wake-noise component that increases with the square of the power produced by the WTG. Mechanical sound from machinery, and low-frequency impulsive sounds produced by blade interaction with the wake of the support tower are not considered.

  12. GPU Based Fast Free-Wake Calculations For Multiple Horizontal Axis Wind Turbine Rotors

    NASA Astrophysics Data System (ADS)

    Türkal, M.; Novikov, Y.; Üşenmez, S.; Sezer-Uzol, N.; Uzol, O.

    2014-06-01

    Unsteady free-wake solutions of wind turbine flow fields involve computationally intensive interaction calculations, which generally limit the total amount of simulation time or the number of turbines that can be simulated by the method. This problem, however, can be addressed easily using high-level of parallelization. Especially when exploited with a GPU, a Graphics Processing Unit, this property can provide a significant computational speed-up, rendering the most intensive engineering problems realizable in hours of computation time. This paper presents the results of the simulation of the flow field for the NREL Phase VI turbine using a GPU-based in-house free-wake panel method code. Computational parallelism involved in the free-wake methodology is exploited using a GPU, allowing thousands of similar operations to be performed simultaneously. The results are compared to experimental data as well as to those obtained by running a corresponding CPU-based code. Results show that the GPU based code is capable of producing wake and load predictions similar to the CPU- based code and in a substantially reduced amount of time. This capability could allow free- wake based analysis to be used in the possible design and optimization studies of wind farms as well as prediction of multiple turbine flow fields and the investigation of the effects of using different vortex core models, core expansion and stretching models on the turbine rotor interaction problems in multiple turbine wake flow fields.

  13. Investigation of the rotational flow effects in a pitching airfoil genetically optimized for vertical axis wind turbines

    NASA Astrophysics Data System (ADS)

    Ragni, Daniele; Vitale, Laura; Ianiro, Andrea; Geurts, Ben; Ferreira, Carlos

    2012-11-01

    In the present study, an airfoil optimized for vertical axis wind turbines applications has been developed with a genetic algorithm, selecting the geometry with maximum (dcl/d α) /cd among airfoils generated with 16 shape functions. The airfoil, operating in the curved trajectory of a vertical axis wind turbine, is usually optimized adopting conformal mappings in the straight path. Recent experimental results have shown disagreement with this approach, due to the forces determined in the curved flow path. To investigate the effects of flow rotation, an aluminum model (c=0.25m) has been manufactured from the optimized shape and further tested in the LST tunnel of the TUDelft at Reynolds number 106. Planar PIV experiments in combination with the PIV based load determination technique have been performed to simultaneously obtain velocity fields and loads. Results including velocity, pressure distributions, lift and drag are initially discussed in a steady airfoil configuration and compared with numerical results. Successively, the model has been unsteadily pitched using a magnetic linear actuator (up to 3 Hz frequency), with a free stream V∞ = 40 m/s corresponding to Re = 0.7 ×106. Phase locked PIV vector fields have been acquired and compared to the steadily obtained results.

  14. The influence of surface waves on performance characteristics and wake measurements of a horizontal axis marine current turbine

    NASA Astrophysics Data System (ADS)

    Flack, Karen; Lust, Ethan; Luznik, Luksa

    2015-11-01

    Performance characteristics and wake flow field results are presented for a 1/25 scale, 0.8 m diameter two bladed horizontal axis marine current turbine. The performance data and 2D PIV measurements were obtained in the 380 ft tow tank at the United States Naval Academy. The turbine was towed at a constant carriage speed of Utow = 1.68 m/s with turbine loading resulting in a nominal tip speed ratio of 7. Conditions with two regular waves were investigated. The first wave had a 2.3 second period and 0.18 m wave height, while the second wave had a 2.0 second period and a 0.20 m wave height. The waves were selected to have the same energy. Flow field measurements were obtained with an underwater PIV system comprised of two submersible housings. The forward looking submersible contained the laser sheet forming optics and the side looking submersible included a camera and remote focus/aperture electronics. Planar wake measurements were obtained 2 diameters downstream of the rotor plane. Flow field structures, as well as wave phase averaged mean velocities turbulence statistics will be presented and compared to the baseline case without surface waves. Work supported by the Office of Naval Research.

  15. Approach to the fatigue analysis of vertical-axis wind-turbine blades

    SciTech Connect

    Veers, P.S.

    1981-09-01

    A cursory analysis of the stress history of wind turbine blades indicates that a single stress level at each wind speed does not adequately describe the blade stress history. A statistical description is required. Blade stress data collected from the DOE/ALCOA Low Cost experimental turbines indicate that the Rayleigh probability density function adequately describes the distribution of vibratory stresses at each wind speed. The Rayleigh probability density function allows the distribution of vibratory stresses to be described by the RMS of the stress vs. time signal. With the RMS stress level described for all wind speeds, the complete stress history of the turbine blades is known. Miner's linear cumulative damage rule is used as a basis for summing the fatigue damage over all operating conditions. An analytical expression is derived to predict blade fatigue life.

  16. An unsteady vortex lattice method model of a horizontal axis wind turbine operating in an upstream rotor wake

    NASA Astrophysics Data System (ADS)

    Hankin, D.; Graham, J. M. R.

    2014-12-01

    An unsteady formulation of the vortex lattice method, VLM, is presented that uses a force- free representation of the wake behind a horizontal axis wind turbine, HAWT, to calculate the aerodynamic loading on a turbine operating in the wake of an upstream rotor. A Cartesian velocity grid is superimposed over the computational domain to facilitate the representation of the atmospheric turbulence surrounding the turbine and wind shear. The wake of an upstream rotor is modelled using two methods: a mean velocity deficit with superimposed turbulence, based on experimental observations, and a purely numeric periodic boundary condition. Both methods are treated as frozen and propagated with the velocity grid. Measurements of the mean thrust and blade root bending moment on a three bladed horizontal axis rotor modelling a 5 MW HAWT at 1:250 scale were carried out in a wind tunnel. Comparisons are made between operation in uniform flow and in the wake of a similarly loaded rotor approximately 6.5 diameters upstream. The measurements were used to validate the output from the VLM simulations, assuming a completely rigid rotor. The trends in the simulation thrust predictions are found to compare well with the uniform flow case, except at low tip speed ratios where there are losses due to stall which are yet to be included in the model. The simple wake model predicts the mean deficit, whilst the periodic boundary condition captures more of the frequency content of the loading in an upstream wake. However, all the thrust loads are over-predicted. The simulation results severely overestimate the bending moment, which needs addressing. However, the reduction in bending due to the simple wake model is found to reflect the experimental data reasonably well.

  17. Multidisciplinary Design Optimization for Glass-Fiber Epoxy-Matrix Composite 5 MW Horizontal-Axis Wind-Turbine Blades

    NASA Astrophysics Data System (ADS)

    Grujicic, M.; Arakere, G.; Pandurangan, B.; Sellappan, V.; Vallejo, A.; Ozen, M.

    2010-11-01

    A multi-disciplinary design-optimization procedure has been introduced and used for the development of cost-effective glass-fiber reinforced epoxy-matrix composite 5 MW horizontal-axis wind-turbine (HAWT) blades. The turbine-blade cost-effectiveness has been defined using the cost of energy (CoE), i.e., a ratio of the three-blade HAWT rotor development/fabrication cost and the associated annual energy production. To assess the annual energy production as a function of the blade design and operating conditions, an aerodynamics-based computational analysis had to be employed. As far as the turbine blade cost is concerned, it is assessed for a given aerodynamic design by separately computing the blade mass and the associated blade-mass/size-dependent production cost. For each aerodynamic design analyzed, a structural finite element-based and a post-processing life-cycle assessment analyses were employed in order to determine a minimal blade mass which ensures that the functional requirements pertaining to the quasi-static strength of the blade, fatigue-controlled blade durability and blade stiffness are satisfied. To determine the turbine-blade production cost (for the currently prevailing fabrication process, the wet lay-up) available data regarding the industry manufacturing experience were combined with the attendant blade mass, surface area, and the duration of the assumed production run. The work clearly revealed the challenges associated with simultaneously satisfying the strength, durability and stiffness requirements while maintaining a high level of wind-energy capture efficiency and a lower production cost.

  18. Real-time simulation of aeroelastic rotor loads for horizontal axis wind turbines

    NASA Astrophysics Data System (ADS)

    Marnett, M.; Wellenberg, S.; Schröder, W.

    2014-06-01

    Wind turbine drivetrain research and test facilities with hardware-in-the-loop capabilities require a robust and accurate aeroelastic real-time rotor simulation environment. Recent simulation environments do not guarantee a computational response at real-time. Which is why a novel simulation tool has been developed. It resolves the physical time domain of the turbulent wind spectra and the operational response of the turbine at real-time conditions. Therefore, there is a trade-off between accuracy of the physical models and the computational costs. However, the study shows the possibility to preserve the necessary computational accuracy while simultaneously granting dynamic interaction with the aeroelastic rotor simulation environment. The achieved computational costs allow a complete aeroelastic rotor simulation at a resolution frequency of 100 Hz on standard computer platforms. Results obtained for the 5-MW reference wind turbine by the National Renewable Energy Laboratory (NREL) are discussed and compared to NREL's fatigue, aerodynamics, structures, and turbulence (FAST)- Code. The rotor loads show a convincing match. The novel simulation tool is applied to the wind turbine drivetrain test facility at the Center for Wind Power Drives (CWD), RWTH Aachen University to show the real-time hardware-in-the-loop capabilities.

  19. User's manual for the vertical axis wing turbine code VDART2

    SciTech Connect

    Strickland, J.H.; Smith, T.; Sun, K.

    1981-09-01

    This user's manual provides details on the Darrieus wind turbine aerodynamic performance/loads prediction computer code, VDART2. The code is the latest generation of vortex-based models and includes the effects of dynamic stall, pitching circulation, and added mass.

  20. Measurement and prediction of broadband noise from large horizontal axis wind turbine generators

    NASA Technical Reports Server (NTRS)

    Grosveld, F. W.; Shepherd, K. P.; Hubbard, H. H.

    1995-01-01

    A method is presented for predicting the broadband noise spectra of large wind turbine generators. It includes contributions from such noise sources as the inflow turbulence to the rotor, the interactions between the turbulent boundary layers on the blade surfaces with their trailing edges and the wake due to a blunt trailing edge. The method is partly empirical and is based on acoustic measurements of large wind turbines and airfoil models. Spectra are predicted for several large machines including the proposed MOD-5B. Measured data are presented for the MOD-2, the WTS-4, the MOD-OA, and the U.S. Windpower Inc. machines. Good agreement is shown between the predicted and measured far field noise spectra.

  1. Measurement and prediction of broadband noise from large horizontal axis wind turbine generators

    NASA Astrophysics Data System (ADS)

    Grosveld, F. W.; Shepherd, K. P.; Hubbard, H. H.

    1995-05-01

    A method is presented for predicting the broadband noise spectra of large wind turbine generators. It includes contributions from such noise sources as the inflow turbulence to the rotor, the interactions between the turbulent boundary layers on the blade surfaces with their trailing edges and the wake due to a blunt trailing edge. The method is partly empirical and is based on acoustic measurements of large wind turbines and airfoil models. Spectra are predicted for several large machines including the proposed MOD-5B. Measured data are presented for the MOD-2, the WTS-4, the MOD-OA, and the U.S. Windpower Inc. machines. Good agreement is shown between the predicted and measured far field noise spectra.

  2. Dynamics of an experimental two bladed horizontal axis wind turbine with blade cyclic pitch variation

    NASA Technical Reports Server (NTRS)

    Hotenemser, K. H.; Swift, A. H. P.

    1981-01-01

    The turbine under study incorporates the combination of two features: the application of blade cyclic pitch variation; and the use of yaw angle control for rotor speed and torque regulation. Due to its emasculation by passive cyclic pitch variation the rotor can be rapidly yawed without encountering gyroscopic and aerodynamic hub moments and without noticeable out of plane excursions. The two bladed upwind rotor is vane stabilized and of very simple and rugged design. The principle was first checked out with a small scale wind tunnel model and then tested in the atmosphere with a 7.6 meter diameter experimental fully instrumented wind turbine driving a 3 phase alternator. The test results are summarized with respect to structural dynamics and yaw dynamics.

  3. Thermal-stress analysis for wood composite blade. [horizontal axis wind turbines

    NASA Technical Reports Server (NTRS)

    Fu, K. C.; Harb, A.

    1984-01-01

    The thermal-stress induced by solar insolation on a wood composite blade of a Mod-OA wind turbine was investigated. The temperature distribution throughout the blade (a heat conduction problem) was analyzed and the thermal-stress distribution of the blades caused by the temperature distribution (a thermal-stress analysis problem) was then determined. The computer programs used for both problems are included along with output examples.

  4. Aerodynamic analysis of a horizontal axis wind turbine by use of helical vortex theory, volume 2: Computer program users manual

    NASA Technical Reports Server (NTRS)

    Keith, T. G., Jr.; Afjeh, A. A.; Jeng, D. R.; White, J. A.

    1985-01-01

    A description of a computer program entitled VORTEX that may be used to determine the aerodynamic performance of horizontal axis wind turbines is given. The computer code implements a vortex method from finite span wind theory and determines the induced velocity at the rotor disk by integrating the Biot-Savart law. It is assumed that the trailing helical vortex filaments form a wake of constant diameter (the rigid wake assumption) and travel downstream at the free stream velocity. The program can handle rotors having any number of blades which may be arbitrarily shaped and twisted. Many numerical details associated with the program are presented. A complete listing of the program is provided and all program variables are defined. An example problem illustrating input and output characteristics is solved.

  5. 3D Lagrangian VPM: simulations of the near-wake of an actuator disc and horizontal axis wind turbine

    NASA Astrophysics Data System (ADS)

    Berdowski, T.; Ferreira, C.; Walther, J.

    2016-09-01

    The application of a 3-dimensional Lagrangian vortex particle method has been assessed for modelling the near-wake of an axisymmetrical actuator disc and 3-bladed horizontal axis wind turbine with prescribed circulation from the MEXICO (Model EXperiments In COntrolled conditions) experiment. The method was developed in the framework of the open- source Parallel Particle-Mesh library for handling the efficient data-parallelism on a CPU (Central Processing Unit) cluster, and utilized a O(N log N)-type fast multipole method for computational acceleration. Simulations with the actuator disc resulted in a wake expansion, velocity deficit profile, and induction factor that showed a close agreement with theoretical, numerical, and experimental results from literature. Also the shear layer expansion was present; the Kelvin-Helmholtz instability in the shear layer was triggered due to the round-off limitations of a numerical method, but this instability was delayed to beyond 1 diameter downstream due to the particle smoothing. Simulations with the 3-bladed turbine demonstrated that a purely 3-dimensional flow representation is challenging to model with particles. The manifestation of local complex flow structures of highly stretched vortices made the simulation unstable, but this was successfully counteracted by the application of a particle strength exchange scheme. The axial and radial velocity profile over the near wake have been compared to that of the original MEXICO experiment, which showed close agreement between results.

  6. Analysis and test results for a two-bladed, passive cycle pitch, horizontal-axis wind turbine in free and controlled yaw

    SciTech Connect

    Holenemser, K.H.

    1995-10-01

    This report surveys the analysis and tests performed at Washington University in St. Louis, Missouri, on a horizontal-axis, two-laded wind turbine with teeter hub. The introduction is a brief account of results obtained during the 5-year period ending December 1985. The wind tunnel model and the test turbine (7.6 m [25 ft.] in diameter) at Washington University`s Tyson Research Center had a 67{degree} delta-three angle of the teeter axis. The introduction explains why this configuration was selected and named the passive cycle pitch (PCP) wind turbine. Through the analysis was not limited to the PCP rotor, all tests, including those done from 1986 to 1994, wee conducted with the same teetered wind rotor. The blades are rather stiff and have only a small elastic coning angle and no precone.

  7. Frequency analysis of tangential force measurements on a vertical axis wind turbine

    NASA Astrophysics Data System (ADS)

    Rossander, Morgan; Goude, Anders; Bernhoff, Hans; Eriksson, Sandra

    2016-09-01

    This paper presents experimental results of the torque ripple obtained from a three bladed 12 kW experimental H-rotor prototype. The measurements are performed by means of load cells installed on the base of the struts and by electrical measurements on the generator. The resulting torques are analysed in terms of frequency spectrum and order spectrum (synchronized with rotation). The measurements are compared to aerodynamic simulations of the turbine. The expected large torque ripple at three times the rotational speed (3 p) is only weakly represented at the hub and in the generator. This suggests that the system is filtering the ripple and/or that the simulations are overestimating the 3 p component. The torque ripple loads on the drive train are therefore lower than anticipated. Even if highly attenuated, most of the low frequencies correlating to aerodynamics are still represented in the generator electrical torque. Given a certain baseline, this opens for possible online monitoring of unbalances in the turbine by electrical measurements.

  8. A study of pitch oscillation and roughness on airfoils used for horizontal axis wind turbines

    SciTech Connect

    Gregorek, G.M.; Hoffmann, M.J.; Ramsay, R.R.; Janiszewska, J.M.

    1995-12-01

    Under subcontract XF-1-11009-3 the Ohio State University Aeronautical and Astronautical Research Laboratory (OSU/AARL) with the National Renewable Energy Laboratory (NREL) developed an extensive database of empirical aerodynamic data. These data will assist in the development of analytical models and in the design of new airfoils for wind turbines. To accomplish the main objective, airfoil models were designed, built and wind tunnel tested with and without model leading edge grit roughness (LEGR). LEGR simulates surface irregularities due to the accumulation of insect debris, ice, and/or the aging process. This report is a summary of project project activity for Phase III, which encompasses the time period from September 17, 1 993 to September 6, 1 994.

  9. Selection of Twist and Chord Distribution of Horizontal Axis Wind Turbine in Low Wind Conditions

    NASA Astrophysics Data System (ADS)

    Purusothaman, M.; Valarmathi, T. N.; Praneeth Reddy, S.

    2016-09-01

    India has a vast source of renewable energy sector, in that wind energy contributes a major role. The required source of wind energy in India cannot be able to attain maximum generation due to the operation wind turbine under European atmospheric condition. There is a need to optimize blade profiles which should be suited for low wind condition (India) that leads to increase in coefficient of performance. The present works varying of blade profiles taken in root, mid and tip section of blades are evaluated. According to properties of blade element momentum theory (BEMT) and computational work are developed for getting power curves for varying parameters such as tip speed ratio, lift and drag coefficient and main parameters like chord and twist distribution.

  10. Simulating the dynamic behavior of a vertical axis wind turbine operating in unsteady conditions

    NASA Astrophysics Data System (ADS)

    Battisti, L.; Benini, E.; Brighenti, A.; Soraperra, G.; Raciti Castelli, M.

    2016-09-01

    The present work aims at assessing the reliability of a simulation tool capable of computing the unsteady rotational motion and the associated tower oscillations of a variable speed VAWT immersed in a coherent turbulent wind. As a matter of fact, since the dynamic behaviour of a variable speed turbine strongly depends on unsteady wind conditions (wind gusts), a steady state approach can't accurately catch transient correlated issues. The simulation platform proposed here is implemented using a lumped mass approach: the drive train is described by resorting to both the polar inertia and the angular position of rotating parts, also considering their speed and acceleration, while rotor aerodynamic is based on steady experimental curves. The ultimate objective of the presented numerical platform is the simulation of transient phenomena, driven by turbulence, occurring during rotor operation, with the aim of supporting the implementation of efficient and robust control algorithms.

  11. Effects of Tidal Turbine Noise on Fish Task 2.1.3.2: Effects on Aquatic Organisms: Acoustics/Noise - Fiscal Year 2011 - Progress Report - Environmental Effects of Marine and Hydrokinetic Energy

    SciTech Connect

    Halvorsen, Michele B.; Carlson, Thomas J.; Copping, Andrea E.

    2011-09-30

    Naturally spawning stocks of Chinook salmon (Oncorhynchus tshawytscha) that utilize Puget Sound are listed as threatened (http://www.nwr.noaa.gov/ESA-Salmon-Listings/Salmon-Populations/ Chinook/CKPUG.cfm). Plans exist for prototype tidal turbines to be deployed into their habitat. Noise is known to affect fish in many ways, such as causing a threshold shift in auditory sensitivity or tissue damage. The characteristics of noise, its spectra and level, are important factors that influence the potential for the noise to injure fish. For example, the frequency range of the tidal turbine noise includes the audiogram (frequency range of hearing) of most fish. This study (Effects on Aquatic Organisms, Subtask 2.1.3.2: Acoustics) was performed during FY 2011 to determine if noise generated by a 6-m-diameter open-hydro turbine might affect juvenile Chinook salmon hearing or cause barotrauma. After they were exposed to simulated tidal turbine noise, the hearing of juvenile Chinook salmon was measured and necropsies performed to check for tissue damage. Experimental groups were (1) noise exposed, (2) control (the same handling as treatment fish but without exposure to tidal turbine noise), and (3) baseline (never handled). Preliminary results indicate that low levels of tissue damage may have occurred but that there were no effects of noise exposure on the auditory systems of the test fish.

  12. An interactive version of PropID for the aerodynamic design of horizontal axis wind turbines

    SciTech Connect

    Ninham, C.P.; Selig, M.S.

    1997-12-31

    The original PROP code developed by AeroVironment, Inc. and its various versions have been in use for wind turbine performance predictions for over ten years. Due to its simplicity, rapid execution times and relatively accurate predictions, it has become an industry standard in the US. The Europeans have similar blade-element/momentum methods in use for design. Over the years, PROP has continued to be improved (in its accuracy and capability), e.g., PROPSH, PROPPC, PROP93, and PropID. The latter version incorporates a unique inverse design capability that allows the user to specify the desired aerodynamic characteristics from which the corresponding blade geometry is determined. Through this approach, tedious efforts related to manually adjusting the chord, twist, pitch and rpm to achieve desired aerodynamic/performance characteristics can be avoided, thereby making it possible to perform more extensive trade studies in an effort to optimize performance. Past versions of PropID did not have supporting graphics software. The more current version to be discussed includes a Matlab-based graphical user interface (GUI) and additional features that will be discussed in this paper.

  13. Cyclo-stationary linear parameter time-varying subspace realization method applied for identification of horizontal-axis wind turbines

    NASA Astrophysics Data System (ADS)

    Velazquez, Antonio; Swartz, R. Andrew

    2013-04-01

    in the operative range bandwidth of horizontal-axis wind turbines. ERA-OKID analysis is driven by correlation-function matrices from the stationary ambient response aiming to reduce noise effects. Singular value decomposition (SVD) and eigenvalue analysis are computed in a last stage to get frequencies and mode shapes. Proposed assumptions are carefully weighted to account for the uncertainty of the environment the wind turbines are subjected to. A numerical example is presented based on data acquisition carried out in a BWC XL.1 low power wind turbine device installed in University of California at Davis. Finally, comments and observations are provided on how this subspace realization technique can be extended for modal-parameter identification using exclusively ambient vibration data.

  14. A user`s manual for the program TRES4: Random vibration analysis of vertical-axis wind turbines in turbulent winds

    SciTech Connect

    1994-03-01

    TRES4 is a software package that works with the MSC/NASTRAN finite element analysis code to conduct random vibration analysis of vertical-axis wind turbines. The loads on the turbine are calculated in the time domain to retain the nonlinearities of stalled aerodynamic loadings. The loads are transformed into modal coordinates to reduce the number of degrees of freedom. Power spectra and cross spectra of the loads are calculated in the modal coordinate system. These loads are written in NASTRAN Bulk Data format to be read and applied in a random vibration analysis by NASTRAN. The resulting response is then transformed back to physical coordinates to facilitate user interpretation.

  15. Development of a 5.5 m diameter vertical axis wind turbine, phase 3

    NASA Astrophysics Data System (ADS)

    Dekitsch, A.; Etzler, C. C.; Fritzsche, A.; Lorch, G.; Mueller, W.; Rogalla, K.; Schmelzle, J.; Schuhwerk, W.; Vollan, A.; Welte, D.

    1982-06-01

    In continuation of development of a 5.5 m diameter vertical axis windmill that consists in conception, building, and wind tunnel testing, a Darrieus rotor windpowered generator feeding an isolated network under different wind velocity conditions and with optimal energy conversion efficiency was designed built, and field tested. The three-bladed Darrieus rotor tested in the wind tunnel was equiped with two variable pitch Savonius rotors 2 m in diameter. By means of separate measures of the aerodynamic factors and the energy consumption, effect of revisions and optimizations on different elements was assessed. Pitch adjustement of the Savonius blades, lubrication of speed reducer, rotor speed at cut-in of generator field excitation, time constant of field excitation, stability conditions, switch points of ohmic resistors which combined with a small electric battery simulated a larger isolated network connected with a large storage battery, were investigated. Fundamentals for the economic series production of windpowered generators with Darrieus rotors for the control and the electric conversion system are presented.

  16. Vertical Axis Wind Turbine flows using a Vortex Particle-Mesh method: from near to very far wakes

    NASA Astrophysics Data System (ADS)

    Backaert, Stephane; Chatelain, Philippe; Winckelmans, Gregoire; Kern, Stefan; Maeder, Thierry; von Terzi, Dominic; van Rees, Wim; Koumoutsakos, Petros

    2012-11-01

    A Vortex Particle-Mesh (VPM) method with immersed lifting lines has been developed and validated. The vorticity-velocity formulation of the NS equations is treated in a hybrid way: particles handle advection while the mesh is used to evaluate the differential operators and for the fast Poisson solvers (here a Fourier-based solver which simultaneously allows for unbounded directions and inlet/outlet boundaries). Both discretizations communicate through high order interpolation. The immersed lifting lines handle the creation of vorticity from the blade elements and its early development. LES of Vertical Axis Wind Turbine (VAWT) flows are performed, with a relatively fine resolution (128 and 160 grid points per blade) and for computational domains extending up to 6 D and 14 D downstream of the rotor. The wake complex development is captured in details, from the blades to the near wake coherent vortices, to the transitional ones, to the fully developed turbulent far wake. Mean flow statistics in planes (horizontal, vertical and cross) are also presented. A case with a realistic turbulent wind inflow is also considered. The physics are more complex than for HAWT flows. Computational resources provided by a PRACE award.

  17. Radial forces analysis and rotational speed test of radial permanent magnetic bearing for horizontal axis wind turbine applications

    NASA Astrophysics Data System (ADS)

    Kriswanto, Jamari

    2016-04-01

    Permanent magnet bearings (PMB) are contact free bearings which utilize the forces generated by the magnets. PMB in this work is a type of radial PMB, which functions as the radial bearings of the Horizontal Axis Wind Turbine (HAWT) rotor shaft. Radial PMB should have a greater radial force than the radial force HAWT rotor shaft (bearing load). This paper presents a modeling and experiments to calculate the radial force of the radial PMB. This paper also presents rotational speed test of the radial PMB compared to conventional bearings for HAWT applications. Modeling using COMSOL Multiphysics 4.3b with the magnetic fields physics models. Experiments were conducted by measuring the displacement of the rotor to the stator for a given load variation. Results of the two methods showed that the large displacement then the radial force would be greater. Radial forces of radial PMB is greater than radial forces of HAWT rotor shaft. The rotational speed test results of HAWT that used radial PMB produced higher rotary than conventional bearings with an average increase of 87.4%. Increasing rotational speed occured because radial PMB had no friction. HAWT that used radial PMB rotated at very low wind speeds are 1.4 m/s with a torque of 0.043 Nm, while the HAWT which uses conventional bearing started rotating at a wind speed of 4.4 m/s and required higher torque of 0.104 N.

  18. Dynamic Separation on a Pitching and Surging Airfoil as a Model for Flow over Vertical Axis Wind Turbine Blades

    NASA Astrophysics Data System (ADS)

    Dunne, Reeve; McKeon, Beverley

    2013-11-01

    The flow over a pitching and surging NACA 0018 airfoil at a chord Reynolds number of 100,000 is investigated using 2D time resolved particle image velocimetry. Sinusoidal pitch experiments between +/-30° at a reduced frequency k =Ωc/2U∞ = . 12 closely simulate the unsteady angle of attack experienced by the blade of a representative commercial vertical axis wind turbine (VAWT). The unsteady separation process is analyzed in detail with a focus on development of vorticity at the leading edge. Reduced order modeling techniques are used to deconstruct the flow and identify the evolution of dominant flow structures over the pitching cycle. Surging at the same reduced frequency and Umax/-Umin Umean = . 80 is added to investigate the effect of the Reynolds number variation associated with the rotation of a VAWT blade in a non-rotating, laboratory frame. This research is funded by the Gordon and Betty Moore Foundation through Grant GBMF #2645 to the California Institute of Technology.

  19. Numerical Investigation of Capability of Self-Starting and Self-Rotating of a Vertical Axis Wind Turbine

    NASA Astrophysics Data System (ADS)

    Tsai, Hsieh-Chen; Colonius, Tim

    2015-11-01

    The immersed boundary method is used to simulate the incompressible flow around two-dimensional airfoils at low Reynolds numbers in order to investigate the self-starting and self-rotating capability of a vertical axis wind turbine (VAWT) with NACA 0018 blades. By examining the torque generated by a three-bladed VAWT fixed at various orientations, a stable equilibrium and the optimal starting orientation that produces the largest torque have been observed. When Reynolds number is below a critical value, the VAWT oscillates around a stable equilibrium. However, the VAWT goes into continuous rotation from the optimal orientation when Reynolds number is above this critical value. It is also shown that VAWT with more blades is easier to self-start due to a wilder range of positive starting torques. Moreover, with a proper choice of load model, a VAWT is able to self-rotate and generate a designed averaged power. This project is supported by Caltech FLOWE center/Gordon and Betty Moore Foundation.

  20. Unsteady Hybrid Navier-Stokes/Vortex Model for Numerical Study of Horizontal Axis Wind Turbine Aerodynamics under Yaw Conditions

    NASA Astrophysics Data System (ADS)

    Suzuki, Kensuke

    A new analysis tool, an unsteady Hybrid Navier-Stokes/Vortex Model, for a horizontal axis wind turbine (HAWT) in yawed flow is presented, and its convergence and low cost computational performance are demonstrated. In earlier work, a steady Hybrid Navier-Stokes/Vortex Model was developed with a view to improving simulation results obtained by participants of the NASA Ames blind comparison workshop, following the NREL Unsteady Aerodynamics Experiment. The hybrid method was shown to better predict rotor torque and power over the range of wind speeds, from fully attached to separated flows. A decade has passed since the workshop was held and three dimensional unsteady Navier-Stokes analyses have become available using super computers. In the first chapter, recent results of unsteady Euler and Navier-Stokes computations are reviewed as standard references of what is currently possible and are contrasted with results of the Hybrid Navier-Stokes/Vortex Model in steady flow. In Chapter 2, the computational method for the unsteady Hybrid model is detailed. The grid generation procedure, using ICEM CFD, is presented in Chapter 3. Steady and unsteady analysis results for the NREL Phase IV rotor and for a modified "swept NREL rotor" are presented in Chapter 4-Chapter 7.

  1. Aerodynamic characteristics of seven symmetrical airfoil sections through 180-degree angle of attack for use in aerodynamic analysis of vertical axis wind turbines

    SciTech Connect

    Sheldahl, R E; Klimas, P C

    1981-03-01

    When work began on the Darrieus vertical axis wind turbine (VAWT) program at Sandia National Laboratories, it was recognized that there was a paucity of symmetrical airfoil data needed to describe the aerodynamics of turbine blades. Curved-bladed Darrieus turbines operate at local Reynolds numbers (Re) and angles of attack (..cap alpha..) seldom encountered in aeronautical applications. This report describes (1) a wind tunnel test series conducted at moderate values of Re in which 0 less than or equal to ..cap alpha.. less than or equal to 180/sup 0/ force and moment data were obtained for four symmetrical blade-candidate airfoil sections (NACA-0009, -0012, -0012H, and -0015), and (2) how an airfoil property synthesizer code can be used to extend the measured properties to arbitrary values of Re (10/sup 4/ less than or equal to Re less than or equal to 10/sup 7/) and to certain other section profiles (NACA-0018, -0021, -0025).

  2. A straight-bladed vertical axis wind turbine with a directed guide vane row — Effect of guide vane geometry on the performance —

    NASA Astrophysics Data System (ADS)

    Takao, Manabu; Kuma, Hideki; Maeda, Takao; Kamada, Yasunari; Oki, Michiaki; Minoda, Atsushi

    2009-03-01

    The objective of this study is to show the effect of guide vane geometry on the performance. In order to overcome the disadvantages of vertical axis wind turbine, a straight-bladed vertical axis wind turbine (S-VAWT) with a directed guide vane row has been proposed and tested by the authors. According to previous studies, it was clarified that the performance of the turbine can be improved by means of the directed guide vane row. However, the guide vane geometry of S-VAWT has not been optimized so far. In order to clarify the effect of guide vane geometry, the effects of setting angle and gap between rotor blade and guide vane on power coefficient and starting characteristic were investigated in the experiments. The experimental study of the proposed wind turbine was carried out by a wind tunnel. The wind tunnel with a diameter of 1.8m is open jet type. The wind velocity is 8 m/s in the experiments. The rotor has three straight blades with a profile of NACA0018 and a chord length of 100 mm, a diameter of 0.6 m and a blade height of 0.7 m. The guide vane row consists of 3 arc plates.

  3. ARRAY OPTIMIZATION FOR TIDAL ENERGY EXTRACTION IN A TIDAL CHANNEL – A NUMERICAL MODELING ANALYSIS

    SciTech Connect

    Yang, Zhaoqing; Wang, Taiping; Copping, Andrea

    2014-04-18

    This paper presents an application of a hydrodynamic model to simulate tidal energy extraction in a tidal dominated estuary in the Pacific Northwest coast. A series of numerical experiments were carried out to simulate tidal energy extraction with different turbine array configurations, including location, spacing and array size. Preliminary model results suggest that array optimization for tidal energy extraction in a real-world site is a very complex process that requires consideration of multiple factors. Numerical models can be used effectively to assist turbine siting and array arrangement in a tidal turbine farm for tidal energy extraction.

  4. Validation of Simplified Load Equations through Loads Measurement and Modeling of a Small Horizontal-Axis Wind Turbine Tower; NREL (National Renewable Energy Laboratory)

    SciTech Connect

    Dana, S.; Damiani, R.; vanDam, J.

    2015-05-18

    As part of an ongoing effort to improve the modeling and prediction of small wind turbine dynamics, NREL tested a small horizontal axis wind turbine in the field at the National Wind Technology Center (NWTC). The test turbine was a 2.1-kW downwind machine mounted on an 18-meter multi-section fiberglass composite tower. The tower was instrumented and monitored for approximately 6 months. The collected data were analyzed to assess the turbine and tower loads and further validate the simplified loads equations from the International Electrotechnical Commission (IEC) 61400-2 design standards. Field-measured loads were also compared to the output of an aeroelastic model of the turbine. Ultimate loads at the tower base were assessed using both the simplified design equations and the aeroelastic model output. The simplified design equations in IEC 61400-2 do not accurately model fatigue loads. In this project, we compared fatigue loads as measured in the field, as predicted by the aeroelastic model, and as calculated using the simplified design equations.

  5. Analysis of Tip Vortices Identified in the Instantaneous Wake of a Horizontal-Axis Model Wind Turbine Placed in a Turbulent Boundary Layer

    NASA Astrophysics Data System (ADS)

    Jain, Akash; Mehdi, Faraz; Sheng, Jian

    2014-11-01

    The near-wake field, a short region characterized by the physical specifications of a turbine, is of particular interest for flow-structure interactions responsible for asymmetric loadings, premature structural breakdown, noise generation etc. Helical tip vortices constitute a distinctive feature of this region and are dependent not only on the turbine geometry but also on the incoming flow profile. High-spatial resolution PIV measurements are made in the wake of a horizontal-axis model wind turbine embedded in a neutrally stratified turbulent boundary layer. The data is acquired over consecutive locations up to 10 diameters downstream of the turbine but the focus here is on the tip vortices identified in the instantaneous fields. Contrary to previous studies, both top and bottom tip vortices are clearly distinguishable in either ensemble fields or instantaneous realizations. The streamwise extent of these vortices stretches from the turbine till they merge into the expanding mid-span wake. The similarities and differences in the top and bottom tip vortices are explored through the evolution of their statistics. In particular, the distributions of the loci of vortex cores and their circulations are compared. The information will improve our understanding of near wake vortical dynamics, provide data for model validation, and aid in the devise of flow control strategies.

  6. Experiments on the magnetic coupling in a small scale counter rotating marine current turbine

    NASA Astrophysics Data System (ADS)

    Kim, I. C.; Lee, N. J.; Wata, J.; Hyun, B. S.; Lee, Y. H.

    2016-05-01

    Modern economies are dependent on energy consumption to ensure growth or sustainable development. Renewable energy sources provide a source of energy that can provide energy security and is renewable. Tidal energy is more predictable than other sources or renewable energy like the sun or wind. Horizontal axis marine current turbines are currently the most advanced and commercially feasible option for tidal current convertors. A dual rotor turbine is theoretically able to produce more power than a single rotor turbine at the same fluid velocity. Previous experiments for a counter rotating dual rotor horizontal axis marine current turbine used a mechanical oil seal coupling that caused mechanical losses when water entered through small gaps at the shaft. A new magnetic coupling assembly eliminates the need for a shaft to connect physically with the internal mechanisms and is water tight. This reduces mechanical losses in the system and the effect on the dual rotor performance is presented in this paper.

  7. Do Changes in Current Flow as a Result of Arrays of Tidal Turbines Have an Effect on Benthic Communities?

    PubMed

    Kregting, Louise; Elsaesser, Bjoern; Kennedy, Robert; Smyth, David; O'Carroll, Jack; Savidge, Graham

    2016-01-01

    Arrays of tidal energy converters have the potential to provide clean renewable energy for future generations. Benthic communities may, however, be affected by changes in current speeds resulting from arrays of tidal converters located in areas characterised by strong currents. Current speed, together with bottom type and depth, strongly influence benthic community distributions; however the interaction of these factors in controlling benthic dynamics in high energy environments is poorly understood. The Strangford Lough Narrows, the location of SeaGen, the world's first single full-scale, grid-compliant tidal energy extractor, is characterised by spatially heterogenous high current flows. A hydrodynamic model was used to select a range of benthic community study sites that had median flow velocities between 1.5-2.4 m/s in a depth range of 25-30 m. 25 sites were sampled for macrobenthic community structure using drop down video survey to test the sensitivity of the distribution of benthic communities to changes in the flow field. A diverse range of species were recorded which were consistent with those for high current flow environments and corresponding to very tide-swept faunal communities in the EUNIS classification. However, over the velocity range investigated, no changes in benthic communities were observed. This suggested that the high physical disturbance associated with the high current flows in the Strangford Narrows reflected the opportunistic nature of the benthic species present with individuals being continuously and randomly affected by turbulent forces and physical damage. It is concluded that during operation, the removal of energy by marine tidal energy arrays in the far-field is unlikely to have a significant effect on benthic communities in high flow environments. The results are of major significance to developers and regulators in the tidal energy industry when considering the environmental impacts for site licences.

  8. Do Changes in Current Flow as a Result of Arrays of Tidal Turbines Have an Effect on Benthic Communities?

    PubMed Central

    Kregting, Louise; Elsaesser, Bjoern; Kennedy, Robert; Smyth, David; O’Carroll, Jack; Savidge, Graham

    2016-01-01

    Arrays of tidal energy converters have the potential to provide clean renewable energy for future generations. Benthic communities may, however, be affected by changes in current speeds resulting from arrays of tidal converters located in areas characterised by strong currents. Current speed, together with bottom type and depth, strongly influence benthic community distributions; however the interaction of these factors in controlling benthic dynamics in high energy environments is poorly understood. The Strangford Lough Narrows, the location of SeaGen, the world’s first single full-scale, grid-compliant tidal energy extractor, is characterised by spatially heterogenous high current flows. A hydrodynamic model was used to select a range of benthic community study sites that had median flow velocities between 1.5–2.4 m/s in a depth range of 25–30 m. 25 sites were sampled for macrobenthic community structure using drop down video survey to test the sensitivity of the distribution of benthic communities to changes in the flow field. A diverse range of species were recorded which were consistent with those for high current flow environments and corresponding to very tide-swept faunal communities in the EUNIS classification. However, over the velocity range investigated, no changes in benthic communities were observed. This suggested that the high physical disturbance associated with the high current flows in the Strangford Narrows reflected the opportunistic nature of the benthic species present with individuals being continuously and randomly affected by turbulent forces and physical damage. It is concluded that during operation, the removal of energy by marine tidal energy arrays in the far-field is unlikely to have a significant effect on benthic communities in high flow environments. The results are of major significance to developers and regulators in the tidal energy industry when considering the environmental impacts for site licences. PMID:27560657

  9. Do Changes in Current Flow as a Result of Arrays of Tidal Turbines Have an Effect on Benthic Communities?

    PubMed

    Kregting, Louise; Elsaesser, Bjoern; Kennedy, Robert; Smyth, David; O'Carroll, Jack; Savidge, Graham

    2016-01-01

    Arrays of tidal energy converters have the potential to provide clean renewable energy for future generations. Benthic communities may, however, be affected by changes in current speeds resulting from arrays of tidal converters located in areas characterised by strong currents. Current speed, together with bottom type and depth, strongly influence benthic community distributions; however the interaction of these factors in controlling benthic dynamics in high energy environments is poorly understood. The Strangford Lough Narrows, the location of SeaGen, the world's first single full-scale, grid-compliant tidal energy extractor, is characterised by spatially heterogenous high current flows. A hydrodynamic model was used to select a range of benthic community study sites that had median flow velocities between 1.5-2.4 m/s in a depth range of 25-30 m. 25 sites were sampled for macrobenthic community structure using drop down video survey to test the sensitivity of the distribution of benthic communities to changes in the flow field. A diverse range of species were recorded which were consistent with those for high current flow environments and corresponding to very tide-swept faunal communities in the EUNIS classification. However, over the velocity range investigated, no changes in benthic communities were observed. This suggested that the high physical disturbance associated with the high current flows in the Strangford Narrows reflected the opportunistic nature of the benthic species present with individuals being continuously and randomly affected by turbulent forces and physical damage. It is concluded that during operation, the removal of energy by marine tidal energy arrays in the far-field is unlikely to have a significant effect on benthic communities in high flow environments. The results are of major significance to developers and regulators in the tidal energy industry when considering the environmental impacts for site licences. PMID:27560657

  10. Tidal Energy Research

    SciTech Connect

    Stelzenmuller, Nickolas; Aliseda, Alberto; Palodichuk, Michael; Polagye, Brian; Thomson, James; Chime, Arshiya; Malte, Philip

    2014-03-31

    This technical report contains results on the following topics: 1) Testing and analysis of sub-scale hydro-kinetic turbines in a flume, including the design and fabrication of the instrumented turbines. 2) Field measurements and analysis of the tidal energy resource and at a site in northern Puget Sound, that is being examined for turbine installation. 3) Conceptual design and performance analysis of hydro-kinetic turbines operating at high blockage ratio, for use for power generation and flow control in open channel flows.

  11. Turbine system

    DOEpatents

    McMahan, Kevin Weston; Dillard, Daniel Jackson

    2016-05-03

    A turbine system is disclosed. The turbine system includes a transition duct having an inlet, an outlet, and a passage extending between the inlet and the outlet and defining a longitudinal axis, a radial axis, and a tangential axis. The outlet of the transition duct is offset from the inlet along the longitudinal axis and the tangential axis. The turbine system further includes a turbine section connected to the transition duct. The turbine section includes a plurality of shroud blocks at least partially defining a hot gas path, a plurality of buckets at least partially disposed in the hot gas path, and a plurality of nozzles at least partially disposed in the hot gas path. At least one of a shroud block, a bucket, or a nozzle includes means for withstanding high temperatures.

  12. The effect of single-horn glaze ice on the vortex structures in the wake of a horizontal axis wind turbine

    NASA Astrophysics Data System (ADS)

    Jin, Zhe-Yan; Dong, Qiao-Tian; Yang, Zhi-Gang

    2015-02-01

    The present study experimentally investigated the effect of a simulated single-horn glaze ice accreted on rotor blades on the vortex structures in the wake of a horizontal axis wind turbine by using the stereoscopic particle image velocimetry (Stereo-PIV) technique. During the experiments, four horizontal axis wind turbine models were tested, and both "free-run" and "phase-locked" Stereo-PIV measurements were carried out. Based on the "free-run" measurements, it was found that because of the simulated single-horn glaze ice, the shape, vorticity, and trajectory of tip vortices were changed significantly, and less kinetic energy of the airflow could be harvested by the wind turbine. In addition, the "phase-locked" results indicated that the presence of simulated single-horn glaze ice resulted in a dramatic reduction of the vorticity peak of the tip vortices. Moreover, as the length of the glaze ice increased, both root and tip vortex gaps were found to increase accordingly.

  13. Prediction and analysis of infra and low-frequency noise of upwind horizontal axis wind turbine using statistical wind speed model

    SciTech Connect

    Lee, Gwang-Se; Cheong, Cheolung

    2014-12-15

    Despite increasing concern about low-frequency noise of modern large horizontal-axis wind turbines (HAWTs), few studies have focused on its origin or its prediction methods. In this paper, infra- and low-frequency (the ILF) wind turbine noise are closely examined and an efficient method is developed for its prediction. Although most previous studies have assumed that the ILF noise consists primarily of blade passing frequency (BPF) noise components, these tonal noise components are seldom identified in the measured noise spectrum, except for the case of downwind wind turbines. In reality, since modern HAWTs are very large, during rotation, a single blade of the turbine experiences inflow with variation in wind speed in time as well as in space, breaking periodic perturbations of the BPF. Consequently, this transforms acoustic contributions at the BPF harmonics into broadband noise components. In this study, the ILF noise of wind turbines is predicted by combining Lowson’s acoustic analogy with the stochastic wind model, which is employed to reproduce realistic wind speed conditions. In order to predict the effects of these wind conditions on pressure variation on the blade surface, unsteadiness in the incident wind speed is incorporated into the XFOIL code by varying incident flow velocities on each blade section, which depend on the azimuthal locations of the rotating blade. The calculated surface pressure distribution is subsequently used to predict acoustic pressure at an observing location by using Lowson’s analogy. These predictions are compared with measured data, which ensures that the present method can reproduce the broadband characteristics of the measured low-frequency noise spectrum. Further investigations are carried out to characterize the IFL noise in terms of pressure loading on blade surface, narrow-band noise spectrum and noise maps around the turbine.

  14. Prediction and analysis of infra and low-frequency noise of upwind horizontal axis wind turbine using statistical wind speed model

    NASA Astrophysics Data System (ADS)

    Lee, Gwang-Se; Cheong, Cheolung

    2014-12-01

    Despite increasing concern about low-frequency noise of modern large horizontal-axis wind turbines (HAWTs), few studies have focused on its origin or its prediction methods. In this paper, infra- and low-frequency (the ILF) wind turbine noise are closely examined and an efficient method is developed for its prediction. Although most previous studies have assumed that the ILF noise consists primarily of blade passing frequency (BPF) noise components, these tonal noise components are seldom identified in the measured noise spectrum, except for the case of downwind wind turbines. In reality, since modern HAWTs are very large, during rotation, a single blade of the turbine experiences inflow with variation in wind speed in time as well as in space, breaking periodic perturbations of the BPF. Consequently, this transforms acoustic contributions at the BPF harmonics into broadband noise components. In this study, the ILF noise of wind turbines is predicted by combining Lowson's acoustic analogy with the stochastic wind model, which is employed to reproduce realistic wind speed conditions. In order to predict the effects of these wind conditions on pressure variation on the blade surface, unsteadiness in the incident wind speed is incorporated into the XFOIL code by varying incident flow velocities on each blade section, which depend on the azimuthal locations of the rotating blade. The calculated surface pressure distribution is subsequently used to predict acoustic pressure at an observing location by using Lowson's analogy. These predictions are compared with measured data, which ensures that the present method can reproduce the broadband characteristics of the measured low-frequency noise spectrum. Further investigations are carried out to characterize the IFL noise in terms of pressure loading on blade surface, narrow-band noise spectrum and noise maps around the turbine.

  15. A comparison of spanwise aerodynamic loads estimated from measured bending moments versus direct pressure measurements on horizontal axis wind turbine blades

    SciTech Connect

    Simms, D A; Butterfield, C P

    1991-10-01

    Two methods can be used to determine aerodynamic loads on a rotating wind turbine blade. The first is to make direct pressure measurements on the blade surface. This is a difficult process requiring costly pressure instrumentation. The second method uses measured flap bending moments in conjunction with analytical techniques to estimate airloads. This method, called ALEST, was originally developed for use on helicopter rotors and was modified for use on horizontal axis wind turbine blades. Estimating airloads using flap bending moments in much simpler and less costly because measurements can be made with conventional strain gages and equipment. This paper presents results of airload estimates obtained using both methods under a variety of operating conditions. Insights on the limitations and usefulness of the ALEST bending moment technique are also included. 10 refs., 6 figs.

  16. Wind-tunnel study of the wake behind a vertical axis wind turbine in a boundary layer flow using stereoscopic particle image velocimetry

    NASA Astrophysics Data System (ADS)

    Rolin, V.; Porté-Agel, F.

    2015-06-01

    Stereo particle image velocimetry is used in a wind-tunnel to study boundary layer effects in the wake behind a vertical axis wind turbine. The turbine is a three-bladed giromill with a solidity of 1.18. The wake is studied for a tip speed ratio of 2 and an average chord Reynolds number of 1.6 × 104. The velocity deficit and turbulence levels in the horizontal plane are observed to be strongly asymmetrical with two strong peaks corresponding to the two halves of the rotor where blades move either towards the oncoming flow or away from it. The stronger peak is measured behind the blades moving upstream, however this region also benefits from a greater rate of re-energization. Due to the incoming boundary layer profile, momentum is also entrained downwards into the wake from above and aids with the recovery of the core of the wake.

  17. Limits to Tidal Power

    NASA Astrophysics Data System (ADS)

    Garrett, C.

    2008-12-01

    Ocean tides have been proposed as a source of renewable energy, though the maximum available power may be shown to be only a fraction of the present dissipation rate of 3.5 TW, which is small compared with global insolation (nearly 105 TW), wind dissipation (103 TW), and even human power usage of 15 TW. Nonetheless, tidal power could be a useful contributor in some locations. Traditional use of tidal power, involving the trapping of water behind a barrage at high tide, can produce an average power proportional to the area of the headpond and the square of the tidal range; the power density is approximately 6 W per square meter for a tidal range of 10 m. Capital costs and fears of environmental damage have put barrage schemes in disfavor, with interest turning to the exploitation of strong tidal currents, using turbines in a manner similar to wind turbines. There is a limit to the available power, however, as adding turbines reduces the flow, ultimately reducing the power. For sinusoidal forcing of flow in a channel connecting two large open basins, the maximum available power may be shown to be given approximately by 0.2ρ g a Q_max, where ρ is the water density, g gravity, a the amplitude of the tidal sea level difference along the channel, and Q_max is the maximum volume flux in the natural state. The same formula applies if the channel is the entrance to a semi-enclosed basin, with a now the amplitude of the external tide. A flow reduction of approximately 40% is typically associated with the maximum power extraction. The power would be reduced if only smaller environmental changes are acceptable, and reduced further by drag on supporting structures, dissipation in turbine wakes, and internal inefficiencies. It can be suggested that the best use of strong, cold, tidal currents is to provide cooling water for nuclear reactors.

  18. A conformal mapping technique to correlate the rotating flow around a wing section of vertical axis wind turbine and an equivalent linear flow around a static wing

    NASA Astrophysics Data System (ADS)

    Akimoto, Hiromichi; Hara, Yutaka; Kawamura, Takafumi; Nakamura, Takuju; Lee, Yeon-Seung

    2013-12-01

    In a vertical axis wind turbine (VAWT), turbine blades are subjected to the curved flow field caused by the revolution of turbine. However, performance prediction of VAWT is usually based on the fluid dynamic coefficients obtained in wind tunnel measurements of the two-dimensional static wing. The difference of fluid dynamic coefficients in the curved flow and straight flow deteriorates the accuracy of performance prediction. To find the correlation between the two conditions of curved and straight flow, the authors propose a conformal mapping method on complex plane. It provides bidirectional mapping between the two flow fields. For example, the flow around a symmetric wing in the curved flow is mapped to that around a curved (cambered) wing in the straight flow. Although the shape of mapped wing section is different from the original one, its aerodynamic coefficients show a good correlation to those of the original in the rotating condition. With the proposed method, we can reproduce the local flow field around a rotating blade from the flow data around the mapped static wing in the straight flow condition.

  19. Modelling the far field hydro-environmental impacts of tidal farms - A focus on tidal regime, inter-tidal zones and flushing

    NASA Astrophysics Data System (ADS)

    Nash, S.; O'Brien, N.; Olbert, A.; Hartnett, M.

    2014-10-01

    The introduction of tidal stream turbines into water bodies can have an impact on the environment due to changes in the hydrodynamic flow fields resulting from the extraction of energy by the tidal turbines. Water levels, tidal currents and flushing characteristics could potentially be significantly altered with the introduction of tidal turbine farms, which could lead to possible loss of habitat and a change in the tidal regime. Therefore, planning of tidal turbines field deployments must take into account possible hydro-environmental impacts. This paper describes research undertaken by the authors in the Shannon Estuary to predict changes in the tidal regime and flushing characteristics, with the introduction of tidal turbine farms of different array configurations. The model was simulated using a 2D hydrodynamic model that was modified to incorporate the effects of tidal turbine fields. Water levels are shown to have been affected with the inclusion of turbines, especially in areas upstream of the turbine farm where inter-tidal zones could become predominately inundated resulting in loss of habitat in the estuary. Flushing parameters were also shown to be altered with the inclusion of turbines, with residence time shown to be increased, which could change pollutant transport in the region.

  20. A computational platform for considering the effects of aerodynamic and seismic load combination for utility scale horizontal axis wind turbines

    NASA Astrophysics Data System (ADS)

    Asareh, Mohammad-Amin; Prowell, Ian; Volz, Jeffery; Schonberg, William

    2016-03-01

    The wide deployment of wind turbines in locations with high seismic hazard has led engineers to take into account a more comprehensive seismic design of such structures. Turbine specific guidelines usually use simplified methods and consider many assumptions to combine seismic demand with the other operational loads effecting the design of these structures. As the turbines increase in size and capacity, the interaction between seismic loads and aerodynamic loads becomes even more important. In response to the need for a computational tool that can perform coupled simulations of wind and seismic loads, a seismic module is developed for the FAST code and described in this research. This platform allows engineers working in this industry to directly consider interaction between seismic and other environmental loads for turbines. This paper details the practical application and theory of this platform and provides examples for the use of different capabilities. The platform is then used to show the suitable earthquake and operational load combination with the implicit consideration of aerodynamic damping by estimating appropriate load factors.

  1. The multi-objective optimization of the horizontal-axis marine current turbine based on NSGA-II algorithm

    NASA Astrophysics Data System (ADS)

    Zhu, G. J.; Guo, P. C.; Luo, X. Q.; Feng, J. J.

    2012-11-01

    The present paper describes a hydrodynamic optimization technique for horizontal-axial marine current turbine. The pitch angle distribution is important to marine current turbine. In this paper, the pitch angle distribution curve is parameterized as four control points by Bezier curve method. The coordinates of the four control points are chosen as optimization variables, and the sample space are structured according to the Box-Behnken experimental design method (BBD). Then the power capture coefficient and axial thrust coefficient in design tip-speed ratio is obtained for all the elements in the sample space by CFD numerical simulation. The power capture coefficient and axial thrust are chosen as objective function, and quadratic polynomial regression equations are constructed to fit the relationship between the optimization variables and each objective function according to response surface model. With the obtained quadratic polynomial regression equations as performance prediction model, the marine current turbine is optimized using the NSGA-II multi-objective genetic algorithm, which finally offers an improved marine current turbine.

  2. Developments in tidal power

    NASA Astrophysics Data System (ADS)

    Charlier, R. H.

    Successful, planned, and potential tidal power plants and sites are discussed. Units are in operation in France and Russia, with the French plant using reversible blade turbines being used as a design guide for plants in Argentina and Australia. The U.S. is studying the feasibility of a plant in Passamaquaddy Bay, and Canada is pursuing construction of a plant in the Bay of Fundy. The Severn River in Great Britain is receiving a site study, and over a hundred plants have been built as local power systems in China. Bulb-type turbines, which enhance the volume emptying and filling the retaining basin, are considered as the highest performing power unit. Simpler one-way flow turbines have been suggested as more economical to install. Governmental, institutional, and investor impediments to tidal power plant are explored.

  3. Design, performance and economics of the DAF Indal 50 kW and 375 kW vertical axis wind turbine

    NASA Astrophysics Data System (ADS)

    Schienbein, L. A.; Malcolm, D. J.

    1982-03-01

    A review of the development and performance of the DAF Indal 50 kW vertical axis Darrieus wind turbines shows that a high level of technical development and reliability has been achieved. Features of the drive train, braking and control systems are discussed and performance details are presented. A description is given of a wind-diesel hybrid presently being tested. Details are also presented of a 375 kW VAWT planned for production in late 1982. A discussion of the economics of both the 50 kW and 375 kW VAWTs is included, showing the effects of charge rate, installed cost, operating cost, performance and efficiency. The energy outputs are translated into diesel fuel cost savings for remote communities.

  4. Aerodynamic analysis of a horizontal axis wind turbine by use of helical vortex theory. Volume II. Computer program users manual. (Final report). [VORTEX

    SciTech Connect

    Keith, T.G. Jr.; Afjeh, A.A.; Jeng, D.R.; White, J.A.

    1985-04-01

    A description of a computer program entitled VORTEX that may be used to determine the aerodynamic performance of horizontal axis wind turbines is given. The computer code implements a vortex method from finite span wing theory and determines the induced velocity at the rotor disk by integrating the Biot-Savart law. It is assumed that the trailing helical vortex filaments form a wake of constant diameter (the rigid wave assumption) and travel downstream at the free stream velocity. The program can handle rotors having any number of blades which may be arbitrarily shaped and twisted. Many numerical details associated with the program are presented. A complete listing of the program is provided and all program variables are defined. An example problem illustrating input and output characteristics is solved.

  5. A comparison of two- and three-dimensional S809 airfoil properties for rough and smooth HAWT (horizontal-axis wind turbine) rotor operation

    SciTech Connect

    Musial, W.D.; Butterfield, C.P.; Jenks, M.D.

    1990-02-01

    At the Solar Energy Research Institute (SERI), we carried out tests to measure the effects of leading-edge roughness on an S809 airfoil using a 10-m, three-bladed, horizontal-axis wind turbine (HAWT). The rotor employed a constant-chord (.457 m) blade geometry with zero twist. Blade structural loads were measured with strain gages mounted at 9 spanwise locations. Airfoil pressure measurements were taken at the 80% spanwise station using 32 pressure taps distributed around the airfoil surface. Detailed inflow measurements were taken using nine R.M. Young Model 8002 propvane anemometers on a vertical plane array (VPA) located 10 m upwind of the test turbine in the prevailing wind direction. The major objective of this test was to determine the sensitivity of the S809 airfoil to roughness on a rotating wind turbine blade. We examined this effect by comparing several parameters. We compared power curves to show the sensitivity of whole rotor performance to roughness. We used pressure measurements to generate pressure distributions at the 80% span which operates at a Reynolds number (Re) of 800,000. We then integrated these distributions to determine the effect of roughness on the section's lift and pressure-drag coefficients. We also used the shapes of these distributions to understand how roughness affects the aerodynamic forces on the airfoil. We also compared rough and smooth wind tunnel data to the rotating blade data to study the effects of blade rotation on the aerodynamic behavior of the airfoil below, near, and beyond stall. 13 refs., 11 figs.

  6. Tidal Energy Conversion Installation at an Estuarine Bridge Site: Resource Evaluation and Energy Production Estimate

    NASA Astrophysics Data System (ADS)

    Wosnik, M.; Gagnon, I.; Baldwin, K.; Bell, E.

    2015-12-01

    The "Living Bridge" project aims to create a self-diagnosing, self-reporting "smart bridge" powered by a local renewable energy source, tidal energy - transforming Memorial Bridge, a vertical lift bridge over the tidal Piscataqua River connecting Portsmouth, NH and Kittery, ME, into a living laboratory for researchers, engineers, scientists, and the community. The Living Bridge project includes the installation of a tidal turbine at the Memorial Bridge. The energy converted by the turbine will power structural health monitoring, environmental and underwater instrumentation. Utilizing locally available tidal energy can make bridge operation more sustainable, can "harden" transportation infrastructure against prolonged grid outages and can demonstrate a prototype of an "estuarine bridge of the future". A spatio-temporal tidal energy resource assessment was performed using long term bottom-deployed Acoustic Doppler Current Profilers (ADCP) at two locations: near the planned deployment location in 2013-14 for 123 days and mid-channel in 2007 for 35 days. Data were evaluated to determine the amount of available kinetic energy that can be converted into usable electrical energy on the bridge. Changes in available kinetic energy with ebb/flood and spring/neap tidal cycles and electrical energy demand were analyzed. The target deployment site exhibited significantly more energetic ebb tides than flood tides, which can be explained by the local bathymetry of the tidal estuary. A system model is used to calculate the net energy savings using various tidal generator and battery bank configurations. Different resource evaluation methodologies were also analyzed, e.g., using a representative ADCP "bin" vs. a more refined, turbine-geometry-specific methodology, and using static bin height vs. bin height that move w.r.t. the free surface throughout a tidal cycle (representative of a bottom-fixed or floating turbine deployment, respectively). ADCP operating frequencies and bin

  7. A Comparison of Platform Options for Deep-water Floating Offshore Vertical Axis Wind Turbines: An Initial Study.

    SciTech Connect

    Bull, Diana L; Fowler, Matthew; Goupee, Andrew

    2014-08-01

    This analysis utilizes a 5 - MW VAWT topside design envelope created by Sandia National Laborator ies to compare floating platform options fo r each turbine in the design space. The platform designs are based on two existing designs, the OC3 Hywind spar - buoy and Principal Power's WindFloat semi - submersible. These designs are scaled using Froude - scaling relationships to determine an appropriately sized spar - buoy and semi - submersible design for each topside. Both the physical size of the required platform as well as mooring configurations are considered. Results are compared with a comparable 5 - MW HAWT in order to identify potential differences in the platform and mooring sizing between the VAWT and HAWT . The study shows that there is potential for cost savings due to reduced platform size requirements for the VAWT.

  8. Turbulence influence on optimum tip speed ratio for a 200 kW vertical axis wind turbine

    NASA Astrophysics Data System (ADS)

    Möllerström, E.; Eriksson, S.; Goude, A.; Ottermo, F.; Hylander, J.

    2016-09-01

    The influence of turbulence intensity (TI) on the tip speed ratio for maximum power coefficient, here called λCp_max, is studied for a 200 kW VAWT H-rotor using logged data from a 14 month period with the H-rotor operating in wind speeds up to 9 m/s. The TI - λCp_max relation is examined by dividing 10 min mean values in different turbulence intensity ranges and producing multiple CP(λ) curves. A clear positive relation between TI and λCp_max is shown and is further strengthened as possible secondary effects are examined and deemed non-essential. The established relation makes it possible to tune the control strategy to enhance the total efficiency of the turbine.

  9. Performance and aerodynamic braking of a horizontal-axis wind turbine from small-scale wind tunnel tests

    NASA Technical Reports Server (NTRS)

    Cao, H. V.; Wentz, W. H., Jr.

    1987-01-01

    Wind tunnel tests of three 20" diameter, zero twist, zero pitch wind turbine rotor models were conducted in a 7' x 10' wind tunnel to determine the performance of such rotors with NACA 23024 and NACA 64 sub 3-621 airfoil sections. Aerodynamic braking characteristics of a 38% span, 30% chord, vented aileron configuration were measured on the NACA 23024 rotor. Surface flow patterns were observed using fluorescent mini-tufts attached to the suction side of the rotor blades. Experimental results with and without ailerons are compared to predictions using airfoil section data and a momentum performance code. Results of the performance studies show that the 64 sub 3-621 rotor produces higher peak power than the 23024 rotor for a given rotor speed. Analytical studies, however, indicate that the 23024 should produce higher power. Transition strip experiments show that the 23024 rotor is much more sensitive to roughness than the 64 sub 3-621 rotor. These trends agree with analytical predictions. Results of the aileron test show that this aileron, when deflected, produces a braking torque at all tip speed ratios. In free wheeling coastdowns the rotor blade stopped, then rotated backward at a tip speed ratio of -0.6.

  10. Numerical investigation of Marine Hydrokinetic Turbines: methodology development for single turbine and small array simulation, and application to flume and full-scale reference models

    NASA Astrophysics Data System (ADS)

    Javaherchi Mozafari, Amir Teymour

    A hierarchy of numerical models, Single Rotating Reference Frame (SRF) and Blade Element Model (BEM), were used for numerical investigation of horizontal axis Marine Hydrokinetic (MHK) Turbines. In the initial stage the SRF and BEM were used to simulate the performance and turbulent wake of a flume- and a full-scale MHK turbine reference model. A significant level of understanding and confidence was developed in the implementation of numerical models for simulation of a MHK turbine. This was achieved by simulation of the flume-scale turbine experiments and comparison between numerical and experimental results. Then the developed numerical methodology was applied to simulate the performance and wake of the full-scale MHK reference model (DOE Reference Model 1). In the second stage the BEM was used to simulate the experimental study of two different MHK turbine array configurations (i.e. two and three coaxial turbines). After developing a numerical methodology using the experimental comparison to simulate the flow field of a turbine array, this methodology was applied toward array optimization study of a full-scale model with the goal of proposing an optimized MHK turbine configuration with minimal computational cost and time. In the last stage the BEM was used to investigate one of the potential environmental effects of MHK turbine. A general methodological approach was developed and experimentally validated to investigate the effect of MHK turbine wake on the sedimentation process of suspended particles in a tidal channel.

  11. Overland Tidal Power Generation Using Modular Tidal Prism

    SciTech Connect

    Khangaonkar, Tarang; Yang, Zhaoqing; Geerlofs, Simon H.; Copping, Andrea

    2010-03-01

    Naturally occurring sites with sufficient kinetic energy suitable for tidal power generation with sustained currents > 1 to 2 m/s are relatively rare. Yet sites with greater than 3 to 4 m of tidal range are relatively common around the U.S. coastline. Tidal potential does exist along the shoreline but is mostly distributed, and requires an approach which allows trapping and collection to also be conducted in a distributed manner. In this paper we examine the feasibility of generating sustainable tidal power using multiple nearshore tidal energy collection units and present the Modular Tidal Prism (MTP) basin concept. The proposed approach utilizes available tidal potential by conversion into tidal kinetic energy through cyclic expansion and drainage from shallow modular manufactured overland tidal prisms. A preliminary design and configuration of the modular tidal prism basin including inlet channel configuration and basin dimensions was developed. The unique design was shown to sustain momentum in the penstocks during flooding as well as ebbing tidal cycles. The unstructured-grid finite volume coastal ocean model (FVCOM) was used to subject the proposed design to a number of sensitivity tests and to optimize the size, shape and configuration of MTP basin for peak power generation capacity. The results show that an artificial modular basin with a reasonable footprint (≈ 300 acres) has the potential to generate 10 to 20 kw average energy through the operation of a small turbine located near the basin outlet. The potential of generating a total of 500 kw to 1 MW of power through a 20 to 40 MTP basin tidal power farms distributed along the coastline of Puget Sound, Washington, is explored.

  12. Structural-Response Analysis, Fatigue-Life Prediction, and Material Selection for 1 MW Horizontal-Axis Wind-Turbine Blades

    NASA Astrophysics Data System (ADS)

    Grujicic, M.; Arakere, G.; Subramanian, E.; Sellappan, V.; Vallejo, A.; Ozen, M.

    2010-08-01

    The problem of mechanical design, performance prediction (e.g., flap-wise/ edge-wise bending stiffness, fatigue-controlled life, the extent of bending-to-torsion coupling), and material selection for a prototypical 1 MW horizontal-axis wind turbine (HAWT) blade is investigated using various computer-aided engineering tools. For example, a computer program was developed which can automatically generate both a geometrical model and a full finite-element input deck for a given single HAWT-blade with a given airfoil shape, size, and the type and position of the interior load-bearing longitudinal beam/shear-webs. In addition, composite-material laminate lay-up can be specified and varied in order to obtain a best combination of the blade aerodynamic efficiency and longevity. A simple procedure for HAWT-blade material selection is also developed which attempts to identify the optimal material candidates for a given set of functional requirements, longevity and low weight.

  13. Sliding vane geometry turbines

    DOEpatents

    Sun, Harold Huimin; Zhang, Jizhong; Hu, Liangjun; Hanna, Dave R

    2014-12-30

    Various systems and methods are described for a variable geometry turbine. In one example, a turbine nozzle comprises a central axis and a nozzle vane. The nozzle vane includes a stationary vane and a sliding vane. The sliding vane is positioned to slide in a direction substantially tangent to an inner circumference of the turbine nozzle and in contact with the stationary vane.

  14. Wind turbine rotor assembly

    SciTech Connect

    Kaiser, H. W.

    1984-11-20

    A vertical axis wind turbine having a horizontal arm member which supports an upright blade assembly. Bearing structure coupling the blade assembly to the turbine arm permits blade movement about its longitudinal axis as well as flexing motion of the blade assembly about axes perpendicular to the longitudinal axis. A latching mechanism automatically locks the blade assembly to its supporting arm during normal turbine operation and automatically unlocks same when the turbine is at rest. For overspeed prevention, a centrifugally actuated arm functions to unlatch the blade assembly permitting same to slipstream or feather into the wind. Manually actuated means are also provided for unlatching the moving blade assembly. The turbine arm additionally carries a switching mechanism in circuit with a turbine generator with said mechanism functioning to open and hence protect the generator circuit in the event of an overspeed condition of the turbine.

  15. The Effects of the Impedance of the Flow Source on the Design of Tidal Stream Generators

    NASA Astrophysics Data System (ADS)

    Salter, S.

    2011-12-01

    The maximum performance of a wind turbine is set by the well-known Betz limit. If the designer of a wind turbine uses too fast a rotation, too large a blade chord or too high an angle of blade pitch, the air flow can take an easier path over or around the rotor. Most estimates of the tidal stream resource use equations borrowed from wind and would be reasonably accurate for a single unit. But water cannot flow through the seabed or over rotors which reach to the surface. If contra-rotating, vertical-axis turbines with a rectangular flow-window are placed close to one another and reach from the surface close to the seabed, the leakage path is blocked and they become more like turbines in a closed duct. Instead of an equation with area times velocity-cubed we should use the first power of volume flow rate though the rotor times the pressure difference across it. A long channel with a rough bed will already be losing lots of energy and will behave more like a high impedance flow. Attempts to block it with closely-packed turbines will increase the head across the turbines with only a small effect on flow rate. The same thing will occur if a close-packed line of turbines is built out to sea from a headland. It is necessary to understand the impedance of the flow source all the way out to mid-ocean. In deep seas where the current velocities at the seabed are too slow to disturb the ooze the friction coefficients will be similar to those of gloss paint, perhaps 0.0025. But the higher velocities in shallow water will remove ooze and quite large sediments leaving rough, bare rock and leading to higher friction-coefficients. Energy dissipation will be set by the higher friction coefficients and the cube of the higher velocities. The presence of turbines will reduce seabed losses and about one third of the present loss can be converted to electricity. The velocity reduction would be about 10%. In many sites the energy output will be far higher than the wind turbine equations

  16. DTP: a Tidal Power Revolution

    NASA Astrophysics Data System (ADS)

    Steijn, Robbert; Hulsbergen, Kees; van Banning, Gijs

    2013-04-01

    Tidal power can significantly contribute to the global mix of sustainable energy resources. It is climate-independent, fully predictable, and if designed properly it is environmentally friendly and socio-economically feasible. The two traditional methods of exploiting tidal power are Tidal Barrage and Tidal Stream. This study deals with an alternative Third Method, named Dynamic Tidal Power (DTP), which contrary to the other methods, utilises the oscillating character of tides, or more precisely: the acceleration inherent to unsteady flow. DTP uses a long dam (order of tens of km's), attached and perpendicular to a coast with shore-parallel tidal currents, to generate a local hydraulic head. This time-varying head is used to generate electricity in a more or less standard way with turbines and generators placed in (many) dam openings. For a first impression only: typical installed power for one DTP is more than 10 GW with electricity output > 2.1010 kWh/y and construction costs of ca. 1 EUR/W. The physical mechanism behind the creation of the head has been described by Hulsbergen e.a., (2012). Following a heuristic approach based on analytical work done by Kolkman (unpubl.), and output from numerical tidal models, Hulsbergen (2012) concluded that the maximum head (near the coast), is: hmax = 6,8*?*D*Vmax/(g*T), with Vmax the maximum alongshore flow velocity during the tidal cycle, T the tidal period and D the length of dam. Such simple relationship was also found by Mei (2012) who made a rigorous analysis of a process-based model. After a thorough reflection on DTP, this study will first check the above formula for hmax , by comparing its predictions with the output from various numerical tidal models. Any differences will be analysed in the study through an evaluation of the dominant physical processes and the schematisations inherent to both the analytical and the numerical models. The study will also address the effect of the openings in the dam, as well as the

  17. Tidal Energy.

    ERIC Educational Resources Information Center

    Impact of Science on Society, 1987

    1987-01-01

    States that tidal power projects are feasible in a relatively limited number of locations around the world. Claims that together they could theoretically produce the energy equivalent to more than one million barrels of oil per year. (TW)

  18. Physical and Numerical Model Studies of Cross-flow Turbines Towards Accurate Parameterization in Array Simulations

    NASA Astrophysics Data System (ADS)

    Wosnik, M.; Bachant, P.

    2014-12-01

    Cross-flow turbines, often referred to as vertical-axis turbines, show potential for success in marine hydrokinetic (MHK) and wind energy applications, ranging from small- to utility-scale installations in tidal/ocean currents and offshore wind. As turbine designs mature, the research focus is shifting from individual devices to the optimization of turbine arrays. It would be expensive and time-consuming to conduct physical model studies of large arrays at large model scales (to achieve sufficiently high Reynolds numbers), and hence numerical techniques are generally better suited to explore the array design parameter space. However, since the computing power available today is not sufficient to conduct simulations of the flow in and around large arrays of turbines with fully resolved turbine geometries (e.g., grid resolution into the viscous sublayer on turbine blades), the turbines' interaction with the energy resource (water current or wind) needs to be parameterized, or modeled. Models used today--a common model is the actuator disk concept--are not able to predict the unique wake structure generated by cross-flow turbines. This wake structure has been shown to create "constructive" interference in some cases, improving turbine performance in array configurations, in contrast with axial-flow, or horizontal axis devices. Towards a more accurate parameterization of cross-flow turbines, an extensive experimental study was carried out using a high-resolution turbine test bed with wake measurement capability in a large cross-section tow tank. The experimental results were then "interpolated" using high-fidelity Navier--Stokes simulations, to gain insight into the turbine's near-wake. The study was designed to achieve sufficiently high Reynolds numbers for the results to be Reynolds number independent with respect to turbine performance and wake statistics, such that they can be reliably extrapolated to full scale and used for model validation. The end product of

  19. Hydrokinetic turbine effects on fish swimming behaviour.

    PubMed

    Hammar, Linus; Andersson, Sandra; Eggertsen, Linda; Haglund, Johan; Gullström, Martin; Ehnberg, Jimmy; Molander, Sverker

    2013-01-01

    Hydrokinetic turbines, targeting the kinetic energy of fast-flowing currents, are under development with some turbines already deployed at ocean sites around the world. It remains virtually unknown as to how these technologies affect fish, and rotor collisions have been postulated as a major concern. In this study the effects of a vertical axis hydrokinetic rotor with rotational speeds up to 70 rpm were tested on the swimming patterns of naturally occurring fish in a subtropical tidal channel. Fish movements were recorded with and without the rotor in place. Results showed that no fish collided with the rotor and only a few specimens passed through rotor blades. Overall, fish reduced their movements through the area when the rotor was present. This deterrent effect on fish increased with current speed. Fish that passed the rotor avoided the near-field, about 0.3 m from the rotor for benthic reef fish. Large predatory fish were particularly cautious of the rotor and never moved closer than 1.7 m in current speeds above 0.6 ms(-1). The effects of the rotor differed among taxa and feeding guilds and it is suggested that fish boldness and body shape influenced responses. In conclusion, the tested hydrokinetic turbine rotor proved non-hazardous to fish during the investigated conditions. However, the results indicate that arrays comprising multiple turbines may restrict fish movements, particularly for large species, with possible effects on habitat connectivity if migration routes are exploited. Arrays of the investigated turbine type and comparable systems should therefore be designed with gaps of several metres width to allow large fish to pass through. In combination with further research the insights from this study can be used for guiding the design of hydrokinetic turbine arrays where needed, so preventing ecological impacts. PMID:24358334

  20. Hydrokinetic Turbine Effects on Fish Swimming Behaviour

    PubMed Central

    Hammar, Linus; Andersson, Sandra; Eggertsen, Linda; Haglund, Johan; Gullström, Martin; Ehnberg, Jimmy; Molander, Sverker

    2013-01-01

    Hydrokinetic turbines, targeting the kinetic energy of fast-flowing currents, are under development with some turbines already deployed at ocean sites around the world. It remains virtually unknown as to how these technologies affect fish, and rotor collisions have been postulated as a major concern. In this study the effects of a vertical axis hydrokinetic rotor with rotational speeds up to 70 rpm were tested on the swimming patterns of naturally occurring fish in a subtropical tidal channel. Fish movements were recorded with and without the rotor in place. Results showed that no fish collided with the rotor and only a few specimens passed through rotor blades. Overall, fish reduced their movements through the area when the rotor was present. This deterrent effect on fish increased with current speed. Fish that passed the rotor avoided the near-field, about 0.3 m from the rotor for benthic reef fish. Large predatory fish were particularly cautious of the rotor and never moved closer than 1.7 m in current speeds above 0.6 ms-1. The effects of the rotor differed among taxa and feeding guilds and it is suggested that fish boldness and body shape influenced responses. In conclusion, the tested hydrokinetic turbine rotor proved non-hazardous to fish during the investigated conditions. However, the results indicate that arrays comprising multiple turbines may restrict fish movements, particularly for large species, with possible effects on habitat connectivity if migration routes are exploited. Arrays of the investigated turbine type and comparable systems should therefore be designed with gaps of several metres width to allow large fish to pass through. In combination with further research the insights from this study can be used for guiding the design of hydrokinetic turbine arrays where needed, so preventing ecological impacts. PMID:24358334

  1. Hydrokinetic turbine effects on fish swimming behaviour.

    PubMed

    Hammar, Linus; Andersson, Sandra; Eggertsen, Linda; Haglund, Johan; Gullström, Martin; Ehnberg, Jimmy; Molander, Sverker

    2013-01-01

    Hydrokinetic turbines, targeting the kinetic energy of fast-flowing currents, are under development with some turbines already deployed at ocean sites around the world. It remains virtually unknown as to how these technologies affect fish, and rotor collisions have been postulated as a major concern. In this study the effects of a vertical axis hydrokinetic rotor with rotational speeds up to 70 rpm were tested on the swimming patterns of naturally occurring fish in a subtropical tidal channel. Fish movements were recorded with and without the rotor in place. Results showed that no fish collided with the rotor and only a few specimens passed through rotor blades. Overall, fish reduced their movements through the area when the rotor was present. This deterrent effect on fish increased with current speed. Fish that passed the rotor avoided the near-field, about 0.3 m from the rotor for benthic reef fish. Large predatory fish were particularly cautious of the rotor and never moved closer than 1.7 m in current speeds above 0.6 ms(-1). The effects of the rotor differed among taxa and feeding guilds and it is suggested that fish boldness and body shape influenced responses. In conclusion, the tested hydrokinetic turbine rotor proved non-hazardous to fish during the investigated conditions. However, the results indicate that arrays comprising multiple turbines may restrict fish movements, particularly for large species, with possible effects on habitat connectivity if migration routes are exploited. Arrays of the investigated turbine type and comparable systems should therefore be designed with gaps of several metres width to allow large fish to pass through. In combination with further research the insights from this study can be used for guiding the design of hydrokinetic turbine arrays where needed, so preventing ecological impacts.

  2. Predicting Noise From Wind Turbines

    NASA Technical Reports Server (NTRS)

    Grosveld, Ferdinand W.

    1990-01-01

    Computer program WINDY predicts broadband noise spectra of horizontal-axis wind-turbine generators. Enables adequate assessment of impact of broadband wind-turbine noise. Effects of turbulence, trailing-edge wakes, and bluntness taken into account. Program has practical application in design and siting of wind-turbine machines acceptable to community. Written in GW-Basic.

  3. Tidal Meanders

    NASA Astrophysics Data System (ADS)

    Marani, M.; Lanzoni, S.; Zandolin, D.; Seminara, S.; Rinaldo, A.

    Observational evidence is presented on the geometry of meandering tidal channels evolved within coastal wetlands characterized by different tidal, hydrodynamic, to- pographic, vegetational and ecological features. New insight is provided on the ge- ometrical properties of tidal meanders, with possible dynamic implications on their evolution. In particular, it is shown that large spatial gradients of leading flow rates induce important spatial variabilities of meander wavelengths and widths, while their ratio remains remarkably constant in the range of scales of observation. This holds regardless of changes in width and wavelength up to two orders of magnitude. This suggests a locally adapted evolution, involving the morphological adjustment to the chief landforming events driven by local hydrodynamics. The spectral analysis of lo- cal curvatures reveals that Kinoshita's model curve does not fit tidal meanders due to the presence of even harmonics, in particular the second mode. Geometric parameters are constructed that are suitable to detect possible geomorphic signatures of the tran- sitions from ebb- to flood-dominated hydrodynamics, here related to the skewness of the tidal meander. Trends in skewness, however, prove elusive to measure and fail to show detectable patterns. We also study comparatively the spatial patterns of evolu- tion of the ratios of channel width to depth, and the ratio of width to local radius of curvature. Interestingly, the latter ratio exhibits consistency despite sharp differences in channel incision. Since the degree of incision, epitomized by the width-to-depth ratio, responds to the relevant erosion and migrations mechanisms and is much sen- sitive to vegetation and sediment properties, it is noticeable that we observe a great variety of landscape carving modes and yet recurrent planar features like constant width/curvature and wavelength/width ratios.

  4. The Influence of Surface Gravity Waves on Marine Current Turbine Performance

    NASA Astrophysics Data System (ADS)

    Lust, E.; Luznik, L.; Flack, K. A.; Walker, J.; Van Benthem, M.

    2013-12-01

    Surface gravity waves can significantly impact operating conditions for a marine current turbine, imparting unsteady velocities several orders of magnitude larger than the ambient turbulence. The influence of surface waves on the performance characteristics of a two-bladed horizontal axis marine current turbine was investigated experimentally in a large towing tank facility at the United States Naval Academy. The turbine model had a 0.8 m diameter (D) rotor with a NACA 63-618 cross section, which is Reynolds number independent with respect to lift coefficient in the operating range of Rec ≈ 4 x 105. The torque, thrust and rotational speed were measured at a range of tip speed ratios (TSR) from 5 < TSR < 11. Tests were performed at two rotor depths (1.3D and 2.25D) with and without waves. The average turbine performance characteristics were largely unchanged by depth or the presence of waves. However, tests with waves indicate large variations in thrust, rotational speed, and torque occurred with the passage of the wave. These results demonstrate the impact of surface gravity waves on power production and structural loading and suggest that turbines should be positioned vertically within the water column at a depth which maximizes power output while minimizing material fatigue. Keywords-- marine current turbine, tidal turbine, towing-tank experiments, surface gravity waves, fatigue loading, phase averaging

  5. Turbine inner shroud and turbine assembly containing such inner shroud

    DOEpatents

    Bagepalli, Bharat Sampathkumaran; Corman, Gregory Scot; Dean, Anthony John; DiMascio, Paul Stephen; Mirdamadi, Massoud

    2001-01-01

    A turbine inner shroud and a turbine assembly. The turbine assembly includes a turbine stator having a longitudinal axis and having an outer shroud block with opposing and longitudinally outward facing first and second sides having open slots. A ceramic inner shroud has longitudinally inward facing hook portions which can longitudinally and radially surround a portion of the sides of the outer shroud block. In one attachment, the hook portions are engageable with, and are positioned within, the open slots.

  6. Wind Turbine Structural Dynamics

    NASA Technical Reports Server (NTRS)

    Miller, D. R. (Editor)

    1978-01-01

    A workshop on wind turbine structural dynamics was held to review and document current United States work on the dynamic behavior of large wind turbines, primarily of the horizontal-axis type, and to identify and discuss other wind turbine configurations that may have lower cost and weight. Information was exchanged on the following topics: (1) Methods for calculating dynamic loads; (2) Aeroelasticity stability (3) Wind loads, both steady and transient; (4) Critical design conditions; (5) Drive train dynamics; and (6) Behavior of operating wind turbines.

  7. Flexible metallic seal for transition duct in turbine system

    SciTech Connect

    Flanagan, James Scott; LeBegue, Jeffrey Scott; McMahan, Kevin Weston; Dillard, Daniel Jackson; Pentecost, Ronnie Ray

    2014-04-22

    A turbine system is disclosed. In one embodiment, the turbine system includes a transition duct. The transition duct includes an inlet, an outlet, and a passage extending between the inlet and the outlet and defining a longitudinal axis, a radial axis, and a tangential axis. The outlet of the transition duct is offset from the inlet along the longitudinal axis and the tangential axis. The transition duct further includes an interface member for interfacing with a turbine section. The turbine system further includes a flexible metallic seal contacting the interface member to provide a seal between the interface member and the turbine section.

  8. Convolution seal for transition duct in turbine system

    SciTech Connect

    Flanagan, James Scott; LeBegue, Jeffrey Scott; McMahan, Kevin Weston; Dillard, Daniel Jackson; Pentecost, Ronnie Ray

    2015-03-10

    A turbine system is disclosed. In one embodiment, the turbine system includes a transition duct. The transition duct includes an inlet, an outlet, and a passage extending between the inlet and the outlet and defining a longitudinal axis, a radial axis, and a tangential axis. The outlet of the transition duct is offset from the inlet along the longitudinal axis and the tangential axis. The transition duct further includes an interface member for interfacing with a turbine section. The turbine system further includes a convolution seal contacting the interface member to provide a seal between the interface member and the turbine section.

  9. Leaf seal for transition duct in turbine system

    SciTech Connect

    Flanagan, James Scott; LeBegue, Jeffrey Scott; McMahan, Kevin Weston; Dillard, Daniel Jackson; Pentecost, Ronnie Ray

    2013-06-11

    A turbine system is disclosed. In one embodiment, the turbine system includes a transition duct. The transition duct includes an inlet, an outlet, and a passage extending between the inlet and the outlet and defining a longitudinal axis, a radial axis, and a tangential axis. The outlet of the transition duct is offset from the inlet along the longitudinal axis and the tangential axis. The transition duct further includes an interface member for interfacing with a turbine section. The turbine system further includes a leaf seal contacting the interface member to provide a seal between the interface member and the turbine section.

  10. Maine Tidal Power Initiative: Environmental Impact Protocols For Tidal Power

    SciTech Connect

    Peterson, Michael Leroy; Zydlewski, Gayle Barbin; Xue, Huijie; Johnson, Teresa R.

    2014-02-02

    The Maine Tidal Power Initiative (MTPI), an interdisciplinary group of engineers, biologists, oceanographers, and social scientists, has been conducting research to evaluate tidal energy resources and better understand the potential effects and impacts of marine hydro-kinetic (MHK) development on the environment and local community. Project efforts include: 1) resource assessment, 2) development of initial device design parameters using scale model tests, 3) baseline environmental studies and monitoring, and 4) human and community responses. This work included in-situ measurement of the environmental and social response to the pre-commercial Turbine Generator Unit (TGU®) developed by Ocean Renewable Power Company (ORPC) as well as considering the path forward for smaller community scale projects.

  11. Modeling In-stream Tidal Energy Extraction and Its Potential Environmental Impacts

    SciTech Connect

    Yang, Zhaoqing; Wang, Taiping; Copping, Andrea; Geerlofs, Simon H.

    2014-09-30

    In recent years, there has been growing interest in harnessing in-stream tidal energy in response to concerns of increasing energy demand and to mitigate climate change impacts. While many studies have been conducted to assess and map tidal energy resources, efforts for quantifying the associated potential environmental impacts have been limited. This paper presents the development of a tidal turbine module within a three-dimensional unstructured-grid coastal ocean model and its application for assessing the potential environmental impacts associated with tidal energy extraction. The model is used to investigate in-stream tidal energy extraction and associated impacts on estuarine hydrodynamic and biological processes in a tidally dominant estuary. A series of numerical experiments with varying numbers and configurations of turbines installed in an idealized estuary were carried out to assess the changes in the hydrodynamics and biological processes due to tidal energy extraction. Model results indicated that a large number of turbines are required to extract the maximum tidal energy and cause significant reduction of the volume flux. Preliminary model results also indicate that extraction of tidal energy increases vertical mixing and decreases flushing rate in a stratified estuary. The tidal turbine model was applied to simulate tidal energy extraction in Puget Sound, a large fjord-like estuary in the Pacific Northwest coast.

  12. Admiralty Inlet Pilot Tidal Project Final Technical Report

    SciTech Connect

    Collar, Craig

    2015-09-14

    This document represents the final report for the Admiralty Inlet Pilot Tidal Project, located in Puget Sound, Washington, United States. The Project purpose was to license, permit, and install a grid-connected deep-water tidal turbine array (two turbines) to be used as a platform to gather operational and environmental data on tidal energy generation. The data could then be used to better inform the viability of commercial tidal energy generation from technical, economic, social, and environmental standpoints. This data would serve as a critical step towards the responsible advancement of commercial scale tidal energy in the United States and around the world. In late 2014, Project activities were discontinued due to escalating costs, and the DOE award was terminated in early 2015. Permitting, licensing, and engineering design activities were completed under this award. Final design, deployment, operation, and monitoring were not completed. This report discusses the results and accomplishments achieved under the subject award.

  13. Half Moon Cove Tidal Project. Feasibility report

    NASA Astrophysics Data System (ADS)

    1980-11-01

    The project would be located in a small cove in the northern part of Cobscook Bay in the vicinity of Eastport, Maine. The basin impounded by the barrier when full will approximate 1.2 square miles. The average tidal range at Eastport is 18.2 feet. The maximum spring tidal range will be 26.2 feet and the neap tidal range 12.8 feet. The project will be of the single pool-type single effect in which generation takes place on the ebb tide only. Utilizing an average mean tidal range of 18.2 feet the mode of operation enables generation for approximately ten and one-half (10-1/2) hours per day or slightly in excess of five (5) hours per tide. The installed capacity will be 12 MW utilizing 2 to 6 MW units. An axial flow, or Bulb type of turbine was selected for this study.

  14. Wind turbine spoiler

    DOEpatents

    Sullivan, W.N.

    An aerodynamic spoiler system for a vertical axis wind turbine includes spoilers on the blades initially stored near the rotor axis to minimize drag. A solenoid latch adjacent the central support tower releases the spoilers and centrifugal force causes the spoilers to move up the turbine blades away from the rotor axis, thereby producing a braking effect and actual slowing of the associated wind turbine, if desired. The spoiler system can also be used as an infinitely variable power control by regulated movement of the spoilers on the blades over the range between the undeployed and fully deployed positions. This is done by the use of a suitable powered reel and cable located at the rotor tower to move the spoilers.

  15. Wind turbine spoiler

    DOEpatents

    Sullivan, William N.

    1985-01-01

    An aerodynamic spoiler system for a vertical axis wind turbine includes spoilers on the blades initially stored near the rotor axis to minimize drag. A solenoid latch adjacent the central support tower releases the spoilers and centrifugal force causes the spoilers to move up the turbine blades away from the rotor axis, thereby producing a braking effect and actual slowing of the associated wind turbine, if desired. The spoiler system can also be used as an infinitely variable power control by regulated movement of the spoilers on the blades over the range between the undeployed and fully deployed positions. This is done by the use of a suitable powered reel and cable located at the rotor tower to move the spoilers.

  16. Tidal power in Argentina

    SciTech Connect

    Aisiks, E.G.

    1993-03-01

    This presentation describes the tidal power potential of Argentina and the current status of its utilization. The topics of the presentation include tidal power potential, electric production of the region and the Argentine share of production and consumption, conventional hydroelectric potential, economic feasibility of tidal power production, and the general design and feasibility of a tidal power plant planned for the San Jose Gulf.

  17. Half Moon Cove Tidal Project. Feasibility report

    SciTech Connect

    Not Available

    1980-11-01

    The proposed Half Moon Cove Tidal Power Project would be located in a small cove in the northern part of Cobscook Bay in the vicinity of Eastport, Maine. The project would be the first tidal electric power generating plant in the United States of America. The basin impounded by the barrier when full will approximate 1.2 square miles. The average tidal range at Eastport is 18.2 feet. The maximum spring tidal range will be 26.2 feet and the neap tidal range 12.8 feet. The project will be of the single pool-type single effect in which generation takes place on the ebb tide only. Utilizing an average mean tidal range of 18.2 feet the mode of operation enables generation for approximately ten and one-half (10-1/2) hours per day or slightly in excess of five (5) hours per tide. The installed capacity will be 12 MW utilizing 2 to 6 MW units. An axial flow, or Bulb type of turbine was selected for this study.

  18. Development of a towing tank PIV system and a wake survey of a marine current turbine under steady conditions

    NASA Astrophysics Data System (ADS)

    Lust, Ethan; Luznik, Luksa; Flack, Karen

    2015-11-01

    A submersible particle image velocimetry (PIV) system was designed and built at the U.S. Naval Academy. The system was used to study the wake of a scale-independent horizontal axis marine current turbine. The turbine is a 1/25th scale model of the U.S. National Renewable Energy Laboratory's Reference Model 1 (RM1) tidal turbine. It is a two-bladed turbine measuring 0.8 m in diameter and featuring a NACA 63-618 airfoil cross-section. The wake survey was conducted over an area extending 0.25D forward of the turbine tip path to 2.0D aft to a depth of 1.0D beneath the turbine output shaft in the streamwise plane. Each field of view was approximately 30 cm by 30 cm, and each overlapped the adjacent fields of view by 5 cm. The entire flow field was then reconstructed by registering the resultant vector fields together into a single field of investigation. Results include the field of investigation from a representative case, for the mean velocity field averaged over approximately 1,000 realizations, and turbulent statistics including turbulence intensities, Reynolds shear stresses, and turbulent kinetic energy. This research was funded by the Office of Naval Research.

  19. TIDAL TURBULENCE SPECTRA FROM A COMPLIANT MOORING

    SciTech Connect

    Thomson, Jim; Kilcher, Levi; Richmond, Marshall C.; Talbert, Joe; deKlerk, Alex; Polagye, Brian; Guerra, Maricarmen; Cienfuegos, Rodrigo

    2013-06-13

    A compliant mooring to collect high frequency turbulence data at a tidal energy site is evaluated in a series of short demon- stration deployments. The Tidal Turbulence Mooring (TTM) improves upon recent bottom-mounted approaches by suspend- ing Acoustic Doppler Velocimeters (ADVs) at mid-water depths (which are more relevant to tidal turbines). The ADV turbulence data are superior to Acoustic Doppler Current Profiler (ADCP) data, but are subject to motion contamination when suspended on a mooring in strong currents. In this demonstration, passive stabilization is shown to be sufficient for acquiring bulk statistics of the turbulence, without motion correction. With motion cor- rection (post-processing), data quality is further improved; the relative merits of direct and spectral motion correction are dis- cussed.

  20. A Modeling Study of In-stream Tidal Energy Extraction and Its Potential Environmental Impacts in a Tidal Channel and Bay System

    NASA Astrophysics Data System (ADS)

    Wang, T.; Yang, Z.; Copping, A. E.

    2012-12-01

    In recent years, there has been growing interest in harnessing in-stream tidal energy in response to concerns of increasing energy demand and to mitigate climate change impacts. While efforts have been made to assess and map available tidal energy resources using numerical models, little attention has been paid directly quantifying the associated potential environmental impacts as part of tidal energy generation. This paper presents the development of a tidal turbine module within a three-dimensional (3-D) unstructured grid coastal ocean model. The model is used to investigate in-stream tidal energy extraction and associated impacts on estuarine hydrodynamic and biological processes in a stratified estuarine system. A series of numerical experiments with varying numbers and configurations of turbines were carried out to assess the changes in the hydrodynamics and biological processes in the tidal channel and bay system due to tidal energy extraction. Model results show the maximum extractable energy depends strongly on the turbine hub height, and that the effects of energy extraction on the flow fields vary vertically. Preliminary model results also indicate that extraction of tidal energy increases vertical mixing and decreases flushing rate in the estuary. As one of the early modeling efforts aimed directly at examining the impacts of tidal energy extraction on estuarine circulation and biological processes, this study demonstrates that numerical models can serve as a very useful tool for this purpose. However, careful efforts are warranted to address system-specific environmental issues in real world, complex estuarine systems.

  1. Tidal Locking Of The Earth

    NASA Astrophysics Data System (ADS)

    Koohafkan, Michael

    2006-05-01

    The Moon's orbit and spin period are nearly synchronized, or tidally locked. Could the Moon's orbit and the Earth's spin eventually synchronize as well? The Moon's gravitational pull on the Earth produces tides in our oceans, and tidal friction gradually lengthens our days. Less obvious gravitational interactions between the Earth and Moon may also have effects on Earth's spin. The Earth is slightly distorted into an egg-like shape, and the torque exerted by the Moon on our equatorial bulge slowly changes the tilt of our spin axis. How do effects such as these change as the Moon drifts away from Earth? I will examine gravitational interactions between Earth and Moon to learn how they contribute to the deceleration of the Earth's rotation. My goal is to determine the amount of time it would take for the Earth's rotational speed to decelerate until the period of a single rotation matches the period of the Moon's orbit around Earth -- when the Earth is ``tidally locked'' with the Moon. I aim to derive a general mathematical expression for the rotational deceleration of the Earth due to Moon's gravitational influences.

  2. Wind turbine with damper

    SciTech Connect

    Kenfield, J.A.C.

    1987-06-23

    This patent describes a horizontal axis wind turbine assembly comprising: a rotor assembly having delta wing blades; a head assembly secured at one end to the rotor assembly and being mountable on a tower so as to pivot about a vertical yaw axis; a tail assembly pivotally mounted on the other end of the head assembly, so as to pivot about a vertical axis, the assembly having one or more upstanding tail surfaces which cooperate with the wind to cause the assembly to track the wind; the central axis of the rotor assembly being offset from the vertical plane of the yaw axis; A wind force acting on the blades will generate a moment about the yaw axis; moment urges the rotor assembly to pivot from an operative position, transverse to the wind, toward a feathered position, edgeways to the wind flow; the tail assembly continues to track the wind; means, connected with the head assembly, for applying a counterbalancing counter-rotational moment to the head assembly to resist the wind moment; a container, mounted in the wind turbine assembly, for containing a reservoir of hydraulic fluid; a double-acting cylinder being pivotally connected with the head and tail assemblies so as to resist pivoting movement of the head assembly about the yaw axis; hydraulic fluid lines interconnecting the reservoir and the two ends of the cylinder chamber; and means for controlling the rate of fluid movement through each of the lines.

  3. Site Characterization at a Tidal Energy Site in the East River, NY (usa)

    NASA Astrophysics Data System (ADS)

    Gunawan, B.; Neary, V. S.; Colby, J.

    2012-12-01

    A comprehensive tidal energy site characterization is performed using ADV measurements of instantaneous horizontal current magnitude and direction at the planned hub centerline of a tidal turbine over a two month period, and contributes to the growing data base of tidal energy site hydrodynamic conditions. The temporal variation, mean current statistics, and turbulence of the key tidal hydrodynamic parameters are examined in detail, and compared to estimates from two tidal energy sites in Puget Sound. Tidal hydrodynamic conditions, including mean annual current (at hub height), the speed of extreme gusts (instantaneous horizontal currents acting normal to the rotor plane), and turbulence intensity (as proposed here, relative to a mean current of 2 m s-1) can vary greatly among tidal energy sites. Comparison of hydrodynamic conditions measured in the East River tidal straight in New York City with those reported for two tidal energy sites in Puget Sound indicate differences of mean annual current speeds, difference in the instantaneous current speeds of extreme gusts, and differences in turbulence intensities. Significant differences in these parameters among the tidal energy sites, and with the tidal resource assessment map, highlight the importance of conducting site resource characterization with ADV measurements at the machine scale. As with the wind industry, which adopted an International Electrotechnical Commission (IEC) wind class standard to aid in the selection of wind turbines for a particular site, it is recommended that the tidal energy industry adopt an appropriate standard for tidal current classes. Such a standard requires a comprehensive field campaign at multiple tidal energy sites that can identify the key hydrodynamic parameters for tidal current site classification, select a list of tidal energy sites that exhibit the range of hydrodynamic conditions that will be encountered, and adopt consistent measurement practices (standards) for site

  4. Turbine nozzle positioning system

    DOEpatents

    Norton, Paul F.; Shaffer, James E.

    1996-01-30

    A nozzle guide vane assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and being attached to conventional metallic components. The nozzle guide vane assembly includes an outer shroud having a mounting leg with an opening defined therein, a tip shoe ring having a mounting member with an opening defined therein, a nozzle support ring having a plurality of holes therein and a pin positioned in the corresponding opening in the outer shroud, opening in the tip shoe ring and the hole in the nozzle support ring. A rolling joint is provided between metallic components of the gas turbine engine and the nozzle guide vane assembly. The nozzle guide vane assembly is positioned radially about a central axis of the gas turbine engine and axially aligned with a combustor of the gas turbine engine.

  5. Turbine nozzle positioning system

    DOEpatents

    Norton, P.F.; Shaffer, J.E.

    1996-01-30

    A nozzle guide vane assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and being attached to conventional metallic components. The nozzle guide vane assembly includes an outer shroud having a mounting leg with an opening defined therein, a tip shoe ring having a mounting member with an opening defined therein, a nozzle support ring having a plurality of holes therein and a pin positioned in the corresponding opening in the outer shroud, opening in the tip shoe ring and the hole in the nozzle support ring. A rolling joint is provided between metallic components of the gas turbine engine and the nozzle guide vane assembly. The nozzle guide vane assembly is positioned radially about a central axis of the gas turbine engine and axially aligned with a combustor of the gas turbine engine. 9 figs.

  6. Turbinate surgery

    MedlinePlus

    Turbinectomy; Turbinoplasty; Turbinate reduction; Nasal airway surgery ... There are several types of turbinate surgery: Turbinectomy: All or part of the lower turbinate is taken out. This can be done in several different ways, but sometimes a ...

  7. Modeling the Effects of Tidal Energy Extraction on Estuarine Hydrodynamics in a Stratified Estuary

    SciTech Connect

    Yang, Zhaoqing; Wang, Taiping

    2013-08-15

    A three-dimensional coastal ocean model with a tidal turbine module was used in this paper to study the effects of tidal energy extraction on temperature and salinity stratification and density driven two-layer estuarine circulation. Numerical experiments with various turbine array configurations were carried out to investigate the changes in tidally mean temperature, salinity and velocity profiles in an idealized stratified estuary that connects to coastal water through a narrow tidal channel. The model was driven by tides, river inflow and sea surface heat flux. To represent the realistic size of commercial tidal farms, model simulations were conducted based on a small percentage of the total number of turbines that would generate the maximum extractable energy in the system. Model results indicated that extraction of tidal energy will increase the vertical mixing and decrease the stratification in the estuary. Extraction of tidal energy has stronger impact on the tidally-averaged salinity, temperature and velocity in the surface layer than the bottom. Energy extraction also weakens the two-layer estuarine circulation, especially during neap tides when tidal mixing the weakest and energy extraction is the smallest. Model results also show that energy generation can be much more efficient with higher hub height with relatively small changes in stratification and two-layer estuarine circulation.

  8. Overview of Vertical Axis Wind Turbine (VAWT)

    NASA Technical Reports Server (NTRS)

    Sullivan, W. N.

    1979-01-01

    A survey is presented of the practices which were applied for designing VAWT blades. An attempt is made to discuss strengths and weaknesses of the existing procedures. Discussion is provided on planned or suggested future work in developing improved design tools.

  9. Convolution seal for transition duct in turbine system

    SciTech Connect

    Flanagan, James Scott; LeBegue, Jeffrey Scott; McMahan, Kevin Weston; Dillard, Daniel Jackson; Pentecost, Ronnie Ray

    2015-05-26

    A turbine system is disclosed. In one embodiment, the turbine system includes a transition duct. The transition duct includes an inlet, an outlet, and a passage extending between the inlet and the outlet and defining a longitudinal axis, a radial axis, and a tangential axis. The outlet of the transition duct is offset from the inlet along the longitudinal axis and the tangential axis. The transition duct further includes an interface feature for interfacing with an adjacent transition duct. The turbine system further includes a convolution seal contacting the interface feature to provide a seal between the interface feature and the adjacent transition duct.

  10. Tidal Power in France

    SciTech Connect

    Frau, J.P. )

    1993-03-01

    This presentation discusses the tidal power resource of France and the successes of the La Rance Plant. The topics of the presentation include power generation, adaptation of output to grid requirements, plant installation, environmental factors, La Rance success, and a review of major world wide tidal energy projects in the UK, Canada, South Korea, India, and Argentina.

  11. TIDEV: Tidal Evolution package

    NASA Astrophysics Data System (ADS)

    Cuartas-Restrepo, P.; Melita, M.; Zuluaga, J.; Portilla, B.; Sucerquia, M.; Miloni, O.

    2016-09-01

    TIDEV (Tidal Evolution package) calculates the evolution of rotation for tidally interacting bodies using Efroimsky-Makarov-Williams (EMW) formalism. The package integrates tidal evolution equations and computes the rotational and dynamical evolution of a planet under tidal and triaxial torques. TIDEV accounts for the perturbative effects due to the presence of the other planets in the system, especially the secular variations of the eccentricity. Bulk parameters include the mass and radius of the planet (and those of the other planets involved in the integration), the size and mass of the host star, the Maxwell time and Andrade's parameter. TIDEV also calculates the time scale that a planet takes to be tidally locked as well as the periods of rotation reached at the end of the spin-orbit evolution.

  12. Wind turbine aerodynamics research needs assessment

    NASA Astrophysics Data System (ADS)

    Stoddard, F. S.; Porter, B. K.

    1986-01-01

    A prioritized list is developed for wind turbine aerodynamic research needs and opportunities which could be used by the Department of Energy program management team in detailing the DOE Five-Year Wind Turbine Research Plan. The focus of the Assessment was the basic science of aerodynamics as applied to wind turbines, including all relevant phenomena, such as turbulence, dynamic stall, three-dimensional effects, viscosity, wake geometry, and others which influence aerodynamic understanding and design. The study was restricted to wind turbines that provide electrical energy compatible with the utility grid, and included both horizontal axis wind turbines (HAWT) and vertical axis wind turbines (VAWT). Also, no economic constraints were imposed on the design concepts or recommendations since the focus of the investigation was purely scientific.

  13. Turbine nozzle attachment system

    DOEpatents

    Norton, P.F.; Shaffer, J.E.

    1995-10-24

    A nozzle guide vane assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and is attached to conventional metallic components. The nozzle guide vane assembly includes a pair of legs extending radially outwardly from an outer shroud and a pair of mounting legs extending radially inwardly from an inner shroud. Each of the pair of legs and mounting legs have a pair of holes therein. A plurality of members attached to the gas turbine engine have a plurality of bores therein which axially align with corresponding ones of the pair of holes in the legs. A plurality of pins are positioned within the corresponding holes and bores radially positioning the nozzle guide vane assembly about a central axis of the gas turbine engine. 3 figs.

  14. Turbine nozzle attachment system

    DOEpatents

    Norton, Paul F.; Shaffer, James E.

    1995-01-01

    A nozzle guide vane assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and being attached to conventional metallic components. The nozzle guide vane assembly includes a pair of legs extending radially outwardly from an outer shroud and a pair of mounting legs extending radially inwardly from an inner shroud. Each of the pair of legs and mounting legs have a pair of holes therein. A plurality of members attached to the gas turbine engine have a plurality of bores therein which axially align with corresponding ones of the pair of holes in the legs. A plurality of pins are positioned within the corresponding holes and bores radially positioning the nozzle guide vane assembly about a central axis of the gas turbine engine.

  15. Environmental Effects of Hydrokinetic Turbines on Fish: Desktop and Laboratory Flume Studies

    SciTech Connect

    Jacobson, Paul T.; Amaral, Stephen V.; Castro-Santos, Theodore; Giza, Dan; Haro, Alexander J.; Hecker, George; McMahon, Brian; Perkins, Norman; Pioppi, Nick

    2012-12-31

    This collection of three reports describes desktop and laboratory flume studies that provide information to support assessment of the potential for injury and mortality of fish that encounter hydrokinetic turbines of various designs installed in tidal and river environments. Behavioral responses to turbine exposure also are investigated to support assessment of the potential for disruptions to upstream and downstream movements of fish. The studies: (1) conducted an assessment of potential injury mechanisms using available data from studies with conventional hydro turbines; (2) developed theoretical models for predicting blade strike probabilities and mortality rates; and (3) performed flume testing with three turbine designs and several fish species and size groups in two laboratory flumes to estimate survival rates and document fish behavior. The project yielded three reports which this document comprises. The three constituent documents are addressed individually below Fish Passage Through Turbines: Application of Conventional Hydropower Data to Hydrokinetic Technologies Fish passing through the blade sweep of a hydrokinetic turbine experience a much less harsh physical environment than do fish entrained through conventional hydro turbines. The design and operation of conventional turbines results in high flow velocities, abrupt changes in flow direction, relatively high runner rotational and blade speeds, rapid and significant changes in pressure, and the need for various structures throughout the turbine passageway that can be impacted by fish. These conditions generally do not occur or are not significant factors for hydrokinetic turbines. Furthermore, compared to conventional hydro turbines, hydrokinetic turbines typically produce relatively minor changes in shear, turbulence, and pressure levels from ambient conditions in the surrounding environment. Injuries and mortality from mechanical injuries will be less as well, mainly due to low rotational speeds and

  16. The stiffness tailoring of megawatt wind turbine

    NASA Astrophysics Data System (ADS)

    Li, Z. M.; Li, C.; Ye, Z.; Wu, P.; Lu, Y. F.

    2013-12-01

    Wind power has developed rapidly in recently years, the wind turbine's blades determine the performance of the device and the power. In this paper, we used integrated tailoring aimed at institutional characteristics of horizontal axis wind turbine with the composite laminated plate theory, then analyzed the composite blades of wind turbine by combining experimental analysis and finite elements method, and finally studied the influences that composite material properties on stiffness tailoring with changes in the number of different layers.

  17. Tidal energy site resource assessment in the East River tidal strait, near Roosevelt Island, New York, New York

    SciTech Connect

    Gunawan, Budi; Neary, Vincent S.; Colby, Jonathan

    2014-06-22

    This study demonstrates a site resource assessment to examine the temporal variation of the mean current, turbulence intensities, and power densities for a tidal energy site in the East River tidal strait. These variables were derived from two-months of acoustic Doppler velocimeter (ADV) measurements at the design hub height of the Verdant Power Gen5 hydrokinetic turbine. The study site is a tidal strait that exhibits semi-diurnal tidal current characteristics, with a mean horizontal current speed of 1.4 m s-1, and turbulence intensity of 15% at a reference mean current of 2 m s-1. Flood and ebb flow directions are nearly bi-directional, with higher current magnitude during flood tide, which skews the power production towards the flood tide period. The tidal hydrodynamics at the site are highly regular, as indicated by the tidal current time series that resembles a sinusoidal function. This study also shows that the theoretical force and power densities derived from the current measurements can significantly be influenced by the length of the time window used for averaging the current data. Furthermore, the theoretical power density at the site, derived from the current measurements, is one order of magnitude greater than that reported in the U.S. national resource assessment. As a result, this discrepancy highlights the importance of conducting site resource assessments based on measurements at the tidal energy converter device scale.

  18. Tidal energy site resource assessment in the East River tidal strait, near Roosevelt Island, New York, New York

    DOE PAGESBeta

    Gunawan, Budi; Neary, Vincent S.; Colby, Jonathan

    2014-06-22

    This study demonstrates a site resource assessment to examine the temporal variation of the mean current, turbulence intensities, and power densities for a tidal energy site in the East River tidal strait. These variables were derived from two-months of acoustic Doppler velocimeter (ADV) measurements at the design hub height of the Verdant Power Gen5 hydrokinetic turbine. The study site is a tidal strait that exhibits semi-diurnal tidal current characteristics, with a mean horizontal current speed of 1.4 m s-1, and turbulence intensity of 15% at a reference mean current of 2 m s-1. Flood and ebb flow directions are nearlymore » bi-directional, with higher current magnitude during flood tide, which skews the power production towards the flood tide period. The tidal hydrodynamics at the site are highly regular, as indicated by the tidal current time series that resembles a sinusoidal function. This study also shows that the theoretical force and power densities derived from the current measurements can significantly be influenced by the length of the time window used for averaging the current data. Furthermore, the theoretical power density at the site, derived from the current measurements, is one order of magnitude greater than that reported in the U.S. national resource assessment. As a result, this discrepancy highlights the importance of conducting site resource assessments based on measurements at the tidal energy converter device scale.« less

  19. International Symposium on Wave and Tidal Energy, 2nd, St. John's College, Cambridge, England, September 23-25, 1981, Proceedings

    SciTech Connect

    Stephens, H.S.; Stapleton, C.A.

    1981-01-01

    Topics discussed include wave power device interactions, the mathematical modeling of tidal power, and wave power with air turbines. Particular attention is given to the hydrodynamic characteristics of the Bristol Cylinder, the Strangford Lough tidal energy project, and the Foilpropeller for wave power propulsion. Consideration is also given to a submerged oscillating water column device, models of wave energy transformation near a coast, and the environmental implications of tidal power.

  20. Modeling of In-stream Tidal Energy Development and its Potential Effects in Tacoma Narrows, Washington, USA

    SciTech Connect

    Yang, Zhaoqing; Wang, Taiping; Copping, Andrea E.; Geerlofs, Simon H.

    2014-10-01

    Understanding and providing proactive information on the potential for tidal energy projects to cause changes to the physical system and to key water quality constituents in tidal waters is a necessary and cost-effective means to avoid costly regulatory involvement and late stage surprises in the permitting process. This paper presents a modeling study for evaluating the tidal energy extraction and its potential impacts on the marine environment in a real world site - Tacoma Narrows of Puget Sound, Washington State, USA. An unstructured-grid coastal ocean model, fitted with a module that simulates tidal energy devices, was applied to simulate the tidal energy extracted by different turbine array configurations and the potential effects of the extraction at local and system-wide scales in Tacoma Narrows and South Puget Sound. Model results demonstrated the advantage of an unstructured-grid model for simulating the far-field effects of tidal energy extraction in a large model domain, as well as assessing the near-field effect using a fine grid resolution near the tidal turbines. The outcome shows that a realistic near-term deployment scenario extracts a very small fraction of the total tidal energy in the system and that system wide environmental effects are not likely; however, near-field effects on the flow field and bed shear stress in the area of tidal turbine farm are more likely. Model results also indicate that from a practical standpoint, hydrodynamic or water quality effects are not likely to be the limiting factor for development of large commercial-scale tidal farms. Results indicate that very high numbers of turbines are required to significantly alter the tidal system; limitations on marine space or other environmental concerns are likely to be reached before reaching these deployment levels. These findings show that important information obtained from numerical modeling can be used to inform regulatory and policy processes for tidal energy development.

  1. Numerical simulation of tidal evolution of a viscoelastic body modelled with a mass-spring network

    NASA Astrophysics Data System (ADS)

    Frouard, Julien; Quillen, Alice C.; Efroimsky, Michael; Giannella, David

    2016-05-01

    We use a damped mass-spring model within an N-body code to simulate the tidal evolution of the spin and orbit of a self-gravitating viscoelastic spherical body moving around a point-mass perturber. The damped mass-spring model represents a Kelvin-Voigt viscoelastic solid. We measure the tidal quality function (the dynamical Love number k2 divided by the tidal quality factor Q) from the numerically computed tidal drift of the semimajor axis of the binary. The shape of k2/Q, as a function of the principal tidal frequency, reproduces the kink shape predicted by Efroimsky for the tidal response of near-spherical homogeneous viscoelastic rotators. We demonstrate that we can directly simulate the tidal evolution of spinning viscoelastic objects. In future, the mass-spring N-body model can be generalized to inhomogeneous and/or non-spherical bodies.

  2. Assessment of tidal circulation and tidal current asymmetry in the Iroise sea with specific emphasis on characterization of tidal energy resources around the Ushant Island.

    NASA Astrophysics Data System (ADS)

    Thiébaut, Maxime; Sentchev, Alexei

    2015-04-01

    We use the current velocity time series recorded by High Frequency Radars (HFR) to study circulation in highly energetic tidal basin - the Iroise sea. We focus on the analysis of tidal current pattern around the Ushant Island which is a promising site of tidal energy. The analysis reveals surface current speeds reaching 4 m/s in the North of Ushant Island and in the Fromveur Strait. In these regions 1 m/s is exceeded 60% of time and up to 70% of time in center of Fromveur. This velocity value is particularly interesting because it represents the cut-in-speed of the most of marine turbine devices. Tidal current asymmetry is not always considered in tidal energy site selection. However, this quantity plays an important role in the quantification of hydrokinetic resources. Current velocity times series recorded by HFR highlights the existence of a pronounced asymmetry in current magnitude between the flood and ebb tide ranging from -0.5 to more 2.5. Power output of free-stream devices depends to velocity cubed. Thus a small current asymmetry can generate a significant power output asymmetry. Spatial distribution of asymmetry coefficient shows persistent pattern and fine scale structure which were quantified with high degree of accuracy. The particular asymmetry evolution on both side of Fromveur strait is related to the spatial distribution of the phase lag of the principal semi-diurnal tidal constituent M2 and its higher order harmonics. In Fromveur, the asymmetry is reinforced due to the high velocity magnitude of the sixth-diurnal tidal harmonics. HF radar provides surface velocity speed, however the quantification of hydrokinetic resources has to take into account the decreasing of velocity with depth. In order to highlight this phenomenon, we plot several velocity profiles given by an ADCP which was installed in the HFR study area during the same period. The mean velocity in the water column calculated by using the ADCP data show that it is about 80% of the

  3. Aerodynamic interference between two Darrieus wind turbines

    SciTech Connect

    Schatzle, P.R.; Klimas, P.C.; Spahr, H.R.

    1981-04-01

    The effect of aerodynamic interference on the performance of two curved bladed Darrieus-type vertical axis wind turbines has been calculated using a vortex/lifting line aerodynamic model. The turbines have a tower-to-tower separation distance of 1.5 turbine diameters, with the line of turbine centers varying with respect to the ambient wind direction. The effects of freestream turbulence were neglected. For the cases examined, the calculations showed that the downwind turbine power decrement (1) was significant only when the line of turbine centers was coincident with the ambient wind direction, (2) increased with increasing tipspeed ratio, and (3) is due more to induced flow angularities downstream than to speed deficits near the downstream turbine.

  4. A Dynamic Programming Algorithm for Optimal Design of Tidal Power Plants

    NASA Astrophysics Data System (ADS)

    Nag, B.

    2013-03-01

    A dynamic programming algorithm is proposed and demonstrated on a test case to determine the optimum operating schedule of a barrage tidal power plant to maximize the energy generation over a tidal cycle. Since consecutive sets of high and low tides can be predicted accurately for any tidal power plant site, this algorithm can be used to calculate the annual energy generation for different technical configurations of the plant. Thus an optimal choice of a tidal power plant design can be made from amongst different design configurations yielding the least cost of energy generation. Since this algorithm determines the optimal time of operation of sluice gate opening and turbine gates opening to maximize energy generation over a tidal cycle, it can also be used to obtain the annual schedule of operation of a tidal power plant and the minute-to-minute energy generation, for dissemination amongst power distribution utilities.

  5. Next Generation Wind Turbine

    SciTech Connect

    Cheraghi, S. Hossein; Madden, Frank

    2012-09-01

    The goal of this collaborative effort between Western New England University's College of Engineering and FloDesign Wind Turbine (FDWT) Corporation to wok on a novel areodynamic concept that could potentially lead to the next generation of wind turbines. Analytical studies and early scale model tests of FDWT's Mixer/Ejector Wind Turbine (MEWT) concept, which exploits jet-age advanced fluid dynamics, indicate that the concept has the potential to significantly reduce the cost of electricity over conventional Horizontal Axis Wind Turbines while reducing land usage. This project involved the design, fabrication, and wind tunnel testing of components of MEWT to provide the research and engineering data necessary to validate the design iterations and optimize system performance. Based on these tests, a scale model prototype called Briza was designed, fabricated, installed and tested on a portable tower to investigate and improve the design system in real world conditions. The results of these scale prototype efforts were very promising and have contributed significantly to FDWT's ongoing development of a product scale wind turbine for deployment in multiple locations around the U.S. This research was mutually beneficial to Western New England University, FDWT, and the DOE by utilizing over 30 student interns and a number of faculty in all efforts. It brought real-world wind turbine experience into the classroom to further enhance the Green Engineering Program at WNEU. It also provided on-the-job training to many students, improving their future employment opportunities, while also providing valuable information to further advance FDWT's mixer-ejector wind turbine technology, creating opportunities for future project innovation and job creation.

  6. DISCRETE ELEMENT MODELING OF BLADE–STRIKE FREQUENCY AND SURVIVAL OF FISH PASSING THROUGH HYDROKINETIC TURBINES

    SciTech Connect

    Romero Gomez, Pedro DJ; Richmond, Marshall C.

    2014-04-17

    Evaluating the consequences from blade-strike of fish on marine hydrokinetic (MHK) turbine blades is essential for incorporating environmental objectives into the integral optimization of machine performance. For instance, experience with conventional hydroelectric turbines has shown that innovative shaping of the blade and other machine components can lead to improved designs that generate more power without increased impacts to fish and other aquatic life. In this work, we used unsteady computational fluid dynamics (CFD) simulations of turbine flow and discrete element modeling (DEM) of particle motion to estimate the frequency and severity of collisions between a horizontal axis MHK tidal energy device and drifting aquatic organisms or debris. Two metrics are determined with the method: the strike frequency and survival rate estimate. To illustrate the procedure step-by-step, an exemplary case of a simple runner model was run and compared against a probabilistic model widely used for strike frequency evaluation. The results for the exemplary case showed a strong correlation between the two approaches. In the application case of the MHK turbine flow, turbulent flow was modeled using detached eddy simulation (DES) in conjunction with a full moving rotor at full scale. The CFD simulated power and thrust were satisfactorily comparable to experimental results conducted in a water tunnel on a reduced scaled (1:8.7) version of the turbine design. A cloud of DEM particles was injected into the domain to simulate fish or debris that were entrained into the turbine flow. The strike frequency was the ratio of the count of colliding particles to the crossing sample size. The fish length and approaching velocity were test conditions in the simulations of the MHK turbine. Comparisons showed that DEM-based frequencies tend to be greater than previous results from Lagrangian particles and probabilistic models, mostly because the DEM scheme accounts for both the geometric

  7. Turbulence Effects of Axial Flow Hydrokinetic Turbines

    NASA Astrophysics Data System (ADS)

    Hill, C.; Chamorro, L. P.; Neary, V. S.; Morton, S.; Sotiropoulos, F.

    2011-12-01

    Axial flow hydrokinetic turbines provide a method for extracting the kinetic energy available in unidirectional (river), bidirectional (tidal) and marine currents; however, a deep understanding of the wake dynamics, momentum recovery, geomorphologic effects, and ecological interaction with these hydrokinetic turbines is required to guarantee their economical and environmental viability. The St. Anthony Falls Laboratory (SAFL) at the University of Minnesota (UMN) has performed physical modeling experiments using a 1:10 scale axial flow tidal turbine in the SAFL Main Channel, a 2.75m x 1.8m x 80m open channel test facility. A sophisticated control system allows synchronous measurements of turbine torque and rotational speed along with high resolution 3-D velocity measurements within the channel. Using acoustic Doppler velocimeters (ADVs), high resolution 3-D velocity profile data were collected up to 15 turbine diameters downstream of the turbine location. These data provide valuable information on the wake characteristics (turbulence, Reynolds stresses, etc.) resulting from a rotating axial flow hydrokinetic machine. Regions of high turbulence and shear zones that persist in the near wake regions are delineated along with the velocity deficit and momentum recovery within the wake downstream of the device. Synchronous ADV data shed light on the rotational and meandering characteristics of the wake and its potential impacts on the local geomorphology and hydrodynamic environment. This dataset on single hydrokinetic turbine flow characteristics is the basis for further work on the optimal arrangement and performance environment for arrays of similar hydrokinetic devices.

  8. Modeling the Ocean Tide for Tidal Power Generation Applications

    NASA Astrophysics Data System (ADS)

    Kawase, M.; Gedney, M.

    2014-12-01

    Recent years have seen renewed interest in the ocean tide as a source of energy for electrical power generation. Unlike in the 1960s, when the tidal barrage was the predominant method of power extraction considered and implemented, the current methodology favors operation of a free-stream turbine or an array of them in strong tidal currents. As tidal power generation moves from pilot-scale projects to actual array implementations, numerical modeling of tidal currents is expected to play an increasing role in site selection, resource assessment, array design, and environmental impact assessment. In this presentation, a simple, coupled ocean/estuary model designed for research into fundamental aspects of tidal power generation is described. The model consists of a Pacific Ocean-size rectangular basin and a connected fjord-like embayment with dimensions similar to that of Puget Sound, Washington, one of the potential power generation sites in the United States. The model is forced by an idealized lunar tide-generating potential. The study focuses on the energetics of a tidal system including tidal power extraction at both global and regional scales. The hyperbolic nature of the governing shallow water equations means consequence of tidal power extraction cannot be limited to the local waters, but is global in extent. Modeling power extraction with a regional model with standard boundary conditions introduces uncertainties of 3 ~ 25% in the power extraction estimate depending on the level of extraction. Power extraction in the model has a well-defined maximum (~800 MW in a standard case) that is in agreement with previous theoretical studies. Natural energy dissipation and tidal power extraction strongly interact; for a turbine array of a given capacity, the higher the level of natural dissipation the lower the power the array can extract. Conversely, power extraction leads to a decrease in the level of natural dissipation (Figure) as well as the tidal range and the

  9. Modeling Tidal Stream Energy Extraction and its Effects on Transport Processes in a Tidal Channel and Bay System Using a Three-dimensional Coastal Ocean Model

    SciTech Connect

    Yang, Zhaoqing; Wang, Taiping; Copping, Andrea E.

    2013-02-28

    This paper presents a numerical modeling study for simulating in-stream tidal energy extraction and assessing its effects on the hydrodynamics and transport processes in a tidal channel and bay system connecting to coastal ocean. A marine and hydrokinetic (MHK) module was implemented in a three-dimensional (3-D) coastal ocean model using the momentum sink approach. The MHK model was validated with the analytical solutions for tidal channels under one-dimensional (1-D) conditions. Model simulations were further carried out to compare the momentum sink approach with the quadratic bottom friction approach. The effects of 3-D simulations on the vertical velocity profile, maximum extractable energy, and volume flux reduction across the channel were investigated through a series of numerical experiments. 3-D model results indicate that the volume flux reduction at the maximum extractable power predicted by the 1-D analytical model or two-dimensional (2-D) depth-averaged numerical model may be overestimated. Maximum extractable energy strongly depends on the turbine hub height in the water column, and which reaches a maximum when turbine hub height is located at mid-water depth. Far-field effects of tidal turbines on the flushing time of the tidal bay were also investigated. Model results demonstrate that tidal energy extraction has a greater effect on the flushing time than volume flux reduction, which could negatively affect the biogeochemical processes in estuarine and coastal waters that support primary productivity and higher forms of marine life.

  10. Tidal alignment of galaxies

    NASA Astrophysics Data System (ADS)

    Blazek, Jonathan; Vlah, Zvonimir; Seljak, Uroš

    2015-08-01

    We develop an analytic model for galaxy intrinsic alignments (IA) based on the theory of tidal alignment. We calculate all relevant nonlinear corrections at one-loop order, including effects from nonlinear density evolution, galaxy biasing, and source density weighting. Contributions from density weighting are found to be particularly important and lead to bias dependence of the IA amplitude, even on large scales. This effect may be responsible for much of the luminosity dependence in IA observations. The increase in IA amplitude for more highly biased galaxies reflects their locations in regions with large tidal fields. We also consider the impact of smoothing the tidal field on halo scales. We compare the performance of this consistent nonlinear model in describing the observed alignment of luminous red galaxies with the linear model as well as the frequently used "nonlinear alignment model," finding a significant improvement on small and intermediate scales. We also show that the cross-correlation between density and IA (the "GI" term) can be effectively separated into source alignment and source clustering, and we accurately model the observed alignment down to the one-halo regime using the tidal field from the fully nonlinear halo-matter cross correlation. Inside the one-halo regime, the average alignment of galaxies with density tracers no longer follows the tidal alignment prediction, likely reflecting nonlinear processes that must be considered when modeling IA on these scales. Finally, we discuss tidal alignment in the context of cosmic shear measurements.

  11. Studies of Mini-Turbines

    NASA Astrophysics Data System (ADS)

    Chan, Stacey; Endo, Masaki; Romanko, Michael; Williamson, Chk

    2013-11-01

    Urban environments are inaccessible to large wind turbines of the classical ``windmill'' design. By exploring small-scale vertical-axis wind turbines (VAWTs), wind energy can possibly be harvested from the constrained spaces within cities. We present a comprehensive study of blade offset pitch angle and relative blade size (ratio of blade chordlength/turbine diameter, c/D). We find that the optimal pitch angle for a symmetric blade is the angle at which the midpoint chordline is tangent to the turbine circumference. Also, a turbine with conventional blades of small c/D ratio (c/D = 0.12) - typical of large scale turbines - do not operate well at low Reynolds numbers. On the other hand, the maximum coefficient of power for turbines with larger c/D ratio (c/D = 0.36) is much higher than for the conventional small-blades. As blade size increases, the operating range of TSR (Tip Speed Ratio) also increases, making large-chord turbines more robust to the prevailing wind conditions. Surprisingly, the regime of TSR for maximum power extracted, at these low Reynolds numbers, corresponds with small or even negative power predictions, based on streamtube theory.

  12. Asteroid Geophysics through a Tidal-BYORP Equilibrium

    NASA Astrophysics Data System (ADS)

    Jacobson, S. A.; Scheeres, D. J.

    2012-12-01

    There exists a long-term stable orbital equilibrium for singly synchronous binary asteroids balancing the contractive BYORP (binary Yarkovsky-O'Keefe-Radzievskii-Paddack) effect and the expansive tidal torque from the secondary onto the primary [Jacobson & Scheeres 2011]. Observations of 1996 FG3 determined that this object is consistent with occupying the predicted equilibrium [Scheirich, et al., 2012]. From the torque balance, the important tidal parameters of the primary and BYORP coefficient of the secondary can be directly determined for the first time, albeit degenerately. Singly synchronous systems consist of a rapidly spinning primary and a tidally locked secondary. Two torques evolve the mutual orbit of the system. First, the secondary raises a tidal torque on the primary, and this process expands the semi-major axis of the mutual orbit according to two parameters. The tidal Love number k is related to the strength (rigidity) of the body. The tidal dissipation number Q describes the mechanical energy dissipation. Second, the BYORP torque is the summed torques from all of the incident and exigent photons on the secondary acting on the barycenter of the system. Unless there is a spin-orbit resonance, the torques sum to zero. McMahon & Scheeres [2010] showed that showed that to first order in eccentricity the evolution of the semi-major axis and eccentricity depends only upon a single constant coefficient B determined by the shape of the secondary (size-independent). The BYORP torque can either contract or expand the mutual orbit, however it evolves the eccentricity with the opposite sign. Jacobson & Scheeres [2011] determined that when the BYORP torque is contractive, it can balance the expansive tidal torque. The system evolves to an equilibrium semi-major axis that is stable in eccentricity due to tidal decay overcoming BYORP excitation. If the singly synchronous population occupies this equilibrium, then the three unknown (i.e. unobserved) parameters: Bs

  13. Tidal Distortion and Disruption of Earth-Crossing Asteriods

    NASA Technical Reports Server (NTRS)

    Love, Stanley G.; Bottke, William, Jr.

    1997-01-01

    We represent results of numerical simulations that show Earth's tidal forces can both distort and disrupt Earth-crossing asteriods (ECAs) that have weak rubble-pile structures. Building on previous studies, we consider more realistic asteriod shapes and trajectories, test a variety of spin and rates and axis orientations, and employ a dissipation algorithm to more accurately treat collisions between particles.

  14. CFD methods for wind turbines

    NASA Astrophysics Data System (ADS)

    Suatean, Bogdan; Colidiuc, Alexandra; Galetuse, Slelian

    2012-11-01

    The purpose of this paper is to present different CFD models used to determine the aerodynamic performance of horizontal axis wind turbine (HAWT). The models presented have various levels of complexity to calculate the aerodynamic performances of HAWT, starting with a simple model, the actuator line method, and ending with a CFD approach.

  15. Environmental Effects of Sediment Transport Alteration and Impacts on Protected Species: Edgartown Tidal Energy Project

    SciTech Connect

    Barrett, Stephen B; Schlezinger, David, Ph.D; Cowles, Geoff, Ph.D; Hughes, Patricia; Samimy,; Roland, I; and Terray, E, Ph.D.

    2012-12-29

    The Islands of Martha's Vineyard and Nantucket are separated from the Massachusetts mainland by Vineyard and Nantucket Sounds; water between the two islands flows through Muskeget Channel. The towns of Edgartown (on Martha's Vineyard) and Nantucket recognize that they are vulnerable to power supply interruptions due to their position at the end of the power grid, and due to sea level rise and other consequences of climate change. The tidal energy flowing through Muskeget Channel has been identified by the Electric Power Research Institute as the strongest tidal resource in Massachusetts waters. The Town of Edgartown proposes to develop an initial 5 MW (nameplate) tidal energy project in Muskeget Channel. The project will consist of 14 tidal turbines with 13 providing electricity to Edgartown and one operated by the University of Massachusetts at Dartmouth for research and development. Each turbine will be 90 feet long and 50 feet high. The electricity will be brought to shore by a submarine cable buried 8 feet below the seabed surface which will landfall in Edgartown either on Chappaquiddack or at Katama. Muskeget Channel is located between Martha's Vineyard and Nantucket. Its depth ranges between 40 and 160 feet in the deepest portion. It has strong currents where water is transferred between Nantucket Sound and the Atlantic Ocean continental shelf to the south. This makes it a treacherous passage for navigation. Current users of the channel are commercial and recreational fishing, and cruising boats. The US Coast Guard has indicated that the largest vessel passing through the channel is a commercial scallop dragger with a draft of about 10 feet. The tidal resource in the channel has been measured by the University of Massachusetts-Dartmouth and the peak velocity flow is approximately 5 knots. The technology proposed is the helical Gorlov-type turbine positioned with a horizontal axis that is positively buoyant in the water column and held down by anchors. This is

  16. The Darrieus wind turbine for electrical power generation

    NASA Astrophysics Data System (ADS)

    Robinson, M. L.

    1981-06-01

    Aspects of wind as an energy source and the momentum theory of wind turbines are briefly examined. Types of Darrieus wind turbine are described; attention is given to a turbine with airfoil blades curved in troposkein form, and a turbine with straight blades of fixed or variable pitch. The Darrieus vertical-axis wind turbine is then considered with regard to aerodynamics, annual energy output, structures, control systems, and energy storage. Brief reviews of selected Darrieus wind turbine projects are given, including those at Magdalen Islands, Canada, Sandia Laboratories, Reading University, and Australia and New Zealand.

  17. Assessment of Tidal Stream Energy Potential for the United States

    NASA Astrophysics Data System (ADS)

    Haas, K. A.; Defne, Z.; Jiang, L.; Fritz, H. M.

    2010-12-01

    Tidal streams are high velocity sea currents created by periodic horizontal movement of the tides, often magnified by local topographical features such as headlands, inlets to inland lagoons, and straits. Tidal stream energy extraction is derived from the kinetic energy of the moving flow; analogous to the way a wind turbine operates in air, and as such differs from tidal barrages, which relies on providing a head of water for energy extraction. With the constantly increasing effort in promoting alternative energy, tidal streams have become promising energy sources due to their continuous, predictable and concentrated characteristics. However, the present lack of a full spatial-temporal assessment of tidal currents for the U.S. coastline down to the scale of individual devices is a barrier to the comprehensive development of tidal current energy technology. A methodology for creating a national database of tidal stream energy potential, as well as a GIS tool usable by industry in order to accelerate the market for tidal energy conversion technology has been developed. The tidal flows are simulated using the Regional Ocean Modeling System (ROMS). The model is calibrated and validated using observations and tidal predictions. The calibration includes adjustments to model parameters such as bottom friction coefficient, changed land/water masks, or increased grid resolutions. A systematic validation process has been developed after defining various parameters to quantify the validation results. In order to determine the total tidal stream power resource, a common method frequently proposed is to estimate it as a fraction of the total kinetic energy flux passing through a vertical section; however, this now has been shown to generally underestimate the total available resource. The total tidal energy flux includes not just the kinetic energy but also the energy flux due to the work done by the pressure force associated with the tidal motion on the water column as well

  18. Tidal instability in exoplanetary systems evolution

    NASA Astrophysics Data System (ADS)

    Cébron, D.; Moutou, C.; Le Bars, M.; Le Gal, P.; Farès, R.

    2011-02-01

    A new element is proposed to play a role in the evolution of extrasolar planetary systems: the tidal (or elliptical) instability. It comes from a parametric resonance and takes place in any rotating fluid whose streamlines are (even slightly) elliptically deformed. Based on theoretical, experimental and numerical works, we estimate the growth rate of the instability for hot-jupiter systems, when the rotation period of the star is known. We present the physical process, its application to stars, and preliminary results obtained on a few dozen systems, summarized in the form of a stability diagram. Most of the systems are trapped in the so-called "forbidden zone", where the instability cannot grow. In some systems, the tidal instability is able to grow, at short timescales compared to the system evolution. Implications are discussed in the framework of misaligned transiting systems, as the rotational axis of the star would be unstable in systems where this elliptical instability grows.

  19. Jet spoiler arrangement for wind turbine

    DOEpatents

    Cyrus, J.D.; Kadlec, E.G.; Klimas, P.C.

    1983-09-15

    An air jet spoiler arrangement is provided for a Darrieus-type vertical axis wind-powered turbine. Air is drawn into hollow turbine blades through air inlets at the end thereof and is ejected in the form of air jets through small holes or openings provided along the lengths of the blades. The air jets create flow separation at the surfaces of the turbine blades, thereby including stall conditions and reducing the output power. A feedback control unit senses the power output of the turbine and controls the amount of air drawn into the air inlets accordingly.

  20. Jet spoiler arrangement for wind turbine

    DOEpatents

    Cyrus, Jack D.; Kadlec, Emil G.; Klimas, Paul C.

    1985-01-01

    An air jet spoiler arrangement is provided for a Darrieus-type vertical axis wind-powered turbine. Air is drawn into hollow turbine blades through air inlets at the ends thereof and is ejected in the form of air jets through small holes or openings provided along the lengths of the blades. The air jets create flow separation at the surfaces of the turbine blades, thereby inducing stall conditions and reducing the output power. A feedback control unit senses the power output of the turbine and controls the amount of air drawn into the air inlets accordingly.

  1. Results of a utility survey of the status of large wind turbine development

    NASA Technical Reports Server (NTRS)

    Watts, A.; Quraeshi, S.; Rowley, L. P.

    1979-01-01

    Wind energy conversion systems were surveyed from a utility viewpoint to establish the state of the art with regard to: (1) availability of the type of machines; (2) quality of power generation; (3) suitability for electrical grid; (4) reliability; and (5) economics. Of the 23 designs discussed, 7 have vertical axis wind turbines, 9 have upwind horizontal axis turbines, and 7 have downwind horizontal axis turbines.

  2. SERI advanced wind turbine blades

    SciTech Connect

    Tangler, J.; Smith, B.; Jager, D.

    1992-02-01

    The primary goal of the Solar Energy Research Institute's (SERI) advanced wind turbine blades is to convert the kinetic energy in the wind into mechanical energy in an inexpensive and efficient manner. To accomplish this goal, advanced wind turbine blades have been developed by SERI that utilize unique airfoil technology. Performance characteristics of the advanced blades were verified through atmospheric testing on fixed-pitch, stall-regulated horizontal-axis wind turbines (HAWTs). Of the various wind turbine configurations, the stall-regulated HAWT dominates the market because of its simplicity and low cost. Results of the atmospheric tests show that the SERI advanced blades produce 10% to 30% more energy than conventional blades. 6 refs.

  3. SERI advanced wind turbine blades

    SciTech Connect

    Tangler, J.; Smith, B.; Jager, D.

    1992-02-01

    The primary goal of the Solar Energy Research Institute`s (SERI) advanced wind turbine blades is to convert the kinetic energy in the wind into mechanical energy in an inexpensive and efficient manner. To accomplish this goal, advanced wind turbine blades have been developed by SERI that utilize unique airfoil technology. Performance characteristics of the advanced blades were verified through atmospheric testing on fixed-pitch, stall-regulated horizontal-axis wind turbines (HAWTs). Of the various wind turbine configurations, the stall-regulated HAWT dominates the market because of its simplicity and low cost. Results of the atmospheric tests show that the SERI advanced blades produce 10% to 30% more energy than conventional blades. 6 refs.

  4. SERI advanced wind turbine blades

    NASA Astrophysics Data System (ADS)

    Tangler, J.; Smith, B.; Jager, D.

    1992-02-01

    The primary goal of the Solar Energy Research Institute's (SERI) advanced wind turbine blades is to convert the kinetic energy in the wind into mechanical energy in an inexpensive and efficient manner. To accomplish this goal, advanced wind turbine blades have been developed by SERI that utilize unique airfoil technology. Performance characteristics of the advanced blades were verified through atmospheric testing on fixed-pitch, stall-regulated horizontal-axis wind turbines (HAWTs). Of the various wind turbine configurations, the stall-regulated HAWT dominates the market because of its simplicity and low cost. Results of the atmospheric tests show that the SERI advanced blades produce 10 percent to 30 percent more energy than conventional blades.

  5. AN APPROACH FOR CLASSIFYING TIDAL REGIMES BASED ON TIDAL CONSTITUENTS

    EPA Science Inventory

    Tidal fluctuations can be one of the dominant physical processes in estuaries. This paper presents a numerical classification of tidal regimes that can be used to summarize local conditions and facilitate comparisons among locations. Tide predictions are customarily calculated ...

  6. Tidal Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Duc, P.-A.; Mirabel, I. F.; Brinks, E.

    The life and evolution of galaxies are dramatically affected by environmental effects. Interactions with the intergalactic medium and collisions with companions cause major perturbations in the morphology and contents of galaxies: in particular stars and gas clouds may be gravitationally pulled out from their parent galaxies during tidal encounters, forming rings, tails and bridges. This debris of collisions lies at the origin of a new generation of small galaxies, the so-called "tidal dwarf galaxies" (TDGs). The authors have carried out multi-wavelength observations of some 20 TDGs. These systems are made of two stellar components: young stars, formed from the recent collapse of expelled H I clouds, and an older stellar population, tidally pulled out from the disks of their interacting parent galaxies. In the observed TDGs, the current star formation episode is fuelled by a large reservoir of H I gas and is younger than 10 Myr.

  7. Steam Turbines

    NASA Astrophysics Data System (ADS)

    1981-01-01

    Turbonetics Energy, Inc.'s steam turbines are used as power generating systems in the oil and gas, chemical, pharmaceuticals, metals and mining, and pulp and paper industries. The Turbonetics line benefited from use of NASA research data on radial inflow steam turbines and from company contact with personnel of Lewis Research Center, also use of Lewis-developed computer programs to determine performance characteristics of turbines.

  8. Tidally Heated Terrestrial Exoplanets

    NASA Astrophysics Data System (ADS)

    Henning, Wade Garrett

    This work models the surface and internal temperatures for hypothetical terrestrial planets in situations involving extreme tidal heating. The feasibility of such planets is evaluated in terms of the orbital perturbations that may give rise to them, their required proximity to a hoststar, and the potential for the input tidal heating to cause significant partial melting of the mantle. Trapping terrestrial planets into 2:1 resonances with migrating Hot Jupiters is considered as a reasonable way for Earth-like worlds to both maintain high eccentricities and to move to short enough orbital periods (1-20 days) for extreme tidal heating to occur. Secular resonance and secular orbital perturbations may support moderate tidal heating at a low equilibrium eccentricity. At orbital periods below 10-30 days, with eccentricities from 0.01 to 0.1, tidal heat may greatly exceed radiogenic heat production. It is unlikely to exceed insolation, except when orbiting very low luminosity hosts, and thus will have limited surface temperature expression. Observations of such bodies many not be able to detect tidal surface enhancements given a few percent uncertainty in albedo, except on the nightside of spin synchronous airless objects. Otherwise detection may occur via spectral detection of hotspots or high volcanic gas concentrations including sulfur dioxide and hydrogen sulfide. The most extreme cases may be able to produce magma oceans, or magma slush mantles with up to 40-60% melt fractions. Tides may alter the habitable zones for smaller red dwarf stars, but are generally detrimental. Multiple viscoelastic models, including the Maxwell, Voigt-Kelvin, Standard Anelastic Solid, and Burgers rheologies are explored and applied to objects such as Io and the super-Earth planet GJ 876d. The complex valued Love number for the Burgers rheology is derived and found to be a useful improvement when modeling the low temperature behavior of tidal bodies, particularly during low eccentricity

  9. Resource Evaluation and Energy Production Estimate for a Tidal Energy Conversion Installation using Acoustic Flow Measurements

    NASA Astrophysics Data System (ADS)

    Gagnon, Ian; Baldwin, Ken; Wosnik, Martin

    2015-11-01

    The ``Living Bridge'' project plans to install a tidal turbine at Memorial Bridge in the Piscataqua River at Portsmouth, NH. A spatio-temporal tidal energy resource assessment was performed using long term bottom-deployed Acoustic Doppler Current Profilers ADCP. Two locations were evaluated: at the planned deployment location and mid-channel. The goal was to determine the amount of available kinetic energy that can be converted into usable electrical energy on the bridge. Changes in available kinetic energy with ebb/flood and spring/neap tidal cycles and electrical energy demand were analyzed. A system model is used to calculate the net energy savings using various tidal generator and battery bank configurations. Differences in the tidal characteristics between the two measurement locations are highlighted. Different resource evaluation methodologies were also analyzed, e.g., using a representative ADCP ``bin'' vs. a more refined, turbine-geometry-specific methodology, and using static bin height vs. bin height that move w.r.t. the free surface throughout a tidal cycle (representative of a bottom-fixed or floating turbine deployment, respectively). ADCP operating frequencies and bin sizes affect the standard deviation of measurements, and measurement uncertainties are evaluated. Supported by NSF-IIP grant 1430260.

  10. Tidal power plants in Russia

    SciTech Connect

    Bernshtein, L.B. )

    1994-01-01

    This article examines the performance of tidal power plants in Russia and the expansion of tidal plant to new sites. The topics of the article include remote construction and transport techniques, pilot plant performance, economics and payback, and a review of global tidal power plant designs that are on hold due to economic problems relating to the global economy.

  11. Hydrogen as an activating fuel for a tidal power plant

    NASA Astrophysics Data System (ADS)

    Gorlov, A. M.

    Tidal projects, offering a clean, inexhaustible, and fairly predictable energy source, require a system for accumulating energy for off-peak periods. Hydrogen produced by electrolysis during off-peak power plant operation can be used as an activating fuel to furnish the plant during peak load demands. Tidal energy is converted into compressed air energy by special chambers on the ocean bed. This compressed air can be heated by combustion of the stored hydrogen and expanded through high speed gas turbine generators. For off-peak periods, the energy of non-heated compressed air is used for the production of hydrogen fuel. The amount of fuel produced at this time is enough for power plant operation during two peak hours, with three times greater plant capacity. The hydrogen fuel storage method does have energy losses and requires extra capital investment for electrolysis and hydrogen storage equipment. It does not, however, require a gas turbine oil fuel, as does the air compressed storage method, nor a low-speed heavy hydro-turbine, as does the hydro-pumped method. Moreover, the gas turbine can be used for both production and consumption of hydrogen fuel.

  12. Effects of Underwater Turbine Noise on Crab Larval Metamorphosis.

    PubMed

    Pine, Matthew K; Jeffs, Andrew G; Radford, Craig A

    2016-01-01

    The development of marine tidal turbines has advanced at a rapid rate over the last decade but with little detailed understanding of the potential noise impacts on invertebrates. Previous research has shown that underwater reef noise plays an important role in mediating metamorphosis in many larval crabs and fishes. New research suggests that underwater estuarine noise may also mediate metamorphosis in estuarine crab larvae and that the noise emitted from underwater tidal and sea-based wind turbines may significantly influence larval metamorphosis in estuarine crabs.

  13. Effects of Underwater Turbine Noise on Crab Larval Metamorphosis.

    PubMed

    Pine, Matthew K; Jeffs, Andrew G; Radford, Craig A

    2016-01-01

    The development of marine tidal turbines has advanced at a rapid rate over the last decade but with little detailed understanding of the potential noise impacts on invertebrates. Previous research has shown that underwater reef noise plays an important role in mediating metamorphosis in many larval crabs and fishes. New research suggests that underwater estuarine noise may also mediate metamorphosis in estuarine crab larvae and that the noise emitted from underwater tidal and sea-based wind turbines may significantly influence larval metamorphosis in estuarine crabs. PMID:26611041

  14. On the wake of a Darrieus turbine

    NASA Technical Reports Server (NTRS)

    Base, T. E.; Phillips, P.; Robertson, G.; Nowak, E. S.

    1981-01-01

    The theory and experimental measurements on the aerodynamic decay of a wake from high performance vertical axis wind turbine are discussed. In the initial experimental study, the wake downstream of a model Darrieus rotor, 28 cm diameter and a height of 45.5 cm, was measured in a Boundary Layer Wind Tunnel. The wind turbine was run at the design tip speed ratio of 5.5. It was found that the wake decayed at a slower rate with distance downstream of the turbine, than a wake from a screen with similar troposkein shape and drag force characteristics as the Darrieus rotor. The initial wind tunnel results indicated that the vertical axis wind turbines should be spaced at least forty diameters apart to avoid mutual power depreciation greater than ten per cent.

  15. On the wake of a Darrieus turbine

    NASA Astrophysics Data System (ADS)

    Base, T. E.; Phillips, P.; Robertson, G.; Nowak, E. S.

    1981-05-01

    The theory and experimental measurements on the aerodynamic decay of a wake from high performance vertical axis wind turbine are discussed. In the initial experimental study, the wake downstream of a model Darrieus rotor, 28 cm diameter and a height of 45.5 cm, was measured in a Boundary Layer Wind Tunnel. The wind turbine was run at the design tip speed ratio of 5.5. It was found that the wake decayed at a slower rate with distance downstream of the turbine, than a wake from a screen with similar troposkein shape and drag force characteristics as the Darrieus rotor. The initial wind tunnel results indicated that the vertical axis wind turbines should be spaced at least forty diameters apart to avoid mutual power depreciation greater than ten per cent.

  16. Secular tidal changes in lunar orbit and Earth rotation

    NASA Astrophysics Data System (ADS)

    Williams, James G.; Boggs, Dale H.

    2016-11-01

    Small tidal forces in the Earth-Moon system cause detectable changes in the orbit. Tidal energy dissipation causes secular rates in the lunar mean motion n, semimajor axis a, and eccentricity e. Terrestrial dissipation causes most of the tidal change in n and a, but lunar dissipation decreases eccentricity rate. Terrestrial tidal dissipation also slows the rotation of the Earth and increases obliquity. A tidal acceleration model is used for integration of the lunar orbit. Analysis of lunar laser ranging (LLR) data provides two or three terrestrial and two lunar dissipation parameters. Additional parameters come from geophysical knowledge of terrestrial tides. When those parameters are converted to secular rates for orbit elements, one obtains d n/d t = -25.97± 0.05 ''/cent2, d a/d t = 38.30 ± 0.08 mm/year, and d i/d t = -0.5 ± 0.1 μas/year. Solving for two terrestrial time delays and an extra d e/d t from unspecified causes gives ˜ 3× 10^{-12}/year for the latter; solving for three LLR tidal time delays without the extra d e/d t gives a larger phase lag of the N2 tide so that total d e/d t = (1.50 ± 0.10)× 10^{-11}/year. For total d n/d t, there is ≤ 1 % difference between geophysical models of average tidal dissipation in oceans and solid Earth and LLR results, and most of that difference comes from diurnal tides. The geophysical model predicts that tidal deceleration of Earth rotation is -1316 ''/cent2 or 87.5 s/cent2 for UT1-AT, a 2.395 ms/cent increase in the length of day, and an obliquity rate of 9 μas/year. For evolution during past times of slow recession, the eccentricity rate can be negative.

  17. Secular tidal changes in lunar orbit and Earth rotation

    NASA Astrophysics Data System (ADS)

    Williams, James G.; Boggs, Dale H.

    2016-06-01

    Small tidal forces in the Earth-Moon system cause detectable changes in the orbit. Tidal energy dissipation causes secular rates in the lunar mean motion n, semimajor axis a, and eccentricity e. Terrestrial dissipation causes most of the tidal change in n and a, but lunar dissipation decreases eccentricity rate. Terrestrial tidal dissipation also slows the rotation of the Earth and increases obliquity. A tidal acceleration model is used for integration of the lunar orbit. Analysis of lunar laser ranging (LLR) data provides two or three terrestrial and two lunar dissipation parameters. Additional parameters come from geophysical knowledge of terrestrial tides. When those parameters are converted to secular rates for orbit elements, one obtains dn/dt = -25.97± 0.05 ''/ cent2 , da/dt = 38.30 ± 0.08 mm/year, and di/dt = -0.5 ± 0.1 μ as/year. Solving for two terrestrial time delays and an extra de/dt from unspecified causes gives ˜ 3× 10^{-12} /year for the latter; solving for three LLR tidal time delays without the extra de/dt gives a larger phase lag of the N2 tide so that total de/dt = (1.50 ± 0.10)× 10^{-11} /year. For total dn/dt, there is ≤ 1 % difference between geophysical models of average tidal dissipation in oceans and solid Earth and LLR results, and most of that difference comes from diurnal tides. The geophysical model predicts that tidal deceleration of Earth rotation is -1316 '' /cent2 or 87.5 s/cent2 for UT1-AT, a 2.395 ms/cent increase in the length of day, and an obliquity rate of 9 μ as/year. For evolution during past times of slow recession, the eccentricity rate can be negative.

  18. DIRECTLY IMAGING TIDALLY POWERED MIGRATING JUPITERS

    SciTech Connect

    Dong Subo; Katz, Boaz; Socrates, Aristotle

    2013-01-10

    Upcoming direct-imaging experiments may detect a new class of long-period, highly luminous, tidally powered extrasolar gas giants. Even though they are hosted by {approx} Gyr-'old' main-sequence stars, they can be as 'hot' as young Jupiters at {approx}100 Myr, the prime targets of direct-imaging surveys. They are on years-long orbits and presently migrating to 'feed' the 'hot Jupiters'. They are expected from 'high-e' migration mechanisms, in which Jupiters are excited to highly eccentric orbits and then shrink semimajor axis by a factor of {approx}10-100 due to tidal dissipation at close periastron passages. The dissipated orbital energy is converted to heat, and if it is deposited deep enough into the atmosphere, the planet likely radiates steadily at luminosity L {approx} 100-1000 L{sub Jup}(2 Multiplication-Sign 10{sup -7}-2 Multiplication-Sign 10{sup -6} L{sub Sun }) during a typical {approx} Gyr migration timescale. Their large orbital separations and expected high planet-to-star flux ratios in IR make them potentially accessible to high-contrast imaging instruments on 10 m class telescopes. {approx}10 such planets are expected to exist around FGK dwarfs within {approx}50 pc. Long-period radial velocity planets are viable candidates, and the highly eccentric planet HD 20782b at maximum angular separation {approx}0.''08 is a promising candidate. Directly imaging these tidally powered Jupiters would enable a direct test of high-e migration mechanisms. Once detected, the luminosity would provide a direct measurement of the migration rate, and together with mass (and possibly radius) estimate, they would serve as a laboratory to study planetary spectral formation and tidal physics.

  19. Tidal disruption events

    NASA Astrophysics Data System (ADS)

    Levan, A.

    2014-07-01

    Tidal disruption events (TDEs) provide a powerful probe of many astrophysical processes. They occur when the powerful tidal field around a black hole disrupts a passing star which is subsequently accreted. The resulting signal is a powerful X-ray, UV/opt and possibly even radio source, that provides us with a view of accretion aroud supermassive black holes from switch-on to switch-off over the timescale of years. TDEs probe accretion physics, the ubquity of black holes in galactic nuclei and dynamics in their cores, offering a novel route to addressing these issues. I will review observations of TDEs over the past decade, outlining how samples of candidates have been gradually building, and how they can be identified against other more common transient events. I will also discuss the implications of the discovery of a population of TDEs apparently launching relativisitc jets, and how these powerful transients may be detected in upcoming X-ray to radio surveys.

  20. Environmental Effects of Hydrokinetic Turbines on Fish: Desktop and Laboratory Flume Studies

    SciTech Connect

    Jacobson, Paul T.; Amaral, Stephen V.; Castro-Santos, Theodore; Giza, Dan; Haro, Alexander J.; Hecker, George; McMahon, Brian; Perkins, Norman; Pioppi, Nick

    2013-06-01

    A primary issue of concern of regulatory and resource agencies is how the operation of hydrokinetic turbines will affect local and migratory fish populations. This collection of three reports describes desktop and laboratory flume studies that provide information to support assessment of the potential for injury and mortality of fish that encounter hydrokinetic turbines of various designs installed in tidal and river environments.

  1. Developments in tidal power

    SciTech Connect

    Charlier, R.H.

    1982-08-01

    Marine power has been the subject of numerous conferences and an impressive number of studies has considered schemes to harness ocean energy. Recently some attention has also been given to small marine power projects. Thermal difference, tides and waves appear to offer the greatest immediate promise, but so far only tidal power has been tapped on a large scale. Since completion of the Rance plant new concepts have been developed and new schemes designed. Some aspects are briefly examined here.

  2. Relativistic tidal disruption events

    NASA Astrophysics Data System (ADS)

    Levan, A.

    2012-12-01

    In March 2011 Swift detected an extremely luminous and long-lived outburst from the nucleus of an otherwise quiescent, low luminosity (LMC-like) galaxy. Named Swift J1644+57, its combination of high-energy luminosity (1048 ergs s-1 at peak), rapid X-ray variability (factors of >100 on timescales of 100 seconds) and luminous, rising radio emission suggested that we were witnessing the birth of a moderately relativistic jet (Γ ˜ 2 - 5), created when a star is tidally disrupted by the supermassive black hole in the centre of the galaxy. A second event, Swift J2058+0516, detected two months later, with broadly similar properties lends further weight to this interpretation. Taken together this suggests that a fraction of tidal disruption events do indeed create relativistic outflows, demonstrates their detectability, and also implies that low mass galaxies can host massive black holes. Here, I briefly outline the observational properties of these relativistic tidal flares observed last year, and their evolution over the first year since their discovery.

  3. Large Wind Turbine Design Characteristics and R and D Requirements

    NASA Technical Reports Server (NTRS)

    Lieblein, S. (Editor)

    1979-01-01

    Detailed technical presentations on large wind turbine research and development activities sponsored by public and private organizations are presented. Both horizontal and vertical axis machines are considered with emphasis on their structural design.

  4. Tidal Venuses: triggering a climate catastrophe via tidal heating.

    PubMed

    Barnes, Rory; Mullins, Kristina; Goldblatt, Colin; Meadows, Victoria S; Kasting, James F; Heller, René

    2013-03-01

    Traditionally, stellar radiation has been the only heat source considered capable of determining global climate on long timescales. Here, we show that terrestrial exoplanets orbiting low-mass stars may be tidally heated at high-enough levels to induce a runaway greenhouse for a long-enough duration for all the hydrogen to escape. Without hydrogen, the planet no longer has water and cannot support life. We call these planets "Tidal Venuses" and the phenomenon a "tidal greenhouse." Tidal effects also circularize the orbit, which decreases tidal heating. Hence, some planets may form with large eccentricity, with its accompanying large tidal heating, and lose their water, but eventually settle into nearly circular orbits (i.e., with negligible tidal heating) in the habitable zone (HZ). However, these planets are not habitable, as past tidal heating desiccated them, and hence should not be ranked highly for detailed follow-up observations aimed at detecting biosignatures. We simulated the evolution of hypothetical planetary systems in a quasi-continuous parameter distribution and found that we could constrain the history of the system by statistical arguments. Planets orbiting stars with masses<0.3 MSun may be in danger of desiccation via tidal heating. We have applied these concepts to Gl 667C c, a ∼4.5 MEarth planet orbiting a 0.3 MSun star at 0.12 AU. We found that it probably did not lose its water via tidal heating, as orbital stability is unlikely for the high eccentricities required for the tidal greenhouse. As the inner edge of the HZ is defined by the onset of a runaway or moist greenhouse powered by radiation, our results represent a fundamental revision to the HZ for noncircular orbits. In the appendices we review (a) the moist and runaway greenhouses, (b) hydrogen escape, (c) stellar mass-radius and mass-luminosity relations, (d) terrestrial planet mass-radius relations, and (e) linear tidal theories.

  5. Tidal Venuses: triggering a climate catastrophe via tidal heating.

    PubMed

    Barnes, Rory; Mullins, Kristina; Goldblatt, Colin; Meadows, Victoria S; Kasting, James F; Heller, René

    2013-03-01

    Traditionally, stellar radiation has been the only heat source considered capable of determining global climate on long timescales. Here, we show that terrestrial exoplanets orbiting low-mass stars may be tidally heated at high-enough levels to induce a runaway greenhouse for a long-enough duration for all the hydrogen to escape. Without hydrogen, the planet no longer has water and cannot support life. We call these planets "Tidal Venuses" and the phenomenon a "tidal greenhouse." Tidal effects also circularize the orbit, which decreases tidal heating. Hence, some planets may form with large eccentricity, with its accompanying large tidal heating, and lose their water, but eventually settle into nearly circular orbits (i.e., with negligible tidal heating) in the habitable zone (HZ). However, these planets are not habitable, as past tidal heating desiccated them, and hence should not be ranked highly for detailed follow-up observations aimed at detecting biosignatures. We simulated the evolution of hypothetical planetary systems in a quasi-continuous parameter distribution and found that we could constrain the history of the system by statistical arguments. Planets orbiting stars with masses<0.3 MSun may be in danger of desiccation via tidal heating. We have applied these concepts to Gl 667C c, a ∼4.5 MEarth planet orbiting a 0.3 MSun star at 0.12 AU. We found that it probably did not lose its water via tidal heating, as orbital stability is unlikely for the high eccentricities required for the tidal greenhouse. As the inner edge of the HZ is defined by the onset of a runaway or moist greenhouse powered by radiation, our results represent a fundamental revision to the HZ for noncircular orbits. In the appendices we review (a) the moist and runaway greenhouses, (b) hydrogen escape, (c) stellar mass-radius and mass-luminosity relations, (d) terrestrial planet mass-radius relations, and (e) linear tidal theories. PMID:23537135

  6. Remote monitoring and nondestructive evaluation of wind turbine towers

    NASA Astrophysics Data System (ADS)

    Chiang, Chih-Hung; Yu, Chih-Peng; Hsu, Keng-Tsang; Cheng, Chia-Chi; Ke, Ying-Tzu; Shih, Yi-Ru

    2014-03-01

    Wind turbine towers are in need of condition monitoring so as to lower the cost of unexpected maintenance. Wind loading from turbulence and gusts can cause damage in horizontal axis wind turbines even the supporting towers. Monitoring of wind turbines in service using embedded data sensor arrays usually is not targeted at the turbine-tower interaction from the perspective of structural dynamics. In this study the remote monitoring of the tower supporting a horizontal-axis wind turbine was attempted using a microwave interferometer. The dominant frequency of one tower was found to be decreased by more than 20% in 16 months. Numerical modeling using spectral finite elements is in progress and should provide further information regarding frequency shift due to stiffness variation and added mass. Expected outcome will contribute to remote monitoring procedures and nondestructive evaluation techniques for local wind turbine structures during operation.

  7. 77 FR 5817 - Ocean Renewable Power Company, Tidal Energy Project, Cobscook Bay, ME

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-06

    ..., issue of the Federal Register (73 FR 3316). Dated: January 20, 2012. C.L. Roberge, Captain, U.S. Coast... five turbine generator units secured to the ocean floor, used for generating electricity from tidal... an underwater cable assembly to transfer electricity to a power control and grid interface...

  8. Recognition of synodic and tropical tidal periodicities in tidal rhythmites

    SciTech Connect

    Archer, A.W. ); Kvale, E.P. ); Johnson, H.P. )

    1990-05-01

    Tidal processes are capable of producing bedding that records individual tidal events; however, only within the last decade have tidal cycles, such as neap-spring periodicities become widely recognized. Such cycles have been documented within thinly laminated, vertically accreted siltstones. The laminae exhibit systematic patterns of thickening and thinning that have been equated to the lunar orbital period (synodic month). However, modem tides are subject to periodicities other than the synodic month and such additional periods can be the causative mechanism for neap-spring tidal periods. Gravitational interactions of the earth, moon, and sun generate tides that fluctuate with periods that correspond to the phases of the moon (synodic month), declination of the moon (tropical month), and distance of the moon from the earth (anomalistic month). Although harmonic analyses of semidiurnal tidal data indicate that such systems are controlled by synodic factors, there are also indications that diurnal systems can be controlled by tropical factors. Thus neap-spring periods are not only related to lunar phase (synodic month), but can be related to tropical month (lunar declination) in diurnal systems. Analysis of laminae-thickness periodicities in a variety of Pennsylvanian tidal rhythmites, which include apparent examples of diurnal as well as semidiurnal tidal patterns, indicates similarities to modern tidal systems. For example, semidiurnal tidal rhythmites exhibit not only synodic periodicities but also exhibit a weaker, tropical periodicity. Conversely, within rhythmites that exhibit a diurnal pattern, it is not completely clear whether tropical or synodic periodicities are being expressed.

  9. Dissipation of Tidal Energy

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The moon's gravity imparts tremendous energy to the Earth, raising tides throughout the global oceans. What happens to all this energy? This question has been pondered by scientists for over 200 years, and has consequences ranging from the history of the moon to the mixing of the oceans. Richard Ray at NASA's Goddard Space Flight Center, Greenbelt, Md. and Gary Egbert of the College of Oceanic and Atmospheric Sciences, Oregon State University, Corvallis, Ore. studied six years of altimeter data from the TOPEX/Poseidon satellite to address this question. According to their report in the June 15 issue of Nature, about 1 terawatt, or 25 to 30 percent of the total tidal energy dissipation, occurs in the deep ocean. The remainder occurs in shallow seas, such as on the Patagonian Shelf. 'By measuring sea level with the TOPEX/Poseidon satellite altimeter, our knowledge of the tides in the global ocean has been remarkably improved,' said Richard Ray, a geophysicist at Goddard. The accuracies are now so high that this data can be used to map empirically the tidal energy dissipation. (Red areas, above) The deep-water tidal dissipation occurs generally near rugged bottom topography (seamounts and mid-ocean ridges). 'The observed pattern of deep-ocean dissipation is consistent with topographic scattering of tidal energy into internal motions within the water column, resulting in localized turbulence and mixing', said Gary Egbert an associate professor at OSU. One important implication of this finding concerns the possible energy sources needed to maintain the ocean's large-scale 'conveyor-belt' circulation and to mix upper ocean heat into the abyssal depths. It is thought that 2 terawatts are required for this process. The winds supply about 1 terawatt, and there has been speculation that the tides, by pumping energy into vertical water motions, supply the remainder. However, all current general circulation models of the oceans ignore the tides. 'It is possible that properly

  10. Aeroelastic stability analysis of a Darrieus wind turbine

    SciTech Connect

    Popelka, D.

    1982-02-01

    An aeroelastic stability analysis has been developed for predicting flutter instabilities on vertical axis wind turbines. The analytical model and mathematical formulation of the problem are described as well as the physical mechanism that creates flutter in Darrieus turbines. Theoretical results are compared with measured experimental data from flutter tests of the Sandia 2 Meter turbine. Based on this comparison, the analysis appears to be an adequate design evaluation tool.

  11. Measurements of Turbulence at Two Tidal Energy Sites in Puget Sound, WA

    SciTech Connect

    Thomson, Jim; Polagye, Brian; Durgesh, Vibhav; Richmond, Marshall C.

    2012-06-05

    Field measurements of turbulence are pre- sented from two sites in Puget Sound, WA (USA) that are proposed for electrical power generation using tidal current turbines. Rapidly sampled data from multiple acoustic Doppler instruments are analyzed to obtain statistical mea- sures of fluctuations in both the magnitude and direction of the tidal currents. The resulting turbulence intensities (i.e., the turbulent velocity fluctuations normalized by the harmonic tidal currents) are typically 10% at the hub- heights (i.e., the relevant depth bin) of the proposed turbines. Length and time scales of the turbulence are also analyzed. Large-scale, anisotropic eddies dominate the energy spectra, which may be the result of proximity to headlands at each site. At small scales, an isotropic turbulent cascade is observed and used to estimate the dissipation rate of turbulent kinetic energy. Data quality and sampling parameters are discussed, with an emphasis on the removal of Doppler noise from turbulence statistics.

  12. Ambient Noise in an Urbanized Tidal Channel

    NASA Astrophysics Data System (ADS)

    Bassett, Christopher

    the pressure fluctuations when the turbulent scales are on order of, or smaller than, the characteristic size of the hydrophone. At both sites, flow-noise levels can exceed ambient noise levels during slack currents by more than 50 dB at 20 Hz and flow-noise is measured at frequencies greater than 500 Hz. In Admiralty Inlet, the use of a compact flow shield is shown to reduce flow-noise levels by up to 30 dB. Below 1 kHz, the dominant source of ambient noise is vessel traffic, though during periods of strong currents, the propagating noise from vessels can be difficult to identify because of flow-noise. At frequencies above 1 kHz, during periods of strong currents, the dominant source of ambient noise is bedload transport. Observation of this higher frequency sound is not affected by flow-noise, which is limited to lower frequencies in northern Admiralty Inlet. These results are combined with marine species hearing thresholds, a turbine source spectrum, and a simple propagation model to roughly quantify the probability of marine animals detecting the sound of operating turbines against ambient noise. The results suggest that the likely detection range of operating turbines is limited to less than 1 km under most conditions. The sound produced by operating tidal turbines at the proposed demonstration-scale tidal power project is not likely to have any significant behavioral effect at greater range. Finally, the ambient statistics at the site are also combined with a sound propagation model and vocalization characteristics of Southern Resident killer whales to determine the effective range for passive acoustic monitoring techniques at the proposed project location. Due to the frequency overlap between sediment-generated noise and killer whale vocalizations, during peak currents the detection range for vocalizations is reduced by up to 90% when compared to slack current noise levels. Although the reduction in detection range is significant, this analysis suggests that

  13. Temporal variation of velocity and turbulence characteristics at a tidal energy site

    NASA Astrophysics Data System (ADS)

    Gunawan, B.; Neary, V. S.; Colby, J.

    2013-12-01

    This study examines the temporal variability, frequency, direction and magnitude of the mean current, turbulence, hydrodynamic force and tidal power availability at a proposed tidal energy site in a tidal channel located in East River, NY, USA. The channel has a width of 190 m, a mean water level of 9.8 m and a mean tidal range of 1.3 m. A two-month velocity measurement was conducted at the design hub-height of a tidal turbine using an acoustic Doppler velocimeter (ADV). The site has semi-diurnal tidal characteristics with tidal current pattern resembles that of sinusoidal function. The five-minute mean currents at the site varied between 0 and 2.4 m s-1. Flood current magnitudes were typically higher that the ebb current magnitudes, which skewed the tidal energy production towards the flood period. The effect of small-scale turbulence on the computed velocity, hydrodynamic load and power densities timeseries were investigated. Excluding the small-scale turbulence may lead to a significant underestimation of the mean and the maximum values of the analyzed variable. Comparison of hydrodynamic conditions with other tidal energy sites indicates that the key parameters for tidal energy site development are likely to be site-specific, which highlight the need to develop a classification system for tidal energy sites. Such a classification system would enable a direct comparison of key parameters between potential project locations and ultimately help investors in the decision making process. Turbulence intensity vs. mean current magnitude

  14. Turbine design review text

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Three-volume publication covers theoretical, design, and performance aspects of turbines. Volumes cover thermodynamic and fluid-dynamic concepts, velocity diagram design, turbine blade aerodynamic design, turbine energy losses, supersonic turbines, radial-inflow turbines, turbine cooling, and aerodynamic performance testing.

  15. Tidal spin down rates of homogeneous triaxial viscoelastic bodies

    NASA Astrophysics Data System (ADS)

    Quillen, Alice C.; Kueter-Young, Andrea; Frouard, Julien; Ragozzine, Darin

    2016-08-01

    We use numerical simulations to measure the sensitivity of the tidal spin down rate of a homogeneous triaxial ellipsoid to its axis ratios by comparing the drift rate in orbital semi-major axis to that of a spherical body with the same mass, volume and simulated rheology. We use a mass-spring model approximating a viscoelastic body spinning around its shortest body axis, with spin aligned with orbital spin axis, and in circular orbit about a point mass. The torque or drift rate can be estimated from that predicted for a sphere with equivalent volume if multiplied by 0.5 (1 + b^4/a^4)(b/a)^{-4/3} (c/a)^{-α _c} where b/a and c/a are the body axis ratios and index αc ≈ 1.05 is consistent with the random lattice mass spring model simulations but αc = 4/3 suggested by scaling estimates. A homogeneous body with axis ratios 0.5 and and 0.8, like Haumea, has orbital semi-major axis drift rate about twice as fast as a spherical body with the same mass, volume and material properties. A simulation approximating a mostly rocky body but with 20% of its mass as ice concentrated at its ends has a drift rate 10 times faster than the equivalent homogeneous rocky sphere. However, this increase in drift rate is not enough to allow Haumea's satellite, Hi'iaka, to have tidally drifted away from Haumea to its current orbital semi-major axis.

  16. Vertical axis windmill

    SciTech Connect

    Zheug, Y.K.

    1984-03-06

    A vertical axis windmill has a blade pivotally connected to a rotatable support structure on an axis passing through its center of gravity which is arranged to lie forward of its aerodynamic center whereby the blade automatically swings outwardly and inwardly when moving on the windward and leeward sides respectively of the axis of rotation of said support means.

  17. Searching for Tidal Tails in Galactic Dwarf Spheroidal Galaxies

    NASA Astrophysics Data System (ADS)

    Martínez-Delgado, David; Aparicio, A.; Gomez-Flechoso, Maria A.

    The formation of the Galactic halo is currently best explained by the combination of two scenarios which previously were regarded as competing models. Based on the kinematics of metal-poor halo field stars, Eggen, Lynden-Bell & Sandage (ELS, 1962) proposed that the halo formed during a rapid, smooth collapse from a homogeneous primordial medium. Searle & Zinn (SZ, 1978) argued a halo formation via the gradual merging of many sub-galactic fragments. The SZ scenario has been strengthened by the observational evidence accumulated during the past decade. The discovery of the Sagittarius dwarf galaxy (Ibata, Gilmore & Irwin 1994), in a process of dissolving into the Galactic halo, argued in favour that accretion events can take place in the Milky Way. The possibility that accretion events may leave observable fossil records in the halo is also supported by theoretical models of tidally disrupted dSph satellites (Johnston, Spergel & Hernquist 1995; Oh, Lin & Aarseth 1995; Piatek & Pryor 1995). We present our preliminary results of a long-term project to investigate the process of accretion and tidal disruption of dSph satellites in the Galactic halo and, in particular, to search for new tidal tails in a sample of nearby dSph satellites of the Milky Way. The presence of a possible tidal debris in Ursa Minor and Sculptor dSphs and the results of our survey for a tidal extension along the NW semimajor axis of Saggitarius is discussed.

  18. Tidal heating of Ariel

    NASA Technical Reports Server (NTRS)

    Tittemore, William C.

    1990-01-01

    During evolution through the 4:1 commensurability early in the history of the Uranian system, over 3.8 billion years ago, tidal heating may have raised the internal temperature of Ariel by up to about 20 K; the internal temperature of Ariel may already have been high in virtue of both accretional and radiogenic heating. The additional increase in Ariel's temperature could then have triggered the geological activity that led to a late resurfacing, by decreasing lithospheric thickness and exacerbating thermal stresses on it to the point where observed cracks and faults formed.

  19. Conservation of tidal marshes

    SciTech Connect

    Daiber, F.C.

    1986-01-01

    This book is the first attempt to examine collectively the various uses and the consequences of marsh conservation efforts. Author Franklin Daiber emphasizes tidal marsh conservation from a holistic perspective rather than from the perspective of a single purpose or special economic interest. He addresses a topic receiving increasing attention, namely the concept of open marsh management as a means of controlling mosquito production without harmful effects on other marsh organisms. Topics considered include: water management; dikes, impoundments, ponds and ditches; reclaimed land and impoundments; ditching and ponding for mosquito control; sewage disposal and waste treatment; dredge material for wetland restoration; insecticides; oil pollution; and petroleum hydrocarbon interactions.

  20. Direct measurements of World Ocean tidal currents with surface drifters

    NASA Astrophysics Data System (ADS)

    Poulain, Pierre-Marie; Centurioni, Luca

    2015-10-01

    Velocities of surface drifters are analyzed to study tidal currents throughout the World Ocean. The global drifter data set spanning the period 1979-2013 is used to describe the geographical structure of the surface tidal currents at global scale with a resolution of 2°. Harmonic analysis is performed with two semidiurnal, two diurnal, and four inferred tidal constituents. Tidal current characteristics (amplitude of semimajor axis, rotary coefficient, tidal ellipse inclination, and Greenwich phase) are mapped over the World Ocean from direct observations. The M2 currents dominate on all the shallow continental shelves with magnitude exceeding 60 cm/s. They are also substantial (4-5 cm/s) over the main deep topographic features such as the Mid-Atlantic Ridge, the Southwest Indian Ridge, and the Mariana Ridge. The S2 currents have amplitudes typically half the size of the M2 currents, with a maximum of about 30 cm/s. The K1 and O1 currents are important in many shallow seas. They are large in the vicinity of the turning latitudes near 30°N/S where they merge with inertial motions of the same frequency. They are also substantial in the South China Sea and Philippine Sea. Maps of rotary coefficients indicate that all tidal motions are essentially clockwise (anticlockwise) in the Northern (Southern) Hemisphere. The rotary coefficient of the tidal currents is compared with the theory of freely and meridionally propagating baroclinic inertia-gravity waves. The Greenwich phase of the M2 constituent has large-scale coherent propagation patterns which could be interpreted as the propagation of the barotropic tide.

  1. Tidal dunes versus tidal bars: The sedimentological and architectural characteristics of compound dunes in a tidal seaway, the lower Baronia Sandstone (Lower Eocene), Ager Basin, Spain

    NASA Astrophysics Data System (ADS)

    Olariu, Cornel; Steel, Ronald J.; Dalrymple, Robert W.; Gingras, Murray K.

    2012-11-01

    dunes, separated by 10-30 cm of bioturbated muddy sandstone, which migrated over each other in an offlapping, progradational fashion. Each compound-dune complex (the best reservoir rock) thins as it downlaps, at average rates of 3-4 m/km in a dip direction. These reservoir units can be comprised of discrete compartments, each formed by a single compound dune, that extend for 500-1000 m in the direction of the current, and are at least 350-600 m wide in a flow-transverse direction. Distinguishing between tidal bars and tidal dunes in an ancient tidal succession can be difficult because both can contain similar cross-bedded facies and have overlapping thicknesses; however, the internal architecture and sandbody orientations are different. Tidal bars have their long axis almost parallel both to the tidal current direction and to the strike of the lateral-accretion master surfaces. In inshore areas, they are bounded by channels and fine upward. Large compound tidal dunes, in contrast, have their crest oriented approximately normal to the tidal currents and contain a forward-accretion architecture. Coeval channels are uncommon within large, sub-tidal dune fields. The above distinctions are very important to reservoir description and modeling, because the long axis of the intra-reservoir compartments in the two cases will be 90° apart.

  2. TIDAL AND TIDALLY AVERAGED CIRCULATION CHARACTERISTICS OF SUISUN BAY, CALIFORNIA.

    USGS Publications Warehouse

    Smith, Lawrence H.; Cheng, Ralph T.

    1987-01-01

    Availability of extensive field data permitted realistic calibration and validation of a hydrodynamic model of tidal circulation and salt transport for Suisun Bay, California. Suisun Bay is a partially mixed embayment of northern San Francisco Bay located just seaward of the Sacramento-San Joaquin Delta. The model employs a variant of an alternating direction implicit finite-difference method to solve the hydrodynamic equations and an Eulerian-Lagrangian method to solve the salt transport equation. An upwind formulation of the advective acceleration terms of the momentum equations was employed to avoid oscillations in the tidally averaged velocity field produced by central spatial differencing of these terms. Simulation results of tidal circulation and salt transport demonstrate that tides and the complex bathymetry determine the patterns of tidal velocities and that net changes in the salinity distribution over a few tidal cycles are small despite large changes during each cycle.

  3. Vertical wind turbine

    SciTech Connect

    Danson, D.P.

    1988-08-16

    This patent describes a wind driven turbine of the vertical axis type comprising: (a) a support base; (b) a generally vertical column rotatably mounted to the support base; (c) upper and lower support means respectively mounted on the column for rotation therewith; wind driven blades connected between the upper and lower support means for rotation about the column and each blade being individually rotatable about a blade axis extending longitudinally through the blade to vary a blade angle of attach thereof relative to wind velocity during rotation about the column; and (e) control means for variably adjusting angles of attack of each blade to incident wind, the control means including a connecting rod means having drive means for rotating each blade about the associated blade axis in response to radial movement of the connecting rod means and control shaft pivotally mounted within the column and having a first shaft portion connected to the connecting rod means and a second shaft portion radially offset from the first shaft portion and pivotally connected to radially displace the first portion and thereby the connecting rod means to vary the blade angles of attack during rotation about the column.

  4. CFD Aided Design and Production of Hydraulic Turbines

    NASA Astrophysics Data System (ADS)

    Kaplan, Alper; Cetinturk, Huseyin; Demirel, Gizem; Ayli, Ece; Celebioglu, Kutay; Aradag, Selin; ETU Hydro Research Center Team

    2014-11-01

    Hydraulic turbines are turbo machines which produce electricity from hydraulic energy. Francis type turbines are the most common one in use today. The design of these turbines requires high engineering effort since each turbine is tailor made due to different head and discharge. Therefore each component of the turbine is designed specifically. During the last decades, Computational Fluid Dynamics (CFD) has become very useful tool to predict hydraulic machinery performance and save time and money for designers. This paper describes a design methodology to optimize a Francis turbine by integrating theoretical and experimental fundamentals of hydraulic machines and commercial CFD codes. Specific turbines are designed and manufactured with the help of a collaborative CFD/CAD/CAM methodology based on computational fluid dynamics and five-axis machining for hydraulic electric power plants. The details are presented in this study. This study is financially supported by Turkish Ministry of Development.

  5. Control of Wind Turbines: Past, Present, and Future

    SciTech Connect

    Laks, J. H.; Pao, L. Y.; Wright, A. D.

    2009-01-01

    We review the objectives and techniques used in the control of horizontal axis wind turbines at the individual turbine level, where controls are applied to the turbine blade pitch and generator. The turbine system is modeled as a flexible structure operating in the presence of turbulent wind disturbances. Some overview of the various stages of turbine operation and control strategies used to maximize energy capture in below rated wind speeds is given, but emphasis is on control to alleviate loads when the turbine is operating at maximum power. After reviewing basic turbine control objectives, we provide an overview of the common basic linear control approaches and then describe more advanced control architectures and why they may provide significant advantages.

  6. Wind turbine

    DOEpatents

    Cheney, Jr., Marvin C.

    1982-01-01

    A wind turbine of the type having an airfoil blade (15) mounted on a flexible beam (20) and a pitch governor (55) which selectively, torsionally twists the flexible beam in response to wind turbine speed thereby setting blade pitch, is provided with a limiter (85) which restricts unwanted pitch change at operating speeds due to torsional creep of the flexible beam. The limiter allows twisting of the beam by the governor under excessive wind velocity conditions to orient the blades in stall pitch positions, thereby preventing overspeed operation of the turbine. In the preferred embodiment, the pitch governor comprises a pendulum (65,70) which responds to changing rotor speed by pivotal movement, the limiter comprising a resilient member (90) which engages an end of the pendulum to restrict further movement thereof, and in turn restrict beam creep and unwanted blade pitch misadjustment.

  7. Tidal Pools--Miniature Oceans

    ERIC Educational Resources Information Center

    Plake, Linda Perry

    1977-01-01

    A comprehensive discussion of the biological activity in tidal pools is provided. The importance of environmental factors such as oxygen supply, temperature, salinity, and light is detailed. Plants and animals that might be found in a tidal pool are identified and described. (BT)

  8. Modal testing of a rotating wind turbine

    SciTech Connect

    Carne, T.G.; Nord, A.R.

    1982-11-01

    A testing technique has been developed to measure the modes of vibration of a rotating vertical-axis wind turbine. This technique has been applied to the Sandia Two-Meter Turbine, where the changes in individual modal frequencies as a function of the rotational speed have been tracked from 0 rpm (parked) to 600 rpm. During rotational testing, the structural response was measured using a combination of strain gages and accelerometers, passing the signals through slip rings. Excitation of the turbine structure was provided by a scheme which suddenly released a pretensioned cable, thus plucking the turbine as it was rotating at a set speed. In addition to calculating the real modes of the parked turbine, the modes of the rotating turbine were also determined at several rotational speeds. The modes of the rotating system proved to be complex due to centrifugal and Coriolis effects. The modal data for the parked turbine were used to update a finite-element model. Also, the measured modal parameters for the rotating turbine were compared to the analytical results, thus verifying the analytical procedures used to incorporate the effects of the rotating coordinate system.

  9. Ocean tidal excitation of polar motion

    NASA Technical Reports Server (NTRS)

    Sanchez, B. V.

    1979-01-01

    An investigation was conducted to ascertain the response of the rotational motion of the earth to forcing functions produced by the water mass redistribution due to the ocean tides. In particular, the components of displacement of the rotation axis at the surface of the Earth were obtained. The investigation also addressed the larger question concerning the possibility of excitation of the Chandler wobble of the earth. In general, the results show the existence of a polar wobble as a response to each of the components of the ocean tides. The magnitude of the polar displacement depends on two factors: the amplitude of the tidal component and its period. The maximum periodic contributions are: the Doodson's component number 055.565 with a period of 18.613 years and 50 cm of polar displacement, the annual component 056.544 with 37 cm of polar displacement and the semi-annual 057.555 with 32 cm. The tidal components with daily and semi-daily periods yield very small polar displacements of the order of 0.01 cm. The combined effect of all the periodic components can yield as much as 90 cm of pole displacements. The changes produced by the ocean tides in the products of inertia are periodic and regular, therefore, they cannot be the source of excitation of the Chandler wobble.

  10. Maximum likelihood fitting of tidal streams with application to the Sagittarius dwarf tidal tails

    NASA Astrophysics Data System (ADS)

    Cole, Nathan

    2009-06-01

    A maximum likelihood method for determining the spatial properties of tidal debris and of the Galactic spheroid is presented. Over small spatial extent, the tidal debris is modeled as a cylinder with density that falls off as a Gaussian with distance from its axis while the smooth component of the stellar spheroid is modeled as a Hernquist profile. The method is designed to use 2.5° wide stripes of data that follow great circles across the sky in which the tidal debris within each stripe is fit separately. A probabilistic separation technique which allows for the extraction of the optimized tidal streams from the input data set is presented. This technique allows for the creation of separate catalogs for each component fit in the stellar spheroid: one catalog for each piece of tidal debris that fits the density profile of the debris and a single catalog which fits the density profile of the smooth stellar spheroid component. This separation technique is proven to be effective by extracting the simulated tidal debris from the simulated datasets. A method to determine the statistical errors is also developed which utilizes a Hessian matrix to determine the width of the peak at the maximum of the likelihood surface. This error analysis method serves as a means of testing the the algorithm with regard to the simulated datasets as well as determining the statistical errors of the optimizations over observational data. An heuristic method is also defined for determining the numerical error in the optimizations. The maximum likelihood algorithm is then used to optimize spatial data taken from the Sloan Digital Sky Survey. Stars having the color of blue F turnoff stars 0.1 < ( g - r ) 0 < 0.3 and ( u - g ) 0 > 0.4 are extracted from the Sloan Digital Sky Survey database. In the algorithm, the absolute magnitude distribution of F turnoff stars is modeled as a Gaussian distribution, which is an improvement over previous methods which utilize a fixed absolute magnitude M g 0

  11. Damage mitigating control for wind turbines

    NASA Astrophysics Data System (ADS)

    Santos, Richard A.

    2007-12-01

    In the last few decades the wind industry has made great strides in reducing the cost of energy of utility scale wind turbines. In an attempt to reduce infrastructure costs and improve efficiency, the trend has been to develop larger variations of existing designs. In the past, the wind turbine controller was used primarily for rotor speed control and prevention of catastrophic damage from extreme wind conditions or component failures. The recent trend of wind turbine growing in size has resulted in wind turbines becoming much more flexible, and now the emphasis of wind turbine controls research focuses on how to damp resonances and avoid dangerous excitations that may lead to structural failure. Control of the fatigue loads on the wind turbine structure addresses neglects the fatigue mechanism of the material. The conversion of loads into stresses and those stresses into fatigue damage is a highly nonlinear process and is based on the so-called "cycle-counting" methods. Since the cycle counting methodology is difficult to convert into the time or frequency domains, these components have been generally avoided in controls research. Without modeling the damage dynamics, the wind turbine controller cannot efficiently reduce the fatigue of the structural components. The result is that only small decreases of fatigue damage are realized by current load reduction strategies at the expense of excessive control actuation. This dissertation introduces the concept of Damage Mitigating Control (DMC) as it applies to utility scale Horizontal Axis Wind Turbines (HAWTs). The work presented extends earlier work in damage mitigating and life extending control in several ways and then applies then applies this control strategy to reduce the fatigue damage suffered by wind turbines during operation. By modeling fatigue damage dynamics within the wind turbine controller, the life of the turbine can be extended significantly without sacrificing performance.

  12. Wooden wind turbine blade manufacturing process

    DOEpatents

    Coleman, Clint

    1986-01-01

    A wooden wind turbine blade is formed by laminating wood veneer in a compression mold having the exact curvature needed for one side of the blade, following which the other side of the blade is ground flat along its length but twisted with respect to the blade axis.

  13. Wake Study Methods of Wind Turbines

    NASA Astrophysics Data System (ADS)

    Suatean, Bogdan; Colidiuc, Alexandra; Galetuse, Stelian; Frunzulica, Florin

    2011-09-01

    Two different methods for determination of the aerodynamic performance of horizontal axis wind turbines (HAWT) are proposed in this paper. The methods presented have various levels of complexity to calculate the aerodynamic performances of HAWT, starting with a simple method, the lifting line method, and ending with a CFD approach.

  14. Tidal Venuses: Triggering a Climate Catastrophe via Tidal Heating

    PubMed Central

    Mullins, Kristina; Goldblatt, Colin; Meadows, Victoria S.; Kasting, James F.; Heller, René

    2013-01-01

    Abstract Traditionally, stellar radiation has been the only heat source considered capable of determining global climate on long timescales. Here, we show that terrestrial exoplanets orbiting low-mass stars may be tidally heated at high-enough levels to induce a runaway greenhouse for a long-enough duration for all the hydrogen to escape. Without hydrogen, the planet no longer has water and cannot support life. We call these planets “Tidal Venuses” and the phenomenon a “tidal greenhouse.” Tidal effects also circularize the orbit, which decreases tidal heating. Hence, some planets may form with large eccentricity, with its accompanying large tidal heating, and lose their water, but eventually settle into nearly circular orbits (i.e., with negligible tidal heating) in the habitable zone (HZ). However, these planets are not habitable, as past tidal heating desiccated them, and hence should not be ranked highly for detailed follow-up observations aimed at detecting biosignatures. We simulated the evolution of hypothetical planetary systems in a quasi-continuous parameter distribution and found that we could constrain the history of the system by statistical arguments. Planets orbiting stars with masses<0.3 MSun may be in danger of desiccation via tidal heating. We have applied these concepts to Gl 667C c, a ∼4.5 MEarth planet orbiting a 0.3 MSun star at 0.12 AU. We found that it probably did not lose its water via tidal heating, as orbital stability is unlikely for the high eccentricities required for the tidal greenhouse. As the inner edge of the HZ is defined by the onset of a runaway or moist greenhouse powered by radiation, our results represent a fundamental revision to the HZ for noncircular orbits. In the appendices we review (a) the moist and runaway greenhouses, (b) hydrogen escape, (c) stellar mass-radius and mass-luminosity relations, (d) terrestrial planet mass-radius relations, and (e) linear tidal theories. Key Words: Extrasolar terrestrial

  15. Turbine engine

    SciTech Connect

    Greer, D.

    1988-02-16

    In a turbine propulsion engine, an elongated motor is described including a power means and having a drive shaft projecting therefrom. A first compressor includes an elongated rotatable first casing coaxially mounted upon the motor having a fuel inlet for pressure feeding of fuel lengthwise of the first compressor. A second compressor includes a casing coaxially mounted upon and along the first compressor casing secured to the motor having an air inlet at its forward end for feeding high velocity compressed air lengthwise of the second compressor casing. An intermediate diverging casing at one end is peripherally connected to the second compressor casing having inner and outer diffusor chambers communicating respectively with the compressor for receiving high velocity vaporized fuel and compressed air. A turbine casing at one end is peripherally connected to the intermediate casing and at its other end having a converging exhaust outlet. An elongated combustion chamber of circular cross-section rotatably mounted and spaced within and journaled upon the turbine casing; an engine shaft extending axially through the combustion chamber, journaled upon the turbine casing and axially connected to the drive shaft.

  16. Galileo's tidal theory.

    PubMed

    Naylor, Ron

    2007-03-01

    The aim of Galileo's tidal theory was to show that the tides were produced entirely by the earth's motion and thereby to demonstrate the physical truth of Copernicanism. However, in the Dialogue Concerning the Two Chief World Systems Galileo did not explain some of the most significant aspects of the theory completely. As a consequence, the way the theory works has long been disputed. Though there exist a number of interpretations in the literature, the most widely accepted are based on ideas that are not explicitly articulated by Galileo in the Dialogue. This essay attempts to understand the way the theory functions in terms of Galilean physics. It is an interpretation of the theory based solely on Galileo's arguments--and one that reveals it to have had some unrecognized consequences. This interpretation indicates that Galileo's theory would not have worked in the manner he described in the Dialogue. PMID:17539198

  17. Galileo's tidal theory.

    PubMed

    Naylor, Ron

    2007-03-01

    The aim of Galileo's tidal theory was to show that the tides were produced entirely by the earth's motion and thereby to demonstrate the physical truth of Copernicanism. However, in the Dialogue Concerning the Two Chief World Systems Galileo did not explain some of the most significant aspects of the theory completely. As a consequence, the way the theory works has long been disputed. Though there exist a number of interpretations in the literature, the most widely accepted are based on ideas that are not explicitly articulated by Galileo in the Dialogue. This essay attempts to understand the way the theory functions in terms of Galilean physics. It is an interpretation of the theory based solely on Galileo's arguments--and one that reveals it to have had some unrecognized consequences. This interpretation indicates that Galileo's theory would not have worked in the manner he described in the Dialogue.

  18. Load attenuating passively adaptive wind turbine blade

    DOEpatents

    Veers, Paul S.; Lobitz, Donald W.

    2003-01-01

    A method and apparatus for improving wind turbine performance by alleviating loads and controlling the rotor. The invention employs the use of a passively adaptive blade that senses the wind velocity or rotational speed, and accordingly modifies its aerodynamic configuration. The invention exploits the load mitigation prospects of a blade that twists toward feather as it bends. The invention includes passively adaptive wind turbine rotors or blades with currently preferred power control features. The apparatus is a composite fiber horizontal axis wind-turbine blade, in which a substantial majority of fibers in the blade skin are inclined at angles of between 15 and 30 degrees to the axis of the blade, to produces passive adaptive aeroelastic tailoring (bend-twist coupling) to alleviate loading without unduly jeopardizing performance.

  19. Load attenuating passively adaptive wind turbine blade

    DOEpatents

    Veers, Paul S.; Lobitz, Donald W.

    2003-01-07

    A method and apparatus for improving wind turbine performance by alleviating loads and controlling the rotor. The invention employs the use of a passively adaptive blade that senses the wind velocity or rotational speed, and accordingly modifies its aerodynamic configuration. The invention exploits the load mitigation prospects of a blade that twists toward feather as it bends. The invention includes passively adaptive wind turbine rotors or blades with currently preferred power control features. The apparatus is a composite fiber horizontal axis wind-turbine blade, in which a substantial majority of fibers in the blade skin are inclined at angles of between 15 and 30 degrees to the axis of the blade, to produces passive adaptive aeroelastic tailoring (bend-twist coupling) to alleviate loading without unduly jeopardizing performance.

  20. Hydrodynamic modeling and feasibility study of harnessing tidal power at the Bay of Fundy

    NASA Astrophysics Data System (ADS)

    Chang, Jen

    Due to rising fuel costs and environmental concerns, energy generation from alternative power source has become one of the most important issues in energy policy. Tidal power is one of the alternative energy sources. The tidal range at the Bay of Fundy is the largest in the world (approximately 16 meters). It represents a prime location for harnessing tidal power using the daily rising and ebbing tide. In this study, a two dimensional finite element model has been developed and applied to simulate the tidal responses, including water level and flow velocity, in the Bay of Fundy region. The simulation results are used to choose the suitable location for energy development and to predict possible energy generated from different types of generation methods. Fluid motion is assumed to be governed by the shallow water equation since the wave length associated with tide is much longer than the water depth in the Bay of Fundy. By using a real time series of water elevation at the entrance of the bay, the computer model finds tidal response for each node in the study area, which is then verified by the observation record from several tidal gauge stations inside the bay. This study shows that the at-site cost of the energy for barrage type tidal power plants is around 0.065 to 0.097 per kWh at the recommended Shepody Bay, Cumberland Basin, and Cobequid Bay. The cost of energy for the current turbine type tidal power plants is 0.13/kWh to 0.24/kWh at the area with highest current velocity. Compared with the recent bill of the local power company, the at-site unit cost of energy from the barrage type of tidal power plant is feasible, but the environmental concerns of channel blocking by barrage present a formidable constraint. For the current turbine type of tidal power plant, even the most suitable sites are not financially feasible under current technology, but this type of power generation may become feasible as oil prices continue to increase and more efficient turbines

  1. Tidal influence within Pennsylvanian sandstones

    SciTech Connect

    Archer, A.W. )

    1991-08-01

    Within Pennsylvanian-age strata of the Illinois basin, large-scale linear sand bodies have been previously interpreted as fluvial and deltaic in origin. Nonetheless, analyses of fine-scale sedimentology and bed forms within such sandstones and the associated shales indicate that tidal processes greatly influenced the depositional environments within such lithofacies. Recent work on Mid-Continent Pennsylvanian-age sandstones indicates the occurrence of similar depositional environments. Based upon the pervasive tidal influence observed within such strata, environmental analogs other than fluvial and deltaic bear consideration. In general, tidally influenced estuarine models seem particularly appropriate. Within such settings, the changeover from a fluvially dominated deposystem to tidally influenced estuary occurs during transgressive phases. Despite the tidal influence that can be interpreted from the sedimentology, the strata contain few, if any, marine indicators because of the low salinities that occurred during deposition. Ongoing work in the Mid-Continent indicates that Morrowan, Atokan, Desmoinesian, Missourian, and Virgilian sands share a number of similarities with the tidally influenced environments delineated in the Illinois basin studies. Thus a tidal/estuarine interpretation might be a generalizable model for many Pennsylvanian sandstones. In addition, enhanced understanding of the siliciclastic parts of Mid-Continent cyclothems provides a more useful framework for documentation of carbonate/siliciclastic interrelationships. Oscillations of carbonate/siliciclastic environments may be more readily explainable by climatic cycles rather than by traditionally popular depth-related facies models.

  2. Tidal amplification of seabed light

    NASA Astrophysics Data System (ADS)

    Bowers, D. G.; Brubaker, J. M.

    2010-09-01

    Because solar irradiance decreases approximately exponentially with depth in the sea, the increase in irradiance at the seabed from mid to low tide is greater than the decrease from mid to high tide. Summed over a day, this can lead to a net amplification of seabed irradiance in tidal waters compared to nontidal waters with the same mean depth and transparency. In this paper, this effect is quantified by numerical and analytical integration of the Lambert-Beer equation to derive the ratio of daily total seabed irradiance with and without a tide. Greatest amplification occurs in turbid water with large tidal range and low tide occurring at noon. The theoretical prediction is tested against observations of seabed irradiance in the coastal waters of North Wales where tidal amplification of seabed light by up to a factor of 7 is both observed and predicted. Increasing the strength of tidal currents tends to increase the turbidity of the water and hence reduce the light reaching the seabed, but this effect is made less by increasing tidal amplification, especially when low water is in the middle of the day. The ecological implications of tidal amplification are discussed. The productivity of benthic algae will be greater than that predicted by simple models which calculate seabed irradiance using the mean depth of water alone. Benthic algae are also able to live at greater depths in tidal waters than in nontidal waters with the same transparency.

  3. Effect of precipitation on wind turbine performance

    NASA Technical Reports Server (NTRS)

    Corrigan, R. D.; Demiglio, R. D.

    1985-01-01

    The effects of precipitation on wind turbine power output was analyzed. The tests were conducted on the two bladed Mod-0 horizontal axis wind turbine with three different rotor configurations. Experimental data from these tests are presented which clearly indicate that the performance of the Mod-0 wind turbine is affected by rain. Light rainfall degraded performance by as much as 20 percent while heavy rainfall degraded performance by as much as 30 percent. Snow mixed with drizzle degraded performance by as much as 36 percent at low windspeeds. Also presented are the results of an analysis to predict the effect of rain on wind turbine performance. This analysis used a blade element/momentum code with modified airfoil characteristics to account for the effect of rain and predicted a loss in performance of 31 percent in high winds with moderate rainfall rates. These predicted results agreed well with experimental data.

  4. The 200-kilowatt wind turbine project

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The three 200 kilowatt wind turbines described, compose the first of three separate systems. Proposed wind turbines of the two other systems, although similar in design, are larger in both physical size and rated power generation. The overall objective of the project is to obtain early operation and performance data while gaining initial experience in the operation of large, horizontal-axis wind turbines in typical utility environments. Several of the key issues addressed include the following: (1) impact of the variable power output (due to varying wind speeds) on the utility grid (2) compatibility with utility requirements (voltage and frequency control of generated power) (3) demonstration of unattended, fail-safe operation (4) reliability of the wind turbine system (5) required maintenance and (6) initial public reaction and acceptance.

  5. Enceladus' tidal dissipation revisited

    NASA Astrophysics Data System (ADS)

    Tobie, Gabriel; Behounkova, Marie; Choblet, Gael; Cadek, Ondrej; Soucek, Ondrej

    2016-10-01

    A series of chemical and physical evidence indicates that the intense activity at Enceladus' South Pole is related to a subsurface salty water reservoir underneath the tectonically active ice shell. The detection of a significant libration implies that this water reservoir is global and that the average ice shell thickness is about 20-25km (Thomas et al. 2016). The interpretation of gravity and topography data further predicts large variations in ice shell thickness, resulting in a shell potentially thinner than 5 km in the South Polar Terrain (SPT) (Cadek et al. 2016). Such an ice shell structure requires a very strong heat source in the interior, with a focusing mechanism at the SPT. Thermal diffusion through the ice shell implies that at least 25-30 GW is lost into space by passive diffusion, implying a very efficient dissipation mechanism in Enceladus' interior to maintain such an ocean/ice configuration thermally stable.In order to determine in which conditions such a large dissipation power may be generated, we model the tidal response of Enceladus including variable ice shell thickness. For the rock core, we consider a wide range of rheological parameters representative of water-saturated porous rock materials. We demonstrate that the thinning toward the South Pole leads to a strong increase in heat production in the ice shell, with a optimal thickness obtained between 1.5 and 3 km, depending on the assumed ice viscosity. Our results imply that the heat production in the ice shell within the SPT may be sufficient to counterbalance the heat loss by diffusion and to power eruption activity. However, outside the SPT, a strong dissipation in the porous core is required to counterbalance the diffusive heat loss. We show that about 20 GW can be generated in the core, for an effective viscosity of 1012 Pa.s, which is comparable to the effective viscosity estimated in water-saturated glacial tills on Earth. We will discuss the implications of this revisited tidal

  6. Single Rotor Turbine

    DOEpatents

    Platts, David A.

    2004-10-26

    A rotor for use in turbine applications has a centrifugal compressor having axially disposed spaced apart fins forming passages and an axial turbine having hollow turbine blades interleaved with the fins and through which fluid from the centrifugal compressor flows.

  7. Large-scale wind turbine structures

    NASA Technical Reports Server (NTRS)

    Spera, David A.

    1988-01-01

    The purpose of this presentation is to show how structural technology was applied in the design of modern wind turbines, which were recently brought to an advanced stage of development as sources of renewable power. Wind turbine structures present many difficult problems because they are relatively slender and flexible; subject to vibration and aeroelastic instabilities; acted upon by loads which are often nondeterministic; operated continuously with little maintenance in all weather; and dominated by life-cycle cost considerations. Progress in horizontal-axis wind turbines (HAWT) development was paced by progress in the understanding of structural loads, modeling of structural dynamic response, and designing of innovative structural response. During the past 15 years a series of large HAWTs was developed. This has culminated in the recent completion of the world's largest operating wind turbine, the 3.2 MW Mod-5B power plane installed on the island of Oahu, Hawaii. Some of the applications of structures technology to wind turbine will be illustrated by referring to the Mod-5B design. First, a video overview will be presented to provide familiarization with the Mod-5B project and the important components of the wind turbine system. Next, the structural requirements for large-scale wind turbines will be discussed, emphasizing the difficult fatigue-life requirements. Finally, the procedures used to design the structure will be presented, including the use of the fracture mechanics approach for determining allowable fatigue stresses.

  8. Large-scale wind turbine structures

    NASA Astrophysics Data System (ADS)

    Spera, David A.

    1988-05-01

    The purpose of this presentation is to show how structural technology was applied in the design of modern wind turbines, which were recently brought to an advanced stage of development as sources of renewable power. Wind turbine structures present many difficult problems because they are relatively slender and flexible; subject to vibration and aeroelastic instabilities; acted upon by loads which are often nondeterministic; operated continuously with little maintenance in all weather; and dominated by life-cycle cost considerations. Progress in horizontal-axis wind turbines (HAWT) development was paced by progress in the understanding of structural loads, modeling of structural dynamic response, and designing of innovative structural response. During the past 15 years a series of large HAWTs was developed. This has culminated in the recent completion of the world's largest operating wind turbine, the 3.2 MW Mod-5B power plane installed on the island of Oahu, Hawaii. Some of the applications of structures technology to wind turbine will be illustrated by referring to the Mod-5B design. First, a video overview will be presented to provide familiarization with the Mod-5B project and the important components of the wind turbine system. Next, the structural requirements for large-scale wind turbines will be discussed, emphasizing the difficult fatigue-life requirements. Finally, the procedures used to design the structure will be presented, including the use of the fracture mechanics approach for determining allowable fatigue stresses.

  9. On-Shore Central Hydraulic Power Generation for Wind and Tidal Energy

    NASA Technical Reports Server (NTRS)

    Jones, Jack A.; Bruce, Allan; Lim, Steven; Murray, Luke; Armstrong, Richard; Kimbrall, Richard; Cook-Chenault, Kimberly; DeGennaro, Sean

    2012-01-01

    Tidal energy, offshore wind energy, and onshore wind energy can be converted to electricity at a central ground location by means of converting their respective energies into high-pressure hydraulic flows that are transmitted to a system of generators by high-pressure pipelines. The high-pressure flows are then efficiently converted to electricity by a central power plant, and the low-pressure outlet flow is returned. The Department of Energy (DOE) is presently supporting a project led by Sunlight Photonics to demonstrate a 15 kW tidal hydraulic power generation system in the laboratory and possibly later submerged in the ocean. All gears and submerged electronics are completely eliminated. A second portion of this DOE project involves sizing and costing a 15 MW tidal energy system for a commercial tidal energy plant. For this task, Atlantis Resources Corporation s 18-m diameter demonstrated tidal blades are rated to operate in a nominal 2.6 m/sec tidal flow to produce approximately one MW per set of tidal blades. Fifteen units would be submerged in a deep tidal area, such as in Maine s Western Passage. All would be connected to a high-pressure (20 MPa, 2900 psi) line that is 35 cm ID. The high-pressure HEPG fluid flow is transported 500-m to on-shore hydraulic generators. HEPG is an environmentally-friendly, biodegradable, watermiscible fluid. Hydraulic adaptations to ORPC s cross-flow turbines are also discussed. For 15 MW of wind energy that is onshore or offshore, a gearless, high efficiency, radial piston pump can replace each set of top-mounted gear-generators. The fluid is then pumped to a central, easily serviceable generator location. Total hydraulic/electrical efficiency is 0.81 at full rated wind or tidal velocities and increases to 0.86 at 1/3 rated velocities.

  10. On-Shore Central Hydraulic Power Generation for Wind and Tidal Energy

    NASA Technical Reports Server (NTRS)

    Jones, Jack A.; Bruce, Allan; Lim, Steven; Murray, Luke; Armstrong, Richard; Kimball, Richard; Cook-Chenault, Kimberly; DeGennaro, Sean

    2012-01-01

    Tidal energy, offshore wind energy, and onshore wind energy can be converted to electricity at a central ground location by means of converting their respective energies into high-pressure hydraulic flows that are transmitted to a system of generators by high-pressure pipelines. The high-pressure flows are then efficiently converted to electricity by a central power plant, and the low-pressure outlet flow is returned. The Department of Energy (DOE) is presently supporting a project led by Sunlight Photonics to demonstrate a 15 kilowatt tidal hydraulic power generation system in the laboratory and possibly later submerged in the ocean. All gears and submerged electronics are completely eliminated.A second portion of this DOE project involves sizing and costing a 15 megawatt tidal energy system for a commercial tidal energy plant. For this task, Atlantis Resources Corporation's 18-m diameter demonstrated tidal blades are rated to operate in a nominal 2.6 m/sec tidal flow to produce approximately one megawatt per set of tidal blades. Fifteen units would be submerged in a deep tidal area, such as in Maine's Western Passage. All would be connected to a high-pressure (20 megapascals, 2900 pounds per square inch) line that is 35 cm ID. The high-pressure HEPG fluid flow is transported 500-m to on-shore hydraulic generators. HEPG is an environmentally-friendly, biodegradable, water-miscible fluid. Hydraulic adaptations to ORPC's cross-flow turbines are also discussed.For 15 megawatt of wind energy that is onshore or offshore, a gearless, high efficiency, radial piston pump can replace each set of top-mounted gear-generators. The fluid is then pumped to a central, easily serviceable generator location. Total hydraulic/electrical efficiency is 0.81 at full rated wind or tidal velocities and increases to 0.86 at 1/3 rated velocities.

  11. Obliquity Tides have an Impact in Diurnal Tidal Stresses on the Moon

    NASA Astrophysics Data System (ADS)

    Wüsthoff, M.; Sohl, F.

    2016-08-01

    We examine consequences of the lunar spin axis tilt relative to the pole of the orbital plane for diurnal tidal stresses. If obliquity tides are accounted for, maximum stresses at the surface are up to 30% larger than for eccentricity tides alone.

  12. Turbine Sound May Influence the Metamorphosis Behaviour of Estuarine Crab Megalopae

    PubMed Central

    Pine, Matthew K.; Jeffs, Andrew G.; Radford, Craig A.

    2012-01-01

    It is now widely accepted that a shift towards renewable energy production is needed in order to avoid further anthropogenically induced climate change. The ocean provides a largely untapped source of renewable energy. As a result, harvesting electrical power from the wind and tides has sparked immense government and commercial interest but with relatively little detailed understanding of the potential environmental impacts. This study investigated how the sound emitted from an underwater tidal turbine and an offshore wind turbine would influence the settlement and metamorphosis of the pelagic larvae of estuarine brachyuran crabs which are ubiquitous in most coastal habitats. In a laboratory experiment the median time to metamorphosis (TTM) for the megalopae of the crabs Austrohelice crassa and Hemigrapsus crenulatus was significantly increased by at least 18 h when exposed to either tidal turbine or sea-based wind turbine sound, compared to silent control treatments. Contrastingly, when either species were subjected to natural habitat sound, observed median TTM decreased by approximately 21–31% compared to silent control treatments, 38–47% compared to tidal turbine sound treatments, and 46–60% compared to wind turbine sound treatments. A lack of difference in median TTM in A. crassa between two different source levels of tidal turbine sound suggests the frequency composition of turbine sound is more relevant in explaining such responses rather than sound intensity. These results show that estuarine mudflat sound mediates natural metamorphosis behaviour in two common species of estuarine crabs, and that exposure to continuous turbine sound interferes with this natural process. These results raise concerns about the potential ecological impacts of sound generated by renewable energy generation systems placed in the nearshore environment. PMID:23240063

  13. Turbine sound may influence the metamorphosis behaviour of estuarine crab megalopae.

    PubMed

    Pine, Matthew K; Jeffs, Andrew G; Radford, Craig A

    2012-01-01

    It is now widely accepted that a shift towards renewable energy production is needed in order to avoid further anthropogenically induced climate change. The ocean provides a largely untapped source of renewable energy. As a result, harvesting electrical power from the wind and tides has sparked immense government and commercial interest but with relatively little detailed understanding of the potential environmental impacts. This study investigated how the sound emitted from an underwater tidal turbine and an offshore wind turbine would influence the settlement and metamorphosis of the pelagic larvae of estuarine brachyuran crabs which are ubiquitous in most coastal habitats. In a laboratory experiment the median time to metamorphosis (TTM) for the megalopae of the crabs Austrohelice crassa and Hemigrapsus crenulatus was significantly increased by at least 18 h when exposed to either tidal turbine or sea-based wind turbine sound, compared to silent control treatments. Contrastingly, when either species were subjected to natural habitat sound, observed median TTM decreased by approximately 21-31% compared to silent control treatments, 38-47% compared to tidal turbine sound treatments, and 46-60% compared to wind turbine sound treatments. A lack of difference in median TTM in A. crassa between two different source levels of tidal turbine sound suggests the frequency composition of turbine sound is more relevant in explaining such responses rather than sound intensity. These results show that estuarine mudflat sound mediates natural metamorphosis behaviour in two common species of estuarine crabs, and that exposure to continuous turbine sound interferes with this natural process. These results raise concerns about the potential ecological impacts of sound generated by renewable energy generation systems placed in the nearshore environment.

  14. Turbine sound may influence the metamorphosis behaviour of estuarine crab megalopae.

    PubMed

    Pine, Matthew K; Jeffs, Andrew G; Radford, Craig A

    2012-01-01

    It is now widely accepted that a shift towards renewable energy production is needed in order to avoid further anthropogenically induced climate change. The ocean provides a largely untapped source of renewable energy. As a result, harvesting electrical power from the wind and tides has sparked immense government and commercial interest but with relatively little detailed understanding of the potential environmental impacts. This study investigated how the sound emitted from an underwater tidal turbine and an offshore wind turbine would influence the settlement and metamorphosis of the pelagic larvae of estuarine brachyuran crabs which are ubiquitous in most coastal habitats. In a laboratory experiment the median time to metamorphosis (TTM) for the megalopae of the crabs Austrohelice crassa and Hemigrapsus crenulatus was significantly increased by at least 18 h when exposed to either tidal turbine or sea-based wind turbine sound, compared to silent control treatments. Contrastingly, when either species were subjected to natural habitat sound, observed median TTM decreased by approximately 21-31% compared to silent control treatments, 38-47% compared to tidal turbine sound treatments, and 46-60% compared to wind turbine sound treatments. A lack of difference in median TTM in A. crassa between two different source levels of tidal turbine sound suggests the frequency composition of turbine sound is more relevant in explaining such responses rather than sound intensity. These results show that estuarine mudflat sound mediates natural metamorphosis behaviour in two common species of estuarine crabs, and that exposure to continuous turbine sound interferes with this natural process. These results raise concerns about the potential ecological impacts of sound generated by renewable energy generation systems placed in the nearshore environment. PMID:23240063

  15. Plan Turbines 3 & 4, Side View Turbines ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Plan - Turbines 3 & 4, Side View - Turbines 3 & 4, Section A-A - American Falls Water, Power & Light Company, Island Power Plant, Snake River, below American Falls Dam, American Falls, Power County, ID

  16. Tidal disruption event demographics

    NASA Astrophysics Data System (ADS)

    Kochanek, C. S.

    2016-09-01

    We survey the properties of stars destroyed in tidal disruption events (TDEs) as a function of black hole (BH) mass, stellar mass and evolutionary state, star formation history and redshift. For M_{BH} ≲ 10^7 M_{⊙}, the typical TDE is due to a M* ˜ 0.3 M⊙ M-dwarf, although the mass function is relatively flat for M_{ast } ≲ M_{⊙}. The contribution from older main-sequence stars and sub-giants is small but not negligible. From MBH ≃ 107.5-108.5 M⊙, the balance rapidly shifts to higher mass stars and a larger contribution from evolved stars, and is ultimately dominated by evolved stars at higher BH masses. The star formation history has little effect until the rates are dominated by evolved stars. TDE rates should decline very rapidly towards higher redshifts. The volumetric rate of TDEs is very high because the BH mass function diverges for low masses. However, any emission mechanism which is largely Eddington-limited for low BH masses suppresses this divergence in any observed sample and leads to TDE samples dominated by MBH ≃ 106.0-107.5 M⊙ BHs with roughly Eddington peak accretion rates. The typical fall-back time is relatively long, with 16 per cent having tfb < 10-1 yr (37 d), and 84 per cent having longer time-scales. Many residual rate discrepancies can be explained if surveys are biased against TDEs with these longer tfb, which seems very plausible if tfb has any relation to the transient rise time. For almost any BH mass function, systematic searches for fainter, faster time-scale TDEs in smaller galaxies, and longer time-scale TDEs in more massive galaxies are likely to be rewarded.

  17. The Integration of Environmental Constraints into Tidal Array Optimisation

    NASA Astrophysics Data System (ADS)

    du Feu, Roan; de Trafford, Sebastian; Culley, Dave; Hill, Jon; Funke, Simon W.; Kramer, Stephan C.; Piggott, Matthew D.

    2015-04-01

    It has been estimated by The Carbon Trust that the marine renewable energy sector, of which tidal stream turbines are projected to play a large part, could produce 20% of the UK's present electricity requirements. This has lead to the important question of how this technology can be deployed in an economically and environmentally friendly manner. Work is currently under way to understand how the tidal turbines that constitute an array can be arranged to maximise the total power generated by that array. The work presented here continues this through the inclusion of environmental constraints. The benefits of the renewable energy sector to our environment at large are not in question. However, the question remains as to the effects this burgeoning sector will have on local environments, and how to mitigate these effects if they are detrimental. For example, the presence of tidal arrays can, through altering current velocity, drastically change the sediment transport into and out of an area along with re-suspending existing sediment. This can have the effects of scouring or submerging habitat, mobilising contaminants within the existing sediment, reducing food supply and altering the turbidity of the water. All of which greatly impact upon any fauna in the affected region. This work pays particular attention to the destruction of habitat of benthic fauna, as this is quantifiable as a direct result of change in the current speed; a primary factor in determining sediment accumulation on the sea floor. OpenTidalFarm is an open source tool that maximises the power generated by an array through repositioning the turbines within it. It currently uses a 2D shallow water model with turbines represented as bump functions of increased friction. The functional of interest, power extracted by the array, is evaluated from the flow field which is calculated at each iteration using a finite element method. A gradient-based local optimisation is then used through solving the

  18. Tidal Boundary Conditions in SEAWAT

    USGS Publications Warehouse

    Mulligan, Ann E.; Langevin, Christian; Post, Vincent E.A.

    2011-01-01

    SEAWAT, a U.S. Geological Survey groundwater flow and transport code, is increasingly used to model the effects of tidal motion on coastal aquifers. Different options are available to simulate tidal boundaries but no guidelines exist nor have comparisons been made to identify the most effective approach. We test seven methods to simulate a sloping beach and a tidal flat. The ocean is represented in one of the three ways: directly using a high hydraulic conductivity (high-K) zone and indirect simulation via specified head boundaries using either the General Head Boundary (GHB) or the new Periodic Boundary Condition (PBC) package. All beach models simulate similar water fluxes across the upland boundary and across the sediment-water interface although the ratio of intertidal to subtidal flow is different at low tide. Simulating a seepage face results in larger intertidal fluxes and influences near-shore heads and salinity. Major differences in flow occur in the tidal flat simulations. Because SEAWAT does not simulate unsaturated flow the water table only rises via flow through the saturated zone. This results in delayed propagation of the rising tidal signal inland. Inundation of the tidal flat is delayed as is flow into the aquifer across the flat. This is severe in the high-K and PBC models but mild in the GHB models. Results indicate that any of the tidal boundary options are fine if the ocean-aquifer interface is steep. However, as the slope of that interface decreases, the high-K and PBC approaches perform poorly and the GHB boundary is preferable.

  19. Tidal boundary conditions in SEAWAT.

    PubMed

    Mulligan, Ann E; Langevin, Christian; Post, Vincent E A

    2011-01-01

    SEAWAT, a U.S. Geological Survey groundwater flow and transport code, is increasingly used to model the effects of tidal motion on coastal aquifers. Different options are available to simulate tidal boundaries but no guidelines exist nor have comparisons been made to identify the most effective approach. We test seven methods to simulate a sloping beach and a tidal flat. The ocean is represented in one of the three ways: directly using a high hydraulic conductivity (high-K) zone and indirect simulation via specified head boundaries using either the General Head Boundary (GHB) or the new Periodic Boundary Condition (PBC) package. All beach models simulate similar water fluxes across the upland boundary and across the sediment-water interface although the ratio of intertidal to subtidal flow is different at low tide. Simulating a seepage face results in larger intertidal fluxes and influences near-shore heads and salinity. Major differences in flow occur in the tidal flat simulations. Because SEAWAT does not simulate unsaturated flow the water table only rises via flow through the saturated zone. This results in delayed propagation of the rising tidal signal inland. Inundation of the tidal flat is delayed as is flow into the aquifer across the flat. This is severe in the high-K and PBC models but mild in the GHB models. Results indicate that any of the tidal boundary options are fine if the ocean-aquifer interface is steep. However, as the slope of that interface decreases, the high-K and PBC approaches perform poorly and the GHB boundary is preferable.

  20. Single-Axis Accelerometer

    NASA Technical Reports Server (NTRS)

    Tucker, Dennis Stephen (Inventor); Capo-Lugo, Pedro A. (Inventor)

    2016-01-01

    A single-axis accelerometer includes a housing defining a sleeve. An object/mass is disposed in the sleeve for sliding movement therein in a direction aligned with the sleeve's longitudinal axis. A first piezoelectric strip, attached to a first side of the object and to the housing, is longitudinally aligned with the sleeve's longitudinal axis. The first piezoelectric strip includes a first strip of a piezoelectric material with carbon nanotubes substantially aligned along a length thereof. A second piezoelectric strip, attached to a second side of the object and to the housing, is longitudinally aligned with the sleeve's longitudinal axis. The second piezoelectric strip includes a second strip of the piezoelectric material with carbon nanotubes substantially aligned along a length thereof. A voltage sensor is electrically coupled to at least one of the first and second piezoelectric strips.

  1. Sea level rise and tidal power plants in the Gulf of Maine

    NASA Astrophysics Data System (ADS)

    Pelling, Holly E.; Mattias Green, J. A.

    2013-06-01

    The response of the Bay of Fundy and Gulf of Maine to large-scale tidal power plants and future sea-level rise is investigated using an established numerical tidal model. Free stream tidal turbines were simulated within the Bay of Fundy by implementing an additional bed friction term, Kt. The present-day maximum tidal power output was determined to be 7.1 GW, and required Kt = 0.03. Extraction at this level would lead to large changes in the tidal amplitudes across the Gulf of Maine. With future SLR implemented, the energy available for extraction increases with 0.5-1 GW per m SLR. SLR simulations without tidal power extraction revealed that the response of the semidiurnal tides to SLR is highly dependent on how changes in sea level are implemented in the model. When extensive flood defenses are assumed at the present-day coast line, the response to SLR is far larger than when land is allowed to (permanently) flood. For example, within the Bay of Fundy itself, the M2 amplitude increases with nearly 0.12 m per m SLR without flooding, but it changes with only 0.03 m per m SLR with flooding. We suggest that this is due to the flooding of land cells changing the resonant properties of the basin.

  2. Aeroacoustics of large wind turbines

    NASA Technical Reports Server (NTRS)

    Hubbard, Harvey H.; Shepherd, Kevin P.

    1991-01-01

    This paper reviews published information on aerodynamically generated noise from large horizontal axis wind turbines operated for electric power generation. Methods are presented for predicting both the discrete frequency rotational noise components and the broadband noise components, and results are compared with measurements. Refraction effects that result in the formation of high-frequency shadow zones in the upwind direction and channeling effects for the low frequencies in the downwind direction are illustrated. Special topics such as distributed source effects in prediction and the role of building dynamics in perception are also included.

  3. Wind turbine

    SciTech Connect

    Traudt, R.F.

    1986-12-30

    This patent describes a wind turbine device having a main rotatable driven shaft, elongated blades operatively mounted on the main shaft for unitary rotation with the main shaft. The blade extends substantially radially away from the main shaft and is adapted to fold downwind under naturally occurring forces and simultaneously feather in direct response to the folding movement. A means associated with the blades is included for increasing the rate of fold relative to the rate of feather as the speed of rotation increases.

  4. Novel approach to the exploitation of the tidal energy. Volume 1: Summary and discussion

    NASA Astrophysics Data System (ADS)

    Gorlov, A. M.

    1981-12-01

    The hydropneumatic concept in the approach to harnessing low tidal hydropower is discussed. The energy of water flow is converted into the energy of an air jet by a specialized air chamber which is placed on the ocean floor across a flowing watercourse. Water passes through the chamber where it works as a natural piston compressing air in the upper part of the closure. Compressed air is used as a new working plenum to drive air turbines. The kinetic energy of an air jet provided by the air chamber is sufficient for stable operation of industrial air turbines. It is possible to use light plastic barriers instead of conventional rigid dams (the water sail concept). It is confirmed that the concept can result in a less expensive and more effective tidal power plant project than the conventional hydroturbine approach.

  5. Dynamic stall on wind turbine blades

    SciTech Connect

    Butterfield, C P; Simms, D; Scott, G; Hansen, A C

    1991-12-01

    Dynamic loads must be predicted accurately in order to estimate the fatigue life of wind turbines operating in turbulent environments. Dynamic stall contributes to increased dynamic loads during normal operation of all types of horizontal-axis wind turbine (HAWTs). This report illustrates how dynamic stall varies throughout the blade span of a 10 m HAWT during yawed and unyawed operating conditions. Lift, drag, and pitching moment coefficients during dynamics stall are discussed. Resulting dynamic loads are presented, and the effects of dynamic stall on yaw loads are demonstrated using a yaw loads dynamic analysis (YAWDYN). 12 refs., 22 figs., 1 tab.

  6. Aileron controls for wind turbine applications

    NASA Technical Reports Server (NTRS)

    Miller, D. R.; Putoff, R. L.

    1984-01-01

    Horizontal axis wind turbines which utilize partial or full variable blade pitch to regulate rotor speed were examined. The weight and costs of these systems indicated a need for alternate methods of rotor control. Aileron control is an alternative which has potential to meet this need. Aileron control rotors were tested on the Mod-O wind turbine to determine their power regulation and shutdown characteristics. Test results for a 20 and 38% chord aileron control rotor are presented. Test is shown that aileron control is a viable method for safety for safely controlling rotor speed, following a loss of general load.

  7. Turbine assembly containing an inner shroud

    DOEpatents

    Bagepalli, Bharat Sampathkumaran; Corman, Gregory Scot; Dean, Anthony John; DiMascio, Paul Stephen; Mirdamadi, Massoud

    2000-01-01

    A turbine assembly having a turbine stator, a ceramic inner shroud, and a first spring. The stator has a longitudinal axis and an outer shroud block with opposing and longitudinally outward facing first and second sides. The first side has a longitudinally outward projecting first ledge and has a first side portion located radially outward of the first ledge. The ceramic inner shroud has a first hook portion longitudinally and radially surrounding the first ledge. The first spring is attached to one of the first side portion and the first hook portion and unattachedly and resiliently contacts the other of the first side portion and the first hook portion.

  8. Tidal dynamics of transiting exoplanets

    NASA Astrophysics Data System (ADS)

    Fabrycky, Daniel C.

    2011-11-01

    Transits give us the mass, radius, and orbital properties of the planet, all of which inform dynamical theories. Two properties of the hot Jupiters suggest they had a dramatic origin via tidal damping from high eccentricity. First, the tidally circularized planets (in the 1-4 day pile-up) lie along a relation or boundary in the mass-period plane. This observation may implicate a tidal damping process regulated by planetary radius inflation and Roche lobe overflow, early in the planets' lives. Second, the host stars of many planets have spins misaligned from the planets' orbits. This observation was not expected a priori from the conventional disk migration theory, and it was a boon for the alternative theories of planet-planet scattering and Kozai cycles, accompanied by tidal friction, which predicted it. Now we are faced with a curious observation that the misalignment angle depends on the stellar temperature. It may mean that the tide raised on the stars realigns them, the final result being the tidal consumption of hot Jupiters.

  9. TIDAL LIMITS TO PLANETARY HABITABILITY

    SciTech Connect

    Barnes, Rory; Jackson, Brian; Greenberg, Richard; Raymond, Sean N.

    2009-07-20

    The habitable zones (HZs) of main-sequence stars have traditionally been defined as the range of orbits that intercept the appropriate amount of stellar flux to permit surface water on a planet. Terrestrial exoplanets discovered to orbit M stars in these zones, which are close-in due to decreased stellar luminosity, may also undergo significant tidal heating. Tidal heating may span a wide range for terrestrial exoplanets and may significantly affect conditions near the surface. For example, if heating rates on an exoplanet are near or greater than that on Io (where tides drive volcanism that resurfaces the planet at least every 1 Myr) and produce similar surface conditions, then the development of life seems unlikely. On the other hand, if the tidal heating rate is less than the minimum to initiate plate tectonics, then CO{sub 2} may not be recycled through subduction, leading to a runaway greenhouse that sterilizes the planet. These two cases represent potential boundaries to habitability and are presented along with the range of the traditional HZ for main-sequence, low-mass stars. We propose a revised HZ that incorporates both stellar insolation and tidal heating. We apply these criteria to GJ 581 d and find that it is in the traditional HZ, but its tidal heating alone may be insufficient for plate tectonics.

  10. Dynamics of Tidally Captured Planets in the Galactic Center

    NASA Astrophysics Data System (ADS)

    Trani, Alessandro A.; Mapelli, Michela; Spera, Mario; Bressan, Alessandro

    2016-11-01

    Recent observations suggest ongoing planet formation in the innermost parsec of the Galactic center. The supermassive black hole (SMBH) might strip planets or planetary embryos from their parent star, bringing them close enough to be tidally disrupted. Photoevaporation by the ultraviolet field of young stars, combined with ongoing tidal disruption, could enhance the near-infrared luminosity of such starless planets, making their detection possible even with current facilities. In this paper, we investigate the chance of planet tidal captures by means of high-accuracy N-body simulations exploiting Mikkola's algorithmic regularization. We consider both planets lying in the clockwise (CW) disk and planets initially bound to the S-stars. We show that tidally captured planets remain on orbits close to those of their parent star. Moreover, the semimajor axis of the planetary orbit can be predicted by simple analytic assumptions in the case of prograde orbits. We find that starless planets that were initially bound to CW disk stars have mild eccentricities and tend to remain in the CW disk. However, we speculate that angular momentum diffusion and scattering by other young stars in the CW disk might bring starless planets into orbits with low angular momentum. In contrast, planets initially bound to S-stars are captured by the SMBH on highly eccentric orbits, matching the orbital properties of the clouds G1 and G2. Our predictions apply not only to planets but also to low-mass stars initially bound to the S-stars and tidally captured by the SMBH.

  11. Testing the tidal alignment model of galaxy intrinsic alignment

    SciTech Connect

    Blazek, Jonathan; Seljak, Uroš; McQuinn, Matthew E-mail: mmcquinn@berkeley.edu

    2011-05-01

    Weak gravitational lensing has become a powerful probe of large-scale structure and cosmological parameters. Precision weak lensing measurements require an understanding of the intrinsic alignment of galaxy ellipticities, which can in turn inform models of galaxy formation. It is hypothesized that elliptical galaxies align with the background tidal field and that this alignment mechanism dominates the correlation between ellipticities on cosmological scales (in the absence of lensing). We use recent large-scale structure measurements from the Sloan Digital Sky Survey to test this picture with several statistics: (1) the correlation between ellipticity and galaxy overdensity, w{sub g+}; (2) the intrinsic alignment auto-correlation functions; (3) the correlation functions of curl-free, E, and divergence-free, B, modes, the latter of which is zero in the linear tidal alignment theory; (4) the alignment correlation function, w{sub g}(r{sub p},θ), a recently developed statistic that generalizes the galaxy correlation function to account for the angle between the galaxy separation vector and the principle axis of ellipticity. We show that recent measurements are largely consistent with the tidal alignment model and discuss dependence on galaxy luminosity. In addition, we show that at linear order the tidal alignment model predicts that the angular dependence of w{sub g}(r{sub p},θ) is simply w{sub g+}(r{sub p})cos (2θ) and that this dependence is consistent with recent measurements. We also study how stochastic nonlinear contributions to galaxy ellipticity impact these statistics. We find that a significant fraction of the observed LRG ellipticity can be explained by alignment with the tidal field on scales ∼> 10 \\hMpc. These considerations are relevant to galaxy formation and evolution.

  12. Mercury-T: Tidally evolving multi-planet systems code

    NASA Astrophysics Data System (ADS)

    Bolmont, Emeline; Raymond, Sean N.; Leconte, Jeremy; Hersant, Franck; Correia, Alexandre C. M.

    2015-11-01

    Mercury-T calculates the evolution of semi-major axis, eccentricity, inclination, rotation period and obliquity of the planets as well as the rotation period evolution of the host body; it is based on the N-body code Mercury (Chambers 1999, ascl:1201.008). It is flexible, allowing computation of the tidal evolution of systems orbiting any non-evolving object (if its mass, radius, dissipation factor and rotation period are known), but also evolving brown dwarfs (BDs) of mass between 0.01 and 0.08 M⊙, an evolving M-dwarf of 0.1 M⊙, an evolving Sun-like star, and an evolving Jupiter.

  13. Meandering: fluvial versus tidal. (Invited)

    NASA Astrophysics Data System (ADS)

    Seminara, G.

    2009-12-01

    Tidal meanders (Marani et al, Water Resour Res, 2002) display similarities as well as important differences from fluvial meanders (Seminara, J Fluid Mech, 2006). Like fluvial meanders they have characteristic wavelengths scaling with channel width: this is why the convergent character of tidal channels leads to meander wavelengths decaying landward. Unlike fluvial meanders, the typical curvature spectra of tidal meanders contain even harmonics: hence, meander skewing does non display any distinct correlation with the flow direction and the known Kinoshita curve, which approximates the shape of fluvial meanders, is not appropriate to tidal meanders. Additional constraints are brought up by the spatial gradients of the basic bed profile connected to the finite length of tidal channels at equilibrium. In fact, it has been theoretically established (Schuttelaars and De Swart, Eur J Mech, B/Fluids, 1996, Seminara et al, J Fluid Mech submitted, 2009) and confirmed by controlled laboratory experiments (Tambroni et al., J Geoph Res, 2005) that tidal channels closed at one end and connected at the other end with a tidal sea, evolve towards an equilibrium configuration characterized by a ‘slow’ landward decay of the average flow depth. An equilibrium length of the channel is then determined by the formation of a shoreline. Channel curvature affects the lateral equilibrium topography and gives rise to a pattern of point bars and scour pools resembling that of fluvial channels. With some notable differences, though. In fact, Solari et al (J Fluid Mech, 2001) showed that long sequences of weakly sinuous identical meandering channels subject to a symmetrical tidal forcing develop a symmetrical bar-pool pattern with small symmetrical oscillations during the tidal cycle. However, in the laboratory investigations of Garotta et al. (Proceedings RCEM5,2007) the bar-pool pattern was somehow unexpected. In a first experiment, it was in phase with curvature only in the inner half of

  14. Korea tidal power and beyond

    NASA Astrophysics Data System (ADS)

    Song, W. O.; van Walsum, E.

    A study evaluating the tidal power potential on the west coast of Korea is presented. The tidal power plant concept applied to all sites features prefabricated caissons from which the powerhouse and the sluice sections of the plant are built up. In the screening process, all 13 potential sites were compared on the basis of a single basin and single effect schemes operated to produce the maximum amount of energy. The four sites identified as having potential for development (the inner Asan Bay, the outer Asan Bay, the Incheon Bay, and the Garorim Bay) are economically evaluated. It is noted that harbor development and land reclamation can proceed in conjunction with tidal power development.

  15. Computational Aerodynamic Analysis of Offshore Upwind and Downwind Turbines

    DOE PAGESBeta

    Zhao, Qiuying; Sheng, Chunhua; Afjeh, Abdollah

    2014-01-01

    Aerodynamic interactions of the model NREL 5 MW offshore horizontal axis wind turbines (HAWT) are investigated using a high-fidelity computational fluid dynamics (CFD) analysis. Four wind turbine configurations are considered; three-bladed upwind and downwind and two-bladed upwind and downwind configurations, which operate at two different rotor speeds of 12.1 and 16 RPM. In the present study, both steady and unsteady aerodynamic loads, such as the rotor torque, blade hub bending moment, and base the tower bending moment of the tower, are evaluated in detail to provide overall assessment of different wind turbine configurations. Aerodynamic interactions between the rotor and tower are analyzed,more » including the rotor wake development downstream. The computational analysis provides insight into aerodynamic performance of the upwind and downwind, two- and three-bladed horizontal axis wind turbines.« less

  16. Demonstration of a mid-water mooring for tidal turbulence measurements

    NASA Astrophysics Data System (ADS)

    Thomson, J. M.; Talbert, J.; deKlerk, A.; Richmond, M. C.; Durgesh, V.; Polagye, B. L.; Kilcher, L. F.; Nelson, E.

    2012-12-01

    An approach to collect high frequency turbulence data at a tidal energy site is evaluated in a short demonstration deployment. The Tidal Turbulence Mooring improves upon recent bottom-mounted approaches by suspending Acoustic Doppler Velocimeters (ADVs) at mid-water depths (which are relevant to tidal turbines). The ADV turbulence data are superior to Acoustic Doppler Current Profiler (ADCP) data, but are subject to motion contamination when suspended on a mooring in strong currents. In this demonstration, passive stabilization is shown to be sufficient for acquiring bulk statistics of the turbulence, without motion correction. With motion correction (post-processing), data quality is further improved; the relative merits of direct and spectral motion correction are investigated.

  17. Computational Study of Multiple Hydrokinetic Turbine Performance

    NASA Astrophysics Data System (ADS)

    Jonas, Joseph David

    The k-omega Shear Stress Transport turbulence model was used to determine the performance of a pair of horizontal-axis hydrokinetic turbines. By varying the separation distance perpendicular to the flow direction between these turbines and computing both power and drag coefficients, the relationship between these outputs and the separation distance as an input was discovered. This study used a rotating reference frame, steady state approximation over three separation distances and two different mesh sizes to verify mesh independence. Once this meshing methodology was verified, two more separation distances were run using the same steady-state approximations at the coarse mesh size to better understand turbine performance at greater separation distances. The results of these simulations show that, at a given separation distance, the left and right turbines have very similar performance. The power and drag coefficients were both found to decrease on the order of 8% as the turbines are brought closer together, which means that, in an infinite and uniform flow field, turbines should be placed as far apart as is feasible to maximize resultant combined power output.

  18. Hydro-flow supra-turbine engine

    SciTech Connect

    Neale, A.B.

    1981-08-04

    A turbine engine operates at high pressure and at relatively low temperatures and revolutions per minute through the use of special carburetion, compressor, combustion unit, and turbine arrangements. The system is characterized by the use of water which is vaporized and concurrently reduces the temperature of the vaporized fuel and air mixture as compression occurs, and is not physically intermixed with the combustion gases until after initial combustion takes place. The compressor includes a pair of back-to-back, four stage composite compressors to which synchronized dual carburetion or meter-flow arrangements separately supply water and gasoline or other fuel, along with air. The water absorbs heat from the compression of both of the two compressors, and the resultant vaporous product gases are routed to the jacket of a combustion chamber in which the compressed fuel and air mixture is burned. Following initial ignition and some burning of the fuel, the superheated steam and combustion products are combined, and the combination is supplied to a multistage transverse flow turbine having in the order of 17 pressure stages. The turbine includes arrangements for directing the high pressure gases back and forth through the rotor blades at different radial distances from the axis of the turbine. Exhaust gases from the turbine are applied to a ''floating'' muffler, including a rotatable inner chamber to facilitate mixing exhaust gases with the ambient air, and to disperse the high moisture content of the exhaust gases.

  19. Rotating housing turbine

    DOEpatents

    Allouche, Erez; Jaganathan, Arun P.

    2016-10-11

    The invention is a new turbine structure having a housing that rotates. The housing has a sidewall, and turbine blades are attached to a sidewall portion. The turbine may be completely open in the center, allowing space for solids and debris to be directed out of the turbine without jamming the spinning blades/sidewall. The turbine may be placed in a generator for generation of electrical current.

  20. The immature HPO axis.

    PubMed

    Buttram, V C

    1975-01-01

    One cause or anovulation may be an immature hypothalamic-pituitary-ovarian axis. The fact that initial menstrual cycles are usually irregular and often anovulatory implies that a maturation process is taking place in the HPO axis and that cyclic ovulatory menstruation begins only when adequate maturation occurs. Moreover, the external appearance of the ovary of a severely oligomenorrheic or amenorrheic female frequently is similar to that of a prepubertal female--this is, the ovary appears normal in size of slightly smaller, has a smooth, glistening surface without convolutions, and its capsule-like outer surface reveals few, if any, underlying follicles. A reasonable assumption is that there is inadequate gonadotropin stimulation of these ovaries possibly as a result of an immature HPO axis. The studies by radioimmunoassay of FSH and LH levels in prepubertal and pubertal females offer no statistical data by which to measure the maturity of the HPO axis, although consistently low FSH and LH levels may prove meaningful. Studies of FSH and LH in patients exhibiting gonadal dysgenesis neither support or disprove the immature HPO axis theory, but studies of idiopathic sexual precocity tend to support it. Studies using LH-RF in prepubertal and pubertal females indicate a pattern of response which may give useful information in the area.

  1. Passive cyclic pitch control for horizontal axis wind turbines

    NASA Technical Reports Server (NTRS)

    Bottrell, G. W.

    1981-01-01

    A flexible rotor concept, called the balanced pitch rotor, is described. The system provides passive adjustment of cyclic pitch in response to unbalanced pitching moments across the rotor disk. Various applications are described and performance predictions are made for wind shear and cross wind operating conditions. Comparisons with the teetered hub are made and significant cost savings are predicted.

  2. Tidal disruption of dissipative planetesimals

    NASA Astrophysics Data System (ADS)

    Mizuno, H.; Boss, A. P.

    1985-07-01

    A self-consistent numerical model is developed for the tidal disruption of a solid planetesimal. The planetesimal is treated as a highly viscous, slightly compressible fluid whose disturbed parts are an inviscid, pressureless fluid undergoing distortion and disruption. The distortions were constrained to being symmetrical above and below the equatorial plane. The tidal potential is expanded in terms of Legendre polynomials, which eliminates the center of mass acceleration effects, permitting definition of equations of motion in a noninertial frame. Consideration is given to viscous dissipation and to characteristics of the solid-atmosphere boundary. The model is applied to sample cases in one, two and three dimensions.

  3. Apparatus for measuring rotor exhaust gas bulk temperature in a combustion turbine and method therefore

    SciTech Connect

    Allen, J.M.

    1993-07-13

    Apparatus is described for measuring rotor exhaust gas bulk total temperature in a combustion turbine which includes first and last stages of rotating turbine blades comprising: optical pyrometer means for measuring the circumferentially total gas averaged temperature relative to said last stage turbine blades at a plurality of common radial points from the turbine hub to tip where said optical pyrometer means includes a single optical pyrometer having a line of sight along with means for rotating such pyrometer around an axis of rotation, with the pyrometer being tilted from said axis so that the line of sight of said pyrometer rotates around said axis thereby providing a radial traverse of said last stage turbine blades; means for calculating said rotor exhaust bulk total temperature relative to said last stage blades by flow weight averaging said measured temperatures of said radial points.

  4. Celtic Sea linear sediment ridges: a basis for testing the tidal hypothesis

    NASA Astrophysics Data System (ADS)

    Scourse, James; Ward, Sophie

    2015-04-01

    The linear sediment ridges (LSR) of the Celtic Sea constitute the largest examples of their bedform type on Earth. Published sedimentological and seismic stratigraphic interpretation, supported by simulated bed stress vectors derived from numerical palaeotidal models suggests, that the LSR are moribund tidally remobilised sediments representing the transgressive systems tract. Recently this interpretation has been challenged by the hypothesis that these ridges may be subglacial bedforms linked to extension of the Last Glacial Maximum Irish Sea Ice Stream to the shelf break. We address the tidal hypothesis using data from a new palaeotidal simulation of the Celtic shelf to test predictions of ridge axis orientations deriving from dynamical theory. Theoretically ridge axes should evolve at a set offset to the tidal ellipse rotation. As the palaeotidal simulations generate tidal ellipses for each timestep, the ridge axis orientations and their evolution through time can be therefore be predicted. These predictions provide a basis for comparison with observations of ridge orientations from multi-beam swath bathymetry. If consistent with the observed axes of ridge growth and degradation this will provide support for the tidal hypothesis.

  5. FAST Simulation Tool Containing Methods for Predicting the Dynamic Response of Wind Turbines

    SciTech Connect

    Jonkman, Jason

    2015-08-12

    FAST is a simulation tool (computer software) for modeling tlie dynamic response of horizontal-axis wind turbines. FAST employs a combined modal and multibody structural-dynamics formulation in the time domain.

  6. Tidal Energy System for On-Shore Power Generation

    SciTech Connect

    Bruce, Allan J

    2012-06-26

    Addressing the urgent need to develop LCOE competitive renewable energy solutions for US energy security and to replace fossil-fuel generation with the associated benefits to environment impacts including a reduction in CO2 emissions, this Project focused on the advantages of using hydraulic energy transfer (HET) in large-scale Marine Hydrokinetic (MHK) systems for harvesting off-shore tidal energy in US waters. A recent DOE resource assessment, identifies water power resources have a potential to meet 15% of the US electric supply by 2030, with MHK technologies being a major component. The work covered a TRL-4 laboratory proof-in-concept demonstration plus modeling of a 15MW full scale system based on an approach patented by NASA-JPL, in which submerged high-ratio gearboxes and electrical generators in conventional MHK turbine systems are replaced by a submerged hydraulic radial pump coupled to on-shore hydraulic motors driving a generator. The advantages are; first, the mean-time-between-failure (MTBF), or maintenance, can be extended from approximately 1 to 5 years and second, the range of tidal flow speeds which can be efficiently harvested can be extended beyond that of a conventional submerged generator. The approach uses scalable, commercial-off-the-shelf (COTS) components, facilitating scale-up and commercialization. All the objectives of the Project have been successfully met (1) A TRL4 system was designed, constructed and tested. It simulates a tidal energy turbine, with a 2-m diameter blade in up to a 2.9 m/sec flow. The system consists of a drive motor assembly providing appropriate torque and RPM, attached to a radial piston pump. The pump circulates pressurized, environmentally-friendly, HEES hydraulic fluid in a closed loop to an axial piston motor which drives an electrical generator, with a resistive load. The performance of the components, subsystems and system were evaluated during simulated tidal cycles. The pump is contained in a tank for

  7. Active Flow Control on Bidirectional Rotors for Tidal MHK Applications

    SciTech Connect

    Shiu, Henry; van Dam, Cornelis P.

    2013-08-22

    A marine and hydrokinetic (MHK) tidal turbine extracts energy from tidal currents, providing clean, sustainable electricity generation. In general, all MHK conversion technologies are confronted with significant operational hurdles, resulting in both increased capital and operations and maintenance (O&M) costs. To counter these high costs while maintaining reliability, MHK turbine designs can be simplified. Prior study found that a tidal turbine could be cost-effectively simplified by removing blade pitch and rotor/nacelle yaw. Its rotor would run in one direction during ebb and then reverse direction when the current switched to flood. We dubbed such a turbine a bidirectional rotor tidal turbine (BRTT). The bidirectional hydrofoils of a BRTT are less efficient than conventional hydrofoils and capture less energy, but the elimination of the pitch and yaw systems were estimated to reduce levelized cost of energy by 7.8%-9.6%. In this study, we investigated two mechanisms for recapturing some of the performance shortfall of the BRTT. First, we developed a novel set of hydrofoils, designated the yy series, for BRTT application. Second, we investigated the use of active flow control via microtabs. Microtabs are small deployable/retractable tabs, typically located near the leading or trailing edge of an air/hydrofoil with height on the order of the boundary layer thickness (1% - 2% of chord). They deploy approximately perpendicularly to the foil surface and, like gurney flaps and plain flaps, globally affect the aerodynamics of the airfoil. By strategically placing microtabs and selectively deploying them based on the direction of the inflow, performance of a BRTT rotor can be improved while retaining bidirectional operation. The yy foils were computationally designed and analyzed. They exhibited better performance than the baseline bidirectional foil, the ellipse. For example, the yyb07cn-180 had 14.7% higher (l/d)max than an ellipse of equal thickness. The yyb07cn

  8. What Makes a Tidal Tail?

    NASA Astrophysics Data System (ADS)

    Rodruck, Michael; Konstantopoulos, I.; Charlton, J. C.

    2014-01-01

    Galaxy interactions are famous for creating some of the most visually stunning scenes in astronomy, particularly in the cases of tidal tails. These chaotic regions are known to house breeding grounds for young stellar clusters, as shown through past imaging and spectroscopic studies, but the underlying material remains a mystery. While we know that gas is easily stripped from the parent galaxies, what about the stars? The presence of an older stellar population is crucial to dynamical simulations of tidal tails, but has not yet been confirmed by observation. We use the twin tidal tails of NGC3256 as a case study for determining the presence of an old, underlying stellar population. Newly acquired ugriz Gemini data allows us to distinguish between young and old stars, while previous HST data pinpoints the locations of these objects. Deep imaging surveys have often been used to detect tidal features, including these ancient relics, but our survey will be the first to measure the colors of such objects. This will lead us to place constraints on the original composition of the material that was ejected from the interacting/merging galaxies, and the star formation history.

  9. Experimental characterization of marine hydrokinetic (MHK) turbine array performance

    NASA Astrophysics Data System (ADS)

    Stelzenmuller, Nickolas; Aliseda, Alberto

    2013-11-01

    Three scale model horizontal axis MHK turbines (1:45) were tested in a flume at various array spacings. The scale rotors are based on the full-scale Department of Energy Reference Model 1, modified to reproduce the hydrodynamic performance of the full-scale turbine at the reduced experimental Reynolds number (105 vs 106, based on chord length). Flow incident on the turbines and in the wakes was characterized via PIV and ADV measurements. Tip speed ratio (TSR) similarity of the turbines is achieved by controlling the applied load with magnetic particle brakes. Single turbines were characterized at various mean freestream velocities to explore the effect of Reynolds number on turbine performance. Measured turbine efficiencies of ~40% are similar to efficiencies predicted from full-scale simulations, indicating similar energy extraction at scale. Wake characteristics and turbine efficiencies have been investigated at a range of TSRs, with the goal of determining array spacing and operating conditions that maximize overall array efficiency. Free surface deformations were measured near the rotor plane for various vertical positions of the turbine relative to the free surface and compared to numerical simulation results.

  10. Vertical axis windmill

    SciTech Connect

    Campbell, J.S.

    1980-04-08

    A vertical axis windmill is described which involves a rotatable central vertical shaft having horizontal arms pivotally supporting three sails that are free to function in the wind like the main sail on a sail boat, and means for disabling the sails to allow the windmill to be stopped in a blowing wind.

  11. ON THE TIDAL ORIGIN OF HOT JUPITER STELLAR OBLIQUITY TRENDS

    SciTech Connect

    Dawson, Rebekah I.

    2014-08-01

    It is debated whether the two hot Jupiter populations—those on orbits misaligned from their host star's spin axis and those well-aligned—result from two migration channels or from two tidal realignment regimes. Here I demonstrate that equilibrium tides raised by a planet on its star can account for three observed spin-orbit alignment trends: the aligned orbits of hot Jupiters orbiting cool stars, the planetary mass cut-off for retrograde planets, and the stratification by planet mass of cool host stars' rotation frequencies. The first trend can be caused by strong versus weak magnetic braking (the Kraft break), rather than realignment of the star's convective envelope versus the entire star. The second trend can result from a small effective stellar moment of inertia participating in the tidal realignment in hot stars, enabling massive retrograde planets to partially realign to become prograde. The third trend is attributable to higher-mass planets more effectively counteracting braking to spin up their stars. Both hot and cool stars require a small effective stellar moment of inertia participating in the tidal realignment, e.g., an outer layer weakly coupled to the interior. I demonstrate via Monte Carlo that this model can match the observed trends and distributions of sky-projected misalignments and stellar rotation frequencies. I discuss implications for inferring hot Jupiter migration mechanisms from obliquities, emphasizing that even hot stars do not constitute a pristine sample.

  12. Comparison of computer codes for calculating dynamic loads in wind turbines

    NASA Technical Reports Server (NTRS)

    Spera, D. A.

    1978-01-01

    The development of computer codes for calculating dynamic loads in horizontal axis wind turbines was examined, and a brief overview of each code was given. The performance of individual codes was compared against two sets of test data measured on a 100 KW Mod-0 wind turbine. All codes are aeroelastic and include loads which are gravitational, inertial and aerodynamic in origin.

  13. Recovery Act - Refinement of Cross Flow Turbine Airfoils

    SciTech Connect

    McEntee, Jarlath

    2013-08-30

    Ocean Renewable Power Company, LLC (ORPC) is a global leader in hydrokinetic technology and project development. ORPC develops hydrokinetic power systems and eco-conscious projects that harness the power of oceans and rivers to create clean, predictable renewable energy. ORPC’s technology consists of a family of modular hydrokinetic power systems: the TidGen® Power System, for use at shallow to medium-depth tidal sites; the RivGen™ Power System, for use at river and estuary sites; and the OCGen® Power System, presently under development, for use at deep tidal and offshore ocean current sites. These power systems convert kinetic energy in moving water into clean, renewable, grid-compatible electric power. The core technology component for all ORPC power systems is its patented turbine generator unit (TGU). The TGU uses proprietary advanced design cross flow (ADCF) turbines to drive an underwater permanent magnet generator mounted at the TGU’s center. It is a gearless, direct-drive system that has the potential for high reliability, requires no lubricants and releases no toxins that could contaminate the surrounding water. The hydrokinetic industry shows tremendous promise as a means of helping reduce the U.S.’s use of fossil fuels and dependence on foreign oil. To exploit this market opportunity, cross-flow hydrokinetic devices need to advance beyond the pre-commercial state and more systematic data about the structure and function of cross-flow hydrokinetic devices is required. This DOE STTR project, “Recovery Act - Refinement of Cross Flow Turbine Airfoils,” refined the cross-flow turbine design process to improve efficiency and performance and developed turbine manufacturing processes appropriate for volume production. The project proposed (1) to overcome the lack of data by extensively studying the properties of cross flow turbines, a particularly competitive design approach for extracting hydrokinetic energy and (2) to help ORPC mature its pre

  14. Simulating hydrodynamics on tidal mudflats

    NASA Astrophysics Data System (ADS)

    Cook, S.; Lippmann, T. C.

    2014-12-01

    Biogeochemical cycling in estuaries is governed by fluxes from both riverine sources and through estuarine sediment deposits. Although estimates from river sources are relatively common and easily sampled, estimates of nutrient fluxes through the fluid-sediment interface are less common and limited to deeper portions of the bays away from intertidal areas. Lack of quantifiable shear stress estimates over intertidal areas limits our overall understanding of nutrient budgets in estuaries. Unfortunately, observation of intertidal hydrodynamics and nutrient fluxes over tidal flats and near the water's edge is difficult owing to the temporally varying and spatially extensive region where the tides inundate, and thus numerical modeling is often employed. In this work, the Regional Ocean Modeling System (ROMS), a three dimensional numerical hydrodynamic model was used to investigate the shear stresses over intertidal mudflats in the Great Bay, a tidally-dominated New England estuary cut by several tidal channels and with over 50% of the estuary exposed at low tide. The ROMS wetting and drying scheme was used to simulate the rising and falling tide on the flats, a successful approach adapted in other regions of the world but not always inclusive of tidal channels. Bathymetric data obtained in 2009 and 2013 was used to define the model grid. Predicted tides are forced at Adam's Pt., a natural constriction in the estuary about 20 km upstream of the mouth and at the entrance to the Great Bay. Of particular interest are fluxes of material on-to and off-of the tidal flats which contribute to water quality conditions in the estuary, and are largely governed by shear stresses that drive nutrient fluxes at the fluid-sediment interface. Basin wide estimates of near-bottom shear stresses can be used to estimate first order nutrient fluxes over a tidal cycle and hence describe general biogeochemical dynamics of the estuary. Future work will include enhanced forcing of currents by

  15. Forced libration of tidally synchronized planets and moons

    NASA Astrophysics Data System (ADS)

    Makarov, Valeri V.; Frouard, Julien; Dorland, Bryan

    2016-02-01

    Tidal dissipation of kinetic energy, when it is strong enough, tends to synchronize the rotation of planets and moons with the mean orbital motion, or drive it into long-term stable spin- orbit resonances. As the orbital motion undergoes periodic acceleration due to a finite orbital eccentricity, the spin rate oscillates around the equilibrium mean value too, giving rise to the forced, or eccentricity-driven librations. Both the shape and amplitude of forced librations of synchronous viscoelastic planets and moons are defined by a combination of two different types of perturbative torque, the tidal torque and the triaxial torque. Consequently, forced librations can be tidally dominated (e.g. Io and possibly Titan) or deformation-dominated (e.g. the Moon) depending on a set of orbital, rheological, and other physical parameters. With small eccentricities, for the former kind, the largest term in the libration angle can be minus cosine of the mean anomaly, whereas for the latter kind, it is minus sine of the mean anomaly. The shape and the amplitude of tidal forced librations determine the rate of orbital evolution of synchronous planets and moons, i.e. the rate of dissipative damping of semimajor axis and eccentricity. The known super-Earth exoplanets can exhibit both kinds of libration, or a mixture thereof, depending on, for example, the effective Maxwell time of their rigid mantles. Our approach can be extended to estimate the amplitudes of other libration harmonics, as well as the forced libration in non-synchronous spin-orbit resonances.

  16. EVOLUTIONARY TRACKS OF TIDALLY STIRRED DISKY DWARF GALAXIES

    SciTech Connect

    Lokas, Ewa L.; Kazantzidis, Stelios; Mayer, Lucio E-mail: stelios@mps.ohio-state.edu

    2011-09-20

    Using collisionless N-body simulations, we investigate the tidal evolution of late-type, rotationally supported dwarfs inside Milky Way sized host galaxies. Our study focuses on a wide variety of dwarf orbital configurations and initial structures. During the evolution, the disky dwarfs undergo strong mass loss, the stellar disks are transformed into spheroids, and rotation is replaced by random motions of the stars. Thus, the late-type progenitors are transformed into early-type dwarfs as envisioned by the tidal stirring model for the formation of dwarf spheroidal (dSph) galaxies in the Local Group. We determine the photometric properties of the dwarfs, including the total visual magnitude, the half-light radius, and the central surface brightness as they would be measured by an observer near the galactic center. Special emphasis is also placed on studying their kinematics and shapes. We demonstrate that the measured values are biased by a number of observational effects including the increasing angle of the observation cone near the orbital pericenter, the fact that away from the pericenter the tidal tails are typically oriented along the line of sight, and the fact that for most of the evolution the stellar components of the dwarfs are triaxial ellipsoids whose major axis tumbles with respect to the line of sight. Finally, we compare the measured properties of the simulated dwarfs to those of dwarf galaxies in the Local Group. The evolutionary tracks of the dwarfs in different parameter planes and the correlations between their different properties, especially the total magnitude and the surface brightness, strongly suggest that present-day dSph galaxies may have indeed formed from late-type progenitors as proposed by the tidal stirring scenario.

  17. Multiple axis reticle

    NASA Astrophysics Data System (ADS)

    Barns, Chris E.; Gunter, William D.

    1990-09-01

    A reticle permits the alignment of three orthogonal axes (X, Y and Z) that intersect at a common target point. Thin, straight filaments are supported on a frame. The filaments are each contained in a different orthogonal plane (S sub xy, S sub xz, and S sub yz) and each filament intersects two of the three orthogonal axes. The filaments, as viewed along the frame axis, give the appearance of a triangle with a V extending from each triangle vertex. When axial alignment is achieved, the filament portions adjacent to a triangle vertex are seen (along the axis of interest) as a right-angle cross, whereas these filament portions are seen to intersect at an oblique angle when axial misalignment occurs. The reticle is open in the region near the target point leaving ample space for alignment aids such as a pentaprism or a cube mirror.

  18. Multiple axis reticle

    NASA Technical Reports Server (NTRS)

    Barns, Chris E. (Inventor); Gunter, William D. (Inventor)

    1990-01-01

    A reticle permits the alignment of three orthogonal axes (X, Y and Z) that intersect at a common target point. Thin, straight filaments are supported on a frame. The filaments are each contained in a different orthogonal plane (S sub xy, S sub xz, and S sub yz) and each filament intersects two of the three orthogonal axes. The filaments, as viewed along the frame axis, give the appearance of a triangle with a V extending from each triangle vertex. When axial alignment is achieved, the filament portions adjacent to a triangle vertex are seen (along the axis of interest) as a right-angle cross, whereas these filament portions are seen to intersect at an oblique angle when axial misalignment occurs. The reticle is open in the region near the target point leaving ample space for alignment aids such as a pentaprism or a cube mirror.

  19. Wind Turbines Benefit Crops

    ScienceCinema

    Takle, Gene

    2016-07-12

    Ames Laboratory associate scientist Gene Takle talks about research into the effect of wind turbines on nearby crops. Preliminary results show the turbines may have a positive effect by cooling and drying the crops and assisting with carbon dioxide uptake.

  20. Wind Turbines Benefit Crops

    SciTech Connect

    Takle, Gene

    2010-01-01

    Ames Laboratory associate scientist Gene Takle talks about research into the effect of wind turbines on nearby crops. Preliminary results show the turbines may have a positive effect by cooling and drying the crops and assisting with carbon dioxide uptake.

  1. Simulation-Based Approach for Site-Specific Optimization of Hydrokinetic Turbine Arrays

    NASA Astrophysics Data System (ADS)

    Sotiropoulos, F.; Chawdhary, S.; Yang, X.; Khosronejad, A.; Angelidis, D.

    2014-12-01

    A simulation-based approach has been developed to enable site-specific optimization of tidal and current turbine arrays in real-life waterways. The computational code is based on the St. Anthony Falls Laboratory Virtual StreamLab (VSL3D), which is able to carry out high-fidelity simulations of turbulent flow and sediment transport processes in rivers and streams taking into account the arbitrary geometrical complexity characterizing natural waterways. The computational framework can be used either in turbine-resolving mode, to take into account all geometrical details of the turbine, or with the turbines parameterized as actuator disks or actuator lines. Locally refined grids are employed to dramatically increase the resolution of the simulation and enable efficient simulations of multi-turbine arrays. Turbine/sediment interactions are simulated using the coupled hydro-morphodynamic module of VSL3D. The predictive capabilities of the resulting computational framework will be demonstrated by applying it to simulate turbulent flow past a tri-frame configuration of hydrokinetic turbines in a rigid-bed turbulent open channel flow as well as turbines mounted on mobile bed open channels to investigate turbine/sediment interactions. The utility of the simulation-based approach for guiding the optimal development of turbine arrays in real-life waterways will also be discussed and demonstrated. This work was supported by NSF grant IIP-1318201. Simulations were carried out at the Minnesota Supercomputing Institute.

  2. Prediction of CBS tidal evolution

    NASA Astrophysics Data System (ADS)

    Dryomova, G. N.

    The time series of basic processes, accompanying the tidal evolution of star components of Close Binary Systems (CBS) are predicted in the framework of evolutionary stellar models by Claret (2004). The series includes the apsidal motion period, timescale of synchronization of axial rotation of a star with the orbital revolution, the orbit circularization timescale, and the age. Data from the catalogues by Svechnikov & Perevozkina (1999) and by Torres, Andersen, Gimenez (2010) are used for testing the sensitivity of the numerical prediction algorithm.

  3. Dynamical modeling of tidal streams

    SciTech Connect

    Bovy, Jo

    2014-11-01

    I present a new framework for modeling the dynamics of tidal streams. The framework consists of simple models for the initial action-angle distribution of tidal debris, which can be straightforwardly evolved forward in time. Taking advantage of the essentially one-dimensional nature of tidal streams, the transformation to position-velocity coordinates can be linearized and interpolated near a small number of points along the stream, thus allowing for efficient computations of a stream's properties in observable quantities. I illustrate how to calculate the stream's average location (its 'track') in different coordinate systems, how to quickly estimate the dispersion around its track, and how to draw mock stream data. As a generative model, this framework allows one to compute the full probability distribution function and marginalize over or condition it on certain phase-space dimensions as well as convolve it with observational uncertainties. This will be instrumental in proper data analysis of stream data. In addition to providing a computationally efficient practical tool for modeling the dynamics of tidal streams, the action-angle nature of the framework helps elucidate how the observed width of the stream relates to the velocity dispersion or mass of the progenitor, and how the progenitors of 'orphan' streams could be located. The practical usefulness of the proposed framework crucially depends on the ability to calculate action-angle variables for any orbit in any gravitational potential. A novel method for calculating actions, frequencies, and angles in any static potential using a single orbit integration is described in the Appendix.

  4. Tidally-Induced Thermonuclear Supernovae

    SciTech Connect

    Rosswog, S.; Ramirez-Ruiz, E.; Hix, William Raphael

    2009-01-01

    We discuss the results of 3D simulations of tidal disruptions of white dwarfs by moderate-mass black holes as they may exist in the cores of globular clusters or dwarf galaxies. Our simulations follow self-consistently the hydrodynamic and nuclear evolution from the initial parabolic orbit over the disruption to the build-up of an accretion disk around the black hole. For strong enough encounters (pericentre distances smaller than about 1/3 of the tidal radius) the tidal compression is reversed by a shock and finally results in a thermonuclear explosion. These explosions are not restricted to progenitor masses close to the Chandrasekhar limit, we find exploding examples throughout the whole white dwarf mass range. There is, however, a restriction on the masses of the involved black holes: black holes more massive than 2x105M{circle_dot} swallow a typical 0.6M{circle_dot} white dwarf before their tidal forces can overwhelm the star's selfgravity. Therefore, this mechanism is characteristic for black holes of moderate masses. The material that remains bound to the black hole settles into an accretion disk and produces an Xray flare close to the Eddington limit of L{sub Edd} {approx} 10{sup 41}erg/s (Mbh/1000M{circle_dot}), typically lasting for a few months. The combination of a peculiar thermonuclear supernova together with an X-ray flare thus whistle-blows the existence of such moderate-mass black holes. The next generation of wide field space-based instruments should be able to detect such events.

  5. Dynamical Modeling of Tidal Streams

    NASA Astrophysics Data System (ADS)

    Bovy, Jo

    2014-11-01

    I present a new framework for modeling the dynamics of tidal streams. The framework consists of simple models for the initial action-angle distribution of tidal debris, which can be straightforwardly evolved forward in time. Taking advantage of the essentially one-dimensional nature of tidal streams, the transformation to position-velocity coordinates can be linearized and interpolated near a small number of points along the stream, thus allowing for efficient computations of a stream's properties in observable quantities. I illustrate how to calculate the stream's average location (its "track") in different coordinate systems, how to quickly estimate the dispersion around its track, and how to draw mock stream data. As a generative model, this framework allows one to compute the full probability distribution function and marginalize over or condition it on certain phase-space dimensions as well as convolve it with observational uncertainties. This will be instrumental in proper data analysis of stream data. In addition to providing a computationally efficient practical tool for modeling the dynamics of tidal streams, the action-angle nature of the framework helps elucidate how the observed width of the stream relates to the velocity dispersion or mass of the progenitor, and how the progenitors of "orphan" streams could be located. The practical usefulness of the proposed framework crucially depends on the ability to calculate action-angle variables for any orbit in any gravitational potential. A novel method for calculating actions, frequencies, and angles in any static potential using a single orbit integration is described in the Appendix.

  6. Large wind turbine generators

    NASA Technical Reports Server (NTRS)

    Thomas, R. L.; Donovon, R. M.

    1978-01-01

    The development associated with large wind turbine systems is briefly described. The scope of this activity includes the development of several large wind turbines ranging in size from 100 kW to several megawatt levels. A description of the wind turbine systems, their programmatic status and a summary of their potential costs is included.

  7. North American tidal power prospects

    NASA Astrophysics Data System (ADS)

    Wayne, W. W., Jr.

    1981-07-01

    Prospects for North American tidal power electrical generation are reviewed. Studies by the US Army Corps of Engineers of 90 possible generation schemes in Cobscook Bay, ME, indicated that maximum power generation rather than dependable capacity was the most economic method. Construction cost estimates for 15 MW bulb units in a single effect mode from basin to the sea are provided; five projects were considered ranging from 110-160 MW. Additional tidal power installations are examined for: Half-Moon Cove, ME (12 MW, 18 ft tide); Cook Inlet, AK, which is shown to pose severe environmental and engineering problems due to fish migration, earthquake hazards, and 300 ft deep silt deposits; and the Bay of Fundy, Canada. This last has a 17.8 MW plant under construction in a 29 ft maximum tide area. Other tidal projects of the Maritime Provinces are reviewed, and it is noted that previous economic evaluations based on an oil price of $16/barrel are in need of revision.

  8. Workshop on Stellar Tidal Disruption

    NASA Astrophysics Data System (ADS)

    Farrar, Glennys R.

    2012-04-01

    The past year has seen major advances in the observational status of Stellar Tidal Disruption, with the discovery of two strong optical candidates in archived SDSS data and the real-time X-ray detection of Swift J1644+57, plus rapid radio and optical follow-up establishing it as a probable Tidal Disruption Flare (TDF) in ``blazar mode''. These observations motivated a workshop devoted to discussion of such events and of the theory of their emission and flare rate. Observational contributions included a presentation of Swift J2058+05 (a possible second example of a TDF in blazar mode), reports on the late-time evolution and X-ray variability of the two Swift events, and a proposal that additional candidates may be evidenced by spectral signatures in SDSS. Theory presentations included models of radio emission, theory of light curves and the proposal that GRB101225A may be the Galactic tidal disruption of a neutron star, an interpretation of Swift J1644+57 as due to the disruption of a white dwarf instead of main-sequence star, calculation of the dependence of the TDF rate on the spin of the black hole, and analysis of the SDSS events, fitting their SEDs to profiles of thoretical emission from accretion disks and showing that their luminosity and rate are consistent with the proposal that TDEs can be responsible for UHECR acceleration.

  9. Infrasound emission generated by wind turbines

    NASA Astrophysics Data System (ADS)

    Ceranna, Lars; Pilger, Christoph

    2014-05-01

    Aerodynamic noise emissions from the continuously growing number of wind turbines in Germany are creating increasing problems for infrasound recording systems. Such systems are equipped with highly sensitive micro pressure sensors, which are accurately measuring acoustic signals in a frequency range inaudible to humans. At infrasound station IGADE, north of Bremen, a constantly increasing background noise has been observed throughout the years since its installation in 2005. The spectral peaks are reflecting well the blade passing harmonics, which vary with prevailing wind speeds. Overall, a decrease is noted for the infrasound array's detection capability. This aspect is particularly important for the other two sites of the German infrasound stations I26DE in the Bavarian Forest and I27DE in Antarctica, because plans for installing wind turbines near these locations are being under discussion. These stations are part of the International Monitoring System (IMS) verifying compliance with the Comprehensive Nuclear-Test-Ban Treaty (CTBT), and have to meet stringent specifications with respect to infrasonic background noise. Therefore data obtained during a field experiment with mobile micro-barometer stations for measuring the infrasonic pressure level of a single horizontal-axis wind turbine have been revisited. The results of this experiment successfully validate a theoretical model which estimates the generated sound pressure level of wind turbines and makes it possible to specify the minimum allowable distance between wind turbines and infrasound stations for undisturbed recording. Since the theoretical model also takes wind turbine design parameters into account, suitable locations for planned infrasound stations outside the determined disturbance range can be found, which will be presented; and vice versa, the model calculations' results for fixing the minimum distance for wind turbines planned for installation in the vicinity of an existing infrasound array.

  10. Numerical investigation of wind turbine and wind farm aerodynamics

    NASA Astrophysics Data System (ADS)

    Selvaraj, Suganthi

    A numerical method based on the solution of Reynolds Averaged Navier Stokes equations and actuator disk representation of turbine rotor is developed and implemented in the OpenFOAM software suite for aerodynamic analysis of horizontal axis wind turbines (HAWT). The method and the implementation are validated against the 1-D momentum theory, the blade element momentum theory and against experimental data. The model is used for analyzing aerodynamics of a novel dual rotor wind turbine concept and wind farms. Horizontal axis wind turbines suffer from aerodynamic inefficiencies in the blade root region (near the hub) due to several non-aerodynamic constraints (e.g., manufacturing, transportation, cost, etc.). A new dual-rotor wind turbine (DRWT) concept is proposed that aims at mitigating these losses. A DRWT is designed using an existing turbine rotor for the main rotor (Risoe turbine and NREL 5 MW turbine), while the secondary rotor is designed using a high lift to drag ratio airfoil (the DU 96 airfoil from TU Delft). The numerical aerodynamic analysis method developed as a part of this thesis is used to optimize the design. The new DRWT design gives an improvement of about 7% in aerodynamic efficiency over the single rotor turbine. Wind turbines are typically deployed in clusters called wind farms. HAWTs also suffer from aerodynamic losses in a wind farm due to interactions with wind turbine wakes. An interesting mesoscale meteorological phenomenon called "surface flow convergence" believed to be caused by wind turbine arrays is investigated using the numerical method developed here. This phenomenon is believed to be caused by the pressure gradient set up by wind turbines operating in close proximity in a farm. A conceptual/hypothetical wind farm simulation validates the hypothesis that a pressure gradient is setup in wind farms due to turbines and that it can cause flow veering of the order of 10 degrees. Simulations of a real wind farm (Story County) are also

  11. Estimating effects of tidal power projects and climate change on threatened and endangered marine species and their food web.

    PubMed

    Busch, D Shallin; Greene, Correigh M; Good, Thomas P

    2013-12-01

    Marine hydrokinetic power projects will operate as marine environments change in response to increased atmospheric carbon dioxide concentrations. We considered how tidal power development and stressors resulting from climate change may affect Puget Sound species listed under the U.S. Endangered Species Act (ESA) and their food web. We used risk tables to assess the singular and combined effects of tidal power development and climate change. Tidal power development and climate change posed risks to ESA-listed species, and risk increased with incorporation of the effects of these stressors on predators and prey of ESA-listed species. In contrast, results of a model of strikes on ESA-listed species from turbine blades suggested that few ESA-listed species are likely to be killed by a commercial-scale tidal turbine array. We applied scenarios to a food web model of Puget Sound to explore the effects of tidal power and climate change on ESA-listed species using more quantitative analytical techniques. To simulate development of tidal power, we applied results of the blade strike model. To simulate environmental changes over the next 50 years, we applied scenarios of change in primary production, plankton community structure, dissolved oxygen, ocean acidification, and freshwater flooding events. No effects of tidal power development on ESA-listed species were detected from the food web model output, but the effects of climate change on them and other members of the food web were large. Our analyses exemplify how natural resource managers might assess environmental effects of marine technologies in ways that explicitly incorporate climate change and consider multiple ESA-listed species in the context of their ecological community. Estimación de los Efectos de Proyectos de Energía de las Mareas y el Cambio Climático sobre Especies Marinas Amenazadas y en Peligro y su Red Alimentaria.

  12. Estimating effects of tidal power projects and climate change on threatened and endangered marine species and their food web.

    PubMed

    Busch, D Shallin; Greene, Correigh M; Good, Thomas P

    2013-12-01

    Marine hydrokinetic power projects will operate as marine environments change in response to increased atmospheric carbon dioxide concentrations. We considered how tidal power development and stressors resulting from climate change may affect Puget Sound species listed under the U.S. Endangered Species Act (ESA) and their food web. We used risk tables to assess the singular and combined effects of tidal power development and climate change. Tidal power development and climate change posed risks to ESA-listed species, and risk increased with incorporation of the effects of these stressors on predators and prey of ESA-listed species. In contrast, results of a model of strikes on ESA-listed species from turbine blades suggested that few ESA-listed species are likely to be killed by a commercial-scale tidal turbine array. We applied scenarios to a food web model of Puget Sound to explore the effects of tidal power and climate change on ESA-listed species using more quantitative analytical techniques. To simulate development of tidal power, we applied results of the blade strike model. To simulate environmental changes over the next 50 years, we applied scenarios of change in primary production, plankton community structure, dissolved oxygen, ocean acidification, and freshwater flooding events. No effects of tidal power development on ESA-listed species were detected from the food web model output, but the effects of climate change on them and other members of the food web were large. Our analyses exemplify how natural resource managers might assess environmental effects of marine technologies in ways that explicitly incorporate climate change and consider multiple ESA-listed species in the context of their ecological community. Estimación de los Efectos de Proyectos de Energía de las Mareas y el Cambio Climático sobre Especies Marinas Amenazadas y en Peligro y su Red Alimentaria. PMID:24299085

  13. Wind, Wave, and Tidal Energy Without Power Conditioning

    NASA Technical Reports Server (NTRS)

    Jones, Jack A.

    2013-01-01

    Most present wind, wave, and tidal energy systems require expensive power conditioning systems that reduce overall efficiency. This new design eliminates power conditioning all, or nearly all, of the time. Wind, wave, and tidal energy systems can transmit their energy to pumps that send high-pressure fluid to a central power production area. The central power production area can consist of a series of hydraulic generators. The hydraulic generators can be variable displacement generators such that the RPM, and thus the voltage, remains constant, eliminating the need for further power conditioning. A series of wind blades is attached to a series of radial piston pumps, which pump fluid to a series of axial piston motors attached to generators. As the wind is reduced, the amount of energy is reduced, and the number of active hydraulic generators can be reduced to maintain a nearly constant RPM. If the axial piston motors have variable displacement, an exact RPM can be maintained for all, or nearly all, wind speeds. Analyses have been performed that show over 20% performance improvements with this technique over conventional wind turbines

  14. Turbine Imaging Technology Assessment

    SciTech Connect

    Moursund, Russell A.; Carlson, Thomas J.

    2004-12-31

    The goal of this project was to identify and evaluate imaging alternatives for observing the behavior of juvenile fish within an operating Kaplan turbine unit with a focus on methods to quantify fish injury mechanisms inside an operating turbine unit. Imaging methods are particularly needed to observe the approach and interaction of fish with turbine structural elements. This evaluation documents both the opportunities and constraints for observing juvenile fish at specific locations during turbine passage. The information may be used to acquire the scientific knowledge to make structural improvements and create opportunities for industry to modify turbines and improve fish passage conditions.

  15. TIDAL FRICTION AND TIDAL LAGGING. APPLICABILITY LIMITATIONS OF A POPULAR FORMULA FOR THE TIDAL TORQUE

    SciTech Connect

    Efroimsky, Michael; Makarov, Valeri V. E-mail: vvm@usno.navy.mil

    2013-02-10

    Tidal torques play a key role in rotational dynamics of celestial bodies. They govern these bodies' tidal despinning and also participate in the subtle process of entrapment of these bodies into spin-orbit resonances. This makes tidal torques directly relevant to the studies of habitability of planets and their moons. Our work begins with an explanation of how friction and lagging should be built into the theory of bodily tides. Although much of this material can be found in various publications, a short but self-consistent summary on the topic has been lacking in the hitherto literature, and we are filling the gap. After these preparations, we address a popular concise formula for the tidal torque, which is often used in the literature, for planets or stars. We explain why the derivation of this expression, offered in the paper by Goldreich and in the books by Kaula (Equation (4.5.29)) and Murray and Dermott (Equation (4.159)), implicitly sets the time lag to be frequency independent. Accordingly, the ensuing expression for the torque can be applied only to bodies having a very special (and very hypothetical) rheology which makes the time lag frequency independent, i.e., the same for all Fourier modes in the spectrum of tide. This expression for the torque should not be used for bodies of other rheologies. Specifically, the expression cannot be combined with an extra assertion of the geometric lag being constant, because at finite eccentricities the said assumption is incompatible with the constant-time-lag condition.

  16. Tidal Friction and Tidal Lagging. Applicability Limitations of a Popular Formula for the Tidal Torque

    NASA Astrophysics Data System (ADS)

    Efroimsky, Michael; Makarov, Valeri V.

    2013-02-01

    Tidal torques play a key role in rotational dynamics of celestial bodies. They govern these bodies' tidal despinning and also participate in the subtle process of entrapment of these bodies into spin-orbit resonances. This makes tidal torques directly relevant to the studies of habitability of planets and their moons. Our work begins with an explanation of how friction and lagging should be built into the theory of bodily tides. Although much of this material can be found in various publications, a short but self-consistent summary on the topic has been lacking in the hitherto literature, and we are filling the gap. After these preparations, we address a popular concise formula for the tidal torque, which is often used in the literature, for planets or stars. We explain why the derivation of this expression, offered in the paper by Goldreich and in the books by Kaula (Equation (4.5.29)) and Murray & Dermott (Equation (4.159)), implicitly sets the time lag to be frequency independent. Accordingly, the ensuing expression for the torque can be applied only to bodies having a very special (and very hypothetical) rheology which makes the time lag frequency independent, i.e., the same for all Fourier modes in the spectrum of tide. This expression for the torque should not be used for bodies of other rheologies. Specifically, the expression cannot be combined with an extra assertion of the geometric lag being constant, because at finite eccentricities the said assumption is incompatible with the constant-time-lag condition.

  17. Numerical Modeling of Hydrokinetic Turbines and their Environmental Effects

    NASA Astrophysics Data System (ADS)

    Javaherchi, T.; Seydel, J.; Aliseda, A.

    2010-12-01

    The search for predictable renewable energy has led research into marine hydrokinetic energy. Electricity can be generated from tidally-induced currents through turbines located in regions of high current speed and relatively low secondary flow intensity. Although significant technological challenges exist, the main obstacle in the development and commercial deployment of marine hydrokinetic (MHK) turbines is the uncertainty in the environmental effect of devices. The velocity deficit in the turbulent wake of the turbine might enhance the sedimentation process of suspended particles in the water column and lead to deposition into artificial patterns that alter the benthic ecosystem. Pressure fluctuations across turbine blades and in blade tip vortices can damage internal organs of marine species as they swim through the device. These are just a few examples of the important potential environmental effects of MHK turbines that need to be addressed and investigated a priori before pilot and large scale deployment. We have developed a hierarchy of numerical models to simulate the turbulent wake behind a well characterized two bladed turbine. The results from these models (Sliding Mesh, Rotating Reference Frame, Virtual Blade Model and Actuator Disk Model) have been validated and are been used to investigate the efficiency and physical changes introduced in the environment by single or multiple MHK turbines. We will present results from sedimenting particles and model juvenile fish, with relative densities of 1.2 and 0.95, respectively. The settling velocity and terminal location on the bottom of the tidal channel is computed and compared to the simulated flow in a channel without turbines. We have observed an enhanced sedimentation, and we will quantify the degree of enhancement and the parameter range within which it is significant. For the slightly buoyant particles representing fish, the pressure history is studied statistically with particular attention to the

  18. Tidal acceleration of black holes and superradiance

    NASA Astrophysics Data System (ADS)

    Cardoso, Vitor; Pani, Paolo

    2013-02-01

    Tidal effects have long ago locked the Moon in a synchronous rotation with the Earth and progressively increase the Earth-Moon distance. This ‘tidal acceleration’ hinges on dissipation. Binaries containing black holes may also be tidally accelerated, dissipation being caused by the event horizon—a flexible, viscous one-way membrane. In fact, this process is known for many years under a different guise: superradiance. Here, we provide compelling evidence for a strong connection between tidal acceleration and superradiant scattering around spinning black holes. In general relativity, tidal acceleration is obscured by the gravitational-wave emission. However, when coupling to light scalar degrees of freedom is allowed, an induced dipole moment produces a ‘polarization acceleration’, which might be orders of magnitude stronger than tidal quadrupolar effects. Consequences for optical and gravitational-wave observations are intriguing and it is not impossible that imprints of such a mechanism have already been observed.

  19. Gravitoelectromagnetic analogy based on tidal tensors

    SciTech Connect

    Costa, L. Filipe O.; Herdeiro, Carlos A. R.

    2008-07-15

    We propose a new approach to a physical analogy between general relativity and electromagnetism, based on tidal tensors of both theories. Using this approach we write a covariant form for the gravitational analogues of the Maxwell equations, which makes transparent both the similarities and key differences between the two interactions. The following realizations of the analogy are given. The first one matches linearized gravitational tidal tensors to exact electromagnetic tidal tensors in Minkowski spacetime. The second one matches exact magnetic gravitational tidal tensors for ultrastationary metrics to exact magnetic tidal tensors of electromagnetism in curved spaces. In the third we show that our approach leads to a two-step exact derivation of Papapetrou's equation describing the force exerted on a spinning test particle. Analogous scalar invariants built from tidal tensors of both theories are also discussed.

  20. TIDAL NOVAE IN COMPACT BINARY WHITE DWARFS

    SciTech Connect

    Fuller, Jim; Lai Dong

    2012-09-01

    Compact binary white dwarfs (WDs) undergoing orbital decay due to gravitational radiation can experience significant tidal heating prior to merger. In these WDs, the dominant tidal effect involves the excitation of outgoing gravity waves in the inner stellar envelope and the dissipation of these waves in the outer envelope. As the binary orbit decays, the WDs are synchronized from outside in (with the envelope synchronized first, followed by the core). We examine the deposition of tidal heat in the envelope of a carbon-oxygen WD and study how such tidal heating affects the structure and evolution of the WD. We show that significant tidal heating can occur in the star's degenerate hydrogen layer. This layer heats up faster than it cools, triggering runaway nuclear fusion. Such 'tidal novae' may occur in all WD binaries containing a CO WD, at orbital periods between 5 minutes and 20 minutes, and precede the final merger by 10{sup 5}-10{sup 6} years.