An Axisymmetric, Hydrodynamical Model for the Torus Wind in Active Galactic Nuclei
NASA Technical Reports Server (NTRS)
Dorodnitsyn, A.; Kallman, T.; Proga, D.
2008-01-01
We report on time-dependent axisymmetric simulations of an X-ray-excited flow from a parsec-scale, rotating, cold torus around an active galactic nucleus. Our simulations account for radiative heating and cooling and radiation pressure force. The simulations follow the development of a broad biconical outflow induced mainly by X-ray heating. We compute synthetic spectra predicted by our simulations. The wind characteristics and the spectra support the hypothesis that a rotationally supported torus can serve as the source of a wind which is responsible for the warm absorber gas observed in the X-ray spectra of many Seyfert galaxies.
Magneto-hydrodynamically stable axisymmetric mirrors
NASA Astrophysics Data System (ADS)
Ryutov, Dmitri
2010-11-01
The achievement of high beta (60%) plasma with near classical confinement in a linear axisymmetric magnetic configuration has sparked interest in the Gas Dynamic Trap concept. The significance of these results is that they can be projected directly to a neutron source for materials testing. The possibility of axisymmetric mirrors (AM) being magneto-hydrodynamically (MHD) stable is also of interest from a general physics standpoint (as it seemingly contradicts to well-established criteria of curvature-driven instabilities). The axial symmetry allows for much simpler and more reliable designs of mirror-based fusion facilities than the well-known quadrupole mirror configurations. In this tutorial, after a brief summary of classical results (in particular of the Rosenbluth-Longmire theory and of the energy principle as applied to AM) several approaches towards achieving MHD stabilization of the AM will be considered: 1) Employing the favorable field-line curvature in the end tanks; 2) Using the line-tying effect; 3) Setting the plasma in a slow or fast differential rotation; 4) Imposing a divertor configuration on the solenoidal magnetic field; 5) Controlling the plasma dynamics by the ponderomotive force; 6) Other techniques. Several of these approaches go beyond pure MHD and require accounting for finite Larmor radius effects and trapped particle modes. Some illuminative theoretical approaches for understanding axisymmetric mirror stability will be described. Wherever possible comparison of theoretical and experimental results on AM will be provided. The applicability of the various stabilization techniques to axisymmetric mirrors as neutron sources, hybrids, and pure-fusion reactors will be discussed and the constraints on the plasma parameters will be formulated. Prepared by LLNL under Contract DE-AC52-07NA27344.
Magneto-hydrodynamically stable axisymmetric mirrors
Ryutov, D. D.; Cohen, B. I.; Molvik, A. W.; Berk, H. L.; Simonen, T. C.
2011-09-15
Making axisymmetric mirrors magnetohydrodynamically (MHD) stable opens up exciting opportunities for using mirror devices as neutron sources, fusion-fission hybrids, and pure-fusion reactors. This is also of interest from a general physics standpoint (as it seemingly contradicts well-established criteria of curvature-driven instabilities). The axial symmetry allows for much simpler and more reliable designs of mirror-based fusion facilities than the well-known quadrupole mirror configurations. In this tutorial, after a summary of classical results, several techniques for achieving MHD stabilization of the axisymmetric mirrors are considered, in particular: (1) employing the favorable field-line curvature in the end tanks; (2) using the line-tying effect; (3) controlling the radial potential distribution; (4) imposing a divertor configuration on the solenoidal magnetic field; and (5) affecting the plasma dynamics by the ponderomotive force. Some illuminative theoretical approaches for understanding axisymmetric mirror stability are described. The applicability of the various stabilization techniques to axisymmetric mirrors as neutron sources, hybrids, and pure-fusion reactors are discussed; and the constraints on the plasma parameters are formulated.
An Axisymmetric Hydrodynamical Model for the Torus Wind in AGN. 2; X-ray Excited Funnel Flow
NASA Technical Reports Server (NTRS)
Dorodnitsyn, A.; Kallman, T.; Proga, D.
2008-01-01
We have calculated a series of models of outflows from the obscuring torus in active galactic nuclei (AGN). Our modeling assumes that the inner face of a rotationally supported torus is illuminated and heated by the intense X-rays from the inner accretion disk and black hole. As a result of such heating a strong biconical outflow is observed in our simulations. We calculate 3-dimensional hydrodynamical models, assuming axial symmetry, and including the effects of X-ray heating, ionization, and radiation pressure. We discuss the behavior of a large family of these models, their velocity fields, mass fluxes and temperature, as functions of the torus properties and X-ray flux. Synthetic warm absorber spectra are calculated, assuming pure absorption, for sample models at various inclination angles and observing times. We show that these models have mass fluxes and flow speeds which are comparable to those which have been inferred from observations of Seyfert 1 warm absorbers, and that they can produce rich absorption line spectra.
Modeling axisymmetric flow and transport.
Langevin, Christian D
2008-01-01
Unmodified versions of common computer programs such as MODFLOW, MT3DMS, and SEAWAT that use Cartesian geometry can accurately simulate axially symmetric ground water flow and solute transport. Axisymmetric flow and transport are simulated by adjusting several input parameters to account for the increase in flow area with radial distance from the injection or extraction well. Logarithmic weighting of interblock transmissivity, a standard option in MODFLOW, can be used for axisymmetric models to represent the linear change in hydraulic conductance within a single finite-difference cell. Results from three test problems (ground water extraction, an aquifer push-pull test, and upconing of saline water into an extraction well) show good agreement with analytical solutions or with results from other numerical models designed specifically to simulate the axisymmetric geometry. Axisymmetric models are not commonly used but can offer an efficient alternative to full three-dimensional models, provided the assumption of axial symmetry can be justified. For the upconing problem, the axisymmetric model was more than 1000 times faster than an equivalent three-dimensional model. Computational gains with the axisymmetric models may be useful for quickly determining appropriate levels of grid resolution for three-dimensional models and for estimating aquifer parameters from field tests. PMID:18384599
Modeling axisymmetric flow and transport
Langevin, C.D.
2008-01-01
Unmodified versions of common computer programs such as MODFLOW, MT3DMS, and SEAWAT that use Cartesian geometry can accurately simulate axially symmetric ground water flow and solute transport. Axisymmetric flow and transport are simulated by adjusting several input parameters to account for the increase in flow area with radial distance from the injection or extraction well. Logarithmic weighting of interblock transmissivity, a standard option in MODFLOW, can be used for axisymmetric models to represent the linear change in hydraulic conductance within a single finite-difference cell. Results from three test problems (ground water extraction, an aquifer push-pull test, and upconing of saline water into an extraction well) show good agreement with analytical solutions or with results from other numerical models designed specifically to simulate the axisymmetric geometry. Axisymmetric models are not commonly used but can offer an efficient alternative to full three-dimensional models, provided the assumption of axial symmetry can be justified. For the upconing problem, the axisymmetric model was more than 1000 times faster than an equivalent three-dimensional model. Computational gains with the axisymmetric models may be useful for quickly determining appropriate levels of grid resolution for three-dimensional models and for estimating aquifer parameters from field tests.
Axisymmetric Simulations of Hot Jupiter-Stellar Wind Hydrodynamic Interaction
NASA Astrophysics Data System (ADS)
Christie, Duncan; Arras, Phil; Li, Zhi-Yun
2016-03-01
Gas giant exoplanets orbiting at close distances to the parent star are subjected to large radiation and stellar wind fluxes. In this paper, hydrodynamic simulations of the planetary upper atmosphere and its interaction with the stellar wind are carried out to understand the possible flow regimes and how they affect the Lyα transmission spectrum. Following Tremblin and Chiang, charge exchange reactions are included to explore the role of energetic atoms as compared to thermal particles. In order to understand the role of the tail as compared to the leading edge of the planetary gas, the simulations were carried out under axisymmetry, and photoionization and stellar wind electron impact ionization reactions were included to limit the extent of the neutrals away from the planet. By varying the planetary gas temperature, two regimes are found. At high temperature, a supersonic planetary wind is found, which is turned around by the stellar wind and forms a tail behind the planet. At lower temperatures, the planetary wind is shut off when the stellar wind penetrates inside where the sonic point would have been. In this regime mass is lost by viscous interaction at the boundary between planetary and stellar wind gases. Absorption by cold hydrogen atoms is large near the planetary surface, and decreases away from the planet as expected. The hot hydrogen absorption is in an annulus and typically dominated by the tail, at large impact parameter, rather than by the thin leading edge of the mixing layer near the substellar point.
NASA Astrophysics Data System (ADS)
Nakiboǧlu, G.; Hirschberg, A.
2012-06-01
Aeroacoustic sound generation due to self-sustained oscillations by a series of compact axisymmetric cavities exposed to a grazing flow is studied both experimentally and numerically. The driving feedback is produced by the velocity fluctuations resulting from a coupling of vortex sheddings at the upstream cavity edges with acoustic standing waves in the coaxial pipe. When the cavities are separated sufficiently from each other, the whistling behavior of the complete system can be determined from the individual contribution of each cavity. When the cavities are placed close to each other there is a strong hydrodynamic interference between the cavities which affects both the peak amplitude attained during whistling and the corresponding Strouhal number. This hydrodynamic interference is captured successfully by the proposed numerical method.
Axisymmetric Shearing Box Models of Magnetized Disks
NASA Astrophysics Data System (ADS)
Guan, Xiaoyue; Gammie, Charles F.
2008-01-01
The local model, or shearing box, has proven a useful model for studying the dynamics of astrophysical disks. Here we consider the evolution of magnetohydrodynamic (MHD) turbulence in an axisymmetric local model in order to evaluate the limitations of global axisymmetric models. An exploration of the model parameter space shows the following: (1) The magnetic energy and α-decay approximately exponentially after an initial burst of turbulence. For our code, HAM, the decay time τ propto Res , where Res/2 is the number of zones per scale height. (2) In the initial burst of turbulence the magnetic energy is amplified by a factor proportional to Res3/4λR, where λR is the radial scale of the initial field. This scaling applies only if the most unstable wavelength of the magnetorotational instability is resolved and the final field is subthermal. (3) The shearing box is a resonant cavity and in linear theory exhibits a discrete set of compressive modes. These modes are excited by the MHD turbulence and are visible as quasi-periodic oscillations (QPOs) in temporal power spectra of fluid variables at low spatial resolution. At high resolution the QPOs are hidden by a noise continuum. (4) In axisymmetry disk turbulence is local. The correlation function of the turbulence is limited in radial extent, and the peak magnetic energy density is independent of the radial extent of the box LR for LR > 2H. (5) Similar results are obtained for the HAM, ZEUS, and ATHENA codes; ATHENA has an effective resolution that is nearly double that of HAM and ZEUS. (6) Similar results are obtained for 2D and 3D runs at similar resolution, but only for particular choices of the initial field strength and radial scale of the initial magnetic field.
Modeling and simulation of axisymmetric stagnation flames
NASA Astrophysics Data System (ADS)
Sone, Kazuo
Laminar flame modeling is an important element in turbulent combustion research. The accuracy of a turbulent combustion model is highly dependent upon our understanding of laminar flames and their behavior in many situations. How much we understand combustion can only be measured by how well the model describes and predicts combustion phenomena. One of the most commonly used methane combustion models is GRI-Mech 3.0. However, how well the model describes the reacting flow phenomena is still uncertain even after many attempts to validate the model or quantify uncertainties. In the present study, the behavior of laminar flames under different aerodynamic and thermodynamic conditions is studied numerically in a stagnation-flow configuration. In order to make such a numerical study possible, the spectral element method is reformulated to accommodate the large density variations in methane reacting flows. In addition, a new axisymmetric basis function set for the spectral element method that satisfies the correct behavior near the axis is developed, and efficient integration techniques are developed to accurately model axisymmetric reacting flow within a reasonable amount of computational time. The numerical method is implemented using an object-oriented programming technique, and the resulting computer program is verified with several different verification methods. The present study then shows variances with the commonly used GRI-Mech 3.0 chemical kinetics model through a direct simulation of laboratory flames that allows direct comparison to experimental data. It is shown that the methane combustion model based on GRI-Mech 3.0 works well for methane-air mixtures near stoichiometry. However, GRI-Mech 3.0 leads to an overprediction of laminar flame speed for lean mixtures and an underprediction for rich mixtures. This result is slightly different from conclusion drawn in previous work, in which experimental data are compared with a one-dimensional numerical solutions
NASA Astrophysics Data System (ADS)
Tobias, B. J.; Austin, M. E.; Classen, I. G. J.; Domier, C. W.; Luhmann, N. C., Jr.; Park, J.-K.; Paz-Soldan, C.; Turnbull, A. D.; Yu, L.; the DIII-D Team
2013-12-01
Non-axisymmetric equilibria arise in DIII-D discharges that are subjected to magnetic perturbation by 3D magnetic coils. But, 3D shaping of the entire plasma, including the boundary, also occurs in the rotating fluid frame of saturated internal magnetic islands (Tobias et al 2013 Plasma Phys. Control. Fusion 55 095006). This is advantageous since internal islands and kink responses that rotate near the fluid velocity of the plasma are easily diagnosed, while static perturbations in the laboratory frame are not. The helicity of the perturbed shape is the same in both rotational frames of reference, making one mode a diagnostic proxy for the other and allowing internal modes to be used as a source of data for comparison to models typically applied to understanding the effect of static perturbations. Discrepancies with ideal magneto-hydrodynamic equilibrium obtained by the IPEC (Park et al 2007 Phys. Plasmas 14 052110) method brings attention to the treatment of plasma displacements near rational surfaces and their relationship to the accessibility of equilibrium states.
Recent development of hydrodynamic modeling
NASA Astrophysics Data System (ADS)
Hirano, Tetsufumi
2014-09-01
In this talk, I give an overview of recent development in hydrodynamic modeling of high-energy nuclear collisions. First, I briefly discuss about current situation of hydrodynamic modeling by showing results from the integrated dynamical approach in which Monte-Carlo calculation of initial conditions, quark-gluon fluid dynamics and hadronic cascading are combined. In particular, I focus on rescattering effects of strange hadrons on final observables. Next I highlight three topics in recent development in hydrodynamic modeling. These include (1) medium response to jet propagation in di-jet asymmetric events, (2) causal hydrodynamic fluctuation and its application to Bjorken expansion and (3) chiral magnetic wave from anomalous hydrodynamic simulations. (1) Recent CMS data suggest the existence of QGP response to propagation of jets. To investigate this phenomenon, we solve hydrodynamic equations with source term which exhibits deposition of energy and momentum from jets. We find a large number of low momentum particles are emitted at large angle from jet axis. This gives a novel interpretation of the CMS data. (2) It has been claimed that a matter created even in p-p/p-A collisions may behave like a fluid. However, fluctuation effects would be important in such a small system. We formulate relativistic fluctuating hydrodynamics and apply it to Bjorken expansion. We found the final multiplicity fluctuates around the mean value even if initial condition is fixed. This effect is relatively important in peripheral A-A collisions and p-p/p-A collisions. (3) Anomalous transport of the quark-gluon fluid is predicted when extremely high magnetic field is applied. We investigate this possibility by solving anomalous hydrodynamic equations. We found the difference of the elliptic flow parameter between positive and negative particles appears due to the chiral magnetic wave. Finally, I provide some personal perspective of hydrodynamic modeling of high energy nuclear collisions
Theoretical and numerical study of axisymmetric lattice Boltzmann models
NASA Astrophysics Data System (ADS)
Huang, Haibo; Lu, Xi-Yun
2009-07-01
The forcing term in the lattice Boltzmann equation (LBE) is usually used to mimic Navier-Stokes equations with a body force. To derive axisymmetric model, forcing terms are incorporated into the two-dimensional (2D) LBE to mimic the additional axisymmetric contributions in 2D Navier-Stokes equations in cylindrical coordinates. Many axisymmetric lattice Boltzmann D2Q9 models were obtained through the Chapman-Enskog expansion to recover the 2D Navier-Stokes equations in cylindrical coordinates [I. Halliday , Phys. Rev. E 64, 011208 (2001); K. N. Premnath and J. Abraham, Phys. Rev. E 71, 056706 (2005); T. S. Lee, H. Huang, and C. Shu, Int. J. Mod. Phys. C 17, 645 (2006); T. Reis and T. N. Phillips, Phys. Rev. E 75, 056703 (2007); J. G. Zhou, Phys. Rev. E 78, 036701 (2008)]. The theoretical differences between them are discussed in detail. Numerical studies were also carried out by simulating two different flows to make a comparison on these models’ accuracy and τ sensitivity. It is found all these models are able to obtain accurate results and have the second-order spatial accuracy. However, the model C [J. G. Zhou, Phys. Rev. E 78, 036701 (2008)] is the most stable one in terms of τ sensitivity. It is also found that if density of fluid is defined in its usual way and not directly relevant to source terms, the lattice Boltzmann model seems more stable.
Application of the PTT model to axisymmetric free surface flows
NASA Astrophysics Data System (ADS)
Merejolli, R.; Paulo, G. S.; Tomé, M. F.
2013-10-01
This work is concerned with numerical simulation of axisymmetric viscoelastic free surface flows using the Phan-Thien-Tanner (PTT) constitutive equation. A finite difference technique for solving the governing equations for unsteady incompressible flows written in Cylindrical coordinates on a staggered grid is described. The fluid is modelled by a Marker-and-Cell type method and an accurate representation of the fluid surface is employed. The full free surface stress conditions are applied. The numerical method is verified by comparing numerical predictions of fully developed flow in a pipe with the corresponding analytic solutions. To demonstrate that the numerical method can simulate axisymmetric free surface flows governed by the PTT model, numerical results of the flow evolution of a drop impacting on a rigid dry plate are presented. In these simulations, the rheological effects of the parameters ɛ and ξ are investigated.
Hydrodynamical models of young SNRs.
NASA Astrophysics Data System (ADS)
Kosenko, D. I.; Blinnikov, S. I.; Postnov, K. A.; Sorokina, E. I.
X-ray observations of the Tycho supernova (SN) remnant by XMM-Newton telescope present radial profiles of the remnant in emission lines from silicon and iron \\citep{decour}. To reproduce observed spectrum and X-ray profiles hydrodynamical modelling of the remnant was performed by \\citet{elka}. Standard computational SN models cannot reproduce observed spacial behavoir of the X-ray profiles of the remnant in the emission lines. We perform analysis of these numerical models and find conditions under which it is possible to reproduce observed profiles.
Model reduction for axisymmetric tokamak control
Tinios, G.; Horne, S. F.; Hutchinson, I. H.; Wolfe, S. M.
1992-12-31
We deal with the problem of reducing a complicated electromagnetic passive structure model coupled to a linear plasma response model to a size that allows rapid calculations of gains for plasma position and shape control. We find that model reduction through eigenmode decomposition does not reproduce the input-to-output relationship of the system, unless one has a good idea of which eigenmodes are important. Hankel singular mode decomposition, on the other hand, provides an orthogonal basis for the system response, where the modes are ordered by their importance to the input-to-output relationship. A perturbed equilibrium plasma response model is used together with an electromagnetic model of the Alcator C-MOD passive structure to assess the performance of different model reduction schemes. We find that between 10 and 20 modes are required to give an adequate representation of the passive system. Emphasis is placed on keeping the reduction process independent of the parameters of the plasma we are trying to control.
Hydrodynamic Synchronisation of Model Microswimmers
NASA Astrophysics Data System (ADS)
Putz, V. B.; Yeomans, J. M.
2009-12-01
We define a model microswimmer with a variable cycle time, thus allowing the possibility of phase locking driven by hydrodynamic interactions between swimmers. We find that, for extensile or contractile swimmers, phase locking does occur, with the relative phase of the two swimmers being, in general, close to 0 or π, depending on their relative position and orientation. We show that, as expected on grounds of symmetry, self T-dual swimmers, which are time-reversal covariant, do not phase-lock. We also discuss the phase behaviour of a line of tethered swimmers, or pumps. These show oscillations in their relative phases reminiscent of the metachronal waves of cilia.
Hydrodynamic instability modeling for ICF
Haan, S.W.
1993-03-31
The intent of this paper is to review how instability growth is modeled in ICF targets, and to identify the principal issues. Most of the material has been published previously, but is not familiar to a wide audience. Hydrodynamic instabilities are a key issue in ICF. Along with laser-plasma instabilities, they determine the regime in which ignition is possible. At higher laser energies, the same issues determine the achievable gain. Quantitative predictions are therefore of the utmost importance to planning the ICF program, as well as to understanding current Nova results. The key fact that underlies all this work is the stabilization of short wavelengths.
Exact vectorial model for nonparaxial focusing by arbitrary axisymmetric surfaces.
Panneton, Denis; St-Onge, Guillaume; Piché, Michel; Thibault, Simon
2016-05-01
We present a new approach, based on Richards-Wolf formalism, to rigorously model nonparaxial focusing of radially and azimuthally polarized electromagnetic beams by axisymmetric systems without a single-point focus. Our approach is based on a combined method that uses ray tracing and diffraction integrals. Our method is validated by comparing known results obtained with a parabolic mirror. Our integral representation of the focused beams, compliant with diffraction theory, is thoroughly discussed and solved for various conics that, so far, have not been treated analytically. The extension of the method to other polarization states is straightforward. PMID:27140877
Accuracy Improvement in Magnetic Field Modeling for an Axisymmetric Electromagnet
NASA Technical Reports Server (NTRS)
Ilin, Andrew V.; Chang-Diaz, Franklin R.; Gurieva, Yana L.; Il,in, Valery P.
2000-01-01
This paper examines the accuracy and calculation speed for the magnetic field computation in an axisymmetric electromagnet. Different numerical techniques, based on an adaptive nonuniform grid, high order finite difference approximations, and semi-analitical calculation of boundary conditions are considered. These techniques are being applied to the modeling of the Variable Specific Impulse Magnetoplasma Rocket. For high-accuracy calculations, a fourth-order scheme offers dramatic advantages over a second order scheme. For complex physical configurations of interest in plasma propulsion, a second-order scheme with nonuniform mesh gives the best results. Also, the relative advantages of various methods are described when the speed of computation is an important consideration.
Dynamic modeling of a turbulent axisymmetric bluff-body wake
NASA Astrophysics Data System (ADS)
Rigas, Georgios; Morgans, Aimee; Morrison, Jonathan
2013-11-01
En route to chaos the stable laminar wake past axisymmetric bluff bodies undergoes two well-documented transitions by increasing the Reynolds number: a steady bifurcation of the m = 1 azimuthal mode followed by an unsteady bifurcation with m = +/- 1 , the latter giving rise to periodic shedding of vortices with opposite signs, known as vortex shedding. In this study we present experimental evidence that these structures persist far from the critical points at high Reynolds numbers (Re = 2 ×105). We show that a low-order model based on the normal form describing the codimension-two bifurcation captures accurately the dynamic behavior of the large-scale coherent structures associated with the destabilized modes, if noise is appropriately accounted for in the model. The model is validated based on simultaneous aerodynamic force measurements on the base of an axisymmetric bullet-shaped body and Time-Resolved Stereo PIV in the near wake. Finally, we extend the model to include external forcing when periodic blowing and suction is applied at the base below the point of separation.
Acoustic intensity calculations for axisymmetrically modeled fluid regions
NASA Technical Reports Server (NTRS)
Hambric, Stephen A.; Everstine, Gordon C.
1992-01-01
An algorithm for calculating acoustic intensities from a time harmonic pressure field in an axisymmetric fluid region is presented. Acoustic pressures are computed in a mesh of NASTRAN triangular finite elements of revolution (TRIAAX) using an analogy between the scalar wave equation and elasticity equations. Acoustic intensities are then calculated from pressures and pressure derivatives taken over the mesh of TRIAAX elements. Intensities are displayed as vectors indicating the directions and magnitudes of energy flow at all mesh points in the acoustic field. A prolate spheroidal shell is modeled with axisymmetric shell elements (CONEAX) and submerged in a fluid region of TRIAAX elements. The model is analyzed to illustrate the acoustic intensity method and the usefulness of energy flow paths in the understanding of the response of fluid-structure interaction problems. The structural-acoustic analogy used is summarized for completeness. This study uncovered a NASTRAN limitation involving numerical precision issues in the CONEAX stiffness calculation causing large errors in the system matrices for nearly cylindrical cones.
Hydrodynamic model for drying emulsions.
Feng, Huanhuan; Sprakel, Joris; van der Gucht, Jasper
2015-08-01
We present a hydrodynamic model for film formation in a dense oil-in-water emulsion under a unidirectional drying stress. Water flow through the plateau borders towards the drying end leads to the buildup of a pressure gradient. When the local pressure exceeds the critical disjoining pressure, the water films between droplets break and the droplets coalesce. We show that, depending on the critical pressure and the evaporation rate, the coalescence can occur in two distinct modes. At low critical pressures and low evaporation rates, coalescence occurs throughout the sample, whereas at high critical pressures and high evaporation rate, coalescence occurs only at the front. In the latter case, an oil layer develops on top of the film, which acts as a diffusive barrier and slows down film formation. Our findings, which are summarized in a state diagram for film formation, are in agreement with recent experimental findings.
Hydrodynamic models of a Cepheid atmosphere
NASA Technical Reports Server (NTRS)
Karp, A. H.
1975-01-01
Instead of computing a large number of coarsely zoned hydrodynamic models covering the entire atmospheric instability strip, the author computed a single model as well as computer limitations allow. The implicit hydrodynamic code of Kutter and Sparks was modified to include radiative transfer effects in optically thin zones.
Numerical modeling in induction heating for axisymmetric geometries
Chaboudez, C.; Glardon, R.; Mari, D.; Clain, S.; Rappaz, J.; Swierkosz, M.
1997-01-01
Induction heating is widely used in today`s industry, in operations such as metal hardening, preheating for forging operations, or brazing. It is a complex process, involving both electromagnetic and thermal phenomena. Since the design and the investigation of an induction heating system usually relies upon a series of tedious, expensive and long experiments, numerical simulation can be a valuable help in this field. This paper deals with numerical simulation of induction heating for axisymmetric geometries. A mathematical model is presented, together with a numerical scheme based on the Finite Element Method. A numerical simulation code was implemented using the model presented in this paper. A comparison between results given by the code and experimental measurements is provided.
Natural gas production from hydrate dissociation: An axisymmetric model
Ahmadi, G.; Ji, Chuang; Smith, D.H.
2007-08-01
This paper describes an axisymmetric model for natural gas production from the dissociation of methane hydrate in a confined reservoir by a depressurizing well. During the hydrate dissociation, heat and mass transfer in the reservoir are analyzed. The system of governing equations is solved by a finite difference scheme. For different well pressures and reservoir temperatures, distributions of temperature and pressure in the reservoir, as well as the natural gas production from the well are evaluated. The numerical results are compared with those obtained by a linearization method. It is shown that the gas production rate is a sensitive function of well pressure. The simulation results are compared with the linearization approach and the shortcomings of the earlier approach are discussed.
Nonstationary model of an axisymmetric mirror trap with nonequilibrium plasma
NASA Astrophysics Data System (ADS)
Yurov, D. V.; Prikhodko, V. V.; Tsidulko, Yu. A.
2016-03-01
The DOL nonstationary model intended to describe plasma processes in axisymmetric magnetic mirror traps is considered. The model uses averaging over the bounce period in order to take into account the dependence of plasma parameters on the coordinate along the facility axis. Examples of calculations of trap parameters by means of the DOL code based on this model are presented. Among the features of the DOL model, one can single out two points: first, the capability of calculating the terms of the collision integral with the use of a non-Maxwellian scattering function while evaluating the distribution function of fast ions and, second, concerning the background plasma, the capability of calculating the longitudinal particle and energy fluxes in confinement modes with the particle mean free path being on the order of the trap length. The influence of the scattering function approximation used to calculate the collision integral on the solution to the kinetic equation is analyzed. The dependences of plasma parameters on the power of heating injectors and the length of the fast-ion turning zone are presented as calculation examples. The longitudinal profile of the fusion reaction rate in the case of a trap with a long fast-ion turning zone is shown to depend strongly on the input parameters of the model.
Axisymmetric curvature-driven instability in a model divertor geometry
Farmer, W. A.; Ryutov, D. D.
2013-09-15
A model problem is presented which qualitatively describes a pressure-driven instability which can occur near the null-point in the divertor region of a tokamak where the poloidal field becomes small. The model problem is described by a horizontal slot with a vertical magnetic field which plays the role of the poloidal field. Line-tying boundary conditions are applied at the planes defining the slot. A toroidal field lying parallel to the planes is assumed to be very strong, thereby constraining the possible structure of the perturbations. Axisymmetric perturbations which leave the toroidal field unperturbed are analyzed. Ideal magnetohydrodynamics is used, and the instability threshold is determined by the energy principle. Because of the boundary conditions, the Euler equation is, in general, non-separable except at marginal stability. This problem may be useful in understanding the source of heat transport into the private flux region in a snowflake divertor which possesses a large region of small poloidal field, and for code benchmarking as it yields simple analytic results in an interesting geometry.
Axisymmetric Numerical Modeling of Pulse Detonation Rocket Engines
NASA Technical Reports Server (NTRS)
Morris, Christopher I.
2005-01-01
Pulse detonation rocket engines (PDREs) have generated research interest in recent years as a chemical propulsion system potentially offering improved performance and reduced complexity compared to conventional rocket engines. The detonative mode of combustion employed by these devices offers a thermodynamic advantage over the constant-pressure deflagrative combustion mode used in conventional rocket engines and gas turbines. However, while this theoretical advantage has spurred considerable interest in building PDRE devices, the unsteady blowdown process intrinsic to the PDRE has made realistic estimates of the actual propulsive performance problematic. The recent review article by Kailasanath highlights some of the progress that has been made in comparing the available experimental measurements with analytical and numerical models. In recent work by the author, a quasi-one-dimensional, finite rate chemistry CFD model was utilized to study the gasdynamics and performance characteristics of PDREs over a range of blowdown pressure ratios from 1-1000. Models of this type are computationally inexpensive, and enable first-order parametric studies of the effect of several nozzle and extension geometries on PDRE performance over a wide range of conditions. However, the quasi-one-dimensional approach is limited in that it cannot properly capture the multidimensional blast wave and flow expansion downstream of the PDRE, nor can it resolve nozzle flow separation if present. Moreover, the previous work was limited to single-pulse calculations. In this paper, an axisymmetric finite rate chemistry model is described and utilized to study these issues in greater detail. Example Mach number contour plots showing the multidimensional blast wave and nozzle exhaust plume are shown. The performance results are compared with the quasi-one-dimensional results from the previous paper. Both Euler and Navier-Stokes solutions are calculated in order to determine the effect of viscous
Radiation Hydrodynamical Models of the Inner Rim in Protoplanetary Disks
NASA Astrophysics Data System (ADS)
Flock, Mario
2016-06-01
Many stars host planets orbiting within one astronomical unit (AU). These close planets’ origins are a mystery that motivates investigating protoplanetary disks’ central regions. A key factor governing the conditions near the star is the silicate sublimation front, which largely determines where the starlight is absorbed, and which is often called the inner rim. We present the first radiation hydrodynamical modeling of the sublimation front in the disks around the young intermediate-mass stars called Herbig Ae stars. The models are axisymmetric, and include starlight heating, silicate grains sublimating and condensing to equilibrium at the local, timedependent temperature and density, and accretion stresses parametrizing the results of MHD magneto-rotational turbulence models. The results compare well with radiation hydrostatic solutions, and prove to be dynamically stable. Passing the model disks into Monte Carlo radiative transfer calculations, we show that the models satisfy observational constraints on the inner rims’s location. A small optically-thin halo of hot dust naturally arises between the inner rim and the star. The inner rim has a substantial radial extent, corresponding to several disk scale heights. While the front’s overall position varies with the stellar luminosity, its radial extent depends on the mass accretion rate. A pressure maximum develops at the position of thermal ionization at temperatures about 1000 K. The pressure maximum is capable of halting solid pebbles’ radial drift and concentrating them in a zone where temperatures are su ciently high for annealing to form crystalline silicates.
Hydrodynamic Modeling of Oxidizer-Rich Staged Combustion Injector Flow
NASA Technical Reports Server (NTRS)
Harper, Brent (Technical Monitor); Canino, J. V.; Heister, S. D.; Garrison, L. A.
2004-01-01
The main objective of this work is to determine the unsteady hydrodynamic characteristics of coaxial swirl atomizers of interest in oxidizer-rich staged combustion (ORSC) liquid rocket engines. To this end, the pseudo-density (homogeneous flow) treatment combined with the Marker-and-Cell (MAC) numerical algorithm has been used to develop an axisymmetric with swirl, two-phase, unsteady model. The numerical model is capable of assessing the time-dependent orifice exit conditions and internal mixing for arbitrary fuel and oxidizer gas injection conditions. Parametric studies have been conducted to determine the effect of geometry, gas properties, and liquid properties on the exit massflow rate and velocity. It has been found that the frequency at which the liquid film oscillates increases as the density ratio and thickness increase, decreases as film thickness and liquid swirl velocity increase, and is unaffected by the mixing length. Additionally, it has been determined that the variation in the massflow rate increases as the liquid swirl velocity and liquid film thickness increase, and decreases as the density ratio, collar thickness, and mixing length increase.
Hydrodynamics of penguin wing models
NASA Astrophysics Data System (ADS)
Noca, Flavio; Cuong Duong, Nhut; Herpich, Jerome
2010-11-01
The three-dimensional kinematics of penguin wings were obtained from movie footage in aquariums. A 1:1 scale model of the penguin wing (with an identical planform but with a flat section profile and a rigid configuration) was actuated with a robotic arm in a water channel. The experiments were performed at a chord Reynolds number of about 10^4 (an order of magnitude lower than for the observed penguin). The dynamics of the wing were analyzed with force and flowfield measurements. The two main results are: 1. a net thrust on both the upstroke and downstroke movement; 2. the occurence of a leading edge vortex (LEV) along the wing span. The effects of section profile, wing flexibility, and a higher Reynolds number will be investigated in the future.
Impact modeling with Smooth Particle Hydrodynamics
Stellingwerf, R.F.; Wingate, C.A.
1993-07-01
Smooth Particle Hydrodynamics (SPH) can be used to model hypervelocity impact phenomena via the addition of a strength of materials treatment. SPH is the only technique that can model such problems efficiently due to the combination of 3-dimensional geometry, large translations of material, large deformations, and large void fractions for most problems of interest. This makes SPH an ideal candidate for modeling of asteroid impact, spacecraft shield modeling, and planetary accretion. In this paper we describe the derivation of the strength equations in SPH, show several basic code tests, and present several impact test cases with experimental comparisons.
The quantum hydrodynamic model for semiconductor devices
Gardner, C.L. )
1994-04-01
The classical hydrodynamic equations can be extended to include quantum effects by incorporating the first quantum corrections. The full three-dimensional quantum hydrodynamic (QHD) model is derived for the first time by a moment expansion of the Wigner-Boltzmann equations. The QHD conservation laws have the same form as the classical hydrodynamic equations, but the energy density and stress tensor have additional quantum terms. These quantum terms allow particles to tunnel through potential barriers and to build up in potential wells. The three-dimensional QHD transport equations are mathematically classified as having two Schroedinger modes, two hyperbolic modes, and one parabolic mode. The one-dimensional steady-state QHD equations are discretized in conservation form using the second upwind method. Simulations of a resonant tunneling diode are presented that show charge buildup in the quantum well and negative differential resistance (NDR) in the current-voltage curve. These are the first simulations of the full QHD equations to show NDR in the resonant tunneling diode. The computed current-voltage curve agrees quantitatively with experimental measurements. NDR interpreted in terms of the time spent by electrons in the quantum well.
Numerical Simulation of Interacting Stellar Winds Model Using Smoothed Particle Hydrodynamics (SPH)
NASA Astrophysics Data System (ADS)
Thronson, H. A., Jr.; Li, P. S.; Kwok, S.
1997-12-01
In the past decade, the Interacting Stellar Winds (ISW) model has been shown to be successful in explaining the formation of planetary nebulae, Wolf-Rayet nebulae, slow novae, and supernovae. Since analytical methods applied to the ISW model have been limited to the spherical symmetric (1D) geometry, numerical methods are necessary for axisymmetric (2D) or arbitrary (3D) geometries, such as the study of formation and evolution of planetary nebulae, and for symbiotic nova outbursts. The Smoothed Particle Hydrodynamics (SPH) algorithm has been developed to study hydrodynamics using the particle method. This algorithm has been applied in many different fields successfully. In this paper, we apply the SPH algorithm using the TREE code to the problem of interacting winds dynamics. We present three simulations: (1) the interaction of two winds in spherical symmetry to demonstrate the validity of the algorithm in dealing with ISW modeling, (2) the formation and evolution of an axisymmetric nebula in the first 500 years, and (3) the interacting-colliding winds caused by a slow nova outburst in a symbiotic system. It is the first time that the SPH algorithm has been applied to an ISW simulation. The SPH algorithm is proved to be an accurate and powerful tool in studying ISW model. This work is supported by NASA's US ISO program and the University of Calgary.
Kinetic and hydrodynamic models of chemotactic aggregation
NASA Astrophysics Data System (ADS)
Chavanis, Pierre-Henri; Sire, Clément
2007-10-01
We derive general kinetic and hydrodynamic models of chemotactic aggregation that describe certain features of the morphogenesis of biological colonies (like bacteria, amoebae, endothelial cells or social insects). Starting from a stochastic model defined in terms of N coupled Langevin equations, we derive a nonlinear mean-field Fokker-Planck equation governing the evolution of the distribution function of the system in phase space. By taking the successive moments of this kinetic equation and using a local thermodynamic equilibrium condition, we derive a set of hydrodynamic equations involving a damping term. In the limit of small frictions, we obtain a hyperbolic model describing the formation of network patterns (filaments) and in the limit of strong frictions we obtain a parabolic model which is a generalization of the standard Keller-Segel model describing the formation of clusters (clumps). Our approach connects and generalizes several models introduced in the chemotactic literature. We discuss the analogy between bacterial colonies and self-gravitating systems and between the chemotactic collapse and the gravitational collapse (Jeans instability). We also show that the basic equations of chemotaxis are similar to nonlinear mean-field Fokker-Planck equations so that a notion of effective generalized thermodynamics can be developed.
Radiation Hydrodynamics Models of the Inner Rim in Protoplanetary Disks
NASA Astrophysics Data System (ADS)
Flock, M.; Fromang, S.; Turner, N. J.; Benisty, M.
2016-08-01
Many stars host planets orbiting within a few astronomical units (AU). The occurrence rate and distributions of masses and orbits vary greatly with the host star’s mass. These close planets’ origins are a mystery that motivates investigating protoplanetary disks’ central regions. A key factor governing the conditions near the star is the silicate sublimation front, which largely determines where the starlight is absorbed, and which is often called the inner rim. We present the first radiation hydrodynamical modeling of the sublimation front in the disks around the young intermediate-mass stars called Herbig Ae stars. The models are axisymmetric and include starlight heating silicate grains sublimating and condensing to equilibrium at the local, time-dependent temperature and density and accretion stresses parameterizing the results of MHD magnetorotational turbulence models. The results compare well with radiation hydrostatic solutions and prove to be dynamically stable. Passing the model disks into Monte Carlo radiative transfer calculations, we show that the models satisfy observational constraints on the inner rim’s location. A small optically thin halo of hot dust naturally arises between the inner rim and the star. The inner rim has a substantial radial extent, corresponding to several disk scale heights. While the front’s overall position varies with the stellar luminosity, its radial extent depends on the mass accretion rate. A pressure maximum develops near the location of thermal ionization at temperatures of about 1000 K. The pressure maximum is capable of halting solid pebbles’ radial drift and concentrating them in a zone where temperatures are sufficiently high for annealing to form crystalline silicates.
Chaos in hydrodynamic BL Herculis models
NASA Astrophysics Data System (ADS)
Smolec, R.; Moskalik, P.
2014-06-01
We present non-linear, convective, BL Her-type hydrodynamic models that show complex variability characteristic for deterministic chaos. The bifurcation diagram reveals a rich structure, with many phenomena detected for the first time in hydrodynamic models of pulsating stars. The phenomena include not only period doubling cascades en route to chaos (detected in earlier studies) but also periodic windows within chaotic band, type-I and type-III intermittent behaviour, interior crisis bifurcation and others. Such phenomena are known in many textbook chaotic systems, from the simplest discrete logistic map, to more complex systems like Lorenz equations. We discuss the physical relevance of our models. Although except of period doubling such phenomena were not detected in any BL Her star, chaotic variability was claimed in several higher luminosity siblings of BL Her stars - RV Tau variables, and also in longer-period, luminous irregular pulsators. Our models may help to understand these poorly studied stars. Particularly interesting are periodic windows which are intrinsic property of chaotic systems and are not necessarily caused by resonances between pulsation modes, as sometimes claimed in the literature.
Generalized hydrodynamics model for strongly coupled plasmas
NASA Astrophysics Data System (ADS)
Diaw, A.; Murillo, M. S.
2015-07-01
Beginning with the exact equations of the Bogoliubov-Born-Green-Kirkwood-Yvon hierarchy, we obtain the density, momentum, and stress tensor-moment equations. We close the moment equations with two closures, one that guarantees an equilibrium state given by density-functional theory and another that includes collisions in the relaxation of the stress tensor. The introduction of a density functional-theory closure ensures self-consistency in the equation-of-state properties of the plasma (ideal and excess pressure, electric fields, and correlations). The resulting generalized hydrodynamics thus includes all impacts of Coulomb coupling, viscous damping, and the high-frequency (viscoelastic) response. We compare our results with those of several known models, including generalized hydrodynamic theory and models obtained using the Singwi-Tosi-Land-Sjolander approximation and the quasilocalized charge approximation. We find that the viscoelastic response, including both the high-frequency elastic generalization and viscous wave damping, is important for correctly describing ion-acoustic waves. We illustrate this result by considering three very different systems: ultracold plasmas, dusty plasmas, and dense plasmas. The new model is validated by comparing its results with those of the current autocorrelation function obtained from molecular-dynamics simulations of Yukawa plasmas, and the agreement is excellent. Generalizations of this model to mixtures and quantum systems should be straightforward.
Hydrodynamics of linked sphere model swimmers.
Alexander, G P; Pooley, C M; Yeomans, J M
2009-05-20
We describe in detail the hydrodynamics of a simple model of linked sphere swimmers. We calculate the asymptotic form of both the time averaged flow field generated by a single swimmer and the interactions between swimmers in a dilute suspension, showing how each depends on the parameters describing the swimmer and its swimming stroke. We emphasize the importance of time reversal symmetry in determining the far field flow around a swimmer and show that the interactions between swimmers are highly dependent on the relative phase of their swimming strokes. PMID:21825517
Hydrodynamics of linked sphere model swimmers
NASA Astrophysics Data System (ADS)
Alexander, G. P.; Pooley, C. M.; Yeomans, J. M.
2009-05-01
We describe in detail the hydrodynamics of a simple model of linked sphere swimmers. We calculate the asymptotic form of both the time averaged flow field generated by a single swimmer and the interactions between swimmers in a dilute suspension, showing how each depends on the parameters describing the swimmer and its swimming stroke. We emphasize the importance of time reversal symmetry in determining the far field flow around a swimmer and show that the interactions between swimmers are highly dependent on the relative phase of their swimming strokes.
Hydrodynamic models for slurry bubble column reactors
Gidaspow, D.
1995-12-31
The objective of this investigation is to convert a {open_quotes}learning gas-solid-liquid{close_quotes} fluidization model into a predictive design model. This model is capable of predicting local gas, liquid and solids hold-ups and the basic flow regimes: the uniform bubbling, the industrially practical churn-turbulent (bubble coalescence) and the slugging regimes. Current reactor models incorrectly assume that the gas and the particle hold-ups (volume fractions) are uniform in the reactor. They must be given in terms of empirical correlations determined under conditions that radically differ from reactor operation. In the proposed hydrodynamic approach these hold-ups are computed from separate phase momentum balances. Furthermore, the kinetic theory approach computes the high slurry viscosities from collisions of the catalyst particles. Thus particle rheology is not an input into the model.
Kinetic extensions of magnetohydrodynamic models for axisymmetric toroidal plasmas
Cheng, C.Z.
1989-04-01
A nonvariational kinetic-MHD stability code (NOVA-K) has been developed to integrate a set of non-Hermitian integro-differential eigenmode equations due to energetic particles for axisymmetric toroidal plasmas in a general flux coordinate system with an arbitrary Jacobian. The NOVA-K code employs the Galerkin method involving Fourier expansions in the generalized poloidal angle theta and generalized toroidal angle /zeta/ directions, and cubic-B spline finite elements in the radial /Psi/ direction. Extensive comparisons with the existing variational ideal MHD codes show that the ideal MHD version of the NOVA-K code converges faster and gives more accurate results. The NOVA-K code is employed to study the effects of energetic particles on MHD-type modes: the stabilization of ideal MHD internal kink modes and the excitation of ''fishbone'' internal kink modes; and the alpha particle destabilization of toroidicity-induced Alfven eigenmodes (TAE) via transit resonances. Analytical theories are also presented to help explain the NOVA-K results. For energetic trapped particles generated by neutral beam injection (NBI) or ion cyclotron resonant heating (ICRH), a stability window for the n = 1 internal kink mode in the hot particle beta space exists even in the absence of the core ion finite Larmor radius effect. On the other hand, the trapped alpha particles are found to have negligible effects on the stability of the n = 1 internal kink mode, but the circulating alpha particles can strongly destabilize TAE modes via inverse Landau damping associated with the spatial gradient of the alpha particle pressure. 60 refs., 24 figs., 1 tab.
Modelling the hydrodynamics of offshore sandbanks
NASA Astrophysics Data System (ADS)
Pan, S.; MacDonald, N.; Williams, J.; O'Connor, B. A.; Nicholson, J.; Davies, A. M.
2007-05-01
This paper describes the details of a quasi-three-dimensional model (3DBANK), which has been developed to investigate medium and long-term morphological evolution and development of offshore sandbanks. The model is based on a three-dimensional tidal module using the Galerkin-eigenfunction method, but also includes four sub-modules to compute: the instantaneous bedform characteristics from which the temporal and spatial variations of the shear stresses at the sea bed can be derived; the suspended sediment concentration through the water column; the bed-load and suspended sediment fluxes at a point-in-plan; and the resulting morphological changes, respectively. The model also includes the effects of the wind and waves at the sea surface, as well as the wave-current interaction (WCI), and operates with full hydrodynamic and morphodynamic interaction. The components of the model were tested against laboratory and field data, and the complete model was then applied to Middlekerke Bank off the Flemish coast where extensive field measurements were taken during the European Community (EC) funded Circulation and Sediment Transport Around Banks (CSTAB) Project using various advanced instrumentation including STABLE and HF OSCR. Comparisons of the model results with the field measurements and observations show that the model is capable of reproducing the current and wave-induced bedforms, bed roughness, tidal currents and tidal residuals around the sandbank satisfactorily, and can be used to study the long-term sandbank evolution under various offshore conditions. This paper, however, focuses on the hydrodynamic aspects of the model, while the details of the morphological components will be given in a companion paper.
Code Differentiation for Hydrodynamic Model Optimization
Henninger, R.J.; Maudlin, P.J.
1999-06-27
Use of a hydrodynamics code for experimental data fitting purposes (an optimization problem) requires information about how a computed result changes when the model parameters change. These so-called sensitivities provide the gradient that determines the search direction for modifying the parameters to find an optimal result. Here, the authors apply code-based automatic differentiation (AD) techniques applied in the forward and adjoint modes to two problems with 12 parameters to obtain these gradients and compare the computational efficiency and accuracy of the various methods. They fit the pressure trace from a one-dimensional flyer-plate experiment and examine the accuracy for a two-dimensional jet-formation problem. For the flyer-plate experiment, the adjoint mode requires similar or less computer time than the forward methods. Additional parameters will not change the adjoint mode run time appreciably, which is a distinct advantage for this method. Obtaining ''accurate'' sensitivities for the j et problem parameters remains problematic.
Hydrodynamic models for slurry bubble column reactors
Dimitri Gidaspow
1996-10-01
The objective of this investigation is to convert learning gas-solid-liquid fluidization model into a predictive design model. The IIT hydrodynamic model computers the phase velocities and the volume fi-actions of gas, liquid and particulate phases. Model verification involves a comparison of these computed velocities and volume fractions to experimental values. As promised in the SIXTH TECHNICAL PROGRESS REPORT, January 1996, this report presents measurements of radial distribution function for 450 micron glass particles in liquid-solid fluidized bed. The report is in the form of a preliminary paper. The authors need the radial distribution function to compute the viscosity and the equation of state for particles. The principal results are as follows: (1) The measured radial distribution function, g{sub 0}, is a monotonic function of the solid volume fraction. The values of the radial distribution function g{sub 0} are in the range of the predictions from Bagnold equation and Carnahan and Starling equation. (2) The position of the first peak of the radial distribution function does not lie at r = d at contact (d is particle diameter). This differs from the predications from the hard sphere model and the measurements in the gas-solid system (Gidaspow and Huilin, 1996). This is due to a liquid film lubrication effect in the liquid-solid system.
Chemical and Hydrodynamical Models of Cometary Comae
NASA Technical Reports Server (NTRS)
Charnley, Steven
2012-01-01
Multi-fluid modelling of the outflowing gases which sublimate from cometary nuclei as they approach the Sun is necessary for understanding the important physical and chemical processes occurring in this complex plasma. Coma chemistry models can be employed to interpret observational data and to ultimately determine chemical composition and structure of the nuclear ices and dust. We describe a combined chemical and hydrodynamical model [1] in which differential equations for the chemical abundances and the energy balance are solved as a function of distance from the cometary nucleus. The presence of negative ions (anions) in cometary comae is known from Giotto mass spectrometry of 1P/Halley. The anions O(-), OH(-), C(-), CH(-) and CN(-) have been detected, as well as unidentified anions with masses 22-65 and 85-110 amu [2]. Organic molecular anions such as C4H(-) and C6H(-) are known to have a significant impact on the charge balance of interstellar clouds and circumstellar envelopes and have been shown to act as catalysts for the gas-phase synthesis of larger hydrocarbon molecules in the ISM, but their importance in cometary comae has not yet been fully explored. We present details of new models for the chemistry of cometary comae that include atomic and molecular anions and calculate the impact of these anions on the coma physics and chemistry af the coma.
NASA Astrophysics Data System (ADS)
Méchi, Rachid; Farhat, Habib; Said, Rachid
2016-01-01
Nongray radiation calculations are carried out for a case problem available in the literature. The problem is a non-isothermal and inhomogeneous CO2-H2O- N2 gas mixture confined within an axisymmetric cylindrical furnace. The numerical procedure is based on the zonal method associated with the weighted sum of gray gases (WSGG) model. The effect of the wall emissivity on the heat flux losses is discussed. It is shown that this property affects strongly the furnace efficiency and that the most important heat fluxes are those leaving through the circumferential boundary. The numerical procedure adopted in this work is found to be effective and may be relied on to simulate coupled turbulent combustion-radiation in fired furnaces.
Modeling the hydrodynamics of Phloem sieve plates.
Jensen, Kaare Hartvig; Mullendore, Daniel Leroy; Holbrook, Noel Michele; Bohr, Tomas; Knoblauch, Michael; Bruus, Henrik
2012-01-01
Sieve plates have an enormous impact on the efficiency of the phloem vascular system of plants, responsible for the distribution of photosynthetic products. These thin plates, which separate neighboring phloem cells, are perforated by a large number of tiny sieve pores and are believed to play a crucial role in protecting the phloem sap from intruding animals by blocking flow when the phloem cell is damaged. The resistance to the flow of viscous sap in the phloem vascular system is strongly affected by the presence of the sieve plates, but the hydrodynamics of the flow through them remains poorly understood. We propose a theoretical model for quantifying the effect of sieve plates on the phloem in the plant, thus unifying and improving previous work in the field. Numerical simulations of the flow in real and idealized phloem channels verify our model, and anatomical data from 19 plant species are investigated. We find that the sieve plate resistance is correlated to the cell lumen resistance, and that the sieve plate and the lumen contribute almost equally to the total hydraulic resistance of the phloem translocation pathway.
NASA Astrophysics Data System (ADS)
Fernández-Trincado, J. G.; Robin, A. C.; Bienaymé, O.; Reylé, C.; Valenzuela, O.; Pichardo, B.
2014-07-01
In this contributed poster we present a preliminary attempt to compute a non-axisymmetric potential together with previous axisymmetric potential of the Besançon galaxy model. The contribution by non-axisymmetric components are modeled by the superposition of inhomogeneous ellipsoids to approximate the triaxial bar and superposition of homogeneous oblate spheroids for a stellar halo, possibly triaxial. Finally, we have computed the potential and force field for these non-axisymmetric components in order to constraint the total mass of the Milky Way. We present preliminary results for the rotation curve and the contribution of the bar to it. This approach will allow future studies of dynamical constraints from comparisons of kinematical simulations with upcoming surveys such as RAVE, BRAVA, APOGEE, and GAIA in the near future. More details, are presented in https://gaia.ub.edu/Twiki/pub/GREATITNFC/ProgramFinalconference/Poster_JG.Fern%e1ndez.pdf.
SAMPLE AOR CALCULATION USING ANSYS AXISYMMETRIC PARAMETRIC MODEL FOR TANK SST-SX
JULYK, L.J.; MACKEY, T.C.
2003-06-19
This document documents the ANSYS axisymmetric parametric model for single-shell tank SX and provides sample calculation for analysis-of-record mechanical load conditions. The purpose of this calculation is to develop a parametric model for single shell tank (SST) SX, and provide a sample analysis of the SST-SX tank based on analysis of record (AOR) loads. The SST-SX model is based on buyer-supplied as-built drawings and information for the AOR for SSTs, encompassing the existing tank load conditions, and evaluates stresses and deformations throughout the tank and surrounding soil mass.
Progress and Challenges in Coupled Hydrodynamic-Ecological Estuarine Modeling
Numerical modeling has emerged over the last several decades as a widely accepted tool for investigations in environmental sciences. In estuarine research, hydrodynamic and ecological models have moved along parallel tracks with regard to complexity, refinement, computational po...
Modeling Early Galaxies Using Radiation Hydrodynamics
2011-01-01
This simulation uses a flux-limited diffusion solver to explore the radiation hydrodynamics of early galaxies, in particular, the ionizing radiation created by Population III stars. At the time of this rendering, the simulation has evolved to a redshift of 3.5. The simulation volume is 11.2 comoving megaparsecs, and has a uniform grid of 10243 cells, with over 1 billion dark matter and star particles. This animation shows a combined view of the baryon density, dark matter density, radiation energy and emissivity from this simulation. The multi-variate rendering is particularly useful because is shows both the baryonic matter ("normal") and dark matter, and the pressure and temperature variables are properties of only the baryonic matter. Visible in the gas density are "bubbles", or shells, created by the radiation feedback from young stars. Seeing the bubbles from feedback provides confirmation of the physics model implemented. Features such as these are difficult to identify algorithmically, but easily found when viewing the visualization. Simulation was performed on Kraken at the National Institute for Computational Sciences. Visualization was produced using resources of the Argonne Leadership Computing Facility at Argonne National Laboratory.
Kinetic theory model predictions compared with low-thrust axisymmetric nozzle plume data
NASA Technical Reports Server (NTRS)
Riley, B. R.; Fuhrman, S. J.; Penko, P. F.
1993-01-01
A system of nonlinear integral equations equivalent to the steady-state Krook kinetic equation was used to model the flow from a low-thrust axisymmetric nozzle. The mathematical model was used to numerically calculate the number density, temperature, and velocity of a simple gas as it expands into a near vacuum. With these quantities the gas pressure and flow directions of the gas near the exit plane were calculated and compared with experimental values for a low-thrust nozzle of the same geometry and mass flow rate.
Revisiting Turbulence Model Validation for High-Mach Number Axisymmetric Compression Corner Flows
NASA Technical Reports Server (NTRS)
Georgiadis, Nicholas J.; Rumsey, Christopher L.; Huang, George P.
2015-01-01
Two axisymmetric shock-wave/boundary-layer interaction (SWBLI) cases are used to benchmark one- and two-equation Reynolds-averaged Navier-Stokes (RANS) turbulence models. This validation exercise was executed in the philosophy of the NASA Turbulence Modeling Resource and the AIAA Turbulence Model Benchmarking Working Group. Both SWBLI cases are from the experiments of Kussoy and Horstman for axisymmetric compression corner geometries with SWBLI inducing flares of 20 and 30 degrees, respectively. The freestream Mach number was approximately 7. The RANS closures examined are the Spalart-Allmaras one-equation model and the Menter family of kappa - omega two equation models including the Baseline and Shear Stress Transport formulations. The Wind-US and CFL3D RANS solvers are employed to simulate the SWBLI cases. Comparisons of RANS solutions to experimental data are made for a boundary layer survey plane just upstream of the SWBLI region. In the SWBLI region, comparisons of surface pressure and heat transfer are made. The effects of inflow modeling strategy, grid resolution, grid orthogonality, turbulent Prandtl number, and code-to-code variations are also addressed.
NASA Technical Reports Server (NTRS)
Hou, A. Y.
1984-01-01
A simple mechanistic model of a zonally averaged circulation forced by heat and momentum sources is developed and applied to the Venus atmosphere in the light of recent data. Basic equations for a steady-state axisymmetric circulation are discussed, and the parametric dependence of a nearly inviscid Hadley circulation in the absence of eddy forcing is examined and extended to a wide range of thermal Rossby numbers. The effect of diffusion is considered and found to be small for the Venus cloud region. The zonally averaged eddy sources and sinks required to support the zonal superrotation on Venus are determined.
Calculations of axisymmetric vortex sheet roll-up using a panel and a filament model
NASA Technical Reports Server (NTRS)
Kantelis, J. P.; Widnall, S. E.
1986-01-01
A method for calculating the self-induced motion of a vortex sheet using discrete vortex elements is presented. Vortex panels and vortex filaments are used to simulate two-dimensional and axisymmetric vortex sheet roll-up. A straight forward application using vortex elements to simulate the motion of a disk of vorticity with an elliptic circulation distribution yields unsatisfactroy results where the vortex elements move in a chaotic manner. The difficulty is assumed to be due to the inability of a finite number of discrete vortex elements to model the singularity at the sheet edge and due to large velocity calculation errors which result from uneven sheet stretching. A model of the inner portion of the spiral is introduced to eliminate the difficulty with the sheet edge singularity. The model replaces the outermost portion of the sheet with a single vortex of equivalent circulation and a number of higher order terms which account for the asymmetry of the spiral. The resulting discrete vortex model is applied to both two-dimensional and axisymmetric sheets. The two-dimensional roll-up is compared to the solution for a semi-infinite sheet with good results.
Hydrodynamic and Salinity Intrusion Model in Selangor River Estuary
NASA Astrophysics Data System (ADS)
Haron, N. F.; Tahir, W.
2016-07-01
A multi-dimensional hydrodynamic and transport model has been used to develop the hydrodynamic and salinity intrusion model for Selangor River Estuary. Delft3D-FLOW was applied to the study area using a curvilinear, boundary fitted grid. External boundary forces included ocean water level, salinity, and stream flow. The hydrodynamic and salinity transport used for the simulation was calibrated and confirmed using data on November 2005 and from May to June 2014. A 13-day period for November 2005 data and a 6-day period of May to June 2014 data were chosen as the calibration and confirmation period because of the availability of data from the field-monitoring program conducted. From the calibration results, it shows that the model was well suited to predict the hydrodynamic and salinity intrusion characteristics of the study area.
3-D HYDRODYNAMIC MODELING IN A GEOSPATIAL FRAMEWORK
Bollinger, J; Alfred Garrett, A; Larry Koffman, L; David Hayes, D
2006-08-24
3-D hydrodynamic models are used by the Savannah River National Laboratory (SRNL) to simulate the transport of thermal and radionuclide discharges in coastal estuary systems. Development of such models requires accurate bathymetry, coastline, and boundary condition data in conjunction with the ability to rapidly discretize model domains and interpolate the required geospatial data onto the domain. To facilitate rapid and accurate hydrodynamic model development, SRNL has developed a pre- and post-processor application in a geospatial framework to automate the creation of models using existing data. This automated capability allows development of very detailed models to maximize exploitation of available surface water radionuclide sample data and thermal imagery.
Axisymmetric eddy current inspection of highly conducting thin layers via asymptotic models
NASA Astrophysics Data System (ADS)
Haddar, Houssem; Jiang, Zixian
2015-11-01
Thin copper deposits covering the steam generator tubes can blind eddy current probes in non-destructive testings of problematic faults and it is therefore important that they are identified. Existing methods based on shape reconstruction using eddy current signals encounter difficulties of high numerical costs due to the layer’s small thickness and high conductivity. In this article, we approximate the axisymmetric eddy current problem with some appropriate asymptotic models using effective transmission conditions representing the thin deposits. In these models, the geometrical information related to the deposit is transformed into parameter coefficients on a fictitious interface. A standard iterative inversion algorithm is then applied to the asymptotic models to reconstruct the thickness of the thin copper layers. Numerical tests both validating the asymptotic model and showing the benefits of the inversion procedure are provided.
Nonlinear axisymmetric and three-dimensional vorticity dynamics in a swirling jet model
NASA Technical Reports Server (NTRS)
Martin, J. E.; Meiburg, E.
1996-01-01
The mechanisms of vorticity concentration, reorientation, and stretching are investigated in a simplified swirling jet model, consisting of a line vortex along the jet axis surrounded by a jet shear layer with both azimuthal and streamwise vorticity. Inviscid three-dimensional vortex dynamics simulations demonstrate the nonlinear interaction and competition between a centrifugal instability and Kelvin-Helmholtz instabilities feeding on both components of the base flow vorticity. Under axisymmetric flow conditions, it is found that the swirl leads to the emergence of counterrotating vortex rings, whose circulation, in the absence of viscosity, can grow without bounds. Scaling laws are provided for the growth of these rings, which trigger a pinch-off mechanism resulting in a strong decrease of the local jet diameter. In the presence of an azimuthal disturbance, the nonlinear evolution of the flow depends strongly on the initial ratio of the azimuthal and axisymmetric perturbation amplitudes. The long term dynamics of the jet can be dominated by counterrotating vortex rings connected by braid vortices, by like-signed rings and streamwise braid vortices, or by wavy streamwise vortices alone.
Concurrent multiscale modelling of atomistic and hydrodynamic processes in liquids
Markesteijn, Anton; Karabasov, Sergey; Scukins, Arturs; Nerukh, Dmitry; Glotov, Vyacheslav; Goloviznin, Vasily
2014-01-01
Fluctuations of liquids at the scales where the hydrodynamic and atomistic descriptions overlap are considered. The importance of these fluctuations for atomistic motions is discussed and examples of their accurate modelling with a multi-space–time-scale fluctuating hydrodynamics scheme are provided. To resolve microscopic details of liquid systems, including biomolecular solutions, together with macroscopic fluctuations in space–time, a novel hybrid atomistic–fluctuating hydrodynamics approach is introduced. For a smooth transition between the atomistic and continuum representations, an analogy with two-phase hydrodynamics is used that leads to a strict preservation of macroscopic mass and momentum conservation laws. Examples of numerical implementation of the new hybrid approach for the multiscale simulation of liquid argon in equilibrium conditions are provided. PMID:24982246
Onset of superradiant instabilities in the hydrodynamic vortex model
NASA Astrophysics Data System (ADS)
Hod, Shahar
2014-07-01
The hydrodynamic vortex, an effective spacetime geometry for propagating sound waves, is studied analytically. In contrast with the familiar Kerr black hole spacetime, the hydrodynamic vortex model is described by an effective acoustic geometry which has no horizons. However, this acoustic spacetime possesses an ergoregion, a property which it shares with the rotating Kerr spacetime. It has recently been shown numerically that this physical system is linearly unstable due to the superradiant scattering of sound waves in the ergoregion of the effective spacetime. In the present study we use analytical tools in order to explore the onset of these superradiant instabilities which characterize the effective spacetime geometry. In particular, we derive a simple analytical formula which describes the physical properties of the hydrodynamic vortex system in its critical (marginally stable) state, the state which marks the boundary between stable and unstable fluid configurations. The analytically derived formula is shown to agree with the recently published numerical data for the hydrodynamic vortex system.
Numerical Modelling and Prediction of Erosion Induced by Hydrodynamic Cavitation
NASA Astrophysics Data System (ADS)
Peters, A.; Lantermann, U.; el Moctar, O.
2015-12-01
The present work aims to predict cavitation erosion using a numerical flow solver together with a new developed erosion model. The erosion model is based on the hypothesis that collapses of single cavitation bubbles near solid boundaries form high velocity microjets, which cause sonic impacts with high pressure amplitudes damaging the surface. The erosion model uses information from a numerical Euler-Euler flow simulation to predict erosion sensitive areas and assess the erosion aggressiveness of the flow. The obtained numerical results were compared to experimental results from tests of an axisymmetric nozzle.
Comparisons of hydrodynamic beam models with kinetic treatments
NASA Astrophysics Data System (ADS)
Boyd, J. K.; Mark, J. W.; Sharp, W. M.; Yu, S. S.
1983-10-01
Hydrodynamic models were derived to describe energetic self-pinched beams, such as those used in ion-beam fusion. The closure of the Mark-Yu model is obtained with adiabatic assumptions mathematically analogous to those of Chew, Goldberger, and Low for MHD. The other models treated here use an ideal gas closure and a closure by Newcomb based on an expansion in V/sub th//V/sub z/. Features of these hydrodynamic beam models are compared with a kinetic treatment.
Progress and challenges in coupled hydrodynamic-ecological estuarine modeling
Ganju, Neil K.; Brush, Mark J.; Rashleigh, Brenda; Aretxabaleta, Alfredo L.; del Barrio, Pilar; Grear, Jason S.; Harris, Lora A.; Lake, Samuel J.; McCardell, Grant; O’Donnell, James; Ralston, David K.; Signell, Richard P.; Testa, Jeremy M.; Vaudrey, Jamie M.P.
2016-01-01
Numerical modeling has emerged over the last several decades as a widely accepted tool for investigations in environmental sciences. In estuarine research, hydrodynamic and ecological models have moved along parallel tracks with regard to complexity, refinement, computational power, and incorporation of uncertainty. Coupled hydrodynamic-ecological models have been used to assess ecosystem processes and interactions, simulate future scenarios, and evaluate remedial actions in response to eutrophication, habitat loss, and freshwater diversion. The need to couple hydrodynamic and ecological models to address research and management questions is clear, because dynamic feedbacks between biotic and physical processes are critical interactions within ecosystems. In this review we present historical and modern perspectives on estuarine hydrodynamic and ecological modeling, consider model limitations, and address aspects of model linkage, skill assessment, and complexity. We discuss the balance between spatial and temporal resolution and present examples using different spatiotemporal scales. Finally, we recommend future lines of inquiry, approaches to balance complexity and uncertainty, and model transparency and utility. It is idealistic to think we can pursue a “theory of everything” for estuarine models, but recent advances suggest that models for both scientific investigations and management applications will continue to improve in terms of realism, precision, and accuracy. PMID:27721675
Conduction Modelling Using Smoothed Particle Hydrodynamics
NASA Astrophysics Data System (ADS)
Cleary, Paul W.; Monaghan, Joseph J.
1999-01-01
Heat transfer is very important in many industrial and geophysical problems. Because these problems often have complicated fluid dynamics, there are advantages in solving them using Lagrangian methods like smoothed particle hydrodynamics (SPH). Since SPH particles become disordered, the second derivative terms may be estimated poorly, especially when materials with different properties are adjacent. In this paper we show how a simple alteration to the standard SPH formulation ensures continuity of heat flux across discontinuities in material properties. A set of rules is formulated for the construction of isothermal boundaries leading to accurate conduction solutions. A method for accurate prediction of heat fluxes through isothermal boundaries is also given. The accuracy of the SPH conduction solutions is demonstrated through a sequence of test problems of increasing complexity.
Qayyum, Mubashir; Khan, Hamid; Rahim, M. Tariq; Ullah, Inayat
2015-01-01
The aim of this article is to model and analyze an unsteady axisymmetric flow of non-conducting, Newtonian fluid squeezed between two circular plates passing through porous medium channel with slip boundary condition. A single fourth order nonlinear ordinary differential equation is obtained using similarity transformation. The resulting boundary value problem is solved using Homotopy Perturbation Method (HPM) and fourth order Explicit Runge Kutta Method (RK4). Convergence of HPM solution is verified by obtaining various order approximate solutions along with absolute residuals. Validity of HPM solution is confirmed by comparing analytical and numerical solutions. Furthermore, the effects of various dimensionless parameters on the longitudinal and normal velocity profiles are studied graphically. PMID:25738864
Evaluation of Industry Standard Turbulence Models on an Axisymmetric Supersonic Compression Corner
NASA Technical Reports Server (NTRS)
DeBonis, James R.
2015-01-01
Reynolds-averaged Navier-Stokes computations of a shock-wave/boundary-layer interaction (SWBLI) created by a Mach 2.85 flow over an axisymmetric 30-degree compression corner were carried out. The objectives were to evaluate four turbulence models commonly used in industry, for SWBLIs, and to evaluate the suitability of this test case for use in further turbulence model benchmarking. The Spalart-Allmaras model, Menter's Baseline and Shear Stress Transport models, and a low-Reynolds number k- model were evaluated. Results indicate that the models do not accurately predict the separation location; with the SST model predicting the separation onset too early and the other models predicting the onset too late. Overall the Spalart-Allmaras model did the best job in matching the experimental data. However there is significant room for improvement, most notably in the prediction of the turbulent shear stress. Density data showed that the simulations did not accurately predict the thermal boundary layer upstream of the SWBLI. The effect of turbulent Prandtl number and wall temperature were studied in an attempt to improve this prediction and understand their effects on the interaction. The data showed that both parameters can significantly affect the separation size and location, but did not improve the agreement with the experiment. This case proved challenging to compute and should provide a good test for future turbulence modeling work.
Hydrodynamic models of a Cepheid atmosphere. I - Deep envelope models
NASA Technical Reports Server (NTRS)
Karp, A. H.
1975-01-01
The implicit hydrodynamic code of Kutter and Sparks has been modified to include radiative transfer effects. This modified code has been used to compute deep envelope models of a classical Cepheid with a period of 12 days. It is shown that in this particular model the hydrogen ionization region plays only a small role in producing the observed phase lag between the light and velocity curves. The cause of the bumps on the model's light curve is examined, and a mechanism is presented to explain those Cepheids with two secondary features on their light curves. This mechanism is shown to be consistent with the Hertzsprung sequence only if the evolutionary mass-luminosity law is used.
Homoclinic chaos in axisymmetric Bianchi-IX cosmological models with an ad hoc quantum potential
Correa, G. C.; Stuchi, T. J.; Joras, S. E.
2010-04-15
In this work we study the dynamics of the axisymmetric Bianchi-IX cosmological model with a term of quantum potential added. As it is well known, this class of Bianchi-IX models is homogeneous and anisotropic with two scale factors, A(t) and B(t), derived from the solution of Einstein's equation for general relativity. The model we use in this work has a cosmological constant and the matter content is dust. To this model we add a quantum-inspired potential that is intended to represent short-range effects due to the general relativistic behavior of matter in small scales and play the role of a repulsive force near the singularity. We find that this potential restricts the dynamics of the model to positive values of A(t) and B(t) and alters some qualitative and quantitative characteristics of the dynamics studied previously by several authors. We make a complete analysis of the phase space of the model finding critical points, periodic orbits, stable/unstable manifolds using numerical techniques such as Poincare section, numerical continuation of orbits, and numerical globalization of invariant manifolds. We compare the classical and the quantum models. Our main result is the existence of homoclinic crossings of the stable and unstable manifolds in the physically meaningful region of the phase space [where both A(t) and B(t) are positive], indicating chaotic escape to inflation and bouncing near the singularity.
Nested contour-dynamic models for axisymmetric vortex rings and vortex wakes
NASA Astrophysics Data System (ADS)
O'Farrell, Clara; Dabiri, John O.
2013-11-01
Jetting swimmers, such as squid and jellyfish, propel themselves by forming vortex rings. It is known that vortex rings cannot grow indefinitely, but rather ``pinch off'' once they reach their physical limit, and that a decrease in efficiency of fluid transport is associated with pinch-off. Previously, the Norbury family of vortices has been used as a model for axisymmetric vortex rings, and the response of this family to shape perturbations has been characterized. We improve upon the Norbury models, using nested patches of vorticity to construct a family of models for vortex rings generated by a piston-cylinder apparatus at different stroke ratios. The perturbation response of this family is considered by the introduction of a small region of vorticity at the rear of the vortex, which mimics the addition of circulation to a growing vortex ring by a feeding shear layer. Model vortex rings are found to either accept the additional circulation or shed it into a tail, depending on the perturbation size. A change in the behavior of the model vortex rings is identified at a stroke ratio of three. We hypothesize that this change in response is analogous to pinch-off, and that pinch-off might be understood and predicted based on the perturbation responses of model vortex rings.
NASA Astrophysics Data System (ADS)
Henrique de Almeida Konzen, Pedro; Richter, Thomas; Riedel, Uwe; Maas, Ulrich
2011-06-01
The goal of this work is to analyze the use of automatically reduced chemistry by the Reaction-Diffusion Manifold (REDIM) method in simulating axisymmetric laminar coflow diffusion flames. Detailed chemical kinetic models are usually computationally prohibitive for simulating complex reacting flows, and therefore reduced models are required. Automatic reduction model approaches usually exploit the natural multi-scale structure of combustion systems. The novel REDIM approach applies the concept of invariant manifolds to treat also the influence of the transport processes on the reduced model, which overcomes a fundamental problem of model reduction in neglecting the coupling of molecular transport with thermochemical processes. We have considered a previously well studied atmospheric pressure nitrogen-diluted methane-air flame as a test case to validate the methodology presented here. First, one-dimensional and two-dimensional REDIMs were computed and tabulated in lookup tables. Then, the full set of governing equations are projected on the REDIM and implemented in the object-oriented C++ Gascoigne code with a new add-on library to deal with the REDIM tables. The projected set of governing equations have been discretized by the Finite Element Method (FEM) and solved by a GMRES iteration preconditioned by a geometric multigrid method. Local grid refinement, adaptive mesh and parallelization are applied to ensure efficiency and precision. The numerical results obtained using the REDIM approach have shown very good agreement with detailed numerical simulations and experimental data.
HYDRODYNAMIC AND TRANSPORT MODELING STUDY IN A HIGHLY STRATIFIED ESTUARY
This paper presents the preliminary results of hydrodynamic and salinity predictions and the implications to an ongoing contaminated sediment transport and fate modeling effort in the Lower Duwamish Waterway (LDW), Seattle, Washington. The LDW is highly strati-fied when freshwate...
The control method for the lattice hydrodynamic model
NASA Astrophysics Data System (ADS)
Ge, Hong-Xia; Cui, Yu; Zhu, Ke-Qiang; Cheng, Rong-Jun
2015-05-01
The delayed-feedback control method is applied for lattice hydrodynamic model of traffic flow. The linear stability condition with and without control signal are derived through linear and nonlinear analysis. Numerical simulation is carried out and the results confirm that the traffic congested can be suppressed efficiently by considering the control signal.
Axisymmetric whole pin life modelling of advanced gas-cooled reactor nuclear fuel
NASA Astrophysics Data System (ADS)
Mella, R.; Wenman, M. R.
2013-06-01
Thermo-mechanical contributions to pellet-clad interaction (PCI) in advanced gas-cooled reactors (AGRs) are modelled in the ABAQUS finite element (FE) code. User supplied sub-routines permit the modelling of the non-linear behaviour of AGR fuel through life. Through utilisation of ABAQUS's well-developed pre- and post-processing ability, the behaviour of the axially constrained steel clad fuel was modelled. The 2D axisymmetric model includes thermo-mechanical behaviour of the fuel with time and condition dependent material properties. Pellet cladding gap dynamics and thermal behaviour are also modelled. The model treats heat up as a fully coupled temperature-displacement study. Dwell time and direct power cycling was applied to model the impact of online refuelling, a key feature of the AGR. The model includes the visco-plastic behaviour of the fuel under the stress and irradiation conditions within an AGR core and a non-linear heat transfer model. A multiscale fission gas release model is applied to compute pin pressure; this model is coupled to the PCI gap model through an explicit fission gas inventory code. Whole pin, whole life, models are able to show the impact of the fuel on all segments of cladding including weld end caps and cladding pellet locking mechanisms (unique to AGR fuel). The development of this model in a commercial FE package shows that the development of a potentially verified and future-proof fuel performance code can be created and used. The usability of a FE based fuel performance code would be an enhancement over past codes. Pre- and post-processors have lowered the entry barrier for the development of a fuel performance model to permit the ability to model complicated systems. Typical runtimes for a 5 year axisymmetric model takes less than one hour on a single core workstation. The current model has implemented: Non-linear fuel thermal behaviour, including a complex description of heat flow in the fuel. Coupled with a variety of
A new model for blood flow through an artery with axisymmetric stenosis.
Tandon, P N; Rana, U V
1995-03-01
Presented herein are the studies on the flow behavior of a blood type suspension through a circular tube with an axisymmetric stenosis. The suspension of the cells in plasma is represented by a layered fluid model, with a marginal cell-free layer of the suspending medium near the wall, a central core region and an annular layer of a biviscous fluid layer. It is understood that the proposed model may contribute to the inbuilt mechanism for drag reduction and prevention of the further development of the stenosis. The concept of lubricating pipe lining for transporting various industrial fluids is well represented through three-layered core-annular flows. The governing equations are solved numerically by using finite element method. The velocity fields, including separation and reattachment points, and the distribution of pressure and wall shear stresses have been brought out and discussed. The results of the analysis show that the presence of the marginal cell-free layer reduces the wall shear stresses and the length of the flow reversal zone. The non-Newtonian character of the suspension is helpful in reducing the abnormal effects of the stenosis. The model thus establishes the inbuilt character of blood for decreasing the stresses and this, in turn, reduces the load on the heart in propelling the blood.
Axisymmetric modeling of cometary mass loading on an adaptively refined grid: MHD results
NASA Technical Reports Server (NTRS)
Gombosi, Tamas I.; Powell, Kenneth G.; De Zeeuw, Darren L.
1994-01-01
The first results of an axisymmetric magnetohydrodynamic (MHD) model of the interaction of an expanding cometary atmosphere with the solar wind are presented. The model assumes that far upstream the plasma flow lines are parallel to the magnetic field vector. The effects of mass loading and ion-neutral friction are taken into account by the governing equations, whcih are solved on an adaptively refined unstructured grid using a Monotone Upstream Centered Schemes for Conservative Laws (MUSCL)-type numerical technique. The combination of the adaptive refinement with the MUSCL-scheme allows the entire cometary atmosphere to be modeled, while still resolving both the shock and the near nucleus of the comet. The main findingsare the following: (1) A shock is formed approximately = 0.45 Mkm upstream of the comet (its location is controlled by the sonic and Alfvenic Mach numbers of the ambient solar wind flow and by the cometary mass addition rate). (2) A contact surface is formed approximately = 5,600 km upstream of the nucleus separating an outward expanding cometary ionosphere from the nearly stagnating solar wind flow. The location of the contact surface is controlled by the upstream flow conditions, the mass loading rate and the ion-neutral drag. The contact surface is also the boundary of the diamagnetic cavity. (3) A closed inner shock terminates the supersonic expansion of the cometary ionosphere. This inner shock is closer to the nucleus on dayside than on the nightside.
A three-dimensional Babcock-Leighton solar dynamo model: Initial results with axisymmetric flows
NASA Astrophysics Data System (ADS)
Miesch, Mark S.; Teweldebirhan, Kinfe
2016-10-01
The main objective of this paper is to introduce the STABLE (Surface flux Transport And Babcock-LEighton) solar dynamo model. STABLE is a 3D Babcock-Leighton/Flux Transport dynamo model in which the source of poloidal field is the explicit emergence, distortion, and dispersal of bipolar magnetic regions (BMRs). Here we describe the STABLE model in more detail than we have previously and we verify it by reproducing a 2D mean-field benchmark. We also present some representative dynamo simulations, focusing on the special case of kinematic magnetic induction and axisymmetric flow fields. Not all solutions are supercritical; it can be a challenge for the BL mechanism to sustain the dynamo when the turbulent diffusion near the surface is ⩾ 1012 cm2 s-1. However, if BMRs are sufficiently large, deep, and numerous, then sustained, cyclic, dynamo solutions can be found that exhibit solar-like features. Furthermore, we find that the shearing of radial magnetic flux by the surface differential rotation can account for most of the net toroidal flux generation in each hemisphere, as has been recently argued for the Sun by Cameron and Schüssler (2015).
A New Axisymmetric MHD Model of the Interaction of the Solar Wind with Venus
NASA Technical Reports Server (NTRS)
DeZeeuw, Darren L.; Nagy, Andrew F.; Gombosi, Tamas I.; Powell, Kenneth G.; Luhmann, Janet G.
1996-01-01
A new two-dimensional axisymmetric MHD model is used to study the interaction of the solar wind with Venus under conditions where the interplanetary field is approximately aligned with the solar wind velocity. This numerical model solves the MHD transport equations for density, velocity, pressure, and magnetic field on an adaptively refined, unstructured grid system. This use of an adaptive grid allows high spatial resolution in regions of large density/velocity gradients and yet can be run on a workstation. The actual grid sizes vary from about 0.06 R(sub v) near the bowshock to 2 R(sub v) in the unperturbed solar wind. The results of the calculations are compared with observed magnetic field values obtained from the magnetometer on the Pioneer Venus Orbiter, at a time when the angle between the solar wind velocity vector and the interplanetary magnetic field (IMF) was only 7.6 deg. Good qualitative agreement between the observed and calculated field behavior is found. The overall results suggest that the induced magnetotail disappears when the IMF is radial for an extended time period and implies that it weakens when the field rotated through a near-radial orientation.
An analytic model of axisymmetric mantle plume due to thermal and chemical diffusion
NASA Technical Reports Server (NTRS)
Liu, Mian; Chase, Clement G.
1990-01-01
An analytic model of axisymmetric mantle plumes driven by either thermal diffusion or combined diffusion of both heat and chemical species from a point source is presented. The governing equations are solved numerically in cylindrical coordinates for a Newtonian fluid with constant viscosity. Instead of starting from an assumed plume source, constraints on the source parameters, such as the depth of the source regions and the total heat input from the plume sources, are deduced using the geophysical characteristics of mantle plumes inferred from modelling of hotspot swells. The Hawaiian hotspot and the Bermuda hotspot are used as examples. Narrow mantle plumes are expected for likely mantle viscosities. The temperature anomaly and the size of thermal plumes underneath the lithosphere can be sensitive indicators of plume depth. The Hawaiian plume is likely to originate at a much greater depth than the Bermuda plume. One suggestive result puts the Hawaiian plume source at a depth near the core-mantle boundary and the source of the Bermuda plume in the upper mantle, close to the 700 km discontinuity. The total thermal energy input by the source region to the Hawaiian plume is about 5 x 10(10) watts. The corresponding diameter of the source region is about 100 to 150 km. Chemical diffusion from the same source does not affect the thermal structure of the plume.
Modeling tidal hydrodynamics of San Diego Bay, California
Wang, P.-F.; Cheng, R.T.; Richter, K.; Gross, E.S.; Sutton, D.; Gartner, J.W.
1998-01-01
In 1983, current data were collected by the National Oceanic and Atmospheric Administration using mechanical current meters. During 1992 through 1996, acoustic Doppler current profilers as well as mechanical current meters and tide gauges were used. These measurements not only document tides and tidal currents in San Diego Bay, but also provide independent data sets for model calibration and verification. A high resolution (100-m grid), depth-averaged, numerical hydrodynamic model has been implemented for San Diego Bay to describe essential tidal hydrodynamic processes in the bay. The model is calibrated using the 1983 data set and verified using the more recent 1992-1996 data. Discrepancies between model predictions and field data in beth model calibration and verification are on the order of the magnitude of uncertainties in the field data. The calibrated and verified numerical model has been used to quantify residence time and dilution and flushing of contaminant effluent into San Diego Bay. Furthermore, the numerical model has become an important research tool in ongoing hydrodynamic and water quality studies and in guiding future field data collection programs.
Hydrodynamic Tests of Models of Seaplane Floats
NASA Technical Reports Server (NTRS)
Eula, Antonio
1935-01-01
This report contains the results of tank tests carried out at free trim on seventeen hulls and floats of various types. The data as to the weight on water, trim, and relative resistance for each model are plotted nondimensionally and are referenced both to the total weight and to the weight on water. Despite the fact that the experiments were not made systematically, a study of the models and of the test data permits nevertheless some general deductions regarding the forms of floats and their resistance. One specific conclusion is that the best models have a maximum relative resistance not exceeding 20 percent of the total weight.
Radiation Hydrodynamics Modeling of Hohlraum Energetics
NASA Astrophysics Data System (ADS)
Patel, Mehul V.; Mauche, Christopher W.; Jones, Ogden S.; Scott, Howard A.
2015-11-01
Attempts to model the energetics in NIF Hohlraums have been made with varying degrees of success, with discrepancies of 0-25% being reported for the X-ray flux (10-25% for the NIC ignition platform hohlraums). To better understand the cause(s) of these discrepancies, the effects of uncertainties in modeling thermal conduction, laser-plasma interactions, atomic mixing at interfaces, and NLTE kinetics of the high-Z wall plasma must be quantified. In this work we begin by focusing on the NLTE kinetics component. We detail a simulation framework for developing an integrated HYDRA hohlraum model with predefined tolerances for energetics errors due to numerical discretization errors or statistical fluctuations. Within this framework we obtain a model for a converged 1D spherical hohlraum which is then extended to 2D. The new model is used to reexamine physics sensitivities and improve estimates of the energetics discrepancy. Prepared by LLNL under Contract DE-AC52-07NA27344.
Assimilation of measurement data in hydrodynamic modeling
NASA Astrophysics Data System (ADS)
Karamuz, Emilia; Romanowicz, Renata J.
2016-04-01
This study focuses on developing methods to combine ground-based data from operational monitoring with data from satellite imaging to obtain a more accurate evaluation of flood inundation extents. The distributed flow model MIKE 11 was used to determine the flooding areas for a flood event with available satellite data. Model conditioning was based on the integrated use of data from remote measurement techniques and traditional data from gauging stations. Such conditioning of the model improves the quality of fit of the model results. The use of high resolution satellite images (from IKONOS, QuickBird e.t.c) and LiDAR Digital Elevation Model (DEM) allows information on water levels to be extended to practically any chosen cross-section of the tested section of the river. This approach allows for a better assessment of inundation extent, particularly in areas with a scarce network of gauging stations. We apply approximate Bayesian analysis to integrate the information on flood extent originating from different sources. The approach described above was applied to the Middle River Vistula reach, from the Zawichost to Warsaw gauging stations. For this part of the river the detailed geometry of the river bed and floodplain data were available. Finally, three selected sub-sections were analyzed with the most suitable satellite images of inundation area. ACKNOWLEDGEMENTS This research was supported by the Institute of Geophysics Polish Academy of Sciences through the Young Scientist Grant no. 3b/IGF PAN/2015.
Hydrodynamic Model for Conductivity in Graphene
Mendoza, M.; Herrmann, H. J.; Succi, S.
2013-01-01
Based on the recently developed picture of an electronic ideal relativistic fluid at the Dirac point, we present an analytical model for the conductivity in graphene that is able to describe the linear dependence on the carrier density and the existence of a minimum conductivity. The model treats impurities as submerged rigid obstacles, forming a disordered medium through which graphene electrons flow, in close analogy with classical fluid dynamics. To describe the minimum conductivity, we take into account the additional carrier density induced by the impurities in the sample. The model, which predicts the conductivity as a function of the impurity fraction of the sample, is supported by extensive simulations for different values of ε, the dimensionless strength of the electric field, and provides excellent agreement with experimental data. PMID:23316277
Current SPE Hydrodynamic Modeling and Path Forward
Knight, Earl E.; Rougier, Esteban
2012-08-14
Extensive work has been conducted on SPE analysis efforts: Fault effects Non-uniform weathered layer analysis MUNROU: material library incorporation, parallelization, and development of non-locking tets Development of a unique continuum-based-visco-plastic strain-rate-dependent material model With corrected SPE data path is now set for a multipronged approach to fully understand experimental series shot effects.
NASA Astrophysics Data System (ADS)
Kerschen, E. J.; Gliebe, P. R.
1980-06-01
An analytical model of fan noise caused by inflow turbulence, a generalization of earlier work by Mani, is presented. Axisymmetric turbulence theory is used to develop a statistical representation of the inflow turbulence valid for a wide range of turbulence properties. Both the dipole source due to rotor blade unsteady forces and the quadrupole source resulting from the interaction of the turbulence with the rotor potential field are considered. The effects of variations in turbulence properties and fan operating conditions are evaluated. For turbulence axial integral length scales much larger than the blade spacing, the spectrum is shown to consist of sharp peaks at the blade passing frequency and its harmonics, with negligible broadband content. The analysis can then be simplified considerably and the total sound power contained within each spectrum peak becomes independent of axial length scale, while the width of the peak is inversely proportional to this parameter. Large axial length scales are characteristic of static fan test facilities, where the transverse contraction of the inlet flow produces highly anisotropic turbulence. In this situation, the rotor/turbulence interaction noise is mainly caused by the transverse component of turbulent velocity.
Chipman, V D
2011-09-20
Two-dimensional axisymmetric hydrodynamic models were developed using GEODYN to simulate the propagation of air blasts resulting from a series of high explosive detonations conducted at Kirtland Air Force Base in August and September of 2007. Dubbed Humble Redwood I (HR-1), these near-surface chemical high explosive detonations consisted of seven shots of varying height or depth of burst. Each shot was simulated numerically using GEODYN. An adaptive mesh refinement scheme based on air pressure gradients was employed such that the mesh refinement tracked the advancing shock front where sharp discontinuities existed in the state variables, but allowed the mesh to sufficiently relax behind the shock front for runtime efficiency. Comparisons of overpressure, sound speed, and positive phase impulse from the GEODYN simulations were made to the recorded data taken from each HR-1 shot. Where the detonations occurred above ground or were shallowly buried (no deeper than 1 m), the GEODYN model was able to simulate the sound speeds, peak overpressures, and positive phase impulses to within approximately 1%, 23%, and 6%, respectively, of the actual recorded data, supporting the use of numerical simulation of the air blast as a forensic tool in determining the yield of an otherwise unknown explosion.
Hydrodynamics and Water Quality: Modeling Rivers, Lakes, and Estuaries
NASA Astrophysics Data System (ADS)
Opdyke, Daniel
2008-09-01
The modeling of lakes, rivers, and estuaries is a fascinating subject that combines interesting facets of mathematics, statistics, physics, chemistry, and biology. Because of the complexity of natural systems, such modeling is always an approximation of the real world-and sometimes not a very good one. It is for this reason that modeling is not just science but also art. It is also for this reason that there are few good texts offering practical advice on modeling. Hydrodynamics and Water Quality makes a valiant attempt but is only partially successful because of the book's narrow focus on one family of models and an inconsistent presentation.
Hydrodynamic characterization of Corpus Christi Bay through modeling and observation.
Islam, Mohammad S; Bonner, James S; Edge, Billy L; Page, Cheryl A
2014-11-01
Christi Bay is a relatively flat, shallow, wind-driven system with an average depth of 3-4 m and a mean tidal range of 0.3 m. It is completely mixed most of the time, and as a result, depth-averaged models have, historically, been applied for hydrodynamic characterization supporting regulatory decisions on Texas coastal management. The bay is highly stratified during transitory periods of the summer with low wind conditions. This has important implications on sediment transport, nutrient cycling, and water quality-related issues, including hypoxia which is a key water quality concern for the bay. Detailed hydrodynamic characterization of the bay during the summer months included analysis of simulation results of 2-D hydrodynamic model and high-frequency (HF) in situ observations. The HF radar system resolved surface currents, whereas an acoustic Doppler current profiler (ADCP) measured current at different depths of the water column. The developed model successfully captured water surface elevation variation at the mouth of the bay (i.e., onshore boundary of the Gulf of Mexico) and at times within the bay. However, large discrepancies exist between model-computed depth-averaged water currents and observed surface currents. These discrepancies suggested the presence of a vertical gradient in the current structure which was further substantiated by the observed bi-directional current movement within the water column. In addition, observed vertical density gradients proved that the water column was stratified. Under this condition, the bottom layer became hypoxic due to inadequate mixing with the aerated surface water. Understanding the disparities between observations and model predictions provides critical insights about hydrodynamics and physical processes controlling water quality. PMID:25096643
Models of intermittency in hydrodynamic turbulence
Kraichnan, R.H. )
1990-07-30
A heurisitic model for evolution of the probability distribution (PDF) of transverse velocity gradient {ital s} in incompressible Navier-Stokes turbulence is distilled from an analytical closure for Burgers turbulence. At all Reynolds number {ital scrR}, the evolved PDF is {proportional to}{vert bar}{ital s}{vert bar}{sup {minus}1/2} exp({minus}const{times}{vert bar}{ital s}{vert bar}/{l angle}{ital s}{sup 2}{r angle}{sup 1/2}) for large {vert bar}{ital s}{vert bar}. The model suggests that skewness and flatnesses are asymptotically independent of {ital scrR}, and that cascade to smaller scales is not a fractal process. For Burgers dynamics, both simulations and the analytical closure give a PDF {proportional to}{vert bar}{xi}{vert bar}{sup {minus}1} exp({minus}const{times}{vert bar}{xi}{vert bar}/{l angle}{xi}{sup 2}{r angle}{sup 1/2}) for large negative velocity gradient {xi}.
Hydrodynamic Burnett equations for inelastic Maxwell models of granular gases.
Khalil, Nagi; Garzó, Vicente; Santos, Andrés
2014-05-01
The hydrodynamic Burnett equations and the associated transport coefficients are exactly evaluated for generalized inelastic Maxwell models. In those models, the one-particle distribution function obeys the inelastic Boltzmann equation, with a velocity-independent collision rate proportional to the γ power of the temperature. The pressure tensor and the heat flux are obtained to second order in the spatial gradients of the hydrodynamic fields with explicit expressions for all the Burnett transport coefficients as functions of γ, the coefficient of normal restitution, and the dimensionality of the system. Some transport coefficients that are related in a simple way in the elastic limit become decoupled in the inelastic case. As a byproduct, existing results in the literature for three-dimensional elastic systems are recovered, and a generalization to any dimension of the system is given. The structure of the present results is used to estimate the Burnett coefficients for inelastic hard spheres. PMID:25353781
Hydrodynamic model for a vibrofluidized granular bed
NASA Astrophysics Data System (ADS)
Martin, T. W.; Huntley, J. M.; Wildman, R. D.
2005-07-01
Equations relating the energy flux, energy dissipation rate, and pressure within a three-dimensional vibrofluidized bed are derived and solved numerically, using only observable system properties, such as particle number, size, mass and coefficient of restitution, to give the granular temperature and packing fraction distributions within the bed. These are compared with results obtained from positron emission particle tracking experiments and the two are found to be in good agreement, without using fitting parameters, except at high altitudes when using a modified heat law including a packing fraction gradient term. Criteria for the onset of the Knudsen regime are proposed and the resulting temperature profiles are found to agree more closely with the experimental distributions. The model is then used to predict the scaling relationship between the height of the centre of mass and mean weighted bed temperature with the number of particles in the system and the excitation level.
Smoothed Particle Hydrodynamics Model for Reactive Transport and Mineral Precipitation
Tartakovsky, Alexandre M.; Scheibe, Timothy D.; Redden, George; Meakin, Paul; Fang, Yilin
2006-06-30
A new Lagrangian particle model based on smoothed particle hydrodynamics was used to simulate pore scale precipitation reactions. The side-by-side injection of reacting solutions into two halves of a two-dimensional granular porous medium was simulated. Precipitation on grain surfaces occurred along a narrow zone in the middle of the domain, where the reacting solutes mixed to generate a supersaturated reaction product. The numerical simulations qualitatively reproduced the behavior observed in related laboratory experiments.
An integrated coastal model for aeolian and hydrodynamic sediment transport
NASA Astrophysics Data System (ADS)
Baart, F.; den Bieman, J.; van Koningsveld, M.; Luijendijk, A. P.; Parteli, E. J. R.; Plant, N. G.; Roelvink, J. A.; Storms, J. E. A.; de Vries, S.; van Thiel de Vries, J. S. M.; Ye, Q.
2012-04-01
Dunes are formed by aeolian and hydrodynamic processes. Over the last decades numerical models were developed that capture our knowledge of the hydrodynamic transport of sediment near the coast. At the same time others have worked on creating numerical models for aeolian-based transport. Here we show a coastal model that integrates three existing numerical models into one online-coupled system. The XBeach model simulates storm-induced erosion (Roelvink et al., 2009). The Delft3D model (Lesser et al., 2004) is used for long term morphology and the Dune model (Durán et al., 2010) is used to simulate the aeolian transport. These three models were adapted to be able to exchange bed updates in real time. The updated models were integrated using the ESMF framework (Hill et al., 2004), a system for composing coupled modeling systems. The goal of this integrated model is to capture the relevant coastal processes at different time and spatial scales. Aeolian transport can be relevant during storms when the strong winds are generating new dunes, but also under relative mild conditions when the dunes are strengthened by transporting sand from the intertidal area to the dunes. Hydrodynamic transport is also relevant during storms, when high water in combination with waves can cause dunes to avalanche and erode. While under normal conditions the hydrodynamic transport can result in an onshore transport of sediment up to the intertidal area. The exchange of sediment in the intertidal area is a dynamic interaction between the hydrodynamic transport and the aeolian transport. This dynamic interaction is particularly important for simulating dune evolution at timescales longer than individual storm events. The main contribution of the integrated model is that it simulates the dynamic exchange of sediment between aeolian and hydrodynamic models in the intertidal area. By integrating the numerical models, we hope to develop a model that has a broader scope and applicability than
New York Bight Study. Report 1. Hydrodynamic modeling. Technical report
Scheffner, N.W.; Vemulakonda, S.R.; Mark, D.J.; Butler, H.L.; Kim, K.W.
1994-08-01
As a part of the New York (NY) Bight Feasibility Study, a three-dimensional hydrodynamic model of the NY Bight was developed and applied by the Coastal Engineering R h Center of the U.S. Army Engineer Waterways Experiment Station. The study used the three-dimensional hydrodynamic model CH3D-WES for this purpose. A 76 x 45 cell boundary-fitted curvilinear grid was employed in the horizontal and five to ten sigma layers were used in the vertical. Steady-state and diagnostic tests were initially performed, using M, and mixed tides, cross-shelf gradients, winds, and freshwater flows in the Hudson River. All of the tests were successful in reproducing known circulation patterns of the NY Bight system. The model was next successfully calibrated and verified against prototype tidal elevations and currents measured during April and May 1976. As a demonstration of the feasibility of long-term modeling, the hydrodynamics, including salinity and temperature, were simulated for the period April-October 1976. Model results compared favorably with available prototype temperature measurements. Model output was furnished to a water quality model of the NY Bight, which successfully reproduced the hypoxic event of 1976. Model results also were used successfully to run particle tracking and oil spill models of the NY Bight. Finally, the model was demonstrated for the Long Island Sound and East River areas, for the period of May-July 1990. Computed results for elevation, velocity, salinity, and temperature in the Sound as well as net flux in the East River matched measurements reasonably.
Models of Jupiter's growth incorporating thermal and hydrodynamic constraints
NASA Astrophysics Data System (ADS)
Lissauer, Jack J.; Hubickyj, Olenka; D'Angelo, Gennaro; Bodenheimer, Peter
2009-02-01
We model the growth of Jupiter via core nucleated accretion, applying constraints from hydrodynamical processes that result from the disk-planet interaction. We compute the planet's internal structure using a well tested planetary formation code that is based upon a Henyey-type stellar evolution code. The planet's interactions with the protoplanetary disk are calculated using 3-D hydrodynamic simulations. Previous models of Jupiter's growth have taken the radius of the planet to be approximately one Hill sphere radius, R. However, 3-D hydrodynamic simulations show that only gas within ˜0.25R remains bound to the planet, with the more distant gas eventually participating in the shear flow of the protoplanetary disk. Therefore in our new simulations, the planet's outer boundary is placed at the location where gas has the thermal energy to reach the portion of the flow not bound to the planet. We find that the smaller radius increases the time required for planetary growth by ˜5%. Thermal pressure limits the rate at which a planet less than a few dozen times as massive as Earth can accumulate gas from the protoplanetary disk, whereas hydrodynamics regulates the growth rate for more massive planets. Within a moderately viscous disk, the accretion rate peaks when the planet's mass is about equal to the mass of Saturn. In a less viscous disk hydrodynamical limits to accretion are smaller, and the accretion rate peaks at lower mass. Observations suggest that the typical lifetime of massive disks around young stellar objects is ˜3 Myr. To account for the dissipation of such disks, we perform some of our simulations of Jupiter's growth within a disk whose surface gas density decreases on this timescale. In all of the cases that we simulate, the planet's effective radiating temperature rises to well above 1000 K soon after hydrodynamic limits begin to control the rate of gas accretion and the planet's distended envelope begins to contract. According to our simulations
NASA Astrophysics Data System (ADS)
Oberleithner, Kilian; Stöhr, Michael; Terhaar, Steffen; Paschereit, Oliver
2014-11-01
In gas turbine industry, it is common practice to implement swirling jets and associated vortex breakdown to stabilize the flame and to enhance turbulent mixing. The flow field of such swirl-stabilized combustors features a wide range of flow instabilities that promote the formation of large-scale flow structure. This talk presents recent experimental studies at the Technical University Berlin and the German Aerospace Center (DLR) targeting the impact of these instabilities on the combustion performance. Particular focus is placed on two types of instability: (i) a self-excited helical instability, typically known as the precessing vortex core, which crucially affects mixing and flame anchoring; (ii) the axisymmetric Kelvin-Helmholtz instability, which crucially affects the flame dynamics at thermo-acoustic oscillations. All experimental observations are correlated with analytic flow models utilizing linear hydrodynamic stability theory. This mathematical framework reveals the driving mechanisms that lead to the formation, saturation, and suppression of large-scale flow structures and how these mechanisms interact with the combustion process. The authors kindly acknowledge the financial support of the German Research Foundation (DFG) and the Research Association for Combustion Engines (FVV).
Modelling the mechanics and hydrodynamics of swimming E. coli.
Hu, Jinglei; Yang, Mingcheng; Gompper, Gerhard; Winkler, Roland G
2015-10-28
The swimming properties of an E. coli-type model bacterium are investigated by mesoscale hydrodynamic simulations, combining molecular dynamics simulations of the bacterium with the multiparticle particle collision dynamics method for the embedding fluid. The bacterium is composed of a spherocylindrical body with attached helical flagella, built up from discrete particles for an efficient coupling with the fluid. We measure the hydrodynamic friction coefficients of the bacterium and find quantitative agreement with experimental results of swimming E. coli. The flow field of the bacterium shows a force-dipole-like pattern in the swimming plane and two vortices perpendicular to its swimming direction arising from counterrotation of the cell body and the flagella. By comparison with the flow field of a force dipole and rotlet dipole, we extract the force-dipole and rotlet-dipole strengths for the bacterium and find that counterrotation of the cell body and the flagella is essential for describing the near-field hydrodynamics of the bacterium.
Use of hydrologic and hydrodynamic modeling for ecosystem restoration
Obeysekera, J.; Kuebler, L.; Ahmed, S.; Chang, M.-L.; Engel, V.; Langevin, C.; Swain, E.; Wan, Y.
2011-01-01
Planning and implementation of unprecedented projects for restoring the greater Everglades ecosystem are underway and the hydrologic and hydrodynamic modeling of restoration alternatives has become essential for success of restoration efforts. In view of the complex nature of the South Florida water resources system, regional-scale (system-wide) hydrologic models have been developed and used extensively for the development of the Comprehensive Everglades Restoration Plan. In addition, numerous subregional-scale hydrologic and hydrodynamic models have been developed and are being used for evaluating project-scale water management plans associated with urban, agricultural, and inland costal ecosystems. The authors provide a comprehensive summary of models of all scales, as well as the next generation models under development to meet the future needs of ecosystem restoration efforts in South Florida. The multiagency efforts to develop and apply models have allowed the agencies to understand the complex hydrologic interactions, quantify appropriate performance measures, and use new technologies in simulation algorithms, software development, and GIS/database techniques to meet the future modeling needs of the ecosystem restoration programs. Copyright ?? 2011 Taylor & Francis Group, LLC.
Weatherby, J.R.
1987-09-01
Results of axisymmetric structural analyses of a 1:6 scale model of a reinforced concrete nuclear containment building are presented. Both a finite element shell analysis and a simplified membrane analysis were made to predict the structural response and ultimate pressure capacity of the model. Analytical results indicate that the model will fail at an internal pressure of 187 psig when the stress level in the hoop reinforcement at the midsection of the cylinder exceeds the ultimate strength of the bar splices. 5 refs., 34 figs., 6 tabs.
Hydrodynamic model for particle size segregation in granular media
NASA Astrophysics Data System (ADS)
Trujillo, Leonardo; Herrmann, Hans J.
2003-12-01
We present a hydrodynamic theoretical model for “Brazil nut” size segregation in granular materials. We give analytical solutions for the rise velocity of a large intruder particle immersed in a medium of monodisperse fluidized small particles. We propose a new mechanism for this particle size-segregation due to buoyant forces caused by density variations which come from differences in the local “granular temperature”. The mobility of the particles is modified by the energy dissipation due to inelastic collisions and this leads to a different behavior from what one would expect for an elastic system. Using our model we can explain the size ratio dependence of the upward velocity.
Anticipating the Role of SWOT in Hydrologic and Hydrodynamic Modeling
NASA Astrophysics Data System (ADS)
Pavelsky, T.; Biancamaria, S.; Andreadis, K.; Durand, M. T.; Schumann, G.
2015-12-01
The Surface Water and Ocean Topography (SWOT) satellite mission is a joint project of NASA and CNES, the French space agency. It aims to provide the first simultaneous, space-based measurements of inundation extent and water surface elevation in rivers, lakes, and wetlands around the world. Although the orbit repeat time is approximately 21 days, many areas of the earth will be viewed multiple times during this window. SWOT will observe rivers as narrow as 50-100 m and lakes as small as 0.01-0.06 km2, with height accuracies of ~10 cm for water bodies 1 km2 in area. Because SWOT will measure temporal variations in the height, width, and slope of rivers, several algorithms have been developed to estimate river discharge solely from SWOT measurements. Additionally, measurements of lake height and area will allow estimation of variability in lake water storage. These new hydrologic measurements will provide important sources of information both hydrologic and hydrodynamic models at regional to global scales. SWOT-derived estimates of water storage change and discharge will help to constrain simulation of the water budget in hydrologic models. Measurements of water surface elevation will provide similar constraints on hydrodynamic models of river flow. SWOT data will be useful for model calibration and validation, but perhaps the most exciting applications involve assimilation of SWOT data into models to enhance model robustness and provide denser temporal sampling than available from SWOT observations alone.
Validation of a Global Hydrodynamic Flood Inundation Model
NASA Astrophysics Data System (ADS)
Bates, P. D.; Smith, A.; Sampson, C. C.; Alfieri, L.; Neal, J. C.
2014-12-01
In this work we present first validation results for a hyper-resolution global flood inundation model. We use a true hydrodynamic model (LISFLOOD-FP) to simulate flood inundation at 1km resolution globally and then use downscaling algorithms to determine flood extent and depth at 90m spatial resolution. Terrain data are taken from a custom version of the SRTM data set that has been processed specifically for hydrodynamic modelling. Return periods of flood flows along the entire global river network are determined using: (1) empirical relationships between catchment characteristics and index flood magnitude in different hydroclimatic zones derived from global runoff data; and (2) an index flood growth curve, also empirically derived. Bankful return period flow is then used to set channel width and depth, and flood defence impacts are modelled using empirical relationships between GDP, urbanization and defence standard of protection. The results of these simulations are global flood hazard maps for a number of different return period events from 1 in 5 to 1 in 1000 years. We compare these predictions to flood hazard maps developed by national government agencies in the UK and Germany using similar methods but employing detailed local data, and to observed flood extent at a number of sites including St. Louis, USA and Bangkok in Thailand. Results show that global flood hazard models can have considerable skill given careful treatment to overcome errors in the publicly available data that are used as their input.
NASA Astrophysics Data System (ADS)
Yaras, M. I.; Grosvenor, A. D.
2003-08-01
This first segment of the two-part paper systematically examines several turbulence models in the context of three flows, namely a simple flat-plate turbulent boundary layer, an axisymmetric separating flow, and a swirling flow. The test cases are chosen on the basis of availability of high-quality and detailed experimental data. The tested turbulence models are integrated to solid surfaces and consist of: Rodi's two-layer k- model, Chien's low-Reynolds number k- model, Wilcox's k- model, Menter's two-equation shear-stress-transport model, and the one-equation model of Spalart and Allmaras. The objective of the study is to establish the prediction accuracy of these turbulence models with respect to axisymmetric separating flows, and flows of high streamline curvature. At the same time, the study establishes the minimum spatial resolution requirements for each of these turbulence closures, and identifies the proper low-Mach-number preconditioning and artificial diffusion settings of a Reynolds-averaged Navier-Stokes algorithm for optimum rate of convergence and minimum adverse impact on prediction accuracy.
Hydrodynamic and Ecological Assessment of Nearshore Restoration: A Modeling Study
Yang, Zhaoqing; Sobocinski, Kathryn L.; Heatwole, Danelle W.; Khangaonkar, Tarang; Thom, Ronald M.; Fuller, Roger
2010-04-10
Along the Pacific Northwest coast, much of the estuarine habitat has been diked over the last century for agricultural land use, residential and commercial development, and transportation corridors. As a result, many of the ecological processes and functions have been disrupted. To protect coastal habitats that are vital to aquatic species, many restoration projects are currently underway to restore the estuarine and coastal ecosystems through dike breaches, setbacks, and removals. Information on physical processes and hydrodynamic conditions are critical for the assessment of the success of restoration actions. Restoration of a 160- acre property at the mouth of the Stillaguamish River in Puget Sound has been proposed. The goal is to restore native tidal habitats and estuary-scale ecological processes by removing the dike. In this study, a three-dimensional hydrodynamic model was developed for the Stillaguamish River estuary to simulate estuarine processes. The model was calibrated to observed tide, current, and salinity data for existing conditions and applied to simulate the hydrodynamic responses to two restoration alternatives. Responses were evaluated at the scale of the restoration footprint. Model data was combined with biophysical data to predict habitat responses at the site. Results showed that the proposed dike removal would result in desired tidal flushing and conditions that would support four habitat types on the restoration footprint. At the estuary scale, restoration would substantially increase the proportion of area flushed with freshwater (< 5 ppt) at flood tide. Potential implications of predicted changes in salinity and flow dynamics are discussed relative to the distribution of tidal marsh habitat.
NASA Astrophysics Data System (ADS)
Heptinstall, David; Bouvet de Maisonneuve, Caroline; Neuberg, Jurgen; Taisne, Benoit; Collinson, Amy
2016-04-01
Heat flow models can bring new insights into the thermal and rheological evolution of volcanic 3 systems. We shall investigate the thermal processes and timescales in a crystallizing, static 4 magma column, with a heat flow model of Soufriere Hills Volcano (SHV), Montserrat. The latent heat of crystallization is initially computed with MELTS, as a function of pressure and temperature for an andesitic melt (SHV groundmass starting composition). Three fractional crystallization simulations are performed; two with initial pressures of 34MPa (runs 1 & 2) and one of 25MPa (run 3). Decompression rate was varied between 0.1MPa/° C (runs 1 & 3) and 0.2MPa/° C (run 2). Natural and experimental matrix glass compositions are accurately reproduced by all MELTS runs. The cumulative latent heat released for runs 1, 2 and 3 differs by less than 9% (8.69E5 J/kg*K, 9.32E5 J/kg*K, and 9.49E5 J/kg*K respectively). The 2D axisymmetric conductive cooling simulations consider a 30m-diameter conduit that extends from the surface to a depth of 1500m (34MPa). The temporal evolution of temperature is closely tracked at depths of 10m, 750m and 1400m in the centre of the conduit, at the conduit walls, and 20m from the walls into the host rock. Following initial cooling by 7-15oC at 10m depth inside the conduit, the magma temperature rebounds through latent heat release by 32-35oC over 85-123 days to a maximum temperature of 1002-1005oC. At 10m depth, it takes 4.1-9.2 years for the magma column to cool by 108-131oC and crystallize to 75wt%, at which point it cannot be easily remobilized. It takes 11-31.5 years to reach the same crystallinity at 750-1400m depth. We find a wide range in cooling timescales, particularly at depths of 750m or greater, attributed to the initial run pressure and the dominant latent heat producing crystallizing phase, Albite-rich Plagioclase Feldspar. Run 1 is shown to cool fastest and run 3 cool the slowest, with surface emissivity having the strongest cooling
Study of hydrodynamic instabilities with a multiphase lattice Boltzmann model
NASA Astrophysics Data System (ADS)
Velasco, Ali Mauricio; Muñoz, José Daniel
2015-10-01
Rayleigh-Taylor and Kelvin-Helmholtz hydrodynamic instabilities are frequent in many natural and industrial processes, but their numerical simulation is not an easy challenge. This work simulates both instabilities by using a lattice Boltzmann model on multiphase fluids at a liquid-vapour interface, instead of multicomponent systems like the oil-water one. The model, proposed by He, Chen and Zhang (1999) [1] was modified to increase the precision by computing the pressure gradients with a higher order, as proposed by McCracken and Abraham (2005) [2]. The resulting model correctly simulates both instabilities by using almost the same parameter set. It also reproduces the relation γ ∝√{ A} between the growing rate γ of the Rayleigh-Taylor instability and the relative density difference between the fluids (known as the Atwood number A), but including also deviations observed in experiments at low density differences. The results show that the implemented model is a useful tool for the study of hydrodynamic instabilities, drawing a sharp interface and exhibiting numerical stability for moderately high Reynolds numbers.
Dynamic mesoscale model of dipolar fluids via fluctuating hydrodynamics
Persson, Rasmus A. X.; Chu, Jhih-Wei; Voulgarakis, Nikolaos K.
2014-11-07
Fluctuating hydrodynamics (FHD) is a general framework of mesoscopic modeling and simulation based on conservational laws and constitutive equations of linear and nonlinear responses. However, explicit representation of electrical forces in FHD has yet to appear. In this work, we devised an Ansatz for the dynamics of dipole moment densities that is linked with the Poisson equation of the electrical potential ϕ in coupling to the other equations of FHD. The resulting ϕ-FHD equations then serve as a platform for integrating the essential forces, including electrostatics in addition to hydrodynamics, pressure-volume equation of state, surface tension, and solvent-particle interactions that govern the emergent behaviors of molecular systems at an intermediate scale. This unique merit of ϕ-FHD is illustrated by showing that the water dielectric function and ion hydration free energies in homogeneous and heterogenous systems can be captured accurately via the mesoscopic simulation. Furthermore, we show that the field variables of ϕ-FHD can be mapped from the trajectory of an all-atom molecular dynamics simulation such that model development and parametrization can be based on the information obtained at a finer-grained scale. With the aforementioned multiscale capabilities and a spatial resolution as high as 5 Å, the ϕ-FHD equations represent a useful semi-explicit solvent model for the modeling and simulation of complex systems, such as biomolecular machines and nanofluidics.
Hydrodynamic description of spin Calogero-Sutherland model
NASA Astrophysics Data System (ADS)
Abanov, Alexander; Kulkarni, Manas; Franchini, Fabio
2009-03-01
We study a non-linear collective field theory for an integrable spin-Calogero-Sutherland model. The hydrodynamic description of this SU(2) model in terms of charge density, charge velocity and spin currents is used to study non-perturbative solutions (solitons) and examine their correspondence with known quantum numbers of elementary excitations [1]. A conventional linear bosonization or harmonic approximation is not sufficient to describe, for example, the physics of spin-charge (non)separation. Therefore, we need this new collective bosonic field description that captures the effects of the band curvature. In the strong coupling limit [2] this model reduces to integrable SU(2) Haldane-Shastry model. We study a non-linear coupling of left and right spin currents which form a Kac-Moody algebra. Our quantum hydrodynamic description for the spin case is an extension for the one found in the spinless version in [3].[3pt] [1] Y. Kato,T. Yamamoto, and M. Arikawa, J. Phys. Soc. Jpn. 66, 1954-1961 (1997).[0pt] [2] A. Polychronakos, Phys Rev Lett. 70,2329-2331(1993).[0pt] [3] A.G.Abanov and P.B. Wiegmann, Phys Rev Lett 95, 076402(2005)
New equation of state model for hydrodynamic applications
Young, D.A.; Barbee, T.W. III; Rogers, F.J.
1997-07-01
Two new theoretical methods for computing the equation of state of hot, dense matter are discussed.The ab initio phonon theory gives a first-principles calculation of lattice frequencies, which can be used to compare theory and experiment for isothermal and shock compression of solids. The ACTEX dense plasma theory has been improved to allow it to be compared directly with ultrahigh pressure shock data on low-Z materials. The comparisons with experiment are good, suggesting that these models will be useful in generating global EOS tables for hydrodynamic simulations.
Two dimensional hydrodynamic modeling of a high latitude braided river
NASA Astrophysics Data System (ADS)
Humphries, E.; Pavelsky, T.; Bates, P. D.
2014-12-01
Rivers are a fundamental resource to physical, ecologic and human systems, yet quantification of river flow in high-latitude environments remains limited due to the prevalence of complex morphologies, remote locations and sparse in situ monitoring equipment. Advances in hydrodynamic modeling and remote sensing technology allow us to address questions such as: How well can two-dimensional models simulate a flood wave in a highly 3-dimensional braided river environment, and how does the structure of such a flood wave differ from flow down a similar-sized single-channel river? Here, we use the raster-based hydrodynamic model LISFLOOD-FP to simulate flood waves, discharge, water surface height, and velocity measurements over a ~70 km reach of the Tanana River in Alaska. In order to use LISFLOOD-FP a digital elevation model (DEM) fused with detailed bathymetric data is required. During summer 2013, we surveyed 220,000 bathymetric points along the study reach using an echo sounder system connected to a high-precision GPS unit. The measurements are interpolated to a smooth bathymetric surface, using Topo to Raster interpolation, and combined with an existing five meter DEM (Alaska IfSAR) to create a seamless river terrain model. Flood waves are simulated using varying complexities in model solvers, then compared to gauge records and water logger data to assess major sources of model uncertainty. Velocity and flow direction maps are also assessed and quantified for detailed analysis of braided channel flow. The most accurate model output occurs with using the full two-dimensional model structure, and major inaccuracies appear to be related to DEM quality and roughness values. Future work will intercompare model outputs with extensive ground measurements and new data from AirSWOT, an airborne analog for the Surface Water and Ocean Topography (SWOT) mission, which aims to provide high-resolution measurements of terrestrial and ocean water surface elevations globally.
A Generalized Hydrodynamics Model for Strongly Coupled Plasmas
NASA Astrophysics Data System (ADS)
Diaw, Abdourahmane; Murillo, Michael Sean
2015-11-01
Starting with the equations of the Bogoliubov-Born-Green-Kirkwood-Yvon hierarchy, we obtain the density, momentum and stress tensor-moment equations. The closure proceeds in two steps. The first that guarantees an equilibrium state is given by density functional theory. It ensures self consistency in the equation-of-state properties of the plasma. The second involves modifying the two-body distribution function to include collisions in the relaxation of the stress tensor. The resulting generalized hydrodynamics thus includes all impacts of Coulomb coupling, viscous damping, and the high-frequency response. We compare our results with those of several known models, including generalized hydrodynamic theory and models obtained using the Singwi-Tosi-Land-Sjolander approximation and the quasi-localized charge approximation. We find that the viscoelastic response, including both the high-frequency elastic generalization and viscous wave damping, is important for correctly describing ion-acoustic waves. We illustrate this result by considering three very different systems: ultracold plasmas, dusty plasmas, and dense plasmas. The new model is validated by comparing its results with those obtained from molecular-dynamics simulations of Yukawa plasmas, and the agreement is excellent. This work was supported by the Air Force Office of Scientific Research (Grant No. FA9550-12-1-0344).
Long-term hydrodynamic modeling of the Arabian Gulf.
Elhakeem, Abubaker; Elshorbagy, Walid; Bleninger, Tobias
2015-05-15
A 3-D prognostic baroclinic hydrodynamic model of the Arabian Gulf (AG) was developed using Delft3D-FLOW. The model was forced with long-term time averaged climatological data over the computational domain and long-term salinity and temperature boundary conditions applied at its tidal open boundary. The model simulation results were thoroughly validated against measured tides from 5 stations and measured currents at 4 locations in the central and southern parts. Water salinity and temperature were validated in space and time using observations spanning over 73 years from 1923 to 1996 for the AG, the Strait of Hormuz and the Gulf of Oman. The bottom flow of the AG basin at the vicinity of the Strait of Hormuz was also validated against the available measurements. Seasonal evaporation and surface density spatial distribution maps were produced and compared with available records. The developed model setup successfully generated the AG seasonal stratification and hydrographic conditions. PMID:25819446
Coupling Hydrologic and Hydrodynamic Models to Estimate PMF
NASA Astrophysics Data System (ADS)
Felder, G.; Weingartner, R.
2015-12-01
Most sophisticated probable maximum flood (PMF) estimations derive the PMF from the probable maximum precipitation (PMP) by applying deterministic hydrologic models calibrated with observed data. This method is based on the assumption that the hydrological system is stationary, meaning that the system behaviour during the calibration period or the calibration event is presumed to be the same as it is during the PMF. However, as soon as a catchment-specific threshold is reached, the system is no longer stationary. At or beyond this threshold, retention areas, new flow paths, and changing runoff processes can strongly affect downstream peak discharge. These effects can be accounted for by coupling hydrologic and hydrodynamic models, a technique that is particularly promising when the expected peak discharge may considerably exceed the observed maximum discharge. In such cases, the coupling of hydrologic and hydraulic models has the potential to significantly increase the physical plausibility of PMF estimations. This procedure ensures both that the estimated extreme peak discharge does not exceed the physical limit based on riverbed capacity and that the dampening effect of inundation processes on peak discharge is considered. Our study discusses the prospect of considering retention effects on PMF estimations by coupling hydrologic and hydrodynamic models. This method is tested by forcing PREVAH, a semi-distributed deterministic hydrological model, with randomly generated, physically plausible extreme precipitation patterns. The resulting hydrographs are then used to externally force the hydraulic model BASEMENT-ETH (riverbed in 1D, potential inundation areas in 2D). Finally, the PMF estimation results obtained using the coupled modelling approach are compared to the results obtained using ordinary hydrologic modelling.
Kinetic theory model for the flow of a simple gas from a three-dimensional axisymmetric nozzle
NASA Technical Reports Server (NTRS)
Riley, B. R.
1991-01-01
A system of nonlinear integral equations equivalent to the Krook kinetic equations for the steady state is the mathematical basis used to develop a computer code to model the flowfields for low-thrust three-dimensional axisymmetric nozzles. The method of characteristics is used to solve numerically by an iteration process the approximated Boltzmann equation for the number density, temperature, and velocity profiles of a simple gas as it expands into a vacuum. Results predict backscatter and show the effect of the nozzle wall boundary layer on the external flowfields.
Hydrodynamic model for spin-polarized transport in semiconductors
NASA Astrophysics Data System (ADS)
Villegas-Lelovsky, Leonardo
2005-03-01
We extend the hydrodynamic model of the Boltzmann equation to account for the spin of the carriers to investigate the transient dynamics of a spin-polarized packet of electrons in a n-GaAs sample. The dynamics of the packet as well as the built-in electric field is described by a set of coupled differential equations based on the moments of the Boltzmann equation [1] and the Poisson's equation. Spin-flip and momentum-relaxation processes are taken into account within the relaxation time approximation. Our description goes beyond the usual drift-diffusion type approaches in that we fully account for the temporal evolution of the current densities. The spatio-temporal landscape of the current spin polarization shows a transient region within the hydrodynamic model, not present in the drift-diffusion description. We applied our approach in particular for a (n/n+/n)-GaAs junction that turned out to be an electrostatic trap with enhanced spin polarizations. [1] F. M. Souza and J. C. Egues, Phys. Rev. B 66, 060301(R) (2002).
Deschutes estuary feasibility study: hydrodynamics and sediment transport modeling
George, Douglas A.; Gelfenbaum, Guy; Lesser, Giles; Stevens, Andrew W.
2006-01-01
- Provide the completed study to the CLAMP Steering Committee so that a recommendation about a long-term aquatic environment of the basin can be made. The hydrodynamic and sediment transport modeling task developed a number of different model simulations using a process-based morphological model, Delft3D, to help address these goals. Modeling results provide a qualitative assessment of estuarine behavior both prior to dam construction and after various post-dam removal scenarios. Quantitative data from the model is used in the companion biological assessment and engineering design components of the overall study. Overall, the modeling study found that after dam removal, tidal and estuarine processes are immediately restored, with marine water from Budd Inlet carried into North and Middle Basin on each rising tide and mud flats being exposed with each falling tide. Within the first year after dam removal, tidal processes, along with the occasional river floods, act to modify the estuary bed by redistributing sediment through erosion and deposition. The morphological response of the bed is rapid during the first couple of years, then slows as a dynamic equilibrium is reached within three to five years. By ten years after dam removal, the overall hydrodynamic and morphologic behavior of the estuary is similar to the pre-dam estuary, with the exception of South Basin, which has been permanently modified by human activities. In addition to a qualitative assessment of estuarine behavior, process-based modeling provides the ability address specific questions to help to inform decision-making. Considering that predicting future conditions of a complex estuarine environment is wrought with uncertainties, quantitative results in this report are often expressed in terms of ranges of possible outcomes.
A two-dimensional hydrodynamic model of a tidal estuary
Walters, Roy A.; Cheng, Ralph T.
1979-01-01
A finite element model is described which is used in the computation of tidal currents in an estuary. This numerical model is patterned after an existing algorithm and has been carefully tested in rectangular and curve-sided channels with constant and variable depth. One of the common uncertainties in this class of two-dimensional hydrodynamic models is the treatment of the lateral boundary conditions. Special attention is paid specifically to addressing this problem. To maintain continuity within the domain of interest, ‘smooth’ curve-sided elements must be used at all shoreline boundaries. The present model uses triangular, isoparametric elements with quadratic basis functions for the two velocity components and a linear basis function for water surface elevation. An implicit time integration is used and the model is unconditionally stable. The resultant governing equations are nonlinear owing to the advective and the bottom friction terms and are solved iteratively at each time step by the Newton-Raphson method. Model test runs have been made in the southern portion of San Francisco Bay, California (South Bay) as well as in the Bay west of Carquinez Strait. Owing to the complex bathymetry, the hydrodynamic characteristics of the Bay system are dictated by the generally shallow basins which contain deep, relict river channels. Great care must be exercised to ensure that the conservation equations remain locally as well as globally accurate. Simulations have been made over several representative tidal cycles using this finite element model, and the results compare favourably with existing data. In particular, the standing wave in South Bay and the progressive wave in the northern reach are well represented.
Modeling nanoscale hydrodynamics by smoothed dissipative particle dynamics
NASA Astrophysics Data System (ADS)
Lei, Huan; Mundy, Christopher J.; Schenter, Gregory K.; Voulgarakis, Nikolaos K.
2015-05-01
Thermal fluctuation and hydrophobicity are two hallmarks of fluid hydrodynamics on the nano-scale. It is a challenge to consistently couple the small length and time scale phenomena associated with molecular interaction with larger scale phenomena. The development of this consistency is the essence of mesoscale science. In this study, we use a nanoscale fluid model based on smoothed dissipative particle dynamics that accounts for the phenomena associated with density fluctuations and hydrophobicity. We show consistency in the fluctuation spectrum across scales. In doing so, it is necessary to account for finite fluid particle size. Furthermore, we demonstrate that the present model can capture the void probability and solvation free energy of nonpolar hard particles of different sizes. The present fluid model is well suited for an understanding of emergent phenomena in nano-scale fluid systems.
Modeling nanoscale hydrodynamics by smoothed dissipative particle dynamics
Lei, Huan; Mundy, Christopher J.; Schenter, Gregory K.; Voulgarakis, Nikolaos
2015-05-21
Thermal fluctuation and hydrophobicity are two hallmarks of fluid hydrodynamics on the nano-scale. It is a challenge to consistently couple the small length and time scale phenomena associated with molecular interaction with larger scale phenomena. The development of this consistency is the essence of mesoscale science. In this study, we develop a nanoscale fluid model based on smoothed dissipative particle dynamics that accounts for the phenomena of associated with density fluctuations and hydrophobicity. We show consistency in the fluctuation spectrum across scales. In doing so, it is necessary to account for finite fluid particle size. Furthermore, we demonstrate that the present model can capture of the void probability and solvation free energy of apolar particles of different sizes. The present fluid model is well suited for a understanding emergent phenomena in nano-scale fluid systems.
NASA Astrophysics Data System (ADS)
Nakamura, Ko; Takiwaki, Tomoya; Kuroda, Takami; Kotake, Kei
2015-12-01
We present an overview of two-dimensional (2D) core-collapse supernova simulations employing a neutrino transport scheme by the isotropic diffusion source approximation. We study 101 solar-metallicity, 247 ultra metal-poor, and 30 zero-metal progenitors covering zero-age main sequence mass from 10.8 M⊙ to 75.0 M⊙. Using the 378 progenitors in total, we systematically investigate how the differences in the structures of these multiple progenitors impact the hydrodynamics evolution. By following a long-term evolution over 1.0 s after bounce, most of the computed models exhibit neutrino-driven revival of the stalled bounce shock at ˜200-800 ms postbounce, leading to the possibility of explosion. Pushing the boundaries of expectations in previous one-dimensional studies, our results confirm that the compactness parameter ξ that characterizes the structure of the progenitors is also a key in 2D to diagnosing the properties of neutrino-driven explosions. Models with high ξ undergo high ram pressure from the accreting matter onto the stalled shock, which affects the subsequent evolution of the shock expansion and the mass of the protoneutron star under the influence of neutrino-driven convection and the standing accretion-shock instability. We show that the accretion luminosity becomes higher for models with high ξ, which makes the growth rate of the diagnostic explosion energy higher and the synthesized nickel mass bigger. We find that these explosion characteristics tend to show a monotonic increase as a function of the compactness parameter ξ.
Hydrodynamic ram modeling with the immersed boundary method
Lewis, M.W.; Kashiwa, B.A.; Rauenzahn, R.M.
1998-03-01
The authors have modeled a hydrodynamic ram experiment conducted at Wright-Patterson Air Force Base. In the experiment, a projectile traveling at 200 ft/sec impacted and penetrated a simulated airplane wing containing water. The structure consisted of composite panels with stiffeners and rivets, and an aluminum panel. The test included instrumentation to measure strains, accelerations, and pressures. The technique used for modeling this experiment was a multifluid compressible finite volume approach. The solid fields, namely the projectile and the plates which comprised the structure, were represented by a set of discrete, Lagrangian-frame, mass points. These mass points were followed throughout the computation. The contribution of the stress state at each mass point was applied on the grid to determine the stress divergence contribution to the equations of motion and resulting grid based accelerations. This approach has been defined as the immersed boundary method. The immersed boundary method allows the modeling of fluid-structure interaction problems involving material failure. The authors implemented a plate theory to allow the representation of each plate by a surface of mass points. This theory includes bending terms and transverse shear. Arbitrary constitutive models may be used for each plate. Here they describe the immersed boundary method as they have implemented. They then describe the plate theory and its implementation. They discuss the hydrodynamic ram experiment and describe how they modeled it. They compare computed results with test data. They finally conclude with a discussion of benefits and difficulties associated with this modeling approach and possible improvement to it.
Sharp Eccentric Rings in Planetless Hydrodynamical Models of Debris Disks
NASA Technical Reports Server (NTRS)
Lyra, W.; Kuchner, M. J.
2013-01-01
Exoplanets are often associated with disks of dust and debris, analogs of the Kuiper Belt in our solar system. These "debris disks" show a variety of non-trivial structures attributed to planetary perturbations and utilized to constrain the properties of the planets. However, analyses of these systems have largely ignored the fact that, increasingly, debris disks are found to contain small quantities of gas, a component all debris disks should contain at some level. Several debris disks have been measured with a dust-to-gas ratio around unity where the effect of hydrodynamics on the structure of the disk cannot be ignored. Here we report that dust-gas interactions can produce some of the key patterns seen in debris disks that were previously attributed to planets. Through linear and nonlinear modeling of the hydrodynamical problem, we find that a robust clumping instability exists in this configuration, organizing the dust into narrow, eccentric rings, similar to the Fomalhaut debris disk. The hypothesis that these disks might contain planets, though thrilling, is not necessarily required to explain these systems.
Modeling shallow-water hydrodynamics: Rotations, rips, and rivers
NASA Astrophysics Data System (ADS)
Long, Joseph W.
Hydrodynamic models are used as a diagnostic tool to understand the temporal variability of shallow-water processes that are difficult to completely resolve with traditional field measurements. For all simulations, modeled quantities are qualitatively or quantitatively compared with available measurements to gain confidence in conclusions derived from the modeled results. In this work we consider both vorticity motions and rip currents, which arise from alongshore inhomogeneities in the wave momentum flux but occur at much different time scales (O(min) vs. O(hours-weeks)). They each have an effect on sediment transport processes and dispersion of sediments or pollutants in the surf zone, which makes understanding their structure and persistence essential. The vorticity motions of interest here are associated with spatial and temporal wave height variations caused by wave grouping and can exist with either normally or obliquely incident wave conditions. We find that these flows persist for O(1000s) but their lifespan is controlled by the sequence of wave forcing rather than bottom friction as previously hypothesized. These motions can also be observed in combination with either stable or unstable alongshore currents. Our results suggest that, at times, these alongshore propagating wave group forced vortices are misinterpreted as instabilities of the alongshore current. Alternately, the rip currents considered in this research are controlled by strong wave height gradients in the surf zone generated by the refraction of incident waves over variable offshore depth contours. Thus, this type of circulation is governed by timescales associated with changing offshore wave conditions (O(hours - days)). We consider a four- week time period when variable offshore wave spectra were observed during a large-scale field experiment. The model and data are in good agreement for all wave conditions during the month and estimated model errors are similar to those found previously
Modeling and Prediction of the Noise from Non-Axisymmetric Jets
NASA Technical Reports Server (NTRS)
Leib, Stewart J.
2014-01-01
mean flows which were meant to represent noise reduction concepts being considered by NASA. Testing (Ref. 5) showed that the method was feasible for the types of mean flows of interest in jet noise applications. Subsequently, this method was further developed to allow use of mean flow profiles obtained from a Reynolds-averaged Navier-Stokes (RANS) solution of the flow. Preliminary testing of the generalized code was among the last tasks completed under this contract. The stringent noise-reduction goals of NASA's Fundamental Aeronautics Program suggest that, in addition to potentially complex exhaust nozzle geometries, next generation aircraft will also involve tighter integration of the engine with the airframe. Therefore, noise generated and propagated by jet flows in the vicinity of solid surfaces is expected to be quite significant, and reduced-order noise prediction tools will be needed that can deal with such geometries. One important source of noise is that generated by the interaction of a turbulent jet with the edge of a solid surface (edge noise). Such noise is generated, for example, by the passing of the engine exhaust over a shielding surface, such as a wing. Work under this task supported an effort to develop a RANS-based prediction code for edge noise based on an extension of the classical Rapid Distortion Theory (RDT) to transversely sheared base flows (Refs. 6 and 7). The RDT-based theoretical analysis was applied to the generic problem of a turbulent jet interacting with the trailing edge of a flat plate. A code was written to evaluate the formula derived for the spectrum of the noise produced by this interaction and results were compared with data taken at NASA Glenn for a variety of jet/plate configurations and flow conditions (Ref. 8). A longer-term goal of this task was to work toward the development of a high-fidelity model of sound propagation in spatially developing non-axisymmetric jets using direct numerical methods for solving the relevant
NASA Astrophysics Data System (ADS)
Guzman, Orlando; Velez, Jose Antonio; Castañeda, David
2008-03-01
Experimental biosensors based on liquid crystals (LC) use nematics to detect the presence of specific analytes, via the optical textures exhibited by the LC at long times. Efforts to model the time evolution of these textures have relied on relaxational models, ignoring transport phenomena. In this work we include hydrodynamics into a model for these LC biosensors, using lattice Boltzmann (LB) methods and assess the effect on the lifetime of multidomain structures, characteristic of high concentrations of analyte. We apply Yeoman's et al. LB algorithm, which reproduces the hydrodynamic equations developed by Beris and Edwards for LCs. We also take into account thermal fluctuations, by adding random perturbations to the hydrodynamic modes. Following Adhikari et al., their amplitude is determined by the Fluctuation-Dissipation theorem and we excite both hydrodynamic and the sub-hydrodynamic modes (also called ghost modes). As a result, we analyze the influence of the fluctuations and hydrodynamics on the movement of topological defects.
Modeling of cast systems using smoothed-particle hydrodynamics
NASA Astrophysics Data System (ADS)
Cleary, Paul; Prakash, Mahesh; Ha, Joseph; Sinnott, Matthew; Nguyen, Thang; Grandfield, John
2004-03-01
To understand and control the filling process for metals in high-pressure die casting and ingot casting, researchers have used new flow-simulation software for the modeling of mold filling. Smoothed-particle hydrodynamics (SPH) is a non-conventional computational fluid dynamics method that has been successfully applied to these problems. Due to its mesh-free nature, it can handle complex splashing free surface flows and the differential motion of multiple solid-casting equipment components relatively easily. The ability of SPH to predict the detailed filling patterns of real large-scale automotive die castings is demonstrated in this study, and the use of SPH simulation for wheel shape optimization in ingot casting based on minimizing oxide generation while increasing the throughput is also presented.
NASA Astrophysics Data System (ADS)
Gounko, Yu. P.; Mazhul, I. I.
2015-09-01
The results of the numerical investigation of flow regimes in the axisymmetric inlets of internal compression at a supersonic flow around them are presented in the work. The main attention is paid to the determination of the ranges of the duct geometric convergence, in which a supersonic inflow in the inlet realizes. The investigation has been carried out at high supersonic freestream velocities corresponding to the Mach numbers M = 2-8 by the example of the frontal conical (funnel-shaped) inlets with the angles of the internal cone wall inclination δ w = 7.5-15° under the variation of the relative area of the throat cross section. The flow structure alteration was studied and the critical relative areas of the inlet throat were determined, at which either there is no starting of the inlet in the process of flow steadying at the initial subsonic flow in it or a flow breakdown occurs in the process of flow steadying at an initial supersonic inflow. Numerical computations of the axisymmetric flow were done on the basis of the solution of the Navier-Stokes equations and the k-ω SST turbulence model.
Madasu, Srinath; Borhan, Ali; Ultman, James
2007-03-01
Mass transfer coefficients were predicted and compared for uptake of a formaldehyde-air gas system using an axisymmetric single path model (ASPM) and a three-dimensional computational fluid dynamics model (CFDM) in three-generation model geometry at steady expiratory flow. The flow and concentration fields in the ASPM were solved using Galerkin's finite-element method and in the CFDM using a commercial finite-element software, FIDAP. Numerical results were compared for two different inlet flow rates, wall mass transfer coefficients, and bifurcation angles. The mass transfer coefficients variation with bifurcation unit from the ASPM and CFDM compared qualitatively and quantitatively closely at all flows and lower wall mass transfer coefficients for both 40 degrees and 70 degrees bifurcation angles. However, at higher wall mass transfer coefficients, quantitatively they were within 40% for both the bifurcation angles. Also, at higher flow and wall mass transfer coefficients, they were off qualitatively for a 70 degrees bifurcation angle although the uptake compared qualitatively. This is due to the normalization of uptake within a bifurcation unit with the average of inlet and outlet average concentrations. Both CFDM and ASPM predict the same trends of increase in mass transfer coefficients with inlet flow and wall mass transfer coefficients. Also, the local values of the mass transfer coefficients compared closely at all conditions. These results validate the simplified ASPM and the complex CFDM. Mass transfer coefficients increase with bifurcation angles and with a flat inlet velocity profile compared to a parabolic velocity profile since the flow is non-fully developed and hence, the uptake increases.
Hydrodynamics of burst swimming fish larvae; a conceptual model approach.
Verhagen, Jan H G
2004-07-21
Burst swimming of fish larvae is analysed from a hydrodynamic point of view. A picture of the expected flow pattern is presented based on information in literature on unsteady-flow patterns around obstacles in the intermediate Reynolds number region. It is shown that the acceleration stage of burst swimming under restricted conditions can be treated as a frictionless impulsive motion. The stream pattern resulting from this motion is presented and the efficiency of locomotion during the acceleration stage is calculated. The flow pattern in the post-acceleration stage is sketched and the origin of an interaction between the viscous and the reactive force contribution to the propulsive force in this stage is discussed. It is explained how this interaction can lead to an increase in propulsive efficiency. A conceptual model is developed describing the three stages in burst swimming locomotion: the acceleration stage, the post-acceleration stage and the gliding stage. Data from literature of the travel distance versus time relation of the common carp larva (Cyprinus carpio) of 5.5-mm length has been used to test the model results. The test appeared remarkably successful, and the model results for larger larvae up to 22 mm length are presented. The gliding distance as a function of larval length resulting from the model has been compared with experimental data from literature. PMID:15207478
A Nanoscale Hydrodynamical Model for Transport of Water
NASA Astrophysics Data System (ADS)
Bhadauria, Ravi; Sanghi, Tarun; Aluru, N. R.
2015-11-01
We present here a one-dimensional isothermal hydrodynamic transport model for SPC/E water. Two separate mechanisms of flow, viz. viscous and slip are incorporated in the present formulation. Spatially varying viscosity is modeled using the local average density method. Slip velocity is provided as a form of the boundary condition which in turn depends upon the macroscopic interfacial friction coefficient. The friction coefficient bridges the atomistic and continuum descriptions of the problem. The value of this friction coefficient is computed using particle-based wall-fluid force autocorrelations and wall-fluid force-velocity cross correlations, where the particle trajectory is generated using a Generalized Langevin Equation formulation. To test the accuracy of the model, gravity driven flow of SPC/E water confined between graphene and silicon slit shaped nanochannels are considered as examples for low and high friction cases. The proposed model yields good quantitative agreement with the velocity profiles obtained from non-equilibrium molecular dynamics simulations. Furthermore, we demonstrate that the slip length is constant for different channel widths for a fixed thermodynamic state under the linear response regime.
Hydrodynamic modeling of petroleum reservoirs using simulator MUFITS
NASA Astrophysics Data System (ADS)
Afanasyev, Andrey
2015-04-01
MUFITS is new noncommercial software for numerical modeling of subsurface processes in various applications (www.mufits.imec.msu.ru). To this point, the simulator was used for modeling nonisothermal flows in geothermal reservoirs and for modeling underground carbon dioxide storage. In this work, we present recent extension of the code to petroleum reservoirs. The simulator can be applied in conventional black oil modeling, but it also utilizes a more complicated models for volatile oil and gas condensate reservoirs as well as for oil rim fields. We give a brief overview of the code by providing the description of internal representation of reservoir models, which are constructed of grid blocks, interfaces, stock tanks as well as of pipe segments and pipe junctions for modeling wells and surface networks. For conventional black oil approach, we present the simulation results for SPE comparative tests. We propose an accelerated compositional modeling method for sub- and supercritical flows subjected to various phase equilibria, particularly to three-phase equilibria of vapour-liquid-liquid type. The method is based on the calculation of the thermodynamic potential of reservoir fluid as a function of pressure, total enthalpy and total composition and storing its values as a spline table, which is used in hydrodynamic simulation for accelerated PVT properties prediction. We provide the description of both the spline calculation procedure and the flashing algorithm. We evaluate the thermodynamic potential for a mixture of two pseudo-components modeling the heavy and light hydrocarbon fractions. We develop a technique for converting black oil PVT tables to the potential, which can be used for in-situ hydrocarbons multiphase equilibria prediction under sub- and supercritical conditions, particularly, in gas condensate and volatile oil reservoirs. We simulate recovery from a reservoir subject to near-critical initial conditions for hydrocarbon mixture. We acknowledge
Hydrodynamic modeling of tsunamis from the Currituck landslide
Geist, E.L.; Lynett, P.J.; Chaytor, J.D.
2009-01-01
Tsunami generation from the Currituck landslide offshore North Carolina and propagation of waves toward the U.S. coastline are modeled based on recent geotechnical analysis of slide movement. A long and intermediate wave modeling package (COULWAVE) based on the non-linear Boussinesq equations are used to simulate the tsunami. This model includes procedures to incorporate bottom friction, wave breaking, and overland flow during runup. Potential tsunamis generated from the Currituck landslide are analyzed using four approaches: (1) tsunami wave history is calculated from several different scenarios indicated by geotechnical stability and mobility analyses; (2) a sensitivity analysis is conducted to determine the effects of both landslide failure duration during generation and bottom friction along the continental shelf during propagation; (3) wave history is calculated over a regional area to determine the propagation of energy oblique to the slide axis; and (4) a high-resolution 1D model is developed to accurately model wave breaking and the combined influence of nonlinearity and dispersion during nearshore propagation and runup. The primary source parameter that affects tsunami severity for this case study is landslide volume, with failure duration having a secondary influence. Bottom friction during propagation across the continental shelf has a strong influence on the attenuation of the tsunami during propagation. The high-resolution 1D model also indicates that the tsunami undergoes nonlinear fission prior to wave breaking, generating independent, short-period waves. Wave breaking occurs approximately 40-50??km offshore where a tsunami bore is formed that persists during runup. These analyses illustrate the complex nature of landslide tsunamis, necessitating the use of detailed landslide stability/mobility models and higher-order hydrodynamic models to determine their hazard.
Accuracy of an estuarine hydrodynamic model using smooth elements
Walters, Roy A.; Cheng, Ralph T.
1980-01-01
A finite element model which uses triangular, isoparametric elements with quadratic basis functions for the two velocity components and linear basis functions for water surface elevation is used in the computation of shallow water wave motions. Specifically addressed are two common uncertainties in this class of two-dimensional hydrodynamic models: the treatment of the boundary conditions at open boundaries and the treatment of lateral boundary conditions. The accuracy of the models is tested with a set of numerical experiments in rectangular and curvilinear channels with constant and variable depth. The results indicate that errors in velocity at the open boundary can be significant when boundary conditions for water surface elevation are specified. Methods are suggested for minimizing these errors. The results also show that continuity is better maintained within the spatial domain of interest when ‘smooth’ curve-sided elements are used at shoreline boundaries than when piecewise linear boundaries are used. Finally, a method for network development is described which is based upon a continuity criterion to gauge accuracy. A finite element network for San Francisco Bay, California, is used as an example.
AGN Feedback and Cooling Flows: Problems with Simple Hydrodynamic Models
NASA Astrophysics Data System (ADS)
Vernaleo, John C.; Reynolds, Christopher S.
2006-07-01
In recent years it has become increasingly clear that active galactic nuclei, and radio galaxies in particular, have an impact on large-scale structure and galaxy formation. In principle, radio galaxies are energetic enough to halt the cooling of the virialized intracluster medium (ICM) in the inner regions of galaxy clusters, solving the cooling flow problem and explaining the high-mass truncation of the galaxy luminosity function. We explore this process through a series of high-resolution, three-dimensional hydrodynamic simulations of jetted active galaxies that act in response to cooling-mediated accretion of an ICM atmosphere. We find that our models are incapable of producing a long-term balance of heating and cooling; catastrophic cooling can be delayed by the jet action but inevitably takes hold. At the heart of the failure of these models is the formation of a low-density channel through which the jet can freely flow, carrying its energy out of the cooling core. It is possible that this failure is due to an oversimplified treatment of the fast jet (which may underestimate the ``dentist drill'' effect). However, it seems likely that additional complexity (large-angle jet precession or ICM turbulence) or additional physics (magnetohydrodynamic effects and plasma transport processes) is required to produce a spatial distribution of jet heating that can prevent catastrophic cooling. This work also underscores the importance of including jet dynamics in any feedback model, as opposed to the isotropically inflated bubble approach taken in some previous works.
Summary diagrams for coupled hydrodynamic-ecosystem model skill assessment
NASA Astrophysics Data System (ADS)
Jolliff, Jason K.; Kindle, John C.; Shulman, Igor; Penta, Bradley; Friedrichs, Marjorie A. M.; Helber, Robert; Arnone, Robert A.
2009-02-01
The increasing complexity of coupled hydrodynamic-ecosystem models may require skill assessment methods that both quantify various aspects of model performance and visually summarize these aspects within compact diagrams. Hence summary diagrams, such as the Taylor diagram [Taylor, 2001, Journal of Geophysical Research, 106, D7, 7183-7192], may meet this requirement by exploiting mathematical relationships between widely known statistical quantities in order to succinctly display a suite of model skill metrics in a single plot. In this paper, sensitivity results from a coupled model are compared with Sea-viewing Wide Field-of-view Sensor (SeaWiFS) satellite ocean color data in order to assess the utility of the Taylor diagram and to develop a set of alternatives. Summary diagrams are only effective as skill assessment tools insofar as the statistical quantities they communicate adequately capture differentiable aspects of model performance. Here we demonstrate how the linear correlation coefficients and variance comparisons (pattern statistics) that constitute a Taylor diagram may fail to identify other potentially important aspects of coupled model performance, even if these quantities appear close to their ideal values. An additional skill assessment tool, the target diagram, is developed in order to provide summary information about how the pattern statistics and the bias (difference of mean values) each contribute to the magnitude of the total Root-Mean-Square Difference (RMSD). In addition, a potential inconsistency in the use of RMSD statistics as skill metrics for overall model and observation agreement is identified: underestimates of the observed field's variance are rewarded when the linear correlation scores are less than unity. An alternative skill score and skill score-based summary diagram is presented.
Axisymmetric multiwormholes revisited
NASA Astrophysics Data System (ADS)
Clément, Gérard
2016-06-01
The construction of stationary axisymmetric multiwormhole solutions to gravitating field theories admitting toroidal reductions to three-dimensional gravitating sigma models is reviewed. We show that, as in the multi-black hole case, strut singularities always appear in this construction, except for very special configurations with an odd number of centers. We also review the analytical continuation of the multicenter solution across the n cuts associated with the wormhole mouths. The resulting Riemann manifold has 2^n sheets interconnected by 2^{n-1}n wormholes. We find that the maximally extended multicenter solution can never be asymptotically locally flat in all the Riemann sheets.
NASA Astrophysics Data System (ADS)
Okita, Taishi; Takagi, Toshiyuki
2009-01-01
We calculate magnetic field distributions from multi-current loops for transcranial magnetic stimulation (TMS). In TMS, it is important to produce locally strong magnetic fields and apply eddy-currents only to the aimed cell in a deep region of the brain. First, we investigate the field structure around a single current loop. We find that a single loop generates the convexed field on a certain plane parallel to the loop surface. Second, we study an axisymmetrical model of three-current loops, i.e., a main-coil and two sub-coils, in which the fields are significantly localized in the vertical direction at a symmetrical plane on the central axis compared with that of a single loop.
A hydrodynamic model of an outer hair cell
NASA Technical Reports Server (NTRS)
Jacobson, B. O.
1982-01-01
On the model it is possible to measure the force and the force direction for each individual hair as a function of the flow direction and velocity. Measurements were made at the man flow velocity .01 m/s, which is equivalent to a flow velocity in the real ear of about 1 micrometer/s. The kinematic viscosity of the liquid used in the model was 10,000 times higher than the viscosity of perilymph to attain hydrodynamic equality. Two different geometries for the sterocilia pattern were tested. First the force distribution for a W-shaped sterocilia pattern was recorded. This is the sterocilia pattern found in all real ears. It is found that the forces acting on the hairs are very regular and perpendicular to the legs of the W when the flow is directed from the outside of the W. When the flow is reversed, the forces are not reversed, but are much more irregular. This can eventually explain the half wave rectification of the nerve signals. As a second experiment, the force distribution for a V-shaped sterocilia pattern was recorded. Here the forces were irregular both when the flow was directed into the V and when it was directed against the edge of the V.
Quantum chromodynamics and the statistical hydrodynamical model of hadron production
NASA Astrophysics Data System (ADS)
Carruthers, P.; Duong-van, Minh
1983-07-01
We analyze the Fermi-Landau statistical hydrodynamical model of hadron-hadron multiplicities in the framework of QCD, using the Pokorski-Van Hove model wherein the collision of preexisting glue dominates the multiplicity. It is noted that previous dismissal of the possibility of thermalization in the basis of nuclear "transparency" is circumvented in this picture because the valence quarks pass through, whereas the gluon clouds interact strongly. Assuming that the gluons equilibrate to a thermalized plasmoid within the Fermi-Landau (FL) Lorentz-contracted initial volume, we derive a simple formula for the multiplicity with the form Nch~2.5f14Whad12 (three flavors excited), where 1-f is the fraction of energy carried away by the leading particles and Whad=fW is the energy left behind. If f were fixed at a constant value of 1/2 , the formula would agree extremely well with data up to and including p¯p collider energies. (The widely held belief that collider multiplicities rule out the Fermi power law was based on the use of W rather than Whad.) However, using the data of Basile et al., in which multiplicities are broken down as a function of Whad for different W values, we find that the f14 dependence is ruled out. We conclude that thermalization of the colliding gluon clouds in the FL volume is also ruled out, although thermalization in the gluon fragmentation and central regions remains a possibility.
Magnetospheres of hot Jupiters: hydrodynamic models and ultraviolet absorption
NASA Astrophysics Data System (ADS)
Alexander, R. D.; Wynn, G. A.; Mohammed, H.; Nichols, J. D.; Ercolano, B.
2016-03-01
We present hydrodynamic simulations of stellar wind-magnetosphere interactions in hot Jupiters such as WASP-12b. For fiducial stellar wind rates, we find that a planetary magnetic field of a few G produces a large magnetospheric cavity, which is typically 6-9 planetary radii in size. A bow shock invariably forms ahead of the magnetosphere, but the pre-shock gas is only mildly supersonic (with typical Mach numbers of ≃1.6-1.8) so the shock is weak. This results in a characteristic signature in the ultraviolet (UV) light curve: a broad absorption feature that leads the optical transit by 10-20 per cent in orbital phase. The shapes of our synthetic light curves are consistent with existing observations of WASP-12b, but the required near-UV optical depth (τ ˜ 0.1) can only be achieved if the shocked gas cools rapidly. We further show that radiative cooling is inefficient, so we deem it unlikely that a magnetospheric bow shock is responsible for the observed near-UV absorption. Finally, we apply our model to two other well-studied hot Jupiters (WASP-18b and HD 209458b), and suggest that UV observations of more massive short-period planets (such as WASP-18b) will provide a straightforward test to distinguish between different models of circumplanetary absorption.
Hydrodynamical model for J/{psi} suppression and elliptic flow
Chaudhuri, A. K.
2009-10-15
In a hydrodynamic model, we have studied J/{psi} suppression and elliptic flow in Au+Au collisions at the Relativistic Heavy Ion Collider (RHIC) energy {radical}(s)=200 GeV. At the initial time, J/{psi}'s are randomly distributed in the fluid. As the fluid evolves in time, the free-streaming J/{psi}'s are dissolved if the local fluid temperature exceeds a melting temperature T{sub J/{psi}}. Sequential melting of charmonium states ({chi}{sub c}, {psi}{sup '}, and J/{psi}), with melting temperatures T{sub {chi}{sub c}}=T{sub {psi}{sup '}}{approx_equal}1.2T{sub c} and T{sub J/{psi}}{approx_equal}2T{sub c} and a feed-down fraction F{approx_equal}0.3, is consistent with the PHENIX data on J/{psi} suppression and near-zero elliptic flow for J/{psi}'s. It is also shown that the model will require substantial regeneration of charmonium if the charmonium states dissolve at a temperature close to the critical temperatures, T{sub {chi}{sub c}}=T{sub {psi}{sup '}}{<=}T{sub c} and T{sub J/{psi}}{approx_equal}1.2T{sub c}. The regenerated charmonium will have positive elliptic flow.
Computational modeling and analysis of the hydrodynamics of human swimming
NASA Astrophysics Data System (ADS)
von Loebbecke, Alfred
Computational modeling and simulations are used to investigate the hydrodynamics of competitive human swimming. The simulations employ an immersed boundary (IB) solver that allows us to simulate viscous, incompressible, unsteady flow past complex, moving/deforming three-dimensional bodies on stationary Cartesian grids. This study focuses on the hydrodynamics of the "dolphin kick". Three female and two male Olympic level swimmers are used to develop kinematically accurate models of this stroke for the simulations. A simulation of a dolphin undergoing its natural swimming motion is also presented for comparison. CFD enables the calculation of flow variables throughout the domain and over the swimmer's body surface during the entire kick cycle. The feet are responsible for all thrust generation in the dolphin kick. Moreover, it is found that the down-kick (ventral position) produces more thrust than the up-kick. A quantity of interest to the swimming community is the drag of a swimmer in motion (active drag). Accurate estimates of this quantity have been difficult to obtain in experiments but are easily calculated with CFD simulations. Propulsive efficiencies of the human swimmers are found to be in the range of 11% to 30%. The dolphin simulation case has a much higher efficiency of 55%. Investigation of vortex structures in the wake indicate that the down-kick can produce a vortex ring with a jet of accelerated fluid flowing through its center. This vortex ring and the accompanying jet are the primary thrust generating mechanisms in the human dolphin kick. In an attempt to understand the propulsive mechanisms of surface strokes, we have also conducted a computational analysis of two different styles of arm-pulls in the backstroke and the front crawl. These simulations involve only the arm and no air-water interface is included. Two of the four strokes are specifically designed to take advantage of lift-based propulsion by undergoing lateral motions of the hand
Three-dimensional hydrodynamic and erosion modeling of fluidized beds using kinetic theory
Ding, J.; Lyczkowski, R.W. ); Burge, S.W. . Research Center)
1992-05-01
Three-dimensional hydrodynamic models for gas-solids flow are developed and used to compute bubble and solids motion in rectangular fluidized beds. Our computed results demonstrate the significance and necessity for three-dimensional models of hydrodynamics and erosion in fluidized-bed combustors. A kinetic theory model for erosion using Finnie's single-particle ductile erosion model was used to compute erosion in a rectangular fluidized bed containing a single tube. Comparison of two-dimensional and three-dimensional computed hydrodynamics, erosion rates, and patterns clearly show the superiority of three-dimensional modeling.
Three-dimensional hydrodynamic and erosion modeling of fluidized beds using kinetic theory
Ding, J.; Lyczkowski, R.W.; Burge, S.W.
1992-05-01
Three-dimensional hydrodynamic models for gas-solids flow are developed and used to compute bubble and solids motion in rectangular fluidized beds. Our computed results demonstrate the significance and necessity for three-dimensional models of hydrodynamics and erosion in fluidized-bed combustors. A kinetic theory model for erosion using Finnie`s single-particle ductile erosion model was used to compute erosion in a rectangular fluidized bed containing a single tube. Comparison of two-dimensional and three-dimensional computed hydrodynamics, erosion rates, and patterns clearly show the superiority of three-dimensional modeling.
Chen, P.J.
1981-04-01
The CHEMFLUB code was designed to provide predictions of the transient, two-phase, reactive flow fields occurring in a fluidized bed coal gasification reactor. CHEMFLUB can be operated in either two-dimensional Cartesian (planar) or axisymmetric geometry. The solid particle phase is treated in a Lagrangian manner in order to maintain sharp interfaces around bubbles and at the freeboard while the gas phase is treated using an Eulerian approach. A detailed chemistry model, encompassing both heterogeneous and homogeneous reactions of both combustion and gasification, is included in the model. Thus, the computer model CHEMFLUB incorporates the coupled dynamic effects of the hydrodynamic, thermodynamic and chemical phenomena which dominate flow in most fluidized bed coal gasifiers. Datailed discussions of the governing equations are given in Volume II of this report. This volume contains a summary of the governing differential and constitutive equations; a brief descritpion of the code, including a flow chart, subroutine structure and dimension parameters; as well as a detailed input sequence are presented. A sample of input and output is provided in the Appendix.
Spectral Modeling of SNe Ia Near Maximum Light: Probing the Characteristics of Hydrodynamical Models
NASA Astrophysics Data System (ADS)
Baron, E.; Bongard, Sebastien; Branch, David; Hauschildt, Peter H.
2006-07-01
We have performed detailed non-local thermodynamic equilibrium (NLTE) spectral synthesis modeling of two types of one-dimensional hydrodynamical models: the very highly parameterized deflagration model W7, and two delayed-detonation models. We find that, overall, both models do about equally well at fitting well-observed SNe Ia near maximum light. However, the Si II λ6150 feature of W7 is systematically too fast, whereas for the delayed-detonation models it is also somewhat too fast but significantly better than that of W7. We find that a parameterized mixed model does the best job of reproducing the Si II λ6150 line near maximum light, and we study the differences in the models that lead to better fits to normal SNe Ia. We discuss what is required of a hydrodynamical model to fit the spectra of observed SNe Ia near maximum light.
Lattice hydrodynamic model based traffic control: A transportation cyber-physical system approach
NASA Astrophysics Data System (ADS)
Liu, Hui; Sun, Dihua; Liu, Weining
2016-11-01
Lattice hydrodynamic model is a typical continuum traffic flow model, which describes the jamming transition of traffic flow properly. Previous studies in lattice hydrodynamic model have shown that the use of control method has the potential to improve traffic conditions. In this paper, a new control method is applied in lattice hydrodynamic model from a transportation cyber-physical system approach, in which only one lattice site needs to be controlled in this control scheme. The simulation verifies the feasibility and validity of this method, which can ensure the efficient and smooth operation of the traffic flow.
Lattice Models for Granular-Like Velocity Fields: Hydrodynamic Description
NASA Astrophysics Data System (ADS)
Manacorda, Alessandro; Plata, Carlos A.; Lasanta, Antonio; Puglisi, Andrea; Prados, Antonio
2016-08-01
A recently introduced model describing—on a 1d lattice—the velocity field of a granular fluid is discussed in detail. The dynamics of the velocity field occurs through next-neighbours inelastic collisions which conserve momentum but dissipate energy. The dynamics is described through the corresponding Master Equation for the time evolution of the probability distribution. In the continuum limit, equations for the average velocity and temperature fields with fluctuating currents are derived, which are analogous to hydrodynamic equations of granular fluids when restricted to the shear modes. Therefore, the homogeneous cooling state, with its linear instability, and other relevant regimes such as the uniform shear flow and the Couette flow states are described. The evolution in time and space of the single particle probability distribution, in all those regimes, is also discussed, showing that the local equilibrium is not valid in general. The noise for the momentum and energy currents, which are correlated, are white and Gaussian. The same is true for the noise of the energy sink, which is usually negligible.
Visualization and modeling of the hydrodynamics of an impinging microjet.
Bitziou, Eleni; Rudd, Nicola C; Edwards, Martin A; Unwin, Patrick R
2006-03-01
The use of fluorescence confocal laser scanning microscopy (CLSM) for flow visualization is described, with a focus on elucidating the pattern of flow in the microjet electrode (MJE). The MJE employs a nozzle, formed from a fine glass capillary, with an inner diameter of approximately 100 microm, to direct solution at an electrode surface, using high velocity but at moderate volume flow rates. For CLSM visualization, the jetted solution contains a fluorescent probe, fluorescein at high pH, which flows into a solution buffered at low pH, where the fluorescence is extinguished, thereby highlighting the flow field of the impinging microjet. The morphology of the microjet and the hydrodynamic boundary layer are shown to be highly sensitive to the volume flow rate, with a collimated jet and thin boundary layer formed at the faster flow rates (approximately 1 cm(3) min(-1)). In contrast, at lower flow rates and for relatively large substrates, an unusual recirculation zone is observed experimentally for the first time. This effect can be eliminated by employing small substrates. The experimental observations have been quantified through numerical solution of the Navier-Stokes equations of continuity and momentum balance. The new insights provided by CLSM imaging demonstrate that flow in the MJE, and impinging jets in general, are more complex than predicted by classical models but are well-defined and quantifiable.
Update on PHELIX Pulsed-Power Hydrodynamics Experiments and Modeling
NASA Astrophysics Data System (ADS)
Rousculp, Christopher; Reass, William; Oro, David; Griego, Jeffery; Turchi, Peter; Reinovsky, Robert; Devolder, Barbara
2013-10-01
The PHELIX pulsed-power driver is a 300 kJ, portable, transformer-coupled, capacitor bank capable of delivering 3-5 MA, 10 μs pulse into a low inductance load. Here we describe further testing and hydrodynamics experiments. First, a 4 nH static inductive load has been constructed. This allows for repetitive high-voltage, high-current testing of the system. Results are used in the calibration of simple circuit models and numerical simulations across a range of bank charges (+/-20 < V0 < +/-40 kV). Furthermore, a dynamic liner-on-target load experiment has been conducted to explore the shock-launched transport of particulates (diam. ~ 1 μm) from a surface. The trajectories of the particulates are diagnosed with radiography. Results are compared to 2D hydro-code simulations. Finally, initial studies are underway to assess the feasibility of using the PHELIX driver as an electromagnetic launcher for planer shock-physics experiments. Work supported by United States-DOE under contract DE-AC52-06NA25396.
Hydrodynamic modeling of Singapore's coastal waters: Nesting and model accuracy
NASA Astrophysics Data System (ADS)
Hasan, G. M. Jahid; van Maren, Dirk Sebastiaan; Ooi, Seng Keat
2016-01-01
The tidal variation in Singapore's coastal waters is influenced by large-scale, complex tidal dynamics (by interaction of the Indian Ocean and the South China Sea) as well as monsoon-driven low frequency variations, requiring a model with large spatial coverage. Close to the shores, the complex topography, influenced by headlands and small islands, requires a high resolution model to simulate tidal dynamics. This can be achieved through direct nesting or multi-scale nesting, involving multiple model grids. In this paper, we investigate the effect of grid resolution and multi-scale nesting on the tidal dynamics in Singapore's coastal waters, by comparing model results with observations using different statistical techniques. The results reveal that the intermediate-scale model is generally sufficiently accurate (equal to or better than the most refined model), but also that the most refined model is only more accurate when nested in the intermediate scale model (requiring multi-scale nesting). This latter is the result of the complex tidal dynamics around Singapore, where the dominantly diurnal tidal currents are decoupled from the semi-diurnal water level variations. Furthermore, different techniques to quantify model accuracy (harmonic analysis, basic statistics and more complex statistics) are inconsistent in determining which model is more accurate.
Stochastic Downscaling for Hydrodynamic and Ecological Modeling of Lakes
NASA Astrophysics Data System (ADS)
Schlabing, D.; Eder, M.; Frassl, M.; Rinke, K.; Bárdossy, A.
2012-04-01
with the help of QQ-downscaled time series. Results of water-quality and ecological modeling using data from VG is contributed by Marieke Anna Frassl under the title "Simulating the effect of meteorological variability on a lake ecosystem". Maria Magdalena Eder contributes three dimensional hydrodynamic lake simulations using VG data in a poster entitled "Advances in estimating the climate sensibility of a large lake using scenario simulations". Both posters can be found in the Session "Lakes and Inland Seas" (HS10.1).
Monitoring Mediterranean marine pollution using remote sensing and hydrodynamic modelling
NASA Astrophysics Data System (ADS)
La Loggia, Goffredo; Capodici, Fulvio; Ciraolo, Giuseppe; Drago, Aldo; Maltese, Antonino
2011-11-01
Human activities contaminate both coastal areas and open seas, even though impacts are different in terms of pollutants, ecosystems and recovery time. In particular, Mediterranean offshore pollution is mainly related to maritime transport of oil, accounting for 25% of the global maritime traffic and, during the last 25 years, for nearly 7% of the world oil accidents, thus causing serious biological impacts on both open sea and coastal zone habitats. This paper provides a general review of maritime pollution monitoring using integrated approaches of remote sensing and hydrodynamic modeling; focusing on the main results of the MAPRES (Marine pollution monitoring and detection by aerial surveillance and satellite images) research project on the synergistic use of remote sensing, forecasting, cleanup measures and environmental consequences. The paper also investigates techniques of oil spill detection using SAR images, presenting the first results of "Monitoring of marine pollution due to oil slick", a COSMO-SkyMed funded research project where X-band SAR constellation images provided by the Italian Space Agency are used. Finally, the prospect of using real time observations of marine surface conditions is presented through CALYPSO project (CALYPSO-HF Radar Monitoring System and Response against Marine Oil Spills in the Malta Channel), partly financed by the EU under the Operational Programme Italia-Malta 2007-2013. The project concerns the setting up of a permanent and fully operational HF radar observing system, capable of recording surface currents (in real-time with hourly updates) in the stretch of sea between Malta and Sicily. A combined use of collected data and numerical models, aims to optimize intervention and response in the case of marine oil spills.
Quantum chromodynamics and the statistical hydrodynamical model of hadron production
Carruthers, P.; Duong-Van, M.
1983-07-01
We analyze the Fermi-Landau statistical hydrodynamical model of hadron-hadron multiplicities in the framework of QCD, using the Pokorski--Van Hove model wherein the collision of preexisting glue dominates the multiplicity. It is noted that previous dismissal of the possibility of thermalization in the basis of nuclear ''transparency'' is circumvented in this picture because the valence quarks pass through, whereas the gluon clouds interact strongly. Assuming that the gluons equilibrate to a thermalized plasmoid within the Fermi-Landau (FL) Lorentz-contracted initial volume, we derive a simple formula for the multiplicity with the form N/sub ch/roughly-equal2.5 f/sup 1/4/ W/sup 1/2//sub had/ (three flavors excited), where 1-f is the fraction of energy carried away by the leading particles and W/sub had/ = fW is the energy left behind. If f were fixed at a constant value of (1/2), the formula would agree extremely well with data up to and including p-barp collider energies. (The widely held belief that collider multiplicities rule out the Fermi power law was based on the use of W rather than W/sub had/.) However, using the data of Basile et al., in which multiplicities are broken down as a function of W/sub had/ for different W values, we find that the f/sup 1/4/ dependence is ruled out. We conclude that thermalization of the colliding gluon clouds in the FL volume is also ruled out, although thermalization in the gluon fragmentation and central regions remains a possibility.
NASA Astrophysics Data System (ADS)
Alaia, Alessandro; Puppo, Gabriella
2012-06-01
In this work we present a non stationary domain decomposition algorithm for multiscale hydrodynamic-kinetic problems, in which the Knudsen number may span from equilibrium to highly rarefied regimes. Our approach is characterized by using the full Boltzmann equation for the kinetic regime, the Compressible Euler equations for equilibrium, with a buffer zone in which the BGK-ES equation is used to represent the transition between fully kinetic to equilibrium flows. In this fashion, the Boltzmann solver is used only when the collision integral is non-stiff, and the mean free path is of the same order as the mesh size needed to capture variations in macroscopic quantities. Thus, in principle, the same mesh size and time steps can be used in the whole computation. Moreover, the time step is limited only by convective terms. Since the Boltzmann solver is applied only in wholly kinetic regimes, we use the reduced noise DSMC scheme we have proposed in Part I of the present work. This ensures a smooth exchange of information across the different domains, with a natural way to construct interface numerical fluxes. Several tests comparing our hybrid scheme with full Boltzmann DSMC computations show the good agreement between the two solutions, on a wide range of Knudsen numbers.
Smoothed particle hydrodynamics modelling for failure in metals
NASA Astrophysics Data System (ADS)
Strand, Russell K.
It is generally regarded to be a difficult task to model multiple fractures leading to fragmentation in metals subjected to high strain rates using numerical methods. Meshless methods such as Smoothed Particle Hydrodynamics (SPH) are well suited to the application of fracture mechanics, since they are not prone to the problems associated with mesh tangling. This research demonstrates and validates a numerical inter-particle fracture model for the initiation, growth and subsequent failure in metals at high strain rate, applicable within a Total Lagrangian SPH scheme. Total Lagrangian SPH performs calculations in the reference state of a material and therefore the neighbourhoods remain fixed throughout the computation; this allows the inter-particle bonds to be stored and tracked as material history parameters. Swegle (2000) showed that the SPH momentum equation can be rearranged in terms of a particle-particle interaction area. By reducing this area to zero via an inter-particle damage parameter, the principles of continuum damage mechanics can be observed without the need for an effective stress term, held at the individual particles.. This research makes use of the Cochran-Banner damage growth model which has been updated for 3D damage and makes the appropriate modifications for inter-particle damage growth. The fracture model was tested on simulations of a 1D flyer plate impact test and the results were compared to experimental data. Some limited modelling was also conducted in 2 and 3 dimensions and promising results were observed. Research was also performed into the mesh sensitivity of the explosively driven Mock- Holt experiment. 3D simulations using the Eulerian SPH formulation were conducted and the best results were observed with a radial packing arrangement. An in-depth assessment of the Monaghan repulsive force correction was also conducted in attempt to eliminate the presence of the SPH tensile instability and stabilise the available Eulerian SPH code
Modeling Fluid Instabilities in Inertial Confinement Fusion Hydrodynamics Codes
NASA Astrophysics Data System (ADS)
Zalesak, Steven
2004-11-01
When attempting to numerically model a physical phenomenon of any kind, we typically formulate the numerical requirements in terms of the range of spatial and temporal scales of interest. We then construct numerical software that adequately resolves those scales in each of the spatial and temporal dimensions. This software may use adaptive mesh refinement or other techniques to adequately resolve those scales of interest, and may use front-capturing algorithms or other techniques to avoid having to resolve scales that are not of interest to us. Knowing what constitutes the scales of interest is sometimes a difficult question. Harder still is knowing what constitutes adequate resolution. For many physical phenomena, adequate resolution may be obtained, for example, by simply demanding that the spatial and temporal derivatives of all scales of interest have errors less than some specified tolerance. But for other phenomena, in particular those in which physical instabilities are active, one must be much more precise in the specification of adequate resolution. In such situations one must ask detailed questions about the nature of the numerical errors, not just their size. The problem we have in mind is that of accurately modeling the evolution of small amplitude perturbations to a time-dependent flow, where the unperturbed flow itself exhibits large amplitude temporal and spatial variations. Any errors that we make in numerically modeling the unperturbed flow, if they have a projection onto the space of the perturbations of interest, can easily compromise the accuracy of those perturbations, even if the errors are small in terms of the unperturbed solution. Here we will discuss the progress that we have made over the past year in attempting to improve the ability of our radiation hydrodynamics code FASTRAD3D to accurately model the evolution of small-amplitude perturbations to an imploding ICF pellet, which is subject to both Richtmyer-Meshkov and Rayleigh
Puget Sound Dissolved Oxygen Modeling Study: Development of an Intermediate-Scale Hydrodynamic Model
Yang, Zhaoqing; Khangaonkar, Tarang; Labiosa, Rochelle G.; Kim, Taeyun
2010-11-30
The Washington State Department of Ecology contracted with Pacific Northwest National Laboratory to develop an intermediate-scale hydrodynamic and water quality model to study dissolved oxygen and nutrient dynamics in Puget Sound and to help define potential Puget Sound-wide nutrient management strategies and decisions. Specifically, the project is expected to help determine 1) if current and potential future nitrogen loadings from point and non-point sources are significantly impairing water quality at a large scale and 2) what level of nutrient reductions are necessary to reduce or dominate human impacts to dissolved oxygen levels in the sensitive areas. In this study, an intermediate-scale hydrodynamic model of Puget Sound was developed to simulate the hydrodynamics of Puget Sound and the Northwest Straits for the year 2006. The model was constructed using the unstructured Finite Volume Coastal Ocean Model. The overall model grid resolution within Puget Sound in its present configuration is about 880 m. The model was driven by tides, river inflows, and meteorological forcing (wind and net heat flux) and simulated tidal circulations, temperature, and salinity distributions in Puget Sound. The model was validated against observed data of water surface elevation, velocity, temperature, and salinity at various stations within the study domain. Model validation indicated that the model simulates tidal elevations and currents in Puget Sound well and reproduces the general patterns of the temperature and salinity distributions.
Coupling hydrodynamic and wave propagation modeling for waveform modeling of SPE.
NASA Astrophysics Data System (ADS)
Larmat, C. S.; Steedman, D. W.; Rougier, E.; Delorey, A.; Bradley, C. R.
2015-12-01
The goal of the Source Physics Experiment (SPE) is to bring empirical and theoretical advances to the problem of detection and identification of underground nuclear explosions. This paper presents effort to improve knowledge of the processes that affect seismic wave propagation from the hydrodynamic/plastic source region to the elastic/anelastic far field thanks to numerical modeling. The challenge is to couple the prompt processes that take place in the near source region to the ones taking place later in time due to wave propagation in complex 3D geologic environments. In this paper, we report on results of first-principles simulations coupling hydrodynamic simulation codes (Abaqus and CASH), with a 3D full waveform propagation code, SPECFEM3D. Abaqus and CASH model the shocked, hydrodynamic region via equations of state for the explosive, borehole stemming and jointed/weathered granite. LANL has been recently employing a Coupled Euler-Lagrange (CEL) modeling capability. This has allowed the testing of a new phenomenological model for modeling stored shear energy in jointed material. This unique modeling capability has enabled highfidelity modeling of the explosive, the weak grout-filled borehole, as well as the surrounding jointed rock. SPECFEM3D is based on the Spectral Element Method, a direct numerical method for full waveform modeling with mathematical accuracy (e.g. Komatitsch, 1998, 2002) thanks to its use of the weak formulation of the wave equation and of high-order polynomial functions. The coupling interface is a series of grid points of the SEM mesh situated at the edge of the hydrodynamic code domain. Displacement time series at these points are computed from output of CASH or Abaqus (by interpolation if needed) and fed into the time marching scheme of SPECFEM3D. We will present validation tests and waveforms modeled for several SPE tests conducted so far, with a special focus on effect of the local topography.
Quantum Hydrodynamics, the Quantum Benjamin-Ono Equation, and the Calogero Model
NASA Astrophysics Data System (ADS)
Abanov, Alexander G.; Wiegmann, Paul B.
2005-08-01
Collective field theory for the Calogero model represents particles with fractional statistics in terms of hydrodynamic modes—density and velocity fields. We show that the quantum hydrodynamics of this model can be written as a single evolution equation on a real holomorphic Bose field—the quantum integrable Benjamin-Ono equation. It renders tools of integrable systems to studies of nonlinear dynamics of 1D quantum liquids.
Zhuang, Jinda; Ju, Y Sungtaek
2015-09-22
The deformation and rupture of axisymmetric liquid bridges being stretched between two fully wetted coaxial disks are studied experimentally and theoretically. We numerically solve the time-dependent Navier-Stokes equations while tracking the deformation of the liquid-air interface using the arbitrary Lagrangian-Eulerian (ALE) moving mesh method to fully account for the effects of inertia and viscous forces on bridge dynamics. The effects of the stretching velocity, liquid properties, and liquid volume on the dynamics of liquid bridges are systematically investigated to provide direct experimental validation of our numerical model for stretching velocities as high as 3 m/s. The Ohnesorge number (Oh) of liquid bridges is a primary factor governing the dynamics of liquid bridge rupture, especially the dependence of the rupture distance on the stretching velocity. The rupture distance generally increases with the stretching velocity, far in excess of the static stability limit. For bridges with low Ohnesorge numbers, however, the rupture distance stay nearly constant or decreases with the stretching velocity within certain velocity windows due to the relative rupture position switching and the thread shape change. Our work provides an experimentally validated modeling approach and experimental data to help establish foundation for systematic further studies and applications of liquid bridges.
NASA Astrophysics Data System (ADS)
Khavaran, A.; Krejsa, E. A.; Kim, C. M.
1992-01-01
The turbulent mixing noise of a supersonic jet is calculated for a round convergent-divergent nozzle at the design pressure ratio. Aerodynamic computations are performed using the PARC code with a k-epsilon turbulence model. Lighthill's acoustic analogy combined with Ribner's assumption is adopted. The acoustics solution is based upon the methodology followed by GE in the MGB code. The source correlation function is expressed as a linear combination of second-order tensors. Assuming separable second-order correlations and incorporating Batchelor's isotropic turbulence model, the source term was calculated from the kinetic energy of turbulence. A Gaussian distribution for the time-delay of correlation was introduced. The computational fluid dynamics (CFD) solution was used to obtain the source strength as well as the characteristic time-delay of correlation. The effect of sound/flow interaction was incorporated using the high frequency asymptotic solution to Lilley's equation for axisymmetric geometries. Acoustic results include sound pressure level directivity and spectra at different polar angles. The aerodynamic and acoustic results demonstrate favorable agreement with experimental data.
NASA Astrophysics Data System (ADS)
Khavaran, Abbas; Krejsa, Eugene A.; Kim, Chan M.
1991-01-01
The turbulent mixing noise of a supersonic jet is calculated for a round convergent-divergent nozzle at the design pressure ratio. Aerodynamic computations are performed using the PARC code with a k-epsilon turbulence model. Lighthill's acoustic analogy combined with Ribner's assumption is adopted. The acoustics solution is based upon the methodology followed by GE in the MGB code. The source correlation function is expressed as a linear combination of second-order tensors. Assuming separable second-order correlations and incorporating Batchelor's isotropic turbulence model, the source term was calculated from the kinetic energy of turbulence. A Gaussian distribution for the time-delay of correlation was introduced. The computational fluid dynamics (CFD) solution was used to obtain the source strength as well as the characteristic time-delay of correlation. The effect of sound/flow interaction was incorporated using the high frequency asymptotic solution to Lilley's equation for axisymmetric geometries. Acoustic results include sound pressure level directivity and spectra at different polar angles. The aerodynamic and acoustic results demonstrate favorable agreement with experimental data.
Vorticity and hydrodynamic helicity in heavy-ion collisions in the hadron-string dynamics model
NASA Astrophysics Data System (ADS)
Teryaev, Oleg; Usubov, Rahim
2015-07-01
The hydrodynamic helicity separation effect in noncentral heavy-ion collisions is investigated using the hadron-string dynamics (HSD) model. Computer simulations are done to calculate velocity and hydrodynamic helicity on a mesh in a small volume around the center of the reaction. The time dependence of hydrodynamic helicity is observed for various impact parameters and different calculation methods. Comparison with a similar earlier work is carried out. A new quantity related to jet handedness is used to probe for p -odd effects in the final state.
Simulation of Tailrace Hydrodynamics Using Computational Fluid Dynamics Models
Cook, Christopher B.; Richmond, Marshall C.
2001-05-01
This report investigates the feasibility of using computational fluid dynamics (CFD) tools to investigate hydrodynamic flow fields surrounding the tailrace zone below large hydraulic structures. Previous and ongoing studies using CFD tools to simulate gradually varied flow with multiple constituents and forebay/intake hydrodynamics have shown that CFD tools can provide valuable information for hydraulic and biological evaluation of fish passage near hydraulic structures. These studies however are incapable of simulating the rapidly varying flow fields that involving breakup of the free-surface, such as those through and below high flow outfalls and spillways. Although the use of CFD tools for these types of flow are still an active area of research, initial applications discussed in this report show that these tools are capable of simulating the primary features of these highly transient flow fields.
Inversions for axisymmetric galactic disks
NASA Astrophysics Data System (ADS)
Hiotelis, N.; Patsis, P. A.
1993-08-01
We use two models for the distribution function to solve an inverse problem for axisymmetric disks. These systems may be considered - under certain assumptions - as galactic disks. In some cases the solutions of the resulting integral equations are simple, which allows the determination of the kinematic properties of self-consistent models for these systems. These properties for then = 1 Toomre disk are presented in this study.
Madasu, Srinath; Ultman, James S; Borhan, Ali
2008-02-01
Reactive gas uptake is predicted and compared in a single bifurcation at steady expiratory flow in terms of Sherwood number using an axisymmetric single-path model (ASPM) and a three-dimensional computational fluid dynamics model (CFDM). ASPM is validated in a two-generation geometry by comparing the average gas-phase mass transfer coefficients with the experimental values. ASPM predicted mass transfer coefficients within 20% of the experimental values. The flow and concentration variables in the ASPM were solved using Galerkin finite element method and in the CFDM using commercial finite element software FIDAP. The simulations were performed for reactive gas flowing at Reynolds numbers ranging from 60 to 350 in both symmetric bifurcation for three bifurcation angles, 30 deg, 70 deg, and 90 deg, and in an asymmetric bifurcation. The numerical models compared with each other qualitatively but quantitatively they were within 0.4-8% due to nonfully developed flow in the parent branch predicted by the CFDM. The radially averaged concentration variation along the axial location matched qualitatively between the CFDM and ASPM but quantitatively they were within 32% due to differences in the flow field. ASPM predictions compared well with the CFDM predictions for an asymmetric bifurcation. These results validate the simplified ASPM and the complex CFDM. ASPM predicts higher Sherwood number with a flat velocity inlet profile compared to a parabolic inlet velocity profile. Sherwood number increases with the inlet average velocity, wall mass transfer coefficient, and bifurcation angle since the boundary layer grows slower in the parent and daughter branches.
NASA Astrophysics Data System (ADS)
Yamazaki, D.
2015-12-01
Global river routine models have been developed for representing freshwater discharge from land to ocean in Earth System Models. At the beginning, global river models had simulated river discharge along a prescribed river network map by using a linear-reservoir assumption. Recently, in parallel with advancement of remote sensing and computational powers, many advanced global river models have started to represent floodplain inundation assuming sub-grid floodplain topography. Some of them further pursue physically-appropriate representation of river and floodplain dynamics, and succeeded to utilize "hydrodynamic flow equations" to realistically simulate channel/floodplain and upstream/downstream interactions. State-of-the-art global river hydrodynamic models can well reproduce flood stage (e.g. inundated areas and water levels) in addition to river discharge. Flood stage simulation by global river models can be potentially coupled with land surface processes in Earth System Models. For example, evaporation from inundated water area is not negligible for land-atmosphere interactions in arid areas (such as the Niger River). Surface water level and ground water level are correlated each other in flat topography, and this interaction could dominate wetting and drying of many small lakes in flatland and could also affect biogeochemical processes in these lakes. These land/surface water interactions had not been implemented in Earth System Models but they have potential impact on the global climate and carbon cycle. In the AGU presentation, recent advancements of global river hydrodynamic modelling, including super-high resolution river topography datasets, will be introduces. The potential applications of river and surface water modules within Earth System Models will be also discussed.
Hydrodynamic properties of San Quintin Bay, Baja California: Merging models and observations.
Melaku Canu, Donata; Aveytua-Alcázar, Leslie; Camacho-Ibar, Victor F; Querin, Stefano; Solidoro, Cosimo
2016-07-15
We investigated the physical dynamics of San Quintin Bay, a coastal lagoon located on the Pacific coast of northern Baja California, Mexico. We implemented, validated and used a finite element 2-D hydrodynamic model to characterize the spatial and temporal variability of the hydrodynamic of the bay in response to variability in the tidal regime and in meteorological forcing patterns. Our analysis of general circulation, residual currents, residence times, and tidal propagation delays allowed us to characterize spatial variability in the hydrodynamic basin features. The eulerian water residence time is -on average and under reference conditions- approximately 7days, although this can change significantly by region and season and under different tidal and meteorological conditions. Ocean upwelling events that bring colder waters into the bay mouth affect hydrodynamic properties in all areas of the lagoon and may affect ecological dynamics. A return to pre-upwelling conditions would take approximately 10days.
Hydrodynamic properties of San Quintin Bay, Baja California: Merging models and observations.
Melaku Canu, Donata; Aveytua-Alcázar, Leslie; Camacho-Ibar, Victor F; Querin, Stefano; Solidoro, Cosimo
2016-07-15
We investigated the physical dynamics of San Quintin Bay, a coastal lagoon located on the Pacific coast of northern Baja California, Mexico. We implemented, validated and used a finite element 2-D hydrodynamic model to characterize the spatial and temporal variability of the hydrodynamic of the bay in response to variability in the tidal regime and in meteorological forcing patterns. Our analysis of general circulation, residual currents, residence times, and tidal propagation delays allowed us to characterize spatial variability in the hydrodynamic basin features. The eulerian water residence time is -on average and under reference conditions- approximately 7days, although this can change significantly by region and season and under different tidal and meteorological conditions. Ocean upwelling events that bring colder waters into the bay mouth affect hydrodynamic properties in all areas of the lagoon and may affect ecological dynamics. A return to pre-upwelling conditions would take approximately 10days. PMID:27140393
NASA Technical Reports Server (NTRS)
Moore, W.; Schubert, Gerald; Sandwell, David T.
1992-01-01
Magellan altimetry has revealed that many coronae on Venus have trenches or moats around their peripheries and rises outboard of the trenches. This trench/outer rise topographic signature is generally associated with the tectonic annulus of the corona. Sandwell and Schubert have interpreted the trench/outer rise topography and the associated tectonic annulus around coronae to be the result of elastic bending of the Venus lithosphere (though the tectonic structures are consequences of inelastic deformation of the lithosphere). They used two-dimensional elastic plate flexure theory to fit topographic profiles across a number of large coronae and inferred elastic lithosphere thicknesses between about 15 and 40 km, similar to inferred values of elastic thickness for the Earth's lithosphere at subduction zones around the Pacific Ocean. Here, we report the results of using axisymmetric elastic flexure theory for the deformation of thin spherical shell plates to interpret the trench/outer rise topography of the large coronae modeled by Sandwell and Schubert and of coronae as small as 250 km in diameter. In the case of a corona only a few hundred kilometers in diameter, the model accounts for the small planform radius of the moat and the nonradial orientation of altimetric traces across the corona. By fitting the flexural topography of coronae we determine the elastic thickness and loading necessary to account for the observed flexure. We calculate the associated bending moment and determine whether the corona interior topographic load can provide the required moment. We also calculate surface stresses and compare the stress distribution with the location of annular tectonic features.
Computational Flow Modeling of Hydrodynamics in Multiphase Trickle-Bed Reactors
NASA Astrophysics Data System (ADS)
Lopes, Rodrigo J. G.; Quinta-Ferreira, Rosa M.
2008-05-01
This study aims to incorporate most recent multiphase models in order to investigate the hydrodynamic behavior of a TBR in terms of pressure drop and liquid holdup. Taking into account transport phenomena such as mass and heat transfer, an Eulerian k-fluid model was developed resulting from the volume averaging of the continuity and momentum equations and solved for a 3D representation of the catalytic bed. Computational fluid dynamics (CFD) model predicts hydrodynamic parameters quite well if good closures for fluid/fluid and fluid/particle interactions are incorporated in the multiphase model. Moreover, catalytic performance is investigated with the catalytic wet oxidation of a phenolic pollutant.
Honzík, Petr; Podkovskiy, Alexey; Durand, Stéphane; Joly, Nicolas; Bruneau, Michel
2013-11-01
The main purpose of the paper is to contribute at presenting an analytical and a numerical modeling which would be relevant for interpreting the couplings between a circular membrane, a peripheral cavity having the same external radius as the membrane, and a thin air gap (with a geometrical discontinuity between them), and then to characterize small scale electrostatic receivers and to propose procedures that could be suitable for fitting adjustable parameters to achieve optimal behavior in terms of sensitivity and bandwidth expected. Therefore, comparison between these theoretical methods and characterization of several shapes is dealt with, which show that the models would be appropriate to address the design of such transducers.
Jonkman, J. M.; Sclavounos, P. D.
2006-01-01
Aeroelastic simulation tools are routinely used to design and analyze onshore wind turbines, in order to obtain cost effective machines that achieve favorable performance while maintaining structural integrity. These tools employ sophisticated models of wind-inflow; aerodynamic, gravitational, and inertial loading of the rotor, nacelle, and tower; elastic effects within and between components; and mechanical actuation and electrical responses of the generator and of control and protection systems. For offshore wind turbines, additional models of the hydrodynamic loading in regular and irregular seas, the dynamic coupling between the support platform motions and wind turbine motions, and the dynamic characterization of mooring systems for compliant floating platforms are also important. Hydrodynamic loading includes contributions from hydrostatics, wave radiation, and wave scattering, including free surface memory effects. The integration of all of these models into comprehensive simulation tools, capable of modeling the fully coupled aeroelastic and hydrodynamic responses of floating offshore wind turbines, is presented.
On the Possibility of a Hydrodynamic Model of the Electron
Pekeris, C. L.
1975-01-01
We explore the possibility that the mutual repulsive forces of a uniformly charged sphere could be kept in balance dynamically by a steady circulation of the material, which is assumed to be a nonconducting perfect fluid of uniform density. An exact solution is obtained of Maxwell's equations and of the hydrodynamic equations in the nonrelativistic approximation, which satisfies the boundary conditions on the surface of the sphere. In this solution all the components of the velocity and of the magnetic field are found to vanish on the surface, but not the electric field. The pressure can also be made to vanish on the surface, but in the interior it turns out to be negative, which makes the present solution unacceptable. PMID:16592245
Hydrodynamic radius fluctuations in model DNA-grafted nanoparticles
NASA Astrophysics Data System (ADS)
Vargas-Lara, Fernando; Starr, Francis W.; Douglas, Jack F.
2016-05-01
We utilize molecular dynamics simulations (MD) and the path-integration program ZENO to quantify hydrodynamic radius (Rh) fluctuations of spherical symmetric gold nanoparticles (NPs) decorated with single-stranded DNA chains (ssDNA). These results are relevant to understanding fluctuation-induced interactions among these NPs and macromolecules such as proteins. In particular, we explore the effect of varying the ssDNA-grafted NPs structural parameters, such as the chain length (L), chain persistence length (lp), NP core size (R), and the number of chains (N) attached to the nanoparticle core. We determine Rh fluctuations by calculating its standard deviation (σRh) of an ensemble of ssDNA-grafted NPs configurations generated by MD. For the parameter space explored in this manuscript, σR h shows a peak value as a function of N, the amplitude of which depends on L, lp and R, while the broadness depends on R.
Survey of Multi-Material Closure Models in 1D Lagrangian Hydrodynamics
Maeng, Jungyeoul Brad; Hyde, David Andrew Bulloch
2015-07-28
Accurately treating the coupled sub-cell thermodynamics of computational cells containing multiple materials is an inevitable problem in hydrodynamics simulations, whether due to initial configurations or evolutions of the materials and computational mesh. When solving the hydrodynamics equations within a multi-material cell, we make the assumption of a single velocity field for the entire computational domain, which necessitates the addition of a closure model to attempt to resolve the behavior of the multi-material cells’ constituents. In conjunction with a 1D Lagrangian hydrodynamics code, we present a variety of both the popular as well as more recently proposed multi-material closure models and survey their performances across a spectrum of examples. We consider standard verification tests as well as practical examples using combinations of fluid, solid, and composite constituents within multi-material mixtures. Our survey provides insights into the advantages and disadvantages of various multi-material closure models in different problem configurations.
Carrasco, B; García de la Torre, J
1999-01-01
The hydrodynamic properties of rigid particles are calculated from models composed of spherical elements (beads) using theories developed by Kirkwood, Bloomfield, and their coworkers. Bead models have usually been built in such a way that the beads fill the volume occupied by the particles. Sometimes the beads are few and of varying sizes (bead models in the strict sense), and other times there are many small beads (filling models). Because hydrodynamic friction takes place at the molecular surface, another possibility is to use shell models, as originally proposed by Bloomfield. In this work, we have developed procedures to build models of the various kinds, and we describe the theory and methods for calculating their hydrodynamic properties, including approximate methods that may be needed to treat models with a very large number of elements. By combining the various possibilities of model building and hydrodynamic calculation, several strategies can be designed. We have made a quantitative comparison of the performance of the various strategies by applying them to some test cases, for which the properties are known a priori. We provide guidelines and computational tools for bead modeling. PMID:10354430
USING TWO-DIMENSIONAL HYDRODYNAMIC MODELS AT SCALES OF ECOLOGICAL IMPORTANCE. (R825760)
Modeling of flow features that are important in assessing stream habitat conditions has been a long-standing interest of stream biologists. Recently, they have begun examining the usefulness of two-dimensional (2-D) hydrodynamic models in attaining this objective. Current modelin...
Hydrodynamic Modeling Analysis of Union Slough Restoration Project in Snohomish River, Washington
Yang, Zhaoqing; Wang, Taiping
2010-12-20
A modeling study was conducted to evaluate additional project design scenarios at the Union Slough restoration/mitigation site during low tide and to provide recommendations for finish-grade elevations to achieve desired drainage. This was accomplished using the Snohomish River hydrodynamic model developed previously by PNNL.
WASP4, a hydrodynamic and water-quality model - model theory, user's manual, and programmer's guide
Ambrose, R.B.; Wool, T.A.; Connolly, J.P.; Schanz, R.W.
1988-01-01
The Water Quality Analysis Simulation Program Version 4 (WASP4) is a dynamic compartment-modeling system that can be used to analyze a variety of water-quality problems in a diverse set of water bodies. WASP4 simulates the transport and transformation of conventional and toxic pollutants in the water column and benthos of ponds, streams, lakes, reservoirs, rivers, estuaries, and coastal waters. The WASP4 modeling system covers four major subjects--hydrodynamics, conservative mass transport, eutrophication-dissolved oxygen kinetics, and toxic chemical-sediment dynamics. The WASP4 modeling system consists of two stand-alone computer programs, DYNHYD4 and WASP4, that can be run in conjunction or separately. The hydrodynamic program, DYNHYD4, simulates the movement of water and the water quality program, WASP4, simulates the movement and interaction of pollutants within the water. The latter program is supplied with two kinetic submodels to simulate two of the major classes of water-quality problems--conventional pollution (dissolved oxygen, biochemical oxygen demand, nutrients, and eutrophication) and toxic pollution (organic chemicals, heavy metals, and sediment). The substitution of either sub-model constitutes the models EUTRO4 and TOXI4, respectively.
NASA Astrophysics Data System (ADS)
Kulikov, Igor; Chernykh, Igor; Tutukov, Alexander
2016-05-01
This paper presents a new hydrodynamic model of interacting galaxies based on the joint solution of multicomponent hydrodynamic equations, first moments of the collisionless Boltzmann equation and the Poisson equation for gravity. Using this model, it is possible to formulate a unified numerical method for solving hyperbolic equations. This numerical method has been implemented for hybrid supercomputers with Intel Xeon Phi accelerators. The collision of spiral and disk galaxies considering the star formation process, supernova feedback and molecular hydrogen formation is shown as a simulation result.
Wang, Yaohong; Sigurdsson, Jon Karl; Brandt, Erik; Atzberger, Paul J
2013-08-01
We introduce a thermostat based on fluctuating hydrodynamics for dynamic simulations of implicit-solvent coarse-grained models of lipid bilayer membranes. We show our fluctuating hydrodynamics approach captures interesting correlations in the dynamics of lipid bilayer membranes that are missing in simulations performed using standard Langevin dynamics. Our momentum conserving thermostat accounts for solvent-mediated momentum transfer by coupling coarse-grained degrees of freedom to stochastic continuum fields that account for both the solvent hydrodynamics and thermal fluctuations. We present both a general framework and specific methods to couple the particle and continuum degrees of freedom in a manner consistent with statistical mechanics and amenable to efficient computational simulation. For self-assembled vesicles, we study the diffusivity of lipids and their spatial correlations. We find the hydrodynamic coupling yields within the bilayer interesting correlations between diffusing lipids that manifest as a vortex-like structure similar to those observed in explicit-solvent simulations. We expect the introduced fluctuating hydrodynamics methods to provide a way to extend implicit-solvent models for use in a wide variety of dynamic studies.
NASA Astrophysics Data System (ADS)
Tian, Feng; Solomon, Stanley C.; Qian, Liying; Lei, Jiuhou; Roble, Raymond G.
2008-07-01
An electron transport/energy deposition model is expanded to include atomic nitrogen and is coupled with a 1-D hydrodynamic thermosphere model. The coupled model is used to investigate the response of the Earth's thermosphere under extreme solar EUV conditions and is compared with previous studies. It is found that (1) the parameterization of Swartz and Nisbet (1972) underestimates the ambient electron heating by photoelectrons significantly in the upper thermosphere of the Earth under conditions with greater than 3 times the present solar EUV irradiance; (2) the transition of the Earth's thermosphere from a hydrostatic equilibrium regime to a hydrodynamic regime occurs at a smaller solar EUV flux condition when enhanced, more realistic, and self-consistent, ambient electron heating by photoelectrons is accounted for; (3) atomic nitrogen becomes the dominant neutral species in the upper thermosphere (competing against atomic oxygen) under extreme solar EUV conditions, and the electron impact processes of atomic nitrogen are important for both the chemistry and energetics in the corresponding thermosphere/ionosphere; (4) N+ remains a minor ion compared to O+, even when atomic nitrogen dominates the exobase; and (5) adiabatic cooling does not play an important role in electron gas energy budget. These findings highlight the importance of an electron transport/energy deposition model when investigating the thermosphere and ionosphere of terrestrial planets in their early evolutionary stages.
Hydrodynamic interaction between two trapped swimming model micro-organisms.
Matas Navarro, R; Pagonabarraga, I
2010-09-01
We present a theoretical study of the behaviour of two active particles under the action of harmonic traps kept at a fixed distance away from each other. We classify the steady configurations the squirmers develop as a function of their self-propelling velocity and the active stresses the swimmers induce around them. We have further analyzed the stability of such configurations, and have found that the ratio between their self-propelling velocity and the apolar flow generated through active stresses determines whether collinear parallel squirmers or perpendicularly swimming particles moving away from each other are stable. Therefore, there is a close connection between the stable configurations and the active mechanisms leading to the particle self-propulsion. The trap potential does not affect the stability of the configurations; it only modifies some of their relevant time scales. We have also observed the development of characteristic frequencies which should be observable. Finally, we show that the development of the hydrodynamic flows induced by the active particles may be relevant even when its time scale orders of magnitude smaller than the other present characteristic time scales and may destabilize the stable configurations. PMID:20862597
Wright, B.L.; Alrick, K.R.; Fritz, J.N.
1994-05-01
Axisymmetric magnetic (ASM) gauges are useful diagnostic tools in the study of the conversion of energy from underground explosions to distant seismic signals. Requiring no external power, they measure the strength (particle velocity) of the emerging shock wave under conditions that would destroy most instrumentation. Shock pins are included with each gauge to determine the angle of the shock front. For the Non-Proliferation Experiment, two ASM gauges were installed in the ANFO mixture to monitor the detonation wave and 10 were grouted into boreholes at various ranges in the surrounding rock (10 to 64 m from the center of explosion). These gauges were of a standard 3.8-inch-diameter design. In addition, two unique Jumbo ASM gauges (3-ft by 3-ft in cross section) were grouted to the wall of a drift at a range of 65 m. We discuss issues encountered in data analysis, present the results of our measurements, and compare these results with those of model simulations of the experiment.
Multi-phase SPH modelling of violent hydrodynamics on GPUs
NASA Astrophysics Data System (ADS)
Mokos, Athanasios; Rogers, Benedict D.; Stansby, Peter K.; Domínguez, José M.
2015-11-01
This paper presents the acceleration of multi-phase smoothed particle hydrodynamics (SPH) using a graphics processing unit (GPU) enabling large numbers of particles (10-20 million) to be simulated on just a single GPU card. With novel hardware architectures such as a GPU, the optimum approach to implement a multi-phase scheme presents some new challenges. Many more particles must be included in the calculation and there are very different speeds of sound in each phase with the largest speed of sound determining the time step. This requires efficient computation. To take full advantage of the hardware acceleration provided by a single GPU for a multi-phase simulation, four different algorithms are investigated: conditional statements, binary operators, separate particle lists and an intermediate global function. Runtime results show that the optimum approach needs to employ separate cell and neighbour lists for each phase. The profiler shows that this approach leads to a reduction in both memory transactions and arithmetic operations giving significant runtime gains. The four different algorithms are compared to the efficiency of the optimised single-phase GPU code, DualSPHysics, for 2-D and 3-D simulations which indicate that the multi-phase functionality has a significant computational overhead. A comparison with an optimised CPU code shows a speed up of an order of magnitude over an OpenMP simulation with 8 threads and two orders of magnitude over a single thread simulation. A demonstration of the multi-phase SPH GPU code is provided by a 3-D dam break case impacting an obstacle. This shows better agreement with experimental results than an equivalent single-phase code. The multi-phase GPU code enables a convergence study to be undertaken on a single GPU with a large number of particles that otherwise would have required large high performance computing resources.
Stability analysis of the homogeneous hydrodynamics of a model for a confined granular gas.
Brey, J Javier; Buzón, V; García de Soria, M I; Maynar, P
2016-06-01
The linear hydrodynamic stability of a model for confined quasi-two-dimensional granular gases is analyzed. The system exhibits homogeneous hydrodynamics, i.e., there are macroscopic evolution equations for homogeneous states. The stability analysis is carried out around all these states and not only the homogeneous steady state reached eventually by the system. It is shown that in some cases the linear analysis is not enough to reach a definite conclusion on the stability, and molecular dynamics simulation results are presented to elucidate these cases. The analysis shows the relevance of nonlinear hydrodynamic contributions to describe the behavior of spontaneous fluctuations occurring in the system, that lead even to the transitory formation of clusters of particles. The conclusion is that the system is always stable. The relevance of the results for describing the instabilities of confined granular gases observed experimentally is discussed. PMID:27415347
Hydrodynamic modeling of an X-ray flare on Proxima Centauri observed by the Einstein telescope
Reale, F.; Peres, G.; Serio, S.; Rosner, R.; Schmitt, J.H.M.M.
1988-05-01
Hydrodynamic numerical calculations of a flare which occurred on Proxima Centauri and was observed by the Einstein satellite on August 20, 1980 at 12:50 UT are presented. The highlights of the hydrodynamic code are reviewed, and the physical and geometrical parameters necessary for the calculations are derived and compared with observations. The results are consistent with the stellar flare being caused by the rapid dissipation of 5.9 x 10 to the 31st ergs, within a magnetic loop structure whose semilength is 7 x 10 to the 9th cm and cross-sectional radius is 7.3 x 10 to the 8th cm. The results provide evidence that flares on late-type stars can be described by a hydrodynamic model with a relatively simple geometry, similar to solar compact flares. 39 references.
Understanding impacts of climate change on hydrodynamic processes and ecosystem response within the Great Lakes is an important and challenging task. Variability in future climate conditions, uncertainty in rainfall-runoff model forecasts, the potential for land use change, and t...
Hydrodynamic models of a Cepheid atmosphere. III - Line spectrum and radius determinations
NASA Technical Reports Server (NTRS)
Karp, A. H.
1975-01-01
Line profiles are computed on the basis of the moving atmospheres from the hydrodynamic models investigated by Karp (1975). It is found that the velocity gradients in the atmosphere can be used to explain the apparent, slightly supersonic microturbulence. The total observed microturbulence is seen to be consistent with the linear sum of the classical microturbulence and that caused by the velocity gradients.
HOW TO MODEL HYDRODYNAMICS AND RESIDENCE TIMES OF 27 ESTUARIES IN 4 MONTHS
The hydrodynamics and residence times of 27 embayments were modeled during the first year of a project whose goal is to define the relation between nitrogen loadings and ecological responses of 44 systems that range from small to the size of Narragansett Bay and Buzzards Bay. The...
ONE-DIMENSIONAL HYDRODYNAMIC/SEDIMENT TRANSPORT MODEL FOR STREAM NETWORKS: TECHNICAL REPORT
This technical report describes a new sediment transport model and the supporting post-processor, and sampling procedures for sediments in streams. Specifically, the following items are described herein:
EFDC1D - This is a new one-dimensional hydrodynamic and sediment tr...
Relativistic hydrodynamical model in the presence of long-range correlations
Osada, T.
2010-02-15
The effects of dynamical long-range correlations over a fluid cell-size scale on a relativistic fluid are discussed. It is shown that such correlations among the fluid elements introduced into the hydrodynamical model induce some weak dissipation and viscosity into the fluid. The influence of the long-range correlations on the entropy current is also discussed.
NASA Technical Reports Server (NTRS)
Capone, F. J.
1982-01-01
An investigation to determine the aeropropulsive characteristics of nonaxisymmetric nozzles on an F-18 jet effects model was conducted in the Langley 16-foot transonic tunnel and the AEDC 16-foot supersonic wind tunnel. The performance of a two dimensional convergent-divergent nozzle, a single expansion ramp nozzle, and a wedge nozzle was compared with that of the baseline axisymmetric nozzle. Test data were obtained at static conditions and at Mach numbers from 0.60 to 2.20 at an angle of attack of 0 deg. Nozzle pressure ratio was varied from jet-off to about 20.
NASA Technical Reports Server (NTRS)
Bui, Trong T.
1992-01-01
The implementation and validation of the Chien low Reynolds number k-epsilon turbulence model in the two dimensional axisymmetric version Proteus, a compressible Navier-Stokes computer code, are presented. The set of k-epsilon equations are solved by marching in time using a coupled alternating direction implicit (ADI) solution procedure with generalized first or second order time differencing. To validate Proteus and the k-epsilon turbulence model, laminar and turbulent computations were done for several benchmark test cases: incompressible fully developed 2-D channel flow; fully developed axisymmetric pipe flow; boundary layer flow over a flat plate; and turbulent Sajben subsonic transonic diffuser flows. Proteus results from these test cases showed good agreement with analytical results and experimental data. Detailed comparisons of both mean flow and turbulent quantities showed that the Chien k-epsilon turbulence model given good results over a wider range of turbulent flow than the Baldwin-Lomax turbulence model in the Proteus code with no significant CPU time penalty for more complicated flow cases.
NASA Astrophysics Data System (ADS)
Bui, Trong T.
1992-04-01
The implementation and validation of the Chien low Reynolds number k-epsilon turbulence model in the two dimensional axisymmetric version Proteus, a compressible Navier-Stokes computer code, are presented. The set of k-epsilon equations are solved by marching in time using a coupled alternating direction implicit (ADI) solution procedure with generalized first or second order time differencing. To validate Proteus and the k-epsilon turbulence model, laminar and turbulent computations were done for several benchmark test cases: incompressible fully developed 2-D channel flow; fully developed axisymmetric pipe flow; boundary layer flow over a flat plate; and turbulent Sajben subsonic transonic diffuser flows. Proteus results from these test cases showed good agreement with analytical results and experimental data. Detailed comparisons of both mean flow and turbulent quantities showed that the Chien k-epsilon turbulence model given good results over a wider range of turbulent flow than the Baldwin-Lomax turbulence model in the Proteus code with no significant CPU time penalty for more complicated flow cases.
Scaling tree-level hydrodynamics to plot-level hydrology using novel model and measurements
NASA Astrophysics Data System (ADS)
Bohrer, Gil; Matheny, Ashley; Mirfendersgi, Golnaz; Morin, Timothy; Fatichi, Simone
2016-04-01
Hydrodynamic limitations are driven by the water availability to leave of the individual tree crowns, and are known to control transpiration in forest ecosystems under both wet and dry conditions. Current land-surface models do not represent tree-level processes, nor do they represent the above-ground storage in trees. As the intra-daily dynamics of soil moisture are slower and very different than the faster dynamics of water storage in the tree xylem, the current approach that do not incorporate tree-water storage leads to deviations from the observed dynamics of transpiration. We propose a framework to resolve such tree hydrodynamics. The FETCH2 model resolves the water flow, water potential, and water storage in the tree stem and realistically links stomatal conductance to the water potential in the xylem, while water availability in the soil provides a bottom boundary condition for the hydrodynamic system. We use data from a large scale ecological disturbance experiment at a forest in Michigan to validate this approach. We use a very large array of sap-flow sensors in a plot with eddy-covariance measurements to parameterize the model at both tree-scale and plot scale. We demonstrate novel approaches to continuously measure tree water storage, and to evaluate tree-level hydrodynamic traits that control the ecohydrological response of the plot to water stress and disturbance.
A comparison of two finite element models of tidal hydrodynamics using a North Sea data set
Walters, R.A.; Werner, F.E.
1989-01-01
Using the region of the English Channel and the southern bight of the North Sea, we systematically compare the results of two independent finite element models of tidal hydrodynamics. The model intercomparison provides a means for increasing our understanding of the relevant physical processes in the region in question as well as a means for the evaluation of certain algorithmic procedures of the two models. ?? 1989.
Blow-up of the smooth solution to quantum hydrodynamic models in Rd
NASA Astrophysics Data System (ADS)
Guo, Boling; Wang, Guangwu
2016-10-01
In this paper we firstly investigate the local-in-time existence of smooth solution for the quantum hydrodynamic models (QHD) in Rd. Then we prove that any smooth solution of the QHD model which satisfies suitable conditions will blow up in finite time. The model can be derived from nonlinear Schrödinger equation by a Madelung transformation. The main idea is based on the construction of approximate solution and energy inequality.
NASA Astrophysics Data System (ADS)
Taylor, Anthony G.; Craggs, Anthony
1995-09-01
A finite element model of a rotor-bearing system with non-axisymmetric stiffness and mass properties was analyzed in a previous study. In this paper the model is extended to include the effects of external damping due to symmetrical tilting-pad bearings. The same instability mechanisms, due to the lack of axisymmetry and shear deflection occurred in the damped case as for the undamped case, but within the normal operating speed of typical industrial rotor systems, a quite high degree of asymmetry is necessary. A ratio of the difference in a diametral second moments of area to mean diametral second moment of area, greater than 0.3 is necessary for instability for the configuration modelled. The instabilities involving antisymmetric modes in the undamped case are not present in the damped case. The first backward mode is involved in the instabilities of most practical interest. The effect of internal damping is also examined for an axisymmetric rotor and the behaviour, involving instability of the first forward mode, compares well with purely analytical methods for simple rotors.
A linked hydrodynamic and water quality model for the Salton Sea
Chung, E.G.; Schladow, S.G.; Perez-Losada, J.; Robertson, D.M.
2008-01-01
A linked hydrodynamic and water quality model was developed and applied to the Salton Sea. The hydrodynamic component is based on the one-dimensional numerical model, DLM. The water quality model is based on a new conceptual model for nutrient cycling in the Sea, and simulates temperature, total suspended sediment concentration, nutrient concentrations, including PO4-3, NO3-1 and NH4+1, DO concentration and chlorophyll a concentration as functions of depth and time. Existing water temperature data from 1997 were used to verify that the model could accurately represent the onset and breakup of thermal stratification. 1999 is the only year with a near-complete dataset for water quality variables for the Salton Sea. The linked hydrodynamic and water quality model was run for 1999, and by adjustment of rate coefficients and other water quality parameters, a good match with the data was obtained. In this article, the model is fully described and the model results for reductions in external phosphorus load on chlorophyll a distribution are presented. ?? 2008 Springer Science+Business Media B.V.
Yang, Zhaoqing; Liu, Hedong; Khangaonkar, Tarang P.
2006-08-03
The Skagit River is the largest river in the Puget Sound estuarine system. It discharges about 39% of total sediment and more than 20% of freshwater into Puget Sound. The Skagit River delta provides rich estuarine and freshwater habitats for salmon and many other wildlife species. Over the past 150 years, economic development in the Skagit River delta has resulted in significant losses of wildlife habitat, particularly due to construction of dikes. Diked portion of the delta is known as Fir Island where irrigation practices for agriculture land over the last century has resulted in land subsidence. This has also caused reduced efficiency of drainage network and impeded fish passages through the area. In this study, a three-dimensional tidal circulation model was developed for the Skagit River delta to assist estuarine restoration in the Fir Island area. The hydrodynamic model used in the study is the Finite Volume Coastal Ocean Model (FVCOM). The hydrodynamic model was calibrated using field data collected from the study area specifically for the model development. Wetting and drying processes in the estuarine delta are simulated in the hydrodynamic model. The calibrated model was applied to simulate different restoration alternatives and provide guidance for estuarine restoration and management. Specifically, the model was used to help select and design configurations that would improve the supply of sediment and freshwater to the mudflats and tidal marsh areas outside of diked regions and then improve the estuarine habitats for salmon migration.
Modeling partially coupled objects with smooth particle hydrodynamics
Wingate, C.A.
1996-10-01
A very simple phenomenological model is presented to model objects that are partially coupled (i.e. welded or bonded) where usually the coupled interface is weaker than the bulk material. The model works by letting objects fully interact in compression and having the objects only partially interact in tension. A disconnect factor is provided to adjust the tensile interaction to simulate coupling strengths. Three cases of an example impact calculation are shown-no coupling, full coupling and partial coupling.
NASA Astrophysics Data System (ADS)
Centeno, Felipe Roman; Brittes, Rogério; França, Francis. H. R.; Ezekoye, Ofodike A.
2015-05-01
The weighted-sum-of-gray-gases (WSGG) model is widely used in engineering computations of radiative heat transfer due to its relative simplicity, robustness and flexibility. This paper presents the computation of radiative heat transfer in a 2D axisymmetric chamber using two WSGG models to compute radiation in H2O and CO2 mixtures. The first model considers a fixed ratio between the molar concentrations of H2O and CO2, while the second allows the solution for arbitrary ratios. The correlations for both models are based on the HITEMP2010 database. The test case considers typical conditions found in turbulent methane flames, with steep variations in the temperature field as well as in the molar concentrations of the participating species. To assess the accuracy of the WSGG model, the results are compared with a solution obtained by line-by-line integration (LBL) of the spectrum.
Uncertainty Analysis and Parameter Estimation For Nearshore Hydrodynamic Models
NASA Astrophysics Data System (ADS)
Ardani, S.; Kaihatu, J. M.
2012-12-01
Numerical models represent deterministic approaches used for the relevant physical processes in the nearshore. Complexity of the physics of the model and uncertainty involved in the model inputs compel us to apply a stochastic approach to analyze the robustness of the model. The Bayesian inverse problem is one powerful way to estimate the important input model parameters (determined by apriori sensitivity analysis) and can be used for uncertainty analysis of the outputs. Bayesian techniques can be used to find the range of most probable parameters based on the probability of the observed data and the residual errors. In this study, the effect of input data involving lateral (Neumann) boundary conditions, bathymetry and off-shore wave conditions on nearshore numerical models are considered. Monte Carlo simulation is applied to a deterministic numerical model (the Delft3D modeling suite for coupled waves and flow) for the resulting uncertainty analysis of the outputs (wave height, flow velocity, mean sea level and etc.). Uncertainty analysis of outputs is performed by random sampling from the input probability distribution functions and running the model as required until convergence to the consistent results is achieved. The case study used in this analysis is the Duck94 experiment, which was conducted at the U.S. Army Field Research Facility at Duck, North Carolina, USA in the fall of 1994. The joint probability of model parameters relevant for the Duck94 experiments will be found using the Bayesian approach. We will further show that, by using Bayesian techniques to estimate the optimized model parameters as inputs and applying them for uncertainty analysis, we can obtain more consistent results than using the prior information for input data which means that the variation of the uncertain parameter will be decreased and the probability of the observed data will improve as well. Keywords: Monte Carlo Simulation, Delft3D, uncertainty analysis, Bayesian techniques
A Hydrodynamic Model of The Human Leg Circulation.
ERIC Educational Resources Information Center
Klabunde, Richard E.; McDowell, Donald E.
1984-01-01
Describes the construction and use of a life-size model which shows blood flow under normal and pathological conditions. Four experimental procedures (single vessel occlusion, dilation of distal vascular bed, single artery stenosis, and multiple artery stenoses) typical of those demonstrated by the model are discussed and diagrammed. (DH)
NASA Astrophysics Data System (ADS)
Tartakovsky, Alexandre M.; Panchenko, Alexander
2016-01-01
We present a novel formulation of the Pairwise Force Smoothed Particle Hydrodynamics (PF-SPH) model and use it to simulate two- and three-phase flows in bounded domains. In the PF-SPH model, the Navier-Stokes equations are discretized with the Smoothed Particle Hydrodynamics (SPH) method, and the Young-Laplace boundary condition at the fluid-fluid interface and the Young boundary condition at the fluid-fluid-solid interface are replaced with pairwise forces added into the Navier-Stokes equations. We derive a relationship between the parameters in the pairwise forces and the surface tension and static contact angle. Next, we demonstrate the model's accuracy under static and dynamic conditions. Finally, we use the Pf-SPH model to simulate three phase flow in a porous medium.
Samadi-Dooki, Aref; Shodja, Hossein M; Malekmotiei, Leila
2015-05-14
In this paper an analytical approach to study the effect of the substrate physical properties on the kinetics of adhesion and motility behavior of cells is presented. Cell adhesion is mediated by the binding of cell wall receptors and substrate's complementary ligands, and tight adhesion is accomplished by the recruitment of the cell wall binders to the adhesion zone. The binders' movement is modeled as their axisymmetric diffusion in the fluid-like cell membrane. In order to preserve the thermodynamic consistency, the energy balance for the cell-substrate interaction is imposed on the diffusion equation. Solving the axisymmetric diffusion-energy balance coupled equations, it turns out that the physical properties of the substrate (substrate's ligand spacing and stiffness) have considerable effects on the cell adhesion and motility kinetics. For a rigid substrate with uniform distribution of immobile ligands, the maximum ligand spacing which does not interrupt adhesion growth is found to be about 57 nm. It is also found that as a consequence of the reduction in the energy dissipation in the isolated adhesion system, cell adhesion is facilitated by increasing substrate's stiffness. Moreover, the directional movement of cells on a substrate with gradients in mechanical compliance is explored with an extension of the adhesion formulation. It is shown that cells tend to move from soft to stiff regions of the substrate, but their movement is decelerated as the stiffness of the substrate increases. These findings based on the proposed theoretical model are in excellent agreement with the previous experimental observations.
Dynamically Coupled Food-web and Hydrodynamic Modeling with ADH-CASM
NASA Astrophysics Data System (ADS)
Piercy, C.; Swannack, T. M.
2012-12-01
Oysters and freshwater mussels are "ecological engineers," modifying the local water quality by filtering zooplankton and other suspended particulate matter from the water column and flow hydraulics by impinging on the near-bed flow environment. The success of sessile, benthic invertebrates such as oysters depends on environmental factors including but not limited to temperature, salinity, and flow regime. Typically food-web and other types of ecological models use flow and water quality data as direct input without regard to the feedback between the ecosystem and the physical environment. The USACE-ERDC has developed a coupled hydrodynamic-ecological modeling approach that dynamically couples a 2-D hydrodynamic and constituent transport model, Adaptive Hydraulics (ADH), with a bioenergetics food-web model, the Comprehensive Aquatics Systems Model (CASM), which captures the dynamic feedback between aquatic ecological systems and the environment. We present modeling results from restored oyster reefs in the Great Wicomico River on the western shore of the Chesapeake Bay, which quantify ecosystem services such as the influence of the benthic ecosystem on water quality. Preliminary results indicate that while the influence of oyster reefs on bulk flow dynamics is limited due to the localized influence of oyster reefs, large reefs and the associated benthic ecosystem can create measurable changes in the concentrations of nitrogen, phosphorus, and carbon in the areas around reefs. We also present a sensitivity analysis to quantify the relative sensitivity of the coupled ADH-CASM model to both hydrodynamic and ecological parameter choice.
THE HYDRODYNAMICAL MODELS OF THE COMETARY COMPACT H ii REGION
Zhu, Feng-Yao; Zhu, Qing-Feng; Li, Juan; Wang, Jun-Zhi; Zhang, Jiang-Shui E-mail: zhuqf@ustc.edu.cn E-mail: jzwang@shao.ac.cn
2015-10-10
We have developed a full numerical method to study the gas dynamics of cometary ultracompact H ii regions, and associated photodissociation regions (PDRs). The bow-shock and champagne-flow models with a 40.9/21.9 M{sub ⊙} star are simulated. In the bow-shock models, the massive star is assumed to move through dense (n = 8000 cm{sup −3}) molecular material with a stellar velocity of 15 km s{sup −1}. In the champagne-flow models, an exponential distribution of density with a scale height of 0.2 pc is assumed. The profiles of the [Ne ii] 12.81 μm and H{sub 2} S(2) lines from the ionized regions and PDRs are compared for two sets of models. In champagne-flow models, emission lines from the ionized gas clearly show the effect of acceleration along the direction toward the tail due to the density gradient. The kinematics of the molecular gas inside the dense shell are mainly due to the expansion of the H ii region. However, in bow-shock models the ionized gas mainly moves in the same direction as the stellar motion. The kinematics of the molecular gas inside the dense shell simply reflects the motion of the dense shell with respect to the star. These differences can be used to distinguish two sets of models.
Hydrodynamic modeling of laser interaction with micro-structured targets
NASA Astrophysics Data System (ADS)
Velechovsky, J.; Limpouch, J.; Liska, R.; Tikhonchuk, V.
2016-09-01
A model is developed for numerical simulations of laser absorption in plasmas made of porous materials, with particular interest in low-density foams. Laser absorption is treated on two spatial scales simultaneously. At the microscale, the expansion of a thin solid pore wall is modeled in one dimension and the information obtained is used in the macroscale fluid simulations for the description of the plasma homogenization behind the ionization front. This two-scale laser absorption model is implemented in the arbitrary Lagrangian–Eulerian hydrocode PALE. The numerical simulations of laser penetration into low-density foams compare favorably with published experimental data.
One-dimensional hydrodynamic model generating a turbulent cascade.
Matsumoto, Takeshi; Sakajo, Takashi
2016-05-01
As a minimal mathematical model generating cascade analogous to that of the Navier-Stokes turbulence in the inertial range, we propose a one-dimensional partial-differential-equation model that conserves the integral of the squared vorticity analog (enstrophy) in the inviscid case. With a large-scale random forcing and small viscosity, we find numerically that the model exhibits the enstrophy cascade, the broad energy spectrum with a sizable correction to the dimensional-analysis prediction, peculiar intermittency, and self-similarity in the dynamical system structure. PMID:27300972
Comparison for non-local hydrodynamic thermal conduction models
Marocchino, A.; Atzeni, S.; Schiavi, A.; Tzoufras, M.; Nicolaie, Ph. D.; Mallet, J.; Tikhonchuk, V.; Feugeas, J.-L.
2013-02-15
Inertial confinement fusion and specifically shock ignition involve temperatures and temperature gradients for which the classical Spitzer-Haerm thermal conduction breaks down and a non-local operator is required. In this article, two non-local electron thermal conduction models are tested against kinetic Vlasov-Fokker-Planck simulations. Both models are shown to reproduce the main features of thermal heat front propagation at kinetic timescales. The reduction of the thermal conductivity as a function of the scalelength of the temperature gradient is also recovered. Comparisons at nanosecond timescales show that the models agree on the propagation velocity of the heat front, but major differences appear in the thermal precursor.
Hydrodynamic modeling of laser interaction with micro-structured targets
Velechovsky, Jan; Limpouch, Jiri; Liska, Richard; Tikhonchuk, Vladimir
2016-08-03
A model is developed for numerical simulations of laser absorption in plasmas made of porous materials, with particular interest in low-density foams. Laser absorption is treated on two spatial scales simultaneously. At the microscale, the expansion of a thin solid pore wall is modeled in one dimension and the information obtained is used in the macroscale fluid simulations for the description of the plasma homogenization behind the ionization front. This two-scale laser absorption model is implemented in the arbitrary Lagrangian–Eulerian hydrocode PALE. In conclusion, the numerical simulations of laser penetration into low-density foams compare favorably with published experimental data.
Hydrodynamic modeling of laser interaction with micro-structured targets
NASA Astrophysics Data System (ADS)
Velechovsky, J.; Limpouch, J.; Liska, R.; Tikhonchuk, V.
2016-09-01
A model is developed for numerical simulations of laser absorption in plasmas made of porous materials, with particular interest in low-density foams. Laser absorption is treated on two spatial scales simultaneously. At the microscale, the expansion of a thin solid pore wall is modeled in one dimension and the information obtained is used in the macroscale fluid simulations for the description of the plasma homogenization behind the ionization front. This two-scale laser absorption model is implemented in the arbitrary Lagrangian-Eulerian hydrocode PALE. The numerical simulations of laser penetration into low-density foams compare favorably with published experimental data.
A Modeling Study of Hydrodynamic Circulation in a Fjord of the Pacific Northwest
Wang, Taiping; Yang, Zhaoqing
2012-10-01
Increased eutrophication and degraded water quality in estuarine and coastal waters have been a worldwide environmental concern. While it is commonly accepted that anthropogenic impact plays a major role in many emerging water quality issues, natural conditions such as restricted water circulations controlled by geometry may also substantially contribute to unfavorable water quality in certain ecosystems. To elucidate the contributions from different factors, a hydrodynamic-water quality model that integrates both physical transport and pollutant loadings is particularly warranted. A preliminary modeling study using the Environmental Fluid Dynamic Code (EFDC) is conducted to investigate hydrodynamic circulation and low dissolved oxygen (DO) in Hood Canal, a representative fjord in the U.S. Pacific Northwest. Because the water quality modeling work is still ongoing, this paper focuses on the progress in hydrodynamic modeling component. The hydrodynamic model has been set up using the publicly available forcing data and was calibrated against field observations or NOAA predictions for tidal elevation, current, salinity and temperature. The calibrated model was also used to estimate physical transport timescales such as residence time in the estuary. The preliminary model results demonstrate that the EFDC Hood Canal model is capable of capturing the general circulation patterns in Hood Canal, including weak tidal current and strong vertical stratification. The long residence time (i.e., on the order of 100 days for the entire estuary) also indicates that restricted water circulation could contribute to low DO in the estuary and also makes the system especially susceptible to anthropogenic disturbance, such as excess nutrient input.
Fractal hydrodynamic model of high-fluence laser ablation plasma expansion
Agop, M.; Nica, P.; Gurlui, S.; Focsa, C.
2010-10-08
Optical/electrical characterization of transient plasmas generated by high-fluence (up to 1 kJ/cm{sup 2}) laser ablation of various targets revealed as a general feature the splitting of the plume in two structures. In order to account for this behavior, a new fractal hydrodynamic model has been developed in a non-differentiable space-time. The model successfully retrieves the kinetics of the two structures.
Development and evaluation of a coupled hydrodynamic (FVCOM) and water quality model (CE-QUAL-ICM)
Kim, Taeyun; Labiosa, Rochelle G.; Khangaonkar, Tarang; Yang, Zhaoqing; Chen, Changsheng; Qi, Jianhua; Cerco, Carl
2010-01-08
Recent and frequent fish-kills in waters otherwise known for their pristine high quality, created increased awareness and urgent concern regarding potential for degradation of water quality in Puget Sound through coastal eutrophication caused by increased nutrient loading. Following a detailed review of leading models and tools available in public domain, FVCOM and CE-QUAL-ICM models were selected to conduct hydrodynamic and water quality simulations for the fjordal waters of Puget Sound.
Gidaspow, D.
1996-04-01
The objective of this investigation is to convert our ``learning gas solid-liquid`` fluidization model into a predictive design model. The IIT hydrodynamic model computes the phase velocities and the volume fractions of gas, liquid and particulate phase. Model verification involves a comparison of these computed velocities and volume fractions to experimental values. A hydrodynamic model for multiphase flows, based on the principles of mass, momentum and energy conservation for each phase, was developed and applied to model gas-liquid, gas-liquid-solid fluidization and gas-solid-solid separation. To simulate the industrial slurry bubble column reactors, a computer program based on the hydrodynamic model was written with modules for chemical reactions (e.g. the synthesis of methanol), phase changes and heat exchangers. In the simulations of gas-liquid two phases flow system, the gas hold-ups, computed with a variety of operating conditions such as temperature, pressure, gas and liquid velocities, agree well with the measurements obtained at Air Products` pilot plant. The hydrodynamic model has more flexible features than the previous empirical correlations in predicting the gas hold-up of gas-liquid two-phase flow systems. In the simulations of gas-liquid-solid bubble column reactors with and without slurry circulation, the code computes volume fractions, temperatures and velocity distributions for the gas, the liquid and the solid phases, as well as concentration distributions for the species (CO, H{sub 2}, CH{sub 3}0H, ... ), after startup from a certain initial state. A kinetic theory approach is used to compute a solid viscosity due to particle collisions. Solid motion and gas-liquid-solid mixing are observed on a color PCSHOW movie made from computed time series data. The steady state and time average catalyst concentration profiles, the slurry height and the rates of methanol production agree well with the measurements obtained at an Air Products` pilot plant.
Hydrodynamic Instability in an Extended Landau/Levich Model of Liquid-Propellant Combustion
NASA Technical Reports Server (NTRS)
Margolis, Stephen B.; Sackesteder, Kurt (Technical Monitor)
1998-01-01
The classical Landau/Levich models of liquid propellant combustion, which serve as seminal examples of hydrodynamic instability in reactive systems, have been combined and extended to account for a dynamic dependence, absent in the original formulations, of the local burning rate on the local pressure and/or temperature fields. The resulting model admits an extremely rich variety of both hydrodynamic and reactive/diffusive instabilities that can be analyzed in various limiting parameter regimes. In the present work, a formal asymptotic analysis, based on the realistic smallness of the gas-to-liquid density ratio, is developed to investigate the combined effects of gravity, surface tension and viscosity on the hydrodynamic instability of the propagating liquid/gas interface. In particular, a composite asymptotic expression, spanning three distinguished wavenumber regimes, is derived for both cellular and pulsating hydrodynamic neutral stability boundaries A(sub p)(k), where A(sub p) is the pressure sensitivity of the burning rate and k is the disturbance wavenumber. For the case of cellular (Landau) instability, the results demonstrate explicitly the stabilizing effect of gravity on long-wave disturbances, the stabilizing effect of viscosity and surface tension on short-wave perturbations, and the instability associated with intermediate wavenumbers for critical negative values of A(sub p). In the limiting case of weak gravity, it is shown that cellular hydrodynamic instability in this context is a long-wave instability phenomenon, whereas at normal gravity, this instability is first manifested through O(l) wavenumber disturbances. It is also demonstrated that, in the large wavenumber regime, surface tension and both liquid and gas viscosity all produce comparable stabilizing effects in the large-wavenumber regime, thereby providing significant modifications to previous analyses of Landau instability in which one or more of these effects were neglected. In contrast
Hydrodynamics for a model of a confined quasi-two-dimensional granular gas
NASA Astrophysics Data System (ADS)
Brey, J. Javier; Buzón, V.; Maynar, P.; García de Soria, M. I.
2015-05-01
The hydrodynamic equations for a model of a confined quasi-two-dimensional gas of smooth inelastic hard spheres are derived from the Boltzmann equation for the model, using a generalization of the Chapman-Enskog method. The heat and momentum fluxes are calculated to Navier-Stokes order, and the associated transport coefficients are explicitly determined as functions of the coefficient of normal restitution and the velocity parameter involved in the definition of the model. Also an Euler transport term contributing to the energy transport equation is considered. This term arises from the gradient expansion of the rate of change of the temperature due to the inelasticity of collisions, and it vanishes for elastic systems. The hydrodynamic equations are particularized for the relevant case of a system in the homogeneous steady state. The relationship with previous works is analyzed.
Interfacial friction based quasi-continuum hydrodynamical model for nanofluidic transport of water.
Bhadauria, Ravi; Sanghi, Tarun; Aluru, N R
2015-11-01
In this work, we formulate a one-dimensional isothermal hydrodynamic transport model for water, which is an extension to our recently proposed hydrodynamic model for Lennard-Jones type fluid [R. Bhadauria and N. R. Aluru, J. Chem. Phys. 139, 074109 (2013)]. Viscosity variations in confinement are incorporated by the local average density method. Dirichlet boundary conditions are provided in the form of slip velocity that depends upon the macroscopic interfacial friction coefficient. The value of this friction coefficient is computed using a novel generalized Langevin equation formulation that eliminates the use of equilibrium molecular dynamics simulation. Gravity driven flows of SPC/E water confined between graphene and silicon slit shaped nanochannels are considered as examples for low and high friction cases. The proposed model yields good quantitative agreement with the velocity profiles obtained from non-equilibrium molecular dynamics simulations. PMID:26547177
Modeling the coupling of reaction kinetics and hydrodynamics in a collapsing cavity
Mishra, Sudib; Deymier, Pierre; Muralidharan, Krishna; Frantziskonis, G.; Pannala, Sreekanth; Simunovic, Srdjan
2010-01-01
We introduce a model of cavitation based on the multiphase Lattice Boltzmann method (LBM) that allows for coupling between the hydrodynamics of a collapsing cavity and supported solute chemical species. We demonstrate that this model can also be coupled to deterministic or stochastic chemical reactions. In a two-species model of chemical reactions (with a major and a minor specie), the major difference observed between the deterministic and stochastic reactions takes the form of random fluctuations in concentration of the minor species. We demonstrate that advection associated with the hydrodynamics of a collapsing cavity leads to highly inhomogeneous concentration of solutes. In turn these inhomogeneities in concentration may lead to significant increase in concentration-dependent reaction rates and can result in a local enhancement in the production of minor species.
Interfacial friction based quasi-continuum hydrodynamical model for nanofluidic transport of water.
Bhadauria, Ravi; Sanghi, Tarun; Aluru, N R
2015-11-01
In this work, we formulate a one-dimensional isothermal hydrodynamic transport model for water, which is an extension to our recently proposed hydrodynamic model for Lennard-Jones type fluid [R. Bhadauria and N. R. Aluru, J. Chem. Phys. 139, 074109 (2013)]. Viscosity variations in confinement are incorporated by the local average density method. Dirichlet boundary conditions are provided in the form of slip velocity that depends upon the macroscopic interfacial friction coefficient. The value of this friction coefficient is computed using a novel generalized Langevin equation formulation that eliminates the use of equilibrium molecular dynamics simulation. Gravity driven flows of SPC/E water confined between graphene and silicon slit shaped nanochannels are considered as examples for low and high friction cases. The proposed model yields good quantitative agreement with the velocity profiles obtained from non-equilibrium molecular dynamics simulations.
Interfacial friction based quasi-continuum hydrodynamical model for nanofluidic transport of water
NASA Astrophysics Data System (ADS)
Bhadauria, Ravi; Sanghi, Tarun; Aluru, N. R.
2015-11-01
In this work, we formulate a one-dimensional isothermal hydrodynamic transport model for water, which is an extension to our recently proposed hydrodynamic model for Lennard-Jones type fluid [R. Bhadauria and N. R. Aluru, J. Chem. Phys. 139, 074109 (2013)]. Viscosity variations in confinement are incorporated by the local average density method. Dirichlet boundary conditions are provided in the form of slip velocity that depends upon the macroscopic interfacial friction coefficient. The value of this friction coefficient is computed using a novel generalized Langevin equation formulation that eliminates the use of equilibrium molecular dynamics simulation. Gravity driven flows of SPC/E water confined between graphene and silicon slit shaped nanochannels are considered as examples for low and high friction cases. The proposed model yields good quantitative agreement with the velocity profiles obtained from non-equilibrium molecular dynamics simulations.
Reshocks, rarefactions, and the generalized Layzer model for hydrodynamic instabilities
Mikaelian, K O
2008-06-10
We report numerical simulations and analytic modeling of shock tube experiments on Rayleigh-Taylor and Richtmyer-Meshkov instabilities. We examine single interfaces of the type A/B where the incident shock is initiated in A and the transmitted shock proceeds into B. Examples are He/air and air/He. In addition, we study finite-thickness or double-interface A/B/A configurations like air/SF{sub 6}/air gas-curtain experiments. We first consider conventional shock tubes that have a 'fixed' boundary: A solid endwall which reflects the transmitted shock and reshocks the interface(s). Then we focus on new experiments with a 'free' boundary--a membrane disrupted mechanically or by the transmitted shock, sending back a rarefaction towards the interface(s). Complex acceleration histories are achieved, relevant for Inertial Confinement Fusion implosions. We compare our simulation results with a generalized Layzer model for two fluids with time-dependent densities, and derive a new freeze-out condition whereby accelerating and compressive forces cancel each other out. Except for the recently reported failures of the Layzer model, the generalized Layzer model and hydrocode simulations for reshocks and rarefactions agree well with each other, and remain to be verified experimentally.
Hydrodynamic Modelling and Experimental Analysis of FE-DMFC Stacks
NASA Astrophysics Data System (ADS)
Kablou, Yashar
Direct methanol fuel cells (DMFCs) present some unique features such as having liquid fuel, quick refueling process, compact design and high energy density. These characteristics make them incredibly suitable as a promising power source for portable electronic applications, such as cell phones or laptop computers. Despite of these positive aspects, the commercial development of DMFCs has nevertheless been hindered by some important issues such as, carbon dioxide formation at the anode compartment and, methanol crossover through the membrane. Many researchers have tried to model the two-phase flow behavior inside the DMFC anode compartment using the "homogenous flow modelling" approach, which has proven to be inaccurate specially when dealing with DMFC stacks. On the other hand, several strategies to prevent methanol crossover have been suggested in the literature, including the use of a flowing electrolyte between the DMFC anode and cathode compartments. Preliminary tests on flowing electrolyte direct methanol fuel cells (FE-DMFCs) have shown promising results; however, further investigation should be carried out on the stack level. In the first part of this study, a quasi two-dimensional numerical model was developed, to predict the two-phase flow behavior within the DMFC anode compartment, both in single cell and stack levels. Various types of flow modelling approaches and void fraction correlations were utilized to estimate the pressure drop across the anode compartment. It was found that the "separated flow modelling" approach, as well as CISE correlation for void fraction (developed at the CISE labs in Milan), yield the best results. In the second part, a five-cell FE-DMFC stack unit with a parallel serpentine flow bed design and U-type manifold configuration, was developed and tested at various operating conditions. It was found that, the flowing electrolyte effectively reduced methanol crossover and, improved the stack performance.
Yang, Zhaoqing; Khangaonkar, Tarang; Wang, Taiping
2010-08-01
In this report we describe the 1) the expansion of the PNNL hydrodynamic model domain to include the continental shelf along the coasts of Washington, Oregon, and Vancouver Island; and 2) the approach and progress in developing the online/Internet disseminations of model results and outreach efforts in support of the Puget Sound Operational Forecast System (PS-OPF). Submittal of this report completes the work on Task 2.1.2, Effects of Physical Systems, Subtask 2.1.2.1, Hydrodynamics, for fiscal year 2010 of the Environmental Effects of Marine and Hydrokinetic Energy project.
Torak, L.J.
1993-01-01
A MODular, Finite-Element digital-computer program (MODFE) was developed to simulate steady or unsteady-state, two-dimensional or axisymmetric ground-water flow. Geometric- and hydrologic-aquifer characteristics in two spatial dimensions are represented by triangular finite elements and linear basis functions; one-dimensional finite elements and linear basis functions represent time. Finite-element matrix equations are solved by the direct symmetric-Doolittle method or the iterative modified, incomplete-Cholesky, conjugate-gradient method. Physical processes that can be represented by the model include (1) confined flow, unconfined flow (using the Dupuit approximation), or a combination of both; (2) leakage through either rigid or elastic confining beds; (3) specified recharge or discharge at points, along lines, and over areas; (4) flow across specified-flow, specified-head, or bead-dependent boundaries; (5) decrease of aquifer thickness to zero under extreme water-table decline and increase of aquifer thickness from zero as the water table rises; and (6) head-dependent fluxes from springs, drainage wells, leakage across riverbeds or confining beds combined with aquifer dewatering, and evapotranspiration. The report describes procedures for applying MODFE to ground-water-flow problems, simulation capabilities, and data preparation. Guidelines for designing the finite-element mesh and for node numbering and determining band widths are given. Tables are given that reference simulation capabilities to specific versions of MODFE. Examples of data input and model output for different versions of MODFE are provided.
The application of single particle hydrodynamics in continuum models of multiphase flow
NASA Technical Reports Server (NTRS)
Decker, Rand
1988-01-01
A review of the application of single particle hydrodynamics in models for the exchange of interphase momentum in continuum models of multiphase flow is presented. Considered are the equations of motion for a laminar, mechanical two phase flow. Inherent to this theory is a model for the interphase exchange of momentum due to drag between the dispersed particulate and continuous fluid phases. In addition, applications of two phase flow theory to de-mixing flows require the modeling of interphase momentum exchange due to lift forces. The applications of single particle analysis in deriving models for drag and lift are examined.
A simple hydrodynamic model of tornado-like vortices
NASA Astrophysics Data System (ADS)
Kurgansky, M. V.
2015-05-01
Based on similarity arguments, a simple fluid dynamic model of tornado-like vortices is offered that, with account for "vortex breakdown" at a certain height above the ground, relates the maximal azimuthal velocity in the vortex, reachable near the ground surface, to the convective available potential energy (CAPE) stored in the environmental atmosphere under pre-tornado conditions. The relative proportion of the helicity (kinetic energy) destruction (dissipation) in the "vortex breakdown" zone and, accordingly, within the surface boundary layer beneath the vortex is evaluated. These considerations form the basis of the dynamic-statistical analysis of the relationship between the tornado intensity and the CAPE budget in the surrounding atmosphere.
Buchanan, Cara; Rylander, Marissa Nichole
2013-08-01
The integration of tissue engineering strategies with microfluidic technologies has enabled the design of in vitro microfluidic culture models that better adapt to morphological changes in tissue structure and function over time. These biomimetic microfluidic scaffolds accurately mimic native 3D microenvironments, as well as permit precise and simultaneous control of chemical gradients, hydrodynamic stresses, and cellular niches within the system. The recent application of microfluidic in vitro culture models to cancer research offers enormous potential to aid in the development of improved therapeutic strategies by supporting the investigation of tumor angiogenesis and metastasis under physiologically relevant flow conditions. The intrinsic material properties and fluid mechanics of microfluidic culture models enable high-throughput anti-cancer drug screening, permit well-defined and controllable input parameters to monitor tumor cell response to various hydrodynamic conditions or treatment modalities, as well as provide a platform for elucidating fundamental mechanisms of tumor physiology. This review highlights recent developments and future applications of microfluidic culture models to study tumor progression and therapeutic targeting under conditions of hydrodynamic stress relevant to the complex tumor microenvironment. PMID:23616255
A general method for generating bathymetric data for hydrodynamic computer models
Burau, J.R.; Cheng, R.T.
1989-01-01
To generate water depth data from randomly distributed bathymetric data for numerical hydrodymamic models, raw input data from field surveys, water depth data digitized from nautical charts, or a combination of the two are sorted to given an ordered data set on which a search algorithm is used to isolate data for interpolation. Water depths at locations required by hydrodynamic models are interpolated from the bathymetric data base using linear or cubic shape functions used in the finite-element method. The bathymetric database organization and preprocessing, the search algorithm used in finding the bounding points for interpolation, the mathematics of the interpolation formulae, and the features of the automatic generation of water depths at hydrodynamic model grid points are included in the analysis. This report includes documentation of two computer programs which are used to: (1) organize the input bathymetric data; and (2) to interpolate depths for hydrodynamic models. An example of computer program operation is drawn from a realistic application to the San Francisco Bay estuarine system. (Author 's abstract)
NASA Astrophysics Data System (ADS)
Chen, Chi-Yin; Chuang, Jen-Chen; Tu, Jia-Ying
2016-09-01
This paper proposes modified coefficients for the dynamic model of hydraulic journal bearing system that integrates the hydrodynamic and hydrostatic properties. In recent years, design of hydraulic bearing for machine tool attracts worldwide attention, because hydraulic bearings are able to provide higher capacity and accuracy with lower friction, compared to conventional bearing systems. In order to achieve active control of the flow pressure and enhance the operation accuracy, the dynamic model of hydraulic bearings need to be developed. Modified coefficients of hydrostatic stiffness, hydrodynamic stiffness, and squeeze damping of the dynamic model are presented in this work, which are derived referring to small displacement analysis from literature. The proposed modified coefficients and model, which consider the pressure variations, relevant geometry size, and fluid properties of the journal bearings, are able to characterise the hydrodynamic and hydrostatic properties with better precision, thus offering the following pragmatic contribution: (1) on-line prediction of the eccentricity and the position of the shaft in the face of external force that results in vibration; (2) development of active control system to regulate the supply flow pressure and to minimize the eccentricity of the shaft. Theoretical derivation and simulation results with different vibration cases are discussed to verify the proposed techniques.
Analysis of single point moored tanker using maneuvering hydrodynamic model
Nishimoto, K.; Brinati, H.L.; Fucatu, C.H.
1995-12-31
The Single Point Mooring Systems (SPM) are widely used as a tanker terminal in Brazilian south coast by Petrobras, Brazilian oil company. Although different authors (Wichers, 1987, Obokata, 1987, and Jiang et al., 1988) had analyzed the dynamic stability of SPM system, the down time of these systems due to large oscillatory ship motion in the horizontal plane is significant until now. The main source of the instability of these systems is considered to be the use of inadequate hawser length and bad weather. This paper deals with the dynamic behavior of SPM moored vessels considering the influence of the environmental forces as well as shallow water effects. In a first step, a nonlinear mathematical model developed for the simulation of low speed ship maneuvers (Takashina, 1986) is extended to study the behavior of a tanker moored to a single buoy in comparison with the Obokata`s SPM model, 1987. A large number of tanker motion simulations were carried out both for deep and shallow water and different environmental conditions. The influence of the system parameters shown by the study is, in general, in a good agreement with those obtained by the traditional SPM system analysis.
NASA Astrophysics Data System (ADS)
Umgiesser, Georg; Razinkovas-Baziukas, Arturas; Barisevičiūtė, Ruta; Baziukė, Dalia; Ertürk, Ali; Gasiūnaitė, Jovita; Gulbinskas, Saulius; Lubienė, Irma; Maračkinaite, Jurgita; Petkuvienė, Jolita; Pilkaitytė, Renata; Ruginis, Tomas; Zemlys, Petras; Žilius, Mindaugas
2013-04-01
The spatial pattern of the hydrodynamic circulation of the Curonian lagoon, the largest European coastal lagoon, is still little understood. In absence of automatic current registration data all the existing models relied mostly on such data as water levels leaving high level of uncertainty. Here we present CISOCUR, a new project financed by the European Social Fund under the Global Grant measure. The project applies a new methodology that uses the carbon stable isotope (SI) ratio of C12 and C13 that characterize different water sources entering the lagoon and may be altered by internal kinetic processes. Through the tracing of these isotope ratios different water masses can be identified. This gives the possibility to validate several hypotheses of water circulation and validate hydrodynamic models. In particular it will be possible to 1) trace water masses entering the lagoon through the Nemunas and the Klaipeda strait; 2) test the hypothesis of sediment transport mechanisms inside the lagoon; 3) evaluate the importance of physical forcing on the lagoon circulation. The use of a hydrodynamic finite element model, coupled with the SI method, will allow for a realistic description of the transport processes inside the Curonian lagoon. So the main research goal is to apply the stable isotope tracers and a finite element model to determine the circulation patterns in the Curonian lagoon. Overall, the project will develop according to 4 main phases: 1) A pilot study to measure the isotope composition of different carbon compounds (dissolved and suspended) in different water bodies that feed water into the central lagoon. Through this pilot study the optimal study sites for the seasonal campaign will be identified as well. 2) Seasonal field campaigns in the monitoring stations identified in phase 1 to measure the carbon isotope ratio. 3) Development of a model that describes the kinetics of carbon isotopes and its transformation. 4) Application of a hydrodynamic model
Validation of Hydrodynamic Load Models Using CFD for the OC4-DeepCwind Semisubmersible: Preprint
Benitz, M. A.; Schmidt, D. P.; Lackner, M. A.; Stewart, G. M.; Jonkman, J.; Robertson, A.
2015-03-01
Computational fluid dynamics (CFD) simulations were carried out on the OC4-DeepCwind semi-submersible to obtain a better understanding of how to set hydrodynamic coefficients for the structure when using an engineering tool such as FAST to model the system. The focus here was on the drag behavior and the effects of the free-surface, free-ends and multi-member arrangement of the semi-submersible structure. These effects are investigated through code-to-code comparisons and flow visualizations. The implications on mean load predictions from engineering tools are addressed. The work presented here suggests that selection of drag coefficients should take into consideration a variety of geometric factors. Furthermore, CFD simulations demonstrate large time-varying loads due to vortex shedding, which FAST's hydrodynamic module, HydroDyn, does not model. The implications of these oscillatory loads on the fatigue life needs to be addressed.
NASA Astrophysics Data System (ADS)
Tang, Xian-Zhu; McDevitt, C. J.; Guo, Zehua; Berk, H. L.
2014-03-01
Inertial confinement fusion requires an imploded target in which a central hot spot is surrounded by a cold and dense pusher. The hot spot/pusher interface can take complicated shape in three dimensions due to hydrodynamic mix. It is also a transition region where the Knudsen and inverse Knudsen layer effect can significantly modify the fusion reactivity in comparison with the commonly used value evaluated with background Maxwellians. Here, we describe a hybrid model that couples the kinetic correction of fusion reactivity to global hydrodynamic implosion simulations. The key ingredient is a non-perturbative treatment of the tail ions in the interface region where the Gamow ion Knudsen number approaches or surpasses order unity. The accuracy of the coupling scheme is controlled by the precise criteria for matching the non-perturbative kinetic model to perturbative solutions in both configuration space and velocity space.
A model of hydrodynamic interaction between swimming bacteria.
Gyrya, V.; Aranson, I. G.; Berlyand, L. V.; Karpeev, D.; Penn State Univ.
2010-01-01
We study the dynamics and interaction of two swimming bacteria, modeled by self-propelled dumbbell-type structures. We focus on alignment dynamics of a coplanar pair of elongated swimmers, which propel themselves either by 'pushing' or 'pulling' both in three- and quasi-two-dimensional geometries of space. We derive asymptotic expressions for the dynamics of the pair, which complemented by numerical experiments, indicate that the tendency of bacteria to swim in or swim off depends strongly on the position of the propulsion force. In particular, we observe that positioning of the effective propulsion force inside the dumbbell results in qualitative agreement with the dynamics observed in experiments, such as mutual alignment of converging bacteria.
Experimental study of the hydrodynamics in a model crystal growth crucible
Ruiz, X.; Massons, J.; Aguilo, M.; Diaz, F. . Dept. of Tecnico Quimica)
1989-05-01
In this paper, image processing techniques are applied to the meridional visualizations of the bulk flow generated under different boundary conditions in a model crystal growth crucible. The steady forced convective patterns obtained by means of tracer particles are digitized and processed in order to characterize its hydrodynamic behaviour. This characterization is carried out based on the analysis of the resulting meridional velocity, streamfunction and vorticity distributions. Some comparisons between the present results and other available data are also made.
Combined 3D hydrodynamic and watershed modelling of Lake Tana, Ethiopia
NASA Astrophysics Data System (ADS)
Dargahi, Bijan; Setegn, Shimelis Gebriye
2011-02-01
SummaryThe growing high demand for Lake Tana water portends a disturbing future. The main objective of this paper is to make a contribution to the development of a sustainable use of the water of Lake Tana. A fully three-dimensional hydrodynamic model was combined with a watershed model and together, these models were successfully validated for the year 2006. The flow structure is characterized by large recirculation and secondary flow regions. Secondary flows are induced by hydrodynamic instabilities occurring at the interfaces of layers with a velocity gradient and the interaction with the irregularities of the bed. The weak stratification process in Lake Tana is characterized by a classic summer profile, which is more pronounced during January-February. Mixing processes in the lake are controlled by wind, the mixing energy induced by both river inflows and the lake outlet, and convective mixing due to the negative buoyancy. An alarming fall of the water levels in Lake Tana was found in response to the planned water withdrawal. The long flushing time (19 months) will not allow a fast decay of contaminated materials released into the lake. The flow structure will not be significantly modified by the planned water withdrawal but the flushing time will decrease. The hydrodynamics of Lake Tana resemble a closed system similar to a shallow reservoir with an overflow type outlet. The implication is that the lake is vulnerable to changes in external conditions and sustainable use of the water resource of the lake will require awareness of this vulnerability. The combined watershed and hydrodynamic models would be effective tools to achieve this awareness. It is also necessary to address the impact of climate change on the fate of the lake. These are all difficult challenges that need to be addressed to safeguard the sensitive eco-system of the area.
Study of the hydrodynamical processes in the Boka Kotorska Bay with a finite element model
NASA Astrophysics Data System (ADS)
Bellafiore, Debora; Guarnieri, Antonio; Grilli, Federica; Penna, Pierluigi; Bortoluzzi, Giovanni; Giglio, Federico; Pinardi, Nadia
2011-09-01
Boka Kotorska Bay, located in the southeastern Adriatic Sea along the Montenegro coastline, is a complex morphological structure, consisting of three embayments. They are connected and interact with the sea through narrow straits and the bay can be considered one of the main freshwater inputs into the southern Adriatic Sea. In the framework of the ADRICOSM-STAR project, a hydrodynamical model of this region provided results that are compared with CTD data and hydrodynamic scenarios are discussed for the bay. A finite element coastal model nested in a finite difference model that runs on the Adriatic Sea has been used to reproduce the complex morphology of the bay. Hydrodynamic modeling allows studying the main characteristics of this bay, identifying it as a Region of Freshwater Influence (ROFI). The freshwater input coming from the numerous sources present in the bays can strongly modify temperature, salinity and current patterns. The computation of the buoyancy ratio of the thermal and haline buoyancy flux showed that the Kotor and Morinj Bays experience a major effect of surface heating in summer, while the rest of the bay seems to be mostly affected by freshwater influence from precipitation and river discharge. An average estuarine situation is seen, presenting a surface outflow and a bottom inflow of water. Specific hydrodynamic processes can be detected in the channels that connect the different sub-basins of the Boka Kotorska Bay. Moreover, the computation of the Kelvin number in correspondence of the internal straits suggests classifying the Kotor and Morinj Bays differently from the outermost areas. The innermost Kotor and Morinj Bays, generally exchange little water with the sea and they have high values of residence times. However, their fresh water springs and rivers have the highest discharges that can change abruptly the picture with increase of the total water exchange between the bay and the sea.
Nguyen, Nam-Trung; Huang, Xiaoyang
2005-11-01
This paper theoretically and experimentally investigates a micromixer based on combined hydrodynamic focusing and time-interleaved segmentation. Both hydrodynamic focusing and time-interleaved segmentation are used in the present study to reduce mixing path, to shorten mixing time, and to enhance mixing quality. While hydrodynamic focusing reduces the transversal mixing path, time-interleaved sequential segmentation shortens the axial mixing path. With the same viscosity in the different streams, the focused width can be adjusted by the flow rate ratio. The axial mixing path or the segment length can be controlled by the switching frequency and the mean velocity of the flow. Mixing ratio can be controlled by both flow rate ratio and pulse width modulation of the switching signal. This paper first presents a time-dependent two-dimensional analytical model for the mixing concept. The model considers an arbitrary mixing ratio between solute and solvent as well as the axial Taylor-Aris dispersion. A micromixer was designed and fabricated based on lamination of four polymer layers. The layers were machined using a CO2 laser. Time-interleaved segmentation was realized by two piezoelectric valves. The sheath streams for hydrodynamic focusing are introduced through the other two inlets. A special measurement set-up was designed with synchronization of the mixer's switching signal and the camera's trigger signal. The set-up allows a relatively slow and low-resolution CCD camera to freeze and to capture a large transient concentration field. The concentration profile along the mixing channel agrees qualitatively well with the analytical model. The analytical model and the device promise to be suitable tools for studying Taylor-Aris dispersion near the entrance of a flat microchannel.
Applying downscaled global climate model data to a hydrodynamic surface-water and groundwater model
Swain, Eric; Stefanova, Lydia; Smith, Thomas
2014-01-01
Precipitation data from Global Climate Models have been downscaled to smaller regions. Adapting this downscaled precipitation data to a coupled hydrodynamic surface-water/groundwater model of southern Florida allows an examination of future conditions and their effect on groundwater levels, inundation patterns, surface-water stage and flows, and salinity. The downscaled rainfall data include the 1996-2001 time series from the European Center for Medium-Range Weather Forecasting ERA-40 simulation and both the 1996-1999 and 2038-2057 time series from two global climate models: the Community Climate System Model (CCSM) and the Geophysical Fluid Dynamic Laboratory (GFDL). Synthesized surface-water inflow datasets were developed for the 2038-2057 simulations. The resulting hydrologic simulations, with and without a 30-cm sea-level rise, were compared with each other and field data to analyze a range of projected conditions. Simulations predicted generally higher future stage and groundwater levels and surface-water flows, with sea-level rise inducing higher coastal salinities. A coincident rise in sea level, precipitation and surface-water flows resulted in a narrower inland saline/fresh transition zone. The inland areas were affected more by the rainfall difference than the sea-level rise, and the rainfall differences make little difference in coastal inundation, but a larger difference in coastal salinities.
Development of a Hydrodynamic Model of Puget Sound and Northwest Straits
Yang, Zhaoqing; Khangaonkar, Tarang P.
2007-12-10
The hydrodynamic model used in this study is the Finite Volume Coastal Ocean Model (FVCOM) developed by the University of Massachusetts at Dartmouth. The unstructured grid and finite volume framework, as well as the capability of wetting/drying simulation and baroclinic simulation, makes FVCOM a good fit to the modeling needs for nearshore restoration in Puget Sound. The model domain covers the entire Puget Sound, Strait of Juan de Fuca, San Juan Passages, and Georgia Strait at the United States-Canada Border. The model is driven by tide, freshwater discharge, and surface wind. Preliminary model validation was conducted for tides at various locations in the straits and Puget Sound using National Oceanic and Atmospheric Administration (NOAA) tide data. The hydrodynamic model was successfully linked to the NOAA oil spill model General NOAA Operational Modeling Environment model (GNOME) to predict particle trajectories at various locations in Puget Sound. Model results demonstrated that the Puget Sound GNOME model is a useful tool to obtain first-hand information for emergency response such as oil spill and fish migration pathways.
Hydrodynamic models for slurry bubble column reactors. Fourth technical progress report
Gidaspow, D.
1995-07-01
The objective of this investigation is to convert our ``learning gas-solid-liquid`` fluidization model into a predictive design model. The IIT hydrodynamic model computes the phase velocities and volume fractions of gas, liquid and particulate phases. Model verification involves a comparison of these computed velocities and volume fractions to experimental values. The simulation of Air Product methanol reactors described in this paper are continuing. Granular temperatures and viscosities have been computed. Preliminary measurements of granular temperatures using the Air Product catalysts were obtained using our CCD camera.
Femtoscopy in hydrodynamics-inspired models with resonances
Kisiel, Adam; Florkowski, Wojciech; Broniowski, Wojciech; Pluta, Jan
2006-06-15
Effects of the choice of the freeze-out hypersurface and resonance decays on the Hanbury-Brown-Twiss (HBT) interferometry in relativistic heavy-ion collisions are studied in detail within a class of models with single freeze-out. The Monte-Carlo method, as implemented in THERMINATOR, is used to generate hadronic events describing production of particles from a thermalized and expanding source. All well-established hadronic resonances are included in the analysis as their role is crucial at large freeze-out temperatures. We find that presence of the the short-lived resonances increase the pionic HBT radii by about 1 fm. We use the two-particle method to extract the correlation functions, which allows us to study the Coulomb effects. We find that the pion HBT data from the Relativistic Heavy Ion Collider are fully compatible with the single freeze-out scenario, pointing at the shape of the freeze-out hypersurface where the transverse radius is decreasing with time. Results for the single-particle spectra for this situation are also presented. Finally, we present predictions for the kaon femtoscopy.
Hydrodynamic Modeling of the Plasma Liner Experiment (PLX)
NASA Astrophysics Data System (ADS)
Cassibry, Jason; Hsu, Scott; Witherspoon, Doug; Gilmore, Marc
2009-11-01
Implosions of plasma liners in cylindrically or spherically convergent geometries can produce high pressures and temperatures with a confinement or dwell time of the order of the rarefaction timescale of the liner. The Plasma Liner Experiment (PLX), to be built at LANL, will explore and demonstrate the feasibility of forming imploding plasma liners with the spherical convergence of hypersonic plasma jets. Modeling will be performed using SPHC and MACH2. According to preliminary 3D SPHC results, high Z plasma liners imploding on vacuum with ˜1.5MJ of initial stored energy will reach ˜100kbar, which is a main objective of the experimental program. Among the objectives of the theoretical PLX effort are to assist in the diagnostic analysis of the PLX, identify possible deleterious effects due to instabilities or asymmetries, identify departures from ideal behavior due to thermal and radiative transport, and help determine scaling laws for possible follow-on applications of ˜1 Mbar HEDP plasmas and magneto-inertial fusion. An overview of the plan to accomplish these objectives will be presented, and preliminary results will be summarized.
García de la Torre, J
2001-11-28
The effect of hydration on hydrodynamic properties of globular proteins can be expressed in terms of two quantities: the delta (g/g) parameter and the thickness of the hydration layer. The two paradigms on hydration that originate these alternative measures are described and compared. For the numerical calculation of hydrodynamic properties, from which estimates of hydration can be made, we employ the bead modelling with atomic resolution implemented in programs HYDROPRO and HYDRONMR. As typical, average values, we find 0.3 g/g and a thickness of only approximately 1.2 A. However, noticeable differences in this parameter are found from one protein to another. We have made a numerical analysis, which leaves apart marginal influences of modelling imperfections by simulating properties of a spherical protein. This analysis confirms that the errors that one can attribute to the experimental quantities suffice to explain the observed fluctuations in the hydration parameters. However, for the main purpose of predicting protein solution properties, the above mentioned typical values may be safely used. Particularly for atomic bead modelling, a hydrodynamic radius of approximately 3.2 A yields predictions in very good agreement with experiments.
NASA Astrophysics Data System (ADS)
Puchwein, Ewald; Baldi, Marco; Springel, Volker
2013-11-01
We present a new massively parallel code for N-body and cosmological hydrodynamical simulations of modified gravity models. The code employs a multigrid-accelerated Newton-Gauss-Seidel relaxation solver on an adaptive mesh to efficiently solve for perturbations in the scalar degree of freedom of the modified gravity model. As this new algorithm is implemented as a module for the P-GADGET3 code, it can at the same time follow the baryonic physics included in P-GADGET3, such as hydrodynamics, radiative cooling and star formation. We demonstrate that the code works reliably by applying it to simple test problems that can be solved analytically, as well as by comparing cosmological simulations to results from the literature. Using the new code, we perform the first non-radiative and radiative cosmological hydrodynamical simulations of an f (R)-gravity model. We also discuss the impact of active galactic nucleus feedback on the matter power spectrum, as well as degeneracies between the influence of baryonic processes and modifications of gravity.
Reduction of Waste Water in Erhai Lake Based on MIKE21 Hydrodynamic and Water Quality Model
Zhu, Changjun; Liang, Qinag; Yan, Feng; Hao, Wenlong
2013-01-01
In order to study the ecological water environment in Erhai Lake, different monitoring sections were set to research the change of hydrodynamics and water quality. According to the measured data, MIKE21 Ecolab, the water quality simulation software developed by DHI, is applied to simulate the water quality in Erhai Lake. The hydrodynamics model coupled with water quality is established by MIKE21FM software to simulate the current situation of Erhai Lake. Then through the comparison with the monitoring data, the model parameters are calibrated and the simulation results are verified. Based on this, water quality is simulated by the two-dimensional hydrodynamics and water quality coupled model. The results indicate that the level of water quality in the north and south of lake is level III, while in the center of lake, the water quality is level II. Finally, the water environment capacity and total emmision reduction of pollutants are filtered to give some guidance for the water resources management and effective utilization in the Erhai Lake. PMID:23997684
NASA Technical Reports Server (NTRS)
Hunter, Craig A.
1995-01-01
An analytical/numerical method has been developed to predict the static thrust performance of non-axisymmetric, two-dimensional convergent-divergent exhaust nozzles. Thermodynamic nozzle performance effects due to over- and underexpansion are modeled using one-dimensional compressible flow theory. Boundary layer development and skin friction losses are calculated using an approximate integral momentum method based on the classic karman-Polhausen solution. Angularity effects are included with these two models in a computational Nozzle Performance Analysis Code, NPAC. In four different case studies, results from NPAC are compared to experimental data obtained from subscale nozzle testing to demonstrate the capabilities and limitations of the NPAC method. In several cases, the NPAC prediction matched experimental gross thrust efficiency data to within 0.1 percent at a design NPR, and to within 0.5 percent at off-design conditions.
NASA Astrophysics Data System (ADS)
Barros, D. A.; Lépine, J. R. D.; Dias, W. S.
2016-09-01
Aims: Galaxy mass models based on simple and analytical functions for density and potential pairs have been widely proposed in the literature. Disk models that are constrained solely by kinematic data only provide information about the global disk structure very near the Galactic plane. We attempt to circumvent this issue by constructing disk mass models whose three-dimensional structures are constrained by a recent Galactic star counts model in the near-infrared and also by observations of the hydrogen distribution in the disk. Our main aim is to provide models for the gravitational potential of the Galaxy that are fully analytical but also give a more realistic description of the density distribution in the disk component. Methods: We produced fitted mass models from the disk model, which is directly based on the observations divided into thin and thick stellar disks and H I and H2 disks subcomponents, by combining three Miyamoto-Nagai disk profiles of any model order (1, 2, or 3) for each disk subcomponent. The Miyamoto-Nagai disks are combined with models for the bulge and dark halo components and the total set of parameters is adjusted by observational kinematic constraints. A model that includes a ring density structure in the disk, beyond the solar Galactic radius, is also investigated. Results: The Galactic mass models return very good matches to the imposed observational constraints. In particular, the model with the ring density structure provides a greater contribution of the disk to the rotational support inside the solar circle. The gravitational potential models and their associated force-fields are described in analytically closed forms. Conclusions: The simple and analytical models for the mass distribution in the Milky Way and their associated three-dimensional gravitational potential are able to reproduce the observed kinematic constraints and, in addition, they are also compatible with our best knowledge of the stellar and gas distributions in
Hydrodynamic Instability and Thermal Coupling in a Dynamic Model of Liquid-Propellant Combustion
NASA Technical Reports Server (NTRS)
Margolis, S. B.
1999-01-01
For liquid-propellant combustion, the Landau/Levich hydrodynamic models have been combined and extended to account for a dynamic dependence of the burning rate on the local pressure and temperature fields. Analysis of these extended models is greatly facilitated by exploiting the realistic smallness of the gas-to-liquid density ratio rho. Neglecting thermal coupling effects, an asymptotic expression was then derived for the cellular stability boundary A(sub p)(k) where A(sub p) is the pressure sensitivity of the burning rate and k is the disturbance wavenumber. The results explicitly indicate the stabilizing effects of gravity on long-wave disturbances, and those of viscosity and surface tension on short-wave perturbations, and the instability associated with intermediate wavenumbers for critical negative values of A(sub p). In the limit of weak gravity, hydrodynamic instability in liquid-propellant combustion becomes a long-wave, instability phenomenon, whereas at normal gravity, this instability is first manifested through O(1) wavenumbers. In addition, surface tension and viscosity (both liquid and gas) each produce comparable effects in the large-wavenumber regime, thereby providing important modifications to the previous analyses in which one or more of these effects was neglected. For A(sub p)= O, the Landau/Levich results are recovered in appropriate limiting cases, although this typically corresponds to a hydrodynamically unstable parameter regime for p << 1. In addition to the classical cellular form of hydrodynamic stability, there exists a pulsating form corresponding to the loss of stability of steady, planar burning to time-dependent perturbations. This occurs for negative values of the parameter A(sub p), and is thus absent from the original Landau/Levich models. In the extended model, however, there exists a stable band of negative pressure sensitivities bounded above by the Landau type of instability, and below by this pulsating form of hydrodynamic
Explicit 2-D Hydrodynamic FEM Program
1996-08-07
DYNA2D* is a vectorized, explicit, two-dimensional, axisymmetric and plane strain finite element program for analyzing the large deformation dynamic and hydrodynamic response of inelastic solids. DYNA2D* contains 13 material models and 9 equations of state (EOS) to cover a wide range of material behavior. The material models implemented in all machine versions are: elastic, orthotropic elastic, kinematic/isotropic elastic plasticity, thermoelastoplastic, soil and crushable foam, linear viscoelastic, rubber, high explosive burn, isotropic elastic-plastic, temperature-dependent elastic-plastic. Themore » isotropic and temperature-dependent elastic-plastic models determine only the deviatoric stresses. Pressure is determined by one of 9 equations of state including linear polynomial, JWL high explosive, Sack Tuesday high explosive, Gruneisen, ratio of polynomials, linear polynomial with energy deposition, ignition and growth of reaction in HE, tabulated compaction, and tabulated.« less
Explicit 2-D Hydrodynamic FEM Program
Lin, Jerry
1996-08-07
DYNA2D* is a vectorized, explicit, two-dimensional, axisymmetric and plane strain finite element program for analyzing the large deformation dynamic and hydrodynamic response of inelastic solids. DYNA2D* contains 13 material models and 9 equations of state (EOS) to cover a wide range of material behavior. The material models implemented in all machine versions are: elastic, orthotropic elastic, kinematic/isotropic elastic plasticity, thermoelastoplastic, soil and crushable foam, linear viscoelastic, rubber, high explosive burn, isotropic elastic-plastic, temperature-dependent elastic-plastic. The isotropic and temperature-dependent elastic-plastic models determine only the deviatoric stresses. Pressure is determined by one of 9 equations of state including linear polynomial, JWL high explosive, Sack Tuesday high explosive, Gruneisen, ratio of polynomials, linear polynomial with energy deposition, ignition and growth of reaction in HE, tabulated compaction, and tabulated.
Madasu, Srinath; Borhan, Ali; Ultman, James
2007-05-01
Mass transfer coefficients were predicted and compared for uptake of reactive gas system using an axisymmetric single-path model (ASPM) with experimentally predicted values in a two-generation geometry and with a three-dimensional computational fluid dynamics model (CFDM) in a three-generation model geometry at steady inspiratory flow with a flat inlet velocity profile. The flow and concentration fields in the ASPM were solved using Galerkin's finite element method and in the CFDM using a commercial finite element software FIDAP. ASPM predicted average gas phase mass transfer coefficients within 25% of the experimental values. Numerical results in terms of overall mass transfer coefficients from the two models within each bifurcation unit were compared for two different inlet flow rates, wall mass transfer coefficients, and bifurcation angles. The overall mass transfer coefficients variation with bifurcation unit from the ASPM and CFDM compared qualitatively and quantitatively closely at lower wall mass transfer coefficients for both 40 degree and 70 degree bifurcation angles. But at higher wall mass transfer coefficients, quantitatively they were off in the range of 2-10% for 40 degree bifurcation angle and in the range of 4-15% for 70 degree bifurcation angle. Both CFDM and ASPM predict the same trends of increase in mass transfer coefficients with inlet flow, wall mass transfer coefficients, and during inspiration compared to expiration. Higher mass transfer coefficients were obtained with a flat velocity profile compared to a parabolic velocity profile using ASPM. These results validate the simplified ASPM and the complex CFDM.
Using a coupled eco-hydrodynamic model to predict habitat for target species following dam removal
Tomsic, C.A.; Granata, T.C.; Murphy, R.P.; Livchak, C.J.
2007-01-01
A habitat suitability index (HSI) model was developed for a water quality sensitive fish (Greater Redhorse) and macroinvertebrate (Plecoptera) species to determine the restoration success of the St. John Dam removal for the Sandusky River (Ohio). An ArcGIS?? model was created for pre- and post-dam removal scenarios. Inputs to the HSI model consist of substrate distributions from river surveys, and water level and velocity time series, outputs from a hydrodynamic model. The ArcGIS?? model predicted habitat suitability indices at 45 river cross-sections in the hydrodynamic model. The model was programmed to produce polygon layers, using graphical user interfaces that were displayed in the ArcGIS?? environment. The results of the model clearly show an increase of habitat suitability from pre- to post-dam removal periods and in the former reservoir. The change in suitability of the model is attributed mostly to the change in depth in the river following the dam removal for both the fish and invertebrate species. The results of the invertebrate model followed the same positive trend as species enumerations from the river basin. ?? 2007 Elsevier B.V. All rights reserved.
Effect of longitudinal ridges on the hydrodynamic performance of a leatherback turtle model
NASA Astrophysics Data System (ADS)
Bang, Kyeongtae; Kim, Jooha; Lee, Sang-Im; Choi, Haecheon
2014-11-01
Leatherback sea turtles (Dermochelys coriacea) known as the fastest swimmer and the deepest diver among marine turtles have five longitudinal ridges on their carapace, and these ridges are the most remarkable morphological features distinguished from other marine turtles. To investigate the effect of these ridges on the hydrodynamic performance of the leatherback turtle, we model a carapace with and without ridges using a stuffed leatherback turtle in the National Science Museum, Korea. We measure the drag and lift forces on the ridged model in the ranges of real leatherback turtles' Reynolds number (Re) and angle of attack (α), and compare them with those of non-ridged model. At α < 6°, longitudinal ridges decrease drag on the ridged model by up to 32% compared to non-ridged model. On the other hand, at α > 6°, the drag and lift coefficients of the ridged model are higher than those of the non-ridged model, and the lift-to-drag ratio of the ridged model is higher by about 7% than that of the non-ridged model. We also measure the velocity field around both models using a particle image velocimetry and explain the hydrodynamic role of ridges in relation to diving behaviors of leatherback sea turtles. Supported by the NRF Program (2011-0028032).
Modeling of multi-interface, diverging, hydrodynamic experiments for the National Ignition Facility
NASA Astrophysics Data System (ADS)
Grosskopf, M. J.; Drake, R. P.; Kuranz, C. C.; Miles, A. R.; Hansen, J. F.; Plewa, T.; Hearn, N.; Arnett, D.; Wheeler, J. C.
2009-08-01
The National Ignition Facility (NIF) will soon provide experiments with far more than ten times the energy than has been previously available on laser facilities. In the context of supernova-relevant hydrodynamics, this will enable experiments in which hydrodynamic instabilities develop from multiple, coupled interfaces in a diverging explosion. This paper discusses the design of such blast-wave-driven explosions in which the relative masses of the layers are scaled to those within the star. It reports scaling simulations with CALE to model the global dynamics of such an experiment. CALE is a hybrid, Arbitrary Lagrangian-Eulerian code. The simulations probed the instability growth and multi-interface interactions in mass-scaled systems using different materials. The simulations assist in the target design process and in developing an experiment that can be diagnosed.
Modeling of Multi-Interface, Diverging, Hydrodynamic Experiments for the National Ignition Facility
NASA Astrophysics Data System (ADS)
Grosskopf, M. J.; Drake, R. P.; Kuranz, C. C.; Miles, A. R.; Hansen, J. F.; Plewa, T.; Hearn, N.; Arnett, D.; Wheeler, J. C.
2008-11-01
The National Ignition Facility (NIF) will soon provide experiments with far more than ten times the energy than has been previously available on laser facilities. In the context of supernova-relevant hydrodynamics, this will enable experiments in which hydrodynamic instabilities develop from multiple, coupled interfaces in a diverging explosion. This presentation discusses the design of such blast-wave-driven explosions in which the relative masses of the layers are scaled to those within the star. It reports scaling simulations with CALE to model the global dynamics of such an experiment. The simulations probed the instability growth and multi-interface interactions in mass-scaled systems to assess the diagnosability and experimental value of different designs using a variety of materials. Initial conditions in the simulation near the irradiated surface have been shown to lead to spurious structure on the shock; therefore, a series of simulations to understand this structure is also discussed.
Hydrodynamic models of a cepheid atmosphere. Ph.D. Thesis - Maryland Univ., College Park
NASA Technical Reports Server (NTRS)
Karp, A. H.
1974-01-01
A method for including the solution of the transfer equation in a standard Henyey type hydrodynamic code was developed. This modified Henyey method was used in an implicit hydrodynamic code to compute deep envelope models of a classical Cepheid with a period of 12(d) including radiative transfer effects in the optically thin zones. It was found that the velocity gradients in the atmosphere are not responsible for the large microturbulent velocities observed in Cepheids but may be responsible for the occurrence of supersonic microturbulence. It was found that the splitting of the cores of the strong lines is due to shock induced temperature inversions in the line forming region. The adopted light, color, and velocity curves were used to study three methods frequently used to determine the mean radii of Cepheids. It is concluded that an accuracy of 10% is possible only if high quality observations are used.
High-energy particle transport in three-dimensional hydrodynamic models of colliding-wind binaries
Reitberger, K.; Kissmann, R.; Reimer, A.; Reimer, O.; Dubus, G.
2014-02-20
Massive stars in binary systems (such as WR 140, WR 147, or η Carinae) have long been regarded as potential sources of high-energy γ-rays. The emission is thought to arise in the region where the stellar winds collide and produce relativistic particles that subsequently might be able to emit γ-rays. Detailed numerical hydrodynamic simulations have already offered insight into the complex dynamics of the wind collision region (WCR), while independent analytical studies, albeit with simplified descriptions of the WCR, have shed light on the spectra of charged particles. In this paper, we describe a combination of these two approaches. We present a three-dimensional hydrodynamical model for colliding stellar winds and compute spectral energy distributions of relativistic particles for the resulting structure of the WCR. The hydrodynamic part of our model incorporates the line-driven acceleration of the winds, gravity, orbital motion, and the radiative cooling of the shocked plasma. In our treatment of charged particles, we consider diffusive shock acceleration in the WCR and the subsequent cooling via inverse Compton losses (including Klein-Nishina effects), bremsstrahlung, collisions, and other energy loss mechanisms.
High-energy Particle Transport in Three-dimensional Hydrodynamic Models of Colliding-wind Binaries
NASA Astrophysics Data System (ADS)
Reitberger, K.; Kissmann, R.; Reimer, A.; Reimer, O.; Dubus, G.
2014-02-01
Massive stars in binary systems (such as WR 140, WR 147, or η Carinae) have long been regarded as potential sources of high-energy γ-rays. The emission is thought to arise in the region where the stellar winds collide and produce relativistic particles that subsequently might be able to emit γ-rays. Detailed numerical hydrodynamic simulations have already offered insight into the complex dynamics of the wind collision region (WCR), while independent analytical studies, albeit with simplified descriptions of the WCR, have shed light on the spectra of charged particles. In this paper, we describe a combination of these two approaches. We present a three-dimensional hydrodynamical model for colliding stellar winds and compute spectral energy distributions of relativistic particles for the resulting structure of the WCR. The hydrodynamic part of our model incorporates the line-driven acceleration of the winds, gravity, orbital motion, and the radiative cooling of the shocked plasma. In our treatment of charged particles, we consider diffusive shock acceleration in the WCR and the subsequent cooling via inverse Compton losses (including Klein-Nishina effects), bremsstrahlung, collisions, and other energy loss mechanisms.
Ley, Mikkel W H; Bruus, Henrik
2016-04-01
A continuum model is established for numerical studies of hydrodynamic particle-particle interactions in microfluidic high-concentration suspensions. A suspension of microparticles placed in a microfluidic channel and influenced by an external force, is described by a continuous particle-concentration field coupled to the continuity and Navier-Stokes equation for the solution. The hydrodynamic interactions are accounted for through the concentration dependence of the suspension viscosity, of the single-particle mobility, and of the momentum transfer from the particles to the suspension. The model is applied on a magnetophoretic and an acoustophoretic system, respectively, and based on the results, we illustrate three main points: (1) for relative particle-to-fluid volume fractions greater than 0.01, the hydrodynamic interaction effects become important through a decreased particle mobility and an increased suspension viscosity. (2) At these high particle concentrations, particle-induced flow rolls occur, which can lead to significant deviations of the advective particle transport relative to that of dilute suspensions. (3) Which interaction mechanism that dominates, depends on the specific flow geometry and the specific external force acting on the particles. PMID:26948344
Ley, Mikkel W H; Bruus, Henrik
2016-04-01
A continuum model is established for numerical studies of hydrodynamic particle-particle interactions in microfluidic high-concentration suspensions. A suspension of microparticles placed in a microfluidic channel and influenced by an external force, is described by a continuous particle-concentration field coupled to the continuity and Navier-Stokes equation for the solution. The hydrodynamic interactions are accounted for through the concentration dependence of the suspension viscosity, of the single-particle mobility, and of the momentum transfer from the particles to the suspension. The model is applied on a magnetophoretic and an acoustophoretic system, respectively, and based on the results, we illustrate three main points: (1) for relative particle-to-fluid volume fractions greater than 0.01, the hydrodynamic interaction effects become important through a decreased particle mobility and an increased suspension viscosity. (2) At these high particle concentrations, particle-induced flow rolls occur, which can lead to significant deviations of the advective particle transport relative to that of dilute suspensions. (3) Which interaction mechanism that dominates, depends on the specific flow geometry and the specific external force acting on the particles.
Assimilation of CryoSat-2 altimetry to a hydrodynamic model of the Brahmaputra river
NASA Astrophysics Data System (ADS)
Schneider, Raphael; Nygaard Godiksen, Peter; Ridler, Marc-Etienne; Madsen, Henrik; Bauer-Gottwein, Peter
2016-04-01
Remote sensing provides valuable data for parameterization and updating of hydrological models, for example water level measurements of inland water bodies from satellite radar altimeters. Satellite altimetry data from repeat-orbit missions such as Envisat, ERS or Jason has been used in many studies, also synthetic wide-swath altimetry data as expected from the SWOT mission. This study is one of the first hydrologic applications of altimetry data from a drifting orbit satellite mission, namely CryoSat-2. CryoSat-2 is equipped with the SIRAL instrument, a new type of radar altimeter similar to SRAL on Sentinel-3. CryoSat-2 SARIn level 2 data is used to improve a 1D hydrodynamic model of the Brahmaputra river basin in South Asia set up in the DHI MIKE 11 software. CryoSat-2 water levels were extracted over river masks derived from Landsat imagery. After discharge calibration, simulated water levels were fitted to the CryoSat-2 data along the Assam valley by adapting cross section shapes and datums. The resulting hydrodynamic model shows accurate spatio-temporal representation of water levels, which is a prerequisite for real-time model updating by assimilation of CryoSat-2 altimetry or multi-mission data in general. For this task, a data assimilation framework has been developed and linked with the MIKE 11 model. It is a flexible framework that can assimilate water level data which are arbitrarily distributed in time and space. Different types of error models, data assimilation methods, etc. can easily be used and tested. Furthermore, it is not only possible to update the water level of the hydrodynamic model, but also the states of the rainfall-runoff models providing the forcing of the hydrodynamic model. The setup has been used to assimilate CryoSat-2 observations over the Assam valley for the years 2010 to 2013. Different data assimilation methods and localizations were tested, together with different model error representations. Furthermore, the impact of
NASA Astrophysics Data System (ADS)
Scukins, A.; Nerukh, D.; Pavlov, E.; Karabasov, S.; Markesteijn, A.
2015-09-01
A multiscale Molecular Dynamics/Hydrodynamics implementation of the 2D Mercedes Benz (MB or BN2D) [1] water model is developed and investigated. The concept and the governing equations of multiscale coupling together with the results of the two-way coupling implementation are reported. The sensitivity of the multiscale model for obtaining macroscopic and microscopic parameters of the system, such as macroscopic density and velocity fluctuations, radial distribution and velocity autocorrelation functions of MB particles, is evaluated. Critical issues for extending the current model to large systems are discussed.
NASA Astrophysics Data System (ADS)
Kharlamov, Sergey N.; Kudelin, Nikita S.; Dedeyev, Pavel O.
2014-08-01
The paper describes the results of mathematical modelling of acoustic processes, hydrodynamics and heat exchange in case of oil products transportation in pipelines with constant and variable cross-section. The turbulence model features of RANS approach and intensification of heat exchange in substances with anomalous rheology are reviewed. It is shown that statistic second order models are appropriate to use for forecasting details of the pulsating flows. The paper states the numerical integration features of determining equations. The properties of vibratory effect influence are determined. Vortex and heat perturbations, rheological changes impact on resistance regularities and intensity of heat exchange are analyzed.
NASA Astrophysics Data System (ADS)
Moreno Navas, Juan; Telfer, Trevor C.; Ross, Lindsay G.
2011-04-01
Hydrographic conditions, and particularly current speeds, have a strong influence on the management of fish cage culture. These hydrodynamic conditions can be used to predict particle movement within the water column and the results used to optimise environmental conditions for effective site selection, setting of environmental quality standards, waste dispersion, and potential disease transfer. To this end, a 3D hydrodynamic model, MOHID, has been coupled to a particle tracking model to study the effects of mean current speed, quiescent water periods and bulk water circulation in Mulroy Bay, Co. Donegal Ireland, an Irish fjard (shallow fjordic system) important to the aquaculture industry. A Lagangrian method simulated the instantaneous release of "particles" emulating discharge from finfish cages to show the behaviour of waste in terms of water circulation and water exchange. The 3D spatial models were used to identify areas of mixed and stratified water using a version of the Simpson-Hunter criteria, and to use this in conjunction with models of current flow for appropriate site selection for salmon aquaculture. The modelled outcomes for stratification were in good agreement with the direct measurements of water column stratification based on observed density profiles. Calculations of the Simpson-Hunter tidal parameter indicated that most of Mulroy Bay was potentially stratified with a well mixed region over the shallow channels where the water is faster flowing. The fjard was characterised by areas of both very low and high mean current speeds, with some areas having long periods of quiescent water. The residual current and the particle tracking animations created through the models revealed an anticlockwise eddy that may influence waste dispersion and potential for disease transfer, among salmon cages and which ensures that the retention time of waste substances from cages is extended. The hydrodynamic model results were incorporated into the ArcView TM GIS
Influence of elevation modelling on hydrodynamic simulations of a tidally-dominated estuary
NASA Astrophysics Data System (ADS)
Falcão, Ana Paula; Mazzolari, Andrea; Gonçalves, Alexandre B.; Araújo, Maria Amélia V. C.; Trigo-Teixeira, António
2013-08-01
Hydrodynamic simulation of estuaries requires a single digital elevation model (DEM) resulting from merging of both topographic and bathymetric data. These two datasets are usually produced using different technologies, co-ordinate systems and datums. Intertidal data in particular are often lacking due to the difficulty of data acquisition using conventional survey techniques. This paper presents a fast, accurate and low-cost methodology to fill this gap and highlights the effect of the digital elevation model characteristics, such as the interpolation method and spatial resolution, on modelled water levels and flooded areas. The Lima river estuary, located in North-western Portugal, is used as a case study. Validation tests for commonly available spatial interpolators showed ordinary kriging to be the most adequate interpolator. Digital elevation models with regular grids of 5 m and 50 m resolution were used, together with the original (not interpolated) elevation dataset, as input to a finite element hydrodynamic model for astronomic tide simulation. Results indicate that the larger differences between using different elevation models occur at low tide during spring tide, marginally impacting the flood modelling. The effect of a vertical offset of the chart datum with respect to a part of the digital elevation model was finally investigated, showing a limited influence in the determination of the water levels.
NASA Astrophysics Data System (ADS)
Dascalescu, A. E.; Lazaroiu, G.; Scupi, A. A.; Oanta, E.
2016-08-01
The rotating half-bridge of a settling tank is employed to sweep the sludge from the wastewater and to vacuum and sent it to the central collector. It has a complex geometry but the main beam may be considered a slender bar loaded by the following category of forces: concentrated forces produced by the weight of the scrapping system of blades, suction pipes, local sludge collecting chamber, plus the sludge in the horizontal sludge transporting pipes; forces produced by the access bridge; buoyant forces produced by the floating barrels according to Archimedes’ principle; distributed forces produced by the weight of the main bridge; hydrodynamic forces. In order to evaluate the hydrodynamic loads we have conceived a numerical model based on the finite volume method, using the ANSYS-Fluent software. To model the flow we used the equations of Reynolds Averaged Navier-Stokes (RANS) for liquids together with Volume of Fluid model (VOF) for multiphase flows. For turbulent model k-epsilon we used the equation for turbulent kinetic energy k and dissipation epsilon. These results will be used to increase the accuracy of the loads’ sub-model in the theoretical models, e. the finite element model and the analytical model.
NASA Technical Reports Server (NTRS)
Liu, Wei; Petrosian, Vahe; Mariska, John T.
2009-01-01
Acceleration and transport of high-energy particles and fluid dynamics of atmospheric plasma are interrelated aspects of solar flares, but for convenience and simplicity they were artificially separated in the past. We present here self consistently combined Fokker-Planck modeling of particles and hydrodynamic simulation of flare plasma. Energetic electrons are modeled with the Stanford unified code of acceleration, transport, and radiation, while plasma is modeled with the Naval Research Laboratory flux tube code. We calculated the collisional heating rate directly from the particle transport code, which is more accurate than those in previous studies based on approximate analytical solutions. We repeated the simulation of Mariska et al. with an injection of power law, downward-beamed electrons using the new heating rate. For this case, a -10% difference was found from their old result. We also used a more realistic spectrum of injected electrons provided by the stochastic acceleration model, which has a smooth transition from a quasi-thermal background at low energies to a non thermal tail at high energies. The inclusion of low-energy electrons results in relatively more heating in the corona (versus chromosphere) and thus a larger downward heat conduction flux. The interplay of electron heating, conduction, and radiative loss leads to stronger chromospheric evaporation than obtained in previous studies, which had a deficit in low-energy electrons due to an arbitrarily assumed low-energy cutoff. The energy and spatial distributions of energetic electrons and bremsstrahlung photons bear signatures of the changing density distribution caused by chromospheric evaporation. In particular, the density jump at the evaporation front gives rise to enhanced emission, which, in principle, can be imaged by X-ray telescopes. This model can be applied to investigate a variety of high-energy processes in solar, space, and astrophysical plasmas.
NASA Astrophysics Data System (ADS)
Dung, N. V.; Merz, B.; Bárdossy, A.; Thang, T. D.; Apel, H.
2011-04-01
Automatic and multi-objective calibration of hydrodynamic models is - compared to other disciplines like e.g. hydrology - still underdeveloped. This has mainly two reasons: the lack of appropriate data and the large computational demand in terms of CPU-time. Both aspects are aggravated in large-scale applications. However, there are recent developments that improve the situation on both the data and computing side. Remote sensing, especially radar-based techniques proved to provide highly valuable information on flood extents, and in case high precision DEMs are present, also on spatially distributed inundation depths. On the computing side the use of parallelization techniques brought significant performance gains. In the presented study we build on these developments by calibrating a large-scale 1-dimensional hydrodynamic model of the whole Mekong Delta downstream of Kratie in Cambodia: we combined in-situ data from a network of river gauging stations, i.e. data with high temporal but low spatial resolution, with a series of inundation maps derived from ENVISAT Advanced Synthetic Aperture Radar (ASAR) satellite images, i.e. data with low temporal but high spatial resolution, in an multi-objective automatic calibration process. It is shown that an automatic, multi-objective calibration of hydrodynamic models, even of such complexity and on a large scale and complex as a model for the Mekong Delta, is possible. Furthermore, the calibration process revealed model deficiencies in the model structure, i.e. the representation of the dike system in Vietnam, which would have been difficult to detect by a standard manual calibration procedure.
NASA Astrophysics Data System (ADS)
Dung, N. V.; Merz, B.; Bárdossy, A.; Thang, T. D.; Apel, H.
2010-12-01
Calibration of hydrodynamic models is - compared to other disciplines like e.g. hydrology - still underdeveloped. This has mainly two reasons: the lack of appropriate data and the large computational demand in terms of CPU-time. Both aspects are aggravated in large-scale applications. However, there are recent developments that improve the situation on both the data and computing side. Remote sensing, especially radar-based techniques proved to provide highly valuable information on flood extents, and in case high precision DEMs are present, also on spatially distributed inundation depths. On the computing side the use of parallelization techniques brought significant performance gains. In the presented study we build on these developments by calibrating a large-scale 1-D hydrodynamic model of the whole Mekong Delta downstream of Kratie in Cambodia: we combined in-situ data from a network of river gauging stations, i.e. data with high temporal but low spatial resolution, with a series of inundation maps derived from ENVISAT Advanced Synthetic Aperture Radar (ASAR) satellite images, i.e. data with low temporal but high spatial resolution, in an multi-objective automatic calibration process. It is shown that an automatic, multi-objective calibration of hydrodynamic models, even of such complexity and on a large scale and complex as a model for the Mekong Delta, is possible. Furthermore, the calibration process revealed model deficiencies in the model structure, i.e. the representation of the dike system in Vietnam, which would have been difficult to detect by a standard manual calibration procedure.
Analytic Modeling of the Hydrodynamic, Thermal, and Structural Behavior of Foil Thrust Bearings
NASA Technical Reports Server (NTRS)
Bruckner, Robert J.; DellaCorte, Christopher; Prahl, Joseph M.
2005-01-01
A simulation and modeling effort is conducted on gas foil thrust bearings. A foil bearing is a self acting hydrodynamic device capable of separating stationary and rotating components of rotating machinery by a film of air or other gaseous lubricant. Although simple in appearance these bearings have proven to be complicated devices in analysis. They are sensitive to fluid structure interaction, use a compressible gas as a lubricant, may not be in the fully continuum range of fluid mechanics, and operate in the range where viscous heat generation is significant. These factors provide a challenge to the simulation and modeling task. The Reynolds equation with the addition of Knudsen number effects due to thin film thicknesses is used to simulate the hydrodynamics. The energy equation is manipulated to simulate the temperature field of the lubricant film and combined with the ideal gas relationship, provides density field input to the Reynolds equation. Heat transfer between the lubricant and the surroundings is also modeled. The structural deformations of the bearing are modeled with a single partial differential equation. The equation models the top foil as a thin, bending dominated membrane whose deflections are governed by the biharmonic equation. A linear superposition of hydrodynamic load and compliant foundation reaction is included. The stiffness of the compliant foundation is modeled as a distributed stiffness that supports the top foil. The system of governing equations is solved numerically by a computer program written in the Mathematica computing environment. Representative calculations and comparisons with experimental results are included for a generation I gas foil thrust bearing.
On the consistency of the drag between air and water in meteorological, hydrodynamic and wave models
NASA Astrophysics Data System (ADS)
van Nieuwkoop, Joana; Baas, Peter; Caires, Sofia; Groeneweg, Jacco
2015-07-01
For the design, assessment and flood control of water defences, hydraulic loads in terms of water levels and wave conditions are required and often obtained from numerical models. For these hydraulic loads to be reliable, accurate atmospheric forcing is required. Waves and surges are typically forced by surface stress. However, in most cases, the input for these models consists of 10-m wind velocities that are internally converted to surface stress by applying a particular drag relation. This procedure generally leads to inconsistencies, since the hydrodynamic, wave and atmospheric models often apply different drag relations. By means of a case study, we explored the consequences of this inconsistency in the drag formulation for a North Sea storm wave and surge hindcast. This was done by forcing the hydrodynamic and wave models using both the 10-m wind velocity and the surface stress fields computed by the atmospheric model. Our study results show significant differences between the wave parameter values and water levels computed with surface stress input and 10-m wind velocity input. Our goal is not to assess different drag parameterizations but to raise awareness for this issue and to plea for the use of a consistent drag relation in meteorological and hydrodynamic/wave models. The consistent use of one drag formulation facilitates the identification of problems and the eventual improvement of the drag formulation. Furthermore, we suggest using the so-called pseudo-wind, which is a translation of the surface stress to the 10-m wind speed using a reference drag relation.
Optimization of a Two-Fluid Hydrodynamic Model of Churn-Turbulent Flow
Donna Post Guillen
2009-07-01
A hydrodynamic model of two-phase, churn-turbulent flows is being developed using the computational multiphase fluid dynamics (CMFD) code, NPHASE-CMFD. The numerical solutions obtained by this model are compared with experimental data obtained at the TOPFLOW facility of the Institute of Safety Research at the Forschungszentrum Dresden-Rossendorf. The TOPFLOW data is a high quality experimental database of upward, co-current air-water flows in a vertical pipe suitable for validation of computational fluid dynamics (CFD) codes. A five-field CMFD model was developed for the continuous liquid phase and four bubble size groups using mechanistic closure models for the ensemble-averaged Navier-Stokes equations. Mechanistic models for the drag and non-drag interfacial forces are implemented to include the governing physics to describe the hydrodynamic forces controlling the gas distribution. The closure models provide the functional form of the interfacial forces, with user defined coefficients to adjust the force magnitude. An optimization strategy was devised for these coefficients using commercial design optimization software. This paper demonstrates an approach to optimizing CMFD model parameters using a design optimization approach. Computed radial void fraction profiles predicted by the NPHASE-CMFD code are compared to experimental data for four bubble size groups.
NASA Astrophysics Data System (ADS)
Premaratne, Pavithra Dhanuka
Disruption and fragmentation of an asteroid using nuclear explosive devices (NEDs) is a highly complex yet a practical solution to mitigating the impact threat of asteroids with short warning time. A Hypervelocity Asteroid Intercept Vehicle (HAIV) concept, developed at the Asteroid Deflection Research Center (ADRC), consists of a primary vehicle that acts as kinetic impactor and a secondary vehicle that houses NEDs. The kinetic impactor (lead vehicle) strikes the asteroid creating a crater. The secondary vehicle will immediately enter the crater and detonate its nuclear payload creating a blast wave powerful enough to fragment the asteroid. The nuclear subsurface explosion modeling and hydrodynamic simulation has been a challenging research goal that paves the way an array of mission critical information. A mesh-free hydrodynamic simulation method, Smoothed Particle Hydrodynamics (SPH) was utilized to obtain both qualitative and quantitative solutions for explosion efficiency. Commercial fluid dynamics packages such as AUTODYN along with the in-house GPU accelerated SPH algorithms were used to validate and optimize high-energy explosion dynamics for a variety of test cases. Energy coupling from the NED to the target body was also examined to determine the effectiveness of nuclear subsurface explosions. Success of a disruption mission also depends on the survivability of the nuclear payload when the secondary vehicle approaches the newly formed crater at a velocity of 10 km/s or higher. The vehicle may come into contact with debris ejecting the crater which required the conceptual development of a Whipple shield. As the vehicle closes on the crater, its skin may also experience extreme temperatures due to heat radiated from the crater bottom. In order to address this thermal problem, a simple metallic thermal shield design was implemented utilizing a radiative heat transfer algorithm and nodal solutions obtained from hydrodynamic simulations.
Simulation and Modeling of Submicron Semiconductor Devices by a New Hydrodynamic Method.
NASA Astrophysics Data System (ADS)
Lin, Qi.
Robust numerical methods for the solution of the hydrodynamic model are developed and implemented for the simulation of submicron semiconductor devices. The hydrodynamic equations are reformulated into readily solvable self-adjoint forms with the aid of newly defined HD-Slotboom state variables. A new discretization strategy is developed to resolve the rapid variation in the carrier densities and carrier temperatures. The approach also yields a coefficient matrix for each discretized hydrodynamic equation, which is guaranteed to be diagonally dominant. The hydrodynamic equations are decoupled by using a Gummel block iteration method. A fixed-point iteration technique is employed to solve the discretized equations, which guarantees that each decoupled equation converges for any starting value. Furthermore, the decoupling of equations and use of the fixed-point iteration scheme obviate the need for direct solutions of large matrix equations, and thereby eliminate the need for large memory allocations. The algorithm is inherently parallel, so it can be readily implemented on parallel machines to increase computation speed. Using these methods, several simulation packages are developed for the analysis of one-dimensional (1-D) n^+-n-n^+ devices, and square electric fields, two-dimensional (2-D) & three-dimensional (3-D) MOSFET's, and two-dimensional SOI MOSFET's. Various simulation results for these devices are presented. Some one-dimensional simulation results are compared with Monte Carlo calculations, and a good agreement is observed. Also convergence, stability, and efficiency of the methods are examined by a set of numerical experiments. The device simulators are applied to investigate the hot-electron induced degradation in submicron SOI devices and EPROM's. The impact of localized interface charge on device characteristics is studied. Some measured results are used to calibrate the process parameters in the simulators so that the simulators can predict device
NASA Technical Reports Server (NTRS)
Chick, Kenneth M.; Gombosi, Tamas I.
1993-01-01
A numerical solution for the multiple light scattering in spherical axisymmetric geometry is applied to the simulation of images of a coma as it would appear to a near-flying satellite such as Giotto. The appearance of symmetric comas and dust jets is examined in detail; the nucleus visibility is studied; the effect of forward scattering is considered; and single and multiple scattering effects are quantified. Attention is given to simulated images of a coma with a hollow cone of dust, as predicted by dust-gas hydrodynamic modeling. The cone's appearance is very similar to the northern area of activity on Comet Halley, observed by the Giotto HMC.
Hydrodynamic modelling and global datasets: Flow connectivity and SRTM data, a Bangkok case study.
NASA Astrophysics Data System (ADS)
Trigg, M. A.; Bates, P. B.; Michaelides, K.
2012-04-01
The rise in the global interconnected manufacturing supply chains requires an understanding and consistent quantification of flood risk at a global scale. Flood risk is often better quantified (or at least more precisely defined) in regions where there has been an investment in comprehensive topographical data collection such as LiDAR coupled with detailed hydrodynamic modelling. Yet in regions where these data and modelling are unavailable, the implications of flooding and the knock on effects for global industries can be dramatic, as evidenced by the recent floods in Bangkok, Thailand. There is a growing momentum in terms of global modelling initiatives to address this lack of a consistent understanding of flood risk and they will rely heavily on the application of available global datasets relevant to hydrodynamic modelling, such as Shuttle Radar Topography Mission (SRTM) data and its derivatives. These global datasets bring opportunities to apply consistent methodologies on an automated basis in all regions, while the use of coarser scale datasets also brings many challenges such as sub-grid process representation and downscaled hydrology data from global climate models. There are significant opportunities for hydrological science in helping define new, realistic and physically based methodologies that can be applied globally as well as the possibility of gaining new insights into flood risk through analysis of the many large datasets that will be derived from this work. We use Bangkok as a case study to explore some of the issues related to using these available global datasets for hydrodynamic modelling, with particular focus on using SRTM data to represent topography. Research has shown that flow connectivity on the floodplain is an important component in the dynamics of flood flows on to and off the floodplain, and indeed within different areas of the floodplain. A lack of representation of flow connectivity, often due to data resolution limitations, means
Rowers coupled hydrodynamically. Modeling possible mechanisms for the cooperation of cilia
NASA Astrophysics Data System (ADS)
Cosentino Lagomarsino, M.; Bassetti, B.; Jona, P.
2002-03-01
We introduce a model system of stochastic entities, called rowers which include some essentials of the behavior of real cilia. We introduce and discuss the problem of symmetry breaking for these objects and its connection with the onset of macroscopic, directed flow in the fluid. We perform a mean field-like calculation showing that hydrodynamic interaction may provide for the symmetry breaking mechanism and the onset of fluid flow. Finally, we discuss the problem of the metachronal wave in a stochastic context through an analytical calculation based on a path integral representation of our model equation.
On the sensitivity of urban hydrodynamic modelling to rainfall spatial and temporal resolution
NASA Astrophysics Data System (ADS)
Bruni, G.; Reinoso, R.; van de Giesen, N. C.; Clemens, F. H. L. R.; ten Veldhuis, J. A. E.
2015-02-01
Cities are increasingly vulnerable to floods generated by intense rainfall, because of urbanisation of flood-prone areas and ongoing urban densification. Accurate information of convective storm characteristics at high spatial and temporal resolution is a crucial input for urban hydrological models to be able to simulate fast runoff processes and enhance flood prediction in cities. In this paper, a detailed study of the sensitivity of urban hydrodynamic response to high resolution radar rainfall was conducted. Rainfall rates derived from X-band dual polarimetric weather radar were used as input into a detailed hydrodynamic sewer model for an urban catchment in the city of Rotterdam, the Netherlands. The aim was to characterise how the effect of space and time aggregation on rainfall structure affects hydrodynamic modelling of urban catchments, for resolutions ranging from 100 to 2000 m and from 1 to 10 min. Dimensionless parameters were derived to compare results between different storm conditions and to describe the effect of rainfall spatial resolution in relation to storm characteristics and hydrodynamic model properties: rainfall sampling number (rainfall resolution vs. storm size), catchment sampling number (rainfall resolution vs. catchment size), runoff and sewer sampling number (rainfall resolution vs. runoff and sewer model resolution respectively). Results show that for rainfall resolution lower than half the catchment size, rainfall volumes mean and standard deviations decrease as a result of smoothing of rainfall gradients. Moreover, deviations in maximum water depths, from 10 to 30% depending on the storm, occurred for rainfall resolution close to storm size, as a result of rainfall aggregation. Model results also showed that modelled runoff peaks are more sensitive to rainfall resolution than maximum in-sewer water depths as flow routing has a damping effect on in-sewer water level variations. Temporal resolution aggregation of rainfall inputs led to
NASA Astrophysics Data System (ADS)
Kiefer, Thomas; Schlegel, Theodor
2012-10-01
It is shown that the hydrodynamic model of a one-dimensional collisionless plasma expansion is contained in the kinetic description as a special case. This belongs to a specific choice for the electron distribution function. Moreover, the consequences of the use of the hydrodynamic approach regarding the temporal evolution of the electron phase space density are investigated. It turns out that only the case of a hydrodynamic description with the adiabatic constant κ =3 is physically self-consistent. Numerical simulations confirm this argumentation. The analysis for the case κ =3 is extended to the kinetics of a relativistic electron gas.
Kiefer, Thomas; Schlegel, Theodor
2012-10-15
It is shown that the hydrodynamic model of a one-dimensional collisionless plasma expansion is contained in the kinetic description as a special case. This belongs to a specific choice for the electron distribution function. Moreover, the consequences of the use of the hydrodynamic approach regarding the temporal evolution of the electron phase space density are investigated. It turns out that only the case of a hydrodynamic description with the adiabatic constant {kappa}=3 is physically self-consistent. Numerical simulations confirm this argumentation. The analysis for the case {kappa}=3 is extended to the kinetics of a relativistic electron gas.
Botelho, D A; Barry, M E; Collecutt, G C; Brook, J; Wiltshire, D
2013-01-01
A desalination plant is proposed to be the major water supply to the Olympic Dam Expansion Mining project. Located in the Upper Spencer Gulf, South Australia, the site was chosen due to the existence of strong currents and their likely advantages in terms of mixing and dilution of discharged return water. A high-resolution hydrodynamic model (Estuary, Lake and Coastal Ocean Model, ELCOM) was constructed and, through a rigorous review process, was shown to reproduce the intricate details of the Spencer Gulf dynamics, including those characterising the discharge site. Notwithstanding this, it was found that deploying typically adopted 'direct insertion' techniques to simulate the brine discharge within the hydrodynamic model was problematic. Specifically, it was found that in this study the direct insertion technique delivered highly conservative brine dilution predictions in and around the proposed site, and that these were grid and time-step dependent. To improve the predictive capability, a strategy to link validated computational fluid dynamics (CFD) predictions to hydrodynamic simulations was devised. In this strategy, environmental conditions from ELCOM were used to produce boundary conditions for execution of a suite of CFD simulations. In turn, the CFD simulations provided the brine dilutions and flow rates to be applied in ELCOM. In order to conserve mass in a system-wide sense, artificial salt sinks were introduced to the ELCOM model such that salt quantities were conserved. As a result of this process, ELCOM predictions were naturally very similar to CFD predictions near the diffuser, whilst at the same time they produced an area of influence (further afield) comparable to direct insertion methods. It was concluded that the linkage of the models, in comparison to direct insertion methods, constituted a more realistic and defensible alternative to predict the far-field dispersion of outfall discharges, particularly with regards to the estimation of brine
NASA Astrophysics Data System (ADS)
Volkov, A. N.
2016-06-01
Parkers' model of thermal escape implies the search of solutions of one-dimensional hydrodynamic equations for an inviscid but thermally conducting gas with a critical point and vanishing temperature far from the source. The properties of solutions of this model are studied for neutral mon- and diatomic gases with the viscosity index varying from 1/2 to 1. The domains of existence and uniqueness of solutions in terms of the source Jeans escape parameter and Knudsen number are established. The solutions are found to exist only in a narrow range of the critical point Jeans parameter. The lower and upper limits of this range correspond to solutions that are dominated by either heat conduction or adiabatic expansion. Thermal escape described by Parker's model occurs in two asymptotic regimes: the low-density (LD) regime, when escape is dominated by heat conduction, and the high-density (HD) regime, when escape is dominated by adiabatic expansion. Expressions for the mass and energy escape rates in these regimes are found theoretically. The comparison of results of hydrodynamic and kinetic simulations performed in identical conditions shows that Parker's model is capable of describing thermal escape only in the HD regime, providing decent agreement with the kinetic model in terms of the atmospheric structure below the exobase and the mass and energy escape rates. In the LD regime, Parker's model predicts a much faster drop in atmospheric temperature and less extended atmospheres, and can both over- and underestimate the escape rates in orders of magnitude.
Castor, J I
2003-10-16
The discipline of radiation hydrodynamics is the branch of hydrodynamics in which the moving fluid absorbs and emits electromagnetic radiation, and in so doing modifies its dynamical behavior. That is, the net gain or loss of energy by parcels of the fluid material through absorption or emission of radiation are sufficient to change the pressure of the material, and therefore change its motion; alternatively, the net momentum exchange between radiation and matter may alter the motion of the matter directly. Ignoring the radiation contributions to energy and momentum will give a wrong prediction of the hydrodynamic motion when the correct description is radiation hydrodynamics. Of course, there are circumstances when a large quantity of radiation is present, yet can be ignored without causing the model to be in error. This happens when radiation from an exterior source streams through the problem, but the latter is so transparent that the energy and momentum coupling is negligible. Everything we say about radiation hydrodynamics applies equally well to neutrinos and photons (apart from the Einstein relations, specific to bosons), but in almost every area of astrophysics neutrino hydrodynamics is ignored, simply because the systems are exceedingly transparent to neutrinos, even though the energy flux in neutrinos may be substantial. Another place where we can do ''radiation hydrodynamics'' without using any sophisticated theory is deep within stars or other bodies, where the material is so opaque to the radiation that the mean free path of photons is entirely negligible compared with the size of the system, the distance over which any fluid quantity varies, and so on. In this case we can suppose that the radiation is in equilibrium with the matter locally, and its energy, pressure and momentum can be lumped in with those of the rest of the fluid. That is, it is no more necessary to distinguish photons from atoms, nuclei and electrons, than it is to distinguish
Better Insight Into Water Resources Management With Integrated Hydrodynamic And Water Quality Models
NASA Astrophysics Data System (ADS)
Debele, B.; Srinivasan, R.; Parlange, J.
2004-12-01
Models have long been used in water resources management to guide decision making and improve understanding of the system. Numerous models of different scales -spatial and temporal - are available. Yet, very few models manage to bridge simulations of hydrological and water quality parameters from both upland watershed and riverine system. Most water quality models, such as QUAL2E and EPD-RIV1 concentrate on the riverine system while CE-QUAL-W2 and WASP models focus on larger waterbodies, such as lakes and reservoirs. On the other hand, the original SWAT model, HSPF and other upland watershed hydrological models simulate agricultural (diffuse) pollution sources with limited number of processes incorporated to handle point source pollutions that emanate from industrial sectors. Such limitations, which are common in most hydrodynamic and water quality models undermine better understanding that otherwise could be uncovered by employing integrated hydrological and water quality models for both upland watershed and riverine system. The SWAT model is a well documented and verified hydrological and water quality model that has been developed to simulate the effects of various management scenarios on the health of the environment in terms of water quantity and quality. Recently, the SWAT model has been extended to include the simulation of hydrodynamic and water quality parameters in the river system. The extended SWAT model (ESWAT) has been further extended to run using diurnally varying (hourly) weather data and produce outputs at hourly timescales. This and other improvements in the ESWAT model have been documented in the current work. Besides, the results from two case studies in Texas will be reported.
Ferrer, M L; Duchowicz, R; Carrasco, B; de la Torre, J G; Acuña, A U
2001-01-01
There is a striking disparity between the heart-shaped structure of human serum albumin (HSA) observed in single crystals and the elongated ellipsoid model used for decades to interpret the protein solution hydrodynamics at neutral pH. These two contrasting views could be reconciled if the protein were flexible enough to change its conformation in solution from that found in the crystal. To investigate this possibility we recorded the rotational motions in real time of an erythrosin-bovine serum albumin complex (Er-BSA) over an extended time range, using phosphorescence depolarization techniques. These measurements are consistent with the absence of independent motions of large protein segments in solution, in the time range from nanoseconds to fractions of milliseconds, and give a single rotational correlation time phi(BSA, 1 cP, 20 degrees C) = 40 +/- 2 ns. In addition, we report a detailed analysis of the protein hydrodynamics based on two bead-modeling methods. In the first, BSA was modeled as a triangular prismatic shell with optimized dimensions of 84 x 84 x 84 x 31.5 A, whereas in the second, the atomic-level structure of HSA obtained from crystallographic data was used to build a much more refined rough-shell model. In both cases, the predicted and experimental rotational diffusion rate and other hydrodynamic parameters were in good agreement. Therefore, the overall conformation in neutral solution of BSA, as of HSA, should be rigid, in the sense indicated above, and very similar to the heart-shaped structure observed in HSA crystals. PMID:11325741
Observations and 3D Hydrodynamical models of planetary nebulae with Wolf Rayet type central stars
NASA Astrophysics Data System (ADS)
Rechy-García, J. S.; Velázquez, P. F.; Peña, M.; Raga, A. C.
2016-10-01
We present high-resolution, long-slit spectroscopic observations of two planetary nebulae with [WC] central stars located near the galactic bulge, M 1-32 and M 3-15. The observations were obtained with the 2.1-m telescope at the Observatorio Astronómico Nacional, San Pedro Mártir. M 1-32 shows wide wings on the base of its emission lines and M 3-15 has two very faint high-velocity knots. In order to model both PNe we built a three-dimensional model consisting of a jet interacting with an equatorially concentrated slow wind, emulating the presence of a dense torus, using the Yguazú hydrodynamical code. From our hydrodynamical models, we obtained position-velocity (PV) diagrams in the [N II]λ6583 line for comparison with the observations. We find that the spectral characteristics of M 1-32 and M 3-15 can be explained with the same physical model -a jet moving inside an AGB wind- using different parameters (physical conditions and position angles of the jet). In agreement with our model and observations, these objects contain a dense torus seeing pole-on and a bipolar jet escaping thorough the poles. Then we propose to classify this kind of objects as spectroscopic bipolar nebulae, although they have been classified morphologically as compact, round, or elliptical nebulae or with "close collimated lobes".
NASA Astrophysics Data System (ADS)
Fischer, Lukas P.; Peter, Toni; Holm, Christian; de Graaf, Joost
2015-08-01
The so-called "raspberry" model refers to the hybrid lattice-Boltzmann and Langevin molecular dynamics scheme for simulating the dynamics of suspensions of colloidal particles, originally developed by Lobaskin and Dünweg [New J. Phys. 6, 54 (2004)], wherein discrete surface points are used to achieve fluid-particle coupling. This technique has been used in many simulation studies on the behavior of colloids. However, there are fundamental questions with regards to the use of this model. In this paper, we examine the accuracy with which the raspberry method is able to reproduce Stokes-level hydrodynamic interactions when compared to analytic expressions for solid spheres in simple-cubic crystals. To this end, we consider the quality of numerical experiments that are traditionally used to establish these properties and we discuss their shortcomings. We show that there is a discrepancy between the translational and rotational mobility reproduced by the simple raspberry model and present a way to numerically remedy this problem by adding internal coupling points. Finally, we examine a non-convex shape, namely, a colloidal dumbbell, and show that the filled raspberry model replicates the desired hydrodynamic behavior in bulk for this more complicated shape. Our investigation is continued in de Graaf et al. [J. Chem. Phys. 143, 084108 (2015)], wherein we consider the raspberry model in the confining geometry of two parallel plates.
Conaway, Jeffrey S.; Moran, Edward H.
2004-01-01
Bathymetric and hydraulic data were collected by the U.S. Geological Survey on the Tanana River in proximity to Alaska Department of Transportation and Public Facilities' bridge number 505 at mile 80.5 of the Alaska Highway. Data were collected from August 7-9, 2002, over an approximate 5,000- foot reach of the river. These data were combined with topographic data provided by Alaska Department of Transportation and Public Facilities to generate a two-dimensional hydrodynamic model. The hydrodynamic model was calibrated with water-surface elevations, flow velocities, and flow directions collected at a discharge of 25,600 cubic feet per second. The calibrated model was then used for a simulation of the 100-year recurrence interval discharge of 51,900 cubic feet per second. The existing bridge piers were removed from the model geometry in a second simulation to model the hydraulic conditions in the channel without the piers' influence. The water-surface elevations, flow velocities, and flow directions from these simulations can be used to evaluate the influence of the piers on flow hydraulics and will assist the Alaska Department of Transportation and Public Facilities in the design of a replacement bridge.
Fischer, Lukas P; Peter, Toni; Holm, Christian; de Graaf, Joost
2015-08-28
The so-called "raspberry" model refers to the hybrid lattice-Boltzmann and Langevin molecular dynamics scheme for simulating the dynamics of suspensions of colloidal particles, originally developed by Lobaskin and Dünweg [New J. Phys. 6, 54 (2004)], wherein discrete surface points are used to achieve fluid-particle coupling. This technique has been used in many simulation studies on the behavior of colloids. However, there are fundamental questions with regards to the use of this model. In this paper, we examine the accuracy with which the raspberry method is able to reproduce Stokes-level hydrodynamic interactions when compared to analytic expressions for solid spheres in simple-cubic crystals. To this end, we consider the quality of numerical experiments that are traditionally used to establish these properties and we discuss their shortcomings. We show that there is a discrepancy between the translational and rotational mobility reproduced by the simple raspberry model and present a way to numerically remedy this problem by adding internal coupling points. Finally, we examine a non-convex shape, namely, a colloidal dumbbell, and show that the filled raspberry model replicates the desired hydrodynamic behavior in bulk for this more complicated shape. Our investigation is continued in de Graaf et al. [J. Chem. Phys. 143, 084108 (2015)], wherein we consider the raspberry model in the confining geometry of two parallel plates. PMID:26328818
Battaglia, N.; Trac, H.; Cen, R.; Loeb, A.
2013-10-20
We present a new method for modeling inhomogeneous cosmic reionization on large scales. Utilizing high-resolution radiation-hydrodynamic simulations with 2048{sup 3} dark matter particles, 2048{sup 3} gas cells, and 17 billion adaptive rays in a L = 100 Mpc h {sup –1} box, we show that the density and reionization redshift fields are highly correlated on large scales (∼> 1 Mpc h {sup –1}). This correlation can be statistically represented by a scale-dependent linear bias. We construct a parametric function for the bias, which is then used to filter any large-scale density field to derive the corresponding spatially varying reionization redshift field. The parametric model has three free parameters that can be reduced to one free parameter when we fit the two bias parameters to simulation results. We can differentiate degenerate combinations of the bias parameters by combining results for the global ionization histories and correlation length between ionized regions. Unlike previous semi-analytic models, the evolution of the reionization redshift field in our model is directly compared cell by cell against simulations and performs well in all tests. Our model maps the high-resolution, intermediate-volume radiation-hydrodynamic simulations onto lower-resolution, larger-volume N-body simulations (∼> 2 Gpc h {sup –1}) in order to make mock observations and theoretical predictions.
The Raspberry model for hydrodynamic interactions revisited. II. The effect of confinement
NASA Astrophysics Data System (ADS)
de Graaf, Joost; Peter, Toni; Fischer, Lukas P.; Holm, Christian
2015-08-01
The so-called "raspberry" model refers to the hybrid lattice-Boltzmann (LB) and Langevin molecular dynamics schemes for simulating the dynamics of suspensions of colloidal particles, originally developed by Lobaskin and Dünweg [New J. Phys. 6, 54 (2004)], wherein discrete surface points are used to achieve fluid-particle coupling. In this paper, we present a follow up to our study of the effectiveness of the raspberry model in reproducing hydrodynamic interactions in the Stokes regime for spheres arranged in a simple-cubic crystal [Fischer et al., J. Chem. Phys. 143, 084107 (2015)]. Here, we consider the accuracy with which the raspberry model is able to reproduce such interactions for particles confined between two parallel plates. To this end, we compare our LB simulation results to established theoretical expressions and finite-element calculations. We show that there is a discrepancy between the translational and rotational mobilities when only surface coupling points are used, as also found in Part I of our joint publication. We demonstrate that adding internal coupling points to the raspberry can be used to correct said discrepancy in confining geometries as well. Finally, we show that the raspberry model accurately reproduces hydrodynamic interactions between a spherical colloid and planar walls up to roughly one LB lattice spacing.
Linked Hydrologic-Hydrodynamic Model Framework to Forecast Impacts of Rivers on Beach Water Quality
NASA Astrophysics Data System (ADS)
Anderson, E. J.; Fry, L. M.; Kramer, E.; Ritzenthaler, A.
2014-12-01
The goal of NOAA's beach quality forecasting program is to use a multi-faceted approach to aid in detection and prediction of bacteria in recreational waters. In particular, our focus has been on the connection between tributary loads and bacteria concentrations at nearby beaches. While there is a clear link between stormwater runoff and beach water quality, quantifying the contribution of river loadings to nearshore bacterial concentrations is complicated due to multiple processes that drive bacterial concentrations in rivers as well as those processes affecting the fate and transport of bacteria upon exiting the rivers. In order to forecast potential impacts of rivers on beach water quality, we developed a linked hydrologic-hydrodynamic water quality framework that simulates accumulation and washoff of bacteria from the landscape, and then predicts the fate and transport of washed off bacteria from the watershed to the coastal zone. The framework includes a watershed model (IHACRES) to predict fecal indicator bacteria (FIB) loadings to the coastal environment (accumulation, wash-off, die-off) as a function of effective rainfall. These loadings are input into a coastal hydrodynamic model (FVCOM), including a bacteria transport model (Lagrangian particle), to simulate 3D bacteria transport within the coastal environment. This modeling system provides predictive tools to assist local managers in decision-making to reduce human health threats.
Modeling hydrodynamics, temperature and water quality in Henry Hagg Lake, Oregon, 2000-2003
Sullivan, Annette B.; Rounds, Stewart A.
2004-01-01
The two-dimensional model CE-QUAL-W2 was used to simulate hydrodynamics, temperature, and water quality in Henry Hagg Lake, Oregon, for the years 2000 through 2003. Input data included lake bathymetry, meteorologic conditions, tributary inflows, tributary temperature and water quality, and lake outflows. Calibrated constituents included lake hydrodynamics, water temperature, orthophosphate, total phosphorus, ammonia, algae, chlorophyll a, zooplankton, and dissolved oxygen. Other simulated constituents included nitrate, dissolved and particulate organic matter, dissolved solids, and suspended sediment. Two algal groups (blue-green algae, and all other algae) were included in the model to simulate the lakes algal communities. Measured lake stage data were used to calibrate the lakes water balance; calibration of water temperature and water quality relied upon vertical profile data taken in the deepest part of the lake near the dam. The model initially was calibrated with data from 200001 and tested with data from 200203. Sensitivity tests were performed to examine the response of the model to specific parameters and coefficients, including the light-extinction coefficient, wind speed, tributary inflows of phosphorus, nitrogen and organic matter, sediment oxygen demand, algal growth rates, and zooplankton feeding preference factors.
The Raspberry model for hydrodynamic interactions revisited. II. The effect of confinement.
de Graaf, Joost; Peter, Toni; Fischer, Lukas P; Holm, Christian
2015-08-28
The so-called "raspberry" model refers to the hybrid lattice-Boltzmann (LB) and Langevin molecular dynamics schemes for simulating the dynamics of suspensions of colloidal particles, originally developed by Lobaskin and Dünweg [New J. Phys. 6, 54 (2004)], wherein discrete surface points are used to achieve fluid-particle coupling. In this paper, we present a follow up to our study of the effectiveness of the raspberry model in reproducing hydrodynamic interactions in the Stokes regime for spheres arranged in a simple-cubic crystal [Fischer et al., J. Chem. Phys. 143, 084107 (2015)]. Here, we consider the accuracy with which the raspberry model is able to reproduce such interactions for particles confined between two parallel plates. To this end, we compare our LB simulation results to established theoretical expressions and finite-element calculations. We show that there is a discrepancy between the translational and rotational mobilities when only surface coupling points are used, as also found in Part I of our joint publication. We demonstrate that adding internal coupling points to the raspberry can be used to correct said discrepancy in confining geometries as well. Finally, we show that the raspberry model accurately reproduces hydrodynamic interactions between a spherical colloid and planar walls up to roughly one LB lattice spacing. PMID:26328819
Modeling of liquid-vapor phase change using smoothed particle hydrodynamics
NASA Astrophysics Data System (ADS)
Das, A. K.; Das, P. K.
2015-12-01
A model has been proposed based on smoothed particle hydrodynamics to describe gas liquid phase change. Pseudo particles of zero mass are initially placed to locate the interface. Mass generated due to phase change is assigned to the pseudo particles and their positions are updated at intervals to track the mobility of the interface. The developed algorithm has been used to simulate vapor formation around solid spheres both in the absence of gravity and in the normal gravitational field. Finally, bubble growth over a hot horizontal surface due to boiling has been simulated. Simulated results showed good matching with the reported literature.
Cleary, Paul W; Prakash, Mahesh
2004-09-15
Particle-based simulation methods, such as the discrete-element method and smoothed particle hydrodynamics, have specific advantages in modelling complex three-dimensional (3D) environmental fluid and particulate flows. The theory of both these methods and their relative advantages compared with traditional methods will be discussed. Examples of 3D flows on realistic topography illustrate the environmental application of these methods. These include the flooding of a river valley as a result of a dam collapse, coastal inundation by a tsunami, volcanic lava flow and landslides. Issues related to validation and quality data availability are also discussed. PMID:15306427
Two-fluid Hydrodynamic Model for Fluid-Flow Simulation in Fluid-Solids Systems
1994-06-20
FLUFIX is a two-dimensional , transient, Eulerian, and finite-difference program, based on a two-fluid hydrodynamic model, for fluid flow simulation in fluid-solids systems. The software is written in a modular form using the Implicit Multi-Field (IMF) numerical technique. Quantities computed are the spatial distribution of solids loading, gas and solids velocities, pressure, and temperatures. Predicted are bubble formation, bed frequencies, and solids recirculation. Applications include bubbling and circulating atmospheric and pressurized fluidized bed reactors, combustors, gasifiers, and FCC (Fluid Catalytic Cracker) reactors.
Two-fluid Hydrodynamic Model for Fluid-Flow Simulation in Fluid-Solids Systems
1994-06-20
FLUFIX is a two-dimensional , transient, Eulerian, and finite-difference program, based on a two-fluid hydrodynamic model, for fluid flow simulation in fluid-solids systems. The software is written in a modular form using the Implicit Multi-Field (IMF) numerical technique. Quantities computed are the spatial distribution of solids loading, gas and solids velocities, pressure, and temperatures. Predicted are bubble formation, bed frequencies, and solids recirculation. Applications include bubbling and circulating atmospheric and pressurized fluidized bed reactors, combustors,more » gasifiers, and FCC (Fluid Catalytic Cracker) reactors.« less
Wang, Taiping; Yang, Zhaoqing; Khangaonkar, Tarang
2010-04-22
In this study, a hydrodynamic model based on the unstructured-grid finite volume coastal ocean model (FVCOM) was developed for Bellingham Bay, Washington. The model simulates water surface elevation, velocity, temperature, and salinity in a three-dimensional domain that covers the entire Bellingham Bay and adjacent water bodies, including Lummi Bay, Samish Bay, Padilla Bay, and Rosario Strait. The model was developed using Pacific Northwest National Laboratory’s high-resolution Puget Sound and Northwest Straits circulation and transport model. A sub-model grid for Bellingham Bay and adjacent coastal waters was extracted from the Puget Sound model and refined in Bellingham Bay using bathymetric light detection and ranging (LIDAR) and river channel cross-section data. The model uses tides, river inflows, and meteorological inputs to predict water surface elevations, currents, salinity, and temperature. A tidal open boundary condition was specified using standard National Oceanic and Atmospheric Administration (NOAA) predictions. Temperature and salinity open boundary conditions were specified based on observed data. Meteorological forcing (wind, solar radiation, and net surface heat flux) was obtained from NOAA real observations and National Center for Environmental Prediction North American Regional Analysis outputs. The model was run in parallel with 48 cores using a time step of 2.5 seconds. It took 18 hours of cpu time to complete 26 days of simulation. The model was calibrated with oceanographic field data for the period of 6/1/2009 to 6/26/2009. These data were collected specifically for the purpose of model development and calibration. They include time series of water-surface elevation, currents, temperature, and salinity as well as temperature and salinity profiles during instrument deployment and retrieval. Comparisons between model predictions and field observations show an overall reasonable agreement in both temporal and spatial scales. Comparisons of
Numerical description of cavitation on axisymmetric bodies
Hickox, C.E.; Hailey, C.E.; Wolfe, W.P.; Watts, H.A.; Gross, R.J.; Ingber, M.S.
1988-01-01
This paper reports on ongoing studies which are directed toward the development of predictive techniques for the modeling of steady cavitation on axisymmetric bodies. The primary goal of the modeling effort is the prediction of cavity shape and pressure distribution from which forces and moments can be calculated. Here we present an overview of the modeling techniques developed and compare predictions with experimental data obtained from water tunnel tests for both limited and supercavitation. 14 refs., 4 figs.
Combining Envisat type and CryoSat-2 altimetry to inform hydrodynamic models
NASA Astrophysics Data System (ADS)
Schneider, Raphael; Nygaard Godiksen, Peter; Villadsen, Heidi; Madsen, Henrik; Bauer-Gottwein, Peter
2015-04-01
Hydrological models are developed and used for flood forecasting and water resources management. Such models rely on a variety of input and calibration data. In general, and especially in data scarce areas, remote sensing provides valuable data for the parameterization and updating of such models. Satellite radar altimeters provide water level measurements of inland water bodies. So far, many studies making use of satellite altimeters have been based on data from repeat-orbit missions such as Envisat, ERS or Jason or on synthetic wide-swath altimetry data as expected from the SWOT mission. This work represents one of the first hydrologic applications of altimetry data from a drifting orbit satellite mission, using data from CryoSat-2. We present an application where CryoSat-2 data is used to improve a hydrodynamic model of the Ganges and Brahmaputra river basins in South Asia set up in the DHI MIKE 11 software. The model's parameterization and forcing is mainly based on remote sensing data, for example the TRMM 3B42 precipitation product and the SRTM DEM for river and subcatchment delineation. CryoSat-2 water levels were extracted over a river mask derived from Landsat 7 and 8 imagery. After calibrating the hydrological-hydrodynamic model against observed discharge, simulated water levels were fitted to the CryoSat-2 data, with a focus on the Brahmaputra river in the Assam valley: The average simulated water level in the hydrodynamic model was fitted to the average water level along the river's course as observed by CryoSat-2 over the years 2011-2013 by adjusting the river bed elevation. In a second step, the cross section shapes were adjusted so that the simulated water level dynamics matched those obtained from Envisat virtual station time series. The discharge calibration resulted in Nash-Sutcliffe coefficients of 0.86 and 0.94 for the Ganges and Brahmaputra. Using the Landsat river mask, the CryoSat-2 water levels show consistency along the river and are in
Hollow conical jet models for SS 433 - A paradigm lost?
NASA Technical Reports Server (NTRS)
Kochanek, Christopher S.; Hawley, John F.
1990-01-01
A precessing jet such as that in SS 433 may be approximated as an axisymmetric flow, if the precession time is short by comparison to the propagation time. A series of simulations has been conducted for precessing jets using an axisymmetric finite-difference hydrodynamics code. Examinations are made of hollow cylindrical jets, which lack the complication of a growing interior volume, and conical jets, which model the behavior of a precessing jet propagating on the surface of its precession cone.
Channeling of fast ions through the bent carbon nanotubes: The extended two-fluid hydrodynamic model
NASA Astrophysics Data System (ADS)
Lazar, Karbunar; Duško, Borka; Ivan, Radović; Zoran, L. Mišković
2016-04-01
We investigate the interactions of charged particles with straight and bent single-walled carbon nanotubes (SWNTs) under channeling conditions in the presence of dynamic polarization of the valence electrons in carbon. This polarization is described by a cylindrical, two-fluid hydrodynamic model with the parameters taken from the recent modelling of several independent experiments on electron energy loss spectroscopy of carbon nano-structures. We use the hydrodynamic model to calculate the image potential for protons moving through four types of SWNTs at a speed of 3 atomic units. The image potential is then combined with the Doyle–Turner atomic potential to obtain the total potential in the bent carbon nanotubes. Using that potential, we also compute the spatial and angular distributions of protons channeled through the bent carbon nanotubes, and compare the results with the distributions obtained without taking into account the image potential. Project supported by the Funds from the Ministry of Education, Science and Technological Development of the Republic of Serbia (Grant No. 45005). Z. L. Mišković thanks the Natural Sciences and Engineering Research Council of Canada for Finacial Support.
The optimization of high resolution topographic data for 1D hydrodynamic models
NASA Astrophysics Data System (ADS)
Ales, Ronovsky; Michal, Podhoranyi
2016-06-01
The main focus of our research presented in this paper is to optimize and use high resolution topographical data (HRTD) for hydrological modelling. Optimization of HRTD is done by generating adaptive mesh by measuring distance of coarse mesh and the surface of the dataset and adapting the mesh from the perspective of keeping the geometry as close to initial resolution as possible. Technique described in this paper enables computation of very accurate 1-D hydrodynamic models. In the paper, we use HEC-RAS software as a solver. For comparison, we have chosen the amount of generated cells/grid elements (in whole discretization domain and selected cross sections) with respect to preservation of the accuracy of the computational domain. Generation of the mesh for hydrodynamic modelling is strongly reliant on domain size and domain resolution. Topographical dataset used in this paper was created using LiDAR method and it captures 5.9km long section of a catchment of the river Olše. We studied crucial changes in topography for generated mesh. Assessment was done by commonly used statistical and visualization methods.
Poblete, Simón; Wysocki, Adam; Gompper, Gerhard; Winkler, Roland G
2014-09-01
We investigate the hydrodynamic properties of a spherical colloid model, which is composed of a shell of point particles by hybrid mesoscale simulations, which combine molecular dynamics simulations for the sphere with the multiparticle collision dynamics approach for the fluid. Results are presented for the center-of-mass and angular velocity correlation functions. The simulation results are compared with theoretical results for a rigid colloid obtained as a solution of the Stokes equation with no-slip boundary conditions. Similarly, analytical results of a point-particle model are presented, which account for the finite size of the simulated system. The simulation results agree well with both approaches on appropriative time scales; specifically, the long-time correlations are quantitatively reproduced. Moreover, a procedure is proposed to obtain the infinite-system-size diffusion coefficient based on a combination of simulation results and analytical predictions. In addition, we present the velocity field in the vicinity of the colloid and demonstrate its close agreement with the theoretical prediction. Our studies show that a point-particle model of a sphere is very well suited to describe the hydrodynamic properties of spherical colloids, with a significantly reduced numerical effort.
Audebert, M; Oxarango, L; Duquennoi, C; Touze-Foltz, N; Forquet, N; Clément, R
2016-09-01
Leachate recirculation is a key process in the operation of municipal solid waste landfills as bioreactors. To ensure optimal water content distribution, bioreactor operators need tools to design leachate injection systems. Prediction of leachate flow by subsurface flow modelling could provide useful information for the design of such systems. However, hydrodynamic models require additional data to constrain them and to assess hydrodynamic parameters. Electrical resistivity tomography (ERT) is a suitable method to study leachate infiltration at the landfill scale. It can provide spatially distributed information which is useful for constraining hydrodynamic models. However, this geophysical method does not allow ERT users to directly measure water content in waste. The MICS (multiple inversions and clustering strategy) methodology was proposed to delineate the infiltration area precisely during time-lapse ERT survey in order to avoid the use of empirical petrophysical relationships, which are not adapted to a heterogeneous medium such as waste. The infiltration shapes and hydrodynamic information extracted with MICS were used to constrain hydrodynamic models in assessing parameters. The constraint methodology developed in this paper was tested on two hydrodynamic models: an equilibrium model where, flow within the waste medium is estimated using a single continuum approach and a non-equilibrium model where flow is estimated using a dual continuum approach. The latter represents leachate flows into fractures. Finally, this methodology provides insight to identify the advantages and limitations of hydrodynamic models. Furthermore, we suggest an explanation for the large volume detected by MICS when a small volume of leachate is injected. PMID:27095292
Numerical investigation of transitional supersonic axisymmetric wakes
NASA Astrophysics Data System (ADS)
Sandberg, Richard D.; Fasel, Hermann F.
2006-09-01
Transitional supersonic axisymmetric wakes are investigated by conducting various numerical experiments. The main objective is to identify hydrodynamic instability mechanisms in the flow at M {=} 2.46 for several Reynolds numbers, and to relate these to coherent structures that are found from various visualization techniques. The premise for this approach is the assumption that flow instabilities lead to the formation of coherent structures. Three high-order accurate compressible codes were developed in cylindrical coordinates for this work: a spatial Navier Stokes (N-S) code to conduct direct numerical simulations (DNS), a linearized N-S code for linear stability investigations using axisymmetric basic states, and a temporal N-S code for performing local stability analyses. The ability of numerical simulations to exclude physical effects deliberately is exploited. This includes intentionally eliminating certain azimuthal/helical modes by employing DNS for various circumferential domain sizes. With this approach, the impact of structures associated with certain modes on the global wake-behaviour can be scrutinized. Complementary spatial and temporal calculations are carried out to investigate whether instabilities are of local or global nature. Circumstantial evidence is presented that absolutely unstable global modes within the recirculation region co-exist with convectively unstable shear-layer modes. The flow is found to be absolutely unstable with respect to modes k {>} 0 for Re_D {>} 5000 and with respect to the axisymmetric mode k {=} 0 for Re_D {>} 100 000. It is concluded that azimuthal modes k {=} 2 and k {=} 4 are the dominant modes in the trailing wake, producing a ‘four-lobe’ wake pattern. Two possible mechanisms responsible for the generation of longitudinal structures within the recirculation region are suggested.
Hydrodynamic model for ultra-short pulse ablation of hard dental tissue
London, R.A.; Bailey, D.S.; Young, D.A.; Alley, W.E.; Feit, M.D.; Rubenchik, A.M.; Neev, J.
1996-02-29
A computational model for the ablation of tooth enamel by ultra-short laser pulses is presented. The role of simulations using this model in designing and understanding laser drilling systems is discussed. Pulses of duration 300 fsec and intensity greater than 10{sup 12} W/cm{sup 2} are considered. Laser absorption proceeds via multi-photon initiated plasma mechanism. The hydrodynamic response is calculated with a finite difference method, using an equation of state constructed from thermodynamic functions including electronic, ion motion, and chemical binding terms. Results for the ablation efficiency are presented. An analytic model describing the ablation threshold and ablation depth is presented. Thermal coupling to the remaining tissue and long-time thermal conduction are calculated. Simulation results are compared to experimental measurements of the ablation efficiency. Desired improvements in the model are presented.
Hydrodynamic Transfection for Generation of Novel Mouse Models for Liver Cancer Research
Chen, Xin; Calvisi, Diego F.
2015-01-01
Primary liver cancers, including hepatocellular carcinoma and intrahepatic cholangiocarcinoma, are leading causes of cancer-related death worldwide. Recent large-scale genomic approaches have identified a wide number of genes whose deregulation is associated with hepatocellular carcinoma and intrahepatic cholangiocarcinoma development. Murine models are critical tools to determine the oncogenic potential of these genes. Conventionally, transgenic or knockout mouse models are used for this purpose. However, several limitations apply to the latter models. Herein, we review a novel approach for stable gene expression in mouse hepatocytes by hydrodynamic injection in combination with Sleeping Beauty–mediated somatic integration. This method represents a flexible, reliable, and cost-effective tool to generate preclinical murine models for liver cancer research. Furthermore, it can be used as an in vivo transfection method to study biochemical cross talks among multiple pathways along hepatocarcinogenesis and to test the therapeutic potential of drugs against liver cancer. PMID:24480331
3D hydrodynamic lift force model for AREVA fuel assembly in EDF PWRs
Ekomie, S.; Bigot, J.; Dolleans, Ph.; Vallory, J.
2007-07-01
The accurate knowledge of the hydrodynamic lift force acting on a fuel assembly in PWR core is necessary to design the hold-down system of this assembly. This paper presents the model used by AREVA NP and EDF for computing this force. It results from a post-processing of sub-channel thermal-hydraulic codes respectively porous medium approach code THYC (EDF) and sub-channel type code FLICA III-F (AREVA NP). This model is based on the application of the Euler's theorem. Some hypotheses used to simplify the complexity of fuel assembly geometry are supported by CFD calculations. Then the model is compared to some experimental results obtained on a single fuel assembly inserted in the HERMES-T test facility located in CEA - Cadarache. Finally, the model is applied to calculate the lift force for the whole core. Various loading patterns including homogenous and mixed cores have been investigated and compared. (authors)
NASA Astrophysics Data System (ADS)
Salah, Ahmad M.; Nelson, E. James; Williams, Gustavious P.
2010-04-01
We present algorithms and tools we developed to automatically link an overland flow model to a hydrodynamic water quality model with different spatial and temporal discretizations. These tools run the linked models which provide a stochastic simulation frame. We also briefly present the tools and algorithms we developed to facilitate and analyze stochastic simulations of the linked models. We demonstrate the algorithms by linking the Gridded Surface Subsurface Hydrologic Analysis (GSSHA) model for overland flow with the CE-QUAL-W2 model for water quality and reservoir hydrodynamics. GSSHA uses a two-dimensional horizontal grid while CE-QUAL-W2 uses a two-dimensional vertical grid. We implemented the algorithms and tools in the Watershed Modeling System (WMS) which allows modelers to easily create and use models. The algorithms are general and could be used for other models. Our tools create and analyze stochastic simulations to help understand uncertainty in the model application. While a number of examples of linked models exist, the ability to perform automatic, unassisted linking is a step forward and provides the framework to easily implement stochastic modeling studies.
Yao, Hua-Dong; Svensson, Mats Y; Nilsson, Håkan
2016-02-01
In vehicle collisions, the occupant's torso is accelerated in a given direction while the unsupported head tends to lag behind. This mechanism results in whiplash motion to the neck. In whiplash experiments conducted for animals, pressure transients have been recorded in the spinal canal. It was hypothesized that the transients caused dorsal root ganglion dysfunction. Neck motion introduces volume changes inside the vertebral canal. The changes require an adaptation which is likely achieved by redistribution of blood volume in the internal vertebral venous plexus (IVVP). Pressure transients then arise from the rapid redistribution. The present study aimed to explore the hypothesis theoretically and analytically. Further, the objectives were to quantify the effect of the neck motion on the pressure generation and to identify the physical factors involved. We developed a hydrodynamic system of tubes that represent the IVVP and its lateral intervertebral vein connections. An analytical model was developed for an anatomical geometrical relation that the venous blood volume changes with respect to the vertebral angular displacement. This model was adopted in the hydrodynamic tube system so that the system can predict the pressure transients on the basis of the neck vertebral motion data from a whiplash experiment. The predicted pressure transients were in good agreement with the earlier experimental data. A parametric study was conducted and showed that the system can be used to assess the influences of anatomical geometrical properties and vehicle collision severity on the pressure generation.
Yao, Hua-Dong; Svensson, Mats Y; Nilsson, Håkan
2016-02-01
In vehicle collisions, the occupant's torso is accelerated in a given direction while the unsupported head tends to lag behind. This mechanism results in whiplash motion to the neck. In whiplash experiments conducted for animals, pressure transients have been recorded in the spinal canal. It was hypothesized that the transients caused dorsal root ganglion dysfunction. Neck motion introduces volume changes inside the vertebral canal. The changes require an adaptation which is likely achieved by redistribution of blood volume in the internal vertebral venous plexus (IVVP). Pressure transients then arise from the rapid redistribution. The present study aimed to explore the hypothesis theoretically and analytically. Further, the objectives were to quantify the effect of the neck motion on the pressure generation and to identify the physical factors involved. We developed a hydrodynamic system of tubes that represent the IVVP and its lateral intervertebral vein connections. An analytical model was developed for an anatomical geometrical relation that the venous blood volume changes with respect to the vertebral angular displacement. This model was adopted in the hydrodynamic tube system so that the system can predict the pressure transients on the basis of the neck vertebral motion data from a whiplash experiment. The predicted pressure transients were in good agreement with the earlier experimental data. A parametric study was conducted and showed that the system can be used to assess the influences of anatomical geometrical properties and vehicle collision severity on the pressure generation. PMID:26827171
Sokolova, Ekaterina; Petterson, Susan R; Dienus, Olaf; Nyström, Fredrik; Lindgren, Per-Eric; Pettersson, Thomas J R
2015-09-01
Norovirus contamination of drinking water sources is an important cause of waterborne disease outbreaks. Knowledge on pathogen concentrations in source water is needed to assess the ability of a drinking water treatment plant (DWTP) to provide safe drinking water. However, pathogen enumeration in source water samples is often not sufficient to describe the source water quality. In this study, the norovirus concentrations were characterised at the contamination source, i.e. in sewage discharges. Then, the transport of norovirus within the water source (the river Göta älv in Sweden) under different loading conditions was simulated using a hydrodynamic model. Based on the estimated concentrations in source water, the required reduction of norovirus at the DWTP was calculated using quantitative microbial risk assessment (QMRA). The required reduction was compared with the estimated treatment performance at the DWTP. The average estimated concentration in source water varied between 4.8×10(2) and 7.5×10(3) genome equivalents L(-1); and the average required reduction by treatment was between 7.6 and 8.8 Log10. The treatment performance at the DWTP was estimated to be adequate to deal with all tested loading conditions, but was heavily dependent on chlorine disinfection, with the risk of poor reduction by conventional treatment and slow sand filtration. To our knowledge, this is the first article to employ discharge-based QMRA, combined with hydrodynamic modelling, in the context of drinking water.
Rapaglia, John; Ferrarin, Christian; Zaggia, Luca; Moore, Willard S; Umgiesser, Georg; Garcia-Solsona, Ester; Garcia-Orellana, Jordi; Masqué, Pere
2010-07-01
The four naturally-occurring isotopes of radium were coupled with a previously evaluated hydrodynamic model to determine the apparent age of surface waters and to quantify submarine groundwater discharge (SGD) into the Venice Lagoon, Italy. Mean apparent age of water in the Venice Lagoon was calculated using the ratio of 224Ra to 228Ra determined from 30 monitoring stations and a mean pore water end member. Average apparent age was calculated to be 6.0 d using Ra ratios. This calculated age was very similar to average residence time calculated for the same period using a hydrodynamic model (5.8 d). A mass balance of Ra was accomplished by quantifying each of the sources and sinks of Ra in the lagoon, with the unknown variable being attributed to SGD. Total SGD were calculated to be 4.1 +/- 1.5, 3.8 +/- 0.7, 3.0 +/- 1.3, and 3.5 +/- 1.0 x 10(10) L d(-1) for (223,224,226, 228)Ra, respectively, which are an order of magnitude larger than total mean fluvial discharge into the Venice Lagoon (3.1 x 10(9) L d(-1)). The SGD as a source of nutrients in the Venice Lagoon is also discussed and, though significant to the nutrient budget, is likely to be less important as the dominant control on SGD is recirculated seawater rather than freshwater.
3D Hydrodynamical and Radiative Transfer Modeling of Eta Carinae's Colliding Winds
NASA Astrophysics Data System (ADS)
Madura, Thomas Ignatius; Clementel, Nicola; Gull, Theodore R.; Kruip, Chael J. H.; Paardekooper, Jan-Pieter; Icke, Vincent
2015-08-01
We present the results of full 3D hydrodynamical and radiative transfer simulations of the colliding stellar winds in the massive binary system Eta Carinae (Clementel, Madura, et al. 2014, MNRAS, 443, 2475 and Clementel, Madura, et al. 2015, MNRAS, 447, 2445). We accomplish this by applying the SimpleX algorithm for 3D radiative transfer on an unstructured Voronoi-Delaunay grid to 3D smoothed particle hydrodynamics simulations of the binary colliding winds. We use SimpleX to obtain detailed ionization fractions of hydrogen and helium in 3D. We investigate several computational domain sizes and Luminous Blue Variable primary-star mass-loss rates. We show how the SimpleX simulations can be used to generate synthetic spectral data cubes for comparison to data obtained with the Hubble Space Telescope (HST)/Space Telescope Imaging Spectrograph as part of a multi-cycle program to map changes in Eta Carinae's spatially extended interacting wind structures across one binary cycle. Comparison of the HST observations to the SimpleX models can help lead to more accurate constraints on the orbital, stellar, and wind parameters of the Eta Carinae system, such as the LBV primary's mass-loss rate and the companion star's temperature and luminosity. We furthermore present new methods of visualizing and interacting with output from complex 3D numerical simulations, including 3D interactive graphics and 3D printing (Madura et al. 2015, arXiv:1503.00716). While we initially focus specifically on Eta Carinae, the methods employed can be applied to numerous other colliding wind (WR 140, WR 137, WR 19) and dusty ‘pinwheel’ (WR 112, WR 104, WR 98a) binary systems. Coupled with 3D hydrodynamical simulations, SimpleX simulations have the potential to help determine the regions where dust can form and survive in these unique objects.
High-resolution modelling of 3D hydrodynamics in coastal archipelagos
NASA Astrophysics Data System (ADS)
Miettunen, Elina; Tuomi, Laura; Ropponen, Janne; Lignell, Risto
2016-04-01
Dynamics of the coastal seas are affected by eutrophication, over-fishing, coastal construction and climate change. To enable the sustainable development of these areas, monitoring and modelling of the state of the sea are needed. The Archipelago Sea, located in the northern part of the semi-enclosed and brackish water Baltic Sea, is one of the most complex coastal areas with over 40 000 small islands and islets. It is also very vulnerable area already heavily stressed with eutrophication. Applicable modelling tools are needed to support the decision making and to provide sufficiently reliable information on the effects of the planned actions on the state of the coastal waters. We used 3D hydrodynamic model COHERENS to model the Archipelago Sea area with high spatial resolution of 0.25 nmi. Boundary conditions for this limited area were provided from coarser resolution, 2 nmi, Baltic Sea grid. In order to evaluate the performance of the high-resolution coastal model implementation a comprehensive measurement dataset was gathered, including hydrographic data from three intensive monitoring stations and several more rarely visited monitoring or research stations. The hydrodynamic model was able to simulate the surface temperature and salinity fields and their seasonal variation with good accuracy in this complex area. The sharp depth gradients typical for this area provided some challenges to the modelling. There was some over mixing and related to too strong vertical currents in the steep slopes of the deeper fault lines. Also the water exchange between the more open sea and coastal areas through narrow channels between the islands is not sufficiently well reproduced with the current resolution, leading to too high bottom temperatures.
A sub-mesoscale hydrodynamic/acoustic simulation model for continental shelf-break regions
NASA Astrophysics Data System (ADS)
Finette, Steven; Shen, Colin Y.; Evans, Thomas E.
2003-10-01
A nonhydrostatic, hydrodynamic model of the sound speed field in a continental shelf-break environment has been developed and implemented. The model is based on a vorticity formulation of the equations of motion for an incompressible fluid with a free ocean surface, and it is capable of simulating the generation and propagation of internal tides and solibores under tidal forcing. The model has been benchmarked with an exact numerical solution for a soliton. A set of space and time evolving sound speed distributions is integrated with a parabolic equation code to compute time and frequency dependent pressure fields. Two-dimensional examples of broad-band signal gain degradation on vertical arrays in this environment are presented, as well as range-frequency maps that illustrate the structure of the waveguide invariant in a shelf-break environment that is changing in time. Implications for source localization are considered. [Work supported by ONR.
Waddle, T.J.; Holmquist, J.G.
2013-01-01
Two-dimensional hydrodynamic models are being used increasingly as alternatives to traditional one-dimensional instream flow methodologies for assessing adequacy of flow and associated faunal habitat. Two-dimensional modelling of habitat has focused primarily on fishes, but fish-based assessments may not model benthic macroinvertebrate habitat effectively. We extend two-dimensional techniques to a macroinvertebrate assemblage in a high-elevation stream in the Sierra Nevada (Dana Fork of the Tuolumne River, Yosemite National Park, CA, USA). This stream frequently flows at less than 0.03?m3?s?1 in late summer and is representative of a common water abstraction scenario: maximum water abstraction coinciding with seasonally low flows. We used two-dimensional modelling to predict invertebrate responses to reduced flows that might result from increased abstraction. We collected site-specific field data on the macroinvertebrate assemblage, bed topography and flow conditions and then coupled a two-dimensional hydrodynamic model with macroinvertebrate indices to evaluate habitat across a range of low flows. Macroinvertebrate indices were calculated for the wetted area at each flow. A surrogate flow record based on an adjacent watershed was used to evaluate frequency and duration of low flow events. Using surrogate historical records, we estimated that flow should fall below 0.071?m3?s?1 at least 1?day in 82 of 95?years and below 0.028?m3?s?1 in 48 of 95?years. Invertebrate metric means indicated minor losses in response to modelled discharge reductions, but wetted area decreased substantially. Responses of invertebrates to water abstraction will likely be a function of changing habitat quantity rather than quality.
Structure of axisymmetric mantle plumes
NASA Technical Reports Server (NTRS)
Olson, Peter; Schubert, Gerald; Anderson, Charles
1993-01-01
The structure of axisymmetric subsolidus thermal plumes in the earth's lower mantle is inferred from calculations of axisymmetric thermal plumes in an infinite Prandtl number fluid with thermally activated viscosity. The velocity and temperature distribution is determined for axisymmetric convection above a heated disk in an incompressible fluid cylinder 2,400 km in height and 1,200 km in diameter. Several calculations of plumes with heat transport in the range 100-400 GW, similar to the advective heat transport at the Hawaiian hotspot, are presented. Hotspot formation by plumes originating at the base of the mantle requires both large viscosity variations and a minimum heat transport.
NASA Astrophysics Data System (ADS)
Piche, Steffanie
Understanding the impact of coastal forests on the propagation of rapidly advancing onshore tsunami bores is difficult due to complexity of this phenomenon and the large amount of parameters which must be considered. The research presented in the thesis focuses on understanding the protective effect of the coastal forest on the forces generated by the tsunami and its ability to reduce the propagation and velocity of the incoming tsunami bore. Concern for this method of protecting the coast from tsunamis is based on the effectiveness of the forest and its ability to withstand the impact forces caused by both the bore and the debris carried along by it. The devastation caused by the tsunami has been investigated in recent examples such as the 2011 Tohoku Tsunami in Japan and the Indian Ocean Tsunami which occurred in 2004. This research examines the reduction of the spatial extent of the tsunami bore inundation and runup due to the presence of the coastal forest, and attempts to quantify the impact forces induced by the tsunami bores and debris impact on the structures. This research work was performed using a numerical model based on the Smoothed Particle Hydrodynamics (SPH) method which is a single-phase three-dimensional model. The simulations performed in this study were separated into three sections. The first section focused on the reduction of the extent of the tsunami inundation and the magnitude of the bore velocity by the coastal forest. This section included the analysis of the hydrodynamic forces acting on the individual trees. The second section involved the numerical modeling of some of the physical laboratory experiments performed by researchers at the University of Ottawa, in cooperation with colleagues from the Ocean, Coastal and River Engineering Lab at the National Research Council, Ottawa, in an attempt to validate the movement and impact forces of floating driftwood on a column. The final section modeled the movement and impact of floating debris
Dong, Feng; Zhang, Han-Min; Yang, Feng-Lin
2012-01-01
A one-dimension aerobic granule mathematical model was established, basing on mathematical biofilm model and activated sludge model. The model was used to simulate simple aerobic granule process such as nutrients removal, granule diameter evolution, cycle performance as well as depth profiles of DO and biomass. The effluent NH4(+) -N concentration decreased as the modeling processed. The simulation effluent NO3(-)-N concentration decreased to 3 mg x L(-1) as the granules grew. While the granule diameter increased from 1.1 mm on day 30 to 2.5 mm on day 100, the TN removal efficiency increased from less than 10% to 91%. The denitrification capacity was believed to enhance because the anoxic zone would be enlarged with the increasing granule diameter. The simultaneous nitrification and denitrification occurred inside the big aerobic granules. The oxygen permeating depth increased with the consumption of substrate. It was about 100-200 microm at the beginning of the aeration phase, and it turned to near 800 microm at the end of reaction. The autotrophs (AOB and NOB) were mostly located at the out layer where the DO concentration was high. The heterotrophic bacteria were distributed through the whole granule. As hydrodynamic shear coefficient k(de) increased from 0.25 (m x d)(-1) to 5 (m x d)(-1), the granule diameter under steady state decreased form 3.5 mm to 1.8 mm. The granule size under the dynamic steady-state decreased with the increasing hydrodynamic shear force. The granule size could be controlled by adjusting aeration intensity. PMID:22452208
Oxygen spectral line synthesis: 3D non-LTE with CO5BOLD hydrodynamical model atmospheres.
NASA Astrophysics Data System (ADS)
Prakapavičius, D.; Steffen, M.; Kučinskas, A.; Ludwig, H.-G.; Freytag, B.; Caffau, E.; Cayrel, R.
In this work we present first results of our current project aimed at combining the 3D hydrodynamical stellar atmosphere approach with non-LTE (NLTE) spectral line synthesis for a number of key chemical species. We carried out a full 3D-NLTE spectrum synthesis of the oxygen IR 777 nm triplet, using a modified and improved version of our NLTE3D package to calculate departure coefficients for the atomic levels of oxygen in a CO5BOLD 3D hydrodynamical solar model atmosphere. Spectral line synthesis was subsequently performed with the Linfor3D code. In agreement with previous studies, we find that the lines of the oxygen triplet produce deeper cores under NLTE conditions, due to the diminished line source function in the line forming region. This means that the solar oxygen IR 777 nm lines should be stronger in NLTE, leading to negative 3D NLTE-LTE abundance corrections. Qualitatively this result would support previous claims for a relatively low solar oxygen abundance. Finally, we outline several further steps that need to be taken in order to improve the physical realism and numerical accuracy of our current 3D-NLTE calculations.
NASA Astrophysics Data System (ADS)
Straatsma, Menno; Huthoff, Fredrik
2011-01-01
In The Netherlands, 2D-hydrodynamic simulations are used to evaluate the effect of potential safety measures against river floods. In the investigated scenarios, the floodplains are completely inundated, thus requiring realistic representations of hydraulic roughness of floodplain vegetation. The current study aims at providing better insight into the uncertainty of flood water levels due to uncertain floodplain roughness parameterization. The study focuses on three key elements in the uncertainty of floodplain roughness: (1) classification error of the landcover map, (2), within class variation of vegetation structural characteristics, and (3) mapping scale. To assess the effect of the first error source, new realizations of ecotope maps were made based on the current floodplain ecotope map and an error matrix of the classification. For the second error source, field measurements of vegetation structure were used to obtain uncertainty ranges for each vegetation structural type. The scale error was investigated by reassigning roughness codes on a smaller spatial scale. It is shown that classification accuracy of 69% leads to an uncertainty range of predicted water levels in the order of decimeters. The other error sources are less relevant. The quantification of the uncertainty in water levels can help to make better decisions on suitable flood protection measures. Moreover, the relation between uncertain floodplain roughness and the error bands in water levels may serve as a guideline for the desired accuracy of floodplain characteristics in hydrodynamic models.
A 3D boundary-fitted barotropic hydrodynamic model for the New York Harbor region
NASA Astrophysics Data System (ADS)
Sankaranarayanan, S.
2005-11-01
A three-dimensional barotropic hydrodynamic model application to the New York Harbor Region is performed using the Boundary-Fitted HYDROdynamic model (BFHYDRO). The model forcing functions consist of surface elevations along the open boundaries, hourly winds, and fresh water flows from the rivers and sewage flows. A comprehensive skill assessment of the model predictions is done using observed surface elevations and three-dimensional currents. The model-predicted surface elevations compare well with the observed surface elevations at four stations. Mean errors in the model-predicted surface elevations are less than 4% and correlation coefficients exceed 0.985. Model-predicted three-dimensional currents at Verrazano Narrows show excellent comparison with the observations, with mean errors less than 11% and correlation coefficients exceeding 0.960. Model-predicted three-dimensional currents at Bergen Point compare well with the observations, with mean errors less than 15% and correlation coefficients exceeding 0.897. The surface elevation amplitudes and phases of the principal tidal constituents at nine tidal stations, obtained from a harmonic analysis of a 60-day simulation compare well with the observed data. The predicted amplitude and phase of the M2 tidal constituent at these stations are, respectively, within 5 cm and 6° of the observed data. The model-predicted tidal ellipse parameters for the major tidal constituents compare well with the observations at Verrazano Narrows and Bergen Point. The model-predicted along channel sub-tidal currents also compare well with the observations. The semi-diurnal tidal ranges and spring and neap tidal cycles of the surface elevations and currents are well reproduced in the model at all stations. The observed currents at Bergen Point were shown to be flood dominant through tidal distortion analysis. The model-predicted currents also showed Newark Bay and Arthur Kill to be flood dominant systems. The model predictions showed
J. KAO; D. COOPER; ET AL
2000-11-01
As lidar technology is able to provide fast data collection at a resolution of meters in an atmospheric volume, it is imperative to promote a modeling counterpart of the lidar capability. This paper describes an integrated capability based on data from a scanning water vapor lidar and a high-resolution hydrodynamic model (HIGRAD) equipped with a visualization routine (VIEWER) that simulates the lidar scanning. The purpose is to better understand the spatial and temporal representativeness of the lidar measurements and, in turn, to extend their utility in studying turbulence fields in the atmospheric boundary layer. Raman lidar water vapor data collected over the Pacific warm pool and the simulations with the HIGRAD code are used for identifying the underlying physics and potential aliasing effects of spatially resolved lidar measurements. This capability also helps improve the trade-off between spatial-temporal resolution and coverage of the lidar measurements.
Mixed-RKDG Finite Element Methods for the 2-D Hydrodynamic Model for Semiconductor Device Simulation
Chen, Zhangxin; Cockburn, Bernardo; Jerome, Joseph W.; Shu, Chi-Wang
1995-01-01
In this paper we introduce a new method for numerically solving the equations of the hydrodynamic model for semiconductor devices in two space dimensions. The method combines a standard mixed finite element method, used to obtain directly an approximation to the electric field, with the so-called Runge-Kutta Discontinuous Galerkin (RKDG) method, originally devised for numerically solving multi-dimensional hyperbolic systems of conservation laws, which is applied here to the convective part of the equations. Numerical simulations showing the performance of the new method are displayed, and the results compared with those obtained by using Essentially Nonoscillatory (ENO) finite difference schemes. Frommore » the perspective of device modeling, these methods are robust, since they are capable of encompassing broad parameter ranges, including those for which shock formation is possible. The simulations presented here are for Gallium Arsenide at room temperature, but we have tested them much more generally with considerable success.« less
Effect of forward looking sites on a multi-phase lattice hydrodynamic model
NASA Astrophysics Data System (ADS)
Redhu, Poonam; Gupta, Arvind Kumar
2016-03-01
A new multi-phase lattice hydrodynamic traffic flow model is proposed by considering the effect of multi-forward looking sites on a unidirectional highway. We examined the qualitative properties of proposed model through linear as well as nonlinear stability analysis. It is shown that the multi-anticipation effect can significantly enlarge the stability region on the phase diagram and exhibit three-phase traffic flow. It is also observed that the multi-forward looking sites have prominent influence on traffic flow when driver senses the relative flux of leading vehicles. Theoretical findings are verified using numerical simulation which confirms that the traffic jam is suppressed efficiently by considering the information of leading vehicles in unidirectional multi-phase traffic flow.
NASA Technical Reports Server (NTRS)
Fatemi, Emad; Jerome, Joseph; Osher, Stanley
1989-01-01
A micron n+ - n - n+ silicon diode is simulated via the hydrodynamic model for carrier transport. The numerical algorithms employed are for the non-steady case, and a limiting process is used to reach steady state. The simulation employs shock capturing algorithms, and indeed shocks, or very rapid transition regimes, are observed in the transient case for the coupled system, consisting of the potential equation and the conservation equations describing charge, momentum, and energy transfer for the electron carriers. These algorithms, termed essentially non-oscillatory, were successfully applied in other contexts to model the flow in gas dynamics, magnetohydrodynamics, and other physical situations involving the conservation laws in fluid mechanics. The method here is first order in time, but the use of small time steps allows for good accuracy. Runge-Kutta methods allow one to achieve higher accuracy in time if desired. The spatial accuracy is of high order in regions of smoothness.
Margination of white blood cells: a computational approach by a hydrodynamic phase field model
NASA Astrophysics Data System (ADS)
Marth, Wieland; Aland, Sebastian; Voigt, Axel
2016-03-01
We numerically investigate margination of white blood cells and demonstrate the dependency on a number of conditions including hematocrit, the deformability of the cells and the Reynolds number. A detailed mesoscopic hydrodynamic Helfrich-type model is derived, validated and used for the simulations to provides a quantitative description of the margination of white blood cells. Previous simulation results, obtained with less detailed models, could be confirmed, e.g. the largest probability of margination of white blood cells at an intermediate range of hematocrit values and a decreasing tendency with increasing deformability. The consideration of inertia effects, which become of relevance in small vessels, also shows a dependency and leads to less pronounced margination of white blood cells with increasing Reynolds number.
Hydrodynamic model for sum and difference frequency generation at metal surfaces
NASA Astrophysics Data System (ADS)
Maytorena, Jesús A.; Mochán, W. Luis; Mendoza, Bernardo S.
1998-01-01
We develop a hydrodynamic model for the calculation of sum and difference frequency generation (SFG/DFG) at the surface of nonlocal conductors with arbitrary equilibrium electronic density profiles n0. We apply our model to simple profiles and calculate the nonlinear surface susceptibility tensor χszzz(ω1,ω2) and the radiated efficiency R(ω3=ω1+/-ω2) as a function of the pump frequencies ω1 and ω2. R is strongly enhanced due to the excitation of the dipolar surface plasmon characterized by a resonant frequency ωd it displays ridges whenever ω1, ω2, or ω3~ωd, an additional ridge at the bulk plasma frequency ω3~ωb, and very large double resonance peaks whenever two ridges cross each other. These results suggest that SFG/DFG spectroscopy might be a useful probe of surface collective modes.
NASA Astrophysics Data System (ADS)
Durand, Michael; Andreadis, Konstantinos M.; Alsdorf, Douglas E.; Lettenmaier, Dennis P.; Moller, Delwyn; Wilson, Matthew
2008-10-01
The proposed Surface Water and Ocean Topography (SWOT) mission would provide measurements of water surface elevation (WSE) for characterization of storage change and discharge. River channel bathymetry is a significant source of uncertainty in estimating discharge from WSE measurements, however. In this paper, we demonstrate an ensemble-based data assimilation (DA) methodology for estimating bathymetric depth and slope from WSE measurements and the LISFLOOD-FP hydrodynamic model. We performed two proof-of-concept experiments using synthetically generated SWOT measurements. The experiments demonstrated that bathymetric depth and slope can be estimated to within 3.0 microradians or 50 cm, respectively, using SWOT WSE measurements, within the context of our DA and modeling framework. We found that channel bathymetry estimation accuracy is relatively insensitive to SWOT measurement error, because uncertainty in LISFLOOD-FP inputs (such as channel roughness and upstream boundary conditions) is likely to be of greater magnitude than measurement error.
Langeveld, J G; Veldkamp, R G; Clemens, F
2005-01-01
Modelling suspended solids transport is a key issue for predicting the pollution load discharged by CSOs. Nonetheless, there is still much debate on the main drivers for suspended solids transport and on the modelling approach to be adopted. Current sewer models provide suspended solids transport models. These models, however, rely upon erosion-deposition criteria developed in fluvial environments, therewith oversimplifying the sewer sediment characteristics. Consequently, the performance of these models is poor from a theoretical point of view. To get an improved understanding of the temporal and spatial variations in suspended solids transport, a measuring network was installed in the sewer system of Loenen in conjunction with a hydraulic measuring network from June through December 2001. During the measuring period, 15 storm events rendered high-quality data on both the hydraulics and the turbidity. For each storm event, a hydrodynamic model was calibrated using the Clemens' method. The conclusion of the paper is that modelling of suspended solids transport has been and will be one of the challenges in the field of urban drainage modelling. A direct relation of either shear stress or flow velocity with turbidity could not be found, likely because of the time varying characteristics of the suspended solids.
The hydrodynamic part of the 3D CEMBS model for the Baltic Sea
NASA Astrophysics Data System (ADS)
Dzierzbicka-Glowacka, Lidia; Jakacki, Jaromir; Janecki, Maciej; Nowicki, Artur
2013-04-01
The paper presents a hydrodynamic part of the coupled ice-ocean model 3D CEMBS designed for the Baltic Sea. It is based on the Community Earth System Model (CESM from the National Center for Atmospheric Research). It was adopted for the Baltic Sea as a coupled sea-ice model. It consists of the Community Ice Code (CICE model, version 4.0) and the Parallel Ocean Program (version 2.1). The models are linked through the coupler (CPL7) based on the Model Coupling Toolkit library. The ocean model has 21 vertical levels and horizontal grid of 600x640 cells. Horizontal resolution is approximately 2km. It is forced by atmospheric fields from European Centre for Medium-Range Weather Forecasts and in operational mode from 48-hour atmospheric forecasts provided by the UM model from the Interdisciplinary Centre for Mathematical and Computational Modelling of Warsaw University (ICM). The study was financially supported by the Polish State Committee of Scientific Research (grants: No N N305 111636, N N306 353239). The partial support for this study was also provided by the project Satellite Monitoring of the Baltic Sea Environment - SatBaltyk founded by European Union through European Regional Development Fund contract no. POIG 01.01.02-22-011/09. Calculations were carried out at the Academy Computer Centre in Gdansk.
NASA Astrophysics Data System (ADS)
Bódi, Erika; Buday, Tamás; McIntosh, Richard William
2013-04-01
Defining extraction-modified flow patterns with hydrodynamic models is a pivotal question in preserving groundwater resources regarding both quality and quantity. Modeling is the first step in groundwater protection the main result of which is the determination of the protective area depending on the amount of extracted water. Solid models have significant effects on hydrodynamic models as they are based on the solid models. Due to the legislative regulations, on protection areas certain restrictions must be applied which has firm consequences on economic activities. In Hungarian regulations there are no clear instructions for the establishment of either geological or hydrodynamic modeling, however, modeling itself is an obligation. Choosing the modeling method is a key consideration for further numerical calculations and it is decisive regarding the shape and size of the groundwater protection area. The geometry of hydrodynamic model layers is derived from the solid model. There are different geological approaches including lithological and sequence stratigraphic classifications furthermore in the case of regional models, formation-based hydrostratigraphic units are also applicable. Lithological classification is based on assigning and mapping of lithotypes. When the geometry (e.g. tectonic characteristics) of the research area is not known, horizontal bedding is assumed the probability of which can not be assessed based on only lithology. If the geological correlation is based on sequence stratigraphic studies, the cyclicity of sediment deposition is also considered. This method is more integrated thus numerous parameters (e.g. electrofacies) are taken into consideration studying the geological conditions ensuring more reliable modeling. Layers of sequence stratigraphic models can be either lithologically homogeneous or they may include greater cycles of sediments containing therefore several lithological units. The advantage of this is that the modeling can
AXISYMMETRIC, NONSTATIONARY BLACK HOLE MAGNETOSPHERES: REVISITED
Song, Yoo Geun; Park, Seok Jae E-mail: sjpark@kasi.re.kr
2015-10-10
An axisymmetric, stationary, general-relativistic, electrodynamic engine model of an active galactic nucleus was formulated by Macdonald and Thorne that consisted of a supermassive black hole surrounded by a plasma magnetosphere and a magnetized accretion disk. Based on this initial formulation, a nonstationary, force-free version of their model was constructed by Park and Vishniac (PV), with the simplifying assumption that the poloidal component of the magnetic field line velocity be confined along the radial direction in cylindrical polar coordinates. In this paper, we derive the new, nonstationary “Transfield Equation,” which was not specified in PV. If we can solve this “Transfield Equation” numerically, then we will understand the axisymmetric, nonstationary black hole magnetosphere in more rigorous ways.
Axisymmetric, Nonstationary Black Hole Magnetospheres: Revisited
NASA Astrophysics Data System (ADS)
Song, Yoo Geun; Park, Seok Jae
2015-10-01
An axisymmetric, stationary, general-relativistic, electrodynamic engine model of an active galactic nucleus was formulated by Macdonald and Thorne that consisted of a supermassive black hole surrounded by a plasma magnetosphere and a magnetized accretion disk. Based on this initial formulation, a nonstationary, force-free version of their model was constructed by Park & Vishniac (PV), with the simplifying assumption that the poloidal component of the magnetic field line velocity be confined along the radial direction in cylindrical polar coordinates. In this paper, we derive the new, nonstationary “Transfield Equation,” which was not specified in PV. If we can solve this “Transfield Equation” numerically, then we will understand the axisymmetric, nonstationary black hole magnetosphere in more rigorous ways.
García-Cuesta, Esteban; de Castro, Antonio J; Galván, Inés M; López, Fernando
2014-01-01
In this work, a methodology based on the combined use of a multilayer perceptron model fed using selected spectral information is presented to invert the radiative transfer equation (RTE) and to recover the spatial temperature profile inside an axisymmetric flame. The spectral information is provided by the measurement of the infrared CO2 emission band in the 3-5 μm spectral region. A guided spectral feature selection was carried out using a joint criterion of principal component analysis and a priori physical knowledge of the radiative problem. After applying this guided feature selection, a subset of 17 wavenumbers was selected. The proposed methodology was applied over synthetic scenarios. Also, an experimental validation was carried out by measuring the spectral emission of the exhaust hot gas plume in a microjet engine with a Fourier transform-based spectroradiometer. Temperatures retrieved using the proposed methodology were compared with classical thermocouple measurements, showing a good agreement between them. Results obtained using the proposed methodology are very promising and can encourage the use of sensor systems based on the spectral measurement of the CO2 emission band in the 3-5 μm spectral window to monitor combustion processes in a nonintrusive way.
Brennan, Georgina; Kregting, Louise; Beatty, Gemma E.; Cole, Claudia; Elsäßer, Björn; Savidge, Graham; Provan, Jim
2014-01-01
Gene flow in macroalgal populations can be strongly influenced by spore or gamete dispersal. This, in turn, is influenced by a convolution of the effects of current flow and specific plant reproductive strategies. Although several studies have demonstrated genetic variability in macroalgal populations over a wide range of spatial scales, the associated current data have generally been poorly resolved spatially and temporally. In this study, we used a combination of population genetic analyses and high-resolution hydrodynamic modelling to investigate potential connectivity between populations of the kelp Laminaria digitata in the Strangford Narrows, a narrow channel characterized by strong currents linking the large semi-enclosed sea lough, Strangford Lough, to the Irish Sea. Levels of genetic structuring based on six microsatellite markers were very low, indicating high levels of gene flow and a pattern of isolation-by-distance, where populations are more likely to exchange migrants with geographically proximal populations, but with occasional long-distance dispersal. This was confirmed by the particle tracking model, which showed that, while the majority of spores settle near the release site, there is potential for dispersal over several kilometres. This combined population genetic and modelling approach suggests that the complex hydrodynamic environment at the entrance to Strangford Lough can facilitate dispersal on a scale exceeding that proposed for L. digitata in particular, and the majority of macroalgae in general. The study demonstrates the potential of integrated physical–biological approaches for the prediction of ecological changes resulting from factors such as anthropogenically induced coastal zone changes. PMID:24671941
NASA Technical Reports Server (NTRS)
Archambaud, J. P.; Dor, J. B.; Payry, M. J.; Lamarche, L.
1986-01-01
The top and bottom two-dimensional walls of the T2 wind tunnel are adapted through an iterative process. The adaptation calculation takes into account the flow three-dimensionally. This method makes it possible to start with any shape of walls. The tests were performed with a C5 axisymmetric model at ambient temperature. Comparisons are made with the results of a true three-dimensional adaptation.
Smoothed-particle-hydrodynamics modeling of dissipation mechanisms in gravity waves.
Colagrossi, Andrea; Souto-Iglesias, Antonio; Antuono, Matteo; Marrone, Salvatore
2013-02-01
The smoothed-particle-hydrodynamics (SPH) method has been used to study the evolution of free-surface Newtonian viscous flows specifically focusing on dissipation mechanisms in gravity waves. The numerical results have been compared with an analytical solution of the linearized Navier-Stokes equations for Reynolds numbers in the range 50-5000. We found that a correct choice of the number of neighboring particles is of fundamental importance in order to obtain convergence towards the analytical solution. This number has to increase with higher Reynolds numbers in order to prevent the onset of spurious vorticity inside the bulk of the fluid, leading to an unphysical overdamping of the wave amplitude. This generation of spurious vorticity strongly depends on the specific kernel function used in the SPH model.
Magneto-Hydrodynamic Modeling in the Design and Interpretation of Wire Array Z-pinches
Chittenden, J. P.; Niasse, N. P.; Jennings, C. A.
2009-01-21
Magneto-hydrodynamic simulations provide a powerful tool for improving our understanding of the complex physical processes underlying the behavior of wire array Z-pinches. We show how, by using large scale parallel 3D simulations of the array as a whole, it is possible to encompass all of the important features of the wire ablation, implosion and stagnation phases and to observe how these phenomena control the X-ray pulse that is achieved. Comparison of code results with experimental data from the 'Z' and MAGPIE pulsed power generators is shown to provide a detailed benchmark test for the models. The simulation results are also used to highlight key areas for future research.
Magneto-Hydrodynamic Modeling in the Design and Interpretation of Wire Array Z-pinches
NASA Astrophysics Data System (ADS)
Chittenden, J. P.; Niasse, N. P.; Jennings, C. A.
2009-01-01
Magneto-hydrodynamic simulations provide a powerful tool for improving our understanding of the complex physical processes underlying the behavior of wire array Z-pinches. We show how, by using large scale parallel 3D simulations of the array as a whole, it is possible to encompass all of the important features of the wire ablation, implosion and stagnation phases and to observe how these phenomena control the X-ray pulse that is achieved. Comparison of code results with experimental data from the 'Z' and MAGPIE pulsed power generators is shown to provide a detailed benchmark test for the models. The simulation results are also used to highlight key areas for future research.
Linear and nonlinear dust ion acoustic waves using the two-fluid quantum hydrodynamic model
NASA Astrophysics Data System (ADS)
Masood, W.; Mushtaq, A.; Khan, R.
2007-12-01
The linear and nonlinear properties of a dust ion acoustic wave (DIAW) propagating in an electron-dust-ion plasma are investigated from both analytical and numerical perspectives by employing the two-fluid quantum hydrodynamic model. Ions and dust are assumed to be mobile while electrons are considered to be inertialess. Furthermore, quantum effects (diffraction as well as statistic) due to ions and electrons are incorporated. It is emphasized that the linear dispersion characteristics of the DIAW depend on the quantum diffraction effects of both ions and electrons as well as on the dust concentration. The one-dimensional Korteweg-deVries equation is derived for the quantum DIAW using the reductive perturbative technique. It is observed that the quantum electron diffraction term shrinks the width while the dust concentration enhances both the amplitude and width of the soliton.
Linear and nonlinear dust ion acoustic waves using the two-fluid quantum hydrodynamic model
Masood, W.; Mushtaq, A.; Khan, R.
2007-12-15
The linear and nonlinear properties of a dust ion acoustic wave (DIAW) propagating in an electron-dust-ion plasma are investigated from both analytical and numerical perspectives by employing the two-fluid quantum hydrodynamic model. Ions and dust are assumed to be mobile while electrons are considered to be inertialess. Furthermore, quantum effects (diffraction as well as statistic) due to ions and electrons are incorporated. It is emphasized that the linear dispersion characteristics of the DIAW depend on the quantum diffraction effects of both ions and electrons as well as on the dust concentration. The one-dimensional Korteweg-deVries equation is derived for the quantum DIAW using the reductive perturbative technique. It is observed that the quantum electron diffraction term shrinks the width while the dust concentration enhances both the amplitude and width of the soliton.
Hydrodynamic modeling of targeted magnetic-particle delivery in a blood vessel.
Weng, Huei Chu
2013-03-01
Since the flow of a magnetic fluid could easily be influenced by an external magnetic field, its hydrodynamic modeling promises to be useful for magnetically controllable delivery systems. It is desirable to understand the flow fields and characteristics before targeted magnetic particles arrive at their destination. In this study, we perform an analysis for the effects of particles and a magnetic field on biomedical magnetic fluid flow to study the targeted magnetic-particle delivery in a blood vessel. The fully developed solutions of velocity, flow rate, and flow drag are derived analytically and presented for blood with magnetite nanoparticles at body temperature. Results reveal that in the presence of magnetic nanoparticles, a minimum magnetic field gradient (yield gradient) is required to initiate the delivery. A magnetic driving force leads to the increase in velocity and has enhancing effects on flow rate and flow drag. Such a magnetic driving effect can be magnified by increasing the particle volume fraction.
NASA Technical Reports Server (NTRS)
Dorodnitsyn, Anton; Kallman, Tim; Bisno\\vatyiI-Kogan, Gennadyi
2011-01-01
We explore a detailed model in which the active galactic nucleus (AGN) obscuration results from the extinction of AGN radiation in a global ow driven by the pressure of infrared radiation on dust grains. We assume that external illumination by UV and soft X-rays of the dusty gas located at approximately 1pc away from the supermassive black hole is followed by a conversion of such radiation into IR. Using 2.5D, time-dependent radiation hydrodynamics simulations in a ux-limited di usion approximation we nd that the external illumination can support a geometrically thick obscuration via out ows driven by infrared radiation pressure in AGN with luminosities greater than 0:05 L(sub edd) and Compton optical depth, Tau(sub T) approx > & 1.
Hydrodynamics of rotating stars and close binary interactions: Compressible ellipsoid models
NASA Technical Reports Server (NTRS)
Lai, Dong; Rasio, Frederic A.; Shapiro, Stuart L.
1994-01-01
We develop a new formalism to study the dynamics of fluid polytropes in three dimensions. The stars are modeled as compressible ellipsoids, and the hydrodynamic equations are reduced to a set of ordinary differential equations for the evolution of the principal axes and other global quantities. Both viscous dissipation and the gravitational radiation reaction are incorporated. We establish the validity of our approximations and demonstrate the simplicity and power of the method by rederiving a number of known results concerning the stability and dynamical oscillations of rapidly rotating polytropes. In particular, we present a generalization to compressible fluids of Chandrasekhar's classical results for the secular and dynamical instabilities of incompressible Maclaurin spheroids. We also present several applications of our method to astrophysical problems of great current interest, such as the tidal disruption of a star by a massive black hole, the coalescence of compact binaries driven by the emission of gravitational waves, and the development of instabilities in close binary systems.
A Rigid-Field Hydrodynamics approach to modelling the magnetospheres of massive stars
NASA Astrophysics Data System (ADS)
Townsend, R. H. D.; Owocki, S. P.; Ud-Doula, A.
2007-11-01
We introduce a new Rigid-Field Hydrodynamics approach to modelling the magnetospheres of massive stars in the limit of very strong magnetic fields. Treating the field lines as effectively rigid, we develop hydrodynamical equations describing the one-dimensional flow along each, subject to pressure, radiative, gravitational and centrifugal forces. We solve these equations numerically for a large ensemble of field lines to build up a three-dimensional time-dependent simulation of a model star with parameters similar to the archetypal Bp star σOriE. Since the flow along each field line can be solved independently of other field lines, the computational cost of this approach is a fraction of an equivalent magnetohydrodynamical treatment. The simulations confirm many of the predictions of previous analytical and numerical studies. Collisions between wind streams from opposing magnetic hemispheres lead to strong shock heating. The post-shock plasma cools initially via X-ray emission, and eventually accumulates into a warped, rigidly rotating disc defined by the locus of minima of the effective (gravitational plus centrifugal) potential. However, a number of novel results also emerge. For field lines extending far from the star, the rapid area divergence enhances the radiative acceleration of the wind, resulting in high shock velocities (up to ~3000kms-1) and hard X-rays. Moreover, the release of centrifugal potential energy continues to heat the wind plasma after the shocks, up to temperatures around twice those achieved at the shocks themselves. Finally, in some circumstances the cool plasma in the accumulating disc can oscillate about its equilibrium position, possibly due to radiative cooling instabilities in the adjacent post-shock regions.
Combining hydrodynamic modeling with nonthermal test particle tracking to improve flare simulations
NASA Astrophysics Data System (ADS)
Winter, Henry Degraffenried, III
Solar flares remain a subject of intense study in the solar physics community. These huge releases of energy on the Sun have direct consequences for humans on Earth and in space. The processes that impart tremendous amounts of energy are not well understood. In order to test theoretical models of flare formation and evolution, state of the art, numerical codes must be created that can accurately simulate the wide range of electromagnetic radiation emitted by flares. A direct comparison of simulated radiation to increasingly detailed observations will allow scientists to test the validity of theoretical models. To accomplish this task, numerical codes were developed that can simulate both the thermal and nonthermal components of a flaring plasma, their interactions, and their emissions. The HYLOOP code combines a hydrodynamic equation solver with a nonthermal particle tracking code in order to simulate the thermal and nonthermal aspects of a flare. A solar flare was simulated using this new code with a static atmosphere and with a dynamic atmosphere, to illustrate the importance of considering hydrodynamic effects on nonthermal beam evolution. The importance of density gradients in the evolution of nonthermal electron beams was investigated by studying their effects in isolation. The importance of the initial pitch-angle cosine distribution to flare dynamics was investigated. Emission in XRT filters were calculated and analyzed to see if there were soft X-ray signatures that could give clues to the nonthermal particle distributions. Finally the HXR source motions that appeared in the simulations were compared to real observations of this phenomena.
NASA Astrophysics Data System (ADS)
Zhang, M. Y.; Li, Y. S.
1997-08-01
A third-generation wind wave model based on the energy balance equation taking into account the effects of time-varying currents and coupled dynamically with a semi-implicit three-dimensional hydrodynamic model incorporating the influences of time- and space-varying vertical eddy viscosity, bottom topography and wave-current interactions is presented in this paper. The wave model is synchronously coupled with the three-dimensional hydrodynamic model through the surface atmospheric turbulent boundary layer and the bottom boundary layer. The theory of Janssen (1991) (in Journal of Physical Oceanography21, 1631-1642) is used to incorporate the effects of waves on the surface boundary layer, while the theory of Grant and Maddsen (1979) [in Journal of Geophysical Research (Oceans)84, 1797-1808], which was used by Signell et al. (1990) (in Journal of Geophysical Research95, 9671-9678) on the bottom boundary layer for constant waves, is modified for the inclusion of time-varying waves. The mutual influences between waves and currents are investigated through an idealized continental shelf case and hindcastings of storm events in the sea area adjacent to Hong Kong in the northern South China Sea. Calculations are compared with other computed results and observations. Calculations show that the wave-dependent surface stress incorporated in the three-dimensional hydrodynamic model has significant impact on water surface velocities and surface elevations (over 10% higher). The inclusion of wave-dependent bottom stress also shows some effects; however, in the presence of the wave-dependent surface stress, its effect on surge levels becomes negligible. The effect of currents on waves amounts to the reduction of the significant wave height by about 8% and less for wave mean periods. However, the inclusion of the wave-dependent bottom stress in the three-dimensional hydrodynamic model has little effect on wave characteristics whether or not the wave-dependent surface stress is
Hydrodynamic Modeling Analysis of Tidal Wetland Restoration in Snohomish River, Washington
Yang, Zhaoqing; Wang, Taiping
2012-03-07
To re-establish the intertidal wetlands with full tidal interaction and improve salmonid rearing habitat in the Lower Snohomish River estuary, a diked wetland along Union Slough of the Snohomish River was restored by breaching the existing dike and constructing bridges across the breaches. However, post-restoration monitoring indicated that the restored project site could not drain as efficiently as desired. To improve the drainage conditions at the restoration site during low tides, a modeling study was conducted to evaluate additional restoration scenarios and to provide recommendations for finish-grade ground elevations to achieve the desired drainage. To accurately simulate the drainage of the project site, an unstructured-grid hydrodynamic model with fine-grid resolution down to a few meters was used in this study. The model was first validated with observed water level data collected in the project site and then applied to assess the feasibility of different proposed restoration scenarios. A spatial varying bottom roughness option in the model is also implemented to better represent the high roughness due to the presence of dense vegetation in the project site. The methodology, error statistics of model validation and uncertainty of the modeling analysis are presented and discussed.
Reuge, N; Cadoret, L.; Pannala, Sreekanth; Syamlal, M; Coufort, C; Caussat, B
2008-01-01
Computational fluid dynamic (CFD) models must be thoroughly validated before they can be used with confidence for designing fluidized bed reactors. In this study, validation data were collected from a fluidized bed of (Geldart's group B) alumina particles operated at different gas velocities involving two fluidization hydrodynamic regimes (bubbling and slugging). The bed expansion, height of bed fluctuations, and frequency of fluctuations were measured from a videos of the fluidized bed. The Eulerian-Eulerian two fluid model MFIX was then used to simulate the experiments. Two different models for the particle stresses - Schaeffer (Syamlal et al., (1993), Schaeffer (1987)) and Princeton (Srivastava and Sundaresan (2003)) models - and different values of the restitution coefficient and internal angle of friction were evaluated. 3-D simulations are required for getting quantitative and qualitative agreement with experimental data. The results from the Princeton model are in better agreement with data than from the Schaeffer model. Both free-slip and Johnson-Jackson boundary conditions give nearly identical results. An increase in e from 0.8 to 1 leads to larger bed expansions and lower heights of fluctuations in the bubbling regime whereas it leads to unchanged bed expansion and to a massive reduction in the height of fluctuations in the slugging regime. The angle of internal friction (φ) in the range 10 -40 does not affect the bed expansion, but its reduction significantly reduces the height of fluctuations.
NASA Astrophysics Data System (ADS)
Lindner, G. A.
2012-12-01
Lower Missouri River floodplains have the potential to provide multiple ecosystem services including agricultural production, floodwater storage, nutrient processing, and provision of habitats. In this research, a 2-dimensional hydrodynamic model of a representative looped floodplain bottom of approximately 20 km is utilized to explore how floodplain inundation contributes to ecosystem benefits and costs. High resolution 2-dimensional hydrodynamic modeling provides insights into the way velocities, flood stages, residence times, and transported constituents (sediment, nutrients, and fish larvae, for example) are affected by levee geometry, floodplain vegetation patterns, and flood magnitude and duration. The utility of 2-dimensional numerical hydraulic models to represent the channel and floodplain are demonstrated at a scale relevant to understanding processes that control channel/floodplain dynamics. The sensitivity of model response to alternative land use scenarios, including levee setbacks and variable overbank roughness, is quantified using hydraulic parameters such as velocity, water level, conveyance, and residence time. The 2-dimensional models are calibrated to existing 1-dimensional modeling solutions and field measurements of water surface from 1993 and 2007 for the 2-year, 5-year, and 10-year recurrence intervals. Calibration runs with current levee configurations are matched to approximately ±0.1 meters. Simulations of alternative land use scenarios demonstrate the tradeoffs between ecological restoration and flood risk reductions. Levee setbacks with low hydraulic roughness associated with traditional row crop agriculture on the floodplains have the greatest potential for flood stage reductions, while native plant communities with higher roughness can negate the effects of the setbacks by increasing water levels due to enhanced frictional resistance. Residence times, which are presumed to be related to ecosystem services, demonstrate increasingly
Hydrodynamics of C-Start Escape Responses of Fish as Studied with Simple Physical Models.
Witt, William C; Wen, Li; Lauder, George V
2015-10-01
One of the most-studied unsteady locomotor behaviors exhibited by fishes is the c-start escape response. Although the kinematics of these responses have been studied extensively and two well-defined kinematic stages have been documented, only a few studies have focused on hydrodynamic patterns generated by fishes executing escape behaviors. Previous work has shown that escape responses by bluegill sunfish generate three distinct vortex rings, each with central orthogonal jet flows, and here we extend this conclusion to two other species: stickleback and mosquitofish. Jet #1 is formed by the tail during Stage 1, and moves in the same direction as Stage-2 movement of the fish, thereby reducing final escape-velocity but also rotating the fish. Jet #2, in contrast, moves approximately opposite to the final direction of the fish's motion and contains the bulk of the total fluid-momentum powering the escape response. Jet #3 forms during Stage 2 in the mid-body region and moves in a direction approximately perpendicular to jets 1 and 2, across the direction of movement of the body. In this study, we used a mechanical controller to impulsively move passively flexible plastic panels of three different stiffnesses in heave, pitch, and heave + pitch motions to study the effects of stiffness on unsteady hydrodynamics of escape. We were able to produce kinematics very similar to those of fish c-starts and also to reproduce the 3-jet hydrodynamic pattern of the c-start using a panel of medium flexural stiffness and the combined heave + pitch motion. This medium-stiffness panel matched the measured stiffness of the near-tail region of fish bodies. This motion also produced positive power when the panel straightened during stage 2 of the escape response. More flexible and stiffer panels resulted in non-biological kinematics and patterns of flow for all motions. The use of simple flexible models with a mechanical controller and program of fish-like motion is a promising approach
Axisymmetric annular curtain stability
NASA Astrophysics Data System (ADS)
Ahmed, Zahir U.; Khayat, Roger E.; Maissa, Philippe; Mathis, Christian
2012-06-01
A temporal stability analysis was carried out to investigate the stability of an axially moving viscous annular liquid jet subject to axisymmetric disturbances in surrounding co-flowing viscous gas media. We investigated in this study the effects of inertia, surface tension, the gas-to-liquid density ratio, the inner-to-outer radius ratio and the gas-to-liquid viscosity ratio on the stability of the jet. With an increase in inertia, the growth rate of the unstable disturbances is found to increase. The dominant (or most unstable) wavenumber decreases with increasing Reynolds number for larger values of the gas-to-liquid viscosity ratio. However, an opposite tendency for the most unstable wavenumber is predicted for small viscosity ratio in the same inertia range. The surrounding gas density, in the presence of viscosity, always reduces the growth rate, hence stabilizing the flow. There exists a critical value of the density ratio above which the flow becomes stable for very small viscosity ratio, whereas for large viscosity ratio, no stable flow appears in the same range of the density ratio. The curvature has a significant destabilizing effect on the thin annular jet, whereas for a relatively thick jet, the maximum growth rate decreases as the inner radius increases, irrespective of the surrounding gas viscosity. The degree of instability increases with Weber number for a relatively large viscosity ratio. In contrast, for small viscosity ratio, the growth rate exhibits a dramatic dependence on the surface tension. There is a small Weber number range, which depends on the viscosity ratio, where the flow is stable. The viscosity ratio always stabilizes the flow. However, the dominant wavenumber increases with increasing viscosity ratio. The range of unstable wavenumbers is affected only by the curvature effect.
NASA Astrophysics Data System (ADS)
Carlesi, Edoardo; Knebe, Alexander; Lewis, Geraint F.; Wales, Scott; Yepes, Gustavo
2014-04-01
We present the results of a series of adiabatic hydrodynamical simulations of several quintessence models (both with a free and an interacting scalar field) in comparison to a standard Λ cold dark matter cosmology. For each we use 2 × 10243 particles in a 250 h-1 Mpc periodic box assuming 7-year Wilkinson Microwave Anisotropy Probe cosmology. In this work we focus on the properties of haloes in the cosmic web at z = 0. The web is classified into voids, sheets, filaments and knots depending on the eigenvalues of the velocity shear tensor, which are an excellent proxy for the underlying overdensity distribution. We find that the properties of objects classified according to their surrounding environment show a substantial dependence on the underlying cosmology; for example, while Vmax shows average deviations of ≈5 per cent across the different models when considering the full halo sample, comparing objects classified according to their environment, the size of the deviation can be as large as 20 per cent. We also find that halo spin parameters are positively correlated to the coupling, whereas halo concentrations show the opposite behaviour. Furthermore, when studying the concentration-mass relation in different environments, we find that in all cosmologies underdense regions have a larger normalization and a shallower slope. While this behaviour is found to characterize all the models, differences in the best-fitting relations are enhanced in (coupled) dark energy models, thus providing a clearer prediction for this class of models.
Cao, Duc; Moses, Gregory; Delettrez, Jacques
2015-08-15
An implicit, non-local thermal conduction algorithm based on the algorithm developed by Schurtz, Nicolai, and Busquet (SNB) [Schurtz et al., Phys. Plasmas 7, 4238 (2000)] for non-local electron transport is presented and has been implemented in the radiation-hydrodynamics code DRACO. To study the model's effect on DRACO's predictive capability, simulations of shot 60 303 from OMEGA are completed using the iSNB model, and the computed shock speed vs. time is compared to experiment. Temperature outputs from the iSNB model are compared with the non-local transport model of Goncharov et al. [Phys. Plasmas 13, 012702 (2006)]. Effects on adiabat are also examined in a polar drive surrogate simulation. Results show that the iSNB model is not only capable of flux-limitation but also preheat prediction while remaining numerically robust and sacrificing little computational speed. Additionally, the results provide strong incentive to further modify key parameters within the SNB theory, namely, the newly introduced non-local mean free path. This research was supported by the Laboratory for Laser Energetics of the University of Rochester.
Khangaonkar, Tarang; Yang, Zhaoqing
2011-01-01
Estuarine and coastal hydrodynamic processes are sometimes neglected in the design and planning of nearshore restoration actions. Despite best intentions, efforts to restore nearshore habitats can result in poor outcomes if circulation and transport which also affect freshwater-saltwater interactions are not properly addressed. Limitations due to current land use can lead to selection of sub-optimal restoration alternatives that may result in undesirable consequences, such as flooding, deterioration of water quality, and erosion, requiring immediate remedies and costly repairs. Uncertainty with achieving restoration goals, such as recovery of tidal exchange, supply of sediment and nutrients, and establishment of fish migration pathways, may be minimized by using numerical models designed for application to the nearshore environment. A high resolution circulation and transport model of the Puget Sound, in the state of Washington, was developed to assist with nearshore habitat restoration design and analysis, and to answer the question “can we achieve beneficial restoration outcomes at small local scale, as well as at a large estuary-wide scale?” The Puget Sound model is based on an unstructured grid framework to define the complex Puget Sound shoreline using a finite volume coastal ocean model (FVCOM). The capability of the model for simulating the important nearshore processes, such as circulation in complex multiple tidal channels, wetting and drying of tide flats, and water quality and sediment transport as part of restoration feasibility, are illustrated through examples of restoration projects in Puget Sound.
Modeling Hydrodynamics, Water Temperature, and Suspended Sediment in Detroit Lake, Oregon
Sullivan, Annett B.; Rounds, Stewart A.; Sobieszczyk, Steven; Bragg, Heather M.
2007-01-01
Detroit Lake is a large reservoir on the North Santiam River in west-central Oregon. Water temperature and suspended sediment are issues of concern in the river downstream of the reservoir. A CE-QUAL-W2 model was constructed to simulate hydrodynamics, water temperature, total dissolved solids, and suspended sediment in Detroit Lake. The model was calibrated for calendar years 2002 and 2003, and for a period of storm runoff from December 1, 2005, to February 1, 2006. Input data included lake bathymetry, meteorology, reservoir outflows, and tributary inflows, water temperatures, total dissolved solids, and suspended sediment concentrations. Two suspended sediment size groups were modeled: one for suspended sand and silt with particle diameters larger than 2 micrometers, and another for suspended clay with particle diameters less than or equal to 2 micrometers. The model was calibrated using lake stage data, lake profile data, and data from a continuous water-quality monitor on the North Santiam River near Niagara, about 6 kilometers downstream of Detroit Dam. The calibrated model was used to estimate sediment deposition in the reservoir, examine the sources of suspended sediment exiting the reservoir, and examine the effect of the reservoir on downstream water temperatures.
NASA Astrophysics Data System (ADS)
Cao, Duc; Moses, Gregory; Delettrez, Jacques
2015-08-01
An implicit, non-local thermal conduction algorithm based on the algorithm developed by Schurtz, Nicolai, and Busquet (SNB) [Schurtz et al., Phys. Plasmas 7, 4238 (2000)] for non-local electron transport is presented and has been implemented in the radiation-hydrodynamics code DRACO. To study the model's effect on DRACO's predictive capability, simulations of shot 60 303 from OMEGA are completed using the iSNB model, and the computed shock speed vs. time is compared to experiment. Temperature outputs from the iSNB model are compared with the non-local transport model of Goncharov et al. [Phys. Plasmas 13, 012702 (2006)]. Effects on adiabat are also examined in a polar drive surrogate simulation. Results show that the iSNB model is not only capable of flux-limitation but also preheat prediction while remaining numerically robust and sacrificing little computational speed. Additionally, the results provide strong incentive to further modify key parameters within the SNB theory, namely, the newly introduced non-local mean free path. This research was supported by the Laboratory for Laser Energetics of the University of Rochester.
Simulation of Hydrodynamics at Stratified Reservoirs Using a Staged Modeling Approach
Khangaonkar, Tarang P.; Yang, Zhaoqing; Paik, Joongcheol; Sotiropoulos, Fotis
2008-10-01
Hydropower reservoirs impounded by high-head dams exhibit complex circulation that confuses the downstream migrating salmon and limits successful collection and passage of fish. Fish passage engineers attempt to modify the hydrothermal behavior at reservoirs through structural and operational modifications and often use hydrodynamic simulations to guide their actions. Simulation of key hydrothermal processes such as (a) development of a stable two-layer stratified system, (b) density-driven currents over a reservoir length scale, and (c) discharge hydraulics near the power generation and fish collection intakes requires highly specialized models applied at differing temporal and spatial scales. A staged modeling approach is presented that uses external coupling of models at varying temporal scales and spatial resolution to simulate the entire hydraulic regime from the mouth of the reservoir at the upstream end to the discharge at the dam. The staged modeling approach is illustrated using a case study where structural modifications were evaluated to improve reservoir stratification and density-driven currents. The model results provided input and valuable insight in the development of a new structure design and configuration for effective fish collection near the forebay of a high-head dam.
NASA Astrophysics Data System (ADS)
Shi, Xun; Komatsu, Eiichiro; Nelson, Kaylea; Nagai, Daisuke
2015-03-01
Turbulent gas motion inside galaxy clusters provides a non-negligible non-thermal pressure support to the intracluster gas. If not corrected, it leads to a systematic bias in the estimation of cluster masses from X-ray and Sunyaev-Zel'dovich (SZ) observations assuming hydrostatic equilibrium, and affects interpretation of measurements of the SZ power spectrum and observations of cluster outskirts from ongoing and upcoming large cluster surveys. Recently, Shi & Komatsu developed an analytical model for predicting the radius, mass, and redshift dependence of the non-thermal pressure contributed by the kinetic random motions of intracluster gas sourced by the cluster mass growth. In this paper, we compare the predictions of this analytical model to a state-of-the-art cosmological hydrodynamics simulation. As different mass growth histories result in different non-thermal pressure, we perform the comparison on 65 simulated galaxy clusters on a cluster-by-cluster basis. We find an excellent agreement between the modelled and simulated non-thermal pressure profiles. Our results open up the possibility of using the analytical model to correct the systematic bias in the mass estimation of galaxy clusters. We also discuss tests of the physical picture underlying the evolution of intracluster non-thermal gas motions, as well as a way to further improve the analytical modelling, which may help achieve a unified understanding of non-thermal phenomena in galaxy clusters.
RADIATION-HYDRODYNAMIC MODELS OF THE EVOLVING CIRCUMSTELLAR MEDIUM AROUND MASSIVE STARS
Toala, J. A.; Arthur, S. J.
2011-08-20
We study the evolution of the interstellar and circumstellar media around massive stars (M {>=} 40 M{sub sun}) from the main sequence (MS) through to the Wolf-Rayet (WR) stage by means of radiation-hydrodynamic simulations. We use publicly available stellar evolution models to investigate the different possible structures that can form in the stellar wind bubbles around WR stars. We find significant differences between models with and without stellar rotation, and between models from different authors. More specifically, we find that the main ingredients in the formation of structures in the WR wind bubbles are the duration of the red supergiant (or luminous blue variable) phase, the amount of mass lost, and the wind velocity during this phase, in agreement with previous authors. Thermal conduction is also included in our models. We find that MS bubbles with thermal conduction are slightly smaller, due to extra cooling which reduces the pressure in the hot, shocked bubble, but that thermal conduction does not appear to significantly influence the formation of structures in post-MS bubbles. Finally, we study the predicted X-ray emission from the models and compare our results with observations of the WR bubbles S 308, NGC 6888, and RCW 58. We find that bubbles composed primarily of clumps have reduced X-ray luminosity and very soft spectra, while bubbles with shells correspond more closely to observations.
The clustering of baryonic matter. II: halo model and hydrodynamic simulations
Fedeli, C.; Semboloni, E.; Velliscig, M.; Daalen, M. Van; Schaye, J.; Hoekstra, H. E-mail: sembolon@strw.leidenuniv.nl E-mail: daalen@strw.leidenuniv.nl E-mail: hoekstra@strw.leidenuniv.nl
2014-08-01
We recently developed a generalization of the halo model in order to describe the spatial clustering properties of each mass component in the Universe, including hot gas and stars. In this work we discuss the complementarity of the model with respect to a set of cosmological simulations including hydrodynamics of different kinds. We find that the mass fractions and density profiles measured in the simulations do not always succeed in reproducing the simulated matter power spectra, the reason being that the latter encode information from a much larger range in masses than that accessible to individually resolved structures. In other words, this halo model allows one to extract information on the growth of structures from the spatial clustering of matter, that is complementary with the information coming from the study of individual objects. We also find a number of directions for improvement of the present implementation of the model, depending on the specific application one has in mind. The most relevant one is the necessity for a scale dependence of the bias of the diffuse gas component, which will be interesting to test with future detections of the Warm-Hot Intergalactic Medium. This investigation confirms the possibility to gain information on the physics of galaxy and cluster formation by studying the clustering of mass, and our next work will consist of applying the halo model to use future high-precision cosmic shear surveys to this end.
Integrating hydrodynamic models and COSMO-SkyMed derived products for flood damage assessment
NASA Astrophysics Data System (ADS)
Giuffra, Flavio; Boni, Giorgio; Pulvirenti, Luca; Pierdicca, Nazzareno; Rudari, Roberto; Fiorini, Mattia
2015-04-01
observe the temporal evolution of the event (e.g. the water receding). In this paper, the first outcomes of a study aiming at combining COSMO-SkyMed derived flood maps with hydrodynamic models are presented. The study is carried out within the framework of the EO-based CHange detection for Operational Flood Management (ECHO-FM) project, funded by the Italian Space Agency (ASI) as part of the research activities agreed in the cooperation between ASI and the Japan Aerospace Exploration Agency (JAXA). The flood that hit the region of Shkodër, in Albania, on January 2010, is considered as test case. The work focuses on the utility of a dense temporal series of SAR data, such as that available through CSK for this case study, used in combination with a hydrodynamic model to monitor over a long time (in the order of 3 weeks) the natural drainage of the Shkodër floodplain. It is shown that by matching the outputs of the model to SAR observations, the hydrodynamic inconsistencies in CSK estimates can be corrected.
Hydrodynamic effects on coalescence.
Dimiduk, Thomas G.; Bourdon, Christopher Jay; Grillet, Anne Mary; Baer, Thomas A.; de Boer, Maarten Pieter; Loewenberg, Michael; Gorby, Allen D.; Brooks, Carlton, F.
2006-10-01
The goal of this project was to design, build and test novel diagnostics to probe the effect of hydrodynamic forces on coalescence dynamics. Our investigation focused on how a drop coalesces onto a flat surface which is analogous to two drops coalescing, but more amenable to precise experimental measurements. We designed and built a flow cell to create an axisymmetric compression flow which brings a drop onto a flat surface. A computer-controlled system manipulates the flow to steer the drop and maintain a symmetric flow. Particle image velocimetry was performed to confirm that the control system was delivering a well conditioned flow. To examine the dynamics of the coalescence, we implemented an interferometry capability to measure the drainage of the thin film between the drop and the surface during the coalescence process. A semi-automated analysis routine was developed which converts the dynamic interferogram series into drop shape evolution data.
NASA Astrophysics Data System (ADS)
Khuat Duy, B.; Archambeau, P.; Dewals, B. J.; Erpicum, S.; Pirotton, M.
2009-04-01
Following recurrent inundation problems on the Berwinne catchment, in Belgium, a combined hydrologic and hydrodynamic study has been carried out in order to find adequate solutions for the floods mitigation. Thanks to detailed 2D simulations, the effectiveness of the solutions can be assessed not only in terms of discharge and height reductions in the river, but also with other aspects such as the inundated surfaces reduction and the decrease of inundated buildings and roads. The study is carried out in successive phases. First, the hydrological runoffs are generated using a physically based and spatially distributed multi-layer model solving depth-integrated equations for overland flow, subsurface flow and baseflow. Real floods events are simulated using rainfall series collected at 8 stations (over 20 years of available data). The hydrological inputs are routed through the river network (and through the sewage network if relevant) with the 1D component of the modelling system, which solves the Saint-Venant equations for both free-surface and pressurized flows in a unified way. On the main part of the river, the measured river cross-sections are included in the modelling, and existing structures along the river (such as bridges, sluices or pipes) are modelled explicitely with specific cross sections. Two gauging stations with over 15 years of continuous measurements allow the calibration of both the hydrologic and hydrodynamic models. Second, the flood mitigation solutions are tested in the simulations in the case of an extreme flooding event, and their effects are assessed using detailed 2D simulations on a few selected sensitive areas. The digital elevation model comes from an airborne laser survey with a spatial resolution of 1 point per square metre and is completed in the river bed with a bathymetry interpolated from cross-section data. The upstream discharge is extracted from the 1D simulation for the selected rainfall event. The study carried out with this
Calibration and Validation of a Hydrodynamic Model of the Tidal Hudson River
NASA Astrophysics Data System (ADS)
Zahakos, H. A.; Schlosser, P.
2003-12-01
A three dimensional model of the Hudson River Estuary has been constructed using the Estuarine, Coastal and Ocean Model (ECOM) framework. The model domain covers the entire tidal portion of the Hudson River from the Fedaral Dam in Troy, NY to the mouth at the Battery, New York City, nearly 250 km. The model grid is orthogonal and curvilinear with transverse and lateral resolution of approximately 200 and 500 m, respectively, for most of the river. Model inputs include water surface elevations, salinity, and temperature at the open boundary (Battery) and the freshwater inflows from the major upstream and tributary sources representing 80% of the watershed. Model calibration was performed over a two week period of average tide and flow in June 2001 and focuses on accurately reproducing water surface elevations at four stations and surface salinity at five stations along the river. Additional model calibration was performed using a survey of vertical salinity profiles measured at 28 locations along the river during this time. Model validation was performed over a six week period of average to low flow during the same summer and consist of comparisons of water elevations, surface salinity, and a deliberate SF6 tracer release. Volatilization kinetics were included to simulate gas exchange across the air water interface due to the volatile nature of the tracer. The accuracy of the model in reproducing the hydrodynamics throughout the tidal Hudson River over these short time scales shows that the model can be used with confidence to simulate the short term transport of accidental or intentional releases of pollutants to the river and can assist as a tool for managing the impacts of such releases.
Technology Transfer Automated Retrieval System (TEKTRAN)
Fractal and prefractal geometric models have substantial potential of contributing to the analysis of flow and transport in porous media such as soils and reservoir rocks. In this study, geometric and hydrodynamic parameters of saturated 3D mass and pore-solid prefractal porous media were characteri...
Eregno, Fasil Ejigu; Tryland, Ingun; Tjomsland, Torulv; Myrmel, Mette; Robertson, Lucy; Heistad, Arve
2016-04-01
This study investigated the public health risk from exposure to infectious microorganisms at Sandvika recreational beaches, Norway and dose-response relationships by combining hydrodynamic modelling with Quantitative Microbial Risk Assessment (QMRA). Meteorological and hydrological data were collected to produce a calibrated hydrodynamic model using Escherichia coli as an indicator of faecal contamination. Based on average concentrations of reference pathogens (norovirus, Campylobacter, Salmonella, Giardia and Cryptosporidium) relative to E. coli in Norwegian sewage from previous studies, the hydrodynamic model was used for simulating the concentrations of pathogens at the local beaches during and after a heavy rainfall event, using three different decay rates. The simulated concentrations were used as input for QMRA and the public health risk was estimated as probability of infection from a single exposure of bathers during the three consecutive days after the rainfall event. The level of risk on the first day after the rainfall event was acceptable for the bacterial and parasitic reference pathogens, but high for the viral reference pathogen at all beaches, and severe at Kalvøya-small and Kalvøya-big beaches, supporting the advice of avoiding swimming in the day(s) after heavy rainfall. The study demonstrates the potential of combining discharge-based hydrodynamic modelling with QMRA in the context of bathing water as a tool to evaluate public health risk and support beach management decisions. PMID:26802355
Mathematical modeling of CSF pulsatile hydrodynamics based on fluid-solid interaction.
Masoumi, Nafiseh; Bastani, Dariush; Najarian, Siamak; Ganji, Fariba; Farmanzad, Farhad; Seddighi, Amir Saeed
2010-06-01
Intracranial pressure (ICP) is derived from cerebral blood pressure and cerebrospinal fluid (CSF) circulatory dynamics and can be affected in the course of many diseases. Computer analysis of the ICP time pattern plays a crucial role in the diagnosis and treatment of those diseases. This study proposes the application of Linninger et al.'s [IEEE Trans. Biomed. Eng., vol. 52, no. 4, pp. 557-565, Apr. 2005] fluid-solid interaction model of CSF hydrodynamic in ventricular system based on our clinical data from a group of patients with brain parenchyma tumor. The clinical experiments include the arterial blood pressure (ABP), venous blood pressure, and ICP in the subarachnoid space (SAS). These data were used as inputs to the model that predicts the intracranial dynamic phenomena. In addition, the model has been modified by considering CSF pulsatile production rate as the major factor of CSF motion. The approximations of ventricle enlargement, CSF pressure distribution in the ventricular system and CSF velocity magnitude in the aqueduct and foramina were obtained in this study. The observation of reversal flow in the CSF flow pattern due to brain tissue compression is another finding in our investigation. Based on the experimental results, no existence of large transmural pressure differences were found in the brain system. The measured pressure drop in the ventricular system was less than 5 Pa. Moreover, the CSF flow pattern, ICP distribution, and velocity magnitude were in good agreement with the published models and CINE (phase-contrast magnetic resonance imaging) experiments, respectively.
Hydrodynamic Models of Line-Driven Accretion Disk Winds III: Local Ionization Equilibrium
NASA Technical Reports Server (NTRS)
Pereyra, Nicolas Antonio; Kallman, Timothy R.; White, Nicholas E. (Technical Monitor)
2002-01-01
We present time-dependent numerical hydrodynamic models of line-driven accretion disk winds in cataclysmic variable systems and calculate wind mass-loss rates and terminal velocities. The models are 2.5-dimensional, include an energy balance condition with radiative heating and cooling processes, and includes local ionization equilibrium introducing time dependence and spatial dependence on the line radiation force parameters. The radiation field is assumed to originate in an optically thick accretion disk. Wind ion populations are calculated under the assumption that local ionization equilibrium is determined by photoionization and radiative recombination, similar to a photoionized nebula. We find a steady wind flowing from the accretion disk. Radiative heating tends to maintain the temperature in the higher density wind regions near the disk surface, rather than cooling adiabatically. For a disk luminosity L (sub disk) = solar luminosity, white dwarf mass M(sub wd) = 0.6 solar mass, and white dwarf radii R(sub wd) = 0.01 solar radius, we obtain a wind mass-loss rate of M(sub wind) = 4 x 10(exp -12) solar mass yr(exp -1) and a terminal velocity of approximately 3000 km per second. These results confirm the general velocity and density structures found in our earlier constant ionization equilibrium adiabatic CV wind models. Further we establish here 2.5D numerical models that can be extended to QSO/AGN winds where the local ionization equilibrium will play a crucial role in the overall dynamics.
Field evaluation of a two-dimensinal hydrodynamic model near boulders for habitat calculation
Waddle, Terry
2010-01-01
Two-dimensional hydrodynamic models are now widely used in aquatic habitat studies. To test the sensitivity of calculated habitat outcomes to limitations of such a model and of typical field data, bathymetry, depth and velocity data were collected for three discharges in the vicinity of two large boulders in the South Platte River (Colorado) and used in the River2D model. Simulated depth and velocity were compared with observed values at 204 locations and the differences in habitat numbers produced by observed and simulated conditions were calculated. The bulk of the differences between simulated and observed depth and velocity values were found to lie within the likely error of measurement. However, the effect of flow simulation outliers on potential habitat outcomes must be considered when using 2D models for habitat simulation. Furthermore, the shape of the habitat suitability relation can influence the effects of simulation errors. Habitat relations with steep slopes in the velocity ranges found in similar study areas are expected to be sensitive to the magnitude of error found here. Comparison of habitat values derived from simulated and observed depth and velocity revealed a small tendency to under-predict habitat values.
Field evaluation of a two-dimensional hydrodynamic model near boulders for habitat calculation
Waddle, Terry
2009-01-01
Two-dimensional hydrodynamic models are now widely used in aquatic habitat studies. To test the sensitivity of calculated habitat outcomes to limitations of such a model and of typical field data, bathmetry, depth and velocity data were collected for three discharges in the vicinity of two large boulders in the South Platte River (Colorado) and used in the River2D model. Simulated depth and velocity were compared with observed values at 204 locations and the differences in habitat numbers produced by observed and simulated conditions were calculated. The bulk of the differences between simulated and observed depth and velocity values were found to lie within the likely error of measurement. However, the effect of flow simulation outliers on potential habitat outcomes must be considered when using 2D models for habitat simulation. Furthermore, the shape of the habitat suitability relation can influence the effects of simulation errors. Habitat relations with steep slopes in the velocity ranges found in similar study areas are expected to be sensitive to the magnitude of error found here. Comparison of habitat values derived from simulated and observed depth and velocity revealed a small tendency to under-predict habitat values.
NASA Astrophysics Data System (ADS)
Sigalotti, Leonardo Di G.; Troconis, Jorge; Sira, Eloy; Peña-Polo, Franklin; Klapp, Jaime
2014-07-01
We study numerically liquid-vapor phase separation in two-dimensional, nonisothermal, van der Waals (vdW) liquid drops using the method of smoothed particle hydrodynamics (SPH). In contrast to previous SPH simulations of drop formation, our approach is fully adaptive and follows the diffuse-interface model for a single-component fluid, where a reversible, capillary (Korteweg) force is added to the equations of motion to model the rapid but smooth transition of physical quantities through the interface separating the bulk phases. Surface tension arises naturally from the cohesive part of the vdW equation of state and the capillary forces. The drop models all start from a square-shaped liquid and spinodal decomposition is investigated for a range of initial densities and temperatures. The simulations predict the formation of stable, subcritical liquid drops with a vapor atmosphere, with the densities and temperatures of coexisting liquid and vapor in the vdW phase diagram closely matching the binodal curve. We find that the values of surface tension, as determined from the Young-Laplace equation, are in good agreement with the results of independent numerical simulations and experimental data. The models also predict the increase of the vapor pressure with temperature and the fitting to the numerical data reproduces very well the Clausius-Clapeyron relation, thus allowing for the calculation of the vaporization pressure for this vdW fluid.
Sigalotti, Leonardo Di G; Troconis, Jorge; Sira, Eloy; Peña-Polo, Franklin; Klapp, Jaime
2014-07-01
We study numerically liquid-vapor phase separation in two-dimensional, nonisothermal, van der Waals (vdW) liquid drops using the method of smoothed particle hydrodynamics (SPH). In contrast to previous SPH simulations of drop formation, our approach is fully adaptive and follows the diffuse-interface model for a single-component fluid, where a reversible, capillary (Korteweg) force is added to the equations of motion to model the rapid but smooth transition of physical quantities through the interface separating the bulk phases. Surface tension arises naturally from the cohesive part of the vdW equation of state and the capillary forces. The drop models all start from a square-shaped liquid and spinodal decomposition is investigated for a range of initial densities and temperatures. The simulations predict the formation of stable, subcritical liquid drops with a vapor atmosphere, with the densities and temperatures of coexisting liquid and vapor in the vdW phase diagram closely matching the binodal curve. We find that the values of surface tension, as determined from the Young-Laplace equation, are in good agreement with the results of independent numerical simulations and experimental data. The models also predict the increase of the vapor pressure with temperature and the fitting to the numerical data reproduces very well the Clausius-Clapeyron relation, thus allowing for the calculation of the vaporization pressure for this vdW fluid. PMID:25122383
NASA Astrophysics Data System (ADS)
Klapp, Jaime; di G Sigalotti, Leonardo; Troconis, Jorge; Sira, Eloy; Pena, Franklin; ININ-IVIC Team; Cinvestav-UAM-A Team
2014-11-01
We study numerically liquid-vapor phase separation in two-dimensional, nonisothermal, van der Waals (vdW) liquid drops using the method of Smoothed Particle Hydrodynamics (SPH). In contrast to previous SPH simulations of drop formation, our approach is fully adaptive and follows the diffuse interface model for a single-component fluid, where a reversible, capillary (Korteweg) force is added to the equations of motion to model the rapid but smooth transition of physical quantities through the interface separating the bulk phases. Surface tension arises naturally from the cohesive part of the vdW equation of state and the capillary forces. The drop models all start from a square-shaped liquid and spinodal decomposition is investigated for a range of initial densities and temperatures. The simulations predict the formation of stable, subcritical liquid drops with a vapor atmosphere, with the densities and temperatures of coexisting liquid and vapor in the vdW phase diagram closely matching the binodal curve. We find that the values of surface tension, as determined from the Young-Laplace equation, are in good agreement with the results of independent numerical simulations and experimental data. The models also predict the increase of the vapor pressure with temperature and the fitting to the numerical data reproduces very well the Clausius-Clapeyron relation, thus allowing for the calculation of the vaporization pressure for this vdW fluid. Cinvestav-Abacus.
Hydrodynamic models for slurry bubble column reactors. Sixth technical progress report
Gidaspow, D.
1996-01-01
The objective of this investigation is to convert the gas-solid-liquid fluidization model into a predictive design model. The IIT hydrodynamic model computes the phase velocities and the volume fractions of gas, liquid and particulate phases. Model verification involves a comparison of these computed velocities and volume fractions to experimental values. This report presents measurements of granular temperature of Air Products catalyst. The report is in the form of a preliminary paper, entitled ``Dynamics of Liquid-Solid Fluidized Beds with Small Catalyst Particles.`` The principal results are as follows: (1) For the liquid-solid system the granular temperature is much smaller than for a corresponding gas-solid system. This may be due to the larger viscosity of the liquid in comparison to air. (2) The collisional viscosity of the catalyst is correspondingly much smaller than that of catalyst particles in the air. (3) The dominant frequency of density oscillations is near two Hertz, as expected for a gas-solid fluidized bed. There exists a link between this low frequency and the high frequency of catalyst particle oscillations. The Air Products fluidized bed reactor is designed to produce methanol and synthetic fuels from synthesis gas.
Sigalotti, Leonardo Di G; Troconis, Jorge; Sira, Eloy; Peña-Polo, Franklin; Klapp, Jaime
2014-07-01
We study numerically liquid-vapor phase separation in two-dimensional, nonisothermal, van der Waals (vdW) liquid drops using the method of smoothed particle hydrodynamics (SPH). In contrast to previous SPH simulations of drop formation, our approach is fully adaptive and follows the diffuse-interface model for a single-component fluid, where a reversible, capillary (Korteweg) force is added to the equations of motion to model the rapid but smooth transition of physical quantities through the interface separating the bulk phases. Surface tension arises naturally from the cohesive part of the vdW equation of state and the capillary forces. The drop models all start from a square-shaped liquid and spinodal decomposition is investigated for a range of initial densities and temperatures. The simulations predict the formation of stable, subcritical liquid drops with a vapor atmosphere, with the densities and temperatures of coexisting liquid and vapor in the vdW phase diagram closely matching the binodal curve. We find that the values of surface tension, as determined from the Young-Laplace equation, are in good agreement with the results of independent numerical simulations and experimental data. The models also predict the increase of the vapor pressure with temperature and the fitting to the numerical data reproduces very well the Clausius-Clapeyron relation, thus allowing for the calculation of the vaporization pressure for this vdW fluid.
An Integrated Numerical Hydrodynamic Shallow Flow-Solute Transport Model for Urban Area
NASA Astrophysics Data System (ADS)
Alias, N. A.; Mohd Sidek, L.
2016-03-01
The rapidly changing on land profiles in the some urban areas in Malaysia led to the increasing of flood risk. Extensive developments on densely populated area and urbanization worsen the flood scenario. An early warning system is really important and the popular method is by numerically simulating the river and flood flows. There are lots of two-dimensional (2D) flood model predicting the flood level but in some circumstances, still it is difficult to resolve the river reach in a 2D manner. A systematic early warning system requires a precisely prediction of flow depth. Hence a reliable one-dimensional (1D) model that provides accurate description of the flow is essential. Research also aims to resolve some of raised issues such as the fate of pollutant in river reach by developing the integrated hydrodynamic shallow flow-solute transport model. Presented in this paper are results on flow prediction for Sungai Penchala and the convection-diffusion of solute transports simulated by the developed model.
NASA Astrophysics Data System (ADS)
Alarcon, Vladimir J.; McAnally, William; Wasson, Louis; Martin, James; Cartwright, John
2009-08-01
Scarcity of precipitation data is common when modeling and simulating watershed hydrology. Current availability of ground-based radar stations provides estimations of precipitation in ways that were inexistent before. However, the delivering method for radar-estimated precipitation (raster layers of precipitation values per unit time) is not the best in the context of hydrological modeling. Usually, hydrological models require precipitation time-series organized according to a previous delineation of the watershed. This paper presents a methodology for generating and using NEXRAD precipitation data for hydrological simulation. NEXRAD or Nexrad (Next-Generation Radar) is a network of 158 high-resolution Doppler weather radars operated by the National Weather Service, an agency of the National Oceanic and Atmospheric Administration (NOAA) within the United States Department of Commerce. In this research, more than 70000 NEXRAD precipitation data files in XMRGS format and HRAP coordinates (for the period 1997-2005) were used to generate precipitation time series to be used by hydrological and hydrodynamic models for the Mobile (Alabama, USA) watershed and estuary. Results and comparison with measured data are presented.
Colour gradients of high-redshift early-type galaxies from hydrodynamical monolithic models
NASA Astrophysics Data System (ADS)
Tortora, C.; Pipino, A.; D'Ercole, A.; Napolitano, N. R.; Matteucci, F.
2013-10-01
We analyse the evolution of colour gradients predicted by the hydrodynamical models of early-type galaxies (ETGs) in Pipino et al., which reproduce fairly well the chemical abundance pattern and the metallicity gradients of local ETGs. We convert the star formation (SF) and metal content into colours by means of stellar population synthetic model and investigate the role of different physical ingredients, as the initial gas distribution and content, and ɛSF, i.e. the normalization of SF rate. From the comparison with high-redshift data, a full agreement with optical rest-frame observations at z ≲ 1 is found, for models with low ɛSF, whereas some discrepancies emerge at 1 < z < 2, despite our models reproduce quite well the data scatter at these redshifts. To reconcile the prediction of these high ɛSF systems with the shallower colour gradients observed at lower z we suggest intervention of one to two dry mergers. We suggest that future studies should explore the impact of wet galaxy merging, interactions with environment, dust content and a variation of the initial mass function from the galactic centres to the peripheries.
Radiation-hydrodynamic Model of High-Mass X-ray Binaries
NASA Astrophysics Data System (ADS)
Čechura, J.; Hadrava, P.
2014-10-01
The topic of circumstellar matter in the X-ray binaries and its spectroscopic diagnostics is addressed by method of generating synthetic Dopplerograms for direct comparison with observations. The presented results were obtained using our improved three-dimensional radiation-hydrodynamic model of the stellar wind in HMXBs. We use the model to simulate dynamics, anisotropy and other characteristics of the wind, e.g. the density distribution and ionization structure. We adopt parameters of Cygnus X-1 in our simulations and use the Doppler tomography to probe the structure of radiation-emitting material in the system. We introduce a data interpretation method of observed Doppler tomograms via direct comparison with synthetic Dopplerograms obtained from our model. We test the reliability of the model as well as set constrains on various physical parameters and processes, e.g. the accretion rate. We take into account the Coriolis force, the ionization structure of the medium, the gravity darkening, and we investigate the effects these phenomena have on the accretion process. E.g. the Coriolis force substantially influences the mass-loss of the donor and by that the accretion rate of the compact companion. Additionally, focusing of the stellar wind by the gravitational field of the compact companion leads to the formation of an unstable gaseous tail behind the companion. This tail shows signs of quasi-periodic oscillations and its existence presents us with other means to explain the switching mechanism among the various X-ray states.
Examining the utility of satellite-based wind sheltering estimates for lake hydrodynamic modeling
2014-01-01
Satellite-based measurements of vegetation canopy structure have been in common use for the last decade but have never been used to estimate canopy's impact on wind sheltering of individual lakes. Wind sheltering is caused by slower winds in the wake of topography and shoreline obstacles (e.g. forest canopy) and influences heat loss and the flux of wind-driven mixing energy into lakes, which control lake temperatures and indirectly structure lake ecosystem processes, including carbon cycling and thermal habitat partitioning. Lakeshore wind sheltering has often been parameterized by lake surface area but such empirical relationships are only based on forested lakeshores and overlook the contributions of local land cover and terrain to wind sheltering. This study is the first to examine the utility of satellite imagery-derived broad-scale estimates of wind sheltering across a diversity of land covers. Using 30 m spatial resolution ASTER GDEM2 elevation data, the mean sheltering height, hs, being the combination of local topographic rise and canopy height above the lake surface, is calculated within 100 m-wide buffers surrounding 76,000 lakes in the U.S. state of Wisconsin. Uncertainty of GDEM2-derived hs was compared to SRTM-, high-resolution G-LiHT lidar-, and ICESat-derived estimates of hs, respective influences of land cover type and buffer width on hs are examined; and the effect of including satellite-based hs on the accuracy of a statewide lake hydrodynamic model was discussed. Though GDEM2 hs uncertainty was comparable to or better than other satellite-based measures of hs, its higher spatial resolution and broader spatial coverage allowed more lakes to be included in modeling efforts. GDEM2 was shown to offer superior utility for estimating hs compared to other satellite-derived data, but was limited by its consistent underestimation of hs, inability to detect within-buffer hs variability, and differing accuracy across land cover types. Nonetheless
Galaxies in the EAGLE hydrodynamical simulation and in the Durham and Munich semi-analytical models
NASA Astrophysics Data System (ADS)
Guo, Quan; Gonzalez-Perez, Violeta; Guo, Qi; Schaller, Matthieu; Furlong, Michelle; Bower, Richard G.; Cole, Shaun; Crain, Robert A.; Frenk, Carlos S.; Helly, John C.; Lacey, Cedric G.; Lagos, Claudia del P.; Mitchell, Peter; Schaye, Joop; Theuns, Tom
2016-10-01
We compare global predictions from the EAGLE hydrodynamical simulation, and two semi-analytic (SA) models of galaxy formation, L-GALAXIES and GALFORM. All three models include the key physical processes for the formation and evolution of galaxies and their parameters are calibrated against a small number of observables at z ≈ 0. The two SA models have been applied to merger trees constructed from the EAGLE dark matter only simulation. We find that at z ≤ 2, both the galaxy stellar mass functions for stellar masses M* < 1010.5 M⊙ and the median specific star formation rates (sSFRs) in the three models agree to better than 0.4 dex. The evolution of the sSFR predicted by the three models closely follows the mass assembly history of dark matter haloes. In both EAGLE and L-GALAXIES there are more central passive galaxies with M* < 109.5 M⊙ than in GALFORM. This difference is related to galaxies that have entered and then left a larger halo and which are treated as satellites in GALFORM. In the range 0 < z < 1, the slope of the evolution of the star formation rate density in EAGLE is a factor of ≈1.5 steeper than for the two SA models. The median sizes for galaxies with M* > 109.5 M⊙ differ in some instances by an order of magnitude, while the stellar mass-size relation in EAGLE is a factor of ≈2 tighter than for the two SA models. Our results suggest the need for a revision of how SA models treat the effect of baryonic self-gravity on the underlying dark matter. The treatment of gas flows in the models needs to be revised based on detailed comparison with observations to understand in particular the evolution of the stellar mass-metallicity relation.
NASA Astrophysics Data System (ADS)
Bates, Paul; Sampson, Chris; Smith, Andy; Neal, Jeff
2015-04-01
In this work we present further validation results for a hyper-resolution global flood inundation model. We use a true hydrodynamic model that uses highly efficient numerical algorithms (LISFLOOD-FP) to simulate flood inundation at ~1km resolution globally and then use downscaling algorithms to determine flood extent and water depth at 3 seconds of arc spatial resolution (~90m at the equator). The global model has ~150 million cells and requires ~180 hours of CPU time for a 10 year simulation period. Terrain data are taken from a custom version of the SRTM data set that has been processed specifically for hydrodynamic modelling. Return periods of flood flows along the entire global river network are determined using: (1) empirical relationships between catchment characteristics and index flood magnitude in different hydroclimatic zones derived from global runoff data; and (2) an index flood growth curve, also empirically derived. Bankful return period flow is then used to set channel width and depth, and flood defence impacts are modelled using empirical relationships between GDP, urbanization and defence standard of protection. The results of these simulations are global flood hazard maps for a number of different return period events from 1 in 5 to 1 in 1000 years. This method has already been show to compare well to return period flood hazard maps derived from models built with high resolution and accuracy local data (Sampson et al., submitted), yet the output from the global flood model has not yet been compared to real flood observations. Whilst the spatial resolution of the global model is high given the size of the model domain, ~1km resolution is still coarse compared to the models typically used to simulate urban flooding and the data typically used to validate these (~25m or less). Comparison of the global model to real-world observations or urban flooding therefore represents an exceptionally stringent test of model skill. In this paper we therefore
NASA Astrophysics Data System (ADS)
Colgate, S. A.
1981-11-01
The physics as well as astrophysics of the supernova (SN) phenomenon are illustrated with the appropriate numbers. The explosion of a star, a supernova, occurs at the end of its evolution when the nuclear fuel in its core is almost, or completely, consumed. The star may explode due to a small residual thermonuclear detonation, type I SN, or it may collapse, type I and type II SN, leaving a neutron star remnant. The type I progenitor is thought to be an old accreting white dwarf, 1.4 interior mass, with a close companion star. A type II SN is thought to be a massive young star, 6 to 10 interior mass. The mechanism of explosion is still a challenge to model, being the most extreme conditions of matter and hydrodynamics that occur presently and excessively in the universe.
Using a Hydrodynamic Lake Model to Predict the Impact of Avalanche Events at Lake Palcacocha, Peru
NASA Astrophysics Data System (ADS)
Chisolm, R. E.; Somos-Valenzuela, M. A.; McKinney, D. C.; Hodges, B. R.
2013-12-01
Accelerated retreat of Andean glaciers in recent decades due to a warming climate has caused the emergence and growth of glacial lakes. As these lakes continue to grow, they pose an increasing risk of glacial lake outburst floods (GLOFs). GLOFs can be triggered by moraine failures or by avalanches, rockslides, or ice calving into glacial lakes. Many of the processes influencing GLOF risk are still poorly understood. For many decades Lake Palcacocha in the Cordillera Blanca, Peru has posed a threat to citizens living in the watershed below, including the city of Huaraz which was devastated by a GLOF in 1941. A safety system for Lake Palcacocha was put in place in the 1970's to control the lake level with a tunnel and reinforced dyke, but the lake has since grown to the point where the lake is once again dangerous. Overhanging ice from the Palcaraju glacier and a relatively low freeboard level make the lake vulnerable to avalanches and landslides. A siphon system has been put in place to lower the lake below the level of the tunnel, but this system is temporary and the potential reduction in the water level is limited. Lake Palcacocha is used as a case study to investigate the impact of an avalanche event on the lake dynamics and the ensuing flood hydrograph. Empirical equations are used to determine the initial wave characteristics of an impulse wave created by three different avalanche scenarios that represent small, medium and large events. The characteristics of the initial impulse wave are used as inputs to a three-dimensional hydrodynamic model to predict the wave propagation across the lake and the moraine overtopping volume. The results from this model will be used as inputs to a downstream GLOF model to predict the impact from an outburst flood event. Additionally several scenarios are considered to evaluate the downstream impact from avalanche events with a reduction in the lake level. Use of a robust three-dimensional hydrodynamic lake model enables more
Zounemat-Kermani, Mohammad; Scholz, Miklas; Tondar, Mohammad-Mahdi
2015-01-01
One of the key factors in designing free water-surface constructed wetlands (FWS CW) is the hydraulic efficiency (λ), which depends primarily on the retention time of the polluted storm water. Increasing the hydraulic retention time (HRT) at various flow levels will increase λ of the overall constructed wetland (CW). The effects of characteristic geometric features that increase HRT were explored through the use of a two-dimensional depth-average hydrodynamic model. This numerical model was developed to solve the equations of continuity and motions on an unstructured triangular mesh using the Galerkin finite volume formulation and equations of the k-ε turbulence model. Eighty-nine diverse forms of artificial FWS CW with 11 different aspect ratios were numerically simulated and subsequently analysed for four scenarios: rectangular CW, modified rectangular CW with rounded edges, different inlet/outlet configurations of CW, and surface and submerged obstructions in front of the inlet part of the CW. Results from the simulations showed that increasing the aspect ratio has a direct influence on the enhancement of λ in all cases. However, the aspect ratio should be at least 9 in order to achieve an appropriate rate for λ in rectangular CW. Modified rounded rectangular CW improved λ by up to 23%, which allowed for the selection of a reduced aspect ratio. Simulation results showed that CW with low aspect ratios benefited from obstructions and optimized inlet/outlet configurations in terms of improved HRT.
Swain, Eric; Decker, Jeremy
2010-01-01
Numerical modeling is needed to predict environmental temperatures, which affect a number of biota in southern Florida, U.S.A., such as the West Indian manatee (Trichechus manatus), which uses thermal basins for refuge from lethal winter cold fronts. To numerically simulate heat-transport through a dynamic coastal wetland region, an algorithm was developed for the FTLOADDS coupled hydrodynamic surface-water/ground-water model that uses formulations and coefficients suited to the coastal wetland thermal environment. In this study, two field sites provided atmospheric data to develop coefficients for the heat flux terms representing this particular study area. Several methods were examined to represent the heat-flux components used to compute temperature. A Dalton equation was compared with a Penman formulation for latent heat computations, producing similar daily-average temperatures. Simulation of heat-transport in the southern Everglades indicates that the model represents the daily fluctuation in coastal temperatures better than at inland locations; possibly due to the lack of information on the spatial variations in heat-transport parameters such as soil heat capacity and surface albedo. These simulation results indicate that the new formulation is suitable for defining the existing thermohydrologic system and evaluating the ecological effect of proposed restoration efforts in the southern Everglades of Florida.
Coupled hydrodynamic model for laser-plasma interaction and hot electron generation
NASA Astrophysics Data System (ADS)
Colaïtis, A.; Duchateau, G.; Ribeyre, X.; Maheut, Y.; Boutoux, G.; Antonelli, L.; Nicolaï, Ph.; Batani, D.; Tikhonchuk, V.
2015-10-01
We present a formulation of the model of laser-plasma interaction (LPI) at hydrodynamical scales that couples the plasma dynamics with linear and nonlinear LPI processes, including the creation and propagation of high-energy electrons excited by parametric instabilities and collective effects. This formulation accounts for laser beam refraction and diffraction, energy absorption due to collisional and resonant processes, and hot electron generation due to the stimulated Raman scattering, two-plasmon decay, and resonant absorption processes. Hot electron (HE) transport and absorption are described within the multigroup angular scattering approximation, adapted for transversally Gaussian electron beams. This multiscale inline LPI-HE model is used to interpret several shock ignition experiments, highlighting the importance of target preheating by HEs and the shortcomings of standard geometrical optics when modeling the propagation and absorption of intense laser pulses. It is found that HEs from parametric instabilities significantly increase the shock pressure and velocity in the target, while decreasing its strength and the overall ablation pressure.
NASA Astrophysics Data System (ADS)
Braun, Anika; Cuomo, Sabatino; Wang, Xueliang; Zhang, Luqing
2016-04-01
Debris flows and landslide dams are a major natural hazard causing high socioeconomic risk in inhabited mountainous areas. This is also true for vast parts of southwestern China, which are highly prone to slope failures due to several factors, such as a humid climate with high precipitation in the summer months, geological predisposing factors with highly weathered sedimentary rocks and a high seismicity. Not only do the landslides and flooding related to landslide dams threaten residents, buildings and transportation structures, but also do flooding conditions endanger power supply, which relies in this region partly on hydropower. In order to assess the potential of landslides to block rivers, it is crucial to understand which factors influence possible run-out distances and how they can be quantified. In the study we are presenting a numerical modeling analysis for a particular case of a complex landslide in Ningnan county, southwestern China, which transformed into a debris flow and blocked the river and the major road leading through the valley after heavy rainfall. For this purpose a quasi-3D Smooth Particle Hydrodynamics (SPH) model was implemented that can account for geotechnical slope parameters, run-out distance, velocities and deposition heights. A digital terrain model and the geometry information of the landslide were used as input data in order to estimate the relevant geotechnical parameters by back-analysis. The results of the analysis can be used for the prediction of run-out distances for future events at this site and other similar sites.
3-D hydrodynamic modelling of flood impacts on a building and indoor flooding processes
NASA Astrophysics Data System (ADS)
Gems, Bernhard; Mazzorana, Bruno; Hofer, Thomas; Sturm, Michael; Gabl, Roman; Aufleger, Markus
2016-06-01
Given the current challenges in flood risk management and vulnerability assessment of buildings exposed to flood hazards, this study presents three-dimensional numerical modelling of torrential floods and its interaction with buildings. By means of a case study application, the FLOW-3D software is applied to the lower reach of the Rio Vallarsa torrent in the village of Laives (Italy). A single-family house on the flood plain is therefore considered in detail. It is exposed to a 300-year flood hydrograph. Different building representation scenarios, including an entire impervious building envelope and the assumption of fully permeable doors, light shafts and windows, are analysed. The modelling results give insight into the flooding process of the building's interior, the impacting hydrodynamic forces on the exterior and interior walls, and further, they quantify the impact of the flooding of a building on the flow field on the surrounding flood plain. The presented study contributes to the development of a comprehensive physics-based vulnerability assessment framework. For pure water floods, this study presents the possibilities and limits of advanced numerical modelling techniques within flood risk management and, thereby, the planning of local structural protection measures.
Coupled hydrodynamic model for laser-plasma interaction and hot electron generation.
Colaïtis, A; Duchateau, G; Ribeyre, X; Maheut, Y; Boutoux, G; Antonelli, L; Nicolaï, Ph; Batani, D; Tikhonchuk, V
2015-10-01
We present a formulation of the model of laser-plasma interaction (LPI) at hydrodynamical scales that couples the plasma dynamics with linear and nonlinear LPI processes, including the creation and propagation of high-energy electrons excited by parametric instabilities and collective effects. This formulation accounts for laser beam refraction and diffraction, energy absorption due to collisional and resonant processes, and hot electron generation due to the stimulated Raman scattering, two-plasmon decay, and resonant absorption processes. Hot electron (HE) transport and absorption are described within the multigroup angular scattering approximation, adapted for transversally Gaussian electron beams. This multiscale inline LPI-HE model is used to interpret several shock ignition experiments, highlighting the importance of target preheating by HEs and the shortcomings of standard geometrical optics when modeling the propagation and absorption of intense laser pulses. It is found that HEs from parametric instabilities significantly increase the shock pressure and velocity in the target, while decreasing its strength and the overall ablation pressure.
Xie, Nan; Battaglia, Francine; Pannala, Sreekanth
2008-01-01
Simulations of fluidized beds are performed to study and determine the effect on the use of coordinate systems and geometrical configurations to model fluidized bed reactors. Computational fluid dynamics is employed for an Eulerian-Eulerian model, which represents each phase as an interspersed continuum. The transport equation for granular temperature is solved and a hyperbolic tangent function is used to provide a smooth transition between the plastic and viscous regimes for the solid phase. The aim of the present work is to show the range of validity for employing simulations based on a 2D Cartesian coordinate system to approximate both cylindrical and rectangular fluidized beds. Three different fluidization regimes, bubbling, slugging and turbulent regimes, are investigated and the results of 2D and 3D simulations are presented for both cylindrical and rectangular domains. The results demonstrate that a 2D Cartesian system can be used to successfully simulate and predict a bubbling regime. However, caution must be exercised when using 2D Cartesian coordinates for other fluidized regimes. A budget analysis that explains all the differences in detail is presented in Part II [N. Xie, F. Battaglia, S. Pannala, Effects of Using Two-Versus Three-Dimensional Computational Modeling of Fluidized Beds: Part II, budget analysis, 182 (1) (2007) 14] to complement the hydrodynamic theory of this paper.
THE INFLUENCE OF NUMERICAL RESOLUTION ON CORONAL DENSITY IN HYDRODYNAMIC MODELS OF IMPULSIVE HEATING
Bradshaw, S. J.; Cargill, P. J. E-mail: p.cargill@imperial.ac.uk
2013-06-10
The effect of the numerical spatial resolution in models of the solar corona and corona/chromosphere interface is examined for impulsive heating over a range of magnitudes using one-dimensional hydrodynamic simulations. It is demonstrated that the principal effect of inadequate resolution is on the coronal density. An underresolved loop typically has a peak density of at least a factor of two lower than a resolved loop subject to the same heating, with larger discrepancies in the decay phase. The temperature for underresolved loops is also lower indicating that lack of resolution does not 'bottle up' the heat flux in the corona. Energy is conserved in the models to under 1% in all cases, indicating that this is not responsible for the low density. Instead, we argue that in underresolved loops the heat flux 'jumps across' the transition region to the dense chromosphere from which it is radiated rather than heating and ablating transition region plasma. This emphasizes the point that the interaction between corona and chromosphere occurs only through the medium of the transition region. Implications for three-dimensional magnetohydrodynamic coronal models are discussed.
Coupled hydrodynamic model for laser-plasma interaction and hot electron generation.
Colaïtis, A; Duchateau, G; Ribeyre, X; Maheut, Y; Boutoux, G; Antonelli, L; Nicolaï, Ph; Batani, D; Tikhonchuk, V
2015-10-01
We present a formulation of the model of laser-plasma interaction (LPI) at hydrodynamical scales that couples the plasma dynamics with linear and nonlinear LPI processes, including the creation and propagation of high-energy electrons excited by parametric instabilities and collective effects. This formulation accounts for laser beam refraction and diffraction, energy absorption due to collisional and resonant processes, and hot electron generation due to the stimulated Raman scattering, two-plasmon decay, and resonant absorption processes. Hot electron (HE) transport and absorption are described within the multigroup angular scattering approximation, adapted for transversally Gaussian electron beams. This multiscale inline LPI-HE model is used to interpret several shock ignition experiments, highlighting the importance of target preheating by HEs and the shortcomings of standard geometrical optics when modeling the propagation and absorption of intense laser pulses. It is found that HEs from parametric instabilities significantly increase the shock pressure and velocity in the target, while decreasing its strength and the overall ablation pressure. PMID:26565161
Verification of the two-dimensional hydrodynamic model based on remote sensing
NASA Astrophysics Data System (ADS)
Sazonov, Alexey; Mikhailukova, Polina; Krylenko, Inna; Frolova, Natalya; Kireeva, Mariya
2016-04-01
Mathematical modeling methods are used more and more actively to evaluate possible damage, identify potential flood zone and the influence of individual factors affecting the river during the passage of the flood. Calculations were performed by means of domestic software complex «STREAM-2D» which is based on the numerical solution of two-dimensional St. Venant equations. One of the major challenges in mathematical modeling is the verification of the model. This is usually made using data on water levels from hydrological stations: the smaller the difference of the actual level and the simulated one, the better the quality of the model used. Data from hydrological stations are not always available, so alternative sources of verification, such as remote sensing, are increasingly used. The aim of this work is to develop a method of verification of hydrodynamic model based on a comparison of actual flood zone area, which in turn is determined on the basis of the automated satellite image interpretation methods for different imaging systems and flooded area obtained in the course of the model. The study areas are Lena River, The North Dvina River, Amur River near Blagoveshchensk. We used satellite images made by optical and radar sensors: SPOT-5/HRG, Resurs-F, Radarsat-2. Flooded area were calculated using unsupervised classification (ISODATA and K-mean) for optical images and segmentation for Radarsat-2. Knowing the flow rate and the water level at a given date for the upper and lower limits of the model, respectively, it is possible to calculate flooded area by means of program STREAM-2D and GIS technology. All the existing vector layers with the boundaries of flooding are included in a GIS project for flood area calculation. This study was supported by the Russian Science Foundation, project no. 14-17-00155.
NASA Astrophysics Data System (ADS)
Jiao, Cheng-Liang; Mineshige, Shin; Takeuchi, Shun; Ohsuga, Ken
2015-06-01
We apply our two-dimensional (2D), radially self-similar steady-state accretion flow model to the analysis of hydrodynamic simulation results of supercritical accretion flows. Self-similarity is checked and the input parameters for the model calculation, such as advective factor and heat capacity ratio, are obtained from time-averaged simulation data. Solutions of the model are then calculated and compared with the simulation results. We find that in the converged region of the simulation, excluding the part too close to the black hole, the radial distributions of azimuthal velocity {{v}φ }, density ρ and pressure p basically follow the self-similar assumptions, i.e., they are roughly proportional to {{r}-0.5}, {{r}-n}, and {{r}-(n+1)}, respectively, where n∼ 0.85 for the mass injection rate of 1000{{L}E}/{{c}2}, and n∼ 0.74 for 3000{{L}E}/{{c}2}. The distribution of vr and {{v}θ } agrees less with self-similarity, possibly due to convective motions in the rθ plane. The distribution of velocity, density, and pressure in the θ direction obtained by the steady model agrees well with the simulation results within the calculation boundary of the steady model. Outward mass flux in the simulations is overall directed toward a polar angle of 0.8382 rad (∼ 48\\buildrel{\\circ}\\over{.} 0) for 1000{{L}E}/{{c}2} and 0.7852 rad (∼ 43\\buildrel{\\circ}\\over{.} 4) for 3000{{L}E}/{{c}2}, and ∼94% of the mass inflow is driven away as outflow, while outward momentum and energy fluxes are focused around the polar axis. Parts of these fluxes lie in the region that is not calculated by the steady model, and special attention should be paid when the model is applied.
NASA Astrophysics Data System (ADS)
Kessouri, Fayçal; Ulses, Caroline; Estournel, Claude; Marsaleix, Patrick
2015-04-01
The Mediterranean Sea presents a wide variety of trophic regimes since the large and intense spring bloom of the North-Western Mediterranean Sea (NWMS) that follows winter convection to the extreme oligotrophic regions of the South-eastern basin. The Mediterranean Sea displays a strong time variability revealing its high sensitivity to climate and anthropic pressures. In this context, it is crucial to develop tools allowing to understand the evolution of the Mediterranean hydrology and marine ecosystem as a response to external forcing. Numerical coupled hydrodynamic and biogeochemical modelling carefully calibrated in the different regions of the basin is the only tool that can answer this question. However, this important step of calibration is particularly difficult because of the lack of coherent sets of data describing the seasonal evolution of the main parameters characterizing the physical and biogeochemical environment in the different sub-basins. The chlorophyll satellite data from 4km MODIS products, a multiple in situ data from MerMEX MOOSE and DEWEX cruises and Bio-Argo floats from NAOS project are believed to be an opportunity to strongly improve the realism of ecosystem models. The model is a 3D coupled simulation using NemoMed12 for hydrodynamics and ECO 3MS for biogeochemistry and covers the whole Mediterranean Sea and runs at 1/12°. The relevant variables mentioned are phytoplankton, organic and inorganic matters faced to water masses dynamics, over ten years since summer 2003. After a short validation, we will expose two topics: First, through this coupling we quantify the nutrients fluxes across the Mediterranean straits over the years. For example, we found an annual net average around 150 Giga moles NO3 per year at Gibraltar, where we expect low annual fluctuations. In contrast, the Strait of Sicily shows greater annual variability going from 70 to 92 Giga moles NO3 per year. All the fluxes are resumed in a detailed diagram of the transport
Evidence for a disk in the wind of HD 93521: UV line profiles from an axisymmetric model
NASA Technical Reports Server (NTRS)
Bjorkman, J. E.; Ignace, R.; Tripp, T. M.; Cassinelli, J. P.
1994-01-01
Recently it has been suggested (Massa 1992; Howarth & Reid 1993), from the C IV ultraviolet resonance line profile of HD 93521, that there is a high-speed component in the polar outflow from the star as well as a low-speed component in the equatorial regions. In this paper we present theoretical calculations of the line profiles that would be produced by such a model. We find from Hubble Space Telescope (HST) Goddard High Resolution Spectrograph (GHRS) observations of HD 93521 that the observed C IV profile can be produced if the star has an inclination angle very close to 90 deg and if the star is surrounded by a thin disk, whose half-width is approximately 3 deg in latitude. The geometry of this disk is similar to what one would expect from the wind-compressed disk model of Bjorkman & Cassinelli, so this star may provide an ideal observational test of that model. In addition to the C IV resonance line, we examine both the Si IV and N V resonance lines. The Si IV line exhibits low-velocity absorption that is similar to that seen in the C IV line, but the emission is much weaker. On the other hand, the N V line has weaker absorption and much stronger emission than the C IV line. N V is a higher ionization state than C IV, so it is likely that N V is one stage above the dominant state, N IV. Apart from fitting individual line profiles, we also examine the differences between the two Hubble Space Telescope observations of HD 93521. We find evidence for a pair of narrow absorption components, seen at low velocity, as well as evidence for a discrete emission feature in the blueshifted absorption cores of the lines. This blueshifted emission at low velocity can cause what instead appears to be an interstella absorption line. Without multiple observations that can reveal the temporary emission, one must be very careful when determining interstellar column densities to stars like HD 93521.
Vasquez, Paula A; Jin, Yuan; Palmer, Erik; Hill, David; Forest, M Gregory
2016-08-01
A multi-mode nonlinear constitutive model for mucus is constructed directly from micro- and macro-rheology experimental data on cell culture mucus, and a numerical algorithm is developed for the culture geometry and idealized cilia driving conditions. This study investigates the roles that mucus rheology, wall effects, and HBE culture geometry play in the development of flow profiles and the shape of the air-mucus interface. Simulations show that viscoelasticity captures normal stress generation in shear leading to a peak in the air-mucus interface at the middle of the culture and a depression at the walls. Linear and nonlinear viscoelastic regimes can be observed in cultures by varying the hurricane radius and mean rotational velocity. The advection-diffusion of a drug concentration dropped at the surface of the mucus flow is simulated as a function of Peclet number. PMID:27494700
Vasquez, Paula A.; Jin, Yuan; Palmer, Erik; Hill, David; Forest, M. Gregory
2016-01-01
A multi-mode nonlinear constitutive model for mucus is constructed directly from micro- and macro-rheology experimental data on cell culture mucus, and a numerical algorithm is developed for the culture geometry and idealized cilia driving conditions. This study investigates the roles that mucus rheology, wall effects, and HBE culture geometry play in the development of flow profiles and the shape of the air-mucus interface. Simulations show that viscoelasticity captures normal stress generation in shear leading to a peak in the air-mucus interface at the middle of the culture and a depression at the walls. Linear and nonlinear viscoelastic regimes can be observed in cultures by varying the hurricane radius and mean rotational velocity. The advection-diffusion of a drug concentration dropped at the surface of the mucus flow is simulated as a function of Peclet number. PMID:27494700
A Smoothed Particle Hydrodynamics Model for Ice Sheet and Ice Shelf Dynamics
Pan, Wenxiao; Tartakovsky, Alexandre M.; Monaghan, Joseph J.
2012-02-08
Mathematical modeling of ice sheets is complicated by the non-linearity of the governing equations and boundary conditions. Standard grid-based methods require complex front tracking techniques and have limited capability to handle large material deformations and abrupt changes in bottom topography. As a consequence, numerical methods are usually restricted to shallow ice sheet and ice shelf approximations. We propose a new smoothed particle hydrodynamics (SPH) model for coupled ice sheet and ice shelf dynamics. SPH is a fully Lagrangian particle method. It is highly scalable and its Lagrangian nature and meshless discretization are well suited to the simulation of free surface flows, large material deformation, and material fragmentation. In this paper SPH is used to study ice sheet/ice shelf behavior, and the dynamics of the grounding line. The steady state position of the grounding line obtained from the SPH simulations is in good agreement with laboratory observations for a wide range of simulated bedrock slopes, and density ratios similar to those of ice and sea water. The numerical accuracy of the SPH algorithm is further verified by simulating the plane shear flow of two immiscible fluids and the propagation of a highly viscous blob of fluid along a horizontal surface. In the experiment, the ice was represented with a viscous newtonian fluid. For consistency, in the described SPH model the ice is also modeled as a viscous newtonian fluid. Typically, ice sheets are modeled as a non-Newtonian fluid, accounting for the changes in the mechanical properties of ice. Implementation of a non-Newtonian rheology in the SPH model is the subject of our ongoing research.
NASA Astrophysics Data System (ADS)
Huckelbridge, K. H.; Stacey, M. T.; Glenn, E. P.; Dracup, J. A.
2007-05-01
An integrated model describing hydrology, hydrodynamics, salt dynamics and vegetation was developed to predict the evolution of the Cienega de Santa Clara ("Cienega"), a non-tidal wetland located in the Colorado River Delta. The Cienega was created in 1977 when water intended for treatment at the Yuma Desalting Plant in Arizona was bypassed to a salt flat in the Delta. The continued delivery of this water is uncertain and thus, this model was developed to predict the effects of changes in the quantity and quality of inflow to the wetland over seasonal and annual timescales. The model is divided into four modules that run in sequence for each timestep, in which the results from one module are used to produce results in successive modules. The four modules are: (1) evapotranspiration, (2) water balance, (3) mixing/salt balance, and (4) vegetation response. Over the calibration period, 1993-2002, modeled results of wetland surface area, the fraction of the wetland covered in vegetation and salinity concentrations compare well to actual data. The model was used to run nine hypothetical scenarios, representing the range of inflow quantity and quality to the Cienega that could occur if the source of the inflow is altered, including the possible re-opening of the Yuma Desalting plant. Model results show that the Cienega ecosystem is more sensitive to changes in salinity than to changes in flow. However, in almost all cases, an increase in salinity and/or a decrease in flow would cause a significant decrease in wetland size and vegetation cover, compromising a large portion of the habitat currently available to wildlife at the Cienega.
Sokolova, Ekaterina; Aström, Johan; Pettersson, Thomas J R; Bergstedt, Olof; Hermansson, Malte
2012-09-01
The faecal contamination of drinking water sources can lead to waterborne disease outbreaks. To estimate a potential risk for waterborne infections caused by faecal contamination of drinking water sources, knowledge of the pathogen concentrations in raw water is required. We suggest a novel approach to estimate pathogen concentrations in a drinking water source by using microbial source tracking data and fate and transport modelling. First, the pathogen (norovirus, Cryptosporidium, Escherichia coli O157/H7) concentrations in faecal contamination sources around the drinking water source Lake Rådasjön in Sweden were estimated for endemic and epidemic conditions using measured concentrations of faecal indicators (E. coli and Bacteroidales genetic markers). Afterwards, the fate and transport of pathogens within the lake were simulated using a three-dimensional coupled hydrodynamic and microbiological model. This approach provided information on the contribution from different contamination sources to the pathogen concentrations at the water intake of a drinking water treatment plant. This approach addresses the limitations of monitoring and provides data for quantitative microbial risk assessment (QMRA) and risk management in the context of faecal contamination of surface drinking water sources.
Efficient Calculation of Dewatered and Entrapped Areas Using Hydrodynamic Modeling and GIS
Richmond, Marshall C.; Perkins, William A.
2009-12-01
River waters downstream of a hydroelectric project are often subject to rapidly changing discharge. Abrupt decreases in discharge can quickly dewater and expose some areas and isolate other areas from the main river channel, potentially stranding or entrapping fish, which often results in mortality. A methodology is described to estimate the areas dewatered or entrapped by a specific reduction in upstream discharge. A one-dimensional hydrodynamic model was used to simulate steady flows. Using flow simulation results from the model and a geographic information system (GIS), estimates of dewatered and entrapped areas were made for a wide discharge range. The methodology was applied to the Hanford Reach of the Columbia River in central Washington State. Results showed that a 280 m$^3$/s discharge reduction affected the most area at discharges less than 3400 m$^3$/s. At flows above 3400 m$^3$/s, the affected area by a 280 m$^3$/s discharge reduction (about 25 ha) was relatively constant. A 280 m$^3$/s discharge reduction at lower flows affected about twice as much area. The methodology and resulting area estimates were, at the time of writing, being used to identify discharge regimes, and associated water surface elevations, that might be expected to minimize adverse impacts on juvenile fall chinook salmon (\\emph{Oncorhynchus tshawytscha}) that rear in the shallow near-shore areas in the Hanford Reach.
Kordilla, Jannes; Tartakovsky, Alexandre M.; Geyer, Tobias
2013-09-01
Flow on fracture surfaces has been identified by many authors as an important flow process in unsaturated fractured rock formations. Given the complexity of flow dynamics on such small scales, robust numerical methods have to be employed in order to capture the highly dynamic interfaces and flow intermittency. In this work we present microscale free-surface flow simulations using a three-dimensional multiphase Smoothed Particle Hydrodynamics (SPH) code. Pairwise solid-fluid and fluid-fluid interaction forces are used to control the wetting behavior and cover a wide range of static and transient contact angles as well as Reynolds numbers encountered in droplet flow on rock surfaces. We validate our model via comparison with existing empirical and semi-analyical solutions for droplet flow. We use the model to investigate the occurence of adsorbed trailing films of droplets under various flow conditions and its importance for the flow dynamics when films and droplets coexist. We show that flow velocities are higher on prewetted surfaces covered by a thin film which is qualitatively attributed to the enhanced dynamic wetting and dewetting at the trailing and advancing contact line.
3D Hydrodynamic Modeling of SN 1987A from the SN explosion till the Athena Era
NASA Astrophysics Data System (ADS)
Orlando, Salvatore; Miceli, Marco; Pumo, Maria Letizia; Bocchino, Fabrizio
2015-09-01
The proximity of SN 1987A and the wealth of observations collected at all wavelength bands since its outburst allow us to study in detail the transition of a supernova (SN) in a supernova remnant(SNR) and the link between the morphological properties of a SNRand the complex phases in the SN explosion. Here we investigate theinteraction between the remnant of SN 1987A and the surroundingcircumstellar medium (CSM) through three-dimensional hydrodynamic modeling. The aim is to identify the imprint of SN 1987A on the X-ray emission of its remnant and to determine the contribution of shocked ejecta and shocked CSM to the detected X-ray flux, thusproviding clues on both the ejecta and the density structure of theinhomogeneous CSM. Our model describes the evolution of the blastwave from the breakout of the shock wave at the stellar surfacetill its transition from SN to SNR, making predictions on the futureobservations of SN 1987A with the instruments on board Athena. Ourmodel is able to reproduce alltogether the main observables of boththe progenitor supernova (e.g. the bolometric lightcurve during thefirst 250 days) and of its remnant (X-ray lightcurves and spectraduring the following 26 years of evolution), providing for the firsttime an accurate description of the structure of ejecta and of the CSM around the progenitor.
A smooth particle hydrodynamics code to model collisions between solid, self-gravitating objects
NASA Astrophysics Data System (ADS)
Schäfer, C.; Riecker, S.; Maindl, T. I.; Speith, R.; Scherrer, S.; Kley, W.
2016-05-01
Context. Modern graphics processing units (GPUs) lead to a major increase in the performance of the computation of astrophysical simulations. Owing to the different nature of GPU architecture compared to traditional central processing units (CPUs) such as x86 architecture, existing numerical codes cannot be easily migrated to run on GPU. Here, we present a new implementation of the numerical method smooth particle hydrodynamics (SPH) using CUDA and the first astrophysical application of the new code: the collision between Ceres-sized objects. Aims: The new code allows for a tremendous increase in speed of astrophysical simulations with SPH and self-gravity at low costs for new hardware. Methods: We have implemented the SPH equations to model gas, liquids and elastic, and plastic solid bodies and added a fragmentation model for brittle materials. Self-gravity may be optionally included in the simulations and is treated by the use of a Barnes-Hut tree. Results: We find an impressive performance gain using NVIDIA consumer devices compared to our existing OpenMP code. The new code is freely available to the community upon request. If you are interested in our CUDA SPH code miluphCUDA, please write an email to Christoph Schäfer. miluphCUDA is the CUDA port of miluph. miluph is pronounced [maßl2v]. We do not support the use of the code for military purposes.
Hydrodynamic model of bacterial tumbling near a non-slip surface
NASA Astrophysics Data System (ADS)
Sheng, Jian; Molaei, Mehdi
2013-11-01
To swim forward, wild type Escherichia coli bacteria rotate their helical flagella CCW to form a bundle; to tumble, one or more flagella rotate CW to initiate flagella unbundling and polymorphic transformation that leads to a significant change in cell orientation in comparison to original swimming direction. These random change of direction increases bacterial dispersion and also is long speculated to be a mechanism for perichtricous bacteria to escape from a surface. Our recent experimental results show that the tumbling frequency is substantially suppressed near a solid surface by 50%, and the bacterium tends to start a new run in the direction parallel to the surface. This suppression occurs at two cell length (including flagella) away from the surface whereby steric hindrance plays less significant role. Here we propose an analytical model based on hydrodynamic interaction between flagella and the solid surface. We utilize Slender Body Theory combined with the image system of the singularities for the Stoke-flow to quantify the flow around the bacterial flagella in the presence of a no-slip surface. The model includes two non-identical rigid helical flagella representing a bundle and single flagellum. We have showed that in the bulk, a repulsive force among flagella initiates the unbundling and consequently tumbling; however, in presence of a solid surface, the force is strongly mitigated that stabilize the bundle and suppress the tumbling. NIH, NSF, GoMRI.
Yeo, Joonhyun
2009-11-01
We study a zero-dimensional version of the fluctuating nonlinear hydrodynamics (FNH) of supercooled liquids originally investigated by Das and Mazenko (DM) [Shankar P. Das and Gene F. Mazenko Phys. Rev. A 34, 2265 (1986)]. The time-dependent density-like and momentum-like variables are introduced with no spatial degrees of freedom in this toy model. The structure of nonlinearities takes the similar form to the original FNH, which allows one to study in a simpler setting the issues raised recently regarding the field theoretical approaches to glass forming liquids. We study the effects of density nonlinearities on the time evolution of correlation and response functions by developing field theoretic formulations in two different ways: first by following the original prescription of DM and then by constructing a dynamical action which possesses a linear time-reversal symmetry as proposed recently. We show explicitly that, at the one-loop order of the perturbation theory, the DM-type field theory does not support a sharp ergodic-nonergodic transition, while the other admits one. The simple nature of the toy model in the DM formulation allows us to develop numerical solutions to a complete set of coupled dynamical equations for the correlation and response functions at the one-loop order. PMID:20364986
NASA Astrophysics Data System (ADS)
Hill, Craig; Kozarek, Jessica; Sotiropoulos, Fotis; Guala, Michele
2016-02-01
An investigation into the interactions between a model axial-flow hydrokinetic turbine (rotor diameter, dT = 0.15 m) and the complex hydrodynamics and sediment transport processes within a meandering channel was carried out in the Outdoor StreamLab research facility at the University of Minnesota St. Anthony Falls Laboratory. This field-scale meandering stream with bulk flow and sediment discharge control provided a location for high spatiotemporally resolved measurements of bed and water surface elevations around the model turbine. The device was installed within an asymmetric, erodible channel cross section under migrating bed form and fixed outer bank conditions. A comparative analysis between velocity and topographic measurements, with and without the turbine installed, highlights the local and nonlocal features of the turbine-induced scour and deposition patterns. In particular, it shows how the cross-section geometry changes, how the bed form characteristics are altered, and how the mean flow field is distorted both upstream and downstream of the turbine. We further compare and discuss how current energy conversion deployments in meander regions would result in different interactions between the turbine operation and the local and nonlocal bathymetry compared to straight channels.
NASA Astrophysics Data System (ADS)
Yang, Xiufeng; Liu, Moubin; Peng, Shiliu
2014-12-01
This paper presents a smoothed particle hydrodynamics (SPH) and element bending group (EBG) coupling method for modeling the interaction of flexible fibers with moving viscous fluids. SPH is a well-developed mesh-free particle method for simulating viscous fluid flows. EBG is also a particle method for modeling flexible bodies. The interaction of flexible fibers with moving viscous fluids is rendered through the interaction of EBG particles for flexible fiber and SPH particles for fluid. In numerical simulation, flexible fibers of different lengths are immersed in a moving viscous fluid driven by a body force. The drag force on the fiber obtained from SPH-EBG simulation agrees well with experimental observations. It is shown that the flexible fiber demonstrates three typical bending modes, including the U-shaped mode, the flapping mode, and the closed mode, and that the flexible fiber experiences a drag reduction due to its reconfiguration by bending. It is also found that the U 4/3 drag scaling law for a flexible fiber is only valid for the U-shaped mode, but not valid for the flapping and closed modes. The results indicate that the reconfiguration of a flexible fiber is caused by the fluid force acting on it, while vortex shedding is of importance in the translations of bending modes.
Emergence of polar order and cooperativity in hydrodynamically coupled model cilia
Bruot, Nicolas; Cicuta, Pietro
2013-01-01
As a model of ciliary beat, we use two-state oscillators that have a defined direction of oscillation and have strong synchronization properties. By allowing the direction of oscillation to vary according to the interaction with the fluid, with a timescale longer than the timescale of synchronization, we show in simulations that several oscillators can align in a direction set by the geometrical configuration of the system. In this system, the alignment depends on the state of synchronization of the system, and is therefore linked to the beat pattern of the model cilia. By testing various configurations from two to 64 oscillators, we deduce empirically that, when the synchronization state of neighbouring oscillators is in phase, the angles of the oscillators align in a configuration of high hydrodynamic coupling. In arrays of oscillators that break the planar symmetry, a global direction of alignment emerges reflecting this polarity. In symmetric configurations, where several directions are geometrically equivalent, the array still displays strong internal cooperative behaviour. It also appears that the shape of the array is more important than the lattice type and orientation in determining the preferred direction. PMID:23883957
Hydrodynamic Modeling Analysis for Leque Island and zis a ba Restoration Feasibility Study
Whiting, Jonathan M.; Khangaonkar, Tarang
2015-01-31
Ducks Unlimited, Inc. in collaboration with Washington State Department of Fish and Wildlife (WDFW), and Stillaguamish Tribe of Indians have proposed the restoration of Leque Island and zis a ba (formerly Matterand) sites near the mouth of Old Stillaguamish River Channel in Port Susan Bay, Washington. The Leque Island site, which is owned by WDFW, consists of nearly 253 acres of land south of Highway 532 that is currently behind a perimeter dike. The 90-acres zis a ba site, also shielded by dikes along the shoreline, is located just upstream of Leque Island and is owned by Stillaguamish Tribes. The proposed actions consider the removal or modification of perimeter dikes at both locations to allow estuarine functions to be restored. The overall objective of the proposed projects is to remove the dike barriers to 1) provide connectivity and access between the tidal river channel and the restoration site for use by juvenile migrating salmon and 2) create a self-sustaining tidal marsh habitat. Ducks Unlimited engaged Pacific Northwest National Laboratory (PNNL) to develop a three-dimensional hydrodynamic model of the Port Susan Bay, Skagit Bay, and the interconnecting Leque Island region for use in support of the feasibility assessment for the Leque Island and zis a ba restoration projects. The objective of this modeling-based feasibility assessment is to evaluate the performance of proposed restoration actions in terms of achieving habitat goals while assessing the potential hydraulic and sediment transport impacts to the site and surrounding parcels of land.
The Assesement of Rip Current at Kerachut Beach Using Hydrodynamic Modelling
NASA Astrophysics Data System (ADS)
Azhary, W. A. H. W.; Awang, N. A.; Hamid, M. R. A.
2016-07-01
KerachutBeach is a beautiful beach in Penang National Park (PNP). However this beach is categorisedas one of dangerous beach for swimming activities in Malaysia due to the drowning incidents reported almost every year. The steep beach slope and rip current were among the factors that lead to this incident. Using bathymetry profile, current, tidal and sediment data collected at site incorporated with UKMO wave data analysis,the hydrodynamic pattern was simulated using Mike 21 modelling software. Result from the model showed the evidence of rip current existence along the coastline. It showed that this rip current eventsoccurred during spring tide phase when the flow change from Flood to Ebb. During this period, the current tend to move parallel to the shoreline with maximum speed of 0.3m/s which is capable to swipe away a swimmer. The bathymetry profile at Kerachutis very steep and dangerous to swimmers since there is a 4 meter sudden plunge just meters away from the shoreline.
NASA Astrophysics Data System (ADS)
Meselhe, Ehab A.; Georgiou, Ioannis; Allison, Mead A.; McCorquodale, John A.
2012-11-01
SummaryThe Mississippi River Delta of south Louisiana USA is a highly engineered system with extensive levees, flood control, and diversion structures. This region is experiencing a high rate of coastal wetland loss. Solutions to divert or re-direct a portion of the River's sediment to benefit wetlands and reduce coastal land-loss are considered. The question that must be answered, regarding the impact and feasibility of sediment diversions is: What is the sediment-water ratio at a diversion? To help answer this question a numerical model of hydrodynamics and sediment transport supported by extensive field data is used to analyze a proposed sediment diversion near Myrtle Grove, Louisiana. This location is at a River Kilometer 90 above the Head of Passes - exit of the Mississippi River to the Gulf of Mexico. The numerical model showed that the location of the diversion, the size and the alignment of the diversion channel are critical parameters affecting the sediment-water ratio captured by the diversion. The analysis shows that locating the intake near a lateral sandbar increases the sediment-water ratio in the diversion. Further, the analysis shows that a larger diversion channel with a favorable alignment orientation to the flow direction in the river results in higher sediment-water ratio.
HYDRODYNAMIC MODELS OF RADIO GALAXY MORPHOLOGY: WINGED AND X-SHAPED SOURCES
Hodges-Kluck, Edmund J.; Reynolds, Christopher S.
2011-05-20
We present three-dimensional hydrodynamic models of radio galaxies interacting with initially relaxed hot atmospheres and explore the significant off-axis radio lobe structures that result under certain conditions. With a focus on the 'winged' and 'X-shaped' radio galaxy population, we confirm the importance of observed trends such as the connection of wing formation with jets co-aligned with the major axis of the surrounding atmosphere. These wings are formed substantially by the deflection of lobe plasma flowing back from the hot spots (backflow) and develop in two stages: supersonic expansion of an overpressured cocoon at early times followed by buoyant expansion at later times. We explore a limited parameter space of jet and atmosphere properties and find that the most prominent wings are produced when a decaying jet is injected into a small, dense, highly elliptical atmosphere. On the basis of this search, we argue that the deflection of backflow by gradients in the hot atmosphere is a strong candidate for forming observed wings but must work in tandem with some other mechanism for forming the initial wing channels. Our models indicate that lobe interaction with the hot atmosphere may play a dominant role in shaping the morphology of radio galaxies.
Ramshaw, J D
2000-10-01
A simple model was recently described for predicting the time evolution of the width of the mixing layer at an unstable fluid interface [J. D. Ramshaw, Phys. Rev. E 58, 5834 (1998); ibid. 61, 5339 (2000)]. The ordinary differential equations of this model have been heuristically generalized into partial differential equations suitable for implementation in multicomponent hydrodynamics codes. The central ingredient in this generalization is a nun-diffusional expression for the species mass fluxes. These fluxes describe the relative motion of the species, and thereby determine the local mixing rate and spatial distribution of mixed fluid as a function of time. The generalized model has been implemented in a two-dimensional hydrodynamics code. The model equations and implementation procedure are summarized, and comparisons with experimental mixing data are presented.
DYNA2D96. Explicit 2-D Hydrodynamic FEM Program
Whirley, R.G.
1992-04-01
DYNA2D is a vectorized, explicit, two-dimensional, axisymmetric and plane strain finite element program for analyzing the large deformation dynamic and hydrodynamic response of inelastic solids. DYNA2D contains 13 material models and 9 equations of state (EOS) to cover a wide range of material behavior. The material models implemented in all machine versions are: elastic, orthotropic elastic, kinematic/isotropic elastic plasticity, thermoelastoplastic, soil and crushable foam, linear viscoelastic, rubber, high explosive burn, isotropic elastic-plastic, temperature-dependent elastic-plastic. The isotropic and temperature-dependent elastic-plastic models determine only the deviatoric stresses. Pressure is determined by one of 9 equations of state including linear polynomial, JWL high explosive, Sack Tuesday high explosive, Gruneisen, ratio of polynomials, linear polynomial with energy deposition, ignition and growth of reaction in HE, tabulated compaction, and tabulated.
Ganju, Neil Kamal; Sherwood, Christopher R.
2010-01-01
A variety of algorithms are available for parameterizing the hydrodynamic bottom roughness associated with grain size, saltation, bedforms, and wave–current interaction in coastal ocean models. These parameterizations give rise to spatially and temporally variable bottom-drag coefficients that ostensibly provide better representations of physical processes than uniform and constant coefficients. However, few studies have been performed to determine whether improved representation of these variable bottom roughness components translates into measurable improvements in model skill. We test the hypothesis that improved representation of variable bottom roughness improves performance with respect to near-bed circulation, bottom stresses, or turbulence dissipation. The inner shelf south of Martha’s Vineyard, Massachusetts, is the site of sorted grain-size features which exhibit sharp alongshore variations in grain size and ripple geometry over gentle bathymetric relief; this area provides a suitable testing ground for roughness parameterizations. We first establish the skill of a nested regional model for currents, waves, stresses, and turbulent quantities using a uniform and constant roughness; we then gauge model skill with various parameterization of roughness, which account for the influence of the wave-boundary layer, grain size, saltation, and rippled bedforms. We find that commonly used representations of ripple-induced roughness, when combined with a wave–current interaction routine, do not significantly improve skill for circulation, and significantly decrease skill with respect to stresses and turbulence dissipation. Ripple orientation with respect to dominant currents and ripple shape may be responsible for complicating a straightforward estimate of the roughness contribution from ripples. In addition, sediment-induced stratification may be responsible for lower stresses than predicted by the wave–current interaction model.
Thermal-hydrodynamic-chemical (THC) modeling based on geothermal field data
Kiryukhin, Alexey; Xu, Tianfu; Pruess, Karsten; Apps, John; Slovtsov, Igor
2002-01-01
Data on fluid chemistry and rock mineralogy are evaluated for a number of geothermal fields located in the volcanic arc of Japan and Kamchatka, Russia, Common chemical characteristics are identified and used to define scenarios for detailed numerical modeling of coupled thermal hydrodynamic chemical (THC) processes. The following scenarios of parental geothermal fluid upflow were studied: (1) single-phase conditions, 260 C at the bottom ( Ogiri type); (2) two-phase conditions, 300 C at the bottom ( Hatchobaru type); and (3) heat pipe conditions, 260 C at the bottom ( Matsukawa type). THC modeling for the single-phase upflow scenario shows wairakite, quartz, K-feld spar and chlorite formed as the principal secondary minerals in the production zone, and illite-smectite formed below 230 C. THC modeling of the two-phase upflow shows that quartz, K-feldspar (microcline), wairakite and calcite precipitate in the model as principal secondary minerals in the production zone. THC modeling of heat pipe conditions shows no significant secondary deposition of minerals (quartz, K-feldspar, zeolites) in the production zone. The influence of thermodynamic and kinetic parameters of chemical interaction, and of mass fluxes on mineral phase changes, was found to be significant, depending on the upflow regime. It was found that no parental geothermal fluid inflow is needed for zeolite precipitation, which occurs above 140 C in saturated andesite, provided that the porosity is greater than 0.001. In contrast, quartz and K-feldspar precipitation may result in a significant porosity reduction over a hundred-year time scale under mass flux conditions, and complete fracture sealing will occur given sufficient time under either single-phase or two-phase upflow scenarios. A heat pipe scenario shows no significant porosity reduction due to lack of secondary mineral phase deposition.
NASA Astrophysics Data System (ADS)
Bever, A. J.; MacWilliams, M.
2012-12-01
Under the conceptual model of sediment transport in San Pablo Bay, a sub-embayment of San Francisco Bay, proposed by Krone (1979), sediment typically enters San Pablo Bay during large winter and spring flows and is redistributed during summer conditions through wind wave resuspension and transport by tidal currents. A detailed understanding of how the waves and tides redistribute sediment within San Francisco Bay is critical for predicting how future sea level rise and a reduction in the sediment supply to the Bay will impact existing marsh and mudflat habitat, tidal marsh restoration projects, and ongoing maintenance dredging of the navigation channels. The three-dimensional UnTRIM San Francisco Bay-Delta Model was coupled with the Simulating WAves Nearshore (SWAN) wave model and the SediMorph morphological model, to develop a three-dimensional hydrodynamic, wind wave, and sediment transport model of the San Francisco Bay and the Sacramento-San Joaquin Delta. Numerical simulations of sediment resuspension due to tidal currents and wind waves and the subsequent transport of this sediment by tidal currents are used to quantify the spatial and temporal variability of sediment fluxes on the extensive shoals in San Pablo Bay under a range of tidal and wind conditions. The results demonstrate that suspended sediment concentration and sediment fluxes within San Pablo Bay are a complex product of tides and waves interacting spatially throughout the Bay, with concentrations responding to local resuspension and sediment advection. Sediment fluxes between the San Pablo Bay shoals and the deeper channel are highest during spring tides, and are elevated for up to a week following wave events, even though the greatest influence of the wave event occurs abruptly.
Hydrodynamics in the Gulf of Aigues-Mortes, NW Mediterranean Sea: In situ and modelling data
NASA Astrophysics Data System (ADS)
Leredde, Yann; Denamiel, Cléa; Brambilla, Elena; Lauer-Leredde, Christine; Bouchette, Frédéric; Marsaleix, Patrick
2007-11-01
The Gulf of Aigues-Mortes (NW Mediterranean Sea) is a midshelf zone whose scale is an intermediate between the nearshore scale (0-10 m depth) and the coastal scale (including the whole continental shelf). Its hydrodynamics is investigated for the first time. ADCP, CTD and thermosalinograph data were collected during three short cruises (HYGAM; March 6-7, 20-21, April 5-6, 2005). They were scheduled approximately every 15 days to sample the gulf circulation under different weather conditions. Moreover, the cruise data were used to validate the Symphonie model, a 3D primitive equations circulation model. The circulation features displayed by in situ data were well reproduced by Symphonie. A downscaling modelling approach was implemented, the largest scale being obtained by the replay of the MFSTEP regional model of the North-Western Mediterranean Sea. The analysis, closely coupling in situ measurements and model results, provides information that would not have been obtained using data separately. The great variability of the oceanic circulation at this scale is well evidenced. Winds are the main forces, not only locally but also at a larger scale. North winds generate coherent structures interacting with the general Mediterranean circulation. The explanation of the induced currents is then not straightforward, some of them being, for example, northward. South and southeast winds reinforce the sloping surface, the latter allowing the geostrophic equilibrium with longshore currents. This study, focused on the end of winter 2004-2005, also enhances the heat fluxes from offshore to nearshore, as well as the initiation of shelf dense waters. The knowledge of the midshelf oceanic circulation is then applied to run a numerical experiment which describes both the dispersion of a fictive contaminant from a point S (at the centre of the GAM), and evaluates the risk of contamination of the beaches along the GAM shores.
NASA Astrophysics Data System (ADS)
Benjankar, R. M.; Sohrabi, M.; Tonina, D.; McKean, J. A.
2013-12-01
Aquatic habitat models utilize flow variables which may be predicted with one-dimensional (1D) or two-dimensional (2D) hydrodynamic models to simulate aquatic habitat quality. Studies focusing on the effects of hydrodynamic model dimensionality on predicted aquatic habitat quality are limited. Here we present the analysis of the impact of flow variables predicted with 1D and 2D hydrodynamic models on simulated spatial distribution of habitat quality and Weighted Usable Area (WUA) for fall-spawning Chinook salmon. Our study focuses on three river systems located in central Idaho (USA), which are a straight and pool-riffle reach (South Fork Boise River), small pool-riffle sinuous streams in a large meadow (Bear Valley Creek) and a steep-confined plane-bed stream with occasional deep forced pools (Deadwood River). We consider low and high flows in simple and complex morphologic reaches. Results show that 1D and 2D modeling approaches have effects on both the spatial distribution of the habitat and WUA for both discharge scenarios, but we did not find noticeable differences between complex and simple reaches. In general, the differences in WUA were small, but depended on stream type. Nevertheless, spatially distributed habitat quality difference is considerable in all streams. The steep-confined plane bed stream had larger differences between aquatic habitat quality defined with 1D and 2D flow models compared to results for streams with well defined macro-topographies, such as pool-riffle bed forms. KEY WORDS: one- and two-dimensional hydrodynamic models, habitat modeling, weighted usable area (WUA), hydraulic habitat suitability, high and low discharges, simple and complex reaches
NASA Astrophysics Data System (ADS)
Guoyu, Li; Yejin, Zhang; Xiaojian, Li; Lilin, Tian
2010-10-01
Characteristics of a uni-traveling-carrier photodiode (UTC-PD) are investigated. A hydro-dynamic model is introduced which takes into account the electrons' velocity overshoot in the depletion region, which is a more accurate high speed device than using the normal drift—diffuse model. Based on previous results, two modified UTC-PDs are presented, and an optimized device is obtained, the bandwidth of which is more than twice that of the original.
Application of a three-dimensional hydrodynamic model to the Himmerfjärden, Baltic Sea
NASA Astrophysics Data System (ADS)
Sokolov, Alexander
2014-05-01
Himmerfjärden is a coastal fjord-like bay situated in the north-western part of the Baltic Sea. The fjord has a mean depth of 17 m and a maximum depth of 52 m. The water is brackish (6 psu) with small salinity fluctuation (±2 psu). A sewage treatment plant, which serves about 300 000 people, discharges into the inner part of Himmerfjärden. This area is the subject of a long-term monitoring program. We are planning to develop a publicly available modelling system for this area, which will perform short-term forecast predictions of pertinent parameters (e.g., water-levels, currents, salinity, temperature) and disseminate them to users. A key component of the system is a three-dimensional hydrodynamic model. The open source Delft3D Flow system (http://www.deltaressystems.com/hydro) has been applied to model the Himmerfjärden area. Two different curvilinear grids were used to approximate the modelling domain (25 km × 50 km × 60 m). One grid has low horizontal resolution (cell size varies from 250 to 450 m) to perform long-term numerical experiments (modelling period of several months), while another grid has higher resolution (cell size varies from 120 to 250 m) to model short-term situations. In vertical direction both z-level (50 layers) and sigma coordinate (20 layers) were used. Modelling results obtained with different horizontal resolution and vertical discretisation will be presented. This model will be a part of the operational system which provides automated integration of data streams from several information sources: meteorological forecast based on the HIRLAM model from the Finnish Meteorological Institute (https://en.ilmatieteenlaitos.fi/open-data), oceanographic forecast based on the HIROMB-BOOS Model developed within the Baltic community and provided by the MyOcean Project (http://www.myocean.eu), riverine discharge from the HYPE model provided by the Swedish Meteorological Hydrological Institute (http://vattenwebb.smhi.se/modelarea/).
Hydrodynamic outcomes of planet scattering in transitional discs
NASA Astrophysics Data System (ADS)
Moeckel, Nickolas; Armitage, Philip J.
2012-01-01
A significant fraction of unstable multiple planet systems are likely to scatter during the transitional disc phase as gas damping becomes ineffectual. Using a large ensemble of FARGO hydrodynamic simulations and MERCURY N-body integrations, we directly follow the dynamics of planet-disc and planet-planet interactions through the clearing phase and through 50 Myr of planetary system evolution. Disc clearing is assumed to occur as a result of X-ray-driven photoevaporation. We find that the hydrodynamic evolution of individual scattering systems is complex, and can involve phases in which massive planets orbit within eccentric gaps, or accrete directly from the disc without a gap. Comparing the results to a reference gas-free model, we find that the N-body dynamics and hydrodynamics of scattering into one- and two-planet final states are almost identical. The eccentricity distributions in these channels are almost unaltered by the presence of gas. The hydrodynamic simulations, however, also form a population of low-eccentricity three-planet systems in long-term stable configurations, which are not found in N-body runs. The admixture of these systems results in modestly lower eccentricities in hydrodynamic as opposed to gas-free simulations. The precise incidence of these three-planet systems is likely a function of the initial conditions; different planet set-ups (number or spacing) may change the quantitative character of this result. We analyse the properties of surviving multiple planet systems, and show that only a small fraction (a few per cent) enter mean motion resonances after scattering, while a larger fraction form stable resonant chains and avoid scattering entirely. Our results remain consistent with the hypothesis that exoplanet eccentricity results from scattering, though the detailed agreement between observations and gas-free simulation results is likely coincidental. We discuss the prospects for further tests of scattering models by observing planets
Smoothed particle hydrodynamics non-Newtonian model for ice-sheet and ice-shelf dynamics
Pan, W.; Tartakovsky, A. M.; Monaghan, J. J.
2013-06-01
Mathematical modeling of ice sheets is complicated by the non-linearity of the governing equations and boundary conditions. Standard grid-based methods require complex front tracking techniques and have limited capability to handle large material deformations and abrupt changes in bottom topography. As a consequence, numerical methods are usually restricted to shallow ice sheet and ice shelf approximations. We propose a new smoothed particle hydrodynamics (SPH) non-Newtonian model for coupled ice sheet and ice shelf dynamics. SPH, a fully Lagrangian particle method, is highly scalable and its Lagrangian nature and meshless discretization are well suited to the simulation of free surface flows, large material deformation, and material fragmentation. In this paper, SPH is used to study 3D ice sheet/ice shelf behavior, and the dynamics of the grounding line. The steady state position of the grounding line obtained from SPH simulations is in good agreement with laboratory observations for a wide range of simulated bedrock slopes, and density ratios, similar to those of ice and sea water. The numerical accuracy of the SPH algorithm is verif;ed by simulating Poiseuille flow, plane shear flow with free surface and the propagation of a blob of ice along a horizontal surface. In the laboratory experiment, the ice was represented with a viscous Newtonian fluid. In the present work, however, the ice is modeled as both viscous Newtonian fluid and non-Newtonian fluid, such that the effect of non-Newtonian rheology on the dynamics of grounding line was examined. The non-Newtonian constitutive relation is prescribed to be Glen’s law for the creep of polycrystalline ice. A V-shaped bedrock ramp is further introduced to model the real geometry of bedrock slope.
Hydrodynamics of the bank storage effect--An integrated tracer and modeling study
Hibbs, B.J.; Sharp, J.M. Jr. . Dept. of Geological Sciences)
1992-01-01
The hydrodynamics of the bank storage effect were studied in an integrated modeling and tracer investigation along the Lower Colorado River of Texas. Variations in dissolved solids between river water and ground water created ideal conditions for analysis of stream/ground-water interaction. Three sites were instrumented with observation-well and stream-stage recorders. At each site, head, temperature, and chemical data were collected during low-flow, high-flow, and flood-wave conditions. The authors observed that aquifer head responded relatively rapidly to changing stream stage, but tracer breakthrough curves were generally not observed even for wells very close to the Colorado River. The water-table response lagged behind the average head response in the observation wells. This is created by an elastic response in the shallow, unconfined aquifer to rapid changes in stream stage. In one case, a stratified salinity profile was observed in the alluvial wells prior to the flood peak. The authors infer that the lower salinity water in the upper portion of the thin aquifer was the result of recharge from unusually high winter precipitation. The salinity profile became first more uniformly saline and then less as the river water finally reached the well. They modeled aquifer responses with HST3D and, although this aquifer is clearly recognizable as an unconfined aquifer, the confined model gave a superior simulation. Both modeling and field data support the hypothesis of elastic head recovery response in the unconfined aquifer and demonstrate the need for caution in using alluvial response in the unconfined aquifer and demonstrate the need for caution in using alluvial responses to stream stage fluctuations to determine hydraulic diffusivity. Partial differential equations are presented which consider the elastic response.
This technical report describes the new one-dimensional (1D) hydrodynamic and sediment transport model EFDC1D. This model that can be applied to stream networks. The model code and two sample data sets are included on the distribution CD. EFDC1D can simulate bi-directional unstea...
Lindfors, Lennart; Jonsson, Malin; Weibull, Emelie; Brasseur, James G; Abrahamsson, Bertil
2015-09-01
The aim of this study was to understand and predict the influence of hydrodynamic effects in the small intestine on dissolution of primary and aggregated drug particles. Dissolution tests of suspensions with a low-solubility drug, felodipine, were performed in a Couette cell under hydrodynamic test conditions corresponding to the fed small intestine. Dissolution was also performed in the USP II apparatus at two paddle speeds of 25 and 200 rpm and at different surfactant concentrations below critical micelle concentration. The experimental dissolution rates were compared with theoretical calculations. The different levels of shear stress in the in vitro tests did not influence the dissolution of primary or aggregated particles and experimental dissolution rates corresponded very well to calculations. The dissolution rate for the aggregated drug particles increased after addition of surfactant because of deaggregation, but there were still no effect of hydrodynamics. In conclusion, hydrodynamics do not influence dissolution and deaggregation of micronized drug particles in the small intestine of this model drug. Surface tension has a strong effect on the deaggregation and subsequent dissolution. Addition of surfactants at in vivo relevant surface tension levels is thus critical for in vivo predictive in vitro dissolution testing. PMID:25980801
Lindfors, Lennart; Jonsson, Malin; Weibull, Emelie; Brasseur, James G; Abrahamsson, Bertil
2015-09-01
The aim of this study was to understand and predict the influence of hydrodynamic effects in the small intestine on dissolution of primary and aggregated drug particles. Dissolution tests of suspensions with a low-solubility drug, felodipine, were performed in a Couette cell under hydrodynamic test conditions corresponding to the fed small intestine. Dissolution was also performed in the USP II apparatus at two paddle speeds of 25 and 200 rpm and at different surfactant concentrations below critical micelle concentration. The experimental dissolution rates were compared with theoretical calculations. The different levels of shear stress in the in vitro tests did not influence the dissolution of primary or aggregated particles and experimental dissolution rates corresponded very well to calculations. The dissolution rate for the aggregated drug particles increased after addition of surfactant because of deaggregation, but there were still no effect of hydrodynamics. In conclusion, hydrodynamics do not influence dissolution and deaggregation of micronized drug particles in the small intestine of this model drug. Surface tension has a strong effect on the deaggregation and subsequent dissolution. Addition of surfactants at in vivo relevant surface tension levels is thus critical for in vivo predictive in vitro dissolution testing.
NASA Astrophysics Data System (ADS)
Schubert, J.; Sanders, B. F.; Andreadis, K.
2013-12-01
The Surface Water and Ocean Topography (SWOT) mission, currently under study by NASA (National Aeronautics and Space Administration) and CNES (Centre National d'Etudes Spatiales), is designed to provide global spatial measurements of surface water properties at resolutions better than 10 m and with centimetric accuracy. The data produced by SWOT will include irregularly spaced point clouds of the water surface height, with point spacings from roughly 2-50 m depending on a point's location within SWOT's swath. This could offer unprecedented insight into the spatial structure of rivers. Features that may be resolved include backwater profiles behind dams, drawdown profiles, uniform flow sections, critical flow sections, and even riffle-pool flow structures. In the event that SWOT scans a river during a major flood, it becomes possible to delineate the limits of the flood as well as the spatial structure of the water surface elevation, yielding insight into the dynamic interaction of channels and flood plains. The Platte River in Nebraska, USA, is a braided river with a width and slope of approximately 100 m and 100 cm/km, respectively. A 1 m resolution Digital Terrain Model (DTM) of the river basin, based on airborne lidar collected during low-flow conditions, was used to parameterize a two-dimensional, variable resolution, unstructured grid, hydrodynamic model that uses 3 m resolution triangles in low flow channels and 10 m resolution triangles in the floodplain. Use of a fine resolution mesh guarantees that local variability in topography is resolved, and after applying the hydrodynamic model, the effects of topographic variability are expressed as variability in the water surface height, depth-averaged velocity and flow depth. Flow is modeled over a reach length of 10 km for multi-day durations to capture both frequent (diurnal variations associated with regulated flow) and infrequent (extreme flooding) flow phenomena. Model outputs reveal a number of interesting
Korotkin, Ivan; Karabasov, Sergey; Nerukh, Dmitry; Markesteijn, Anton; Scukins, Arturs; Farafonov, Vladimir; Pavlov, Evgen
2015-07-01
A new 3D implementation of a hybrid model based on the analogy with two-phase hydrodynamics has been developed for the simulation of liquids at microscale. The idea of the method is to smoothly combine the atomistic description in the molecular dynamics zone with the Landau-Lifshitz fluctuating hydrodynamics representation in the rest of the system in the framework of macroscopic conservation laws through the use of a single "zoom-in" user-defined function s that has the meaning of a partial concentration in the two-phase analogy model. In comparison with our previous works, the implementation has been extended to full 3D simulations for a range of atomistic models in GROMACS from argon to water in equilibrium conditions with a constant or a spatially variable function s. Preliminary results of simulating the diffusion of a small peptide in water are also reported.
Korotkin, Ivan Karabasov, Sergey; Markesteijn, Anton; Nerukh, Dmitry; Scukins, Arturs; Farafonov, Vladimir; Pavlov, Evgen
2015-07-07
A new 3D implementation of a hybrid model based on the analogy with two-phase hydrodynamics has been developed for the simulation of liquids at microscale. The idea of the method is to smoothly combine the atomistic description in the molecular dynamics zone with the Landau-Lifshitz fluctuating hydrodynamics representation in the rest of the system in the framework of macroscopic conservation laws through the use of a single “zoom-in” user-defined function s that has the meaning of a partial concentration in the two-phase analogy model. In comparison with our previous works, the implementation has been extended to full 3D simulations for a range of atomistic models in GROMACS from argon to water in equilibrium conditions with a constant or a spatially variable function s. Preliminary results of simulating the diffusion of a small peptide in water are also reported.
Korotkin, Ivan; Karabasov, Sergey; Nerukh, Dmitry; Markesteijn, Anton; Scukins, Arturs; Farafonov, Vladimir; Pavlov, Evgen
2015-07-01
A new 3D implementation of a hybrid model based on the analogy with two-phase hydrodynamics has been developed for the simulation of liquids at microscale. The idea of the method is to smoothly combine the atomistic description in the molecular dynamics zone with the Landau-Lifshitz fluctuating hydrodynamics representation in the rest of the system in the framework of macroscopic conservation laws through the use of a single "zoom-in" user-defined function s that has the meaning of a partial concentration in the two-phase analogy model. In comparison with our previous works, the implementation has been extended to full 3D simulations for a range of atomistic models in GROMACS from argon to water in equilibrium conditions with a constant or a spatially variable function s. Preliminary results of simulating the diffusion of a small peptide in water are also reported. PMID:26156468
NASA Astrophysics Data System (ADS)
Dong, Tianyu; Shi, Yi; Lu, Lizhen; Chen, Feng; Ma, Xikui; Mittra, Raj
2016-09-01
In this work, we generalize the cascading scattering matrix algorithm for calculating the optical response of concentric multilayered structures comprised of either plasmonic metal or dielectric, within the framework of hydrodynamic convection-diffusion model of electrodynamics. Two additional boundary conditions, namely, the continuity of first order pressure of free electron density and the continuity of normal components of free charge velocity, respectively, are adopted in order to handle the behaviour at interfaces involving metals. Scattering matrices at interfaces can be readily obtained and cascaded to obtain the modal coefficients in each layer by expanding electromagnetic waves in harmonic modes with cylindrical vector wave functions. We have validated the proposed method by analyzing the optical responses of several configurations of nanostructures, including a bi-metallic nanocylinder and a hyperlens. We found that nonlocal effects can be important for small structures, when the characteristic size is comparable to the Fermi wavelength. The proposed method shows its capability and flexibility to solve hybrid metal-dielectric multilayer structures even when the number of layers is large. Although we have discussed our method in the context of the retarded radiation regime, it can be applied in quasi-static scenarios without any difficulties. Furthermore, it may be extended to solve similar problems in other areas of physics, such as acoustics.
A generalized hydrodynamic model for acoustic mode stability in viscoelastic plasma fluid
NASA Astrophysics Data System (ADS)
Borah, B.; Haloi, A.; Karmakar, P. K.
2016-05-01
In this paper a generalized hydrodynamic (GH) model to investigate acoustic-mode excitation and stability in simplified strongly coupled bi-component plasma is proposed. The goal is centered in seeing the viscoelasticity-influences on the instability properties. The dispersive and nondispersive features are methodologically explored followed by numerical illustrations. It is seen that, unlike usual plasma acoustic mode, here the mode stability is drastically modified due to the considered viscoelastic effects contributed from both the electronic and ionic fluids. For example, it is found that there exists an excitation threshold value on angular wavenumber, K ≈3 in the K-space on the Debye scale, beyond which only dispersive characteristic features prevail. Further, it is demonstrated that the viscoelastic relaxation time plays a stabilizing influential role on the wave dynamics. In contrast, it is just opposite for the effective viscoelastic relaxation effect. Consistency with the usual viscoelasticity-free situations, with and without plasma approximation taken into account, is also established and explained. It is identified and conjectured that the plasma fluid viscoelasticity acts as unavoidable dispersive agency in attributing several new characteristics to acoustic wave excitation and propagation. The analysis is also exploited to derive a quantitative glimpse on the various basic properties and dimensionless numbers of the viscoelastic plasma. Finally, extended implications of our results tentative to different cosmic, space and astrophysical situations, amid the entailed facts and faults, are highlighted together with indicated future directions.
Numerical Modeling of Imploding Plasma liners Using the 1D Radiation-Hydrodynamics Code HELIOS
NASA Astrophysics Data System (ADS)
Davis, J. S.; Hanna, D. S.; Awe, T. J.; Hsu, S. C.; Stanic, M.; Cassibry, J. T.; Macfarlane, J. J.
2010-11-01
The Plasma Liner Experiment (PLX) is attempting to form imploding plasma liners to reach 0.1 Mbar upon stagnation, via 30--60 spherically convergent plasma jets. PLX is partly motivated by the desire to develop a standoff driver for magneto-inertial fusion. The liner density, atomic makeup, and implosion velocity will help determine the maximum pressure that can be achieved. This work focuses on exploring the effects of atomic physics and radiation on the 1D liner implosion and stagnation dynamics. For this reason, we are using Prism Computational Science's 1D Lagrangian rad-hydro code HELIOS, which has both equation of state (EOS) table-lookup and detailed configuration accounting (DCA) atomic physics modeling. By comparing a series of PLX-relevant cases proceeding from ideal gas, to EOS tables, to DCA treatments, we aim to identify how and when atomic physics effects are important for determining the peak achievable stagnation pressures. In addition, we present verification test results as well as brief comparisons to results obtained with RAVEN (1D radiation-MHD) and SPHC (smoothed particle hydrodynamics).
Coupling hydrodynamic models and value of information for designing stage monitoring networks
NASA Astrophysics Data System (ADS)
Alfonso, Leonardo; Price, Roland
2012-08-01
Because the collection of data in water systems is important for making informed decisions, monitoring networks are designed and installed in such systems. Traditionally, the design of hydrometric monitoring networks has been concentrated on measuring streamflow/precipitation at particular key (gauged) sites so that streamflow/precipitation can be estimated accurately at ungauged sites. Although many methods take into account a set of final users of the information, there appears to be no method that explicitly considers them in the mathematical formulation of the decision-making process. This paper presents a novel approach for designing monitoring networks in a water system using the concept of value of information (VOI). This concept takes into account three main factors: (1) the belief that the decision maker has about the state of the water system before having any information; (2) the consequences associated with the decision of having to choose among several possible management actions given the state of the water system; and (3) the evaluation and update of new information when it becomes available. The methodology uses a water level time series generated by a hydrodynamic model at every computational point, each one being a potential monitor site. The method is tested in a polder system in the Netherlands, where monitoring is required to make informed decisions about the operation of a set of hydraulic structures to reduce flood impacts.
Hydrodynamical simulations of coupled and uncoupled quintessence models - II. Galaxy clusters
NASA Astrophysics Data System (ADS)
Carlesi, Edoardo; Knebe, Alexander; Lewis, Geraint F.; Yepes, Gustavo
2014-04-01
We study the z = 0 properties of clusters (and large groups) of galaxies within the context of interacting and non-interacting quintessence cosmological models, using a series of adiabatic SPH simulations. Initially, we examine the average properties of groups and clusters, quantifying their differences in ΛCold Dark Matter (ΛCDM), uncoupled Dark Energy (uDE) and coupled Dark Energy (cDE) cosmologies. In particular, we focus upon radial profiles of the gas density, temperature and pressure, and we also investigate how the standard hydrodynamic equilibrium hypothesis holds in quintessence cosmologies. While we are able to confirm previous results about the distribution of baryons, we also find that the main discrepancy (with differences up to 20 per cent) can be seen in cluster pressure profiles. We then switch attention to individual structures, mapping each halo in quintessence cosmology to its ΛCDM counterpart. We are able to identify a series of small correlations between the coupling in the dark sector and halo spin, triaxiality and virialization ratio. When looking at spin and virialization of dark matter haloes, we find a weak (5 per cent) but systematic deviation in fifth force scenarios from ΛCDM.
Anderson, R W; Pember, R B; Elliot, N S
2000-09-26
A new method for the solution of the unsteady Euler equations has been developed. The method combines staggered grid Lagrangian techniques with structured local adaptive mesh refinement (AMR). This method is a precursor to a more general adaptive arbitrary Lagrangian Eulerian (ALE-AMR) algorithm under development, which will facilitate the solution of problems currently at and beyond the boundary of soluble problems by traditional ALE methods by focusing computational resources where they are required. Many of the core issues involved in the development of the ALE-AMR method hinge upon the integration of AMR with a Lagrange step, which is the focus of the work described here. The novel components of the method are mainly driven by the need to reconcile traditional AMR techniques, which are typically employed on stationary meshes with cell-centered quantities, with the staggered grids and grid motion employed by Lagrangian methods. These new algorithmic components are first developed in one dimension and are then generalized to two dimensions. Solutions of several model problems involving shock hydrodynamics are presented and discussed.
NASA Astrophysics Data System (ADS)
Min, M.; Dullemond, C. P.; Kama, M.; Dominik, C.
2011-03-01
The precise location of the water ice condensation front (‘snow line’) in the protosolar nebula has been a debate for a long time. Its importance stems from the expected substantial jump in the abundance of solids beyond the snow line, which is conducive to planet formation, and from the higher ‘stickiness’ in collisions of ice-coated dust grains, which may help the process of coagulation of dust and the formation of planetesimals. In an optically thin nebula, the location of the snow line is easily calculated to be around 3 AU, subject to brightness variations of the young Sun. However, in its first 5-10 myr, the solar nebula was optically thick, implying a smaller snowline radius due to shielding from direct sunlight, but also a larger radius because of viscous heating. Several models have attempted to treat these opposing effects. However, until recently treatments beyond an approximate 1 + 1D radiative transfer were unfeasible. We revisit the problem with a fully self-consistent 3D treatment in an axisymmetric disk model, including a density-dependent treatment of the dust and ice sublimation. We find that the location of the snow line is very sensitive to the opacities of the dust grains and the mass accretion rate of the disk. We show that previous approximate treatments are quite efficient at determining the location of the snow line if the energy budget is locally dominated by viscous accretion. Using this result we derive an analytic estimate of the location of the snow line that compares very well with results from this and previous studies. Using solar abundances of the elements we compute the abundance of dust and ice and find that the expected jump in solid surface density at the snow line is smaller than previously assumed. We further show that in the inner few AU the refractory species are also partly evaporated, leading to a significantly smaller solid state surface density in the regions where the rocky planets were formed.
Fluctuations in relativistic causal hydrodynamics
NASA Astrophysics Data System (ADS)
Kumar, Avdhesh; Bhatt, Jitesh R.; Mishra, Ananta P.
2014-05-01
Formalism to calculate the hydrodynamic fluctuations by applying the Onsager theory to the relativistic Navier-Stokes equation is already known. In this work, we calculate hydrodynamic fluctuations within the framework of the second order hydrodynamics of Müller, Israel and Stewart and its generalization to the third order. We have also calculated the fluctuations for several other causal hydrodynamical equations. We show that the form for the Onsager-coefficients and form of the correlation functions remain the same as those obtained by the relativistic Navier-Stokes equation and do not depend on any specific model of hydrodynamics. Further we numerically investigate evolution of the correlation function using the one dimensional boost-invariant (Bjorken) flow. We compare the correlation functions obtained using the causal hydrodynamics with the correlation function for the relativistic Navier-Stokes equation. We find that the qualitative behavior of the correlation functions remains the same for all the models of the causal hydrodynamics.
NASA Astrophysics Data System (ADS)
Cianflone, S.; Lakhian, V.; Dickson, S. E.
2013-12-01
Approximately 35% of Canadians and Americans utilize groundwater for drinking water and as such, it is essential to understand the mechanisms which may jeopardize this resource. Porous media aquifers typically provide significant removal of particulate contaminants (eg. viruses, bacteria); however, fractures in fractured rock aquifers and aquitards often provide pathways for particles to move in greater numbers and speed than in porous media. Thus, understanding flow and transport in fractures is important for the preservation and use of groundwater sources. Models based on coupling flow and transport equations can be used in understanding transport in fractures. Both experiments and simulations have shown that there are inconsistencies in current transport, attachment and detachment theory, particularly when particle size is varied. The assumption that hydrodynamic effects do not significantly affect transport of particles is likely untrue. As well, it has been shown that preferential flow paths occur in fractures, but the effects of path specific properties such as fracture geometry have yet to be thoroughly explored. It has been observed that eddies caused by local changes in geometry exist in fractures in the environment and models have demonstrated that such eddies will retard the flow of particles. In this work, two 2D fractures were randomly generated with a mean aperture of approximately 2mm. Finite element software, COMSOL Multiphysics, generated flow fields through the fractures by numerically solving the steady-state Navier-Stokes equation for varied flow rates. Eddies were observed in one of the fractures at both low (~1 m/day) and high (>100 m/day) velocities. A program was written using random walk particle tracking to simulate transport. Theories of attachment, detachment and matrix flow are not included in this model in order to isolate hydrodynamic forces. In combination with the modelling procedure, the two fractures were inscribed into pieces of
NASA Astrophysics Data System (ADS)
Anaya, A. A.; Padilla, I. Y.
2013-12-01
High productivity of karst groundwater systems is often associated with conduit flow and high matrix permeability. Spatial heterogeneities and anisotropy, among others factors, result in highly complex flow patterns in these systems. The same characteristics that make these aquifers very productive also make them highly vulnerable to contamination and a likely for contaminant exposure. The understanding of contamination fate and transport processes in these complex aquifers demand different statistical and numerical approaches, such as the Temporal Moment Analysis (TMA). TMA of solute breakthrough curves provide qualitative and quantitative results to characterize hydrodynamic variables that affect the release, mobility, persistence, and possible pathways of contaminants in karst groundwater systems. The general objective of this work is to characterize flow and transport processes in conduit and diffusion-dominated flow under low and high flow conditions using TMA in a karstified physical model. A multidimensional, laboratory-scale, Geo-Hydrobed model (GHM) containing a karstified limestone block collected from the karst aquifer formation of northern Puerto Rico are used for this purpose. Experimental work entails injecting dissolved CaCl2 and trichloroethene (TCE) in the upstream boundary of the GHM while monitoring their concentrations spatially and temporally in the limestone under different groundwater flow regimes. Results from the TMA show a highly heterogeneous system resulting in large preferential flow components and specific mass-transfer limitations zones especially in diffuse flow areas. Flow variables like velocity and Reynolds number indicates defined preferential flow paths increasing spatially as flow rate increase. TMA results show to be qualitatively consistent with a previous statistical novel approach developed using mixed models. Comparison between the dissolved CaCl2 tracer and TCE show implications for reactive contaminants in the karst
NASA Astrophysics Data System (ADS)
Marques, Wilson, Jr.; Jacinta Soares, Ana; Pandolfi Bianchi, Miriam; Kremer, Gilberto M.
2015-06-01
A shock wave structure problem, like the one which can be formulated for the planar detonation wave, is analyzed here for a binary mixture of ideal gases undergoing the symmetric reaction {{A}1}+{{A}1}\\rightleftharpoons {{A}2}+{{A}2}. The problem is studied at the hydrodynamic Euler limit of a kinetic model of the reactive Boltzmann equation. The chemical rate law is deduced in this frame with a second-order reaction rate, in a chemical regime such that the gas flow is not far away from the chemical equilibrium. The caloric and the thermal equations of state for the specific internal energy and temperature are employed to close the system of balance laws. With respect to other approaches known in the kinetic literature for detonation problems with a reversible reaction, this paper aims to improve some aspects of the wave solution. Within the mathematical analysis of the detonation model, the equation of the equilibrium Hugoniot curve of the final states is explicitly derived for the first time and used to define the correct location of the equilibrium Chapman-Jouguet point in the Hugoniot diagram. The parametric space is widened to investigate the response of the detonation solution to the activation energy of the chemical reaction. Finally, the mathematical formulation of the linear stability problem is given for the wave detonation structure via a normal-mode approach, when bidimensional disturbances perturb the steady solution. The stability equations with their boundary conditions and the radiation condition of the considered model are explicitly derived for small transversal deviations of the shock wave location. The paper shows how a second-order chemical kinetics description, derived at the microscopic level, and an analytic deduction of the equilibrium Hugoniot curve, lead to an accurate picture of the steady detonation with reversible reaction, as well as to a proper bidimensional linear stability analysis.
Shapiro, A. )
1992-12-01
Vertically sheared airflow over semi-infinite barriers is investigated with a simple hydrodynamical model. The idealized flow is steady, two-dimensional, neutrally buoyant, and inviscid, bounded on the bottom by a semi-infinite impermeable barrier and on the top by a rigid tropopause lid. With attention further restricted to an exponentially decreasing wind shear, the equations of motion (Euler's equations) reduce, without approximation, to a modified Poisson equation for a pseudo streamfunction and a formula for the Exner function. The free parameters characterizing the model's environment are the tropopause height, the density scale height, the wind speed at ground level, and the wind speed at tropopause level. Additional parameters characterize the barrier geometry. Exact solutions of the equations of motion are obtained for semi-infinite plateau barriers and for a barrier qualitatively resembling the shallow density current associated with some thunderstorm outflows. These solutions are noteworthy in that the reduction of a certain nondimensional shear parameter (through negative values) results in greater vertical parcel displacements over the barrier despite a corresponding reduction in the vertical velocity. This steepening tendency culminates in overturning motions associated with both upstream and down-stream steering levels. In this latter case the low-level inflow impinging on the barrier participates in a mixed jump and overturning updraft reminiscent of updrafts simulated in numerical convective models. Conversely, for large values of the nondimensional shear parameter, parcels undergo small vertical parcel displacements over the barrier despite large vertical velocities. This latter behavior may account for the finding that strong convergence along the leading edge of storm outflows does not always trigger deep convection even in unstable environments.
NASA Astrophysics Data System (ADS)
Casares, R.; Marino-Tapia, I.
2013-05-01
Coastal lagoons are subjected to physical forces that make them vulnerable to climate change and human intervention. The karstic geology along the coastal zone of Yucatan Peninsula, Mexico, forces groundwater to discharge in the sea and coastal lagoons through underground conduits that can form small but numerous and scattered underwater springs. These freshwater inputs, along with other physical forces like ocean tides and meteorological events, can have a significant effect on the circulation and residence times in coastal lagoons. Climate change consequences such as sea level rise and changing rain patterns, as well as the increasing human impact, can cause or aggravate certain environmental effects. Since coastal lagoons provide important environmental services there is a need to understand and have predictive capability to simulate the transport processes and the forces acting on them. The present study was carried out in the coastal lagoon of Celestun, located at NW Yucatan Peninsula, a region of karstic geology. The aim of this research is to understand the barotropic hydrodynamic functioning of this shallow system, taking into account the oceanographical, meteorological and hydrological forcing. Emphasis is made on the residence times in different parts of the lagoon, and the effects of freshwater inputs. For the detailed understanding of the processes the hydrodynamic numerical model DELFT3D was implemented. The model was validated with data gathered on the field during two intensive oceanographic campaigns, which included installation of CTDs and acoustic current meters at strategic sites distributed in the system, and detailed bathymetric measurements using an echosounder coupled with a differential GPS on board of a motorboat. In order to improve model performance a sensitivity analysis to the main variables involved in the model was carried out, among them: the size of the grid cells, grid depth, time step, friction coefficients, boundary conditions
CLASSIFICATION OF STELLAR ORBITS IN AXISYMMETRIC GALAXIES
Li, Baile; Holley-Bockelmann, Kelly; Khan, Fazeel Mahmood E-mail: k.holley@vanderbilt.edu
2015-09-20
It is known that two supermassive black holes (SMBHs) cannot merge in a spherical galaxy within a Hubble time; an emerging picture is that galaxy geometry, rotation, and large potential perturbations may usher the SMBH binary through the critical three-body scattering phase and ultimately drive the SMBH to coalesce. We explore the orbital content within an N-body model of a mildly flattened, non-rotating, SMBH-embedded elliptical galaxy. When used as the foundation for a study on the SMBH binary coalescence, the black holes bypassed the binary stalling often seen within spherical galaxies and merged on gigayear timescales. Using both frequency-mapping and angular momentum criteria, we identify a wealth of resonant orbits in the axisymmetric model, including saucers, that are absent from an otherwise identical spherical system and that can potentially interact with the binary. We quantified the set of orbits that could be scattered by the SMBH binary, and found that the axisymmetric model contained nearly six times the number of these potential loss cone orbits compared to our equivalent spherical model. In this flattened model, the mass of these orbits is more than three times that of the SMBH, which is consistent with what the SMBH binary needs to scatter to transition into the gravitational wave regime.
NASA Astrophysics Data System (ADS)
Canelas, Ricardo; Heleno, Sandra; Pestana, Rita; Ferreira, Rui M. L.
2014-05-01
The objective of the present work is to devise a methodology to validate 2DH shallow-water models suitable to simulate flow hydrodynamics and channel morphology. For this purpose, a 2DH mathematical model, assembled at CEHIDRO, IST, is employed to model Tagus river floods over a 70 km reach and Synthetic Aperture Radar (SAR) images are collected to retrieve planar inundation extents. The model is suited for highly unsteady discontinuous flows over complex, time-evolving geometries, employing a finite-volume discretization scheme, based on a flux-splitting technique incorporating a reviewed version of the Roe Riemann solver. Novel closure terms for the non-equilibrium sediment transport model are included. New boundary conditions are employed, based on the Riemann variables associated the outgoing characteristic fields, coping with the provided hydrographs in a mathematically coherent manner. A high resolution Digital Elevation Model (DEM) is used and levee structures are considered as fully erodible elements. Spatially heterogeneous roughness characteristics are derived from land-use databases such as CORINE LandCover 2006. SAR satellite imagery of the floods is available and is used to validate the simulation results, with particular emphasis on the 2000/2001 flood. The delimited areas from the satellite and simulations are superimposed. The quality of the adjustment depends on the calibration of roughness coefficients and the spatial discretization of with small structures, with lengths at the order of the spatial discretization. Flow depths and registered discharges are recovered from the simulation and compared with data from a measuring station in the domain, with the comparison revealing remarkably high accuracy, both in terms of amplitudes and phase. Further inclusion of topographical detail should improve the comparison of flood extents regarding satellite data. The validated model was then employed to simulate 100-year floods in the same reach. The
Wang, Hongqing; Meselhe, Ehab A.; Waldon, Michael G.; Harwell, Matthew C.; Chen, Chunfang
2012-01-01
The last remaining large remnant of softwater wetlands in the US Florida Everglades lies within the Arthur R. Marshall Loxahatchee National Wildlife Refuge. However, Refuge water quality today is impacted by pumped stormwater inflows to the eutrophic and mineral-enriched 100-km canal, which circumscribes the wetland. Optimal management is a challenge and requires scientifically based predictive tools to assess and forecast the impacts of water management on Refuge water quality. In this research, we developed a compartment-based numerical model of hydrodynamics and water quality for the Refuge. Using the numerical model, we examined the dynamics in stage, water depth, discharge from hydraulic structures along the canal, and exchange flow among canal and marsh compartments. We also investigated the transport of chloride, sulfate and total phosphorus from the canal to the marsh interior driven by hydraulic gradients as well as biological removal of sulfate and total phosphorus. The model was calibrated and validated using long-term stage and water quality data (1995-2007). Statistical analysis indicates that the model is capable of capturing the spatial (from canal to interior marsh) gradients of constituents across the Refuge. Simulations demonstrate that flow from the eutrophic and mineral-enriched canal impacts chloride and sulfate in the interior marsh. In contrast, total phosphorus in the interior marsh shows low sensitivity to intrusion and dispersive transport. We conducted a rainfall-driven scenario test in which the pumped inflow concentrations of chloride, sulfate and total phosphorus were equal to rainfall concentrations (wet deposition). This test shows that pumped inflow is the dominant factor responsible for the substantially increased chloride and sulfate concentrations in the interior marsh. Therefore, the present day Refuge should not be classified as solely a rainfall-driven or ombrotrophic wetland. The model provides an effective screening tool for
NASA Astrophysics Data System (ADS)
Chen, XinJian
2012-12-01
This paper presents an application of a three-dimensional unstructured Cartesian grid model (Chen, 2011) to a real-world case, namely the Crystal River/Kings Bay system located on the Gulf coast of the Florida peninsula of the United States. Crystal River/Kings Bay is a spring-fed estuarine system which is believed to be the largest natural refuge in the United States for manatees during the coldest days in winter because of the existence of a large amount of discharge out of numerous spring vents at the bottom of Kings Bay. The unstructured Cartesian grid model was used to simulate hydrodynamics, including salinity transport processes and thermodynamics, in the estuary during a 34-month period from April 2007 to February 2010. Although there are some unidentified uncertainties in quantifying flow rates from the spring vents and salinity variations in spring flows, simulated water elevations, salinities, temperatures, and cross-sectional flux all match well or very well with measured real-time field data. This suggests that the unstructured Cartesian grid model can adequately simulate hydrodynamics in a complex shallow water system such as Crystal River/Kings Bay and the numerical theory for the unstructured Cartesian grid model works properly. The successful simulation of hydrodynamics in the estuarine system also suggests that an empirical formula that relates the spring discharge with the water level in Kings Bay and the groundwater level measured in a nearby well is reasonable.
Applications of 3D hydrodynamic and particle tracking models in the San Francisco bay-delta estuary
Smith, P.E.; Donovan, J.M.; Wong, H.F.N.
2005-01-01
Three applications of three-dimensional hydrodynamic and particle-tracking models are currently underway by the United States Geological Survey in the San Francisco Bay-Delta Estuary. The first application is to the San Francisco Bay and a portion of the coastal ocean. The second application is to an important, gated control channel called the Delta Cross Channel, located within the northern portion of the Sacramento-San Joaquin River Delta. The third application is to a reach of the San Joaquin River near Stockton, California where a significant dissolved oxygen problem exists due, in part, to conditions associated with the deep-water ship channel for the Port of Stockton, California. This paper briefly discusses the hydrodynamic and particle tracking models being used and the three applications. Copyright ASCE 2005.
Zeng, Ming; Soric, Audrey; Roche, Nicolas
2013-09-01
In this study, total organic carbon (TOC) biodegradation was simulated by GPS-X software in biofilm reactors with carriers of plastic rings and glass beads under different hydraulic conditions. Hydrodynamic model by retention time distribution and biokinetic measurement by in-situ batch test served as two significant parts of model calibration. Experimental results showed that TOC removal efficiency was stable in both media due to the enough height of column, although the actual hydraulic volume changed during the variation of hydraulic condition. Simulated TOC removal efficiencies were close to experimental ones with low theil inequality coefficient values (below 0.15). Compared with glass beads, more TOC was removed in the filter with plastic rings due to the larger actual hydraulic volume and lower half saturation coefficient in spite of its lower maximum specific growth rate of biofilm, which highlighted the importance of calibrating hydrodynamic behavior and biokinetics.
Kordilla, Jannes; Pan, Wenxiao Tartakovsky, Alexandre
2014-12-14
We propose a novel smoothed particle hydrodynamics (SPH) discretization of the fully coupled Landau-Lifshitz-Navier-Stokes (LLNS) and stochastic advection-diffusion equations. The accuracy of the SPH solution of the LLNS equations is demonstrated by comparing the scaling of velocity variance and the self-diffusion coefficient with kinetic temperature and particle mass obtained from the SPH simulations and analytical solutions. The spatial covariance of pressure and velocity fluctuations is found to be in a good agreement with theoretical models. To validate the accuracy of the SPH method for coupled LLNS and advection-diffusion equations, we simulate the interface between two miscible fluids. We study formation of the so-called “giant fluctuations” of the front between light and heavy fluids with and without gravity, where the light fluid lies on the top of the heavy fluid. We find that the power spectra of the simulated concentration field are in good agreement with the experiments and analytical solutions. In the absence of gravity, the power spectra decay as the power −4 of the wavenumber—except for small wavenumbers that diverge from this power law behavior due to the effect of finite domain size. Gravity suppresses the fluctuations, resulting in much weaker dependence of the power spectra on the wavenumber. Finally, the model is used to study the effect of thermal fluctuation on the Rayleigh-Taylor instability, an unstable dynamics of the front between a heavy fluid overlaying a light fluid. The front dynamics is shown to agree well with the analytical solutions.
NASA Astrophysics Data System (ADS)
Kordilla, Jannes; Pan, Wenxiao; Tartakovsky, Alexandre
2014-12-01
We propose a novel smoothed particle hydrodynamics (SPH) discretization of the fully coupled Landau-Lifshitz-Navier-Stokes (LLNS) and stochastic advection-diffusion equations. The accuracy of the SPH solution of the LLNS equations is demonstrated by comparing the scaling of velocity variance and the self-diffusion coefficient with kinetic temperature and particle mass obtained from the SPH simulations and analytical solutions. The spatial covariance of pressure and velocity fluctuations is found to be in a good agreement with theoretical models. To validate the accuracy of the SPH method for coupled LLNS and advection-diffusion equations, we simulate the interface between two miscible fluids. We study formation of the so-called "giant fluctuations" of the front between light and heavy fluids with and without gravity, where the light fluid lies on the top of the heavy fluid. We find that the power spectra of the simulated concentration field are in good agreement with the experiments and analytical solutions. In the absence of gravity, the power spectra decay as the power -4 of the wavenumber—except for small wavenumbers that diverge from this power law behavior due to the effect of finite domain size. Gravity suppresses the fluctuations, resulting in much weaker dependence of the power spectra on the wavenumber. Finally, the model is used to study the effect of thermal fluctuation on the Rayleigh-Taylor instability, an unstable dynamics of the front between a heavy fluid overlaying a light fluid. The front dynamics is shown to agree well with the analytical solutions.
Kordilla, Jannes; Pan, Wenxiao; Tartakovsky, Alexandre
2014-12-14
We propose a novel smoothed particle hydrodynamics (SPH) discretization of the fully coupled Landau-Lifshitz-Navier-Stokes (LLNS) and stochastic advection-diffusion equations. The accuracy of the SPH solution of the LLNS equations is demonstrated by comparing the scaling of velocity variance and the self-diffusion coefficient with kinetic temperature and particle mass obtained from the SPH simulations and analytical solutions. The spatial covariance of pressure and velocity fluctuations is found to be in a good agreement with theoretical models. To validate the accuracy of the SPH method for coupled LLNS and advection-diffusion equations, we simulate the interface between two miscible fluids. We study formation of the so-called "giant fluctuations" of the front between light and heavy fluids with and without gravity, where the light fluid lies on the top of the heavy fluid. We find that the power spectra of the simulated concentration field are in good agreement with the experiments and analytical solutions. In the absence of gravity, the power spectra decay as the power -4 of the wavenumber-except for small wavenumbers that diverge from this power law behavior due to the effect of finite domain size. Gravity suppresses the fluctuations, resulting in much weaker dependence of the power spectra on the wavenumber. Finally, the model is used to study the effect of thermal fluctuation on the Rayleigh-Taylor instability, an unstable dynamics of the front between a heavy fluid overlaying a light fluid. The front dynamics is shown to agree well with the analytical solutions.
Kordilla, Jannes; Pan, Wenxiao; Tartakovsky, Alexandre M.
2014-12-14
We propose a novel Smoothed Particle Hydrodynamics (SPH) discretization of the fully-coupled Landau-Lifshitz-Navier-Stokes (LLNS) and advection-diffusion equations. The accuracy of the SPH solution of the LLNS equations is demonstrated by comparing the scaling of velocity variance and self-diffusion coefficient with kinetic temperature and particle mass obtained from the SPH simulations and analytical solutions. The spatial covariance of pressure and velocity fluctuations are found to be in a good agreement with theoretical models. To validate the accuracy of the SPH method for the coupled LLNS and advection-diffusion equations, we simulate the interface between two miscible fluids. We study the formation of the so-called giant fluctuations of the front between light and heavy fluids with and without gravity, where the light fluid lays on the top of the heavy fluid. We find that the power spectra of the simulated concentration field is in good agreement with the experiments and analytical solutions. In the absence of gravity the the power spectra decays as the power -4 of the wave number except for small wave numbers which diverge from this power law behavior due to the effect of finite domain size. Gravity suppresses the fluctuations resulting in the much weaker dependence of the power spectra on the wave number. Finally the model is used to study the effect of thermal fluctuation on the Rayleigh-Taylor instability, an unstable dynamics of the front between a heavy fluid overlying a light fluid. The front dynamics is shown to agree well with the analytical solutions.
Chindapol, Nol; Kaandorp, Jaap A.; Cronemberger, Carolina; Mass, Tali; Genin, Amatzia
2013-01-01
The growth of scleractinian corals is strongly influenced by the effect of water motion. Corals are known to have a high level of phenotypic variation and exhibit a diverse range of growth forms, which often contain a high level of geometric complexity. Due to their complex shape, simulation models represent an important option to complement experimental studies of growth and flow. In this work, we analyzed the impact of flow on coral's morphology by an accretive growth model coupled with advection-diffusion equations. We performed simulations under no-flow and uni-directional flow setup with the Reynolds number constant. The relevant importance of diffusion to advection was investigated by varying the diffusion coefficient, rather than the flow speed in Péclet number. The flow and transport equations were coupled and solved using COMSOL Multiphysics. We then compared the simulated morphologies with a series of Computed Tomography (CT) scans of scleractinian corals Pocillopora verrucosa exposed to various flow conditions in the in situ controlled flume setup. As a result, we found a similar trend associated with the increasing Péclet for both simulated forms and in situ corals; that is uni-directional current tends to facilitate asymmetrical growth response resulting in colonies with branches predominantly developed in the upstream direction. A closer look at the morphological traits yielded an interesting property about colony symmetry and plasticity induced by uni-directional flow. Both simulated and in situ corals exhibit a tendency where the degree of symmetry decreases and compactification increases in conjunction with the augmented Péclet thus indicates the significant importance of hydrodynamics. PMID:23326222
NASA Astrophysics Data System (ADS)
Chen, XinJian
2012-06-01
This paper presents a sensitivity study of simulated availability of low salinity habitats by a hydrodynamic model for the Manatee River estuary located in the southwest portion of the Florida peninsula. The purpose of the modeling study was to establish a regulatory minimum freshwater flow rate required to prevent the estuarine ecosystem from significant harm. The model used in the study was a multi-block model that dynamically couples a three-dimensional (3D) hydrodynamic model with a laterally averaged (2DV) hydrodynamic model. The model was calibrated and verified against measured real-time data of surface elevation and salinity at five stations during March 2005-July 2006. The calibrated model was then used to conduct a series of scenario runs to investigate effects of the flow reduction on salinity distributions in the Manatee River estuary. Based on simulated salinity distribution in the estuary, water volumes, bottom areas and shoreline lengths for salinity less than certain predefined values were calculated and analyzed to help establish the minimum freshwater flow rate for the estuarine system. The sensitivity analysis conducted during the modeling study for the Manatee River estuary examined effects of the bottom roughness, ambient vertical eddy viscosity/diffusivity, horizontal eddy viscosity/diffusivity, and ungauged flow on the model results and identified the relative importance of these model parameters (input data) to the outcome of the availability of low salinity habitats. It is found that the ambient vertical eddy viscosity/diffusivity is the most influential factor controlling the model outcome, while the horizontal eddy viscosity/diffusivity is the least influential one.
NASA Astrophysics Data System (ADS)
Matheny, A. M.; Bohrer, G.; Mirfenderesgi, G.; Schafer, K. V.; Ivanov, V. Y.
2014-12-01
Hydraulic limitations are known to control transpiration in forest ecosystems when the soil is drying or when the vapor pressure deficit between the air and stomata is very large, but they can also impact stomatal apertures under conditions of adequate soil moisture and lower evaporative demand. We use the NACP dataset of latent heat flux measurements and model observations for multiple sites and models to demonstrate models' difficulties in capturing intra-daily hysteresis. We hypothesize that this is a result of un-resolved afternoon stomata closure due to hydrodynamic stresses. The current formulations for stomatal conductance and the empirical coupling between stomatal conductance and soil moisture used by these models does not resolve the hydrodynamic process of water movement from the soil to the leaves. This approach does not take advantage of advances in our understanding of water flow and storage in the trees, or of tree and canopy structure. A more thorough representation of the tree-hydrodynamic processes could potentially remedy this significant source of model error. In a forest plot at the University of Michigan Biological Station, we use measurements of sap flux and leaf water potential to demonstrate that trees of similar type - late successional deciduous trees - have very different hydrodynamic strategies that lead to differences in their temporal patterns of stomatal conductance and thus hysteretic cycles of transpiration. These differences will lead to large differences in conductance and water use based on the species composition of the forest. We also demonstrate that the size and shape of the tree branching system leads to differences in extent of hydrodynamic stress, which may change the forest respiration patterns as the forest grows and ages. We propose a framework to resolve tree hydrodynamics in global and regional models based on the Finite-Elements Tree-Crown Hydrodynamics model (FETCH) -a hydrodynamic model that can resolve the fast
Delvigne, Frank; El Mejdoub, Thami; Destain, Jacqueline; Delroisse, Jean-Marc; Vandenbol, Micheline; Haubruge, Eric; Thonart, Philippe
2005-01-01
In this article, two theories are unified to investigate the effect of hydrodynamics on a specific bioprocess: the network-of-zones (NOZ) hydrodynamic structured modeling approach (developed by several researchers but applied to only a few bioprocesses) and the effectiveness factor eta approach. Two process scales were investigated (20 and 500 L), and for each, hydrodynamics were quantified using an NOZ validated by homogeneity time measurements. Several impeller combinations inducing quite different hydrodynamics were tested at the 20-L scale. After this step, effectiveness factors were determined for each fermentation run. To achieve this, a perfectly mixed microbial kinetic model was evaluated by using simple Monod kinetics with a fed-batch mass balance. This methodology permitted determination of the effectiveness factor with more accuracy because of the relation with the perfect case deduced from the Monod kinetics. It appeared that for the small scale, eta decreased until reaching a value of approx 0.7 (30% from the ideal case) for the three impeller systems investigated. However, stirring systems that include hydrofoils seemed to maintain higher effectiveness factors during the course of the fermentation. This effect can be attributed to oxygen transfer performance or to homogenization efficiency exhibited by the hydrofoils. To distinguish the oxygen transfer from the homogenization component of the effectiveness factor, these phenomena were analyzed separately. After determining the evolution of etaO2 linked to oxygen transfer for each of the fermentation runs, the NOZ model was employed to quantify substrate gradient appearance. After this step, another effectiveness factor, etamix, related to mixing was defined. Consequently, it is possible to distinguish the relative importance of the mixing effect and oxygen transfer on a given bioprocess. The results have highlighted an important scale effect on the bioprocess that can be analyzed using the NOZ model.
Axisymmetric instability in a thinning electrified jet.
Dharmansh; Chokshi, Paresh
2016-04-01
The axisymmetric stability of an electrified jet is analyzed under electrospinning conditions using the linear stability theory. The fluid is considered Newtonian with a finite electrical conductivity, modeled as a leaky dielectric medium. While the previous studies impose axisymmetric disturbances on a cylindrical jet of uniform radius, referred to as the base state, in the present study the actual thinning jet profile, obtained as the steady-state solution of the one-dimensional slender filament model, is treated as the base state. The analysis takes into account the role of variation in the jet variables like radius, velocity, electric field, and surface charge density along the thinning jet in the stability behavior. The eigenspectrum of the axisymmetric disturbance growth rate is constructed from the linearized disturbance equations discretized using the Chebyshev collocation method. The most unstable growth rate for the thinning jet is significantly different from that for the uniform radius jet. For the same electrospinning conditions, while the uniform radius jet is predicted to be highly unstable, the thinning jet profile is found to be unstable but with a relatively very low growth rate. The stabilizing role of the thinning jet is attributed to the variation in the surface charge density as well as the extensional deformation rate in the fluid ignored in the uniform radius jet analysis. The dominant mode for the thinning jet is an oscillatory conducting mode driven by the field-charge coupling. The disturbance energy balance finds the electric force to be the dominant force responsible for the disturbance growth, potentially leading to bead formation along the fiber. The role of various material and process parameters in the stability behavior is also investigated.
Axisymmetric instability in a thinning electrified jet.
Dharmansh; Chokshi, Paresh
2016-04-01
The axisymmetric stability of an electrified jet is analyzed under electrospinning conditions using the linear stability theory. The fluid is considered Newtonian with a finite electrical conductivity, modeled as a leaky dielectric medium. While the previous studies impose axisymmetric disturbances on a cylindrical jet of uniform radius, referred to as the base state, in the present study the actual thinning jet profile, obtained as the steady-state solution of the one-dimensional slender filament model, is treated as the base state. The analysis takes into account the role of variation in the jet variables like radius, velocity, electric field, and surface charge density along the thinning jet in the stability behavior. The eigenspectrum of the axisymmetric disturbance growth rate is constructed from the linearized disturbance equations discretized using the Chebyshev collocation method. The most unstable growth rate for the thinning jet is significantly different from that for the uniform radius jet. For the same electrospinning conditions, while the uniform radius jet is predicted to be highly unstable, the thinning jet profile is found to be unstable but with a relatively very low growth rate. The stabilizing role of the thinning jet is attributed to the variation in the surface charge density as well as the extensional deformation rate in the fluid ignored in the uniform radius jet analysis. The dominant mode for the thinning jet is an oscillatory conducting mode driven by the field-charge coupling. The disturbance energy balance finds the electric force to be the dominant force responsible for the disturbance growth, potentially leading to bead formation along the fiber. The role of various material and process parameters in the stability behavior is also investigated. PMID:27176407
Axisymmetric instability in a thinning electrified jet
NASA Astrophysics Data System (ADS)
Dharmansh; Chokshi, Paresh
2016-04-01
The axisymmetric stability of an electrified jet is analyzed under electrospinning conditions using the linear stability theory. The fluid is considered Newtonian with a finite electrical conductivity, modeled as a leaky dielectric medium. While the previous studies impose axisymmetric disturbances on a cylindrical jet of uniform radius, referred to as the base state, in the present study the actual thinning jet profile, obtained as the steady-state solution of the one-dimensional slender filament model, is treated as the base state. The analysis takes into account the role of variation in the jet variables like radius, velocity, electric field, and surface charge density along the thinning jet in the stability behavior. The eigenspectrum of the axisymmetric disturbance growth rate is constructed from the linearized disturbance equations discretized using the Chebyshev collocation method. The most unstable growth rate for the thinning jet is significantly different from that for the uniform radius jet. For the same electrospinning conditions, while the uniform radius jet is predicted to be highly unstable, the thinning jet profile is found to be unstable but with a relatively very low growth rate. The stabilizing role of the thinning jet is attributed to the variation in the surface charge density as well as the extensional deformation rate in the fluid ignored in the uniform radius jet analysis. The dominant mode for the thinning jet is an oscillatory conducting mode driven by the field-charge coupling. The disturbance energy balance finds the electric force to be the dominant force responsible for the disturbance growth, potentially leading to bead formation along the fiber. The role of various material and process parameters in the stability behavior is also investigated.
NASA Astrophysics Data System (ADS)
Esmaili Sikarudi, M. A.; Nikseresht, A. H.
2016-01-01
Smoothed particle hydrodynamics is a robust Lagrangian particle method which is widely used in various applications, from astrophysics to hydrodynamics and heat conduction. It has intrinsic capabilities for simulating large deformation, composites, multiphysics events, and multiphase fluid flows. It is vital to use reliable boundary conditions when boundary value problems like heat conduction or Poisson equation for incompressible flows are solved. Since smoothed particle hydrodynamics is not a boundary fitted grids method, implementation of boundary conditions can be problematic. Many methods have been proposed for enhancing the accuracy of implementation of boundary conditions. In the present study a new approach for facilitating the implementation of Robin and Neumann boundary conditions is proposed and proven to give accurate results. Also there is no need to use complicated preprocessing as in virtual particle method. The new method is compared to an equivalent one dimensional moving least square scheme and it is shown that the present method is less sensitive to particle disorder.
NASA Astrophysics Data System (ADS)
Hartel, K.
1986-02-01
The hydrodynamic stability of liquid jets in a liquid continuum, both characterized by low viscosity was analyzed. A linearized mathematical model was developed. This model enables the length necessary for fragmentation of a vertical, symmetric jet of molten fuel by hydraulic forces in the coolant of a liquid metal fast breeder reactor to be evaluated. On the basis of this model the FRAG code for numerical calculation of the hydrodynamic fragmentation mechanism was developed.
NASA Astrophysics Data System (ADS)
Cucco, Andrea; Quattrocchi, Giovanni; Olita, Antonio; Fazioli, Leopoldo; Ribotti, Alberto; Sinerchia, Matteo; Tedesco, Costanza; Sorgente, Roberto
2016-07-01
This work explores the importance of considering tidal dynamics when modelling the general circulation in the Messina Strait, a narrow passage connecting the Tyrrhenian and the Ionian subbasins in the Western Mediterranean Sea. The tides and the induced water circulation in this Strait are among the most intense oceanographic processes in the Mediterranean Sea. The quantification of these effects can be particularly relevant for operational oceanographic systems aimed to provide short-term predictions of the main hydrodynamics in the Western Mediterranean subbasins. A numerical approach based on the use of a high-resolution hydrodynamic model was followed to reproduce the tides propagation and the wind-induced and thermohaline water circulation within the Strait and in surrounding areas. A set of numerical simulations was carried out to quantify the role of the Strait dynamics on the larger-scale water circulation. The obtained results confirmed the importance of a correct representation of the hydrodynamics in the Messina Strait even when focusing on predicting the water circulation in the external sea traits. In fact, model results show that tidal dynamics deeply impact the reproduction of the instantaneous and residual circulation pattern, waters thermohaline properties and transport dynamics both inside the Messina Strait and in the surrounding coastal and open waters.
Zhang, Ying-Ying; An, Sheng-Bai; Song, Yuan-Hong Wang, You-Nian; Kang, Naijing; Mišković, Z. L.
2014-10-15
We study the wake effect in the induced potential and the stopping power due to plasmon excitation in a metal slab by a point charge moving inside the slab. Nonlocal effects in the response of the electron gas in the metal are described by a quantum hydrodynamic model, where the equation of electronic motion contains both a quantum pressure term and a gradient correction from the Bohm quantum potential, resulting in a fourth-order differential equation for the perturbed electron density. Thus, besides using the condition that the normal component of the electron velocity should vanish at the impenetrable boundary of the metal, a consistent inclusion of the gradient correction is shown to introduce two possibilities for an additional boundary condition for the perturbed electron density. We show that using two different sets of boundary conditions only gives rise to differences in the wake potential at large distances behind the charged particle. On the other hand, the gradient correction in the quantum hydrodynamic model is seen to cause a reduction in the depth of the potential well closest to the particle, and a reduction of its stopping power. Even for a particle moving in the center of the slab, we observe nonlocal effects in the induced potential and the stopping power due to reduction of the slab thickness, which arise from the gradient correction in the quantum hydrodynamic model.
Smoothed Particle Hydrodynamics Modeling of Gravity Currents on a Dry Porous Medium
NASA Astrophysics Data System (ADS)
Daly, E.; Grimaldi, S.; Bui, H.
2014-12-01
Gravity currents flowing over porous media occur in many environmental processes and industrial applications, such as irrigation, benthic boundary layers, and oil spills. The coupling of the flow over the porous surface and the infiltration of the fluid in the porous media is complex and difficult to model. Of particular interest is the prediction of the position of the runoff front and the depth of the infiltration front. We present here a model for the flow of a finite volume of a highly viscous Newtonian fluid over a dry, homogenous porous medium. The Navier-Stokes equations describing the runoff flow are coupled to the Volume Averaged Navier-Stokes equations for the infiltration flow. The numerical solution of these equations is challenging because of the presence of two free surfaces (runoff and infiltration waves), the lack of fixed boundary conditions at the runoff front, and the difficulties in defining appropriate conditions at the surface of the porous medium. The first two challenges were addressed by using Smoothed Particle Hydrodynamics, which is a Lagrangian, mesh-free particle method particularly suitable for modelling free surface flows. Two different approaches were used to model the flow conditions at the surface of the porous medium. The Two Domain Approach (TDA) assumes that runoff and infiltration flows occur in two separate homogenous domains; here, we assume the continuity of velocity and stresses at the interface of the two domains. The One Domain Approach (ODA) models runoff and infiltration flows as occurring through a medium whose hydraulic properties vary continuously in space. The transition from the hydraulic properties of the atmosphere and the porous medium occur in a layer near the surface of the porous medium. Expressions listed in literature were used to compute the thickness of this transition layer and the spatial variation of porosity and permeability within it. Our results showed that ODA led to slower velocities of the runoff
Electrical Resistivity Imaging and Hydrodynamic Modeling of Convective Fingering in a Sabkha Aquifer
NASA Astrophysics Data System (ADS)
Van Dam, Remke; Eustice, Brian; Hyndman, David; Wood, Warren; Simmons, Craig
2014-05-01
Free convection, or fluid motion driven by density differences, is an important groundwater flow mechanism that can enhance transport and mixing of heat and solutes in the subsurface. Various issues of environmental and societal relevance are exacerbated convective mixing; it has been studied in the context of dense contaminant plumes, nuclear waste disposal, greenhouse gas sequestration, the impacts of sea level rise and saline intrusion on drinking water resources. The basic theory behind convective flow in porous media is well understood, but important questions regarding this process in natural systems remain unanswered. Most previous research on this topic has focused on theory and modeling, with only limited attention to experimental studies and field measurements. The few published studies present single snapshots, making it difficult to quantify transient changes in these systems. Non-invasive electrical methods have the potential to exploit the relation between solute concentrations and electrical conductance of a fluid, and thereby estimate fluid salinity differences in time and space. We present the results of a two-year experimental study at a shallow sabkha aquifer in the United Arab Emirates, about 50 km southwest of the city of Abu Dhabi along the coast of the Arabian Gulf, that was designed to explore the transient nature of free convection. Electrical resistivity tomography (ERT) data documented the presence of convective fingers following a significant rainfall event. One year later, the complex fingering pattern had completely disappeared. This observation is supported by analysis of the aquifer solute budget as well as hydrodynamic modeling of the system. The transient dynamics of the gravitational instabilities in the modeling results are in agreement with the timing observed in the time-lapse ERT data. Our experimental observations and modeling are consistent with the hypothesis that the instabilities arose from a dense brine that infiltrated
NASA Technical Reports Server (NTRS)
Margolis, S. B.
1997-01-01
The classical Landau/Levich models of liquid-propellant combustion, despite their relative simplicity, serve as seminal examples that correctly describe the onset of hydrodynamic instability in reactive systems. Recently, these two separate models have been combined and extended to account for a dynamic dependence, absent in the original formulations, of the local burning rate on the local pressure and temperature fields. The resulting model admits an extremely rich variety of both hydrodynamic and reactive/diffusive instabilities that can be analyzed either numerically or analytically in various limiting parameter regimes. In the present work, a formal asymptotic analysis, based on the realistic smallness of the gas-to-liquid density ratio, is developed to investigate the combined effects of gravity and other parameters on the hydrodynamic instability of the propagating liquid/gas interface. In particular, an analytical expression is derived for the neutral stability boundary A(p)(k), where A(p) is the pressure sensitivity of the burning rate and k is the wavenumber of the disturbance. The results demonstrate explicitly the stabilizing effect of gravity on long-wave disturbances, the stabilizing effect of viscosity (both liquid and gas) and surface tension on short-wave perturbations, and the instability associated with intermediate wavenumbers for negative values of A(p). In the limiting case of weak gravity, it is shown that hydrodynamic instability in liquid-propellant combustion is a long-wave instability phenomenon, whereas at normal gravity, this instability is first manifested through O(1) wavenumber disturbances. it is also demonstrated that, in general, surface tension and the viscosity of both the liquid and gas phases each produce comparable stabilizing effects in the long-wavenumber regime, thereby providing important modifications to previous analyses in which one or more of these effects were neglected.
NASA Technical Reports Server (NTRS)
Margolis, Stephen B.
1998-01-01
The classical Landau/Levich models of liquid-propellant combustion, despite their relative simplicity, serve as seminal examples that correctly describe the onset of hydrodynamic instability in reactive systems. Recently, these two separate models have been combined and extended to account for a dynamic dependence, absent in the original formulations, of the local burning rate on the local pressure and temperature fields. The resulting model admits an extremely rich variety of both hydrodynamic and reactive/diffusive instabilities that can be analyzed either numerically or analytically in various limiting parameter regimes. In the present work, a formal asymptotic analysis, based on the realistic smallness of the gas-to-liquid density ratio, is developed to investigate the combined effects of gravity and other parameters on the hydrodynamic instability of the propagating liquid/gas interface. In particular, an analytical expression is derived for the neutral stability boundary A(sub p)(k), where A(sub p) is the pressure sensitivity of the burning rate and k is the wavenumber of the disturbance. The results demonstrate explicitly the stabilizing effect of gravity on long-wave disturbances, the stabilizing effect of viscosity (both liquid and gas) and surface tension on short-wave perturbations, and the instability associated with intermediate wavenumbers for critical negative values of A(sub p). In the limiting case of weak gravity, it is shown that hydrodynamic instability in liquid-propellant combustion is a long-wave instability phenomenon, whereas at normal gravity, this instability is first manifested through O(1) wavenumber disturbances. It is also demonstrated that, in general, surface tension and the viscosity of both the liquid and gas phases each produce comparable stabilizing effects in the large-wavenumber regime, thereby providing important modifications to previous analyses in which one or more of these effects were neglected.
Andréfouët, S; Ouillon, S; Brinkman, R; Falter, J; Douillet, P; Wolk, F; Smith, R; Garen, P; Martinez, E; Laurent, V; Lo, C; Remoissenet, G; Scourzic, B; Gilbert, A; Deleersnijder, E; Steinberg, C; Choukroun, S; Buestel, D
2006-10-01
A workshop organized in French Polynesia in November 2004 allowed reviewing the current methods to model the three-dimensional hydrodynamic circulation in semi-enclosed atoll lagoons for aquaculture applications. Mollusk (e.g. pearl oyster, clam) aquaculture is a major source of income for South Pacific countries such as French Polynesia or Cook Islands. This aquaculture now requires a better understanding of circulation patterns to improve the spatial use of the lagoons, especially to define the best area to set larvae collectors. The pelagic larval duration of the relevant species (<20 days) and the size of the semi-closed lagoons (few hundreds of km2) drive the specifications of the model in terms of the spatial and temporal scale. It is considered that, in contrast with fish, mollusk larvae movements are limited and that their cycle occurs completely in the lagoon, without an oceanic stage. Atolls where aquaculture is productive are generally well-bounded, or semi-closed, without significant large and deep openings to the ocean. Nevertheless part of the lagoon circulation is driven by oceanic water inputs through the rim, ocean swells, tides and winds. Therefore, boundary conditions of the lagoon system are defined by the spatial structure of a very shallow rim (exposition and number of hoas), the deep ocean swell climate, tides and wind regimes. To obtain a realistic 3D numerical model of lagoon circulation with adequate forcing, it is thus necessary to connect in an interdisciplinary way a variety of methods (models, remote sensing and in situ data collection) to accurately represent the different components of the lagoon system and its specific boundary conditions. We review here the current methods and tools used to address these different components for a hypothetical atoll of the Tuamotu Archipelago (French Polynesia), representative of the semi-closed lagoons of the South Pacific Ocean. We hope this paper will serve as a guide for similar studies
Consistent lattice Boltzmann methods for incompressible axisymmetric flows.
Zhang, Liangqi; Yang, Shiliang; Zeng, Zhong; Yin, Linmao; Zhao, Ya; Chew, Jia Wei
2016-08-01
In this work, consistent lattice Boltzmann (LB) methods for incompressible axisymmetric flows are developed based on two efficient axisymmetric LB models available in the literature. In accord with their respective original models, the proposed axisymmetric models evolve within the framework of the standard LB method and the source terms contain no gradient calculations. Moreover, the incompressibility conditions are realized with the Hermite expansion, thus the compressibility errors arising in the existing models are expected to be reduced by the proposed incompressible models. In addition, an extra relaxation parameter is added to the Bhatnagar-Gross-Krook collision operator to suppress the effect of the ghost variable and thus the numerical stability of the present models is significantly improved. Theoretical analyses, based on the Chapman-Enskog expansion and the equivalent moment system, are performed to derive the macroscopic equations from the LB models and the resulting truncation terms (i.e., the compressibility errors) are investigated. In addition, numerical validations are carried out based on four well-acknowledged benchmark tests and the accuracy and applicability of the proposed incompressible axisymmetric LB models are verified. PMID:27627407
Consistent lattice Boltzmann methods for incompressible axisymmetric flows
NASA Astrophysics Data System (ADS)
Zhang, Liangqi; Yang, Shiliang; Zeng, Zhong; Yin, Linmao; Zhao, Ya; Chew, Jia Wei
2016-08-01
In this work, consistent lattice Boltzmann (LB) methods for incompressible axisymmetric flows are developed based on two efficient axisymmetric LB models available in the literature. In accord with their respective original models, the proposed axisymmetric models evolve within the framework of the standard LB method and the source terms contain no gradient calculations. Moreover, the incompressibility conditions are realized with the Hermite expansion, thus the compressibility errors arising in the existing models are expected to be reduced by the proposed incompressible models. In addition, an extra relaxation parameter is added to the Bhatnagar-Gross-Krook collision operator to suppress the effect of the ghost variable and thus the numerical stability of the present models is significantly improved. Theoretical analyses, based on the Chapman-Enskog expansion and the equivalent moment system, are performed to derive the macroscopic equations from the LB models and the resulting truncation terms (i.e., the compressibility errors) are investigated. In addition, numerical validations are carried out based on four well-acknowledged benchmark tests and the accuracy and applicability of the proposed incompressible axisymmetric LB models are verified.
Axisymmetric oscillations of magnetic neutron stars
NASA Astrophysics Data System (ADS)
Lee, Umin
2007-01-01
We calculate axisymmetric oscillations of rotating neutron stars composed of the surface fluid ocean, solid crust and fluid core, taking account of a dipole magnetic field as strong as BS ~ 1015 G at the surface. The adiabatic oscillation equations for the solid crust threaded by a dipole magnetic field are derived in Newtonian dynamics, on the assumption that the axis of rotation is aligned with the magnetic axis so that perturbations on the equilibrium can be represented by series expansions in terms of spherical harmonic functions Yml(θ, φ) with different degrees l for a given azimuthal wave number m around the magnetic axis. Although the three component models can support a rich variety of oscillation modes, axisymmetric (m = 0) toroidal ltn and spheroidal lsn shear waves propagating in the solid crust are our main concerns, where l and n denote the harmonic degree and the radial order of the modes, respectively. In the absence of rotation, axisymmetric spheroidal and toroidal modes are completely decoupled, and we consider the effects of rotation on the oscillation modes only in the limit of slow rotation. We find that the oscillation frequencies of the fundamental toroidal torsional modes ltn in the crust are hardly affected by the magnetic field as strong as BS ~ 1015 G at the surface. As the radial order n of the shear modes in the crust becomes higher, however, both spheroidal and toroidal modes become susceptible to the magnetic field, and their frequencies in general get higher with increasing BS. We also find that the surface g modes and the crust/ocean interfacial modes are suppressed by a strong magnetic field, and that there appear magnetic modes in the presence of a strong magnetic field.
Tironi, Antonio; Marin, Víctor H; Campuzano, Francisco J
2010-05-01
This article introduces a management tool for salmon farming, with a scope in the local sustainability of salmon aquaculture of the Aysen Fjord, Chilean Patagonia. Based on Integrated Coastal Zone Management (ICZM) principles, the tool combines a large 3-level nested hydrodynamic model, a particle tracking module and a GIS application into an assessment tool for particulate waste dispersal of salmon farming activities. The model offers an open source alternative to particulate waste modeling and evaluation, contributing with valuable information for local decision makers in the process of locating new facilities and monitoring stations. PMID:20333379
NASA Astrophysics Data System (ADS)
Tironi, Antonio; Marin, Víctor H.; Campuzano, Francisco J.
2010-05-01
This article introduces a management tool for salmon farming, with a scope in the local sustainability of salmon aquaculture of the Aysen Fjord, Chilean Patagonia. Based on Integrated Coastal Zone Management (ICZM) principles, the tool combines a large 3-level nested hydrodynamic model, a particle tracking module and a GIS application into an assessment tool for particulate waste dispersal of salmon farming activities. The model offers an open source alternative to particulate waste modeling and evaluation, contributing with valuable information for local decision makers in the process of locating new facilities and monitoring stations.