Sample records for azido compounds

  1. Synthesis and photochemical behavior of the tetrazolo tautomer of 2-azido-4-pyrimidinone-2'-deoxyriboside.

    PubMed

    Gourdain, Stéphanie; Petermann, Christian; Martinez, Agathe; Harakat, Dominique; Clivio, Pascale

    2011-03-18

    The 2-azido analogue of 2'-deoxyuridine was prepared in three steps from 2'-deoxy-2-thiouridine. The sulfur atom of the 2-thio nucleoside was methylated and then displaced by hydrazine to furnish the corresponding 2-hydrazino derivative. After diazotization, the 2-azido compound that exists as its tetrazolo tautomer was obtained. Upon UV irradiation in aqueous solution, the title compound led to isocytosine.

  2. Bis(azido) compounds of Pd and Pt with bulky phosphine ligands (dppn=1,8-bis(diphenylphosphino)naphthalene, dppf=1,1‧-bis(diphenylphosphino)ferrocene, 1-dpn=1-diphenylphosphino-naphthalene): Preparation, structures, and reactivity toward isocyanides

    NASA Astrophysics Data System (ADS)

    Huh, Hyun Sue; Lee, Yeon Kyoung; Lee, Soon W.

    2006-05-01

    Pd-bis(azido) compounds [Pd(dppn)(N 3) 2] and [Pd(dppf)(N 3) 2], which contain bulky chelating bis(phosphine) ligands (dppn=1,8-bis(diphenylphosphino)naphthalene, dppf=1,1'-bis(diphenylphosphino)ferrocene), were prepared from the corresponding chlorides and NaN 3. We also prepared the Pt-bis(azido) compound [Pt(1-dpn)(SMe 2)(N 3) 2] containing a bulky monodentate phosphine (1-dpn=1-diphenylphosphino-naphthalene). All these compounds underwent [2+3] cycloaddition with isocyanides (R-NC, R=cyclohexyl, tert-butyl, 2,6-dimethylphenyl) to convert azido ligands to five-membered, C-coordinated tetrazolate rings. In addition, we observed the [Pd(dppn)Cl 2]-mediated C-C coupling of PhC tbnd6 CH to generate the η 2-PhC tbnd6 C-C tbnd6 CPh ligand. All compounds have been structurally characterized by X-ray diffraction.

  3. Optimized syntheses of Fmoc azido amino acids for the preparation of azidopeptides

    PubMed Central

    Pícha, Jan; Buděšínský, Miloš; Macháčková, Kateřina; Collinsová, Michaela

    2017-01-01

    The rise of CuI‐catalyzed click chemistry has initiated an increased demand for azido and alkyne derivatives of amino acid as precursors for the synthesis of clicked peptides. However, the use of azido and alkyne amino acids in peptide chemistry is complicated by their high cost. For this reason, we investigated the possibility of the in‐house preparation of a set of five Fmoc azido amino acids: β‐azido l‐alanine and d‐alanine, γ‐azido l‐homoalanine, δ‐azido l‐ornithine and ω‐azido l‐lysine. We investigated several reaction pathways described in the literature, suggested several improvements and proposed several alternative routes for the synthesis of these compounds in high purity. Here, we demonstrate that multigram quantities of these Fmoc azido amino acids can be prepared within a week or two and at user‐friendly costs. We also incorporated these azido amino acids into several model tripeptides, and we observed the formation of a new elimination product of the azido moiety upon conditions of prolonged couplings with 2‐(1H‐benzotriazol‐1‐yl)‐1,1,3,3‐tetramethyluronium hexafluorophosphate/DIPEA. We hope that our detailed synthetic protocols will inspire some peptide chemists to prepare these Fmoc azido acids in their laboratories and will assist them in avoiding the too extensive costs of azidopeptide syntheses. Experimental procedures and/or analytical data for compounds 3–5, 20, 25, 26, 30 and 43–47 are provided in the supporting information. © 2017 The Authors Journal of Peptide Science published by European Peptide Society and John Wiley & Sons Ltd. PMID:28120383

  4. Active Cytokinins

    PubMed Central

    Mornet, René; Theiler, Jane B.; Leonard, Nelson J.; Schmitz, Ruth Y.; Moore, F. Hardy; Skoog, Folke

    1979-01-01

    Four series of azidopurines have been synthesized and tested for cytokinin activity in the tobacco callus bioassay: 2- and 8-azido-N6-benzyladenines, -N6-(Δ2-isopentenyl)adenines, and -zeatins, and N6-(2- and 4-azidobenzyl)adenines. The compounds having 2-azido substitution on the adenine ring are as active as the corresponding parent compounds, while those with 8-azido substitution are about 10 or more times as active. The 8-azidozeatin, which is the most active cytokinin observed, exhibited higher than minimal detectable activity at 1.2 × 10−5 micromolar, the lowest concentration tested. The shape of the growth curve indicates that even a concentration as low as 5 × 10−6 micromolar would probably be effective. By comparison, the lowest active concentration ever reported for zeatin has been 5 × 10−5 micromolar, representing a sensitivity rarely attained. All of the azido compounds have been submitted to photolysis in aqueous ethanol, and the photoproducts have been detected and identified by low and high resolution mass spectrometry. They are rationalized as products of abstraction and insertion reactions of the intermediate nitrenes. The potential of the major released products as cytokinins was also assessed by bioassay. 2-Azido-N6-(Δ2-isopentenyl)adenine competed with [14C]kinetin for the cytokinin-binding protein isolated from wheat germ. When the azido compound was photolysed in the presence of this protein, its attachment effectively blocked the binding of [14C]kinetin. PMID:16661017

  5. Computational Chemistry-Based Enthalpy-of-Formation, Enthalpy-of-Vaporization, and Enthalpy-of-Sublimation Predictions for Azide-Functionalized Compounds

    DTIC Science & Technology

    2006-04-01

    93.0g 92.8 102.8 Benzene+HN3 → Azidobenzene+H2 Azidomethylbenzene 99.5f 93.0 102.0 Methylbenzene+HN3 → Azidomethylbenzene+H2 2 -Azido- 2 - phenylpropane ...87.4d 73.5 86.4 2 - Phenylpropane +HN3 → 2 -Azido- 2 - phenylpropane +H2 Azidocyclopentane 52.8h 58.4 67.0 Cyclopentane+HN3 → Azidocyclopentane+H2...experimentally derived results for “higher homologous azides” (1-azidoadamantane, 3-azido-3-ethylpentane and 2 -azido- 2 - phenylpropane ) (Wayne et al., 1993

  6. Mn-Catalyzed Highly Efficient Aerobic Oxidative Hydroxyazidation of Olefins: A Direct Approach to β-Azido Alcohols.

    PubMed

    Sun, Xiang; Li, Xinyao; Song, Song; Zhu, Yuchao; Liang, Yu-Feng; Jiao, Ning

    2015-05-13

    An efficient Mn-catalyzed aerobic oxidative hydroxyazidation of olefins for synthesis of β-azido alcohols has been developed. The aerobic oxidative generation of azido radical employing air as the terminal oxidant is disclosed as the key process for this transformation. The reaction is appreciated by its broad substrate scope, inexpensive Mn-catalyst, high efficiency, easy operation under air, and mild conditions at room temperature. This chemistry provides a novel approach to high value-added β-azido alcohols, which are useful precursors of aziridines, β-amino alcohols, and other important N- and O-containing heterocyclic compounds. This chemistry also provides an unexpected approach to azido substituted cyclic peroxy alcohol esters. A DFT calculation indicates that Mn catalyst plays key dual roles as an efficient catalyst for the generation of azido radical and a stabilizer for peroxyl radical intermediate. Further calculation reasonably explains the proposed mechanism for the control of C-C bond cleavage or for the formation of β-azido alcohols.

  7. Dopamine D2 receptors photolabeled by iodo-azido-clebopride.

    PubMed

    Niznik, H B; Dumbrille-Ross, A; Guan, J H; Neumeyer, J L; Seeman, P

    1985-04-19

    Iodo-azido-clebopride, a photoaffinity compound for dopamine D2 receptors, had high affinity for canine brain striatal dopamine D2 receptors with a dissociation constant (Kd) of 14 nM. Irradiation of striatal homogenate with iodo-azido-clebopride irreversibly inactivated 50% of dopamine D2 receptors at 20 nM (as indicated by subsequent [3H]spiperone binding). Dopamine agonists and antagonists prevented this photo-inactivation with the appropriate rank-order of potency. Striatal dopamine D1, serotonin (S2), alpha 1- and beta-adrenoceptors were not significantly inactivated following irradiation with iodo-azido-clebopride. Thus, iodo-azido-clebopride is a selective photoaffinity probe for dopamine D2 receptors, the radiolabelled form of which may aid in the molecular characterization of these proteins.

  8. Photoaffinity-labeled Cytokinins

    PubMed Central

    Theiler, Jane B.; Leonard, Nelson J.; Schmitz, Ruth Y.; Skoog, Folke

    1976-01-01

    Two new azidopurine derivatives, 2-azido-N6-(Δ2-isopentenyl)adenine and 2-azido-N6-benzyladenine, have been synthesized as potential photoaffinity labels for probing cytokinin-binding sites. The preparation and the biological activity of these compounds are described. PMID:16659772

  9. A triple-bridged azido-Cu(II) chain compound fine-tuned by mixed carboxylate/ethanol linkers displays slow-relaxation and ferromagnetic order: synthesis, crystal structure, magnetic properties and DFT calculations.

    PubMed

    Liu, Xiangyu; Chen, Sanping; Grancha, Thais; Pardo, Emilio; Ke, Hongshan; Yin, Bing; Wei, Qing; Xie, Gang; Gao, Shengli

    2014-11-07

    A new azido-Cu(II) compound, [Cu(4-fba)(N3)(C2H5OH)] (4-fba = 4-fluorobenzoic acid) (1), has been synthesized and characterized. The X-ray crystal structure analysis demonstrates that only one crystallographically independent Cu(II) ion in the asymmetric unit of 1 exhibits a stretched octahedral geometry in which two azido N atoms and two carboxylic O atoms locate in the equatorial square, while two ethanol O atoms occupy the apical positions, forming a 1D Cu(II) chain with an alternating triple-bridge of EO-azido, syn,syn-carboxylate, and μ2-ethanol. The title compound consists of ferromagnetically interacting ferromagnetic chains, which exhibit ferromagnetic order (T(c) = 7.0 K). The strong ferromagnetic coupling between adjacent Cu(II) ions within each chain is due to the countercomplementarity of the super-exchange pathways, whereas the ferromagnetic interchain interactions--responsible for the long-range magnetic ordering--are most likely due to the presence of coordinated ethanol molecules establishing hydrogen bonds with neighboring chains. DFT calculations have been performed on compound 1 to offer a qualitative theoretical explanation of the magnetic behavior.

  10. 1,3-Dipolar Cycloadditions of Diazo Compounds in the Presence of Azides.

    PubMed

    Aronoff, Matthew R; Gold, Brian; Raines, Ronald T

    2016-04-01

    The diazo group has untapped utility in chemical biology. The tolerance of stabilized diazo groups to cellular metabolism is comparable to that of azido groups. However, chemoselectivity has been elusive, as both groups undergo 1,3-dipolar cycloadditions with strained alkynes. Removing strain and tuning dipolarophile electronics yields diazo group selective 1,3-dipolar cycloadditions that can be performed in the presence of an azido group. For example, diazoacetamide but not its azido congener react with dehydroalanine residues, as in the natural product nisin.

  11. Crystal structure of 2-azido-1 H -imidazole-4,5-dicarbonitrile

    DOE PAGES

    Windler, G. Kenneth; Scott, Brian L.; Tomson, Neil C.; ...

    2015-08-06

    We report that in the title compound, C 5HN 7, the nitrile and azido substituents are close to being coplanar with the central ring. Molecules in the crystal are linked via an N—H...N hydrogen bond to a nitrile acceptor, forming a chain extending along the c-axis direction.

  12. Syntheses, structures and magnetisms of copper(II)–azido coordination compounds with p-substituted benzoates as coligands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Cuiyu; Yu, Nan; Bu, Huaitian

    2016-01-15

    Employing p-substituted benzoates with electron-withdrawing/electron-donating groups as coligands, four copper–azido compounds, [Cu{sub 1.5}(p-NO{sub 2}-benzoate)(N{sub 3}){sub 2}(H{sub 2}O)]{sub n} (1), [Cu(p-NO{sub 2}-benzoate)(N{sub 3})(H{sub 2}O)]{sub n} (2), [Cu(p-OH-benzoate)(N{sub 3})(H{sub 2}O)]{sub n}·nH{sub 2}O (3) and [Cu(p-CH{sub 3}-benzoate)(N{sub 3})]{sub n} (4), have been hydrothermally synthesized and structurally charactierized by single crystal X-ray diffraction. Structural analysis reveals that all compounds are composed of mixed EO-azido and syn–syn carboxylato-bridged Cu-N{sub 3}/COO chains. Compound 1 features the alternating triple-bridged (μ-EO-N{sub 3})(μ-COO)(μ-H{sub 2}O) and the double-bridged (EO-N{sub 3}){sub 2} modes. Both of 2 and 3 display the triple-bridged fashion (μ-EO-N{sub 3})(μ-COO)(μ-H{sub 2}O). While 4 exhibits the double-bridged modemore » (μ-EO-N{sub 3})(μ-COO). Based on hydrogen-bonding interactions, Cu–N{sub 3}/COO chains in 1–3 are further connected to form 3D supramolecular frameworks. As for compound 4, there are not hydrogen-bonding interactions when the p-CH{sub 3} substituted benzoate is employed as coligand. These compounds show intrachain ferromagnetic performance and different bulk properties. Remarkably, 1 features metamagnetism from antiferromagnetism to ferrimagnetism, while 3 reveals long-range ferromagnetic ordering between Cu(II) ions. Magneto-structural correlation has been also investigated. - Graphical abstract: With p-substituted benzoates as coligands, copper–azido compounds were isolated and structrually, magnetically characterized. Magneto-structural correlation has been investigated in detail.« less

  13. Azidoimidazolinium Salts: Safe and Efficient Diazo-transfer Reagents and Unique Azido-donors.

    PubMed

    Kitamura, Mitsuru

    2017-07-01

    2-Azido-1,3-dimethylimidazolinium chloride (ADMC) and its corresponding hexafluorophosphate (ADMP) were found to be efficient diazo-transfer reagents to various organic compounds. ADMC was prepared by the reaction of 2-chloro-1,3-dimethylimidazolinium chloride (DMC) and sodium azide. ADMP was isolated as a crystal having good thermal stability and low explosibility. ADMC and ADMP reacted with 1,3-dicarbonyl compounds under mild basic conditions to give 2-diazo-1,3-dicarbonyl compounds in high yields, which were easily isolated in virtue of the high water solubility of the by-products. ADMP showed high diazo-transfer ability to primary amines even in the absence of metal salt such as Cu(II). Using this diazotization approach, various alkyl/aryl azides were directly obtained from their corresponding primary amines in high yields. Furthermore, naphthols reacted with ADMC to give the corresponding diazonaphthoquinones in good to high yields. In addition, 2-azido-1,3-dimethylimidazolinium salts were employed as azide-transfer and migratory amidation reagents. © 2017 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Studies on novel 4beta-[(4-substituted)-1,2,3-triazol-1-yl] podophyllotoxins as potential anticancer agents.

    PubMed

    Bhat, Bilal A; Reddy, P Bhaskar; Agrawal, Satyam Kumar; Saxena, A K; Kumar, H M Sampath; Qazi, G N

    2008-10-01

    A series of 4beta-[(4-substituted)-1,2,3-triazol-1-yl] podophyllotoxin congeners have been designed and synthesized with significant regioselectivity by employing Cu(I) catalyzed 1,3-dipolar cycloaddition reaction of C4beta-azido podophyllotoxin and C4beta-azido-4'-O-demethyl podophyllotoxin with N-prop-2-yn-1-ylanilines. These compounds were evaluated for anticancer activity against a panel of seven human cancer cell lines. It was interesting to note that all the compounds exhibited promising activity especially against SF-295 (CNS), HCT-15 (colon) and 502713 (colon) cell lines. Compound 11e was found to be the most promising in this study.

  15. 6-Azido hyacinthacine A2 gives a straightforward access to the first multivalent pyrrolizidine architectures.

    PubMed

    D'Adamio, Giampiero; Parmeggiani, Camilla; Goti, Andrea; Moreno-Vargas, Antonio J; Moreno-Clavijo, Elena; Robina, Inmaculada; Cardona, Francesca

    2014-08-28

    The synthesis of the first multivalent pyrrolizidine iminosugars is reported. The key azido intermediates 4 and 31 were prepared after suitable synthetic elaboration of the cycloadduct obtained from 1,3-dipolar cycloaddition of D-arabinose derived nitrone to dimethylacrylamide. The key step of the strategy was the stereoselective installation of an azido moiety at C-6 of the pyrrolizidine skeleton. The click reaction with different monovalent and dendrimeric alkyne scaffolds allowed the preparation of a library of new mono- and multivalent pyrrolizidine compounds that were preliminarily assayed as glycosidase inhibitors towards a panel of commercially available glycosyl hydrolases.

  16. Study on the interaction between bovine serum albumin and 4‧-azido-2‧-deoxyfluoroarabinocytidine or analogs by spectroscopy and molecular modeling

    NASA Astrophysics Data System (ADS)

    Wang, Ruiyong; Wang, Xiaogai; Li, Zhigang; Xie, Yuanzhe; Yang, Lingling; Shi, Jie; Chang, Junbiao

    2014-11-01

    The binding of 4‧-azido-2‧-deoxyfluoroarabinocytidine (FNC) or analogs (cytidine and 5‧-cytidylate monophosphate) to bovine serum albumin (BSA) was investigated by fluorescence, UV-vis absorption spectroscopy and molecular modeling. The three compounds quenched the intrinsic fluorescence of BSA and the results revealed the presence of static quenching mechanism. The positive ΔH and positive ΔS for the systems suggested that the hydrophobic forces stabilized the interaction between the compounds and protein. Results also showed that FNC was the weakest quencher.

  17. Study on the interaction between bovine serum albumin and 4'-azido-2'-deoxyfluoroarabinocytidine or analogs by spectroscopy and molecular modeling.

    PubMed

    Wang, Ruiyong; Wang, Xiaogai; Li, Zhigang; Xie, Yuanzhe; Yang, Lingling; Shi, Jie; Chang, Junbiao

    2014-11-11

    The binding of 4'-azido-2'-deoxyfluoroarabinocytidine (FNC) or analogs (cytidine and 5'-cytidylate monophosphate) to bovine serum albumin (BSA) was investigated by fluorescence, UV-vis absorption spectroscopy and molecular modeling. The three compounds quenched the intrinsic fluorescence of BSA and the results revealed the presence of static quenching mechanism. The positive ΔH and positive ΔS for the systems suggested that the hydrophobic forces stabilized the interaction between the compounds and protein. Results also showed that FNC was the weakest quencher. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Photoactivable analogs for labeling 25-hydroxyvitamin D3 serum binding protein and for 1,25-dihydroxyvitamin D3 intestinal receptor protein

    NASA Technical Reports Server (NTRS)

    Kutner, A.; Link, R. P.; Schnoes, H. K.; DeLuca, H. F.

    1986-01-01

    3-Azidobenzoates and 3-azidonitrobenzoates of 25-hydroxyvitamin D3 as well as 3-deoxy-3-azido-25-hydroxyvitamin D3 and 3-deoxy-3-azido-1,25-dihydroxyvitamin D3 were prepared as photoaffinity labels for vitamin D serum binding protein and 1,25-dihydroxyvitamin D3 intestinal receptor protein. The compounds prepared were easily activated by short- or long-wavelength uv light, as monitored by uv and ir spectrometry. The efficacy of the compounds to compete with 25-hydroxyvitamin D3 or 1,25-dihydroxyvitamin D3 for the binding site of serum binding protein and receptor, respectively, was studied to evaluate the vitamin D label with the highest affinity for the protein. The presence of an azidobenzoate or azidonitrobenzoate substituent at the C-3 position of 25-OH-D3 significantly decreased (10(4)- to 10(6)-fold) the binding activity. However, the labels containing the azido substituent attached directly to the vitamin D skeleton at the C-3 position showed a high affinity, only 20- to 150-fold lower than that of the parent compounds with their respective proteins. Therefore, 3-deoxy-3-azidovitamins present potential ligands for photolabeling of vitamin D proteins and for studying the structures of the protein active sites.

  19. Preparation of carbon nanoparticles and carbon nitride from high nitrogen compound

    DOEpatents

    Huynh, My Hang V [Los Alamos, NM; Hiskey, Michael A [Los Alamos, NM

    2009-09-01

    The high-nitrogen compound 3,6-di(azido)-1,2,4,5-tetrazine (DiAT) was synthesized by a relatively simple method and used as a precursor for the preparation of carbon nanospheres and nanopolygons, and nitrogen-rich carbon nitrides.

  20. A novel photoaffinity ligand for the phencyclidine site of the N-methyl-D-aspartate receptor labels a Mr 120,000 polypeptide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sonders, M.S.; Barmettler, P.; Lee, J.A.

    1990-04-25

    A radiolabeled photoaffinity ligand has been developed for the N-methyl-D-aspartate (NMDA)-preferring excitatory amino acid receptor complex. (3H)3-Azido-(5S, 10R)(+)-5-methyl-10,11-dihydro-5H- dibenzo(a,d)cyclohepten-5,10-imine (3H)3-azido-MK-801 demonstrated nearly identical affinity, density of binding sites, selectivity, pH sensitivity, and pharmacological profile in reversible binding assays with guinea pig brain homogenates to those displayed by its parent compound, MK-801. When employed in a photo-labeling protocol designed to optimize specific incorporation, (3H)3-azido-MK-801 labeled a single protein band which migrated in sodium dodecyl sulfate-polyacrylamide gels with Mr = 120,000. Incorporation of tritium into this band was completely inhibited when homogenates and (3H)3-azido-MK-801 were coincubated with 10 microM phencyclidine. These datamore » suggest that the phencyclidine site of the NMDA receptor complex is at least in part comprised of a Mr = 120,000 polypeptide.« less

  1. Biocatalytic route to C-3'-azido/-hydroxy-C-4'-spiro-oxetanoribonucleosides.

    PubMed

    Kumar, Manish; Sharma, Vivek K; Kumar, Rajesh; Prasad, Ashok K

    2015-11-19

    The lipase, Novozyme(®)-435, exclusively deacetylates the 5-O-acetyl over 4-C-acetyloxymethyl group of almost identical reactivity in 5-O-acetyl-4-C-acetyloxymethyl-3-azido-3-deoxy-1,2-O-isopropylidene-α-D-ribofuranose that led to the development of first and efficient synthesis of 3'-azido-/3'-amino-C-4'-spiro-oxetanoribonucleosides T, U, C and A in 20-24% overall yields. The X-ray study on the compound obtained by tosylation of lipase-mediated monodeacetylated product unambiguously confirmed the point of diastereoselective monodeacetylation on diacetoxy-azido-ribofuranose derivative. The capability of Novozyme(®)-435 for selective deacylation of 5-O-acetyl group in 5-O-acetyl-4-C-acetyloxymethyl-3-O-benzyl-1,2-O-isopropylidene-α-D-ribofuranose recently discovered by us has been successfully used for the synthesis of C-4'-spiro-oxetanoribonucleosides A and C in good yields. These results clearly indicate that the broader substrate specificity and highly selective capability of Novozyme(®)-435 for carrying out acetylation/deacetylation reactions can be utilized for the development of environment friendly selective methodologies in organic synthesis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Decreasing Distortion Energies without Strain: Diazo-Selective 1,3-Dipolar Cycloadditions.

    PubMed

    Gold, Brian; Aronoff, Matthew R; Raines, Ronald T

    2016-07-15

    The diazo group has attributes that complement those of the azido group for applications in chemical biology. Here, we use computational analyses to provide insights into the chemoselectivity of the diazo group in 1,3-dipolar cycloadditions. Dipole distortion energies are responsible for ∼80% of the overall energetic barrier for these reactions. Here, we show that diazo compounds, unlike azides, provide an opportunity to decrease that barrier substantially without introducing strain into the dipolarophile. The ensuing rate enhancement is due to the greater nucleophilic character of a diazo group compared to that of an azido group, which can accommodate decreased distortion energies without predistortion. The tuning of distortion energies with substituents in a diazo compound or dipolarophile can enhance reactivity and selectivity in a predictable manner. Notably, these advantages of diazo groups are amplified in water. Our findings provide a theoretical framework that can guide the design and application of both diazo compounds and azides in "orthogonal" contexts, especially for biological investigations.

  3. Steering the azido-tetrazole equilibrium of 4-azidopyrimidines via substituent variation - implications for drug design and azide-alkyne cycloadditions.

    PubMed

    Thomann, A; Zapp, J; Hutter, M; Empting, M; Hartmann, R W

    2015-11-21

    This paper focuses on an interesting constitutional isomerism called azido-tetrazole equilibrium which is observed in azido-substituted N-heterocycles. We present a systematic investigation of substituent effects on the isomer ratio within a 2-substituted 4-azidopyrimidine model scaffold. NMR- and IR-spectroscopy as well as X-ray crystallography were employed for thorough analysis and characterization of synthesized derivatives. On the basis of this data, we demonstrate the possibility to steer this valence tautomerism towards the isomer of choice by means of substituent variation. We show that the tetrazole form can act as an efficient disguise for the corresponding azido group masking its well known reactivity in azide-alkyne cycloadditions (ACCs). In copper(I)-catalyzed AAC reactions, substituent-stabilized tetrazoles displayed a highly decreased or even abolished reactivity whereas azides and compounds in the equilibrium were directly converted. By use of an acid sensitive derivative, we provide, to our knowledge, the first experimental basis for a possible exploitation of this dynamic isomerism as a pH-dependent azide-protecting motif for selective SPAAC conjugations in aqueous media. Finally, we demonstrate the applicability and efficiency of stabilized tetrazolo[1,5-c]pyrimidines for Fragment-Based Drug Design (FBDD) in the field of quorum sensing inhibitors.

  4. Targeted Type 1 phototherapeutic agents using azido-peptide bioconjugates

    NASA Astrophysics Data System (ADS)

    Rajagopalan, Raghavan; Achilefu, Samuel I.; Jimenez, Hermo N.; Webb, Elizabeth G.; Schmidt, Michelle A.; Bugaj, Joseph E.; Dorshow, Richard B.

    2001-07-01

    Five peptides binding to somatostatin and bombesin receptors were conjugated to 4-azido-2,3,4,6-tetrafluorophenylbenzoic acid, a Type 1 photosensitizer, at the N-terminal position. The receptor affinities were determined by competition binding assay using two different pancreatic tumor cell lines, CA20948 and AR42-J, that expresses somatostatin-2 (SST-2) and bombesin receptors receptively. All compounds exhibited high receptor specificity, i.e., the IC50 values ranged between 1.0 to 64.0 nM. These conjugates may be useful for targeted Type 1 phototherapy via the generation of nitrenes at the cell surfaces expressing these receptors.

  5. A precursor to the beta-pyranosides of 3-amino-3,6-dideoxy-D-mannose (mycosamine).

    PubMed

    Alais, J; David, S

    1992-06-04

    SN2-type reaction of 3-O-(1-imidazyl)sulfonyl-1,2:5,6-di-O-isopropylidene-alpha-D-gluco furanose with benzoate gave the 3-O-benzoyl-alpha-D-allo derivative 2, which was hydrolysed to give the 5,6-diol 3. Compound 3 was converted into the 6-deoxy-6-iodo derivative 4 which was reduced with tributylstannane, and then position 5 was protected by benzyloxymethylation, to give 3-O-benzoyl-5-O-benzyloxymethyl-6-deoxy-1,2-O-isopropylidene-alpha -D- allofuranose (6). Debenzoylation of 6 gave 7, (1-imidazyl)sulfonylation gave 8, and azide displacement gave 3-azido-5-O-benzyloxymethyl-3,6-dideoxy- 1,2-O-isopropylidene-alpha-D-glucofuranose (9, 85%). Acetolysis of 9 gave 1,2,4-tri-O-acetyl-3-azido-3,6-dideoxy-alpha,beta-D-glucopyranose (10 and 11). Selective hydrolysis of AcO-1 in the mixture of 10 and 11 with hydrazine acetate (----12), followed by conversion into the pyranosyl chloride 13, treatment with N,N-dimethylformamide dimethyl acetal in the presence of tetrabutylammonium bromide, and benzylation gave 3-azido-4-O-benzyl-3,6-dideoxy-1,2-O-(1-methoxyethylidene)-alpha-D -glucopyranose (15). Treatment of 15 with dry acetic acid gave 1,2-di-O-acetyl-3-azido-4-O-benzyl-3,6-dideoxy-beta-D-glucopyranose (16, 86% yield) that was an excellent glycosyl donor in the presence of trimethylsilyl triflate, allowing the synthesis of cyclohexyl 2-O-acetyl-3-azido-4-O-benzyl-3,6-dideoxy-beta-D-glucopyranoside (17, 90%).(ABSTRACT TRUNCATED AT 250 WORDS)

  6. Design, Synthesis and Biological Evaluation of Novel Peptide-Like Analogues as Selective COX-2 Inhibitors

    PubMed Central

    Ahmaditaba, Mohammad Ali; Houshdar Tehrani, Mohammad Hassan; Zarghi, Afshin; Shahosseini, Sorayya; Daraei, Bahram

    2018-01-01

    A new series of peptide-like derivatives containing different aromatic amino acids and possessing pharmacophores of COX-2 inhibitors as SO2Me or N3 attached to the para position of an end phenyl ring was synthesized for evaluation as selective cyclooxygenase-2 (COX-2) inhibitors. The synthetic reactions were based on the solid phase peptide synthesis method using Wang resin. One of the analogues, i.e., compound 2d, as the representative of these series was recognized as the most effective and the highest selective COX-2 inhibitor with IC50 value of 0.08 μM and COX-2 selectivity index of 351.2, among the other synthesized compounds. Molecular docking study was operated to determine possible binding models of compound 2d to COX-2 enzyme. The study showed that the p-azido-phenyl fragment of 2d occupied inside the secondary COX-2 binding site (Arg513, and His90). The structure-activity relationships acquired disclosed that compound 2d with 4-(azido phenyl) group as pharmacophore and histidine as amino acid gives the essential geometry to provide inhibition of the COX-2 enzyme with high selectivity. Compound 2d can be a good candidate for the development of new hits of COX-2 inhibitors.

  7. Exploration for the stabilities of CHN7 and CN7-: A theoretical study on the formation and dissociation mechanisms

    NASA Astrophysics Data System (ADS)

    Yu, Tao; Liu, Ying-Zhe; Lai, Wei-Peng

    2018-03-01

    CHN7 and CN7- are meta-stable species. In order to study on the relationship between thermodynamic and kinetic stabilities, the potential energy surfaces of CHN7 and CN7- were scanned at the B3LYP/aug-cc-pVDZ level. After the analysis of potential energy surfaces, the optimum pathways were got to conclude the dissociation and formation mechanisms. The dissociation barriers of 5-azido-1H-tetrazole and 5-azido-2H-tetrazole are about 150 kJ mol-1. They are sufficient to keep the two azidotetrazoles stable. The reaction between cyanogen azide and azide anion cannot produce azidotetrazolate anion, but produce the linear CN7- with a lower barrier. The reaction between cyanogen azide and hydrazoic acid preferentially produce 5-azido-1H-tetrazole. The decyclization barriers of 1H-tetrazolo[1,5-d]tetrazole and tetrazolo[1,5-d]tetrazolate anion are 44.7 and 81.6 kJ mol-1, respectively. The deprotoned anion is more available than the neutral compound. Heptaazacubane and heptaazacubanide anion with cubic geometries are highly unstable.

  8. Glucosamine and Glucosamine-6-phosphate Derivatives: Catalytic Cofactor Analogs for the glmS Ribozyme

    PubMed Central

    Posakony, Jeffrey J.; Ferré-D'Amaré, Adrian R.

    2013-01-01

    Two analogues of glucosamine-6-phosphate (GlcN6P, 1) and five of glucosamine (GlcN, 2) were prepared for evaluation as catalytic cofactor of the glmS ribozyme, a bacterial gene-regulatory RNA that controls cell wall biosynthesis. Glucosamine and allosamine with 3-azido substitutions were prepared by SN2 reactions of the respective 1,2,4,6-protected sugars; final acidic hydrolysis afforded the fully deprotected compounds as their TFA salts. A 6-phospho-2-aminoglucolactam (31) was prepared from glucosamine in a 13-step synthesis, which included a late-stage POCl3-phosphorylation. A simple and widely applicable 2-step procedure with the triethylsilyl (TES) protecting group was developed to selectively expose the 6-OH group in N-protected glucosamine analogs, which provided another route to chemical phosphorylation. Mitsunobu chemistry afforded 6-cyano (35) and 6-azido (36) analogues of GlcN-(Cbz) and the selectivity for the 6-position was confirmed by NMR (COSY, HMBC, HMQC) experiments. Compound 36 was converted to the fully deprotected 6-azido-GlcN (37) and 2,6-diaminoglucose (38) analogs. A 2-hydroxylamino glucose (42) analogue was prepared via an oxaziridine (41). Enzymatic phosphorylation of 42 and chemical phosphorylation of its 6-OH precursor (43) were possible, but 42 and the 6-phospho product (44) were unstable under neutral or basic conditions. Chemical phosphorylation of the previously described 2-guanidinyl-glucose (46) afforded its 6-phospho analogue (49) after final deprotection. PMID:23578404

  9. Diazo Compounds: Versatile Tools for Chemical Biology.

    PubMed

    Mix, Kalie A; Aronoff, Matthew R; Raines, Ronald T

    2016-12-16

    Diazo groups have broad and tunable reactivity. That and other attributes endow diazo compounds with the potential to be valuable reagents for chemical biologists. The presence of diazo groups in natural products underscores their metabolic stability and anticipates their utility in a biological context. The chemoselectivity of diazo groups, even in the presence of azido groups, presents many opportunities. Already, diazo compounds have served as chemical probes and elicited novel modifications of proteins and nucleic acids. Here, we review advances that have facilitated the chemical synthesis of diazo compounds, and we highlight applications of diazo compounds in the detection and modification of biomolecules.

  10. Study on structure, vibrational analysis and molecular characteristics of some halogen substituted azido-phenylethanones using FTIR spectra and DFT

    NASA Astrophysics Data System (ADS)

    Prashanth, J.; Reddy, Byru Venkatram

    2018-03-01

    The Fourier transform infrared (FTIR) spectra of organic compounds 4-fluoro-2-azido-1-phenylethanone (FAP), 4-chloro-2-azido-1-phenylethanone (CAP) and 4-bromo-2-azido-1-phenylethanone (BAP) have been recorded in the region 4000-400 cm-1. The optimized molecular structure for global minimum energy of the titled molecules is determined by evaluating torsional potentials as a function of rotation angle about free rotation bonds among the substituent groups subjecting them to DFT employing B3LYP functional with 6-311++G (d,p) basis set. The vibrational frequencies along with infrared intensities are computed by SQM procedure. The rms error between observed and calculated frequencies is found to be 9.27, 8.17 and 7.95 cm-1 for FAP, CAP and BAP, respectively which shows good agreement between experimental and scaled values of calculated frequencies obtained by DFT. The vibrational assignments of all the fundamental bands of each molecule are made unambiguously using PED and eigen vectors obtained in the computations. The computed values of dipole moment, polarizability and hyperpolarizability indicate that the titled molecules exhibit NLO behaviour and hence may be considered for potential applicants for the development of NLO materials. HOMO and LUMO energies evaluated in the study demonstrate chemical stability of the molecules. NBO analysis is made to study the stability of the molecules arising from hyper conjugative interactions and charge delocalization. The molecular electrostatic surface potential (MESP) and thermodynamic parameters are also evaluated.

  11. Energetic Azido Compounds

    DTIC Science & Technology

    1980-03-28

    Dr. F. Roberto Lt. S. Clift Naval Weapons Center 3 Mr. ;. Geisler Chi•a Lakre, CA 93555 4a Attn: Dr. A. Amsrer, Code 385 U.S. Army Research Office I...Research Naval: Weapons Center 1 Directorate of Chemical Sciences China Lake, CA 93555 Bolling Air Force Base Attn: Mr. H. Richter, Code 3858

  12. Synthesis, molecular structure and physicochemical properties of bis(3‧-azido-3‧-deoxythymidin-5‧-yl) carbonate

    NASA Astrophysics Data System (ADS)

    Raviolo, Mónica A.; Williams, Patricia A. M.; Etcheverry, Susana B.; Piro, Oscar E.; Castellano, Eduardo E.; Gualdesi, Maria S.; Briñón, Margarita C.

    2010-04-01

    3'-Azido-3'-deoxythymidine (zidovudine, AZT), a synthetic analog of natural nucleoside thymidine, has been used extensively in AIDS treatments. We report here the synthesis, X-ray crystal and molecular structure, NMR, IR and Raman spectra and the thermal behavior of a novel carbonate of AZT [(AZT-O) 2C dbnd O], prepared by the reaction of zidovudine with carbonyldiimidazole. The carbonate compound, C 21H 24N 10O 9, crystallizes in the tetragonal space group P4 12 12 with a = b = 15.284(1), c = 21.695(1) Å, and Z = 8 molecules per unit cell. It consists of two AZT moieties of closely related conformations which are bridged by a carbonyl group to adopt a folded Z-like shape.

  13. Conversion of Azides into Diazo Compounds in Water

    PubMed Central

    Chou, Ho-Hsuan; Raines, Ronald T.

    2013-01-01

    Diazo compounds are in widespread use in synthetic organic chemistry, but have untapped potential in chemical biology. We report on the design and optimization of a phosphinoester that mediates the efficient conversion of azides into diazo compounds in phosphate buffer at neutral pH and room temperature. High yields are maintained in the presence of common nucleophilic or electrophilic functional groups, and reaction progress can be monitored by colorimetry. As azido groups are easy to install and maintain in biopolymers or their ligands, this new mode of azide reactivity could have substantial utility in chemical biology. PMID:24053717

  14. Unprecedented intramolecular [3 + 2] cycloadditions of azido-ketenimines and azido-carbodiimides. Synthesis of indolo[1,2-a]quinazolines and tetrazolo[5,1-b]quinazolines.

    PubMed

    Alajarin, Mateo; Bonillo, Baltasar; Ortin, Maria-Mar; Orenes, Raul-Angel; Vidal, Angel

    2011-10-07

    N-(2-azidomethyl)phenyl ketenimines and N-(2-azidomethyl)phenyl-N'-alkyl(aryl) carbodiimides undergo, under mild thermal conditions, intramolecular [3 + 2] cycloaddition reactions between the azido group and either the C=C or the distal C=N double bonds of the ketenimine and carbodiimide functions respectively. The reaction products are indolo[1,2-a]quinazolines and/or indolo[2,1-b]quinazolines in the case of azido-ketenimines, and tetrazolo[5,1-b]quinazolines in the case of azido-carbodiimides. The formation of the two classes of indoloquinazolines implies the ulterior dinitrogen extrusion from the non-isolated, putative [3 + 2] cycloadducts between the azide and ketenimine functions, whereas in the case of azido-carbodiimides the initial cycloadducts, tetrazoloquinazolines, were cleanly isolated and further converted into 2-aminoquinazolines by thermally induced dinitrogen extrusion.

  15. Substrate mimicry: HIV-1 reverse transcriptase recognizes 6-modified-3′-azido-2′,3′-dideoxyguanosine-5′-triphosphates as adenosine analogs

    PubMed Central

    Herman, Brian D.; Schinazi, Raymond F.; Zhang, Hong-wang; Nettles, James H.; Stanton, Richard; Detorio, Mervi; Obikhod, Aleksandr; Pradère, Ugo; Coats, Steven J.; Mellors, John W.; Sluis-Cremer, Nicolas

    2012-01-01

    β-D-3′-Azido-2′,3′-dideoxyguanosine (3′-azido-ddG) is a potent inhibitor of HIV-1 replication with a superior resistance profile to zidovudine. Recently, we identified five novel 6-modified-3′-azido-ddG analogs that exhibit similar or superior anti-HIV-1 activity compared to 3′-azido-ddG in primary cells. To gain insight into their structure–activity–resistance relationships, we synthesized their triphosphate (TP) forms and assessed their ability to inhibit HIV-1 reverse transcriptase (RT). Steady-state and pre-steady-state kinetic experiments show that the 6-modified-3′-azido-ddGTP analogs act as adenosine rather than guanosine mimetics in DNA synthesis reactions. The order of potency of the TP analogs against wild-type RT was: 3′-azido-2,6-diaminopurine >3′-azido-6-chloropurine; 3′-azido-6-N-allylaminopurine > 2-amino-6-N,N-dimethylaminopurine; 2-amino-6-methoxypurine. Molecular modeling studies reveal unique hydrogen-bonding interactions between the nucleotide analogs and the template thymine base in the active site of RT. Surprisingly, the structure–activity relationship of the analogs differed in HIV-1 RT ATP-mediated excision assays of their monophosphate forms, suggesting that it may be possible to rationally design a modified base analog that is efficiently incorporated by RT but serves as a poor substrate for ATP-mediated excision reactions. Overall, these studies identify a promising strategy to design novel nucleoside analogs that exert profound antiviral activity against both WT and drug-resistant HIV-1. PMID:21914723

  16. Synthesis of novel 3'-azido-3'-deoxy-α-L-ribo configured nucleosides: A comparative study between chemical and chemo-enzymatic methodologies.

    PubMed

    Rana, Neha; Kumar, Manish; Singh, Ankita; Maity, Jyotirmoy; Shukla, Poonam; Prasad, Ashok K

    2018-05-03

    Syntheses of novel 3'-azido-3'-deoxy-2'-O,4'-C-methylene-α-L-ribofuranosyl nucleosides have been carried out from 3'-azido-3'-deoxy-4'-C-hydroxymethyl-β-D-xylofuranosyl nucleosides following both chemical and chemo-enzymatic methodologies. The precursor nucleoside in turn was synthesized from a common glycosyl donor 4-C-acetoxymethyl-1,2,5-tri-O-acetyl-3-azido-3-deoxy-α,β-D-xylofuranose, which was obtained by the acetolysis of 4-C-acetoxymethyl-5-O-acetyl-3-azido-3-deoxy-1,2-O-isopropylidene-α-D-xylofuranose in 96% yield. It has been observed that a chemo-enzymatic pathway for the synthesis of targeted nucleosides is much more efficient than a chemical pathway, leading to the improvement in yield for the synthesis of 3'-azido-3'-deoxy-α-L-ribofuranosyl thymine and uracil from 49 to 89% and 55 to 93%, respectively.

  17. The n-propyl 3-azido-2,3-dideoxy-β-D-arabino-hexopyranoside: Syntheses, crystal structure, physical properties and stability constants of their complexes with Cu(II), Ni(II) and VO(II)

    NASA Astrophysics Data System (ADS)

    Barabaś, Anna; Madura, Izabela D.; Marek, Paulina H.; Dąbrowska, Aleksandra M.

    2017-11-01

    The structure, conformation and configuration of the n-propyl 3-azido-2,3-dideoxy-β-D-arabino-hexopyranoside (BAra-nPr) were determined by 1H NMR, 13C NMR, and IR spectroscopy, as well as by optical rotation. The crystal structure was confirmed by single-crystal X-ray diffraction studies at room temperature. The compound crystallizes in P21 space group symmetry of the monoclinic system. The molecule has a 4C1 chair conformation with azide group in the equatorial position both in a solution as well as in the crystal. The spatial arrangement of azide group is compared to other previously determined azidosugars. The hydrogen bonds between the hydroxyl group of sugar molecules lead to a ribbon structure observed also for the ethyl homolog. The packing of ribbons is dependent on the alkyl substituent length and with the elongation changes from pseudohexagonal to lamellar. Acidity constants for the n-propyl 3-azido-2,3-dideoxy-β-D-arabino-hexopyranoside (BAra-nPr) in an aqueous solution were evaluated by the spectrophotometric and potentiometric titrations methods. Title compound exhibit blue absorption with the maximum wavelengths in the range of 266 nm and 306 nm. Based on these measurements we showed equilibria existing in a particular solution and a distribution of species which have formed during the titration. We also investigated interactions between Cu(II), Ni(II) and VO(II) and title compound (as ligand L) during complexometric titration. On these bases we identified that in [CuII-BAra-nPr]2+ the ratio of the ligand L to metal ion M(II) was 3:1, while in [NiII-BAra-nPr]2+ and [VOII-BAra-nPr]2+ complexes 2:1 ratios were found. The cumulative stability constants (as log β) occurring in an aqueous solution for the complexes of BAra-nPr with Cu(II), Ni(II) and VO(IV) were 14.57; 11.71 and 4.20, respectively.

  18. Photoaffinity labeling of an herbicide receptor protein in chloroplast membranes

    PubMed Central

    Pfister, Klaus; Steinback, Katherine E.; Gardner, Gary; Arntzen, Charles J.

    1981-01-01

    2-Azido-4-ethylamino-6-isopropylamino-s-triazine (azido-atrazine) inhibits photosynthetic electron transport at a site identical to that affected by atrazine (2-chloro-4-ethylamino-6-isopropylamino-s-triazine). The latter is a well-characterized inhibitor of photosystem II reactions. Azido-atrazine was used as a photoaffinity label to identify the herbicide receptor protein; UV irradiation of chloroplast thylakoids in the presence of azido[14C]atrazine resulted in the covalent attachment of radioactive inhibitor to thylakoid membranes isolated from pea seedlings and from a triazine-susceptible biotype of the weed Amaranthus hybridus. No covalent binding of azido-atrazine was observed for thylakoid membranes isolated from a naturally occurring triazine-resistant biotype of A. hybridus. Analysis of thylakoid polypeptides from both the susceptible and resistant A. hybridus biotypes by sodium dodecyl sulfate/polyacrylamide gel electrophoresis, followed by fluorography to locate 14C label, demonstrated specific association of the azido[14C]atrazine with polypeptides of the 34- to 32-kilodalton size class in susceptible but not in resistant membranes. Images PMID:16592984

  19. Synthesis and Explosion Hazards of 4-Azido-l-phenylalanine.

    PubMed

    Richardson, Mark B; Brown, Derek B; Vasquez, Carlos A; Ziller, Joseph W; Johnston, Kevin M; Weiss, Gregory A

    2018-04-20

    A reliable, scalable, cost-effective, and chromatography-free synthesis of 4-azido-l-phenylalanine beginning from l-phenylalanine is described. Investigations into the safety of the synthesis reveal that the Ullman-like Cu(I)-catalyzed azidation step does not represent a significant risk. The isolated 4-azido-l-phenylalanine product, however, exhibits previously undocumented explosive characteristics.

  20. trans-Bis(azido-kappaN)bis(pyridine-2-carboxamide-kappa2N1,O2)nickel(II).

    PubMed

    Daković, Marijana; Popović, Zora

    2007-11-01

    In the title compound, [Ni(N(3))(2)(C(6)H(6)N(2)O)(2)], the Ni(II) atom lies on an inversion centre. The distorted octahedral nickel(II) coordination environment contains two planar trans-related N,O-chelating picolinamide ligands in one plane and two monodentate azide ligands perpendicular to this plane. Molecules are linked into a three-dimensional framework by N-H...N hydrogen bonds.

  1. Identification of the ubiquinone-binding domain in the disulfide catalyst disulfide bond protein B.

    PubMed

    Xie, Tong; Yu, Linda; Bader, Martin W; Bardwell, James C A; Yu, Chang-An

    2002-01-18

    Disulfide bond (Dsb) formation is catalyzed in the periplasm of prokaryotes by the Dsb proteins. DsbB, a key enzyme in this process, generates disulfides de novo by using the oxidizing power of quinones. To explore the mechanism of this newly described enzymatic activity, we decided to study the ubiquinone-protein interaction and identify the ubiquinone-binding domain in DsbB by cross-linking to photoactivatable quinone analogues. When purified Escherichia coli DsbB was incubated with an azidoubiquinone derivative, 3-azido-2-methyl-5-[(3)H]methoxy-6-decyl-1,4-benzoquinone ([(3)H]azido-Q), and illuminated with long wavelength UV light, the decrease in enzymatic activity correlated with the amount of 3-azido-2-methyl-5-methoxy-6-decyl-1,4-benzoquinone (azido-Q) incorporated into the protein. One azido-Q-linked peptide with a retention time of 33.5 min was obtained by high performance liquid chromatography of the V8 digest of [(3)H]azido-Q-labeled DsbB. This peptide has a partial NH(2)-terminal amino acid sequence of NH(2)-HTMLQLY corresponding to residues 91-97. This sequence occurs in the second periplasmic domain of the inner membrane protein DsbB in a loop connecting transmembrane helices 3 and 4. We propose that the quinone-binding site is within or very near to this sequence.

  2. Synthesis and evaluation of 3-modified 1D-myo-inositols as inhibitors and substrates of phosphatidylinositol synthase and inhibitors of myo-inositol uptake by cells.

    PubMed

    Johnson, S C; Dahl, J; Shih, T L; Schedler, D J; Anderson, L; Benjamin, T L; Baker, D C

    1993-11-12

    A number of 3-substituted 1D-myo-inositols were synthesized and evaluated as substrates for phosphatidylinositol synthase and uptake by intact cells. 1D-3-Amino-, -3-chloro-, and -3-(acetylthio)-3-deoxy-myo-inositols were all synthesized by nucleophilic displacement of the 6-O-(trifluoromethyl)sulfonyl group of 1L-1,2:3,4-di-O-cyclohexylidene-5-O-methyl-6-O-[(trifluoromethyl)-sulfon yl] - chiro-inositol (which was prepared from L-quebrachitol), respectively, by reaction with LiN3, followed by reduction of the azido function, and with LiCl and KSAc to give the O-protected compounds. O-Demethylation using BBr3 and concomitant acetal hydrolysis furnished the free-hydroxy 3-amino- and 3-chloro-3-deoxy-1D-myo-inositols. The 3-mercapto analogue was obtained by removal of the acetal groups of the acetylthio analogue, followed by acetylation and purification of the peracetate, and subsequent O-demethylation and deacetylation. The 3-deoxy derivative was synthesized from the 6-O-(imidazol-1-ylthiocarbonyl) compound via Barton-McCombie deoxygenation. The 3-azido derivative was directly synthesized from 1L-1-O-tosyl-chiro-inositol via displacement with azide. The 3-keto analogue was prepared by Pt-catalyzed air oxidation of 1L-chiro-inositol. The compounds were all evaluated as substrates for phosphatidylinositol (PtdIns) synthase from mouse brain. The 3-NH2, 3-F, 3-deoxy, and 3-keto analogues all showed activity as substrates, as measured by liberation of cytidine monophosphate. These compounds also showed inhibition of the reaction of myo-[3H]inositol with PtdIns synthase. These results taken together indicate that these compounds are likely to be incorporated into phospholipids. As a further indication that these compounds might be useful as probes for the PtdIns pathway, it was demonstrated that the 3-NH2, 3-F, and 3-deoxy compounds are taken up by intact fibroblast cells as evidenced by their competing with myo-[3H]inositol uptake.

  3. Ratiometric Fluorescence Azide-Alkyne Cycloaddition for Live Mammalian Cell Imaging.

    PubMed

    Fu, Hongxia; Li, Yanru; Sun, Lingbo; He, Pan; Duan, Xinrui

    2015-11-17

    Click chemistry with metabolic labeling has been widely used for selectively imaging biomacromolecules in cells. The first example of azide-alkyne cycloaddition for ratiometric fluorescent imaging of live cells is reported. The precursor of the azido fluorophore (cresyl violet) has a fluorescence emission peak at 620 nm. The electron-rich nitrogen of the azido group blue-shifts the emission peak to 566 nm. When the click reaction occurs, an emission peak appears at 620 nm due to the lower electronic density of the newly formed triazole ring, which allows us to ratiometrically record fluorescence signals. This emission shift was applied to ratiometric imaging of propargylcholine- and dibenzocyclooctyne-labeled human breast cancer cells MCF-7 under laser confocal microscopy. Two typical triazole compounds were isolated for photophysical parameter measurements. The emission spectra presented a fluorescence emission peak around 620 nm for both click products. The results further confirmed the emission wavelength change was the result of azide-alkyne cycloaddition reaction. Since nearly all biomolecules can be metabolically labeled by reported alkyne-functionalized derivatives of native metabolites, our method can be readily applied to image these biomacromolecules.

  4. From Mesocates to Helicates: Structural, Magnetic and Chiro-Optical Studies on Nickel(II) Supramolecular Assemblies Derived from Tetradentate Schiff Bases.

    PubMed

    Mayans, Júlia; Font-Bardia, Mercè; Di Bari, Lorenzo; Arrico, Lorenzo; Zinna, Francesco; Pescitelli, Gennaro; Escuer, Albert

    2018-05-28

    The systematic reactions of a family of tetradentate pyridyl/imine and quinolyl/imine racemic or enantiopure Schiff bases with Ni(NO 3 ) 2 or Ni(ClO 4 ) 2 in the presence of sodium azide yielded, as a function of the starting racemic, chiral or achiral base, a set of chiral, meso or achiral complexes. In all cases, the compounds consist of two Ni II cations linked by a double azido bridge in its end-on coordination mode. All the dimers exhibit a mesocate supramolecular structure and one of them, the unprecedented mix of helicate and mesocate in 2:1 ratio. The transition from mesocate to helicate conformation has been reached by tuning the flexibility of the central spacers of the Schiff bases and the size of the substituents. Electronic circular dichroism (ECD) studies have been performed for two pairs of enantiomers and interpreted by means of DFT calculations. Susceptibility measurements show a ferromagnetic coupling between the Ni II cations mediated by the end-on azido bridges. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Tetrazolo(1,5-A)pyridines and Furazano(4,5-B)pyridine-1-oxides as Energetic Materials

    DTIC Science & Technology

    1989-04-01

    alpyridine was isolated, contaminated with about 10% of 16. The azido compound was charac- terized by IR and NMR spectroscopy, and the structure (15...Applications of Nuclear Magnetic Resonance Spectroscopy to Organic Chemistry," Record of Chemical Progress, 23 ( 1962 ), p. 223. 16. A. J. Boulton and A. R...Katritzky. "A New Heterocyclic Rearrangement," Proc. Chem. Soc. ( 1962 ), p. 257. 1 7. A. P. Chafin and D. W. Moore. Unpublished results; F. A. L. Anet

  6. Co(III)(salen)-catalyzed phenolic kinetic resolution of two stereocentered benzyloxy and azido epoxides: its application in the synthesis of ICI-118,551, an anti-hypertensive agent.

    PubMed

    Karabal, Pratibha U; Kamble, Dayanand A; Sudalai, Arumugam

    2014-04-21

    The salen Co(III)-catalyzed phenolic kinetic resolution of racemic anti- or syn-azido and benzyloxy epoxides provides a practical route to a range of enantioenriched anti- or syn-1-aryloxy-3-azido or benzyloxy-2-alcohols in excellent yields and ees. The synthetic potential of this protocol is illustrated with an enantioselective synthesis of ICI-118,551, a β-blocker, in a highly optically pure form (99% ee).

  7. Photoinduced azidohydroperoxidation of myrtenyl hydroperoxide with semiconductor particles and lucigenin as PET-catalysts.

    PubMed

    Griesbeck, Axel G; Reckenthäler, Melissa; Uhlig, Johannes

    2010-06-01

    The allylic hydroperoxide 2 (myrtenyl hydroperoxide), available from singlet oxygen photooxygenation of beta-pinene (1), is converted into the azido bis-hydroperoxide 3 by an electron-transfer induced azidyl radical formation and trapping of the initial tertiary carbon radical by triplet oxygen. The azido bis-hydroperoxide 3 is reduced to the azido 1,2-diol 4 or the amino diol 5, respectively. Beside classical fluorescent PET sensitizers such as rhodamines, also nanosized semiconductor particles as well as lucigenin were applied as catalysts. The electron transfer rate of azide oxidation was determined for lucigenin by fluorescence quenching analysis.

  8. 1-(4-(6-Fluorobenzo [d] isoxazol-3-yl) piperidin-1-yl)-2-(4-(hydroxymethyl)-1H-1,2,3-triazol-1-yl) ethanone: Synthesis, spectroscopic characterization, Hirshfeld surface analysis, cytotoxic studies and docking studies

    NASA Astrophysics Data System (ADS)

    Govindhan, M.; Viswanathan, V.; Karthikeyan, S.; Subramanian, K.; Velmurugan, D.

    2017-08-01

    Compound 1-(4-(6-fluorobenzo[d] isoxazol-3-yl) piperidin-1-yl)-2-(4-(hydroxymethyl)-1H-1, 2,3-triazol-1-yl) ethanone was synthesized in good yield by using click chemistry approach with 2-azido-1-(4-(6-flurobenzo[d]isooxazol-3-yl)piperidin-1-yl)ethanone as a starting material. The synthesized compound was characterized using IR, NMR and MS studies. Thermal stability of the compound was analyzed by using TGA and DSC technique. The single crystal XRD analysis was taken part, to confirm the structure of the compound. The intercontacts in the crystal structure are analyzed using Hirshfeld surfaces computational method. Cytotoxicity of the synthesized compound was evaluated and the results were reported. The binding analysis carried out between the newly synthesized molecule with human serum albumin using fluorescence spectroscopy technique to understand the pharmacokinetics nature of the compound for further biological application. The molecular docking studies were evaluated for the compound to elucidate insights of new molecules in carrier protein.

  9. Synthesis of the biologically active natural product cyclodepsipeptides apratoxin A and its analogues.

    PubMed

    Doi, Takayuki

    2014-01-01

    This paper describes the synthetic studies conducted on a marine natural product, cyclodepsipeptide apratoxin A. Total synthesis of the oxazoline analogue of apratoxin A was achieved. The conversion of oxazoline to thioamide, as well as thioamide formation from a serine-derived compound, were both unsuccessful. However, thiazoline formation from a cysteine-derived compound led to the total synthesis of apratoxin A. An in vivo study on synthetic apratoxin A revealed that it has potent antitumor activity, but with significant toxicity. Solid-phase synthesis of apratoxin A was accomplished using a preformed thiazoline derivative as a coupling unit. This method was used to synthesize several azido-containing analogues as precursors of molecular probes, and these analogues exhibited potent biological activity.

  10. An Azido-Biotin Reagent for Use in the Isolation of Protein Adducts of Lipid-derived Electrophiles by Streptavidin Catch and Photorelease*

    PubMed Central

    Kim, Hye-Young H.; Tallman, Keri A.; Liebler, Daniel C.; Porter, Ned A.

    2009-01-01

    HNE (4-hydroxynonenal), a byproduct of lipid peroxidation, reacts with nucleophilic centers on proteins. A terminal alkynyl analog of HNE (alkynyl HNE, aHNE) serves as a surrogate for HNE itself, both compounds reacting with protein amine and thiol functional groups by similar chemistry. Proteins modified with aHNE undergo reaction with a click reagent that bears azido and biotin groups separated by a photocleavable linker. Peptides and proteins modified in this way are affinity purified on streptavidin beads. Photolysis of the beads with a low intensity UV light releases bound biotinylated proteins or peptides, i.e. proteins or peptides modified by aHNE. Two strategies, (a) protein catch and photorelease and (b) peptide catch and photorelease, are employed to enrich adducted proteins or peptide mixtures highly enriched in adducts. Proteomics analysis of the streptavidin-purified peptides by LC-MS/MS permits identification of the adduction site. Identification of 30 separate peptides from human serum albumin by peptide catch and photorelease reveals 18 different aHNE adduction sites on the protein. Protein catch and photorelease shows that both HSA and ApoA1 in human plasma undergo significant modification by aHNE. PMID:19483245

  11. Diazo Groups Endure Metabolism and Enable Chemoselectivity in Cellulo

    PubMed Central

    2015-01-01

    We introduce a stabilized diazo group as a reporter for chemical biology. ManDiaz, which is a diazo derivative of N-acetylmannosamine, is found to endure cellular metabolism and label the surface of a mammalian cell. There its diazo group can undergo a 1,3-dipolar cycloaddition with a strained alkyne, providing a signal comparable to that from the azido congener, ManNAz. The chemoselectivity of diazo and alkynyl groups enables dual labeling of cells that is not possible with azido and alkynyl groups. Thus, the diazo group, which is approximately half the size of an azido group, provides unique opportunities for orthogonal labeling of cellular components. PMID:25658416

  12. Diazo groups endure metabolism and enable chemoselectivity in cellulo.

    PubMed

    Andersen, Kristen A; Aronoff, Matthew R; McGrath, Nicholas A; Raines, Ronald T

    2015-02-25

    We introduce a stabilized diazo group as a reporter for chemical biology. ManDiaz, which is a diazo derivative of N-acetylmannosamine, is found to endure cellular metabolism and label the surface of a mammalian cell. There its diazo group can undergo a 1,3-dipolar cycloaddition with a strained alkyne, providing a signal comparable to that from the azido congener, ManNAz. The chemoselectivity of diazo and alkynyl groups enables dual labeling of cells that is not possible with azido and alkynyl groups. Thus, the diazo group, which is approximately half the size of an azido group, provides unique opportunities for orthogonal labeling of cellular components.

  13. Synthesis and characterization of a 1D chain-like Cu{sub 6} substituted sandwich-type phosphotungstate with pendant dinuclear Cu–azido complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yan-Ying; Zhao, Jun-Wei, E-mail: zhaojunwei@henu.edu.cn; Wei, Qi

    A novel Cu–azido complex modified hexa-Cu{sup II} substituted sandwich-type phosphotungstate [Cu(en){sub 2}]([Cu{sub 2}(en){sub 2}(μ-1,1-N{sub 3}){sub 2}(H{sub 2}O)]{sub 2}[Cu{sub 6}(en){sub 2}(H{sub 2}O){sub 2}(B-α-PW{sub 9}O{sub 34}){sub 2}])·6H{sub 2}O (1) (en=ethylene-diamine) has been prepared under hydrothermal conditions and structurally characterized by elemental analyses, IR spectra, powder X-ray diffraction (PXRD) and single-crystal X-ray diffraction. 1 displays a beautiful 1-D chain architecture constructed from sandwich-type [Cu{sub 2}(en){sub 2}(μ-1,1-N{sub 3}){sub 2}(H{sub 2}O)]{sub 2}[Cu{sub 6}(en){sub 2}(H{sub 2}O){sub 2}(B-α-PW{sub 9}O{sub 34}){sub 2}]{sup 2−} units and [Cu(en){sub 2}]{sup 2+} linkers. To our knowledge, 1 represents the first hexa-Cu{sup II} sandwiched phosphotungstate with supporting Cu–azido complexes. - Graphical abstract: Themore » first hexa-Cu{sup II} sandwiched phosphotungstate with supporting Cu–azido complexes has been prepared and characterized. Display Omitted - Highlights: • Hexa-copper-substituted phosphotungstate. • Cu–azido complexes modified hexa-Cu{sup II} substituted sandwich-type polyoxometalate. • 1-D chain architecture built by hexa-copper-substituted polyoxotungstate units.« less

  14. Azido and tetrazolo 1,2,4,5-tetrazine N-oxides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chavez, David E.; Parrish, Damon A.; Mitchell, Lauren

    2017-02-23

    This paper presents the synthesis and characterization of the oxidation products of 3,6-diazido-1,2,4,5-tetrazine (1) and 6-amino-[1,5-b]tetrazolo-1,2,4,5-tetrazine (2). 3,6-Diazido-1,2,4,5-tetrazine-1,4-dioxide was produced from oxidation with peroxytrifluoroacetic acid, and more effectively using hypofluorous acid, and 2 can be oxidized to two different products, 6-amino-[1,5-b]tetrazolo-1,2,4,5-tetrazine mono-N-oxide and di-N-oxide. These N-oxide compounds display promising performance properties as energetic materials.

  15. Direct imaging of glycans in Arabidopsis roots via click labeling of metabolically incorporated azido-monosaccharides.

    PubMed

    Hoogenboom, Jorin; Berghuis, Nathalja; Cramer, Dario; Geurts, Rene; Zuilhof, Han; Wennekes, Tom

    2016-10-10

    Carbohydrates, also called glycans, play a crucial but not fully understood role in plant health and development. The non-template driven formation of glycans makes it impossible to image them in vivo with genetically encoded fluorescent tags and related molecular biology approaches. A solution to this problem is the use of tailor-made glycan analogs that are metabolically incorporated by the plant into its glycans. These metabolically incorporated probes can be visualized, but techniques documented so far use toxic copper-catalyzed labeling. To further expand our knowledge of plant glycobiology by direct imaging of its glycans via this method, there is need for novel click-compatible glycan analogs for plants that can be bioorthogonally labelled via copper-free techniques. Arabidopsis seedlings were incubated with azido-containing monosaccharide analogs of N-acetylglucosamine, N-acetylgalactosamine, L-fucose, and L-arabinofuranose. These azido-monosaccharides were metabolically incorporated in plant cell wall glycans of Arabidopsis seedlings. Control experiments indicated active metabolic incorporation of the azido-monosaccharide analogs into glycans rather than through non-specific absorption of the glycan analogs onto the plant cell wall. Successful copper-free labeling reactions were performed, namely an inverse-electron demand Diels-Alder cycloaddition reaction using an incorporated N-acetylglucosamine analog, and a strain-promoted azide-alkyne click reaction. All evaluated azido-monosaccharide analogs were observed to be non-toxic at the used concentrations under normal growth conditions. Our results for the metabolic incorporation and fluorescent labeling of these azido-monosaccharide analogs expand the possibilities for studying plant glycans by direct imaging. Overall we successfully evaluated five azido-monosaccharide analogs for their ability to be metabolically incorporated in Arabidopsis roots and their imaging after fluorescent labeling. This expands the molecular toolbox for direct glycan imaging in plants, from three to eight glycan analogs, which enables more extensive future studies of spatiotemporal glycan dynamics in a wide variety of plant tissues and species. We also show, for the first time in metabolic labeling and imaging of plant glycans, the potential of two copper-free click chemistry methods that are bio-orthogonal and lead to more uniform labeling. These improved labeling methods can be generalized and extended to already existing and future click chemistry-enabled monosaccharide analogs in Arabidopsis.

  16. Enantioselective Synthesis of Chiral α-Azido and α-Aryloxy Quaternary Stereogenic Centers via the Phase-Transfer-Catalyzed α-Alkylation of α-Bromomalonates, Followed by SN2 Substitution.

    PubMed

    Kim, Doyoung; Ha, Min Woo; Hong, Suckchang; Park, Cheonhyoung; Kim, Byungsoo; Yang, Jewon; Park, Hyeung-Geun

    2017-05-05

    A new efficient synthetic method for chiral α-azido-α-alkylmalonates and α-aryloxy-α-alkylmalonates was developed. The enantioselective α-alkylation of diphenylmethyl tert-butyl α-bromomalonate under phase-transfer catalytic conditions [(S,S)-3,4,5-trifluorophenyl-NAS bromide, 50% KOH, toluene, and -40 °C) provided the corresponding α-bromo-α-alkylmalonates in high chemical yields (≤98%) and high optical yields (≤99% ee). The resulting α-alkylated products were converted to α-azido-α-alkylmalonates (≤96%, ≤97% ee) and α-aryloxy-α-alkylmalonates (≤79%, ≤93% ee) by S N 2 substitution with sodium azide and aryloxides, respectively.

  17. A 3D complex containing novel 2D Cu{sup II}-azido layers: Structure, magnetic properties and effects of 'Non-innocent' reagent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Xue-Miao; Guo, Qian; Zhao, Jiong-Peng, E-mail: horryzhao@yahoo.com

    A novel copper-azido coordination polymer, [Cu{sub 2}(N{sub 3}){sub 3}(L)]{sub n} (1, HL=pyrazine-2-carboxylic acid), has been synthesized by hydrothermal reaction with 'Non-innocent' reagent in the aqueous solution. In the reaction system, Cu{sup II} ions are avoided to reduce to Cu{sup I} ions due to the existence of Nd{sup III}. It is found that the complex is a 3D structure based on two double EO azido bridged trimmers and octahedron Cu{sup II} ions, in which the azide ligands take on EO and {mu}{sub 1,1,3} mode to form Cu{sup II}-azido 2D layers, furthermore L ligands pillar 2D layers into an infinite 3D frameworkmore » with the Schlaefli symbol of {l_brace}4;6{sup 2}{r_brace}4{l_brace}4{sup 2};6{sup 12};8{sup 10};10{sup 4}{r_brace}{l_brace}4{sup 2};6{sup 4}{r_brace}. Magnetic studies revealed that the interactions between the Cu{sup II} ions in the trimmer are ferromagnetic for the Cu-N-Cu angle nearly 98 Degree-Sign , while the interactions between the trimmer and octahedron Cu{sup II} ion are antiferromgantic and result in an antiferromagnetic state. - Graphical abstract: A 3D complex containing novel 2D Cu{sup II}-azido layers, [Cu{sub 2}(N{sub 3}){sub 3}(L)]{sub n} (HL=pyrazine-2-carboxylic acid), was synthesized by hydrothermal reaction and exhibit interesting structure and magnetic properties. Highlights: Black-Right-Pointing-Pointer 'Non-innocent' reagents plays a key role in the process of formation of this complex. Black-Right-Pointing-Pointer 2D layer is formed only by Cu{sup II} ions and azido ligands. Black-Right-Pointing-Pointer Pyrazine-2-carboxylate ligands reinforce 2D layers and pillar them into an infinite 3D framework. Black-Right-Pointing-Pointer Magnetic study indicates that alternating FM-AF coupling exists in the complex.« less

  18. Divergent Synthesis of Solanidine and 22-epi-Solanidine.

    PubMed

    Hou, Ling-Li; Shi, Yong; Zhang, Zhi-Dan; Wu, Jing-Jing; Yang, Qing-Xiong; Tian, Wei-Sheng

    2017-07-21

    A divergent synthesis of solanidine and 22-epi-solanidine, two 25S natural steroidal alkaloids, from 25R-configured diosgenin acetate, is described. Initially, solanidine was synthesized through a series of transformations including a cascade ring-switching process of furostan-26-acid, an epimerization of C25 controlled by the conformation of six-membered lactone ring, an intramolecular Schmidt reaction, and an imine reduction/intramolecular aminolysis process. To address the epimerization issue during Schmidt reaction, an improved synthesis was developed, which also led to a synthesis of 22-epi-solanidine. In this synthesis, selective transformation of azido lactone to azido diol and amino diol was realized through a reduction relay tactic. The azido diol was transformed to solanidine via an intramolecular Schmidt reaction/N-alkylation/reduction process and to 22-epi-solanidine via an intramolecular double N-alkylation process.

  19. Protein conformation by EPR spectroscopy using gadolinium tags clicked to genetically encoded p-azido-L-phenylalanine.

    PubMed

    Abdelkader, E H; Feintuch, A; Yao, X; Adams, L A; Aurelio, L; Graham, B; Goldfarb, D; Otting, G

    2015-11-14

    Quantitative cysteine-independent ligation of a Gd(3+) tag to genetically encoded p-azido-L-phenylalanine via Cu(I)-catalyzed click chemistry is shown to deliver an exceptionally powerful tool for Gd(3+)-Gd(3+) distance measurements by double electron-electron resonance (DEER) experiments, as the position of the Gd(3+) ion relative to the protein can be predicted with high accuracy.

  20. Regioselective SN2 reactions for rapid syntheses of azido-inositols by one-pot sequence-specific nucleophilysis.

    PubMed

    Ravi, Arthi; Hassan, Syed Zahid; Vanikrishna, Ajithkumar N; Sureshan, Kana M

    2017-04-04

    Triflates of myo-inositol undergo facile solvolysis in DMSO and DMF yielding S N 2 products substituted with O-nucleophiles; DMF showed slower kinetics. Axial O-triflate undergoes faster substitution than equatorial O-triflate. By exploiting this difference in kinetics, solvent-tuning and sequence-controlled nucleophilysis, rapid synthesis of three azido-inositols of myo-configuration from myo-inositol itself has been achieved.

  1. Genetically-encoded Molecular Probes to Study G Protein-coupled Receptors

    PubMed Central

    Naganathan, Saranga; Grunbeck, Amy; Tian, He; Huber, Thomas; Sakmar, Thomas P.

    2013-01-01

    To facilitate structural and dynamic studies of G protein-coupled receptor (GPCR) signaling complexes, new approaches are required to introduce informative probes or labels into expressed receptors that do not perturb receptor function. We used amber codon suppression technology to genetically-encode the unnatural amino acid, p-azido-L-phenylalanine (azF) at various targeted positions in GPCRs heterologously expressed in mammalian cells. The versatility of the azido group is illustrated here in different applications to study GPCRs in their native cellular environment or under detergent solubilized conditions. First, we demonstrate a cell-based targeted photocrosslinking technology to identify the residues in the ligand-binding pocket of GPCR where a tritium-labeled small-molecule ligand is crosslinked to a genetically-encoded azido amino acid. We then demonstrate site-specific modification of GPCRs by the bioorthogonal Staudinger-Bertozzi ligation reaction that targets the azido group using phosphine derivatives. We discuss a general strategy for targeted peptide-epitope tagging of expressed membrane proteins in-culture and its detection using a whole-cell-based ELISA approach. Finally, we show that azF-GPCRs can be selectively tagged with fluorescent probes. The methodologies discussed are general, in that they can in principle be applied to any amino acid position in any expressed GPCR to interrogate active signaling complexes. PMID:24056801

  2. Histone Deacetylase Inhibitors through Click Chemistry

    PubMed Central

    Shen, Jie; Woodward, Robert; Kedenburg, James Patrick; Liu, Xianwei; Chen, Min; Fang, Lanyan; Sun, Duxin; Wang, Peng George

    2012-01-01

    Histone deacetylase inhibitors (HDACi) are a relatively new class of chemotherapy agents. Herein, we report a click-chemistry based approach to the synthesis of HDACi. Fourteen agents were synthesized from the combination of two alkyne and seven azido precursors. The inhibition of HDAC1 and HDAC8 was then determined by in vitro enzymatic assays, after which the cytotoxicity was evaluated in the NCI human cancer cell line screen. A lead compound 5g (NSC746457) was discovered that inhibited HDAC1 at an IC50 value of 104 ± 30 nM and proved quite potent in the cancer cell line screen with GI50 values ranging from 3.92 μM to 10 nM. Thus, this click HDACi design has provided a new chemical scaffold that has not only revealed a lead compound, but one which is easily amendable to further structural modifications given the modular nature of this approach. PMID:19007204

  3. Potent Inhibitors against Newcastle Disease Virus Hemagglutinin-Neuraminidase.

    PubMed

    Rota, Paola; La Rocca, Paolo; Piccoli, Marco; Montefiori, Marco; Cirillo, Federica; Olsen, Lars; Orioli, Marica; Allevi, Pietro; Anastasia, Luigi

    2018-02-06

    Neuraminidase activity is essential for the infection and propagation of paramyxoviruses, including human parainfluenza viruses (hPIVs) and the Newcastle disease virus (NDV). Thus, many inhibitors have been developed based on the 2-deoxy-2,3-didehydro-d-N-acetylneuraminic acid inhibitor (DANA) backbone. Along this line, herein we report a series of neuraminidase inhibitors, having C4 (p-toluenesulfonamido and azido substituents) and C5 (N-perfluorinated chains) modifications to the DANA backbone, resulting in compounds with 5- to 15-fold greater potency than the currently most active compound, the N-trifluoroacetyl derivative of DANA (FANA), toward the NDV hemagglutinin-neuraminidase (NDV-HN). Remarkably, these inhibitors were found to be essentially inactive against the human sialidase NEU3, which is present on the outer layer of the cell membrane and is highly affected by the current NDV inhibitor FANA. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. 7-Chloroquinolinotriazoles: synthesis by the azide-alkyne cycloaddition click chemistry, antimalarial activity, cytotoxicity and SAR studies.

    PubMed

    Pereira, Guilherme R; Brandão, Geraldo Célio; Arantes, Lucas M; de Oliveira, Háliton A; de Paula, Renata Cristina; do Nascimento, Maria Fernanda A; dos Santos, Fábio M; da Rocha, Ramon K; Lopes, Júlio César D; de Oliveira, Alaíde Braga

    2014-02-12

    Twenty-seven 7-chloroquinolinotriazole derivatives with different substituents in the triazole moiety were synthesized via copper-catalyzed cycloaddition (CuAAC) click chemistry between 4-azido-7-chloroquinoline and several alkynes. All the synthetic compounds were evaluated for their in vitro activity against Plasmodium falciparum (W2) and cytotoxicity to Hep G2A16 cells. All the products disclosed low cytotoxicity (CC50 > 100 μM) and five of them have shown moderate antimalarial activity (IC50 from 9.6 to 40.9 μM). As chloroquine analogs it was expected that these compounds might inhibit the heme polymerization and SAR studies were performed aiming to explain their antimalarial profile. New structural variations can be designed on the basis of the results obtained. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  5. Ferromagnetic interactions in Ru(III)-nitronyl nitroxide radical complex: a potential 2p4d building block for molecular magnets.

    PubMed

    Pointillart, Fabrice; Bernot, Kevin; Sorace, Lorenzo; Sessoli, Roberta; Gatteschi, Dante

    2007-07-07

    The reaction between [Ru(salen)(PPh3)Cl] and the 4-pyridyl-substituted nitronyl nitroxide radical (NITpPy) leads to the [Ru(salen)(PPh3)(NITpPy)](ClO4)(H2O)2 complex while the reaction with the azido anion (N3-) leads to the [Ru(salen)(PPh3)(N3)] complex 2 (where salen2- = N,N'-ethan-1,2-diylbis(salicylidenamine) and PPh3 = triphenylphosphine). Both compounds have been characterized by single crystal X-ray diffraction. The two crystal structures are composed by a [Ru(III)(salen)(PPh3)]+ unit where the Ru(III) ion is coordinated to a salen2- ligand and one PPh3 ligand in axial position. In 1 the Ru(III) ion is coordinated to the 4-pyridyl-substituted nitronyl nitroxide radical whereas in 2 the second axial position is occupied by the azido ligand. In both complexes the Ru(III) ions are in the same environment RuO2N3P, in a tetragonally elongated octhaedral geometry. The crystal packing of 1 reveals pi-stacking in pairs. While antiferromagnetic intermolecular interaction (J2 = 5.0 cm(-1)) dominates at low temperatures, ferromagnetic intramolecular interaction (J1 = -9.0 cm(-1)) have been found between the Ru(III) ion and the coordinated NITpPy.

  6. Convenient approaches to synthesis of furanoid sugar-aza-crown ethers from C-ribosyl azido aldehyde via a reductive amination/amidation.

    PubMed

    Hsieh, Yu-Chi; Chir, Jiun-Ly; Zou, Wei; Wu, Hsiu-Han; Wu, An-Tai

    2009-05-26

    A short and highly efficient route to the alpha-anomer of a furanoid sugar-aza-crown ether was developed by a one-pot reductive amination of an alpha-anomer C-ribosyl azido aldehyde. In addition, the beta-anomer furanoid sugar-aza-crown ether was synthesized from a linear disaccharide precursor via amidation and then followed by microwave-assisted amide reduction.

  7. Single-step azide introduction in proteins via an aqueous diazo transfer.

    PubMed

    van Dongen, Stijn F M; Teeuwen, Rosalie L M; Nallani, Madhavan; van Berkel, Sander S; Cornelissen, Jeroen J L M; Nolte, Roeland J M; van Hest, Jan C M

    2009-01-01

    The controlled introduction of azides in proteins provides targetable handles for selective protein manipulation. We present here an efficient diazo transfer protocol that can be applied in an aqueous solution, leading to the facile introduction of azides in the side chains of lysine residues and at the N-terminus of enzymes, e.g. horseradish peroxidase (HRP) and the red fluorescent protein DsRed. The effective introduction of azides was verified by mass spectrometry, after which the azido-proteins were used in Cu(I)-catalyzed [3 + 2] cycloaddition reactions. Azido-HRP retained its catalytic activity after conjugation of a small molecule. This modified protein could also be successfully immobilized on the surface of an acetylene-covered polymersome. Azido-DsRed was coupled to an acetylene-bearing protein allowing it to act as a fluorescent label, demonstrating the wide applicability of the diazo transfer procedure.

  8. Size-matched alkyne-conjugated cyanine fluorophores to identify differences in protein glycosylation.

    PubMed

    Burnham-Marusich, Amanda R; Plechaty, Anna M; Berninsone, Patricia M

    2014-09-01

    Currently, there are few methods to detect differences in posttranslational modifications (PTMs) in a specific manner from complex mixtures. Thus, we developed an approach that combines the sensitivity and specificity of click chemistry with the resolution capabilities of 2D-DIGE. In "Click-DIGE", posttranslationally modified proteins are metabolically labeled with azido-substrate analogs, then size- and charge-matched alkyne-Cy3 or alkyne-Cy5 dyes are covalently attached to the azide of the PTM by click chemistry. The fluorescently-tagged protein samples are then multiplexed for 2DE analysis. Whereas standard DIGE labels all proteins, Click-DIGE focuses the analysis of protein differences to a targeted subset of posttranslationally modified proteins within a complex sample (i.e. specific labeling and analysis of azido glycoproteins within a cell lysate). Our data indicate that (i) Click-DIGE specifically labels azido proteins, (ii) the resulting Cy-protein conjugates are spectrally distinct, and (iii) the conjugates are size- and charge-matched at the level of 2DE. We demonstrate the utility of this approach by detecting multiple differentially expressed glycoproteins between a mutant cell line defective in UDP-galactose transport and the parental cell line. We anticipate that the diversity of azido substrates already available will enable Click-DIGE to be compatible with analysis of a wide range of PTMs. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Novel fluorescent labelled affinity probes for diadenosine-5',5'''-P1,P4-tetraphosphate (Ap4A)-binding studies.

    PubMed

    Wright, Michael; Miller, Andrew D

    2006-02-15

    Tandem synthetic-biosynthetic procedures were used to prepare two novel fluorescent labelled affinity probes for diadenosine-5',5'''-P1,P4-tetraphosphate (Ap4A)-binding studies. These compounds (dial-mant-Ap4A and azido-mant-Ap4A) are shown to clearly distinguish known Ap4A-binding proteins from Escherichia coli (LysU and GroEL) and a variety of other control proteins. Successful labelling of chaperonin GroEL appears to be allosteric with respect to the well-characterized adenosine 5'-triphosphate (ATP)-binding site, suggesting that GroEL possesses a distinct Ap4A-binding site.

  10. Characterization of auxin-binding proteins from zucchini plasma membrane

    NASA Technical Reports Server (NTRS)

    Hicks, G. R.; Rice, M. S.; Lomax, T. L.

    1993-01-01

    We have previously identified two auxin-binding polypeptides in plasma membrane (PM) preparations from zucchini (Cucurbita pepo L.) (Hicks et al. 1989, Proc. Natl. Acad. Sci. USA 86, 4948-4952). These polypeptides have molecular weights of 40 kDa and 42 kDa and label specifically with the photoaffinity auxin analog 5-N3-7-3H-IAA (azido-IAA). Azido-IAA permits both the covalent and radioactive tagging of auxin-binding proteins and has allowed us to characterize further the 40-kDa and 42-kDa polypeptides, including the nature of their attachment to the PM, their relationship to each other, and their potential function. The azido-IAA-labeled polypeptides remain in the pelleted membrane fraction following high-salt and detergent washes, which indicates a tight and possibly integral association with the PM. Two-dimensional electrophoresis of partially purified azido-IAA-labeled protein demonstrates that, in addition to the major isoforms of the 40-kDa and 42-kDa polypeptides, which possess isoelectric points (pIs) of 8.2 and 7.2, respectively, several less abundant isoforms that display unique pIs are apparent at both molecular masses. Tryptic and chymotryptic digestion of the auxin-binding proteins indicates that the 40-kDa and 42-kDa polypeptides are closely related or are modifications of the same polypeptide. Phase extraction with the nonionic detergent Triton X-114 results in partitioning of the azido-IAA-labeled polypeptides into the aqueous (hydrophilic) phase. This apparently paradoxical behavior is also exhibited by certain integral membrane proteins that aggregate to form channels. The results of gel filtration indicate that the auxin-binding proteins do indeed aggregate strongly and that the polypeptides associate to form a dimer or multimeric complex in vivo. These characteristics are consistent with the hypothesis that the 40-kDa and 42-kDa polypeptides are subunits of a multimeric integral membrane protein which has an auxin-binding site, and which may possess transporter or channel function.

  11. Characterization of auxin-binding proteins from zucchini plasma membrane.

    PubMed

    Hicks, G R; Rice, M S; Lomax, T L

    1993-01-01

    We have previously identified two auxin-binding polypeptides in plasma membrane (PM) preparations from zucchini (Cucurbita pepo L.) (Hicks et al. 1989, Proc. Natl. Acad. Sci. USA 86, 4948-4952). These polypeptides have molecular weights of 40 kDa and 42 kDa and label specifically with the photoaffinity auxin analog 5-N3-7-3H-IAA (azido-IAA). Azido-IAA permits both the covalent and radioactive tagging of auxin-binding proteins and has allowed us to characterize further the 40-kDa and 42-kDa polypeptides, including the nature of their attachment to the PM, their relationship to each other, and their potential function. The azido-IAA-labeled polypeptides remain in the pelleted membrane fraction following high-salt and detergent washes, which indicates a tight and possibly integral association with the PM. Two-dimensional electrophoresis of partially purified azido-IAA-labeled protein demonstrates that, in addition to the major isoforms of the 40-kDa and 42-kDa polypeptides, which possess isoelectric points (pIs) of 8.2 and 7.2, respectively, several less abundant isoforms that display unique pIs are apparent at both molecular masses. Tryptic and chymotryptic digestion of the auxin-binding proteins indicates that the 40-kDa and 42-kDa polypeptides are closely related or are modifications of the same polypeptide. Phase extraction with the nonionic detergent Triton X-114 results in partitioning of the azido-IAA-labeled polypeptides into the aqueous (hydrophilic) phase. This apparently paradoxical behavior is also exhibited by certain integral membrane proteins that aggregate to form channels. The results of gel filtration indicate that the auxin-binding proteins do indeed aggregate strongly and that the polypeptides associate to form a dimer or multimeric complex in vivo. These characteristics are consistent with the hypothesis that the 40-kDa and 42-kDa polypeptides are subunits of a multimeric integral membrane protein which has an auxin-binding site, and which may possess transporter or channel function.

  12. Identification of Protein Targets of 4-Hydroxynonenal Using Click Chemistry for Ex Vivo Biotinylation of Azido and Alkynyl Derivatives

    PubMed Central

    Vila, Andrew; Tallman, Keri A.; Jacobs, Aaron T.; Liebler, Daniel C.; Porter, Ned A.; Marnett, Lawrence J.

    2009-01-01

    Polyunsaturated fatty acids (PUFA) are primary targets of free radical damage during oxidative stress. Diffusible electrophilic α, β-unsaturated aldehydes, such as 4-hydroxynonenal (HNE), have been shown to modify proteins that mediate cell signaling (e.g. IKK and Keap1) and alter gene expression pathways responsible for inducing antioxidant genes, heat shock proteins, and the DNA damage response. To fully understand cellular responses to HNE, it is important to determine its protein targets in an unbiased fashion. This requires a strategy for detecting and isolating HNE-modified proteins regardless of the nature of the chemical linkage between HNE and its targets. Azido or alkynyl derivatives of HNE were synthesized and demonstrated to be equivalent to HNE in their ability to induce heme oxygenase induction and induce apoptosis in colon cancer (RKO) cells. Cells exposed to the tagged HNE derivatives were lysed and exposed to reagents to effect Staudinger ligation or copper-catalyzed Huisgen 1,3 dipolar cycloaddition reaction (click chemistry) to conjugate HNE-adducted proteins with biotin for subsequent affinity purification. Both strategies yielded efficient biotinylation of tagged HNE-protein conjugates but click chemistry was found to be superior for recovery of biotinylated proteins from streptavidin-coated beads. Biotinylated proteins were detected in lysates from RKO cell incubations with azido-HNE at concentrations as low as 1 μM. These proteins were affinity purified with streptavidin beads and proteomic analysis was performed by linear ion trap mass spectrometry. Proteomic analysis revealed a dose-dependent increase in labeled proteins with increased sequence coverage at higher concentrations. Several proteins involved in stress signaling (heat shock proteins 70 and 90, and the 78-kDa glucose-regulated protein) were selectively adducted by azido- and alkynyl-HNE. The use of azido and alkynyl derivatives in conjunction with click chemistry appears to be a valuable approach for the identification of the protein targets of HNE. PMID:18232660

  13. Fluorescent Probes of the Apoptolidins and their Utility in Cellular Localization Studies

    PubMed Central

    DeGuire, Sean M.; Earl, David C.; Du, Yu; Crews, Brenda A.; Jacobs, Aaron T.; Ustione, Alessandro; Daniel, Cristina; Chong, Katherine; Marnett, Lawrence J.; Piston, David W.; Bachmann, Brian O.; Sulikowski, Gary A.

    2014-01-01

    Apoptolidin A has been described as among the top 0.1% most cell selective cytotoxic agents to be evaluated in the NCI 60 cell line panel. The molecular structure of apoptolidin A consists of a 20-membered macrolide with mono- and disaccharide moieties located at C9 and C27, respectively. In contrast to apoptolidin A, the aglycone (apoptolidinone) shows no cytotoxicity (>10 μM) when evaluated against several tumor cell lines. Apoptolidin H, the C27 deglycosylated analog of apoptolidin A, was produced by targeted glycosyl transferase gene deletion and displayed sub-micromolar activity against H292 lung carcinoma cells. Selective esterification of the C2′ hydroxyl group of apoptolidins A and H with 5-azidopentanoic acid afforded azido functionalized derivatives of potency equal to their parent macrolide. Azido apoptolidins readily underwent strain-promoted alkyne azido cycloaddition (SPAAC) reactions to provide access to fluorescent and biotin functionalized probes. Microscopy studies demonstrate apoptolidins A and H localize in the mitochondria of H292 human lung carcinoma cells. PMID:25430909

  14. Structure-Activity Relationships of Orotidine-5′-Monophosphate Decarboxylase Inhibitors as Anticancer Agents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bello, A.; Konforte, D; Poduch, E

    2009-01-01

    A series of 6-substituted and 5-fluoro-6-substituted uridine derivatives were synthesized and evaluated for their potential as anticancer agents. The designed molecules were synthesized from either fully protected uridine or the corresponding 5-fluorouridine derivatives. The mononucleotide derivatives were used for enzyme inhibition investigations against ODCase. Anticancer activities of all the synthesized derivatives were evaluated using the nucleoside forms of the inhibitors. 5-Fluoro-UMP was a very weak inhibitor of ODCase. 6-Azido-5-fluoro and 5-fluoro-6-iodo derivatives are covalent inhibitors of ODCase, and the active site Lys145 residue covalently binds to the ligand after the elimination of the 6-substitution. Among the synthesized nucleoside derivatives, 6-azido-5-fluoro,more » 6-amino-5-fluoro, and 6-carbaldehyde-5-fluoro derivatives showed potent anticancer activities in cell-based assays against various leukemia cell lines. On the basis of the overall profile, 6-azido-5-fluoro and 6-amino-5-fluoro uridine derivatives exhibited potential for further investigations.« less

  15. Novel type 1 photosensitizers: viability of leukemia cells exposed to reactive intermediates generated in situ by in vitro photofragmentation

    NASA Astrophysics Data System (ADS)

    Rajagopalan, Raghavan; Karwa, Amol; Lusiak, Przemyslaw M.; Srivastava, Kripa; Poreddy, Amruta R.; Pandurangi, Raghootama S.; Galen, Karen P.; Neumann, William L.; Cantrell, Gary E.; Dorshow, Richard B.

    2009-06-01

    Photodynamic therapy of tumors involving Type 2 photosenstizers has been conspicuously successful, but the Type 1 process, in contrast, has not received much attention despite its considerable potential. Accordingly, several classes of molecules containing fragile bonds such as azido (-N=N=N), azo (-N=N-), sulfenato (-S-O-) and oxaza (-N-O-) functional groups that produce reactive intermediates such as radicals and nitrenes upon photoexcitation were prepared and tested for cell viability using U397 leukemia cell line. The azido photosensitizer was conjugated to leukemia cell binding peptide, SFFWRLS, for targeted cell viability study. The cells were incubated with the photosensitizer at various concentrations, and were illuminated for 5, 10, and 20 minutes. The results show that all the photosensitizers caused cell death compared to the controls when exposed to both the photosensitizers and light. Most importantly, selective cell death was observed with the azido peptide conjugate 6, which clearly demonstrates that these Type 1 sensitizers are useful for phototherapeutic applications.

  16. Asymmetric homologation of boronic esters bearing azido and silyloxy substituents.

    PubMed

    Singh, R P; Matteson, D S

    2000-10-06

    In the asymmetric homologation of boronic esters with a (dihalomethyl)lithium, substituents that can bind metal cations tend to interfere. Accordingly, we undertook the introduction of weakly basic oxygen and nitrogen substituents into boronic esters in order to maximize the efficiency of multistep syntheses utilizing this chemistry. Silyloxy boronic esters cannot be made efficiently by direct substitution, but a (hydroxymethyl)boronic ester has been silylated in the usual manner. Conversion of alpha-halo boronic esters to alpha-azido boronic esters has been carried out with sodium azide and a tetrabutylammonium salt as phase-transfer catalyst in a two-phase system with water and either nitromethane or ethyl acetate. These are safer solvents than the previously used dichloromethane, which can form an explosive byproduct with azide ion. Boronic esters containing silyloxy or alkoxy and azido substituents have been shown to react efficiently with (dihalomethyl)lithiums, resulting in efficient asymmetric insertion of the halomethyl group into the carbon-boron bond.

  17. In situ tetrazole templated chair-like decanuclear azido-cobalt(II) SMM containing both tetra- and octa-hedral Co(II) ions.

    PubMed

    Zhang, Yuan-Zhu; Gao, Song; Sato, Osamu

    2015-01-14

    An azido-bridged chair-like decanuclear cluster: [Co(II)10(bzp)8(Metz)2(N3)18]·4MeOH·3H2O (1, bzp = 2-benzoylpyridine and HMetz = 5-methyl-1H-tetrazole) was prepared with in situ tetrazolate anions as templates in a sealed system. 1 containing both octahedral and tetrahedral Co(II) ions exhibited slow relaxation of magnetization with an effective barrier of 26 K under an applied dc field of 1 kOe.

  18. Oxidized derivatives of Octopus vulgaris and Carcinus aestuarii hemocyanins at pH 7.5 and related models by x-ray absorption spectroscopy.

    PubMed Central

    Borghi, Elena; Solari, Pier Lorenzo; Beltramini, Mariano; Bubacco, Luigi; Di Muro, Paolo; Salvato, Benedetto

    2002-01-01

    The binuclear copper sites of the met and met-azido derivatives of Octopus vulgaris and Carcinus aestuarii hemocyanins at pH 7.5 were characterized by high-resolution x-ray absorption spectroscopy in the low energy region (XANES) and in the higher region (EXAFS). The accuracy of the analysis of the data was tested with two mononuclear and six binuclear copper(II) complexes of the poly(benzimidazole) ligand systems 2-BB, L-5,5 and L-6,6 (Casella et al., 1993, Inorg. Chem. 32:2056-2067; 1996, Inorg. Chem. 35:1101-1113). Their structural and reactivity properties are related to those of the protein's derivatives. The results obtained for those models with resolved x-ray structure (the 2-BB-aquo and azido mononuclear complexes, and the binuclear L-5,5 Cu(II)-bis(hydroxo) (Casella et al., unpublished)), extends the validity of our approach to the other poly(benzimidazole)-containing complexes and to the hemocyanin derivatives. Comparison between the protein's and the complexes' data, support a description of the met-derivatives as a five-coordinated O-bridged binuclear copper(II) center and favors, for both species, a bis(hydroxo) structure with a 3-A Cu-Cu distance. For O. vulgaris met-azido derivative a mu-1,3 bridging mode for the ligand appears the most likely. The structural situation of C. aestuarii met-azido-derivative is less clear: a mu-1,1 mode is favored, but a terminal mode cannot be excluded. PMID:12023249

  19. Building blocks for the synthesis of glycosyl-myo-inositols involved in the insulin intracellular signalling process.

    PubMed

    Zapata, A; Martín-Lomas, M

    1992-10-09

    Glycosylation of (+/- )-1-O-benzyl-2,3:5,6-di-O-isopropylidene-myo-inositol (4) with 6-O-acetyl-4-O-allyl-2-azido-3-O-benzyl-2-deoxy-beta-D-glucopyranosyl trichloroacetimidate (6) gave the 4-O-(2-amino-2-deoxy-alpha-D-glucopyranosyl)- myo-inositol derivative (9) as a mixture of diastereoisomers which could be resolved by chromatography. Likewise alpha-glycosylation of 4 with 6-O-acetyl-2-azido-3-O-benzoyl-2-deoxy-4-O-(2,3,4,6-tetra-O-acetyl-beta- D- galactopyranosyl)-D-glucopyranosyl trichloroacetimidate (10) gave the corresponding pseudotrisaccharide derivative 16 as a mixture of diastereomers which could be resolved partially by chromatography. alpha-Glycosylation of enantiomerically pure 2,3:5,6- (18) and 2,3:4,5-di-O-isopropylidene-1-O-menthoxycarbonyl-myo-inositol (19) with 3,4,6-tri-O-acetyl-2-azido-2-deoxy-D-glucopyranosyl trichloroacetimidate (20) gave the pseudodisaccharide derivatives 21 and 22, respectively. Likewise, alpha-glycosylation of 18 with 10 afforded a pseudotrisaccharide derivative (23).

  20. Rapid Grafting of Azido-labeled Oligo(ethylene glycol)s onto an Alkynyl-terminated Monolayer on Non-oxidized Silicon via Microwave-assisted “Click” Reaction

    PubMed Central

    Li, Yan; Wang, Jun; Cai, Chengzhi

    2011-01-01

    Microwave (MW) irradiation was used for the grafting of azido-labeled oligo(ethylene oxide) (OEG) on alkynyl-terminated non-oxidized silicon substrates via copper-catalyzed “click” reaction. The “clickable” monolayers were prepared by photografting of an α,ω-alkynene, where the alkynyl terminus was protected by a trimethylgermanyl (TMG) group, onto hydrogen-terminated Si(111) surfaces. X-ray photoelectron spectroscopy (XPS) was primarily employed to characterize the monolayers, and the data obtained were utilized to calculate the surface density of the TMG-alkynyl-functionalized substrate. MW-assisted one-pot deprotection/click reaction was optimized on the surfaces using azido-tagged OEG derivatives. Using MW instead of conventional heating led to a substantial improvement on the rate of the reaction while suppressing the oxidation of the silicon interface and OEG degradation. The antifouling property of the resulting substrates was evaluated using fibrinogen as a model protein. Results show that the OEG-modification reduced the protein adsorption by >90%. PMID:21306165

  1. A Thermochemical Kinetic-Based Study of Ignition Delays for 2-Azidoethanamine-Red Fuming Nitric Acid Systems: 2-Azido-N-Methylethanamine (MMAZ) Vs. 2-Azido-N,N-Dimethylethanamine (DMAZ)

    DTIC Science & Technology

    2014-01-01

    ABSTRACT UU 18. NUMBER OF PAGES 68 19a. NAME OF RESPONSIBLE PERSON Chiung-Chu Chen a. REPORT Unclassified b. ABSTRACT Unclassified c ...Abstraction Reactions 33 Appendix C . Geometric Representations, Normal Mode Frequencies, and Moments of Inertia for Molecular Structures Involved in...from MMAZ and DMAZ by NO2 are also shown. ....................13 Figure 6. Potential energy diagram for the C •H2NHCH2CH2N3 + NO2 system: G4-based

  2. Syntheses of the Stemona Alkaloids (±)-Stenine, (±)-Neostenine, and (±)-13-Epineostenine Using a Stereodivergent Diels-Alder/Azido-Schmidt Reaction

    PubMed Central

    Frankowski, Kevin J.; Golden, Jennifer E.; Zeng, Yibin; Lei, Yao; Aubé, Jeffrey

    2009-01-01

    A tandem Diels-Alder/azido Schmidt reaction sequence provides rapid access to the core skeleton shared by several Stemona alkaloids including stenine, neostenine, tuberstemonine, and neotubererostemonine. The discovery and evolution of inter- and intramolecular variations of this process and their applications to total syntheses of (±)–stenine and (±)–neostenine is described. The stereochemical outcome of the reaction depends on both substrate type and reaction condition, enabling the preparation of both (±)–stenine and (±)–neostenine from the same diene/dienophile combination. PMID:18396881

  3. An ab initio molecular dynamics study of thermal decomposition of 3,6-di(azido)-1,2,4,5-tetrazine.

    PubMed

    Wu, Qiong; Zhu, Weihua; Xiao, Heming

    2014-10-21

    Ab initio molecular dynamics simulations were performed to study the thermal decomposition of isolated and crystal 3,6-di(azido)-1,2,4,5-tetrazine (DiAT). During unimolecular decomposition, the three different initiation mechanisms were observed to be N-N2 cleavage, ring opening, and isomerization, respectively. The preferential initial decomposition step is the homolysis of the N-N2 bond in the azido group. The release mechanisms of nitrogen gas are found to be very different in the early and later decomposition stages of crystal DiAT. In the early decomposition, DiAT decomposes very fast and drastically without forming any stable long-chains or heterocyclic clusters, and most of the nitrogen gases are released through rapid rupture of nitrogen-nitrogen and carbon-nitrogen bonds. But in the later decomposition stage, the release of nitrogen gas is inhibited due to low mobility, long distance from each other, and strong carbon-nitrogen bonds. To overcome the obstacles, the nitrogen gases are released through slow formation and disintegration of polycyclic networks. Our simulations suggest a new decomposition mechanism for the organic polyazido initial explosive at the atomistic level.

  4. Three-dimensional structure of thymidine phosphorylase from E. coli in complex with 3'-azido-2'-fluoro-2',3'-dideoxyuridine

    NASA Astrophysics Data System (ADS)

    Timofeev, V. I.; Abramchik, Yu. A.; Fateev, I. V.; Zhukhlistova, N. E.; Murav'eva, T. I.; Kuranova, I. P.; Esipov, R. S.

    2013-11-01

    The three-dimensional structures of thymidine phosphorylase from E. coli containing the bound sulfate ion in the phosphate-binding site and of the complex of thymidine phosphorylase with sulfate in the phosphate-binding site and the inhibitor 3'-azido-2'-fluoro-2',3'-dideoxyuridine (N3F-ddU) in the nucleoside-binding site were determined at 1.55 and 1.50 Å resolution, respectively. The amino-acid residues involved in the ligand binding and the hydrogen-bond network in the active site occupied by a large number of bound water molecules are described. A comparison of the structure of thymidine phosphorylase in complex with N3F-ddU with the structure of pyrimidine nucleoside phosphorylase from St. Aureus in complex with the natural substrate thymidine (PDB_ID: 3H5Q) shows that the substrate and the inhibitor in the nucleoside-binding pocket have different orientations. It is suggested that the position of N3F-ddU can be influenced by the presence of the azido group, which prefers a hydrophobic environment. In both structures, the active sites of the subunits are in the open conformation.

  5. A discrete Cu cluster and a 3D MnII-CuII framework based on assembly of Mn2Cu4 clusters: synthesis, structure and magnetic properties.

    PubMed

    Chakraborty, Anindita; Escuer, Albert; Ribas, Joan; Maji, Tapas Kumar

    2016-10-04

    The synthesis, single-crystal structure characterization and detailed magnetic study of a homometallic hexanuclear Cu II cluster [Cu 6 (μ 3 -OH) 2 (ppk) 6 (H 2 O) 2 (NO 3 ) 4 ] (1) and a three-dimensional (3D) compound [{MnCu 2 (dpkO 2 H) 2 (dpkO 2 )N 3 }·(NO 3 )·H 2 O] n (2) (ppk = phenyl-2-pyridyl ketoxime; dpk = di-2-pyridyl ketone) consisting of heterometallic Mn II -Cu II hexanuclear cores as secondary building units are reported in this paper. In compound 1, two symmetry-related Cu 3 triangles consisting of a hydroxido-bridged trinuclear unit, [Cu 3 (μ 3 -OH)(ppk) 3 (H 2 O)(NO 3 )] + , are assembled through nitrate bridging giving rise to the homometallic Cu 6 cluster. Compound 2 contains heterometallic {MnCu} cores, which are further connected to each other through an azido bridging ligand in all the crystallographic directions, resulting in a 3D metal-organic framework. Construction of such a heterometallic 3D framework from {MnCu} units is until now, unknown. Magnetic studies of both 1 and 2 were performed in detail and both compounds show dominant antiferromagnetic interaction in the respective clusters. Compound 1 reveals significant spin frustration and anti-symmetric exchange interaction in the trinuclear cores, with a significantly high value of J av (-655 cm -1 ). Furthermore, compound 2 exhibits a dominant antiferromagnetic interaction, which is also supported by an extensive magneto-structural correlation which considers the different magnetic pathways.

  6. Doubly end-on azido bridged mixed-valence cobalt trinuclear complex: Spectral study, VTM, inhibitory effect and antimycobacterial activity on human carcinoma and tuberculosis cells

    NASA Astrophysics Data System (ADS)

    Datta, Amitabha; Das, Kuheli; Sen, Chandana; Karan, Nirmal Kumar; Huang, Jui-Hsien; Lin, Chia-Her; Garribba, Eugenio; Sinha, Chittaranjan; Askun, Tulin; Celikboyun, Pinar; Mane, Sandeep B.

    2015-09-01

    Doubly end-on azido-bridged mixed-valence trinuclear cobalt complex, [Co3(L)2(N3)6(CH3OH)2] (1) is afforded by employing a potential monoanionic tetradentate-N2O2 Schiff base precursor (2-[{[2-(dimethylamino)ethyl]imino}methyl]-6-methoxyphenol; HL). Single crystal X-ray structure reveals that in 1, the adjacent CoII and CoIII ions are linked by double end-on azido bridges and thus the full molecule is generated by the site symmetry of a crystallographic twofold rotation axis. Complex 1 is subjected on different spectral analysis such as IR, UV-vis, emission and EPR spectroscopy. On variable temperature magnetic study, we observe that during cooling, the χMT values decrease smoothly until 15 K and then reaches to the value 1.56 cm3 K mol-1 at 2 K. Complex 1 inhibits the cell growth on human lung carcinoma (A549 cells), human colorectal (COLO 205 and HT-29 cells), and human heptacellular (PLC5 cells) carcinoma cells. Complex 1 exhibits anti-mycobacterial activity and considerable efficacy on Mycobacterium tuberculosis H37Rv ATCC 27294 and H37Ra ATCC 25177 strains.

  7. Tracking G-protein-coupled receptor activation using genetically encoded infrared probes.

    PubMed

    Ye, Shixin; Zaitseva, Ekaterina; Caltabiano, Gianluigi; Schertler, Gebhard F X; Sakmar, Thomas P; Deupi, Xavier; Vogel, Reiner

    2010-04-29

    Rhodopsin is a prototypical heptahelical family A G-protein-coupled receptor (GPCR) responsible for dim-light vision. Light isomerizes rhodopsin's retinal chromophore and triggers concerted movements of transmembrane helices, including an outward tilting of helix 6 (H6) and a smaller movement of H5, to create a site for G-protein binding and activation. However, the precise temporal sequence and mechanism underlying these helix rearrangements is unclear. We used site-directed non-natural amino acid mutagenesis to engineer rhodopsin with p-azido-l-phenylalanine residues incorporated at selected sites, and monitored the azido vibrational signatures using infrared spectroscopy as rhodopsin proceeded along its activation pathway. Here we report significant changes in electrostatic environments of the azido probes even in the inactive photoproduct Meta I, well before the active receptor state was formed. These early changes suggest a significant rotation of H6 and movement of the cytoplasmic part of H5 away from H3. Subsequently, a large outward tilt of H6 leads to opening of the cytoplasmic surface to form the active receptor photoproduct Meta II. Thus, our results reveal early conformational changes that precede larger rigid-body helix movements, and provide a basis to interpret recent GPCR crystal structures and to understand conformational sub-states observed during the activation of other GPCRs.

  8. Degradation-by-design: Surface modification with functional substrates that enhance the enzymatic degradation of carbon nanotubes.

    PubMed

    Sureshbabu, Adukamparai Rajukrishnan; Kurapati, Rajendra; Russier, Julie; Ménard-Moyon, Cécilia; Bartolini, Isacco; Meneghetti, Moreno; Kostarelos, Kostas; Bianco, Alberto

    2015-12-01

    Biodegradation of carbon-based nanomaterials has been pursued intensively in the last few years, as one of the most crucial issues for the design of safe, clinically relevant conjugates for biomedical applications. In this paper it is demonstrated that specific functional molecules can enhance the catalytic activity of horseradish peroxidase (HRP) and xanthine oxidase (XO) for the degradation of carbon nanotubes. Two different azido coumarins and one cathecol derivative are linked to multi-walled carbon nanotubes (MWCNTs). These molecules are good reducing substrates and strong redox mediators to enhance the catalytic activity of HRP. XO, known to metabolize various molecules mainly in the mammalian liver, including human, was instead used to test the biodegradability of MWCNTs modified with an azido purine. The products of the biodegradation process are characterized by transmission electron microscopy and Raman spectroscopy. The results indicate that coumarin and catechol moieties have enhanced the biodegradation of MWCNTs compared to oxidized nanotubes, likely due to the capacity of these substrates to better interact with and activate HRP. Although azido purine-MWCNTs are degraded less effectively by XO than oxidized nanotubes, the data uncover the importance of XO in the biodegradation of carbon-nanomaterials leading to their better surface engineering for biomedical applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Ferromagnetic interaction in an asymmetric end-to-end azido double-bridged copper(II) dinuclear complex: a combined structure, magnetic, polarized neutron diffraction and theoretical study.

    PubMed

    Aronica, Christophe; Jeanneau, Erwann; El Moll, Hani; Luneau, Dominique; Gillon, Béatrice; Goujon, Antoine; Cousson, Alain; Carvajal, Maria Angels; Robert, Vincent

    2007-01-01

    A new end-to-end azido double-bridged copper(II) complex [Cu(2)L(2)(N(3))2] (1) was synthesized and characterized (L=1,1,1-trifluoro-7-(dimethylamino)-4-methyl-5-aza-3-hepten-2-onato). Despite the rather long Cu-Cu distance (5.105(1) A), the magnetic interaction is ferromagnetic with J= +16 cm(-1) (H=-JS(1)S(2)), a value that has been confirmed by DFT and high-level correlated ab initio calculations. The spin distribution was studied by using the results from polarized neutron diffraction. This is the first such study on an end-to-end system. The experimental spin density was found to be localized mainly on the copper(II) ions, with a small degree of delocalization on the ligand (L) and terminal azido nitrogens. There was zero delocalization on the central nitrogen, in agreement with DFT calculations. Such a picture corresponds to an important contribution of the d(x2-y2) orbital and a small population of the d(z2) orbital, in agreement with our calculations. Based on a correlated wavefunction analysis, the ferromagnetic behavior results from a dominant double spin polarization contribution and vanishingly small ionic forms.

  10. Mononuclear thiocyanate containing nickel(II) and binuclear azido bridged nickel(II) complexes of N4-coordinate pyrazole based ligand: Syntheses, structures and magnetic properties

    NASA Astrophysics Data System (ADS)

    Solanki, Ankita; Monfort, Montserrat; Kumar, Sujit Baran

    2013-10-01

    Two mononuclear nickel(II) complexes [NiL1(NCS)2] (1) and [NiL2(NCS)2] (2) and two azido bridged binuclear nickel(II) complexes [Ni(()2()2] (3) and [Ni(()2()2] (4), where L1, L2, L1‧ and L2‧ are N,N-diethyl-N‧,N‧-bis((3,5-dimethyl-1H-pyrazol-1-yl)methyl)ethane-1,2-diamine (L1), N,N-bis((1H-pyrazol-1-yl)methyl)-N‧,N‧-diethylethane-1,2-diamine (L2), N,N-diethyl-N‧-((3,5-dimethyl-1H-pyrazol-1-yl)methyl)ethane-1,2-diamine (L1‧) and N-((1H-pyrazol-1-yl)methyl)-N‧,N‧-diethylethane-1,2-diamine (L2‧) have been synthesized and characterized by microanalyses and physico-chemical methods. Single crystal X-ray diffraction analyses revealed that complexes 1 and 2 are mononuclear NCS- containing Ni(II) complex with octahedral geometry and complexes 3 and 4 are end-on (μ-1,1) azido bridged binuclear Ni(II) complexes with distorted octahedral geometry. Variable temperature magnetic studies of the complexes 3 and 4 display ferromagnetic interaction with J values 19 and 32 cm-1, respectively.

  11. Differential binding of ppGpp and pppGpp to E. coli RNA polymerase: photo-labeling and mass spectral studies.

    PubMed

    Syal, Kirtimaan; Chatterji, Dipankar

    2015-12-01

    (p)ppGpp, a secondary messenger, is induced under stress and shows pleiotropic response. It binds to RNA polymerase and regulates transcription in Escherichia coli. More than 25 years have passed since the first discovery was made on the direct interaction of ppGpp with E. coli RNA polymerase. Several lines of evidence suggest different modes of ppGpp binding to the enzyme. Earlier cross-linking experiments suggested that the β-subunit of RNA polymerase is the preferred site for ppGpp, whereas recent crystallographic studies pinpoint the interface of β'/ω-subunits as the site of action. With an aim to validate the binding domain and to follow whether tetra- and pentaphosphate guanosines have different location on RNA polymerase, this work was initiated. RNA polymerase was photo-labeled with 8-azido-ppGpp/8-azido-pppGpp, and the product was digested with trypsin and subjected to mass spectrometry analysis. We observed three new peptides in the trypsin digest of the RNA polymerase labeled with 8-azido-ppGpp, of which two peptides correspond to the same pocket on β'-subunit as predicted by X-ray structural analysis, whereas the third peptide was mapped on the β-subunit. In the case of 8-azido-pppGpp-labeled RNA polymerase, we have found only one cross-linked peptide from the β'-subunit. However, we were unable to identify any binding site of pppGpp on the β-subunit. Interestingly, we observed that pppGpp at high concentration competes out ppGpp bound to RNA polymerase more efficiently, whereas ppGpp cannot titrate out pppGpp. The competition between tetraphosphate guanosine and pentaphosphate guanosine for E. coli RNA polymerase was followed by gel-based assay as well as by a new method known as DRaCALA assay. © 2015 The Molecular Biology Society of Japan and Wiley Publishing Asia Pty Ltd.

  12. A reagent for safe and efficient diazo-transfer to primary amines: 2-azido-1,3-dimethylimidazolinium hexafluorophosphate.

    PubMed

    Kitamura, Mitsuru; Kato, So; Yano, Masakazu; Tashiro, Norifumi; Shiratake, Yuichiro; Sando, Mitsuyoshi; Okauchi, Tatsuo

    2014-07-07

    Organic azides were prepared from primary amines in high yields by a metal free diazo-transfer reaction using 2-azido-1,3-dimethylimidazolinium hexafluorophosphate (ADMP), which is safe and stable crystalline. The choice of base was important in the diazo-transfer reaction. In general, 4-(N,N-dimethyl)aminopyridine (DMAP) was efficient, but a stronger base such as alkylamine or DBU was more appropriate for the reaction of nucleophilic primary amines. X-ray single crystal structural analysis and geometry optimization using density functional theory (B3LYP/6-31G**) were conducted to study the ADMP structure, and the diazo-transfer reaction mechanism was explained with the help of the results of these analyses.

  13. The history of antiretrovirals: key discoveries over the past 25 years.

    PubMed

    De Clercq, Erik

    2009-09-01

    Within 25 years after zidovudine (3'-azido-2',3'-dideoxythymidine, AZT) was first described as an inhibitor of HIV replication, 25 anti-HIV drugs have been formally approved for clinical use in the treatment of HIV infections: seven nucleoside reverse transcriptase inhibitors (NRTIs): zidovudine, didanosine, zalcitabine, stavudine, lamivudine, abacavir and emtricitabine; one nucleotide reverse transcriptase inhibitor (NtRTI): tenofovir [in its oral prodrug form: tenofovir disoproxil fumarate (TDF)]; four non-nucleoside reverse transcriptase inhibitors (NNRTIs): nevirapine, delavirdine, efavirenz and etravirine; ten protease inhibitors (PIs): saquinavir, ritonavir, indinavir, nelfinavir, amprenavir, lopinavir, atazanavir, fosamprenavir, tipranavir and darunavir; one fusion inhibitor (FI): enfuvirtide; one co-receptor inhibitor (CRI): maraviroc and one integrase inhibitor (INI): raltegravir. These compounds are used in various drug combination (some at fixed dose) regimens so as to achieve the highest possible benefit and tolerability, and to diminish the risk of virus-drug resistance development. (c) 2009 John Wiley & Sons, Ltd.

  14. Heat resistant polymers of oxidized styrylphosphine

    NASA Technical Reports Server (NTRS)

    Paciorek, K. J. L. (Inventor)

    1980-01-01

    A flame resistant, nontoxic polymer which may be used safely in confined locations where there is inadequate ventilation is prepared either by polymerizing compounds having the formula R-N=P(C6H5)2(C6H4)CH=CH2 where R is an organic moeity selected from the group of (C6H5)2P(O)-, (C6H5O)2P(O)-, (C6H5)2 C3N3-, or their mixtures, or by reacting a polymer with an organic azide such as diphenylphosphinylazide, diphenyl-phosphorylazide, 2-azido-4,6-diphenly-5-triazine, 2,4-diazido-6-phenyl-s-triazine, trimethylsilyoazide, triphenylsilylazine, and phenylazine. The reaction of the styrylphosphine with the organozaide results in the oxidation of the trivalent phosphorus atom to the pentavalent state in the form of an unsaturated P=N linkage known as a phosphazene group.

  15. Design, synthesis, and anti-HIV-1 activity of 1-aromatic methyl-substituted 3-(3,5-dimethylbenzyl)uracil and N-3,5-dimethylbenzyl-substituted urea derivatives.

    PubMed

    Sakakibara, Norikazu; Baba, Masanori; Okamoto, Mika; Toyama, Masaaki; Demizu, Yosuke; Misawa, Takashi; Kurihara, Masaaki; Irie, Kohji; Kato, Yoshihisa; Maruyama, Tokumi

    2015-02-01

    A new series of 1-aromatic methyl-substituted 3-(3,5-dimethylbenzyl)uracil and N-3,5-dimethylbenzyl-substituted urea derivatives were synthesized and evaluated as non-nucleoside HIV-1 reverse transcriptase inhibitors. A series of new 6-azido and 6-amino derivatives of 1-substituted-3-(3,5-dimethylbenzyl)uracils were synthesized using our previously reported method, and three acyclic derivatives were synthesized from urea. The anti-HIV-1 activities of these compounds were determined based on the inhibition of virus-induced cytopathogenicity in MT-4 cells. The cytotoxicities of the compounds were evaluated using the viability of mock-infected cells. Some of these compounds showed good-to-moderate activities against HIV-1 with half maximal effective concentration (EC50) values in the submicromolar or subnanomolar range. Compared with emivirine, compound 6-amino-3-(3,5-dimethylbenzyl)-1-(4-aminobenzyl)uracil showed significant anti-HIV-1 activity with an EC50 value of 10 nM and a high selectivity index of 1923. Preliminary structure-activity relationship studies and molecular modeling analyses were carried out to explore the major interactions between HIV-1 reverse transcriptase and the potent inhibitor 6-amino-3-(3,5-dimethylbenzyl)-1-(4-aminobenzyl)uracil; these results may be important for further development of this class of compounds as anti-HIV-1 agents. The excellent activity of 6-amino-3-(3,5-dimethylbenzyl)-1-(4-aminobenzyl)uracil (EC50: 0.010 ± 0.006 µM, SI: >1923) may serve as the basis for conducting further investigations on the behavior of this class of compounds against drug-resistant mutants. © The Author(s) 2015 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  16. Design, synthesis, and anti-HIV-1 activity of 1-aromatic methyl-substituted 3-(3,5-dimethylbenzyl)uracil and N-3,5-dimethylbenzyl-substituted urea derivatives

    PubMed Central

    Sakakibara, Norikazu; Baba, Masanori; Okamoto, Mika; Toyama, Masaaki; Demizu, Yosuke; Misawa, Takashi; Kurihara, Masaaki; Irie, Kohji; Kato, Yoshihisa; Maruyama, Tokumi

    2015-01-01

    Background A new series of 1-aromatic methyl-substituted 3-(3,5-dimethylbenzyl)uracil and N-3,5-dimethylbenzyl-substituted urea derivatives were synthesized and evaluated as non-nucleoside HIV-1 reverse transcriptase inhibitors. Methods A series of new 6-azido and 6-amino derivatives of 1-substituted-3-(3,5-dimethylbenzyl)uracils were synthesized using our previously reported method, and three acyclic derivatives were synthesized from urea. The anti-HIV-1 activities of these compounds were determined based on the inhibition of virus-induced cytopathogenicity in MT-4 cells. The cytotoxicities of the compounds were evaluated using the viability of mock-infected cells. Results Some of these compounds showed good-to-moderate activities against HIV-1 with half maximal effective concentration (EC50) values in the submicromolar or subnanomolar range. Compared with emivirine, compound 6-amino-3-(3,5-dimethylbenzyl)-1-(4-aminobenzyl)uracil showed significant anti-HIV-1 activity with an EC50 value of 10 nM and a high selectivity index of 1923. Preliminary structure–activity relationship studies and molecular modeling analyses were carried out to explore the major interactions between HIV-1 reverse transcriptase and the potent inhibitor 6-amino-3-(3,5-dimethylbenzyl)-1-(4-aminobenzyl)uracil; these results may be important for further development of this class of compounds as anti-HIV-1 agents. Conclusion The excellent activity of 6-amino-3-(3,5-dimethylbenzyl)-1-(4-aminobenzyl)uracil (EC50: 0.010 ± 0.006 µM, SI: >1923) may serve as the basis for conducting further investigations on the behavior of this class of compounds against drug-resistant mutants. PMID:26149262

  17. Identification of the uridine 5'-diphosphoglucose (UDP-Glc) binding subunit of cellulose synthase in Acetobacter xylinum using the photoaffinity probe 5-azido-UDP-Glc

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, F.C.; Brown, R.M. Jr.; Drake, R.R. Jr.

    1990-03-25

    Photoaffinity labeling of purified cellulose synthase with (beta-32P)5-azidouridine 5'-diphosphoglucose (UDP-Glc) has been used to identify the UDP-Glc binding subunit of the cellulose synthase from Acetobacter xylinum strain ATCC 53582. The results showed exclusive labeling of an 83-kDa polypeptide. Photoinsertion of (beta-32P)5-azido-UDP-Glc is stimulated by the cellulose synthase activator, bis-(3'----5') cyclic diguanylic acid. Addition of increasing amounts of UDP-Glc prevents photolabeling of the 83-kDa polypeptide. The reversible and photocatalyzed binding of this photoprobe also showed saturation kinetics. These studies demonstrate that the 83-kDa polypeptide is the catalytic subunit of the cellulose synthase in A. xylinum strain ATCC 53582.

  18. Site-selective post-translational modification of proteins using an unnatural amino acid, 3-azidotyrosine.

    PubMed

    Ohno, Satoshi; Matsui, Megumi; Yokogawa, Takashi; Nakamura, Masashi; Hosoya, Takamitsu; Hiramatsu, Toshiyuki; Suzuki, Masaaki; Hayashi, Nobuhiro; Nishikawa, Kazuya

    2007-03-01

    An efficient method for site-selective modification of proteins using an unnatural amino acid, 3-azidotyrosine has been developed. This method utilizes the yeast amber suppressor tRNA(Tyr)/mutated tyrosyl-tRNA synthetase pair as a carrier of 3-azidotyrosine in an Escherichia coli cell-free translation system, and triarylphosphine derivatives for specific modification of the azido group. Using rat calmodulin (CaM) as a model protein, we prepared several unnatural CaM molecules, each carrying an azidotyrosine at predetermined positions 72, 78, 80 or 100, respectively. Post-translational modification of these proteins with a conjugate compound of triarylphosphine and biotin produced site-selectively biotinylated CaM molecules. Reaction efficiency was similar among these proteins irrespective of the position of introduction, and site-specificity of biotinylation was confirmed using mass spectrometry. In addition, CBP-binding activity of the biotinylated CaMs was confirmed to be similar to that of wild-type CaM. This method is intrinsically versatile in that it should be easily applicable to introducing any other desirable compounds (e.g., probes and cross-linkers) into selected sites of proteins as far as appropriate derivative compounds of triarylphosphine could be chemically synthesized. Elucidation of molecular mechanisms of protein functions and protein-to-protein networks will be greatly facilitated by making use of these site-selectively modified proteins.

  19. Exploring the Chemistry of Bicyclic Isoxazolidines for the Multicomponent Synthesis of Glycomimetic Building Blocks.

    PubMed

    Hoogenboom, Jorin; Lutz, Martin; Zuilhof, Han; Wennekes, Tom

    2016-10-07

    Starting from a chiral furanone, the nitrone-olefin [3 + 2] cycloaddition can be used to obtain bicyclic isoxazolidines for which we report a set of reactions to selectively modify each functional position. These synthetically versatile bicyclic isoxazolidines allowed us to obtain complex glycomimetic building blocks, like iminosugars, via multicomponent chemistry. For example, a library of 20 pipecolic acid derivatives, a recurring motif in various prescription drugs, could be obtained via a one-pot Staudinger/aza-Wittig/Ugi three-component reaction of a bicyclic isoxazolidine-derived azido-hemiacetal. Notably, specific pipecolic acids in this library were obtained via hydrolysis of an unique tricyclic imidate side product of the Ugi reaction. The azido-hemiacetal was also converted into an aza-C-glycoside iminosugar via an unprecendented one-pot Staudinger/aza-Wittig/Mannich reaction.

  20. Noscapinoids with anti-cancer activity against human acute lymphoblastic leukemia cells (CEM): a three dimensional chemical space pharmacophore modeling and electronic feature analysis.

    PubMed

    Naik, Pradeep K; Santoshi, Seneha; Joshi, Harish C

    2012-01-01

    We have identified a new class of microtubule-binding compounds-noscapinoids-that alter microtubule dynamics at stoichiometric concentrations without affecting tubulin polymer mass. Noscapinoids show great promise as chemotherapeutic agents for the treatment of human cancers. To investigate the structural determinants of noscapinoids responsible for anti-cancer activity, we tested 36 structurally diverse noscapinoids in human acute lymphoblastic leukemia cells (CEM). The IC(50) values of these noscapinoids vary from 1.2 to 56.0 μM. Pharmacophore models of anti-cancer activity were generated that identify two hydrogen bond acceptors, two aromatic rings, two hydrophobic groups, and one positively charged group as essential structural features. Additionally, an atom-based quantitative structure-activity relationship (QSAR) model was developed that gave a statistically satisfying result (R(2) = 0.912, Q(2) = 0.908, Pearson R = 0.951) and effectively predicts the anti-cancer activity of training and test set compounds. The pharmacophore model presented here is well supported by electronic property analysis using density functional theory at B3LYP/3-21*G level. Molecular electrostatic potential, particularly localization of negative potential near oxygen atoms of the dimethoxy isobenzofuranone ring of active compounds, matched the hydrogen bond acceptor feature of the generated pharmacophore. Our results further reveal that all active compounds have smaller lowest unoccupied molecular orbital (LUMO) energies concentrated over the dimethoxy isobenzofuranone ring, azido group, and nitro group, which is indicative of the electron acceptor capacity of the compounds. Results obtained from this study will be useful in the efficient design and development of more active noscapinoids.

  1. Click-coated, heparinized, decellularized vascular grafts

    PubMed Central

    Dimitrievska, Sashka; Cai, Chao; Weyers, Amanda; Balestrini, Jenna L.; Lin, Tylee; Sundaram, Sumati; Hatachi, Go; Spiegel, David A.; Kyriakides, Themis R.; Miao, Jianjun; Li, Guoyun; Niklason, Laura; Linhardt, Robert J.

    2014-01-01

    A novel method enabling the engineering of a dense and appropriately oriented heparin-containing layer on decellularized aortas has been developed. Amino groups of decellularized aortas were first modified to azido groups using 3-azidobenzoic acid. Azide-clickable dendrons were attached onto the azido groups through “alkyne-azide” click chemistry, affording a ten-fold amplification of adhesions sites. Dendron end groups were finally decorated with end-on modified heparin chains. Heparin chains were oriented like heparan sulfate groups on native endothelial cells surface. XPS, NMR, MS and FTIR were used to characterize the synthesis steps, building the final heparin layered coatings. Continuity of the heparin coating was verified using fluorescent microscopy and histological analysis. Efficacy of heparin linkage was demonstrated with factor Xa antithrombogenic assay and platelet adhesion studies. The results suggest that oriented heparin immobilization to decellularized aortas may improve the in vivo blood compatibility of decellularized aortas and vessels. PMID:25463496

  2. Flame retardant polyphosphazenes

    NASA Technical Reports Server (NTRS)

    Paciorek, K. L.; Karle, D. W.; Kratzer, R. H.

    1976-01-01

    Three processes for the preparation of polyphosphazenes were investigated: (1) the reaction of bisphosphines with diazides, (2) the condensation of bisdichlorophosphoranes with diamines; and (3) the treatment of bisphosphines with diamines in the presence of carbon tetrachloride followed by base dehydrohalogenation. All products obtained were of low molecular weight; the degree of polymerization did not exceed twelve repeating units. However, several compositions exhibited good thermal stability. No weight loss was observed up to 390 C when heated in air at 5 C/min. Treatment of bisphosphines with either an excess of a diazide or an excess of a diamine in the presence of carbon tetrachloride resulted in the production of difunctional phosphazenes which were respectively, azido and amino terminated. The reaction of these azido terminated extended monomers with bisphosphines did not produce high molecular weight materials. The bis-aminophosphazene prepared for the first time under this contract was successfully incorporated into a polyimide.

  3. Synthesis and anti-HIV activity of novel N-1 side chain-modified analogs of 1-[(2-hydroxyethoxy)methyl]-6-(phenylthio)thymine (HEPT).

    PubMed

    Pontikis, R; Benhida, R; Aubertin, A M; Grierson, D S; Monneret, C

    1997-06-06

    A series of 33 N-1 side chain-modified analogs of 1-[(2-hydroxyethoxy)methyl]-6-(phenylthio)thymine (1, HEPT) were synthesized and evaluated for their anti-HIV-1 activity. In particular, the influence of substitution of the terminal hydroxy group of the acyclic structure of HEPT and the structural rigidity of this side chain were investigated. Halo (7, 8), azido (9), and amino (10-15) derivatives were synthesized from HEPT via the p-tosylate derivative 6. Acylation of the primary amine 15 afforded the amido analogs 16-20. The diaryl derivatives 26-29 were prepared by reaction of HEPT, or of the 6-(2-pyridylthio) analog 23, with diaryl disulfides in the presence of tri-n-butylphosphine. Compounds 39-41, in which the N-1 side chain is rigidified by incorporation of an E-configured double bond, were obtained by palladium(0)-catalyzed coupling of several different 6-(arylthio)uracil derivatives (37, 38) with allyl acetates 33. Compounds 13, 40a,c,d,f, and 41, incorporating an aromatic ring at the end of the acyclic side chain, were found to be more potent than the known diphenyl-substituted HEPT analog BPT (2), two of them, 40c,d, being 10-fold more active.

  4. A sensitive fluorescent sensor for quantification of alpha-fetoprotein based on immunosorbent assay and click chemistry.

    PubMed

    Xie, Qunfang; Weng, Xiuhua; Lu, Lijun; Lin, Zhenyu; Xu, Xiongwei; Fu, Caili

    2016-03-15

    A novel fluoresencent immunosensor for determination of cancer biomarkers such as alpha-fetoprotein (AFP) was designed by utilizing both the high specificity of antigen-antibody sandwich structure and the high sensitivity of the click chemistry based fluorescence detection. Instead of an enzyme or fluorophore, the CuO nanoparticles are labeled on the detection antibody, which was not susceptible to the change of the external environments. The CuO nanoparticles which were modified on the sandwich structure can be dissolved to produce Cu(2+) ions with the help of HCl and then the Cu(2+) ions were reduced by sodium ascorbate to produce Cu(+) ions which triggered the Cu(+) catalyzed alkyne-azide cycloaddition (CuAAC) reaction between the weak fluorescent compound (3-azido-7-hydroxycoumarin) and propargyl alcohol to form a strong fluorescent compound. A good linear relationship was observed between the fluorescence increase factor of the system and the concentration of AFP in the range of 0.025-5.0 ng/mL with a detection limit of 12 pg/mL (S/N=3). The proposed fluorescent sensor had been applied to detect AFP in the human serum samples and gave satisfactory results. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Immunoregulatory effects of covalent antigen-antibody complexes. III. Enhancement or suppression depending on the time of administration of complex relative to a T-independent antigen.

    PubMed Central

    Tite, J P; Morrison, C A; Taylor, R B

    1981-01-01

    The photosensitive affinity label NAP (4-azido-2-nitrophenyl) was used to make a stable covalent-bonded monomeric immune complex (Ag2Ab) between rabbit anti-NAP antibody and a bihaptenic compound containing NAP linked to fluorescein (NAP-aminocaproyl-lysyl-Fl). This complex injected into mice had marked effects on their subsequent response to fluorescein coupled to a thymus-independent carrier (Fl-ficoll). Depending on the time at which the complex was administered relative to challenge, it was possible to obtain either enhancing or suppressive effects. The enhancing but not the suppressive effect of complex was dependent on immune recognition of the rabbit IgG carrier. While the suppressive effect probably results from complex-mediated inactivation of T-independent B cells, it is suggested that the enhancing effect results from priming of the T-dependent B cells by Fl-Ficoll followed by their triggering into antibody production by rabbit IgG-specific helper cells. PMID:7007223

  6. Synthesis of avibactam derivatives and activity on β-lactamases and peptidoglycan biosynthesis enzymes of mycobacteria.

    PubMed

    Edoo, Zainab; Iannazzo, Laura; Compain, Fabrice; Li de la Sierra Gallay, Inès; van Tilbeurgh, Herman; Fonvielle, Matthieu; Bouchet, Flavie; Le Run, Eva; Mainardi, Jean-Luc; Arthur, Michel; Ethève-Quelquejeu, Mélanie; Hugonnet, Jean-Emmanuel

    2018-03-30

    There is a renewed interest for β-lactams for treating infections due to Mycobacterium tuberculosis and M. abscessus since their β-lactamases are inhibited by classical (clavulanate) or new generation (avibactam) inhibitors, respectively. Here, we report access to an azido derivative of the diazabicyclooctane (DBO) scaffold of avibactam for functionalization by the Huisgen-Sharpless cycloaddition reaction. The amoxicillin-DBO combinations were active indicating that the triazole ring is compatible with drug penetration (minimal inhibitory concentration of 16 µg/ml for both species). Mechanistically, β-lactamase inhibition was not sufficient to account for the potentiation of amoxicillin by DBOs. Thus, we investigated the latter compounds as inhibitors of L,D-transpeptidases (LDTs), which are the main peptidoglycan polymerases in mycobacteria. The DBOs acted as slow-binding inhibitors of LDTs by S-carbamoylation indicating that optimization of DBOs for LDT inhibition is an attractive strategy to obtain drugs selectively active on mycobacteria. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Specific photoaffinity labeling of two plasma membrane polypeptides with an azido auxin

    NASA Technical Reports Server (NTRS)

    Hicks, G. R.; Rayle, D. L.; Jones, A. M.; Lomax, T. L.

    1989-01-01

    Plasma membrane vesicles were isolated from zucchini (Cucurbita pepo) hypocotyl tissue by aqueous phase partitioning and assessed for homogeneity by the use of membrane-specific enzyme assays. The highly pure (ca. 95%) plasma membrane vesicles maintained a pH differential across the membrane and accumulated a tritiated azido analogue of 3-indoleacetic acid (IAA), 5-azido-[7-3H]IAA ([3H]N3IAA), in a manner similar to the accumulation of [3H]IAA. The association of the [3H]N3IAA with membrane vesicles was saturable and subject to competition by IAA and auxin analogues. Auxin-binding proteins were photoaffinity labeled by addition of [3H]N3IAA to plasma membrane vesicles prior to exposure to UV light (15 sec; 300 nm) and detected by subsequent NaDodSO4/PAGE and fluorography. When the reaction temperature was lowered to -196 degrees C, high-specific-activity labeling of a 40-kDa and a 42-kDa polypeptide was observed. Triton X-100 (0.1%) increased the specific activity of labeling and reduced the background, which suggests that the labeled polypeptides are intrinsic membrane proteins. The labeled polypeptides are of low abundance, as expected for auxin receptors. Further, the addition of IAA and auxin analogues to the photoaffinity reaction mixture resulted in reduced labeling that was qualitatively similar to their effects on the accumulation of radiolabeled IAA in membrane vesicles. Collectively, these results suggest that the radiolabeled polypeptides are auxin receptors. The covalent nature of the label should facilitate purification and further characterization of the receptors.

  8. Specific photoaffinity labeling of two plasma membrane polypeptides with an azido auxin.

    PubMed

    Hicks, G R; Rayle, D L; Jones, A M; Lomax, T L

    1989-07-01

    Plasma membrane vesicles were isolated from zucchini (Cucurbita pepo) hypocotyl tissue by aqueous phase partitioning and assessed for homogeneity by the use of membrane-specific enzyme assays. The highly pure (ca. 95%) plasma membrane vesicles maintained a pH differential across the membrane and accumulated a tritiated azido analogue of 3-indoleacetic acid (IAA), 5-azido-[7-3H]IAA ([3H]N3IAA), in a manner similar to the accumulation of [3H]IAA. The association of the [3H]N3IAA with membrane vesicles was saturable and subject to competition by IAA and auxin analogues. Auxin-binding proteins were photoaffinity labeled by addition of [3H]N3IAA to plasma membrane vesicles prior to exposure to UV light (15 sec; 300 nm) and detected by subsequent NaDodSO4/PAGE and fluorography. When the reaction temperature was lowered to -196 degrees C, high-specific-activity labeling of a 40-kDa and a 42-kDa polypeptide was observed. Triton X-100 (0.1%) increased the specific activity of labeling and reduced the background, which suggests that the labeled polypeptides are intrinsic membrane proteins. The labeled polypeptides are of low abundance, as expected for auxin receptors. Further, the addition of IAA and auxin analogues to the photoaffinity reaction mixture resulted in reduced labeling that was qualitatively similar to their effects on the accumulation of radiolabeled IAA in membrane vesicles. Collectively, these results suggest that the radiolabeled polypeptides are auxin receptors. The covalent nature of the label should facilitate purification and further characterization of the receptors.

  9. A substrate radical intermediate in the reaction between ribonucleotide reductase from Escherichia coli and 2'-azido-2'-deoxynucleoside diphosphates.

    PubMed

    Sjöberg, B M; Gräslund, A; Eckstein, F

    1983-07-10

    The B2 subunit of ribonucleotide reductase from Escherichia coli contains a tyrosine radical which is essential for enzyme activity. In the reaction between ribonucleotide reductase and the substrate analogue 2'-azido-2'-deoxycytidine 5'-diphosphate a new transient radical is formed. The EPR characteristics of this new radical species are consistent with a localization of the unpaired electron at the sugar moiety of the nucleotide. The radical shows hyperfine couplings to a hydrogen and a nitrogen nucleus, the latter probably being part of the azide substituent. The formation of the nucleotide radical in this suicidal reaction is concomitant with the decay of the tyrosine radical of the B2 subunit. Kinetic data argue for a first (pseudosecond) order decay of the B2 radical via generation of the nucleotide radical followed by a slower first order decay of the nucleotide radical. End products in the reaction are cytosine and radical-free protein B2. In the reaction between bacteriophage T4 ribonucleotide reductase and 2'-azido-2'-deoxycytidine 5'-diphosphate an identical nucleotide radical is formed. The present results are consistent with the hypothesis that the appearance and structure of the transient radical mimic stages in the normal reaction pathway of ribonucleotide reductase, postulated to proceed via 3'-hydrogen abstraction and cation radical formation of the substrate nucleotide (Stubbe, J., and Ackles, D. (1980) J. Biol. Chem. 255, 8027-8030). The nucleotide radical described here might be equivalent to such a cation radical intermediate.

  10. Functionalization of Mechanochemically Passivated Germanium Nanoparticles via "Click" Chemistry

    NASA Astrophysics Data System (ADS)

    Purkait, Tapas Kumar

    Germanium nanoparticles (Ge NPs) may be fascinating for their electronic and optoelectronic properties, as the band gap of Ge NPs can be tuned from the infrared into the visible range of solar spectru. Further functionalization of those nanoparticles may potentially lead to numerous applications ranging from surface attachment, bioimaging, drug delivery and nanoparticles based devices. Blue luminescent germanium nanoparticles were synthesized from a novel top-down mechanochemical process using high energy ball milling (HEBM) of bulk germanium. Various reactive organic molecules (such as, alkynes, nitriles, azides) were used in this process to react with fresh surface and passivate the surface through Ge-C or Ge-N bond. Various purification process, such as gel permeation chromatography (GPC), Soxhlet dailysis etc. were introduced to purify nanoparticles from molecular impurities. A size separation technique was developed using GPC. The size separated Ge NPs were characterize by TEM, small angle X-ray scattering (SAXS), UV-vis absorption and photoluminescence (PL) emission spectroscopy to investigate their size selective properties. Germanium nanoparticles with alkyne termini group were prepared by HEBM of germanium with a mixture of n-alkynes and alpha, o-diynes. Additional functionalization of those nanoparticles was achieved by copper(I) catalyzed azide-alkyne "click" reaction. A variety of organic and organometallic azides including biologically important glucals have been reacted in this manner resulting in nanopartilces adorned with ferrocenyl, trimethylsilyl, and glucal groups. Additional functionalization of those nanoparticles was achieved by reactions with various azides via a Cu(I) catalyzed azide-alkyne "click" reaction. Various azides, including PEG derivatives and cylcodextrin moiety, were grafted to the initially formed surface. Globular nanoparticle arrays were formed through interparticle linking via "click" chemistry or "host-guest" chemistry. Copper(I) catalyzed "click" chemistry also can be explored with azido-terminated Ge NPs which were synthesized by azidation of chloro-terminated Ge NPs. Water soluble PEGylated Ge NPs were synthesized by "click" reaction for biological application. PEGylated Ge NP clusters were prepared using alpha, o-bis alkyno or bis-azido polyethylene glycol (PEG) derivatives by copper catalyzed "click" reaction via inter-particle linking. These nanoparticles were further functionalized by azido beta-cyclodextrin (beta-CD) and azido adamantane via alkyne-azide "click" reactions. Nanoparticle clusters were made from the functionalized Ge NPs by "host-guest" chemistry of beta-CD functionalized Ge NPs either with adamantane functionalized Ge NPs or fullerene, C60.

  11. A new strategy to inhibit the excision reaction catalysed by HIV-1 reverse transcriptase: compounds that compete with the template–primer

    PubMed Central

    Cruchaga, Carlos; Anso, Elena; Font, María; Martino, Virginia S.; Rouzaut, Ana; Martinez-Irujo, Juan J.

    2007-01-01

    Inhibitors of the excision reaction catalysed by HIV-1 RT (reverse transcriptase) represent a promising approach in the fight against HIV, because these molecules would interfere with the main mechanism of resistance of this enzyme towards chain-terminating nucleotides. Only a limited number of compounds have been demonstrated to inhibit this reaction to date, including NNRTIs (non-nucleoside RT inhibitors) and certain pyrophosphate analogues. We have found previously that 2GP (2-O-galloylpunicalin), an antiviral compound extracted from the leaves of Terminalia triflora, was able to inhibit both the RT and the RNase H activities of HIV-1 RT without affecting cell proliferation or viability. In the present study, we show that 2GP also inhibited the ATP- and PPi-dependent phosphorolysis catalysed by wild-type and AZT (3′-azido-3′-deoxythymidine)-resistant enzymes at sub-micromolar concentrations. Kinetic and direct-binding analysis showed that 2GP was a non-competitive inhibitor against the nucleotide substrate, whereas it competed with the binding of RT to the template–primer (Kd=85 nM). As expected from its mechanism of action, 2GP was active against mutations conferring resistance to NNRTIs and AZT. The combination of AZT with 2GP was highly synergistic when tested in the presence of pyrophosphate, indicating that the inhibition of RT-catalysed phosphorolysis was responsible for the synergy found. Although other RT inhibitors that compete with the template–primer have been described, this is the first demonstration that these compounds can be used to block the excision of chain terminating nucleotides, providing a rationale for their combination with nucleoside analogues. PMID:17355225

  12. A new strategy to inhibit the excision reaction catalysed by HIV-1 reverse transcriptase: compounds that compete with the template-primer.

    PubMed

    Cruchaga, Carlos; Anso, Elena; Font, María; Martino, Virginia S; Rouzaut, Ana; Martinez-Irujo, Juan J

    2007-07-01

    Inhibitors of the excision reaction catalysed by HIV-1 RT (reverse transcriptase) represent a promising approach in the fight against HIV, because these molecules would interfere with the main mechanism of resistance of this enzyme towards chain-terminating nucleotides. Only a limited number of compounds have been demonstrated to inhibit this reaction to date, including NNRTIs (non-nucleoside RT inhibitors) and certain pyrophosphate analogues. We have found previously that 2GP (2-O-galloylpunicalin), an antiviral compound extracted from the leaves of Terminalia triflora, was able to inhibit both the RT and the RNase H activities of HIV-1 RT without affecting cell proliferation or viability. In the present study, we show that 2GP also inhibited the ATP- and PP(i)-dependent phosphorolysis catalysed by wild-type and AZT (3'-azido-3'-deoxythymidine)-resistant enzymes at sub-micromolar concentrations. Kinetic and direct-binding analysis showed that 2GP was a non-competitive inhibitor against the nucleotide substrate, whereas it competed with the binding of RT to the template-primer (K(d)=85 nM). As expected from its mechanism of action, 2GP was active against mutations conferring resistance to NNRTIs and AZT. The combination of AZT with 2GP was highly synergistic when tested in the presence of pyrophosphate, indicating that the inhibition of RT-catalysed phosphorolysis was responsible for the synergy found. Although other RT inhibitors that compete with the template-primer have been described, this is the first demonstration that these compounds can be used to block the excision of chain terminating nucleotides, providing a rationale for their combination with nucleoside analogues.

  13. Syntheses, crystal structures, magnetic properties, and EPR spectra of tetranuclear copper(II) complexes featuring pairs of "roof-shaped" Cu2X2 dimers with hydroxide, methoxide, and azide bridges.

    PubMed

    Graham, B; Hearn, M T; Junk, P C; Kepert, C M; Mabbs, F E; Moubaraki, B; Murray, K S; Spiccia, L

    2001-03-26

    Hydroxo- and methoxo-bridged tetranuclear copper(II) complexes of the tetramacrocyclic ligand 1,2,4,5-tetrakis(1,4,7-triazacyclonon-1-ylmethyl)benzene (Ldur), have been prepared from [Cu4Ldur(H2O)8](ClO4)8.9H2O (1). Addition of base to an aqueous solution of 1 gave [Cu4Ldur(mu2-OH)4](ClO4)4 (2). Diffusion of MeOH into a DMF solution of 2 produces [Cu4Ldur(mu2-OMe)4](ClO4)4.HClO4.2/3MeOH (3), a complex which hydrolyzes on exposure to moisture regenerating 2. The structurally related azido-bridged complex, [Cu4Ldur(mu2-N3)4](PF6)4.4H2O.6CH3CN (4), was produced by reaction of Ldur with 4 molar equiv of Cu(OAc)2.H2O and NaN3 in the presence of excess KPF6. Compounds 2-4 crystallize in the triclinic space group P1 (No. 2) with a = 10.248(1) A, b = 12.130(2) A, c = 14.353(2) A, alpha = 82.23(1) degrees, beta = 80.79(1) degrees, gamma = 65.71(1) degrees, and Z = 1 for 2, a = 10.2985(4) A, b = 12.1182(4) A, c = 13.9705(3) A, alpha = 89.978(2) degrees, beta = 82.038(2) degrees, gamma = 65.095(2) degrees, and Z = 1 for 3, and a = 12.059(2) A, b = 12.554(2) A, c = 14.051(2) A, alpha = 91.85(1) degrees, beta = 98.22(1) degrees, gamma = 105.62(1) degrees, and Z = 1 for 4. The complexes feature pairs of isolated dibridged copper(II) dimers with "roof-shaped" Cu2(mu2-X)2 cores (X = OH-, OMe-, N3-), as indicated by the dihedral angle between the two CuX2 planes (159 degrees for 2, 161 degrees for 3, and 153 degrees for 4). This leads to Cu.Cu distances of 2.940(4) A for 2, 2.962(1) A for 3, and 3.006(5) A for 4. Variable-temperature magnetic susceptibility measurements indicate weak antiferromagnetic coupling (J = -27 cm(-1)) for the hydroxo-bridged copper(II) centers in 2 and very strong antiferromagnetic coupling (J = -269 cm(-1)) for the methoxo-bridged copper(II) centers in 3. Pairs of copper(II) centers in 4 display the strongest ferromagnetic interaction (J = 94 cm(-1)) reported thus far for bis(mu2-1,1-azido)-bridged dicopper units. Spectral measurements on a neat powdered sample of 4 at 33.9 GHz or 90 Ghz confirm the spin-triplet ground state for the azido-bridged copper(II) pairs.

  14. Functional interaction between the two halves of the photoreceptor-specific ATP binding cassette protein ABCR (ABCA4). Evidence for a non-exchangeable ADP in the first nucleotide binding domain.

    PubMed

    Ahn, Jinhi; Beharry, Seelochan; Molday, Laurie L; Molday, Robert S

    2003-10-10

    ABCR, also known as ABCA4, is a member of the superfamily of ATP binding cassette transporters that is believed to transport retinal or retinylidene-phosphatidylethanolamine across photoreceptor disk membranes. Mutations in the ABCR gene are responsible for Stargardt macular dystrophy and related retinal dystrophies that cause severe loss in vision. ABCR consists of two tandemly arranged halves each containing a membrane spanning segment followed by a large extracellular/lumen domain, a multi-spanning membrane domain, and a nucleotide binding domain (NBD). To define the role of each NBD, we examined the nucleotide binding and ATPase activities of the N and C halves of ABCR individually and co-expressed in COS-1 cells and derived from trypsin-cleaved ABCR in disk membranes. When disk membranes or membranes from co-transfected cells were photoaffinity labeled with 8-azido-ATP and 8-azido-ADP, only the NBD2 in the C-half bound and trapped the nucleotide. Co-expressed half-molecules displayed basal and retinal-stimulated ATPase activity similar to full-length ABCR. The individually expressed N-half displayed weak 8-azido-ATP labeling and low basal ATPase activity that was not stimulated by retinal, whereas the C-half did not bind ATP and exhibited little if any ATPase activity. Purified ABCR contained one tightly bound ADP, presumably in NBD1. Our results indicate that only NBD2 of ABCR binds and hydrolyzes ATP in the presence or absence of retinal. NBD1, containing a bound ADP, associates with NBD2 to play a crucial, non-catalytic role in ABCR function.

  15. Synthesis, spectral characterization, thermal and photoluminescence properties of Zn(II) and Cd(II)-azido/thiocyanato complexes with thiazolylazo dye and 1,2-bis(diphenylphoshino)ethane.

    PubMed

    Yamgar, B A; Sawant, V A; Bharate, B G; Chavan, S S

    2011-01-01

    A series of complexes of the type [M(L)(dppe)X2]; where M=Zn(II) or Cd(II); L=4-(2'-thiazolylazo)chlorobenzene (L1), 4-(2'-thiazolylazo)bromobenzene (L2) and 4-(2'-thiazolylazo) iodobenzene (L3); dppe=1,2-bis(diphenylphosphino)ethane; X=N3- or NCS- have been prepared and characterized on the basis of their microanalysis, molar conductance, thermal, IR, UV-vis and 1H NMR spectral studies. IR spectra show that the ligand L is coordinated to the metal atom in bidentate manner via azo nitrogen and thiazole nitrogen. An octahedral structure is proposed for all the complexes. The thermal behavior of the complexes revealed that the thiocyanato complexes are thermally more stable than the azido complexes. All the complexes exhibit blue-green emission with high quantum yield as the result of the fluorescence from the intraligand emission excited state. Copyright © 2010 Elsevier B.V. All rights reserved.

  16. Small Molecule Targeting of a MicroRNA Associated with Hepatocellular Carcinoma.

    PubMed

    Childs-Disney, Jessica L; Disney, Matthew D

    2016-02-19

    Development of precision therapeutics is of immense interest, particularly as applied to the treatment of cancer. By analyzing the preferred cellular RNA targets of small molecules, we discovered that 5"-azido neomycin B binds the Drosha processing site in the microRNA (miR)-525 precursor. MiR-525 confers invasive properties to hepatocellular carcinoma (HCC) cells. Although HCC is one of the most common cancers, treatment options are limited, making the disease often fatal. Herein, we find that addition of 5"-azido neomycin B and its FDA-approved precursor, neomycin B, to an HCC cell line selectively inhibits production of the mature miRNA, boosts a downstream protein, and inhibits invasion. Interestingly, neomycin B is a second-line agent for hepatic encephalopathy (HE) and bacterial infections due to cirrhosis. Our results provocatively suggest that neomycin B, or second-generation derivatives, may be dual functioning molecules to treat both HE and HCC. Collectively, these studies show that rational design approaches can be tailored to disease-associated RNAs to afford potential lead therapeutics.

  17. Synthesis of some glycoside analogs and related compounds from 9-amino-6-(methylthio)-9H-purine.

    PubMed

    Temple, C; Kussner, C L; Montgomery, J A

    1975-12-01

    Additional information on the anticancer activity of 9-amino-9H-purine-6(1H)-thione and its derivatives was sought by the synthesis of some 9-(substituted amino)-6-(methylthio)-9H-purines in which the 9-substituent contained functional groups capable of either reversible or irreversible binding with an enzymatic site. Condensation of 9-amino-6-(methylthio)-9H-purine (1) with some carbonyl compounds followed by hydride reduction of the azomethine linkage in the intermediates leads to the 2-pyrrolylmethyl (8), 2,3,4-trihydroxybutyl (10), and the 1,5-dihydroxy-2- and 3-pentyl (11 and 12) compounds. A 4-hydroxybutyl derivative (13) was obtained by alkylation of 18, the 9-acetyl derivative of 1, with 4-chlorobutyl acetate followed by saponification. The cyclization of 13 and 11 with a sulfonyl chloride gave the 9-pyrrolidin-1-yl (27) and the 9-[2-(tosyloxymethyl)pyrrolidin-1-yl] (28), respectively. Acylation of 1 with ethyl L-2-pyrrolidine-5-carboxylate and ethyl 1-methyl-5-pyrrolidone-3-carboxylate, respectively, in Me2SO containing NaH gave the corresponding amides 15 and 17. Alkylation of 18 with 1-bromo-2-chloroethane and epichlorohydrin gave the N-(2-chloroethyl) and N-(1,2-epoxy-3-propyl) derivatives 19 and 20. The chloro group of the chlorobutyl derivative of 18 was displaced with KSCN and NaN3, respectively, to give the thiocyanate and azido derivatives 23 and 24. Hydrogenation of the latter gave the amine (25), which was acylated with ethyl chloroformate to give the (ethoxycarbonyl)amino compound 26. None of these compounds showed activity against L1210 leukemia cells implanted ip in mice on a single-dose schedule, suggesting that the activity observed in the simpler 9-aminopurines resulted from cleavage of the hydrazino linkage to give pH-purine-6(1H)-thione.

  18. Synthesis, structural characterization, photo-physical and magnetic properties of cobalt salphen pseudo halide complexes showing meta-magnetic ordering

    NASA Astrophysics Data System (ADS)

    Nassief, A. R.; Abdel-Hafiez, M.; Hassen, A.; Khalil, A. S. G.; Saber, M. R.

    2018-04-01

    The solvo-thermal syntheses of [(CoSalphen)2Co (SCN)2]n (1), CoSalphen(NH3)(N3)(2), Na[CoIIIsalphen(N3)2](3), Na[CoIIIsalen(N3)2](4) and CoIIIsalen(NH3)(N3) (5) {salphen = N,N'-o-phenylene-bis(salicylideneimine)} are reported. The structural studies using X-ray diffraction measurements revealed that 1 crystalizes in a monoclinic C2/c space group. Two cobalt (II) metal centers in penta-coordinated and octahedral local coordination environments are bridged via alternating O and μ1,3 SCN bridges resulting in a novel 2D layered coordination polymer. Compound 2 is a trivalent mononuclear cobalt azido complex with an octahedral coordination environment. The magnetic investigations of 1 revealed ferromagnetic coupling (J = +49.1 cm-1) and meta-magnetic ordering. Time resolved photoluminescence studies of the complexes showed excited state lifetimes of (τ1 = 0.4675 ns, τ2 = 5.23 ns) for 1 and (τ1 = 0.5078 ns, τ2 = 6.79 ns) for 2.

  19. Azidoethoxyphenylalanine as a Vibrational Reporter and Click Chemistry Partner in Proteins

    PubMed Central

    Tookmanian, Elise M.; Phillips-Piro, Christine M.; Fenlon, Edward E.; Brewer, Scott H.

    2016-01-01

    An unnatural amino acid, 4-(2-azidoethoxy)-l-phenylalanine (AePhe, 1), was designed and synthesized in three steps from known compounds in 54% overall yield. The sensitivity of the IR absorption of the azide of AePhe was established by comparison of the frequency of the asymmetric stretch vibration in water and dimethyl sulfoxide. AePhe was successfully incorporated into superfolder green fluorescent protein (sfGFP) at the 133 and 149 sites using the amber codon suppression method. The IR spectra of these sfGFP constructs indicated that the azide group at the 149 site was not fully solvated despite the location in sfGFP and the three-atom linker between the azido group and the aromatic ring of AePhe. An X-ray crystal structure of sfGFP-149-AePhe was solved at 1.45 Å resolution and provides an explanation for the IR data as the flexible linker adopts a conformation which partially buries the azide on the protein surface. Both sfGFP-AePhe constructs efficiently undergo a bioorthogonal strain-promoted click cycloaddition with a dibenzocyclooctyne derivative. PMID:26608683

  20. Synthesis of novel 13α-18-norandrostane-ferrocene conjugates via homogeneous catalytic methods and their investigation on TRPV1 receptor activation.

    PubMed

    Szánti-Pintér, Eszter; Wouters, Johan; Gömöry, Ágnes; Sághy, Éva; Szőke, Éva; Helyes, Zsuzsanna; Kollár, László; Skoda-Földes, Rita

    2015-12-01

    13α-Steroid-ferrocene derivatives were synthesized via two reaction pathways starting from an unnatural 16-keto-18-nor-13α-steroid. The unnatural steroid was converted to ferrocene derivatives via copper-catalyzed azide-alkyne cycloaddition or palladium-catalyzed aminocarbonylation. 16-Azido- and 16-N-(prop-2-ynyl)-carboxamido-steroids were synthesized as starting materials for azide-alkyne cycloaddition with the appropriate ferrocene derivatives. Based on our earlier work, aminocarbonylation of 16-iodo-16-ene and 16-iodo-15-ene derivatives was studied with ferrocenylmethylamine. The new products were obtained in moderate to good yields and were characterized by (1)H and (13)C NMR, IR and MS. The solid state structure of the starting material 13α-18-norandrostan-16-one and two carboxamide products were determined by X-ray crystallography. Evidences were provided that the N-propargyl-carboxamide compound as well as its ferrocenylmethyltriazole derivative are able to decrease the activation of TRPV1 receptor on TRG neurons. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Fungal growth inhibitory properties of new phytosphingolipid analogues.

    PubMed

    Mormeneo, D; Manresa, A; Casas, J; Llebaria, A; Delgado, A

    2008-04-01

    To study the growth inhibitory properties of a series of phytosphingosine (PHS) and phytoceramide (PHC) analogues. A panel of two yeast (Candida albicans and Saccharomyces cerevisiae) and six moulds (Aspergillus repens, Aspergillus niger, Penicillium chrysogenum, Cladosporium cladosporioides, Arthroderma uncinatum and Penicillium funiculosum) has been used in this study. A series of new PHS and PHC analogues differing at the sphingoid backbone and the functional group at C1 position were synthesized. Among PHS analogues, 1-azido derivative 1c, bearing the natural D-ribo stereochemistry, showed a promising growth inhibitory profile. Among PHC analogues, compound 12, with a bulky N-pivaloyl group and a Z double bond at C3 position of the sphingoid chain, was the most active growth inhibitor. Minimal inhibitory concentration values were in the range of 23-48 micromol l(-1) for 1c and 44-87 micromol l(-1) for 12. Only scattered data on the antifungal activity of phytosphingolipids have been reported in the literature. This is the first time that a series of analogues of this kind are tested and compared to discern their structural requirements for antifungal activity.

  2. Selective dye-labeling of newly synthesized proteins in bacterial cells.

    PubMed

    Beatty, Kimberly E; Xie, Fang; Wang, Qian; Tirrell, David A

    2005-10-19

    We describe fluorescence labeling of newly synthesized proteins in Escherichia coli cells by means of Cu(I)-catalyzed cycloaddition between alkynyl amino acid side chains and the fluorogenic dye 3-azido-7-hydroxycoumarin. The method involves co-translational labeling of proteins by the non-natural amino acids homopropargylglycine (Hpg) or ethynylphenylalanine (Eth) followed by treatment with the dye. As a demonstration, the model protein barstar was expressed and treated overnight with Cu(I) and 3-azido-7-hydroxycoumarin. Examination of treated cells by confocal microscopy revealed that strong fluorescence enhancement was observed only for alkynyl-barstar treated with Cu(I) and the reactive dye. The cellular fluorescence was punctate, and gel electrophoresis confirmed that labeled barstar was localized in inclusion bodies. Other proteins showed little fluorescence. Examination of treated cells by fluorimetry demonstrated that cultures supplemented with Eth or Hpg showed an 8- to 14-fold enhancement in fluorescence intensity after labeling. Addition of a protein synthesis inhibitor reduced the emission intensity to levels slightly above background, confirming selective labeling of newly synthesized proteins in the bacterial cell.

  3. Structure-activity relationships of C6-uridine derivatives targeting plasmodia orotidine monophosphate decarboxylase.

    PubMed

    Bello, Angelica M; Poduch, Ewa; Liu, Yan; Wei, Lianhu; Crandall, Ian; Wang, Xiaoyang; Dyanand, Christopher; Kain, Kevin C; Pai, Emil F; Kotra, Lakshmi P

    2008-02-14

    Malaria, caused by Plasmodia parasites, has re-emerged as a major problem, imposing its fatal effects on human health, especially due to multidrug resistance. In Plasmodia, orotidine 5'-monophosphate decarboxylase (ODCase) is an essential enzyme for the de novo synthesis of uridine 5'-monophosphate. Impairing ODCase in these pathogens is a promising strategy to develop novel classes of therapeutics. Encouraged by our recent discovery that 6-iodo uridine is a potent inhibitor of P. falciparum, we investigated the structure-activity relationships of various C6 derivatives of UMP. 6-Cyano, 6-azido, 6-amino, 6-methyl, 6- N-methylamino, and 6- N, N-dimethylamino derivatives of uridine were evaluated against P. falciparum. The mononucleotides of 6-cyano, 6-azido, 6-amino, and 6-methyl uridine derivatives were studied as inhibitors of plasmodial ODCase. 6-Azidouridine 5'-monophosphate is a potent covalent inhibitor of P. falciparum ODCase. 6-Methyluridine exhibited weak antimalarial activity against P. falciparum 3D7 isolate. 6- N-Methylamino and 6- N, N-dimethylamino uridine derivatives exhibited moderate antimalarial activities.

  4. Selection and characterization of a mutant of feline immunodeficiency virus resistant to 2',3'-dideoxycytidine.

    PubMed Central

    Medlin, H K; Zhu, Y Q; Remington, K M; Phillips, T R; North, T W

    1996-01-01

    We have selected and plaque purified a mutant of feline immunodeficiency virus (FIV) that is resistant to 2',3'-dideoxycytidine (ddC). This mutant was selected in cultured cells in the continuous presence of 25 microM ddC. The mutant, designated DCR-5c, was fourfold resistant to ddC, threefold resistant to 2',3'-dideoxyinosine, and more than fourfold resistant to phosphonoformic acid. DCR-5c displayed little or no resistance to (-)-beta-2',3'-dideoxy-3'-thiacytidine, 3'-azido-3'-deoxythymidine, or 9-(2-phosphonylmethoxyethyl) adenine. Reverse transcriptase purified from DCR-5c was less susceptible to inhibition by ddCTP, phosphonoformic acid, ddATP, or azido-dTTP than the wild-type FIV reverse transcriptase. Sequence analysis of DCR-5c revealed a single base change (G to C at nucleotide 2342) in the reverse transcriptase-encoding region of FIV. This mutation results in substitution of His for Asp at codon 3 of FIV reverse transcriptase. The role of this mutation in ddC resistance was confirmed by site-directed mutagenesis. PMID:8849258

  5. C-H Activation of Benzene by a Photoactivated Ni(II)(azide): Formation of a Transient Nickel Nitrido Complex.

    PubMed

    Vreeken, Vincent; Siegler, Maxime A; de Bruin, Bas; Reek, Joost N H; Lutz, Martin; van der Vlugt, Jarl Ivar

    2015-06-08

    Photochemical activation of nickel-azido complex 2 [Ni(N3)(PNP)] (PN(H)P=2,2'-di(isopropylphosphino)-4,4'-ditolylamine) in neat benzene produces diamagnetic complex 3 [Ni(Ph)(PN(P)N(H))], which is crystallographically characterized. DFT calculations support photoinitiated N2-loss of the azido complex to generate a rare, transient Ni(IV) nitrido species, which bears significant nitridyl radical character. Subsequent trapping of this nitrido through insertion into the Ni-P bond generates a coordinatively unsaturated Ni(II) imidophosphorane P=N donor. This species shows unprecedented reactivity toward 1,2-addition of a C-H bond of benzene to form 3. The structurally characterized chlorido complex 4 [Ni(Cl)(PN(P)N(H))] is generated by reaction of 3 with HCl or by direct photolysis of 2 in chlorobenzene. This is the first report of aromatic C-H bond activation by a trapped transient nitrido species of a late transition metal. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Effect of Osmolytes on the Conformational Behavior of a Macromolecule in a Cytoplasm-like Crowded Environment: A Femtosecond Mid-IR Pump-Probe Spectroscopy Study.

    PubMed

    Kundu, Achintya; Verma, Pramod Kumar; Cho, Minhaeng

    2018-02-15

    Osmolytes found endogenously in almost all living beings play an important role in regulating cell volume under harsh environment. Here, to address the longstanding questions about the underlying mechanism of osmolyte effects, we use femtosecond mid-IR pump-probe spectroscopy with two different IR probes that are the OD stretching mode of HDO and the azido stretching mode of azido-derivatized poly(ethylene glycol) dimethyl ether (PEGDME). Our experimental results show that protecting osmolytes bind strongly with water molecules and dehydrate polymer surface, which results in promoting intramolecular interactions of the polymer. By contrast, urea behaves like water molecules without significantly disrupting water H-bonding network and favors extended and random-coil segments of the polymer chain by directly participating in solvation of the polymer. Our findings highlight the importance of direct interaction between urea and macromolecule, while protecting osmolytes indirectly affect the macromolecule through enhancing the water-osmolyte interaction in a crowded environment, which is the case that is often encountered in real biological systems.

  7. Modulatory effects of plant phenols on human multidrug-resistance proteins 1, 4 and 5 (ABCC1, 4 and 5).

    PubMed

    Wu, Chung-Pu; Calcagno, Anna Maria; Hladky, Stephen B; Ambudkar, Suresh V; Barrand, Margery A

    2005-09-01

    Plant flavonoids are polyphenolic compounds, commonly found in vegetables, fruits and many food sources that form a significant portion of our diet. These compounds have been shown to interact with several ATP-binding cassette transporters that are linked with anticancer and antiviral drug resistance and, as such, may be beneficial in modulating drug resistance. This study investigates the interactions of six common polyphenols; quercetin, silymarin, resveratrol, naringenin, daidzein and hesperetin with the multidrug-resistance-associated proteins, MRP1, MRP4 and MRP5. At nontoxic concentrations, several of the polyphenols were able to modulate MRP1-, MRP4- and MRP5-mediated drug resistance, though to varying extents. The polyphenols also reversed resistance to NSC251820, a compound that appears to be a good substrate for MRP4, as predicted by data-mining studies. Furthermore, most of the polyphenols showed direct inhibition of MRP1-mediated [3H]dinitrophenyl S-glutathione and MRP4-mediated [3H]cGMP transport in inside-out vesicles prepared from human erythrocytes. Also, both quercetin and silymarin were found to inhibit MRP1-, MRP4- and MRP5-mediated transport from intact cells with high affinity. They also had significant effects on the ATPase activity of MRP1 and MRP4 without having any effect on [32P]8-azidoATP[alphaP] binding to these proteins. This suggests that these flavonoids most likely interact at the transporter's substrate-binding sites. Collectively, these results suggest that dietary flavonoids such as quercetin and silymarin can modulate transport activities of MRP1, -4 and -5. Such interactions could influence bioavailability of anticancer and antiviral drugs in vivo and thus, should be considered for increasing efficacy in drug therapies.

  8. Null missense ABCR (ABCA4) mutations in a family with stargardt disease and retinitis pigmentosa.

    PubMed

    Shroyer, N F; Lewis, R A; Yatsenko, A N; Lupski, J R

    2001-11-01

    To determine the type of ABCR mutations that segregate in a family that manifests both Stargardt disease (STGD) and retinitis pigmentosa (RP), and the functional consequences of the underlying mutations. Direct sequencing of all 50 exons and flanking intronic regions of ABCR was performed for the STGD- and RP-affected relatives. RNA hybridization, Western blot analysis, and azido-adenosine triphosphate (ATP) labeling was used to determine the effect of disease-associated ABCR mutations in an in vitro assay system. Compound heterozygous missense mutations were identified in patients with STGD and RP. STGD-affected individual AR682-03 was compound heterozygous for the mutation 2588G-->C and a complex allele, [W1408R; R1640W]. RP-affected individuals AR682-04 and-05 were compound heterozygous for the complex allele [W1408R; R1640W] and the missense mutation V767D. Functional analysis of the mutation V767D by Western blot and ATP binding revealed a severe reduction in protein expression. In vitro analysis of ABCR protein with the mutations W1408R and R1640W showed a moderate effect of these individual mutations on expression and ATP-binding; the complex allele [W1408R; R1640W] caused a severe reduction in protein expression. These data reveal that missense ABCR mutations may be associated with RP. Functional analysis reveals that the RP-associated missense ABCR mutations are likely to be functionally null. These studies of the complex allele W1408R; R1640W suggest a synergistic effect of the individual mutations. These data are congruent with a model in which RP is associated with homozygous null mutations and with the notion that severity of retinal disease is inversely related to residual ABCR activity.

  9. Cabazitaxel is more active than first-generation taxanes in ABCB1(+) cell lines due to its reduced affinity for P-glycoprotein.

    PubMed

    Duran, George E; Derdau, Volker; Weitz, Dietmar; Philippe, Nicolas; Blankenstein, Jörg; Atzrodt, Jens; Sémiond, Dorothée; Gianolio, Diego A; Macé, Sandrine; Sikic, Branimir I

    2018-04-19

    The primary aim of this study was to determine cabazitaxel's affinity for the ABCB1/P-glycoprotein (P-gp) transporter compared to first-generation taxanes. We determined the kinetics of drug accumulation and retention using [ 14 C]-labeled taxanes in multidrug-resistant (MDR) cells. In addition, membrane-enriched fractions isolated from doxorubicin-selected MES-SA/Dx5 cells were used to determine sodium orthovanadate-sensitive ATPase stimulation after exposure to taxanes. Custom [ 3 H]-azido-taxane analogues were synthesized for the photoaffinity labeling of P-gp. The maximum intracellular drug concentration was achieved faster with [ 14 C]-cabazitaxel (5 min) than [ 14 C]-docetaxel (15-30 min). MDR cells accumulated twice as much cabazitaxel than docetaxel, and these levels could be restored to parental levels in the presence of the P-gp inhibitor PSC-833 (valspodar). Efflux in drug-free medium confirmed that MDR cells retained twice as much cabazitaxel than docetaxel. There was a strong association (r 2  = 0.91) between the degree of taxane resistance conferred by P-gp expression and the accumulation differences observed with the two taxanes. One cell model expressing low levels of P-gp was not cross-resistant to cabazitaxel while demonstrating modest resistance to docetaxel. Furthermore, there was a 1.9 × reduction in sodium orthovanadate-sensitive ATPase stimulation resulting from treatment with cabazitaxel compared to docetaxel. We calculated a dissociation constant (Kd) value of 1.7 µM for [ 3 H]-azido-docetaxel and ~ 7.5 µM for [ 3 H]-azido-cabazitaxel resulting in a 4.4 × difference in P-gp labeling, and cold docetaxel was a more effective competitor than cabazitaxel. Our studies confirm that cabazitaxel is more active in ABCB1(+) cell models due to its reduced affinity for P-gp compared to docetaxel.

  10. Evidence that Na+/H+ exchanger 1 is an ATP-binding protein.

    PubMed

    Shimada-Shimizu, Naoko; Hisamitsu, Takashi; Nakamura, Tomoe Y; Wakabayashi, Shigeo

    2013-03-01

    Na(+)/H(+) exchanger (NHE) 1 is a member of the solute carrier superfamily, which regulates intracellular ionic homeostasis. NHE1 is known to require cellular ATP for its activity, despite there being no requirement for energy input from ATP hydrolysis. In this study, we investigated whether NHE1 is an ATP-binding protein. We designed a baculovirus vector carrying both epitope-tagged NHE1 and its cytosolic subunit CHP1, and expressed the functional NHE1-CHP1 complex on the surface of Sf9 insect cells. Using the purified complex protein consisting of NHE1 and CHP1 from Sf9 cells, we examined a photoaffinity labeling reaction with 8-azido-ATP-biotin. UV irradiation promoted the incorporation of 8-azido-ATP into NHE1, but not into CHP1, with an apparent Kd of 29.1 µM in the presence of Mg(2+). The nonlabeled nucleotides ATP, GTP, TTP and CTP all inhibited this crosslinking. However, ATP had the strongest inhibitory effect, with an apparent inhibition constant (IC50) for ATP of 2.2 mM, close to the ATP concentration giving the half-maximal activation of NHE1 activity. Importantly, crosslinking was more strongly inhibited by ATP than by ADP, suggesting that ATP is dissociated from NHE1 upon ATP hydrolysis. Limited proteolysis with thrombin and deletion mutant analysis revealed that the 8-azido-ATP-binding site is within the C-terminal cytoplasmic domain of NHE1. Equilibrium dialysis with NHE1-derived peptides provided evidence that ATP directly binds to the proximal cytoplasmic region (Gly542-Pro598), which is critical for ATP-dependent regulation of NHE1. These findings suggest that NHE1 is an ATP-binding transporter. Thus, ATP may serve as a direct activator of NHE1. © 2013 The Authors Journal compilation © 2013 FEBS.

  11. Mass Spectrometric Thermal Decomposition and Ultraviolet Irradiation Studies of Some Azido and Nitrato Polymeric Binders.

    DTIC Science & Technology

    1982-09-01

    Edwards AFB, CA 93523 Attn: Mr. D. Siegel Attn: Dr. F. Roberto Office of Naval Research 1 AFSC Western Office Andrews AFB, Code DLFP 1030 East Green...Office space Sciences One Hallidie Plaza Suite 601 Bolling Air Force Base San Francisco, CA 94102 Washing.on, DC 20332 Attn: Dr. P. A. Miller Attn: Dr

  12. Ultrafast primary processes of an iron-(III) azido complex in solution induced with 266 nm light.

    PubMed

    Vennekate, Hendrik; Schwarzer, Dirk; Torres-Alacan, Joel; Krahe, Oliver; Filippou, Alexander C; Neese, Frank; Vöhringer, Peter

    2012-05-14

    The ultrafast photo-induced primary processes of the iron-(III) azido complex, [Fe(III)N(3)(cyclam-acetato)] PF(6) (1), in acetonitrile solution at room temperature were studied using femtosecond spectroscopy with ultraviolet (UV) excitation and mid-infrared (MIR) detection. Following the absorption of a 266 nm photon, the complex undergoes an internal conversion back to the electronic doublet ground state at a time scale below 2 ps. Subsequently, the electronic ground state vibrationally cools with a characteristic time constant of 13 ps. A homolytic bond cleavage was also observed by the appearance of ground state azide radicals, which were identified by their asymmetric stretching vibration at 1659 cm(-1). The azide radical recombines in a geminate fashion with the iron containing fragment within 20 ps. The cage escape leading to well separated fragments after homolytic Fe-N bond breakage was found to occur with a quantum yield of 35%. Finally, non-geminate recombination at nanosecond time scales was seen to further reduce the photolytic quantum yield to below 20% at a wavelength of 266 nm. This journal is © the Owner Societies 2012

  13. Azidoethoxyphenylalanine as a Vibrational Reporter and Click Chemistry Partner in Proteins.

    PubMed

    Tookmanian, Elise M; Phillips-Piro, Christine M; Fenlon, Edward E; Brewer, Scott H

    2015-12-21

    An unnatural amino acid, 4-(2-azidoethoxy)-L-phenylalanine (AePhe, 1), was designed and synthesized in three steps from known compounds in 54% overall yield. The sensitivity of the IR absorption of the azide of AePhe was established by comparison of the frequency of the azide asymmetric stretch vibration in water and dimethyl sulfoxide. AePhe was successfully incorporated into superfolder green fluorescent protein (sfGFP) at the 133 and 149 sites by using the amber codon suppression method. The IR spectra of these sfGFP constructs indicated that the azide group at the 149 site was not fully solvated despite the location in sfGFP and the three-atom linker between the azido group and the aromatic ring of AePhe. An X-ray crystal structure of sfGFP-149-AePhe was solved at 1.45 Å resolution and provides an explanation for the IR data as the flexible linker adopts a conformation which partially buries the azide on the protein surface. Both sfGFP-AePhe constructs efficiently undergo a bioorthogonal strain-promoted click cycloaddition with a dibenzocyclooctyne derivative. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Anti-human immunodeficiency virus (HIV) activities of halogenated gomisin J derivatives, new nonnucleoside inhibitors of HIV type 1 reverse transcriptase.

    PubMed

    Fujihashi, T; Hara, H; Sakata, T; Mori, K; Higuchi, H; Tanaka, A; Kaji, H; Kaji, A

    1995-09-01

    Halogenated gomisin J (a derivative of lignan compound), represented by the bromine derivative 1506 [(6R, 7S, S-biar)-4,9-dibromo-3,10-dihydroxy-1,2,11,12-tetramethoxy-6, 7-dimethyl-5,6,7,8- tetrahydrodibenzo[a,c]cyclo-octene], was found to be a potent inhibitor of the cytopathic effects of human immunodeficiency virus type 1 (HIV-1) on MT-4 human T cells (50% effective dose, 0.1 to 0.5 microM). Gomisin J derivatives were active in preventing p24 production from acutely HIV-1-infected H9 cells. The selective indices (toxic dose/effective dose) of these compounds were as high as > 300 in some systems. 1506 was active against 3'-azido-3'-deoxythymidine-resistant HIV-1 and acted synergistically with AZT and 2',3'-ddC. 1506 inhibited HIV-1 reverse transcriptase (RT) in vitro but not HIV-1 protease. From the time-of-addition experiment, 1506 was found to inhibit the early phase of the HIV life cycle. A 1506-resistant HIV mutant was selected and shown to possess a mutation within the RT-coding region (at position 188 [Tyr to Leu]). The mutant RT expressed in Escherichia coli was resistant to 1506 in the in vitro RT assay. Some of the HIV strains resistant to other nonnucleoside HIV-1 RT inhibitors were also resistant to 1506. Comparison of various gomisin J derivatives with gomisin J showed that iodine, bromine, and chlorine in the fourth and ninth positions increased RT inhibitory activity as well as cytoprotective activity.

  15. Human immunodeficiency virus types 1 and 2 exhibit comparable sensitivities to Zidovudine and other nucleoside analog inhibitors in vitro.

    PubMed

    Smith, Robert A; Gottlieb, Geoffrey S; Anderson, Donovan J; Pyrak, Crystal L; Preston, Bradley D

    2008-01-01

    Using an indicator cell assay that directly quantifies viral replication, we show that human immunodeficiency virus types 1 and 2 (HIV-1 and HIV-2, respectively) exhibit similar sensitivities to 3'-azido-3'-deoxythymidine (zidovudine) as well as other nucleoside analog inhibitors of reverse transcriptase. These data support the use of nucleoside analogs for antiviral therapy of HIV-2 infection.

  16. TEMPO Monolayers on Si(100) Electrodes: Electrostatic Effects by the Electrolyte and Semiconductor Space-Charge on the Electroactivity of a Persistent Radical.

    PubMed

    Zhang, Long; Vogel, Yan Boris; Noble, Benjamin B; Gonçales, Vinicius R; Darwish, Nadim; Brun, Anton Le; Gooding, J Justin; Wallace, Gordon G; Coote, Michelle L; Ciampi, Simone

    2016-08-03

    This work demonstrates the effect of electrostatic interactions on the electroactivity of a persistent organic free radical. This was achieved by chemisorption of molecules of 4-azido-2,2,6,6-tetramethyl-1-piperdinyloxy (4-azido-TEMPO) onto monolayer-modified Si(100) electrodes using a two-step chemical procedure to preserve the open-shell state and hence the electroactivity of the nitroxide radical. Kinetic and thermodynamic parameters for the surface electrochemical reaction are investigated experimentally and analyzed with the aid of electrochemical digital simulations and quantum-chemical calculations of a theoretical model of the tethered TEMPO system. Interactions between the electrolyte anions and the TEMPO grafted on highly doped, i.e., metallic, electrodes can be tuned to predictably manipulate the oxidizing power of surface nitroxide/oxoammonium redox couple, hence showing the practical importance of the electrostatics on the electrolyte side of the radical monolayer. Conversely, for monolayers prepared on the poorly doped electrodes, the electrostatic interactions between the tethered TEMPO units and the semiconductor-side, i.e., space-charge, become dominant and result in drastic kinetic changes to the electroactivity of the radical monolayer as well as electrochemical nonidealities that can be explained as an increase in the self-interaction "a" parameter that leads to the Frumkin isotherm.

  17. Identification of the triazine receptor protein as a chloroplast gene product

    PubMed Central

    Steinback, Katherine E.; McIntosh, Lee; Bogorad, Lawrence; Arntzen, Charles J.

    1981-01-01

    The triazine herbicides inhibit photosynthesis by blocking electron transport at the second stable electron acceptor of photosystem II. This electron transport component of chloroplast thylakoid membranes is a protein-plastoquinone complex termed “B.” The polypeptide that is believed to be a component of the B complex has recently been identified as a 32- to 34-kilo-dalton polypeptide by using a photoaffinity labeling probe, azido-[14C]atrazine. A 34-kilodalton polypeptide of pea chloroplasts rapidly incorporates [35S]methionine in vivo and is also a rapidly labeled product of chloroplast-directed protein synthesis. Trypsin treatment of membranes tagged with azido-[14C]atrazine, [35S]methionine in vivo, or [35S]methionine in isolated intact chloroplasts results in identical, sequential alterations of the 34-kilo-dalton polypeptide to species of 32, then 18 and 16 kilodaltons. From the identical pattern of susceptibility to trypsin we conclude that the rapidly synthesized 34-kilodalton polypeptide that is a product of chloroplast-directed protein synthesis is identical to the triazine herbicide-binding protein of photosystem II. Chloroplasts of both triazine-susceptible and triazine-resistant biotypes of Amaranthus hybridus synthesize the 34-kilodalton polypeptide, but that of the resistant biotype does not bind the herbicide. Images PMID:16593133

  18. Use of a small molecule as an initiator for interchain staudinger reaction: A new ATP sensing platform using product fluorescence.

    PubMed

    Yu, Huan; Zheng, Jing; Yang, Sheng; Asiri, Abdullah M; Alamry, Khalid A; Sun, Mingtai; Zhang, Kui; Wang, Suhua; Yang, Ronghua

    2018-02-01

    We demonstrated that a small molecule induced interchain Staudinger reaction can be employed for highly selective detection of adenosine triphosphate (ATP), an important energy-storage biomolecule. A designed ATP split aptamer (A1) was first functionalized with a weakly fluorescent coumarin derivative due to an azide group (azido-coumarin). The second DNA strand (A2) was covalently linked with triphenylphosphine, which could selectively and efficiently reduce azido to amino group through the Staudinger reaction. The A2 was then hybridized with a half of another designed longer DNA strand (T1). The second half of T1 was a split aptamer and selectively recognized ATP with A1 to form a sandwich structure. The specific interaction between ATP and the aptamers drew the two functionalized DNA strands (A1 and A2) together to initiate the interchain Staudinger reduction at fmol-nmol concentration level, hence produced fluorescent 7-aminocoumarin which could be used as an indicator for the presence of trace ATP. The reaction process had a concentration dependent manner with ATP in a large concentration range. Such a strategy of interchain Staudinger reaction can be extended to construct biosensors for other small functional molecules on the basis of judiciously designed aptamers. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Synthesis of Selective Agonists for the α7 Nicotinic Acetylcholine Receptor with In Situ Click-Chemistry on Acetylcholine-Binding Protein Templates

    PubMed Central

    Yamauchi, John G.; Gomez, Kimberly; Grimster, Neil; Dufouil, Mikael; Nemecz, Ákos; Fotsing, Joseph R.; Ho, Kwok-Yiu; Talley, Todd T.; Sharpless, K. Barry; Fokin, Valery V.

    2012-01-01

    The acetylcholine-binding proteins (AChBPs), which serve as structural surrogates for the extracellular domain of nicotinic acetylcholine receptors (nAChRs), were used as reaction templates for in situ click-chemistry reactions to generate a congeneric series of triazoles from azide and alkyne building blocks. The catalysis of in situ azide-alkyne cycloaddition reactions at a dynamic subunit interface facilitated the synthesis of potentially selective compounds for nAChRs. We investigated compound sets generated in situ with soluble AChBP templates through pharmacological characterization with α7 and α4β2 nAChRs and 5-hydroxytryptamine type 3A receptors. Analysis of activity differences between the triazole 1,5-syn- and 1,4-anti-isomers showed a preference for the 1,4-anti-triazole regioisomers among nAChRs. To improve nAChR subtype selectivity, the highest-potency building block for α7 nAChRs, i.e., 3α-azido-N-methylammonium tropane, was used for additional in situ reactions with a mutated Aplysia californica AChBP that was made to resemble the ligand-binding domain of the α7 nAChR. Fourteen of 50 possible triazole products were identified, and their corresponding tertiary analogs were synthesized. Pharmacological assays revealed that the mutated binding protein template provided enhanced selectivity of ligands through in situ reactions. Discrete trends in pharmacological profiles were evident, with most compounds emerging as α7 nAChR agonists and α4β2 nAChR antagonists. Triazoles bearing quaternary tropanes and aromatic groups were most potent for α7 nAChRs. Pharmacological characterization of the in situ reaction products established that click-chemistry synthesis with surrogate receptor templates offered novel extensions of fragment-based drug design that were applicable to multisubunit ion channels. PMID:22784805

  20. Target-Based Screen Against a Periplasmic Serine Protease That Regulates Intrabacterial pH Homeostasis in Mycobacterium tuberculosis

    PubMed Central

    2015-01-01

    Mycobacterium tuberculosis (Mtb) maintains its intrabacterial pH (pHIB) near neutrality in the acidic environment of phagosomes within activated macrophages. A previously reported genetic screen revealed that Mtb loses this ability when the mycobacterial acid resistance protease (marP) gene is disrupted. In the present study, a high throughput screen (HTS) of compounds against the protease domain of MarP identified benzoxazinones as inhibitors of MarP. A potent benzoxazinone, BO43 (6-chloro-2-(2′-methylphenyl)-4H-1,3-benzoxazin-4-one), acylated MarP and lowered Mtb’s pHIB and survival during incubation at pH 4.5. BO43 had similar effects on MarP-deficient Mtb, suggesting the existence of additional target(s). Reaction of an alkynyl-benzoxazinone, BO43T, with Mycobacterium bovis variant bacille Calmette-Guérin (BCG) followed by click chemistry with azido-biotin identified both the MarP homologue and the high temperature requirement A1 (HtrA1) homologue, an essential protein. Thus, the chemical probe identified through a target-based screen not only reacted with its intended target in the intact cells but also implicated an additional enzyme that had eluded a genetic screen biased against essential genes. PMID:25457457

  1. Design and synthesis of unnatural heparosan and chondroitin building blocks

    PubMed Central

    Bera, Smritilekha; Linhardt, Robert J.

    2011-01-01

    Triazole linked heparosan and chondroitin disaccharide and tetrasaccharide building blocks were synthesized in a stereoselective manner by applying a very efficient Copper Catalyzed Azide-Alkyne Cycloadditions (CuAAC) reaction of appropriately substituted azido-glucuronic acid and propargyluted N-acetyl glucosamine and N-acetyl galactosamine derivative respectively. The resulting suitably substituted tetrasaccharide analogs can be easily converted into azide and alkyne unit for further synthesis of higher oligosaccharide analogs. PMID:21438620

  2. Synthesis and first use of pyridine-2,6-diylbis(pyrazine-2-ylmethanone) in metal cluster chemistry: a {Mn(III)3Na2} complex with an ideal trigonal bipyramidal geometry.

    PubMed

    Giannopoulos, Dimosthenis P; Wilson-Konderka, Cody; Gagnon, Kevin J; Teat, Simon J; Escuer, Albert; Metallinos, Costa; Stamatatos, Theocharis C

    2015-03-07

    The successful organic synthesis of a new dipyrazole/pyridine-dicarbonyl organic molecule, namely pyridine-2,6-diylbis(pyrazine-2-ylmethanone) [(pz)CO(py)CO(pz)], followed by its employment in Mn coordination chemistry has yielded the neutral cluster compound [Mn3Na2O(N3)3(L)3] (1), where L(2-) is the (pz)C(CH2COCH3)(O(-))(py)C(CH2COCH3)(O(-))(pz) dianion. The latter group was formed in situ, presumably by the nucleophilic attack of the carbanion (-)CH2COCH3 to the carbonyl carbon atoms of (pz)CO(py)CO(pz), in the presence of Mn(n+) ions under basic conditions and in solvent Me2CO. Complex 1 possesses an almost ideal trigonal bipyramidal topology, with the two Na(I) ions occupying the apical positions and the three Mn(III) ions residing in the equatorial trigonal plane. The bridging ligation about the metal ions is provided by a μ3-O(2-) ion and six μ-OR(-) groups from the L(2-) ligand, while peripheral ligation is completed by three terminal azido groups and the pyridine N and carbonyl O atoms of L(2-). Magnetic susceptibility studies revealed the presence of predominant antiferromagnetic exchange interactions between the paramagnetic Mn(III) centres; the use of an anisotropic, equilateral Mn(III)3 triangle model allowed us to fit the magnetic data and obtain the best-fit parameters: J = -10.8 cm(-1), D = -5.3 cm(-1), and g = 1.99. The combined results demonstrate the rich chemical reactivity of carbonyl groups and the ability of poly-ketone ligands to stabilize cluster compounds with unprecedented structural motifs and interesting architectures.

  3. Pinpoint chemical modification of Asp160 in the 49 kDa subunit of bovine mitochondrial complex I via a combination of ligand-directed tosyl chemistry and click chemistry.

    PubMed

    Masuya, Takahiro; Murai, Masatoshi; Morisaka, Hironobu; Miyoshi, Hideto

    2014-12-16

    Through a ligand-directed tosyl (LDT) chemistry strategy using the synthetic acetogenin ligand AL1, we succeeded in the pinpoint alkynylation (-C≡CH) of Asp160 in the 49 kDa subunit of bovine complex I, which may be located in the inner part of the putative quinone binding cavity of the enzyme [Masuya, T., et al. (2014) Biochemistry, 53, 2307-2317]. This study provided a promising technique for diverse chemical modifications of complex I. To further improve this technique for its adaptation to intact complex I, we here synthesized the new acetogenin ligand AL2, possessing an azido (-N₃) group in place of the terminal alkyne in AL1, and attempted the pinpoint azidation of complex I in bovine heart submitochondrial particles. Careful proteomic analyses revealed that, just as in the case of AL1, azidation occurred at 49 kDa Asp160 with a reaction yield of ∼50%, verifying the high site specificity of our LDT chemistry using acetogenin ligands. This finding prompted us to speculate that a reactivity of the azido group incorporated into Asp160 (Asp160-N₃) against externally added chemicals can be employed to characterize the structural features of the quinone/inhibitor binding cavity. Consequently, we used a ring-strained cycloalkyne possessing a rhodamine fluorophore (TAMRA-DIBO), which can covalently attach to an azido group via so-called click chemistry without Cu¹⁺ catalysis, as the reaction partner of Asp160-N₃. We found that bulky TAMRA-DIBO is capable of reacting directly with Asp160-N₃ in intact complex I. Unexpectedly, the presence of an excess amount of short-chain ubiquinones as well as some strong inhibitors (e.g., quinazoline and fenpyroximate) did not interfere with the reaction between TAMRA-DIBO and Asp160-N₃; nevertheless, bullatacin, a member of the natural acetogenins, markedly interfered with this reaction. Taking the marked bulkiness of TAMRA-DIBO into consideration, it appears to be difficult to reconcile these results with the proposal that only a narrow entry point accessing to the quinone/inhibitor binding cavity exists in complex I [Baradaran, R., et al. (2013) Nature, 494, 443-448]; rather, they suggest that there may be another access path for TAMRA-DIBO to the cavity.

  4. Glycosyl-Nucleolipids as new bioinspired amphiphiles.

    PubMed

    Latxague, Laurent; Patwa, Amit; Amigues, Eric; Barthélémy, Philippe

    2013-09-30

    Four new Glycosyl-NucleoLipid (GNL) analogs featuring either a single fluorocarbon or double hydrocarbon chains were synthesized in good yields from azido thymidine as starting material. Physicochemical studies (surface tension measurements, differential scanning calorimetry) indicate that hydroxybutanamide-based GNLs feature endothermic phase transition temperatures like the previously reported double chain glycerol-based GNLs. The second generation of GNFs featuring a free nucleobase reported here presents a better surface activity (lower glim) compared to the first generation of GNFs.

  5. Electrochemical latent redox ratiometric probes for real-time tracking and quantification of endogenous hydrogen sulfide production in living cells.

    PubMed

    Manibalan, Kesavan; Mani, Veerappan; Chang, Pu-Chieh; Huang, Chih-Hung; Huang, Sheng-Tung; Marchlewicz, Kasper; Neethirajan, Suresh

    2017-10-15

    Hydrogen sulfide (H 2 S) was discovered as a third gasotransmitter in biological systems and recent years have seen a growing interest to understand its physiological and pathological functions. However, one major limiting factor is the lack of robust sensors to quantitatively track its production in real-time. We described a facile electrochemical assay based on latent redox probe approach for highly specific and sensitive quantification in living cells. Two chemical probes, Azido Benzyl ferrocene carbamate (ABFC) and N-alkyl Azido Benzyl ferrocene carbamate (NABFC) composed of azide trigger group were designed. H 2 S molecules specifically triggered the release of reporters from probes and the current response was monitored using graphene oxide film modified electrode as transducer. The detection limits are 0.32µM (ABFC) and 0.076µM (NABFC) which are comparable to those of current sensitive methods. The probes are successful in the determination of H 2 S spiked in whole human blood, fetal bovine serum, and E. coli. The continuous monitoring and quantification of endogenous H 2 S production in E. coli were successfully accomplished. This work lays first step stone towards real-time electrochemical quantification of endogenous H 2 S in living cells, thus hold great promise in the analytical aspects of H 2 S. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Interaction of forskolin with the P-glycoprotein multidrug transporter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ming s, D.I.; Seamon, K.B.; Speicher, L.A.

    1991-08-27

    Forskolin and 1,9-dideoxyforskolin, an analogue that does not activate adenylyl cyclase, were tested for their ability to enhance the cytotoxic effects of adriamycin in human ovarian carcinoma cells, SKOV3, which are sensitive to adriamycin and express low levels of P-glycoprotein, and a variant cell line, SKVLB, which overexpresses the P-glycoprotein and has the multidrug reing ance (MDR) phenotype. Forskolin and 1,9-dideoxyforskolin both increased the cytotoxic effects of adriamycin in SKVLB cells, yet had no effect on SKOV3 cells. Two photoactive derivatives of forskolin have been synthesized, 7-O-((2-(3-(4-azido-3-({sup 125}I)iodophenyl)propionamido)ethyl)carbamyl)forskolin, {sup 125}I-6-AIPP-Fsk, and 6-O-((2-(3-(4-azido-3-({sup 125}I)iodophenyl)propionamido)ethyl)carbamyl)forskolin, {sup 125}I-6-AIPP-Fsk, which exhibit specificity for labelingmore » the glucose transporter and aing lyl cyclase, respectively. Both photolabels identified a 140-kDa protein in membranes from SKVLB cells whose labeling was inhibited by forskolin and 1,9-dideoxyforskolin. The data are consistent with forskolin binding to the P-glycoprotein analogous to that of other chemosensitizing drugs that have been shown to partially reverse MDR. The ability of forskolin photolabels to specifically label the transporter, the adenylyl cyclase, and the P-glycoprotein suggests that these proteins may share a common biing g domain for forskolin analogues.« less

  7. Cytocompatible in situ forming chitosan/hyaluronan hydrogels via a metal-free click chemistry for soft tissue engineering.

    PubMed

    Fan, Ming; Ma, Ye; Mao, Jiahui; Zhang, Ziwei; Tan, Huaping

    2015-07-01

    Injectable hydrogels are important cell scaffolding materials for tissue engineering and regenerative medicine. Here, we report a new class of biocompatible and biodegradable polysaccharide hydrogels derived from chitosan and hyaluronan via a metal-free click chemistry, without the addition of copper catalyst. For the metal-free click reaction, chitosan and hyaluronan were modified with oxanorbornadiene (OB) and 11-azido-3,6,9-trioxaundecan-1-amine (AA), respectively. The gelation is attributed to the triazole ring formation between OB and azido groups of polysaccharide derivatives. The molecular structures were verified by FT-IR spectroscopy and elemental analysis, giving substitution degrees of 58% and 47% for chitosan-OB and hyaluronan-AA, respectively. The in vitro gelation, morphologies, equilibrium swelling, compressive modulus and degradation of the composite hydrogels were examined. The potential of the metal-free hydrogel as a cell scaffold was demonstrated by encapsulation of human adipose-derived stem cells (ASCs) within the gel matrix in vitro. Cell culture showed that this metal-free hydrogel could support survival and proliferation of ASCs. A preliminary in vivo study demonstrated the usefulness of the hydrogel as an injectable scaffold for adipose tissue engineering. These characteristics provide a potential opportunity to use the metal-free click chemistry in preparation of biocompatible hydrogels for soft tissue engineering applications. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  8. A Novel Point Mutation at Position 156 of Reverse Transcriptase from Feline Immunodeficiency Virus Confers Resistance to the Combination of (−)-β-2′,3′-Dideoxy-3′-Thiacytidine and 3′-Azido-3′-Deoxythymidine

    PubMed Central

    Smith, Robert A.; Remington, Kathryn M.; Preston, Bradley D.; Schinazi, Raymond F.; North, Thomas W.

    1998-01-01

    Mutants of feline immunodeficiency virus (FIV) resistant to (−)-β-2′,3′-dideoxy-3′-thiacytidine (3TC) were selected by culturing virus in the presence of increasing stepwise concentrations of 3TC. Two plaque-purified variants were isolated from the original mutant population, and both of these mutants were resistant to 3TC. Surprisingly, these mutants were also phenotypically resistant to 3′-azido-3′-deoxythymidine (AZT) and to the combination of 3TC and AZT. Purified reverse transcriptase (RT) from one of these plaque-purified mutants was resistant to the 5′-triphosphates of 3TC and AZT. DNA sequence analysis of the RT-encoding region of the pol gene amplified from the plaque-purified mutants revealed a Pro-to-Ser mutation at position 156 of RT. A site-directed mutant of FIV engineered to contain this Pro-156-Ser mutation was resistant to 3TC, AZT, and the combination of 3TC and AZT, confirming the role of the Pro-156-Ser mutation in the resistance of FIV to these two nucleoside analogs. This represents the first report of a lentiviral mutant resistant to the combination of AZT and 3TC due to a single, unique point mutation. PMID:9499094

  9. One-step ligand exchange reaction as an efficient way for functionalization of magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Mrówczyński, Radosław; Rednic, Lidia; Turcu, Rodica; Liebscher, Jürgen

    2012-07-01

    Novel magnetic Fe3O4 nanoparticles (NPs) covered by one layer of functionalized fatty acids, bearing entities (Hayashi catalyst, biotin, quinine, proline, and galactose) of high interest for practical application in nanomedicine or organocatalysis, were synthesized. The functionalized fatty acids were obtained by Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) of azido fatty acids with alkynes. All the magnetic NPs show superparamagnetic behavior with high values of magnetization and high colloidal stability in DCM solution.

  10. Preparation of Metalloporphyrin-Bound Superparamagnetic Silica Particles via "Click" Reaction.

    PubMed

    Hollingsworth, Javoris V; Bhupathiraju, N V S Dinesh K; Sun, Jirun; Lochner, Eric; Vicente, M Graça H; Russo, Paul S

    2016-01-13

    A facile approach using click chemistry is demonstrated for immobilization of metalloporphyrins onto the surface of silica-coated iron oxide particles. Oleic-acid stabilized iron oxide nanocrystals were prepared by thermal decomposition of iron(III) acetylacetonate. Their crystallinity, morphology, and superparamagnetism were determined using X-ray diffraction, transmission electron microscopy, and a superconducting quantum interference device. Monodisperse core-shell particles were produced in the silica-coating of iron oxide via microemulsion synthesis. Surface modification of these particles was performed in two steps, which included the reaction of silica-coated iron oxide particles with 3-bromopropyltrichlorosilane, followed by azido-functionalization with sodium azide. Monoalkylated porphyrins were prepared using the Williamson ether synthesis of commercially available tetra(4-hydroxyphenyl) porphyrin with propargyl bromide in the presence of a base. (1)H NMR and matrix-assisted laser desorption ionization confirmed the identity of the compounds. The prepared monoalkyne porphyrins were zinc-metalated prior to their introduction to azide-functionalized, silica-coated iron oxide particles in the click reaction. X-ray photoelectron spectroscopy, thermogravimetric analysis, and Fourier transform infrared spectroscopy were used to characterize the surface chemistry after each step in the reaction. In addition, particle size was determined using dynamic light scattering and microscopy. The presented methodology is versatile and can be extended to other photoreactive systems, such as phthalocyanines and boron-dipyrromethane, which may lead to new materials for optical, photonic, and biological applications.

  11. Inhibition of the norepinephrine transporter by χ-conotoxin dendrimers.

    PubMed

    Wan, Jingjing; Brust, Andreas; Bhola, Rebecca F; Jha, Prerna; Mobli, Mehdi; Lewis, Richard J; Christie, Macdonald J; Alewood, Paul F

    2016-05-01

    Peptide dendrimers are a novel class of macromolecules of emerging interest with the potential of delayed renal clearance due to their molecular size and enhanced activity due to the multivalency effect. In this work, an active analogue of the disulfide-rich χ-conotoxin χ-MrIA (χ-MrIA), a norepinephrine reuptake (norepinephrine transporter) inhibitor, was grafted onto a polylysine dendron. Dendron decoration was achieved by employing copper-catalyzed alkyne-azide cycloaddition with azido-PEG chain-modified χ-MrIA analogues, leading to homogenous 4-mer and 8-mer χ-MrIA dendrimers with molecular weights ranging from 8 to 22 kDa. These dendrimers were investigated for their impact on peptide secondary structure, in vitro functional activity, and potential anti-allodynia in vivo. NMR studies showed that the χ-MrIA tertiary structure was maintained in the χ-MrIA dendrimers. In a functional norepinephrine transporter reuptake assay, χ-MrIA dendrimers showed slightly increased potency relative to the azido-PEGylated χ-MrIA analogues with similar potency to the parent peptide. In contrast to χ-MrIA, no anti-allodynic action was observed when the χ-MrIA dendrimers were administered intrathecally in a rat model of neuropathic pain, suggesting that the larger dendrimer structures are unable to diffuse through the spinal column tissue and reach the norepinephrine transporter. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.

  12. Stepwise-activable multifunctional peptide-guided prodrug micelles for cancerous cells intracellular drug release

    NASA Astrophysics Data System (ADS)

    Zhang, Jing; Li, Mengfei; Yuan, Zhefan; Wu, Dan; Chen, Jia-da; Feng, Jie

    2016-10-01

    A novel type of stepwise-activable multifunctional peptide-guided prodrug micelles (MPPM) was fabricated for cancerous cells intracellular drug release. Deca-lysine sequence (K10), a type of cell-penetrating peptide, was synthesized and terminated with azido-glycine. Then a new kind of molecule, alkyne modified doxorubicin (DOX) connecting through disulfide bond (DOX-SS-alkyne), was synthesized. After coupling via Cu-catalyzed azide-alkyne cycloaddition (CuAAC) click chemistry reaction, reduction-sensitive peptide-guided prodrug was obtained. Due to the amphiphilic property of the prodrug, it can assemble to form micelles. To prevent the nanocarriers from unspecific cellular uptake, the prodrug micelles were subsequently modified with 2,3-dimethyl maleic anhydride to obtain MPPM with a negatively charged outer shell. In vitro studies showed that MPPM could be shielded from cells under psychological environment. However, when arriving at mild acidic tumor site, the cell-penetrating capacity of MPPM would be activated by charge reversal of the micelles via hydrolysis of acid-labile β-carboxylic amides and regeneration of K10, which enabled efficient internalization of MPPM by tumor cells as well as following glutathione- and protease-induced drug release inside the cancerous cells. Furthermore, since the guide peptide sequences can be accurately designed and synthesized, it can be easily changed for various functions, such as targeting peptide, apoptotic peptide, even aptamers, only need to be terminated with azido-glycine. This method can be used as a template for reduction-sensitive peptide-guided prodrug for cancer therapy.

  13. Preparation of a poly(3'-azido-3'-deoxythymidine-co-propargyl methacrylate-co-pentaerythritol triacrylate) monolithic column by in situ polymerization and a click reaction for capillary liquid chromatography of small molecules and proteins.

    PubMed

    Lin, Zian; Yu, Ruifang; Hu, Wenli; Zheng, Jiangnan; Tong, Ping; Zhao, Hongzhi; Cai, Zongwei

    2015-07-07

    Combining free radical polymerization with click chemistry via a copper-mediated azide/alkyne cycloaddition (CuAAC) reaction in a "one-pot" process, a facile approach was developed for the preparation of a poly(3'-azido-3'-deoxythymidine-co-propargyl methacrylate-co-pentaerythritol triacrylate) (AZT-co-PMA-co-PETA) monolithic column. The resulting poly(AZT-co-PMA-co-PETA) monolith showed a relatively homogeneous monolithic structure, good permeability and mechanical stability. Different ratios of monomers and porogens were used for optimizing the properties of a monolithic column. A series of alkylbenzenes, amides, anilines, and benzoic acids were used to evaluate the chromatographic properties of the polymer monolith in terms of hydrophobic, hydrophilic and cation-exchange interactions, and the results showed that the poly(AZT-co-PMA-co-PETA) monolith exhibited more flexible adjustment in chromatographic selectivity than that of the parent poly(PMA-co-PETA) and AZT-modified poly(PMA-co-PETA) monoliths. Column efficiencies for toluene, DMF, and formamide with 35,000-48,000 theoretical plates per m could be obtained at a linear velocity of 0.17 mm s(-1). The run-to-run, column-to-column, and batch-to-batch repeatabilities of the retention factors were less than 4.2%. In addition, the proposed monolith was also applied to efficient separation of sulfonamides, nucleobases and nucleosides, anesthetics and proteins for demonstrating its potential.

  14. Protein valves prepared by click reaction grafting of poly(N-isopropylacrylamide) to electrospun poly(vinyl chloride) fibrous membranes

    NASA Astrophysics Data System (ADS)

    Guo, Jian-Wei; Lin, Zhen-Yu; Chang, Chi-Jung; Lu, Chien-Hsing; Chen, Jem-Kun

    2018-05-01

    In this study, poly(vinyl chloride) (PVC) was electrospun into fibrous membranes and then reacted with NaN3 to generate azido-terminated PVC fibrous membranes. A propargyl-terminated poly(N-isopropylacrylamide) (PNIPAAm) was also synthesized and then grafted, through click reactions, onto the azido-terminated PVC fiber surface. Protrusion-, scale-, and joint-like structures of the PNIPAAm grafts on the PVC fibers were formed upon increasing the molecular weight of the PNIPAAm grafts. The PNIPAAm-grafted PVC fibrous mats exhibited completely wetted surfaces at 25 °C because of their high roughness. The static water contact angle of the PNIPAAm-grafted PVC fibrous mats reached 140° when the temperature was increased to 45 °C. This thermoresponsive behavior was significantly greater than that of the PNIPAAm grafted on a flat surface. Temperature-responsive membranes were constructed having a pore size of 1.38 μm and applied as protein valves to block and release an antibody (fluorescein-conjugated AffiniPure goat anti-rabbit IgG). At 25 °C, the collection efficiency remained at 94% for antibody concentrations up to 60 ng/L. As the temperature increased to 45 °C, the collection efficiency decreased abruptly, to 4%, when the antibody concentration was greater than 20 ng/L. Accordingly, this system of PNIPAAm-grafted PVC fibers functioned as a protein valve allowing the capture and concentration of proteins.

  15. Octa- and nonanuclear nickel(II) polyoxometalate clusters: synthesis and electrochemical and magnetic characterizations.

    PubMed

    Pichon, Céline; Mialane, Pierre; Dolbecq, Anne; Marrot, Jérôme; Rivière, Eric; Bassil, Bassem S; Kortz, Ulrich; Keita, Bineta; Nadjo, Louis; Sécheresse, Francis

    2008-12-01

    Three high-nuclearity NiII-substituted polyoxometalate compounds functionalized by exogenous ligands have been synthesized and characterized. The octanuclear complexes in Na15[Na{(A-R-SiW9O34)Ni4(CH3COO)3(OH)3}2] . 4NaCl . 36H2O (1) and Na15[Na{(A-R-SiW9O34)Ni4(CH3COO)3(OH)2(N3)}2] . 32H2O (2) can be described as two {Ni4} subunits connected via a {Na(CH3COO)6} group, with the acetato ligands also ensuring in each subunit the connection between the paramagnetic centers. In 2, two azido groups replace two of the six mu-hydroxo ligands present in 1. The nonanuclear complex K7Na7[(A-R-SiW9O34)2Ni9(OH)6(H2O)6(CO3)3] . 42H2O (3) exhibits a double cubanestructure with two [(A-R-SiW9O34)Ni4(OH)3]5- subunits linked by three carbonato ligands. A ninth NiII center connected to one subunit via a carbonato ligand and a O=W group completes this asymmetric polyoxometalate.Electronic spectroscopy and electrochemical studies indicate that, while compounds 1-3 decompose in a pure aqueous medium, these complexes are very stable in a pH 6 acetate medium. The cyclic voltammetry pattern of each complex is constituted by a first eight-electron reduction wave followed by a second large-current intensity wave. The characteristics of the first waves of the complexes are clearly distinct from those obtained for their lacunary precursor [A-R-SiW9O34]10-, a feature that is due to the Ni centers in the complexes. Such observations of electroactive, stable, and highly nickel-rich polyoxometalates are not common. Measurements of the magnetic susceptibility revealed the occurrence of concomitant ferromagnetic and antiferromagnetic interactions in 1 and 3.For both of these compounds, the extension of the magnetic exchange has been determined by means of a spin Hamiltonian with three and four J constants, respectively.

  16. Replication of human immunodeficiency virus in monocytes. Granulocyte/macrophage colony-stimulating factor (GM-CSF) potentiates viral production yet enhances the antiviral effect mediated by 3'-azido- 2'3'-dideoxythymidine (AZT) and other dideoxynucleoside congeners of thymidine

    PubMed Central

    1989-01-01

    We have investigated the influence of granulocyte-macrophage CSF (GM- CSF) on the replication of HIV-1 in cells of monocyte/macrophage (M/M) lineage, and its effect on the anti-HIV activity of several 2'3'- dideoxynucleoside congeners of thymidine in these cells in vitro. We found that replication of both HTLV-IIIBa-L (a monocytotropic strain of HIV-1) and HTLV-IIIB (a lymphocytotropic strain) is markedly enhanced in M/M, but not in lymphocytes exposed to GM-CSF in culture. Moreover, GM-CSF reduced the dose of HIV required to obtain productive infection in M/M. Even in the face of this increased infection, GM-CSF also enhanced the net anti-HIV activity of 3'-azido-2'3'-dideoxythymidine (AZT) and several related congeners: 2'3'-dideoxythymidine (ddT), 2'3'- dideoxy-2'3'-didehydrothymidine (D4T), and 3'-azido-2'3'-dideoxyuridine (AZddU). Inhibition of viral replication in GM-CSF-exposed M/M was achieved with concentrations of AZT and related drugs, which were 10- 100 times lower than those inhibitory for HIV-1 in monocytes in the absence of GM-CSF. Other dideoxynucleosides not related to AZT showed unchanged or decreased anti-HIV activity in GM-CSF-exposed M/M. To investigate the possible biochemical basis for these effects, we evaluated the metabolism of several drugs in M/M exposed to GM-CSF. We observed in these cells markedly increased levels of both parent and mono-, di-, and triphosphate anabolites of AZT and D4T compared with M/M not exposed to GM-CSF. By contrast, only limited increases of endogenous competing 2'-deoxynucleoside-5'-triphosphate pools were observed after GM-CSF exposure. Thus, the ratio of AZT-5'- triphosphate/2'-deoxythymidine-5'-triphosphate and 2'3'-dideoxy-2'3'- didehydrothymidine-5'-triphosphate/2'-deoxythymi dine- 5'-triphosphate is several-fold higher in GM-CSF-exposed M/M, and this may account for the enhanced activity of such drugs in these cells. Taken together, these findings suggest that GM-CSF increases HIV-1 replication in M/M, while at the same time enhancing the anti-HIV activity of AZT and related congeners in these cells. These results may have implications in exploring new therapeutic strategies in patients with severe HIV infection. PMID:2538549

  17. Sequential Multicomponent Strategy for the Diastereoselective Synthesis of Densely Functionalized Spirooxindole-Fused Thiazolidines.

    PubMed

    Rainoldi, Giulia; Begnini, Fabio; de Munnik, Mariska; Lo Presti, Leonardo; Vande Velde, Christophe M L; Orru, Romano; Lesma, Giordano; Ruijter, Eelco; Silvani, Alessandra

    2018-02-12

    We developed two Ugi-type three-component reactions of spirooxindole-fused 3-thiazolines, isocyanides, and either carboxylic acids or trimethylsilyl azide, to give highly functionalized spirooxindole-fused thiazolidines. Two diverse libraries were generated using practical and robust procedures affording the products in typically good yields. The obtained thiazolidines proved to be suitable substrates for further transformations. Notably, both the Ugi-Joullié and the azido-Ugi reactions resulted highly diastereoselective, affording predominantly the trans-configured products, as confirmed by X-ray crystallographic analysis.

  18. Translation system engineering in Escherichia coli enhances non-canonical amino acid incorporation into proteins.

    PubMed

    Gan, Rui; Perez, Jessica G; Carlson, Erik D; Ntai, Ioanna; Isaacs, Farren J; Kelleher, Neil L; Jewett, Michael C

    2017-05-01

    The ability to site-specifically incorporate non-canonical amino acids (ncAAs) into proteins has made possible the study of protein structure and function in fundamentally new ways, as well as the bio synthesis of unnatural polymers. However, the task of site-specifically incorporating multiple ncAAs into proteins with high purity and yield continues to present a challenge. At the heart of this challenge lies the lower efficiency of engineered orthogonal translation system components compared to their natural counterparts (e.g., translation elements that specifically use a ncAA and do not interact with the cell's natural translation apparatus). Here, we show that evolving and tuning expression levels of multiple components of an engineered translation system together as a whole enhances ncAA incorporation efficiency. Specifically, we increase protein yield when incorporating multiple p-azido-phenylalanine(pAzF) residues into proteins by (i) evolving the Methanocaldococcus jannaschii p-azido-phenylalanyl-tRNA synthetase anti-codon binding domain, (ii) evolving the elongation factor Tu amino acid-binding pocket, and (iii) tuning the expression of evolved translation machinery components in a single vector. Use of the evolved translation machinery in a genomically recoded organism lacking release factor one enabled enhanced multi-site ncAA incorporation into proteins. We anticipate that our approach to orthogonal translation system development will accelerate and expand our ability to site-specifically incorporate multiple ncAAs into proteins and biopolymers, advancing new horizons for synthetic and chemical biotechnology. Biotechnol. Bioeng. 2017;114: 1074-1086. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  19. A theoretical DFT study on the structural parameters and azide-tetrazole equilibrium in substituted azidothiazole systems.

    PubMed

    Abu-Eittah, Rafie H; El-Kelany, Khaled E

    2012-12-01

    Azido-tetrazole equilibrium is sensitive to: substitution, solvent, temperature and phase. In this work, the effects of the type and position of substitution on the thiazole ring of azidothiazoles on its structural parameters and on the azido-tetrazole equilibrium have been theoretically investigated using the density functional procedures at the B3LYP/6-311G(∗∗) level of theory. This study includes the investigation of the equilibrium geometry, the transformation of the trans-conformer to the cis one then the ring closure to the tetrazole isomer. The transition states of the two steps were located, confirmed and the structural parameters were calculated. In all the steps of calculations, geometry optimization was considered. The results obtained indicate that substitution by: -NO(2) and -CN group shifts the equilibrium to the azide side and in some cases the tetrazole isomer is not obtained. On the other hand, substitution by: -NH(2) and -OH groups shifts the equilibrium to the tetrazole side and in some cases the azide isomer is not obtained and if formed changes spontaneously to the tetrazole isomer. The decisive parameters which determine the position of the equilibrium are: charge density on atoms N3 and N8, rearrangement of bond length and bond angles during the process of cyclization and variation of dipole moment as a result of cyclization. Results of this work indicate that substitution on C5 is more efficient than substitution on C4 of the thiazole ring. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. A Universal Protocol for Photochemical Covalent Immobilization of Intact Carbohydrates for the Preparation of Carbohydrate Microarrays

    PubMed Central

    Wang, Huibin; Zhang, Yiming; Yuan, Xun; Chen, Yi; Yan, Mingdi

    2010-01-01

    A universal photochemical method has been established for the immobilization of intact carbohydrates and their analogues, and for the fabrication of carbohydrate microarrays. The method features the use of perfluorophenyl azide (PFPA)-modified substrates and the photochemical reaction of surface azido groups with printed carbohydrates. Various aldoses, ketoses, non-reducing sugars such as alditols and their derivatives can be directly arrayed on the PFPA-modified chips. The lectin-recognition ability of arrayed mannose, glucose and their oligo- and polysaccharides were confirmed using surface plasmon resonance imaging and laser-induced fluorescence imaging. PMID:21138274

  1. Triazine herbicide resistance in the photosynthetic bacterium Rhodopseudomonas sphaeroides

    PubMed Central

    Brown, Alfred E.; Gilbert, Carl W.; Guy, Rachel; Arntzen, Charles J.

    1984-01-01

    The photoaffinity herbicide azidoatrazine (2-azido-4-ethylamino-6-isopropylamino-s-triazine) selectively labels the L subunit of the reaction center of the photosynthetic bacterium Rhodopseudomonas sphaeroides. Herbicide-resistant mutants retain the L subunit and have altered binding properties for methylthio- and chloro-substituted triazines as well as altered equilibrium constants for electron transfer between primary and secondary electron acceptors. We suggest that a subtle alteration in the L subunit is responsible for herbicide resistance and that the L subunit is the functional analog of the 32-kDa QB protein of chloroplast membranes. Images PMID:16593520

  2. A universal protocol for photochemical covalent immobilization of intact carbohydrates for the preparation of carbohydrate microarrays.

    PubMed

    Wang, Huibin; Zhang, Yiming; Yuan, Xun; Chen, Yi; Yan, Mingdi

    2011-01-19

    A universal photochemical method has been established for the immobilization of intact carbohydrates and their analogues, and for the fabrication of carbohydrate microarrays. The method features the use of perfluorophenyl azide (PFPA)-modified substrates and the photochemical reaction of surface azido groups with printed carbohydrates. Various aldoses, ketoses, nonreducing sugars such as alditols, and their derivatives can be directly arrayed on the PFPA-modified chips. The lectin-recognition ability of arrayed mannose, glucose, and their oligo- and polysaccharides were confirmed using surface plasmon resonance imaging and laser-induced fluorescence imaging.

  3. Selective posttranslational modification of phage-displayed polypeptides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsao, Meng-Lin; Tian, Feng; Schultz, Peter

    The invention relates to posttranslational modification of phage-displayed polypeptides. These displayed polypeptides comprise at least one unnatural amino acid, e.g., an aryl-azide amino acid such as p-azido-L-phenylalanine, or an alkynyl-amino acid such as para-propargyloxyphenylalanine, which are incorporated into the phage-displayed fusion polypeptide at a selected position by using an in vivo orthogonal translation system comprising a suitable orthogonal aminoacyl-tRNA synthetase and a suitable orthogonal tRNA species. These unnatural amino acids advantageously provide targets for posttranslational modifications such as azide-alkyne [3+2] cycloaddition reactions and Staudinger modifications.

  4. Selective posttranslational modification of phage-displayed polypeptides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsao, Meng-Lin; Tian, Feng; Schultz, Peter

    The invention relates to posttranslational modification of phage-displayed polypeptides. These displayed polypeptides comprise at least one unnatural amino acid, e.g., an aryl-azide amino acid such as p-azido-L-phenylalanine, or an alkynyl-amino acid such as para-propargyloxyphenylalanine, which are incorporated into the phage-displayed fusion polypeptide at a selected position by using an in vivo orthogonal translation system comprising a suitable orthogonal aminoacyl-tRNA synthetase and a suitable orthogonal tRNA species. These unnatural amino acids advantageously provide targets for posttranslational modifications such as azide-alkyne [3+2]cycloaddition reactions and Staudinger modifications.

  5. A trial with 3'-azido-2',3'-dideoxythymidine and human interferon-α in cats naturally infected with feline leukaemia virus.

    PubMed

    Stuetzer, Bianca; Brunner, Konstanze; Lutz, Hans; Hartmann, Katrin

    2013-08-01

    Feline leukaemia virus (FeLV) infection is still one of the leading causes of infection-related deaths in domestic cats. Treatment with various drugs has been attempted, but none has resulted in cure or complete virus elimination. Human interferon-α2a (huIFN-α2a) and 3'-azido-2',3'-dideoxythymidine (AZT) have been proven to decrease antigenaemia in cats infected experimentally with FeLV. The purpose of this study was to assess the efficacy of huIFN-α2a, AZT and a combination of both drugs in cats infected naturally with FeLV in a placebo-controlled double-blinded trial. Fourty-four FeLV-infected cats in which free FeLV p27 antigen was detected in serum by enzyme-linked immunosorbent assay were included in the study. Cats were assigned to one of four treatment groups that received either high dose huIFN-α2a (10(5) IU/kg q24h; 12 cats), AZT (5 mg/kg q12h; 10 cats, both of these treatments (12 cats) or placebo (10 cats). All cats were treated for 6 weeks. Clinical variables, including stomatitis, and laboratory parameters, such as CD4(+) and CD8(+) counts and serum FeLV p 27 antigen concentration, were recorded throughout the treatment period. No significant difference among the groups was observed during the treatment period for any of the parameters. Aside from anaemia in one cat treated with AZT, no adverse effects were observed. It was not possible to demonstrate efficacy of huIFN-α2a or AZT alone or together in cats infected naturally with FeLV when given according to this regimen for 6 weeks; however, no notable side effects were detected.

  6. Par-4 dependent modulation of cellular β-catenin by medicinal plant natural product derivative 3-azido Withaferin A.

    PubMed

    Amin, Hina; Nayak, Debasis; Ur Rasool, Reyaz; Chakraborty, Souneek; Kumar, Anmol; Yousuf, Khalid; Sharma, Parduman Raj; Ahmed, Zabeer; Sharma, Neelam; Magotra, Asmita; Mukherjee, Debaraj; Kumar, Lekha Dinesh; Goswami, Anindya

    2016-05-01

    Here, we provide evidences that natural product derivative 3-azido Withaferin A (3-AWA) abrogated EMT and invasion by modulating β-catenin localization and its transcriptional activity in the prostate as well as in breast cancer cells. This study, for the first time, reveals 3-AWA treatment consistently sequestered nuclear β-catenin and augmented its cytoplasmic pool as evidenced by reducing β-catenin transcriptional activity in these cells. Moreover, 3-AWA treatment triggered robust induction of pro-apoptotic intracellular Par-4, attenuated Akt activity and rescued Phospho-GSK3β (by Akt) to promote β-catenin destabilization. Further, our in vitro studies demonstrate that 3-AWA treatment amplified E-cadherin expression along with sharp downregulation of c-Myc and cyclin D1 proteins. Strikingly, endogenous Par-4 knock down by siRNA underscored 3-AWA mediated inhibition of nuclear β-catenin was Par-4 dependent and suppression of Par-4 activity, either by Bcl-2 or by Ras transfection, restored the nuclear β-catenin level suggesting Par-4 mediated β-catenin regulation was not promiscuous. In vivo results further demonstrated that 3-AWA was effective inhibitor of tumor growth and immunohistochemical studies indicated that increased expression of total β-catenin and decreased expression of phospho-β-catenin and Par-4 in breast cancer tissues as compared to normal breast tissue suggesting Par-4 and β-catenin proteins are mutually regulated and inversely co-related in normal as well as cancer condition. Thus, strategic regulation of intracellular Par-4 by 3-AWA in diverse cancers could be an effective tool to control cancer cell metastasis. Conclusively, this report puts forward a novel approach of controlling deregulated β-catenin signaling by 3-AWA induced Par-4 protein. © 2015 Wiley Periodicals, Inc.

  7. {μ-2-[(3-Amino-2,2-dimethyl-prop-yl)imino-meth-yl]-6-meth-oxy-phenolato-1:2κ(5)O(1),O(6):N,N',O(1)}{2-[(3-amino-2,2-dimethyl-prop-yl)imino-meth-yl]-6-meth-oxy-phenolato-1κ(3)N,N',O(1)}-μ-azido-1:2κ(2)N:N-azido-2κN-methanol-2κO-dinickel(II).

    PubMed

    Ghaemi, Akbar; Rayati, Saeed; Fayyazi, Kazem; Ng, Seik Weng; Tiekink, Edward R T

    2012-08-01

    Two distinct coordination geometries are found in the binuclear title complex, [Ni(2)(C(13)H(19)N(2)O(2))(2)(N(3))(2)(CH(3)OH)], as one Schiff base ligand is penta-dentate, coordinating via the anti-cipated oxide O, imine N and amine N atoms (as for the second, tridentate, ligand) but the oxide O is bridging and coordination also occurs through the meth-oxy O atom. The Ni(II) atoms are linked by a μ(2)-oxide atom and one end of a μ(2)-azide ligand, forming an Ni(2)ON core. The coordination geometry for the Ni(II) atom coordinated by the tridentate ligand is completed by the meth-oxy O atom derived from the penta-dentate ligand, with the resulting N(3)O(3) donor set defining a fac octa-hedron. The second Ni(II) atom has its cis-octa-hedral N(4)O(2) coordination geometry completed by the imine N and amine N atoms of the penta-dentate Schiff base ligand, a terminally coordinated azide N and a methanol O atom. The arrangement is stabilized by an intra-molecular hydrogen bond between the methanol H and the oxide O atom. Linear supra-molecular chains along the a axis are formed in the crystal packing whereby two amine H atoms from different amine atoms hydrogen bond to the terminal N atom of the monodentate azide ligand.

  8. The antiretrovirus drug 3'-azido-3'-deoxythymidine increases the retrovirus mutation rate.

    PubMed Central

    Julias, J G; Kim, T; Arnold, G; Pathak, V K

    1997-01-01

    It was previously observed that the nucleoside analog 5-azacytidine increased the spleen necrosis virus (SNV) mutation rate 13-fold in one cycle of retrovirus replication (V. K. Pathak and H. M. Temin, J. Virol. 66:3093-3100, 1992). Based on this observation, we hypothesized that nucleoside analogs used as antiviral drugs may also increase retrovirus mutation rates. We sought to determine if 3'-azido-3'-deoxythymidine (AZT), the primary treatment for human immunodeficiency virus type 1 (HIV-1) infection, increases the retrovirus mutation rate. Two assays were used to determine the effects of AZT on retrovirus mutation rates. The strategy of the first assay involved measuring the in vivo rate of inactivation of the lacZ gene in one replication cycle of SNV- and murine leukemia virus-based retroviral vectors. We observed 7- and 10-fold increases in the SNV mutant frequency following treatment of target cells with 0.1 and 0.5 microM AZT, respectively. The murine leukemia virus mutant frequency increased two- and threefold following treatment of target cells with 0.5 and 1.0 microM AZT, respectively. The second assay used an SNV-based shuttle vector containing the lacZ alpha gene. Proviruses were recovered as plasmids in Escherichia coli, and the rate of inactivation of lacZ alpha was measured. The results indicated that treatment of target cells increased the overall mutation rate two- to threefold. DNA sequence analysis of mutant proviruses indicated that AZT increased both the deletion and substitution rates. These results suggest that AZT treatment of HIV-1 infection may increase the degree of viral variation and alter virus evolution or pathogenesis. PMID:9151812

  9. The mononuclear nickel(II) complex bis(azido-κN)bis[2,5-bis(pyridin-2-yl)-1,3,4-thiadiazole-κ2 N2 ,N3 ]nickel(II) protects tomato from Verticillium dahliae by inhibiting fungal growth and activating plant defences.

    PubMed

    Zine, Hanane; Rifai, Lalla Aicha; Koussa, Tayeb; Bentiss, Fouad; Guesmi, Salaheddine; Laachir, Abdelhakim; Makroum, Kacem; Belfaiza, Malika; Faize, Mohamed

    2017-01-01

    The antifungal properties of the nickel(II) complex bis(azido-κN)bis[2,5-bis(pyridin-2-yl)-1,3,4-thiadiazole-κ 2 N 2 ,N 3 ]nickel(II) [NiL 2 (N 3 ) 2 ] and its parental ligand 2,5-bis(pyridin-2-yl)-1,3,4-thiadiazole were examined to evaluate their ability to protect tomato plants against Verticillium dahliae. Our main objectives were to determine their effects on the in vitro growth of the pathogen, and their aptitude for controlling verticillium wilt and activating plant defence responses in the greenhouse. NiL 2 (N 3 ) 2 exhibited in vitro an elevated inhibition of radial growth of three strains of the pathogen. According to the strain, the EC 50 values ranged from 10 to 29 µg mL -1 for NiL 2 (N 3 ) 2 . In the greenhouse, it induced an elevated protection against V. dahliae when it was applied twice as foliar sprays at 50 µg mL -1 . It reduced the leaf alteration index by 85% and vessel browning by 96%. In addition, its protective ability was associated with the accumulation of H 2 O 2 and the activation of total phenolic content, as well as potentiation of the activity of peroxidase and polyphenol oxidase. These results demonstrated that the coordination of the ligand with Ni associated with the azide as a coligand resulted in an improvement in its biological activity by both inhibiting the growth of V. dahliae and activating plant defence responses. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  10. An Investigation of Siloxane Cross-linked Hydroxyapatite-Gelatin/Copolymer Composites for Potential Orthopedic Applications†

    PubMed Central

    Dyke, Jason Christopher; Knight, Kelly Jane; Zhou, Huaxing; Chiu, Chi-Kai; Ko, Ching-Chang; You, Wei

    2012-01-01

    Causes of bone deficiency are numerous, but biomimetic alloplastic grafts provide an alternative to repair tissue naturally. Previously, a hydroxyapatite-gelatin modified siloxane (HAp-Gemosil) composite was prepared by cross-linking (N, N′-bis[(3-trimethoxysilyl)propyl]ethylene diamine (enTMOS) around the HAp-Gel nanocomposite particles, to mimic the natural composition and properties of bone. However, the tensile strength remained too low for many orthopedic applications. It was hypothesized that incorporating a polymer chain into the composite could help improve long range interaction. Furthermore, designing this polymer to interact with the enTMOS siloxane cross-linked matrix would provide improved adhesion between the polymer and the ceramic composite, and improve mechanical properties. To this end, copolymers of L-Lactide (LLA), and a novel alkyne derivatized trimethylene carbonate, propargyl carbonate (PC), were synthesized. Incorporation of PC during copolymerization affects properties of copolymers such as molecular weight, Tg, and % PC incorporation. More importantly, PC monomers bear a synthetic handle, allowing copolymers to undergo post-polymerization functionalization with graft monomers to specifically tailor the properties of the final composite. For our investigation, P(LLA-co-PC) copolymers were functionalized by an azido-silane (AS) via copper catalyzed azide-alkyne cycloaddition (CuAAC) through terminal alkyne on PC monomers. The new functionalized polymer, P(LLA-co-PC)(AS) was blended with HAp-Gemosil, with the azido-silane linking the copolymer to the silsesquioxane matrix within the final composite. These HAp-Gemosil/P(LLA-co-PC)(AS) composites were subjected to mechanical and biological testing, and the results were compared with those from the HAp-Gemosil composites. This study revealed that incorporating a cross-linkable polymer served to increase the flexural strength of the composite by 50%, while maintaining the biocompatibility of HAp-Gemosil ceramics. PMID:23139457

  11. Genetically encoded photocross-linkers determine the biological binding site of exendin-4 peptide in the N-terminal domain of the intact human glucagon-like peptide-1 receptor (GLP-1R)

    PubMed Central

    Koole, Cassandra; Reynolds, Christopher A.; Mobarec, Juan C.; Hick, Caroline; Sexton, Patrick M.; Sakmar, Thomas P.

    2017-01-01

    The glucagon-like peptide-1 receptor (GLP-1R) is a key therapeutic target in the management of type II diabetes mellitus, with actions including regulation of insulin biosynthesis and secretion, promotion of satiety, and preservation of β-cell mass. Like most class B G protein-coupled receptors (GPCRs), there is limited knowledge linking biological activity of the GLP-1R with the molecular structure of an intact, full-length, and functional receptor·ligand complex. In this study, we have utilized genetic code expansion to site-specifically incorporate the photoactive amino acid p-azido-l-phenylalanine (azF) into N-terminal residues of a full-length functional human GLP-1R in mammalian cells. UV-mediated photolysis of azF was then carried out to induce targeted photocross-linking to determine the proximity of the azido group in the mutant receptor with the peptide exendin-4. Cross-linking data were compared directly with the crystal structure of the isolated N-terminal extracellular domain of the GLP-1R in complex with exendin(9–39), revealing both similarities as well as distinct differences in the mode of interaction. Generation of a molecular model to accommodate the photocross-linking constraints highlights the potential influence of environmental conditions on the conformation of the receptor·peptide complex, including folding dynamics of the peptide and formation of dimeric and higher order oligomeric receptor multimers. These data demonstrate that crystal structures of isolated receptor regions may not give a complete reflection of peptide/receptor interactions and should be combined with additional experimental constraints to reveal peptide/receptor interactions occurring in the dynamic, native, and full-length receptor state. PMID:28283573

  12. Intestinal absorption of dideoxynucleosides: characterization using a multiloop in situ technique.

    PubMed

    Mirchandani, H L; Chien, Y W

    1995-01-01

    The intestinal absorption of dideoxynucleosides was studied in rabbits, using a closed-loop mesenteric-sampling in situ technique developed in this laboratory, and the kinetic profiles were characterized. Each of the dideoxynucleosides exhibited different dependence on the intestinal regions studied: 3'-azido-2',3'-dideoxythymidine was best absorbed from the ileum, while 2',3'-dideoxyinosine and 2',3'-dideoxycytidine were preferentially absorbed from the jejunum. The results were validated by the mass-balance approach; the percent of drug retained in the intestinal lumen and that degraded at the intestinal pH, by colonic flora, in the intestinal tissue, and in plasma were assessed.

  13. Non-nucleoside building blocks for copper-assisted and copper-free click chemistry for the efficient synthesis of RNA conjugates.

    PubMed

    Jayaprakash, K N; Peng, Chang Geng; Butler, David; Varghese, Jos P; Maier, Martin A; Rajeev, Kallanthottathil G; Manoharan, Muthiah

    2010-12-03

    Novel non-nucleoside alkyne monomers compatible with oligonucleotide synthesis were designed, synthesized, and efficiently incorporated into RNA and RNA analogues during solid-phase synthesis. These modifications allowed site-specific conjugation of ligands to the RNA oligonucleotides through copper-assisted (CuAAC) and copper-free strain-promoted azide-alkyne cycloaddition (SPAAC) reactions. The SPAAC click reactions of cyclooctyne-oligonucleotides with various classes of azido-functionalized ligands in solution phase and on solid phase were efficient and quantitative and occurred under mild reaction conditions. The SPAAC reaction provides a method for the synthesis of oligonucleotide-ligand conjugates uncontaminated with copper ions.

  14. An azido-oxazolidinone antibiotic for live bacterial cell imaging and generation of antibiotic variants.

    PubMed

    Phetsang, Wanida; Blaskovich, Mark A T; Butler, Mark S; Huang, Johnny X; Zuegg, Johannes; Mamidyala, Sreeman K; Ramu, Soumya; Kavanagh, Angela M; Cooper, Matthew A

    2014-08-15

    An azide-functionalised analogue of the oxazolidinone antibiotic linezolid was synthesised and shown to retain antimicrobial activity. Using facile 'click' chemistry, this versatile intermediate can be further functionalised to explore antimicrobial structure-activity relationships or conjugated to fluorophores to generate fluorescent probes. Such probes can report bacteria and their location in a sample in real time. Modelling of the structures bound to the cognate 50S ribosome target demonstrates binding to the same site as linezolid is possible. The fluorescent probes were successfully used to image Gram-positive bacteria using confocal microscopy. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. Linear ketenimines. Variable structures of C,C-dicyanoketenimines and C,C-bis-sulfonylketenimines.

    PubMed

    Finnerty, Justin; Mitschke, Ullrich; Wentrup, Curt

    2002-02-22

    C,C-dicyanoketenimines 10a-c were generated by flash vacuum thermolysis of ketene N,S-acetals 9a-c or by thermal or photochemical decomposition of alpha-azido-beta-cyanocinnamonitrile 11. In the latter reaction, 3,3-dicyano-2-phenyl-1-azirine 12 is also formed. IR spectroscopy of the keteniminines isolated in Ar matrixes or as neat films, NMR spectroscopy of 10c, and theoretical calculations (B3LYP/6-31G) demonstrate that these ketenimines have variable geometry, being essentially linear along the CCN-R framework in polar media (neat films and solution), but in the gas phase or Ar matrix they are bent, as is usual for ketenimines. Experiments and calculations agree that a single CN substituent as in 13 is not enough to enforce linearity, and sulfonyl groups are less effective that cyano groups in causing linearity. C,C-bis(methylsulfonyl)ketenimines 4-5 and a C-cyano-C-(methylsulfonyl)ketenimine 15 are not linear. The compound p-O2NC6H4N=C=C(COOMe)2 previously reported in the literature is probably somewhat linearized along the CCNR moiety. A computational survey (B3LYP/6-31G) of the inversion barrier at nitrogen indicates that electronegative C-substituents dramatically lower the barrier; this is also true of N-acyl substituents. Increasing polarity causes lower barriers. Although N-alkylbis(methylsulfonyl)ketenimines are not calculated to be linear, the barriers are so low that crystal lattice forces can induce planarity in N-methylbis(methylsulfonyl)ketenimine 3.

  16. Characterizing high-energy-density propellants for space propulsion applications

    NASA Astrophysics Data System (ADS)

    Kokan, Timothy

    There exists wide ranging research interest in high-energy-density matter (HEDM) propellants as a potential replacement for existing industry standard fuels for liquid rocket engines. The U.S. Air Force Research Laboratory, the U.S. Army Research Lab, the NASA Marshall Space Flight Center, and the NASA Glenn Research Center each either recently concluded or currently has ongoing programs in the synthesis and development of these potential new propellants. In order to perform conceptual designs using these new propellants, most conceptual rocket engine powerhead design tools (e.g. NPSS, ROCETS, and REDTOP-2) require several thermophysical properties of a given propellant over a wide range of temperature and pressure. These properties include enthalpy, entropy, density, viscosity, and thermal conductivity. Very little thermophysical property data exists for most of these potential new HEDM propellants. Experimental testing of these properties is both expensive and time consuming and is impractical in a conceptual vehicle design environment. A new technique for determining these thermophysical properties of potential new rocket engine propellants is presented. The technique uses a combination of three different computational methods to determine these properties. Quantum mechanics and molecular dynamics are used to model new propellants at a molecular level in order to calculate density, enthalpy, and entropy. Additivity methods are used to calculate the kinematic viscosity and thermal conductivity of new propellants. This new technique is validated via a series of verification experiments of HEDM compounds. Results are provided for two HEDM propellants: quadricyclane and 2-azido-N,N-dimethylethanamine (DMAZ). In each case, the new technique does a better job than the best current computational methods at accurately matching the experimental data of the HEDM compounds of interest. A case study is provided to help quantify the vehicle level impacts of using HEDM propellants. The case study consists of the National Aeronautics and Space Administration's (NASA) Exploration Systems Architecture Study (ESAS) Lunar Surface Access Module (LSAM). The results of this study show that the use of HEDM propellants instead of hypergolic propellants can lower the gross weight of the LSAM and may be an attractive alternative to the current baseline hypergolic propellant choice.

  17. General method for labeling siRNA by click chemistry with fluorine-18 for the purpose of PET imaging.

    PubMed

    Mercier, Frédéric; Paris, Jérôme; Kaisin, Geoffroy; Thonon, David; Flagothier, Jessica; Teller, Nathalie; Lemaire, Christian; Luxen, André

    2011-01-19

    The alkyne-azide Cu(I)-catalyzed Huisgen cycloaddition, a click-type reaction, was used to label a double-stranded oligonucleotide (siRNA) with fluorine-18. An alkyne solid support CPG for the preparation of monostranded oligonucleotides functionalized with alkyne has been developed. Two complementary azide labeling agents (1-(azidomethyl)-4-[(18)F]fluorobenzene) and 1-azido-4-(3-[(18)F]fluoropropoxy)benzene have been produced with 41% and 35% radiochemical yields (decay-corrected), respectively. After annealing with the complementary strand, the siRNA was directly labeled by click chemistry with [(18)F]fluoroazide to produce the [(18)F]-radiolabeled siRNA with excellent radiochemical yield and purity.

  18. catena-Poly[[bis­[4-(dimethyl­amino)­pyridine-κN 1]cobalt(II)]-di-μ-azido-κ4 N 1:N 3

    PubMed Central

    Guenifa, Fatiha; Zeghouan, Ouahida; Hadjadj, Nasreddine; Bendjeddou, Lamia; Merazig, Hocine

    2013-01-01

    The title layered polymer, [Co(N3)2(C7H10N2)2]n, contains CoII, azide and 4-(dimethyl­amino)­pyridine (4-DMAP) species with site symmetries m2m, 2 and m, respectively. The Co2+ ion adopts an octa­hedral coordination geometry in which four N atoms from azide ligands lie in the equatorial plane and two 4-DMAP N atoms occupy the axial positions. The CoII atoms are connected by two bridging azide ligands, resulting in a chain parallel to the c axis. PMID:23476514

  19. Novel visible light activated type 1 photosensitizers

    NASA Astrophysics Data System (ADS)

    Rajagopalan, Raghavan; Karwa, Amolkumar; Poreddy, Amruta R.; Lusiak, Przemyslaw M.; Pandurangi, Raghoottama S.; Cantrell, Gary L.; Dorshow, Richard B.

    2010-02-01

    Photodynamic therapy of tumors involving Type 2 photosenstizers has been conspicuously successful, but the Type 1 process, in contrast, has not received much attention despite its considerable potential. Accordingly, several classes of molecules containing fragile bonds such as azido (-N=N=N), azo (-N=N-), and oxaza (-N-O-) functional groups that produce reactive intermediates such as radicals and nitrenes upon photoexcitation with visible light were prepared and tested for cell viability using U397 leukemia cell line. The cells were incubated with the photosensitizer at various concentrations, and were illuminated for 5, 10, and 20 minutes. The results show that all the photosensitizers caused cell death compared to the controls when exposed to both the photosensitizers and light.

  20. Forskolin photoaffinity labels with specificity for adenylyl cyclase and the glucose transporter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morris, D.I.; Robbins, J.D.; Ruoho, A.E.

    1991-07-15

    Two photolabels, N-(3-(4-azido-3-125I-phenyl)-propionamide)-6- aminoethylcarbamylforskolin(125I-6-AIPP-Fsk) and N-(3-(4-azido-3-125I-phenyl)propionamide)-7-aminoethylcarbamyl-7- desacetylforskolin (125I-7-AIPP-Fsk) were synthesized with specific activities of 2200 Ci/mmol and used to label adenylyl cyclase and the glucose transporter. The affinities of the photolabels for adenylyl cyclase were determined by their inhibition of (3H)forskolin binding to bovine brain membranes. 6-AIPP-Fsk and 7-AIPP-Fsk inhibited (3H)forskolin binding with IC50 values of 15 nM and 200 nM, respectively. 125I-6-AIPP-Fsk labeled a 115-kDa protein in control and GTP {gamma} S-preactivated bovine brain membranes. This labeling was inhibited by forskolin but not by 1,9-dideoxyforskolin or cytochalasin B. 125I-6-AIPP-Fsk labeling of partially purified adenylyl cyclase was inhibited by forskolinmore » but not by 1,9-dideoxyforskolin. 125I-7-AIPP-Fsk specifically labeled a 45-kDa protein and not a 115-kDa protein in control and GTP {gamma} S-preactivated brain membranes. This labeling was inhibited by forskolin, 1,9-dideoxyforskolin, cytochalasin B, and D-glucose but not cytochalasin E or L-glucose. Human erythrocyte membranes were photolyzed with 125I-6-AIPP-Fsk and 125I-7-AIPP-Fsk. 125I-7-AIPP-Fsk, but not 125I-6-AIPP-Fsk, strongly labeled a broad 45-70-kDa band. Forskolin, 7-bromoacetyl-7-desacetylforskolin, 1,9-dideoxyforskolin, cytochalasin B, and D-glucose, but not cytochalasin E or L-glucose, inhibited 125I-7-AIPP-Fsk labeling of the 45-70-kDa band. 125I-6-AIPP-Fsk and 125I-7-AIPP-Fsk are high affinity photolabels with specificity for adenylyl cyclase and the glucose transporter, respectively.« less

  1. PAWR-mediated suppression of BCL2 promotes switching of 3-azido withaferin A (3-AWA)-induced autophagy to apoptosis in prostate cancer cells.

    PubMed

    Rah, Bilal; ur Rasool, Reyaz; Nayak, Debasis; Yousuf, Syed Khalid; Mukherjee, Debaraj; Kumar, Lekha Dinesh; Goswami, Anindya

    2015-01-01

    An active medicinal component of plant origin with an ability to overcome autophagy by inducing apoptosis should be considered a therapeutically active lead pharmacophore to control malignancies. In this report, we studied the effect of concentration-dependent 3-AWA (3-azido withaferin A) sensitization to androgen-independent prostate cancer (CaP) cells which resulted in a distinct switching of 2 interrelated conserved biological processes, i.e. autophagy and apoptosis. We have observed 3 distinct parameters which are hallmarks of autophagy in our studies. First, a subtoxic concentration of 3-AWA resulted in an autophagic phenotype with an elevation of autophagy markers in prostate cancer cells. This led to a massive accumulation of MAP1LC3B and EGFP-LC3B puncta coupled with gradual degradation of SQSTM1. Second, higher toxic concentrations of 3-AWA stimulated ER stress in CaP cells to turn on apoptosis within 12 h by elevating the expression of the proapoptotic protein PAWR, which in turn suppressed the autophagy-related proteins BCL2 and BECN1. This inhibition of BECN1 in CaP cells, leading to the disruption of the BCL2-BECN1 interaction by overexpressed PAWR has not been reported so far. Third, we provide evidence that pawr-KO MEFs exhibited abundant autophagy signs even at toxic concentrations of 3-AWA underscoring the relevance of PAWR in switching of autophagy to apoptosis. Last but not least, overexpression of EGFP-LC3B and DS-Red-BECN1 revealed a delayed apoptosis turnover at a higher concentration of 3-AWA in CaP cells. In summary, this study provides evidence that 3-AWA is a strong anticancer candidate to abrogate protective autophagy. It also enhanced chemosensitivity by sensitizing prostate cancer cells to apoptosis through induction of PAWR endorsing its therapeutic potential.

  2. Perfluorophenyl Azides: New Applications in Surface Functionalization and Nanomaterial Synthesis

    PubMed Central

    Liu, Li-Hong; Yan, Mingdi

    2010-01-01

    Conspectus A major challenge in materials science is the ongoing search for coupling agents that are readily synthesized, capable of versatile chemistry, able to easily functionalize materials and surfaces, and efficient in covalently linking organic and inorganic entities. A decade ago, we began a research program investigating perfluorophenylazides (PFPAs) as the coupling agents in surface functionalization and nanomaterial synthesis. The p-substituted PFPAs are attractive heterobifunctional coupling agents because of their two distinct and synthetically distinguishable reactive centers: (i) the fluorinated phenylazide, which is capable of forming stable covalent adducts, and (ii) the functional group R, which can be tailored through synthesis. Two approaches have been undertaken for material synthesis and surface functionalization. The first method involves synthesizing PFPA bearing the first molecule or material with a functional linker R, and then attaching the resulting PFPA to the second material by activating the azido group. In the second approach, the material surface is first functionalized with PFPA via functional center R, and coupling of the second molecule or material is achieved with the surface azido groups. In this Account, we review the design and protocols of the two approaches, providing examples in which PFPA derivatives were successfully used in material surface functionalization, ligand conjugation, and the synthesis of hybrid nanomaterials. The methods developed have proved to be general and versatile, and they are applicable to a wide range of materials (especially those that lack reactive functional groups or are difficult to derivatize) and to various substrates of polymers, oxides, carbon materials, and metal films. The coupling chemistry can be initiated by light, heat, and electrons. Patterned structures can be generated by selectively activating the areas of interest. Furthermore, the process is easy to perform, and light activation occurs in minutes, greatly facilitating the efficiency of the reaction. PFPAs indeed demonstrate many benefits as versatile surface coupling agents and offer opportunities for further exploration. PMID:20690606

  3. An in vivo strategy to counteract post-administration anticoagulant activity of azido-Warfarin

    NASA Astrophysics Data System (ADS)

    Ursuegui, Sylvain; Recher, Marion; Krężel, Wojciech; Wagner, Alain

    2017-05-01

    Drugs, usually long acting and metabolically stable molecules, might be the source of adverse effects triggered by complex drug interactions, anaphylaxis and drug-induced coagulopathy. To circumvent this growing drug safety issue, we herein investigate the opportunity offered by bio-orthogonal chemistry for in vivo drug neutralization. We design a small-molecule anticoagulant drug (Warfarin) containing an azide group that acts as a safety pin. It allows drug deactivation and restoration of physiological coagulation via in vivo click reaction with a suitable cyclooctyne-based neutralizing agent. In this strategy, the new molecule formed by reaction of the drug and the antidote is deprived of biological activity and prone to fast renal clearance. This `Click & Clear' approach lays ground for new strategies in designing drugs with switchable biophysical properties.

  4. Detection of proteolytic activity by covalent tethering of fluorogenic substrates in zymogram gels.

    PubMed

    Deshmukh, Ameya A; Weist, Jessica L; Leight, Jennifer L

    2018-05-01

    Current zymographic techniques detect only a subset of known proteases due to the limited number of native proteins that have been optimized for incorporation into polyacrylamide gels. To address this limitation, we have developed a technique to covalently incorporate fluorescently labeled, protease-sensitive peptides using an azido-PEG3-maleimide crosslinker. Peptides incorporated into gels enabled measurement of MMP-2, -9, -14, and bacterial collagenase. Sensitivity analysis demonstrated that use of peptide functionalized gels could surpass detection limits of current techniques. Finally, electrophoresis of conditioned media from cultured cells resulted in the appearance of several proteolytic bands, some of which were undetectable by gelatin zymography. Taken together, these results demonstrate that covalent incorporation of fluorescent substrates can greatly expand the library of detectable proteases using zymographic techniques.

  5. Ethyl 2-{4-[(1,5-dibenzyl-2,4-dioxo-2,3,4,5-tetra-hydro-1H-1,5-benzo-diazepin-3-yl)meth-yl]-1H-1,2,3-triazol-1-yl}acetate.

    PubMed

    Jabli, Hind; Kandri Rodi, Y; Ladeira, Sonia; Essassi, El Mokhtar; Ng, Seik Weng

    2009-12-12

    The reaction of 1,5-dibenzyl-3-propargyl-1,5-benzodiazepine-2,4-dione with ethyl azido-acetate in the presence of copper sulfate pentahydrate and sodium ascorbate leads to the formation of the title regioisomer, C(30)H(29)N(5)O(4), which features a phenyl-ene ring fused with a seven-membered diazepinyl ring. The latter ring adopts a boat conformation (with the methyl-triazolylacetate-bearing C atom as the prow and the fused-ring C atoms as the stern). The benzyl groups connected to the diazepinyl ring jprotrude from the sides; the methyl-triazolylacetate substituent occupies an axial position.

  6. New Imidazole-based High Nitrogen Energetic Materials

    NASA Astrophysics Data System (ADS)

    Windler, G. Kenneth; Leonard, Philip; Schulze, Maxwell; Hartline, Ernest

    2017-06-01

    Energetic materials derive their power from energy release, usually in the form of gaseous products. The type and quantity of these products contribute to performance and detonation parameters. In particular, high-nitrogen materials produce large quantities of elemental nitrogen, and can be tuned via molecular structure for suitability as propellants (gas generators) or explosives. In this work, the five-membered nitrogen heterocycle imidazole is used as a substrate for a variety of high-nitrogen materials. Substitution of the imidazole ring directly with nitro-, azido-, diazo-, and tetrazole moieties allows for tunable properties of the resultant energetic material. Properties can be further tailored by salt formation at the acidic proton(s) on the molecules. The various combinations of these derivatives are presented, along with the substitution effects on physical, chemical, and explosive properties.

  7. 3'-Azido-2',3'-dideoxythymidine induced deficiency of thymidine kinases 1, 2 and deoxycytidine kinase in H9 T-lymphoid cells.

    PubMed

    Gröschel, Bettina; Kaufmann, Andreas; Höver, Gerold; Cinatl, Jaroslav; Doerr, Hans Wilhelm; Noordhuis, Paul; Loves, Willem J P; Peters, Godefridus J; Cinatl, Jindrich

    2002-07-15

    Continuous cultivation of T-lymphoid H9 cells in the presence of 3'-azido-2',3'-dideoxythymidine (AZT) resulted in a cell variant cross-resistant to both thymidine and deoxycytidine analogs. Cytotoxic effects of AZT, 2',3'-didehydro-3'-deoxythymidine as well as different deoxycytidine analogs such as 2',3'-dideoxycytidine, 2',2'-difluoro-2'-deoxycytidine (dFdC) and 1-ss-D-arabinofuranosylcytosine (Ara-C) were strongly reduced in H9 cells continuously exposed to AZT when compared to parental cells (>8.3-, >6.6-, >9.1-, 5 x 10(4)-, 5 x 10(3)-fold, respectively). Moreover, anti-HIV-1 effects of AZT, d4T, ddC and 2',3'-dideoxy-3'-thiacytidine (3TC) were significantly diminished (>222-, >25-, >400-, >200-fold, respectively) in AZT-resistant H9 cells. Study of cellular mechanisms responsible for cross-resistance to pyrimidine analogs in AZT-resistant H9 cells revealed decreased mRNA levels of thymidine kinase 1 (TK1) and lack of deoxycytidine kinase (dCK) mRNA expression. The loss of dCK gene expression was confirmed by western blot analysis of dCK protein as well as dCK enzyme activity assay. Moreover, enzyme activity of TK1 and TK2 was reduced in AZT-resistant cells. In order to determine whether lack of dCK affected the formation of the active triphosphate of the deoxycytidine analog dFdC, dFdCTP accumulation and retention was measured in H9 parental and AZT-resistant cells after exposure to 1 and 10 microM dFdC. Parental H9 cells accumulated about 30 and 100 pmol dFdCTP/10(6) cells after 4hr, whereas in AZT-resistant cells no dFdCTP accumulation was detected. These results demonstrate that continuous treatment of H9 cells in the presence of AZT selected for a thymidine analog resistant cell variant with cross-resistance to deoxycytidine analogs, due to deficiency in TK1, TK2, and dCK.

  8. Incorporation of unnatural sugars for the identification of glycoproteins.

    PubMed

    Zaro, Balyn W; Hang, Howard C; Pratt, Matthew R

    2013-01-01

    Glycosylation is an abundant post-translational modification that alters the fate and function of its substrate proteins. To aid in understanding the significance of protein glycosylation, identification of target proteins is key. As with all proteomics experiments, mass spectrometry has been established as the desired method for substrate identification. However, these approaches require selective enrichment and purification of modified proteins. Chemical reporters in combination with bioorthogonal reactions have emerged as robust tools for identifying post-translational modifications including glycosylation. We provide here a method for the use of bioorthogonal chemical reporters for isolation and identification of glycosylated proteins. More specifically, this protocol is a representative procedure from our own work using an alkyne-bearing O-GlcNAc chemical reporter (GlcNAlk) and a chemically cleavable azido-azo-biotin probe for the identification of O-GlcNAc-modified proteins.

  9. Click-MS: Tagless Protein Enrichment Using Bioorthogonal Chemistry for Quantitative Proteomics.

    PubMed

    Smits, Arne H; Borrmann, Annika; Roosjen, Mark; van Hest, Jan C M; Vermeulen, Michiel

    2016-12-16

    Epitope-tagging is an effective tool to facilitate protein enrichment from crude cell extracts. Traditionally, N- or C-terminal fused tags are employed, which, however, can perturb protein function. Unnatural amino acids (UAAs) harboring small reactive handles can be site-specifically incorporated into proteins, thus serving as a potential alternative for conventional protein tags. Here, we introduce Click-MS, which combines the power of site-specific UAA incorporation, bioorthogonal chemistry, and quantitative mass spectrometry-based proteomics to specifically enrich a single protein of interest from crude mammalian cell extracts. By genetic encoding of p-azido-l-phenylalanine, the protein of interest can be selectively captured using copper-free click chemistry. We use Click-MS to enrich proteins that function in different cellular compartments, and we identify protein-protein interactions, showing the great potential of Click-MS for interaction proteomics workflows.

  10. Site-specific incorporation of probes into RNA polymerase by unnatural-amino-acid mutagenesis and Staudinger-Bertozzi ligation

    PubMed Central

    Chakraborty, Anirban; Mazumder, Abhishek; Lin, Miaoxin; Hasemeyer, Adam; Xu, Qumiao; Wang, Dongye; Ebright, Yon W.; Ebright, Richard H.

    2015-01-01

    Summary A three-step procedure comprising (i) unnatural-amino-acid mutagenesis with 4-azido-phenylalanine, (ii) Staudinger-Bertozzi ligation with a probe-phosphine derivative, and (iii) in vitro reconstitution of RNA polymerase (RNAP) enables the efficient site-specific incorporation of a fluorescent probe, a spin label, a crosslinking agent, a cleaving agent, an affinity tag, or any other biochemical or biophysical probe, at any site of interest in RNAP. Straightforward extensions of the procedure enable the efficient site-specific incorporation of two or more different probes in two or more different subunits of RNAP. We present protocols for synthesis of probe-phosphine derivatives, preparation of RNAP subunits and the transcription initiation factor σ, unnatural amino acid mutagenesis of RNAP subunits and σ, Staudinger ligation with unnatural-amino-acid-containing RNAP subunits and σ, quantitation of labelling efficiency and labelling specificity, and reconstitution of RNAP. PMID:25665560

  11. Potassium 4-azidobenzene­sulfonate1

    PubMed Central

    Biesemeier, Frank; Geiseler, Gertraud; Harms, Klaus; Müller, Ulrich

    2014-01-01

    In, K+·SO3–p-C6H4–N3 −, the conformation angle of the azido group with respect to the benzene ring is 19.1 (3)°, so that the anion is chiral within the crystal structure. In addition, the crystal structure is also chiral (Sohncke space group). The potassium ion is coordinated by three closer O atoms from three different sulfonyl groups [K⋯O 2.6486 (17) to 2.7787 (17) Å], three more distant O atoms [K⋯O 2.959 (2) to 3.206 (2) Å] and three N atoms at 3.073 (2) to 3.268 (2) Å. The anions are packed into layers perpendicular to b, only O and N atoms being at the surface of the layers. The K+ ions are located between the layers. PMID:25249882

  12. Azido, triazolyl, and alkynyl complexes of gold(I): syntheses, structures, and ligand effects.

    PubMed

    Robilotto, Thomas J; Deligonul, Nihal; Updegraff, James B; Gray, Thomas G

    2013-08-19

    Gold(I) triazolyl complexes are prepared in [3 + 2] cycloaddition reactions of (tertiary phosphine)gold(I) azides with terminal alkynes. Seven such triazolyl complexes, not previously prepared, are described. Reducible functional groups are accommodated. In addition, two new (N-heterocyclic carbene)gold(I) azides and two new gold(I) alkynyls are described. Eight complexes are crystallographically authenticated; aurophilic interactions appear in one structure only. The packing diagrams of gold(I) triazolyls all show intermolecular hydrogen bonding between N-1 of one molecule and N-3 of a neighbor. This hydrogen bonding permeates the crystal lattice. Density-functional theory calculations of (triphenylphosphine)gold(I) triazolyls and the corresponding alkynyls indicate that the triazolyl is a stronger trans-influencer than is the alkynyl, but the alkynyl is more electron-releasing. These results suggest that trans-influences in two-coordinate gold(I) complexes can be more than a simple matter of ligand donicity.

  13. 6-Deoxyhexoses from l-Rhamnose in the Search for Inducers of the Rhamnose Operon: Synergy of Chemistry and Biotechnology.

    PubMed

    Liu, Zilei; Yoshihara, Akihide; Kelly, Ciarán; Heap, John T; Marqvorsen, Mikkel H S; Jenkinson, Sarah F; Wormald, Mark R; Otero, José M; Estévez, Amalia; Kato, Atsushi; Fleet, George W J; Estévez, Ramón J; Izumori, Ken

    2016-08-22

    In the search for alternative non-metabolizable inducers in the l-rhamnose promoter system, the synthesis of fifteen 6-deoxyhexoses from l-rhamnose demonstrates the value of synergy between biotechnology and chemistry. The readily available 2,3-acetonide of rhamnonolactone allows inversion of configuration at C4 and/or C5 of rhamnose to give 6-deoxy-d-allose, 6-deoxy-d-gulose and 6-deoxy-l-talose. Highly crystalline 3,5-benzylidene rhamnonolactone gives easy access to l-quinovose (6-deoxy-l-glucose), l-olivose and rhamnose analogue with C2 azido, amino and acetamido substituents. Electrophilic fluorination of rhamnal gives a mixture of 2-deoxy-2-fluoro-l-rhamnose and 2-deoxy-2-fluoro-l-quinovose. Biotechnology provides access to 6-deoxy-l-altrose and 1-deoxy-l-fructose. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Synthesis of chitosan-PEO hydrogels via mesylation and regioselective Cu(I)-catalyzed cycloaddition.

    PubMed

    Tirino, Pasquale; Laurino, Rosaria; Maglio, Giovanni; Malinconico, Mario; d'Ayala, Giovanna Gomez; Laurienzo, Paola

    2014-11-04

    In this work, a well-defined hydrogel was developed by coupling chitosan with PEO through "click chemistry". Azide functionalities were introduced onto chitosan, through mesylation of C-6 hydroxyl groups, and reacted with a di-alkyne PEO by a regioselective Cu(I)-catalyzed cycloaddition. This synthetic approach allowed us to obtain a hydrogel with a controlled crosslinking degree. In fact, the extent of coupling is strictly dependent on the amount of azido groups on chitosan, which in turn can be easily modulated. The obtained hydrogel, with a crosslinking degree of around 90%, showed interesting swelling properties. With respect to chitosan hydrogels reported in literature, a considerably higher equilibrium uptake was reached (940%). The possibility to control the crosslinking degree of hydrogel and its capability to rapidly absorb high amounts of water make this material suitable for several applications, such as controlled drug release and wound healing. Copyright © 2014. Published by Elsevier Ltd.

  15. Sensitive, site-specific, and stable vibrational probe of local protein environments: 4-azidomethyl-L-phenylalanine.

    PubMed

    Bazewicz, Christopher G; Liskov, Melanie T; Hines, Kevin J; Brewer, Scott H

    2013-08-01

    We have synthesized the unnatural amino acid (UAA), 4-azidomethyl-L-phenylalanine (pN₃CH₂Phe), to serve as an effective vibrational reporter of local protein environments. The position, extinction coefficient, and sensitivity to local environment of the azide asymmetric stretch vibration of pN₃CH₂Phe are compared to the vibrational reporters: 4-cyano-L-phenylalanine (pCNPhe) and 4-azido-L-phenylalanine (pN₃Phe). This UAA was genetically incorporated in a site-specific manner utilizing an engineered, orthogonal aminoacyl-tRNA synthetase in response to an amber codon with high efficiency and fidelity into two distinct sites in superfolder green fluorescent protein (sfGFP). This allowed for the dependence of the azide asymmetric stretch vibration of pN₃CH₂Phe to different protein environments to be measured. The photostability of pN₃CH₂Phe was also measured relative to the photoreactive UAA, pN₃Phe.

  16. Functionalisation of lanthanide complexes via microwave-enhanced Cu(I)-catalysed azide-alkyne cycloaddition.

    PubMed

    Szíjjártó, Csongor; Pershagen, Elias; Borbas, K Eszter

    2012-07-07

    Cu(I)-catalysed azide-alkyne cycloaddition reactions were used to functionalise lanthanide(III)-complexes (Ln; La, Eu and Tb) incorporating alkyne or azide reactive groups. Microwave irradiation significantly accelerated the reactions, enabling full conversion to the triazole products in some cases in 5 min. Alkyl and aryl azides and alkyl and aryl alkynes could all serve as coupling partners. These reaction conditions proved efficient for cyclen-tricarboxylates and previously unreactive cyclen-tris-primary amide chelates. The synthesis of heterobimetallic (Eu/Tb, EuTb17 and Eu/La, EuLa17) and heterotrimetallic (Eu/La/Eu) complexes was achieved in up to 60% isolated yield starting from coumarin 2-appended alkynyl complexes Tb16 or La16 and an azido-Eu complex Eu4, and bis-alkynyl La-complex La5 and Eu4, respectively. EuTb17 displayed dual Eu(III) and Tb(III)-emission upon antenna-centred excitation.

  17. Exploring Covalent Allosteric Inhibition of Antigen 85C from Mycobacterium tuberculosis by Ebselen Derivatives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goins, Christopher M.; Dajnowicz, Steven; Thanna, Sandeep

    Previous studies identified ebselen as a potent in vitro and in vivo inhibitor of the Mycobacterium tuberculosis ( Mtb) antigen 85 (Ag85) complex, comprising three homologous enzymes required for the biosynthesis of the mycobacterial cell wall. In this study, the Mtb Ag85C enzyme was cocrystallized with azido and adamantyl ebselen derivatives, resulting in two crystallographic structures of 2.01 and 1.30 Å resolution, respectively. Both structures displayed the anticipated covalent modification of the solvent accessible, noncatalytic Cys209 residue forming a selenenylsulfide bond. Continuous difference density for both thiol modifiers allowed for the assessment of interactions that influence ebselen binding and inhibitormore » orientation that were unobserved in previous Ag85C ebselen structures. The k inact/ K I values for ebselen, adamantyl ebselen, and azido ebselen support the importance of observed constructive chemical interactions with Arg239 for increased in vitro efficacy toward Ag85C. To better understand the in vitro kinetic properties of these ebselen derivatives, the energetics of specific protein–inhibitor interactions and relative reaction free energies were calculated for ebselen and both derivatives using density functional theory. These studies further support the different in vitro properties of ebselen and two select ebselen derivatives from our previously published ebselen library with respect to kinetics and protein–inhibitor interactions. In both structures, the α9 helix was displaced farther from the enzyme active site than the previous Ag85C ebselen structure, resulting in the restructuring of a connecting loop and imparting a conformational change to residues believed to play a role in substrate binding specific to Ag85C. These notable structural changes directly affect protein stability, reducing the overall melting temperature by up to 14.5 °C, resulting in the unfolding of protein at physiological temperatures. Additionally, this structural rearrangement due to covalent allosteric modification creates a sizable solvent network that encompasses the active site and extends to the modified Cys209 residue. In all, this study outlines factors that influence enzyme inhibition by ebselen and its derivatives while further highlighting the effects of the covalent modification of Cys209 by said inhibitors on the structure and stability of Ag85C. Moreover, the results suggest a strategy for developing new classes of Ag85 inhibitors with increased specificity and potency.« less

  18. Degradable polymeric nanoparticles by aggregation of thermoresponsive polymers and ``click'' chemistry

    NASA Astrophysics Data System (ADS)

    Dworak, Andrzej; Lipowska, Daria; Szweda, Dawid; Suwinski, Jerzy; Trzebicka, Barbara; Szweda, Roza

    2015-10-01

    This study describes a novel approach to the preparation of crosslinked polymeric nanoparticles of controlled sizes that can be degraded under basic conditions. For this purpose thermoresponsive copolymers containing azide and alkyne functions were obtained by ATRP of di(ethylene glycol) monomethyl ether methacrylate (D) and 2-aminoethyl methacrylate (A) followed by post polymerization modification. The amino groups of A were reacted with propargyl chloroformate or 2-azido-1,3-dimethylimidazolinium hexafluorophosphate, which led to two types of copolymers. Increasing the temperature of aqueous solutions of the mixed copolymers caused their aggregation into spherical nanoparticles composed of both types of chains. Their dimensions could be controlled by changing the concentration and heating rate of the solutions. Covalent stabilization of aggregated chains was performed by a ``click'' reaction between the azide and alkyne groups. Due to the presence of a carbamate bond the nanoparticles undergo pH dependent degradation under mild basic conditions. The proposed procedure opens a route to new carriers for the controlled release of active species.This study describes a novel approach to the preparation of crosslinked polymeric nanoparticles of controlled sizes that can be degraded under basic conditions. For this purpose thermoresponsive copolymers containing azide and alkyne functions were obtained by ATRP of di(ethylene glycol) monomethyl ether methacrylate (D) and 2-aminoethyl methacrylate (A) followed by post polymerization modification. The amino groups of A were reacted with propargyl chloroformate or 2-azido-1,3-dimethylimidazolinium hexafluorophosphate, which led to two types of copolymers. Increasing the temperature of aqueous solutions of the mixed copolymers caused their aggregation into spherical nanoparticles composed of both types of chains. Their dimensions could be controlled by changing the concentration and heating rate of the solutions. Covalent stabilization of aggregated chains was performed by a ``click'' reaction between the azide and alkyne groups. Due to the presence of a carbamate bond the nanoparticles undergo pH dependent degradation under mild basic conditions. The proposed procedure opens a route to new carriers for the controlled release of active species. Electronic supplementary information (ESI) available: GPC-MALLS chromatograms for P(D-co-A)_1 and P(D-co-A)_2 copolymers, absorbance spectra of P(D-co-A)_1, P(D-co-A)_2, P(D-co-A_Pr) and P(D-co-A_Az) after reaction with ninhydrine. See DOI: 10.1039/c5nr04448k

  19. Rare azido-bridged manganese(II) systems: syntheses, crystal structures, and magnetic properties.

    PubMed

    Ghosh, A K; Ghoshal, D; Zangrando, E; Ribas, J; Ray Chaudhuri, N

    2005-03-21

    Two new polymeric azido-bridged manganese complexes of formulas [Mn(N3)2 (bpee)]n (1) and {[Mn(N3)(dpyo)Cl(H2O)2](H2O)}n (2) [bpee, trans-1,2-bis(4-pyridyl)ethylene; dpyo, 4,4'-dipyridyl N,N'-dioxide] have been synthesized and characterized by single-crystal X-ray diffraction analysis and low-temperature magnetic study. Both the complexes 1 and 2 crystallize in the triclinic system, space group P1, with a = 8.877(3) A, b = 11.036(3) A, c = 11.584(4) A, alpha = 72.62(2) degrees, beta = 71.06(2) degrees, gamma = 87.98(3) degrees, and Z = 1 and a = 7.060(3) A, b = 10.345(3) A, c = 11.697(4) A, alpha = 106.86(2) degrees, beta = 113.33(2) degrees, gamma = 96.39(3) degrees, and Z = 2, respectively. Complex 1 exhibits a 2D structure of [-Mn(N3)2-]n chains, connected by bpee ligands, whose pyridine rings undergo pi-pi and C-H...pi interactions. This facilitates the rare arrangement of doubly bridged azide ligands with one end-on and two end-to-end (EO-EE-EE) sequence. Complex 2 is a neutral 1D polymer built up by [Mn(N3)(dpyo)Cl(H2O)2] units and lattice water molecules. The metals are connected by single EE azide ligands, which are arranged in a cis position to the Mn(II) center. The 1D zipped chains are linked by H-bonds involving lattice water molecules and show pi-pi stacking of dpyo pyridine rings to form a supramolecular 2D layered structure. The magnetic studies were performed in 2-300 K temperature range, and the data were fitted by considering an alternating chain of exchange interactions with S = 5/2 (considered as classical spin) with the spin Hamiltonians H = -Ji sigma(S(3i)S(3i+1) + S(3i+1)S(3i+2)) - J2 sigmaS(3i-1)S(3i) and H = -Ji sigmaS(2i)S(2i+1) - J2 sigmaS(2i+1)S(2i+2) for complexes 1 and 2, respectively. Complex 2 exhibits small antiferromagnetic coupling between the metal centers, whereas 1 exhibits a new case of topological ferromagnetism, which is very unusual.

  20. Exploring Covalent Allosteric Inhibition of Antigen 85C from Mycobacterium tuberculosis by Ebselen Derivatives.

    PubMed

    Goins, Christopher M; Dajnowicz, Steven; Thanna, Sandeep; Sucheck, Steven J; Parks, Jerry M; Ronning, Donald R

    2017-05-12

    Previous studies identified ebselen as a potent in vitro and in vivo inhibitor of the Mycobacterium tuberculosis (Mtb) antigen 85 (Ag85) complex, comprising three homologous enzymes required for the biosynthesis of the mycobacterial cell wall. In this study, the Mtb Ag85C enzyme was cocrystallized with azido and adamantyl ebselen derivatives, resulting in two crystallographic structures of 2.01 and 1.30 Å resolution, respectively. Both structures displayed the anticipated covalent modification of the solvent accessible, noncatalytic Cys209 residue forming a selenenylsulfide bond. Continuous difference density for both thiol modifiers allowed for the assessment of interactions that influence ebselen binding and inhibitor orientation that were unobserved in previous Ag85C ebselen structures. The k inact /K I values for ebselen, adamantyl ebselen, and azido ebselen support the importance of observed constructive chemical interactions with Arg239 for increased in vitro efficacy toward Ag85C. To better understand the in vitro kinetic properties of these ebselen derivatives, the energetics of specific protein-inhibitor interactions and relative reaction free energies were calculated for ebselen and both derivatives using density functional theory. These studies further support the different in vitro properties of ebselen and two select ebselen derivatives from our previously published ebselen library with respect to kinetics and protein-inhibitor interactions. In both structures, the α9 helix was displaced farther from the enzyme active site than the previous Ag85C ebselen structure, resulting in the restructuring of a connecting loop and imparting a conformational change to residues believed to play a role in substrate binding specific to Ag85C. These notable structural changes directly affect protein stability, reducing the overall melting temperature by up to 14.5 °C, resulting in the unfolding of protein at physiological temperatures. Additionally, this structural rearrangement due to covalent allosteric modification creates a sizable solvent network that encompasses the active site and extends to the modified Cys209 residue. In all, this study outlines factors that influence enzyme inhibition by ebselen and its derivatives while further highlighting the effects of the covalent modification of Cys209 by said inhibitors on the structure and stability of Ag85C. Furthermore, the results suggest a strategy for developing new classes of Ag85 inhibitors with increased specificity and potency.

  1. Exploring Covalent Allosteric Inhibition of Antigen 85C from Mycobacterium tuberculosis by Ebselen Derivatives

    DOE PAGES

    Goins, Christopher M.; Dajnowicz, Steven; Thanna, Sandeep; ...

    2017-03-13

    Previous studies identified ebselen as a potent in vitro and in vivo inhibitor of the Mycobacterium tuberculosis ( Mtb) antigen 85 (Ag85) complex, comprising three homologous enzymes required for the biosynthesis of the mycobacterial cell wall. In this study, the Mtb Ag85C enzyme was cocrystallized with azido and adamantyl ebselen derivatives, resulting in two crystallographic structures of 2.01 and 1.30 Å resolution, respectively. Both structures displayed the anticipated covalent modification of the solvent accessible, noncatalytic Cys209 residue forming a selenenylsulfide bond. Continuous difference density for both thiol modifiers allowed for the assessment of interactions that influence ebselen binding and inhibitormore » orientation that were unobserved in previous Ag85C ebselen structures. The k inact/ K I values for ebselen, adamantyl ebselen, and azido ebselen support the importance of observed constructive chemical interactions with Arg239 for increased in vitro efficacy toward Ag85C. To better understand the in vitro kinetic properties of these ebselen derivatives, the energetics of specific protein–inhibitor interactions and relative reaction free energies were calculated for ebselen and both derivatives using density functional theory. These studies further support the different in vitro properties of ebselen and two select ebselen derivatives from our previously published ebselen library with respect to kinetics and protein–inhibitor interactions. In both structures, the α9 helix was displaced farther from the enzyme active site than the previous Ag85C ebselen structure, resulting in the restructuring of a connecting loop and imparting a conformational change to residues believed to play a role in substrate binding specific to Ag85C. These notable structural changes directly affect protein stability, reducing the overall melting temperature by up to 14.5 °C, resulting in the unfolding of protein at physiological temperatures. Additionally, this structural rearrangement due to covalent allosteric modification creates a sizable solvent network that encompasses the active site and extends to the modified Cys209 residue. In all, this study outlines factors that influence enzyme inhibition by ebselen and its derivatives while further highlighting the effects of the covalent modification of Cys209 by said inhibitors on the structure and stability of Ag85C. Moreover, the results suggest a strategy for developing new classes of Ag85 inhibitors with increased specificity and potency.« less

  2. The A2 Adenosine Receptor: Guanine Nucleotide Modulation of Agonist Binding Is Enhanced by Proteolysis

    PubMed Central

    NANOFF, CHRISTIAN; JACOBSON, KENNETH A.; STILES, GARY L.

    2012-01-01

    SUMMARY Agonist binding to the A2 adenosine receptor (A2AR) and its regulation by guanine nucleotides was studied using the newly developed radioligand 125l-2-[4-(2-{2-[(4-ammnophenyl)methylcarbonylamino]ethylaminnocarbonyl}ethyl)phenyl]ethylamino-5′-N-ethylcarboxamidoadenosine (1251-PAPA-APEC) and its photoaffinity analog 125l-azido-PAPA-APEC. A single protein of Mr 45,000, displaying the appropriate A2AR pharmacology, is Iabeled in membranes from bovine striatum, PC12 cells, and frog erythrocytes. In DDT1 MF2 cells the labeled protein has a slightly lower molecular weight. Incorporation of 125l-azido-PAPA-APEC into membranes from rabbit striatum, however, reveals two specifically labeled peptides (Mr ~47,O00 and 38,000), both of which display A2AR pharmacology. Inhibition of protease activity leads to a decrease in the amount of the Mr 38,000 protein, with only the Mr 47,000 protein remaining. This suggests that the Mr 38,000 peptide is a proteolytic product of the Mr 47,000 A2AR protein. In membranes containing the intact undigested A2AR protein, guanine nucleotides induce a small to insignificant decrease in agonist binding, which is atypical of stimulatory Gs-coupled receptors. This minimal effect is observed in rabbit striatal membranes prepared in the presence of protease inhibitors, as well as in the other tissues studied. Binding to rabbit stnatal membranes that possess the partially digested receptor protein, however, reveals a 50% reduction in maximal specific agonist binding upon addition of guanine nucleotides. Inhibition of proteolysis in rabbit striatum, on the other hand, results in a diminished ability of guanine nucleotides to regulate agonist binding. Thus, the enhanced effectiveness of guanine nucleotides in rabbit striatal membranes is associated with the generation of the Mr 38,000 peptide fragment. Guanosine 5′-(β,γ-imido)triphosphate reduces photoaffinity labeling by 55% in the Mr 38,000 protein, whereas the labeling is decreased by only 28% in the Mr 47,000 receptor protein. Our data, therefore, suggest that, unless proteolysis occurs, the A2AR in all tissues studied is tightly associated with the Gs protein and displays minimal guanine nucleotide modulation of agonist binding, which makes the A2AR an atypical stimulatory receptor. PMID:1899902

  3. pH-responsive supramolecular self-assembly of well-defined zwitterionic ABC miktoarm star terpolymers.

    PubMed

    Liu, Hao; Li, Changhua; Liu, Hewen; Liu, Shiyong

    2009-04-21

    We report the first example of the synthesis and pH-responsive supramolecular self-assembly of double hydrophilic ABC miktoarm star terpolymers. Well-defined ABC miktoarm star terpolymers consisting of poly(ethylene glycol), poly(tert-butyl methacrylate), and poly(2-(diethylamino)ethyl methacrylate) arms [PEG(-b-PtBMA)-b-PDEA] were synthesized via the combination of consecutive click reactions and atom transfer radical polymerization (ATRP), starting from a trifunctional core molecule, 1-azido-3-chloro-2-propanol (ACP). The click reaction of monoalkynyl-terminated PEG with an excess of ACP afforded difunctional PEG bearing a chlorine and a secondary hydroxyl moiety at the chain end, PEG113(-Cl)-OH (1). After azidation with NaN3, PEG-based macroinitiator PEG113(-N3)-Br (3) was prepared by the esterification of PEG113(-N3)-OH (2) with 2-bromoisobutyryl bromide and then employed in the ATRP of tert-butyl methacrylate (tBMA). The obtained PEG(-N3)-b-PtBMA copolymers (4) possessed an azido moiety at the diblock junction point. The preparation of PEG(-b-PtBMA)-b-PDEA miktoarm star terpolymers was then achieved via the click reaction of 4 with an excess of monoalkynyl-terminated PDEA. The obtained miktoarm star terpolymers were successfully converted into PEG(-b-PMAA)-b-PDEA, where PMAA is poly(methacrylic acid). In aqueous solution, PEG(-b-PMAA)-b-PDEA zwitterionic ABC miktoarm star terpolymers can self-assemble into three types of micellar aggregates by simply adjusting solution pH at room temperature. Above pH 8, PDEA-core micelles stabilized by PEG/ionized PMAA hybrid coronas were formed due to the insolubility of PDEA block. In the range of pH 5-7, micelles possessing polyion complex cores formed as a result of charge compensation between partially ionized PMAA and partially protonated PDEA sequences. At pH<4, hydrogen bonding interactions between fully protonated PMAA and PEG led to the formation of another type of micellar aggregates possessing hydrogen-bonded complex cores stabilized by protonated PDEA coronas. The fully reversible pH-responsive formation of three types of aggregates were characterized by 1H NMR, dynamic and static laser light scattering (LLS), and transmission electron microscopy (TEM).

  4. Iodine(III) Reagents in Radical Chemistry

    PubMed Central

    2017-01-01

    Conspectus The chemistry of hypervalent iodine(III) compounds has gained great interest over the past 30 years. Hypervalent iodine(III) compounds show valuable ionic reactivity due to their high electrophilicity but also express radical reactivity as single electron oxidants for carbon and heteroatom radical generation. Looking at ionic chemistry, these iodine(III) reagents can act as electrophiles to efficiently construct C–CF3, X–CF3 (X = heteroatom), C–Rf (Rf = perfluoroalkyl), X–Rf, C–N3, C–CN, S–CN, and C–X bonds. In some cases, a Lewis or a Bronsted acid is necessary to increase their electrophilicity. In these transformations, the iodine(III) compounds react as formal “CF3+”, “Rf+”, “N3+”, “Ar+”, “CN+”, and “X+” equivalents. On the other hand, one electron reduction of the I(III) reagents opens the door to the radical world, which is the topic of this Account that focuses on radical reactivity of hypervalent iodine(III) compounds such as the Togni reagent, Zhdankin reagent, diaryliodonium salts, aryliodonium ylides, aryl(cyano)iodonium triflates, and aryl(perfluoroalkyl)iodonium triflates. Radical generation starting with I(III) reagents can also occur via thermal or light mediated homolysis of the weak hypervalent bond in such reagents. This reactivity can be used for alkane C–H functionalization. We will address important pioneering work in the area but will mainly focus on studies that have been conducted by our group over the last 5 years. We entered the field by investigating transition metal free single electron reduction of Togni type reagents using the readily available sodium 2,2,6,6-tetramethylpiperidine-1-oxyl salt (TEMPONa) as an organic one electron reductant for clean generation of the trifluoromethyl radical and perfluoroalkyl radicals. That valuable approach was later successfully also applied to the generation of azidyl and aryl radicals starting with the corresponding benziodoxole (Zhdankin reagent) and iodonium salts. In the presence of alkenes as radical acceptors, vicinal trifluoromethyl-, azido-, and arylaminoxylation products result via a sequence comprising radical addition to the alkene and subsequent TEMPO trapping. Electron-rich arenes also react with I(III) reagents via single electron transfer (SET) to give arene radical cations, which can then engage in arylation reactions. We also recognized that the isonitrile functionality in aryl isonitriles is a highly efficient perfluoroalkyl radical acceptor, and reaction of Rf-benziodoxoles (Togni type reagents) in the presence of a radical initiator provides various perfluoroalkylated N-heterocycles (indoles, phenanthridines, quinolines, etc.). We further found that aryliodonium ylides, previously used as carbene precursors in metal-mediated cyclopropanation reactions, react via SET reduction with TEMPONa to the corresponding aryl radicals. As a drawback of all these transformations, we realized that only one ligand of the iodine(III) reagent gets transferred to the substrate. To further increase atom-economy of such conversions, we identified cyano or perfluoroalkyl iodonium triflate salts as valuable reagents for stereoselective vicinal alkyne difunctionalization, where two ligands from the I(III) reagent are sequentially transferred to an alkyne acceptor. Finally, we will discuss alkynyl-benziodoxoles as radical acceptors for alkynylation reactions. Similar reactivity was found for the Zhdankin reagent that has been successfully applied to azidation of C-radicals, and also cyanation is possible with a cyano I(III) reagent. To summarize, this Account focuses on the design, development, mechanistic understanding, and synthetic application of hypervalent iodine(III) reagents in radical chemistry. PMID:28636313

  5. Polyisobutylene chain end transformations: Block copolymer synthesis and click chemistry functionalizations

    NASA Astrophysics Data System (ADS)

    Magenau, Andrew Jackson David

    The primary objectives of this research were twofold: (1) development of synthetic procedures for combining quasiliving carbocationic polymerization (QLCCP) of isobutylene (IB) and reversible addition fragmentation chain transfer (RAFT) polymerization for block copolymer synthesis; (2) utilization of efficient, robust, and modular chemistries for facile functionalization of polyisobutylene (PIB). In the first study block copolymers consisting of PIB, and either PMMA or PS block segments, were synthesized by a site transformation approach combining living cationic and reversible addition-fragmentation chain transfer (RAFT) polymerizations. The initial PIB block was synthesized via quasiliving cationic polymerization using the TMPCl/TiCl4 initiation system and was subsequently converted into a hydroxylterminated PIB. Site transformation of the hydroxyl-terminated PIB into a macro chain transfer agent (PIB-CTA) was accomplished by N,N'-dicyclohexylcarbodiimide/dimethylaminopyridine-catalyzed esterification with 4-cyano-4-(dodecylsulfanylthiocarbonylsulfanyl)pentanoic acid. In the second study another site transformation approach was developed to synthesize a novel block copolymer, composed of PIB and PNIPAM segments. The PIB block was prepared via quasiliving cationic polymerization and end functionalized by in-situ quenching to yield telechelic halogen-terminated PIB. Azido functionality was obtained by displacement of the terminal halogen through nucleophilic substitution, which was confirmed by both 1H and 13C NMR. Coupling of an alkyne-functional chain transfer agent (CTA) to azido PIB was successfully accomplished through a copper catalyzed click reaction. Structure of the resulting PIB-based macro-CTA was verified with 1H NMR, FTIR, and GPC; whereas coupling reaction kinetics were monitored by real time variable temperature (VT) 1H NMR. In a third study, a click chemistry functionalization procedure was developed based upon the azide-alkyne 1,3-dipolar cycloaddition reaction. 1-(o-Azidoalkyl)pyrrolyl-terminated PIB was successfully synthesized both by substitution of the terminal halide of 1-(o-haloalkyl)pyrrolyl-terminated PIB with sodium azide and by in situ quenching of quasiliving PIB with a 1-(o-azidoalkyl)pyrrole. GPC indicated the absence of coupled PIB under optimized conditions, confirming exclusive mono-substitution on each pyrrole ring. In a fourth study, radical thiol-ene hydrothiolation "Click" chemistry was explored and adapted to easily and rapidly modify exo -olefin PIB with an array of thiol compounds bearing useful functionalities, including primary halogen, primary amine, primary hydroxyl, and carboxylic acid. The thiol-ene "click" procedure was shown to be applicable to both mono and difunctional exo-olefin polyisobutylene. Telechelic mono- and difunctional exo-olefin PIBs were synthesized via quasiliving cationic polymerization followed by quenching with the hindered amine, 1,2,2,6,6-pentamethylpiperidine. Lower reaction temperatures were found to increase exo-olefin conversion to near quantitative amounts. In the fifth study, thiol-terminated polyisobutylene (PIB-SH) was synthesized by reaction of thiourea with alpha,o-bromine-terminated PIB in a three step one-pot procedure. First the alkylisothiouronium salt was produced using a 1:1 (v:v) DMF:heptane cosolvent mixture at 90°C. Hydrolysis of the salt by aqueous base produced thiolate chain ends, which were then acidified to form the desired thiol functional group. An extension of this reaction was performed by a sequential thiol-ene/thiol-yne procedure to produce tetra-hydroxy functionalized PIB. 1H NMR was used to confirm formation of both alkyne and tetrahydroxyl functional species. Further utility of PIB-SH was demonstrated by base catalyzed thiol-isocyanate reactions. A model reaction was conducted with phenyl isocyanate in THF using triethylamine as the catalyst. Last, conversion of PIB-SH directly into a RAFT macro-CTA was accomplished, as shown by 1H NMR, by treatment of PIB-SH with triethylamine in carbon disulfide and subsequent alkylation with 2-bromopropionic acid. (Abstract shortened by UMI.)

  6. High-yield cell-free synthesis of human EGFR by IRES-mediated protein translation in a continuous exchange cell-free reaction format

    PubMed Central

    Quast, Robert B.; Sonnabend, Andrei; Stech, Marlitt; Wüstenhagen, Doreen A.; Kubick, Stefan

    2016-01-01

    Cell-free protein synthesis systems derived from eukaryotic sources often provide comparatively low amounts of several μg per ml of de novo synthesized membrane protein. In order to overcome this, we herein demonstrate the high-yield cell-free synthesis of the human EGFR in a microsome-containing system derived from cultured Sf21 cells. Yields were increased more than 100-fold to more than 285 μg/ml by combination of IRES-mediated protein translation with a continuous exchange cell-free reaction format that allowed for prolonged reaction lifetimes exceeding 24 hours. In addition, an orthogonal cell-free translation system is presented that enabled the site-directed incorporation of p-Azido-L-phenylalanine by amber suppression. Functionality of cell-free synthesized receptor molecules is demonstrated by investigation of autophosphorylation activity in the absence of ligand and interaction with the cell-free synthesized adapter molecule Grb2. PMID:27456041

  7. Cyclic AMP-receptor proteins in heart muscle of rats flown on Cosmos 1887

    NASA Technical Reports Server (NTRS)

    Mednieks, Maija I.; Popova, Irina A.; Grindeland, Richard E.

    1991-01-01

    The cellular compartmentalization of the cyclic AMP-receptor proteins in heart ventricular tissue obtained from rats flown on the Cosmos 1887 is determined. Photoaffinity labeling of soluble and particular cell fractions with a (32P)-8-azido analog of cyclic AMP is followed by electrophoretic separation of the proteins and by autoradiographic identification of the labeled isoforms of cAPK R subunits. It is shown that RII in the particulate subcellular fraction was significantly decreased in heart cells from rats in the flight group when compared to controls. Protein banding patterns in both the cytoplasmic fraction and in a fraction enriched in chromatin-bound proteins exhibited some variability in tissues of individual animals, but showed no changes that could be directly attributed to flight conditions. No significant change was apparent in the distribution of RI or RII cyclic AMP binding in the soluble fractions. It is inferred that the cardiac cell integrity or its protein content is not compromised under flight conditions.

  8. o-Fluorination of aromatic azides yields improved azido-based fluorescent probes for hydrogen sulfide: synthesis, spectra, and bioimaging.

    PubMed

    Wei, Chao; Wang, Runyu; Wei, Lv; Cheng, Longhuai; Li, Zhifei; Xi, Zhen; Yi, Long

    2014-12-01

    Hydrogen sulfide (H2S) is an endogenously produced gaseous signaling molecule with multiple biological functions. To visualize the endogenous in situ production of H2S in real time, new coumarin- and boron-dipyrromethene-based fluorescent turn-on probes were developed for fast sensing of H2S in aqueous buffer and in living cells. Introduction of a fluoro group in the ortho position of the aromatic azide can lead to a greater than twofold increase in the rate of reaction with H2S. On the basis of o-fluorinated aromatic azides, fluorescent probes with high sensitivity and selectivity toward H2S over other biologically relevant species were designed and synthesized. The probes can be used to in situ to visualize exogenous H2S and D-cysteine-dependent endogenously produced H2S in living cells, which makes them promising tools for potential applications in H2S biology. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Synthesis and Catalytic Applications of Multi-Walled Carbon Nanotube-Polyamidoamine Dendrimer Hybrids.

    PubMed

    Desmecht, Antonin; Steenhaut, Timothy; Pennetreau, Florence; Hermans, Sophie; Riant, Olivier

    2018-06-20

    Polyamidoamine (PAMAM) dendrimers were covalently immobilized on multi-walled carbon nanotubes (MWNT) via two 'grafting to' strategies. We demonstrate the existence of non-covalent interactions between the two components but outline the superiority of our two grafting approaches, namely xanthate and click chemistry. MWNT surfaces were functionalized with activated ester and propargylic moieties prior to their reaction with PAMAM or azido-PAMAM dendrimers, respectively. The grafting of PAMAM generations 0 to 3 was evaluated with X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA) and transmission electron microscopy (TEM). The versatility of our hybrids was demonstrated by post-functionalization sequences involving copper alkyne-azide cycloaddition (CuAAC). We synthesized homogeneous supported iridium complexes at the extremities of the dendrimers. In addition, our materials were used as template for the encapsulation of Pd nanoparticles (NP), validating our nanocomposites for catalytic applications. The palladium-based catalyst was active for carbonylative coupling during 5 consecutive runs without loss of activity. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Production of Bombyx mori silk fibroin incorporated with unnatural amino acids.

    PubMed

    Teramoto, Hidetoshi; Kojima, Katsura

    2014-07-14

    Silk fibroin incorporated with unnatural amino acids was produced by in vivo feeding of p-chloro-, p-bromo-, and p-azido-substituted analogues of L-phenylalanine (Phe) to transgenic silkworms (Bombyx mori) that expressed a mutant of phenylalanyl-tRNA synthetase with expanded substrate recognition capabilities in silk glands. Cutting down the content of Phe in the diet was effective for increasing the incorporation of Phe analogues but simultaneously caused a decrease of fibroin production. The azide groups incorporated in fibroin were active as chemical handles for click chemistry in both the solubilized and the solid (fibrous) states. The azides survived degumming in the boiling alkaline solution that is required for complete removal of the sericin layer, demonstrating that AzPhe-incorporated silk fibroin could be a versatile platform to produce "clickable" silk materials in various forms. This study indicates the huge potential of UAA mutagenesis as a novel methodology to alter the characteristics of B. mori silk.

  11. Calorimetric and spectroscopic studies of the interaction between zidovudine and human serum albumin

    NASA Astrophysics Data System (ADS)

    Pîrnău, Adrian; Mic, Mihaela; Neamţu, Silvia; Floare, Călin G.; Bogdan, Mircea

    2018-02-01

    A quantitative analysis of the interaction between zidovudine (AZT) and human serum albumin (HSA) was achieved using Isothermal titration calorimetry (ITC) in combination with fluorescence and 1H NMR spectroscopy. ITC directly measure the heat during a biomolecular binding event and gave us thermodynamic parameters and the characteristic association constant. By fluorescence quenching, the binding parameters of AZT-HSA interaction was determined and location to binding site I of HSA was confirmed. Via T1 NMR selective relaxation time measurements the drug-protein binding extent was evaluated as dissociation constants Kd and the involvement of azido moiety of zidovudine in molecular complex formation was put in evidence. All three methods indicated a very weak binding interaction. The association constant determined by ITC (3.58 × 102 M- 1) is supported by fluorescence quenching data (2.74 × 102 M- 1). The thermodynamic signature indicates that at least hydrophobic and electrostatic type interactions played a main role in the binding process.

  12. "Click" star-shaped and dendritic PEGylated gold nanoparticle-carborane assemblies.

    PubMed

    Li, Na; Zhao, Pengxiang; Salmon, Lionel; Ruiz, Jaime; Zabawa, Mark; Hosmane, Narayan S; Astruc, Didier

    2013-10-07

    Carboranes that have a high boron content are key materials for boron neutron capture therapy (BNCT), while PEGylated gold nanoparticles (AuNPs) are also most useful in various aspects of nanomedicine including photothermotherapy, imaging and drug vectorization. Therefore, methods to assemble these key components have been investigated for the first time. Strategies and results are delineated in this article, and the nanomaterials have been characterized using transmission electron microscopy (TEM), dynamic light scattering (DLS), UV-vis., mass and multinuclear NMR data. A series of well-defined water-soluble bifunctional AuNPs containing carborane and polyethylene glycol (PEG) were synthesized through either two-step Cu(I)-catalyzed azide-alkyne cycloaddition CuAAC ("click") reactions at the periphery of azido-terminated AuNPs in the presence of the efficient catalyst [Cu(I)tren(CH2Ph)6][Br] or simply by direct stabilization of AuNPs using a tris-carborane thiol dendron or a hybrid dendron containing both PEG and carborane.

  13. The Ligand Binding Region of the Sigma-1 Receptor: Studies Utilizing Photoaffinity Probes, Sphingosine and N-Alkylamines

    PubMed Central

    Ruoho, Arnold E.; Chu, Uyen B.; Ramachandran, Subramaniam; Fontanilla, Dominique; Mavlyutov, Timur; Hajipour, Abdol R.

    2015-01-01

    The sigma-1 receptor is a 26 kDa endoplasmic reticulum resident membrane protein that has been shown to have chaperone activity in addition to its promiscuous binding to pharmacological agents. Ligand binding domain(s) of the sigma-1 receptor have been identified using the E. coli expressed and purified receptor protein and novel radioiodinated azido photoaffinity probes followed by pro-teolytic and chemical cleavage strategies. The outcome of these experiments indicates that the sigma-1 receptor ligand binding regions are formed primarily by juxtaposition of its second and third hydrophobic domains, regions where the protein shares considerable homology with the fungal enzyme, sterol isomerase that is essential for the biosynthesis of ergosterol. Data indicate that these hydrophobic steroid binding domain like (SBDL) regions on the sigma-1 receptor are likely to interact selectively with N-alkyl amines such as the endogenous sphingolipids and with synthetic N-alkylamines and N-aralkylamines derivatives. A proposed model for the sigma-1 receptor is presented. PMID:22288412

  14. Sensitive, Site-Specific, and Stable Vibrational Probe of Local Protein Environments: 4-Azidomethyl-L-Phenylalanine

    PubMed Central

    Bazewicz, Christopher G.; Liskov, Melanie T.; Hines, Kevin J.; Brewer, Scott H.

    2013-01-01

    We have synthesized the unnatural amino acid (UAA), 4-azidomethyl-Lphenylalanine (pN3CH2Phe), to serve as an effective vibrational reporter of local protein environments. The position, extinction coefficient, and sensitivity to local environment of the azide asymmetric stretch vibration of pN3CH2Phe are compared to the vibrational reporters: 4-cyano-L-phenylalanine (pCNPhe) and 4-azido-L-phenylalanine (pN3Phe). This UAA was genetically incorporated in a site-specific manner utilizing an engineered, orthogonal aminoacyl-tRNA synthetase in response to an amber codon with high efficiency and fidelity into two distinct sites in superfolder green fluorescent protein (sfGFP). This allowed for the dependence of the azide asymmetric stretch vibration of pN3CH2Phe to different protein environments to be measured. The photo-stability of pN3CH2Phe was also measured relative to the photoreactive UAA, pN3Phe. PMID:23865850

  15. ZnO Nanorods Based Enzymatic Biosensor for Selective Determination of Penicillin

    PubMed Central

    Ibupoto, Zafar Hussain; Ali, Syed Muhammad Usman; Khun, Kimleang; Chey, Chan Oeurn; Nur, Omer; Willander, Magnus

    2011-01-01

    In this study, we have successfully demonstrated the fabrication of a biosensor based on well aligned single-crystal zinc oxide (ZnO) nanorods which were grown on gold coated glass substrate using a low temperature aqueous chemical growth (ACG) method. The ZnO nanorods were immobilized with penicillinase enzyme using the physical adsorption approach in combination with N-5-azido-2-nitrobenzoyloxysuccinimide (ANB-NOS) as cross linking molecules. The potentiometric response of the sensor configuration revealed good linearity over a large logarithmic concentration range from 100 µM to 100 mM. During the investigations, the proposed sensor showed a good stability with high sensitivity of ~121 mV/decade for sensing of penicillin. A quick electrochemical response of less than 5 s with a good selectivity, repeatability, reproducibility and a negligible response to common interferents such as Na1+, K1+, d-glucose, l-glucose, ascorbic acid, uric acid, urea, sucrose, lactose, glycine, penicilloic acid and cephalosporins, was observed. PMID:25585565

  16. ZnO Nanorods Based Enzymatic Biosensor for Selective Determination of Penicillin.

    PubMed

    Ibupoto, Zafar Hussain; Ali, Syed Muhammad Usman; Khun, Kimleang; Chey, Chan Oeurn; Nur, Omer; Willander, Magnus

    2011-10-27

    In this study, we have successfully demonstrated the fabrication of a biosensor based on well aligned single-crystal zinc oxide (ZnO) nanorods which were grown on gold coated glass substrate using a low temperature aqueous chemical growth (ACG) method. The ZnO nanorods were immobilized with penicillinase enzyme using the physical adsorption approach in combination with N-5-azido-2-nitrobenzoyloxysuccinimide (ANB-NOS) as cross linking molecules. The potentiometric response of the sensor configuration revealed good linearity over a large logarithmic concentration range from 100 µM to 100 mM. During the investigations, the proposed sensor showed a good stability with high sensitivity of ~121 mV/decade for sensing of penicillin. A quick electrochemical response of less than 5 s with a good selectivity, repeatability, reproducibility and a negligible response to common interferents such as Na1+, K1+, d-glucose, l-glucose, ascorbic acid, uric acid, urea, sucrose, lactose, glycine, penicilloic acid and cephalosporins, was observed.

  17. Synthesis of a suite of click-compatible sugar analogs for probing carbohydrate metabolism.

    PubMed

    Wang, Bo; McClosky, Daniel D; Anderson, Charles T; Chen, Gong

    2016-10-04

    Metabolic labeling based on the click chemistry between alkynyl and azido groups offers a powerful tool to study the function of carbohydrates in living systems, including plants. Herein, we describe the chemical synthesis of six alkynyl-modified sugars designed as analogs to D-glucose, D-mannose, L-rhamnose and sucrose present in plant cell walls. Among these new alkynyl probes, four of them are the 6-deoxy-alkynyl analogs of the corresponding sugars and do not possess any 6-OH groups. The other two are based on a new structural design, in which an ethynyl group is incorporated at the C-6 position of the sugar and the 6-OH group remains. The synthetic routes for both types of probes share common aldehyde intermediates, which are derived from the corresponding 6-OH precursor with other hydroxy groups protected. The overall synthesis sequence of these probes is efficient, concise, and scalable. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Alkyne- and 1,6-elimination- succinimidyl carbonate - terminated heterobifunctional poly(ethylene glycol) for reversible "Click" PEGylation.

    PubMed

    Xie, Yumei; Duan, Shaofeng; Forrest, M Laird

    2010-01-01

    A new heterobifunctional (succinimidyl carbonate, SC)-activated poly(ethylene glycol) (PEG) with a reversible 1,6-elimination linker and a terminal alkyne for "click" chemistry was synthesized with high efficiency and low polydispersity. The α-alkyne-ω-hydroxyl PEG was first prepared using trimethylsilyl-2-propargyl alcohol as an initiator for ring-opening polymerization of ethylene oxide followed by mild deprotection with tetrabutylammonium fluoride. The hydroxy end was then modified with diglycolic anhydride to generate α-alkyne-ω-carboxylic acid PEG. The reversible 1, 6-elimination linker was introduced by conjugation of a hydroxymethyl phenol followed by activation with N,N'-disuccinimidyl carbonate to generate the heterobifunctional α-alkyne-ω-SC PEG. The terminal alkyne is available for "click" conjugation to azido ligands via 1,3-dipolar cycloaddition, and the succinimidyl carbonate will form a reversible conjugate to amines (e.g. in proteins) that can release the unaltered amine after base or enzyme catalyzed cleavage of the 1,6-linker.

  19. An efficient preparation of isosteric phosphonate analogues of sphingolipids by opening of oxirane and cyclic sulfamidate intermediates with alpha-lithiated alkylphosphonic esters.

    PubMed

    Sun, Chaode; Bittman, Robert

    2004-10-29

    D-erythro-(2S,3R,4E)-Sphingosine-1-phosphonate (1), the isosteric phosphonate analogue of naturally occurring sphingosine 1-phosphate (1a), and D-ribo-phytosphingosine 1-phosphonate (2), the isosteric phosphonate analogue of D-ribo-phytosphingosine-1-phosphate (2a), were synthesized starting with methyl 2,3-O-isopropylidene-d-glycerate (4) and D-ribo-phytosphingosine (3), respectively. Oxirane 12 was formed in eight steps from 4, and cyclic sulfamidate 22 was formed in five steps from 3. The phosphonate group was introduced via regioselective ring-opening reactions of oxirane 12 and cyclic sulfamidate 22 with lithium dialkyl methylphosphonate, affording 13 and 23, respectively. The synthesis of 1 was completed by S(N)2 displacement of chloromesylate intermediate 14b with azide ion, followed by conversion of the resulting azido group to a NHBoc group and deprotection. The synthesis of 2 was completed by cleavage of the acetal, N-benzyl, and alkyl phosphonate ester groups.

  20. A series of uranium (IV, V, VI) tritylimido complexes, their molecular and electronic structures and reactivity with CO2.

    PubMed

    Schmidt, Anna-Corina; Heinemann, Frank W; Maron, Laurent; Meyer, Karsten

    2014-12-15

    A series of uranium tritylimido complexes with structural continuity across complexes in different oxidation states, namely U(IV), U(V), and U(VI), is reported. This series was successfully synthesized by employing the trivalent uranium precursor, [(((nP,Me)ArO)3tacn)U(III)] (1) (where ((nP,Me)ArO)3tacn(3-) = trianion of 1,4,7-tris(2-hydroxy-5-methyl-3-neopentylbenzyl)-1,4,7-triazacyclononane), with the organic azides Me3SiN3, Me3SnN3, and Ph3CN3 (tritylazide). While the reaction with Me3SiN3 yields an inseparable mixture of both the azido and imido uranium complexes, applying the heavier Sn homologue yields the bis-μ-azido complex [{(((nP,Me)ArO)3tacn)U(IV)}2(μ-N3)2] (2) exclusively. In contrast to this one-electron redox chemistry, the reaction of precursor 1 with tritylazide solely leads to the two-electron oxidized U(V) imido [(((nP,Me)ArO)3tacn)U(V)(N-CPh3)] (3). Oxidation and reduction of 3 yield the corresponding U(VI) and U(IV) complexes [(((nP,Me)ArO)3tacn)U(VI)(N-CPh3)][B(C6F5)4] (4) and K[(((nP,Me)ArO)3tacn)U(IV)(N-CPh3)] (5), respectively. In addition, the U(V) imido 3 engages in a H atom abstraction reaction with toluene to yield the closely related amido complex [(((nP,Me)ArO)3tacn)U(IV)(N(H)-CPh3)] (6). Complex 6 and the three tritylimido complexes 3, 4, and 5, with oxidation states ranging from +IV to +VI and homologous core structures, were investigated by X-ray diffraction analyses and magnetochemical and spectroscopic studies as well as density functional theory (DFT) computational analysis. The series of structurally very similar imido complexes provides a unique opportunity to study electronic properties and to probe the uranium imido reactivity solely as a function of electron count of the metal-imido entity. Evidence for the U-N bond covalency and f-orbital participation in complexes 3-6 was drawn from the in-depth and comparative DFT study. The reactivity of the imido and amido complexes with CO2 was probed, and conclusions about the influence of the formal oxidation state are reported.

  1. The time of administration of 3'-azido-3'-deoxythymidine (AZT) determines its host toxicity with possible relevance to AZT chemotherapy.

    PubMed Central

    Zhang, R; Lu, Z; Diasio, C R; Liu, T; Soong, S J

    1993-01-01

    3'-Azido-3'-deoxythymidine (AZT) is the drug most widely used in the treatment of AIDS. Its major drug-related toxicity is bone marrow suppression, which limits the dose of AZT that can be used. It is essential that AZT be phosphorylated for antiviral effect. We have recently demonstrated that thymidine kinase (TK), the initial enzyme in AZT anabolism, follows a circadian pattern in rat bone marrow. The present study was undertaken to determine whether AZT toxicity is related to the time of its administration and whether the variation in toxicity is correlated with the circadian variation in TK activity. Male Sprague-Dawley rats were housed under standardized conditions of light and dark (lights on 0600 to 1800 and lights off 1800 to 0600) for 4 weeks. The animals were randomly divided into seven groups; six groups were administered AZT by intraperitoneal injection at the same dose of 750 mg/kg of body weight at various times (0400, 0800, 1200, 1600, 2000, and 2400), and one group was used as a control. AZT-related toxic effects, including bone marrow toxicity, differed significantly among the treatment groups, depending on the time of AZT administration (by analysis of variance and Cosinor analysis, P < 0.001). The least toxicity was observed in rats receiving AZT at 1600 (10 h after light onset [10 HALO], in late sleep span) and the greatest toxicity was observed in those injected at 0400 (22 HALO, in late activity span). To verify these results, we administered AZT by intraperitoneal injection at an approximately 50% lethal dose (1,500 mg/kg) to two groups of rats, one at 1200 (6 HALO, in the middle of the sleep span) and the other at 2400 (18 HALO, in the middle of the activity span). AZT lethality was significantly higher in rats receiving AZT at 2400 (18 HALO, in the middle of the activity span). Further statistical analysis demonstrated that the variation in AZT toxicity was correlated with the circadian variation in TK activity in bone marrow of the same species (peak activity at 0400 [22 HALO, in late activity span] and trough activity at 1600 [10 HALO, in late sleep span]), suggesting that the circadian variation in TK activity may be the biochemical basis for the observed circadian variation in AZT toxicity. These results may be useful in the design of improved AZT chemotherapeutic regimens. PMID:8239582

  2. Susceptibility Testing by Polymerase Chain Reaction DNA Quantitation: A Method to Measure Drug Resistance of Human Immunodeficiency Virus Type 1 Isolates

    NASA Astrophysics Data System (ADS)

    Eron, Joseph J.; Gorczyca, Paul; Kaplan, Joan C.; D'Aquila, Richard T.

    1992-04-01

    Polymerase chain reaction (PCR) DNA quantitation (PDQ) susceptibility testing rapidly and directly measures nucleoside sensitivity of human immunodeficiency virus type 1 (HIV-1) isolates. PCR is used to quantitate the amount of HIV-1 DNA synthesized after in vitro infection of peripheral blood mononuclear cells. The relative amounts of HIV-1 DNA in cell lysates from cultures maintained at different drug concentrations reflect drug inhibition of virus replication. The results of PDQ susceptibility testing of 2- or 3-day cultures are supported by assays measuring HIV-1 p24 antigen production in supernatants of 7- or 10-day cultures. DNA sequence analyses to identify mutations in the reverse transcriptase gene that cause resistance to 3'-azido-3'-deoxythymidine also support the PDQ results. With the PDQ method, both infectivity titration and susceptibility testing can be performed on supernatants from primary cultures of peripheral blood mononuclear cells. PDQ susceptibility testing should facilitate epidemiologic studies of the clinical significance of drug-resistant HIV-1 isolates.

  3. Molecular cloning and functional expression of the guinea pig alpha(1a)-adrenoceptor.

    PubMed

    González-Espinosa, C; Romero-Avila, M T; Mora-Rodríguez, D M; González-Espinosa, D; García-Sáinz, J A

    2001-08-31

    In the present paper, the cloning and expression of the guinea pig alpha(1A)-adrenoceptor is presented. The nucleotide sequence had an open reading frame of 1401 bp that encoded a 466 amino-acid protein with an estimated molecular mass of approximately 51.5 kDa. When the clone was expressed in Cos-1 cells, specific high-affinity binding of [(3)H]prazosin and [(3)H]tamsulosin was observed. Chloroethylclonidine treatment of membranes slightly decreased the total binding with both radioligands. Binding competition experiments using [(3)H]tamsulosin showed the following potency order: (a) for agonists: oxymetazoline >epinephrine>norepinephrine>methoxamine, and (b) for antagonists: prazosin> or 5-methyl-urapidil=benoxathian>phentolamine>BMY 7378 (8-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-8-azaspiro[4,5]decane-7,9-dione). Photoaffinity labeling using [(125)I-aryl]azido-prazosin revealed a major broad band with a molecular mass between 70 and 80 kDa. The receptor was functional, as evidenced by an epinephrine-increased production of [(3)H]inositol phosphates that was blocked by prazosin.

  4. Selective in vivo metabolic cell-labeling-mediated cancer targeting

    PubMed Central

    Wang, Hua; Wang, Ruibo; Cai, Kaimin; He, Hua; Liu, Yang; Yen, Jonathan; Wang, Zhiyu; Xu, Ming; Sun, Yiwen; Zhou, Xin; Yin, Qian; Tang, Li; Dobrucki, Iwona T; Dobrucki, Lawrence W; Chaney, Eric J; Boppart, Stephen A; Fan, Timothy M; Lezmi, Stéphane; Chen, Xuesi; Yin, Lichen; Cheng, Jianjun

    2017-01-01

    Distinguishing cancer cells from normal cells through surface receptors is vital for cancer diagnosis and targeted therapy. Metabolic glycoengineering of unnatural sugars provides a powerful tool to manually introduce chemical receptors onto the cell surface; however, cancer-selective labeling still remains a great challenge. Herein we report the design of sugars that can selectively label cancer cells both in vitro and in vivo. Specifically, we inhibit the cell-labeling activity of tetraacetyl-N-azidoacetylmannosamine (Ac4ManAz) by converting its anomeric acetyl group to a caged ether bond that can be selectively cleaved by cancer-overexpressed enzymes and thus enables the overexpression of azido groups on the surface of cancer cells. Histone deacetylase and cathepsin L-responsive acetylated azidomannosamine, one such enzymatically activatable Ac4ManAz analog developed, mediated cancer-selective labeling in vivo, which enhanced tumor accumulation of a dibenzocyclooctyne–doxorubicin conjugate via click chemistry and enabled targeted therapy against LS174T colon cancer, MDA-MB-231 triple-negative breast cancer and 4T1 metastatic breast cancer in mice. PMID:28192414

  5. Induction of a melanoma-specific antibody response by a monovalent, but not a divalent, synthetic GM2 neoglycopeptide.

    PubMed

    Bay, S; Fort, S; Birikaki, L; Ganneau, C; Samain, E; Coïc, Y-M; Bonhomme, F; Dériaud, E; Leclerc, C; Lo-Man, R

    2009-04-01

    The GM2 ganglioside represents an important target for specific anticancer immunotherapy. We designed and synthesized a neoglycopeptide immunogen displaying one or two copies of the GM2 tetrasaccharidic moiety. These glycopeptides were prepared using the Huisgen cycloaddition, which enables the efficient ligation of the alkyne-functionalized biosynthesized GM2 with an azido CD4(+) T cell epitope peptide. It is worth noting that the GM2 can be produced on a gram scale in bacteria, which can be advantageous for a scale-up of the process. We show here for the first time that a fully synthetic glycopeptide, which is based on a ganglioside carbohydrate moiety, can induce human tumor cell-specific antibodies after immunization in mice. Interestingly, the monovalent, but not the divalent, form of GM2 peptide construct induced antimelanoma antibodies. Unlike traditional vaccines, this vaccine is a pure chemically-defined entity, a key quality for consistent studies and safe clinical evaluation. Therefore, such carbohydrate-peptide conjugate represents a promising cancer vaccine strategy for active immunotherapy targeting gangliosides.

  6. Azide/alkyne-"click"-reactions of encapsulated reagents: toward self-healing materials.

    PubMed

    Gragert, Maria; Schunack, Marlen; Binder, Wolfgang H

    2011-03-02

    The successful encapsulation of reactive components for the azide/alkyne-"click"-reaction is reported featuring for the first time the use of a liquid polymer as reactive component. A liquid, azido-telechelic three-arm star poly(isobutylene) (M(n) = 3900 g · mol⁻¹) as well as trivalent alkynes were encapsulated into micron-sized capsules and embedded into a polymer-matrix (high-molecular weight poly(isobutylene), M(n) = 250,000 g · mol⁻¹). Using (Cu(I)Br(PPh₃)₃) as catalyst for the azide/alkyne-"click"-reaction, crosslinking of the two components at 40 °C is observed within 380 min and as fast as 10 min at 80 °C. Significant recovery of the tensile storage modulus was observed in a material containing 10 wt.-% and accordingly 5 wt.-% capsules including the reactive components within 5 d at room temperature, thus proving a new concept for materials with self-healing properties. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Facile and selective covalent grafting of an RGD-peptide to electrospun scaffolds improves HUVEC adhesion.

    PubMed

    Dettin, Monica; Zamuner, Annj; Roso, Martina; Iucci, Giovanna; Samouillan, Valerie; Danesin, Roberta; Modesti, Michele; Conconi, Maria Teresa

    2015-10-01

    The development of a biomimetic surface able to promote endothelialization is fundamental in the search for blood vessel substitutes that prevent the formation of thrombi or hyperplasia. This study aims at investigating the effect of functionalization of poly-ε-caprolactone or poly(L-lactic acid-co-ɛ-caprolactone) electrospun scaffolds with a photoreactive adhesive peptide. The designed peptide sequence contains four Gly-Arg-Gly-Asp-Ser-Pro motifs per chain and a p-azido-Phe residue at each terminus. Different peptide densities on the scaffold surface were obtained by simply modifying the peptide concentration used in pretreatment of the scaffold before UV irradiation. Scaffolds of poly-ε-caprolactone embedded with adhesive peptides were produced to assess the importance of peptide covalent grafting. Our results show that the scaffolds functionalized with photoreactive peptides enhance adhesion at 24 h with a dose-dependent effect and control the proliferation of human umbilical vein endothelial cells, whereas the inclusion of adhesive peptide in the electrospun matrices by embedding does not give satisfactory results. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.

  8. Biofunctionalization of a “Clickable” Organic Layer Photochemically Grafted on Titanium Substrates

    PubMed Central

    Li, Yan; Zhao, Meirong; Wang, Jun; Liu, Kai; Cai, Chengzhi

    2011-01-01

    We have developed a general method combining photochemical grafting and copper-catalyzed click chemistry for biofunctionalization of titanium substrates. The UV-activated grafting of an α,ω-alkenyne onto TiO2/Ti substrates provided a “clickable” thin film platform. The selective attachment of the vinyl end of the molecule to the surface was achieved by masking the alkynyl end with a trimethylgermanyl (TMG) protecting group. Subsequently, various oligo(ethylene glycol) (OEG) derivatives terminated with an azido group were attached to the TMG-alkynyl modified titanium surface via a one-pot deprotection/click reaction. The films were characterized by X-ray photoelectron spectroscopy (XPS), contact angle goniometry, ellipsometry, and atomic force microscopy (AFM). We showed that the titanium surface presenting click-immobilized OEG substantially suppressed the nonspecific attachment of protein and cells as compared to the unmodified titanium substrate. Furthermore, glycine-arginine-glycine-aspartate (GRGD), a cell adhesion peptide, was coimmobilized with OEG on the platform. We demonstrated that the resultant GRGD-presenting thin film on Ti substrates can promote the specific adhesion and spreading of AsPC-1 cells. PMID:21417429

  9. Multiple Click-Selective tRNA Synthetases Expand Mammalian Cell-Specific Proteomics.

    PubMed

    Yang, Andrew C; du Bois, Haley; Olsson, Niclas; Gate, David; Lehallier, Benoit; Berdnik, Daniela; Brewer, Kyle D; Bertozzi, Carolyn R; Elias, Joshua E; Wyss-Coray, Tony

    2018-06-13

    Bioorthogonal tools enable cell-type-specific proteomics, a prerequisite to understanding biological processes in multicellular organisms. Here we report two engineered aminoacyl-tRNA synthetases for mammalian bioorthogonal labeling: a tyrosyl ( ScTyr Y43G ) and a phenylalanyl ( MmPhe T413G ) tRNA synthetase that incorporate azide-bearing noncanonical amino acids specifically into the nascent proteomes of host cells. Azide-labeled proteins are chemoselectively tagged via azide-alkyne cycloadditions with fluorophores for imaging or affinity resins for mass spectrometric characterization. Both mutant synthetases label human, hamster, and mouse cell line proteins and selectively activate their azido-bearing amino acids over 10-fold above the canonical. ScTyr Y43G and MmPhe T413G label overlapping but distinct proteomes in human cell lines, with broader proteome coverage upon their coexpression. In mice, ScTyr Y43G and MmPhe T413G label the melanoma tumor proteome and plasma secretome. This work furnishes new tools for mammalian residue-specific bioorthogonal chemistry, and enables more robust and comprehensive cell-type-specific proteomics in live mammals.

  10. "Click" on PLGA-PEG and hyaluronic acid: Gaining access to anti-leishmanial pentamidine bioconjugates.

    PubMed

    Scala, Angela; Piperno, Anna; Micale, Nicola; Mineo, Placido G; Abbadessa, Antonio; Risoluti, Roberta; Castelli, Germano; Bruno, Federica; Vitale, Fabrizio; Cascio, Antonio; Grassi, Giovanni

    2017-12-08

    Pentamidine (Pent), an antiparasitic drug used for the treatment of visceral leishmaniasis, has been modified with terminal azide groups and conjugated to two different polymer backbones (PLGA-PEG [PP] copolymer and hyaluronic acid [HA]) armed with alkyne end-groups. The conjugation has been performed by Copper Catalyzed Azido Alkyne Cycloaddition (CuAAC) using CuSO 4 /sodium ascorbate as metal source. The novel PP-Pent and HA-Pent bioconjugates are proposed, respectively, as non-targeted and targeted drug delivery systems against Leishmania infections. Moreover, Pent has been encapsulated into PP nanoparticles by the oil-in-water emulsion method, with the aim to compare the biological activity of the bioconjugates with that of the classical drug-loaded delivery system that physically entraps the therapeutic agent. Biological assays against Leishmania infantum amastigote-infected macrophages and primary macrophages revealed that Pent, either covalently conjugated with polymers or loaded into polymeric nanoparticles, turned out to be more potent and less toxic than the free Pent. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2017. © 2017 Wiley Periodicals, Inc.

  11. Circular DNA by "Bis-Click" Ligation: Template-Independent Intramolecular Circularization of Oligonucleotides with Terminal Alkynyl Groups Utilizing Bifunctional Azides.

    PubMed

    Yang, Haozhe; Seela, Frank

    2016-01-22

    A highly effective and convenient "bis-click" strategy was developed for the template-independent circularization of single-stranded oligonucleotides by employing copper(I)-assisted azide-alkyne cycloaddition. Terminal triple bonds were incorporated at both ends of linear oligonucleotides. Alkynylated 7-deaza-2'-deoxyadenosine and 2'-deoxyuridine residues with different side chains were used in solid-phase synthesis with phosphoramidite chemistry. The bis-click ligation of linear 9- to 36-mer oligonucleotides with 1,4-bis(azidomethyl)benzene afforded circular DNA in a simple and selective way; azido modification of the oligonucleotide was not necessary. Short ethynyl side chains were compatible with the circularization of longer oligonucleotides, whereas octadiynyl residues were used for short 9-mers. Compared with linear duplexes, circular bis-click constructs exhibit a significantly increased duplex stability over their linear counterparts. The intramolecular bis-click ligation protocol is not limited to DNA, but may also be suitable for the construction of other macrocycles, such as circular RNAs, peptides, or polysaccharides. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Bioorthogonal layer-by-layer encapsulation of pancreatic islets via hyperbranched polymers

    PubMed Central

    Gattás-Asfura, Kerim M.; Stabler, Cherie L.

    2013-01-01

    The encapsulation of viable tissues via layer-by-layer polymer assembly provides a versatile platform for cell surface engineering, with nanoscale control over capsule properties. Herein, we report the development of a hyperbranched polymer-based, ultrathin capsule architecture expressing bioorthogonal functionality and tailored physiochemical properties. Random carbodiimide-based condensation of 3,5-dicarboxyphenyl glycineamide on alginate yielded a highly branched polysaccharide with multiple, spatially restricted, and readily functionalizable terminal carboxylate moieties. Poly(ethylene glycol) (PEG) was utilized to link azido end groups to the structured alginate. Together with phosphine functionalized poly(amido amine) (PAMAM) dendrimer, nanoscale layer-by-layer coatings, covalently stabilized via Staudinger ligation, were assembled onto solid surfaces and pancreatic islets. The effects of electrostatic and/or bioorthogonal covalent interlayer interactions on the resulting coating efficiency and stability, as well as pancreatic islet viability and function, were studied. These hyperbranched polymers provide a flexible platform for the formation of covalently stabilized ultrathin coatings on viable cells and tissues. In addition, the hyperbranched nature of the polymers presents a highly functionalized surface capable of bioorthogonal conjugation of additional bioactive or labeling motifs. PMID:24063764

  13. Experimental Investigation on the Mechanism of Chelation-Assisted, Copper(II) Acetate-Accelerated Azide-Alkyne Cycloaddition

    PubMed Central

    Kuang, Gui-Chao; Guha, Pampa M.; Brotherton, Wendy S.; Simmons, J. Tyler; Stankee, Lisa A.; Nguyen, Brian T.; Clark, Ronald J.; Zhu, Lei

    2011-01-01

    A mechanistic model is formulated to account for the high reactivity of chelating azides (organic azides capable of chelation-assisted metal coordination at the alkylated azido nitrogen position) and copper(II) acetate (Cu(OAc)2) in copper(II)-mediated azide-alkyne cycloaddition (AAC) reactions. Fluorescence and 1H NMR assays are developed for monitoring the reaction progress in two different solvents – methanol and acetonitrile. Solvent kinetic isotopic effect and pre-mixing experiments give credence to the proposed different induction reactions for converting copper(II) to catalytic copper(I) species in methanol (methanol oxidation) and acetonitrile (alkyne oxidative homocoupling), respectively. The kinetic orders of individual components in a chelation-assisted, copper(II)-accelerated AAC reaction are determined in both methanol and acetonitrile. Key conclusions resulting from the kinetic studies include (1) the interaction between copper ion (either in +1 or +2 oxidation state) and a chelating azide occurs in a fast, pre-equilibrium step prior to the formation of the in-cycle copper(I)-acetylide, (2) alkyne deprotonation is involved in several kinetically significant steps, and (3) consistent with prior experimental and computational results by other groups, two copper centers are involved in the catalysis. The X-ray crystal structures of chelating azides with Cu(OAc)2 suggest a mechanistic synergy between alkyne oxidative homocoupling and copper(II)-accelerated AAC reactions, in which both a bimetallic catalytic pathway and a base are involved. The different roles of the two copper centers (a Lewis acid to enhance the electrophilicity of the azido group and a two-electron reducing agent in oxidative metallacycle formation, respectively) in the proposed catalytic cycle suggest that a mixed valency (+2 and +1) dinuclear copper species be a highly efficient catalyst. This proposition is supported by the higher activity of the partially reduced Cu(OAc)2 in mediating a 2-picolylazide-involved AAC reaction than the fully reduced Cu(OAc)2. Finally, the discontinuous kinetic behavior that has been observed by us and others in copper(I/II)-mediated AAC reactions is explained by the likely catalyst disintegration during the course of a relatively slow reaction. Complementing the prior mechanistic conclusions drawn by other investigators which primarily focus on the copper(I)/alkyne interactions, we emphasize the kinetic significance of copper(I/II)/azide interaction. This work not only provides a mechanism accounting for the fast Cu(OAc)2-mediated AAC reactions involving chelating azides, which has apparent practical implications, but suggests the significance of mixed-valency dinuclear copper species in catalytic reactions where two copper centers carry different functions. PMID:21809811

  14. Stability and reactivity of 2-nitrosoamino-3,8-dimethylimidazo[4,5-f]quinoxaline.

    PubMed

    Lakshmi, Vijaya M; Hsu, Fong Fu; Schut, Herman A J; Zenser, Terry V

    2006-02-01

    2-Nitrosoamino-3,8-dimethylimidazo[4,5-f]quinoxaline (N-NO-MeIQx) is a nitrosation product of the food carcinogen 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) and is proposed to form in vivo under inflammatory conditions. This study evaluated the stability and reactivity of N-NO-MeIQx to assess its possible role in the initiation of colon cancer by MeIQx. 14C-N-NO-MeIQx (4 microM) was incubated for 4 h over a range of pH values, and its stability was monitored by HPLC. At pH values from pH 7.4 to 9.0, N-NO-MeIQx was very stable with no detectable change observed. Glutathione (1 mM) did not alter stability at pH 7.4. As the pH decreased, this nitrosamine was less stable with only 48 +/- 1% remaining at pH 5.5 and none remaining at pH 3.5 or 2.0. Major products identified by electrospray ionization mass spectrometry were 3,8-dimethylimidazo[4,5-f]quinoxaline and 2-hydroxy-3,8-dimethylimidazo[4,5-f]quinoxaline. MeIQx was a minor product. At pH 2.0, the t(1/2) for N-NO-MeIQx was reduced from 2.1 +/- 0.2 to 1.2 +/- 0.1 min with 10 mM NaN3. This effect of azide was due to the formation of 2-azido-MeIQx. The binding of 14C-N-NO-MeIQx to DNA increased with decreasing pH. The 10-fold increase in binding observed at pH 2.0 as compared to pH 5.5 was completely inhibited by 10 mM NaN3 due to 2-azido-MeIQx formation. The reactivity of N-NO-MeIQx was compared to N-OH-MeIQx by evaluating adduct formation with 2'-deoxyguanosine 3'-monophosphate (dGp) by 32P-postlabeling. N-OH-MeIQx formed a single major adduct, N-(deoxyguanosin-8-yl)-MeIQx (dG-C8-MeIQx). Incubation of N-NO-MeIQx under inflammatory conditions (pH 5.5 +/- HOCl) produced dG-C8-MeIQx along with 4-6 other adducts. dG-C8-MeIQx formation increased in the presence of HOCl. Liver from a MeIQx-treated mouse contained dG-C8-MeIQx and two other adducts detected with N-NO-MeIQx but not N-OH-MeIQx. These results suggest that N-NO-MeIQx could be genotoxic, is activated by conditions that mediate inflammatory responses, and is a possible cancer risk factor for individuals with inflammation of the colon.

  15. Stability and Reactivity of 2-Nitrosoamino-3,8-dimethylimidazo[4,5-f]quinoxaline

    PubMed Central

    Lakshmi, Vijaya M.; Hsu, Fong Fu; Schut, Herman A. J.; Zenser, Terry V.

    2008-01-01

    2-Nitrosoamino-3,8-dimethylimidazo[4,5-f]quinoxaline (N-NO-MeIQx) is a nitrosation product of the food carcinogen 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) and proposed to form in vivo under inflammatory conditions. This study evaluated the stability and reactivity of N-NO-MeIQx to assess its possible role in initiation of colon cancer by MeIQx. 14C-N-NO-MeIQx (4 μM) was incubated for 4 hours over a range of pH values and its stability monitored by HPLC. At pH values from pH 7.4 to 9.0, N-NO-MeIQx was very stable with no detectable change observed. Glutathione (1 mM) did not alter stability at pH 7.4. As pH decreased, this nitrosamine was less stable with only 48 ± 1 % remaining at pH 5.5 and none remaining at pH 3.5 or 2.0. Major products identified by electrospray ionization mass spectrometry were 3,8-dimethylimidazo[4,5-f]quinoxaline and 2-hydroxy-3,8-dimethylimidazo[4,5-f]quinoxaline. MeIQx was a minor product. At pH 2.0, the t1/2 for N-NO-MeIQx was reduced from 2.1 ± 0.2 to 1.2 ± 0.1 min with 10 mM NaN3. This effect of azide was due to formation of 2-azido-MeIQx. The binding of 14C-N-NO-MeIQx to DNA increased with decreasing pH. The 10-fold increase in binding observed at pH 2.0 compared to pH 5.5 was completely inhibited by 10 mM NaN3 due to 2-azido-MeIQx formation. The reactivity of N-NO-MeIQx was compared to N-OH-MeIQx by evaluating adduct formation with 2′-deoxyguanosine 3′-monophosphate (dGp) by 32P-postlabeling. N-OH-MeIQx formed a single major adduct, N-(deoxyguanosin-8-yl)-MeIQx (dG-C8-MeIQx). Incubation of N-NO-MeIQx under inflammatory conditions (pH 5.5 ± HOCl) produced dG-C8-MeIQx along with 4 to 6 other adducts. dG-C8-MeIQx formation increased in the presence of HOCl. Liver from a MeIQx-treated mouse contained dG-C8-MeIQx and two other adducts detected with N-NO-MeIQx, but not N-OH-MeIQx. These results suggest that N-NO-MeIQx could be genotoxic, is activated by conditions that mediate inflammatory responses, and is a possible cancer risk factor for individuals with inflammation of the colon. PMID:16485910

  16. Synthesis of antifungal vaccines by conjugation of β-1,2 trimannosides with T-cell peptides and covalent anchoring of neoglycopeptide to tetanus toxoid.

    PubMed

    Cartmell, Jonathan; Paszkiewicz, Eugenia; Dziadek, Sebastian; Tam, Pui-Hang; Luu, Thanh; Sarkar, Susmita; Lipinski, Tomasz; Bundle, David R

    2015-02-11

    Selective strategies for the construction of novel three component glycoconjugate vaccines presenting Candida albicans cell wall glycan (β-1,2 mannoside) and polypeptide fragments on a tetanus toxoid carrier are described. The first of two conjugation strategies employed peptides bearing an N-terminal thiopropionyl residue for conjugation to a trisaccharide equipped with an acrylate linker and a C-terminal S-acetyl thioglycolyl moiety for subsequent linking of neoglycopeptide to bromoacetylated tetanus toxoid. Michael addition of acrylate trisaccharides to peptide thiol under mildly basic conditions gave a mixture of N- and C- terminal glyco-peptide thioethers. An adaptation of this strategy coordinated S-acyl protection with anticipated thioester exchange equilibria. This furnished a single chemically defined fully synthetic neoglycopeptide conjugate that could be anchored to a tetanus toxoid carrier and avoids the introduction of exogenous antigenic groups. The second strategy retained the N-terminal thiopropionyl residue but replaced the C-terminal S-acetate functionality with an azido group that allowed efficient, selective formation of neoglycopeptide thioethers and subsequent conjugation of these with propargylated tetanus toxoid, but introduced potentially antigenic triazole linkages. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Lymphocyte receptors for pertussis toxin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, C.G.; Armstrong, G.D.

    1990-12-01

    We have investigated human T-lymphocyte receptors for pertussis toxin by affinity isolation and photoaffinity labeling procedures. T lymphocytes were obtained from peripheral human blood, surface iodinated, and solubilized in Triton X-100. The iodinated mixture was then passed through pertussis toxin-agarose, and the fractions were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Autoradiography of the fixed, dried gels revealed several bands in the pertussis toxin-bound fraction that were not observed in fractions obtained from histone or fetuin-agarose. Further investigations employed a photoaffinity labeling reagent, sulfosuccinimidyl 2-(p-azido-salicylamido)-1,3'-dithiopropionate, to identify pertussis toxin receptors in freshly isolated peripheral blood monocytic cells, T lymphocytes, andmore » Jurkat cells. In all three cell systems, the pertussis toxin affinity probe specifically labeled a single protein species with an apparent molecular weight of 70,000 that was not observed when the procedure was performed in the presence of excess unmodified pertussis toxin. A protein comparable in molecular weight to the one detected by the photoaffinity labeling technique was also observed among the species that bound to pertussis toxin-agarose. The results suggest that pertussis toxin may bind to a 70,000-Da receptor in human T lymphocytes.« less

  18. pH-Responsive Dimeric Zinc(II) Phthalocyanine in Mesoporous Silica Nanoparticles as an Activatable Nanophotosensitizing System for Photodynamic Therapy.

    PubMed

    Wong, Roy C H; Chow, Sun Y S; Zhao, Shirui; Fong, Wing-Ping; Ng, Dennis K P; Lo, Pui-Chi

    2017-07-19

    An acid-cleavable acetal-linked zinc(II) phthalocyanine dimer with an azido terminal group (cPc) was prepared and conjugated to alkyne-modified mesoporous silica nanoparticles via copper(I)-catalyzed alkyne-azide cycloaddition reaction. For comparison, an amine-linked analogue (nPc) was also prepared as a non-acid-cleavable counterpart. These dimeric phthalocyanines were significantly self-quenched due to the close proximity of the phthalocyanine units inside the mesopores, resulting in much weaker fluorescence emission and singlet oxygen generation, both in N,N-dimethylformamide and in phosphate-buffered saline (PBS), compared with the free molecular counterparts. Under acidic conditions in PBS, the cPc-encapsulated nanosystem was activated in terms of fluorescence emission and singlet oxygen production. After internalization into human colon adenocarcinoma HT29 cells, it exhibited much higher intracellular fluorescence and photocytotoxicity compared to the nanosystem entrapped with nPc. The activation of this nanosystem was also demonstrated in tumor-bearing nude mice. The intratumoral fluorescence intensity increased gradually over 24 h, while for the nPc counterpart the fluorescence remained very weak. The results suggest that this nanosystem serves as a promising activatable nanophotosensitizing agent for photodynamic therapy.

  19. Two zinc(II) coordination complexes based on an asymmetric multidentate ligand: syntheses, structures, selective fluorescence sensing of iron(III) ions and thermal analyses.

    PubMed

    Liu, Yaru; Liu, Lan; Zhang, Xiao; Liang, Guorui; Gong, Xuebing

    2018-01-01

    The rational selection of ligands is vitally important in the construction of coordination complexes. Two novel Zn II complexes, namely bis(acetato-κO)bis[1-(1H-benzotriazol-1-ylmethyl)-2-propyl-1H-imidazole-κN 3 ]zinc(II) monohydrate, [Zn(C 13 H 15 N 5 ) 2 (C 2 H 3 O 2 ) 2 ]·H 2 O, (1), and bis(azido-κN 1 )bis[1-(1H-benzotriazol-1-ylmethyl)-2-propyl-1H-imidazole-κN 3 ]zinc(II), [Zn(C 13 H 15 N 5 ) 2 (N 3 ) 2 ], (2), constructed from the asymmetric multidentate imidazole ligand, have been synthesized under mild conditions and characterized by elemental analyses, IR spectroscopy and single-crystal X-ray diffraction analysis. Both complexes exhibit a three-dimensional supramolecular network directed by different intermolecular interactions between discrete mononuclear units. The complexes were also investigated by fluorescence and thermal analyses. The experimental results show that (1) is a promising fluorescence sensor for detecting Fe 3+ ions and (2) is effective as an accelerator of the thermal decomposition of ammonium perchlorate.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, J.Y.

    Serial experiments were performed in order to understand and explore the Na/sup +/ transport system. In order to test possible covariation of cation and anion permeabilities, we applied inhibitors of cation or anion transport. Sulfonamide loop diuretics, furosemide and bumetanide, suppress 22/sub Na/sup +// influx into high permeability (HP) red cells but less into low permeability (LP) erythrocytes. These drugs also inhibit SO/sub 4/ = transport about 70% in both types of RBC. RBC pretreated with impermeant polyanions also show significantly decreased Na/sup +/ influx into HP but not LP RBC. However,a potent inhibitor of RBC anion transport, diisothiocyanostilbene disulfonatemore » (DIDS), has no influence on Na/sup +/ transport. Since the glucose channel is another transmembrane protein in erythrocyte membranes, the effects of the potent glucose transport inhibitors, phlorizin and phloretinyl-3'-benzylazide (PBAz), were measured. Both chemicals effect reduction of Na/sup +/ flux. Because radioactive PBAz is not available, we employed another potent Na/sup +/ channel blocker, /sup 32/P-8-azido-ATP, in an attempt to label HP and LP RBC membranes. Autoradiograms showed that /sup 32/P labels only band 4.2 and external iodination with /sup 125/I yields similar results.« less

  1. DNA with Parallel Strand Orientation: A Nanometer Distance Study with Spin Labels in the Watson-Crick and the Reverse Watson-Crick Double Helix.

    PubMed

    Wunnicke, Dorith; Ding, Ping; Yang, Haozhe; Seela, Frank; Steinhoff, Heinz-Jürgen

    2015-10-29

    Parallel-stranded (ps) DNA characterized by its sugar-phosphate backbones pointing in the same direction represents an alternative pairing system to antiparallel-stranded (aps) DNA with the potential to inhibit transcription and translation. 25-mer oligonucleotides were selected containing only dA·dT base pairs to compare spin-labeled nucleobase distances over a range of 10 or 15 base pairs in ps DNA with those in aps DNA. By means of the copper(I)-catalyzed Huisgen-Meldal-Sharpless alkyne-azide cycloaddition, the spin label 4-azido-2,2,6,6-tetramethylpiperidine-1-oxyl was clicked to 7-ethynyl-7-deaza-2'-deoxyadenosine or 5-ethynyl-2'-deoxyuridine to yield 25-mer oligonucleotides incorporating two spin labels. The interspin distances between spin labeled residues were determined by pulse EPR spectroscopy. The results reveal that in ps DNA these distances are between 5 and 10% longer than in aps DNA when the labeled DNA segment is located near the center of the double helix. The interspin distance in ps DNA becomes shorter compared with aps DNA when one of the spin labels occupies a position near the end of the double helix.

  2. The use of O-trifluoroacetyl protection and profound influence of the nature of glycosyl acceptor in benzyl-free arabinofuranosylation.

    PubMed

    Abronina, Polina I; Fedina, Ksenia G; Podvalnyy, Nikita M; Zinin, Alexander I; Chizhov, Alexander O; Kondakov, Nikolay N; Torgov, Vladimir I; Kononov, Leonid O

    2014-09-19

    The influence of O-trifluoroacetyl (TFA) groups at different positions of thioglycoside glycosyl donors on stereoselectivity of α-arabinofuranosylation leading to corresponding disaccharides was studied. It was shown that TFA group in thioglycoside glycosyl donors, when combined with 2-O-(triisopropylsilyl) (TIPS) non-participating group, may be regarded as an electron-withdrawing protecting group that may enhance 1,2-cis-selectivity in arabinofuranosylation, the results strongly depending on the nature of glycosyl acceptor. The reactivities of the glycosyl donors were compared with those of a similar thioglycoside with O-pentafluoropropionyl groups and the known phenyl 3,5-O-(di-tert-butylsilylene)-1-thio-α-d-arabinofuranosides with 2-O-TIPS and 2-O-benzyl groups. The 'matching' in the donor-acceptor combination was found to be critical for achieving both high reactivity of glycosyl donor and β-stereoselectivity of arabinofuranosylation. The use of glycosyl donors with TFA and silyl protection may be useful in the realization of the benzyl-free approach to oligoarabinofuranosides with azido group in aglycon-convenient building blocks for the preparation of neoglycoconjugates. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Evaluation of Microemulsion and Lamellar Liquid Crystalline Systems for Transdermal Zidovudine Delivery.

    PubMed

    Carvalho, André Luis Menezes; Silva, José Alexsandro da; Lira, Ana Amélia Moreira; Conceição, Tamara Matos Freire; Nunes, Rogéria de Souza; de Albuquerque Junior, Ricardo Luiz Cavalcanti; Sarmento, Victor Hugo Vitorino; Leal, Leila Bastos; de Santana, Davi Pereira

    2016-07-01

    This study proposed to investigate and to compare colloidal carrier systems containing Zidovudine (3'-azido-3'-deoxythymidine) (AZT) for transdermal administration and optimization of antiretroviral therapy. Microemulsion (ME) and lamellar phase (LP) liquid crystal were obtained and selected from pseudoternary diagrams previously developed. Small-angle X-ray scattering and rheology analysis confirmed the presence of typical ME and liquid crystalline structures with lamellar arrangement, respectively. Both colloidal carrier systems, ME, and LP remained stable, homogeneous, and isotropic after AZT addition. In vitro permeation study (using pig ear skin) showed that the amount of permeated drug was higher for ME compared to the control and LP, obtaining a permeation enhancing effect on the order of approximately 2-fold (p < 0.05). Microscopic examination after in vivo skin irritation studies using mice suggested few histological changes in the skin of animals treated with the ME compared to the control group (hydrogel). Thus, ME proved to be adequate and have promising effects, being able to promote the drug permeation without causing apparent skin irritation. On the order hand, LP functioned as a drug reservoir reducing AZT partitioning into the skin. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  4. Mechanism of ribonucleotide reductase from Herpes simplex virus type 1. Evidence for 3' carbon-hydrogen bond cleavage and inactivation by nucleotide analogs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ator, M.A.; Stubbe, J.; Spector, T.

    1986-03-15

    Isotope effects of 2.5, 2.1, and 1.0 were measured on the conversion of (3'-3H)ADP, (3'-H)UDP, and (5-3H) UDP to the corresponding 2'-deoxynucleotides by herpes simplex virus type 1 ribonucleotide reductase. These results indicate that the reduction of either purine or pyrimidine nucleotides requires cleavage of the 3' carbon-hydrogen bond of the substrate. The substrate analogs 2'-chloro-2'-deoxyuridine 5'-diphosphate (ClUDP), 2'-deoxy-2'-fluorouridine 5'-diphosphate, and 2'-azido-2'-deoxyuridine 5'-diphosphate were time-dependent inactivators of the herpes simplex virus type 1 ribonucleotide reductase. Incubation of (3'-3H)ClUDP with the enzyme was accompanied by time-dependent release of 3H to the solvent. Reaction of (beta-32P)ClUDP with the reductase resulted in themore » production of inorganic pyrophosphate. These results are consistent with the enzyme-mediated cleavage of the 3' carbon-hydrogen bond of ClUDP and the subsequent conversion of the nucleotide to 2-methylene-3(2H)furanone, as previously reported with the Escherichia coli ribonucleotide reductase.« less

  5. Probing sialoglycans on fetal bovine fetuin with azido-sugars using glycosyltransferases.

    PubMed

    Wu, Zhengliang L; Huang, Xinyi; Burton, Andrew J; Swift, Karl A D

    2016-04-01

    Sialic acids are negatively charged sugar residues commonly found on the terminal positions of most glycoproteins. They play important roles in the stability and solubility of these proteins. Due to their unique positioning, they also frequently act as receptors for various ligands, and therefore are involved in numerous cell-cell and cell-pathogen interactions. Here, using in vitro incorporation of clickable monosaccharides with various glycosyltransferases, we probed the sialoglycans on fetal bovine fetuin. The incorporated monosaccharides were detected with chemiluminescence via click chemistry in a format of western blotting. The results indicate that the non-reducing end Gal residues on both N- and O-glycans are fully sialylated, but the peptide-linked GalNAc residues in O-glycans are not. The presence of sialyl core-1 glycan was repeatedly confirmed by probing with α-2,3-sialyltransferases, N-acetylgalactosaminide α-2,6-sialyltransferases and a β-1,6-N-acetylglucosaminyltransferase that is specific for core-1 glycan. The results also suggest the presence of a minute amount of sialyl Tn antigen on the protein. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Fischer carbene mediated covalent grafting of a peptide nucleic acid on gold surfaces and IR optical detection of DNA hybridization with a transition metalcarbonyl label

    NASA Astrophysics Data System (ADS)

    Srivastava, Pratima; Ghasemi, Mahsa; Ray, Namrata; Sarkar, Amitabha; Kocabova, Jana; Lachmanova, Stepanka; Hromadova, Magdalena; Boujday, Souhir; Cauteruccio, Silvia; Thakare, Pramod; Licandro, Emanuela; Fosse, Céline; Salmain, Michèle

    2016-11-01

    Amine-reactive surfaces comprising N-hydroxysuccinimide ester groups as well as much more unusual Fischer alkoxymetallocarbene groups were generated on gold-coated surfaces via self-assembled monolayers of carboxy- and azido-terminated thiolates, respectively. These functions were further used to immobilize homothymine peptide nucleic acid (PNA) decamer in a covalent fashion involving the primary amine located at its N-terminus. These stepwise processes were monitored by polarization modulation reflection - absorption infrared spectroscopy (PM-RAIRS) that gave useful information on the molecular composition of the organic layers. PNA grafting and hybridization with complementary DNA strand were successfully transduced by quartz crystal microbalance (QCM) measurements. Unfortunately, attempts to transduce the hybridization optically by IR in a label-free fashion were inconclusive. Therefore we undertook to introduce an IR reporter group, namely a transition metalcarbonyl (TMC) entity at the 5‧ terminus of complementary DNA. Evidence for the formation of PNA-DNA heteroduplex was brought by the presence of ν(Ctbnd O) bands in the 2000 cm-1 region of the IR spectrum of the gold surface owing to the metalcarbonyl label.

  7. Quantitative chemoproteomics for site-specific analysis of protein alkylation by 4-hydroxy-2-nonenal in cells.

    PubMed

    Yang, Jing; Tallman, Keri A; Porter, Ned A; Liebler, Daniel C

    2015-03-03

    Protein alkylation by 4-hydroxy-2-nonenal (HNE), an endogenous lipid derived electrophile, contributes to stress signaling and cellular toxicity. Although previous work has identified protein targets for HNE alkylation, the sequence specificity of alkylation and dynamics in a cellular context remain largely unexplored. We developed a new quantitative chemoproteomic platform, which uses isotopically tagged, photocleavable azido-biotin reagents to selectively capture and quantify the cellular targets labeled by the alkynyl analogue of HNE (aHNE). Our analyses site-specifically identified and quantified 398 aHNE protein alkylation events (386 cysteine sites and 12 histidine sites) in intact cells. This data set expands by at least an order of magnitude the number of such modification sites previously reported. Although adducts formed by Michael addition are thought to be largely irreversible, we found that most aHNE modifications are lost rapidly in situ. Moreover, aHNE adduct turnover occurs only in intact cells and loss rates are site-selective. This quantitative chemoproteomics platform provides a versatile general approach to map bioorthogonal-chemically engineered post-translational modifications and their cellular dynamics in a site-specific and unbiased manner.

  8. "Click" on Alkynylated Carbon Quantum Dots: An Efficient Surface Functionalization for Specific Biosensing and Bioimaging.

    PubMed

    Gao, Ming Xuan; Yang, Lin; Zheng, Yi; Yang, Xiao Xi; Zou, Hong Yan; Han, Jing; Liu, Ze Xi; Li, Yuan Fang; Huang, Cheng Zhi

    2017-02-10

    Surface functionalization is an essential pre requisite for wide and specific applications of nanoparticles such as photoluminescent (PL) carbon quantum dots (CQDs), but it remains a major challenge. In this report, alkynylated CQDs, prepared from carboxyl-rich CQDs through amidation with propargylamine in the presence of 1,1'-carbonyldiimidazole, were modified efficiently with azido molecular beacon DNA through a copper(I)-catalyzed alkyne-azide cycloaddition reaction (CuAAC). As a proof-of-concept, the DNA-modified CQDs are then bonded with gold nanoparticles (AuNPs, 5 nm) through a gold-sulfur bond. Owing to the emission enhancement, this complex can then be applied to the recognition of a single-base- mismatched target. The same functionalizing strategy applied to click the alkynylated CQDs with a nuclear localization sequence (NLS) peptide showed that the NLS-modified CQDs could target the nuclei specifically. These results indicate that surface functionalization of CQDs through a nonstoichiometric copper chalcogenide nanocrystal- (nsCuCNC-) catalyzed click reaction is efficient, and has significant potential in the fields of biosensing and bioimaging. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. In vivo metabolic labeling of sialoglycans in the mouse brain by using a liposome-assisted bioorthogonal reporter strategy

    PubMed Central

    Xie, Ran; Dong, Lu; Du, Yifei; Zhu, Yuntao; Hua, Rui; Zhang, Chen; Chen, Xing

    2016-01-01

    Mammalian brains are highly enriched with sialoglycans, which have been implicated in brain development and disease progression. However, in vivo labeling and visualization of sialoglycans in the mouse brain remain a challenge because of the blood−brain barrier. Here we introduce a liposome-assisted bioorthogonal reporter (LABOR) strategy for shuttling 9-azido sialic acid (9AzSia), a sialic acid reporter, into the brain to metabolically label sialoglycoconjugates, including sialylated glycoproteins and glycolipids. Subsequent bioorthogonal conjugation of the incorporated 9AzSia with fluorescent probes via click chemistry enabled fluorescence imaging of brain sialoglycans in living animals and in brain sections. Newly synthesized sialoglycans were found to widely distribute on neuronal cell surfaces, in particular at synaptic sites. Furthermore, large-scale proteomic profiling identified 140 brain sialylated glycoproteins, including a wealth of synapse-associated proteins. Finally, by performing a pulse−chase experiment, we showed that dynamic sialylation is spatially regulated, and that turnover of sialoglycans in the hippocampus is significantly slower than that in other brain regions. The LABOR strategy provides a means to directly visualize and monitor the sialoglycan biosynthesis in the mouse brain and will facilitate elucidating the functional role of brain sialylation. PMID:27125855

  10. Cell-free synthesis of functional human epidermal growth factor receptor: Investigation of ligand-independent dimerization in Sf21 microsomal membranes using non-canonical amino acids

    PubMed Central

    Quast, Robert B.; Ballion, Biljana; Stech, Marlitt; Sonnabend, Andrei; Varga, Balázs R.; Wüstenhagen, Doreen A.; Kele, Péter; Schiller, Stefan M.; Kubick, Stefan

    2016-01-01

    Cell-free protein synthesis systems represent versatile tools for the synthesis and modification of human membrane proteins. In particular, eukaryotic cell-free systems provide a promising platform for their structural and functional characterization. Here, we present the cell-free synthesis of functional human epidermal growth factor receptor and its vIII deletion mutant in a microsome-containing system derived from cultured Sf21 cells. We provide evidence for embedment of cell-free synthesized receptors into microsomal membranes and asparagine-linked glycosylation. Using the cricket paralysis virus internal ribosome entry site and a repetitive synthesis approach enrichment of receptors inside the microsomal fractions was facilitated thereby providing analytical amounts of functional protein. Receptor tyrosine kinase activation was demonstrated by monitoring receptor phosphorylation. Furthermore, an orthogonal cell-free translation system that provides the site-directed incorporation of p-azido-L-phenylalanine is characterized and applied to investigate receptor dimerization in the absence of a ligand by photo-affinity cross-linking. Finally, incorporated azides are used to generate stable covalently linked receptor dimers by strain-promoted cycloaddition using a novel linker system. PMID:27670253

  11. Effect of cyanato, azido, carboxylato, and carbonato ligands on the formation of cobalt(II) polyoxometalates: characterization, magnetic, and electrochemical studies of multinuclear cobalt clusters.

    PubMed

    Lisnard, Laurent; Mialane, Pierre; Dolbecq, Anne; Marrot, Jérôme; Clemente-Juan, Juan Modesto; Coronado, Eugenio; Keita, Bineta; de Oliveira, Pedro; Nadjo, Louis; Sécheresse, Francis

    2007-01-01

    Five Co(II) silicotungstate complexes are reported. The centrosymmetric heptanuclear compound K(20)[{(B-beta-SiW(9)O(33)(OH))(beta-SiW(8)O(29)(OH)(2))Co(3)(H(2)O)}(2)Co(H(2)O)(2)]47 H(2)O (1) consists of two {(B-beta-SiW(9)O(33)(OH))(beta-SiW(8)O(29)(OH)(2))Co(3)(H(2)O)} units connected by a {CoO(4)(H(2)O)(2)} group. In the chiral species K(7)[Co(1.5)(H(2)O)(7))][(gamma-SiW(10)O(36))(beta-SiW(8)O(30)(OH))Co(4)(OH)(H(2)O)(7)]36 H(2)O (2), a {gamma-SiW(10)O(36)} and a {beta-SiW(8)O(30)(OH)} unit enclose a mononuclear {CoO(4)(H(2)O)(2)} group and a {Co(3)O(7)(OH)(H(2)O)(5)} fragment. The two trinuclear Co(II) clusters present in 1 enclose a mu(4)-O atom, while in 2 a mu(3)-OH bridging group connects the three paramagnetic centers of the trinuclear unit, inducing significantly larger Co-L-Co (L=mu(4)-O (1), mu(3)-OH (2)) bridging angles in 2 (theta(av(Co-L-Co))=99.1 degrees ) than in 1 (theta(av(Co-L-Co))=92.8 degrees ). Weaker ferromagnetic interactions were found in 2 than in 1, in agreement with larger Co-L-Co angles in 2. The electrochemistry of 1 was studied in detail. The two chemically reversible redox couples observed in the positive potential domain were attributed to the redox processes of Co(II) centers, and indicated that two types of Co(II) centers in the structure were oxidized in separate waves. Redox activity of the seventh Co(II) center was not detected. Preliminary experiments indicated that 1 catalyzes the reduction of nitrite and NO. Remarkably, a reversible interaction exists with NO or related species. The hybrid tetranuclear complexes K(5)Na(3)[(A-alpha-SiW(9)O(34))Co(4)(OH)(3)(CH(3)COO)(3)]18 H(2)O (3) and K(5)Na(3)[(A-alpha-SiW(9)O(34))Co(4)(OH)(N(3))(2)(CH(3)COO)(3)]18 H(2)O (4) were characterized: in both, a tetrahedral {Co(4)(L(1))(L(2))(2)(CH(3)COO)(3)} (3: L(1)=L(2)=OH; 4: L(1)=OH, L(2)=N(3)) unit capped the [A-alpha-SiW(9)O(34)](10-) trivacant polyanion. The octanuclear complex K(8)Na(8)[(A-alpha-SiW(9)O(34))(2)Co(8)(OH)(6)(H(2)O)(2)(CO(3))(3)]52 H(2)O (5), containing two {Co(4)O(9)(OH)(3)(H(2)O)} units, was also obtained. Compounds 2, 3, 4, and 5 were less stable than 1, but their partial electrochemical characterization was possible; the electronic effect expected for 3 and 4 was observed.

  12. In vitro labeling strategies for in cellulo fluorescence microscopy of single ribonucleoprotein machines.

    PubMed

    Custer, Thomas C; Walter, Nils G

    2017-07-01

    RNA plays a fundamental, ubiquitous role as either substrate or functional component of many large cellular complexes-"molecular machines"-used to maintain and control the readout of genetic information, a functional landscape that we are only beginning to understand. The cellular mechanisms for the spatiotemporal organization of the plethora of RNAs involved in gene expression are particularly poorly understood. Intracellular single-molecule fluorescence microscopy provides a powerful emerging tool for probing the pertinent mechanistic parameters that govern cellular RNA functions, including those of protein coding messenger RNAs (mRNAs). Progress has been hampered, however, by the scarcity of efficient high-yield methods to fluorescently label RNA molecules without the need to drastically increase their molecular weight through artificial appendages that may result in altered behavior. Herein, we employ T7 RNA polymerase to body label an RNA with a cyanine dye, as well as yeast poly(A) polymerase to strategically place multiple 2'-azido-modifications for subsequent fluorophore labeling either between the body and tail or randomly throughout the tail. Using a combination of biochemical and single-molecule fluorescence microscopy approaches, we demonstrate that both yeast poly(A) polymerase labeling strategies result in fully functional mRNA, whereas protein coding is severely diminished in the case of body labeling. © 2016 The Protein Society.

  13. Dideoxynucleoside resistance emerges with prolonged zidovudine monotherapy. The RV43 Study Group.

    PubMed Central

    Mayers, D L; Japour, A J; Arduino, J M; Hammer, S M; Reichman, R; Wagner, K F; Chung, R; Lane, J; Crumpacker, C S; McLeod, G X

    1994-01-01

    Human immunodeficiency virus type 1 (HIV-1) isolates resistant to zidovudine (ZDV) have previously been demonstrated to exhibit in vitro cross-resistance to other similar dideoxynucleoside agents which contain a 3'-azido group. However, cross-resistance to didanosine (ddI) or dideoxycytidine (ddC) has been less well documented. ZDV, ddI, and ddC susceptibility data have been collected from clinical HIV-1 isolates obtained by five clinical centers and their respective retrovirology laboratories. All subjects were treated only with ZDV. Clinical HIV-1 isolates were isolated, amplified, and assayed for drug susceptibility in standardized cultures of phytohemagglutinin-stimulated donor peripheral blood mononuclear cells obtained from healthy seronegative donors. All five cohorts showed a correlation between decreased in vitro susceptibility to ZDV and decreased susceptibility to ddI and ddC. For each 10-fold decrease in ZDV susceptibility, an average corresponding decrease of 2.2-fold in ddI susceptibility was observed (129 isolates studied; P < 0.001, Fisher's test of combined significance). Similarly, susceptibility to ddC decreased 2.0-fold for each 10-fold decrease in ZDV susceptibility (82 isolates studied; P < 0.001, Fisher's test of combined significance). These data indicate that a correlation exists between HIV-1 susceptibilities to ZDV and ddI or ddC for clinical HIV-1 isolates. PMID:8192457

  14. Generation of therapeutic protein variants with the human serum albumin binding capacity via site-specific fatty acid conjugation.

    PubMed

    Cho, Jinhwan; Lim, Sung In; Yang, Byung Seop; Hahn, Young S; Kwon, Inchan

    2017-12-21

    Extension of the serum half-life is an important issue in developing new therapeutic proteins and expanding applications of existing therapeutic proteins. Conjugation of fatty acid, a natural human serum albumin ligand, to a therapeutic protein/peptide was developed as a technique to extend the serum half-life in vivo by taking advantages of unusually long serum half-life of human serum albumin (HSA). However, for broad applications of fatty acid-conjugation, several issues should be addressed, including a poor solubility of fatty acid and a substantial loss in the therapeutic activity. Therefore, herein we systematically investigate the conditions and components in conjugation of fatty acid to a therapeutic protein resulting in the HSA binding capacity without compromising therapeutic activities. By examining the crystal structure and performing dye conjugation assay, two sites (W160 and D112) of urate oxidase (Uox), a model therapeutic protein, were selected as sites for fatty acid-conjugation. Combination of site-specific incorporation of a clickable p-azido-L-phenylalanine to Uox and strain-promoted azide-alkyne cycloaddition allowed the conjugation of fatty acid (palmitic acid analog) to Uox with the HSA binding capacity and retained enzyme activity. Deoxycholic acid, a strong detergent, greatly enhanced the conjugation yield likely due to the enhanced solubility of palmitic acid analog.

  15. Down-regulation of HSP60 Suppresses the Proliferation of Glioblastoma Cells via the ROS/AMPK/mTOR Pathway

    PubMed Central

    Tang, Haiping; Li, Jin; Liu, Xiaohui; Wang, Guihuai; Luo, Minkui; Deng, Haiteng

    2016-01-01

    Glioblastoma is a fatal and incurable cancer with the hyper-activated mTOR pathway. HSP60, a major chaperone for maintenance of mitochondrial proteostasis, is highly expressed in glioblastoma patients. To understand the effects of HSP60 on glioblastoma tumorigenesis and progression, we characterized the HSP60-knockdowned glioblastoma cells and revealed that HSP60 silencing markedly suppressed cell proliferation and promoted cell to undergo the epithelial-mesenchymal transition (EMT). Proteomic analysis showed that ribosomal proteins were significantly downregulated whereas EMT-associated proteins were up-regulated in HSP60-knockdowned U87 cells as confirmed by a distinct enrichment pattern in newly synthesized proteins with azido-homoalanine labeling. Biochemical analysis revealed that HSP60 knockdown increased reactive oxygen species (ROS) production that led to AMPK activation, similarly to the complex I inhibitor rotenone-induced AMPK activation. Activated AMPK suppressed mTORC1 mediated S6K and 4EBP1 phosphorylation to decrease protein translation, which slowed down cell growth and proliferation. On the other hand, high levels of ROS in HSP60 knockdowned or rotenone-treated U87 cells contributed to EMT. These results indicate that HSP60 silencing deactivates the mTOR pathway to suppress glioblastoma progression, suggesting that HSP60 is a potential therapeutic target for glioblastoma treatment. PMID:27325206

  16. A three-enzyme cascade reaction through positional assembly of enzymes in a polymersome nanoreactor.

    PubMed

    van Dongen, Stijn F M; Nallani, Madhavan; Cornelissen, Jeroen J L M; Nolte, Roeland J M; van Hest, Jan C M

    2009-01-01

    Porous polymersomes based on block copolymers of isocyanopeptides and styrene have been used to anchor enzymes at three different locations, namely, in their lumen (glucose oxidase, GOx), in their bilayer membrane (Candida antarctica lipase B, CalB) and on their surface (horseradish peroxidase, HRP). The surface coupling was achieved by click chemistry between acetylene-functionalised anchors on the surface of the polymersomes and azido functions of HRP, which were introduced by using a direct diazo transfer reaction to lysine residues of the enzyme. To determine the encapsulation and conjugation efficiency of the enzymes, they were decorated with metal-ion labels and analysed by mass spectrometry. This revealed an almost quantitative immobilisation efficiency of HRP on the surface of the polymersomes and a more than statistical incorporation efficiency for CalB in the membrane and for GOx in the aqueous compartment. The enzyme-decorated polymersomes were studied as nanoreactors in which glucose acetate was converted by CalB to glucose, which was oxidised by GOx to gluconolactone in a second step. The hydrogen peroxide produced was used by HRP to oxidise 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) to ABTS(.+). Kinetic analysis revealed that the reaction step catalysed by HRP is the fastest in the cascade reaction.

  17. Interaction of Clostridium perfringens delta toxin with erythrocyte and liposome membranes and relation with the specific binding to the ganglioside GM2.

    PubMed

    Jolivet-Reynaud, C; Hauttecoeur, B; Alouf, J E

    1989-01-01

    The specific interaction of the cytolytic Clostridium perfringens delta toxin with membrane GM2 was indicated by: (i) characterization of this glycolipid in the membrane of sheep and goat erythrocytes, which are lysed by the toxin, whereas GM2 was undetectable in insensitive rabbit erythrocytes, (ii) demonstration of 125I-toxin binding to GM2, by autoradiography, following incubation with thin-layer chromatograms containing separated neuroblastoma gangliosides, and (iii) toxin fixation by phospholipid-cholesterol unilamellar vesicles containing either sheep gangliosides or GM2. In order to investigate the intramembrane events leading to membrane disruption following toxin binding, the photoreactive probe 12(4-azido-2-nitrophenoxy)stearoyl 1-14C glucosamine, which inserts into the outer layer and labels integral membrane proteins, was used to establish whether delta toxin penetrates into target cell membrane. No toxin labeling was found, suggesting that toxin action takes place at the membrane surface. This contention is supported by the observation that despite toxin binding, GM2 liposomes did not release entrapped 14C-glucose. Treatment of toxin with carboxypeptidases, but not aminopeptidases, abolished both toxin binding capacity onto erythrocytes and its combination with antitoxin neutralizing antibodies, suggesting that the carboxy terminal end of the toxin is critical for binding to cell membrane.

  18. Effects of allicin on both telomerase activity and apoptosis in gastric cancer SGC-7901 cells.

    PubMed

    Sun, Li; Wang, Xu

    2003-09-01

    To investigate the effects of allicin on both telomerase activity and apoptosis in gastric cancer SGC-7901 cells. The gastric cancer SGC-7901 adenocarcinoma cells were treated with allicin and the cell cycle, inhibitory rate, apoptosis, telomerase activity and morphologic changes were studied by MTT assay, flow cytometry (FCM), TRAP-PCR-ELISA assay, light microscope, electron microscope respectively. Results were compared with that of AZT (3'-Azido-3'-deoxythymidine). SGC-7901 cells were suppressed after exposure to allicin of 0.016 mg/ml, 0.05 mg/ml, and 0.1 mg/ml for 48 h. Compared with the control, the difference was significant (P<0.05). Allicin could induce apoptosis of the cells in a dose-dependent and non-linear manner and increase the proportion of cells in the G(2)/M phase. Compared with the control, the difference was significant in terms of the percentage of cells in the G2/M phase (P<0.05). Allicin could inhibit telomerase activity in a time-dependent and dose-dependent pattern. After exposure to allicin at 0.016 mg/ml for 24 hours, SGC-7901 cells showed typical morphologic change. Allicin can inhibit telomerase activity and induce apoptosis of gastric cancer SGC-7901 cells. Allicin may be more effective than AZT.

  19. Biomarker-Based Metabolic Labeling for Redirected and Enhanced Immune Response.

    PubMed

    Li, Shanshan; Yu, Bingchen; Wang, Jiajia; Zheng, Yueqin; Zhang, Huajie; Walker, Margaret J; Yuan, Zhengnan; Zhu, He; Zhang, Jun; Wang, Peng George; Wang, Binghe

    2018-06-01

    Installation of an antibody-recruiting moiety on the surface of disease-relevant cells can lead to the selective destruction of targets by the immune system. Such an approach can be an alternative strategy to traditional chemotherapeutics in cancer therapy and possibly other diseases. Herein we describe the development of a new strategy to selectively label targets with an antibody-recruiting moiety through its covalent and stable installation, complementing existing methods of employing reversible binding. This is achieved through selective delivery of 1,3,4- O-acetyl- N-azidoacetylmannosamine (Ac 3 ManNAz) to folate receptor-overexpressing cells using an Ac 3 ManNAz-folate conjugate via a cleavable linker. As such, Ac 3 ManNAz is converted to cell surface glycan bearing an azido group, which serves as an anchor to introduce l-rhamnose (Rha), a hapten, via a click reaction with aza-dibenzocyclooctyne (DBCO)-Rha. We tested this method in several cell lines including KB, HEK-293, and MCF7 and were able to demonstrate the following: 1) Rha can be selectively installed to the folate receptor overexpressing cell surface and 2) the Rha installed on the target surface can recruit anti-rhamnose (anti-Rha) antibodies, leading to the destruction of target cells via complement-dependent cytotoxicity (CDC) and antibody-dependent cellular phagocytosis (ADCP).

  20. Influence of dialkyne structure on the properties of new click-gels based on hyaluronic acid.

    PubMed

    Testa, Gabriella; Di Meo, Chiara; Nardecchia, Stefania; Capitani, Donatella; Mannina, Luisa; Lamanna, Raffaele; Barbetta, Andrea; Dentini, Mariella

    2009-08-13

    Hydrogels have been widely used in tissue engineering as a support for tissue formation and/or to deliver drug locally. A novel procedure for the in situ rapid chemical gelation of aqueous solutions of hyaluronan (HA) was employed. HA was functionalised with an arm bearing a terminal azido group (HAAA). When HAAA was mixed with a series of dialkyne reagents of different length, a 1,3-dipolar cycloaddition ("click-chemistry") reaction took place in the presence of catalytic amount of Cu(I) resulting in fast gelation at room temperature. The resulting gels were characterised in terms of degree of cross-linking by (1)H HR-MAS NMR. The kinetic of gelation and the determination of elastic moduli as well as the degree of swelling and the controlled release of a model drug, were studied as a function of chemical nature of the dialkyne group, catalyst concentration, HAAA concentration and temperature. All these variables allowed the swelling ratio and the extent of release of a drug, doxorubicin, entrapped within the gel, to be modulated. In all cases the kinetic of release reached the stationary state within 150 h. The height of the plateau was dependent on the overall (chemical and topological) degree of cross-linking.

  1. Preparation and optical properties of indium tin oxide/epoxy nanocomposites with polyglycidyl methacrylate grafted nanoparticles.

    PubMed

    Tao, Peng; Viswanath, Anand; Schadler, Linda S; Benicewicz, Brian C; Siegel, Richard W

    2011-09-01

    Visibly highly transparent indium tin oxide (ITO)/epoxy nanocomposites were prepared by dispersing polyglycidyl methacrylate (PGMA) grafted ITO nanoparticles into a commercial epoxy resin. The oleic acid stabilized, highly crystalline, and near monodisperse ITO nanoparticles were synthesized via a nonaqueous synthetic route with multigram batch quantities. An azido-phosphate ligand was synthesized and used to exchange with oleic acid on the ITO surface. The azide terminal group allows for the grafting of epoxy resin compatible PGMA polymer chains via Cu(I) catalyzed alkyne-azide "click" chemistry. Transmission electron microscopy (TEM) observation shows that PGMA grafted ITO particles were homogeneously dispersed within the epoxy matrix. Optical properties of ITO/epoxy nanocomposites with different ITO concentrations were studied with an ultraviolet-visible-near-infrared (UV-vis-NIR) spectrometer. All the ITO/epoxy nanocomposites show more than 90% optical transparency in the visible light range and absorption of UV light from 300 to 400 nm. In the near-infrared region, ITO/epoxy nanocomposites demonstrate low transmittance and the infrared (IR) transmission cutoff wavelength of the composites shifts toward the lower wavelength with increased ITO concentration. The ITO/epoxy nanocomposites were applied onto both glass and plastic substrates as visibly transparent and UV/IR opaque optical coatings.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kahoun, J.R.; Ruoho, A.E.

    A carrier-free radioiodinated cocaine photoaffinity label, (-)-3-({sup 125}I)iodo-4-azidococaine (({sup 125}I)IACoc), has been synthesized and used as a probe for cocaine-binding proteins. Photoaffinity labeling with 0.5 nM ({sup 125}I)IACoc resulted in selective derivatization of a 26-kDa polypeptide with the pharmacology of a sigma receptor in membranes derived from whole rat brain, rat liver, and human placenta. ({sup 125}I)IACoc labeling of the 26-kDa polypeptide was also inhibited by 10 {mu}M imipramine, amitriptyline, fluoxetine, benztropine, and tetrabenazine. The size of the ({sup 125}I)I-ACoc-labeled proteins is consistent with the size of proteins photolabeled in guinea pig brain and liver membranes by using the sigmamore » photolabel azido-({sup 3}H)DTG. Kinetic analysis of ({sup 125}I)IACoc binding to rat liver microsomes revealed two sites with K{sub d} values of 19 and 126 pM, respectively. The presence or absence of proteolytic inhibitors during membrane preparation did not alter the size of the photolabeled sigma receptor, indicating that the 26-kDa polypeptide was not derived from a larger protein. In summary, ({sup 125}I)IACoc is a potent and highly specific photoaffinity label for the haloperidol-sensitive sigma receptor and will be useful for its biochemical and molecular characterization.« less

  3. New fluorescent reagents specific for Ca{sup 2+}-binding proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ben-Hail, Danya; Lemelson, Daniela; Israelson, Adrian

    2012-09-14

    Highlights: Black-Right-Pointing-Pointer New reagents specifically inhibit the activity of Ca{sup 2+}-dependent proteins. Black-Right-Pointing-Pointer FITC-Ru and EITC-Ru allow for mechanism-independent probing of Ca{sup 2+}-binding proteins. Black-Right-Pointing-Pointer Changes in reagents fluorescence allow characterization of protein Ca{sup 2+}-binding properties. -- Abstract: Ca{sup 2+} carries information pivotal to cell life and death via its interactions with specific binding sites in a protein. We previously developed a novel photoreactive reagent, azido ruthenium (AzRu), which strongly inhibits Ca{sup 2+}-dependent activities. Here, we synthesized new fluorescent ruthenium-based reagents containing FITC or EITC, FITC-Ru and EITC-Ru. These reagents were purified, characterized and found to specifically interact with andmore » markedly inhibit Ca{sup 2+}-dependent activities but not the activity of Ca{sup 2+}-independent reactions. In contrast to many reagents that serve as probes for Ca{sup 2+}, FITC-Ru and EITC-Ru are the first fluorescent divalent cation analogs to be synthesized and characterized that specifically bind to Ca{sup 2+}-binding proteins and inhibit their activity. Such reagents will assist in characterizing Ca{sup 2+}-binding proteins, thereby facilitating better understanding of the function of Ca{sup 2+} as a key bio-regulator.« less

  4. Tracking of Engineered Bacteria In Vivo Using Nonstandard Amino Acid Incorporation.

    PubMed

    Praveschotinunt, Pichet; Dorval Courchesne, Noémie-Manuelle; den Hartog, Ilona; Lu, Chaochen; Kim, Jessica J; Nguyen, Peter Q; Joshi, Neel S

    2018-06-15

    The rapidly growing field of microbiome research presents a need for better methods of monitoring gut microbes in vivo with high spatial and temporal resolution. We report a method of tracking microbes in vivo within the gastrointestinal tract by programming them to incorporate nonstandard amino acids (NSAA) and labeling them via click chemistry. Using established machinery constituting an orthogonal translation system (OTS), we engineered Escherichia coli to incorporate p-azido-l-phenylalanine (pAzF) in place of the UAG (amber) stop codon. We also introduced a mutant gene encoding for a cell surface protein (CsgA) that was altered to contain an in-frame UAG codon. After pAzF incorporation and extracellular display, the engineered strains could be covalently labeled via copper-free click reaction with a Cy5 dye conjugated to the dibenzocyclooctyl (DBCO) group. We confirmed the functionality of the labeling strategy in vivo using a murine model. Labeling of the engineered strain could be observed using oral administration of the dye to mice several days after colonization of the gastrointestinal tract. This work sets the foundation for the development of in vivo tracking microbial strategies that may be compatible with noninvasive imaging modalities and are capable of longitudinal spatiotemporal monitoring of specific microbial populations.

  5. Inorganic–organic hybrid materials through post-synthesis modification: Impact of the treatment with azides on the mesopore structure

    PubMed Central

    Keppeler, Miriam; Holzbock, Jürgen; Akbarzadeh, Johanna; Peterlik, Herwig

    2011-01-01

    Summary Hybrid, hierarchically organized, monolithic silica gels, comprising periodically arranged mesopores and a cellular macroscopic network, have been prepared through a co-condensation reaction of tetrakis(2-hydroxyethyl)orthosilicate with chloromethyl-trimethoxysilane or 3-(chloropropyl)-triethoxysilane. Subsequent conversion of the chloro groups into azido groups, by nucleophilic substitution with NaN3 in N,N-dimethylformamide, was conducted upon preservation of the monolithic structure. However, treatment with NaN3 had a strong influence on the structure in the mesoporous regime, with changes such as an increase of mesopore diameter, pore volume and lattice constants, as well as a concomitant decrease of the pore wall thickness, as confirmed by small angle X-ray scattering, transmission electron microscopy, and nitrogen sorption analysis. Similar effects were observed for unmodified silica gels by simple ageing in azide-containing media, whether a relatively small or a sterically demanding counter ion (Na+ or (H3C)4N+) was used. The structural modification did not seem to depend greatly on whether an organic aprotic solvent (N,N-dimethylformamide, 1,1,3,3-tetramethylurea, 1,3-dimethyl-2-imidazolidinone) or a protic solvent that can form hydrogen bonds, such as water, was used. PMID:22003454

  6. In Vivo Tumor Cell Targeting with “Click” Nanoparticles

    PubMed Central

    von Maltzahn, Geoffrey; Ren, Yin; Park, Ji-Ho; Min, Dal-Hee; Kotamraju, Venkata Ramana; Jayakumar, Jayanthi; Fogel, Valentina; Sailor, Michael J.; Ruoslahti, Erkki; Bhatia, Sangeeta N.

    2008-01-01

    The in vivo fate of nanomaterials strongly determines their biomedical efficacy. Accordingly, much effort has been invested into the development of library screening methods to select targeting ligands for a diversity of sites in vivo. Still, broad application of chemical and biological screens to the in vivo targeting of nanomaterials requires ligand attachment chemistries that are generalizable, efficient, covalent, orthogonal to diverse biochemical libraries, applicable under aqueous conditions, and stable in in vivo environments. To date, the copper(I)-catalyzed Huisgen 1,3-dipolar cycloaddition or “click” reaction has shown considerable promise as a method for developing targeted nanomaterials in vitro. Here, we investigate the utility of “click” chemistry for the in vivo targeting of inorganic nanoparticles to tumors. We find that “click” chemistry allows cyclic LyP-1 targeting peptides to be specifically linked to azido-nanoparticles and to direct their binding to p32-expressing tumor cells in vitro. Moreover, “click” nanoparticles are able to stably circulate for hours in vivo following intravenous administration (>5h circulation time), extravasate into tumors, and penetrate the tumor interstitium to specifically bind p32-expressing cells in tumors. In the future, in vivo use of “click” nanomaterials should expedite the progression from ligand discovery to in vivo evaluation and diversify approaches toward multifunctional nanoparticle development. PMID:18611045

  7. A Single Zidovudine (AZT) Administration Delays Hepatic Cell Proliferation by Altering Oxidative State in the Regenerating Rat Liver.

    PubMed

    Butanda-Ochoa, Armando; Hernández-Espinosa, Diego Rolando; Olguín-Martínez, Marisela; Sánchez-Sevilla, Lourdes; Rodríguez, Mario R; Chávez-Rentería, Benito; Aranda-Fraustro, Alberto; Hernández-Muñoz, Rolando

    2017-01-01

    The 3'-azido-3'-deoxythymidine or Zidovudine (AZT) was the first antiretroviral drug used in the treatment of HIV patients, which has good effectiveness but also hepatotoxic side effects that include cell cycle arrest and oxidative/nitrative mitochondrial damage. Whether such an oxidative damage may affect the proliferative-regenerative capacity of liver remains to be clearly specified at doses commonly used in the clinical practice. In this study, we described the oxidative-proliferative effect of AZT administered at a common clinical dose in rat liver submitted to 70% partial hepatectomy (PH). The results indicate that AZT significantly decreased DNA synthesis and the number of mitosis in liver subjected to PH in a synchronized way with the promotion of organelle-selective lipid peroxidation events (especially those observed in plasma membrane and cytosolic fractions) and with liver enzyme release to the bloodstream. Then at the dose used in clinical practice AZT decreased liver regeneration but stimulates oxidative events involved during the proliferation process in a way that each membrane system inside the cell preserves its integrity in order to maintain the cell proliferative process. Here, the induction of large amounts of free ammonia in the systemic circulation could become a factor capable of mediating the deleterious effects of AZT on PH-induced rat liver regeneration.

  8. DETA/NONOate, a nitric oxide donor, produces antidepressant effects by promoting hippocampal neurogenesis.

    PubMed

    Hua, Yao; Huang, Xin-Yan; Zhou, Li; Zhou, Qi-Gang; Hu, Yao; Luo, Chun-Xia; Li, Fei; Zhu, Dong-Ya

    2008-10-01

    Increasing evidence suggests that depression may be associated with a lack of hippocampal neurogenesis. Our recent study shows that endogenous nitric oxide (NO) contributes to chronic mild stress (CMS)-induced depression by suppressing hippocampal neurogenesis. The aim of this study was to investigate the effects of exogenous NO in CMS-induced depression in young adult mice. In normal mice, administration of a pure NO donor (Z)-1-[N-(2-aminoethyl)-N-(2-ammonioethyl) aminio] diazen-1-ium-1,2-diolate (DETA/NONOate; 0.4 mg/kg, i.p., for 7 days) produced an antidepressant-like effect and significantly increased hippocampal neurogenesis. The mice exposed to CMS exhibited behavioral changes typical of depression and impaired neurogenesis in the hippocampus. Treatment with DETA/NONOate (0.4 mg/kg, i.p., for 7 days) reversed CMS-induced behavioral despair and hippocampal neurogenesis impairment. We treated mice with a telomerase inhibitor 3'-azido-deoxythymidine (AZT; 100 mg/kg, i.p., for 14 days) to disrupt neurogenesis. From day 4 to day 11 of AZT treatment, mice were injected with DETA/NONOate (0.4 mg/kg, i.p., for 7 days). Disrupting hippocampal neurogenesis blocked the antidepressant effect of DETA/NONOate. Our findings suggest that exogenous NO benefits chronic stress-induced depression by stimulating hippocampal neurogenesis and may represent a novel approach for the treatment of depressive disorders.

  9. Structural Characterization of the Molecular Events during a Slow Substrate-Product Transition in Orotidine 5'-Monophosphate Decarboxylase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fujihashi, Masahiro; Wei, Lianhu; Kotra, Lakshmi P

    2009-04-06

    Crystal structures of substrate-product complexes of Methanobacterium thermoautotrophicum orotidine 5'-monophosphate decarboxylase, obtained at various steps in its catalysis of the unusual transformation of 6-cyano-uridine 5'-monophosphate (UMP) into barbituric acid ribosyl monophosphate, show that the cyano substituent of the substrate, when bound to the active site, is first bent significantly from the plane of the pyrimidine ring and then replaced by an oxygen atom. Although the K72A and D70A/K72A mutants are either catalytically impaired or even completely inactive, they still display bending of the C6 substituent. Interestingly, high-resolution structures of the D70A and D75N mutants revealed a covalent bond between C6more » of UMP and the Lys72 side chain after the -CN moiety's release. The same covalent bond was observed when the native enzyme was incubated with 6-azido-UMP and 6-iodo-UMP; in contrast, the K72A mutant transformed 6-iodo-UMP to barbituric acid ribosyl 5'-monophosphate. These results demonstrate that, given a suitable environment, native orotidine 5'-monophosphate decarboxylase and several of its mutants are not restricted to the physiologically relevant decarboxylation; they are able to catalyze even nucleophilic substitution reactions but consistently maintain distortion on the C6 substituent as an important feature of catalysis.« less

  10. Structural characterization of the molecular events during a slow substrate-product transition in orotidine 5'-monophosphate decarboxylase.

    PubMed

    Fujihashi, Masahiro; Wei, Lianhu; Kotra, Lakshmi P; Pai, Emil F

    2009-04-17

    Crystal structures of substrate-product complexes of Methanobacterium thermoautotrophicum orotidine 5'-monophosphate decarboxylase, obtained at various steps in its catalysis of the unusual transformation of 6-cyano-uridine 5'-monophosphate (UMP) into barbituric acid ribosyl monophosphate, show that the cyano substituent of the substrate, when bound to the active site, is first bent significantly from the plane of the pyrimidine ring and then replaced by an oxygen atom. Although the K72A and D70A/K72A mutants are either catalytically impaired or even completely inactive, they still display bending of the C6 substituent. Interestingly, high-resolution structures of the D70A and D75N mutants revealed a covalent bond between C6 of UMP and the Lys72 side chain after the -CN moiety's release. The same covalent bond was observed when the native enzyme was incubated with 6-azido-UMP and 6-iodo-UMP; in contrast, the K72A mutant transformed 6-iodo-UMP to barbituric acid ribosyl 5'-monophosphate. These results demonstrate that, given a suitable environment, native orotidine 5'-monophosphate decarboxylase and several of its mutants are not restricted to the physiologically relevant decarboxylation; they are able to catalyze even nucleophilic substitution reactions but consistently maintain distortion on the C6 substituent as an important feature of catalysis.

  11. Biofunctionalized silicon nitride platform for sensing applications.

    PubMed

    Hoi, Hiofan; Rezaie, Salva S; Gong, Lu; Sen, Payel; Zeng, Hongbo; Montemagno, Carlo; Gupta, Manisha

    2018-04-15

    Silicon nitride (SiN x ) based biosensors have the potential to converge on the technological achievements of semiconductor microfabrication and biotechnology. Development of biofunctionalized SiN x surface and its integration with other devices will allow us to integrate the biosensing capability with probe control, data acquisition and data processing. Here we use the hydrogen plasma generated by inductively coupled plasma-reactive ion etching (ICP-RIE) technique to produce amino-functionality on the surface of SiN x which can then be readily used for biomolecule immobilization. ICP-RIE produces high-density hydrogen ions/radicals at low energy, which produces high-density amino group on the SiN x surface within a short duration of time and with minimal surface damage. In this work, we have demonstrated selective amination of SiN x surface as compared to Si surface. The as-activated SiN x surface can be readily biofunctionalized with both protein and oligonucleotide through covalent immobilization. N-5-azido-2-nitrobenzoyloxysuccinimide, a photoactivable amino reactive bifunctional crosslinker, was used and greater than 90% surface coverage was achieved for protein immobilization. In addition, ssDNA immobilization and hybridization with its complemented strand was shown. Thus, we demonstrate a uniform, reliable, fast and economical technique for creating biofunctionalized SiN x surface that can be used for developing compact high-sensitivity biosensors. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Human immunodeficiency virus type 1 pol gene mutations which cause decreased susceptibility to 2',3'-dideoxycytidine.

    PubMed Central

    Fitzgibbon, J E; Howell, R M; Haberzettl, C A; Sperber, S J; Gocke, D J; Dubin, D T

    1992-01-01

    To investigate whether human immunodeficiency virus type 1 pol gene mutations are selected during prolonged 2',3'-dideoxycytidine (ddC) therapy, we used the polymerase chain reaction to amplify a portion of the reverse transcriptase segment of the pol gene from the peripheral blood mononuclear cell DNA of a patient with AIDS before and after an 80-week course of ddC therapy. The consensus sequence from the second sample contained a unique double mutation (ACT to GAT) in the codon for reverse transcriptase amino acid 69, causing substitution of aspartic acid (Asp) for the wild-type threonine (Thr). A mutation (ACA to ATA) also occurred in the codon for position 165, causing substitution of isoleucine (Ile) for Thr. The GAT (Asp) codon was introduced into the pol gene of a molecular clone of human immunodeficiency virus via site-directed mutagenesis. Following transfection, mutant and wild-type viruses were tested for susceptibility to ddC by a plaque reduction assay. The mutant virus was fivefold less susceptible to ddC than the wild type; cross-resistance to 3'-azido-3'-deoxythymidine or 2'3'-dideoxyinosine was not found. The Ile-165 mutation did not confer additional ddC resistance. The Asp-69 substitution may have contributed to the generation of resistant virus in this patient. Images PMID:1317143

  13. Identification of Crosslinked Peptides after Click-based Enrichment Using Sequential CID and ETD Tandem Mass Spectrometry

    PubMed Central

    Chowdhury, Saiful M.; Du, Xiuxia; Tolić, Nikola; Wu, Si; Moore, Ronald J.; Mayer, M. Uljana; Smith, Richard D.; Adkins, Joshua N.

    2010-01-01

    Chemical crosslinking combined with mass spectrometry can be a powerful approach for the identification of protein-protein interactions and for providing constraints on protein structures. However, enrichment of crosslinked peptides is crucial to reduce sample complexity before mass spectrometric analysis. In addition compact crosslinkers are often preferred to provide short spacer lengths, surface accessibility to the protein complexes, and must have reasonable solubility under condition where the native complex structure is stable. In this study, we present a novel compact crosslinker that contains two distinct features: 1) an alkyne tag and 2) a small molecule detection tag (NO2-) to maintain reasonable solubility in water. The alkyne tag enables enrichment of the crosslinked peptide after proteolytic cleavage after coupling of an affinity tag using alkyne-azido click chemistry. Neutral loss of the small NO2- moiety provides a secondary means of detecting crosslinked peptides in MS/MS analyses, providing additional confidence in peptide identifications. We show the labeling efficiency of this crosslinker, which we termed CLIP (Click-enabled Linker for Interacting Proteins) using ubiquitin. The enrichment capability of CLIP is demonstrated for crosslinked ubiquitin in highly complex E. coli cell lysates. Sequential CID-MS/MS and ETD-MS/MS of inter-crosslinked peptides (two peptides connected with a crosslinker) are also demonstrated for improved automated identification of crosslinked peptides. PMID:19496583

  14. Characterization of Streptococcus pneumoniae thymidylate kinase: steady-state kinetics of the forward reaction and isothermal titration calorimetry.

    PubMed Central

    Petit, Chantal M; Koretke, Kristin K

    2002-01-01

    Thymidylate kinase (TMK) catalyses the phosphorylation of dTMP to form dTDP in both the de novo and salvage pathways of dTTP synthesis. The tmk gene from the bacterial pathogen Streptococcus pneumoniae was identified. The gene, encoding a 212-amino-acid polypeptide (23352 Da), was cloned and overexpressed in Escherichia coli with an N-terminal hexahistidine tag. The enzyme was purified to homogeneity, and characterized in the forward reaction. The pH profile of TMK indicates that its activity is optimal at pH 8.5. The substrate specificity of the enzyme was examined; it was found that not only ATP, but also dATP and to a lesser extent CTP, could act as phosphate donors, and dTMP and dUMP could serve as phosphate acceptors. Furthermore, AZT-MP (3'-azido-3'-deoxythymidine 5'-monophosphate) was shown not to be a substrate for S. pneumoniae TMK. Steady-state kinetics and inhibition studies with adenosine 5'-[beta-thio]diphosphate and dTDP in addition to isothermal titration calorimetry were performed. The data showed that binding follows an ordered pathway, in which ATP binds first with a K(m) of 235 +/- 46 microM and a K(d) of 116 +/- 3 microM, and dTMP binds secondly with a K(m) of 66 +/- 12 microM and a K(d) of 53 +/- 2 microM. PMID:11964185

  15. Efficient enzymatic synthesis and dual-colour fluorescent labelling of DNA probes using long chain azido-dUTP and BCN dyes

    PubMed Central

    Ren, Xiaomei; El-Sagheer, Afaf H.; Brown, Tom

    2016-01-01

    A sterically undemanding azide analogue of dTTP (AHP dUTP) with an alkyl chain and ethynyl attachment to the nucleobase was designed and incorporated into DNA by primer extension, reverse transcription and polymerase chain reaction (PCR). An azide-modified 523 bp PCR amplicon with all 335 thymidines replaced by AHP dU was shown to be a perfect copy of the template from which it was amplified. Replacement of thymidine with AHP dU increases duplex stability, accounting in part for the high incorporation efficiency of the azide-modified triphosphate. Single-stranded azide-labelled DNA was conveniently prepared from PCR products by λ-exonuclease digestion and streptavidin magnetic bead isolation. Efficient fluorescent labelling of single and double-stranded DNA was carried out using dyes functionalized with bicyclo[6.1.0]non-4-yne (BCN) via the strain-promoted alkyne-azide cycloaddition (SPAAC) reaction. This revealed that the degree of labelling must be carefully controlled to achieve optimum fluorescence and avoid fluorescence quenching. Dual-coloured probes were obtained in a single tube fluorescent labelling reaction; and varying the ratios of the two dyes provides a simple method to prepare DNA probes with unique fluorescent signatures. AHP dUTP is a versatile clickable nucleotide with potentially wide applications in biology and nanotechnology including single molecule studies and synthesis of modified aptamer libraries via SELEX. PMID:26819406

  16. Biotin-Containing Reduced Graphene Oxide-Based Nanosystem as a Multieffect Anticancer Agent: Combining Hyperthermia with Targeted Chemotherapy.

    PubMed

    Mauro, Nicolò; Scialabba, Cinzia; Cavallaro, Gennara; Licciardi, Mariano; Giammona, Gaetano

    2015-09-14

    Among the relevant properties of graphene derivatives, their ability of acting as an energy-converting device so as to produce heat (i.e., thermoablation and hyperthermia) was more recently taken into account for the treatment of solid tumors. In this pioneering study, for the first time, the in vitro RGO-induced hyperthermia was assessed and combined with the stimuli-sensitive anticancer effect of a biotinylated inulin-doxorubicin conjugate (CJ-PEGBT), hence, getting to a nanosystem endowed with synergic anticancer effects and high specificity. CJ-PEGBT was synthesized by linking pentynoic acid and citraconic acid to inulin. The citraconylamide pendants, used as pH reversible spacer, were exploited to further conjugate doxorubicin, whereas the alkyne moiety was orthogonally functionalized with an azido PEG-biotin derivative by copper(II) catalyzed 1,3-dipolar cycloaddition. DSC measures, AFM, and UV spectrophotometry were employed to systematically investigate adsorption of CJ-PEGBT onto RGO and its physicochemical stability in aqueous media, demonstrating that a stable π-staked nanosystem can be obtained. In vitro tests using cancer breast cells (MCF-7) showed the ability of the RGO/CJ-PEGBT of efficiently killing cancer cells both via a selective laser beam thermoablation and hyperthermia-triggered chemotherapy. If compared with the nonbiotinylated nanosystem, including virgin RGO and the free conjugate, RGO/CJ-PEGBT is endowed with a smart combination of properties which warrant potential as an anticancer nanomedicine.

  17. Genetically encoding a light switch in an ionotropic glutamate receptor reveals subunit-specific interfaces.

    PubMed

    Zhu, Shujia; Riou, Morgane; Yao, C Andrea; Carvalho, Stéphanie; Rodriguez, Pamela C; Bensaude, Olivier; Paoletti, Pierre; Ye, Shixin

    2014-04-22

    Reprogramming receptors to artificially respond to light has strong potential for molecular studies and interrogation of biological functions. Here, we design a light-controlled ionotropic glutamate receptor by genetically encoding a photoreactive unnatural amino acid (UAA). The photo-cross-linker p-azido-L-phenylalanine (AzF) was encoded in NMDA receptors (NMDARs), a class of glutamate-gated ion channels that play key roles in neuronal development and plasticity. AzF incorporation in the obligatory GluN1 subunit at the GluN1/GluN2B N-terminal domain (NTD) upper lobe dimer interface leads to an irreversible allosteric inhibition of channel activity upon UV illumination. In contrast, when pairing the UAA-containing GluN1 subunit with the GluN2A subunit, light-dependent inactivation is completely absent. By combining electrophysiological and biochemical analyses, we identify subunit-specific structural determinants at the GluN1/GluN2 NTD dimer interfaces that critically dictate UV-controlled inactivation. Our work reveals that the two major NMDAR subtypes differ in their ectodomain-subunit interactions, in particular their electrostatic contacts, resulting in GluN1 NTD coupling more tightly to the GluN2B NTD than to the GluN2A NTD. It also paves the way for engineering light-sensitive ligand-gated ion channels with subtype specificity through the genetic code expansion.

  18. Advanced drug and gene delivery systems based on functional biodegradable polycarbonates and copolymers.

    PubMed

    Chen, Wei; Meng, Fenghua; Cheng, Ru; Deng, Chao; Feijen, Jan; Zhong, Zhiyuan

    2014-09-28

    Biodegradable polymeric nanocarriers are one of the most promising systems for targeted and controlled drug and gene delivery. They have shown several unique advantages such as excellent biocompatibility, prolonged circulation time, passive tumor targeting via the enhanced permeability and retention (EPR) effect, and degradation in vivo into nontoxic products after completing their tasks. The current biodegradable drug and gene delivery systems exhibit, however, typically low in vivo therapeutic efficacy, due to issues of low loading capacity, inadequate in vivo stability, premature cargo release, poor uptake by target cells, and slow release of therapeutics inside tumor cells. To overcome these problems, a variety of advanced drug and gene delivery systems has recently been designed and developed based on functional biodegradable polycarbonates and copolymers. Notably, polycarbonates and copolymers with diverse functionalities such as hydroxyl, carboxyl, amine, alkene, alkyne, halogen, azido, acryloyl, vinyl sulfone, pyridyldisulfide, and saccharide, could be readily obtained by controlled ring-opening polymerization. In this paper, we give an overview on design concepts and recent developments of functional polycarbonate-based nanocarriers including stimuli-sensitive, photo-crosslinkable, or active targeting polymeric micelles, polymersomes and polyplexes for enhanced drug and gene delivery in vitro and in vivo. These multifunctional biodegradable nanosystems might be eventually developed for safe and efficient cancer chemotherapy and gene therapy. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. A Single Zidovudine (AZT) Administration Delays Hepatic Cell Proliferation by Altering Oxidative State in the Regenerating Rat Liver

    PubMed Central

    Butanda-Ochoa, Armando; Hernández-Espinosa, Diego Rolando; Olguín-Martínez, Marisela; Sánchez-Sevilla, Lourdes; Rodríguez, Mario R.; Chávez-Rentería, Benito; Aranda-Fraustro, Alberto

    2017-01-01

    The 3′-azido-3′-deoxythymidine or Zidovudine (AZT) was the first antiretroviral drug used in the treatment of HIV patients, which has good effectiveness but also hepatotoxic side effects that include cell cycle arrest and oxidative/nitrative mitochondrial damage. Whether such an oxidative damage may affect the proliferative-regenerative capacity of liver remains to be clearly specified at doses commonly used in the clinical practice. In this study, we described the oxidative-proliferative effect of AZT administered at a common clinical dose in rat liver submitted to 70% partial hepatectomy (PH). The results indicate that AZT significantly decreased DNA synthesis and the number of mitosis in liver subjected to PH in a synchronized way with the promotion of organelle-selective lipid peroxidation events (especially those observed in plasma membrane and cytosolic fractions) and with liver enzyme release to the bloodstream. Then at the dose used in clinical practice AZT decreased liver regeneration but stimulates oxidative events involved during the proliferation process in a way that each membrane system inside the cell preserves its integrity in order to maintain the cell proliferative process. Here, the induction of large amounts of free ammonia in the systemic circulation could become a factor capable of mediating the deleterious effects of AZT on PH-induced rat liver regeneration. PMID:28479956

  20. Synthesis and Immunological Properties of N-Modified GM3 Antigens as Therapeutic Cancer Vaccines

    PubMed Central

    Pan, Yanbin; Chefalo, Peter; Nagy, Nancy; Harding, Clifford; Guo, Zhongwu

    2011-01-01

    The problem of immunotolerance to GM3, an important tumor-associated trisaccharide antigen, seriously hinders its usage in cancer vaccine development. To solve this problem, the keyhole limpet hemocyanin (KLH) conjugates of a series of GM3 derivatives were synthesized and screened as therapeutic cancer vaccines. First, the β-linked anomeric azides of differently N-acylated GM3 analogs were prepared by a highly convergent procedure. Next, a pentenoyl group was linked to the reducing end of the carbohydrate antigens following selective reduction of the azido group. The linker was thereafter ozonolyzed to give an aldehyde functionality permitting the conjugation of the antigens to KLH via reductive amination. Finally, the immunological properties of the resultant glycoconjugates were studied in C57BL/6 mice by assessing the titers of specific antibodies induced by the GM3 analogs. While KLH-GM3 elicited low levels of immune response, the KLH conjugates of N-propionyl, N-butanoyl, N-iso-butanoyl and N-phenylacetyl GM3’s induced robust immune reactions with antibodies of multiple isotypes, indicating significantly improved and T-cell dependent immune responses that lead to isotype switching, affinity maturation and the induction of immunological ‘memory’. It was suggested that GM3PhAc-KLH is a promising vaccine candidate for glycoengineered immunotherapy of cancer with GM3 as the primary target. PMID:15689172

  1. Toxicology and Carcinogenesis Studies of Mixtures of 3'-Azido-3'-Deoxythymidine (AZT), Lamivudine (3TC), and Nevirapine (NVP) (CAS Nos. 30516-87-1, 134678-17-4, 129618-40-2) in Genetically Modified C3B6.129F1-Trp53(tm1Brd) N12 Haploinsufficient Mice (in utero and postnatal gavage studies).

    PubMed

    2013-10-01

    3'-Azido-3'-deoxythymidine (AZT) is the most widely used and evaluated chemotherapeutic agent for the treatment of persons with acquired immune deficiency syndrome (AIDS). Antiviral therapy is essential for treatment and prevention of AIDS in adults and children infected with human immunodeficiency virus (HIV), and to prevent mother-to-child transmission of HIV during pregnancy and labor. The studies described in this report were designed to determine possible long-term sequelae from AZT treatment, often used in combination with other antiviral drugs, such as lamivudine (3TC) and nevirapine (NVP) in preventing mother-to-child transmission of HIV. Male and female heterozygous F1 p53+/- mice were exposed to AZT, 3TC, NVP, or combinations of the chemicals in utero on gestation days (GD) 12 through 18, then administered the same chemical or combination of chemicals by gavage from postnatal day (PND) 1 through PND 28 and then observed until 45 weeks of age. Vehicle control mice received only an aqueous solution containing 0.2% methylcellulose and 0.1% Tween 80. Mice were dosed twice daily until PND 28. Genetic toxicology studies were conducted in mouse peripheral blood erythrocytes. The study compared three combination doses of AZT, 3TC and NVP (AZT/3TC/NVP-L, AZT/3TC/NVP-M, and AZT/3TC/NVP-H) with the vehicle controls, and compared the individual components with each other at the highest dose (AZT-H, 3TC-H, NVP-H, AZT/3TC-H and AZT/3TC/NVP-H). Because exposure to AZT/3TC/NVP-M and AZT/3TC/NVP-H reduced pup survival, additional litters were required to provide sufficient pups to load the 45-week study. 45-WEEK STUDY: In general, survival was relatively high once the pup exposure phase had been completed, with at least 75% of the mice surviving to terminal sacrifice in all groups. For males, survival was significantly greater in the AZT/3TC/NVP-L and AZT/3TC/NVP-M groups relative to the vehicle control group. There were no significant differences in survival between high dose groups of the constituent chemicals in either sex; however, survival of females in the AZT/3TC-H group was significantly less than that in the vehicle control group. Early deaths were predominantly associated with occurrences of malignant lymphoma, mammary gland tumors, and osteosarcomas. In the combination dose comparison, males and females dosed with the AZT/3TC/NVP-H combination had significantly decreased body weights compared to the vehicle control groups from PND 11 when individual monitoring began until 20 (males) or 11 (females) weeks. In addition, mean body weights for the male and female AZT/3TC/NVP-M groups were significantly less than those of the vehicle control groups until 14 weeks. In the high dose comparison, mean body weights of the male and female AZT-H groups were significantly less than those of the vehicle control groups during some of the early weeks of dosing. In male and female mice, absolute brain weights of the combination dose groups decreased with increasing dose and, except in low dose males, the absolute brain weights of the dosed groups were significantly less than those of the vehicle control groups. When the high doses of the constituent chemicals were compared, absolute brain weights of the male and female AZT-H and AZT/3TC/NVP-H groups were significantly less than those of the vehicle control groups. However, relative brain weights were not significantly altered. Relative liver weights of male combination dose groups followed a positive trend with dose. When the high dose groups were compared, increases in relative liver weights of male mice appeared to be associated with AZT exposure. In combination dose groups, the absolute heart weight of AZT/3TC/NVP-H females was significantly greater than that of the vehicle control group, and there was a positive trend in absolute heart weights. There was also a positive trend for relative heart weights in these combination dose groups, though no individual group relative weight was significantly greater than that of the vehicle control group. In females, absolute heart weight was also significantly increased in the AZT/3TC-H group relative to the vehicle control group. A small but statistically significant increase in serum alanine aminotransferase activity was observed in the male AZT/3TC/NVP-H group compared to the vehicle control group. In the combination dose comparison, the incidences of hepatocellular adenoma and hepatocellular adenoma or carcinoma (combined) in the liver of all groups of males dosed with AZT/3TC/NVP were significantly increased compared to the vehicle control group. In the high dose comparison, the incidences of hepatocellular adenoma in males in the AZT-H group and hepatocellular adenoma and hepatocellular adenoma or carcinoma (combined) in males in the AZT/3TC-H and AZT/3TC/NVP-H groups were significantly greater than those in the vehicle control group; the incidences of these lesions in the 3TC-H and NVP-H groups were significantly less than those in the AZT/3TC/NVP-H group. The incidences of malignant lymphoma in males administered AZT-H or AZT/3TC-H and in females administered AZT/3TC/NVP-M, AZT/3TC/NVP-H, NVP-H, or AZT/3TC-H were slightly greater than those in the vehicle control groups. The incidence of mammary gland adenoacanthoma or adenocarcinoma (combined) in females administered 3TC-H was slightly greater than that in the vehicle control group. In the peripheral blood of 1-day-old male and female mice, the percentage of total reticulocytes (RETs) was significantly decreased in groups exposed to doses that contained AZT. In addition, the percentages of micronucleated normochromatic erythrocytes (NCEs) and micronucleated RETs were generally significantly increased in groups exposed to doses containing AZT, but not in the 3TC-H or NVP-H groups. The percentages of micronucleated NCEs in the AZT/3TC/NVP-H groups were greater than in the AZT-H and the AZT/3TC-H groups. In peripheral blood of male pups evaluated at PND 28, both the percentage of micronucleated RETs and the percentage of micronucleated NCEs were significantly increased in the group where 3TC was coadministered with AZT compared to the group administered only AZT. Under the conditions of this gavage study, there was clear evidence of carcinogenic activity of AZT alone in male heterozygous F1 p53+/- mice based on increased incidences of hepatocellular adenoma. There was clear evidence of carcinogenic activity of AZT in combination with 3TC, and AZT in combination with 3TC and NVP in male heterozygous F1 p53+/- mice based on increased incidences of hepatocellular adenoma and hepatocellular adenoma or carcinoma (combined). The occurrence of malignant lymphoma may have been related to treatment with AZT alone and with AZT in combination with 3TC. There was no evidence of carcinogenic activity of 3TC alone in male heterozygous F1 p53+/- mice administered 150 mg/kg. There was no evidence of carcinogenic activity of NVP alone in male heterozygous F1 p53+/- mice administered 168 mg/kg. There was equivocal evidence of carcinogenic activity of NVP alone, AZT in combination with 3TC, and AZT in combination with 3TC and NVP in female heterozygous F1 p53+/- mice based on the occurrence of malignant lymphoma. There was equivocal evidence of carcinogenic activity of 3TC alone in female heterozygous F1 p53+/- mice based on the occurrence of mammary gland adenoacanthoma or adenocarcinoma (combined). There was no evidence of carcinogenic activity of AZT alone in female heterozygous F1 p53+/- mice administered 240 mg/kg. Synonyms: (3'-AZIDO-3'-DEOXYTHYMIDINE) 3'-azido-2',3'-dideoxythymidine; azidodeoxythymidine; azidothymidine; 3'-azidothymidine; AZT; BW A509U; Compound S; 3'-deoxy-3'-azidothymidine; 3'-deoxy-(8CI) (9CI); ZDV; zidovudine. Trade name: Retrovir® [Combivir® with 3TC] Synonyms: (2',3'-DIDEOXY-3'-THIACYTIDINE) 3TC; 4-amino-1-[(2R,5S)-2-(hydroxymethyl)-1,3-oxathiolan-5-yl]-1,2-dihydropyrimidin-2-one; L-2',3'-dideoxy-3'-thiacytidine; lamivudine Trade name: Epivir® [Combivir® with AZT] Synonyms: (NEVIRAPINE) NVP; 11-cyclopropyl-4-methyl-5,11-dihydro-6H- dipyrido[3,2-b:2',3'-e][1,4]diazepin-6-one Trade name: Viramune®

  2. 2D-IR Spectroscopy of an AHA Labeled Photoswitchable PDZ2 Domain.

    PubMed

    Stucki-Buchli, Brigitte; Johnson, Philip J M; Bozovic, Olga; Zanobini, Claudio; Koziol, Klemens L; Hamm, Peter; Gulzar, Adnan; Wolf, Steffen; Buchenberg, Sebastian; Stock, Gerhard

    2017-12-14

    We explore the capability of the non-natural amino acid azidohomoalanine (AHA) as an IR label to sense relatively small structural changes in proteins with the help of 2D IR difference spectroscopy. To that end, we AHA-labeled an allosteric protein (the PDZ2 domain from human tyrosine-phosphatase 1E) and furthermore covalently linked it to an azobenzene-derived photoswitch as to mimic its conformational transition upon ligand binding. To determine the strengths and limitations of the AHA label, in total six mutants have been investigated with the label at sites with varying properties. Only one mutant revealed a measurable 2D IR difference signal. In contrast to the commonly observed frequency shifts that report on the degree of solvation, in this case we observe an intensity change. To understand this spectral response, we performed classical MD simulations, evaluating local contacts of the AHA labels to water molecules and protein side chains and calculating the vibrational frequency on the basis of an electrostatic model. Although these simulations revealed in part significant and complex changes of the number of intraprotein and water contacts upon trans-cis photoisomerization, they could not provide a clear explanation of why this one label would stick out. Subsequent quantum-chemistry calculations suggest that the response is the result of an electronic interaction involving charge transfer of the azido group with sulfonate groups from the photoswitch. To the best of our knowledge, such an effect has not been described before.

  3. Photoaffinity Labeling of the Plasmodium falciparum Chloroquine Resistance Transporter with a Novel Perfluorophenylazido Chloroquine†

    PubMed Central

    Lekostaj, Jacqueline K.; Natarajan, Jayakumar K.; Paguio, Michelle F.; Wolf, Christian; Roepe, Paul D.

    2009-01-01

    Several models describing how amino acid substitutions in the Plasmodium falciparum chloroquine resistance transporter (PfCRT) confer resistance to chloroquine (CQ) and other antimalarial drugs have been proposed. Further progress requires molecular analysis of interactions between purified reconstituted PfCRT protein and these drugs. We have thus designed and synthesized several perfluorophenyl azido (pfpa) CQ analogues for PfCRT photolabeling studies. One particularly useful probe (AzBCQ) places the pfpa group at the terminal aliphatic N of CQ via a flexible four-carbon ester linker and includes a convenient biotin tag. This probe photolabels PfCRT in situ with high specificity. Using reconstituted proteoliposomes harboring partially purified recombinant PfCRT, we analyze AzBCQ photolabeling versus competition with CQ and other drugs to probe the nature of the CQ binding site. We also inspect how pH, the chemoreversal agent verapamil (VPL), and various amino acid mutations in PfCRT that cause CQ resistance (CQR) affect the efficiency of AzBCQ photolabeling. Upon gel isolation of AzBCQ-labeled PfCRT followed by trypsin digestion and mass spectrometry analysis, we are able to define a single AzBCQ covalent attachment site lying within the digestive vacuolar-disposed loop between putative helices 9 and 10 of PfCRT. Taken together, the data provide important new insight into PfCRT function and, along with previous results, allow us to propose a model for a single CQ binding site in the PfCRT protein. PMID:18767816

  4. Photoaffinity labeling of the Plasmodium falciparum chloroquine resistance transporter with a novel perfluorophenylazido chloroquine.

    PubMed

    Lekostaj, Jacqueline K; Natarajan, Jayakumar K; Paguio, Michelle F; Wolf, Christian; Roepe, Paul D

    2008-09-30

    Several models describing how amino acid substitutions in the Plasmodium falciparum chloroquine resistance transporter (PfCRT) confer resistance to chloroquine (CQ) and other antimalarial drugs have been proposed. Further progress requires molecular analysis of interactions between purified reconstituted PfCRT protein and these drugs. We have thus designed and synthesized several perfluorophenyl azido (pfpa) CQ analogues for PfCRT photolabeling studies. One particularly useful probe (AzBCQ) places the pfpa group at the terminal aliphatic N of CQ via a flexible four-carbon ester linker and includes a convenient biotin tag. This probe photolabels PfCRT in situ with high specificity. Using reconstituted proteoliposomes harboring partially purified recombinant PfCRT, we analyze AzBCQ photolabeling versus competition with CQ and other drugs to probe the nature of the CQ binding site. We also inspect how pH, the chemoreversal agent verapamil (VPL), and various amino acid mutations in PfCRT that cause CQ resistance (CQR) affect the efficiency of AzBCQ photolabeling. Upon gel isolation of AzBCQ-labeled PfCRT followed by trypsin digestion and mass spectrometry analysis, we are able to define a single AzBCQ covalent attachment site lying within the digestive vacuolar-disposed loop between putative helices 9 and 10 of PfCRT. Taken together, the data provide important new insight into PfCRT function and, along with previous results, allow us to propose a model for a single CQ binding site in the PfCRT protein.

  5. Zidovudine Induces Downregulation of Mitochondrial Deoxynucleoside Kinases: Implications for Mitochondrial Toxicity of Antiviral Nucleoside Analogs

    PubMed Central

    Sun, Ren; Eriksson, Staffan

    2014-01-01

    Mitochondrial thymidine kinase 2 (TK2) and deoxyguanosine kinase (dGK) catalyze the initial phosphorylation of deoxynucleosides in the synthesis of the DNA precursors required for mitochondrial DNA (mtDNA) replication and are essential for mitochondrial function. Antiviral nucleosides are known to cause toxic mitochondrial side effects. Here, we examined the effects of 3′-azido-2′,3′-dideoxythymidine (AZT) (zidovudine) on mitochondrial TK2 and dGK levels and found that AZT treatment led to downregulation of mitochondrial TK2 and dGK in U2OS cells, whereas cytosolic deoxycytidine kinase (dCK) and thymidine kinase 1 (TK1) levels were not affected. The AZT effects on mitochondrial TK2 and dGK were similar to those of oxidants (e.g., hydrogen peroxide); therefore, we examined the oxidative effects of AZT. We found a modest increase in cellular reactive oxygen species (ROS) levels in the AZT-treated cells. The addition of uridine to AZT-treated cells reduced ROS levels and protein oxidation and prevented the degradation of mitochondrial TK2 and dGK. In organello studies indicated that the degradation of mitochondrial TK2 and dGK is a mitochondrial event. These results suggest that downregulation of mitochondrial TK2 and dGK may lead to decreased mitochondrial DNA precursor pools and eventually mtDNA depletion, which has significant implications for the regulation of mitochondrial nucleotide biosynthesis and for antiviral therapy using nucleoside analogs. PMID:25182642

  6. Molecular mechanism and species specificity of TAP inhibition by herpes simplex virus ICP47.

    PubMed Central

    Ahn, K; Meyer, T H; Uebel, S; Sempé, P; Djaballah, H; Yang, Y; Peterson, P A; Früh, K; Tampé, R

    1996-01-01

    The immediate early protein ICP47 of herpes simplex virus (HSV) inhibits the transporter for antigen processing (TAP)-mediated translocation of antigen-derived peptides across the endoplasmic reticulum (ER) membrane. This interference prevents assembly of peptides with class I MHC molecules in the ER and ultimately recognition of HSV-infected cells by cytotoxic T-lymphocytes, potentially leading to immune evasion of the virus. Here, we demonstrate that recombinant, purified ICP47 containing a hexahistidine tag inhibits peptide import into microsomes of insect cells expressing human TAP, whereas inhibition of peptide transport by murine TAP was much less effective. This finding indicates an intrinsic species-specificity of ICP47 and suggests that no additional proteins interacting specifically with either ICP47 or TAP are required for inhibition of peptide transport. Since neither purified nor induced ICP47 inhibited photocrosslinking of 8-azido-ATP to TAP1 and TAP2 it seems that ICP47 does not prevent ATP from binding to TAP. By contrast, peptide binding was completely blocked by ICP47 as shown both by photoaffinity crosslinking of peptides to TAP and peptide binding to microsomes from TAP-transfected insect cells. Competition experiments indicated that ICP47 binds to human TAP with a higher affinity (50 nM) than peptides whereas the affinity to murine TAP was 100-fold lower. Our data suggest that ICP47 prevents peptides from being translocated by blocking their binding to the substrate-binding site of TAP. Images PMID:8670825

  7. Mass Spectrometric Analysis of the Cell Surface N-Glycoproteome by Combining Metabolic Labeling and Click Chemistry

    NASA Astrophysics Data System (ADS)

    Smeekens, Johanna M.; Chen, Weixuan; Wu, Ronghu

    2015-04-01

    Cell surface N-glycoproteins play extraordinarily important roles in cell-cell communication, cell-matrix interactions, and cellular response to environmental cues. Global analysis is exceptionally challenging because many N-glycoproteins are present at low abundances and effective separation is difficult to achieve. Here, we have developed a novel strategy integrating metabolic labeling, copper-free click chemistry, and mass spectrometry (MS)-based proteomics methods to analyze cell surface N-glycoproteins comprehensively and site-specifically. A sugar analog containing an azido group, N-azidoacetylgalactosamine, was fed to cells to label glycoproteins. Glycoproteins with the functional group on the cell surface were then bound to dibenzocyclooctyne-sulfo-biotin via copper-free click chemistry under physiological conditions. After protein extraction and digestion, glycopeptides with the biotin tag were enriched by NeutrAvidin conjugated beads. Enriched glycopeptides were deglycosylated with peptide- N-glycosidase F in heavy-oxygen water, and in the process of glycan removal, asparagine was converted to aspartic acid and tagged with 18O for MS analysis. With this strategy, 144 unique N-glycopeptides containing 152 N-glycosylation sites were identified in 110 proteins in HEK293T cells. As expected, 95% of identified glycoproteins were membrane proteins, which were highly enriched. Many sites were located on important receptors, transporters, and cluster of differentiation proteins. The experimental results demonstrated that the current method is very effective for the comprehensive and site-specific identification of the cell surface N-glycoproteome and can be extensively applied to other cell surface protein studies.

  8. Novel pppGpp binding site at the C-terminal region of the Rel enzyme from Mycobacterium smegmatis.

    PubMed

    Syal, Kirtimaan; Joshi, Himanshu; Chatterji, Dipankar; Jain, Vikas

    2015-10-01

    Mycobacterium tuberculosis elicits the stringent response under unfavorable growth conditions, such as those encountered by the pathogen inside the host. The hallmark of this response is production of guanosine tetra- and pentaphosphates, collectively termed (p)ppGpp, which have pleiotropic effects on the bacterial physiology. As the stringent response is connected to survival under stress, it is now being targeted for developing inhibitors against bacterial persistence. The Rel enzyme in mycobacteria has two catalytic domains at its N-terminus that are involved in the synthesis and hydrolysis of (p)ppGpp, respectively. However, the function of the C-terminal region of the protein remained unknown. Here, we have identified a binding site for pppGpp in the C-terminal region of Rel. The binding affinity of pppGpp was quantified by isothermal titration calorimetry. The binding site was determined by crosslinking using the nucleotide analog azido-pppGpp, and examining the crosslink product by mass spectrometry. Additionally, mutations in the Rel protein were created to confirm the site of pppGpp binding by isothermal titration calorimetry. These mutants showed increased pppGpp synthesis and reduced hydrolytic activity. We believe that binding of pppGpp to Rel provides a feedback mechanism that allows the protein to detect and adjust the (p)ppGpp level in the cell. Our work suggests that such sites should also be considered while designing inhibitors to target the stringent response. © 2015 FEBS.

  9. Computational and Biochemical Docking of the Irreversible Cocaine Analog RTI 82 Directly Demonstrates Ligand Positioning in the Dopamine Transporter Central Substrate-binding Site*

    PubMed Central

    Dahal, Rejwi Acharya; Pramod, Akula Bala; Sharma, Babita; Krout, Danielle; Foster, James D.; Cha, Joo Hwan; Cao, Jianjing; Newman, Amy Hauck; Lever, John R.; Vaughan, Roxanne A.; Henry, L. Keith

    2014-01-01

    The dopamine transporter (DAT) functions as a key regulator of dopaminergic neurotransmission via re-uptake of synaptic dopamine (DA). Cocaine binding to DAT blocks this activity and elevates extracellular DA, leading to psychomotor stimulation and addiction, but the mechanisms by which cocaine interacts with DAT and inhibits transport remain incompletely understood. Here, we addressed these questions using computational and biochemical methodologies to localize the binding and adduction sites of the photoactivatable irreversible cocaine analog 3β-(p-chlorophenyl)tropane-2β-carboxylic acid, 4′-azido-3′-iodophenylethyl ester ([125I]RTI 82). Comparative modeling and small molecule docking indicated that the tropane pharmacophore of RTI 82 was positioned in the central DA active site with an orientation that juxtaposed the aryliodoazide group for cross-linking to rat DAT Phe-319. This prediction was verified by focused methionine substitution of residues flanking this site followed by cyanogen bromide mapping of the [125I]RTI 82-labeled mutants and by the substituted cysteine accessibility method protection analyses. These findings provide positive functional evidence linking tropane pharmacophore interaction with the core substrate-binding site and support a competitive mechanism for transport inhibition. This synergistic application of computational and biochemical methodologies overcomes many uncertainties inherent in other approaches and furnishes a schematic framework for elucidating the ligand-protein interactions of other classes of DA transport inhibitors. PMID:25179220

  10. Incorporation of a Doubly Functionalized Synthetic Amino Acid into Proteins for Creating Chemical and Light-Induced Conjugates.

    PubMed

    Yamaguchi, Atsushi; Matsuda, Takayoshi; Ohtake, Kazumasa; Yanagisawa, Tatsuo; Yokoyama, Shigeyuki; Fujiwara, Yoshihisa; Watanabe, Takayoshi; Hohsaka, Takahiro; Sakamoto, Kensaku

    2016-01-20

    Z-Lysine (ZLys) is a lysine derivative with a benzyloxycarbonyl group linked to the ε-nitrogen. It has been genetically encoded with the UAG stop codon, using the pair of an engineered variant of pyrrolysyl-tRNA synthetase (PylRS) and tRNA(Pyl). In the present study, we designed a novel Z-lysine derivative (AmAzZLys), which is doubly functionalized with amino and azido substituents at the meta positions of the benzyl moiety, and demonstrated its applicability for creating protein conjugates. AmAzZLys was incorporated into proteins in Escherichia coli, by using the ZLys-specific PylRS variant. AmAzZLys was then site-specifically incorporated into a camelid single-domain antibody specific to the epidermal growth factor receptor (EGFR). A one-pot reaction demonstrated that the phenyl amine and azide were efficiently linked to the 5 kDa polyethylene glycol and a fluorescent probe, respectively, through specific bio-orthogonal chemistry. The antibody was then tested for the ability to form a photo-cross-link between its phenylazide moiety and the antigen, while the amino group on the same ring was used for chemical labeling. When incorporated at a selected position in the antibody and exposed to 365 nm light, AmAzZLys formed a covalent bond with the EGFR ectodomain, with the phenylamine moiety labeled fluorescently prior to the reaction. The present results illuminated the versatility of the ZLys scaffold, which can accommodate multiple reactive groups useful for protein conjugation.

  11. Synthesis, characterization and inhibitory activities of (4-N3[3,5-3H]Phe10)PKI(6-22)amide and its precursors: photoaffinity labeling peptides for the active site of cyclic AMP-dependent protein kinase.

    PubMed

    Katz, B M; Lundquist, L J; Walsh, D A; Glass, D B

    1989-06-01

    PKI(6-22)amide is a 17 residue peptide corresponding to the active portion of the heat-stable inhibitor of cAMP-dependent protein kinase. The peptide is a potent (Ki = 1.6 nM), competitive inhibitor of the enzyme. The photoreactive peptide analog (4-azidophenylalanine10)PKI(6-22)amide was synthesized in both its non-radiolabeled and tritiated forms by chemical modification of precursor peptides that were prepared by stepwise solid-phase synthesis. (4-Amino[3,5-3H]phenylalanine10)PKI(6-22)amide, the precursor for the radiolabeled arylazide peptide, was obtained by catalytic reduction of the corresponding peptide containing the 3,5-diiodo-4-aminophenylalanine residue at position 10. The purified PKI peptides were analyzed by HPLC, amino acid analysis, and u.v. spectra. In the dark, (4-azidophenylalanine10)PKI(6-22)amide inhibited the catalytic subunit of cAMP-dependent protein kinase with a Ki value of 2.8 nM. The photoreactivity of the arylazide peptide was demonstrated by time-dependent u.v. spectral changes on exposure to light. Photolysis of the catalytic subunit (4-azido[3,5-3H]phenylalanine10)PKI(6-22)amide complex resulted in specific covalent labeling of the enzyme. The data indicate that this peptide is a useful photoaffinity labeling reagent for the active site of the protein kinase.

  12. Real-time and label-free ring-resonator monitoring of solid-phase recombinase polymerase amplification.

    PubMed

    Sabaté Del Río, Jonathan; Steylaerts, Tim; Henry, Olivier Y F; Bienstman, Peter; Stakenborg, Tim; Van Roy, Wim; O'Sullivan, Ciara K

    2015-11-15

    In this work we present the use of a silicon-on-insulator (SOI) chip featuring an array of 64 optical ring resonators used as refractive index sensors for real-time and label-free DNA detection. Single ring functionalisation was achieved using a click reaction after precise nanolitre spotting of specific hexynyl-terminated DNA capture probes to link to an azido-silanised chip surface. To demonstrate detectability using the ring resonators and to optimise conditions for solid-phase amplification, hybridisation between short 25-mer single stranded DNA (ssDNA) fragments and a complementary capture probe immobilised on the surface of the ring resonators was carried out and detected through the shift in the resonant wavelength. Using the optimised conditions demonstrated via the solid-phase hybridisation, a 144-bp double stranded DNA (dsDNA) was then detected directly using recombinase and polymerase proteins through on-chip target amplification and solid-phase elongation of immobilised forward primers on specific rings, at a constant temperature of 37°C and in less than 60min, achieving a limit of detection of 7.8·10(-13)M (6·10(5) copies in 50µL). The use of an automatic liquid handler injection instrument connected to an integrated resealable chip interface (RCI) allowed programmable multiple injection protocols. Air plugs between different solutions were introduced to prevent intermixing and a proportional-integral-derivative (PID) temperature controller minimised temperature based drifts. Published by Elsevier B.V.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khatoon, S.; Slevin, J.T.; Haley, B.E.

    A decrease occurs (80-100%) in the (/sup 32/P)8N/sub 3/GTP photoinsertion into a cytosolic protein (55K M/sub r/) of Alzheimer's (AD) brain, tentatively identified as the ..beta..-subunit of tubulin (co-migration with purified tubulin, concentration dependence of interaction with GTP, ATP and their 8-azido photoprobes, and similar effects of Ca/sup 2 +/ and EDTA on photoinsertion). This agrees with prior observations of (/sup 32/P)8N/sub 3/GTP interactions with brain tubulin and a recent report on faulty microtubular assembly in AD brain. The decrease in (/sup 32/P)8N/sub 3/GTP photoinsertion into the 55K M/sub r/ protein of AD brain was in contrast with other photolabeledmore » proteins, which remained at equal levels in AD and age-matched normal brain tissues. The 55K and 45K M/sub r/ were the two major (/sup 32/P)8N/sub 3/GTP photoinsertion species in non-AD brain. Of 5 AD brains, the photoinsertion of (/sup 32/P)8N/sub 3/GTP into the 55K M/sub r/ region was low or absent in 4 (55K/45K=0.1); one was 75% below normals (55K/45K=0.24). Total protein migrating at 55K M/sub r/ was similar in AD and controls. AD brain tubulin, while present, has its exchangeable GTP binding site on ..beta..-tubulin blocked/modified such that (/sup 32/P)8N/sub 3/GTP cannot interact normally with this site.« less

  14. Antigen-antibody interaction. The immunodominant region of EDP208 pili.

    PubMed

    Worobec, E A; Paranchych, W; Parker, J M; Taneja, A K; Hodges, R S

    1985-01-25

    The EDP208 pilus contains a major antigenic determinant in the N-terminal dodecapeptide, as shown by E. A. Worobec, A. K. Taneja, R. S. Hodges, and W. Paranchych ((1983) J. Bacteriol. 153, 955-961). This peptide was chemically synthesized, coupled to bovine serum albumin with N-hydroxysuccinimidyl p-azido-benzoate, and used in immunoblot and enzyme-linked immunosorbent assays to show it was capable of reacting with anti-EDP208 pilus antibodies. Antibodies raised against the synthetic peptide conjugate were also capable of reacting with whole pili in these assays. To further examine the specific residues responsible for the antigenicity of this site, several peptide analogs were chemically synthesized. The relative affinity of these peptides for anti-EDP208 pilus antibodies was determined by a competitive enzyme-linked immunosorbent assay using the Fab fragment of anti-EDP208 pilus immunoglobulin G. From these results we established that the antigenic region of this peptide was the N-terminal pentapeptide, N-acetyl-Thr-Asp-Leu-Leu-Ala, and the key residues responsible for the antibody-antigen interaction are the N-acetyl-Thr1, Leu3, and Leu4. Hydrophobic interactions involving the methyl of the acetyl group and the leucine side chains make the largest contributions to the antigen-antibody interaction, while a lesser contribution is made by the Thr1 hydroxyl. The side chains of Asp2 and Ala5 contribute only weakly to the stabilization of the antigen-antibody complex.

  15. Synthesis and Characterization of Elastin-Mimetic Hybrid Polymers with Multiblock, Alternating Molecular Architecture and Elastomeric Properties

    PubMed Central

    Grieshaber, Sarah E.; Farran, Alexandra J. E.; Lin-Gibson, Sheng; Kiick, Kristi L.; Jia, Xinqiao

    2009-01-01

    We are interested in developing elastin–mimetic hybrid polymers (EMHPs) that capture the multiblock molecular architecture of tropoelastin as well as the remarkable elasticity of mature elastin. In this study, multiblock EMHPs containing flexible synthetic segments based on poly(ethylene glycol) (PEG) alternating with alanine-rich, lysine-containing peptides were synthesized by step-growth polymerization using α,ω-azido-PEG and alkyne-terminated AKA3KA (K = lysine, A = alanine) peptide, employing orthogonal click chemistry. The resulting EMHPs contain an estimated three to five repeats of PEG and AKA3KA and have an average molecular weight of 34 kDa. While the peptide alone exhibited α-helical structures at high pH, the fractional helicity for EMHPs was reduced. Covalent cross-linking of EMHPs with hexamethylene diisocyanate (HMDI) through the lysine residue in the peptide domain afforded an elastomeric hydrogel (xEMHP) with a compressive modulus of 0.12 MPa when hydrated. The mechanical properties of xEMHP are comparable to a commercial polyurethane elastomer (Tecoflex SG80A) under the same conditions. In vitro toxicity studies showed that while the soluble EMHPs inhibited the growth of primary porcine vocal fold fibroblasts (PVFFs) at concentrations ≥0.2 mg/mL, the cross-linked hybrid elastomers did not leach out any toxic reagents and allowed PVFFs to grow and proliferate normally. The hybrid and modular approach provides a new strategy for developing elastomeric scaffolds for tissue engineering. PMID:19763157

  16. A novel bio-orthogonal cross-linker for improved protein/protein interaction analysis.

    PubMed

    Nury, Catherine; Redeker, Virginie; Dautrey, Sébastien; Romieu, Anthony; van der Rest, Guillaume; Renard, Pierre-Yves; Melki, Ronald; Chamot-Rooke, Julia

    2015-02-03

    The variety of protein cross-linkers developed in recent years illustrates the current requirement for efficient reagents optimized for mass spectrometry (MS) analysis. To date, the most widely used strategy relies on commercial cross-linkers that bear an isotopically labeled tag and N-hydroxysuccinimid-ester (NHS-ester) moieties. Moreover, an enrichment step using liquid chromatography is usually performed after enzymatic digestion of the cross-linked proteins. Unfortunately, this approach suffers from several limitations. First, it requires large amounts of proteins. Second, NHS-ester cross-linkers are poorly efficient because of their fast hydrolysis in water. Finally, data analysis is complicated because of uneven fragmentation of complex isotopic cross-linked peptide mixtures. We therefore synthesized a new type of trifunctional cross-linker to overrule these limitations. This reagent, named NNP9, comprises a rigid core and bears two activated carbamate moieties and an azido group. NNP9 was used to establish intra- and intermolecular cross-links within creatine kinase, then to map the interaction surfaces between α-Synuclein (α-Syn), the aggregation of which leads to Parkinson's disease, and the molecular chaperone Hsc70. We show that NNP9 cross-linking efficiency is significantly higher than that of NHS-ester commercial cross-linkers. The number of cross-linked peptides identified was increased, and a high quality of MS/MS spectra leading to high sequence coverage was observed. Our data demonstrate the potential of NNP9 for an efficient and straightforward characterization of protein-protein interfaces and illustrate the power of using different cross-linkers to map thoroughly the surface interfaces within protein complexes.

  17. Site-Specific Albumination as an Alternative to PEGylation for the Enhanced Serum Half-Life in Vivo.

    PubMed

    Yang, Byungseop; Lim, Sung In; Kim, Jong Chul; Tae, Giyoong; Kwon, Inchan

    2016-05-09

    Polyethylene glycol (PEG) has been widely used as a serum half-life extender of therapeutic proteins. However, due to immune responses and low degradability of PEG, developing serum half-life extender alternatives to PEG is required. Human serum albumin (HSA) has several beneficial features as a serum half-life extender, including a very long serum half-life, good degradability, and low immune responses. In order to further evaluate the efficacy of HSA, we compared the extent of serum half-life extension of a target protein, superfolder green fluorescent protein (sfGFP), upon HSA conjugation with PEG conjugation side-by-side. Combination of site-specific incorporation of p-azido-l-phenylalanine into sfGFP and copper-free click chemistry achieved the site-specific conjugation of a single HSA, 20 kDa PEG, or 30 kDa PEG to sfGFP. These sfGFP conjugates exhibited the fluorescence comparable to or even greater than that of wild-type sfGFP (sfGFP-WT). In mice, HSA-conjugation to sfGFP extended the serum half-life 9.0 times compared to that of unmodified sfGFP, which is comparable to those of PEG-conjugated sfGFPs (7.3 times for 20 kDa PEG and 9.5 times for 30 kDa PEG). These results clearly demonstrated that HSA was as effective as PEG in extending the serum half-life of a target protein. Therefore, with the additional favorable features, HSA is a good serum half-life extender of a (therapeutic) protein as an alternative to PEG.

  18. Synthesis and Evaluation of a Novel Adenosine-Ribose Probe for Global-Scale Profiling of Nucleoside and Nucleotide-Binding Proteins

    PubMed Central

    Mahajan, Shikha; Manetsch, Roman; Merkler, David J.; Stevens Jr., Stanley M.

    2015-01-01

    Proteomics is a powerful approach used for investigating the complex molecular mechanisms of disease pathogenesis and progression. An important challenge in modern protein profiling approaches involves targeting of specific protein activities in order to identify altered molecular processes associated with disease pathophysiology. Adenosine-binding proteins represent an important subset of the proteome where aberrant expression or activity changes of these proteins have been implicated in numerous human diseases. Herein, we describe an affinity-based approach for the enrichment of adenosine-binding proteins from a complex cell proteome. A novel N 6-biotinylated-8-azido-adenosine probe (AdoR probe) was synthesized, which contains a reactive group that forms a covalent bond with the target proteins, as well as a biotin tag for affinity enrichment using avidin chromatography. Probe specificity was confirmed with protein standards prior to further evaluation in a complex protein mixture consisting of a lysate derived from mouse neuroblastoma N18TG2 cells. Protein identification and relative quantitation using mass spectrometry allowed for the identification of small variations in abundance of nucleoside- and nucleotide-binding proteins in these samples where a significant enrichment of AdoR-binding proteins in the labeled proteome from the neuroblastoma cells was observed. The results from this study demonstrate the utility of this method to enrich for nucleoside- and nucleotide-binding proteins in a complex protein mixture, pointing towards a unique set of proteins that can be examined in the context of further understanding mechanisms of disease, or fundamental biological processes in general. PMID:25671571

  19. Fusicoccin-Binding Proteins in Arabidopsis thaliana (L.) Heynh. 1

    PubMed Central

    Meyer, Christiane; Feyerabend, Martin; Weiler, Elmar W.

    1989-01-01

    Using the novel radioligand, [3H]-9′-nor-fusicoccin-8′-alcohol, high affinity binding sites for fusicoccin were characterized in preparations from leaves of Arabidopsis thaliana (L.) Heynh. The binding site copartitioned with the plasmalemma marker, vanadate-sensitive K+, Mg2+-ATPase, when microsomal fractions were further purified by aqueous two-phase partitioning in polyethylene glycol-dextran phase systems and sedimented at an equilibrium density of 1.17 grams per cubic centimeter in continuous sucrose density gradients, as did the ATPase marker. The binding of [3H]-9′-nor-fusicoccin-8′-alcohol was saturable and Scatchard analysis revealed a biphasic plot with two apparent dissociation constants (KD), KD1 = 1.5 nanomolar and KD2 = 42 nanomolar, for the radioligand. Binding was optimal at pH 6, thermolabile, and was reduced by 70% when the membrane vesicles were pretreated with trypsin. The data are consistent with the presence of one or several binding proteins for fusicoccin at the plasma membrane of A. thaliana. Binding of the radioligand was unaffected by pretreatment of the sites with various alkylating and reducing agents, but was reduced by 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide, diethylpyrocarbonate, chloramine T, and periodate. A number of detergents were tested to find optimum conditions for solubilization. Nonanoyl-N-methylglucamide (50 millimolar) solubilized 70% of the radioligand-binding protein complex in undissociated form. Photoaffinity labeling of membrane preparations with a tritiated azido analog of fusicoccin resulted in the labeling of a 34 ± 1 kilodalton polypeptide. Labeling of this polypeptide, presumably the fusicoccin-binding protein, was severely reduced in the presence of unlabeled fusicoccin. PMID:16666603

  20. Mutants of feline immunodeficiency virus resistant to 2',3'-dideoxy-2',3'-didehydrothymidine.

    PubMed Central

    Zhu, Y Q; Remington, K M; North, T W

    1996-01-01

    We selected mutants of feline immunodeficiency virus (FIV) that are resistant to 2',3'-dideoxy-2',3'-didehydrothymidine (d4T). Two mutants were selected in cultured cells with a stepwise increase in d4T concentration, resulting in mutants able to replicate in 100 microM d4T. These mutants were three- to sixfold more resistant to d4T than wild-type FIV. They were also cross-resistant to 3'-azido-3'-deoxythymidine (AZT), 3'-fluoro-2',3'-dideoxythymidine, 2',3'-dideoxycytidine, 2',3'-dideoxyinosine, and 9-(2-phosphonylmethoxyethyl)adenine, and they were highly resistant to phosphonoformic acid (PFA). Plaque-purified mutants were isolated from each of the mutant populations. The mutant phenotype was stable, because both of the plaque-purified mutants remained d4T resistant even after three passages in the absence of d4T. One of the plaque-purified mutants, designated D4R-3c, was further characterized. Compared with wild-type reverse transcriptase (RT), RT purified from D4R-3c was 3-fold resistant to inhibition by the 5'-triphosphate of d4T, 10-fold resistant to inhibition by the 5'-triphosphate of AZT, and 6-fold resistant to PFA. D4R-3c had a single point mutation in the RT-encoding region of the pol gene at position 2474, resulting in a Val to Ile mutation at codon 47 of the FIV RT. The role of this mutation in d4T resistance was confirmed by site-directed mutagenesis. PMID:8878567

  1. Efficient and Tunable Three-Dimensional Functionalization of Fully Zwitterionic Antifouling Surface Coatings.

    PubMed

    Lange, Stefanie C; van Andel, Esther; Smulders, Maarten M J; Zuilhof, Han

    2016-10-11

    To enhance the sensitivity and selectivity of surface-based (bio)sensors, it is of crucial importance to diminish background signals that arise from the nonspecific binding of biomolecules, so-called biofouling. Zwitterionic polymer brushes have been shown to be excellent antifouling materials. However, for sensing purposes, antifouling does not suffice but needs to be combined with the possibility to efficiently modify the brush with recognition units. So far this has been achieved only at the expense of either antifouling properties or binding capacity. Herein we present a conceptually new approach by integrating both characteristics into a single tailor-made monomer: a novel sulfobetaine-based zwitterionic monomer equipped with a clickable azide moiety. Copolymerization of this monomer with a well-established standard sulfobetaine monomer results in highly antifouling surface coatings with a large yet tunable number of clickable groups present throughout the entire brush. Subsequent functionalization of the azido brushes via widely used strain-promoted alkyne azide click reactions yields fully zwitterionic 3D-functionalized coatings with a recognition unit of choice that can be tailored for any specific application. Here we show a proof of principle with biotin-functionalized brushes on Si 3 N 4 that combine excellent antifouling properties with specific avidin binding from a protein mixture. The signal-to-noise ratio is significantly improved over that of traditional chain-end modification of sulfobetaine polymer brushes, even if the azide content is lowered to 1%. This therefore offers a viable approach to the development of biosensors with greatly enhanced performance on any surface.

  2. Synthesis of benzo-fused 1-azabicyclo[m.n.0]alkanes via the Schmidt reaction: a formal synthesis of gephyrotoxin.

    PubMed

    Pearson, W H; Fang, W

    2000-10-20

    The intramolecular capture of benzocyclobutyl, benzocyclopentyl, and benzocyclohexyl carbocations 7 by azides produces spirocyclic aminodiazonium ions 8, which undergo 1,2-C-to-N rearrangement with loss of dinitrogen to produce benzo-fused iminium ions resulting from either aryl (9) or alkyl (10) migration to the electron-deficient nitrogen atom. Reduction of the iminium ions affords regioisomeric benzo-fused 1-azabicyclo[m.n.0]alkanes, e.g., benzopyrrolizidines, benzoindolizidines, benzoquinolizidines, or perhydrobenzo[f]pyrrolo[1,2-a]azepines in two regioisomeric versions, anilines (e.g., 11-14) and benzylic amines (e.g., 15-18), the result of aryl and alkyl migrations, respectively. Generally, aryl migration is preferred, despite modeling that shows that the lowest energy aminodiazonium ions are those where the departing dinitrogen is preferentially antiperiplanar to the migrating alkyl group rather than the aryl group. The utility of this methodology was illustrated by a formal synthesis of the alkaloid gephyrotoxin 4. A dependence on the efficiency and regioselectivity of the Schmidt reaction upon subtle changes in the structure of the cation precursor was observed, necessitating the exploration of a variety of substrates. Fortunately, these materials were easily made. Ultimately, the azido-alkene 81 bearing a 2-bromoethyl side-chain was useful for the Schmidt reaction, producing the known benzo-fused indolizidine 49, which had been transformed by Ito et al. into gephyrotoxin 4. The synthesis of 49 required nine steps (five purifications) from commercially available 4-methoxy-1-indanone 60 and proceeded in 22% overall yield.

  3. Ultrathin Polymer Films, Patterned Arrays, and Microwells

    NASA Astrophysics Data System (ADS)

    Yan, Mingdi

    2002-05-01

    The ability to control and tailor the surface and interface properties of materials is important in microelectronics, cell growth control, and lab-on-a-chip devices. Modification of material surfaces with ultrathin polymer films is attractive due to the availability of a variety of polymers either commercially or by synthesis. We have developed two approaches to the attachment of ultrathin polymer films on solid substrates. In the first method, a silane-functionalized perfluorophenyl azide (PFPA-silane) was synthesized and used to covalently immobilize polymer thin films on silicon wafers. Silanization of the wafer surface with the PFPA-silane introduced a monolayer of azido groups which in turn covalently attached the polymer film by way of photochemically initiated insertion reactions. The thickness of the film could be adjusted by the type and the molecular weight of the polymer. The method is versatile due to the general C-H and/or N-H insertion reactions of crosslinker; and therefore, no specific reactive functional groups on the polymers are required. Using this method, a new type of microwell array was fabricated from covalently immobilized polymer thin films on flat substrates. The arrays were characterized with AFM, XPS, and TOF-SIMS. The second method describes the attachment of polymer thin films on solid substrates via UV irradiation. The procedure consisted of spin-coating a polymer film and irradiating the film with UV light. Following solvent extraction, a thin film remained. The thickness of the film, from a few to over a hundred nanometers, was controlled by varying solution concentration and the molecular weight of the polymer.

  4. SERS assay of telomerase activity at single-cell level and colon cancer tissues via quadratic signal amplification.

    PubMed

    Shi, Muling; Zheng, Jing; Liu, Changhui; Tan, Guixiang; Qing, Zhihe; Yang, Sheng; Yang, Jinfeng; Tan, Yongjun; Yang, Ronghua

    2016-03-15

    As an important biomarker and therapeutic target, telomerase has attracted extensive attention concerning its detection and monitoring. Recently, enzyme-assisted amplification approaches have provided useful platforms for the telomerase activity detection, however, further improvement in sensitivity is still hindered by the single-step signal amplification. Herein, we develop a quadratic signal amplification strategy for ultrasensitive surface-enhanced Raman scattering (SERS) detection of telomerase activity. The central idea of our design is using telomerase-induced silver nanoparticles (AgNPs) assembly and silver ions (Ag(+))-mediated cascade amplification. In our approach, each telomerase-aided DNA sequence extension could trigger the formation of a long double-stranded DNA (dsDNA), making numerous AgNPs assembling along with this long strand through specific Ag-S bond, to form a primary amplification element. For secondary amplification, each conjugated AgNP was dissolved into Ag(+), which can effectively induce the 4-aminobenzenethiol (4-ABT) modified gold nanoparticles (AuNPs@4-ABT) to undergo aggregation to form numerous "hot-spots". Through quadratic amplifications, a limit of detection down to single HeLa cell was achieved. More importantly, this method demonstrated good performance when applied to tissues from colon cancer patients, which exhibits great potential in the practical application of telomerase-based cancer diagnosis in early stages. To demonstrate the potential in screening the telomerase inhibitors and telomerase-targeted drugs, the proposed design is successfully employed to measure the inhibition of telomerase activity by 3'-azido-3'-deoxythymidine. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Facile Synthesis and Proposed Mechanism of α,ω-Oxetanyl-Telechelic Poly(3-nitratomethyl-3-methyl oxetane) by an SN2(i) Nitrato Displacement Method in Basic Media

    NASA Astrophysics Data System (ADS)

    Desai, Hemant J.; Acheampong, Daniel O.; Hudson, Robert; Lacey, Richard; Stanley, Claire; Turner, Helen; Whitmore, Hannah; Torry, Simon; Golding, Peter; Erothu, Harikrishna; Topham, Paul

    2017-01-01

    The synthesis of a novel heterocyclic-telechelic polymer, α,ω-oxetanyl-telechelic poly(3-nitratomethyl-3-methyl oxetane), is described. Infrared spectroscopy (IR), gel permeation chromatography (GPC), and nuclear magnetic resonance (NMR) spectroscopy have been used to confirm the successful synthesis, demonstrating the presence of the telechelic-oxetanyl moieties. Synthesis of the terminal functionalities has been achieved via displacement of nitrato groups, in a manner similar to that employed with other leaving groups such as azido, bromo, and nitro, initiated by nucleophiles. In the present case, displacement occurs on the ends of a nitrato-functionalized polymer driven by the formation of sodium nitrate, which is supported by the polar aprotic solvent N,N-dimethyl formamide. The formation of an alkoxide at the polymer chain ends is favored and allows internal back-biting to the nearest carbon bearing the nitrato group, intrinsically in an SN2(i) reaction, leading to α,ω-oxetanyl functionalization. The telechelic-oxetanyl moieties have the potential to be cross-linked by chemical (e.g., acidic) or radiative (e.g., ultraviolet) curing methods without the use of high temperatures, usually below 100°C. This type of material was designed for future use as a contraband simulant, whereby it would form the predominant constituent of elastomeric composites comprising rubbery polymer with small quantities of solids, typically crystals of contraband substances, such as explosives or narcotics. This method also provides an alternative approach to ring closure and synthesis of heterocycles.

  6. Biofunctionalization on alkylated silicon substrate surfaces via "click" chemistry.

    PubMed

    Qin, Guoting; Santos, Catherine; Zhang, Wen; Li, Yan; Kumar, Amit; Erasquin, Uriel J; Liu, Kai; Muradov, Pavel; Trautner, Barbara Wells; Cai, Chengzhi

    2010-11-24

    Biofunctionalization of silicon substrates is important to the development of silicon-based biosensors and devices. Compared to conventional organosiloxane films on silicon oxide intermediate layers, organic monolayers directly bound to the nonoxidized silicon substrates via Si-C bonds enhance the sensitivity of detection and the stability against hydrolytic cleavage. Such monolayers presenting a high density of terminal alkynyl groups for bioconjugation via copper-catalyzed azide-alkyne 1,3-dipolar cycloaddition (CuAAC, a "click" reaction) were reported. However, yields of the CuAAC reactions on these monolayer platforms were low. Also, the nonspecific adsorption of proteins on the resultant surfaces remained a major obstacle for many potential biological applications. Herein, we report a new type of "clickable" monolayers grown by selective, photoactivated surface hydrosilylation of α,ω-alkenynes, where the alkynyl terminal is protected with a trimethylgermanyl (TMG) group, on hydrogen-terminated silicon substrates. The TMG groups on the film are readily removed in aqueous solutions in the presence of Cu(I). Significantly, the degermanylation and the subsequent CuAAC reaction with various azides could be combined into a single step in good yields. Thus, oligo(ethylene glycol) (OEG) with an azido tag was attached to the TMG-alkyne surfaces, leading to OEG-terminated surfaces that reduced the nonspecific adsorption of protein (fibrinogen) by >98%. The CuAAC reaction could be performed in microarray format to generate arrays of mannose and biotin with varied densities on the protein-resistant OEG background. We also demonstrated that the monolayer platform could be functionalized with mannose for highly specific capturing of living targets (Escherichia coli expressing fimbriae) onto the silicon substrates.

  7. Synthesis, characterization and functionalization of silicon nanoparticle based hybrid nanomaterials for photovoltaic and biological applications

    NASA Astrophysics Data System (ADS)

    Xu, Zejing

    Silicon nanoparticles are attractive candidates for biological, photovoltaic and energy storage applications due to their size dependent optoelectronic properties. These include tunable light emission, high brightness, and stability against photo-bleaching relative to organic dyes (see Chapter 1). The preparation and characterization of silicon nanoparticle based hybrid nanomaterials and their relevance to photovoltaic and biological applications are described. The surface-passivated silicon nanoparticles were produced in one step from the reactive high-energy ball milling (RHEBM) of silicon wafers with various organic ligands. The surface structure and optical properties of the passivated silicon nanoparticles were systematically characterized. Fast approaches for purifying and at the same time size separating the silicon nanoparticles using a gravity GPC column were developed. The hydrodynamic diameter and size distribution of these size-separated silicon nanoparticles were determined using GPC and Diffusion Ordered NMR Spectroscopy (DOSY) as fast, reliable alternative approaches to TEM. Water soluble silicon nanoparticles were synthesized by grafting PEG polymers onto functionalized silicon nanoparticles with distal alkyne or azide moieties. The surface-functionalized silicon nanoparticles were produced from the reactive high-energy ball milling (RHEBM) of silicon wafers with a mixture of either 5-chloro-1-pentyne in 1-pentyne or 1,7 octadiyne in 1-hexyne to afford air and water stable chloroalkyl or alkynyl terminated nanoparticles, respectively. Nanoparticles with the ω-chloroalkyl substituents were easily converted to ω-azidoalkyl groups through the reaction of the silicon nanoparticles with sodium azide in DMF. The azido terminated nanoparticles were then grafted with monoalkynyl-PEG polymers using a copper catalyzed alkyne-azide cycloaddition (CuAAC) reaction to afford core-shell silicon nanoparticles with a covalently attached PEG shell. Covalently linked silicon nanoparticle clusters were synthesized via the CuAAC "click" reaction of functional silicon nanoparticles with α,ω-functional PEG polymers of various lengths. Dynamic light scattering studies show that the flexible globular nanoparticle arrays undergo a solvent dependent change in volume (ethanol> dichloromethane> toluene) similar in behavior to hydrogel nanocomposites. A novel light-harvesting complex and artificial photosynthetic material based on silicon nanoparticles was designed and synthesized. Silicon nanoparticles were used as nanoscaffolds for organizing the porphyrins to form light-harvesting complexes thereby enhancing the light absorption of the system. The energy transfer from silicon nanoparticles to porphyrin acceptors was investigated by both steady-state and time-resolved fluorescence spectroscopy. The energy transfer efficiency depended on the donor-acceptor ratio and the distance between the nanoparticle and the porphyrin ring. The addition of C60 resulted in the formation of silicon nanoparticle-porphyrin-fullerene nanoclusters which led to charge separation upon irradiation of the porphyrin ring. The electron-transfer process between the porphyrin and fullerene was investigated by femto-second transient absorption spectroscopy. Finally, the water soluble silicon nanoparticles were used as nanocarriers in photodynamic therapeutic application, in which can selectively deliver porphyrins into human embryonic kidney 293T (HEK293T) cells. In particular, the PEGylated alkynyl-porphyrins were conjugated onto the azido-terminated silicon nanoparticles via a CuAAC "click" reaction. The resultant PEGylated porphyrin grafted silicon nanoparticles have diameters around 13.5 +/- 3.8 nm. The cryo-TEM and conventional TEM analysis proved that the PEGylated porphyrin grafted silicon nanoparticle could form the micelle-like structures at higher concentration in water via self-assembly. The UV-Vis absorption analysis demonstrated that the silicon nanoparticle could reduce the porphyrin aggregation in water which can reduce the photophysical activity of porphyrin. In addition, the nanoparticle complex was capable of producing singlet oxygen when the porphyrin units were excited by light. The cell studies demonstrated that the silicon nanoparticle could deliver the porphyrin drugs into HEK293T cells and accumulate in the mitochondria where the porphyrin could serve as an efficient photosensitizer to kill the cells via mitochondrial apoptotic pathway.

  8. Immunophotoaffinity labeling of binders of 1-methyladenine, the oocyte maturation-inducing hormone of starfish

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toraya, Tetsuo; Kida, Tetsuo; Kuyama, Atsushi

    Starfish oocytes are arrested at the prophase stage of the first meiotic division in the ovary and resume meiosis by the stimulus of 1-methyladenine (1-MeAde), the oocyte maturation-inducing hormone of starfish. Putative 1-MeAde receptors on the oocyte surface have been suggested, but not yet been biochemically characterized. Immunophotoaffinity labeling, i.e., photoaffinity labeling combined with immunochemical detection, was attempted to detect unknown 1-MeAde binders including putative maturation-inducing hormone receptors in starfish oocytes. When the oocyte crude membrane fraction or its Triton X-100/EDTA extract was incubated with N{sup 6}-[6-(5-azido-2-nitrobenzoyl)aminohexyl]carboxamidomethyl-1-methyladenine and then photo-irradiated, followed by western blotting with antibody that was raised againstmore » a 1-MeAde hapten, a single band with M{sub r} of 47.5 K was detected. The band was lost when extract was heated at 100 °C. A similar 47.5 K band was detected in the crude membrane fraction of testis as well. Upon labeling with whole cells, this band was detected in immature and maturing oocytes, but only faintly in mature oocytes. As judged from these results, this 1-MeAde binder might be a possible candidate of the starfish maturation-inducing hormone receptors. - Highlights: • Synthesis of photoaffinity labeling reagents for 1-methyladenine binders of starfish. • Immunochemical detection of photoaffinity-labeled 1-methyladenine binders. • Immunophotoaffinity labeling of a 47.5 K 1-methyladenine binder in oocytes and testis. • A possible candidate of oocyte maturation-inducing hormone receptors of starfish.« less

  9. Highly K+ -Selective Fluorescent Probes for Lifetime Sensing of K+ in Living Cells.

    PubMed

    Schwarze, Thomas; Mertens, Monique; Müller, Peter; Riemer, Janine; Wessig, Pablo; Holdt, Hans-Jürgen

    2017-12-06

    The new K + -selective fluorescent probes 1 and 2 were obtained by Cu I -catalyzed 1,3-dipolar azide alkyne cycloaddition (CuAAC) reactions of an alkyne-substituted [1,3]dioxolo[4,5-f][1,3]benzodioxole (DBD) ester fluorophore with azido-functionalized N-phenylaza-18-crown-6 ether and N-(o-isopropoxy) phenylaza-18-crown-6 ether, respectively. Probes 1 and 2 allow the detection of K + in the presence of Na + in water by fluorescence enhancement (2.2 for 1 at 2000 mm K + and 2.5 for 2 at 160 mm K + ). Fluorescence lifetime measurements in the absence and presence of K + revealed bi-exponential decay kinetics with similar lifetimes, however with different proportions changing the averaged fluorescence decay times (τ f(av) ). For 1 a decrease of τ f(av) from 12.4 to 9.3 ns and for 2 an increase from 17.8 to 21.8 ns was observed. Variation of the substituent in ortho position of the aniline unit of the N-phenylaza-18-crown-6 host permits the modulation of the K d value for a certain K + concentration. For example, substitution of H in 1 by the isopropoxy group (2) decreased the K d value from >300 mm to 10 mm. 2 was chosen for studying the efflux of K + from human red blood cells (RBC). Upon addition of the Ca 2+ ionophor ionomycin to a RBC suspension in a buffer containing Ca 2+ , the fluorescence of 2 slightly rose within 10 min, however, after 120 min a significant increase was observed. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Effects of dantrolene and its derivatives on Ca2+ release from the sarcoplasmic reticulum of mouse skeletal muscle fibres

    PubMed Central

    Ikemoto, Takaaki; Hosoya, Takamitsu; Aoyama, Hiroshi; Kihara, Yasutaka; Suzuki, Masaaki; Endo, Makoto

    2001-01-01

    We analysed the effect of dantrolene (Dan) and five newly synthesized derivatives (GIFs) on Ca2+ release from the sarcoplasmic reticulum (SR) of mouse skeletal muscle.In intact muscles, GIF-0185 reduced the size of twitch contraction induced by electrical stimulation to the same extent as Dan. GIF-0082, an azido-functionalized Dan derivative, also inhibited twitch contraction, although the extent of inhibition was less than that of Dan and of GIF-0185.In skinned fibres, Dan inhibited Ca2+-induced Ca2+ release (CICR) under Mg2+-free conditions at room temperature. In contrast, GIF-0082 and GIF-0185 showed no inhibitory effect on CICR under the same conditions.Dan-induced inhibition of CICR was not affected by the presence of GIF-0082, whereas it was diminished in the presence of GIF-0185.GIF-0082 and GIF-0185 significantly inhibited clofibric acid (Clof)-induced Ca2+ release, as did Dan.Several Dan derivatives other than GIF-0082 and GIF-0185 showed an inhibitory effect on twitch tension but not on the CICR mechanism. All of these derivatives inhibited Clof-induced Ca2+ release.The magnitudes of inhibition of Clof-induced Ca2+ release by all Dan derivatives were well correlated with those of twitch inhibition. This supports the notion that the mode of Clof-induced opening of the RyR-Ca2+ release channel may be similar to that of physiological Ca2+ release (PCR).These results indicate that the difference in opening modes of the RyR-Ca2+ release channel is recognized by certain Dan derivatives. PMID:11606312

  11. Garlic oil polysulfides: H2S- and O2-independent prooxidants in buffer and antioxidants in cells

    PubMed Central

    DeLeon, Eric R.; Gao, Yan; Huang, Evelyn

    2016-01-01

    The health benefits of garlic and other organosulfur-containing foods are well recognized and have been attributed to both prooxidant and antioxidant activities. The effects of garlic are surprisingly similar to those of hydrogen sulfide (H2S), which is also known to be released from garlic under certain conditions. However, recent evidence suggests that polysulfides, not H2S, may be the actual mediator of physiological signaling. In this study, we monitored formation of H2S and polysulfides from garlic oil in buffer and in human embryonic kidney (HEK) 293 cells with fluorescent dyes, 7-azido-4-methylcoumarin and SSP4, respectively and redox activity with two redox indicators redox-sensitive green fluorescent protein (roGFP) and DCF. Our results show that H2S release from garlic oil in buffer requires other low-molecular-weight thiols, such as cysteine (Cys) or glutathione (GSH), whereas polysulfides are readily detected in garlic oil alone. Administration of garlic oil to cells rapidly increases intracellular polysulfide but has minimal effects on H2S unless Cys or GSH are also present in the extracellular medium. We also observed that garlic oil and diallyltrisulfide (DATS) potently oxidized roGFP in buffer but did not affect DCF. This appears to be a direct polysulfide-mediated oxidation that does not require a reactive oxygen species intermediate. Conversely, when applied to cells, garlic oil became a significant intracellular reductant independent of extracellular Cys or GSH. This suggests that intracellular metabolism and further processing of the sulfur moieties are necessary to confer antioxidant properties to garlic oil in vivo. PMID:27101293

  12. Platelet-targeting sensor reveals thrombin gradients within blood clots forming in microfluidic assays and in mouse.

    PubMed

    Welsh, J D; Colace, T V; Muthard, R W; Stalker, T J; Brass, L F; Diamond, S L

    2012-11-01

    Thrombin undergoes convective and diffusive transport, making it difficult to visualize during thrombosis. We developed the first sensor capable of revealing inner clot thrombin dynamics. An N-terminal-azido thrombin-sensitive fluorescent peptide (ThS-P) with a thrombin-releasable quencher was linked to anti-CD41 using click chemistry to generate a thrombin-sensitive platelet binding sensor (ThS-Ab). Rapid thrombin cleavage of ThS-P (K(m) = 40.3 μm, k(cat) = 1.5 s(-1) ) allowed thrombin monitoring by ThS-P or ThS-Ab in blood treated with 2-25 pm tissue factor (TF). Individual platelets had > 20-fold more ThS-Ab fluorescence after clotting. In a microfluidic assay of whole blood perfusion over collagen ± linked TF (wall shear rate = 100 s(-1) ), ThS-Ab fluorescence increased between 90 and 450 s for 0.1-1 molecule-TF μm(-2) and co-localized with platelets near fibrin. Without TF, neither thrombin nor fibrin was detected on the platelet deposits by 450 s. Using a microfluidic device to control the pressure drop across a thrombus forming on a porous collagen/TF plug (521 s(-1) ), thrombin and fibrin were detected at the thrombus-collagen interface at a zero pressure drop, whereas 80% less thrombin was detected at 3200 Pa in concert with fibrin polymerizing within the collagen. With anti-mouse CD41 ThS-Ab deployed in a mouse laser injury model, the highest levels of thrombin arose between 40 and 160 s nearest the injury site where fibrin co-localized and where the thrombus was most mechanically stable. ThS-Ab reveals thrombin locality, which depends on surface TF, flow and intrathrombus pressure gradients. © 2012 International Society on Thrombosis and Haemostasis.

  13. Click Synthesis of Hydrophilic Maltose-Functionalized Iron Oxide Magnetic Nanoparticles Based on Dopamine Anchors for Highly Selective Enrichment of Glycopeptides.

    PubMed

    Bi, Changfen; Zhao, Yingran; Shen, Lijin; Zhang, Kai; He, Xiwen; Chen, Langxing; Zhang, Yukui

    2015-11-11

    The development of methods to isolate and enrich low-abundance glycopeptides from biological samples is crucial to glycoproteomics. Herein, we present an easy and one-step surface modification strategy to prepare hydrophilic maltose functionalized Fe3O4 nanoparticles (NPs). First, based on the chelation of the catechol ligand with iron atoms, azido-terminated dopamine (DA) derivative was assembled on the surface of magnetic Fe3O4 nanoparticles by sonication. Second, the hydrophilic maltose-functionalized Fe3O4 (Fe3O4-DA-Maltose) NPs were obtained via copper(I)-catalyzed azide-alkyne cycloaddition (click chemistry). The morphology, structure, and composition of Fe3O4-DA-Maltose NPs were investigated by Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), X-ray powder diffraction (XRD), X-ray photoelectron spectrometer (XPS), and vibrating sample magnetometer (VSM). Meanwhile, hydrophilicity of the obtained NPs was evaluated by water contact angle measurement. The hydrophilic Fe3O4-DA-Maltose NPs were applied in isolation and enrichment of glycopeptides from horseradish peroxidase (HRP), immunoglobulin (IgG) digests. The MALDI-TOF mass spectrometric analysis indicated that the novel NPs exhibited high detection sensitivity in enrichment from HRP digests at concentration as low as 0.05 ng μL(-1), a large binding capacity up to 43 mg g(-1), and good recovery for glycopeptides enrichment (85-110%). Moreover, the Fe3O4-DA-Maltose NPs were applied to enrich glycopeptides from human renal mesangial cells (HRMC) for identification of N-glycosylation sites. Finally, we identified 115 different N-linked glycopeptides, representing 93 gene products and 124 glycosylation sites in HRMC.

  14. Mapping of contact sites in complex formation between transducin and light-activated rhodopsin by covalent crosslinking: Use of a photoactivatable reagent

    PubMed Central

    Cai, Kewen; Itoh, Yoshiki; Khorana, H. Gobind

    2001-01-01

    Interaction of light-activated rhodopsin with transducin (T) is the first event in visual signal transduction. We use covalent crosslinking approaches to map the contact sites in interaction between the two proteins. Here we use a photoactivatable reagent, N-[(2-pyridyldithio)-ethyl], 4-azido salicylamide. The reagent is attached to the SH group of cytoplasmic monocysteine rhodopsin mutants by a disulfide-exchange reaction with the pyridylthio group, and the derivatized rhodopsin then is complexed with T by illumination at λ >495 nm. Subsequent irradiation of the complex at λ310 nm generates covalent crosslinks between the two proteins. Crosslinking was demonstrated between T and a number of single cysteine rhodopsin mutants. However, sites of crosslinks were investigated in detail only between T and the rhodopsin mutant S240C (cytoplasmic loop V-VI). Crosslinking occurred predominantly with Tα. For identification of the sites of crosslinks in Tα, the strategy used involved: (i) derivatization of all of the free cysteines in the crosslinked proteins with N-ethylmaleimide; (ii) reduction of the disulfide bond linking the two proteins and isolation of all of the Tα species carrying the crosslinked moiety with a free SH group; (iii) adduct formation of the latter with the N-maleimide moiety of the reagent, maleimido-butyryl-biocytin, containing a biotinyl group; (iv) trypsin degradation of the resulting Tα derivatives and isolation of Tα peptides carrying maleimido-butyryl-biocytin by avidin-agarose chromatography; and (v) identification of the isolated peptides by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. We found that crosslinking occurred mainly to two C-terminal peptides in Tα containing the amino acid sequences 310–313 and 342–345. PMID:11320237

  15. Heteromultimerization modulates P2X receptor functions through participating extracellular and C-terminal subdomains.

    PubMed

    Koshimizu, Taka-aki; Ueno, Susumu; Tanoue, Akito; Yanagihara, Nobuyuki; Stojilkovic, Stanko S; Tsujimoto, Gozoh

    2002-12-06

    P2X purinergic receptors (P2XRs) differ among themselves with respect to their ligand preferences and channel kinetics during activation, desensitization, and recovery. However, the contributions of distinct receptor subdomains to the subtype-specific behavior have been incompletely characterized. Here we show that homomeric receptors having the extracellular domain of the P2X(3) subunit in the P2X(2a)-based backbone (P2X(2a)/X(3)ex) mimicked two intrinsic functions of P2X(3)R, sensitivity to alphabeta-methylene ATP and ecto-ATPase-dependent recovery from endogenous desensitization; these two functions were localized to the N- and C-terminal halves of the P2X(3) extracellular loop, respectively. The chimeric P2X(2a)R/X(3)ex receptors also desensitized with accelerated rates compared with native P2X(2a)R, and the introduction of P2X(2) C-terminal splicing into the chimeric subunit (P2X(2b)/X(3)ex) further increased the rate of desensitization. Physical and functional heteromerization of native P2X(2a) and P2X(2b) subunits was also demonstrated. In heteromeric receptors, the ectodomain of P2X(3) was a structural determinant for ligand selectivity and recovery from desensitization, and the C terminus of P2X(2) was an important factor for the desensitization rate. Furthermore, [gamma-(32)P]8-azido ATP, a photoreactive agonist, was effectively cross-linked to P2X(3) subunit in homomeric receptors but not in heteromeric P2X(2) + P2X(3)Rs. These results indicate that heteromeric receptors formed by distinct P2XR subunits develop new functions resulting from integrative effects of the participating extracellular and C-terminal subdomains.

  16. The distribution of the anti-HIV drug, 2'3'-dideoxycytidine (ddC), across the blood-brain and blood-cerebrospinal fluid barriers and the influence of organic anion transport inhibitors.

    PubMed

    Gibbs, J E; Thomas, S A

    2002-02-01

    The brain and CSF distribution of the HIV reverse transcriptase inhibitor, 2'3'-dideoxycytidine (ddC), was investigated by the in situ brain perfusion and isolated incubated choroid plexus methods in the guinea pig. Multiple-time brain perfusions indicated that the distribution of [3H]ddC to the brain and CSF was low and the unidirectional rate constant (K(in)) for the brain uptake of this nucleoside analogue (0.52 +/- 0.10 microL/min/g) was not significantly different to that for the vascular marker, [14C]mannitol (0.44 +/- 0.09 microL/min/g). The influence of unlabelled ddC, six organic anion transport inhibitors and 3'-azido 3'-deoxythymidine (AZT) on the CNS uptake of [3H]ddC was examined in situ and in vitro. ddC, probenecid and 2,4-dichlorophenoxyacetic acid altered the distribution of [3H]ddC into the brain and choroid plexuses, indicating that the limited distribution of [3H]ddC was a result of an organic anion efflux transporter, in addition to the low lipophilicity of this drug (octanol-saline partition coefficient, 0.047 +/- 0.001). The CNS distribution was also sensitive to p-aminohippurate and deltorphin II, but not digoxin, suggesting the involvement of organic anion transporters (OAT1/OAT3-like) and organic anion transporting polypeptides (OATP1/OATPA-like). AZT did not effect the accumulation of [3H]ddC, indicating that when these nucleoside analogues are used in anti-HIV combination therapy, the CNS distribution of ddC is unchanged.

  17. Adenosine 3′,5′-cyclic monophosphate (cAMP)-dependent phosphoregulation of mitochondrial complex I is inhibited by nucleoside reverse transcriptase inhibitors

    PubMed Central

    Lund, Kaleb C.; Wallace, Kendall B.

    2008-01-01

    Nucleoside analog reverse transcriptase inhibitors (NRTI) are known to directly inhibit mitochondrial complex I activity as well as various mitochondrial kinases. Recent observations that complex I activity and superoxide production are modulated through cAMP-dependent phosphorylation suggests a mechanism through which NRTIs may affect mitochondrial respiration via kinase-dependent protein phosphorylation. In the current study we examine the potential for NRTIs to inhibit the cAMP-dependent phosphorylation of complex I and the associated NADH:CoQ oxidoreductase activities and rates of superoxide production using HepG2 cells. Phosphoprotein staining of immunocaptured complex I revealed that 3′-azido-3′-deoxythymidine (AZT; 10 and 50 μM), AZT monophosphate (150 μM), and 2′,3′-dideoxycytidine (ddC; 1μM) prevented the phosphorylation of the NDUFB11 subunit of complex I. This was associated with a decrease in complex I activity with AZT and AZT monophosphate only. In the presence of succinate, superoxide production was increased with 2′,3′-dideoxyinosine (ddI; 10 μM) and ddC (1 μM). In the presence of succinate + cAMP AZT showed an inverse dose-dependent effect on superoxide production. None of the NRTIs examined inhibit PKA activity suggesting that the observed effects are due to a direct interaction with complex I. These data demonstrate a direct effect of NRTIs on cAMP-dependent regulation of mitochondrial bioenergetics independent of DNA polymerase-γ activity; in the case of AZT these observations may provide a mechanism for the observed long-term toxicity with this drug. PMID:17904600

  18. Topology of subunits of the mammalian cytochrome c oxidase: Relationship to the assembly of the enzyme complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu-Zhong Zhang; Ewart, G.; Capaldi, R.A.

    The arrangement of three subunits of beef heart cytochrome c oxidase, subunits Va, VIa, and VIII, has been explored by chemical labeling and protease digestion studies. Subunit Va is an extrinsic protein located on the C side of the mitochondrial inner membrane. This subunit was found to label with N-(4-azido-2-nitrophenyl)-2-aminoethane({sup 35}S)sulfonate and sodium methyl 4-({sup 3}H)formylphenyl phosphate in reconstituted vesicles in which 90% of cytochrome c oxidase complexes were oriented with the C domain outermost. Subunit VIa was cleaved by trypsin both in these reconstituted vesicles and in submitochondrial particles, indicating a transmembrane orientation. The epitope for a monoclonal antibodymore » (mAb) to subunit VIa was lost or destroyed when cleavage occurred in reconstituted vesicles. This epitope was localized to the C-terminal part of the subunit by antibody binding to a fusion protein consisting of glutathione S-transferase (G-ST) and the C-terminal amino acids 55-85 of subunit VIa. No antibody binding was obtained with a fusion protein containing G-ST and the N-terminal amino acids 1-55. The mAb reaction orients subunit VIa with its C-terminus in the C-domain. Subunit VIII was cleaved by trypsin in submitochondrial particles but not in reconstituted vesicles. N-Terminal sequencing of the subunit VIII cleavage produce from submitochondrial particles gave the same sequence as the untreated subunit, i.e., ITA, indicating that it is the C-terminus which is cleaved from the M side. Subunits Va and VIII each contain N-terminal extensions or leader sequences in the precursor polypeptides; subunit VIa is made without an N-terminal extension.« less

  19. Theranostic Value of Multimers: Lessons Learned from Trimerization of Neurotensin Receptor Ligands and Other Targeting Vectors

    PubMed Central

    Maschauer, Simone; Einsiedel, Jürgen; Reich, Dominik; Hübner, Harald; Gmeiner, Peter; Wester, Hans-Jürgen; Prante, Olaf; Notni, Johannes

    2017-01-01

    Neurotensin receptor 1 (NTS1) is overexpressed on a variety of cancer entities; for example, prostate cancer, ductal pancreatic adenocarcinoma, and breast cancer. Therefore, it represents an interesting target for the diagnosis of these cancers types by positron emission tomography (PET). The metabolically-stabilized neurotensin (NT) derivative peptide Nlys8-Lys9-Pro10-Tyr11-Tle12-Leu13-OH was elongated at the N-terminus with 6-azido norleucine and coupled with the 1,4,7-triazacyclononane-1,4,7-tris[(2-carboxyethyl)methylenephosphinic acid] (TRAP) chelator TRAP(alkyne)3 in order to synthesize a NT trimer with subnanomolar affinity and high stability. The 68Ga-labeled peptide [68Ga]Ga-TRAP(NT4)3 was characterized in vitro using the NTS1-expressing human colorectal adenocarcinoma cell line HT29. It displayed fast and high internalization rates of >90%, but also fast efflux rates of 50% over 15 min. In vivo, [68Ga]Ga-TRAP(NT4)3 showed moderate HT29 tumor uptake values of 1.7 %ID/g at 60 min post-injection (p.i.), but also high uptake and retention in the kidneys and liver. A comparison of data for trimer/monomer pairs of NT ligands and other targeting vectors (peptides and peptoids targeting integrins αvβ3, α5β1, and αvβ6, the PSMA-ligand DUPA (2-[3-(1,3-dicarboxypropyl)-ureido]pentanedioic acid), and nitroimidazoles targeting hypoxia) revealed that multimers always exhibit higher target affinities and tumor uptake, but not necessarily improved tumor-to-tissue ratios. Thus, although in vitro data are not suitable for prediction of in vivo performance, multimers are potentially superior to monomers, particularly for applications where high tumor accumulation is crucial. PMID:28287433

  20. The role of ω-subunit of Escherichia coli RNA polymerase in stress response.

    PubMed

    Bhardwaj, Neerupma; Syal, Kirtimaan; Chatterji, Dipankar

    2018-05-01

    ppGpp, an alarmone for stringent response, plays an important role in the reprogramming of the transcription complex at the time of stress. In Escherichia coli, ppGpp mediates its action by binding to at least two different sites on RNA polymerase (RNAP). One of the sites to which ppGpp binds to RNAP is at the β'-ω interface; however, the underlying molecular mechanism and the physiological relevance of ppGpp binding to this site remain unclear. In this study, we have performed UV cross-linking experiments using 32 P azido-labeled ppGpp to probe its association with RNAP in the absence and presence of ω, and observed weaker binding of ppGpp to the RNAP without ω. Furthermore, we followed the binding kinetics of ppGpp to RNAP with and without ω by isothermal titration calorimetry and found it to be concurrent with the cross-linking results. Native ω is intrinsically disordered, and we have used a previously characterized structured mutant of ω, which affects the plasticity of the active site of RNAP. Results show that the flexibility conferred by the unstructured ω is a prerequisite for ppGpp binding to RNAP. We have analyzed the stress-associated phenotypes in an E. coli strain devoid of ω (∆rpoZ). ppGpp levels in ∆rpoZ strain were found to be similar to that of the wild-type strain. Interestingly, when the ∆rpoZ strain of E. coli was transferred after nutritional stress to an enriched media, the recovery of growth was compromised. We have identified a new phenotype of ∆rpoZ strain corresponding to defect in biofilm formation in minimal media. © 2018 Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd.

  1. Polyphosphoester-Camptothecin Prodrug with Reduction-Response Prepared via Michael Addition Polymerization and Click Reaction.

    PubMed

    Du, Xueqiong; Sun, Yue; Zhang, Mingzu; He, Jinlin; Ni, Peihong

    2017-04-26

    Polyphosphoesters (PPEs), as potential candidates for biocompatible and biodegradable polymers, play an important role in material science. Various synthetic methods have been employed in the preparation of PPEs such as polycondensation, polyaddition, ring-opening polymerization, and olefin metathesis polymerization. In this study, a series of linear PPEs has been prepared via one-step Michael addition polymerization. Subsequently, camptothecin (CPT) derivatives containing disulfide bonds and azido groups were linked onto the side chain of the PPE through Cu(I)-catalyzed azidealkyne cyclo-addition "click" chemistry to yield a reduction-responsive polymeric prodrug P(EAEP-PPA)-g-ss-CPT. The chemical structures were characterized by nuclear magnetic resonance spectroscopy, gel permeation chromatography, Fourier transform infrared, ultraviolet-visible spectrophotometer, and high performance liquid chromatograph analyses, respectively. The amphiphilic prodrug could self-assemble into micelles in aqueous solution. The average particle size and morphology of the prodrug micelles were measured by dynamic light scattering and transmission electron microscopy, respectively. The results of size change under different conditions indicate that the micelles possess a favorable stability in physiological conditions and can be degraded in reductive medium. Moreover, the studies of in vitro drug release behavior confirm the reduction-responsive degradation of the prodrug micelles. A methyl thiazolyl tetrazolium assay verifies the good biocompatibility of P(EAEP-PPA) not only for normal cells, but also for tumor cells. The results of cytotoxicity and the intracellular uptake about prodrug micelles further demonstrate that the prodrug micelles can efficiently release CPT into 4T1 or HepG2 cells to inhibit the cell proliferation. All these results show that the polyphosphoester-based prodrug can be used for triggered drug delivery system in cancer treatment.

  2. The mouse lymphoma assay detects recombination, deletion, and aneuploidy.

    PubMed

    Wang, Jianyong; Sawyer, Jeffrey R; Chen, Ling; Chen, Tao; Honma, Masamitsu; Mei, Nan; Moore, Martha M

    2009-05-01

    The mouse lymphoma assay (MLA) uses the thymidine kinase (Tk) gene of the L5178Y/Tk(+/-)-3.7.2C mouse lymphoma cell line as a reporter gene to evaluate the mutagenicity of chemical and physical agents. The MLA is recommended by both the United States Food and Drug Administration and the United States Environmental Protection Agency as the preferred in vitro mammalian cell mutation assay for genetic toxicology screening because it detects a wide range of genetic alterations, including both point mutations and chromosomal mutations. However, the specific types of chromosomal mutations that can be detected by the MLA need further clarification. For this purpose, three chemicals, including two clastogens and an aneugen (3'-azido-3'-deoxythymidine, mitomycin C, and taxol), were used to induce Tk mutants. Loss of heterozygosity (LOH) analysis was used to select mutants that could be informative as to whether they resulted from deletion, mitotic recombination, or aneuploidy. A combination of additional methods, G-banding analysis, chromosome painting, and a real-time PCR method to detect the copy number (CN) of the Tk gene was then used to provide a detailed analysis. LOH involving at least 25% of chromosome 11, a normal karyotype, and a Tk CN of 2 would indicate that the mutant resulted from recombination, whereas LOH combined with a karyotypically visible deletion of chromosome 11 and a Tk CN of 1 would indicate a deletion. Aneuploidy was confirmed using G-banding combined with chromosome painting analysis for mutants showing LOH at every microsatellite marker on chromosome 11. From this analysis, it is clear that mouse lymphoma Tk mutants can result from recombination, deletion, and aneuploidy.

  3. Initial mechanisms for the decomposition of electronically excited energetic materials: 1,5′-BT, 5,5′-BT, and AzTT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan, Bing; Yu, Zijun; Bernstein, Elliot R., E-mail: erb@lamar.Colostate.edu

    2015-03-28

    Decomposition of nitrogen-rich energetic materials 1,5′-BT, 5,5′-BT, and AzTT (1,5′-Bistetrazole, 5,5′-Bistetrazole, and 5-(5-azido-(1 or 4)H-1,2,4-triazol-3-yl)tetrazole, respectively), following electronic state excitation, is investigated both experimentally and theoretically. The N{sub 2} molecule is observed as an initial decomposition product from the three materials, subsequent to UV excitation, with a cold rotational temperature (<30 K). Initial decomposition mechanisms for these three electronically excited materials are explored at the complete active space self-consistent field (CASSCF) level. Potential energy surface calculations at the CASSCF(12,8)/6-31G(d) level illustrate that conical intersections play an essential role in the decomposition mechanism. Electronically excited S{sub 1} molecules can non-adiabatically relaxmore » to their ground electronic states through (S{sub 1}/S{sub 0}){sub CI} conical intersections. 1,5′-BT and 5,5′-BT materials have several (S{sub 1}/S{sub 0}){sub CI} conical intersections between S{sub 1} and S{sub 0} states, related to different tetrazole ring opening positions, all of which lead to N{sub 2} product formation. The N{sub 2} product for AzTT is formed primarily by N–N bond rupture of the –N{sub 3} group. The observed rotational energy distributions for the N{sub 2} products are consistent with the final structures of the respective transition states for each molecule on its S{sub 0} potential energy surface. The theoretically derived vibrational temperature of the N{sub 2} product is high, which is similar to that found for energetic salts and molecules studied previously.« less

  4. Garlic oil polysulfides: H2S- and O2-independent prooxidants in buffer and antioxidants in cells.

    PubMed

    DeLeon, Eric R; Gao, Yan; Huang, Evelyn; Olson, Kenneth R

    2016-06-01

    The health benefits of garlic and other organosulfur-containing foods are well recognized and have been attributed to both prooxidant and antioxidant activities. The effects of garlic are surprisingly similar to those of hydrogen sulfide (H2S), which is also known to be released from garlic under certain conditions. However, recent evidence suggests that polysulfides, not H2S, may be the actual mediator of physiological signaling. In this study, we monitored formation of H2S and polysulfides from garlic oil in buffer and in human embryonic kidney (HEK) 293 cells with fluorescent dyes, 7-azido-4-methylcoumarin and SSP4, respectively and redox activity with two redox indicators redox-sensitive green fluorescent protein (roGFP) and DCF. Our results show that H2S release from garlic oil in buffer requires other low-molecular-weight thiols, such as cysteine (Cys) or glutathione (GSH), whereas polysulfides are readily detected in garlic oil alone. Administration of garlic oil to cells rapidly increases intracellular polysulfide but has minimal effects on H2S unless Cys or GSH are also present in the extracellular medium. We also observed that garlic oil and diallyltrisulfide (DATS) potently oxidized roGFP in buffer but did not affect DCF. This appears to be a direct polysulfide-mediated oxidation that does not require a reactive oxygen species intermediate. Conversely, when applied to cells, garlic oil became a significant intracellular reductant independent of extracellular Cys or GSH. This suggests that intracellular metabolism and further processing of the sulfur moieties are necessary to confer antioxidant properties to garlic oil in vivo. Copyright © 2016 the American Physiological Society.

  5. Site-specific antibody-liposome conjugation through copper-free click chemistry: a molecular biology approach for targeted photodynamic therapy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Obaid, Girgis; Wang, Yucheng; Kuriakose, Jerrin; Broekgaarden, Mans; Alkhateeb, Ahmed; Bulin, Anne-Laure; Hui, James; Tsourkas, Andrew; Hasan, Tayyaba

    2016-03-01

    Nanocarriers, such as liposomes, have the ability to potentiate photodynamic therapy (PDT) treatment regimens by the encapsulation of high payloads of photosensitizers and enhance their passive delivery to tumors through the enhanced permeability and retention effect. By conjugating targeting moieties to the surface of the liposomal nanoconstructs, cellular selectivity is imparted on them and PDT-based therapies can be performed with significantly higher dose tolerances, as off-target toxicity is simultaneously reduced.1 However, the maximal benefits of conventional targeted nanocarriers, including liposomes, are hindered by practical limitations including chemical instability, non-selective conjugation chemistry, poor control over ligand orientation, and loss of ligand functionality following conjugation, amongst others.2 We have developed a robust, physically and chemically stable liposomal nanoplatform containing benzoporphyrin derivative photosensitizer molecules within the phospholipid bilayer and an optimized surface density of strained cyclooctyne moieties for `click' conjugation to azido-functionalized antibodies.3 The clinical chimeric anti-EGFR antibody Cetuximab is site-specifically photocrosslinked to a recombinant bioengineered that recognizes the antibody's Fc region, containing a terminal azide.4 The copper-free click conjugation of the bioengineered Cetuximab derivative to the optimized photosensitizing liposome provides exceptional control over the antibody's optimal orientation for cellular antigen binding. Importantly, the reaction occurs rapidly under physiological conditions, bioorthogonally (selectively in the presence of other biomolecules) and without the need for toxic copper catalysis.3 Such state-of-the-art conjugation strategies push the boundaries of targeted photodynamic therapy beyond the limitations of traditional chemical coupling techniques to produce more robust and effective targeted therapeutics with applications beyond conventional treatments.

  6. TUNGSTEN BRONZE RELATED NON-NOBLE ELECTROCATALYSTS.

    DTIC Science & Technology

    FUEL CELLS, *CATALYSTS), (*OXYGEN, *ELECTRODES), (* SILICIDES , ELECTRODES), (*CARBIDES, ELECTRODES), (*TUNGSTEN COMPOUNDS, *ELECTROCHEMISTRY...CATALYSTS, TITANIUM COMPOUNDS, ZIRCONIUM COMPOUNDS, VANADIUM COMPOUNDS, NIOBIUM COMPOUNDS, TUNGSTEN COMPOUNDS, TANTALUM COMPOUNDS, MOLYBDENUM COMPOUNDS, SULFURIC ACID, CRYSTAL GROWTH, SODIUM COMPOUNDS

  7. Investigation of the physicochemical and physicomechanical properties of a novel intravaginal bioadhesive polymeric device in the pig model.

    PubMed

    Ndesendo, Valence M K; Pillay, Viness; Choonara, Yahya E; du Toit, Lisa C; Buchmann, Eckhart; Meyer, Leith C R; Khan, Riaz A; Rosin, Uwe

    2010-06-01

    The purpose of this study was to develop and evaluate the bioadhesivity, in vitro drug release, and permeation of an intravaginal bioadhesive polymeric device (IBPD) loaded with 3'-azido-3'-deoxythymidine (AZT) and polystyrene sulfonate (PSS). Modified polyamide 6,10, poly(lactic-coglycolic acid), polyacrylic acid, polyvinyl alcohol, and ethylcellulose were blended with model drugs AZT and PSS as well as radio-opaque barium sulfate (BaSO4) and then compressed into caplet devices on a tableting press. One set of devices was coated with 2% w/v pentaerythritol polyacrylic acid (APE-PAA) while another remained uncoated. Thermal analysis was performed on the constituent polymers as well the IBPD. The changes in micro-environmental pH within the simulated human vaginal fluid due to the presence of the IBPD were assessed over a period of 30 days. Textural profile analysis indicated that the bioadhesivity of the APE-PAA-coated devices (3.699 +/- 0.464 N; 0.0098 +/- 0.0004 J) was higher than that of the uncoated devices (1.198 +/- 0.150 N; 0.0019 +/- 0.0001 J). In addition, BaSO4-facilitated X-ray imaging revealed that the IBPD adhered to pig vaginal tissue over the experimental period of 30 days. Controlled drug release kinetics was obtained over 72 days. During a 24-h permeation study, an increase in drug flux for both AZT (0.84 mg cm(-2) h(-1)) and PSS (0.72 mg cm(-2) h(-1)) was realized up to 12 h and thereafter a steady-state was achieved. The diffusion and dissolution dynamics were mechanistically deduced based on a chemometric and molecular structure modeling approach. Overall, results suggested that the IBPD may be sufficiently bioadhesive with desirable physicochemical and physicomechanical stability for use as a prolonged intravaginal drug delivery device.

  8. AZT-induced mitochondrial toxicity: an epigenetic paradigm for dysregulation of gene expression through mitochondrial oxidative stress.

    PubMed

    Koczor, Christopher A; Jiao, Zhe; Fields, Earl; Russ, Rodney; Ludaway, Tomika; Lewis, William

    2015-10-01

    Mitochondrial dysfunction causes oxidative stress and cardiomyopathy. Oxidative stress also is a side effect of dideoxynucleoside antiretrovirals (NRTI) and is observed in NRTI-induced cardiomyopathy. We show here that treatment with the NRTI AZT {1-[(2R,4S,5S)-4-azido-5-(hydroxymethyl)oxolan-2-yl]-5-methylpyrimidine-2,4-dione} modulates cardiac gene expression epigenetically through production of mitochondrially derived reactive oxygen species. Transgenic mice with ubiquitous expression of mitochondrially targeted catalase (MCAT) and C57Bl/6 wild-type mice littermates (WT) were administered AZT (0.22 mg/day po, 35 days), and cardiac DNA and mRNA were isolated. In AZT-treated WT, 95 cardiac genes were differentially expressed compared with vehicle-treated WTs. When MCAT mice were treated with AZT, each of those 95 genes reverted toward the expression of vehicle-treated WTs. In AZT-treated WT hearts, Mthfr [5,10-methylenetetrahydrofolate reductase; a critical enzyme in synthesis of methionine cycle intermediates including S-adenosylmethionine (SAM)], was overexpressed. Steady-state abundance of SAM in cardiac extracts from AZT-treated MCAT mice increased 60% above that of vehicle-treated MCAT. No such change occurred in WT. AZT caused hypermethylation (47%) and hypomethylation (53%) of differentially methylated DNA regions in WT cardiac DNA. AZT-treated MCAT heart DNA exhibited greater hypermethylation (91%) and less hypomethylation (9%) compared with vehicle-treated MCAT controls. The gene encoding protein kinase C-α displayed multifocal epigenetic regulation caused by oxidative stress. Results show that mitochondrially derived oxidative stress in the heart hinders cardiac DNA methylation, alters steady-state abundance of SAM, alters cardiac gene expression, and promotes characteristic pathophysiological changes of cardiomyopathy. This mechanism for NRTI toxicity offers insight into long-term side effects from these commonly used antiviral agents. Copyright © 2015 the American Physiological Society.

  9. Synthesis and pharmacological evaluation of neurosteroid photoaffinity ligands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Savechenkov, Pavel Y.; Chiara, David C.; Desai, Rooma

    2017-08-01

    Neuroactive steroids are potent positive allosteric modulators of GABAA receptors (GABAAR), but the locations of their GABAAR binding sites remain poorly defined. To discover these sites, we synthesized two photoreactive analogs of alphaxalone, an anesthetic neurosteroid targeting GABAAR, 11β-(4-azido-2,3,5,6-tetrafluorobenzoyloxy)allopregnanolone, (F4N3Bzoxy-AP) and 11-aziallopregnanolone (11-AziAP). Both photoprobes acted with equal or higher potency than alphaxalone as general anesthetics and potentiators of GABAAR responses, left-shifting the GABA concentration – response curve for human α1β3γ2 GABAARs expressed in Xenopus oocytes, and enhancing [3H]muscimol binding to α1β3γ2 GABAARs expressed in HEK293 cells. With EC50 of 110 nM, 11-AziAP is one the most potent general anestheticsmore » reported. [3H]F4N3Bzoxy-AP and [3H]11-AziAP, at anesthetic concentrations, photoincorporated into α- and β-subunits of purified α1β3γ2 GABAARs, but labeling at the subunit level was not inhibited by alphaxalone (30 μM). The enhancement of photolabeling by 3H-azietomidate and 3H-mTFD-MPAB in the presence of either of the two steroid photoprobes indicates the neurosteroid binding site is different from, but allosterically related to, the etomidate and barbiturate sites. Our observations are consistent with two hypotheses. First, F4N3Bzoxy-AP and 11-aziAP bind to a high affinity site in such a pose that the 11-photoactivatable moiety, that is rigidly attached to the steroid backbone, points away from the protein. Second, F4N3Bzoxy-AP, 11-aziAP and other steroid anesthetics, which are present at very high concentration at the lipid-protein interface due to their high lipophilicity, act via low affinity sites, as proposed by Akk et al. (Psychoneuroendocrinology 2009, 34S1, S59-S66).« less

  10. The A-chain of insulin contacts the insert domain of the insulin receptor. Photo-cross-linking and mutagenesis of a diabetes-related crevice.

    PubMed

    Huang, Kun; Chan, Shu Jin; Hua, Qing-xin; Chu, Ying-Chi; Wang, Run-ying; Klaproth, Birgit; Jia, Wenhua; Whittaker, Jonathan; De Meyts, Pierre; Nakagawa, Satoe H; Steiner, Donald F; Katsoyannis, Panayotis G; Weiss, Michael A

    2007-11-30

    The contribution of the insulin A-chain to receptor binding is investigated by photo-cross-linking and nonstandard mutagenesis. Studies focus on the role of Val(A3), which projects within a crevice between the A- and B-chains. Engineered receptor alpha-subunits containing specific protease sites ("midi-receptors") are employed to map the site of photo-cross-linking by an analog containing a photoactivable A3 side chain (para-azido-Phe (Pap)). The probe cross-links to a C-terminal peptide (residues 703-719 of the receptor A isoform, KTFEDYLHNVVFVPRPS) containing side chains critical for hormone binding (underlined); the corresponding segment of the holoreceptor was shown previously to cross-link to a Pap(B25)-insulin analog. Because Pap is larger than Val and so may protrude beyond the A3-associated crevice, we investigated analogs containing A3 substitutions comparable in size to Val as follows: Thr, allo-Thr, and alpha-aminobutyric acid (Aba). Substitutions were introduced within an engineered monomer. Whereas previous studies of smaller substitutions (Gly(A3) and Ser(A3)) encountered nonlocal conformational perturbations, NMR structures of the present analogs are similar to wild-type insulin; the variant side chains are accommodated within a native-like crevice with minimal distortion. Receptor binding activities of Aba(A3) and allo-Thr(A3) analogs are reduced at least 10-fold; the activity of Thr(A3)-DKP-insulin is reduced 5-fold. The hormone-receptor interface is presumably destabilized either by a packing defect (Aba(A3)) or by altered polarity (allo-Thr(A3) and Thr(A3)). Our results provide evidence that Val(A3), a site of mutation causing diabetes mellitus, contacts the insert domain-derived tail of the alpha-subunit in a hormone-receptor complex.

  11. Neighborhood of 16S rRNA nucleotides U788/U789 in the 30S ribosomal subunit determined by site-directed crosslinking.

    PubMed

    Mundus, D; Wollenzien, P

    1998-11-01

    Site-specific photo crosslinking has been used to investigate the RNA neighborhood of 16S rRNA positions U788/ U789 in Escherichia coli 30S subunits. For these studies, site-specific psoralen (SSP) which contains a sulfhydryl group on a 17 A side chain was first added to nucleotides U788/U789 using a complementary guide DNA by annealing and phototransfer. Modified RNA was purified from the DNA and unmodified RNA. For some experiments, the SSP, which normally crosslinks at an 8 A distance, was derivitized with azidophenacylbromide (APAB) resulting in the photoreactive azido moiety at a maximum of 25 A from the 4' position on psoralen (SSP25APA). 16S rRNA containing SSP, SSP25APA or control 16S rRNA were reconstituted and 30S particles were isolated. The reconstituted subunits containing SSP or SSP25APA had normal protein composition, were active in tRNA binding and had the usual pattern of chemical reactivity except for increased kethoxal reactivity at G791 and modest changes in four other regions. Irradiation of the derivatized 30S subunits in activation buffer produced several intramolecular RNA crosslinks that were visualized and separated by gel electrophoresis and characterized by primer extension. Four major crosslink sites made by the SSP reagent were identified at positions U561/U562, U920/U921, C866 and U723; a fifth major crosslink at G693 was identified when the SSP25APA reagent was used. A number of additional crosslinks of lower frequency were seen, particularly with the APA reagent. These data indicate a central location close to the decoding region and central pseudoknot for nucleotides U788/U789 in the activated 30S subunit.

  12. An In Vivo Photo-Cross-Linking Approach Reveals a Homodimerization Domain of Aha1 in S. cerevisiae

    PubMed Central

    Berg, Michael; Michalowski, Annette; Palzer, Silke; Rupp, Steffen; Sohn, Kai

    2014-01-01

    Protein-protein interactions play an essential role in almost any biological processes. Therefore, there is a particular need for methods which describe the interactions of a defined target protein in its physiological context. Here we report a method to photo-cross-link interacting proteins in S. cerevisiae by using the non-canonical amino acid p-azido-L-phenylalanine (pAzpa). Based on the expanded genetic code the photoreactive non-canonical amino acid pAzpa was site-specifically incorporated at eight positions into a domain of Aha1 that was previously described to bind Hsp90 in vitro to function as a cochaperone of Hsp90 and activates its ATPase activity. In vivo photo-cross-linking to the cognate binding partner of Aha1 was carried out by irradiation of mutant strains with UV light (365 nm) to induce covalent intermolecular bonds. Surprisingly, an interaction between Aha1 and Hsp90 was not detected, although, we could confirm binding of suppressed pAzpa containing Aha1 to Hsp90 by native co-immunoprecipitation. However, a homodimer consisting of two covalently crosslinked Aha1 monomers was identified by mass spectrometry. This homodimer could also be confirmed using p-benzoyl-L-phenylalanine, another photoreactive non-canonical amino acid. Crosslinking was highly specific as it was dependent on irradiation using UV light, the exact position of the non-canonical amino acid in the protein sequence as well as on the addition of the non-canonical amino acid to the growth medium. Therefore it seems possible that an interaction of Aha1 with Hsp90 takes place at different positions than previously described in vitro highlighting the importance of in vivo techniques to study protein-protein interactions. Accordingly, the expanded genetic code can easily be applied to other S. cerevisiae proteins to study their interaction under physiological relevant conditions in vivo. PMID:24614167

  13. The nicotinic acetylcholine receptor: Binding of nitroxide analogs of a local anesthetic and a photoactivatable analog of phosphatidylserine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blanton, M.P.

    1989-01-01

    Electron spin resonance was used to contrast the accessibility of tertiary and quaternary amine local anesthetics to their high affinity binding site in the desensitized Torpedo californica acetylcholine receptor (AchR). Preincubation of AchR-rich membranes with agonist resulted in a substantial reduction in the initial association of the quaternary amine local anesthetic C6SLMEI with the receptor. The time-dependent reduction in association follows a biphasic exponential function having rate constants of 0.19 min{sup {minus}1} and 0.03 min{sup {minus}1}. In contrast, agonist preincubation did not produce a comparable decrease in the association of C6SL, a tertiary amine analog, with the AchR. The resultsmore » are modeled in two ways: (1) A charge gate near the channel mouth in the desensitized receptor limits access of the permanently charged cationic local anesthetic (C6SLMEI), but not for the uncharged form of the tertiary amine anesthetic C6SL. (2) A hydrophobic pathway, possibly through a corridor in the annular lipid surrounding receptor subunits, allows the uncharged form of C6SL to reach the high affinity binding site in the AchR. A photoactivatable analog of phosphatidylserine {sup 125}I 4-azido salicylic acid-phosphatidylserine ({sup 125}I ASA-PS) was use to label both Torpedo californica acetylcholine receptor-rich membranes and reconstituted AchR membranes. All four subunits of the AchR were found to incorporate label, with the {alpha} subunit incorporating approximately twice as much as each of the other subunits on a per mole basis. The regions of the AchR {alpha} subunit that incorporate {sup 125}I ASA-PS were mapped by Staphylococcus aureus V8 protease digestion. Eighty-one per cent of the incorporated label was localized to 11.7 and 10.1 kdal V8 cleavage fragments.« less

  14. Pharmacists' Perceptions of the Economic Value of Compounded Pharmaceuticals: A Comparison of Compounded and Commercial Pharmaceuticals in Select Disease States.

    PubMed

    Lobb, William B; Wilkin, Noel E; Holmes, Erin R

    2015-01-01

    Studies have been conducted to assess patient satisfaction with compounded pharmaceuticals and to directly compare compounded pharmaceuticals with their comparable commercial pharmaceuticals. Yet, the economic value of or potential for economic value derived from compounded pharmaceuticals relative to commercial pharmaceuticals is still not known. Therefore, the purpose of this study was to assess and compare compounding and non-compounding pharmacists' perceptions of the economic value of compounded preparations relative to commercial products. In-depth interviews with 10 compounding pharmacists and physicians who prescribe compounded prescription pharmaceutical preparations were conducted to help develop a self-administered questionnaire distributed to 50 compounding and 50 non-compounding pharmacists. Compounding and non-compounding pharmacists' perceptions differed most often in the context of compounded pharmaceuticals for pediatric patients. However, both groups responded with moderate agreement that compounded prescription treatments are more profitable for the pharmacy than commercial prescription treatments in most therapeutic areas. This research sought to understand the perception of pharmacists of areas for potential direct and indirect economic cost savings as a result of compounding. For all items whereby compounding and non-compounding pharmacists' ratings were significantly different, compounding pharmacists more strongly believed that compounding pharmaceuticals offered benefit and vice versa. The differences in ratings that were most common were those that directly compared the economic value of compounding and commercial pharmaceuticals, with compounding pharmacists more strongly agreeing with the potential cost savings associated with compounded pharmaceuticals. Based on these findings, prescription compounds are believed to have a benefit to the health system by those who provide them. Future research should proactively explore the economic benefit of compounded preparations compared to conventionally manufactured products to determine the economic value of compounded pharmaceuticals for patients, pharmacies, physicians, and the healthcare system.

  15. Energy efficient synthesis of boranes

    DOEpatents

    Thorn, David L [Los Alamos, NM; Tumas, William [Los Alamos, NM; Schwarz, Daniel E [Los Alamos, NM; Burrell, Anthony K [Los Alamos, NM

    2012-01-24

    The reaction of halo-boron compounds (B--X compounds, compounds having one or more boron-halogen bonds) with silanes provides boranes (B--H compounds, compounds having one or more B--H bonds) and halosilanes. Inorganic hydrides, such as surface-bound silane hydrides (Si--H) react with B--X compounds to form B--H compounds and surface-bound halosilanes. The surface bound halosilanes are converted back to surface-bound silanes electrochemically. Halo-boron compounds react with stannanes (tin compounds having a Sn--H bond) to form boranes and halostannanes (tin compounds having a Sn--X bond). The halostannanes are converted back to stannanes electrochemically or by the thermolysis of Sn-formate compounds. When the halo-boron compound is BCl.sub.3, the B--H compound is B.sub.2H.sub.6, and where the reducing potential is provided electrochemically or by the thermolysis of formate.

  16. Energy efficient synthesis of boranes

    DOEpatents

    Thorn, David L.; Tumas, William; Schwarz, Daniel E.; Burrell, Anthony K.

    2010-11-23

    The reaction of halo-boron compounds (B--X compounds, compounds having one or more boron-halogen bonds) with silanes provides boranes (B--H compounds, compounds having one or more B--H bonds) and halosilanes. Inorganic hydrides, such as surface-bound silane hydrides (Si--H) react with B--X compounds to form B--H compounds and surface-bound halosilanes. The surface bound halosilanes are converted back to surface-bound silanes electrochemically. Halo-boron compounds react with stannanes (tin compounds having a Sn--H bond) to form boranes and halostannanes (tin compounds having a Sn--X bond). The halostannanes are converted back to stannanes electrochemically or by the thermolysis of Sn-formate compounds. When the halo-boron compound is BCl.sub.3, the B--H compound is B.sub.2H.sub.6, and where the reducing potential is provided electrochemically or by the thermolysis of formate.

  17. Arylglycerol-γ-Formyl Ester as an Aromatic Ring Cleavage Product of Nonphenolic β-O-4 Lignin Substructure Model Compounds Degraded by Coriolus versicolor†

    PubMed Central

    Kawai, Shingo; Umezawa, Toshiaki; Higuchi, Takayoshi

    1985-01-01

    4-Ethoxy-3-methoxyphenylglycerol-γ-formyl ester (compound IV) was identified as a degradation product of both 4-ethoxy-3-methoxyphenylglycerol-β-syringaldehyde ether (compound I) and 4-ethoxy-3-methoxyphenylglycerol-β-2,6-dimethoxyphenyl ether (compound II) by a ligninolytic culture of Coriolus versicolor. An isotopic experiment with a 13C-labeled compound (compound II′) indicated that the formyl group of compound IV was derived from the β-phenoxyl group of β-O-4 dimer as an aromatic ring cleavage fragment. However, compound IV was not formed from 4-ethoxy-3-methoxyphenylglycerol-β-guaiacyl ether (compound III). γ-Formyl arylglycerol (compound IV) could be a precursor of 4-ethoxy-3-methoxyphenylglycerol (compound VI), because 3-(4-ethoxy-3-methoxyphenyl)-1-formyloxy propane (compound VII) was cleaved to give 3-(4-ethoxy-3-methoxyphenyl)-1-propanol (compound VIII) by C. versicolor. 4-Ethoxy-3-methoxyphenylglycerol-β,γ-cyclic carbonate (compound V), previously found as a degradation product of compound III by Phanerochaete chrysosporium (T. Umezawa, and T. Higuchi, FEBS Lett., 25:123-126, 1985), was also identified from the cultures with compound I, II, and III and degraded to give the arylglycerol (compound VI). An isotopic experiment with 13C-labeled compounds II′ and III′ indicated that the carbonate carbon of compound V was derived from the β-phenoxyl groups of β-O-4 substructure. PMID:16346950

  18. Developing a novel dual PI3K–mTOR inhibitor from the prodrug of a metabolite

    PubMed Central

    Zhou, Yan; Zhang, Genyan; Wang, Feng; Wang, Jin; Ding, Yanwei; Li, Xinyu; Shi, Chongtie; Li, Jiakui; Shih, Chengkon; You, Song

    2017-01-01

    This study presents a process of developing a novel PI3K–mTOR inhibitor through the prodrug of a metabolite. The lead compound (compound 1) was identified with similar efficacy as that of NVP-BEZ235 in a tumor xenograft model, but the exposure of compound 1 was much lower than that of NVP-BEZ235. After reanalysis of the blood sample, a major metabolite (compound 2) was identified. Compound 2 exerted similar in vitro activity as compound 1, which indicated that compound 2 was an active metabolite and that the in vivo efficacy in the animal model came from compound 2 instead of compound 1. However, compound 1 was metabolized into compound 2 predominantly in the liver microsomes of mouse, but not in the liver microsomes of rat, dog, or human. In order to translate the efficacy in the animal model into clinical development or predict the pharmacokinetic/pharmacodynamic parameters in the clinical study using a preclinical model, we developed the metabolite (compound 2) instead of compound 1. Due to the low bioavailability of compound 2, its prodrug (compound 3) was designed and synthesized to improve the solubility. The prodrug was quickly converted to compound 2 through both intravenous and oral administrations. Because the prodrug (compound 3) did not improve the oral exposure of compound 2, developing compound 3 as an intravenous drug was considered by our team, and the latest results will be reported in the future. PMID:29118584

  19. THE DIFFERENTIAL THERMAL ANALYSIS OF CYANO-TRANSITION METAL COMPLEXES

    DTIC Science & Technology

    COMPOUNDS, CHROMATES, COBALT COMPOUNDS, CYANIDES, CYANOGEN, DYES, FERRATES , GASES, HEAT, HYDROXIDES, LITHIUM COMPOUNDS, MOLYBDATES, NICKELATES, NITRATES...OXIDATION REDUCTION REACTIONS, POTASSIUM COMPOUNDS, SILVER COMPOUNDS, SODIUM COMPOUNDS, VANADATES

  20. Preparation of cuxinygazsen precursor films and powders by electroless deposition

    DOEpatents

    Bhattacharya, Raghu N.; Batchelor, Wendi Kay; Wiesner, Holm; Ramanathan, Kannan; Noufi, Rommel

    1999-01-01

    A method for electroless deposition of Cu.sub.x In.sub.y Ga.sub.z Se.sub.n (x=0-2, y=0-2, z=0-2, n=0-3) precursor films and powders onto a metallic substrate comprising: preparing an aqueous bath solution of compounds selected from the group consisting of: I) a copper compound, a selenium compound, an indium compound and gallium compound; II) a copper compound, a selenium compound and an indium compound; III) a selenium compound, and indium compound and a gallium compound; IV) a selenium compound and a indium compound; and V) a copper compound and selenium compound; each compound being present in sufficient quantity to react with each other to produce Cu.sub.x In.sub.y Ga.sub.z Se.sub.n (x=0-2, y=0-2, z=0-2, n=0-3); adjusting the pH of the aqueous bath solution to an acidic value by the addition of a dilute acid; and initiating an electroless reaction with an oxidizing counterelectrode for a sufficient time to cause a deposit of Cu.sub.x In.sub.y Ga.sub.z Se.sub.n (x=0-2, y=0-2, z=0-2, n=0-3) from the aqueous bath solution onto a metallic substrate.

  1. Carbon Dioxide Utilization by the Five-Membered Ring Products of Cyclometalation Reactions

    PubMed Central

    Omae, Iwao

    2016-01-01

    In carbon dioxide utilization by cyclometalated five-membered ring products, the following compounds are used in four types of applications: 1. 2-Phenylpyrazole iridium compounds, pincer phosphine iridium compounds and 2-phenylimidazoline iridium compounds are used as catalysts for both formic acid production from CO2 and H2, and hydrogen production from the formic acid. This formic acid can be a useful agent for H2 production and storage for fuel cell electric vehicles. 2. Other chemicals, e.g., dimethyl carbonate, methane, methanol and CO, are produced with dimethylaminomethylphenyltin compounds, pincer phosphine iridium compounds, pincer phosphine nickel compound and ruthenium carbene compound or 2-phenylpyridine iridium compounds, and phenylbenzothiazole iridium compounds as the catalysts for the reactions with CO2. 3. The five-membered ring intermediates of cyclometalation reactions with the conventional substrates react with carbon dioxide to afford their many types of carboxylic acid derivatives. 4. Carbon dioxide is easily immobilized at room temperature with immobilizing agents such as pincer phosphine nickel compounds, pincer phosphine palladium compounds, pincer N,N-dimethylaminomethyltin compounds and tris(2-pyridylthio)methane zinc compounds. PMID:28503084

  2. Carbon Dioxide Utilization by the Five-Membered Ring Products of Cyclometalation Reactions.

    PubMed

    Omae, Iwao

    2016-04-01

    In carbon dioxide utilization by cyclometalated five-membered ring products, the following compounds are used in four types of applications: 1. 2-Phenylpyrazole iridium compounds, pincer phosphine iridium compounds and 2-phenylimidazoline iridium compounds are used as catalysts for both formic acid production from CO 2 and H 2 , and hydrogen production from the formic acid. This formic acid can be a useful agent for H 2 production and storage for fuel cell electric vehicles. 2. Other chemicals, e.g. , dimethyl carbonate, methane, methanol and CO, are produced with dimethylaminomethylphenyltin compounds, pincer phosphine iridium compounds, pincer phosphine nickel compound and ruthenium carbene compound or 2-phenylpyridine iridium compounds, and phenylbenzothiazole iridium compounds as the catalysts for the reactions with CO 2 . 3. The five-membered ring intermediates of cyclometalation reactions with the conventional substrates react with carbon dioxide to afford their many types of carboxylic acid derivatives. 4. Carbon dioxide is easily immobilized at room temperature with immobilizing agents such as pincer phosphine nickel compounds, pincer phosphine palladium compounds, pincer N , N -dimethylaminomethyltin compounds and tris(2-pyridylthio)methane zinc compounds.

  3. Ionic Fluorine Chemistry.

    DTIC Science & Technology

    SOLID ROCKET OXIDIZERS, *LIQUID ROCKET OXIDIZERS, CHLORATES, FLUORIDES, ACETONES, CHLORINE COMPOUNDS, NITROSO COMPOUNDS, *HALOGEN COMPOUNDS, ADDITION REACTIONS, CESIUM COMPOUNDS, CHLORIDES, COMPLEX COMPOUNDS

  4. Independent Community Pharmacists' Perspectives on Compounding in Contemporary Pharmacy Education

    PubMed Central

    McPherson, Timothy B.; Fontane, Patrick E.; Berry, Tricia; Chereson, Rasma; Bilger, Rhonda

    2009-01-01

    Objectives To identify compounding practices of independent community pharmacy practitioners in order to make recommendations for the development of curricular objectives for doctor of pharmacy (PharmD) programs. Methods Independent community practitioners were asked about compounding regarding their motivations, common activities, educational exposures, and recommendations for PharmD education. Results Most respondents (69%) accepted compounding as a component of pharmaceutical care and compounded dermatological preparations for local effects, oral solutions, and suspensions at least once a week. Ninety-five percent were exposed to compounding in required pharmacy school courses and most (98%) who identified compounding as a professional service offered in their pharmacy sought additional postgraduate compounding education. Regardless of the extent of compounding emphasis in the practices surveyed, 84% stated that PharmD curricula should include compounding. Conclusions Pharmacy schools should define compounding curricular objectives and develop compounding abilities in a required laboratory course to prepare graduates for pharmaceutical care practice. PMID:19564997

  5. Reductive precipitation of metals photosensitized by tin and antimony porphyrins

    DOEpatents

    Shelnutt, John A.; Gong, Weiliang; Abdelouas, Abdesselam; Lutze, Werner

    2003-09-30

    A method for reducing metals using a tin or antimony porphyrin by forming an aqueous solution of a tin or antimony porphyrin, an electron donor, such as ethylenediaminetetraaceticacid, triethylamine, triethanolamine, and sodium nitrite, and at least one metal compound selected from a uranium-containing compound, a mercury-containing compound, a copper-containing compound, a lead-containing compound, a gold-containing compound, a silver-containing compound, and a platinum-containing compound through irradiating the aqueous solution with light.

  6. Volatile flavor compounds in yogurt: a review.

    PubMed

    Cheng, Hefa

    2010-11-01

    Considerable knowledge has been accumulated on the volatile compounds contributing to the aroma and flavor of yogurt. This review outlines the production of the major flavor compounds in yogurt fermentation and the analysis techniques, both instrumental and sensory, for quantifying the volatile compounds in yogurt. The volatile compounds that have been identified in plain yogurt are summarized, with the few key aroma compounds described in detail. Most flavor compounds in yogurt are produced from lipolysis of milkfat and microbiological transformations of lactose and citrate. More than 100 volatiles, including carbonyl compounds, alcohols, acids, esters, hydrocarbons, aromatic compounds, sulfur-containing compounds, and heterocyclic compounds, are found in yogurt at low to trace concentrations. Besides lactic acid, acetaldehyde, diacetyl, acetoin, acetone, and 2-butanone contribute most to the typical aroma and flavor of yogurt. Extended storage of yogurt causes off-flavor development, which is mainly attributed to the production of undesired aldehydes and fatty acids during lipid oxidation. Further work on studying the volatile flavor compounds-matrix interactions, flavor release mechanisms, and the synergistic effect of flavor compounds, and on correlating the sensory properties of yogurt with the compositions of volatile flavor compounds are needed to fully elucidate yogurt aroma and flavor.

  7. DEVELOPMENT OF IMPROVED TITANIUM ORGANIC COMPOUNDS FOR USE AS HYDRAULIC FLUIDS

    DTIC Science & Technology

    HYDRAULIC FLUIDS, *METALORGANIC COMPOUNDS, *TITANATES, *TITANIUM COMPOUNDS, ALKYL RADICALS, CATALYSTS , CHLORIDES, COMPLEX COMPOUNDS, FLUIDS, PHOSPHORIC ACIDS, PROPYL RADICALS, VISCOSITY, ZINC COMPOUNDS

  8. Understanding the mental lexicon through neglect dyslexia: a study on compound noun reading.

    PubMed

    Marelli, Marco; Aggujaro, Silvia; Molteni, Franco; Luzzatti, Claudio

    2013-04-01

    The present study employs neglect dyslexia (ND) as an experimental model to study compound-word processing; in particular, it investigates whether compound constituents are hierarchically organized at mental level and addresses the possibility of whole-word representation. Seven Italian-speaking patients suffering from ND participated in a word naming task. Both left-headed (pescespada, swordfish) and right-headed (astronave, spaceship) Italian compound nouns were used as stimuli. Non-existent compounds, which were generated by substituting the leftmost constituent of a compound with an orthographically similar word (e.g., *pestespada, *plaguesword), were also employed. A significant headedness effect emerged in the group analysis: patients read left-headed compounds better than right-headed compounds. A significant lexicality effect was also found: the participants read real compounds better than their non-existent compound pairs. Moreover, logit mixed-effects analyses indicated a left-hand constituent frequency effect. Results are discussed in terms of hierarchical representation of compounds and direct access to compound lemma nodes.

  9. Clandestine grave detector

    DOEpatents

    Andrews, Jr., William H.; Thompson, Cyril V [Knoxville, TN; Vass, Arpad A [Oak Ridge, TN; Smith, Rob R [Knoxville, TN

    2011-12-13

    An apparatus and a method for detecting a burial site of human remains are disclosed. An air stream is drawn through an air intake conduit from locations near potential burial sites of human remains. The air stream is monitored by one or more chemical sensors to determine whether the air stream includes one or more indicator compounds selected from halogenated compounds, hydrocarbons, nitrogen-containing compounds, sulfur-containing compounds, acid/ester compounds, oxygen-containing compounds, and naphthalene-containing compounds. When it is determined that an indicator compound is present in the air stream, this indicates that a burial site of human remains is below or nearby. Each sensor may be in electrical communication with an indicator that signals when the sensor has detected the presence of the indicator compound in the air stream. In one form, the indicator compound is a halogenated compound and/or a hydrocarbon, and the presence of the halogenated compound and/or the hydrocarbon in the air stream indicates that a burial site of human remains is below or nearby.

  10. [Studies on metabolites from marine microorganism Aspergillus terreus collected from nature reserve region of mangrove].

    PubMed

    Shen, Yi; Zou, Jianhua; Dai, Jungui

    2011-09-01

    To search for new antitumor active lead compounds from marine microorganism. A marine strain, Aspergillus terreus, was cultured and up-scaled in artificial seawater media, from which the metabolites were isolated and elucidated by using modern spectroscopy techniques. Twelve compounds were isolated from mycelia and fermentation broth of A. terreus. Compounds 1-4 were steroids, compounds 5-8 were organic acids and esters, compound 9 was an alkaloid, compound 10 was an isocoumarin, compound 11 was ceramide, compound 12 was propenyl cyclic pentanediol.

  11. Basics of compounding: Tips and hints: powders, capsules, tablets, suppositories, and sticks, part 1.

    PubMed

    Allen, Loyd V

    2014-01-01

    No matter the profession, professionals should never stop learning. This is especially true and important in the profession of compounding pharmacy. Compounding pharmacists are continuously faced with the challenge of finding new and inventive ways to assist patients with their individual and specific drug requirements. As compounding pharmacists learn, be it through formal continuing education or experience, they should be willing to share their knowledge with other compounders. In our goal of providing compounding pharmacists with additional knowledge to improve their skills in the art and practice of compounding, this article, which provides tips and hits on compounding with powders, capsules, tablets, suppositories, and sticks, represents the first in a series of articles to assist compounding pharmacists in the preparation of compounded medications.

  12. Design and synthesis of aloe-emodin derivatives as potent anti-tyrosinase, antibacterial and anti-inflammatory agents.

    PubMed

    Liu, Jinbing; Wu, Fengyan; Chen, Changhong

    2015-11-15

    Twenty aloe-emodin derivatives were designed, synthesized, and their biological activities were evaluated. Some compounds displayed potent tyrosinase inhibitory activities, especially, compounds with thiosemicarbazide moiety showed more potent inhibitory effects than the other compounds. The structure-activity relationships (SARs) were preliminarily discussed. The inhibition mechanism of selected compounds 1 and 13 were investigated. The results showed compound 1 was reversible inhibitor, however, compound 13 was irreversible. Kinetic analysis indicated that compound 1 was competitive tyrosinase inhibitor. Furthermore, the antibacterial activities and anti-inflammatory activities of some selected compounds were also screened. The results showed that compound 3 exhibited more potent antibacterial activity than the aloe-emodin, compounds 5 and 6 possessed more potent anti-inflammatory activities than the diacerein. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. [Detection of organic compounds on Mars].

    PubMed

    Kobayashi, K

    1997-03-01

    McKay et al. detected polycyclic aromatic hydrocarbons (PAHs) in Martian meteorite ALH 84001 by two-step laser mass spectrometry. From the presence of PAHs, together with other results, they concluded that there were past life of Mars. On the other hands, no organisms nor organic compounds were detected in Martian regolith in Viking experiments in 1976. In order to obtain solid evidence for organisms or bioorganic compounds compounds on Mars, further analyses of Martian samples are required. There may be four classes of organic compounds on Mars, which are (i) organic compounds abiotically formed from primitive Mars atmosphere, (ii) Organic compounds delivered out of Mars, (iii) Organic compounds biotically formed by Mars organisms, and (iv) Organic compounds abiotically formed from the present Mars atmosphere. Possible organic compounds on Mars and analytical methods for them are discussed.

  14. ION COMPOSITION ELUCIDATION (ICE): A HIGH ...

    EPA Pesticide Factsheets

    Unidentified Organic Compounds. For target analytes, standards are purchased, extraction and clean-up procedures are optimized, and mass spectra and retention times for the chromatographic separation are obtained for comparison to the target compounds in environmental sample extracts. This is an efficient approach and selective extraction and clean-up can decrease detection limits for the target compounds relative to analyzing a raw extract containing compounds that yield mass interferences. But selection of a class of compounds for study ignores many potentially toxic compounds. All compounds should be considered, because even trace amounts of compounds found to be endocrine disrupting chemicals might influence embryonic development. Before the toxicology of the hundreds of compounds found in sewage treatment effluents and water reservoirs can be studied alone and in mixtures, they must first be identified. A given compound might be one of the 3800 high production volume chemicals used commercially, a human or microorganism metabolite of such a compound, a photochemical degradation, hydrolysis, or thermal decomposition product, a chlorination or ozonolysis byproduct for drinking water samples, or a naturally occurring compound. Numerous researchers targeting assorted classes of analytes could easily overlook or be unable to identify many of these compounds. Most non-targeted compounds will not be in mass spectral libraries and can seldom be tentatively identifi

  15. Defense Technical Information Center Thesaurus

    DTIC Science & Technology

    2000-10-01

    acquisition radar 4 + Indicates existence of further generic levels of the term DTIC Thesaurus Actuators Acridines Actinide series (cont.) Activated sintering...BT Heterocyclic compounds+ Uranium+ BT Sintering Acrilan Actinide series compounds Activated sludge process use Acrylonitrile polymers RT Actinide...Waste treatment+ Protactinium compounds Acronyms Thorium compounds+ Activation use Abbreviations Transuranium compounds+ UF Energizing Uranium compounds

  16. A kinase-focused compound collection: compilation and screening strategy.

    PubMed

    Sun, Dongyu; Chuaqui, Claudio; Deng, Zhan; Bowes, Scott; Chin, Donovan; Singh, Juswinder; Cullen, Patrick; Hankins, Gretchen; Lee, Wen-Cherng; Donnelly, Jason; Friedman, Jessica; Josiah, Serene

    2006-06-01

    Lead identification by high-throughput screening of large compound libraries has been supplemented with virtual screening and focused compound libraries. To complement existing approaches for lead identification at Biogen Idec, a kinase-focused compound collection was designed, developed and validated. Two strategies were adopted to populate the compound collection: a ligand shape-based virtual screening and a receptor-based approach (structural interaction fingerprint). Compounds selected with the two approaches were cherry-picked from an existing high-throughput screening compound library, ordered from suppliers and supplemented with specific medicinal compounds from internal programs. Promising hits and leads have been generated from the kinase-focused compound collection against multiple kinase targets. The principle of the collection design and screening strategy was validated and the use of the kinase-focused compound collection for lead identification has been added to existing strategies.

  17. Isolation, identification and antioxidant activity of bound phenolic compounds present in rice bran.

    PubMed

    Wang, Wei; Guo, Jia; Zhang, Junnan; Peng, Jie; Liu, Tianxing; Xin, Zhihong

    2015-03-15

    The bound phenolic compounds in rice bran were released and extracted with ethyl acetate based on alkaline digestion. An investigation of the chemical constituents of EtOAc extract has led to the isolation of a new compound, para-hydroxy methyl benzoate glucoside (8), together with nine known compounds, cycloeucalenol cis-ferulate (1), cycloeucalenol trans-ferulate (2), trans-ferulic acid (3), trans-ferulic acid methyl ester (4), cis-ferulic acid (5), cis-ferulic acid methyl ester (6), methyl caffeate (7), vanillic aldehyde (9) and para-hydroxy benzaldehyde (10). The structures of these compounds were determined using a combination of spectroscopic methods and chemical analysis. Among the compounds isolated, compound 3, 5 and 7 exhibited strong DPPH and ABTS(+) radical scavenging activities, followed by compounds 4 and 6. Compound 1 and 2 showed potent DPPH and ABTS(+) radical scavenging activities, compound 8 displayed moderate antioxidant activity against ABTS(+) radical, whereas compound 9 and 10 showed weak antioxidant activity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Polymers containing borane or carborane cage compounds and related applications

    DOEpatents

    Bowen, III, Daniel E; Eastwood, Eric A

    2013-04-23

    Polymers comprising residues of cage compound monomers having at least one polyalkoxy silyl substituent are provided. The cage compound monomers are selected from borane cage compound monomers comprising at least 7 cage atoms and/or carborane cage compound monomers comprising 7 to 11 cage compound monomers. Such polymers can further comprise one or more reactive matrices and/or co-monomers covalently bound with the cage compound monomer residues. Articles of manufacture comprising such polymers are also disclosed.

  19. Word Syntax of Nominal Compounds: Internal and Aphasiological Evidence from Turkish

    ERIC Educational Resources Information Center

    Tat, Deniz

    2013-01-01

    This dissertation is an analysis of two types of nominal compounds in Turkish, primary compounds and synthetic compounds within the framework of Distributed Morphology. A nominal primary compound is formed by two nouns, and its meaning is largely determined by world knowledge. A synthetic compound, on the other hand, is formed by a noun and a…

  20. Formulations for neutralization of chemical and biological toxants

    DOEpatents

    Tadros, Maher E.; Tucker, Mark D.

    2003-05-20

    A formulation and method of making that neutralizes the adverse health effects of both chemical and biological compounds, especially chemical warfare (CW) and biological warfare (BW) agents. The formulation of the present invention non-toxic and non-corrosive and can be delivered by a variety of means and in different phases. The formulation provides solubilizing compounds that serve to effectively render the chemical and biological compounds, particularly CW and BW compounds, susceptible to attack and at least one reactive compound that serves to attack (and detoxify or kill) the compound. The at least one reactive compound can be an oxidizing compound, a nucleophilic compound or a mixture of both. The formulation can kill up to 99.99999% of bacterial spores within one hour of exposure.

  1. Therapeutic Phytogenic Compounds for Obesity and Diabetes

    PubMed Central

    Jung, Hee Soong; Lim, Yun; Kim, Eun-Kyoung

    2014-01-01

    Natural compounds have been used to develop drugs for many decades. Vast diversities and minimum side effects make natural compounds a good source for drug development. However, the composition and concentrations of natural compounds can vary. Despite this inconsistency, half of the Food and Drug Administration (FDA)-approved pharmaceuticals are natural compounds or their derivatives. Therefore, it is essential to continuously investigate natural compounds as sources of new pharmaceuticals. This review provides comprehensive information and analysis on natural compounds from plants (phytogenic compounds) that may serve as anti-obesity and/or anti-diabetes therapeutics. Our growing understanding and further exploration of the mechanisms of action of the phytogenic compounds may afford opportunities for development of therapeutic interventions in metabolic diseases. PMID:25421245

  2. Dehydrogenation of liquid fuel in microchannel catalytic reactor

    DOEpatents

    Toseland, Bernard Allen; Pez, Guido Peter; Puri, Pushpinder Singh

    2010-08-03

    The present invention is an improved process for the storage and delivery of hydrogen by the reversible hydrogenation/dehydrogenation of an organic compound wherein the organic compound is initially in its hydrogenated state. The improvement in the route to generating hydrogen is in the dehydrogenation step and recovery of the dehydrogenated organic compound resides in the following steps: introducing a hydrogenated organic compound to a microchannel reactor incorporating a dehydrogenation catalyst; effecting dehydrogenation of said hydrogenated organic compound under conditions whereby said hydrogenated organic compound is present as a liquid phase; generating a reaction product comprised of a liquid phase dehydrogenated organic compound and gaseous hydrogen; separating the liquid phase dehydrogenated organic compound from gaseous hydrogen; and, recovering the hydrogen and liquid phase dehydrogenated organic compound.

  3. Dehydrogenation of liquid fuel in microchannel catalytic reactor

    DOEpatents

    Toseland, Bernard Allen [Allentown, PA; Pez, Guido Peter [Allentown, PA; Puri, Pushpinder Singh [Emmaus, PA

    2009-02-03

    The present invention is an improved process for the storage and delivery of hydrogen by the reversible hydrogenation/dehydrogenation of an organic compound wherein the organic compound is initially in its hydrogenated state. The improvement in the route to generating hydrogen is in the dehydrogenation step and recovery of the dehydrogenated organic compound resides in the following steps: introducing a hydrogenated organic compound to a microchannel reactor incorporating a dehydrogenation catalyst; effecting dehydrogenation of said hydrogenated organic compound under conditions whereby said hydrogenated organic compound is present as a liquid phase; generating a reaction product comprised of a liquid phase dehydrogenated organic compound and gaseous hydrogen; separating the liquid phase dehydrogenated organic compound from gaseous hydrogen; and, recovering the hydrogen and liquid phase dehydrogenated organic compound.

  4. History of sterile compounding in U.S. hospitals: learning from the tragic lessons of the past.

    PubMed

    Myers, Charles E

    2013-08-15

    The evolution of sterile compounding in the context of hospital patient care, the evolution of related technology, past incidents of morbidity and mortality associated with preparations compounded in various settings, and efforts over the years to improve compounding practices are reviewed. Tightened United States Pharmacopeial Convention standards (since 2004) for sterile compounding made it difficult for hospitals to achieve all of the sterile compounding necessary for patient care. Shortages of manufactured injections added to the need for compounding. Non-hospital-based compounding pharmacies increased sterile compounding to meet the needs. Gaps in federal and state laws and regulations about compounding pharmacies led to deficiencies in their regulation. Lapses in sterility led to injuries and deaths. Perspectives offered include potential actions, including changes in practitioner education, better surveillance of sterile compounding, regulatory reforms, reexamination of the causes of drug shortages, and the development of new technologies. Over the years, there have been numerous exhortations for voluntary better performance in sterile compounding. In addition, professional leadership has been vigorous and extensive in the form of guidance, publications, education, enforceable standards, and development of various associations and organizations dealing with safe compounding practices. Yet problems continue to occur. We must engage in diligent learning from the injuries and tragedies that have occurred. Assuming that we are already doing all we can to avoid problems would be an abdication of the professional mission of pharmacists. It would be wrong thinking to assume that the recent problems in large-scale compounding pharmacies are the only problems that warrant attention. It is time for a systematic assessment of the nature and the dimensions of the problems in every type of setting where sterile compounding occurs. It also is time for some innovative thinking about ensuring safety in sterile compounding.

  5. Organic compounds in produced waters from coalbed natural gas wells in the Powder River Basin, Wyoming, USA

    USGS Publications Warehouse

    Orem, W.H.; Tatu, C.A.; Lerch, H.E.; Rice, C.A.; Bartos, T.T.; Bates, A.L.; Tewalt, S.; Corum, M.D.

    2007-01-01

    The organic composition of produced water samples from coalbed natural gas (CBNG) wells in the Powder River Basin, WY, sampled in 2001 and 2002 are reported as part of a larger study of the potential health and environmental effects of organic compounds derived from coal. The quality of CBNG produced waters is a potential environmental concern and disposal problem for CBNG producers, and no previous studies of organic compounds in CBNG produced water have been published. Organic compounds identified in the produced water samples included: phenols, biphenyls, N-, O-, and S-containing heterocyclic compounds, polycyclic aromatic hydrocarbons (PAHs), aromatic amines, various non-aromatic compounds, and phthalates. Many of the identified organic compounds (phenols, heterocyclic compounds, PAHs) are probably coal-derived. PAHs represented the group of organic compounds most commonly observed. Concentrations of total PAHs ranged up to 23 ??g/L. Concentrations of individual compounds ranged from about 18 to <0.01 ??g/L. Temporal variability of organic compound concentrations was documented, as two wells with relatively high organic compound contents in produced water in 2001 had much lower concentrations in 2002. In many areas, including the PRB, coal strata provide aquifers for drinking water wells. Organic compounds observed in produced water are also likely present in drinking water supplied from wells in the coal. Some of the organic compounds identified in the produced water samples are potentially toxic, but at the levels measured in these samples are unlikely to have acute health effects. The human health effects of low-level, chronic exposure to coal-derived organic compounds in drinking water are currently unknown. Continuing studies will evaluate possible toxic effects from low level, chronic exposure to coal-derived organic compounds in drinking water supplies.

  6. Mutagenic Azo Dyes, Rather Than Flame Retardants, Are the Predominant Brominated Compounds in House Dust.

    PubMed

    Peng, Hui; Saunders, David M V; Sun, Jianxian; Jones, Paul D; Wong, Chris K C; Liu, Hongling; Giesy, John P

    2016-12-06

    Characterization of toxicological profiles by use of traditional targeted strategies might underestimate the risk of environmental mixtures. Unbiased identification of prioritized compounds provides a promising strategy for meeting regulatory needs. In this study, untargeted screening of brominated compounds in house dust was conducted using a data-independent precursor isolation and characteristic fragment (DIPIC-Frag) approach, which used data-independent acquisition (DIA) and a chemometric strategy to detect peaks and align precursor ions. A total of 1008 brominated compound peaks were identified in 23 house dust samples. Precursor ions and formulas were identified for 738 (73%) of the brominated compounds. A correlation matrix was used to cluster brominated compounds; three large groups were found for the 140 high-abundance brominated compounds, and only 24 (17%) of these compounds were previously known flame retardants. The predominant class of unknown brominated compounds was predicted to consist of nitrogen-containing compounds. Following further validation by authentic standards, these compounds (56%) were determined to be novel brominated azo dyes. The mutagenicity of one major component was investigated, and mutagenicity was observed at environmentally relevant concentrations. Results of this study demonstrated the existence of numerous unknown brominated compounds in house dust, with mutagenic azo dyes unexpectedly being identified as the predominant compounds.

  7. Functional Group Analysis.

    ERIC Educational Resources Information Center

    Smith, Walter T., Jr.; Patterson, John M.

    1984-01-01

    Literature on analytical methods related to the functional groups of 17 chemical compounds is reviewed. These compounds include acids, acid azides, alcohols, aldehydes, ketones, amino acids, aromatic hydrocarbons, carbodiimides, carbohydrates, ethers, nitro compounds, nitrosamines, organometallic compounds, peroxides, phenols, silicon compounds,…

  8. Applying Quality by Design Concepts to Pharmacy Compounding.

    PubMed

    Timko, Robert J

    2015-01-01

    Compounding of medications is an important part of the practice of the pharmacy profession. Because compounded medications do not have U.S. Food and Drug Administration approval, a pharmacist has the responsibility to ensure that compounded medications are of suitable quality, safety, and efficacy. The Federal Government and numerous states have updated their laws and regulations regarding pharmacy compounding as a result of recent quality issues. Compounding pharmacists are expected to follow good preparation prodecures in their compounding practices in much the same way pharmaceutical manufacturers are required to follow Current Good Manufacturing Procedures as detailed in the United States Code of Federal Regulations. Application of Quality by Design concepts to the preparation process for a compounded medication can help in understanding the potential pitfalls and the means to mitigate their impact. The goal is to build quality into the compounding process to ensure that the resultant compounded prescription meets the human or animal patients' requirements.

  9. Chemistry WebBook

    National Institute of Standards and Technology Data Gateway

    SRD 69 NIST Chemistry WebBook (Web, free access)   The NIST Chemistry WebBook contains: Thermochemical data for over 7000 organic and small inorganic compounds; thermochemistry data for over 8000 reactions; IR spectra for over 16,000 compounds; mass spectra for over 33,000 compounds; UV/Vis spectra for over 1600 compounds; electronic and vibrational spectra for over 5000 compounds; constants of diatomic molecules(spectroscopic data) for over 600 compounds; ion energetics data for over 16,000 compounds; thermophysical property data for 74 fluids.

  10. The nature of compounds: a psychocentric perspective.

    PubMed

    Libben, Gary

    2014-01-01

    Although compound words often seem to be words that themselves contain words, this paper argues that this is not the case for the vast majority of lexicalized compounds. Rather, it is claimed that as a result of acts of lexical processing, the constituents of compound words develop into new lexical representations. These representations are bound to specific morphological roles and positions (e.g., head, modifier) within a compound word. The development of these positionally bound compound constituents creates a rich network of lexical knowledge that facilitates compound processing and also creates some of the well-documented patterns in the psycholinguistic and neurolinguistic study of compounding.

  11. Veterinary Compounding: Regulation, Challenges, and Resources

    PubMed Central

    Davidson, Gigi

    2017-01-01

    The spectrum of therapeutic need in veterinary medicine is large, and the availability of approved drug products for all veterinary species and indications is relatively small. For this reason, extemporaneous preparation, or compounding, of drugs is commonly employed to provide veterinary medical therapies. The scope of veterinary compounding is broad and focused primarily on meeting the therapeutic needs of companion animals and not food-producing animals in order to avoid human exposure to drug residues. As beneficial as compounded medical therapies may be to animal patients, these therapies are not without risks, and serious adverse events may occur from poor quality compounds or excipients that are uniquely toxic when administered to a given species. Other challenges in extemporaneous compounding for animals include significant regulatory variation across the global veterinary community, a relative lack of validated compounding formulas for use in animals, and poor adherence by compounders to established compounding standards. The information presented in this article is intended to provide an overview of the current landscape of compounding for animals; a discussion on associated benefits, risks, and challenges; and resources to aid compounders in preparing animal compounds of the highest possible quality. PMID:28075379

  12. Influence of mastication rate on dynamic flavour release analysed by combined model mouth/proton transfer reaction-mass spectrometry

    NASA Astrophysics Data System (ADS)

    van Ruth, Saskia M.; Buhr, Katja

    2004-12-01

    The influence of mastication rate on the dynamic release of seven volatile flavour compounds from sunflower oil was evaluated by combined model mouth/proton transfer reaction-mass spectrometry (PTR-MS). Air/oil partition coefficients were measured by static headspace gas chromatography. The dynamic release of the seven volatile flavour compounds from sunflower oil was significantly affected by the compounds' hydrophobicity and the mastication rate employed in the model mouth. The more hydrophobic compounds were released at a higher rate than their hydrophilic counterparts. Increase in mastication rate increased the maximum concentration measured by 36% on average, and the time to reach this maximum by 35% on average. Mastication affected particularly the release of the hydrophilic compounds. The maximum concentration of the compounds correlated significantly with the compounds' air/oil partition coefficients. The initial release rates over the first 15 s were affected by the type of compound, but not by the mastication rate. During the course of release, the proportions of the hydrophilic compounds to the overall flavour mixture in air decreased. The contribution of the hydrophobic compounds increased. Higher mastication rates, however, increased the proportions of the hydrophilic compounds and decreased those of the hydrophobic compounds.

  13. Surface-water-quality assessment of the Yakima River basin, Washington; distribution of pesticides and other organic compounds in water, sediment, and aquatic biota, 1987-91; with a section on dissolved organic carbon in the Yakima River basin

    USGS Publications Warehouse

    Rinella, Joseph F.; McKenzie, Stuart W.; Crawford, J. Kent; Foreman, William T.; Fuhrer, Gregory J.; Morace, Jennifer L.; Aiken, George R.

    1999-01-01

    During 1987-91, chemical data were collected for pesticides and other organic compounds in surface water, streambed sediment, suspended sediment, agricultural soil, and aquatic biota to determine the occurrence, distribution, transport, and fate of organic compounds in the Yakima River basin in Washington. The report describes the chemical and physical properties of the compounds most frequently detected in the water column; organochlorine compounds including DDT, organophosphorus compounds, thiocarbamate and sulfite compounds, acetamide and triazine compounds, and chlorophenoxy-acetic acid and benzoic compounds. Concentrations are evaluated relative to chronic-toxicity water quality criteria and guidelines for the protection of human health and freshwater aquatic life.

  14. Phenethyl ester and amide of Ferulic Acids: Synthesis and bioactivity against P388 Leukemia Murine Cells

    NASA Astrophysics Data System (ADS)

    Firdaus; Soekamto, N. H.; Seniwati; Islam, M. F.; Sultan

    2018-03-01

    Bioactivity of a compound is closely related to the molecular structure of the compound concerned, its strength being the quantitative relation of the strength of the activity of the group it possesses. The combining of moieties of the active compounds will produce more active compounds. Most phenolic compounds as well as compounds containing moiety phenethyl groups have potential activity as anticancer. Combining phenolic groups and phenethyl groups in a compound will result in compounds having strong anticancer bioactivity. This study aims to combine the feruloyl and phenethyl groups to form esters and amides by synthesize of phenethyl trans-3-(4-hydroxy-3-methoxyphenyl)acrylate (5) and trans-3-(4- hydroxy-3-methoxyphenyl)-N-phenethylacrylamide (6) from ferulic acid with phenethyl alcohol and phenethylamine, and to study their bioactivity as anticancer. The synthesis of both compounds was conducted via indirect reaction, including acetylation, chlorination, esterfication/amidation, and deacetylation. Structures of products were characterized by FTIR and NMR data, and their bioactivity assay of the compounds against P388 Leukemia Murine Cells was conducted by an MTT method. Results showed that the compound 5 was obtained as a yellow gel with the IC50 of 10.79 μg/mL (36.21 μΜ), and the compound 6 was a yellowish solid with a melting point of 118-120°C and the IC50 of 29.14 μg/mL (97.79 μΜ). These compounds were more active than the analog compounds.

  15. Encapsulation of bioactive compound from extracted jasmine flower using β-Cyclodextrin via electrospray

    NASA Astrophysics Data System (ADS)

    Rahmam., S.; Naim., M. N.; Ng., E.; Mokhtar, M. Nn; Abu Bakar, N. F.

    2016-06-01

    The ability of electrospray to encapsulate the bioactive compound extracted from Jasmine flower with β-Cyclodextrion (β-CD) without any thermal-assisted processing was demonstrated in this study. The extraction of Jasmine compound were conducted using sonicator at 70 000 Hz, for 10 minutes and followed by mixing of the filtered compound with β-CD. Then, the mixture was electrosprayed under a stable Taylor cone jet mode at the voltage of 4 - 5 kV, with flow rate of 0.2 ml/hour. The aluminum substrate that used for collecting the deposit was placed at 30 cm from the needle's tip to allow the occurrence of evaporation and droplet fission until the droplet transform to solid particles. Characteristics of solidified bioactive compound from Jasmine flower (non-encapsulated compound) and solidified bioactive compound with β-CD (encapsulated compound) were studied in this work. From SEM images, it can be observed that the particles size distribution of encapsulated compound deposits have better deposition array and did not aggregate with each other compared to the non-encapsulated compound. FE-SEM images of encapsulated compound deposits indicate more solid crystal looks while non-encapsulated compound was obtained in the porous form. The electrospray process in this work has successfully encapsulated the Jasmine compound with β-CD without any thermal-assisted process. The encapsulation occurrence was determined using FTIR analysis. Identical peaks that referred to the β-CD were found on the encapsulated compound demonstrated that most deposits were encapsulated with β-CD.

  16. Compound C induces protective autophagy in human cholangiocarcinoma cells via Akt/mTOR-independent pathway.

    PubMed

    Zhao, Xiaofang; Luo, Guosong; Cheng, Ying; Yu, Wenjing; Chen, Run; Xiao, Bin; Xiang, Yuancai; Feng, Chunhong; Fu, Wenguang; Duan, Chunyan; Yao, Fuli; Xia, Xianming; Tao, Qinghua; Wei, Mei; Dai, Rongyang

    2018-07-01

    Compound C, a well-known inhibitor of AMP-activated protein kinase (AMPK), has been reported to exert antitumor activities in some types of cells. Whether compound C can exert antitumor effects in human cholangiocarcinoma (CCA) remains unknown. Here, we demonstrated that compound C is a potent inducer of cell death and autophagy in human CCA cells. Autophagy inhibitors increased the cytotoxicity of compound C towards human CCA cells, as confirmed by increased LDH release, and PARP cleavage. It is notable that compound C treatment increased phosphorylated Akt, sustained high levels of phosphorylated p70S6K, and decreased mTOR regulated p-ULK1 (ser757). Based on the data that blocking PI3K/Akt or mTOR had no apparent influence on autophagic response, we suggest that compound C induces autophagy independent of Akt/mTOR signaling in human CCA cells. Further study demonstrated that compound C inhibited the phosphorylation of JNK and its target c-Jun. Blocking JNK by SP600125 or siRNA suppressed autophagy induction upon compound C treatment. Moreover, compound C induced p38 MAPK activation, and its inhibition promoted autophagy induction via JNK activation. In addition, compound C induced p53 expression, and its inhibition attenuated compound C-induced autophagic response. Thus, compound C triggers autophagy, at least in part, via the JNK and p53 pathways in human CCA cells. In conclusion, suppresses autophagy could increase compound C sensitivity in human CCA. © 2018 Wiley Periodicals, Inc.

  17. Characterization of ToxCast Phase II compounds disruption of ...

    EPA Pesticide Factsheets

    The development of multi-well microelectrode array (mwMEA) systems has increased in vitro screening throughput making them an effective method to screen and prioritize large sets of compounds for potential neurotoxicity. In the present experiments, a multiplexed approach was used to determine compound effects on both neural function and cell health in primary cortical networks grown on mwMEA plates following exposure to ~1100 compounds from EPA’s Phase II ToxCast libraries. On DIV 13, baseline activity (40 min) was recorded prior to exposure to each compound at 40 µM. DMSO and the GABAA antagonist bicuculline (BIC) were included as controls on each mwMEA plate. Changes in spontaneous network activity (mean firing rate; MFR) and cell viability (lactate dehydrogenase; LDH and CellTiter Blue; CTB) were assessed within the same well following compound exposure. Activity calls (“hits”) were established using the 90th and 20th percentiles of the compound-induced change in MFR (medians of triplicates) across all tested compounds; compounds above (top 10% of compounds increasing MFR), and below (bottom 20% of compounds decreasing MFR) these thresholds, respectively were considered hits. MFR was altered beyond one of these thresholds by 322 compounds. Four compound categories accounted for 66% of the hits, including: insecticides (e.g. abamectin, lindane, prallethrin), pharmaceuticals (e.g. haloperidol, reserpine), fungicides (e.g. hexaconazole, fenamidone), and h

  18. Combination of cheminformatics and bioinformatics to explore the chemical basis of the rhizomes and aerial parts of Dioscorea nipponica Makino.

    PubMed

    Li, Xu-Zhao; Zhang, Shuai-Nan; Yang, Xu-Yan

    2017-12-01

    This study was aimed to explore the chemical basis of the rhizomes and aerial parts of Dioscorea nipponica Makino (DN). The pharmacokinetic profiles of the compounds from DN were calculated via ACD/I-Lab and PreADMET program. Their potential therapeutic and toxicity targets were screened through the DrugBank's or T3DB's ChemQuery structure search. Eleven of 48 compounds in the rhizomes and over half of the compounds in the aerial parts had moderate or good human oral bioavailability. Twenty-three of 48 compounds in the rhizomes and 40/43 compounds from the aerial parts had moderate or good permeability to intestinal cells. Forty-three of 48 compounds from the rhizomes and 18/43 compounds in the aerial parts bound weakly to the plasma proteins. Eleven of 48 compounds in the rhizomes and 36/43 compounds of the aerial parts might pass across the blood-brain barrier. Forty-three 48 compounds in the rhizomes and 18/43 compounds from the aerial parts showed low renal excretion ability. The compounds in the rhizomes possessed 391 potential therapeutic targets and 216 potential toxicity targets. Additionally, the compounds from the aerial parts possessed 101 potential therapeutic targets and 183 potential toxicity targets. These findings indicated that combination of cheminformatics and bioinformatics may facilitate achieving the objectives of this study. © 2017 Royal Pharmaceutical Society.

  19. Competition between the compound and the pre-compound emission processes in α-induced reactions at near astrophysical energy to well above it

    NASA Astrophysics Data System (ADS)

    Sharma, Manoj Kumar; Sharma, Vijay Raj; Yadav, Abhiskek; Singh, Pushpendra P.; Singh, B. P.; Prasad, R.

    2016-04-01

    The study of pre-compound emission in α-induced reactions, particularly at the low incident energies, is of considerable interest as the pre-compound emission is more likely to occur at higher energies. With a view to study the competition between the compound and the pre-compound emission processes in α-induced reactions at different energies and with different targets, a systematics for neutron emission channels in targets 51V, 55Mn, 93Nb, 121, 123Sb and 141Pr at energy ranging from astrophysical interest to well above it, has been developed. The off-line γ-ray-spectrometry based activation technique has been adopted to measure the excitation functions. The experimental excitation functions have been analysed within the framework of the compound nucleus mechanism based on the Weisskopf-Ewing model and the pre-compound emission calculations based on the geometry dependent hybrid model. The analysis of the data shows that experimental excitation functions could be reproduced only when the pre-compound emission, simulated theoretically, is taken into account. The strength of pre-compound emission process for each system has been obtained by deducing the pre-compound fraction. Analysis of data indicates that in α-induced reactions, the pre-compound emission process plays an important role, particularly at the low incident energies, where the pure compound nucleus process is likely to dominate.

  20. Method for halogenating or radiohalogenating a chemical compound

    DOEpatents

    Kabalka, George W.

    2006-05-09

    A method for obtaining a halogenated organic compound, whereby an organotrifluoroborate compound is reacted with a halide ion in the presence of an oxidizing agent to produce the corresponding halogenated organic compound. The method may be used for producing radiohalogenated organic compounds.

  1. Ultrabright fluorescent OLEDS using triplet sinks

    DOEpatents

    Zhang, Yifan; Forrest, Stephen R; Thompson, Mark

    2013-06-04

    A first device is provided. The first device further comprises an organic light emitting device. The organic light emitting device further comprises an anode, a cathode, and an emissive layer disposed between the anode and the cathode. The emissive layer further comprises an organic host compound, an organic emitting compound capable of fluorescent emission at room temperature, and an organic dopant compound. The triplet energy of the dopant compound is lower than the triplet energy of the host compound. The dopant compound does not strongly absorb the fluorescent emission of the emitting compound.

  2. Investigation on modes of toxic action to rats based on aliphatic and aromatic compounds and comparison with fish toxicity based on exposure routes.

    PubMed

    He, Jia; Li, Jin J; Wen, Yang; Tai, Hong W; Yu, Yang; Qin, Wei C; Su, Li M; Zhao, Yuan H

    2015-06-01

    The modes of toxic action (MOAs) play an important role in the assessment of the ecotoxicity of organic pollutants. However, few studies have been reported on the MOAs in rat toxicity. In this paper, the toxic contributions of functional groups in 1255 aromatic compounds were calculated from regression and were then compared with the toxic contributions in aliphatic compounds. The results show that some functional groups have same toxic contributions both in aromatic and aliphatic compounds, but some have not. To investigate the MOAs in rat toxicity, the distribution of toxic ratio (TR) was examined for well-known baseline and less inert compounds and thresholds of log TR=0.3 and 0.5 were used to classify baseline, less inert and reactive compounds. The results showed that some compounds identified as baseline compounds in fish toxicity were also classified as baseline compounds in rat toxicity. Except for phenols and anilines which were identified as less inert compounds in fish toxicity, aromatic compounds with functional groups such as ether, nitrile, nitrophenol, isocyanatoe and chloro were identified as less inert chemicals in rat toxicity. Reactive compounds identified in fish toxicity exhibit greater toxicity to rats. These compounds can undergo nucleophilic substitution, acylation and Schiff base formation with biological macromolecules. The critical body residues (CBRs) calculated from absorption and bioconcentration show that log 1/CBRs in rat toxicity are not equal to that in fish for some compounds. It suggests that the exposure route can affect the identification of MOAs between these two species for these compounds. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Potential Compounds for Oral Cancer Treatment: Resveratrol, Nimbolide, Lovastatin, Bortezomib, Vorinostat, Berberine, Pterostilbene, Deguelin, Andrographolide, and Colchicine

    PubMed Central

    Bundela, Saurabh; Sharma, Anjana; Bisen, Prakash S.

    2015-01-01

    Oral cancer is one of the main causes of cancer-related deaths in South-Asian countries. There are very limited treatment options available for oral cancer. Research endeavors focused on discovery and development of novel therapies for oral cancer, is necessary to control the ever rising oral cancer related mortalities. We mined the large pool of compounds from the publicly available compound databases, to identify potential therapeutic compounds for oral cancer. Over 84 million compounds were screened for the possible anti-cancer activity by custom build SVM classifier. The molecular targets of the predicted anti-cancer compounds were mined from reliable sources like experimental bioassays studies associated with the compound, and from protein-compound interaction databases. Therapeutic compounds from DrugBank, and a list of natural anti-cancer compounds derived from literature mining of published studies, were used for building partial least squares regression model. The regression model thus built, was used for the estimation of oral cancer specific weights based on the molecular targets. These weights were used to compute scores for screening the predicted anti-cancer compounds for their potential to treat oral cancer. The list of potential compounds was annotated with corresponding physicochemical properties, cancer specific bioactivity evidences, and literature evidences. In all, 288 compounds with the potential to treat oral cancer were identified in the current study. The majority of the compounds in this list are natural products, which are well-tolerated and have minimal side-effects compared to the synthetic counterparts. Some of the potential therapeutic compounds identified in the current study are resveratrol, nimbolide, lovastatin, bortezomib, vorinostat, berberine, pterostilbene, deguelin, andrographolide, and colchicine. PMID:26536350

  4. Drugs as habitable planets in the space of dark chemical matter.

    PubMed

    Siramshetty, Vishal B; Preissner, Robert

    2018-03-01

    A recent study demonstrated antifungal activity of dark chemical matter (DCM) compounds that were otherwise inactive in more than 100 HTS assays. These compounds were proposed to possess unique activity and 'clean' safety profiles. Here, we present an outlook of the promiscuity and safety of these compounds by retrospectively comparing their chemical and biological spaces with those of drugs. Significant amounts of marketed drugs (16%), withdrawn drugs (16.5%) and natural compounds (3.5%) share structural identity with DCM. Compound promiscuity assessment indicates that dark matter compounds could potentially interact with multiple biological targets. Further, thousands of DCM compounds showed presence of frequent-hitting pan-assay interference compound (PAINS) substructures. In light of these observations, filtering these compounds from screening libraries can be an irrevocable loss. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. The Mu.Ta.Lig. Chemotheca: A community-populated molecular database for multi-target ligands identification and compound-repurposing

    NASA Astrophysics Data System (ADS)

    Ortuso, Francesco; Bagetta, Donatella; Maruca, Annalisa; Talarico, Carmine; Bolognesi, Maria L.; Haider, Norbert; Borges, Fernanda; Bryant, Sharon; Langer, Thierry; Senderowitz, Hanoch; Alcaro, Stefano

    2018-04-01

    Abstract For every lead compound developed in medicinal chemistry research, numerous other inactive or less active candidates are synthetized/isolated and tested. The majority of these compounds will not be selected for further development due to a sub-optimal pharmacological profile. However, some poorly active or even inactive compounds could live a second life if tested against other targets. Thus, new therapeutic opportunities could emerge and synergistic activities could be identified and exploited for existing compounds by sharing information between researchers who are working on different targets. The Mu.Ta.Lig (Multi-Target Ligand) Chemotheca database aims to offer such opportunities by facilitating information exchange among researchers worldwide. After a preliminary registration, users can (a) virtually upload structures and activity data for their compounds with corresponding, and eventually known activity data, and (b) search for other available compounds uploaded by the users community. Each piece of information about given compounds is owned by the user who initially uploaded it and multiple ownership is possible (occurs if different users uploaded the same compounds or information pertaining to the same compounds). A web-based graphical user interface has been developed to assist compound uploading, compounds searching and data retrieval. Physico-chemical and ADME properties as well as substructure-based PAINS evaluations are computed on the fly for each uploaded compound. Samples of compounds that match a set of search criteria and additional data on these compounds could be requested directly from their owners with no mediation by the Mu.Ta.Lig Chemotheca team. Guest access provides a simplified search interface to retrieve only basic information such as compound IDs and related 2D or 3D chemical structures. Moreover, some compounds can be hidden from Guest users according to an owner’s decision. In contrast, registered users have full access to all of the Chemotheca data including the permission to upload new compounds and/or update experimental/theoretical data (e.g., activities against new targets tested) related to already stored compounds. In order to facilitate scientific collaborations, all available data are connected to the corresponding owner’s email address (available for registered users only). The Chemotheca web site is accessible at http://chemotheca.unicz.it.

  6. The Mu.Ta.Lig. Chemotheca: A Community-Populated Molecular Database for Multi-Target Ligands Identification and Compound-Repurposing.

    PubMed

    Ortuso, Francesco; Bagetta, Donatella; Maruca, Annalisa; Talarico, Carmine; Bolognesi, Maria L; Haider, Norbert; Borges, Fernanda; Bryant, Sharon; Langer, Thierry; Senderowitz, Hanoch; Alcaro, Stefano

    2018-01-01

    For every lead compound developed in medicinal chemistry research, numerous other inactive or less active candidates are synthetized/isolated and tested. The majority of these compounds will not be selected for further development due to a sub-optimal pharmacological profile. However, some poorly active or even inactive compounds could live a second life if tested against other targets. Thus, new therapeutic opportunities could emerge and synergistic activities could be identified and exploited for existing compounds by sharing information between researchers who are working on different targets. The Mu.Ta.Lig (Multi-Target Ligand) Chemotheca database aims to offer such opportunities by facilitating information exchange among researchers worldwide. After a preliminary registration, users can (a) virtually upload structures and activity data for their compounds with corresponding, and eventually known activity data, and (b) search for other available compounds uploaded by the users community. Each piece of information about given compounds is owned by the user who initially uploaded it and multiple ownership is possible (this occurs if different users uploaded the same compounds or information pertaining to the same compounds). A web-based graphical user interface has been developed to assist compound uploading, compounds searching and data retrieval. Physico-chemical and ADME properties as well as substructure-based PAINS evaluations are computed on the fly for each uploaded compound. Samples of compounds that match a set of search criteria and additional data on these compounds could be requested directly from their owners with no mediation by the Mu.Ta.Lig Chemotheca team. Guest access provides a simplified search interface to retrieve only basic information such as compound IDs and related 2D or 3D chemical structures. Moreover, some compounds can be hidden to Guest users according to an owner's decision. In contrast, registered users have full access to all of the Chemotheca data including the permission to upload new compounds and/or update experimental/theoretical data (e.g., activities against new targets tested) related to already stored compounds. In order to facilitate scientific collaborations, all available data are connected to the corresponding owner's email address (available for registered users only). The Chemotheca web site is accessible at http://chemotheca.unicz.it.

  7. Discovery of Novel Anti-prion Compounds Using In Silico and In Vitro Approaches

    PubMed Central

    Hyeon, Jae Wook; Choi, Jiwon; Kim, Su Yeon; Govindaraj, Rajiv Gandhi; Jam Hwang, Kyu; Lee, Yeong Seon; An, Seong Soo A.; Lee, Myung Koo; Joung, Jong Young; No, Kyoung Tai; Lee, Jeongmin

    2015-01-01

    Prion diseases are associated with the conformational conversion of the physiological form of cellular prion protein (PrPC) to the pathogenic form, PrPSc. Compounds that inhibit this process by blocking conversion to the PrPSc could provide useful anti-prion therapies. However, no suitable drugs have been identified to date. To identify novel anti-prion compounds, we developed a combined structure- and ligand-based virtual screening system in silico. Virtual screening of a 700,000-compound database, followed by cluster analysis, identified 37 compounds with strong interactions with essential hotspot PrP residues identified in a previous study of PrPC interaction with a known anti-prion compound (GN8). These compounds were tested in vitro using a multimer detection system, cell-based assays, and surface plasmon resonance. Some compounds effectively reduced PrPSc levels and one of these compounds also showed a high binding affinity for PrPC. These results provide a promising starting point for the development of anti-prion compounds. PMID:26449325

  8. High-Temperature Syntheses of New, Thermally-Stable Chemical Compounds.

    DTIC Science & Technology

    SYNTHESIS(CHEMISTRY), HEAT RESISTANT PLASTICS, NITRILES, FLUORINE COMPOUNDS, COMPLEX COMPOUNDS, NITROGEN, SULFIDES, ORGANOMETALLIC COMPOUNDS, ORGANOBORANES, BORIDES, SPINEL, CARBIDES, NITRIDES, SILICIDES .

  9. Response of Bioluminescent Bacteria to Alkyltin Compounds.

    DTIC Science & Technology

    1987-12-01

    found in the butyltiri series of compounds; tributyltin was (’Stimes more toxic than dibutyltin and (- 50 times more toxic than (mono)butyltin. When...correlations between compounds, tributyltin was -35 tine more Kicrotxit and fish bLoessays for pure toxic than dibutyltin end -750 times More compounds and...the compounds as a decrease in toxicity (5) tributyltin compounds ea -150 tines more and a method to study synergistic andtoxic than trinethyltia

  10. Identification and quantification of volatile organic compounds using systematic single-ion chromatograms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsuchiya, Yoshio; Kanabus-Kaminska, J.M.

    1996-12-31

    In order to determine the background level of volatile organic compounds (VOCs) in Canadian indoor air, a method of identification and quantification at a level of 0.3 {micro}g/m{sup 3} using systematic single-ion chromatograms (SICs) has been developed. The compounds selected for measurement included several halogenated compounds, oxygen compounds, terpenes, and C8 to C16 n-alkanes. Air samples were taken in 3-layered sorbent tubes and trapped compounds were thermally desorbed into the helium stream of a gas chromatograph/mass spectrometer (GC/MS) analytical system. Total quantities of volatile organic compounds (TVOCs) were measured using a flame ionization detector (FID). Individual compounds were analyzed bymore » a GC/MS. For the identification of compounds in the main stream GC effluent, both the specific GC retention and mass spectra were used. About 50 selected SICs were routinely extracted from a total ion chromatogram (TIC) to detect and quantify compounds. For each compound, a single representative ion was selected. The specific retention was calculated from the elution time on the SIC. For quantification, ion counts under a peak in the SIC were measured. The single-ion MS response factor for some of the compounds was experimentally determined using a dynamic reference procedure.« less

  11. Analysis and Identification of Aptamer-Compound Interactions with a Maximum Relevance Minimum Redundancy and Nearest Neighbor Algorithm

    PubMed Central

    Wang, ShaoPeng; Zhang, Yu-Hang; Lu, Jing; Cui, Weiren; Hu, Jerry; Cai, Yu-Dong

    2016-01-01

    The development of biochemistry and molecular biology has revealed an increasingly important role of compounds in several biological processes. Like the aptamer-protein interaction, aptamer-compound interaction attracts increasing attention. However, it is time-consuming to select proper aptamers against compounds using traditional methods, such as exponential enrichment. Thus, there is an urgent need to design effective computational methods for searching effective aptamers against compounds. This study attempted to extract important features for aptamer-compound interactions using feature selection methods, such as Maximum Relevance Minimum Redundancy, as well as incremental feature selection. Each aptamer-compound pair was represented by properties derived from the aptamer and compound, including frequencies of single nucleotides and dinucleotides for the aptamer, as well as the constitutional, electrostatic, quantum-chemical, and space conformational descriptors of the compounds. As a result, some important features were obtained. To confirm the importance of the obtained features, we further discussed the associations between them and aptamer-compound interactions. Simultaneously, an optimal prediction model based on the nearest neighbor algorithm was built to identify aptamer-compound interactions, which has the potential to be a useful tool for the identification of novel aptamer-compound interactions. The program is available upon the request. PMID:26955638

  12. Pharmacological Evaluation and Preparation of Nonsteroidal Anti-Inflammatory Drugs Containing an N-Acyl Hydrazone Subunit

    PubMed Central

    de Melo, Thais Regina Ferreira; Chelucci, Rafael Consolin; Pires, Maria Elisa Lopes; Dutra, Luiz Antonio; Barbieri, Karina Pereira; Bosquesi, Priscila Longhin; Trossini, Gustavo Henrique Goulart; Chung, Man Chin; dos Santos, Jean Leandro

    2014-01-01

    A series of anti-inflammatory derivatives containing an N-acyl hydrazone subunit (4a–e) were synthesized and characterized. Docking studies were performed that suggest that compounds 4a–e bind to cyclooxygenase (COX)-1 and COX-2 isoforms, but with higher affinity for COX-2. The compounds display similar anti-inflammatory activities in vivo, although compound 4c is the most effective compound for inhibiting rat paw edema, with a reduction in the extent of inflammation of 35.9% and 52.8% at 2 and 4 h, respectively. The anti-inflammatory activity of N-acyl hydrazone derivatives was inferior to their respective parent drugs, except for compound 4c after 5 h. Ulcerogenic studies revealed that compounds 4a–e are less gastrotoxic than the respective parent drug. Compounds 4b–e demonstrated mucosal damage comparable to celecoxib. The in vivo analgesic activities of the compounds are higher than the respective parent drug for compounds 4a–b and 4d–e. Compound 4a was more active than dipyrone in reducing acetic-acid-induced abdominal constrictions. Our results indicate that compounds 4a–e are anti-inflammatory and analgesic compounds with reduced gastrotoxicity compared to their respective parent non-steroidal anti-inflammatory drugs. PMID:24714090

  13. Analysis and Identification of Aptamer-Compound Interactions with a Maximum Relevance Minimum Redundancy and Nearest Neighbor Algorithm.

    PubMed

    Wang, ShaoPeng; Zhang, Yu-Hang; Lu, Jing; Cui, Weiren; Hu, Jerry; Cai, Yu-Dong

    2016-01-01

    The development of biochemistry and molecular biology has revealed an increasingly important role of compounds in several biological processes. Like the aptamer-protein interaction, aptamer-compound interaction attracts increasing attention. However, it is time-consuming to select proper aptamers against compounds using traditional methods, such as exponential enrichment. Thus, there is an urgent need to design effective computational methods for searching effective aptamers against compounds. This study attempted to extract important features for aptamer-compound interactions using feature selection methods, such as Maximum Relevance Minimum Redundancy, as well as incremental feature selection. Each aptamer-compound pair was represented by properties derived from the aptamer and compound, including frequencies of single nucleotides and dinucleotides for the aptamer, as well as the constitutional, electrostatic, quantum-chemical, and space conformational descriptors of the compounds. As a result, some important features were obtained. To confirm the importance of the obtained features, we further discussed the associations between them and aptamer-compound interactions. Simultaneously, an optimal prediction model based on the nearest neighbor algorithm was built to identify aptamer-compound interactions, which has the potential to be a useful tool for the identification of novel aptamer-compound interactions. The program is available upon the request.

  14. Monomers, polymers and articles containing the same from sugar derived compounds

    DOEpatents

    Gallagher, James; Reineke, Theresa; Hillmyer, Marc A.

    2016-11-29

    Disclosed herein are monomers formed by reacting a sugar derived compound(s) comprising a lactone and two hydroxyls with a compound(s) comprising an isocyanate and an acrylate or methacrylate. Polymers formed from such monomers, and articles formed from the polymers are also disclosed.

  15. Phosphatidylazidothymidine and phosphatidyl-ddC: assessment of uptake in mouse lymphoid tissues and antiviral activities in human immunodeficiency virus-infected cells and in Rauscher leukemia virus-infected mice.

    PubMed Central

    Hostetler, K Y; Richman, D D; Sridhar, C N; Felgner, P L; Felgner, J; Ricci, J; Gardner, M F; Selleseth, D W; Ellis, M N

    1994-01-01

    During the early stages of human immunodeficiency virus (HIV) infection, although symptoms are absent and viral replication in peripheral blood mononuclear cells is low, substantial levels of HIV replication can be documented in lymphoid tissue [G. Pantaleo, C. Graziosi, J.F. Demarest, L. Butini, M. Montroni, C.H. Fox, J.M. Orenstein, D.P. Kotler, and A.S. Fauci, Nature (London) 362:355-358, 1993, and J. Embretsen, M. Zupancic, J.L. Ribas, A. Burke, P. Racz, K. Tenner-Tacz, and A.T. Haase, Nature (London) 362:359-362, 1993]. This observation suggests that earlier treatment of HIV infection may be indicated and that strategies for enhancing drug targeting to the lymphoid tissue reservoris of HIV infection may be beneficial. To address this issue, we synthesized dioleoylphosphatidyl-ddC (DOP-ddC) and dipalmitoylphosphatidyl-3'-azido-3'-deoxythymidine (DPP-AZT), phospholipid prodrugs which form lipid bilayers and which are readily incorporated into liposomes. The anti-HIV activity of DOP-ddC was similar to that of ddC in HIV type 1-infected HT4-6C cells, but DPP-AZT was considerably less active than AZT in HT4-6C cells. Liposomes containing DOP-[3H]ddC or DPP-[3H]AZT administered intraperitoneally to mice produced greater levels of total radioactivity over time in plasma, spleen, and lymphoid tissue relative to the results with [3H]ddC and [3H]AZT, respectively. DPP-AZT administered intraperitoneally in liposomes as a single daily dose to mice infected with Rauscher leukemia virus prevented increased spleen weight and reverse transcriptase levels in serum with a dose-response roughly comparable to that of AZT given continuously in the drinking water. DOP-ddC, DPP-AZT, and lipid conjugates of other antiretroviral nucleosides may provide higher levels of drug over time in plasma and in lymph nodes and spleen, important reservoirs of HIV infection, and may represent an interesting alternative approach to antiviral nucleoside treatment of AIDS. PMID:7695264

  16. Functionalized Congeners of P2Y1 Receptor Antagonists:

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    de Castro, Sonia; Maruoka, Hiroshi; Hong, Kunlun

    2010-01-01

    The P2Y{sub 1} receptor is a prothrombotic G protein-coupled receptor (GPCR) activated by ADP. Preference for the North (N) ring conformation of the ribose moiety of adenine nucleotide 3',5'-bisphosphate antagonists of the P2Y{sub 1} receptor was established by using a ring-constrained methanocarba (a bicyclo[3.1.0]hexane) ring as a ribose substitute. A series of covalently linkable N{sup 6}-methyl-(N)-methanocarba-2'-deoxyadenosine-3',5'-bisphosphates containing extended 2-alkynyl chains was designed, and binding affinity at the human (h) P2Y{sub 1} receptor determined. The chain of these functionalized congeners contained hydrophilic moieties, a reactive substituent, or biotin, linked via an amide. Variation of the chain length and position of anmore » intermediate amide group revealed high affinity of carboxylic congener 8 (K{sub i} 23 nM) and extended amine congener 15 (K{sub i} 132 nM), both having a 2-(1-pentynoyl) group. A biotin conjugate 18 containing an extended {epsilon}-aminocaproyl spacer chain exhibited higher affinity than a shorter biotinylated analogue. Alternatively, click coupling of terminal alkynes of homologous 2-dialkynyl nucleotide derivatives to alkyl azido groups produced triazole derivatives that bound to the P2Y{sub 1} receptor following deprotection of the bisphosphate groups. The preservation of receptor affinity of the functionalized congeners was consistent with new P2Y{sub 1} receptor modeling and ligand docking. Attempted P2Y{sub 1} antagonist conjugation to PAMAM dendrimer carriers by amide formation or palladium-catalyzed reaction between an alkyne on the dendrimer and a 2-iodopurine-derivatized nucleotide was unsuccessful. A dialkynyl intermediate containing the chain length favored in receptor binding was conjugated to an azide-derivatized dendrimer, and the conjugate inhibited ADP-promoted human platelet aggregation. This is the first example of attaching a strategically functionalized P2Y receptor antagonist to a PAMAM dendrimer to produce a multivalent conjugate exhibiting a desired biological effect, i.e., antithrombotic action.« less

  17. Comparison of Linear and Hyperbranched Polyether Lipids for Liposome Shielding by 18F-Radiolabeling and Positron Emission Tomography.

    PubMed

    Wagener, Karolin; Worm, Matthias; Pektor, Stefanie; Schinnerer, Meike; Thiermann, Raphael; Miederer, Matthias; Frey, Holger; Rösch, Frank

    2018-04-27

    Multifunctional and highly biocompatible polyether structures play a key role in shielding liposomes from degradation in the bloodstream, providing also multiple functional groups for further attachment of targeting moieties. In this work hyperbranched polyglycerol ( hbPG) bearing lipids with long alkyl chain anchor are evaluated with respect to steric stabilization of liposomes. The branched polyether lipids possess a hydrophobic bis(hexadecyl)glycerol membrane anchor for the liposomal membrane. hbPG was chosen as a multifunctional alternative to PEG, enabling the eventual linkage of multiple targeting vectors. Different hbPG lipids ( M n = 2900 and 5200 g mol -1 ) were examined. A linear bis(hexadecyl)glycerol-PEG lipid ( M n = 3000 g mol -1 ) was investigated as well, comparing hbPG and PEG with respect to shielding properties. Radiolabeling of the polymers was carried out using 1-azido-2-(2-(2-[ 18 F]fluoroethoxy)ethoxy)ethane ([ 18 F]F-TEG-N) 3 via copper-catalyzed alkyne-azide cycloaddition with excellent radiochemical yields exceeding 95%. Liposomes were prepared by the thin-film hydration method followed by repeated extrusion. Use of a custom automatic extrusion device gave access to reproducible sizes of the liposomes (hydrodynamic radius of 60-94 nm). The in vivo fate of the bis(hexadecyl)glycerol polyethers and their corresponding assembled liposome structures were evaluated via noninvasive small animal positron emission tomography (PET) imaging and biodistribution studies (1 h after injection and 4 h after injection) in mice. Whereas the main uptake of the nonliposomal polyether lipids was observed in the kidneys and in the bladder after 1 h due to rapid renal clearance, in contrast, the corresponding liposomes showed uptake in the blood pool as well as in organs with good blood supply, that is, heart and lung over the whole observation period of 4 h. The in vivo behavior of all three liposomal formulations was comparable, albeit with remarkable differences in splenic uptake. Overall, liposomes shielded by the branched polyglycerol lipids show a favorable biodistribution with greatly prolonged blood circulation times, rendering them promising novel nanovesicles for drug transport and targeting.

  18. Core-6 fucose and the oligomerization of the 1918 pandemic influenza viral neuraminidase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Zhengliang L., E-mail: Leon.wu@bio-techne.com; Zhou, Hui; Ethen, Cheryl M.

    The 1918 H1N1 influenza virus was responsible for one of the most deadly pandemics in human history. Yet to date, the structure component responsible for its virulence is still a mystery. In order to search for such a component, the neuraminidase (NA) antigen of the virus was expressed, which led to the discovery of an active form (tetramer) and an inactive form (dimer and monomer) of the protein due to different glycosylation. In this report, the N-glycans from both forms were released and characterized by mass spectrometry. It was found that the glycans from the active form had 26% core-6more » fucosylated, while the glycans from the inactive form had 82% core-6 fucosylated. Even more surprisingly, the stalk region of the active form was almost completely devoid of core-6-linked fucose. These findings were further supported by the results obtained from in vitro incorporation of azido fucose and {sup 3}H-labeled fucose using core-6 fucosyltransferase, FUT8. In addition, the incorporation of fucose did not change the enzymatic activity of the active form, implying that core-6 fucose is not directly involved in the enzymatic activity. It is postulated that core-6 fucose prohibits the oligomerization and subsequent activation of the enzyme. - Graphical abstract: Proposed mechanism for how core-fucose prohibits the tetramerization of the 1918 pandemic viral neuraminidase. Only the cross section of the stalk region with two N-linked glycans are depicted for clarity. (A) Carbohydrate–carbohydrate interaction on non-fucosylated monomer allows tetramerization. (B) Core-fucosylation disrupts the interaction and prevents the tetramerization. - Highlights: • Expressed 1918 pandemic influenza viral neuraminidase has inactive and active forms. • The inactive form contains high level of core-6 fucose, while the active form lacks such modification. • Core fucose could interfere the oligomerization of the neuraminidase and thus its activation. • This discovery may explain why 1918 pandemic influenza caused higher death rate among young population.« less

  19. MANUFACTURING METHODS FOR PHASE SHIFTERS.

    DTIC Science & Technology

    MANUFACTURING), (*PHASE SHIFT CIRCUITS, FERRITES, GARNET , DIGITAL SYSTEMS, X BAND, C BAND, S BAND, RADAR EQUIPMENT, MAGNETIC MATERIALS, YTTRIUM COMPOUNDS, GADOLINIUM COMPOUNDS, ALUMINUM COMPOUNDS, IRON COMPOUNDS, OXIDES.

  20. Compound Nouns and Category Structure in Young Children.

    ERIC Educational Resources Information Center

    Clark, Eve V.; And Others

    1985-01-01

    In two experiments 96 children and eight adults were tested for comprehension of the modifier-head relation in compounds such as apple-knife or were asked to label objects with compounds. Results show that by age three children reliably interpret novel compounds and made use of novel compounds to subcategorize. (RH)

  1. Compounding in Ukraine.

    PubMed

    Zdoryk, Oleksandr A; Georgiyants, Victoriya A; Gryzodub, Oleksandr I; Schnatz, Rick

    2013-01-01

    Pharmaceutical compounding in modern Ukraine has a rich history and goes back to ancient times. Today in the Ukraine, there is a revival of compounding practice, the opening of private compounding pharmacies, updating of legislative framework and requirements of the State Pharmacopeia of Ukraine for compounding preparations, and the introduction of Good Pharmaceutical Practice.

  2. Analytic Methods Used in Quality Control in a Compounding Pharmacy.

    PubMed

    Allen, Loyd V

    2017-01-01

    Analytical testing will no doubt become a more important part of pharmaceutical compounding as the public and regulatory agencies demand increasing documentation of the quality of compounded preparations. Compounding pharmacists must decide what types of testing and what amount of testing to include in their quality-control programs, and whether testing should be done in-house or outsourced. Like pharmaceutical compounding, analytical testing should be performed only by those who are appropriately trained and qualified. This article discusses the analytical methods that are used in quality control in a compounding pharmacy. Copyright© by International Journal of Pharmaceutical Compounding, Inc.

  3. Fig volatile compounds--a first comparative study.

    PubMed

    Grison-Pigé, Laure; Hossaert-McKey, Martine; Greeff, Jaco M; Bessière, Jean-Marie

    2002-09-01

    We analysed the compounds of volatile blends released by receptive figs of twenty Ficus species to attract their specific pollinating wasps. In all, 99 different compounds were identified. The compounds are mainly terpenoids, aliphatic compounds and products from the shikimic acid pathway. In each species blend, there are few major compounds, which are generally common among floral fragrances. Most species blends also include rare compounds, but generally their proportion in the blend is low. A possible basis for species-specificity of Ficus-wasp interactions is discussed in relation to the patterns of volatiles found in this interspecies comparison. Copyright 2002 Elsevier Science Ltd.

  4. Phytochemical Investigations of Three Rhodocodon (Hyacinthaceae Sensu APG II) Species.

    PubMed

    Schwikkard, Sianne; Alqahtani, Alaa; Knirsch, Walter; Wetschnig, Wolfgang; Jaksevicius, Andrius; Opara, Elizabeth I; Langat, Moses K; Andriantiana, Jackie L; Mulholland, Dulcie A

    2017-01-27

    The genus Rhodocodon (Hyacinthaceae sensu APG II) is endemic to Madagascar, and its phytochemistry has not been described previously. The phytochemistry of three species in this genus has been investigated, and eight compounds, including three bufadienolides (compounds 1, 4, and 5), a norlignan (2), and four homoisoflavonoids (compounds 3 and 6-8), have been isolated and identified. Compounds 1-3 and 6-8 have not been described previously. The COX-2 inhibitory activity of compound 6 and compound 7 acetate (compound 7A) was investigated on isolated colorectal cancer cells. Compounds 6 and 7A inhibited COX-2 by 10% and 8%, respectively, at a concentration of 12.5 μM compared to 12% for 1 mM aspirin (the positive control).

  5. Chemical vapor deposition of group IIIB metals

    DOEpatents

    Erbil, A.

    1989-11-21

    Coatings of Group IIIB metals and compounds thereof are formed by chemical vapor deposition, in which a heat decomposable organometallic compound of the formula given in the patent where M is a Group IIIB metal, such as lanthanum or yttrium and R is a lower alkyl or alkenyl radical containing from 2 to about 6 carbon atoms, with a heated substrate which is above the decomposition temperature of the organometallic compound. The pure metal is obtained when the compound of the formula 1 is the sole heat decomposable compound present and deposition is carried out under nonoxidizing conditions. Intermetallic compounds such as lanthanum telluride can be deposited from a lanthanum compound of formula 1 and a heat decomposable tellurium compound under nonoxidizing conditions.

  6. Chemical vapor deposition of group IIIB metals

    DOEpatents

    Erbil, Ahmet

    1989-01-01

    Coatings of Group IIIB metals and compounds thereof are formed by chemical vapor deposition, in which a heat decomposable organometallic compound of the formula (I) ##STR1## where M is a Group IIIB metal, such as lanthanum or yttrium and R is a lower alkyl or alkenyl radical containing from 2 to about 6 carbon atoms, with a heated substrate which is above the decomposition temperature of the organometallic compound. The pure metal is obtained when the compound of the formula I is the sole heat decomposable compound present and deposition is carried out under nonoxidizing conditions. Intermetallic compounds such as lanthanum telluride can be deposited from a lanthanum compound of formula I and a heat decomposable tellurium compound under nonoxidizing conditions.

  7. Biotransformation of natural gas and oil compounds associated with marine oil discharges.

    PubMed

    Brakstad, Odd Gunnar; Almås, Inger K; Krause, Daniel Franklin

    2017-09-01

    Field data from the Deepwater Horizon (DWH) oil spill in the Gulf of Mexico (GoM) suggested that oxidation of gas compounds stimulated biodegradation of oil compounds in the deep sea plume. We performed experiments with local seawater from a Norwegian fjord to examine if the presence of dissolved gas compounds (methane, ethane and propane) affected biodegradation of volatile oil compounds, and if oil compounds likewise affected gas compound oxidation. The results from the experiment showed comparable oil compound biotransformation rates in seawater at 5 °C between seawater with and without soluble gases. Gas oxidation was not affected by the presence of volatile oil compounds. Contrary to DWH deep sea plume data, propane oxidation was not faster than methane oxidation. These data may reflect variations between biodegradation of oil and gas in seawater environments with different history of oil and gas exposure. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Bilingual reading of compound words.

    PubMed

    Ko, In Yeong; Wang, Min; Kim, Say Young

    2011-02-01

    The present study investigated whether bilingual readers activate constituents of compound words in one language while processing compound words in the other language via decomposition. Two experiments using a lexical decision task were conducted with adult Korean-English bilingual readers. In Experiment 1, the lexical decision of real English compound words was more accurate when the translated compounds (the combination of the translation equivalents of the constituents) in Korean (the nontarget language) were real words than when they were nonwords. In Experiment 2, when the frequency of the second constituents of compound words in English (the target language) was manipulated, the effect of lexical status of the translated compounds was greater on the compounds with high-frequency second constituents than on those with low-frequency second constituents in the target language. Together, these results provided evidence for morphological decomposition and cross-language activation in bilingual reading of compound words.

  9. Pharmaceutical compounding or pharmaceutical manufacturing? A regulatory perspective.

    PubMed

    Timko, Robert J; Crooker, Philip E M

    2014-01-01

    At one time, nearly all prescriptions were compounded preparations. There is an ongoing demand for compounded prescription medications because manufacturers cannot fulfill the needs of all individual patients. Compounding pharmacies are a long standing yet less frequently discussed element in the complex matrix of prescription drug manufacturing, distribution, and patient use. The drug shortage situation for many necessary and life-saving drug products is a complicating factor that has led to the numerous quality issues that currently plague large-scale compounding pharmacies. The states are the primary regulator of pharmacies, including community drug stores, large chains, and specialty pharmacies. Pharmacies making and distributing drugs in a way that is outside the bounds of traditional pharmacy compounding are of great concern to the U.S. Food and Drug Administration. The U.S. Congress has recently passed the Drug Quality and Security Act. This legislation establishes a clear boundary between traditional compounders and compounding manufacturers. It clarifies a national, uniform set of rules for compounding manufacturers while preserving the states' primary role in traditional pharmacy regulation. It clarifies the U.S. Food and Drug Administration's authority over the compounding of human drugs while requiring the Agency to engage and coordinate with states to ensure the safety of compounded drugs.

  10. Crystallographic site swapping of La3+ ion in BaA'LaTeO6 (A' = Na, K, Rb) double perovskite type compounds: diffraction and photoluminescence evidence for the site swapping.

    PubMed

    Phatak, R; Gupta, S K; Krishnan, K; Sali, S K; Godbole, S V; Das, A

    2014-02-28

    Double perovskite type compounds of the formula BaA'LaTeO6 (A' = Na, K, Rb) were synthesized by solid state route and their crystal structures were determined by Rietveld analysis using powder X-ray diffraction and neutron diffraction data. Na compound crystallizes in the monoclinic system with P2₁/n space group whereas, K and Rb compounds crystallize in Fm3m space group. All the three compounds show rock salt type ordering at B site. Crystal structure analysis shows that La ion occupies A site in Na compound whereas, it occupies B site in K and Rb compounds according to the general formula of AA'BB'O6 for a double perovskite type compound. Effect of this crystallographic site swapping of the La ion was also observed in the photoluminescence study by doping Eu(3+) in La(3+) site. The large decrease in the intensity of the electric dipole ((5)D0-(7)F2) transition in the Rb compound compared to the Na compound indicates that Eu(3+) ion resides in the centrosymmetric octahedral environment in the Rb compound.

  11. Estimating the densities of benzene-derived explosives using atomic volumes.

    PubMed

    Ghule, Vikas D; Nirwan, Ayushi; Devi, Alka

    2018-02-09

    The application of average atomic volumes to predict the crystal densities of benzene-derived energetic compounds of general formula C a H b N c O d is presented, along with the reliability of this method. The densities of 119 neutral nitrobenzenes, energetic salts, and cocrystals with diverse compositions were estimated and compared with experimental data. Of the 74 nitrobenzenes for which direct comparisons could be made, the % error in the estimated density was within 0-3% for 54 compounds, 3-5% for 12 compounds, and 5-8% for the remaining 8 compounds. Among 45 energetic salts and cocrystals, the % error in the estimated density was within 0-3% for 25 compounds, 3-5% for 13 compounds, and 5-7.4% for 7 compounds. The absolute error surpassed 0.05 g/cm 3 for 27 of the 119 compounds (22%). The largest errors occurred for compounds containing fused rings and for compounds with three -NH 2 or -OH groups. Overall, the present approach for estimating the densities of benzene-derived explosives with different functional groups was found to be reliable. Graphical abstract Application and reliability of average atom volume in the crystal density prediction of energetic compounds containing benzene ring.

  12. Pre-compound emission in low-energy heavy-ion interactions

    NASA Astrophysics Data System (ADS)

    Sharma, Manoj Kumar; Shuaib, Mohd.; Sharma, Vijay R.; Yadav, Abhishek; Singh, Pushpendra P.; Singh, Devendra P.; Unnati; Singh, B. P.; Prasad, R.

    2017-11-01

    Recent experimental studies have shown the presence of pre-compound emission component in heavy ion reactions at low projectile energy ranging from 4 to 7 MeV/nucleons. In earlier measurements strength of the pre-compound component has been estimated from the difference in forward-backward distributions of emitted particles. Present measurement is a part of an ongoing program on the study of reaction dynamics of heavy ion interactions at low energies aimed at investigating the effect of momentum transfer in compound, precompound, complete and incomplete fusion processes in heavy ion reactions. In the present work on the basis of momentum transfer the measurement of the recoil range distributions of heavy residues has been used to decipher the components of compound and pre-compound emission processes in the fusion of 16O projectile with 159Tb and 169Tm targets. The analysis of recoil range distribution measurements show two distinct linear momentum transfer components corresponding to pre-compound and compound nucleus processes are involved. In order to obtain the mean input angular momentum associated with compound and pre-compound emission processes, an online measurement of the spin distributions of the residues has been performed. The analysis of spin distribution indicate that the mean input angular momentum associated with pre-compound products is found to be relatively lower than that associated with compound nucleus process. The pre-compound components obtained from the present analysis are consistent with those obtained from the analysis of excitation functions.

  13. [Determination of flavor compounds in foxtail millet wine by gas chromatography-mass spectrometry coupled with headspace solid phase microextraction].

    PubMed

    Liu, Jingke; Zhang, Aixia; Li, Shaohui; Zhao, Wei; Zhang, Yuzong; Xing, Guosheng

    2017-11-08

    To comprehensively understand flavor compounds and aroma characteristics of foxtail millet wine, extraction conditions were optimized with 85 μm polyacrylate (PA), 100 μm polydimethylsiloxane (PDMS), 75 μm carboxen (CAR)/PDMS and 50/30 μm divinylbenzene (DVB)/CAR/PDMS fibers. The flavor compounds in foxtail millet wine were investigated by gas chromatography-mass spectrometry (GC-MS) coupled with headspace solid phase microextraction (HS-SPME), and the odor characteristics and intensity were analyzed by odor active values (OAVs). The samples of 8 mL were placed in headspace vials with 1.5 g NaCl, then the headspace vials were heated at 60℃ for 40 min. Using HS-SPME with different fibers, a total of 55 flavor compounds were identified from the samples, including alcohols, esters, benzene derivatives, hydrocarbons, acids, aldehydes, ketones, terpenes, phenols and heterocycle compounds. The main flavor compounds were alcohols compounds. According to their OAVs, phenylethyl alcohol, styrene, 1-methyl-naphthalene, 2-methyl-naphthalene, benzaldehyde, benzeneacetaldehyde and 2-methoxy-phenol were established to be odor-active compounds. Phenylethyl alcohol and benzeneacetaldehyde were the most prominent odor-active compounds. PA and PDMS fibers had good extraction effect for polar and nonpolar compounds, respectively. CAR/PDMS and DVB/CAR/PDMS provided a similar compounds profile for moderate polar compounds. This research comprehensively determined flavor compounds of foxtail millet wine, and provided theoretical basis for product development and quality control.

  14. Automated compound classification using a chemical ontology.

    PubMed

    Bobach, Claudia; Böhme, Timo; Laube, Ulf; Püschel, Anett; Weber, Lutz

    2012-12-29

    Classification of chemical compounds into compound classes by using structure derived descriptors is a well-established method to aid the evaluation and abstraction of compound properties in chemical compound databases. MeSH and recently ChEBI are examples of chemical ontologies that provide a hierarchical classification of compounds into general compound classes of biological interest based on their structural as well as property or use features. In these ontologies, compounds have been assigned manually to their respective classes. However, with the ever increasing possibilities to extract new compounds from text documents using name-to-structure tools and considering the large number of compounds deposited in databases, automated and comprehensive chemical classification methods are needed to avoid the error prone and time consuming manual classification of compounds. In the present work we implement principles and methods to construct a chemical ontology of classes that shall support the automated, high-quality compound classification in chemical databases or text documents. While SMARTS expressions have already been used to define chemical structure class concepts, in the present work we have extended the expressive power of such class definitions by expanding their structure-based reasoning logic. Thus, to achieve the required precision and granularity of chemical class definitions, sets of SMARTS class definitions are connected by OR and NOT logical operators. In addition, AND logic has been implemented to allow the concomitant use of flexible atom lists and stereochemistry definitions. The resulting chemical ontology is a multi-hierarchical taxonomy of concept nodes connected by directed, transitive relationships. A proposal for a rule based definition of chemical classes has been made that allows to define chemical compound classes more precisely than before. The proposed structure-based reasoning logic allows to translate chemistry expert knowledge into a computer interpretable form, preventing erroneous compound assignments and allowing automatic compound classification. The automated assignment of compounds in databases, compound structure files or text documents to their related ontology classes is possible through the integration with a chemical structure search engine. As an application example, the annotation of chemical structure files with a prototypic ontology is demonstrated.

  15. Automated compound classification using a chemical ontology

    PubMed Central

    2012-01-01

    Background Classification of chemical compounds into compound classes by using structure derived descriptors is a well-established method to aid the evaluation and abstraction of compound properties in chemical compound databases. MeSH and recently ChEBI are examples of chemical ontologies that provide a hierarchical classification of compounds into general compound classes of biological interest based on their structural as well as property or use features. In these ontologies, compounds have been assigned manually to their respective classes. However, with the ever increasing possibilities to extract new compounds from text documents using name-to-structure tools and considering the large number of compounds deposited in databases, automated and comprehensive chemical classification methods are needed to avoid the error prone and time consuming manual classification of compounds. Results In the present work we implement principles and methods to construct a chemical ontology of classes that shall support the automated, high-quality compound classification in chemical databases or text documents. While SMARTS expressions have already been used to define chemical structure class concepts, in the present work we have extended the expressive power of such class definitions by expanding their structure-based reasoning logic. Thus, to achieve the required precision and granularity of chemical class definitions, sets of SMARTS class definitions are connected by OR and NOT logical operators. In addition, AND logic has been implemented to allow the concomitant use of flexible atom lists and stereochemistry definitions. The resulting chemical ontology is a multi-hierarchical taxonomy of concept nodes connected by directed, transitive relationships. Conclusions A proposal for a rule based definition of chemical classes has been made that allows to define chemical compound classes more precisely than before. The proposed structure-based reasoning logic allows to translate chemistry expert knowledge into a computer interpretable form, preventing erroneous compound assignments and allowing automatic compound classification. The automated assignment of compounds in databases, compound structure files or text documents to their related ontology classes is possible through the integration with a chemical structure search engine. As an application example, the annotation of chemical structure files with a prototypic ontology is demonstrated. PMID:23273256

  16. Gasoline-Related Compounds in Lakes Mead and Mohave, Nevada, 2004-06

    USGS Publications Warehouse

    Lico, Michael S.; Johnson, B. Thomas

    2007-01-01

    The distribution of man-made organic compounds, specifically gasoline-derived compounds, was investigated from 2004 to 2006 in Lakes Mead and Mohave and one of its tributary streams, Las Vegas Wash. Compounds contained in raw gasoline (benzene, toluene, ethylbenzene, xylenes; also known as BTEX compounds) and those produced during combustion of gasoline (polycyclic aromatic hydrocarbon compounds; also known as PAH compounds) were detected at every site sampled in Lakes Mead and Mohave. Water-quality analyses of samples collected during 2004-06 indicate that motorized watercraft are the major source of these organic compounds to the lakes. Concentrations of BTEX increase as the boating season progresses and decrease to less than detectable levels during the winter when few boats are on the water. Volatilization and microbial degradation most likely are the primary removal mechanisms for BTEX compounds in the lakes. Concentrations of BTEX compounds were highest at sampling points near marinas or popular launching areas. Methyl tert-butyl ether (MTBE) was detected during 2004 but concentrations decreased to less than the detection level during the latter part of the study; most likely due to the removal of MTBE from gasoline purchased in California. Distribution of PAH compounds was similar to that of BTEX compounds, in that, concentrations were highest at popular boating areas and lowest in areas where fewer boats traveled. PAH concentrations were highest at Katherine Landing and North Telephone Cove in Lake Mohave where many personal watercraft with carbureted two-stroke engines ply the waters. Lake-bottom sediment is not a sink for PAH as indicated by the low concentrations detected in sediment samples from both lakes. PAH compounds most likely are removed from the lakes by photochemical degradation. PAH compounds in Las Vegas Wash, which drains the greater Las Vegas metropolitan area, were present in relatively high concentrations in sediment from the upstream reaches. Concentrations of PAH compounds were low in water and sediment samples collected farther downstream, thus the bottom sediment in the upstream part of the wash may be an effective trap for these compounds. Bioavailable PAH compounds were present in all samples as determined using the Fluoroscan method. Microtox acute toxicity profiles indicated that Callville Bay in Lake Mead and the two Lake Mohave sites had only minor evidence that toxic compounds are present.

  17. A strategy to find novel candidate anti-Alzheimer's disease drugs by constructing interaction networks between drug targets and natural compounds in medical plants.

    PubMed

    Chen, Bi-Wen; Li, Wen-Xing; Wang, Guang-Hui; Li, Gong-Hua; Liu, Jia-Qian; Zheng, Jun-Juan; Wang, Qian; Li, Hui-Juan; Dai, Shao-Xing; Huang, Jing-Fei

    2018-01-01

    Alzheimer' disease (AD) is an ultimately fatal degenerative brain disorder that has an increasingly large burden on health and social care systems. There are only five drugs for AD on the market, and no new effective medicines have been discovered for many years. Chinese medicinal plants have been used to treat diseases for thousands of years, and screening herbal remedies is a way to develop new drugs. We used molecular docking to screen 30,438 compounds from Traditional Chinese Medicine (TCM) against a comprehensive list of AD target proteins. TCM compounds in the top 0.5% of binding affinity scores for each target protein were selected as our research objects. Structural similarities between existing drugs from DrugBank database and selected TCM compounds as well as the druggability of our candidate compounds were studied. Finally, we searched the CNKI database to obtain studies on anti-AD Chinese plants from 2007 to 2017, and only clinical studies were included. A total of 1,476 compounds (top 0.5%) were selected as drug candidates. Most of these compounds are abundantly found in plants used for treating AD in China, especially the plants from two genera Panax and Morus. We classified the compounds by single target and multiple targets and analyzed the interactions between target proteins and compounds. Analysis of structural similarity revealed that 17 candidate anti-AD compounds were structurally identical to 14 existing approved drugs. Most of them have been reported to have a positive effect in AD. After filtering for compound druggability, we identified 11 anti-AD compounds with favorable properties, seven of which are found in anti-AD Chinese plants. Of 11 anti-AD compounds, four compounds 5,862, 5,863, 5,868, 5,869 have anti-inflammatory activity. The compound 28,814 mainly has immunoregulatory activity. The other six compounds have not yet been reported for any biology activity at present. Natural compounds from TCM provide a broad prospect for the screening of anti-AD drugs. In this work, we established networks to systematically study the connections among natural compounds, approved drugs, TCM plants and AD target proteins with the goal of identifying promising drug candidates. We hope that our study will facilitate in-depth research for the treatment of AD in Chinese medicine.

  18. Identification of compound-protein interactions through the analysis of gene ontology, KEGG enrichment for proteins and molecular fragments of compounds.

    PubMed

    Chen, Lei; Zhang, Yu-Hang; Zheng, Mingyue; Huang, Tao; Cai, Yu-Dong

    2016-12-01

    Compound-protein interactions play important roles in every cell via the recognition and regulation of specific functional proteins. The correct identification of compound-protein interactions can lead to a good comprehension of this complicated system and provide useful input for the investigation of various attributes of compounds and proteins. In this study, we attempted to understand this system by extracting properties from both proteins and compounds, in which proteins were represented by gene ontology and KEGG pathway enrichment scores and compounds were represented by molecular fragments. Advanced feature selection methods, including minimum redundancy maximum relevance, incremental feature selection, and the basic machine learning algorithm random forest, were used to analyze these properties and extract core factors for the determination of actual compound-protein interactions. Compound-protein interactions reported in The Binding Databases were used as positive samples. To improve the reliability of the results, the analytic procedure was executed five times using different negative samples. Simultaneously, five optimal prediction methods based on a random forest and yielding maximum MCCs of approximately 77.55 % were constructed and may be useful tools for the prediction of compound-protein interactions. This work provides new clues to understanding the system of compound-protein interactions by analyzing extracted core features. Our results indicate that compound-protein interactions are related to biological processes involving immune, developmental and hormone-associated pathways.

  19. Potential of the octanol-water partition coefficient (logP) to predict the dermal penetration behaviour of amphiphilic compounds in aqueous solutions.

    PubMed

    Korinth, Gintautas; Wellner, Tanja; Schaller, Karl Heinz; Drexler, Hans

    2012-11-23

    Aqueous amphiphilic compounds may exhibit enhanced skin penetration compared with neat compounds. Conventional models do not predict this percutaneous penetration behaviour. We investigated the potential of the octanol-water partition coefficient (logP) to predict dermal fluxes for eight compounds applied neat and as 50% aqueous solutions in diffusion cell experiments using human skin. Data for seven other compounds were accessed from literature. In total, seven glycol ethers, three alcohols, two glycols, and three other chemicals were considered. Of these 15 compounds, 10 penetrated faster through the skin as aqueous solutions than as neat compounds. The other five compounds exhibited larger fluxes as neat applications. For 13 of the 15 compounds, a consistent relationship was identified between the percutaneous penetration behaviour and the logP. Compared with the neat applications, positive logP were associated with larger fluxes for eight of the diluted compounds, and negative logP were associated with smaller fluxes for five of the diluted compounds. Our study demonstrates that decreases or enhancements in dermal penetration upon aqueous dilution can be predicted for many compounds from the sign of logP (i.e., positive or negative). This approach may be suitable as a first approximation in risk assessments of dermal exposure. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  20. Large Constituent Families Help Children Parse Compounds

    ERIC Educational Resources Information Center

    Krott, Andrea; Nicoladis, Elena

    2005-01-01

    The family size of the constituents of compound words, or the number of compounds sharing the constituents, has been shown to affect adults' access to compound words in the mental lexicon. The present study was designed to see if family size would affect children's segmentation of compounds. Twenty-five English-speaking children between 3;7 and…

  1. Boron-containing amino carboxylic acid compounds and uses thereof

    DOEpatents

    Kabalka, George W.; Srivastava, Rajiv R.

    2000-03-14

    Novel compounds which are useful for boron neutron capture therapy (BNCT) are disclosed. The compounds comprise a stable boron-containing group and an aminocycloalkane carboxylic acid group or a boronated acyclic hydrocarbon-linked amino carboxylic acid. Methods for synthesis of the compounds and for use of the compounds in BNCT are disclosed.

  2. Process for preparing a chemical compound enriched in isotope content

    DOEpatents

    Michaels, Edward D.

    1982-01-01

    A process to prepare a chemical enriched in isotope content which includes: (a) A chemical exchange reaction between a first and second compound which yields an isotopically enriched first compound and an isotopically depleted second compound; (b) the removal of a portion of the first compound as product and the removal of a portion of the second compound as spent material; (c) the conversion of the remainder of the first compound to the second compound for reflux at the product end of the chemical exchange reaction region; (d) the conversion of the remainder of the second compound to the first compound for reflux at the spent material end of the chemical exchange region; and the cycling of the additional chemicals produced by one conversion reaction to the other conversion reaction, for consumption therein. One of the conversion reactions is an oxidation reaction, and the energy that it yields is used to drive the other conversion reaction, a reduction. The reduction reaction is carried out in a solid polymer electrolyte electrolytic reactor. The overall process is energy efficient and yields no waste by-products.

  3. Soil Organic Chemistry.

    ERIC Educational Resources Information Center

    Anderson, G.

    1979-01-01

    A brief review is presented of some of the organic compounds and reactions that occur in soil. Included are nitrogenous compounds, compounds of phosphorus and sulfur, carbohydrates, phenolic compounds, and aliphatic acids. (BB)

  4. Rare Earth Laser Engineering Program. Part II.

    DTIC Science & Technology

    YTTRIUM ALUMINUM GARNET , NEAR INFRARED RADIATION, CONCENTRATION(CHEMISTRY), YTTRIUM COMPOUNDS, ALUMINUM COMPOUNDS, OXIDES, RELAXATION, RATES...VANADATES, DOPING, LANTHANUM, ERBIUM, HOLMIUM, GADOLINIUM COMPOUNDS, GARNET , TRANSPORT PROPERTIES, OSCILLATORS, LANTHANUM COMPOUNDS, FLUORIDES.

  5. Characterization of the key aroma compounds in pork soup stock by using an aroma extract dilution analysis.

    PubMed

    Takakura, Yukiko; Osanai, Hiroki; Masuzawa, Takuya; Wakabayashi, Hidehiko; Nishimura, Toshihide

    2014-01-01

    The aroma extract dilution analysis of an extract prepared from pork stock and subsequent experiments led to the identification of 15 aroma-active compounds in the flavor dilution factor range of 64-2048. Omission experiments to select the most aroma-active compounds from the 15 odor compounds suggested acetol, octanoic acid, δ-decalactone, and decanoic acid as the main active compounds contributing to the aroma of pork stock. Aroma recombination, addition, and omission experiments of these four aroma compounds in taste-reconstituted pork stock showed that each compound had an individual aroma profile. A comparison of the overall aroma between this recombined mixture and pork stock showed strong similarity, suggesting that the key aroma compounds had been successfully identified.

  6. Design and simulation of a superposition compound eye system based on hybrid diffractive-refractive lenses.

    PubMed

    Zhang, Shuqing; Zhou, Luyang; Xue, Changxi; Wang, Lei

    2017-09-10

    Compound eyes offer a promising field of miniaturized imaging systems. In one application of a compound eye, superposition of compound eye systems forms a composite image by superposing the images produced by different channels. The geometric configuration of superposition compound eye systems is achieved by three micro-lens arrays with different pitches and focal lengths. High resolution is indispensable for the practicability of superposition compound eye systems. In this paper, hybrid diffractive-refractive lenses are introduced into the design of a compound eye system for this purpose. With the help of ZEMAX, two superposition compound eye systems with and without hybrid diffractive-refractive lenses were separately designed. Then, we demonstrate the effectiveness of using a hybrid diffractive-refractive lens to improve the image quality.

  7. Phytochemical Investigations on Chemical Constituents of Achillea tenuifolia Lam

    PubMed Central

    Moradkhani, Shirin; Kobarfard, Farzad; Ayatollahi, Seyed Abdol Majid

    2014-01-01

    Achillea tenuifolia Lam. (Asteraceae) afforded a methanolic extract from which after fractionation in solvents with different polarities, two known flavones 3’, 5- dihydroxy- 4’, 6, 7- trimethoxy flavone (eupatorine, compound 3), 5- hydroxy- 3’,4’, 6, 7- tetramethoxyflavone (compound 4), besides stearic acid (compound 1), lupeol (compound 2), daucosterol (β- sitosterol 3-O- β- D- glucopyranoside, compound 5), 2, 4- dihydroxy methyl benzoate (compound 6) were isolated for the first time. The structure of isolated compounds was elucidated by means of different spectroscopic methods such as UV, IR, Mass and 1H- NMR (1D and 2D) and 13C-NMR. For further confirming the structures of isolated compounds, comparison of the spectral data of them with those reported in the litratures have been done. PMID:25276207

  8. Synthesis, Antiinflammatory and Antimicrobial Activity of Some New 1-(3-Phenyl-3,4-Dihydro-2H-1,3-Benzoxazin-6-yl)-Ethanone Derivatives.

    PubMed

    Akhter, Mymoona; Husain, A; Akhter, N; Khan, M S Y

    2011-01-01

    Synthesis of title compounds (4a-j) was carried out by following aminomethylation Mannich reaction. Test compounds were effective in inhibiting edema induced by carrageenan. The percent inhibition obseved was in the range of 25-83.3%. Compound (4c, e, h and j) were also tested for analgesic effect and showed percent protection ranging between 57-65%. All the synthesized compounds were active against E. coli and S. aureus but only compounds (4 b, c, e, i and j) were active against B. subtilis. All these compound were also found active against A. niger. Compound 4j was the most active compound with 83.3% inhibition of edema, 65.35% percent protection and inhibited all the three bacterial strains.

  9. Characterization and origin of the 'B' and 'C' compounds in the acid/neutral forensic signatures of heroin - products from the acylation of porphyroxine and subsequent hydrolysis.

    PubMed

    Casale, John F; Casale, Ellen S; Toske, Steven G; Hays, Patrick A; Panicker, Sini

    2017-03-01

    Two significant compounds often found in the gas chromatographic analysis of the acid/neutral extracts from illicit heroin have remained uncharacterized for 30 years. The unknown compounds are referred to as the 'B' and 'C' compounds. It has been postulated that these compounds arise from acetylation of porphyroxine, a rhoeadine alkaloid found at trace levels in the opium poppy, Papaver somniferum. Porphyroxine was isolated from opium and acetylated to produce N,O 8 -diacetylporphyroxine. Mild hydrolysis produced N,O 8 -diacetyl-O 14 -desmethyl-epi-porphyroxine (the C compound) and N-acetyl-O 14 -desmethyl-epi-porphyroxine (the B compound). Both N,O 8 -diacetyl-O 14 -desmethyl-epi-porphyroxine and N-acetyl-O 14 -desmethyl-epi-porphyroxine were determined to be C-14 epimers of porphyroxine and N,O 8 -diacetylporphyroxine. The non-epimerized isomers of the B and C compounds were also detected in illicit heroin, but at much lower levels. Chromatographic and spectroscopic data are presented for the aforementioned compounds. The presence/absence and relative concentrations of these compounds is presented for the four types of heroin (Southwest Asian, South American, Southeast Asian, and Mexican). The prevalence of detection for the B and C compounds are Southwest Asian = 92-93%, South American = 64-72%, Southeast Asian = 45-49%, and Mexican ≤ 3%. When detected, the overall trend of relative concentrations of dicaetylporhyroxine, the B-compound, and C-compound is Southwest Asian > South American > Southeast Asian, each by an order of magnitude. These compounds were rarely detected in Mexican heroin. The presence/absence and relative concentrations of these compounds provide pertinent forensic signature characteristics that significantly enhance the final regional classifications. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  10. Inhibitory Effect of Furanic and Phenolic Compounds on Exoelectrogenesis in a Microbial Electrolysis Cell Bioanode

    DOE PAGES

    Zeng, Xiaofei; Borole, Abhijeet P.; Pavlostathis, Spyros G.

    2016-09-09

    Furanic and phenolic compounds are 20 lignocellulose-derived compounds known to inhibit to H2- and ethanol- producing microorganisms in dark fermentation. Bioelectrochemical conversion of furanic and phenolic compounds to electricity or H2 has recently been demonstrated as a productive method to use these compounds. However, potential inhibitory effect of furanic and phenolic compounds on exoelectrogenesis in bioelectrochemical systems is not well understood. This study systematically investigated the inhibitory effect of furfural (FF), 5-hydroxymethylfurfural (HMF), syringic acid (SA), vanillic acid (VA), and 4-hydroxybenzoic acid (HBA) on exoelectrogenesis in the bioanode of a microbial electrolysis cell. A mixture of these five compounds atmore » an increasing initial total concentration from 0.8 to 8.0 g/L resulted in current decrease up to 91%. The observed inhibition primarily affected exoelectrogenesis, instead of non-exoelectrogenic biotransformation pathways (e.g., fermentation) of the five compounds. Furthermore, the parent compounds at a high concentration, as opposed to their biotransformation products, were responsible for the observed inhibition. Tests with individual compounds show that all five parent compounds contributed to the observed inhibition by the mixture. The IC50 (concentration resulting in 50% current decrease) was estimated as 2.7 g/L for FF, 3.0 g/L for HMF, 1.9 g/L for SA, 2.1 g/L for VA and 2.0 g/L for HBA. Nevertheless, these compounds below their non-inhibitory concentrations jointly resulted in significant inhibition as a mixture. Catechol and phenol, which were persistent biotransformation products of the mixture, inhibited exoelectrogens at high concentrations, but to a lesser extent than the parent compounds. Recovery of exoelectrogenesis from inhibition by all compounds was observed, except for catechol, which resulted in irreversible inhibition. The reversibility of inhibition, as well as the observed difference in recovery rates, suggest different modes of exoelectrogenesis inhibition, related to the hydrophobicity of the inhibiting compounds.« less

  11. Literature-based compound profiling: application to toxicogenomics.

    PubMed

    Frijters, Raoul; Verhoeven, Stefan; Alkema, Wynand; van Schaik, René; Polman, Jan

    2007-11-01

    To reduce continuously increasing costs in drug development, adverse effects of drugs need to be detected as early as possible in the process. In recent years, compound-induced gene expression profiling methodologies have been developed to assess compound toxicity, including Gene Ontology term and pathway over-representation analyses. The objective of this study was to introduce an additional approach, in which literature information is used for compound profiling to evaluate compound toxicity and mode of toxicity. Gene annotations were built by text mining in Medline abstracts for retrieval of co-publications between genes, pathology terms, biological processes and pathways. This literature information was used to generate compound-specific keyword fingerprints, representing over-represented keywords calculated in a set of regulated genes after compound administration. To see whether keyword fingerprints can be used for assessment of compound toxicity, we analyzed microarray data sets of rat liver treated with 11 hepatotoxicants. Analysis of keyword fingerprints of two genotoxic carcinogens, two nongenotoxic carcinogens, two peroxisome proliferators and two randomly generated gene sets, showed that each compound produced a specific keyword fingerprint that correlated with the experimentally observed histopathological events induced by the individual compounds. By contrast, the random sets produced a flat aspecific keyword profile, indicating that the fingerprints induced by the compounds reflect biological events rather than random noise. A more detailed analysis of the keyword profiles of diethylhexylphthalate, dimethylnitrosamine and methapyrilene (MPy) showed that the differences in the keyword fingerprints of these three compounds are based upon known distinct modes of action. Visualization of MPy-linked keywords and MPy-induced genes in a literature network enabled us to construct a mode of toxicity proposal for MPy, which is in agreement with known effects of MPy in literature. Compound keyword fingerprinting based on information retrieved from literature is a powerful approach for compound profiling, allowing evaluation of compound toxicity and analysis of the mode of action.

  12. Method for loading lipsomes with ionizable phosphorylated hydrophobic compounds, pharmaceutical preparations and a method for administering the preparations

    DOEpatents

    Mehlhorn, Rolf Joachim

    1998-10-27

    A method of entrapping ionizable compounds, preferably phosphorylated hydrophobic compounds, into liposomes having transmembrane gradients is disclosed. The procedures involve forming liposomes in an acidic medium or a basic medium, adding to the acidic medium a cationic compound or to the basic medium an anionic compound and then adding a base to the cationic-containing medium or an acid to the anionic-containing medium, thereby inducing the ionizable compound into the liposomes' internal aqueous phase. The compound-entrapped liposomes prepared in accordance with the disclosed methods may be used as pharmaceutical preparations. Methods of administering such pharmaceutical preparations are also disclosed.

  13. Radionuclide-binding compound, a radionuclide delivery system, a method of making a radium complexing compound, a method of extracting a radionuclide, and a method of delivering a radionuclide

    DOEpatents

    Fisher, Darrell R.; Wai, Chien M.; Chen, Xiaoyuan

    2000-01-01

    The invention pertains to compounds which specifically bind radionuclides, and to methods of making radionuclide complexing compounds. In one aspect, the invention includes a radionuclide delivery system comprising: a) a calix[n]arene-crown-[m]-ether compound, wherein n is an integer greater than 3, and wherein m is an integer greater than 3, the calix[n]arene-crown-[m]-ether compound comprising at least two ionizable groups; and b) an antibody attached to the calix[n]arene-crown-[m]-ether compound. In another aspect, the invention includes a method of making a radium complexing compound, comprising: a) providing a calix[n]arene compound, wherein n is an integer greater than 3, the calix[n]arene compound comprising n phenolic hydroxyl groups; b) providing a crown ether precursor, the crown ether precursor comprising a pair of tosylated ends; c) reacting the pair of tosylated ends with a pair of the phenolic hydroxyl groups to convert said pair of phenolic hydroxyl groups to ether linkages, the ether linkages connecting the crown ether precursor to the calix[n]arene to form a calix[n]arene-crown-[m]-ether compound, wherein m is an integer greater than 3; d) converting remaining phenolic hydroxyl groups to esters; e) converting the esters to acids, the acids being proximate a crown-[m]-ether portion of the calix[n]arene-crown-[m]-ether compound; and f) providing a Ra.sup.2+ ion within the crown-[m]-ether portion of the calix[n]arene-crown-[m]-ether compound.

  14. Quantitative method of determining beryllium or a compound thereof in a sample

    DOEpatents

    McCleskey, T. Mark; Ehler, Deborah S.; John, Kevin D.; Burrell, Anthony K.; Collis, Gavin E.; Minogue, Edel M.; Warner, Benjamin P.

    2006-10-31

    A method of determining beryllium or a beryllium compound thereof in a sample, includes providing a sample suspected of comprising beryllium or a compound thereof, extracting beryllium or a compound thereof from the sample by dissolving in a solution, adding a fluorescent indicator to the solution to thereby bind any beryllium or a compound thereof to the fluorescent indicator, and determining the presence or amount of any beryllium or a compound thereof in the sample by measuring fluorescence.

  15. Quantitative method of determining beryllium or a compound thereof in a sample

    DOEpatents

    McCleskey, T. Mark; Ehler, Deborah S.; John, Kevin D.; Burrell, Anthony K.; Collis, Gavin E.; Minogue, Edel M.; Warner, Benjamin P.

    2010-08-24

    A method of determining beryllium or a beryllium compound thereof in a sample, includes providing a sample suspected of comprising beryllium or a compound thereof, extracting beryllium or a compound thereof from the sample by dissolving in a solution, adding a fluorescent indicator to the solution to thereby bind any beryllium or a compound thereof to the fluorescent indicator, and determining the presence or amount of any beryllium or a compound thereof in the sample by measuring fluorescence.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Socha, Aaron; Singh, Seema; Simmons, Blake A.

    Methods and compositions are provided for synthesizing ionic liquids from lignin derived compounds comprising: contacting a starting material comprising lignin with a depolymerization agent to depolymerize the lignin and form a mixture of aldehyde containing compounds; contacting the mixture of aldehyde containing compounds with an amine under conditions suitable to convert the mixture of aldehyde containing compounds to a mixture of amine containing compounds; and contacting the mixture of amine containing compounds with an acid under conditions suitable to form an ammonium salt, thereby preparing the ionic liquid.

  17. Antifungal activity of schinol and a new biphenyl compound isolated from Schinus terebinthifolius against the pathogenic fungus Paracoccidioides brasiliensis.

    PubMed

    Johann, Susana; Sá, Nívea P; Lima, Luciana A R S; Cisalpino, Patricia S; Cota, Betania B; Alves, Tânia M A; Siqueira, Ezequias P; Zani, Carlos L

    2010-10-12

    The aim of this study was to isolate and identify the antifungal compounds from the extracts of Schinus terebinthifolius (Anacardiaceae) against clinical isolates of the pathogenic fungus Paracoccidioides brasiliensis. The hexane and dichlomethane fractions from leaves and stems of S. terebinthifolius were fractionated using several chromatography techniques to afford four compounds. The compounds isolated from S. terebinthifolius were identified as schinol (1), a new biphenyl compound, namely, 4'-ethyl-4-methyl-2,2',6,6'-tetrahydroxy[1,1'-biphenyl]-4,4'-dicarboxylate (2), quercetin (3), and kaempferol (4). Compounds 1 and 2 were active against different strains of P. brasiliensis, showing a minimal inhibitory concentration value against the isolate Pb B339 of 15.6 μg/ml. The isolate Pb 1578 was more sensitive to compound 1 with a MIC value of 7.5 μg/ml. Schinol presented synergistic effect only when combined with itraconazole. The compounds isolated from S. terebinthifolius were not able to inhibit cell wall synthesis or assembly using the sorbitol assay. This work reveals for the first time the occurrence of compound 2 and discloses activity of compounds 1 and 2 against several clinical isolates of P. brasiliensis. These results justify further studies to clarify the mechanisms of action of these compounds.

  18. Just-in-Time Compound Pooling Increases Primary Screening Capacity without Compromising Screening Quality.

    PubMed

    Elkin, L L; Harden, D G; Saldanha, S; Ferguson, H; Cheney, D L; Pieniazek, S N; Maloney, D P; Zewinski, J; O'Connell, J; Banks, M

    2015-06-01

    Compound pooling, or multiplexing more than one compound per well during primary high-throughput screening (HTS), is a controversial approach with a long history of limited success. Many issues with this approach likely arise from long-term storage of library plates containing complex mixtures of compounds at high concentrations. Due to the historical difficulties with using multiplexed library plates, primary HTS often uses a one-compound-one-well approach. However, as compound collections grow, innovative strategies are required to increase the capacity of primary screening campaigns. Toward this goal, we have developed a novel compound pooling method that increases screening capacity without compromising data quality. This method circumvents issues related to the long-term storage of complex compound mixtures by using acoustic dispensing to enable "just-in-time" compound pooling directly in the assay well immediately prior to assay. Using this method, we can pool two compounds per well, effectively doubling the capacity of a primary screen. Here, we present data from pilot studies using just-in-time pooling, as well as data from a large >2-million-compound screen using this approach. These data suggest that, for many targets, this method can be used to vastly increase screening capacity without significant reduction in the ability to detect screening hits. © 2015 Society for Laboratory Automation and Screening.

  19. The chemical nature of phenolic compounds determines their toxicity and induces distinct physiological responses in Saccharomyces cerevisiae in lignocellulose hydrolysates

    PubMed Central

    2014-01-01

    We investigated the severity of the inhibitory effects of 13 phenolic compounds usually found in spruce hydrolysates (4-hydroxy-3-methoxycinnamaldehyde, homovanilyl alcohol, vanillin, syringic acid, vanillic acid, gallic acid, dihydroferulic acid, p-coumaric acid, hydroquinone, ferulic acid, homovanillic acid, 4-hydroxybenzoic acid and vanillylidenacetone). The effects of the selected compounds on cell growth, biomass yield and ethanol yield were studied and the toxic concentration threshold was defined for each compound. Using Ethanol Red, the popular industrial strain of Saccharomyces cerevisiae, we found the most toxic compound to be 4-hydroxy-3-methoxycinnamaldehyde which inhibited growth at a concentration of 1.8 mM. We also observed that toxicity did not generally follow a trend based on the aldehyde, acid, ketone or alcohol classification of phenolic compounds, but rather that other structural properties such as additional functional groups attached to the compound may determine its toxicity. Three distinctive growth patterns that effectively clustered all the compounds involved in the screening into three categories. We suggest that the compounds have different cellular targets, and that. We suggest that the compounds have different cellular targets and inhibitory mechanisms in the cells, also compounds who share similar pattern on cell growth may have similar inhibitory effect and mechanisms of inhibition. PMID:24949277

  20. Extemporaneous compounding in veterinary practice: a New Zealand perspective.

    PubMed

    Gargiulo, D A; Chemal, C; Joda, L; Lee, Y J; Pilkington, M; Haywood, A; Garg, S

    2013-11-01

    The aims of this study were to explore the extent of extemporaneous compounding in veterinary centres throughout New Zealand and to determine whether pharmacists could collaborate with veterinarians to improve this service in New Zealand. Questionnaires were sent to 200 randomly selected veterinarians in New Zealand. Semi-structured interviews were also conducted with selected participants from four animal facilities (zoos, research facilities and animal shelters) and two compounding pharmacies. Of the 200 veterinarian questionnaire recipients, 99 responded. Ten replies were withdrawn from the study giving a response rate of 44.5%. Of these 89, 33 (37%) compounded in their practice. Of the 33 compounding professionals, 3 (9%) compounded daily for animals under their care; 11 (34%) weekly, 18 (54%) monthly and 1 (3%) compounded yearly. Compounding was done by 29/33 (88%) veterinarians, 16/33 (48%) veterinary nurses or 6/33 (18%) others. It was carried out due to the unavailability of commercial products, or the need for dose adjustment to ease administration or improve compliance. The animals most commonly requiring veterinary compounding were dogs (21/33; 64%), cats (19/33; 58%) or cattle (15/33; 46%). Products which were commonly compounded included cyclosporin eye drops, methimazole gels and potassium bromide solutions. Issues commonly faced when compounding included unavailability of dosage forms (18/33; 55%) or appropriate ingredients (14/33; 42%), stability (12/33; 36%), time constraints (10/33; 30%) or unavailability of equipment (9/33; 27%). Reasons given for not compounding included medicines being commercially available (38/56; 68%), pharmacy compounding for those particular practices (24/56; 43%), lack of training (21/56; 38%), ingredients (16/56; 29%) or equipment (15/56; 11%). All participants who worked with a pharmacist (11/33; 33%) described this relationship as beneficial and indicated they would continue to do so in the future. Veterinary extemporaneous compounding exists in New Zealand. As pharmacists have extensive knowledge in formulating medications and compounding they could be of greater value to veterinarians and their patients. Educating both professions on the opportunities available to them from this collaboration could be an important step forward. This study provides new information regarding extemporaneous compounding for veterinary patients in New Zealand.

  1. Compositions containing borane or carborane cage compounds and related applications

    DOEpatents

    Bowen, III, Daniel E; Eastwood, Eric A

    2013-05-28

    Compositions comprising a polymer-containing matrix and a filler comprising a cage compound selected from borane cage compounds, carborane cage compounds, metal complexes thereof, residues thereof, mixtures thereof, and/or agglomerations thereof, where the cage compound is not covalently bound to the matrix polymer. Methods of making and applications for using such compositions are also disclosed.

  2. Reading Compounds in Neglect Dyslexia: The Headedness Effect

    ERIC Educational Resources Information Center

    Semenza, Carlo; Arcara, Giorgio; Facchini, Silvia; Meneghello, Francesca; Ferraro, Marco; Passarini, Laura; Pilosio, Cristina; Vigato, Giovanna; Mondini, Sara

    2011-01-01

    Reading compound words was studied in neglect dyslexia in order to assess the influence of "headedness". The "head" of a compound is the component that determines the grammatical category, the syntactic (e.g., the gender) and the semantic properties of the compound as a whole. For example, in the word "blackberry" "berry" is the compound's head.…

  3. Disruption of ion homeostasis by verrucosin and a related compound.

    PubMed

    Akiyama, Koichi; Tone, Junichi; Yamauchi, Satoshi; Sugahara, Takuya; Maruyama, Masafumi; Kakinuma, Yoshimi

    2011-01-01

    We have found that (-)-virgatusin and related compounds have antimicrobial and antifungal activity. To identify further biological activities of these compounds, we tested the activity of acridine orange efflux, which shows ionophore-like disruption of cellular ion homeostasis activity. After testing 31 compounds, we found that verrucosin and a related compound had disruption activity.

  4. Tritium labeling of organic compounds deposited on porous structures

    DOEpatents

    Ehrenkaufer, Richard L. E.; Wolf, Alfred P.; Hembree, Wylie C.

    1979-01-01

    An improved process for labeling organic compounds with tritium is carried out by depositing the selected compound on the extensive surface of a porous structure such as a membrane filter and exposing the membrane containing the compound to tritium gas activated by the microwave discharge technique. The labeled compound is then recovered from the porous structure.

  5. Compositions containing borane or carborane cage compounds and related applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowen, III, Daniel E; Eastwood, Eric A

    2014-11-11

    Compositions comprising a polymer-containing matrix and a filler comprising a cage compound selected from borane cage compounds, carborane cage compounds, metal complexes thereof, residues thereof, mixtures thereof, and/or agglomerations thereof, where the cage compound is not covalently bound to the matrix polymer. Methods of making and applications for using such compositions are also disclosed.

  6. Compositions containing borane or carborane cage compounds and related applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowen, III, Daniel E.; Eastwood, Eric A.

    2015-09-15

    Compositions comprising a polymer-containing matrix and a filler comprising a cage compound selected from borane cage compounds, carborane cage compounds, metal complexes thereof, residues thereof, mixtures thereof, and/or agglomerations thereof, where the cage compound is not covalently bound to the matrix polymer. Methods of making and applications for using such compositions are also disclosed.

  7. Development of volatile compounds during the manufacture of dry-cured "lacón," a Spanish traditional meat product.

    PubMed

    Purriños, Laura; Bermúdez, Roberto; Franco, Daniel; Carballo, Javier; Lorenzo, José M

    2011-01-01

    Volatile compounds were determined throughout the manufacture of dry-cured "lacón," a traditional dry-salted, and ripened meat product made in the north-west of Spain from the foreleg of the pig following a similar process to that of dry-cured ham. Volatiles were extracted by a purge-and-trap method and analyzed by gas chromatographic/mass spectrometry. One hundred and two volatile compounds were identified. In raw material, only 34 volatile compounds were found and at very low levels. The number of volatile compounds increased during processing. The substances identified belonged to several chemical classes: aldehydes (23), alcohols (9), ketones (15), hydrocarbons (37), esters (4), acids (3), furans (4), sulphur compounds (1), chloride compounds (1), and other compounds (4). Results indicated that the most abundant chemical family in flavor at the end of the manufacturing process was aldehydes, followed by hydrocarbons and ketones. Lipids were the most important precursor of flavor compounds of dry-cured "lacón."

  8. Olfactometric determination of the most potent odor-active compounds in salmon muscle (Salmo salar) smoked by using four smoke generation techniques.

    PubMed

    Varlet, Vincent; Serot, Thierry; Cardinal, Mireille; Knockaert, Camille; Prost, Carole

    2007-05-30

    The volatile compounds of salmon fillets smoked according to four smoked generation techniques (smoldering, thermostated plates, friction, and liquid smoke) were investigated. The main odor-active compounds were identified by gas chromatography coupled with olfactometry and mass spectrometry. Only the odorant volatile compounds detected by at least six judges (out of eight) were identified as potent odorants. Phenolic compounds and guaiacol derivatives were the most detected compounds in the olfactometric profile whatever the smoking process and could constitute the smoky odorant skeleton of these products. They were recovered in the aromatic extracts of salmon smoked by smoldering and by friction, which were characterized by 18 and 25 odor-active compounds, respectively. Furannic compounds were more detected in products smoked with thermostated plates characterized by 26 odorants compounds. Finally, the 27 odorants of products treated with liquid smoke were significantly different from the three others techniques applying wood pyrolysis because pyridine derivatives and lipid oxidation products were perceived in the aroma profile.

  9. Synthesis of new 1,2,4-triazole compounds containing Schiff and Mannich bases (morpholine) with antioxidant and antimicrobial activities.

    PubMed

    Ünver, Yasemin; Deniz, Sadik; Çelik, Fatih; Akar, Zeynep; Küçük, Murat; Sancak, Kemal

    2016-01-01

    Compound 2 was synthesized by reacting CS 2 /KOH with compound 1. The treatment of compound 2 with hydrazine hydrate produced compound 3. Then, compound 3 was converted to Schiff bases (4a-d) by the handling with several aromatic aldehydes. The treatment of triazole compounds 4a-d containing Schiff base with morpholine gave compounds 5a-d. All compounds were tested for their antioxidant and antimicrobial activities. The antioxidant test results of DPPH• radical scavenging and ferric reducing/antioxidant power methods showed good antioxidant activity. The triazole-thiol (3) was the most active, and the effect of the substituent type of the thiophene ring on the activity was same for both Schiff bases (4a-d) and Mannich bases (5a-d). Among the newly synthesized triazole derivatives, the Schiff base 4d and the Mannich base 5d carrying nitro substituent on the thiophene ring showed promising antibacterial and antifungal activity, with lower MIC values than the standard antibacterial ampicillin.

  10. Identification of nonvolatile compounds in clove (Syzygium aromaticum) from Manado

    NASA Astrophysics Data System (ADS)

    Fathoni, A.; Saepudin, E.; Cahyana, A. H.; Rahayu, D. U. C.; Haib, J.

    2017-07-01

    Syzygium aromaticum (clove) are native to Indonesia and have been widely used in food industry due to their flavor. Nonvolatile compounds contribute to flavor, mainly in their taste. Currently, there is very little information available about nonvolatile compounds in clove. Identification of nonvolatile compounds is important to improve clove's value. Compound extraction was conducted by maceration in ethanol. Fractionations of the extract were performed by using gravity column chromatography on silica gel and Sephadex LH-20 as stationary phase. Nonvolatile compounds were identified by Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS). LC-MS/MS was operated in negative mode with 0.1 % formic acid in water and acetonitrile as mobile phase. Nonvolatile compounds were identified by fragment analysis and compared to references. Several compounds had been identified and characterized asquinic acid, monogalloylglucose, gallic acid, digalloylglucose, isobiflorin, biflorin, ellagic acid, hydroxygallic acid, luteolin, quercetin, naringenin, kaempferol, isorhamnetin, dimethoxyluteolin, and rhamnetin. These compounds had two main flavor perceptions, i.e. astringent, and bitter.

  11. COMDECOM: predicting the lifetime of screening compounds in DMSO solution.

    PubMed

    Zitha-Bovens, Emrin; Maas, Peter; Wife, Dick; Tijhuis, Johan; Hu, Qian-Nan; Kleinöder, Thomas; Gasteiger, Johann

    2009-06-01

    The technological evolution of the 1990s in both combinatorial chemistry and high-throughput screening created the demand for rapid access to the compound deck to support the screening process. The common strategy within the pharmaceutical industry is to store the screening library in DMSO solution. Several studies have shown that a percentage of these compounds decompose in solution, varying from a few percent of the total to a substantial part of the library. In the COMDECOM (COMpound DECOMposition) project, the compound stability of screening compounds in DMSO solution is monitored in an accelerated thermal, hydrolytic, and oxidative decomposition program. A large database with stability data is collected, and from this database, a predictive model is being developed. The aim of this program is to build an algorithm that can flag compounds that are likely to decompose-information that is considered to be of utmost importance (e.g., in the compound acquisition process and when evaluation screening results of library compounds, as well as in the determination of optimal storage conditions).

  12. Superhard composite materials including compounds of carbon and nitrogen deposited on metal and metal nitride carbide and carbonitride

    DOEpatents

    Wong, M.S.; Li, D.; Chung, Y.W.; Sproul, W.D.; Xi Chu; Barnett, S.A.

    1998-03-10

    A composite material having high hardness comprises a carbon nitrogen compound, such as CN{sub x} where x is greater than 0.1 and up to 1.33, deposited on a metal or metal compound selected to promote deposition of substantially crystalline CN{sub x}. The carbon nitrogen compound is deposited on a crystal plane of the metal or metal compound sufficiently lattice-matched with a crystal plane of the carbon nitrogen compound that the carbon nitrogen compound is substantially crystalline. A plurality of layers of the compounds can be formed in alternating sequence to provide a multi-layered, superlattice coating having a coating hardness in the range of 45--55 GPa, which corresponds to the hardness of a BN coating and approaches that of a diamond coating. 10 figs.

  13. Superhard composite materials including compounds of carbon and nitrogen deposited on metal and metal nitride, carbide and carbonitride

    DOEpatents

    Wong, M.S.; Li, D.; Chung, Y.W.; Sproul, W.D.; Chu, X.; Barnett, S.A.

    1998-07-07

    A composite material having high hardness comprises a carbon nitrogen compound, such as CN{sub x} where x is greater than 0.1 and up to 1.33, deposited on a metal or metal compound selected to promote deposition of substantially crystalline CN{sub x}. The carbon nitrogen compound is deposited on a crystal plane of the metal or metal compound sufficiently lattice-matched with a crystal plane of the carbon nitrogen compound that the carbon nitrogen compound is substantially crystalline. A plurality of layers of the compounds can be formed in alternating sequence to provide a multi-layered, superlattice coating having a coating hardness in the range of 45--55 GPa, which corresponds to the hardness of a BN coating and approaches that of a diamond coating. 10 figs.

  14. Energy and Biocides Storage Compounds: Synthesis and Characterization of Energetic Bridged Bis(triiodoazoles).

    PubMed

    He, Chunlin; Zhao, Gang; Hooper, Joseph P; Shreeve, Jean'ne M

    2017-11-06

    Energetic bridged triiodopyrazoles and triiodoimidazoles were designed and synthsized by reacting potassium triiodopyrazolate or triiodoimidazolate with corresponding dichloro compounds. All compounds were fully characterized by 1 H and 13 C NMR spectroscopy, IR spectroscopy, and elemental analyses. The structure of compound 1 was further confirmed by single-crystal X-ray diffraction. All of the compounds exhibit good thermal stability with decomposition temperatures between 199 and 270 °C and high densities ranging from 2.804 to 3.358 g/cm 3 . The detonation performances and the detonation products were calculated by CHEETAH 7. Compound 3 (D v = 4765 m s -1 ; P = 17.9 GPa) and compound 7 (D v = 4841 m s -1 ; P = 18.5 GPa) show comparable detonation pressure to TNT, and high iodine content makes them promising as energy and biocides storage compounds.

  15. Superhard composite materials including compounds of carbon and nitrogen deposited on metal and metal nitride, carbide and carbonitride

    DOEpatents

    Wong, Ming-Show; Li, Dong; Chung, Yip-Wah; Sproul, William D.; Chu, Xi; Barnett, Scott A.

    1998-01-01

    A composite material having high hardness comprises a carbon nitrogen compound, such as CN.sub.x where x is greater than 0.1 and up to 1.33, deposited on a metal or metal compound selected to promote deposition of substantially crystalline CN.sub.x. The carbon nitrogen compound is deposited on a crystal plane of the metal or metal compound sufficiently lattice-matched with a crystal plane of the carbon nitrogen compound that the carbon nitrogen compound is substantially crystalline. A plurality of layers of the compounds can be formed in alternating sequence to provide a multi-layered, superlattice coating having a coating hardness in the range of 45-55 GPa, which corresponds to the hardness of a BN coating and approaches that of a diamond coating.

  16. Superhard composite materials including compounds of carbon and nitrogen deposited on metal and metal nitride carbide and carbonitride

    DOEpatents

    Wong, Ming-Show; Li, Dong; Chung, Yin-Wah; Sproul, William D.; Chu, Xi; Barnett, Scott A.

    1998-01-01

    A composite material having high hardness comprises a carbon nitrogen compound, such as CN.sub.x where x is greater than 0.1 and up to 1.33, deposited on a metal or metal compound selected to promote deposition of substantially crystalline CN.sub.x. The carbon nitrogen compound is deposited on a crystal plane of the metal or metal compound sufficiently lattice-matched with a crystal plane of the carbon nitrogen compound that the carbon nitrogen compound is substantially crystalline. A plurality of layers of the compounds can be formed in alternating sequence to provide a multi-layered, superlattice coating having a coating hardness in the range of 45-55 GPa, which corresponds to the hardness of a BN coating and approaches that of a diamond coating.

  17. New ligand-based approach for the discovery of antitrypanosomal compounds.

    PubMed

    Vega, María Celeste; Montero-Torres, Alina; Marrero-Ponce, Yovani; Rolón, Miriam; Gómez-Barrio, Alicia; Escario, José Antonio; Arán, Vicente J; Nogal, Juan José; Meneses-Marcel, Alfredo; Torrens, Francisco

    2006-04-01

    The antitrypanosomal activity of 10 already synthesized compounds was in silico predicted as well as in vitro and in vivo explored against Trypanosoma cruzi. For the computational study, an approach based on non-stochastic linear fingerprints to the identification of potential antichagasic compounds is introduced. Molecular structures of 66 organic compounds, 28 with antitrypanosomal activity and 38 having other clinical uses, were parameterized by means of the TOMOCOMD-CARDD software. A linear classification function was derived allowing the discrimination between active and inactive compounds with a confidence of 95%. As predicted, seven compounds showed antitrypanosomal activity (%AE>70) against epimastigotic forms of T. cruzi at a concentration of 100mug/mL. After an unspecific cytotoxic assay, three compounds were evaluated against amastigote forms of the parasite. An in vivo test was carried out for one of the studied compounds.

  18. A New Bayesian Approach for Estimating the Presence of a Suspected Compound in Routine Screening Analysis.

    PubMed

    Woldegebriel, Michael; Vivó-Truyols, Gabriel

    2016-10-04

    A novel method for compound identification in liquid chromatography-high resolution mass spectrometry (LC-HRMS) is proposed. The method, based on Bayesian statistics, accommodates all possible uncertainties involved, from instrumentation up to data analysis into a single model yielding the probability of the compound of interest being present/absent in the sample. This approach differs from the classical methods in two ways. First, it is probabilistic (instead of deterministic); hence, it computes the probability that the compound is (or is not) present in a sample. Second, it answers the hypothesis "the compound is present", opposed to answering the question "the compound feature is present". This second difference implies a shift in the way data analysis is tackled, since the probability of interfering compounds (i.e., isomers and isobaric compounds) is also taken into account.

  19. Production of rare ginsenosides (compound Mc, compound Y and aglycon protopanaxadiol) by β-glucosidase from Dictyoglomus turgidum that hydrolyzes β-linked, but not α-linked, sugars in ginsenosides.

    PubMed

    Lee, Gi-Woong; Kim, Kyoung-Rok; Oh, Deok-Kun

    2012-09-01

    Optimal hydrolytic activity of β-glucosidase from Dictyoglomus turgidum for the ginsenoside Rd was at pH 5.5 and 80 °C, with a half-life of ~11 h. The enzyme hydrolysed β-linked, but not α-linked, sugar moieties of ginsenosides. It produced the rare ginsenosides, aglycon protopanaxadiol (APPD), compounds Y, and Mc, via three unique transformation pathways: Rb(1) → Rd → F(2) → compound K → APPD, Rb(2) → compound Y, and Rc → compound Mc. The enzyme converted 0.5 mM Rb(2) and 0.5 mM Rc to 0.5 mM compound Y and 0.5 mM compound Mc after 3 h, respectively, with molar conversion yields of 100 %.

  20. Synthesis, Antiinflammatory and Antimicrobial Activity of Some New 1-(3-Phenyl-3,4-Dihydro-2H-1,3-Benzoxazin-6-yl)-Ethanone Derivatives

    PubMed Central

    Akhter, Mymoona; Husain, A.; Akhter, N.; Khan, M. S. Y

    2011-01-01

    Synthesis of title compounds (4a-j) was carried out by following aminomethylation Mannich reaction. Test compounds were effective in inhibiting edema induced by carrageenan. The percent inhibition obseved was in the range of 25-83.3%. Compound (4c, e, h and j) were also tested for analgesic effect and showed percent protection ranging between 57-65%. All the synthesized compounds were active against E. coli and S. aureus but only compounds (4 b, c, e, i and j) were active against B. subtilis. All these compound were also found active against A. niger. Compound 4j was the most active compound with 83.3% inhibition of edema, 65.35% percent protection and inhibited all the three bacterial strains. PMID:22131632

  1. Analysis of Relative Concentration of Ethanol and Other Odorous Compounds (OCs) Emitted from the Working Surface at a Landfill in China

    PubMed Central

    Li, Dong; Lu, Wenjing; Liu, Yanjun; Guo, Hanwen; Xu, Sai; Ming, Zhongyuan; Wang, Hongtao

    2015-01-01

    Estimating odor emissions from landfill sites is a complicated task because of the various chemical and biological species that exist in landfill gases. In this study, the relative concentration of ethanol and other odorous compounds emitted from the working surface at a landfill in China was analyzed. Gas sampling was conducted at the landfill on a number of selected days from March 2012 to March 2014, which represented different periods throughout the two years. A total of 41, 59, 66, 54, 63, 54, 41, and 42 species of odorous compounds were identified and quantified in eight sampling activities, respectively; a number of 86 species of odorous compounds were identified and quantified all together in the study. The measured odorous compounds were classified into six different categories (Oxygenated compounds, Halogenated compounds, Terpenes, Sulfur compounds, Aromatics, and Hydrocarbons). The total average concentrations of the oxygenated compounds, sulfur compounds, aromatics, halogenated compounds, hydrocarbons, and terpenes were 2.450 mg/m3, 0.246 mg/m3, 0.203 mg/m3, 0.319 mg/m3, 0.530 mg/m3, and 0.217 mg/m3, respectively. The relative concentrations of 59 odorous compounds with respect to the concentration of ethyl alcohol (1000 ppm) were determined. The dominant contaminants that cause odor pollution around the landfill are ethyl sulfide, methyl mercaptan, acetaldehyde, and hydrogen sulfide; dimethyl disulfide and dimethyl sulfide also contribute to the pollution to a certain degree. PMID:25769100

  2. Antitumor activity of a novel and orally available inhibitor of serine palmitoyltransferase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yaguchi, Masahiro; Shibata, Sachio; Satomi, Yoshinori

    Metabolic reprogramming is an essential hallmark of neoplasia. Therefore, targeting cancer metabolism, including lipid synthesis, has attracted much interest in recent years. Serine palmitoyltransferase (SPT) plays a key role in the initial and rate-limiting step of de novo sphingolipid biosynthesis, and inhibiting SPT activity prevents the proliferation of certain cancer cells. Here, we identified a novel and orally available SPT inhibitor, compound-2. Compound-2 showed an anti-proliferative effect in several cancer cell models, reducing the levels of the sphingolipids ceramide and sphingomyelin. In the presence of compound-2, exogenously added S1P partially compensated the intracellular sphingolipid levels through the salvage pathway bymore » partially rescuing compound-2-induced cytotoxicity. This suggested that the mechanism underlying the anti-proliferative effect of compound-2 involved the reduction of sphingolipid levels. Indeed, compound-2 promoted multinuclear formation with reduced endogenous sphingomyelin levels specifically in a compound-2-sensitive cell line, indicating that the effect was induced by sphingolipid reduction. Furthermore, compound-2 showed potent antitumor activity without causing significant body weight loss in the PL-21 acute myeloid leukemia mouse xenograft model. Therefore, SPT may be an attractive therapeutic anti-cancer drug target for which compound-2 may be a promising new drug. - Highlights: • We discovered compound-2, a novel and orally available SPT inhibitor. • Compound-2 was cytotoxic against PL-21 acute myeloid leukemia cells. • Compound-2 showed antitumor activity in the PL-21 mouse xenograft model.« less

  3. Semantically Transparent and Opaque Compounds in German Noun-Phrase Production: Evidence for Morphemes in Speaking.

    PubMed

    Lorenz, Antje; Zwitserlood, Pienie

    2016-01-01

    This study examines the lexical representation and processing of noun-noun compounds and their grammatical gender during speech production in German, a language that codes for grammatical gender (masculine, feminine, and neuter). Using a picture-word interference paradigm, participants produced determiner-compound noun phrases in response to pictures, while ignoring written distractor words. Compound targets were either semantically transparent (e.g., birdhouse) or opaque (e.g., hotdog), and their constituent nouns either had the same or a different gender (internal gender match). Effects of gender-congruent but otherwise unrelated distractor nouns, and of two morphologically related distractors corresponding to the first or second constituent were assessed relative to a completely unrelated, gender-incongruent distractor baseline. Both constituent distractors strongly facilitated compound naming, and these effects were independent of the targets' semantic transparency. This supports retrieval of constituent morphemes for semantically transparent and opaque compounds during speech production. Furthermore, gender congruency between compounds and distractors did not speed up naming in general, but interacted with gender match of the compounds' constituent nouns, and their semantic transparency. A significant gender-congruency effect was obtained with semantically transparent compounds, consisting of two constituent nouns of the same gender, only. In principle, this pattern is compatible with a multiple lemma representation account for semantically transparent, but not for opaque compounds. The data also fit with a more parsimonious, holistic representation for all compounds at the lemma level, when differences in co-activation patterns for semantically transparent and opaque compounds are considered.

  4. Practices of pharmacies that compound extemporaneous formulations.

    PubMed

    Treadway, Angela K; Craddock, Deeatra; Leff, Richard

    2007-07-01

    A survey was conducted to characterize the standard of practice for extemporaneous pharmaceutical compounding within community and institutional pharmacies. Extemporaneous compounding practices vary among pharmacies. Because of this, the survey inquired specifically about a single pharmaceutical product (caffeine citrate 20 mg/mL) to minimize variability among respondents. Survey questions were written to identify compounding practice variations with (1) policies and procedures, (2) process validation, (3) personnel education, training, and evaluation, (4) expiration dating, (5) storage and handling of compounded prescriptions within the pharmacy, (6) labeling, (7) facilities and equipment, (8) end-product evaluation, (9) handling of sterile products outside of the pharmacy, (10) aseptic technique and product preparation, and (11) documentation. A total of 522 surveys were mailed; 117 completed surveys were returned and included in the analyses. Over half of the pharmacies surveyed were large institutional pharmacies with daily prescriptions exceeding 300. Almost 71% of pharmacies reported having policies and procedures for compounding and providing compounding training for staff. Almost one third of the pharmacies that responded did not have compounding policies and procedures and did not provide staff training. For those pharmacies that provided training, the methods used were diverse (e.g., lectures and videotapes, external certificate programs). Formulations used to compound caffeine appeared to be diverse as evidenced by the varied addition of inactive ingredients. A survey of compounding pharmacies found variability in overall compounding practices and training and in practices specifically related to compounding preparations of caffeine citrate.

  5. Occurrence of Organic Wastewater Compounds in Selected Surface-Water Supplies, Triangle Area of North Carolina, 2002-2005

    USGS Publications Warehouse

    Giorgino, M.J.; Rasmussen, R.B.; Pfeifle, C.M .

    2007-01-01

    Selected organic wastewater compounds, such as household, industrial, and agricultural-use compounds, sterols, pharmaceuticals, and antibiotics, were measured at eight sites classified as drinking-water supplies in the Triangle Area of North Carolina. From October 2002 through July 2005, seven of the sites were sampled twice, and one site was sampled 28 times, for a total of 42 sets of environmental samples. Samples were analyzed for as many as 126 compounds using three laboratory analytical methods. These methods were developed by the U.S. Geological Survey to detect low levels (generally less than or equal to 1.0 microgram per liter) of the target compounds in filtered water. Because analyses were conducted on filtered samples, the results presented in this report may not reflect the total concentration of organic wastewater compounds in the waters that were sampled. Various quality-control samples were used to quality assure the results in terms of method performance and possible laboratory or field contamination. Of the 108 organic wastewater compounds that met method performance criteria, 24 were detected in at least one sample during the study. These 24 compounds included 3 pharmaceutical compounds, 6 fire retardants and plasticizers, 3 antibiotics, 3 pesticides, 6 fragrances and flavorants, 1 disinfectant, and 2 miscellaneous-use compounds, all of which likely originated from a variety of domestic, industrial, and agricultural sources. The 10 most frequently detected compounds included acetyl-hexamethyl tetrahydronaphthalene and hexahydro-hexamethyl cyclopentabenzopyran (synthetic musks that are widely used in personal-care products and are known endocrine disruptors); tri(2-chloroethyl) phosphate, tri(dichloroisopropyl) phosphate, and tributyl phosphate (fire retardants); metolachlor (herbicide); caffeine (nonprescription stimulant); cotinine (metabolite of nicotine); acetaminophen (nonprescription analgesic); and sulfamethoxazole (prescription antibiotic). The occurrence and distribution of organic wastewater compounds varied considerably among sampling sites, but at least one compound was detected at every location. The most organic wastewater compounds (19) were detected at the Neuse River above U.S. 70 at Smithfield, where two-thirds of the total number of samples were collected. The fewest organic wastewater compounds (1) were detected at the Eno River at Hillsborough. The detection of multiple organic wastewater compounds was common, with a median of 3.5 and as many as 12 compounds observed in individual samples. Some compounds, including acetaminophen, cotinine, tri(2-chloroethyl) phosphate, and metolachlor, were detected at numerous sites and in numerous samples, indicating that they are widely distributed in the environment. Other organic wastewater compounds, including acetyl-hexamethyl tetrahydronaphthalene and hexahydro-hexamethyl cyclopentabenzopyran, were detected in numerous samples but at only one location, indicating that sources of these compounds are more site specific. Results indicate that municipal wastewater may be a source of antibiotics and synthetic musks; however, the three sites in this study that are located downstream from wastewater discharges also receive runoff from agricultural, urban, and rural residential lands. Source identification was not an objective of this study. Concentrations of individual compounds generally were less than 0.5 microgram per liter. No concentrations exceeded Federal drinking-water standards or health advisories, nor water-quality criteria established by the State of North Carolina; however, such criteria are available for only a few of the compounds that were studied. Compared with other surface waters that have been sampled across the United States, the Triangle Area water-supply sites had fewer detections of organic wastewater compounds; however, differences in study design and analytical methods used among studies must be considered when mak

  6. Is free halogen necessary for disinfection?

    PubMed Central

    Williams, D E; Elder, E D; Worley, S D

    1988-01-01

    The principle of Le Chatelier was used in demonstrating that 3-chloro-4,4-dimethyl-2-oxazolidinone (compound 1) itself kills Staphylococcus aureus rather than the very small amount of free chlorine in hydrolysis equilibrium with compound 1. On the other hand, when the N-bromo analog of compound 1 (compound 1B) was used as the disinfectant, the mixture of combined compound 1B and free bromine formed in the hydrolysis equilibrium provided disinfection. When the hydrolysis equilibrium for 1B was suppressed to the level at which a negligible amount of free bromine remained in solution, combined compound 1B was much more efficacious than combined compound 1 at killing S. aureus. PMID:3202636

  7. Is free halogen necessary for disinfection?

    PubMed

    Williams, D E; Elder, E D; Worley, S D

    1988-10-01

    The principle of Le Chatelier was used in demonstrating that 3-chloro-4,4-dimethyl-2-oxazolidinone (compound 1) itself kills Staphylococcus aureus rather than the very small amount of free chlorine in hydrolysis equilibrium with compound 1. On the other hand, when the N-bromo analog of compound 1 (compound 1B) was used as the disinfectant, the mixture of combined compound 1B and free bromine formed in the hydrolysis equilibrium provided disinfection. When the hydrolysis equilibrium for 1B was suppressed to the level at which a negligible amount of free bromine remained in solution, combined compound 1B was much more efficacious than combined compound 1 at killing S. aureus.

  8. Method for loading lipsomes with ionizable phosphorylated hydrophobic compounds, pharmaceutical preparations and a method for administering the preparations

    DOEpatents

    Mehlhorn, R.J.

    1998-10-27

    A method of entrapping ionizable compounds, preferably phosphorylated hydrophobic compounds, into liposomes having transmembrane gradients is disclosed. The procedures involve forming liposomes in an acidic medium or a basic medium, adding to the acidic medium a cationic compound or to the basic medium an anionic compound and then adding a base to the cationic-containing medium or an acid to the anionic-containing medium, thereby inducing the ionizable compound into the liposomes` internal aqueous phase. The compound-entrapped liposomes prepared in accordance with the disclosed methods may be used as pharmaceutical preparations. Methods of administering such pharmaceutical preparations are also disclosed. 2 figs.

  9. Enhanced formulations for neutralization of chemical, biological and industrial toxants

    DOEpatents

    Tucker, Mark D [Albuqueque, NM

    2008-06-24

    An enhanced formulation and method of making that neutralizes the adverse health effects of both chemical and biological compounds, especially chemical warfare (CW) and biological warfare (BW) agents, and toxic industrial chemicals. The enhanced formulation according to the present invention is non-toxic and non-corrosive and can be delivered by a variety of means and in different phases. The formulation provides solubilizing compounds that serve to effectively render the chemical and biological compounds, particularly CW and BW compounds, susceptible to attack, and at least one reactive compound that serves to attack (and detoxify or kill) the compound. The formulation includes at least one solubilizing agent, a reactive compound, a bleaching activator and water.

  10. Organic electronic devices using phthalimide compounds

    DOEpatents

    Hassan, Azad M.; Thompson, Mark E.

    2010-09-07

    Organic electronic devices comprising a phthalimide compound. The phthalimide compounds disclosed herein are electron transporters with large HOMO-LUMO gaps, high triplet energies, large reduction potentials, and/or thermal and chemical stability. As such, these phthalimide compounds are suitable for use in any of various organic electronic devices, such as OLEDs and solar cells. In an OLED, the phthalimide compounds may serve various functions, such as a host in the emissive layer, as a hole blocking material, or as an electron transport material. In a solar cell, the phthalimide compounds may serve various functions, such as an exciton blocking material. Various examples of phthalimide compounds which may be suitable for use in the present invention are disclosed.

  11. Organic electronic devices using phthalimide compounds

    DOEpatents

    Hassan, Azad M.; Thompson, Mark E.

    2012-10-23

    Organic electronic devices comprising a phthalimide compound. The phthalimide compounds disclosed herein are electron transporters with large HOMO-LUMO gaps, high triplet energies, large reduction potentials, and/or thermal and chemical stability. As such, these phthalimide compounds are suitable for use in any of various organic electronic devices, such as OLEDs and solar cells. In an OLED, the phthalimide compounds may serve various functions, such as a host in the emissive layer, as a hole blocking material, or as an electron transport material. In a solar cell, the phthalimide compounds may serve various functions, such as an exciton blocking material. Various examples of phthalimide compounds which may be suitable for use in the present invention are disclosed.

  12. Organic electronic devices using phthalimide compounds

    DOEpatents

    Hassan, Azad M.; Thompson, Mark E.

    2013-03-19

    Organic electronic devices comprising a phthalimide compound. The phthalimide compounds disclosed herein are electron transporters with large HOMO-LUMO gaps, high triplet energies, large reduction potentials, and/or thermal and chemical stability. As such, these phthalimide compounds are suitable for use in any of various organic electronic devices, such as OLEDs and solar cells. In an OLED, the phthalimide compounds may serve various functions, such as a host in the emissive layer, as a hole blocking material, or as an electron transport material. In a solar cell, the phthalimide compounds may serve various functions, such as an exciton blocking material. Various examples of phthalimide compounds which may be suitable for use in the present invention are disclosed.

  13. Process for preparing phthalocyanine polymer from imide containing bisphthalonitrile

    NASA Technical Reports Server (NTRS)

    Achar, Bappalige N. (Inventor); Fohlen, George M. (Inventor); Parker, John A. (Inventor)

    1987-01-01

    Imide-linked bisphthalonitrile compounds are prepared by combining a dicyano aromatic diamine and an organic dianhydride to produce an amic acid linked bisphthalonitrile compound. The amic acid linked bisphthalonitrile compound is dehydrocyclized to produce the imide-linked bisphthalonitrile compounds. The imide-linked bisphthalonitrile compounds may be polymerized to produce a phythalocyanine polymer by heating the imide-linked bisphthalonitrile compound, either alone or in the presence of a metal powder or a metal salt. These compounds are useful in the coating, laminating and molding arts. The polymers are useful in composite matrix resins where increased fire resistance, toughness and resistance to moisture are required, particularly as secondary structures in aircraft and spacecraft.

  14. Deuterium permeation through EPDM rubber compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zapp, P.E.

    1988-01-01

    The permeation of deuterium through a specially formulated compound of ethylene propylene diene rubber was measured in the temperature range of 26/degree/C to 120/degree/C. The results were similar to permeation through two commercial compounds of this elastomer. Permeation was reduced after gamma irradiation (in the presence of hydrogen gas to simulate a tritium exposure). However the reduction was smaller than that experienced by the two commercial compounds. Radiation damage is apparently less severe in the special compound. It is possible that mechanical properties such as compression set may be influenced less by ionizing radiation in this compound as compared withmore » the commercial compounds. 4 figs., 1 tab.« less

  15. Prioritizing pesticide compounds for analytical methods development

    USGS Publications Warehouse

    Norman, Julia E.; Kuivila, Kathryn; Nowell, Lisa H.

    2012-01-01

    The U.S. Geological Survey (USGS) has a periodic need to re-evaluate pesticide compounds in terms of priorities for inclusion in monitoring and studies and, thus, must also assess the current analytical capabilities for pesticide detection. To meet this need, a strategy has been developed to prioritize pesticides and degradates for analytical methods development. Screening procedures were developed to separately prioritize pesticide compounds in water and sediment. The procedures evaluate pesticide compounds in existing USGS analytical methods for water and sediment and compounds for which recent agricultural-use information was available. Measured occurrence (detection frequency and concentrations) in water and sediment, predicted concentrations in water and predicted likelihood of occurrence in sediment, potential toxicity to aquatic life or humans, and priorities of other agencies or organizations, regulatory or otherwise, were considered. Several existing strategies for prioritizing chemicals for various purposes were reviewed, including those that identify and prioritize persistent, bioaccumulative, and toxic compounds, and those that determine candidates for future regulation of drinking-water contaminants. The systematic procedures developed and used in this study rely on concepts common to many previously established strategies. The evaluation of pesticide compounds resulted in the classification of compounds into three groups: Tier 1 for high priority compounds, Tier 2 for moderate priority compounds, and Tier 3 for low priority compounds. For water, a total of 247 pesticide compounds were classified as Tier 1 and, thus, are high priority for inclusion in analytical methods for monitoring and studies. Of these, about three-quarters are included in some USGS analytical method; however, many of these compounds are included on research methods that are expensive and for which there are few data on environmental samples. The remaining quarter of Tier 1 compounds are high priority as new analytes. The objective for analytical methods development is to design an integrated analytical strategy that includes as many of the Tier 1 pesticide compounds as possible in a relatively few, cost-effective methods. More than 60 percent of the Tier 1 compounds are high priority because they are anticipated to be present at concentrations approaching levels that could be of concern to human health or aquatic life in surface water or groundwater. An additional 17 percent of Tier 1 compounds were frequently detected in monitoring studies, but either were not measured at levels potentially relevant to humans or aquatic organisms, or do not have benchmarks available with which to compare concentrations. The remaining 21 percent are pesticide degradates that were included because their parent pesticides were in Tier 1. Tier 1 pesticide compounds for water span all major pesticide use groups and a diverse range of chemical classes, with herbicides and their degradates composing half of compounds. Many of the high priority pesticide compounds also are in several national regulatory programs for water, including those that are regulated in drinking water by the U.S. Environmental Protection Agency under the Safe Drinking Water Act and those that are on the latest Contaminant Candidate List. For sediment, a total of 175 pesticide compounds were classified as Tier 1 and, thus, are high priority for inclusion in analytical methods available for monitoring and studies. More than 60 percent of these compounds are included in some USGS analytical method; however, some are spread across several research methods that are expensive to perform, and monitoring data are not extensive for many compounds. The remaining Tier 1 compounds for sediment are high priority as new analytes. The objective for analytical methods development for sediment is to enhance an existing analytical method that currently includes nearly half of the pesticide compounds in Tier 1 by adding as many additional Tier 1 compounds as are analytically compatible. About 35 percent of the Tier 1 compounds for sediment are high priority on the basis of measured occurrence. A total of 74 compounds, or 42 percent, are high priority on the basis of predicted likelihood of occurrence according to physical-chemical properties, and either have potential toxicity to aquatic life, high pesticide useage, or both. The remaining 22 percent of Tier 1 pesticide compounds were either degradates of Tier 1 parent compounds or included for other reasons. As with water, the Tier 1 pesticide compounds for sediment are distributed across the major pesticide-use groups; insecticides and their degradates are the largest fraction, making up 45 percent of Tier 1. In contrast to water, organochlorines, at 17 percent, are the largest chemical class for Tier 1 in sediment, which is to be expected because there is continued widespread detection in sediments of persistent organochlorine pesticides and their degradates at concentrations high enough for potential effects on aquatic life. Compared to water, there are fewer available benchmarks with which to compare contaminant concentrations in sediment, but a total of 19 Tier 1 compounds have at least one sediment benchmark or screening value for aquatic organisms. Of the 175 compounds in Tier 1, 77 percent have high aquatic-life toxicity, as defined for this process. This evaluation of pesticides and degradates resulted in two lists of compounds that are priorities for USGS analytical methods development, one for water and one for sediment. These lists will be used as the basis for redesigning and enhancing USGS analytical capabilities for pesticides in order to capture as many high-priority pesticide compounds as possible using an economically feasible approach.

  16. In situ catalytic hydrogenation of model compounds and biomass-derived phenolic compounds for bio-oil upgrading

    Treesearch

    Junfeng Feng; Zhongzhi Yang; Chung-yun Hse; Qiuli Su; Kui Wang; Jianchun Jiang; Junming Xu

    2017-01-01

    The renewable phenolic compounds produced by directional liquefaction of biomass are a mixture of complete fragments decomposed from native lignin. These compounds are unstable and difficult to use directly as biofuel. Here, we report an efficient in situ catalytic hydrogenation method that can convert phenolic compounds into saturated cyclohexanes. The process has...

  17. The Mental Representation of Verb-Noun Compounds in Italian: Evidence from a Multiple Single-Case Study in Aphasia

    ERIC Educational Resources Information Center

    Mondini, Sara; Luzzatti, Claudio; Zonca, Giusy; Pistarini, Caterina; Semenza, Carlo

    2004-01-01

    This study seeks information on the mental representation of Verb-Noun (VN) nominal compounds through neuropsychological methods. The lexical retrieval of compound nouns is tested in 30 aphasic patients using a visual confrontation naming task. The target names are VN compounds, Noun-Noun (NN) compounds, and long morphologically simple nouns…

  18. Targeting the epigenome: Screening bioactive compounds that regulate histone deacetylase activity

    PubMed Central

    Godoy, Luis D.; Lucas, Julianna E.; Bender, Abigail J.; Romanick, Samantha S.; Ferguson, Bradley S.

    2017-01-01

    Scope Nutrigenomics is a rapidly expanding field that elucidates the link between diet-genome interactions. Recent evidence demonstrates that regulation of the epigenome, and in particular inhibition of HDACs, impact pathogenetic mechanisms involved in chronic disease. Few studies, to date, have screened libraries of bioactive compounds that act as epigenetic modifiers. This study screened a library of 131 natural compounds to determine bioactive compounds that inhibit Zn-dependent HDAC activity. Methods and results Using class-specific HDAC substrates, we screened 131 natural compounds for HDAC activity in bovine cardiac tissue. From this screen, we identified 18 bioactive compound HDAC inhibitors. Using our class-specific HDAC substrates, we next screened these 18 bioactive compounds against recombinant HDAC proteins. Consistent with inhibition of HDAC activity, these compounds were capable of inhibiting activity of individual HDAC isoforms. Lastly, we report that treatment of H9c2 cardiac myoblasts with bioactive HDAC inhibitors was sufficient to increase lysine acetylation as assessed via immunoblot. Conclusion This study provided the first step in identifying multiple bioactive compound HDAC inhibitors. Taken together, this report sets the stage for future exploration of these bioactive compounds as epigenetic regulators to potentially ameliorate chronic disease. PMID:27981795

  19. Design and implementation of an automated compound management system in support of lead optimization.

    PubMed

    Quintero, Catherine; Kariv, Ilona

    2009-06-01

    To meet the needs of the increasingly rapid and parallelized lead optimization process, a fully integrated local compound storage and liquid handling system was designed and implemented to automate the generation of assay-ready plates directly from newly submitted and cherry-picked compounds. A key feature of the system is the ability to create project- or assay-specific compound-handling methods, which provide flexibility for any combination of plate types, layouts, and plate bar-codes. Project-specific workflows can be created by linking methods for processing new and cherry-picked compounds and control additions to produce a complete compound set for both biological testing and local storage in one uninterrupted workflow. A flexible cherry-pick approach allows for multiple, user-defined strategies to select the most appropriate replicate of a compound for retesting. Examples of custom selection parameters include available volume, compound batch, and number of freeze/thaw cycles. This adaptable and integrated combination of software and hardware provides a basis for reducing cycle time, fully automating compound processing, and ultimately increasing the rate at which accurate, biologically relevant results can be produced for compounds of interest in the lead optimization process.

  20. Process for preparing a chemical compound enriched in isotope content. [nitrogen 15-enriched nitric acid

    DOEpatents

    Michaels, E.D.

    1981-02-25

    A process to prepare a chemical enriched in isotope content includes: a chemical exchange reaction between a first and second compound which yields an isotopically enriched first compound and an isotopically depleted second compound; the removal of a portion of the first compound as product and the removal of a portion of the second compound as spent material; the conversion of the remainder of the first compound to the second compound for reflux at the product end of the chemical exchange reaction region; the conversion of the remainder of the second compound to the first compound for reflux at the spent material end of the chemical exchange region; and the cycling of the additional chemicals produced by one conversion reaction to the other conversion reaction, for consumption therein. One of the conversion reactions is an oxidation reaction, and the energy that it yields is used to drive the other conversion reaction, a reduction. The reduction reaction is carried out in a solid polymer electrolyte electrolytic reactor. The overall process is energy efficient and yields no waste by-products. A particular embodiment of the process in the production of nitrogen-15-enriched nitric acid.

  1. DNA-encoded libraries - an efficient small molecule discovery technology for the biomedical sciences.

    PubMed

    Kunig, Verena; Potowski, Marco; Gohla, Anne; Brunschweiger, Andreas

    2018-06-27

    DNA-encoded compound libraries are a highly attractive technology for the discovery of small molecule protein ligands. These compound collections consist of small molecules covalently connected to individual DNA sequences carrying readable information about the compound structure. DNA-tagging allows for efficient synthesis, handling and interrogation of vast numbers of chemically synthesized, drug-like compounds. They are screened on proteins by an efficient, generic assay based on Darwinian principles of selection. To date, selection of DNA-encoded libraries allowed for the identification of numerous bioactive compounds. Some of these compounds uncovered hitherto unknown allosteric binding sites on target proteins; several compounds proved their value as chemical biology probes unraveling complex biology; and the first examples of clinical candidates that trace their ancestry to a DNA-encoded library were reported. Thus, DNA-encoded libraries proved their value for the biomedical sciences as a generic technology for the identification of bioactive drug-like molecules numerous times. However, large scale experiments showed that even the selection of billions of compounds failed to deliver bioactive compounds for the majority of proteins in an unbiased panel of target proteins. This raises the question of compound library design.

  2. Targeting the epigenome: Screening bioactive compounds that regulate histone deacetylase activity.

    PubMed

    Godoy, Luis D; Lucas, Julianna E; Bender, Abigail J; Romanick, Samantha S; Ferguson, Bradley S

    2017-04-01

    Nutrigenomics is a rapidly expanding field that elucidates the link between diet-genome interactions. Recent evidence demonstrates that regulation of the epigenome, and in particular inhibition of histone deacetylases (HDACs), impact pathogenetic mechanisms involved in chronic disease. Few studies, to date, have screened libraries of bioactive compounds that act as epigenetic modifiers. This study screened a library of 131 natural compounds to determine bioactive compounds that inhibit Zn-dependent HDAC activity. Using class-specific HDAC substrates, we screened 131 natural compounds for HDAC activity in bovine cardiac tissue. From this screen, we identified 18 bioactive compound HDAC inhibitors. Using our class-specific HDAC substrates, we next screened these 18 bioactive compounds against recombinant HDAC proteins. Consistent with inhibition of HDAC activity, these compounds were capable of inhibiting activity of individual HDAC isoforms. Lastly, we report that treatment of H9c2 cardiac myoblasts with bioactive HDAC inhibitors was sufficient to increase lysine acetylation as assessed via immunoblot. This study provided the first step in identifying multiple bioactive compound HDAC inhibitors. Taken together, this report sets the stage for future exploration of these bioactive compounds as epigenetic regulators to potentially ameliorate chronic disease. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Energy gap formation mechanism through the interference phenomena of electrons in face-centered cubic elements and compounds with the emphasis on half-Heusler and Heusler compounds

    NASA Astrophysics Data System (ADS)

    Mizutani, U.; Sato, H.

    2018-05-01

    Many face-centred cubic elements and compounds with the number of atoms per unit cell N equal to 8, 12 and 16 are known to be stabilised by forming either a band gap or a pseudogap at the Fermi level. They are conveniently expressed as cF8, cF12 and cF16, respectively, in the Pearson symbol. From the cF8 family, we worked on three tetravalent elements C (diamond), Si and Ge, SZn-type AsGa compound and NaCl-type compounds like BiLu, AsSc, etc. From the cF12 family, more than 80 compounds were selected, with a particular emphasis on ABC- and half-Heusler-type ternary equiatomic compounds. Among cF16 compounds, both the Heusler compounds ABC2 and Zintl compounds were studied. We revealed that, regardless of whether or not the transition metal (TM) and/or rare-earth (RE) elements are involved as constituent elements, the energy gap formation mechanism for cF8, cF12 and cF16 compounds can be universally discussed in terms of interference phenomenon of itinerant electrons with set of reciprocal lattice planes with ? = 8, 11 and 12, where ? refers to square of the critical reciprocal of lattice vector of an fcc lattice. The number of itinerant electrons per unit cell, e/uc, for all these band gap/pseudogap-bearing compounds is found to fall on a universal line called "3/2-power law" when plotted against ? on a logarithmic scale. This proves the validity of the fulfilment of the interference condition ? in conformity with other pseudogap compounds with different crystal symmetries and different sizes of the unit cell reported in literature.

  4. Influence of Various Phenolic Compounds on Properties of Gelatin Film Prepared from Horse Mackerel Trachurus japonicus Scales.

    PubMed

    Le, Thuy; Maki, Hiroki; Okazaki, Emiko; Osako, Kazufumi; Takahashi, Kigen

    2018-06-15

    Influence of various phenolic compounds on physical properties and antioxidant activity of gelatin film from horse mackerel Trachurus japonicus scales was investigated. Tensile strength (TS) of the film was enhanced whereas elongation at break was declined by adding 1% to 5% phenolic compounds. Rutin was the most effective to improve the TS compared to the other tested phenolic compounds including ferulic acid, caffeic acid, gallic acid, and catechin. Gelatin films with the phenolic compounds showed the excellent UV barrier properties. FTIR spectra exhibited that wavenumber of amide-A band of films decreased with formation of hydrogen bonding between amino groups of gelatin and hydroxyl groups of the phenolic compounds. Gelatin film incorporated with rutin which has the largest number of hydroxyl groups among the tested compounds demonstrated the lowest wavenumber for the amide-A peak. It is indicated that hydroxyl groups contained in the phenolic compounds contribute to formation of hydrogen bonds involved in improvement of the mechanical properties of the films. The incorporation of the phenolic compounds with gelatin films also led to the increasing of total phenolic contents and DPPH radical scavenging activities. Thus, it is concluded that phenolic compounds can promote the quality of gelatin film. Properties of gelatin film derived from horse mackerel scales can be improved by adding of phenolic compounds. Phenolic compounds containing a large number of hydroxyl groups should be selected to enhance physical properties of the gelatin film. A biodegradable film prepared from horse mackerel gelatin incorporated with phenolic compounds, which has good physical properties and antioxidant properties, can solve environmental problems caused by synthetic plastic materials. © 2018 Institute of Food Technologists®.

  5. Update on medical and regulatory issues pertaining to compounded and FDA-approved drugs, including hormone therapy

    PubMed Central

    Pinkerton, JoAnn V.; Pickar, James H.

    2016-01-01

    Abstract Objective: We review the historical regulation of drug compounding, concerns about widespread use of non-Food and Drug Admiistration (FDA)-approved compounded bioidentical hormone therapies (CBHTs), which do not have proper labeling and warnings, and anticipated impact of the 2013 Drug Quality and Security Act (DQSA) on compounding. Methods: US government websites were searched for documents concerning drug compounding regulation and oversight from 1938 (passage of Federal Food, Drug, and Cosmetic Act [FDCA]) through 2014, including chronologies, Congressional testimony, FDA guidelines and enforcements, and reports. The FDCA and DQSA were reviewed. PubMed and Google were searched for articles on compounded drugs, including CBHT. Results: Congress explicitly granted the FDA limited oversight of compounded drugs in a 1997 amendment to the FDCA, but the FDA has encountered obstacles in exercising that authority. After 64 patient deaths and 750 adversely affected patients from the 2012 meningitis outbreak due to contaminated compounded steroid injections, Congress passed the DQSA, authorizing the FDA to create a voluntary registration for facilities that manufacture and distribute sterile compounded drugs in bulk and reinforcing FDCA regulations for traditional compounding. Given history and current environment, concerns remain about CBHT product regulation and their lack of safety and efficacy data. Conclusions: The DQSA and its reinforcement of §503A of the FDCA solidifies FDA authority to enforce FDCA provisions against compounders of CBHT. The new law may improve compliance and accreditation by the compounding industry; support state and FDA oversight; and prevent the distribution of misbranded, adulterated, or inconsistently compounded medications, and false and misleading claims, thus reducing public health risk. PMID:26418479

  6. Host compounds for red phosphorescent OLEDs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xia, Chuanjun; Cheon, Kwang -Ohk

    2015-08-25

    Novel compounds containing a triphenylene moiety linked to an .alpha..beta. connected binaphthyl ring system are provided. These compounds have surprisingly good solubility in organic solvents and are useful as host compounds in red phosphorescent OLEDs.

  7. Diazo compounds in the chemistry of fullerenes

    NASA Astrophysics Data System (ADS)

    Tuktarov, Airat R.; Dzhemilev, Usein M.

    2010-09-01

    Experimental and theoretical data on the reactions of different diazo compounds (diazomethane, its derivatives, cyclic diazo compounds and diazocarbonyl compounds) with fullerenes are summarized. The structures and stereochemistry of cycloadducts formed in these reactions are considered.

  8. Method for purifying bidentate organophosphorus compounds

    DOEpatents

    Schulz, Wallace W.

    1977-01-01

    Bidentate organophosphorus compounds useful for extracting actinide elements from acidic nuclear waste solutions are purified of undesirable acidic impurities by contacting the compounds with ethylene glycol which preferentially extracts the impurities found in technical grade bidentate compounds.

  9. Phytochemical investigation and hair growth studies on the rhizomes of Nardostachys jatamansi DC

    PubMed Central

    Gottumukkala, Venkateswara Rao; Annamalai, Tiruganasambandham; Mukhopadhyay, Triptikumar

    2011-01-01

    Nardostachys jatamansi DC rhizomes were subjected to extraction, fractionation, and isolation of terpenoid compounds. Three terpenoid compounds were isolated which are nardal, jatamansic acid, and nardin. These compounds were identified based on physical and spectral data (UV, IR,1H and13C NMR, 2D NMR, Mass) and comparison with authentic compounds. The crude extract, fractions, and two of the isolated compounds were tested for their hair growth activity. The hair growth studies showed good activities for the extract, fraction, and the isolated compounds. PMID:21716625

  10. Rh-Catalyzed Intermolecular Reactions of α-Alkyl-α-Diazo Carbonyl Compounds with Selectivity over β-Hydride Migration

    PubMed Central

    DeAngelis, Andrew; Panish, Robert; Fox, Joseph M.

    2016-01-01

    CONSPECTUS Rh-carbenes derived from α-diazocarbonyl compounds have found broad utility across a remarkable range of reactivity, including cyclopropanation, cyclopropenation, C–H insertions, heteroatom–H insertions, and ylide forming reactions. However, in contrast to α-aryl or α-vinyl-α-diazocarbonyl compounds, the utility of α-alkyl-α-diazocarbonyl compounds had been moderated by the propensity of such compounds to undergo intramolecular β-hydride migration to give alkene products. Especially challenging had been intermolecular reactions involving α-alkyl-α-diazocarbonyl compounds. PMID:26689221

  11. Heteroaromatic-based electrolytes for lithium and lithium-ion batteries

    DOEpatents

    Cheng, Gang; Abraham, Daniel P.

    2017-04-18

    The present invention provides an electrolyte for lithium and/or lithium-ion batteries comprising a lithium salt in a liquid carrier comprising heteroaromatic compound including a five-membered or six-membered heteroaromatic ring moiety selected from the group consisting of a furan, a pyrazine, a triazine, a pyrrole, and a thiophene, the heteroaromatic ring moiety bearing least one carboxylic ester or carboxylic anhydride substituent bound to at least one carbon atom of the heteroaromatic ring. Preferred heteroaromatic ring moieties include pyridine compounds, pyrazine compounds, pyrrole compounds, furan compounds, and thiophene compounds.

  12. Cytotoxic constituents of ethyl acetate fraction from Dianthus superbus.

    PubMed

    Ding, Chengli; Zhang, Wu; Li, Jie; Lei, Jiachuan; Yu, Jianqing

    2013-01-01

    The ethyl acetate fraction (EE-DS) from Dianthus superbus was found to possess the cytotoxic activity against cancer cells in previous study. To investigate cytotoxic constituents, the bioassay-guided isolation of compounds from EE-DS was performed. Two dianthramides (1 and 2), three flavonoids (3-5), two coumarins (6 and 7) and three other compounds (8-10) were obtained. Structures of isolated compounds were identified by spectroscopic analysis. Cytotoxicity of the compounds against HepG2 cells was evaluated. Compound 1 showed the strongest cytotoxicity, compounds 10, 4, 3 and 5 had moderate cytotoxicity.

  13. Study on real-time images compounded using spatial light modulator

    NASA Astrophysics Data System (ADS)

    Xu, Jin; Chen, Zhebo; Ni, Xuxiang; Lu, Zukang

    2007-01-01

    Image compounded technology is often used on film and its facture. In common, image compounded use image processing arithmetic, get useful object, details, background or some other things from the images firstly, then compounding all these information into one image. When using this method, the film system needs a powerful processor, for the process function is very complex, we get the compounded image for a few time delay. In this paper, we introduce a new method of image real-time compounded, use this method, we can do image composite at the same time with movie shot. The whole system is made up of two camera-lens, spatial light modulator array and image sensor. In system, the spatial light modulator could be liquid crystal display (LCD), liquid crystal on silicon (LCoS), thin film transistor liquid crystal display (TFTLCD), Deformable Micro-mirror Device (DMD), and so on. Firstly, one camera-lens images the object on the spatial light modulator's panel, we call this camera-lens as first image lens. Secondly, we output an image to the panel of spatial light modulator. Then, the image of the object and image that output by spatial light modulator will be spatial compounded on the panel of spatial light modulator. Thirdly, the other camera-lens images the compounded image to the image sensor, and we call this camera-lens as second image lens. After these three steps, we will gain the compound images by image sensor. For the spatial light modulator could output the image continuously, then the image will be compounding continuously too, and the compounding procedure is completed in real-time. When using this method to compounding image, if we will put real object into invented background, we can output the invented background scene on the spatial light modulator, and the real object will be imaged by first image lens. Then, we get the compounded images by image sensor in real time. The same way, if we will put real background to an invented object, we can output the invented object on the spatial light modulator and the real background will be imaged by first image lens. Then, we can also get the compounded images by image sensor real time. Commonly, most spatial light modulator only can do modulate light intensity, so we can only do compounding BW images if use only one panel which without color filter. If we will get colorful compounded image, we need use the system like three spatial light modulator panel projection. In the paper, the system's optical system framework we will give out. In all experiment, the spatial light modulator used liquid crystal on silicon (LCoS). At the end of the paper, some original pictures and compounded pictures will be given on it. Although the system has a few shortcomings, we can conclude that, using this system to compounding images has no delay to do mathematic compounding process, it is a really real time images compounding system.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeng, Xiaofei; Borole, Abhijeet P.; Pavlostathis, Spyros G.

    Furanic and phenolic compounds are 20 lignocellulose-derived compounds known to inhibit to H2- and ethanol- producing microorganisms in dark fermentation. Bioelectrochemical conversion of furanic and phenolic compounds to electricity or H2 has recently been demonstrated as a productive method to use these compounds. However, potential inhibitory effect of furanic and phenolic compounds on exoelectrogenesis in bioelectrochemical systems is not well understood. This study systematically investigated the inhibitory effect of furfural (FF), 5-hydroxymethylfurfural (HMF), syringic acid (SA), vanillic acid (VA), and 4-hydroxybenzoic acid (HBA) on exoelectrogenesis in the bioanode of a microbial electrolysis cell. A mixture of these five compounds atmore » an increasing initial total concentration from 0.8 to 8.0 g/L resulted in current decrease up to 91%. The observed inhibition primarily affected exoelectrogenesis, instead of non-exoelectrogenic biotransformation pathways (e.g., fermentation) of the five compounds. Furthermore, the parent compounds at a high concentration, as opposed to their biotransformation products, were responsible for the observed inhibition. Tests with individual compounds show that all five parent compounds contributed to the observed inhibition by the mixture. The IC50 (concentration resulting in 50% current decrease) was estimated as 2.7 g/L for FF, 3.0 g/L for HMF, 1.9 g/L for SA, 2.1 g/L for VA and 2.0 g/L for HBA. Nevertheless, these compounds below their non-inhibitory concentrations jointly resulted in significant inhibition as a mixture. Catechol and phenol, which were persistent biotransformation products of the mixture, inhibited exoelectrogens at high concentrations, but to a lesser extent than the parent compounds. Recovery of exoelectrogenesis from inhibition by all compounds was observed, except for catechol, which resulted in irreversible inhibition. The reversibility of inhibition, as well as the observed difference in recovery rates, suggest different modes of exoelectrogenesis inhibition, related to the hydrophobicity of the inhibiting compounds.« less

  15. Sterile compounding: clinical, legal, and regulatory implications for patient safety.

    PubMed

    Qureshi, Nabeel; Wesolowicz, Laurie; Stievater, Trish; Lin, Alexandra Tungol

    2014-12-01

    Poor compounding practices by the New England Compounding Center resulted in the 2012-2013 fungal infections outbreak. Contaminated injectable methylprednisolone led to the diagnosis of fungal infections in 751 patients and 64 deaths. In the United States, pharmacy compounding has traditionally been regulated by state boards of pharmacy rather than the FDA. To minimize safety risks related to pharmacy compounding, the Drug Quality and Security Act (DQSA) was signed into law November 27, 2013, to improve regulation of compounding pharmacies. To (a) review the literature regarding clinical, legal, and regulatory implications of pharmacy compounding for patient safety during the 2012-2013 fungal infections outbreak and (b) discuss strategies that managed care organizations (MCOs) can use to promote safe compounding practices.  A literature search was conducted via PubMed for original articles on fungal infections related to drug compounding published October 2012 to March 2014. Specific search terms included "drug compounding and fungal infection" and "fungal meningitis outbreak." The FDA website was also utilized for material related to the Food, Drug, and Cosmetic Act and the DQSA.  Four articles met inclusion criteria. The 2012-2013 fungal infections outbreak was attributed to 3 lots of preservative-free methylprednisolone acetate, which comprised 17,675 vials distributed to 76 facilities across 23 states. Median incubation period (from time of last injection to initial diagnosis) was 47 days, ranging from 0 to 249 days. According to the FDA, a total of 30 recalls regarding compounded products were issued by pharmacies during March through December 2013. Pharmacy compounding has the potential for significant safety risks. The purpose of the DQSA is to improve regulation of compounding pharmacies. Since registration as an outsourcing facility is voluntary, uncertainty still remains regarding advancement in safe compounding practices. MCOs can employ multiple strategies to ensure patient safety and promote appropriate drug therapy.

  16. BioCompoundML: A General Biofuel Property Screening Tool for Biological Molecules Using Random Forest Classifiers

    DOE PAGES

    Whitmore, Leanne S.; Davis, Ryan W.; McCormick, Robert L.; ...

    2016-09-15

    Screening a large number of biologically derived molecules for potential fuel compounds without recourse to experimental testing is important in identifying understudied yet valuable molecules. Experimental testing, although a valuable standard for measuring fuel properties, has several major limitations, including the requirement of testably high quantities, considerable expense, and a large amount of time. This paper discusses the development of a general-purpose fuel property tool, using machine learning, whose outcome is to screen molecules for desirable fuel properties. BioCompoundML adopts a general methodology, requiring as input only a list of training compounds (with identifiers and measured values) and a listmore » of testing compounds (with identifiers). For the training data, BioCompoundML collects open data from the National Center for Biotechnology Information, incorporates user-provided features, imputes missing values, performs feature reduction, builds a classifier, and clusters compounds. BioCompoundML then collects data for the testing compounds, predicts class membership, and determines whether compounds are found in the range of variability of the training data set. We demonstrate this tool using three different fuel properties: research octane number (RON), threshold soot index (TSI), and melting point (MP). Here we provide measures of its success with these properties using randomized train/test measurements: average accuracy is 88% in RON, 85% in TSI, and 94% in MP; average precision is 88% in RON, 88% in TSI, and 95% in MP; and average recall is 88% in RON, 82% in TSI, and 97% in MP. The receiver operator characteristics (area under the curve) were estimated at 0.88 in RON, 0.86 in TSI, and 0.87 in MP. We also measured the success of BioCompoundML by sending 16 compounds for direct RON determination. Finally, we provide a screen of 1977 hydrocarbons/oxygenates within the 8696 compounds in MetaCyc, identifying compounds with high predictive strength for high or low RON.« less

  17. Process for removing halogenated aliphatic and aromatic compounds from petroleum products

    DOEpatents

    Googin, J.M.; Napier, J.M.; Travaglini, M.A.

    1983-09-20

    A process is described for removing halogenated aliphatic and aromatic compounds, e.g., polychlorinated biphenyls, from petroleum products by solvent extraction. The halogenated aliphatic and aromatic compounds are extracted from a petroleum product into a polar solvent by contacting the petroleum product with the polar solvent. The polar solvent is characterized by a high solubility for the extracted halogenated aliphatic and aromatic compounds, a low solubility for the petroleum product and considerable solvent power for polyhydroxy compound. The preferred polar solvent is dimethylformamide. A miscible compound, such as, water or a polyhydroxy compound, is added to the polar extraction solvent to increase the polarity of the polar extraction solvent. The halogenated aliphatic and aromatic compounds are extracted from the highly-polarized mixture of water or polyhydroxy compound and polar extraction solvent into a low polar or nonpolar solvent by contacting the water or polyhydroxy compound-polar solvent mixture with the low polar or nonpolar solvent. The halogenated aliphatic and aromatic compounds and the low polar or nonpolar solvent are separated by physical means, e.g., vacuum evaporation. The polar and nonpolar solvents are recovered from recycling. The process can easily be designed for continuous operation. Advantages of the process include that the polar solvent and a major portion of the nonpolar solvent can be recycled, the petroleum products are reclaimable and the cost for disposing of waste containing polychlorinated biphenyls is significantly reduced. 1 fig.

  18. Studies of obtaining and stability in aqueous medium of new complex compounds of Ti(IV) and Zr(IV) used in ecological leather tanning

    NASA Astrophysics Data System (ADS)

    Crudu, Marian; Sibiescu, Doina; Rosca, Ioan; Sutiman, Daniel; Vizitiu, Mihaela

    2009-01-01

    In this paper, the study of obtaining new coordination compounds of Ti(IV) and Zr(IV) using as ligand: D,L-β-iso-butyric acid, is presented. Also, the stability of these compounds in aqueous medium is studied. The studies of obtaining and of stability of the new compounds were accomplished in aqueous solutions using methods characteristic for coordination compounds: conductance and pH measurements. The combination ratios and the stability were determined with methods characteristic for studies in solutions. From experimental data resulted that the combination ratio of central metallic atoms with the ligand derived from D,L-β-iso-butyric acid was 1:2. From experimental data resulted that in strong acid and strong basic mediums, the coordination compounds could not be obtained. The optimal stability of the studied compounds is limited between 3-6, pH - values. This fact is in accordance with the conditions of using these compounds in ecological leather tanning. Of great importance is that these compounds were used with very good results in tanning processes of different types of leather. This fact evidenced that the ecological alternative of tanning is better than non-ecological tanning using chrome compounds. The importance of this paper consists in obtaining new coordination compounds that can be used in ecological leather tanning.

  19. Antifungal activity of schinol and a new biphenyl compound isolated from Schinus terebinthifolius against the pathogenic fungus Paracoccidioides brasiliensis

    PubMed Central

    2010-01-01

    Background The aim of this study was to isolate and identify the antifungal compounds from the extracts of Schinus terebinthifolius (Anacardiaceae) against clinical isolates of the pathogenic fungus Paracoccidioides brasiliensis. Methods The hexane and dichlomethane fractions from leaves and stems of S. terebinthifolius were fractionated using several chromatography techniques to afford four compounds. Results The compounds isolated from S. terebinthifolius were identified as schinol (1), a new biphenyl compound, namely, 4'-ethyl-4-methyl-2,2',6,6'-tetrahydroxy[1,1'-biphenyl]-4,4'-dicarboxylate (2), quercetin (3), and kaempferol (4). Compounds 1 and 2 were active against different strains of P. brasiliensis, showing a minimal inhibitory concentration value against the isolate Pb B339 of 15.6 μg/ml. The isolate Pb 1578 was more sensitive to compound 1 with a MIC value of 7.5 μg/ml. Schinol presented synergistic effect only when combined with itraconazole. The compounds isolated from S. terebinthifolius were not able to inhibit cell wall synthesis or assembly using the sorbitol assay. Conclusion This work reveals for the first time the occurrence of compound 2 and discloses activity of compounds 1 and 2 against several clinical isolates of P. brasiliensis. These results justify further studies to clarify the mechanisms of action of these compounds. PMID:20939907

  20. Preparation and antibacterial activity of compound chitosan-compound Yizhihao-nanoparticles.

    PubMed

    Ou, Sheng; Zhang, Yang-de

    2008-05-01

    To prepare chitosan (CS)-compound Yizhihao-nanoparticles (NP) and to investigate its antibacterial activity. CS NPs were formed by the incorporation of CS and Na3 PO4. CS-compound Yizhihao NPs were prepared by ion-cross-linking. The particle sizes and surface charges of CS NPs were determined by Malvern Zetasizer 1000-HAS and atomic force microscope (AFM), respectively. The antibacterial activity of CS-compound Yizhihao-NPs was studied in vitro and compared with that of compound Yizhihao powder. Malvern Zetasizer 1000-HAS and AFM demonstrated that the diameter of CS-compound Yizhihao NPs was (137.00+/-14.28)nm and CS NPs had (16.90+/-1.32)mV positive surface charges. The minimal inhibitory concentrations (MIC) of CS-compound Yizhihao NPs on Staphylococcus aureus,Pneumococcus,beta-hemolytic streptococcus, and Escherichia coli were 1:32,1:32,1:16,and 1:2, respectively. The minimal bactericidal concentrations (MBC) of CS-compound Yizhihao-NPs on Staphylococcus aureus, Pneumococcus, beta-hemolytic streptococcus, and Escherichia coli were 1:16,1:16,1:8, and 1:2, respectively. The antibacterial efficacy of CS-compound Yizhihao-NPs to Staphylococcus aureus, Pneumococcus, and beta-hemolytic streptococcus had been improved significantly (P< 0.05). CS-compound Yizhihao-nanoparticles have obvious antibacterial activity to the Staphylococcus aureus,Pneumococcus,and beta-hemolytic streptococcus,which lays the experimental foundation for new preparation of traditional Chinese medicine in future research.

Top